
PB96-148762

FV
'1

TEMPORAL SPECIFICATION AMD VERIFICATION OF
REAL-TIME SYSTEMS

STANFORD UNIV., CA

SsKSl

m®
Sills w

■S*-

■ -•

AUG 91 19970821 055

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

f! DUALITY IFOPECTED S

$

I

A*'

REPORT DCCU.MSriTATICri PAGE
..'I'Ji-'iima
fvCUt -

form Ajsss-a»"*^

0*8» «a C7©*-0fSJ

a ir.»«i»n«; vat »-a» «CM**. *« «ww *is«q «n> «we,»«»} «g* n>«*nw«i <y •»'omnam Vent VTOMOTS »»-»——. •?— •—- „r^L ™ "™s'!m» ■- W «M=WL
f ^(PtfK3fW? tf*^ fr.,*-?^ to «snA ?2» «e«yÄ*B?an S--s»vir»*.

Cwm »j*«w». fop»)its*, »was«, v * izju-i >ai. *«d ro »a o?-V» r* MwM^rmwt»w »u*pst. i»s»™s« n«avnio»ft'BtKt R7&t4 tea.

femora aMf t&» taew» esswwa a» «a* «eu» »TBS« ;.< «<*

1. ÄU-.iüCr üJS Qi'.iV (Uatw Ct'«AfcJ 2. (UPC AT ÜAU
 8/30/ <?l

WMMngun. 0C R5J1

3. KiPCST TVS1! AKO OATSS C0VEK£D

«. TITLE tXQ SLfüu'i'U

TH£ T&WPOHAL ^PSdViCATiOM AMD VE^frfcATfcN
OF 'REAL-TfA^ SYSTEMS

& AUTKQÄÜ)

THOMAS A. Hoo&rJGER.

7. PtMQ&XmG QRQAHIZAVQH ttAMlii) A&D AÖÖ8ESSUS)

DÖOTMENT CF G0WVTER. SdktfC£
STAMFORD wft/osftY
SWFPRP, CA ^3oS

9. SFONSCKifSG/RSCNITCSSKS AGENCY KAMJ(S) ASÜD AE3R£SS{ES)

DAfSA
AKLaWGTON, VA

11. SUPPLEMENTARY NOTES

$. FUSSÄG NUiKSEHS

t. ME RFC«M3NG ORGANIZATION
RtP0«T NUMHR

STSH-CS-1t-t3$

io. $*0üS08ssMG/M0Krrce«s
AGENCY RZPOOT wm$*

noocSQ-Mc-cM

12«. 04SUi3UTlCN / AVAIL&giUTY STATEMENT

UWLWT£T>

12b. OSTRSUTION CODE

13. ASSTRACT (hUamum 100 wonts)

We extend the specification language of temporal logic, the corresponding rerifie*tion framework, and the
underlying computational model to deal with real-time properties of reactive systems.

Semantics We introduce the abstract computational model of famea* transition system* as a conservative
extension of traditional transition system»: qualitative fairness requirements are superseded by quanti-
tative real-time constraints on the transitions. Digital clocks are introduced as observers of continuous
real-time behavior. We justify our semantical abstractions by demonstrating that a wide variety of
concrete real-time systems can be modeled adequately.

Specification We present two conservative extensions of temporal logic that allow for the specification
of timing constraints: while timed temporal logic provides access to time through a novel kind of
time quantifier, metric temporal logic refers to time through time-bounded versions of the temporal
operators. We justify our choice of specification languages by developing a general framework for the
classification of real-time logics according to their complexity and expressive power.

Verification We develop tools for determining if a real-time system that is modeled as a timed transition
system meets a specification that is given in timed temporal logic or in metric temporal logic. We
present both model-checking algorithms for the automatic verification of finite-state real-time systems
and proof methods for the deductive verification of real-time systems.

1*. PRICE COOE

s3

■M

17. SECURITY CLASSIFICATION
OF REPORT

^»01-280-5500

It. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF AISTRACT

28. LIMITATION OF ABSTRACT

Sttnesrö Form 298 (*tv ."39)
•»•• ■-: 'S. »irti tu «».t»

y?

THE TEMPORAL

SPECIFICATION AND VERIFICATION

OF REAL-TIME SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OP COMPUTER SCIENCE

AND TBE COMMITTEE ON GRADUATE STUDIES

OP STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF TEE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

m By
Thomas A. Henzinger

August 1991

fy- ' - or; QUALITY INSPECTED 3

© Copyright 1991 by Thomas A. Hearing«

All Rights Reserved

/•••

i

i r

^m

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

I filths
larMauna Zohs

(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

->h j^
Joseph Y. Halpern

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

£ei«a.
an R. Pratt

m I

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in «cope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

twJkad kJg/diujVi
Richard Waldinger

1

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

tu

!■

J. ■-

Abstract

B

We extend the specification language of temporal logic, the corresponding verification frame-

work, and the underlying computational model to deal with real-time properties of reactive

systems.

Semantics We introduce the abstract computational model of timed transition systems as

a conservative extension of traditional transition systems: qualitative fairness require-
ments are superseded by quantitative real-time constraints on the transitions. Digital

clocks are introduced as observers of continuous real-time behavior. We justify our

semantical abstractions by demonstrating that a wide variety of concrete real-time

systems can be modeled adequately.

Specification We present two conservative extensions of temporal logic that allow for the

specification of timing constraints: while timed temporal logic provides access to time

through a novel kind of time quantifier, metric temporal logic refers to time through

time-bounded versions of the temporal operators. We justify our choice of specification

languages by developing a general framework for the classification of real-time logics

according to their complexity said expressive power.

Verification We develop tools for determining if a real-time system that is modeled as a

timed transition system meets a specification that is given in timed temporal logic or

in metric temporal logic. We present both model-checking algorithms for the auto-

matic verification of finite-state real-time systems and proof methods for the deductive

verification of real-time systems. Both techniques are conservative generalizations of

the corresponding conventional approaches to program verification, which abstract

time from consideration.

f.

P

II

Od Her story all over DO

There will be time, there will be time

To prepare a face to meet the faces that you meet;

There will be time to murder and create,

And time for all the works and days of hands

That lift and drop a question on your plate;

Time for you and time for me,

And time yet for a hundred indecisions,

And for a hundred visions and revisions,

Before the taking of a toast and tea.

— T.S. EUot

▼u

M

m

ji

"1

Foreword
■

f i
This dissertation deals with & relatively new — and thus perhaps necessarily somewhat f

controversial — topic of research. We are concerned with the question I
t f ;

Sow can we formally prove that a computing system meets time deadlines, where |

"time" is not measured asymptotically by a function on the size of the input, but I:

by a number of days, hours, minutes, seconds, and milliseconds? ||

While the crucial importance of this so-called real-time verification problem has long been I

realized in practice, the challenge of formal reasoning about physical time has stirred the |
ft;

interest of the theoretical computer science community only recently, and only halfheartedly |

at that. The two main arguments that usually are brought forward to justify this negligence f
I' .$ on the side of the theoreticians run as follows:

1. There is no real-time verification problem. The real-time behavior of a program de-

pends on myriad factors such as the operating system and the underlying hardware.

Worse, many of these factors generally are hidden from the programmer. If your

program misses a real-time deadline by a constant factor, use (or wait for) a faster
machine.

While this analysis of the problem is correct, the conclusion is not. Indeed, the real-time

verification problem is far messier than the convenient abstraction of time by traditional

program verification techniques. This observation only goes to show how clever these tech-

niques are — and that they ought to be used whenever possible — but it does not make the
need for, say, flight control systems disappear. Tampering with the speed of the machine

is a naive nonsolution for the most important real-time systems, which are embedded in

real-time environments whose speed is not under our control

viii

II

M

m

2. Granted, the verification of timing constraints is a real concern, but there is nothing

special about the real-time verification problem per se. Time is but another parameter

of the system state — treat it as such. That is, use the standard, established program

verification techniques.

There is an obvious reply: no. Time 15 fundamentally different from the state components

of a computing system. For all we know, time is continuous, monotonic, and divergent,

and program variables generally happen not to have any of these characteristics. Only if

we recognize the special status of time will we be able to find and exploit the intricacies

of proving timing properties and avoid pitfalls Jike "Zeno" behaviors, which allow time to

converge.

It is the purpose of this dissertation to provide technical arguments that substantiate

the gut response. As a case in point, observe th*t time ranges over an infinite domain and,

therefore, the verification of real-time systems escapes all of the widely used tools that have

been developed for the verification of finite-state systems. We will show that this need not

be the case: with some effort we can make finite-state techniques work if a program variable

ranges over all natural or real numbers, provided at most one variable does so and provided

the value of the variable is never decreased. Luckily, time happens to move in one direction

only.

IX

Acknowledgments

!
Chapters 2 and 6 of this dissertation present joint work with Zohar Manna and Amir Pnneli; I

Chapters 3 and 4 present joint work with Rajeev Alur. Yet the influence of any one of my I
ST

three coauthors can be felt throughout the entire thesis, far beyond the particular sections §

that have evolved from joint papers. Zohar has been my advisor at Stanford for five years; he

brought me to Stanford, he made possible two extremely productive visits to the Weizmann

Institute in Israel, and he has been the source of the unlimited spiritual, technical, and

financial support that has carried me through the doctoral program. Amir is one of those

rare people who can almost single-handedly open an entire new area of research; it has been

an immeasurable experience and pleasure to collaborate with him in a field he pioneered

fifteen years ago. To Rajeev, let me plainly say: thank you! For whatever particulars I

were to point out about his technical ingenuity and about how much fun he is to work with,

I would not nearly do justice to his many contributions to my education as a researcher.

Without any one of the three, this thesis would simply not exist.

That the thesis does exist in the present form is due also to the enthusiastic interest, sup-

port, and criticism I have received from colleagues at Stanford, at the Weizmann Institute,

and at scientific meetings around the world. I am particularly grateful for innumerable
discussions, of both highly technical and almost philosophical points, with the members

of my reading committee, Joe Halpern, Vaughan Pratt, and Richard Waldinger, as well as

Martin Abadi, Dave Dill, Allen Emerson, Tomas Feder, Sol Feferman, Tim Fernando, Adam
Grove, Leslie Lamport, John Mitchell, Serge Plotkin, Martin Rinard, Vijay Saraswat, Fred

Schneider, Natarajan Shankar, Yoav Shoham, Moshe Vardi, and Pierre Wolper. Special

thanks go to Eddie Chang, Daphne Koller, Alex Wang, Liz Wolf, and Howard Wong-Toi

for their detailed comments on various drafts of my thesis.

I would also like to take this opportunity to thank the four teachers who, up to this

3" '-;.

'"'Si?

> "i
"•A

WkX'ri

point in my life, have been the most profound influences: Bruno Buchberger in Linz, who

introduced me to logic and galvanized my interest in formal methods; Don Knuth at Stan-

ford, whose Problem Seminar of 1987 inspired my (unreachable) ideal of what it means to

"do research"; and, above all, my parei.ts, who have never failed to believe in me.

Finally, I gratefully acknowledge the support I have received for the past three years

from the IBM Corporation in the form of a graduate fellowship.

Tom Henzinger

Stanford, California

August 1991

ilia

i

1

Chronology

Much of Chapters 3 and 4 is based on material that was first presented at the 30th Annual

IEEE Symposium on the Foundations of Computer Science in October, 1989 [10], and

at the Fifth Annual IEEE Symposium on Logic in Computer Science in June, 1990 [11].

A preliminary version of Chapter 5 appeared at the Ninth Annual ACM Symposium on

Principles of Distributed Computing in August, 1990 [56]. The bulk of Chapters 2 and 6

has evolved from work that was first published at the 18th Annual ACM Symposium on

Principles of Programming Languages in January, 1991 [58].

zu

I

mm

BSsM ■M

^^ IÜ

1

IS

Contents

Abstract v

Foreword viii

Acknowledgments z

Chronology xii

0 Introduction 1

0.1 The Real-time Verification Problem 2

0.2 The Temporal Methodology 3

1 Specification 7

1 An Interleaving Model for Real Time 9

1.1 Timed State Sequences 10

1.1.1 Actual versus observed behavior 14

1.1.2 Analog-clock semantics 17

1.1.3 Digital-clock semantics 21

1.2 Real-time Properties 25

1.2.1 Reliability 26

1.2.2 Digituability 30

xiii

1.2.3 Safety, liveness, and opsraiicnality 34

1.3 Real-time Systems, Specifications, and Verification 45

1.3.1 Implementation languages 46

1.3.2 Specification logics 47

i.3.3 Analog versus digital verification 49

2 Real-time Systems 53

2.1 Abstract Model: Timed Transition Systems 53

2.1.1 Closure properties 56

2.1.2 Operationally 60

22 Concrete Model: Multiprocessing Systems 67

2.2.1 Syntax: Timed transition diagrams 67

2.2.2 Semantics: Timed transition systems 69

2.2.3 Examples: Time-out and timely response 71

2.2.4 Message passing 75

2.3 Concrete Model: Multiprograrnming Systems 78

2.3.1 Syntax and semantics 80

2.3.2 Scheduling strategies 82

2.3.3 Processor allocation 86

2.3.4 Priorities and interrupts 87

3 Real-time Logics 93

3.1 From Temporal to Real-time Logics 94

3.1.1 Linear temporal logic 95

3.1.2 Bounded invariance and bounded response 97

3.1.3 Real-time temporal logics 99

3.2 The Classical Theory of Timed State Sequences 101

3.2.1 The classical theory of state sequences 101

xiv

■5
■ -i

-
■*

.'.■ . ' i
■^

.' ■■1
'
i
3

r. ..'

r ■%

■ Sc

: : X '-Am
"T"*?

."■,"1

:-'-ii
■ '\i

:■•£
-f ■ ■'■.4

,<:? ; -,".
= ',. ':■ " _■*.

i

S^v-.' '%
\-:-i- -1
■M ■ '-'#

■^ ".Jj

1 iV;;:--5. -;■ ■ ^-^ ^
fe<,":- •3 •^
f: ''■ ;

v. '1
■i:.'.;--',o-.V' ■.'/^

' * ('jl
t£,:&v ''■t'

::v£v>V ;:■*;

f
; .';^

'■&
Uf)

-\ j '^
'Sh'^tif)
?Q.s ;■"■''■"" M

■>8

'5
^ vV'-.':*
^-V.'^-V' -■
Ä.-J i-;1- ■' '-"*
^■;-'*\"' ■: >*>
£fi-Kl*h •■•-? '$-',%(.';-; «i
J^y-W-X:-

.■""•

S ' m
',='- •
?' ■ ^

■
m

$
^*<'^ "v-

-'.'^
e-;.' ■:

* 1
^Vs:'-^v-~ ̂ --!ä
^* " ,

•;
WS

ÖÄ5?f S5i :. « .,
:■

X-'|E

&»'.-?

iiM
$|fe '.$f

^^u^iflj

3.2.2 Adding time to state sequences 103

3.2.3 Decidability and exprcssibility 10*

3.3 Timed Temporal Logic 110

3.3.1 Syntax and semantics HI

3.3.2 Expressive c. apleteness 116

3.3.3 Timed extended temporal logic 119

3.3.4 Nonelementary extensions 123

3.4 Metric Temporal Logic I28

3.4.1 Syntax and semantics 126

3.4.2 Expressive completeness 130

3.5 Real-time Properties That Cannot Be Verified 132

3.5.1 Timed temporal logic revisited: Undecidable extensions 132

3.5.2 The classical theory revisited: Undecidable extensions 137

3.5.3 Decidability versus undecidability in real-time logics 139

n Verification *43

4 Finite-itate Verification 145

4.1 Deciding Timed Temporal Logic 146

4.1.1 Timed tableaux I46

4.1.2 Complexity of timed temporal logic 157

4.1.3 Timed extended temporal logic 160

4.2 Deciding Metric Temporal Logic 162

4.2.1 Metric tableaux 163

4.2.2 Complexity of metric temporal logic 166

4.3 Model Checking 167

4.3.1 Finite-state real-time systems 168

xv

' I

mv'-A

4.3.2 Model-checking algorithms 172

4.3.3 Complexity of model checking 173

5 Deductive Verification: General Part 177

5.1 Half-order Modal Logic 178

5.1.1 Syntax and semantic» 179

5.1.2 Proof system 181

5.1.3 Completeness 185

5.1.4 Syntactic and semantic extensions 191

5.2 Half-order Temporal Logic 19S

5.2.1 Syntax and semantics 197

5.2.2 Proof system 198

5.2.3 Completeness 203

5.2.4 Nonaxiomatizable extensions 210

5.3 Proving Timed Transition Systems Correct 212

5.3.1 Reasoning about explicit programs 213

5.3.2 Reasoning about one implicit program 215

6 Deductive Verification: Program Part 217

6.1 Properties of Timed Transition Systems 219

6.1.1 State properties 219

6.1.2 Temporal properties 222

6.2 Explicit-clock Reasoning 226

6.2.1 Explicit-dock temporal logic 226

6.2.2 Example: Race condition 229

6.3 Bounded-operator Reasoning 231

6.3.1 Deterministic rules 232

6.3.2 Conditional rules 241

6.3.3 Relative completeness 245

xvi

7 Discussion 253

7.1 Some Connections with Related Research . 255

7.1.1 Semantic alternatives: Real-time models 255

7.1.2 Syntactic alternatives: Real-time languages 258

7.2 Some Directions for Future Research 261

Bibliograph; 267

k:J

p m

xva

■'l i i

//

■■: ■/•

Chapter 0

Introduction

real time: (software) (A) Pertaining to the processing of data by a

computer in connection with another process outside the computer ac-

cording to the time requirements imposed by the outside process. This

term is also used to describe systems operating in conversational mode

and processes that can be influenced by human intervention while they

are in progress. (B) Pertaining to the actual time during which a phys-

ical process transpires, for example, the performance of a computation

during the actual time that the related physical process transpires, in

order thvt results of the computation can be used in guiding the physical

process.

— IEEE Standard Dictionary of Electrical and Electronics Terms [66]

Many software and hardware components meet the tasks for which they have been designed

only if they relate properly to the passage of time. Examples of such time-critical, or real-

time, systems abound: embedded controllers have to oversee the operation of physical plants

in physical time; the correctness of circuits and communication protocols often depends on

gate delays and message delays, respectively. The behavior of computing systems in physical

time is particularly difficult to predict by "inspection." This is why real-time systems are

prime targets for a formal approach to system specification, verification, and development.

Logical formalisms and techniques have provided valuable aids for understanding and

proving how complex computing systems behave. Temporal logic, in particular, has been

/

/

/

2 CHAPTER 0. INTRODUCTION

established as a working tool for the design and analysis of concurrent programs. One

shortcoming of conventional temporal logic, however, is that it admits only the treatment

of qualitative timing requirements, such as the demand that an event occurs "eventually."

Because of this limitation, Standard temporal logic is ^adequate for the study of real-time

systems, whose correctness depends crucially on the actual times at which events occur. In

this thesis, we generalize the temporal methodology to encompass the analysis of real-time

behavior.

0.1 The Real-time Verification Problem

A formal approach to the specification and verification of real-time systems must

1. assume a particular mathematical model C of computation,

2. assume a particular mathematical model T of time,

3. use a formal language £j — the implementation language — for the description of

systems and their behavior over time,

4. use a formal language Cs — the «pecv/icatton language — for the description of qual-

itative as well as quantitative timing properties of systems,

5. present algorithms and/or proof rules that facilitate a formal argument that a partic-

ular system has a particular property under the assumed semantics of computation

and time. We call this question — whether a system 5, given as an expression of £/,

meets a specification 4>, given as an expression of Cs, with respect to the semantical

assumption {C,T) — the real-time verification problem for (C,T,Ci,Cs):

s N(C,T) 4-

1 6. justify the adequacy of the semantical assumption (C, T) by showing how an answer

to the real-time verification problem for (C, T, Ci, Cs), which asks a question about an

abstract mathematical domain, relates to the behavior of concrete systems in physical

time.

0.2. THE TEIIPORAL METHODOLOGY 3

This thesis addresses several instances of the real-time verification problem. Some are

solved by algorithms, some are served by proof systems, and others are shown to be so hard

that neither method can succeed. In particular, we will study the real-time verification

problem, and demonstrate its practical relevance, for the following values of the parameters

C, T, £/, and Cs:

Computational model As we are primarily interested in the issues that are particular

to time, we concentrate on a single simple and established model of computation.

Throughout this thesis, we shall represent computation by linear, interleaved traces.

Both systems and properties will be modeled as sets of traces. Those aspects of

computation that can be represented only by branching or partial-order structures do

not concern us.

Time model We investigate two models of time. A continuous time domain is required

to represent the exact physical time of events; if the time of events is recorded by a

fictitious digital clock, a discrete time domain suffices.

Implementation language A real-time implementation language should, from a practical

point of view, be able to describe such real-time phenomena as time-outs and inter-
rupts. We will argue that from a theoretical point of view, system descriptions should

be executable, refinable, and independent of the time model. With timed transition

systems we will introduce a language that satisfies these criteria.

Specification language A real-time specification language should, from a practical point

of view, support natural and verifiable specifications of such real-time properties as

time-bounded response, time-bounded invariance, and periodicity. We will argue that

from a theoretical point of view, the language should strike a particular intrinsic bal-

ance between expressive power and complexity of the associated verification problem.

With timed temporal logic and metric temporal logic we will introduce two orthogonal

syntactic extensions of temporal logic that satisfy these criteria.

0.2 The Temporal Methodology

Let us briefly review the temporal-logic approach to system specification and verification

and, simultaneously, use this opportunity to outline the organization of this thesis, which

4 CHAPTER 0. INTRODUCTION

advances the introduction of time into the temporal framework. The use of temporal logic

for the formal analysis of reactive systems was first advocated by Pnueli [106]. The complete

temporal methodology consists of four elements [91], all of which are affected by the addition

of time. These four components structure the thesis:

Systems — syntax and semantics. The temporal approach is based on a trace model of

computation. The semantics of a system as a set of traces is defined in four steps:

1. A concrete system P typically is described in a graphical language, by a transition

diagram, although the methodology is applicable to a wide variety of program- i

tiling languages as well as hardware description languages. I

2. The system P is modeled as an abstract mathematical object Sp called a trail- |

sition system. I

3. The formal semantics of the transition system Sp is defined as a set Il(Sp) of I

state sequences.

4. The set U{Sp) of state sequences represents the set Beh(TL{Sp)) of possible

behaviors (i.e., traces) of the system P.

We incorporate time into this model by

1. describing a real-time system P by a timed transition diagram,

2. modeling P by a timed transition system Sp,

3. denning the semantics of Sp as a set TL(Sp) of timed state sequences, which

associate a time with every state, and

4. having U(Sp) represent the possible behaviors Beh(TL(Sp)) of P in physical time.

Chapter 1 introduces timed state sequences — a formal abstraction of real-time be-

havior and the cornerstone of our approach. Chapter 2 introduces timed transition

systems — a formal abstraction of real-time systems — and demonstrates their ability

to model a wide variety of real-time phenomena that are encountered in practice.

Specifications — syntax and semantics. The temporal approach uses temporal logic to

specify qualitative timing properties of systems. A formula 4> of temporal logic defines

a set n(^) of state sequences, which represents the set Beh{JI(4>)) of traces that are

:ffv
P

P

i :

0.2. TEE TEMPORAL METHODOLOGY 5

admitted by the specification <t>. Consequently, a system P meets the specification <f>,

denoted by P (= <f>, iff all possible behaviors of P are admitted by <j>:

Beh{U{Sp)) C Bek{IL(4>)).

We present two extensions of temporal logic that are interpreted over limed state

sequences and allow the specification of quantitative timing properties. While timed

temporal logic provides access to time through a novel kind of time quantifier, metric

temporal logic refers to time through time-bounded versions of temporal operators.

Chapter 3 introduces both languages and analyzes their expressive power and the

complexity of their decision problems.

The preceding two elements of the temporal methodology fix the parameters of the verifica-

tion problem and formalize the verification task as one of checking containment of trace sets.

The following two elements present two fundamentally different techniques — a semantic

one and a syntactic one — to solve this task.

Algorithmic verification — model checking. Model checking is a powerful automatic

technique for the verification of systems with a finite state space. It relies on algo-

rithms that check if a transition system meets a temporal-logic specification. Chap-

ter 4 presents model-checking algorithms for timed transition systems and both timed

and metric temporal logics. The real-time model-checking problem is shown to be

exponentially harder than the corresponding untimed problem.

Deductive veriflcation — proof rules. A deductive calculus is necessary for the verifica-

tion of systems that escape model-checking methods because of the size of the state

space. Such a proof system typically consists of three parts:

1. The general part axiomatizes temporal logic.

2. The program part provides proof rules for reasoning about structural properties

of a particular system.

3. The domain part provides proof rules for reasoning about various data domains,

if such a need arises.

Chapter 5 axiomatizes timed temporal logic. Chapter 6 introduces the program part

of two proof methodologies for verifying timed transition systems. The proof methods

are shown to be complete relative to reasoning about data domains.

is

1

i Hi

CHAPTER 0. INTRODUCTION

I i

Part I

Specification

a

1

Chapter 1

An Interleaving Model

for Real Time

We study reactive systems — discrete systems that maintain an ongoing interaction with

their environment [108]. Typical examples of reactive systems are distributed processes,

which interact with each other, and real-time processes, whose interaction is prompted and

constrained by the passage of time. In order to develop and apply a formal methodology

for the specification and verification of a class of systems, the members of the class have

to be modeled by mathematical objects. A model should be both adequate, in that it

distinguishes between systems . j»«e behaviors differ in one of the aspects under consider-

ation, and abstract, in that it omits unnecessary detail by identifying systems without such

disagreements.

One well-established approach to the modeling of reactive systems uses the paradigm

of interleaving to represent concurrent activity. Whenever the simultaneous occurrence of
several actions causes a distinct effect, such as process synchronization, the interleaving

approach introduces joint "metaactions." Independent concurrent actions, however, are

simply nondeterministically sequentialized — as if they are performed in any order. It is

this bold abstraction of representing the behavior of a system by a linear sequence of actions

that brings about a major economic benefit, namely, that at any point only one action can

occur and has to be analyzed. This astoundingly simple model turns out to be adequate

for the study of many important properties of reactive systems. In particular, if the grain

of atomicity of actions is chosen to be fine enough, it allows us to reason effectively about

9

Lauf!

10 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TRIE

the correctness of concurrent programs, independent of whether they axe implemented in

multiprogramming or multiprocessing environments.

The standard interleaving model is, however, abstract with respect to physical time; it

identifies systems that admit the same sequences of actions, even if tney do so at radically

different speeds. While this abstraction facilitates the analysis of speed-independent sys-

tems, it is blatantly inadequate for real-time systems. To handle the quantitative timing

requirements of these systems, we have to refine our model of computation by adding a

time dimension. It has been claimed, however, that the interleaving model is intrinsically

unsuited for the adjunction of time and that a more realistic modeling of concurrent activity

is needed for the study of real-time systems [73]. For, it is argued, two actions executed

truly in parallel surely take less time than any sequential execution of both actions. One

of the main points that we demonstrate in this thesis is a refutation of this claim. We

show that by a careful incorporation of time into the interleaving model, we can still model

adequately most of the phenomena that occur in the timed execution of systems and yet

retain the important economic advantages of interleaving models.

The key insight for combining interleaving and real time is to confine all actions to

happen "instantaneously." This restriction proves workable, because any action a that

takes 6 > 0 time units can be modeled by two instantaneous actions, begin-a and end-a,

as well as a timing constraint that forces the latter action to happen (and only happen) 5

time units after the former. Exploiting this observation, we may proceed to represent two

independent simultaneous actions by nondeterministically interleaving the corresponding

begin and end components as usual.

Having motivated an interleaving model of timed computaw .a, we follow the temporal-

logic tradition of modeling the behavior of reactive systems by sequences of states rather

than actions. Actions will, in our model, be represented implicitly, through their effects on

the states of a system. The requirement of instantaneousness of actions translates, therefore,

into instantaneousness of state changes.

1.1 Timed State Sequences

We study how reactive systems behave over time. The behavior of a system will be formal-

ized as a sequence of snapshots of the global system state at certain times. The kinds of

J.I. Th^ED STATE SEQUENCES 11

systems and phenomena that can be captured adequately in this fashion depend on when

tizxd. how cfitn snapshots can be taken and on how accurately they can be timed:

When We do not restrict the times at whi-h the state of a system can be observed; snap-

shots may be taken at any real point in physical, continuous time. This enables us

to model both synchronous (clocked) protases, all of whose state changes occur in

lock-step with a digital clock, and more general asynchronous processes, which change

their state at arbitra-v real poiats in time.

In fact, we allow several snapshots to be taken at the same time. Since state changes

are instantaneous, such contemporaneous observations may yield different results.

The possibility of several contemporaneous, yet ordered, snapshots is imperative for

modeling simultaneous state changes by interleaving, as has been pointed out above.

How often We do require the number of snapshots to be countable; that is, we cannot

observe the state of a system at every real point in time. Furthermore, we permit

only finitely many snapshots between any two points in time; thus we prohibit infinite

"Zeno" sequences of snapshots, whose times converge towards a real point in time

These restrictions are entirely adequate for modeling discrete processes, which change

their state only finitely often between any two points in time and, thus, can be de-

scribed completely by a divergent w-sequence of state changes. We make no attempt

to model continuous processes other than through discrete approximations.

m

i

How accurately The times of snapshots are recorded by a global (fictitious) clock. We

distinguish between different manifestations of the clock. An analog clock gauges the

time of every snapshot with infinite precision, while a digital clock records only the

number of clock ticks, with respect to some time unit chosen a priori, between any

two snapshots.

We emphasise that the type of clock that is used to time-stamp observations is

completely independent of whether we model a system that is synchronous or asyn-

chronous, discrete or continuous: even if the time of a snapshot is recorded by a digital

clock, it may occur at any real point in time; even if we employ an analog clock, we

can take at most countably many snapshots.

CHAFTER 1. AN INTERLEAVING MODEL FOR REAL TD.IE

• V

M

Formally, an obsenaUcn is a pair that consists of a state showing the result of a snapshot

and a time-stamp recording the time of the snapshot. A finite or infinite sequence

p: (<70,T0)—► (o-i.Tj)—►(<T2,T2)—>(cr3,T3) —

of \p\ 6 N U {w} observations is called a timed state sequence p = (ff,T); it consist» of a

sequence <r of |p| states <Tj, where 0 < s < \p\, and a sequence T of corresponding time-

stamps Tj G TIME. At this point, we do not commit to any particular time domain TIME;

we only assume that there is a total ordering < on TIME and demand that

Monotonicity Time does not decrease:

T<-i < T< for all 0 < t < \p\.

This condition ensures that the global logical order of snapshots is consistent with

the temporal order. It permits, however, adjacent observations with the same time-

stamp. Thus a timed state sequence can be viewed as imp »sing a two-level ordering

on snapshots: the macro-order is determined by the time-stamps, and within each

time-stamp, there is a local logical order of observations.

Progress Time progresses:

either p is finite,

or for all 6 € TIME, there is some t" > 0 such that Tj > S.

This condition ensures that the time-stamps of observations do not converge.

We consider three types of fictitious clocks. In the analog-clock model we take TIME to

be the nonnegative real numbers R; in the digital-clock model, the nonnegative integers N

— thus assuming that the ticks of a digital clock are exactly one time unit apart. If time is

immaterial, we let TIME be any trivial one-element domain 1; this case is referred to as the

untimed model. We call timed state sequences of the analog-clock model precisely timed; of

the digital-dock model, digitally timed; and of the untimed model, untimed. Untimed state

sequences are often identified with their state components. In both the analog-clock and

the digital-clock model, we assume the standard definitions of customary functions such as

addition on the time domain; in the untimed model, the definition of any total function

on the time domain is uniquely determined. We write TSSTMB for the set of timed state

1 i
■ 1

1

:; ;
■!

'■' .'■;

;
•'.;

1 ?

-.-. . . i
' ■ ■' .1

3
/ ' ■ '.;;

• sl
•i'. '■ ■ ■ iW
■■■ •■ .5 :> ;^
\. :■. ^

;. ' %
' ''.V

:' 4
.-•'■'■ . / .^

1
"'■k' ■..'" .'-'A

,:;"' - ; , ' ■■ '%

)'■■- '%

'&" •"■■'.''■j

li' :VK1

*XX' :: ;-Xfi§

^'■Y'X,-' 'X'X«
vl' .-■■ . ..'-'5

?"■ a ■ • •■$
^'■'"■' vi..^'
i.•■.■:,' ■/■' ;":■.]'::

Ixxx'xv^x
x^ -'.■ '■-'■?-,
'X;-'''' ■ :■''',.Xi
ÄX--XX-Xg
■*•■" -3
Ix'/X-Xif
■<.■ '-' ' -:"-'4Ä
:»'''.■. ■■,-''• y*f!

;**■""-.' X«
%'•■ i ■■''!?!
>'' "|
pi ^. ' X X~

1« ;:;XV?s|

l«:-.x:31
- & ■■" ;*$

jfv ^-:'i$
I' 'ä
fö- VrZ ',::i$

'■■§.•;?;■■:■■■ ->.':^

&£■■-. ■■■■ ^
^■. . J.T^
U \
>, ;
^ 1 fe* , - -7

fetXA'äg

F Ä%X. f .:.$
rl ";

Ä-.'-;X'v:::'/'XV'?
s^ v-'X'' XX<
i' ' • -4
U ;" X]
$>:.".'-!-. ..■■...xy-ir,

:.. . .'

.
.

IN i
B

I;.
\ ■

—1. ■' - - ■ ~

t X'

1.1. TIMED STATE SEQUENCES 13

sequences over the time domain TIME; whenever the value of the parameter TIME is

unspecified (i.e., arbitrary), the subscript is suppressed. The set of all infinite timed state

sequences is denoted by TSS".

The remainder of this thesis can be viewed as a contribution to the development of

a formal theory of timed state sequences. We will propose, analyze, and relate various

methods for defining (sets of) timed state sequences — methods that range from abstract

specification languages, such as real-time logics, to concrete implementations of real-time

systems.

Operations on timed state sequences

We routinely use the following operations on timed state sequences. For any timed state

sequence p = (ff,T), let p~ be its state component c; applied to a set II of timed state

sequences, this "untune" operation yields the corresponding set n~ of state components.

By p' = (<r*,T'), for 0 < t < \p\, we denote the timed state sequence that results from p by

deleting the first»' observations. If S € TIME, then p + 6 = (<r,T + S) stands for the timed

state sequence that is obtained from p by adding S to all times in T. Given two infinite

timed state sequences p = (<r,T) and p' = {a1,T') and S 6 TIME, we say that p? is a 6-suffix

of p iff for some t > 0,

(1)^ = ^,

(2) either t = 0 or Ti~\ < 6, and

(3) V +1 = T\

Note that p has at least one o-suflx for every 6 € TIME, but it may have several different

tf-suffixes: if p contains n observations with the time-stamp S, then there are n +1 distinct

ß-suffixes of p. For example, the timed state sequence

(a,l) — (6,3) — (c,3) — (<i,4) —. (e,5) — •••

has one 2-suffix,

and three 3-sufExes:

(6,1) — (c,l) — (d,2) — (e,3) — •••,

(6,0) — (c,0) — (d,l) — (e,2)

■?1

14 CHAPTER 1. AN INTERLEAMNG MODEL FOR REAL TRIE

(c,o)-.(i,i)-M- •••,

(d,l) —(e,2)

Modeling system behaviors by timed state sequences

We will define the formal semantics of a reactive system 5 as a set of timed state sequences

that represents the possible behaviors of S. To do this properly, we have to address the

following two issues:

1. Given a set II of timed state sequences, which set 9 of system behaviors does II

represent? We take the view that a timed state sequence p is obtained by observing a

system and, consequently, represents any behavior that may result in the observation

sequence p.

2. Given a set $ of system behaviors, is there a set II of timed state sequences that

represents $ f If there are several such sets II, is there a preferred one? Indeed, we

are limited to a certain class of reactive systems that can be represented by a timed
state sequence semantics in both the analog-clock model and the digital-dock model.

Moreover, for any system 5 in this class, we wfll select a particular set of timed state

sequences to represent the possible behaviors of 5, because we shall require that the

semantics of 5 satisfies certain closure conditions.

Both of these issues are discussed in the rest of this chapter. While the remainder of

Section 1.1 provides a formal answer to the first question, Section 1.2 addresses the second

point. The practically oriented reader who is not interested in the details of modeling

reactive systems by sets of timed state sequences may proceed immediately to Chapter 2,
which defines and illustrates the timed state sequence semantics of concrete systems.

1.1.1 Actual versus observed behavior

time'Complete iff every real point in time is observed. While we demand state-completeness

when observing discrete systems, no countable number of snapshots can be time-complete.

7! ■

A timed state sequence is the result of observing the behavior of a reactive system. We ,

say that a sequence of snapshots is state-complete iff every system state is observed; it is --''

1
'■'■" vi

'■-\. ■ . - -4

:* ■")>

i . "I.J
V:>".";'1

.i. -J!

'''■■-' ' \'i!

■',' ■ ■ :■-

--'■"■1

i - "^
f^-"<^

■;/;'■"'.■>■:*

A'' ;■ '''■$
..V. ;:.■■,:'■ ■,:yi

t
.■*',-'.'■ i ;"'"i!';

'■V: -^1

5:--"'-.':^
*v-:.-^

;.>■■ '"-■: p':3

,i;; '' v/'^J

W '.^"."''sV

•V-::;v:?|

:

$. >vt! ^*i
* -s
:3^vY".v'l

/-:■;'V','; 'H
^■V::r.>J ;>-;.;;.,;.-.;:
&.■)';$

■''>';'■;•'::" >7^

fe ■>%

fe^:^
^■^

• % ■ vl
■ 'i'." ' 'I

■ *' i
&M i#i
?M$si

■' <
^i^--'"''
^"i^

.
ü^ü

^
'■ .-: ass*:

Ä'-Ä" m
MM .
9"'Mr; M-tt
Wm
W--S

,y<s
It--,,,..:,;

2.1. TIMED STATE SEQUENCES 15

Thus, unlike a state sequence when time is of no interest, a timed state sequence may not

uniquely define the actual behavior of a system in physical time; observing different system

behaviors can result in the same state-complete timed state sequence. There are two reasons

for this ambiguity:

1. Two contemporaneous observations are necessary to obtain complete information

about a state change — one snapshot showing the state immediately before and the

other showing the state immediately after the instantaneous state change. If a timed

state sequence fails to observe a state change in this fashion, then it does not define

a unique system behavior. For example, if given the (state-complete) precisely timed

observation sequence
(a, 5) — (6,6),

all we know is that the system state changes from a to 6 between time 5 and time 6;

the actual state change may occur as early as at time 5.1 or as late as at time 5.9.

2. In the digital-clock model, there is a second source of ambiguity, which is caused by

the inaccuracy of the fictitious clock that records the times of snapshots. For example,

if given the (state-complete) digitally timed observation sequence

(a, 5) — (6,5),

all we know is that the system state changes from a to 6 between the fifth and the

sixth tick of a digital clock; assuming that the first clock tick happens at time 0, the

state change may, again, occur as early as at time 5.1 or as late as at time 5.9.

Both sources of timing ambiguities need to be resolved. In other words, so far we have

given only the syntax of timed state sequences; we still need to agree on what a timed state

sequence, in either clock model, "means."

In the following two subsections, we will define the semantics of timed state sequences,

first for the analog-dock model and then for the digital-dock modd. To eliminate both

sources of timing ambiguities, we introduce, on top of interleaving, two additional layers of

abstraction in modeling real-time behavior by w-sequences of observations:

1. Precisely timed observation of actual behavior — from behaviors of reactive systems

to timed state sequences over R.

16 CHAPTER 1. AN INTERLEAMNG MODEL FOR REAL TIME

2. Digital timing of observed behavior — from timed state sequences over R to timed

state sequences over N.

The untuned model requires neither layer; the analog-clock model, the first layer only; the

digital-clock model, both layers. In both steps, we use the convention that a timed state

sequence does not denote a single behavior, but rather that a set of timed itaie sequences

stands for a *e£ of behaviors of a reactive system. For this purpose, we need to formalize

the notion of "(actual) behavior" of a system.

Real-time behavior

'ot surprisingly, we employ timed state sequences that contain no timing ambiguities to

serve as representatives of system behaviors. A behavior is a timed state sequence p = (<r, T)
such that

Determinism Time advances only if the state does not change:

for all 0 < t < \p\, either <r,_i = <r< or T;_i = Tj.

This property ensures that every state change is observed by two contemporaneous

snapshots; a timed state sequence that satisfies it is called deterministic. For a set

II C TSS, let Det(U) C II be the set of all deterministic timed state sequences in II.

A set II C TSS is called deterministic iff Uel(II) = II.

Stutter-freedom Time advances to the next state change:

for all 0 < » < \p\, not both <r,-i = trt- and Tj_i = Tj, and

for all 0 < t < \p\, either t > 0 and tn-i £ n, at i < \p\ - 1 and a £ o-<+1.

This property ensures that a minimal number of snapshots is taken; a timed state
sequence that satisfies it is called stutter-free. Note that «carding to our definition,
if p € TSS is stutter-free, then \p\ > 1.

We write BeA(II) C II for the set of all behaviors in II C TSS.

A behavior of the analog-dock model is called a real-time behavior. Determinism by

itself guarantees that a precisely timed state sequence uniquely defines the behavior of a

system in physical time, because any state-complete deterministic timed state sequence

i /

i ,7

1.1. TIMED STATE SEQUENCES 17

over R contains enough information to determine the precise time of every state change.

However, depending on how many repetitious snapshots of a system state are taken, the

same system behavior may result in different deterministic sequences of observations. The

requirement of stutter-freedom has been added to obtain a bisection between actual and

observed system behaviors.

Another operation on timed state sequences

It will turn out to be convenient to have an operation on timed state sequences that removes

redundant observations. Given a timed state sequence p = [cr,T), we define the timed state

sequence ijp to be a maximal stutter-free subsequence of p; that is, \fi results from p by

deleting some observations. In particular, the observation (ffi.Tj), f or 0 < » < \p\, is deleted

unless either the previous observation or the subsequent observation shows a state different

from <r<; in addition, all observations but one in any subsequence of successive identical

observations are deleted. For example, if p is the timed state sequence

(a,0) — (o,l) —»(6,1) — (c.l) — (c.l) — (d,l) — (d,2) — (d,3) — (e,5),

then tip is the timed state sequence

(o,l) — (6,1) — (c,l) (<U)—» (d,3) — (e,5).

Note that a timed state sequence p is deterministic iff |]p is deterministic. Consequently,

if p is deterministic, then tl/> is a behavior. For II C TSS, let 1)11 = {l]p | p € II}. Thus, for

any set II of timed state sequences, the set

SKet(n) = Detail)

is a set of behaviors.

1.1.2 Analog-clock semantics

We define our interpretation of timed state sequences in the analog-clock model in such a

way that every precisely timed state sequence p denotes a set \p\ of real-time behaviors.

Informally, we take \p\ to contain all real-time behaviors that are consistent with the ob-

servation sequence p under the assumption of state-completeness; that is, at any point in

18 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

time, the system state is assumed to be equal to one of the two states shown by neighboring

observations. This interpolation of states induces a closure operation on sets of timed state

sequences.

Stuttering

A set II of timed state sequences is weakly closed under stuttering iff whenever the sequence

(f«,T,) —► (<r;+i,T<+i)

is in II, then so are the sequences

and

■ ("t+i.Ti+i) ... —. (<ri,li) —► (<ri+i,8) ■

for all Tj < 6 < Tj+i; whenever the sequence

(<r0, T0) —►

is in II, then so is the sequence

{(T0,6) —► (ffo.To) —► •••

for all 5 < To; and whenever the finite sequence

•• —► (<^n,Tn)

is in H, then so are all infinite timed state sequences of the form

••• —» (o*n,Tn) —» (ffn,T„+i) —» (<Tn,Tn+2) ■

The set II C TSS is called strongly closed under stuttering iff

(1) EL is weakly closed tinder stuttering and

(2) nn C n.

7

1.1. TRIED STATE SEQUENCES 19

While closing a set II under weak stuttering can only add observations to timed state

' sequences in II, dosing II under strong stuttering may require the deletion of redundant

observations. Given a set II of timed state sequences, we define the weak stuttering closure

r(n) of It to be the smallest set of timed state sequences that contains II and is weakly

closed under stuttering; the (strong) stuttering closure rj(II) of II is the smallest set of

timed state sequences that contains II and is strongly closed under stuttering. If p € TSS,

we simply write T(p) and T^(p) for the weak and strong stuttering closures of {/>}.

We now list a few useful properties of stuttering closures. Clearly, r(II) Q T^II) for all

II C TSS. If II is deterministic, then so are both r(II) and r6(II); thus, if II is (weakly)

closed under stuttering, then so is JDet(II).

Lemma 1.1 (Stuttering) For every set II of timed state sequences, ^(^(II)) = bT{TL).

Proof of Lemma 1.1 We assume that p € ^(^(H)) — that is, p = fa and pi 6 r(|r(p2))

for some />2 € II — and show that p € ^T[U). Let p\ € T(pi) n T(p2) be the timed state

sequence that results from merging both p\ and pi. It is not hard to see that p — \p\ and,

therefore, p € &r(/>j). ■

This lemma implies that strong closure under stuttering can be obtained by a single

application of the "unstutter" operator |j:

r»(n) = r(nr(n)).

It follows that r(n) = rö(II) iff II is a set of behaviors.

Stuttering semantics

In any clock model, we let a timed state sequence stand for the set of all sequences in its

| (strong) stuttering closure. Accordingly, a set II of timed state sequences is said to specify
ji ...
H . under stuttering the set

m = *eMTj(n))
of behaviors; if p € TSS, we abbreviate [{p}] to [pj. Note that if II' C TSS is strongly

closed under stuttering, then 1)11' selects exactly the stutter-free sequences in II'. Hence we

can characterize the set |H] of behaviors in 1^(11) as follows:

p] = m>e*(rt(n)).

20 ■ CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME \

Since ii and Det commute, by Lemma 1.1 we have, equivalently, that

*''■■

[nj = lDet{T{Tl)). I

Also observe that Beh(Il) C [II] and J

in] = U M |

for all II C TSS. If II is closed under stuttering, then [II] = J3eA(Et); if II is deterministic, I

then III] = |)II; if II is a set of behaviors, then [II] = II. |

A precisely timed state sequence p specifies, under stuttering, a set of real-time behav- f
f ■

iors Ip]; we agree that the analog denotation of a set II of precisely timed state sequences t

is |n]. This interpretation of observation sequences has the properties we desire: I

1. A deterministic precisely timed observation sequence p denotes the real-time behav-

ior \ip.

2. A nondeterministic precisely timed observation sequence p denotes the set of all real-

time behaviors that correspond to deterministic sequences that are obtained from p

by interpolating states.

3. A set II of precisely timed observation sequences denotes the set of all real-time

behaviors that correspond to sequences in II.

Two sets of timed state sequences are called equivalent under stuttering iff they specify

under stuttering the same set of behaviors. For example, the singleton set that contains the

timed state sequence *|J

(a, 5) — (6,6)

is, under stuttering, equivalent to the set that contains all timed state sequences of the form

(a,6)—> (M)

with 5 < S < 6, which is infinite in the analog-clock model. Also, any two sets of timed

state sequences with the same stuttering closure are equivalent under stuttering. Two sets

of behaviors are equivalent under stuttering iff they are equal.

f 1
&-■■

I
I -i
■■

i''S

Li

1.1. TRIED STATE SEQUENCES 21

We have defined equivalence in the analog-clock model as equivalence under stuttering.

It is worth pointing out that, in addition, our definitions of weak stuttering closure, stutter-

freedom, and equivalence under stuttering properly generalize the corresponding untimed

notions for state sequences [1]: if TIME = 1, then Y{p~) = T(p)~ and b(/T) = (lip)-.

There is no untimed equivalent to determinism, because every untimed state sequence is

trivially deterministic. We conform with the usual convention that, in the untimed model,

a set II of untimed state sequences denotes the set JIIJ = till of untimed behaviors.

Transparency

We will reserve a special role for sets of precisely timed state sequences whose analog

denotation is immediately apparent. A set II of timed state sequences is called transparent

iff
PI = Beh(U);

that is, a transparent set II specifics under stuttering precisely the behaviors in II. Note

that all sets of timed state sequences that are closed under stuttering are transparent.

1.1.3 Digital-dock semantics

Recall that we assume that successive clock ticks of a digital clock are precisely one time

unit apart. In other words, we scale time so that a time unit corresponds to the distance

between two ticks of a digital clock. Still, there are infinitely many "different" digital clocks

that meet this requirement — one for every real number 0 < e < 1, which determines the

absolute times at which the clock ticks occur. It will be useful to have all of these clocks

available. Thus we shall henceforth identify digital clocks with reals in the interval [0,1).

For example, the digital clock 0.5 ticks first at time 0.5, then at time 1.5, then at time 2.5,

and so on.

Digitization

If the times of a sequence p 6 TSSR of snapshots are recorded by a digital clock e, we obtain

a timed state sequence, denoted by [p]t, over N. For any timed state sequence p = (<r,T)

and digital clock 0 < « < 1, let the digitization \p]t - (<r, (T]€) of p with respect to 6 be the

%:-::>

i

t fea

i
m

I
ffiSS

22 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

timed state sequence

(*o,[To].) — fa.lTi]«) — (*a,[T2]c) — (<r3,[T,]€) — •••,

where [*], = [xj if x < |*J + e, else [x]t = fz]. In words, the digitization [p]t results from p

by rounding, with respect to c, all times to integers. For example, if p is the timed state

sequence

(a, 0.1) — (6,0.5) —♦ (c.0.6) —. (d,lA) — (e,5) — (/,6.9),

then [p]o.s is the timed state sequence

(a,0) — (6,0) —» (c,l) — (d,l) — (e,5) — (/,7).

For a set II of timed state sequences, let [II] C T55|g be the set of all digitizations of

sequences in II:

[H] = {[p]t | p 6 n and 0 < e < 1}; fgf

if p € TSS, then [{p}] is abbreviated to [p]. Note that if II is a set of timed state sequences
over N, then [II] = II.

Digitization semantics

Now let us define our interpretation of digitally timed state sequences. Recall that every

digitally timed state sequence p stands, in fact, for its stuttering closure T^(p) C TSS^. We

have already pointed out that the digital-clock model involves two layers of abstractions:

1. First we will associate with a set II C TSSfl of digitally timed observation sequences

a set pr^II)]-1 C TSSR of precisely timed observation sequences.

2. Then we will use the analog-clock semantics of [T^II)]**1 to define the set JIIJuj of

real-time behaviors denoted by II.

If we have only a particular — or, worse yet, an unknown — digital clock to time-stamp

observations, there is a large number of precisely timed state sequences that may result

in a given sequence of digitally timed snapshots. To reduce the degree of ambiguity, we

assume that all digital clocks are, simultaneously, available when observing the behavior of

a system. Thus we obtain infinitely many — though not necessarily distinct — digitally

-1

%'-

1.1. TRIED STATE SEQUENCES 23

timed state sequences from every precisely timed state sequence. For example, the timed

state sequence

(a, 0.5)-- (6,0.5)

results, depending on which digital clock is used, in one of the two digitally timed state

sequences in the set

n = {(a,0) —(6,0), (a,l) — (6,1)}. f

Moreover, a subset of II is obtained by simultaneous digitization with all digital clocks from

(and only from) prpcisely timed state sequences of the form

(a,o) — (b,S)

with 0 < S < 1. These are the precisely timed observation sequences that are, in our

interpretation of the digital-clock model, taken to be consistent with the set II of digitally

timed observation sequences.

Formally, a set II of timed state sequences over N is said to specify under digitization

the set

[n]-1 = {p e rssR I [/>] c n}

cf timed state sequences over R all of whose digitizations are contained in II. It is not hard

to see that, in particular, [{p}]-1 = {p} for all p € TSSfj. Moreover, ft,:

«•■■?'*'

Pi]-1 up»]-1 c piUlIa]

for all III,us C TSSfl. In general this subset relationship, and thus the subset relationship

II C p]_1 for all II C TSSf\, is a proper one. The "inverse" notation for p]"1 stems from

the observation that [p]""1] = II. Inverse digitization preserves the following properties of

sets of timed state sequences: WM

Lemma 1.2 (Inverse digitization) For every set R of digitally timed state sequences:

(2) If n is weakly closed under stuttering, then so is p]_1.

(S) If II is closed under stuttering, then so is p]-1.

^■■^

24 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TRIE

Proof of Lemma 1.2 (1) To see that De<([n]_1) C [De«(n)j-1, observe that whenever a

precisely timed state sequence p is deterministic, then so is the set [p] of digitizations. To

see that [Det(Tl)}~1 C Detail]'1), note that if p is not deterministic, then there is some

0 < £ < 1 such that the digitization [p]t is not deterministic either.

(2) We suppose that II is weakly closed under stuttering and show that [IT]-1 is weakly

closed under stuttering. Assume that p € [H]-1 — that is, [p] C U — and that p' 6 T(p)

for two precisely timed state sequences p and p'. Then

[P'} c [T(p)} c T([p}) c r(n) c n,

which imphes that p' £ [II]-1.

(3) We suppose that II is closed under stuttering; since part (2) implies that [II]-1

is weakly closed under stuttering, it suffices to show that t^II]""1 C [II]"1. Assume that

p € t)[n]-1; that is, p — \p' for some precisely timed state sequence p' with [p1] C II. Then

&M Q tu and, as II is closed under stuttering, ftp1] C II, which imphes that p € [H]"1. ■

We let a set II of digitally timed state sequences represent the set [T^II)]-1 of precisely

timed state sequences all of whose digitizations are contained in the stuttering closure of II.

It follows that II denotes in the digital-clock model the set

in]N = nr^n)]-1!

of real-time behaviors; we refer to this set as the digital denotation of II. By Lemma 1.2,

the digital denotation of II can be characterized as follows:

i-i pjN = BehdTiin))-*) = n[2>e*(r6(n))]

We point out that, unlike in the precisely timed case, weak closure under stuttering is

insufficient to define the denotation of a set of digitally timed state sequences. For example,

we want the set that contains all digitally timed state sequences of the form that n € N

identical observations (ao, 0) are followed by the observation sequence

(oo,0)—* (ax.O)—* ■■■ —- (on-i.n-l) —

(o„,n + l) —► (o„+1,n+l) —► (an+1,n + 2)

to denote, among others, the real-time behavior

(on.n-l) —*

— (on+2,n + 2)

(oo,0) —>(ai,0) (ax.li)—» (a2,li) (a„2§) («3,2§)

:■!

1
I

m

■TJ

1.2. REAL-TIME FROPERTIES 25

- -i , >;

-1

m
i^~: ■■--*.;

Two sets of timed state sequences N are called digitally equivalent iff they have the same

digital denotations. For example, the singleton set that contains the timed state sequence

(a,0)-> (6,1)

is digitally equivalent to the set that contains the two timed state sequences

(a,0) —► (fc,0) and (a,l) — (6,1).

Also, any two sets of digitally timed state sequences with the same stuttering closure are

digitally equivalent.

1.2 Real-time Properties

We will define the formal semantics of a inactive system to be a set of infinite timed state

sequences. Such a set is called a {real-time) property. In accordance with different clock

models, we distinguish analog, digital, and untimed properties. Recall that both analog

and digital properties denote sets of real-time behaviors: an analog property II C TSS^

represents its analog denotation flu]; a digital property II C TSS^ represents its digital

denotation [1%. An untimed property II denotes the set |II] of untimed behaviors.

Let |5| be the set of possible real-time behaviors of the reactive system 5. The ana-

log semantics IIR(S) of S ought to be an analog property that denotes \S}; the digital

semantics HN(5) of 5, a digital property that denotes [S]. Note that there are reactive

systems without a suitable digital semantics; that is, not every set of real-time behaviors is

represented by some digital property. For example, no set of digitally timed state sequences

denotes the singleton set that contains the real-time behavior

(a, 0.5) — (6,0.5);

in other words, our digital-clock model is not expressive enough to model a reactive system

whose only possible behavior is the given one. We refer to the reactive systems for which

there is a suitable digital semantics as digitizable. Thus, the digital-dock model restricts us

to the study of digitizable systems.

In the analog-dock model, no such limitation arises, because every set * of real-time

behaviors is denoted by some analog property — the set 9 itself, with all finite sequences

;.>>. 'ifas
'-sä

•#f
h .;£ ■■ • •" - ",-**

v-;: c ■ "■ ■-:.'-;i

:; \>;;;V ,-5
; &t ''.. ■'"I
r.i,;-:; (
'-;'■<--'■--■'. '■'"■' «»)
;' •V/-' ■ -

;'-££■: C"''-'-/."'-
.■■'

.*4
^&* '^-;' '■ ■ "•?;

:>M~$MK .i
l''ß0$.
-,■ '•'■' ■>>#!/ ■: ;:^/ '.
f.- ^;^V<-'-

!'*
|tJV: •,
\ . -a
'*$$& Vij

&

26 CHAPTER 1. AN INTERLEAMNG MODEL FOR REAL TLME

in $ being extended by infinite stuttering of the final observation. Yet we shall not permit

all analog properties as being a suitable semantics of a system. This is because we want de-

scriptions of reactive systems to have certain properties, which put four additional demands

on the analog semantics of a system and its presentation:

Transparency We want a system description to be transparent; that is, we want the

behaviors in the analog semantics of a system 5 to be exactly the possible real-time

behaviors of S:

[5] = [nR(5)] = Beh(UR(S)).

Refinability We want a system description to be refinable. This is the case if its analog

semantics is weakly closed under stuttering.

Digit usability When using the digital clock model — and we shall use it extensively for

verification — we want a system description to be uniform, independent of the clock

model We will show that this is the case if its analog semantics is closed under a
condition we call "digitizability."

Operatic aality We want a system description to be executable. We will show that this is

the case if its analog semantics is presented in a way that we call "operational."

We shall restrict ourselves to system descriptions tLit satisfy all four criteria. Although

this restriction will greatly influence our choice of languages to describe reactive systems,

it does not limit the set of systems under consideration — the digitizable ones, which can

be modeled adequately in both clock models. This is because we will show that the set

of real-time behaviors of every digitizable system is denoted by an analog property that

is closed under stuttering, digitizable, and given operationally. Note that closure under

stuttering implies both the requirement of transparency and the requirement of refinability.

In the following three subsections, we discuss the three issues of refinability, digitizability,

and operationality one by one.

1.2.1 Refinability

So far, we have implicitly associated a fixed set of global states with every reactive system.

This static view prohibits the study of large systems for managerial reasons. In particu-

lar, with every step in the hierarchical specification, design, and verification of a complex

1.2. REAL-TIME PROPERTIES 27

reactive system, the state sp...e is refined by enlarging its visible portion. The vertical

decomposition of systems can be formalized by refinement mappings between increasingly

detailed system descriptions. Since expansion of the visible portion of the state space can

increase the frequency at which state changes are observed, the formal semantics of a sys-

tem description needs to be weakly closed under stuttering to guarantee the existence of

refinement mappings [78].

Let $ be a set of behaviors. We say that the property II is a refinable specification of ¥

iff

(1) II specifies $ under stuttering and

(2) II is weakly closed under stuttering.

For example, the stuttering closure T^*) = T($) is a refinable specification of *, which

implies that every set of behaviors has a refinable specification. Moreover, two distinct sets

of behaviors cannot have the same refinable specification.

In the analog-dock model, a refinable specification II C TSSR of a set * of real-time

behaviors is called an analog specification of $. We have argued that the analog semantics

IIR(S) of a reactive system S ought to be an analog specification of the set fl5j of possible

real-time behaviors of S. Although the formal semantics of a reactive system has to be

sufficiently discriminative, we like it to be not unnecessarily disaiminative either; that

is, we look for a one-to-one correspondence between properties that represent the formal

semantics of reactive systems and properties that represent the possible behaviors of reactive

systems. There are, however, in general infinitely many refinable specifications of a set of

behaviors. Thus, for every set 9 of real-time behaviors, we designate a particular refinable

specification of $ as the analog semantics of all reactive systems S with fS] = $. There

are two obvious candidates for HR(S), which will be discussed in turn.

1

I

Interval semantics

One option is to agree that the set of all infinite sequences in the stuttering closure T(¥)

serves as the analog semantics of a system whose possible real-time behaviors are $. Since

the «uttering closure of 9 is deterministic, this amounts to restricting ourselves to deter-

ministic timed state sequences when modeling reactive systems. Note that a deterministic

timed state sequence can, alternatively, be viewed as a state interval sequence, in which a

•1 I

28 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

closed time interval is associated with every state and adjacent intervals have overlapping

end-points; for example, the deterministic timed state sequence

(o,l) -* (6,1) — (6,3) —. (6,4) —* (c,4) — (<f,4) — (d,5) — (e,5)

corresponds to the state interval sequence

(a, [0,1]) — (6, [1,3]) — (6, [3,4]) — (c,[4,4]) — (d,[4,5]) — (e,[5,«))

(which is not stutter-free). Recall that the point-wise overlap of intervals is necessary to

accommodate interleaving. We took this approach of modeling real-time behavior by state

interval sequences at a different opportunity [57].

We find it more convenient to allow arbitrary — not necessarily deterministic — timed

state sequences when defining the formal semantics of reactive systems; they permit us, for

example, to characterize a reactive system that changes its state from a to 6, nondetermin-

istically, at any time between 0 and 1 simply by the stuttering closure of the timed state

sequence

(M) — (6,1),

rather than the stuttering closure of an infinite set of deterministic timed state sequences.

Hence we will take the analog semantics of a reactive system with the set 9 of possible

real-time behaviors to contain more observation sequences than T($).

Maximal refinable semantics

It is not hard to see that the refinable specifications of any set $ of behaviors axe closed

under arbitrary unions (as well as under finite intersections). It follows that 9 has a unique

maximal refinable specification — the union of all refinable specifications of $, which can,

alternatively, be defined as follows. A set II of timed state sequences is said to be maximally

closed under stuttering iff for all timed state sequences p,

[p] C fll] implies p € II.

The refinement closure rm4t(II) of II is the smallest set of timed state sequences that

contains II and is maximally closed under stuttering. It is not hard to see that

r(n) c r»(n) c iwn)

. s;

1 1.2. REAL-TDJE PROPERTIES 29
1

for every set II of timed state sequences. However, unlike ordinär}* closure under stuttering,

• maximal closure under stuttering does not preserve determinism — if II is deterministic,

rm«(n) need net be. For example, the refinement closure of the deterministic set that

contains all timed state sequences of the form

(a, 6)-+ (b,S)

with 0 < 6 < 1 contains the nondeterministic timed state sequence

(a,0) — (6,1)-

The following proposition shows that the refinement closure of II is the largest set that

specifies [II] under stuttering.

Proposition 1.1 (Largest refinable specification) For any set ü of timed state se-

quences, the refinement closure I'm« (II) is a refinable specification of the set |HJ of behav-

iors. Moreover, if the set U' of timed state sequences is equivalent to II under stuttering,

then w c r^n).

Proof of Proposition 1.1 (1) First, wa show that rm„(II) specifies pi] under stuttering;

that is, {rm«,(n)l = pq. Since H C r^II), we have that [II] C PS^II)]. To show

the converse containment, suppose, to the contrary, that there is a behavior p € [rm„(II)J

such that p g in]. Since rm«,(II) is maximally closed under stuttering, p € rm„(II). Now

it is not hard to see that the set

rm„(n)-{/>'€ rss | ,€r(,')}

is a proper subset of Tm^H) that contains II and is maximally closed under stuttering,

which contradicts the definition of 1*^(11).

(2) Secondly, we show that every set that specifies £11] under stuttering is contained

^l! in r,»„(II). Consider an arbitrary timed state sequence p such that p g rm-«(II) and an

arbitrary set II' C TSS with pTJ = [üj; we show that p (II'. Since rm4I(II) is maximally

closed under stuttering, there is a behavior p' 6 |/>] such that p' $ pi]. It follows that

/>' g pTJ and, therefore, that p $ II'.

(3) Thirdly, recall that rtB<x(II) and its stuttering closure are equivalent under stutter-

ing. Hence parts (1) and (2) put together imply that rius(II) is closed under stuttering

and, thus, is a refinable specification of pi]. ■

m-

u,,;

"■ I

m

30 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

Corollary 1.1 (Refinement closure) For all timed state sentences p and sets II of timed

state sequences, p € rmaT(II) iff {p\ C [nj.

It follows that the refinement closure of a set $ of behaviors is the maximal refinabk

specification of $. Moreover,

r(*) = rt(«) = z>e<(rm«($))

for every set $ of behaviors. The refinement closure induces a bijection between all sets

$ cf behaviors and all sets II of timed state sequences that are maximally closed under

stuttering:

Btk

n *.

We shall take the infinite sequences in rmax('*) as the analog semantics of a .reactive system

with the set $ of possible real-time behaviors. This decision is consistent wnh the untimed

use of the stuttering closure, because ordinary and maximal closure under st-„ ttering collapse

in the untimed model: rm«x(*) = r(¥) for every set $ of untimed behaviors.

1.2.2 Digitizability

Let $ be a set of real-time behaviors. We say that a digital property II is a digital specifi-

cation of $ iff * is the digital denotation of II. We have argued that the d;gital semantics

UN (5) of a reactive system 5 ought to be a digital specification of the set J5J of possible

real-time behaviors of S. However, as we have already pointed out, not every set of real-time

behaviors has a digital specification. Let us now give a necessary and sufficient condition

for a set of real-time behaviors to have a digital specification.

il

Digital specifiability

For this purpose we need the following definitions. A set II of timed state sequences is

called closed under digitization iff [II] C II; it is inversely closed under digitization iff
/

1.2. REAL-TIME PROPERTIES 31

/■

w

wMw

\.\

[p] C II implies p £ II for all timed state sequences p over R; it is digitizable iff it is both

closed and inversely closed under digitization. Clearly, II is digitizable iff, for all p £ TSSR,

pen iff Men.

Note that if II is digitizable, then [[II]]"1 = II.

Proposition 1.2 (Digital specifiability) Given a set * of real-time behaviors, the fol-

lowing conditions are equivalent:

(1) * has a digital specification.

(2) $ has a digitizable analog specification.

(3) The refinement closure rTOai(*) " digitizable.

(4) The stuttering closure rs($) = T($) is digitizable.

Proof of Proposition 1.2 (1)=>(2) Suppose that * has a digital specification II; that

is, BeAQr^II)]"1) = *. We show that (r^II)]"1 is a digitizable analog specification of *.

Lemma 1.2 implies that (T^II)]"1 is closed under stuttering (although it is in general not

maximally closed under stuttering). To see that [r^ü)]-1 is digitizable, observe that

1-1 p € [r^n)]-1 iff [P] c r„(ii) iff M £ r,(n) iff W c [rb(n);

for all p € TSSR.

(2)=>(3) Suppose that II C TSSR is digitizable and closed under stuttering. By Corol-

lary 1.1, we have that I^dll]) = rma,(II); thus it suffices to show that Tm^E) is

digitizable. We show that p € r^fll) iff \p] C T^II) for an arbitrary p 6 TSSR. By

Corollary 1.1, it suffices to show that [p] C [H] iff [[pi] C JE].

First we suppose that [p] C JE] and show that [[/>]] C pi]. Consider an arbitrary

0 < < < 1 and an arbitrary real-time behavior p' € [[p]«]; "we show that pf 6 |HJ- It suffices

to show that p' € II or, because II is digitizable, that [/>'],< € II for an arbitrary 0 < c* < 1.

It is not hard to see that there is some real-time behavior p" € [p] such that [p"]t - [pit1-

Since [p] C pi], we have that p" € [II] and, as II is closed under stuttering, p" € II. Since II

is digitizable, also [p"]f € II, as we wanted to show.

Now we suppose that [p] g pi] — that is, p' € [p] and ft g |[II] for some real-time

behavior p' — and show that [[/>]] g [II]. In this case, p' g II and, as II is digitizable,

32 . CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

[p')t & II for some 0 < e < 1. Since II is dosed under stuttering, [j[//]€ £ II and, therefore,

\Ap% * |iq. Hence |[p'],J £ [II].

(3)=>(4) Recall that T($) = Pef(rm«($)). Assume that TL C TSS is digitizable; we

show that then Det(JI) is digitizable as well. To see that p e £e*(II) implies \p] C Det(Ti)}

observe that whenever p £ TSSR is deterministic, then so is [/>]. To see that [p] C Det(U)

implies p £ Det(U), note that if p is not deterministic, then there is some 0 < « < 1 such

that [p]t is not deterministic either.

(4)=>(1) Suppose that T($) = rt(*) is digitizable. To show that M*)l is a digital

specification of $, it suffices to show that MM*)])]"1 = T0), because T^*) specifies $

under stuttering. First observe that the digitizability of Tj($) implies that M*)] C T^)

and, therefore, that T^r^f)] C !(,(*). Now consider an arbitrary p £ TSSR; then

p e MM*)])]-1 iff w s MM*)]) iff [p] c rt(«) iff p e rb($),
because T^*) is digitizable. B

It follows that a reactive system has a suitable digital semantics iff its analog semantics

I is digitizable. We shall restrict ourselves to these systems — the digitizable ones.
$

Clock-independent specifiability

To define the digital semantics of digitizable systems, we look for a one-to-one correspon-

dence between digital properties and sets of possible behaviors of digitizable systems. There

are, however, in general infinitely many digital specifications of the set of possible behaviors

of a digitizable system. Thus we designate, for every set 9 of real-time behaviors that has

a digital specification, a particular digital specification of $ as the digital semantics of all

reactive systems S with [5] = *. We like the formal semantics of a reactive system S to

be independent of the clock model; that is, we want to define the digital semantics 11^(5)

of 5 simply as the set of all timed state sequences over N in the analog semantics HR(5)

of 5:

nN(5) = nR(5)nrssN.
This convention would allow us to describe the formal semantics of any particular reactive

system uniformly — independent of the clock model — as the set of all timed state sequences

that satisfy certain requirements. A look at the system with the single behavior

(a, 0.5) — (6,0.5)

fi

1.2. REAL-TIME PROPERTIES 33

shows that such a definition is in general highly inappropriate; yet it proves workable for

all digitizable systems. The following proposition shows that for all digitizable systems S,

the set of timed state sequences over N in the analog semantics rmax(|SJ) of 5 is indeed a

digital specification of [5]. We find it convenient to write IIN for II n rSSN, for any set II

of timed state sequences.

Proposition 1.3 (Clock-independent specifiability) 1/ the set II of precisely timed

state sequences is digitizable and closed under stuttering, then [It] = Hfl and this set [II] of

digitally timed state sequences is a digital specification of the set III] of real-time behaviors.

Proof of Proposition 1.3 (1) First observe that HN C [Ü] for all H C TSSR. Now

suppose that II is closed under digitization. Then

[n] = [n]N c nN.

(2) To see that [II] is a digital specification of [II] if II is both digitizable and closed

under stuttering, confer part (4)^(1) of the proof of Proposition 1.2. ■

Recall that if II is closed under stuttering, then [II] = Befc(II), and if II is digitizable,

then II = [p]]-1. It follows that the set [II] = HN of the previous proposition specifies, in

the digital-clock model, the set J3eA([[II]]-1) of real-time behaviors. This observation reveals

the following bijection between all sets $ of real-time behaviors with digital specifications

and some sets II of digitally timed state sequences:

n
B«Mt I"1)

>

\Tmt()]=r»«()N

*.

m We take the infinite sequences in rma*(*)N ** the digit»1 «emantics of a reactive system

with the set $ of possible real-time behaviors. Proposition 1.3 gives us also another way of

looking at our definition of digital semantics. Consider a digitizable system S with the set

|SJ = * of possible real-time behaviors, the analog semantics IIR(S) of 5 — a digitizable

analog specification of * — and the digital semantics HN(5) of 5 — a digital specification

of*. Since HN(5) = [HR(S)],

p€HR(5) iff [p]cnN(5)

^-

34 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

for all precisely timed state sequences p. This property of the digital semantics of 5 can

be intuitively interpreted as the following two requirements on n^j(5). Given a precisely

timed observation sequence p,

1. If p observes a real-time behavior of S, then all digital clocks think so. Formally, *

Proof of Proposition 1.4 We suppose that fn]pj = 9, consider an arbitrary digitally

timed state sequence p € II, and show that p € rTOa»(¥). By Corollary 1.1, it suffices to

show that Ip] C *. Consider an arbitrary teal-time behavior p1 € M; we show that p' € *.
Since p 6 II, we have that f/ € r6(II). Then,

\A c [r„(n)] c r6([n]) = r„(n),

which implies that p' € [T^n)]""1. As Befcftr^II)]-1) = $, also p' € * as desired. ■

1.2.3 Safety, liven ess, and operationally

Reactive systems define real-time properties. In the analog-dock model, the system 5

defines the analog property IIR(S); in the digital-clock model, 5 defines the digital property

[nR(5)] c nN(5).

2. If all digital clocks think that p observes a real-time behavior of 5, then they are

correct (or, equivalently, if p does not observe a real-time behavior of S, then some

digital clock thinks so). Formally, [p] C IIN(S) implies p £ HR(5). This demand

asserts, in particular, that 11^(5) C IIR(S) and, consequently, that

nN(5) c \nR(s)}.

It is not hard to see that since the analog semantics up (5) of a system 5 is closed under M

stuttering, so is the digital semantics 11^(5) = (IIR(S))N in the digital-clock model. The

following proposition implies that the digital semantics is, in fact, maximally closed under

stuttering; it shows that our choice of digital semantics is, consistent with the analog and

untimed cases, again a maximal one.

Proposition 1.4 (Largest digital specification) For every set 9 of real-time behaviors

and every digital specification U C TSS^ of *, toe have II C rm„($)nj.

«II

1.2. REAL-TIME PROFERTIFS 35

ÜN(5) = (IIR(5))fj; in the untimed model, the untimed property Ri(S). If the time domain

is immaterial, we omit the subscript as usual and say that the system S defines (specifies)

the property 11(5) C TSS". On the other hand, 5 is said to satisfy [implement) a property

n C TSS" iff
n(5) c n.

Verification of S is the task of proving that 5 satisfies certain properties. It is useful to

classify properties of reactive systems into two categories — safety properties and liveness

properties — because they require fundamentally different means for their specification

and verification [76]. Thus we extend the standard safety-liveness classification of untimed

properties to real-time properties.

Real-time safety and liveness

• A safety property stipulates that "nothing bad" will happen, ever, during the execu-

tion of a system. If "something bad" were to happen during the execution, it would

have to happen within a finite number of observations. Thus we can formalize safety

as follows:

A set II of infinite timed state sequences is a (red-time) safety property iff

for all infinite timed state sequences p, whenever every finite prefix of p can

be extended to a sequence in II, then p € II.

• A liveness property stipulates that "something good" will happen, eventually, during

the execution of a system. If "nothing good" were to happen during the execution, an

irremediable situation would have to be reached within a finite number of observations.

Thus we can formalize liveness as follows:

A set II of infinite timed state sequences is a (real-time) liveness property

iff every finite timed state sequence can be extended to a sequence in II.

These definitions generalize the corresponding untimed notions of safety, as defined by

Alpern, Demers, and Schneider [4], and liveness, as defined by Alpern and Schneider [5]:

in the untimed model, II is a real-time safety property iff H~ is a safety property, and II

is a real-time liveness property iff H" is a liveness property. In fact, we show that this

correlation holds, independent of the clock model, for all time-invariant properties. A set II

t.i

'm

36 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

of timed state sequences is called time-invariant iff, for all timed state sequences p = (c, T)

and p' - {(T,V), if p € II then p' € II; that is,

pen iff p~ e n-

for all p £ TSS. Note that in the untimed model, every property is time-invariant.

Proposition 1.5 (Time-invariant safety and liveness) If Ü is a time-invariant real-

time property, then (1) II is a real-time safety property iff U~ is a safety property, and

(2)11 is a real-time liveness property iff II" is a liveness property.

Proof of Proposition 1.5 (1) To show that the safety of II implies the safety of II~,

consider an arbitrary infinite state sequence c and suppose that every finite prefix o-', for

t > 0, of c can be extended to a sequence <r; € 11"; we show that a € II". Let T be any

infinite time sequence that satisfies the monotonicity and progress conditions. Since II is

time-invariant, (<r,-,T) € H for all t > 0 and, as II is safe, also (tr,T) £ II, which implies
that o-e IT*.

To show that the safety of n~ implies the safety of II, consider an arbitrary infinite

timed state sequence p and suppose that every finite prefix p* of p can be extended to a

sequence pi € II; we show that p € II. Since II is time-invariant, it suffices to show that

p~ € 11". Since n~ is safe, it suffices to show that every finite prefix of p~ can be extended

to a sequence in II~, which fellows from our assumption (extend (p")1 to p~).

(2) To show that the liveness of II implies the liveness of 11", consider an arbitrary finite

state sequence <r; we show that a can be extended to a sequence in n~. Let p be any finite

timed state sequence with p~ = o. Since II is live, p can be extended to an infinite timed

state sequence p' € II. Clearly, p'~ € II" is an extension of er.

To show that the liveness of n~ implies the liveness of H, consider an arbitrary finite

timed state sequence p; we show that p can be extended to a sequence in II. Since E~ is

live, p~ can be extended to an infinite state sequence er g n~. Let p' be any infinite timed

state sequence extending p such that p'~ = a. Since II is time-invariant, p' € II as desired.

Moreover, the safety and liveness of any digital property that is defined by a reactive

system 5 is determined by the analog semantics of S. This is shown by the following

1.2. REAL-TRIE PROPERTIES 37

proposition, which states that the safety and liveness of digitizablt properties is invariant

under digitization.

Proposition 1.6 (Digitizable safety and liveness) Let II be a digitizable analog prop-

erty.

(1) II is a safety property iff II N is a safety property.

(2) If n is a liveness property, then so is H^j.

Proof of Proposition 1.6 (1) It is not hard to see chat the safety of II implies the safety

of HN for all II C TSS%.

To see that the safety of Ilfj implies the safety of IX, consider an arbitrary infinite

sequence p £ II; we show that there is a finite prefix p* of p that cannot be extended to an

infinite sequence in II. Since II is digitizable, there is some 0 < e < 1 such that [p]t & UM-

Since IIjj is safe, there is some finite prefix [p}\ of [p]t that cannot be extended to an infinite

sequence in Hpj. It follows px cannot be extended to an infinite sequence p' € II: otherwise

the extension [p']t of [p][would be in 11^, because II is digitizable.

(2) To see that the liveness of II implies the liveness of HR, consider an arbitrary finite

sequence p € TSS^. Since II is live, p can be extended into an infinite sequence p' € II

and, as II is closed under digitization, the extension [p']t of p is in Hjj for any 0 < e < 1. ■

In general there is, however, no obvious correspondence between timed and untimed

safety and liveness. Consider, for example, the bounded-response property ü£ that contains

an infinite timed state sequence (<r,T) iff for all t > 0, whenever Oi = a, then Cj — b and

Tj < T,- + 6 for some j > i; that is, every observation that shows state a is followed by

an observation that shows state b within time S. Then nf" is the untimed, unbounded | J

response property that specifies that every state a is, eventually, followed by a state b\ it

contains an infinite sequence a of states iff for all i > 0, whenever tr; = a, then trj = b

for some j > i. Since every finite prefix of a state sequence can be extended to contain

a state b, the response property nf" is a liveness property. On the other hand, in both

tht analog-clock and the digital-clock model the bounded-response property H.f is not live,

because the finite prefix

(a,0) — (M + l) pi
i.

'k

\
\

38 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TRIE

cannot be extended to a timed state sequence in 11^. Note that 11^ is, in fact, safe in both

the analog-clock and the digital-clock model: if an infinite timed state sequence p = (c,T)

is not in Ilf, then it contains an observation pi = (o,Tj) and, because time progresses, a

later observation />j, for j > i, such that Tj > Tj + 6 and a^ ^ b for all t < jfc < j; moreover,

the finite prefix p* cannot be extended to an infinite sequence in Ilf. The "bad thing"

that is not supposed to happen is that, after observing state a, time 6 pusses without an

observation of state 6.

It follows that the traditional safety-liveness classification of properties, which consid-

ers only state components, does not fit for real-time properties. Time cannot be ignored,

because its implicit "liveness ^ as guaranteed by the progress condition on timed state se-

quences, shifts the spectrum of real-time properties towards the safety side — an obs-?rvation

that has been made repeatedly [79, 85, 115, 116]. It is precisely this phenomenon that has

been captured formally by our definitions of real-time safety and liveness: instead of looking

at all infinite sequences of observations, we have restricted ourselves, a priori, to timed state

sequences, which satisfy the monotonicity and progress conditions on time.

In the following segment, we relate the timed and untimed classifications of properties

by giving a general topological characterization of safety and liveness under unspecified

assumptions about states and time. For this purpose we need to consider arbitrary infinite

sequences of observations rather than just timed state sequences. We use the following local

conventions for the remainder of this subsection. Let O be a set of observations. If $ is

a subset of the set Ou of all infinite observation sequences, we say that every set II C $

is a ^-property. Thus TSS^-properties are real-time properties; we refer to Ow-properties

as unconditional Whenever the value of the parameter § is not mentioned explicitly, it

is unspecified, rather than TSSU as in the other parts of this thesis. For example, in the

remainder of this subsection, a "property" may be any subset of Ou.

Relative safety and liveness

Suppose that, for whatever reason, all legal observation sequences satisfy certain require-

ments on states and time. These requirements can be characterized by a property $C0",

which contains exactly the legal observation sequences. If $ is a condition on the times

of observations, we refer to it as a timing assumption. We have encountered the following

timing assumptions:

1

1.2. REAL-TIME PROPERTIES 39

Time domain The timing assumption 0jIME C O* contains the observation sequences

o'.er the time domain TIME.

Monotonicity We say that an observation sequence is rnonotonic iff it satisfies the mono-

tonicily condition on time. The timing assumption O£on C Ou contains the mono-

tonic observation sequences.

Progress We say that an observation sequence is divergent iff it satisfies the progress con-

dition on time. The timing assumption 0%„ C 0" contains the divergent observation

sequences.

Real time The timing assumption TSS" = 0£en 0 0%„ contains the infinite timed state

sequences.

Analog clock The timing assumption TSS% = TSS" ("I Og contains the infinite precisely

timed state sequences.

Digital clock The timing assumption TSS^ = TSS" 0 Ofl contains the infinite digitally

timed state sequences.

If we restrict our consideration to infinite sequences from $, we obtain the following notions

of safety and liveness relative to the property $:

• II C § is a safety property relative to § C Ou iff for all a 6 $, whenever every finite

prefix of a can be extended to a sequence in II, then a € H.

• II C $ is a liveness property relative to $ C Ou iff every finite prefix of a sequence in

$ can be extended to a sequence in II.

Thus rea/-ttroe safety and liveness are safety and liveness relative to the timing assumption

TSS", and conventional untimed safety and liveness are safety and liveness relative to TSSj.

We refer to safety and liveness relative to Ou as unconditional safety and liveness; it is not

hard to see that a property II is unconditionally safe (live) iff the untimed property II" is

safe (live).

Now we can classify the timing assumptions given above:

Time domain OjmE is an unconditional safety property for every time domain TIME.

MM Wäl

40 CHAPTER 1. AN INTERLEAMNG MODEL FOR REAL TRIE

|

.'i

m
m
m

Monotonicity 0^cn is an unconditional safety property.

Progress <?£, is an unconditional liveness property.

Real time TSSU is neither unconditionally safe nor unconditionally live. It is safe relative

to 0%n and live relative to (?£„.

Analog clock TSSR is neither unconditionally safe nor unconditionally live; it is safe

relative to TSS".

Digital clock TSS^ is neither unconditionally safe nor unconditionally live; it is safe

relative to TSSR.

There is a natural topology on Ou, the Cantor topology on infinite strings, in which the

unconditional safety properties are exactly the closed sets, and the unconditional liveness

properties are exactly the dense sets [4]. It follows immediately that only Ou itself is

both an unconditional safety and an unconditional liveness property. The Cantor topology

on lw induces a topological subspace on § C O", which is called the relaiivization of

the Cantor topology on O" to $ [70]: the open sets of the relative topology are taken

to be the intersections of § with the open sets of the topology on Ou. The following

lemma shows that the properties that are safe relative to $ are exactly the closed sets of

the relative topology, and the properties that are live relative to § are exactly the dense

sets of the relative topology. Note that since unconditional safety properties are closed

under arbitrary intersections, we can define the closure 5 of a property II as the smallest

unconditional safety property containing II.

Lemma 1.3 (Relative safety and liveness) Let H C $ C Ou.

(1) TLis a safety property relative to $ iff H n * C n.

(2) II is a liveness property relative to $ iff $ C H.

Proof of Lemma 1.3 First observe that an infinite sequence p € Ou is in the closure of

a property II C Ou (that is, p € XI) iff every finite prefix of p can be extended to an infinite

sequence in II. Then apply this observation to the definitions of relative safety and relative

liveness. ■

'ft

1.2. REAL-TIME PROPERTIES 41

.1
■■' 1

■■■ .*

T«l "*<
.-^

.-.' ■■. ■'■ ^Ü

.. ^
■Vj

-:N

: r"^; .;.;;. . .■■■-1
." .-■' ■";

S ■SJ

&T ■-' ■J^
'■-■:»,

"■>■
-■•■■:M

;■;;•':■ ■ ■■ 4
■ -^

- .3

;
h$W'''~ '■'-' ..«■?

-•'■,--'"':'"' ■,jV5ä
^v- "' -.

fei* -..'■

i.%,-;"- .' .■ ".-vjtl

■
'

it-;? "- ■• V -V-
..'•■'.;■:

;
?";£$

'.
^/ ;"''-'''"i

,
!iiS'.": "■ d

■'.^

äTs'r /"■-" -. ' "$
!

^■■: -• ■■ >.

Ip^-'-'H
l4

•
fte.jf

'W0<

Pfeift g
tens? a,«

1
>•

•

& •
, - §
ÜV"1'"'"' ', 5<
„ !;
W$fri'' -j

> ü";"'-*^

'.•; ■
-v'-.l;"..

life'* 'i,i
lis ^' '*
r ' "•

*•
■ ?*

fe§5>« ^
llili ';^1
l|lb«t<*

It follows that II is safe relative to $ iff II = II, D $ for some unconditional safety

property II,. In particular, if the property II = II, n Hi is given as the intersection of an

unconditional safety property II, and an unconditional liveness prdperty IIj, then II is safe

relative to Hj.

It is convenient to extend the notions of safety and liveness relative to a property § to

properties that are not necessarily subsets of $: we say that II C 0" is a safety (liveness)

property relative to $ C 0" iff II n $ is safe (live) relative to *. Clearly, unconditional

safety properties are, in this sense, safe relative to any property §. More generally:

Proposition 1.7 (Downward preservation of safety) Suppose that IjCfjCO". //

II C 0" is a safety property relative to $j, then it is also a safety property relative to it.

Proof of Proposition 1.7 Let $i C §2. First observe that the closure operator is

xnonotonic; that is, II C $ implies H C ? for all II, § C 0". In particular, we have that

nn^enntj.

By part (1) of Lemma 1.3, we may assume that

(nn$j)n$: c nn$2

and need to show that, then,

The derivation is simple. ■

(nn$i)n$i c nn$a.

This proposition shows that every unconditional safety property remains safe relative

to any timing assumption. The converse of Proposition 1.7 holds only in a very restricted

case:

Proposition 1.8 (Upward preservation of safety) Suppose that U C $i C §2 Q 0".

If II is a safeiy property relative to f j and $i is a safety property relative to $j, then II

is a safety property relative to §j.

Proof of Proposition 1.8 Again, use part (1) of Lemma 1.3 and the monotonicity of the

closure operator. ■

42 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TRIE

In general, properties become "safer" if they are viewed relative to stronger (i.e., more

restrictive) properties: a property that is not an unconditional safety property may be safe

relative to another property. We have already given an interesting example of such a prop-

erty that is shifted "towards safety": the bounded-response property II* is unconditionally

live, but safe relative to TSSU. Note that relative to the weaker timing assumption 0%m,

the bounded-response property Uf is neither live nor safe; it is not safe relative to Oj^,

because it contains all monotonic observation sequences of the form

(a,0)-~ ► (a,0) — (6,0) — •••,

without containing the monotonic sequence

(a,0) — (o,0) —. (o,0) —. ••••

Our timing assumption TSS" causes properties to shift towards safety, because it includes

the liveness condition Ofix. The class of properties that are safe relative to TSS" includes

many other important real-time properties that are unconditional liveness properties; that

is, all the liveness they stipulate is subsumed by the progress of time. We wfll use this

fact extensively in the following way. Suppose that II is an unconditional liveness property

and safe relative to TSS". Since any description of the unconditional liveness property II

defines, under our assumptions of monotonicity and progress of time, the real-time safety

property II f"l TSSU, we can

1. Specify II by methods for specifying liveness properties: liveness-type specifications

of, say, bounded response are often more intuitive than safety-type specifications.

2. Verify II by methods for verifying safety properties: safety-type arguments are often

simpler than liveness-type arguments.

Operationality

Recall that the analog semantics IIR(5) of any reactive system 5 is required to be trans-

H parent — that is, BCA(IIR(S)) is the set of possible behaviors of S — and closed under

^|| stuttering. Since the system 5 is essentially a machine that may, at any point in time, ei-

ther change its state ox wait and do nothing, the presentation of its semantics ER(5) ought

'ii

'

1.2. REAL-TIME PROPERTIES 43

to give a recipe for the incremental generation of all possible execution sequences of 5 —•

the stuttering closure of BCA(IIR(S)):

T(Bch(TlR(S))) = Dct(ER{S)).

In other words, we want to be able to interpret the description of the reactive system 5

operationally. For this purpose, we have to isolate the safety and liveness components of

Det(IIR(5)). For suppose that Dei(IIR(S)) is defined as the intersection of an unconditional

safety property II, and an unconditional liveness property Hj:

Det(nR(5)) = n.nn,ni?e<(rss$).

Then we may be able to view the system 5 as a machine that generates, step by step,

safe execution sequences in II. n Det{TSS%) and "eventually" satisfies the liveness require-

ment Hj. However, not every pair (II„nj) allows this interpretation. The problem is that
the safety part may permit the generation of deterministic finite timed state sequences from

which either the liveness requirement cannot be satisfied or time cannot advance.

We formalize the notion of operationality for arbitrary timing assumptions $. A pair

(II., H) is said to define the ^-property II C $ congruously relative to $ C Ow iff

(i) n = n,nntn$,
(2) II, is safe relative to * and H is live relative to *, and
(3) every finite prefix of a sequence in II, fl § can be extended to an infinite

sequence in II.

Condition (3) ensures that the safety part of a congruous definition is complete: the liveness

part does not preclude any safe prefixes. The definition of a property is called uncondi-

tionally congruous iff it is congruous relative to O"; it is (real-time) congruous iff it is

congruous relative to Det(TSSw). Congruity generalizes an untimed concept that has been

named repeatedly: a pair (II,, Hj) is congruous in the untimed model iff the pair (Hj.IIf)

is mocÄt'ne closed according to Abadi and Lamport [1]; feasible according to Apt, Frances,

and Katz [13]; or n," is live with respect to llj according to Dederichs and Weber [32].

Congruous definitions of deterministic properties iescribe reactive systems, because they

can be executed: if (II,, Hj) is congruous relative to Det{$), then a machine that incremen-

tally generates safe execution sequences in II, 0 Det(i) will never reach an irremediable

w

'IS

Ü

44 CHAPTER 1. AN INTERLEAMNG MODEL FOR REAL TIME

situation from which the liveness conditions in 11/ n Det{§) cannot be satisfied. This is

because the defined property II = II, D11/ n Z>et($) is live relative to II, D 2?ei($). On the

other hand, a machine trying to execute an incongruous definition without look-ahead may

"paint itself into a corner" from which no legal continuation is possible. In particular, the

real-time congruity of a system description ensures that the system cannot prevent time

from advancing.

Thus we say that the formal semantics 11(5) of a reactive system S is given operationally

iff its deterministic part Det{R(S)) C Det(TSSv) is defined congruously — by a pair

(It,,Hi) that defines the deterministic real-time property

De:(H(5)) = II, HE, n^rSS1")

congruously. We require that the analog semantics of every reactive system is given op-

erationally. This demand does not restrict the real-time properties under consideration:

we will prove that for every assumption § C Ou, every property II C $ can be defined

congruously relative to $. Alpern and Schneider showed that every untimed property is

the intersection of an untimed safety property and an untimed liveness property [5]. It is

well-known that they have given a construction that actually proves the stronger result that

every untimed property has a congruous definition. We generalize this main result about

the untimed safety-liveness classification to safety, liveness, and congruity relative to any

timing assumption.

Theorem 1.1 (Existence of congruous definitions) For all $ C 0", every property

II C $ has a definition that is congruous relative to $.

Proof of Theorem 1.1 Let II, = S and 11/ = -i((n, fl $) - II); then II, is unconditionally

safe. Alternatively, let II, = H n § and 11/ = -.(II, - II); then II, C $. We show that

(n„H) defines II congruously relative to $ in either case; in fact, 11/ is unconditionally
live.

It is not hard to see that II = II, n 11/ n # and that II, 1*1 $ C II — that is, every finite

prefix of a sequence in II, 1*1 $ can be extended to a sequence in II. Proposition 1.7 implies

that II, = H, and thus also II, = Sn §, is safe relative to §. It remains to be shown that 11/

is live relative to § or, by part (2) of Lemma 1.3, that

* c n((nn$)-n)n#.

WS

2.3. REAL-TIME SYSTEMS, SPECIFICATIONS, AND VERIFICATION 45

Since II C $, this condition is equivalent to

$ c nu(f-n).

We can derive both containments

nn$ c nu(t-n),

nnn* c nu(*-n),
using the monotonicity of the closure operator. D

To complete cur discussion of the semantics of reactive systems, we show that if the

description of & system S gives its analog semantics IIR(5) = II, Dili n TSS^ operationally,

then it gives its digital semantics 11^(5) = (HR(S))N operationally as well. It follows from

the following proposition that for digiti2able systems 5, the pair (II,, 11/) is a congruous

definition of the set

De<(nN(S)) = Drt(HR(5))N

of digitally timed execution sequences of S.

Proposition 1.9 (Digitizable operationally) Let II„II| C Ou such that (II„IIj) is o

congruous definition of the analog property H = II, l"l IIj n TSS%. If U is digitizable, then

(n„IIi) defines the digital property U^ congruously.

Proof of Proposition 1.9 By Proposition 1.6, it suffices to show that every finite prefix

of a digitally timed state sequence in II, can be extended to an infinite digitally timed state

sequence in II,nIIj. Consider the finite prefix p{ 6 TSS^ of p 6 II,. Since (II„IIj) defines II

congruously, there is an infinite precisely timed extension p' of p* with p' 6 II. Since II is

closed under digitization, also [//]« € II for any 0 < < < 1. Note that [/>*]« is an infinite

digitally timed extension of px in II, f*l Hj. ■

1.3 Real-time Systems, Specifications, and Verification

Let S be a reactive system whose set of possible real-time behaviors is [SJ and let $ be

a specification that is satisfied by the real-time behaviors in [4>]. Verification of S with

respect to $ amounts to checking the containment

[si i M

46 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TRIE

of sets of real-time behaviors. Systems will be given as expressions of an implementation

language; specifications as expressions of a specification language. Now, at tie end of this

foundations! chapter, we can summarize our demands on the implementation language and

the specification language, and justify both the analog-clock model and the digital-clock

model for proving containment of sets of real-time behaviors. Then, in the remainder of

this thesis, we will introduce concrete languages that meet our constraints and concrete

techniques that solve instances of the verification problem.

1.3.1 Implementation languages

We have put very stringent demands on the implementation language. Let $ be the set of

real-time behaviors of a digitizable system S; then $i = \\($~) is the set of untimed behav-

iors of S. Since we require system descriptions to be transparent, refinable, independent of
the clock model, and executable, we have agreed that an expression of the implementation

language that describes the system S ought to define, in the analog-clock model, the analog

property

nR(5) = iw*)

operationally; in the digital-clock model, it ought to define the digital property

nN(5) = (nR(5))N;

in the untimed model, the untimed property

Hi(S) = r(«*-)) = W) = iw*-).

The following diagram gives the complete semantical picture for a digitizable system 5

whose possible real-time behaviors are $:

11"1 B*k
nN(5) ♦—- nR(5) -— $

l]=()N r"»«*

|ra(-) j« -)
Btk

Hi(5) «—- *i

Similar conditions can be required of the specification language. Indeed, this approach of

using high-level system descriptions as specifications lends itself tc many useful verification

1.3. REAL-TIME SYSTEMS, SPECIFICATIONS, AND VERIFICATION 47

techniques such as stepwise refinement [77, &i]: verification methods that are based on

refinement mappings show that one system Si — tie implementation — implements another

system 52 — the specification. These methods can be used for the hierarchical verification

of a chain of system descriptions

[Sil c |52] c ••• c fsn:,

in which every implementation contains more detail than its specification. We shall, how-

ever, study an alternative — or rather, complementary — approach that considers specifica-

tions to be logical propositions instead of system descriptions: we require that specifications

can be combined by boolean operators rather than that they are refinable and executable.

You may think of the logical approach as addressing the final link

I5„] C [*]

in a verification chain, where the top-level specification <p is given as a logical formula.

:•»

1.3.2 Specification logics

While only certain real-time properties pass as a suitable semantics of a reactive system,

we allow any real-time property as the semantics of a specification. In particular, we do

not require that the analog properties that are defined by specifications are weakly closed

under stuttering, digitizable, or given operationally. The only requirements that we put on

the interpretation of specification languages are the following:

Transparency Every expression 4> °f the specification language defines an analog prop-

erty UR(<f>) — the analog semantics of fa The real-time behaviors that satisfy the

specification $ are exactly the real-time behaviors in HR(#):

M = Beh(HR{4>)).

Logicality If & and fa «* expressions of the specification language, then so are fa A fa,

fa v fa, and -yfa. Moreover, any boolean combination of expressions defines the

corresponding boolean combination of properties:

TLR(faMh) = UR(fa)nJlR{fa),

nR{favfa) = nR(fc)unR(&),
nR(-*) = TSSR-HR^).

48 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

Clock independence The specification <j> defines a set of infinite timed state sequences

uniformly, independent of the clock model:

nN(0 = (nR(#))N

for the digital semantics H^{<f>) of ^.

1. BcA(II) is an unsuitable denotation of refinable properties, because it is generally

different from 2?eA(r(II)).

2. |n] is an unsuitable denotation of complementable properties, because it is generally

not disjoint from {TSSV - HJ.

We remark that a restriction to deiermmtstic timed state sequences (i.e., state interval

sequences) offers a clean solution to this dilemma at the expense of having more complicated

basic semantical objects.

ft
Note that the logicality of the analog semantics together with the condition of clock inde- |

I':
pcndence ensures that the diptal semantics of boolean combinations behaves "logically" as |

well: !-■
w I

nN(&A&) = nN(«s)nnN(&), |
nN(&v&) = nN(fc)unH(fc), |
nN(^) = rssfi-nN(*).

We emphasize that our interpretation of specifications differs from our interpretation ||

of system descriptions: while a precisely timed state sequence that results from observing fa

the behavior of a system stands for the set of real-time behaviors that are consistent with |

the observation sequence, a timed state sequence that is admitted by a specification stands |j

only for itself; while the analog semantics II C TSSR of a system represents the set fn] of |

real-time behaviors, the analog semantics II of a specification represents the set Beh(U) of jp

real-time behaviors. For example, a specification that admits only nondeterministic timed 1J:

state sequences cannot be satisfied by any system. Our choice to model real-time behavior I

by timed state sequences forces us to make such a grave distinction in the interpretation -d

of system descriptions, which ought to be refinable, and specifications, which ought to be fe

logical: m
#P

A

p *

1,3. PJZAL-TME SYSTEMS, SPECIFICATIONS, AND VERIFICATION 4b

1.3.3 Analog velt.us digital verification

Given a reactive system 5 and a specification <j>, we discuss two approaches to the verification

problem:

Analog verify ntion The analog approach checks, in the analog-clock model, iff

Det(TlR(S)) c nR(#.

Digital verification The digital approach checks, in the digital-clock model, iff

Det(UN(S)) C nN(#.

The analog approach of checkir containment of analog properties can be extremely difficult;

we will show the analog verification problem to be undecidable for many implementation and

specification languages. This is why we have introduced the digital-clock model, which has

often a simpler verification problem. Even though recently there have been some surprising

successes in analog verification [9], we shall concentrate in this thesis on methods for digital

verification.

Note that neither of the two approaches directly solves the original verification problem,

which poses a question about real-time behaviors,

151 c M,

not about analog or digital properties. So what, if anything, is achieved if either the analog

or the digital verification problem is solved? For a verification method to be meaningful,

obviously its result ought to give at least some insight about the original verification prob-

lem. For a particular system 5 and specification <f>, we say that an application of analog

(digital) verification is sound iff

Det{Tl{S)) C n(*) implies [5] £ [tf; ||

it is complete iff
|SJC|#] implies Det{JL(S))CTL{4).

Soundness ensures that verification does not claim that an incorrect system is correct, al-

though it may discard a correct system as incorrect; soundness and completeness together

11
f
I '■ ft-'-;-:";
I'i
V
I '
;

§/,'

50 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TRIE

guarantee that verification gives the right answer. Since we require the analog semantics

of both system descriptions and specifications to be transparent, analog verification is al-

ways sound. Digital verification, on the other hand, is sound only for checking certain

specifications:

Proposition 1.10 (Soundness of digital verification) Digital verification is sound for

all (systems S and) specifications <f> with an analog semantics HR(<f>) that is inversely closed

under digitization.

Proof of Proposition 1.10 Assume that HR(4>) is inversely closed under digitization

and that Det(IlN(S)) C IIN(<jJ); we show that Beh{TLR(S)) C Beh(TLR(<l>)). Consider an

arbitrary real-time behavior p € IIR(5). Then p € Det(IIR(S)), which implies that

[p] C Z>et(nR(5))N = Det(IlH(S)) c nN(# c nR(<t>).

Since TLR(<j)) is inversely closed under digitization, p € Beh(ILR(^)). B

We will show that the criterion for soundness of digital verification is indeed satisfied

by our specifications of the most important real-time properties. In addition, it is trivially

satisfied by all specifications of time-invariant properties, which are obviously digitizable.

We also point out that we may gain some information about a system even from the pos-

itive result of an unsound application of digital verification. In that case we have proved

something about all digitizations of system behaviors, rather than the system behaviors

themselves. For examples, if we are able to show that a system is in state a whenever

the digital clock shows 1, then we know that the system is in state a throughout the time

interval (0,2). Thus, to make sure that a system satisfies its specification, we may try to

prove a modified assertion by digital verification.

Both analog and digital verification turn out to be complete for the same restricted set

of verification problems:

Proposition 1.11 (Completeness of verification) Analog verification is complete for

all (systems S and) specifications $ with T(Beh(IIR(<f>))) C IIR(0). Digital verification is

complete under the same condition.

Proof of Proposition 1.11 Let us assume that both r(2?e&(IIR(0})) C UR(<p) and

Beh(TIR(S)) C Beh(ILR(4>)).

I i

1.3. REAL-TIME SYSTEMS, SPECIFICATIONS, AND VERIFICATION 51

(1) To see that analog verification is complete, observe that

Det(JLR(S)) = T(Beh(IiR(S))) C T(Beh(ILR(4))) C nR(<6).

(2) To see that digital verification is complete, use part (1) and the definitions of IIN(S)

and Ilfj(^). B

:-A

1

52 CHAPTER 1. AN INTERLEAVING MODEL FOR REAL TIME

. \

■

jLIj^^Uli

iBgffleroE^^yfl^^

Chapter 2

Real-time Systems

m

i

We identify the possible real-time behaviors of a reactive system in two steps. First, we in-

troduce the abstract notion of a timed transition system and define its execution sequences

over time. Then, we consider concrete real-time systems and show how the concrete con-

structs can be interpreted within the abstract model. We demonstrate that our framework

can model a wide variety of phenomena that routinely occur in conjunction with concurrent

real-time processes. Our treatment covers both processes that are executed in parallel on

separate processors, and processes that time-share a limited number of processors under

a given scheduling policy. Often it is this scheduling policy that determines if a system

meets its real-time requirements. Thus we explicitly address such questions as time-outs,

interrupts, static and dynamic priorities.

mm

i
feg

.■'

■äfS

■ im

vSSS

2.1 Abstract Model: Timed Transition Systems

As conceptual model of reactive systems we use discrete transition systems [69,106], which

we generalize by imposing timing constraints on the transitions. Qualitative fairness re-

quirements for transitions are replaced (and superseded) by quantitative lower-bound and

upper-bound real-time requirements.

A transition system S = (E.O.T) consists of three components:

1. a (possibly infinite) set £ of states.

2. a subset © C £ of initial states.

t-U% 53

1

iM«^j^jvw«iiä.»ro^i;,»^^

1

54 CHAPTER 2. REAL-TIME SYSTEMS

3. a finite set T of *rarui2s<ms, including the idle transition T/. Every transition r £ T

is a binary relation on E; that is, it defines for every state a £ L a (possibly empty)

set of T-successors T(«T) C E. We say that the transition T is enabled on a state (r iJ

r(c) yi 0. In particular, the idle (stutter) transition

T/ = {(<T,(T) I <r € E}

is enabled on every state.

An infinite sequence o of states is a computation (execution sequence, run) of the transition

system 5 = (E,0,7") iff it satisfies the following two requirements:

Initiality c0 £ 0.

Consecution For all t > 0 there is a transition r £ T such that flrt+1 £ T(ci) (which is

also denoted by <r, -Z-* <ri+1). We say that T is taken at position t and completed at

position t + 1. The case of the idle transition 17 being taken is called a stuttering step.

Let 11(5) be the set of all computations of 5.

We incorporate time into the transition system model by assuming that all transitions

happen "instantaneously," while real-time constraints restrict the times at which transitions

occur. The timing constraints are classified into two categories: lower-bound and upper-

bound requirements. They ensure that transitions occur neither too early nor too late,

respectively. All of our time bounds are nonnegative integers. The absence of a lower-bound

requirement is modeled by a lower bound of 0; the absence of an upper-bound requirement

by an upper bound of oo. For notational convenience, we assume that oo>nforalln€N.

A timed transition system S = (E,6,X,/,u) consists of an underlying transition system
5" = (E,e,r)aswellas

4. a minimal delay L, € N for every transition T € T. We require that tTJ = 0.

5. a maximal delay Ur € N U {co} for every transition r £ 7. We require that UT > fT

for all T £ T, and that Ur = co if T is enabled on any initial state in 0. In particular,
Ur, = OC.

An infinite timed state sequence p = (ff,T) is a computation of the timed transition system

5 = {Z,Q,T,l,u) iff the state sequence <r is a computation of the underlying transition
system S~, and

2.1. ABSTRACT MODEL: TIMED TRANSITION SYSTEMS oo

1

'Wi;

■J

en
ft*

Lower bound For every transition r € X and all positions t > 0 and j > i such that

T, < Ti+i + lr,

if T is taken at position ;*,

then r is enabled on c-;.

In other words, once enal.led, r is delayed for at least IT time unitB; it can be taken

only after being continuously enabled for /- time units.

Upper bound For every transition r € T and position t* > 0 such that r is enabled on Ci,

there is some position ;' > i with T,- < Tj_j + tir such that

either r is completed at position j,

or T is not enabled on <Tj.

In other words, once enabled, r is delayed for at most tir time units; it cannot be

continuously enabled for more than «r time units without being completed.

Let 11(5) be the set of all computations of 5. In the analog-clock model, the system S

defines the analog property IIR(S); in the digital-clock model, S defines the digital property

Hfj(5) = (IIR(5))N; hi the untimed model, the untimed property IIi(S). Note that we

consider all computations of 5 to be infinite; finite (terminating as well as deadlocking)

computations are represented by infinite extensions that add only stuttering steps. In fact,

every computation of 5 must contain infinitely many stuttering iteps.

The timing constraints of a timed transition system 5 ca,-. be viewed as filters that

prohibit certain execution sequences of the underlying untimed transition system S~:

n(S)- c n(s-).

Special cases of timing constraints are a minima] delay 0 and a maximal delay oo for a

transition r. While the former does not rule out any computations of 5", the latter adds

to S~ a weak-fairness (justice) assumption [88]: r cannot be continuously enabled without

being taken. The untimed semantics IIi(S) of 5 results from adding these weak-fairness

requirements to the underlying untimed transition system S~, thus obtaining the veakly-fair

transition system 5y. The analog and digital semantics of 5 add further constraints.

In the following two subsections we show that the analog semantics IIR(S) of any timed

transition system 5 satisfies our requirements of being maximally closed under stuttering,

56 CHAPTER 2. REAL-TIME SYSTEMS

digitizable, and, under certain restrictions, given operationally. These attributes assure

that timed transition systems can be refined, verified by digital methods, and executed,

respectively.

2.1.1 Closure properties

We show that the analog properties that axe definable by our abstract machine model of

timed transition systems are

1. closed under shifting the origin of time,

2. maximally closed under refinement of time, and

3. both closed and inversely closed under digitization of time.

i

Linear transformation of time

First let us show that our choice to restrict both maximal and minimal delays of transitions

to natural numbers, rather than allowing arbitrary rational numbers, does not limit the

real-time phenomena that can be modeled by timed transition systems. The unit of the

clock can always be scaled appropriately, because the computations of a timed transition

system are, in the following sense, invariant under linear transformations of time. Let a^O

and ß be arbitrary real numbers. Given a timed transition system S = {£,0,7",/,«), by

aS = (E,©,T,oJ,au) we denote the timed transition system (if any) that results from S

by multiplying all minimal and (finite) maximal delays with a. Similarly, given a timed

state sequence p = (ff.T), we write ap + ß = (fr.erT + ß) for the timed state sequence (if

any)

(<T0,aTo + ß) —» (*i»aTa + ß) —♦ (<T2)QT2 + ß) —* (<r,,aT, + ß)—*

Note that neither aS nor ap-~ ß may be defined.

Proposition 2.1 (Scaling of the clock) Suppose that both aS and ap + ß art defined

for a timed transition system S, an infinite timed state sequence p, and real numbers Q^O

and ß. If p is a computation of S, then ap + ß is a computation of aS.

''r:i

2.1. ABSTRACT MODEL: TIMED TRANSITION SYSTEMS 57

Proof of Proposition 2.1 The proposition follows immediately from the form of the

lower-bound and upper-bound requirements on computations. ■

In particular, the set of computations of a timed transition system is closed under

shifting the origin of time (take a = 1). In other words, timed transition systems cannot

refer to absolute time. Thus we will often assume, without loss of generality, that the time

of the first state change of a computation is 0.

Refinement of time

We show that the care we have taken in the definition of lower-bound and upper-bound

requirements for timed transition systems has succeeded io make computations robust under

stuttering: given a timed transition system S and a computation p of 5, the addition of

finitely many stuttering steps to p yields again a computation of 5. In fact, we have the

following stronger result.

Proposition 2.2 (Maximal closure under stuttering) The set of computations of a

timed transition system is maximally closed under stuttering.

Proof of Proposition 2.2 Let S be a timed transition system. First observe that the

infinite timed state sequence

••• — {viJi) -^ (<ri,Ti+1) -2. KTi+2) — ...

is a computation of 5 iff the sequence

 »fa.TO-^fo.T*,)—» •••

is a computation of 5; and the infinite timed state sequence

(<r0,To) -2*(<ro,Ti) —► ■••

is a computation of 5 iff the sequence

(<ro,Ti)—•••

is a computation of 5, because the maximal delay of every transition that is enabled on Co

is oo. Then observe that the infinite timed state sequence

... —, (ffj.Tj) -^-» (<ri+i,Ti+i) —► •••

m&mpememm

''VW

58 CHAPTER 2. REAL-TRIE SYSTEMS

is a computation of 5 iff the two sequences

••• —► (^».T,-) —► (iTijTj+i) —<■ (<Ti+i,Tj+i) —» •••,

... —► (cj,Ti) —► (c<+i,Tj) —► (o'i+i.Tj+i) —► •••

are computations of S. It follows that the set of computations of 5 is maximally closed

under stuttering. B

This proposition confirms that the lower~bound and upper-bound requirements on com-

putations have the intended meaning under our interpretation of a precisely timed state

sequence as a set of real-time behaviors. For the computations of a timed transition system

5 = (E,6,T, /,u) can be alternatively characterized as follows: an infinite timed state se-

quence p is a computation of S iff every behavior p' = ((r1,!') that is specified by p under

stuttering (that is, p' £ |p|) satisfies the initiality and consecution requirements as well as

Deterministic lower bound For e^ery transition r € T and all positions t > 0 and j > i

such that Tj < Tj + /r,

if T is taken at position j,

then T is enabled on c,-.

Deterministic upper bound For every transition T £T and position t > 0 such that r

is enabled on (Tj, there is some position ;' > t* with T, < T» + ttr such that

either T is taken at position j,

or T is not enabled on tr,-.

Maximal closure under stuttering allows us to generalize the untimed notion of refine-

ment mappings between transition systems [1]. Suppose that S% and 5j are two timed

transition systems with the sets £j and £2 of states, respectively. Let /: Ei -♦ Ej be a

mapping between states that is typically many-to-one; that is, / hides some information

about the states of Si. We say that / is a refinement mapping from 5j to 5} iff the image

of every computation of Si is a computation of 5j:

(vJ)€ll(Si) implies (/(»), T) € II(SS).

The system Si is said to refine (implement) the system 52 iff there exists a refinement

U mapping from Si to $3. Note that if Si refines 52, then it may "refine" both state and time

information:

1

fi

2.1. ABSTRACT MODEL: TIMED TRANSITION SYSTEMS 59

State refinement Si may contain more state information than 5j, in which case nonidle

transitions are mapped to stuttering steps. This is analogous to untimed refinement.

Time refinement Si may contain more information about the time of state changes than

St, in which case any mapping / between computations is not onto (even if / is onto

between the state components of computations). For example, the timed transition

system whose computations are the infinite sequences in the stuttering closure of the

timed state sequence

(a,0) — (6,5)

is refined by the timed transition system whose computations are contained in the

stuttering closure of

(a, 2) — (6,3)

(take the identity mapping between states), but not vice versa.

Digitization of time

The following proposition ensures that the analog semantics HR(5) and the digital semantics

Ilfj(S) of a timed transition system S denote the same set of real-time behaviors.

Proposition 2.3 (Digitizability) The set of computations of a timed transition system

is digitizablc.

Proof of Proposition 2.3 (1) To see that the set of computations of a timed transition

system is closed under digitization, observe that

T,->Ti + / implies [Tj], > [T*]« +1

and

Tj < Tj + u implies [Tj]t < [Tj]€ + «

for all Ti,T,- 6 R, J,u € N U {oo}, and 0 < « < 1. These observations guarantee that

whenever any digitization [p)t of a timed state sequence p violates a lower-bound requirement

for the positions i< j, then so does p; and whenever p satisfies an upper-bound requirement

for position * at position j > t, then so does every digitization [p]e.

60 CHAPTER 2. REAL-TIME SYSTEMS

(2) To see that the set of computations of a timed transition system is inversely closed

under digitization, observe that there is, for all T\,Tj 6 R and l,u € N U {oo}, some

0 < e < 1 such that

Tj < T; + / implies [T,-], < [T<], + /

and some 0 < e < 1 such that

Tj > T< + u implies [Tj]c > [T,], + u.

These observations guarantee that whenever a timed state sequence p violates a lower-bound

requirement for the positions » < j, then so does some digitization [p]t of p; and whenever

every digitization [p]t satisfies an upper-bound requirement for position t first at position

j > i, then so does p. ■

There are two immediate ramifications of this result. First, every timed transition

system 5 specifies the same untimed property in analog-dock model and the digital-clock

model:

nR(5)- = nN(5)- c nx(5)- c n(s-).

Secondly, recall the definition of lower-bound and upper-bound requirements for timed tran-

sition systems. The precise meaning of the timing constraints seems to depend on the time

domain. Consider, for example, the upper-bound requirement that a continuously enabled

transition r must be completed within its maximal delay of, say, ttr = 5. While in the

analog-clock model this requirement ensures, as intended, that r is completed within 5 time

units, in the digital-dock modd the same condition appears to guarantee only that r is not

continuously enabled for more than 5 clock ticks, allowing the actual difference between r

becoming enabled and r being completed be as much as, say, 5.9 time units. Closure under

digitization implies that this is not the case and that all timing constraints preserve their

intended meaning in the digital-dock modd.

2.1.2 Operationally

Any particular execution sequence of a timed transition system 5 is a deterministic compu-

tation of 5. We say that Det(II(S)) is the set of runs of S. The run fragments of a timed

transition system are obtained by dosing the set of runs under suffixes: an infinite timed

state sequence p' is a run fragment of S iff p' = p* for some run p of 5 and i > 0. Note that

/

2.1. ABSTRACT MODEL: TIMED TRANSITION SYSTEMS 61

run fragments are infinite deterministic timed state sequences; during a run (fragment) time

can advance only with the idle transition. In the untimed model, no such distinction be-

tween computations and runs is necessary, because all compir. ations are deterministic. Thus

the run fragments of an untimed transition system 5 axe all suffixes of the computations

of 5.

We like our abstract machine model to be operational; that is, the description of a timed

transition system should give a prescription of how (all of) its runs can be generated mono-

tonically, by adding a state at a time. Untimed transition systems specify unconditional

safety properties and are, therefore, trivially executable:

Start with an initial state, and at any point during the stepwise construction of

a computation take, nondeterministically, any of the enabled transitions.

At every step during the incremental generation of a timed run, we have to choose either

a transition that is taken (without incrementing time) or an amount of time that passes

(while the idle transition is taken). A timed transition system S, however, contains liveness

requirements. Thus it may not be obvious how to choose successive transitions or time

increments such that

1. At any point it is possible to extend the generated finite deterministic timed state

sequence to arun of 5; that is, all upper-bound requirements and the progress condition

on time can, at some later point, be satisfied.

2. Any run of S can be generated in this fashion.

Fortunately, the safety and liveness components of 5 can be easily separated: a timed

transition system without infinite maximal delays specifies a real-time safety property; infi-

nite T"«TiTn*l delays add real-time liveness requirements. If this decomposition is congruous

relative to deterministic timed state sequences, it suggests a simple procedure for executing

the system S:

Start with an initial state, and at any point during the stepwise construction

of a run either take, without advancing time, any of the transitions that have

been enabled long enough, or take the idle transition and advance time without

delaying any transition for more than its maximal delay. During this procedure,

62 CHAPTER 2. REAL-TUvtE SYSTEMS

make sure that all liveness requirements are satisfied "eventually" and time is

advanced infinitely often.

We give a sufficient condition on timed transition systems 5 that can be easily checked

and ensures that the decomposition of 5 into safety and liveness components is real-time

congruous.

Safeiy-liveness decomposition

Let 5 = {E,0,T,Z,u) be a timed transition system. A finite timed state sequence p = (c.T)

is said to be a partial computation of 5 iff it satisfies the initiality, consecution, and lower-

bound requirements, and

Finite upper bound For every transition r € T and position 0 < t < \p\ such that r

is enabled on Oi, either ~t\,>\-\ < T,-_i +tir or there is some position j > i with
Tj < T,_i + u,. suüi that

either r is completed at position j,

or r is not enabled on Cj.

A deterministic partial computation is called a partial run. Let 11,(5) be the real-time

property that contains an infinite timed state sequence p iff all finite prefixes of p are partial

computations of S. We write T0 C T and T^ C T for the sets of transitions of S with

marimal delay 0 and co, respectively. Let IIj(S) be the real-time property that contains an

infinite timed state sequence p iff

Infinite upper bound For every transition rf TM there are infinitely many positions

t > 0 such that

either r is completed at position t,

or T is not enabled on o-{.

Clearly,

n(5) = n,(5)nn,(5).

It is also not hard to see that 11,(5) is a real-time safety property and Hi(5) is a real-time

liveness property.

•11

2.1. ABSTRACT MODEL: TIMED TRANSITION SYSTEMS 63

Thus it is easy to generate all partial computations of 5 incrementally, by maintaining

local consistency: choose, at any point, a state transition r and time increment 6 such that

Consecution r is enabled.

Lower bound r has been enabled long enough. |j

Finite upper bound All other enabled transitions can be delayed for another S time units.

 . (a,5) —(6,7)

may lead to a situation from which time cannot advance without violating either

the lower-bound or the upper-bound requirement for r. Note that a more restrictive

definition of local consistency is not appropriate either, because if T becomes disabled

again, then the time increment given above may actually occur in a computation.

Instead, we are content with generating all runs Det(Tl(S)) of a reactive system 5,

which are deterministic.

2. Even when generating a deterministic computation of a reactive system 5, maximal

delays 0 may impede the advancement of time. We adopt a simple sufficient criterion

for the operationality of 5 that rules out systems with "too many" maximal delays 0:

we say that 5 is an operational timed transition system (OTTS) iff there is no sequence

of states and transitions

Co —* o~\ —► • • • —► <rn

such that n > \%\ and TJ € To for all 0 < t* < n. Intuitively, the maximal delays 0

of an OTTS cannot prevent time from progressing. Formally, the safety-liveness

decomposition (II,(5),II{(5)) of an OTTS 5 is an operational presentation of II(S):

i

Our hope is that any sequence of such locally consistent choices is globally proper; that

is, that any partial computation of S can be extended to a computation of 5. In other

words, we want to show that the pair (11,(5), IIf(5)) defines 11(5) congruously relative to

our timing assumption TSSU. Unfortunately this is not the case. In fact, there are two

impediments:

P 1. When trying to incrementally generate a nondeterministic computation, a locally |gj

consistent time increment may be too large. Consider, for example, the situation that

a transition r with minimal delay 5 and maximal delay 5 is disabled on state a and

enabled on state 6. Then the locally consistent time increment

!

fei

64 CHAPTER 2. REAL-TIME SYSTEMS

Proposition 2.4 (Operational timed transition systems) If S is an operational ti-

med transition system S, then the set Det(IL(S)) of runs of S is defined congruously by the

pair (TL.{S),TL,{S))-

Proof of Proposition 2.4 Clearly,

Det{U(S)) = TL.{S)nlli(S)r\Det{TSS").

It is also not hard to see that 11,(5) is safe relative to Dei(TSSU) and WS) is live relative

to Det(TSS").

Thus it remains to be shown that every partial run of an OTTS 5 can be extended to

a run of S. We use the following strategy to extend partial runs. Let T be the transitions

of S and N > (\T\ + l)2 any sufficiently large integer constant. We alternate two phases:

Phase 1 For at least N positions, determine the maximal locally consistent time increment

S € TIME. If S = 0, take any transition whose (finite) upper-bound requirement

prevents the progress of time. If 6 > 0, take the idle transition and advance time by S.

If no maximal locally consistent time increment exists (because all enabled transitions

can be delayed an arbiträr}* amount of time), take the idle transition and advance time

by any positive (nonzero) amount.

Phase 2 Once every N positions, take every transition with a maximal delay oo if it has

been enabled long enough. This phase satisfies all infinite-upper-bound requirements.

The only way for this strategy not to yield a run of 5 is that, from some point on, time

does not advance. In this case, there has to be a phase-1 sequence p of length N +1 of the

form
(ffiiT,-) -2-» te+i.T-) 2±i ••• -lit» (o-i+jfji).

The sequence p must contain a subsequence p' of length \T\ + 1 such that every transition

in p' has been taken at least once before in p. It is not hard to see that, contrary to our

assumption, the state component of p' violates the operationally condition on S. ■

It follows that every OTTS can be "executed" in the stepwise fashion that has been

outlined above, by incrementally constructing partial runs and satisfying the liveness re-

quirements, which are imposed by maximal delays co and the progress of time, "eventually."

2.1. ABSTRACT MODEL: TRIED TRANSITION SYSTEMS 65

Explicit-clock transition systems

For any timed transition system 5 = {!,,©,T,l,u), it will be useful to model the safety ;•

part TL,{S) of 5 by an untimed transition system S' that is given access to time as part

of its state description. The safety machine 5' generates the set of infinite state sequences

all of whose finite prefixes correspond to partial runs of S. The correspondence between

partial runs of 5, which are timed state sequences, and finite prefixes of computations of S', |

which are state sequences, is achieved by augmenting the states of the untimed transition

system 5\ Every state of S* consists of a state of 5 as well as values for the following new !;

variables: |

• A clock variable t that ranges over the time domain TIME; it records, in every state |

(Ti of a partial run p = (<r,T) of 5, the corresponding time T,\ |

• A delay counter dr for every transition r € T that ranges over all time values |

6 € TIME with 0 < 6 < Ur] it records, in every state of a partial run of S, for |

how many time units the transition T has been continuously enabled without being |

taken. Note that the value of a delay counter is well-denned only for deterministic |

timed state sequences. |

The explicit-clock transition system S* = (E', 0', T') associated with the timed transi- |

tion 5 is defined to be the following untimed transition system: f.:

1. Every state a € 2' of S' is a tuple that contains a state a~ € 2 of 5, a value |

<r(t) € TIME for the dock variable t, and a value 0 < <r(dT) < tt, for each delay §■'.

counter dT: |

V = E x TIME x TIME7. |
§;:

f
2. A state of S* is initial iff it extends an initial state of S: |?

<r e 0' iff <r~ € 0. I
f;

3. Every transition of S is extended: T' contains, for every T 6 T, a transition T* such I

that (£TJ,O-J)€T* ifffor all T'€T, |;

(<ri,<r2)€T, I"

*i(<ir) > lT, §

r ¥

S

7

66 CHAPTER 2. REAL-TIME SYSTEMS

a'3(t) = <r'(t),

^(dr-) =
tri(dr') if T' ^ T and r' is enabled on <72,

0 otherwise.

The second clause, 0"i(dT) > ZT> enforces all lower-bound requirements.

In addition, T* contains the idle transition r/ and the tick transition 7j. that advances

time: (öJ,^) € TJ iff there is a positive (nonzero) time increment S € TIME such

that for all T' £ T,

<Ti = 0"2,

°*i(dr') + ^ if r' 7^ r and r' is enabled on ff2>

i u

«KdLr') < tv.

otherwise,

The last clause enforces all finite-upper-bound requirements. Note that the idle transi-

tion T\ would be subsumed by the tick transition T£ if the time increment S = 0 were

admitted for rf. Our distinction between the idle transition and the tick transition

allows us to put different fairness requirements on the two transitions.

We point out that the definition of S' is independent of the clock model; that is, the set

Hfi(S') of computations of S* in the digital-clock model contains exactly the computations

in the analog semantics IIR(5*) of S' that assign only integer values to the clock variable

and all delay counters.

It is not hard to see that the timed transition system 5 and the explicit-clock transition

system S' are related in the following way:

• For every partial run (<r,T) of 5, there is a unite state sequence a* with (<r*)~ = tr

and tr*(t) = T such that a* is a prefix of a computation of S' (let all delay counters

record the times that the corresponding transitions have been enabled).

• For every finite prefix cr of a computation of 5*, the timed state sequence (<r~,a(t))

is a partial run of 5.

In other words, S' generates the state sequences that correspond to safe prefixes of runs

of 5. In particular:

n(S)- = z?e*(n(5))- c n(ST c n(s-).

I-, "*i

1

s

ill

tm

■^m

'J

^K 'i

V. • a=

2.2. CONCRETE MODEL: MVLTIPROCESSIXG SYSTEMS 67

Liveness requirements can be easily added to the safety machine S' as follows:

1. A wcak-fatrness assumption stipulates that a transition cannot be continuously en-

abled without being taker [88]. Let the weakly-fair extension S3 of 5' be the fair

transition system that is obtained from S* by adding a weak-fairness assumption for

every transition r' if r has a maximal delay oo.

2. A strong-fatrness assumption stipulates that a transition cannot be enabled infinitely

often without being taken [88]. Let the strongly-fair extension S* of 5' be the fair

transition system that is obtained from S3 by adding a strong-fairness assumption for

the tick transition rj-. It is not hard to see that there is a one-to-one correspondence

between the computations of 5' and the runs of 5:

r € n(S>) iff (<r-,«r(t)) g Det{Tl(S)).

In particular, n(5)" = 11(5')-.

2.2 Concrete Model: Multiprocessing Systems

The concrete real-time systems we consider first consist of a fixed number of sequential

real-time programs that are executed in parallel, on separate processors, and communi-

cate through a shared memory. We show how time-outs and real-time response can be

programmed in this language. Then we add message passing primitives for preess syn-

chronization and communication.

2.2.1 Syntax: Timed transition diagrams

A shared-variables multiprocessing system P has the form

Each process Pi, 1 < t < m, is a sequential nendeterministic real-time program over the

finite set Ui of private (local) data variables and the finite set U, of shared data variables.

The formula 6, called the data precondition of P, restricts the initial values of the variables

in

U = CT.U (J Ui.
Kt<m

Mfifflßa&sifcSMfA1 i-.isSÜSEiwSStiiiKU VMK'-'&i.iS"*;':■"$"''
 >-, .-■—-->*■-— — - • —, ■■■»—...P.- ».■..... ■ ■■■*■ i I|,^.,^.,^.„ -—,„ ..

6S CHAPTER 2. REAL-TIME SYSTEMS

.;gä

1

1 <'-N

The real-time programs Pj can be alternatively presented in a textual programming

language or as transition diagrams. We shall use the latter, graphical, representation. For

this purpose, we extend the untimed transition diagram language by labeling transitions

with minimal and maximal time delays. A timed transition diagram for the process Pt

is a finite directed graph whose vertices Li = {4>---4*} *** called locations. The entry

location — usually /j, — is indicated as follows:

The intended meaning of the entry location t^ is that the control of the process Pi starts at

the location t^. The component processes of a system are not required to start synchronously

(i.e., at the same time). Each edge in the graph is labeled by a guarded instruction, a
minimal delay I € N and a maximal delay u € N U {oo} such that u > I:

c —* x := e

[<>«]

where the guard c is a boolean expression, £ is a vector of variables, and e an equally typed

vector of expressions (the guard true and the delay interval [0, oo] are usually suppressed;

for the empty vector nil, the instruction c -» nil := nil is abbreviated to c?). We require

that every cycle in the graph consists of no fewer than two edges, at least one of which is

labeled by a positive (nonzero) maximal delay.

The intended operational meaning of the given edge is as follows. The minimal delay t

guarantees that whenever the control of the process Pi has resided at the location £ for

at least / time units during which the guard c has been continuously true, then Pi may

proceed to the location tk. The maximal delay u ensures that whenever the control of the

process Pi has resided at /j for u time units during which the guard c has been continuously

true, then Pi must proceed to lk. In doing so, the control of Pi moves to the location Ck

"instantaneously," and the current values of e are assigned to the variables i. In general, a

process may have to proceed via several edges all of whose guards have been continuously
true for their corresponding maximal delays. In this case, any such edge is chosen nondeter-

ministically. It follows that the control of a process Pi may remain at a location ft forever

only in one of two situations: if /j has no outgoing edges, we say that Pi has terminated;

mm^mx^^m '«-■■-■■'"-- ■" sa

2.2. CONCRETE MODEL: MULTIPROCESSING SYSTEMS 69

if each of the guards that axe associated with the outgoing edges of the location P- is false

infinitely often, we say that P, has deadlocked. The second condition is necessary (although

not sufficient) for stagnation, because if one guard is true forever, then the corresponding

maximal delay u < oo guarantees the progress of P,.

2.2.2 Semantics: Timed transition systems

The operational view of timed transition diagrams can be captured by a simple transla-

tion into the abstract model of timed transition systems. With the given shared-variables

multiprocessing system

P: {9}[Pi\\..-\\Pm],

we associate the following timed transition system Sp = (£,0,T,/,u):

1. £ contains all interpretations of the finite set

V = Uu{ri,...xm}

of data and control variables. Each control variable for xit where 1 < i < m, ranges

over the set Li U {l}. The value of *v indicates the location of the control of the

process Pi\ it is 1 (undefined) before the process Pi starts.

2. 0 is the set of all states a € £ such that 6 is true in <r and <r(*i) = ± for all 1 < t < m.

3. T contains, in addition to the idle transition TJ, an entry transition T$ for every

process Pi, 1 < i < m, as well as a transition T£ {at every edge E in the timed

transition diagrams for P\,... Pm. In particular, & € r,J(cr) iff

o-(xj) = X and er'(xj) = 4.

«r'(y) = <r{y) for all y € V - {*<}•

If E connects the source location /j to the target location Ck and is labeled by the

instruction c —» £ := e, then <r' € TE{<T) iff

<r{*i) = *j and a'fa) = /),,

c is true in <r and cr'(*) = <r(e),

«r'(y) = c(y) for all y € V - {*i, *}•

Miimm-msmr.sa.uaSihiiiv.-sas^iimiSi'WSBi 'ass 'j>^m:^i>smiii^^^ss;^ist!!iSimitMä^lsSii^limib "3*iÄ.KäM«SiM,ä2 ii.«.;a.«*i.;Ka

70 CHAPTER 2. REAL-TIME SYSTEMS

UTE is uniquely determined by its source and target locations, we often write T'_A.

4. If T is an entry transition, then lT = 0. For every edge E labeled by the minimal

delay /, let 1^ = 1.

5. If T is an entry transition, then 1^ = 00. For every edge E labeled by the maximal

delay tx, let it,, = u.

This translation defines the sets of possible computations and runs of the concrete real-

time system P as the sets Il(Sp) and Det(U(Sp)) of (deterministic) timed state sequences.

The condition on timed transition diagrams that every cycle contains at least one positive

(nomero) maximal delay ensures that the timed transition system Sp is operational.

For instance, the computations of the trivial system P that consists of a single process
with the timed transition diagram

--€> [0,1] •©

are exactly the infinite timed state sequences in the stuttering closure of

{±,0)—* (4>,0)—♦ (4,1)

(assuming that the time of the initial state change is 0). Note that had we chosen to

restrict the semantics of timed transition systems to deterministic timed state sequences,

the description of TL{Sp) would be substantially more complex — namely, in the analog-

dock model, the stuttering closure of an infinite set.

Finally, we remark that our semantics of shared-variables multiprocessing systems is

conservative over the untimed case. Suppose that the system P contains no delay labels

(recall that, in this case, all minimal delays are 0 and all maximal delays are 00). Then

the state components of the computations of Sp are precisely the legal execution sequences

of P, as defined in the interleaving model of concurrency, that are weakly fair with respect

to every transition [91]: no process can stop when one of its transitions is continuously

enabled. Weak fairness for every individual transition and, consequently, progress for every

process is guaranteed by the maximal delays 00.

■3MSUMIMfeW>!W*SS ^aseaKsasKBSB

J
;;. .;;

;
■; !
-'•■

'■;

':

-.'" ■

: .:■?

: IF

■ .;*

' '-■;■!
-?■

■*■ 'A

. V .'.'■*

.';■'.

: -'■. ■ ■.■>*

. ■;-

'■".(:'' i
"'\

:| .
■

'-i
. ■ *'

?' 4
.'-:. ,'s
''-■£■ ■ .-;:-»
> ;K ■:A

■"■":'i*

i:&;
\\i. .:.■■'■■'- " ■'•{

■ :V;)
. £':■■ ■ ■ \4

vl

f
,%:'•.. ;
is'*'-'1' :„"

■"»

€>■"' .•'
:#> * .'-1 -j|
&'.'■ ,>■!*

■i : V\§

.V4
;&: ;/■■-;

kv»V';. , ■: 'y&

s
fex<

&/ K-J, '■<$

■',!. .^

.-' VJ

'f&'S ,>.*
$&$:•' SäS*

\l
*i> f.'.«

1 ■
■■!

-'1
:y^

,4$
^M?.^ .'
SI
' "
|^'> ■■an

H M
« &
PP JS8
-
8#. «3

: «ft
if.u w. >K'*l

,
■"

:
iij^

\

2.2. CONCRETE MODEI: I.IULTJPROCESSISG SYSTEMS 71

2.2.3 Examples: Tirae-out and timely response

To demonstrate the scope of the timed transition diagram language, we model two extremely

common real-time phenomena as shared-variables multiprocessing systems. In the first

example (time-oxit), a process checks if an external event happens within a certain amount

of time; in the second example (tragic light), a process reacts to an external event and

is required to do so within a certain amount of time. A third example combines several

processes.

Time-out

To see how a time-out situation can be programmed, consider the process P with the

following timed transition diagram:

When at the location to, the process P attempts, for 10 time units, to proceed to the location

/i, by checking the value of t. If the value of x is not found to be 0, then P does not succeed

and proceeds to the alternative location t3 after 10 time units. The choice of the maximal

delay u determines how often P checks the value of z. For example, if u > 10, then P may

not check the value of a at all before timing out after 10 time units. If 0 < u < 10, then

P has to check the value of x at least once every u time units. Consequently, if the value

of x is 0 for more than u time units, it will be detected. On the other hand, the value of x

being 0 may go undetected if it fluctuates too frequently, even in the case of u = 0.

Traffic light

To give another typical real-time application of embedded systems, let us design a traffic

light controller that turns a pedestrian light green within 5 time units after a button is

pushed. The environment is given by the following process E. Whenever the request

button is pushed, the shared boolean variable request is set to true:

R*re3Msnrasssm7s*W33!OT3SBPS«ES?!£^ «SSMJÜ*E»»äÄö!^^

72 CHAPTER 2. REAL-TIME SYSTEMS

request := true

Recall that the edge labels true"! and [0,oo] are suppressed; thus we have no knowledge

about the frequency of requests.

We want to design a traffic light controller Q that controls the status of the traffic

light through the variable light, whose value is either ^reen or red. As unit of time we

take the amount of time it takes to switch the light; for simplicity, we also assume that, in

comparison, the time needed for local operations within Q is negligible. Now let us specify

the desired process Q. The controller Q should behave in such a way that the combined

system

P : {request = false, Ügkt = red} [E\\Q]

satisfies the following two correctness conditions:

(A) Whenever request is true, then light is green within 5 time units for at least 5 time

units.

(B) Whenever request has been false for 25 time units, then light is red.

The first condition, (A), ensures that no pedestrian has to wait for more than 5 time units

to cross the road and is given another 5 time units to do so; the second condition, (B),

prevents the light from being always green. Both properties are real-time safety properties.

It is not hard to convince ourselves that, once it is started, the following process Q

satisfies the specification:

^

-•request —♦

* —© "tr* SK
request —»

request := false [0,0]

[1,11
light := green

[6,6] [0,0] request -»
request := false

^JIMHMmiiMiM'KWft»^^ ss^giaJHPisw^^

2.2. CONCRETE MODEL: MULTIPROCESSING SYSTEMS 73

for any delay 4 < S < 23. This implementation of the traffic light controller turns the light

green as soon as possible after a request is received and then waits for 6 time units before

turning the light red again. Only if the request button has been pushed in the meantime,

the light stays green for another S time units. In the following chapters, we will state both

requirements {A) and (B) in a formal language and present verification algorithms that

prove the system correct with respect to its specification.

Multiple traffic lights

Let us generalize the traffic light example and design a system that reacts to several external

events. We wish to do so by composing, in parallel, processes that are similar to Q. At

this point it is convenient to accept some additional assumptions about the frequencies of

the external events. In our example, suppose that the distance between any two requests

at least 15 time units; that is,

E':

request :— true

Then we can simplify the traffic light controller to

<?':

request -+
request := false

light := red

light := green

for any delay 4 < S < 17. The combined system

F : {request = false, light = red} [E'\\Q']

still satisfies both correctness requirements (A) and (£).

V* i

iuifabfai

sBssBBRsosBasssraBsiraraESsa»

74 CHAPTER 2. REAL-TIME SYSTEMS

Now consider a more complex traffic light configuration, with two lights and two request

buttons. In particular, we assume that the second light is designed for the special conve-

nience of pedestrians that are in a hurry: it is required to turn green within 3 time units of

a request but, on the other hand, ha» to stay green for only 3 time units. While pedestrians

arrive at the first light with a frequency of at most one pedestrian every 15 time units, we

assume that the more urgent requests are less frequent — only one every 30 time units:

Ex:

request} := true [30,oo] [0,0]

Er- ^-@-^

request2 := true

The controller for both lights executes the following two processes:

Qi: @ U9kt:=red

request} —»
request^ := false

1,1]

[0,0] [5a, Sl

® 1ML ®

request2 —»
request 2 := false

lighti := green

Qr. @ S^jgp* (<?

[0,0] [h,h

[Li] <s> light2 := preen <§)

If the combined traffic light controller makes use of two processors and the processes Qx

and Q2 are executed in a truly concurrent fashion, then the correctness of the entire system

P|| : {request = request2 = false, light} = light2 = red} (jBiH^HQiHQa]

follows from the correctness of its parts. Specifically, if 4 < 6i < 17 and 2 < 62 < 30, then

all runs of Pit satisfy the following conditions:

2.2. CONCRETE MODEL: MULTIPROCESSING SYSTEMS 75

{A\) Whenever rcquest^^ is true, then light t is green within 5 time units for 5 time units.

{A2) Whenever reqnest2 is true, then light2 is green within 3 time units for 3 time units.

(Bi) Whenever request has been false for 25 time units, then lightx is red.

(B2) Whenever request2 has been false for 25 time units, then light2 is red.

A more interesting case is obtained if only a single processor is available to control both

lights and the two processes Qi and Q2 have to share it. Using the interleaving (shuffle)

operator of Hoare [59], we denote the resulting system PJJJ by the expression

{request^ = regverf, = false, ligkt^ = light2 = red} [Ei\\E2\\{Qi\\\Q2)}.

Note that the behavior of the environment Ei\\E2 is still truly concurrent to the behavior

of the traffic light controller Q1IHQ2, which executes both processes Qi and Q2 on a single

processor in an interleaved fashion.

Let us asrume that Si = 10 and S2 = 2, in which case P\\ is correct. However, if we have

no knowledge about the strategy by which Qi and Q2 are scheduled on the same processor,

other than that it is fair (i.e., the turn of each process will come eventually), then P|j| does

not satisfy the specification consisting of (Aj), {A2), (Si), and (B2). For suppose that

the process Q\ is always given priority over the process Q2, and the traffic light controller

receives a request for the second light only one time unit after it has received a request for

the first light. Then it will serve the first request by turning lightl green and (busy) waiting

for 10 time units, thus violating (A2).

On the other hand, if the process Q2 that serves the more urgent yet less frequent

gj| requests is always given priority over the process Qi, then P||| is correct. This is because

of the low frequency of requests for the second light only one such request can interrupt

the service of a request for the first light. Clearly, this argument, which depends on a host

of possible interleavings of four processes, calls for a formal proof. Even more challenging

is the task of deriving sufficient and necessary conditions on the delays Si and £2 for the

correctness of the system Pm.

m

; -,

m 2.2.4 Message passing

Note that asynchronous message passing can be modeled by shared variables that represent

message channels. In this subsection, we extend our timed transition diagram language by

76 CHAPTER 2. REAL-TIME SYSTEMS

a primitive for synchronous (CSP-style) message passing, that can be used for the synchro-

nization and communication of parallel processes.

Syntax

A (message-passing) multiprocessing system P has the form

{*}[?! ||...||P„],

where 6 is a data precondition and each process Pi, for 1 < i < m, is a sequential nondeter-

ministic real-time program over the finite set Ui U U, of data variables (for true message-

passing systems, we may assume that U, = 0). We use again timed transition diagrams to

represent processes, but enrich the repertoire of instructions by guarded send and receive

operations. The send operation ct!e outputs the value of the expression e on the channel a;

the receive operation alx reads an input value from the channel a and assigns it to the

variable x. A send instruction and a receive instruction match iff they belong to different

processes and address the same channel:

*= @ ''^f ®
For any two matching communication instructions with the delay intervals [l,u] and [/',«'],

respectively, we require that moi(/,/') < mtn(u,tt').

Since we use the paradigm of synchronous message passing, a send operation can be

executed only jointly with a matching receive operation. Thus the intended operational

meaning of the given two edges is as follows. Suppose that, for max(l,V) time units, the

control of the process Pi has resided at the location Zj and the control of the process P?

has resided at the location Q, and the guards c and c' have been continuously true; then Pi 1

and Pi> may proceed, synchronously, to the locations tk and tk,, respectively. On the other

hand, if Pi has resided at /j and P,» has resided at C-, and the guards c and c' have been

continuously true for mtn(u, u') time units, then both processes must proceed. In doing so,

the current value of e is assigned to x.

2.2. CONCRETE MODEL: MULTIPROCESSING SYSTEMS

Semantics

Synchronous message passing can be formally modeled by timed transition systems. We

define the timed transition system Sp = (£,0,T,{,u) that is associated with the given

message-passing multiprocessing system P as in the shared-variables case, only that T

contains at additional transition for every matching pair of communication instructions.

Suppose that the two edges E (from t) to l^) and E' (from Vy to 4'-) in the timed transition

diagrams for Pi and P? are labeled by the matching instructions c -+ e!a and c' -» ct?z,

respectively. Then

• T contains, for the matching edges E and E', a transition TE,E' such that </ € TEJB>{<T)

iff

<r{xi) = /»• and <r'(x,) = rk,

<Kr«') = 4' anc^ *r'('«') = 4'>
c and c' are true in <r and a'(x) = <r(e),

ff'(y) = <r{y) for all y € V - {xi.nv, z}.

If T£ £> is uniquely determined by its source and target locations, we often write

• If the matching edges E and E' are labeled by the minimal delays I and V, respectively,

let lrss, = max{l,V).

• If the matching edges E and E' are labeled by the maximal delays u and u', respec-

tively, let UrBM, - min(u,u').

This translation defines the set of possible computations of any distributed real-time sys-

tem P whose processes communicate either through shared variables or by message passing.

Process synchronisation

Recall that the component processes of the multiprocessing system Pi\\Pi may start at

arbitrary, even vastly different, times. An important application of synchronous message

passing is the synchronization of parallel processes. Let Pi and Pi be two real-time processes

whose timed transition diagrams have the entry locations /J and ^, *-espectively, and let a

KM

P i
?: ■

CHAPTER 2. REAL-TIME SYSTEMS

be a channel. No-w consider the two processes Pi and Pi whose timed transition diagrams

are obtained from the transition diagrams for Pj and P2 by adding new entry locations:

Px [0,0]

* —<i>-wr®

The added message-passing operations have the effect of synchronizing the start of the two

processes Pi and Pi (whenever message passing is used for the purpose of process synchro-

nization only, the data that is passed between processes is immaterial and the data compo-

nents of the instructions are usually suppressed). It follows that the component processes of

the multiprocessing system P1IIP2 start synchronously, at the exact same (arbitrary) time.

From now on, we shall write Pi\\,P2 for the system P whose component processes Pi

and P2 start synchronously; that is, the notation Pi||,P2 is an abbreviation for the message-

passing system PillPs- Equivalently, we can directly define the formal semantics Sp of the

synchronous multiprocessing system P1ILP2 as containing a single entry transition TQ'
2
 for

both processes Pi and P2; namely, a1 <= 7o'2(tr) iff

a(*i) = <r{ir2) = ±,

•(»0 = 4 and <r'(*2) = l\,
tr'i.y) = er{y) for all y € V - {»i.Tj}.

It is not hard to generalize our notion of synchronous message passing to synchronous

broadcasting, which allows arbitrarily many parallel processes to synchronize simultaneously
on joint transitions.

2.3 Concrete Model: Multiprogramming Systems

While the interleaving model for concurrency identifies true parallelism (multiprocessing)

with nondeterminism (multiprogramming), the traffic light example of Subsection 2.2.3

suggests that the ability of a system to meet its real-time constraints depends crucially on

the number of processors that are available and the process allocation algorithm. This is

1

?
irr)

m

2.3. CONCRETE MODEL: MULTIPROGRAMMING SYSTEMS 79

vividly demonstrated by the following trivial system consisting of the two processe: Pi and

P2:

Pi: U

If both processes are executed in parallel on two processors, we denote the resulting system

by P1IIP2 (or P1II.P2, if the processes are started at the same time); if they share a single

processor and are executed one transition at a time according to some scheduling strategy,

the composite system is denoted by P1IIJP2.

In the untimed case, it is the very essence of the interleaving semantics to identify both

systems with the same set of possible (interleaved) execution sequences — the stuttering

closure of the two untimed behaviors

(4,4) -^ (4.4) — (4,4),

(4,4) ^ (4.3) — (4,4)
(a state is an interpretation of the two control variables irj and irj). Real time, however, can

distinguish between true concurrency and (sequential) nondeterminism: if both processes

start synchronously, then the parallel execution of Pi and P2 terminates within 1 time unit;

on the other hand, any interleaved sequential execution of Pi and P2 takes 2 time units.

This distinction must be captured by our model:

Multiprocessing In the two-processor case P1ILP2, we obtain as computations the stut-

tering closure of the two real-time behaviors

(±,±,0) —. (4,4,o) —.(4,4.1) i. (4,4,i) -&♦ (4,4,1),

(±,±,0) — (4,4.0) — (4,4,i) ^ (4,4,i) A (4,4,1),

where the third component of every triple denotes the time. Note that the system

P1IIP2 has more computations, because the time difference between the start of Pi

and the start of Pj can be arbitrarily large.

ft1

80 CHAPTER 2. REAL-TIME SYSTEMS

Multiprogramming In the time-sharing case Pii||P2> the set of computations will be

defined to be essentially the stuttering closure of the two real-time behaviors

(±,o) — (4,4,0) — (4,4,1) -£♦ (4,4,1) — (4,4,2) A (4,4.2),

(±,o) —> (4,4,o) — (4,4,i) -*. (4,4,1) — (4,4,2) A (4,4,2).

We write "essentially," because we will augment the state by information about the

status of the two processes (either active or suspended). Also, observe that we have

silently assumed that the swapping of processes is instantaneous and that neither

process has priority over the other process. All of these issues will be discussed in

detail later.

Thus, when time is of the essence, we can no longer ignore the difference between multipro-

cessing, where each parallel task is executed on a separate machine, and multiprogramming,

where several tasks reside on the same machine. In this section, we first show how our model

extends to concrete real-time systems that consist of a fixed number of sequential programs

that are executed, by time-sharing, on a single processor. Then we use our framework to

represent general multiprogramming systems, in which several processes share a pool of

processors statically or dynamically. I
*.-.•

f

2.3.1 Syntax and semantics

A multiprogramming system P has the form f

Willl-.-llliU I
I

Each process P{, for 1 < t < m, is again a sequential nondeterministic real-time program * if

over the finite set U of data variables, whose initial values satisfy the data precondition £. §

We represent the real-time programs Pi by timed transition diagrams as before. Note,

however, that in the multiprogramming case the control of the (single) processor resides at

one particular location of one particular process. Thus the intended operational meaning
of the edge

:*

i

■3

m

i

7
Ü

2.3. CONCRETE MODEL: MULTIPROGRAMMING SYSTEMS 81

is as follows. The minimal delay I guarantees that whenever the control (of the single

processor) has resided at the location £• for at least / time units and the guard c is true,

then the control may proceed to the location tk. The maximal delay u ensures that whenever

the ontrol has resided at £• for u time units and the guard c is true, then it must proceed

to tk. This is because no other process can interfere with the active process and change the

value of c.

The operational view of the concrete model is ajain captured formally by a translation

into timed transition systems. With the given multiprogramming system P, we associate

the following timed transition system Sp = (E,Q,T,l,v):

1. E contains all interpretations of the finite set

V = UU{p,*i,...irm}

of data and control variables. There are two kinds of control variables, the processor

control variable p ranges over the set {l,...m,±}; each process control variable irj,

for 1 < i < m, ranges over the set i,- of locations of the process P,-.

The value of the processor control variable p is i. (undefined) before the (single)

processor starts executing processes; thereafter the control of the processor resides at

the location irM of the process P^. We s&y tiiat PM is active, while all other processes P:,

t ^ p, are suspended (if the value of p is undefined, then all processes are suspendet?,.

The process control variable Wj of a suspended process indicates the location at which

the execution of P, will resume when Pi gains control of the processor.

2. 6 is the set of all states a € £ such that, :' is true in <r, and a(p) = J., and ?(««) = 4

for all 1 < t < m.

3. T contains, in addition to .he idle transition TJ, an action transition T£ for every

edge E in the timed transition diagrams for Pi,...Pm. If E connects the source

location I*- to the target location Ck and is labeled by the instruction c -» £ := 2,

then a' € TE(O") iff

tr(p) = t,

(r(*i) a 4 and <r'(*0 = Ck,

c is true in a and <T'(ä) = <r(e),

o>{y) = <r(y) for all y € V - {*i}z}.

82 CHAPTER 2. REAL-TIME SYSTEMS

Furthermore, there are scheduling transitions r 6 T that change the status of the

processes by resuming a suspended process: a' € T(<T) implies that

^(y) = *(y) for all y 6 U.

The scheduling policy determines the set of scheduling transitions.

A scheduling transition r is called an entry transition iff it is enabled on some initial

states. We restrict ourselves to scheduling policies with a single entry transition, T0,

that is enabled on all initial states. Moreover, we require that er1 € TO(«T) implies that

c'iy) = <r(y) for all y € V - {/i};

that is, the entry transition To is enabled precisely on the initial states and activates,
perhaps ncmdeterministically, one of the competing processes.

4. For every edge E labeled by the minimal delay /, let l.^ = I. Furthermore, /,, = 0.

5. FOT every edge E labeled by the maximal delay u, let u^ = u. Furthermore, v^ = co.

The computations of Sj> clearly depend on the scheduling transitions and their delays.

In the untimed case, the scheduling issue can be reduced to fairness assumptions about

the scheduling policy: correctness of an untimed multiprogramming system is generally

shown for all fair scheduling strategies. It makes, however, little sense to to desire that

a multiprogramming system satisfies a real-time requirement under all (fair) scheduling
strategies, because the scheduling algorithm usually determines if a system meets its timing

constraints. In fact, fair scheduling strategies admit thrashing: by switching control too
often between processes, only scheduling transitions may be performed, because no action
transition is enabled long enough so that it has to be taken; thus the system may make

no real progress at all and may certainly not meet any real-time deadlines. Consequently,

we study the correctness of a real-time multiprogramming systems always with respect to

a particular given scheduling policy.

2.3.2 Scheduling strategies

A scheduling strategy may be

2.3. CONCRETE MODEL: MULTIPROGRAMMING SYSTEMS 83

Implicit or explicit The scheduling transitions of implicit scheduling policies are denned

« directly and uniformly for an entire class of timed transition systems, independent of

the concrete system that is being modeled. A typical example of an implicit strat-

egy is greedy scheduling, which allows the active process to remain active as long

* as possible. Explicit scheduling policies are denned by the concrete system itself.

They are specified by scheduling instructions that are part of the individual process

descriptions.

Centralized or distributed AH scheduling instructions of a centralized policy are con-

centrated in one of the processes — the scheduler. In distributed policies, any of the

processes may make scheduling decisions.

Static or dynamic Unlike static policies, dynamic scheduling policies may change over

time, possibly conditional on the values of data variables.

Neither this attempt at a classification nor the following selection of scheduling strategies

is intended to be categorical or comprehensive; we simply try to examine what we think

is a representative variety of different scheduling mechanisms and, in the process, hope to

convince ourselves of the utility of the timed transition system model. Throughout this

subsection we assume a fixed multiprogramming system

P: {6}[Pi\\\..-\\\Pm}

and define the scheduling transitions of the associated timed transition system Sp for various

scheduling algorithms.

Greedy scheduling

The simplest reasonable scheduling strategy, as well as our default strategy, is greedy. Ac-

|I cording to this policy, the process that is currently in control of the processor remains active

until all its transitions are disabled; at this point an arbitrary other process with an enabled

transition takes over. Formally, the set T of transitions of Sp contains, in addition to the

entry transition T0, a single scheduling transition, TQ, with a1 € TC(<T) iff

'(ft) * -L,
o>{y) = <r(y) for all y € V - {/*},

PI

■'•'■;

i

si ,

i

BUSS5p-""i!

84 CHAPTER 2. REAL-TIME SYSTEMS

TE{T) = 0 for all action transitions fg,

TB(^*) r 0 for so°ie action transition Tg.

If there is no cost associated with swapping processes, then lra = ttrc = C; if switching

processes is not instantaneous, then the minimal and maximal delays of TQ can be adjusted
accordingly.

Scheduling instructions

More flexible scheduling strategies can be implemented with explicit scheduling operations.

For this purpose, we enrich our programming language by the instruction resume(s), where

s C {1,... m} determines a subset of processes. The scheduling operation resume(s) sus-

pends the currently active process, say, P< and activates, nondeterministically, one of the
processes Pj with ;'gj:

We write resume{j) for resvme({j}) and suspend for resume({l <j <m\j £ «"}); that is,

the instruction suspend delegates the control from the currently active process to any one
of the competing processes.

Formally, the set T of transitions of Sp contains, in addition to the entry transition To,

a scheduling transition TE fat every resume edge E in the timed transition diagrams for

Pi,---Pm- If E connects the source location /j to the target location tk and is labeled by
the instruction c -» resume(s), then er* € TE(O) iff

e(p) = i and «^(/x) € *,

<r(xi) = /}. and Sfc) = Ck,

c is true in <r,

•(y) = <r(y) for all y€V-{A».*<}-

Furthermore, for every scheduling edge E labeled by the minimal delay I and the wmriTrml
delay tt, let L^ = I and UrB = u.

2.3. CONCRETE MODEL: MÜLTIPR0GRAM1&NG SYSTEMS 85

Delays and timers

Note that the instruction

[10,10]

models a busy wait; the process Pi occupies the processor for 10 time units while waiting.

To implement a nonbusy wait, in which Pi releases the processor to a competing process

for 10 time units before resuming execution, we uie a timer T (alarm clock) as a parallel

process:

0] i? -» t —false

P
■

m

il:

1
We make sure that the timer T is started (i.e., waiting for activation) when the process Pi

becomes active. Then the timer is activated by the sequence

®t := true t/7i\ resnme(s)i/7\
[0,0] X+J [o,o] \Zü

I

I

This timer construction

W[(A|||...|||Pm)i|.T]

is abbreviated by the delay instruction

sy-^—G

which allows us to program nonbusy delays without explicit tuners. We assume that there

exists, implicitly, a unique timer process for every delay instruction in a timed transition

diagram.

m

I

86 CHAPTER 2. REAL-TIME SYSTEMS

Round-robin scheduling

A construction that is similar to the timer example allows us to implement a round-robin

scheduling strategy for two processes Pi and P2 that share a single processor. In the system

{Pi\\\P2%S, the scheduler

resume(l)

Pi

HA

gives each of the two processes Pi and Pi in turn 10 time units of processor time. Needless

to say, the explicit scheduling instructions give us the ability to design more sophisticated
schedulers as well.

2.3.3 Processor allocation

Both the multiprogramming system with a timer and the multiprogramming system with

a central scheduler are, in fact, combinations of multiprocessing and multiprogramming

systems in which several tasks compete for some of the processors. In these systems, the

question of scheduling, which determines the processor time that is granted to individual
processes, is preceded by the question of processor allocation, which determines the assign-
ment of processes to processors. This assignment can be

&i

Static Every process is assigned to a fixed processor.

Dynamic A set of processes competes for a pool of processors. Over time, processes may
reside at different processors.

We only hint how this general notion of real-time system fits into our framework and

can be modeled by timed transition systems. A static (shared-variables or message-passing)
system P with k processors is of the form

WKA.illl-lllft«)l|...||(A.illl-lllflk.m.)];

M

2.3. CONCRETE MODEL: MULTIPROGRAMMING SYSTEMS 87

that is, mi processes compete for the i-th processor. The definition of the associated timed

transition system Sp is straightforward: every processor has its own process control vari-

able fi{, 1 < t < Jb, which ranges over the set of competing processes {l,...mj,J.} and

designates the active process. Furthermore, every processor operates according to a local

scheduling policy with a single entry transition TQ, 1 < t < k.

To model systems in which a process competes for more than one processor, we simply

write

{9}[Pi,...,Pm)h

for the dynamic system in which m processes compete for k processors according to some

global processor allocation and scheduling policy. For these systems, it is useful to have

a more general scheduling instruction, resume{s,x), which interrupts the process that is

currently active on processor x and activates, on processor *, one of the processes from the

set t.

2.2.4 Priorities and interrupts

While the explicit scheduling instructions of the previous subsection give us the flexibility

to design a scheduler, we often wish to adapt a simple, static scheduling strategy without

having to explicitly construct a scheduler. In this subsection, we offer this possibility by

generalizing the greedy strategy. We assign a priority to every transition, and at any point in

a computation, choose only among the transitions with the highest priority. If the transition

with the highest priority belongs to a suspended process, then the currently active process

is interrupted and the execution of the suspended process is resumed.

A priority system P is a (shared-variables or message-passing, static or dynamic) system
in which a priority is associated with every instruction; that is, every edge in the timed

transition diagrams for P. We use nonnegative integers as priorities (0 being the highest

priority), and annotate an edge with a priority p € N as follows:

rJ

p: c * := e
[U]

We formalize the priority semantics only for simple multiprogramming systems; the

generalization to systems with several processors is straightforward. With a given priority

88 CHAPTER 2. REAL-TIME SYSTEMS

system

P: {0}[Pl\\\...\\\Pm},

we associate the following timed transition system Sp = (E,0,7",/, u):

• E and 6 are as before.

• T contains, in addition to r/, an action transition rg for every assignment edge E

in the transition diagrams for Pi,... Pm. If E connects the source location /j to the

target location Vk and is labeled by the instruction p: c -* £ := i, then <r -*s e1 iff

<r{xi) = tj and </(*<) = 4,

c is true in a and <r'(x) = tr(c),

a'iy) = <r(y) for all y € V - {/i,ir;,z}.

Then cr1 € T£;(or) iff

a -*E v1 »nd o-(^) = tr'(fi) = t and

there is no edge E' that is labeled by a higher priority p1 < p such that

a —£i a" for some a".

For any matching pair of communication edges E and E' that are labeled by the

priorities p and jf, respectively, we take the higher priority mm(p)p') for the combined

transition TEJS' (although this choice is arbitrary and may be reversed, if the need

arises).

Furthermore, there is, in addition to the entry transition To, a scheduling transition rp

such that (r* € TP(^) iff

«KM) * J-,
o'iv) = *{V) for all y € V - {ft},
TE{CT) = 0 for all action transitions TJJ,

TE(OJ) ^ 0 for some action transition rjg.

• Let irg and UrX be as before, and choose ^ and u^ to represent the cost of swapping

processes.

Note that if all transitions have equal priority, then the scheduling strategy is greedy. Thus

priorities extend our previous discussion conservatively: all systems can be viewed as priority

11

t

i

i I'l

(RwnMwwuuM^wJiiHimimi&M^ OJ^LMlMJlM^MBttMJaa^^ *"!

2.3. CONCRETE MODEL: MULTIPROGRAMMING SYSTEMS 89

systems whose instructions have the same default priority, unless they are annotated with

explicit priorities (that is, T<J = rp).

Dynamic priorities

Priorities can be combined with explicit scheduling operations in the obvious way. It is,

however, often more convenient to model dynamic scheduling strategies by dynamic pri-

orities, which can be changed by any process during execution. Dynamic priorities offer

exciting possibilities, such as the ability of a process to increase or decrease its own priority.

Moreover, they are easily incorporated into our framework; we simply use data variables

that range over the nonnegative integers N as priorities. Instead of giving the formal se-

mantics of dynamic priorities, which is constructed straightforwardly from the semantics

of constant (static) priorities, we present an interesting real-time application of dynamic

priorities.

We have not yet pointed out that our interpretation of message passing is not en-

tirely conservative over the untimed case: there the set of possible computations uraally is

restricted by strong-fairness assumptions for communication transitions [91]. This is con-

venient for the study of time-independent properties of a system, where simple fairness

assumptions about ^ondeterministic" branching points abstract complex implementation

details. Consider, for example, the multiprocessing system PIIIPJH*? that consists of the

following three processes Pi, Pj, and Q:

a! [10,10] [0,0]

a! 01

f.'i

i ■;

£H£^

wu.. i.miimi ■ i»ii.jiMwini,«ji4i.,fn«»aJ ■*■". T—■Mifj.j—JJWB——^WtWWir.rjr- .'—-

90 CHAPTERS Jt£AL-TIM£ SYSTEMS ;; .1

(Recall that we may omit the data components of message-passing operations, if they are

immaterial.) The arbiter Q mediates between the two processes Pi and Pj and uses syn-

chronous communication on the two channels a and 0 to ensure mutual exclusion: Pi and Pi

can never be simultaneously in their critical sections £\ and l\, respectively.

Strong-fairness assumptions on the communication transitions are used to guarantee

that, in addition, neither of the two processes Pi and P? is shut out from its critical section

forever: the arbiter cannot always prefer one process over the other. Any such infinitary

fairness assumption, however, is clearly without bearing on the satisfaction of a real-time

requirement such as the demand that a process has to wait at most 10 time units before

being able to enter its critical section. As has been the case with scheduling, we have again

encountered a situation in which the infinitary notion of "fairness" is adequate for proving

untimed properties, yet entirely inadequate for proving real-time constraints. To verify

compliance with real-time requirements, we can no longer forgo an explicit description of

how the arbiter Q decides between the two processes Pj and Pi when both are waiting to

enter their critical sections. For instance, the following refinement Q' of Q never makes the

same Nondeterministic" choice twice in a row:

q?;p:=l;(7:=0 } £?;p := 0;g := 1

p: a! q: ß\

(We use semicolons to concatenate instructions; the default value of priorities is assumed

to be 0.) The arbiter modifies the priorities p and q of its nondeterministic alternatives to

ensure that the system

{P=?=0}[Pi||P2||<?1

satisfies the requirement that each process has to wait at most 10 time units before being

able to enter its critical section. Note that none of the two nondeterministic alternatives is

ever disabled, but, at any time, one of them is "preferred."

^.Wi&^ffi tSWMUMB £•&&&&' i^daViL I ■•^■—-"•"■; .".•*""

2.3. CONCRETE MODEL: MULTIPROGRAMMING SYSTEMS 91

Finitary branching fairness

Since infinitaxy fairness assumptions, such as weak fairness for scheduling and streng fairness

for synchronization, axe insufficient to guarantee the satisfaction of real-time deadlines, one

may like to add finitary branching condition to timed transition systems. Such a finitary

notion of fairness would restrict the nendeterminism of a system. We may want to require,

for example, that no competitor of a transition r can be taken more than n times without r

itself being taken (a similar concept has been called bounded fairness by Jayasimha [67]).

We prefer, both for scheduling and synchronization, an explicit description of the selection

process to such implicit assumptions. Since all selection processes that we have found useful

can be described within our language, we see no need to introduce additional concepts that

would only complicate any verification methodology.

V-

/iw*fflMisy«rj^^w^^pjaiBmffl«fflSS^ j^^^^simi^^ws^mi^m^ki^ frliliv rjf.; ÄÄ? iBÄi'-Aj1 a *';

92 CHAPTER 2. ÄEAI-TBfE SYSTEMS

I: -

C

Chapter 3

Real-time Logics

Real-time logics axe logics that are interpreted over infinite timed state sequences. Every

formula <f> of a real-time logic defines (specifies) * real-time property H(#) — the set of all

models of <f>. We apply two criteria to measure i'c.e fitness of a logic as a specification and

verification formalis n:

Expressiveness Which real-time properties cm be specified? The expressive power of

a logic C is measured as the set of real-time properties that are definable by the

propositional fragment of £: a real-time property II can be specified iff there is a

propositicmal formula <p of £ such that II contains exactly the models of 4>.

Complexity How difficult is it to verify the expressible properties? The complexity of a

*v logic £ is measured by the computational complexity of the decision (validity) problem

for the propositional fragment of £: given a propositional formula <t> of £, is every

timed state sequence a model of # The difficulty of this problem is closely related to

the hardness of the verification problem for finite-state systems.

The restriction to the propositional fragment of a logic

1. gives us information about the intrinsic structural expressiveness and complexity of

the logic, independent of the adjunction of first-order data domains, and

2. is necessary to obtain decision procedures. These can then be used for the the algo-

rithmic verification of finite-state systems, because any finite number of states can be

modeled by a finite number of boolean-valued propositions.

93

IW,

94 CHAPTER 3. REAL-TIME LOGICS

We study classical as well as modal real-time logics. First we identify a fundamental

boundary between decidable and undecidable classical theories of timed state sequences.

Then we introduce two linear-time propositional temporal logics for the specification of

real-time properties — timed temporal logic TPTL and metric temporal logic MTL. Both

languages are shown to be as expressive as the maximal decidable classical theory of timed

state sequences. In the second part of the thesis, we will identify the complexity of both

logics and present algorithms as well as proof systems for the verification of timed transition

systems with respect to specifications that are given as formulas of TPTL or MTL.

3.1 From Temporal to Real-time Logics

Since proposed by Pnueli [106], linear temporal logic has firmly established itself as a suit-

able specification language for many untimed properties of reactive systems (consult, for

example, [77, 91, 108]). The tableau-based decision procedure for its propositional version,

PTL, provides a proven tool for the algorithmic verification and synthesis of finite-state

systems [83, 94]. Finite axiomatizations of PTL [40] have led to relatively complete proof

systems for the deductive verification of reactive systems [92].

PTL is interpreted over infinite sequences of states. Its practical appeal stems largely

from the strong theoretical connections that PTL enjoys with the classical first-order the-

ory of the natural numbers wi:h linear order and monadic predicates: PTL captures an

elementary, yet expressively complete, fragment of this nonelementary theory [40]; that is,

any property of state sequences that is definable in the monadic first-order theory of (N, <)

can also be specified in PTL, which has a much simpler decision problem.

The formulas of PTL cannot refer explicitly to time. Furthermore, the interpretations

of PTL — state sequences — abstract away from the actual times of state changes and

retain only the temporal ordering information of states. To admit the specification of timing
requirements of reactive systems, we have to

1. extend the syntax of PTL by introducing explicit references to time, and

2. extend the semantics of PTL by interpreting formulas over timed state sequences,

which associate a time with every state.

3.1. FROM TEMPORAL TO REAL-TIME LOGICS 95

We wish to carry out '„i.h extensions in a way that does not only yield a language that

allows the "natural'' specification of the real-time properties that encountered in practice,

but also preserves the desirable theoretical qualities of PTL:

Expressive completeness We want to be able to characterize the expressive power of

a real-time specification language in comparison to a classical theory of timed state

sequences. A logic is called expressively complete with respect to a classical theory iff

the same class of (real-time) properties is definable in both languages.

Elementary decidability We want to be able to generalize the PTL-based tools for the

algorithmic verification and synthesis of finite-state systems.

Finite axiorlatizability We want to be able to generalize the PTL-based proof tech-

niques for the deductive verification of reactive systems.

To meet these objectives, we will, in particular, have to identify the class of timing con-

straints that may be added to PTL without sacrificing its (elementary) decidability.

Later in this chapter, we will present two extensions of PTL that satisfy our criteria.

First, however, let us review both PTL and the "obvious" — and most commonly proposed

— way to introduce time explicitly into PTL, and let us illustrate why it falls short of our

aspirations. Throughout this chapter and the remaining chapters of this thesis, we shall

interpret logics over infinite sequences (of states or observations) only; so whenever we refer

to a (timed) state sequence, we refer, by default, to a sequence in TSS".

ft-!
IS

3.1.1 Linear temporal logic

Let P = {p, q,...} a set of propositions. A state determines the truth value of all proposi-

tions. We write a)= p, and say that a is a "pstate," iff the proposition p is true in state

a. Thus we may identify states with subsets of propositions (let p € c iff <* \= p).

Propositioned linear temporal logic (PTL) is a modal logic that is interpreted over infinite

sequences of states. The formulas of PTL are built from propositions by boolean connectives

and temporal operators. For example, the formula up is true over a state sequence a iff the

proposition p is true in every state of a. Thus the temporal operator D can be intuitively

thought of as capturing the temporal notion "always." The operator O formalizes the dual

in

96 CHAPTER 3. REAL-TIME LOGICS

notion "eventually": the formula Op is true over a state sequence c iff the proposition p is

true in some state of <r.

Syntax and semantics

More precisely, the logic PTL, as defined by Gabbay, Pnueli, Shelah, and Stavi [40], contains

two basic temporal operators — 0 (next) and U (until) — from which other operators,

including D (always) and O (eventually), can be defined. Thus the formulas </> of PTL are

inductively defined as follows:

<f> := p\fahe\fa-*fa\ 04>\^Ufa

for p € P. Additional boolean connectives are defined in terms of the two connectives false

and —» as usual. Moreover,

Eventually <><f> stands for trueUfa

Always D^ stands for -iO->0.

Unless fa U fa stands for faUfa V Dfa. The temporal unless operator U is sometimes

called toeaJfc until, as opposed to the "strong" until operator U.

A PTL-formula <fr is satisfiable (valid) iff it is true over some (every) infinite sequence

of states. The formula 4> is true over the infinite state sequence a iff a (= 4> f or the following
inductive definition of the satisfaction relation \=:

tr^=p iff p € ffo-

a ^ false.

O" (= ^i —* fa iff a^= fa implies a f= fa.

<rt=0^ iff r1 1= <f>-

tr\=faUfa iff a* \= fa for some t > 0, and a* £= fa for all 0 < j < i.

Consequently, the until formula pllq requires that p holds until the first subsequent g-state

and that there is such a g-state; the unless formula p U q requires that r Holds either until
the next g-state or forever, if there no such g-state exists. In the following segcvrct, we give

some examples of PTL-formulas that are commonly used for the specification of reactive
systems.

J

I 1 3.1. FROM TEMPORAL TO REAL-TRIE LOGICS 97

Invariance and response properties

Two of the most important classes of qualitative (untimed) properties of reactive systems

are invariance and response properties.

• An invariance property asserts that, once triggered, & certain condition will hold

forever; it is often used to specify that something will never happen. A typical appli-

cation of invariance is the specification of mutual exclusion: no two processes will ever

be simultaneously in their critical sections. Formally, a state sequence er is contained

in the invariance property 11° C TSSi[that specifies that "no p-state is followed by a

g-state, ever" iff for all» > 0,

if ffi f= p, then a, fc£ g for all j > t.

This property is definable in PTL by the formula

D(p -♦ Dig).

• A response property asserts that, once triggered, a certain condition will become true

eventually. A typical application of response is the specification of channel reliability:

once a message is sent, it will eventually be received. Formally, a state sequence <r is

contained in the response property 11° C TSS" that specifies that "every p-state is

followed by a g-state, eventually" iff for all t > 0,

if at \= p, then OJ |= g for some ; > *'.

This property is definable in PTL by the formula

If * E(j> -» Og).
W$
I j Note that every invariance property is an (untimed) safety property and every response

property is a liveness property.

3.1.2 Bounded invariance and bounded response

m
II

m
"0
M
tali

Not surprisingly, two of the most important classes of quantitative timing requirements of

reactive systems are time-bounded versions of invariance and response properties.

353E83SS

n

08 CHAPTER 3. REAL-TIME LOGICS

• A bounded-invariance property asserts that, once triggered, a condition will hold

continuously for a certain amount of tima; it is often used to specify that something

will not happen for a certain amount of time. A typical application of bounded

invariance is the specification of best-case performance; that is, the specification of a

lower bound / on the termination of a system 5: if started at time t, then S will not
reach a final state before time t + l.

Given two boolean conditions p and q on states and / 6 N, we let 11° C TSSU stand

for the bounded-invariance property that specifies that "no p-state is followed by a

g-state within less than / time units" (a boolean condition on states may, for example,

be any boolean combination of propositions). Formally, the timed state sequence

P = (ovT) is contained in the bounded-invariance property Uf iff for all i > 0,

if <Ti)= p, then «r,- ^ q for all j > i with T,- < T,- + /.

• A bounded-response property asserts that something will happen within a certain

amount of time. A typical application of bounded response is the specification of

worst-case performance; that is, the specification of an upper bound « on the termi-

nation of a system S: if started at time t, then 5 is guaranteed to reach a final state
no later than at time t + u.

Given two boolean conditions p and q on states and it € N, we let It£ C TSSW stand

for the bounded-response property that specifies that "every p-state is followed by a q-

state within u time units." Formally, the timed state sequence p - (<r,T) is contained
in the bounded-response property E£ iff for all t > 0,

if Ci \= p, then <r,- f= q for some j > i with T,- < T* + u.

Both bounded invariance and bounded response are (real-time) safety properties. The

conjunction of the bounded-invariance property n° and the bounded-response property
nf with the same time bound S asserts that "the distance between a p-state and the first
subsequent g-state is always exactly 6 time units."

Let us add two important remarks about bounded-invariance and bounded-response

properties. First, recall that Proposition 1.10 affirms that digital verification methods can

be used for establishing analog properties that are inversely closed under digitisation. We

show that both bounded-invariance and bounded-response properties satisfy this criterion.

I

3.1. FROM TEMPORAL TO REAL-TIME LOGICS 99

This result is crucial to our entire approach, because we will introduce real-time logics

for which we give, on one hand, verification techniques in the digital-dock model and,

on the other hand, show that verification in the analog-dock modd is undeddable. The

following proposition justifies the use of the digital-dock modd to prove that all real-time

behaviors of a reactive system satisfy bounded-invariance and bounded-response properties;

it guarantees that our digital methods do establish the desired analog properties.

Proposition 3.1 (Digitizability) All bounded-invariance and bounded-response proper-

ties are digitizable.

Proof of Proposition 3.1 The argument resembles exactly the proof of Proposition 2.3,

which shows that all computations of a timed transition system are digitizable. This is

because all finite lower-bound requirements of a timed transition system are bounded-

invariance properties, and all finite upper-bound requirements of a timed transition system

are bounded-response properties. B

Secondly, Proposition 1.11 characterizes the real-time properties for which our approach

to verification is complete: it requires that if an analog property II contains a real-time

behavior p, then it contains also the stuttering dosure of p. It is not hard to see that

while both bounded-invariance and bounded-response properties generally are not (weakly)

dosed under stuttering, they do s&iisfy the criterion

r(*efc(nR)) c nR

of Proposition 1.11. Thus, to check if all real-time behaviors of a reactive system sat-

isfy a bounded-invariance or a bounded-response requirement, it always suffices to check

containment of the corresponding analog or digital properties.

3.1.3 Real-time temporal logics

We wish to extend PTL so that bounded-invariance and bounded-response properties can

be defined. To begin with, a notational extension of PTL must be able to rdate the times

of different states. The obvious solution is to employ a first-order temporal logic with a

state variable t that represents, in every state, the time of the state (i.e., the "current"

time). The bounded-invariance property 11° can then be written as

Vx.D((p A t = *) -♦ G(t < x + 5 - -yq)). (<pf)

SE^HS!B3B!SflSS?SSE£S3EZH&E3ra3E2!Ä3vtoE

i

100 CHAPTER 3. REAL-TRIE LOGICS

The bounded-response property Of can be defined by the formula

Vx. D((p A t = z) --» 0(gAt<i + 1)). {<f>f)

Note that in both cases the rigid (global) variable x is used to record the time of any p-state.

Let V = {x,y,...} be a set of rigid variables that range over the time domain TIME. By

"real-time temporal logic" we refer to the first-order temporal logic over the propositions P,

the state variable t, and the rigid variables V that admits an unspecified set of operations

on time variables. Our terminology follows Ostroff, who has called this logic RTTL [104]

(essentially the same logic has been called GCTL, for "global-dock temporal logic," by

Pnueli and Hard [110]; neither reference is specific about the kind of timing constraints
that are permitted).

We will argue that this upgrade from a prepositional logic to its full first-order version
is unnatural, unnecessary, and prohibitively expensive:

Unnatural We claim that the unconstrained classical quantification of rigid variables al-
lowed in "real-time temporal logic" does not restrict the user to reasonable and read-

able specifications. We will propose a novel, restricted, form of quantification — we

call it freeze qaantification — by which time variables cannot be bound to arbitrary

times, but, in any temporal context, only to the "current" time. This restriction

makes the presence of the state variable t superfluous. Freeze quantification identi-

fies, so we wfll argue, precisely the subclass of "natural," intended specifications and

it leads to a concise and readable notation.

Unnecessary We will show that the restriction of classical quantification to freese quan-

tification is harmless: it does not limit the class real-time properties that are definable.

Expensive We will show that the restriction of classical quantification to freeze quan-
tification is essential: while the decision problem for "real-time temporal logic" is
nonelementary, the decision problem for the corresponding logic with freeze quantifi-
cation is "only" in EXPSPACE.

These results obviously depend on the operations on time that are permitted in "real-time

temporal logic." Thus we shall first identify the maximal theory of time that can be added

to PTL without sacrificing its decidability. For this purpose, we will study classical theories

of timed state sequences. The most expressiv of these theories that is decidable will be

iw«Mw«i^«a«»;»m\Hi*^wMa^^

3.2. THE CLASSICAL THEORY OF TRIED STATE SEQUENCES 101

called "the" classical theory of timed state sequences. We will use its expressive power

as point of reference for determining which timing constraints can be safely admitted in

"real-time temporal logic" and its restriction to freeze quantification, which will be called

TPTL.

Unfortunately, the addition of past temporal operators, which allow more natural defi-

nitions of certain properties, renders TPTL nonelementary. This handicap of TPTL will

induce us to introduce a second real-time extension of PTL, called MTL, which contains

no time variables at all but, instead, refers to time through time-bounded versions of the

temporal operators (including past operators). In a pleasing analogy to the untimed case,

we will be able to show that both TPTL and MTL capture expressively complete, elemen-
9 tary, and finitely axiomatizable fragments of the classical theory of timed state sequences, §
s

which is nonelementary. Even though both languages are equally expressive, they select

orthogonal fragments of the classical theory, which makes it easier to specify some real-time

properties in TPTL and others are more succinctly denned in MTL. Since both logics |

inherit the strong theoretical appeal of PTL, the untimed verification techniques can be J

generalised cleanly to both real-time specification languages. f

3.2 The Classical Theory of Timed State Sequences

3.2.1 The classical theory of state sequences

First, we recapitulate briefly why the theory of the natural numbers with linear order and

monadic predicates underlies proposition»! linear-time temporal logics. We also take this

opportunity to survey some important results about the complexity and expressive power

of PTL.

F)

i
lei'
la

I
:

We introduce "the" classical theory of timed state sequences, show its decidability, and |l

characterize its expressiveness by w-regular sets. We claim that this theory of timed state '' '

sequences is indeed the theory for reasoning about finite-state real-time systems. This is | i

because all conceivable extensions and variations, syntactic or semantical, will be shown to
be highly undecidable (IIJ-hard) theories. «a

M

JWUiMMWIJ.Ili|MJuaiJ»JUM<lHOI«MMIBB^^

102 CHAPTER 3. REAL-TIME LOGICS

Syntax and semantics

Let £2 be the second-order language with unary predicate symbols and the binary predicate

symbol <, and let £ be its first-order fragment. We interpret £2 over the natural numbers N,

with < being interpreted as the usual linear order. Throughout we consider only formulas

that contain no free individual variables. Thus, given a formula 4> of £s with the free

predicate symbols pit.. .p„, an interpretation I for <p specifies the sets pf,.. .p£ C N. Such

an interpretation can be viewed as an infinite sequence a of states o-,- C {pi,--.pn}, for

t > 0 (let pk € <Ti iff t € p{). We denote the set of state sequences that satisfy # by Ui(<f>)

or simply 11(0); hence every £2-formula <f> defines the untimed property II(#) C TSS".

Observe that £2 is essentially the language underlying the theory SIS, the second-order

theory of the natural numbers with successor and monadic predicates. This is because, in

SlS, the order predicate < can be defined from the successor function using second-order

quantification (and vice versa). Büchi established a close connection of the theory SlS with

finite automata over infinite sequences [21] and used this relationship to show that SlS is

decidable [22].

Complexity and expressiveness

Formulas of the propositional linear temporal logic PTL can be faithfully translated into

£, by replacing propositions with monadic predicates. For example, the response property

n° that is expressed in PTL by the formula

I m
It

can be written in £ as

Vt.(p(t) - 3j>i.fU))t (*°)

without changing the set of models; that is, IIx(#0) = 11°.

Although PTL corresponds to a proper subset of £, it has the full expressive power

of £ [40, 68]; that is, for every £-formula there is a PTL-formula that defines the same

property of state sequences. Furthermore, the decision problem for £ is nonelementary [121],

whereas PTL is only PSPACE-complete [119] and has a singly exponential decision proce-

dure [18]. To attain the greater expressive power of £', PTL may be strengthened by the

addition of operators that correspond to right-linear grammars [130]. The resulting logic,

«;:!

f:':i .

« ■

M

N

EramMMa«iMaMJ*tS3MMaM«alM«K^ ■'I

3.2. TEE CLASSICAL THEORY OF TIMED STATE SEQUENCES 103

extended temporal logic (ETL), has the expressive power of £2 and, like PTL, still a singly

exponential decision procedure (these and more results about PTL are surveyed in [35]).

The expressiveness of £2 can also be characterized by w-regular expressions [95]: for any

formula <f> of £2, the set Ili{4>) can be denned by an w-regular expression over the alphabet

20»» .«*»}. For example, ni(#°) is described by the expression

{{P, q) + {?} + {} + (W; true'; ({p, ?} + {*})))".

The restricted expressive power of £ corresponds to the star-free fragment of w-regular

expressions, in which the Kleene star may be applied only to the expression true [96,122]

(for an excellent survey of these and related results about regular sets of infinite sequences,

see [123]). !

3.2.2 Adding time to state sequences

To obtain a theory of timed state sequences, we need to identify a suitable time domain

TIME, with appropriate primitives, and couple the theory of state sequences with this

theory of time through a unary ("time") function /, which associates a time with every state.
We choose, as the theory of time, the theory of the natural numbers (i.e., TIME = N) with

linear-order and congruence primitives. Since time cannot decrease and cannot stagnate,

we require that / be monotonic and unbounded. We will have an opportunity to justify

these decisions later.

Let £3. be a second-order language with two sorts, namely a state sort and a time sort.

The vocabulary of C\ consists of unary predicate symbols and the binary predicate symbol

< over the state sort, the unary function symbol / from the state sort into the time sort,

and the binary predicate symbols <, =i,=j,... over the time sort. By CT we denote the
first-order fragment of C\. We restrict our attention to structures that choose the set of

natural numbers N as domain for both sorts, and interpret the primitives in the intended

way (the predicate symbols se are interpreted as congruence relations modulo c > 1). Thus,

given a formula ^ of ££. with the free predicate symbols pi,.. .pn, an interpretation I for ^

specifies the sets p{,.. .p£ C N and a monotonic and unbounded function /': N -* TIME.

The satisfaction relation is defined as usual. Every interpretation I for <f> can be viewed

as an infinite timed state sequence (a, T) over N (choose ? as in the untimed case, and let

T{ = /'(t) for all t € N). We denote the set of timed state sequences over N that satisfy <f>

K

■—T—. -■• • •■'T' ~T~".*r*:::"".; ■■- ■■■■ ■■>-.-■■■.-.—■■ ■.w^-.———-wr-.^»^..^ —„,—^. ..,—r^—

104 CHAPTER 3. JLEAL-TßfE LOGICS

(i.e., the models of <£) by nN(<£) or simply II(<£). As is standard, we often write I \=-. <p for

/ € n(tf).

It follows that £j-fonnulas specify sets of digitally timed state sequences; the formula «t>

defines the digital property 11(0) C TSS^. For example, the bounded-invariance require-

ment 11° — that "no p-state is followed by a j-state within less than 5 time units* — can

be specified by & formula of CT-

V«.(p(i) - V;>i. (/(;)</(,*) +5 - -,,(,•))) (4?)

(note that the successor functions, over either sort, are definable in CT); the bounded-

response requirement nf — that "every p-state is followed by a g-state within 1 time unit"
— is definable by the £j-formula

Vi- (p(i) - 3; > i. (q(j) A /(;) < f(i) + 1)). (*f)

An £j-formula # is satisfiable (valid) iff it is satisfied by some (every) timed state

sequence over N. The (second-order) theory of timed state sequences is the set of all valid

sentences of C\.. We prove it to be decidable.

3.2.3 Decidability and expressibility

First we show that, given an interpretation 7 for an £|-formula #, the information in /'
essential for determining the truth of <f> has finite-state character.

Finite-state character of time

Let us consider the sample formula 4>t *3&in. A timed state sequence for #f specifies, for
every state, the truth values of the predicates p and q, and the value of the time function.

Since / is interpreted as a monotonic function, it can be viewed as a state variable <ft that

records, in every state, the increase in time from the previous state. Although dt ranges

over the infinite domain N, observe that if the time increases by more than 1 from a state

to its successor, then the actual value of the increase is of no relevance to the truth of the
formula </>f.

Consequently, to determine the truth of 4>t»the state variable dt can be modeled using

a finite number of unary time-difference predicates. We employ the three new predicates

t

1
*K .

J* ^_

3.2. THE CLASSICAL THEORY OF TRIED STATE SEQUENCES 105

Pret'o, Previ, and Pret'>j in the following way: Prevo is true of a state iff the time increase

from the pre\'ious state is 0, Previ is true iff it is 1, and Prev>2 is true iff it is greater

than 1. Accordingly, we define the notion of an extended state sequence for <pf, as a state

sequence ov_i the propositions p, q, Prev0, Previ, and Prev>j such that precisely one of |

the propositions Prev0, Previ, and Prer>2 is true in any state. I

Given an extended state sequence, we can recover a corresponding timed state sequence: f

the value of the time function in any Prevs-state and Prev>$-state is obtained by adding 6 |

to its value in the previous state (if Prevg or Prev>g holds in the first state, let S be its |

time). This establishes a many-to-one correspondence between the timed and the extended §
i

state sequences for (f>f; it induces an equivalence relation on the set of all interpretations for |

4>i such that the truth of <j>f is invariant within any equivalence class. Every equivalence |

class is, furthermore, definable by a finite number of predicates. |
I

For formulas with congruence primitives, we need to introduce, apart from time-diffe- |

rence predicates, also unary time-congruence predicates, to keep trade of the congruence |

class of the time value of every state. For example, consider the following formula ij), which i

states that "p is true in every state with an even time value": |
I

v«.(/(t)=2o - p(0). i

Now we formalise this idea. Let c(<p) be the least common multiple of the set

{c | =e occurs in #},

and d(4>) the product of c(^) and 4^, where Q is the number of time quantifiers (i.e.,

quantifiers over variables of the time sort) occurring in <fi. Given a formula $ of £§. with

the free predicate symbols pi,.. .pm an extended state sequence J 'at <p specifies the sets

pf,.. .p* C N, a partition of N into the sets Previ, • • ■ ^>Tev>d(4>y aa^ another partition of N
into the sets Cong^\0, ... Cong^,^^^. For any interpretation I for <f>, the extended

state sequence J underlying I is defined as follows:

• J agrees with J on pi,.. .p„.

Given an interpretation J for Vs the information in /' can be captured by the two predicates §
*'■■-.

Cong3<0 and Cong3<1: the predicate Congi0 is true for states with even time, and Cong2ti |

is true for states with odd time. \i

eraHSÄrafTOBSKSsrs?^ i*:«i^fe*Vi.'.-^!j^>S^W*SV'^'^i!ji'i..«\ii

106 CHAPTER 3. REAL-TIME LOGICS

• For aU t > 0 and 0 < S < d{4>), i 6 Prtvj iff /'(i) = f\i -1)TL

. For all i > 0, i € /»ret^j iff /'(i) > /'(i - 1) + d(4>).

• For all t > 0 and 0 < 5 < e{4>), »' € Cong^^ iff /'(*) ss^ 6.

Throughout we use the convention that /7(-l) = 0 for every interpretation I.

Lemma 3.1 (Finite-state character of time) Given a formula tf> of C\ and two in-

terpretations I and J for $ with the same underlying extended state sequence, I (= <f> iff iff

Proof of Lemma 3.1 Consider two interpretations J and J for the £j-formula <j> that have

the same underlying extended state sequence; that is, J and J agree on the free predicate

symbols of <f>, and for each t > 0, fz(i) and fJ(i) belong to the same congruence class

modulo c(<f>), and either /'(i) - /'(t - 1) is the same as f3{t) - f3{i - 1), or both are at

least d(<f>).

We use induction on the structure of <f> to prove our claim. To handle subformulas with

free variables properly, we need to strengthen our assumptions about the equivalence of

interpretations with respect to a formula. Let ^ be a subformula of <j>, possibly with free

variables. Let d(ip) be the product of c(<f>) and 4Q, where Q is the number of time variables

bound in xp. For ease of presentation, we represent the function / by the countable set of

variables {/< | i > 0}: for any interpretation I, let // = /'(«). By Tvarty) we denote

the union of the set of free time variables of \l> with {/; | t > 0}. We say that two

interpretations I' and J' for $ are equivalent with respect to \j> iff they satisfy the following

conditions:

• For every predicate symbol q free in rf>, q1' = q3'.

• For every state variable i free in ifr, i1" = i3 .

• For all x,y € Tvarty), x1' < yr iff x3' < y3'.

• For every x,y 6 Tvarty), if 0 < xr - y*' < d(^), then x3' - y3' = xr - y1', and vice

versa.

• For every z € Tvarty), zr s^) x3'.
I-"

3.2. TEE CLASSICAL THEORY OF TIMED STATE SEQUENCES 107

Clearly, the given two interpretations I and J are equivalent with respect to the given

formula <j>. Thus, it suffices to show that, for any subformula ip of <p and equivalent inter-

pretations 7' and J' for tp, I' |= tp implies J' (= $. We do so by induction on the structure

of*.

The interpretations I' and J' agree on the assignment to predicate symbols and state

variables of x(>. They may assign different values to the elements in Tvarty), but they agree

on their ordering and modulo-c(^) congruence classes. Clearly, if ^> is an atomic formula,

then 7' |= V iff J' N *•

The case of boolean connectives is straightforward.

Suppose that V is of the form 3p. ip', for a predicate symbol p, and that I' j= rj>. Let I"

be an extension of I' such that 7" |= $'. From the inductive hypothesis, the extension of J'

that assigns the set p1" to p is a model of ^'. Hence, J' |= iß. The case that V is of the

form Vp. xfi' is similar.

If the outermost operator of rj> is a quantifier for a state variable, then we can proceed

as in the previous case.

Now consider the case that ip is of the form 3i. ip', for a time variable x. Suppose that

V f= ij>. Let I" be an extension of I' such that 7" |= V'- First note that d{rl>') = e((f>) ■ 4*"1.

We extend J' to an interpretation J" for rp' in the following way: if for some y € Tror(V'),

1/ - xl"\ < d(t/>'), then choose zJ" to be y3' + z1" - y1'. Otherwise, let yuyt € Tvar(1>)

be such that y{ < zr> < y£. Note that s^' — yf is at least d(i{>), and hence, so is

vi' - V\ • We choose xJ" between y{' and y{' at a distance at least d(tl>') from either of

them. Furthermore, since the difference between d(rf>) and 2d(ip') is at least c(<f>), we can

require the modulo-c(^) congruence class of xJ" to be the same as that of xl . Now 7"

and J" satisfy the requirements listed above. Using the inductive hypothesis, J" \= ip', and

hence, /' f= ip. The eise of universal quantification is similar. B

It follows that the extended state sequence that underlies a given interpretation for an

^-formula (p has enough information for deciding the truth of <f>. Consequently, every

formula <p can be viewed as characterizing a set IIi(^) of extended state sequences, instead

of the set Un{<t>) of timed state sequences. We say that the set

Hl(4>) - {J | J underlies some 7 € n^)}

contains the untimed models of #.

»KäegregmaaBiaaagasagisaKBaggi

108 CHAPTER 3. REAL-TIME LOGICS

Regular nature of the time primitives

Our next task is to show that untimed property IIi(^) is «-regular for every £y-formula

<j>. This is achieved by constructing a formula in the language C2 that defines the same set

of extended state sequences. For instance, the untimed models of the £j-formula $f are

exactly the models of the £-formula

/

Vt.

/

p(i) -* 3j > t.

\

/

S(J') A

V

V*. (*<*< j - Prev0{k)) V

' i < k < j A Previ(k) A

3*. f i< k' < j -

Prev0{k')
W # Jb.

A generalization of this construction leads to the following theorem.

/ /

Theorem 3.1 (Regular nature of the time primitives) For every formula <p of L\,

there exists a formula ip of £2 that contains the additional time-difference predicates Prevo,

Previ, ... Prev>d^ and the time-congruence predicates Cong^^, ... Cong^^^, such

that Ui{i>) = TL{rl>). Furthermore, if (f> 6 £r then rp € £.

Proof of Theorem 3.1 Given an ^-formula <f>, we construct an equivalent (with respect

to extended state sequences) £2-formula ij> in four steps.

First, we eliminate all time quantifiers. Let 7 be an interpretation for <j>, and let

A = d(tj>) + c{<j>). We can easily find an interpretation J with the same underlying extended

state sequence, such that fJ(i) < fJ(i - 1) + A for all t > 0. By Lemma 3.1, we know

that J (= <f> iff 1|= $. Based on this observation we perform the following transformation:

a subformula 3y.rJ>(y), where y is a time variable, is replaced by the disjunction

VW) V 3tv. VWv) + 0.

for a new state variable ty. Let 4>' be the formula obtained from tp by applying the above

transformation repeatedly until there are no time quantifiers left; clearly IIi(^) = IIi(^').

The second step, resulting in 4>"> models the primitive time arithmetic of comparisons

and addition by constants by the time-difference predicates. For instance, consider the

subformula /(»*) + 1 < /(;), for state variables t and j. Intuitively, for f(i) to be less

than /(/) in any interpretation, state t has to precede state j, and the time increase from

3.2. THE CLASSICAL THEORY OF TIMED STATE SEQUENCES 109

the previous state has to be positive for some intermediate state. Hence, we replace the

subformula by

i < j A 3k. (i < k < j A ->Prev0(k)).

Similarly, f(i) < f(j) and /(t) < f(j) + 1 can be replaced by the two formulas

Vib.(;<i<t - PTtv0(k)), (&>)

respectively. The generalization of this technique to subformulas of the forms f(i) + c < f(j)

ad /(') < fU) + c» ^OT arbitrary c> 1, is straightforward.

In a third step, we model the congruence primitives of (f>" with the help of the time-

congruence predicates. Consider a subformula of the form /(»') + c =4 f(j). Since there is

only a finite number of modulo-e(^) congruence classes to which /(») and f(J) can belong,

we can use a case analysis to express this relationship. We replace the subformula by

d c(<t,)/d <<«*)/<*

/\ (\/ Conffc(^)i(fc+(tt,) moi eW(i) *-* V Con9tfr),(k+c+dk') mod c(d.)U))-

Subformulas of the form /(t) =«* c can be handled similarly.

Let <f>'" be the formula resulting from eliminating all time primitives in the described

way. The desired £2-formula ip is obtained by adding, to </>'", the following conjuncts:

'i • Exactly one of the time-difference predicates Prev0, ...Prer>«^) is true for every
*

8ji i

state t > 0.

• Exactly one of the time-congruence predicates Cong^0, ... Cong^^yj is true

for every state f > 0.

• For all * > 0, the congruence classes of i and t +1, and the time jump /(i + 1) - /(*)

are related in a consistent fashion:

v«.^A^A*f PnVk{i+1) A Con9«w® "*)
fc=C fc'=0 \ Con9c(*),{k'+k) mod e<*)(* + *) /

This theorem, combined with the earlier stated facts about £3, gives the following

important results regarding the decidability and expressiveness of the theory of timed state

sequences.

110 CHAPTER 3. REAL-TIME LOGICS

Corollary 3.1 (Decidability) The validity problem of the language L\ is decidable.

Clearly, the validity problem is nonetementary even for the first-order language £j, as £

is a fragment of CT (recall that Stockmeyer showed £ to be nonelementary [121]). We point

out that the requirement that the time function / be unbounded, whi*v -Tiesponds to the

progress condition on timed state sequences, has not been used to obtain the decidability

result for the language C\\ it follows that the validity problem of C\ is solvable even if

C\ is interpreted over arbitrary monotonic sequences of observations. The monotonicity

requirement on time, on the other hand, will be shown to be essential for £y to be decidable.

Corollary 3.2 (Expressiveness) Given a formula <f> of C\ with the free predicate symbols

P\,...Pn, the set ILi(<j>) can be characterized by an w~regvlar expression over the alphabet

2{Pl<-P*})*{P™'0,-PTtm)}x{Congc(4)i<l,...Consci^e{4)_1}

Furthermore, if <j>€ CT, then IIj (d>) can be defined by a star-free u-regnlar expression.

3.3 Timed Temporal Logic

In this section, we introduce a novel extension of PTL that is interpreted over timed state

sequences: timed propositional temporal logic (TPTL). We compare the digital properties

that are expressible in TPTL with those that are expressible in the classical language C\.

TPTL is shown to correspond to an expressively complete fragment of CT; that is, the set

of models of any £x-formula can be defined by a TPTL-formula Later, in Chapter 4, we

will show that TPTL is, in fact, much cheaper to decide (doubly exponential) than the full

first-order theory of timed state sequences (nonelementary). Both results are important as
they establish TPTL as

1. a sufficiently expressive real-time specification language and

2. a suitable formalism for the algorithmic verification of finite-state real-time systems.

It follows that the gains in complexity in moving from a classical theory to temporal logic

are, as in the untimed case, not achieved at the cost of expressive power.

3.3. TBIED TEMPORAL LOGIC 111

We also try to extend TPTL in many possible ways. Some of these extensions, including

"real-time temporal logic," correspond to larger fragments of CT and, therefore, are still

decidable. However, they turn out to be nonelementary, thus affirming our choice of TPTL

as verification formalism. Several more daring generalizations of TPTL will be shown to

be even highly undecidable. TPTL can, on the other hand, be extended to attain the full

expressiveness of the second-order language L\ at no cost in complexity.

3.3.1 Syntax and semantics

TPTL is obtained from PTL by adding variables that refer explicitly to time. A time

variable x can be bound by a freeze quantifier "a;." that "freezes" * to the "current" time.

Let <f>(x) be a formula in which the variable x may occur free. Then x.<j>(z) is satisfied

by the timed state sequence p = (er,T) iff <f>{To) is satisfied by p (the formula ^(To) is

obtained from <f>(x) by replacing all free occurrences of the variable x by the constant To).

For example, in the formula Ox. <f>(x), the time reference x is bound to the time of the state

at which <j> is "eventually" true: it specifies that ^(T<) is true of some suffix p% of a timed

state sequence p - (<r,T). Similarly, the formula Ox. <f>{x) asserts that <f>{li) is true of every

suffix p* of p.

This extension of PTL with explicit references to the times of states admits the ex-

pression of timing constraints by atomic formulas that relate the times of different states.

The formulas of TPTL are built from propositions and timing constraints by boolean con-

nectives, temporal operators, and freeze quantifiers. For instance, the bounded-invariance

requirement Hf — that "no p-state is followed by a g-state within less than 5 time units"

— can be stated in TPTL as

Dz.(p -» Dy.(y<* + 5 -♦ ->?)); WP)

the bounded-response requirement Ilf — that "every p-state is followed by a g-state within 1

time unit" — is definable by the formula

m Ux.{p -» Oy.{q A y <* + !)). (tf)

(Read this formula as "Whenever there is a request p, and the variable x is frozen to the

current time, the request is followed by a response q, at time y, such that y is at most

* + 5.")

112 CHAPTER 3. REAL-TIME LOGICS

Syntax of TPTL

Given a set P of proposition symbols and a set V of (time) variables, the terms v and

formulas <j> of TPTL are inductively defined as follows:

x := x + c | c

4> •■= PI *i < w21 *i =d *a I /o&e I <k — <h I 0 01 <h Ufa I *• 4>

for i € V, p € P, c, d € N, and d ^ 0. If all terms in a formula # of TPTL contain variables,

we say that <f> contains no absolute time references. The abbreviations x (for x + 0), =, <,

>, >, true, -i, A, V, and ♦-♦ are defined as usual. Additional temporal operators are denned

in terms of the given next and until operators as in PTL:

Eventually 0<j> stands for true U fa

Always D^ stands for faUfalse or, equivalently, -<0->(f>.

Unless fa U fa stands for fa Ufa V Ufa.

Note that the timing constraints of TPTL allow only the addition of integer constants

to time variables, not the addition (or any other binary operation) of variables. From a

logical point of view, this restriction limits us to the successor operation on time; we wül

have a chance to justify it later. We have, on the other hand, not defined TPTL-tenns

by a unary successor operator, because for determining the length of a TPTL-formula, we

assume that all constants are given in a reasonably succinct (e.g., binary) encoding. The

size of a formula will be important for locating the computational complexity of problems
whose input includes formulas of TPTL.

Semantics of TPTL

The formulas of TPTL are interpreted over timed state sequences. Let p = (tr, T) be a timed

state sequence and £: V -* TIME be an interpretation (environment) for the variables.

The pair (p,S) satisfies the TPTL-formula 4> iff P (=£ #» where the satisfaction relation (=

is inductively defined as follows for all i > 0:

P'NP iff P € Ci.

3.3. TRIED TEMPORAL LOGIC 113

Sä
■ •

II

p{ N *i < *2 ^ £(*"i) ^ *(**)•

p»' \=s *i =<* *i iff £(*0 -<* £(*j)-

/"'^/^.

P* |=r ^x '—► ^3 iff ^ N & implies p* |=£ fo.

P{ N 0* iff Pi+1 N *

p» ^ fo Ufa iS pi \=*fa for some j > t, and p* (=£ fa for all t < k < j.

f?\=£*.+ iff ^ l=£[*:=T\] ^

Here £(x + c) = £(z) + c and £(c) = c. Moreover, £[x := t] denotes the environment that

agrees with £: V -» TIME on all variables except x, which is mapped to t 6 TJAfE. Note

that although our definition of syntax and semantics of TPTL is independent of the clock

model, in the analog-clock model congruence relations are not meaningful, and therefore

not permitted.

A TPTL-formula <f> is satisfiable (valid) iff p \=s <f> for some (every) timed state se-

quence p and some (every) environment £. The truth value of a closed formula, which

contains no free variables, is completely determined by a timed state sequence alone. We

say that the timed state sequence p is a model of the closed formula fa and write p \= fa iff

the pair (p, £) satisfies (j> for any environment £. As usual, two closed formulas are called

equivalent iff they have the same models.

Henceforth, we shall consider only closed formulas of TPTL: whenever we refer to a

TPTL-formula fa we assume that # contains no free variables. Thus every TPTL-formula #

defines, in the analog-clock model, an analog property HR(^) C TS5R; in the digital-dock

model, a digital property HN(#) C TSS^; in the untimed model, an untimed property

HiM C TSSX:
p€H(^) iff pM

for all p G TSS". If we omit the parameter TIME, we refer, by default, to the digital-dock

model: unless stated otherwise, the models of a TPTL-formula are taken to be timed state

sequences over N. This decision will also be justified later.

Observe that every TPTL-formula $ without freeze quantifiers specifies a time-invariant

property and can be read as a formula rl> of PTL. Indeed, TPTL builds conservatively on

i

•^ammmmmsmmmmssiismmmsmiiaammm&WiSSmSM^SeSiSS,

1

1
I

i

114 •
CHAPTER 3. REAL-TIME LOGICS

1

the semantics of PTL:
!

n(*r = nx(^ = n(#
We also remark that TPTL as we originally defined it [10] differs syntactically in that the

freeze quantifiers were coupled with the temporal operators. The coupling does not restrict

us in any essential way: hy separating the quantifier "x." from the temporal operators, we

admit more formulas (such as 0(x.<f> —» x. ip)), for each of which there is an equivalent

formula in which every quantifier follows a temporal operator (öa.(^ -♦ ij>)). However,

when we study, in Chapter 5, TPTL as a modal logic, the separation of quantifiers from

the modal operators will turn out to be useful.

TPTL as a specification language

Let us demonstrate how TPTL improves the readability of real-time specifications by re-

placing classical quantification with freeze quantification. A typical real-time requirement

for a reactive system is that a switch p has to be turned off (represented by the proposi-

tion q) within, say, 10 time units of its activation. In TPTL this condition can be expressed

by the formula

Dx. (p - pUy. (q A y < x + 10)). (1)

Using "real-time temporal logic" and its state variable t that assumes the value of the

current time in every state, this specification usually is written as follows (104]:

D((p A x - t) -♦ pU(q Ay=tAy<e+ 10)). (2)

The meaning of this formula depends, not surprisingly, on the quantification of the rigid

time variables * and y, which is left implicit. The very fact that the quantification is

often omitted [104,110] suggests that the authors have some particular quantifiers for rigid

variables in mind, whose force, location, and order are considered to be so obvious that

they are not worth mentioning. If any quantifiers are given, they form a prefix to the entire

formula [53].

We claim that the following quantification is the (only) "intended" one:

DV*.((p A x = t) -* pU3y.(q A y = t A y<* + 10)). (3)

J

gflaftgawaas«^^^ A-

3.3. TIMED TEMPORAL LOGIC 115

Note that (3) is equivalent to (1), but not to (2) with any quantifier prefix. In particular,

(3) does not imply the stronger condition

Vx. 3y. 0((p A x = t) - pW($ A y = t A y < x + 10)). (4)

The difference is subtle: while the formula (3) asserts that every p-state of time x is followed

by p-states and, eventually, a g-state of time y < x + 10, the formula (4) demands more;

that if there is a p-svate of time x, then there is a time y < x +10 such that every p-state of

time x is followed by p-states and, eventually, a g-state of time y. For instance, the timed

state sequence

((P},0) — ({«},&) — ({p>,0) — (fe},l) — ({},2) — (0,3) — •••

satisfies (3) but not (4).

Thus, TPTL selects the fragment of "real-time temporal logic" in KÖich all variables

are bound to the times of states: the rigid variables are, immediately upon introduction,

frozen to the time (i.e., the value of the state variable t) in the local temporal context. In

particular, the TPTL-formula x. $ defines the same property as the formula

Vx.(x = t - <j>)

or, equivalently,
3x.(x = i A <j>)

of "real-time temporal logic." It is precisely this restriction of our ability to arbitrarily

quantify over time variables that permits (and limits) us to express timing constraints

between states by concise and readable specifications (compare (1) with (3)). Later we

will see that it is also precisely this restriction of time variables to refer to "temporal" sets

of states that allows the development of verification algorithms as well as complete proof

systems.

Decidability of TPTL

In the digital-clock model, every TPTL-formula # can be translated into the classical

language £7, while preserving the set of models H^(<j>). For every proposition p of TPTL,

we have a corresponding tuiary state predicate p(t) of £7. We translate a TPTL-formula ^

to the £r-fonnula Clas$ico{4>), where the mappings Classici, for t > 0, are inductively

denned as follows:

i'i

t;!>

m
I

l-.J
?;'
If

wkM

varasBStha li^imuiMAkiijM^iihmmm Kl».MI^lUaMHI««^^

116 CHAPTER 3. REAL-TIME LOGICS

Classki(p) = p(i),

ClassLifai < x2) = Tj < xj,

Mo*5iCi(lTi =j *T2) = *i =,J fl"2,

Classici(false) = /OZJC,

Cfcw«Ci(fo -» fo) = Classia(<t>i) -» Classic^),

Classici{0<f>) = CZuMtCj+jf^),

Classic^ Ufa) - 3; > t. (CZo*«c,-(^j) A Vi < 4 < j. a<wsiefc(&)),

CZas«c;(i.<p) = Cl855JCj(^)[* :=/(i)].

We write 4>[x :- f(i)] for the formula that is obtained from <j> by replacing all free occurrences
of*by/(i).

It is not hard to see that a TPTL-formula <f> is true over a timed state sequence p € TSS\

iff p satisfies the £;r-formula Classico{<f>):

B(<f>) = H(Classic0(<f>))

for every TPTL-formula <j>. For example, the bounded-response formula Ilf is equivalent
to its translation Classico(Tlf):

Vi > 0.(p(i) - 3j > i.(q(j) A /(;) < /(») + 1)).

From Corollary 3.1, it follows that TPTL is decidable. Note that the mapping Classic0

embeds TPTL into CT; its range constitutes a proper subset of all well-formed £r-fbrmulas.

Thus, just as PTL corresponds to a subset of £, we may view TPTL as a fragment of £y:

quantification over the state sort is restricted to the "temporal" way of PTL, while quan-
tification over the time sort is prohibited entirely.

We remark that the mapping Classic0 translates a TPTL-formula <j> with free variables
into a £r-formula ^th free variables of the time sort. It follows that 4> is valid iff the

universal closure of ClassK0{<f>) is valid, which shows that TPTL with free variables is
decidable as well.

'B

3.3.2 Expressive completeness

We show that the restrictions imposed by TPTL on the quantification in £r-formulas do

not diminish its expressive power. In other words, any digital property that can be defined

SSffiftE^isfc&WitoJjyBisiSfei MBWK»,«/JiR14!«li;SÄ.r

3.3. TRIED TEMPORAL LOGIC 117

in CT can already be defined in TPTL. The natural embedding Classic^ gives, for any

TPTL-fonnula $, an equivalent £r-formula Classic0(<p), thus demonstrating that CT is as

expressive as TPTL. By the following theorem, the converse is also true.

Theorem 3.2 (Expressive completeness of TPTL) For every formula <j> of CT, then

exists a formula %!> of TPTL suck that TL(<f>) = U(rp).

Proof of Theorem 3.2 Given an £x-formula $, we construct an equivalent TPTL-

formula V* hi four steps. By Theorem 3.1, we obtain an ^-formula (f>\ with additional

time-difference predicates Prevg and Prev>(and time-congruence predicates Congej, such

that IIi(^) = n(#'). By the expressive completeness of PTL, there is a PTL-formula <f>"

such that 11(0') = TL{<j>") [40].

We transform <f>" into an equivalent PTL-formula tj>'" such that every time-difference

proposition Prev$ and Prev>s is either not within the scope of any temporal operator, or

immediately preceded by a next operator. This can be done by repeatedly rewriting subfor-

mulasoftheformO(& ~» <fo) «ad fctlfa, to Oi -♦ 0<h »ad <foV(<k A(0^i)W(0^)).
respectively. From <j>'" we arrive at rp by replacing every time-difference proposition Prevg

and Prev>s that is not within the scope of a temporal operator with x.x — 6 and x. x > S,

respectively; by replacing every subformula QPrevi and OPrev>s with x.Qy.y = x + S

and x. Oy.y > x + S; and by replacing every time-congruence proposition Cong^(with

x.x =e 6. B

We conclude the discussion of properties that are expressible in TPTL by interpret-

ing the logic over untimed state sequences, and investigating the expressive power of the

congruence relations.

Timeless expressiveness

Note that in the untimed model every atomic timing constraint of TPTL is trivially true.

Thus TPTL can express, in the untimed model, exactly the properties that are definable

in PTL. It follows that the untimed expressive power of TPTL is that of the first-order

language C or, equivalently, star-free «-regular expressions.

There is, however, another way to interpret TPTL-formulas over infinite state sequences.

With every TPTL-formula 4>w* can associate the untimed property IIN(^)~ C TSS^ that

f-i

i r

r

\ :

V-

I-

J

1

118 CHAPTER 3. REAL-TRIE LOGICS

results from collecting the state components of all models of <f>. Interpreted in this fashion,

TPTL can define strictly more properties of state sequences than PTL. For example, the

untimed property even{p), that "p holds in «»very even state," is not expressible in PTL [130].

In TPTL, we may (ab)use time to identify the even states as exactly those in which ti»e

time does not increase:

Oy- x = y A oz. o y- (s = y -» PA 0*- (* > v A O- U = *))•

We refer to the set of projections of digital properties that are definable in TPTL as the

timeless (as opposed to tmtimed) expressiveness of TPTL. The following proposition shov-3

that the timeless expressive power of TPTL is that of the second-order language C? or,

equivalently, w-regular expressions.

Proposition 3.2 (Timeless expressiveness of TPTL) For every formula $ of TPTL,

there is a formula rp of £} such that U^(4>)~ = II(^), and vice versa.

Proof of Proposition 3.2 (1) Given a TPTL-formula <j>, we know how to construct an

equivalent £r-formula 4>'. By Theorem 3.1, we obtain an £-formula <£", with additional

time-difference predicates Prevs and Prcv>{ and time-congruence predicates Congej, such

that Ex (<>'") = E(<£"). The £2-formula rj> that binds all of the new time predicates in <t>" by

an existential prefix is easily seen to have the desired models.

(2) In order to show the second implication, we use a normal-form theorem for £a: given

an £:-formula ip, there is an equivalent £2-formula xj>' of the form 3pi ...3pn-il>M, whose

matrix il)'M contains no second-order quantifiers [22]. We construct a TPTL-formula $ that

characterizes the models of xf>' by using the (existentiafly quantified) time map to encode

the interpretation of the unary predicates Pj,l < j < n, that are bound in if>'.

Assign to every subset J« C {1,.. .n} a unique code 6 € N. By the expressive complete-

ness of PTL, there is a PTL-formula V& such that E(^) = E($£r) [40]. From ip'fo, we

obtain 4> by replacing every proposition pj, 1 < j < n, with

«• O V- V V ~ x + *•

Now it is straightforward to establish a one-to-many correspondence between the models

I = (?,Pi,...p£) of ijf'j^ and the timed state sequences (<r,T) that satisfy #: given I, let
<\

JL

3.3. TIMED TEMPORAL LOGIC 119

Ti+i = T< + S such that Js = {j | ;>}(»')}; and given T, let pj(t) iff; 6 JTJ+,-T4 (assume

that j g Jf if £ is no proper code). Q j

It follows that £j-, with the time function exisientially quantified, has the full expressive

power of the second-order language C?. In fact, the proof given above shows that equality |

and successor over th- time sort are sufficient to achieve this timeless expressiveness. f-

Expressive power of congruences

If we disallow the use of congruence relations in TPTL, the resulting logic is strictly less in-

expressive. Consider the following formula <j>: |i

Di. (I=JO -» p). I

It characterizes the timed state sequences in which "p is true at all even times." We |

show that this property is not expressible without congruence relations. Suppose that the |

TPTL-formula $, which does not contain any congruence relations, were equivalent to #. I

Let c - 1 € N be the largest constant that occurs in ij>. It is not hard to see that ip cannot |

distinguish between the timed state sequences p\ = (<r,At.2ic) and pt = (o-,Ai. (2te + 1)), |

for any state sequence c. Yet if p is not continuously true in <r, only one of p\ and p? |

satisfies <f>. |

Note that TPTL without congruence relations has the same expressive power as the f:

first-order language CT without congruences. However, as has been pointed out above, the f

congruence primitives do not affect the "timeless" expressiveness of these formalisms; for |

example, we have demonstrated that the property that up holds in every even state" (as |

opposed to every state with an even time) can be defined without congruences. |
f I 3.3.3 Timed extended temporal logic g
I'

PTL does not have the full expressive power of the second-order language C2: recall that §

the property even(p) — that up is true in every even state" — f

3?. (5(0) A Vt.(9(0 - (P« A -S(i + 1) A ?(t + 2)))),

is not expressible in PTL [130]. That is why Wolper has denned extended temporal logic

(ETL), which includes a temporal operator for every right-linear grammar. ETL has

•V
s

Y

120 CHAPTER 3. REAL-TIME LOGICS

the same expressiveness as £2 or, equivalent!}-, w-regular expressions, and yet a singlj

exponential decision procedure.

The situation for TPTL is similar: there is no TPTL-fonnula whose models are pre-

cisely the timed state sequences in which, independent of the time map, p holds at every

even state. For suppose there were such a formula <p; we show that this would imply the

expressibility of even(p) in C. First construct an £-formula <p' that is equivalent to <f> and

contains the additional time-difference and time-congruence predicates Prev$, Prev>{, and

Congci, as usual. Then replac-., in <f>', all occurrences of Prev{, Prev>s, and Congc(by

true or false depending on whether S - c,S > e, and 6 = 0, respectively. This simplification

does not affect the truth of the formula over interpretations in which the time increases,

starting from 0, always by the constant c from one state to the next. Thus, the resulting

formula ^ is satisfied by a state sequence a iff (<r,Xi.ic) £ Ilfj(^); that is, iff p is true in

every even state of tr.

Fortunately, analogously to PTL, we are able to generalize TPTL to timed extended

temporal logic, TETL, by introducing temporal grammar operators. Here TETL is shown

to have the full expressive power of Cj\ in Chapter 4 we will prove that it is no more

expensive to decide than TPTL.

Syntax and semantics of TETL

Given a set P of propositions symbols and a set V of variables, the terms of TETL are the

same as in TPTL. The formulas of TETL are inductively defined as follows:

<t> ■■= Pl*i <*2 |«l =d^2 \ false \ <Pi -* 4>2 \ S((f>u ■.-M \ z.(p

where z € V, p 6 Pt d ^ 0, and P(ai,...Om) is a right-linear grammar with the m

terminal symbols oi,... dm. (Like ETL, TETL can alternatively be defined using automata

connectives for all Büchi-automata, instead of grammar operators [131].)

As with TPTL, TETL-formulas are interpreted over timed state sequences. Given

a timed state sequence p, a position t > 0, and an environment £, the semantics of the

grammar operators is denned by the following clause:

P* f=£ 0(#i> • • • &n) ^ &ae i$ a (possibly infinite) word w = aVoaVlaVi... generated
by G{ai,... am) such that piJri)=c 4>Vj for all j > 0.

3.3. TIMED TEMPORAL LOGIC 121

As with TPTL, we restrict ourselves to closed formulas of TETL and take every TETL-

* formula <f> to define, unless another time domain is given explicitly, the digital property

n(*)c Tss^.
Note that all temporal operators of TPTL are expressible by the grammar operate.« of

TETL. For example, the TPTL-operator D corresponds to the grammar Ga{a) with the

only production

Qoifl) —» a£a(a)

(we identify grammars with their starting nonterminal symbols). The formula et;en(p),

which is not expressible in TPTL, can be stated as Gtvm{tTue,p), for the production

£e»«i(ai. ^2) ► 0102 £e»en(Gl.02)•

Expressiveness of TETL

By defining the property even(p) in TETL, we have demonstrated that its expressiveness is

strictly greater than that of TPTL. The following theorem characterizes the expressiveness

of TETL as equivalent to the second-order language C\.

Theorem 3.3 (Expressiveness of TETL) For every formula <j> of TETL, lAere exists

a formula ij> of £j such that Tl{4>) = H('0), and vice versa.

Proof of Theorem 3.3 (1) We extend the translation Classico that embeds TPTL into CT

to accommodate the grammar operators of TETL. The target formulas will contain second-

order quantifiers over unary predicates, and thus belong to £y. For the sake of keeping the

presentation simple, we assume that all grammar operators correspond to productions of

, the form

G(au...am)^ail | aitG\aili...a^).

\ i We add the following clause to the definition of Classic^ for Jb > 0:

Classick(g0{<t>i,...<t>m)) = 3M,...3«*-(PCb(*) A vifc'> Jb. f\ fc,(*'))
0<1<M

Ms

1
MS
Ma m

for some new unary predicate symbols pg0,.. .peM, where Go,... GM are all the nonterminal

symbols that occur in the grammar 5o(ai,... am), and 4g{k) stands for the £j.-formula

pg{h) -» {Classickifrt) V (Classick(<t>i2) A p^(* + 1))).

122 CHAPTER 3. REAL-TIME LOGICS

Consider an arbitrary timed state sequence p. We show, by induction on the structure of <j>,

that pk \=£ <j> iff pk |=£ Classic^) for all k > 0 and environments S.

The crucial case that <j> has the form <5o(&,... ^m) is derived as follows. To establish

the existence of appropriate predicates pSt, for 0 < / < M, let pg, be true in state k' > k

iSfk \=s Gi(4>i> ■ • • 4hn)- On the other hand, given the predicates pgt satisfying <t>gt{k') for

all k' > k, we can construct a word w = aV)0awlaWi... generated by Qo{ai,...am) such

that pv }=£ 4>Wk,_k. It follows that, for any TETL-formula <j>, the ^-formula Classic0(<f>)

is equivalent to <f>.

(2) The argument for the expressive completeness of TETL with respect to C\ is anal-

ogous to the corresponding proof for TPTL and £j (use the expressive completeness of
ETL with respect to £2). ®

Let us complete the expressibility picture by a few remarks. It is not hard to see that

both the "untimed" and the "timeless" expressiveness of TETL (as measured by the sets

Ui{4>) and nN(0)-, respectively, for TETL-formulas <f>) are that of ETL or, equivalently,

the second-order language C?. It is also immediate that the congruence relations contribute

even to the expressive power of TETL (and C\) in a nontrivial way, because the property

that up is true at all even times" is still not expressible without congruence relations.

TPTL with quantification over propositions

There are several alternatives to the grammar operators of ETL. PTL can be extended

by fixed-point operators (thus obtaining a variant of the prepositional p-calculus [75]; see

also [15,126]) or second-order quantification over propositions (QPTL of Wolper [129] and

Sistla [118]) in order to achieve the full expressive power of C2. While fixed-points can

be viewed as generalized grammar operators and yield to verification algorithms, QPTL

is nonelementary. It is straightforward to show that both extensions have, indeed, the

expected, analogous effect in the TPTL-framework; they give decidable real-time specifi-

cation languages with the expressiveness of £§.. However, timed QPTL if, as a superset of

QPTL, nonelementary, and thus unsuitable as a finite-state verification formalism.

:

emsrnrnmassmät

3.3. TRIED TEMPORAL LOGIC 123

3.3.4 Nonelementary extensions

In the Chapter 4, we will see that the decision problem for TPTL (as well as TETL)

is in EXPSPACE. We have seen that TPTL restricts CT to "temporal" quantification

over the state sort and no quantification over the time sort. Can we relax the restrictions

without sacrificing elementary decidability? Arbitrary quantification over the state sort

encompasses full C and is, therefore, clearly nonelementary. In this subsection, we first

study the generalization of TPTL that admits quantification over the time sort, and show

it to be nonelementary as well. Then we try to add past temporal operators to TPTL, an

extension that does not affect the complexity of PTL. Therefore it is quite surprising that

the past operators render TPTL nonelementary.

f

TPTL with quantification over time

Recall that several authors have proposed to use first-order temporal logic with the a. single

state variable t, which represents the time in every state, for the specification of real-time

properties. For instance, the bounded-response property Ilf has been defined in "real-time

temporal logic" by the formula

Vx. D(y A t = * -» 0(? A t < x + 1)),

which uses auxiliary rigid variables like x to refer to the time (i.e., the value of t) of different

temporal contexts. Eliminating the state variable t, we see that this notation corresponds

to TPTL extended by classical universal and existential first-order quantification over time

variables:

Vx. Dy. (p A y = x -► Oz.(jAz<J + l)).

We call this generalization of TPTL, whose syntax definition is supplemented by the new

clause

if (j> is a formula and x € V, then Hx. <f> is also a formula,

quantified TPTL or TPTL3. Given a timed state sequence p, a position t > 0, and an

environment £, the classical quantifiers are interpreted as usual:

p* (=£ 3x. <t> iff p* |=£[x:=t] 4> for »erne t 6 TIME.

niia

124 CHAPTER 3. REAL-TIME LOGICS

TPTL3 seems, on the surface, more expressive than TPTL, because it can state prop-

erties of times that are not associated with any state. But it is easy to see that TPTLa

can still be embedded into £3*; let

Classici(3?:.<p) = 3x. Classici(<j>).

The satisfiability of TPTLa is, therefore, decidable, and its expressive power, measured

as the sets of timed state sequences specifiable in the logic, is the same as that of TPTL.

We show that TPTL3, however, is not elementarily decidable. This provides additional

justification for our preference for TPTL over the existing notation with classical quantifiers

over time: prohibiting quantification over time not only leads, as was argued above, to

a more natural specification language, but is necessary for the existence of finite-state

verification algorithms.

Theorem 3.4 (Complexity of TPTL3) The validity problem for TPTLa « nonelemen-

tary.

Proof of Theorem 3.4 We translate the nonelementary monadic first-order theory of

(N, <) [121] into TPTL3. With the help of the formula

D*- Oy-y = * + 1. (*+i)

we can force time to act as a state counter; then we can simulate state quantifiers by the

time quantifiers of TPTL3. Given a formula ^ of C, we construct a formula ^ of TPTLa

such that $ is valid iff the TPTLa-formula #+i -* ^ is valid. The formula rp is obtained

from <f> by replacing every atomic subformula of the form p(i) with Ox. (p A x = t) (read

the quantifiers of # as quantifiers over the time sort). B

TPTL with past

Lichtenstein, Pnueli, and Zuck [84] extended PTL with the past temporal operators ©

(previous) and 5 (since), the duals of 0 and U. These operators can be added at no extra

cost, and although they do not increase the expressive power of PTL, they allow a more

direct and convenient expression of certain properties. Let TPTLj» be the logic that results

from TPTL by adding the following clause to the inductive definition of formulas:

s^jiaggBsasMiBSfl^

3.3. TIMED TEMPORAL LOGIC 125

if fa and fa are formulas, then so are 0<fo and faSfa.

The meaning of the past operators is given by

P; N 0<A iff i = 0 or p''-1 |=£ ^.

p{ ^=s faSfc iff p» |=£ fo for some ;' < t and pk \=s tfn for all; < k < i.

Clearly, TPTLp can still be embedded into Ly.

Classico(0<i>) = true,
ClassiCi+i(Q<l>) = Classici(<f>),

Classici{<hS<h) = 3j < *'• {Qauicjfa) A V; < k < i. CZcustCfc(<fo)).

Hence the satisfiability of this logic is, again, decidable, and its expressive power is no

greater than that of TPTL. However, unlike in the case of PTL, there is a surprisingly

heavy price to be paid for adding the past operators.

Theorem 3.5 (Complexity of TPTLp) The validity problem for TPTLp is nonele-

mentary.

Proof of Theorem S.5 Again, we are able to use the nonelementary nature of the

monadic first-order theory of (N, <). By adopting time as a state counter, we can simulate

true existential quantification over time by O, because O allows us to restore the correct

temporal context. Given a formula $ of £, we construct a formula ij> of TPTLp such that <p

is valid iff the TPTLp-formula #+i -»rj> is valid.

The first step in translating 0 is the same as in the proof of the nonelementary complexity

of TPTL3. In a second step we replace every subformula of the form 3x. <p with the formula

y. (Ox. <S>z. (2 = y A <p) V <&«. Oz. (; = yA <p)).

«»Mm*«»«UBBM^^I>SS»Hr^^^lJUMM^^m:^^

i

126 CHAPTER 3. REAL-TIME LOGICS

3.4 Metric Temporal Logic

Several authors have tried to adapt temporal logic to reason about real-time properties

by interpreting modalities as real-time operators. For instance, Koymans suggested the

notation 0<e to express the notion "eventually within c time units" [71]. Similar temporal

operators that are parameterized with constant bounds have been used by Pnueli and

Harel [110] as well as by Emerson, Mok, Sistla, and Srmivasan [37]. In this section, we

extend PTL by time-bounded temporal operators and interpret the resulting logic over

timed state sequences. For example, the bounded-invariance property n° — that "no p-

state is followed by a j-state within less than 5 time units" — will be written as

D(p - D<5-,?); fof)

the bounded-response property nf — that "every p-state is followed by a g-state within 1

time unit" — will be expressed by the formula

°(p - 0<lS). (ft)

It is easy to see that we have, in fact, only obtained a notational variant of a subset of

TPTL (rewrite, for example, every subformula 0<e <f> as se.Oy. (y < x + e A <f>)).

We will show that PTL with bounded temporal operators is interesting, and worth

studying in its own right, for two reasons. First, and surprisingly, it is already as expressive

as full TPTL. And secondly, it may, unlike full TPTL, be augmented by past temporal

operators without sacrificing its elementary decidability. Following Koymans, we call the

resulting language, which includes past operators, metric temporal logic (MTL). We will f§" '-*

conclude that MTL, too, represents a suitable formalism for the specification and verifica-

tion of real-time properties: just like TPTL, MTL captures an expressively complete and

yet elementary fragment of CT- But the two subsets of CT that correspond to TPTL and

MTL, respectively, are not identical. We will illustrate that either logic can state certain

properties more directly and succinctly than the other one and may therefore be preferred

for some specifications.

3.4.1 Syntax and semantics

Given a set of propositions P, the formulas <f> of MTL are defined inductively as follows:

<f> := plJabelfc-fclQ/llQ/ll&Z/jfclA&fc

IK2SS52EEE3S3ES2

3.4. METRIC TEMPORAL LOGIC 127
-1

for p£ P. The subscript I is one of the following:

1. A possibly unbounded interval of TIME whose end-points are natural number con-

stants. Intervals may be open, half-open, or closed; empty, bounded, or unbounded.

We say that all intervals of the forms [0, d), (c, d), for c € N, d € N U {w}, and c < d,

are open; all intervals of the forms [c, d] and [c, oo), for c, d € N and c < d, are closed.

We freely denote intervals by pseudo-arithmetic expressions. For example, the expres-

sions < d and > c stand for the intervals [0, d] and (c, oo), respectively. The expression

6+1, where I is an interval and S € TIME, denotes the interval {6 + t\t £l}.

2. A congruence expression of the form =d c, for c,d € N and d ^ 0. Congruence

expressions are, as usual, prohibited in the analog-dock model.

We remark that we do not choose to bound both arguments of the until and «t'nce operators

by subscripts, simply because we feel that doing so would impair the readability of formulas

and, as we shall see, would not increase the expressive power of the logic. As in the case of

TPTL, we assume that all constants in an MTL-formula are given m a binary encoding.

t
is

i

Timed state sequence semantics

The formulas of MTL are interpreted over timed state sequences. Instead of giving MTL

its own semantics, we translate every MTL-formula <f> into a TPTLp-formula Freeze(<f>):

Freeze(j>) = p,

Preeze(false) = false,

Freeze{<f>i -> fa) = Freeze(fa) -» Freeze(fo),

Freeze(©j <j>) = x. O V- (v € * + I A <f>),

Preeze{©i <f>) = *. Qy. (y € x -1 A <j>),

Freeze{faUifa) = x-{faUy.(y € x + J A fa)),

Freezersifa) = *-(faSy.(y € x-1 A fa))

such that

1. If 7 is an interval of the form [c, d), then the expressions * € y +1 and x € y -1 stand

for the timing constraints y + c<x<y + d and x + c<y<x + d, respectively. It

is straightforward to nil in which timing constraints of TPTL are denoted by other

interval expressions.

1

I

rairarai5»iissB*aHnBSiS!SSKäM^

128 CHAPTER 3. REAL-TIME LOGICS

2. If J is a congruence expression the form ~d c, then the expressions x £ y + I and

x € y - I both stand for the timing constraint x =j c.

We take an MTL-fonnula <j> to define the same property as the TPTLp-formula Freeze(i>):

Il(<f>) = E(Frecze(<j>)).

It follows that every MTL-formula defines, in the analog-clock model, the analog property

HR(^) C TSSfc in the digital-clock model, the digital property IIN(<£) C TSSfc in the

untimed model, the untimed property IIi(^) C TSS^. As for TPTL, the digital-clock

model is taken to be the default for MTL. Note that in the digital-clock model, for every

MTL-formula there is an equivalent formula that contains only closed time intervals (for

example, replace any subformula fa i^ fa with fa W[£+il(f_i] fa if c < d, and with false if
c = d).

Additional bounded temporal operators can be defined in terms of the given MTL-

operators Qi (bounded strong next) and Ui (bounded until) as follows:

Bounded weak next Qj <f> stands for -i©/ -><f>.

.bounded eventually 0/# stands for truelijfa

Bounded always D/ <p stands for -IOJ -*fa

Bounded unless fa\Jifa stands for faUjfaV O[o)0o)^i-

Note that while the strong-next formula ©-3p is satisfied by a timed state sequence iff

•ilt "next" (i.e., second) state is a p-state and its time is 2 greater than the time of the

•"current" (i.e., initial) state, the weak-next formula ©=2p requires that the second state is

a p-state only if the time increase between the first and the second state is 2. Similarly, for

any time interval I, the MTL-formula O/p asserts that there is a p-state with a time that

is within the interval I of the "current" (initial) time; the MTL-formula D/p stipulates

that all states in that interval are p-states (although there may be none):

p |= 0/ (t> iff p{ |= <j> for some t > 0 with T< € T0 + J.

p |= Qi<f> iff p*' f= <f> for all t > 0 with T< 6 T0 + 7.

4

<$*

3.4. METRIC TEMPORAL LOGIC 129

On the other hand, the MTL-formula 0=ji p is true of a timed state sequence iff p is true

in some state whose time is odd (independent of the initial time). While time intervals

constrain the time differences between states, congruence expressions refer to the absolute

times of states.

We usually suppress the universal interval [0,oo) as a subscript. Thus the MTL-

operators © (which is equivalent to @), O, D, U, and U coincide with the conventional

unbounded next, eventually, always, until, and unless operators of PTL. More precisely,

every MTL-formula <j> without operator subscripts specifies a time-invariant property and

can be read as a formula ^ of PTL:

nf»- = ni(*) = n(tf).

It follows that MTL, like TPTL, is a conservative extension of PTL.

From our embedding of MTL into TPTLj», it follows that MTL is decidable, and

that both TPTL and MTL are orthogonal fragments of TPTLp and, hence, Lr- while

TPTL prohibits past operators, MTL corresponds to a subset of TPTLj> wherein all timing

constraints relate only variables that refer to "adjacent" temporal contexts. In the following

subsection, we will show that, like TPTL, MTL selects also an expressively complete subset

of CT- First, however, let us indicate another possible semantics for MTL.

Interval semantics

It is obvious that the properties that are definable in MTL (or TPTL) are not necessarily

(weakly) closed under stuttering. There are two reasons why MTL-formulas can detect

stuttering:

1. MTL contains next operators. Thus we may wish to ban the next operators from

specifications, as has been argued by Lamport for PTL [78]. Observe, for example,

that both bounded-invariance and bounded-response properties can be defined with-

out next operators. On the other hand, when we represent timed transition systems

by temporal formulas in Chapter 4, we will find it convenient to use next operators

to define the next-state relation of a transition system.

2. MTL is interpreted over observation sequences (i.e., timed state sequences) rather

than state interval sequences. For example, the MTL-formula D[38]/oZse specifies a

m

M

.v

JETESraiSJ^SJrS^SECCS!

130 CHAPTER 3. REAL-TIME LOGICS

property that is not weakly closed under stuttering. However, while the requirement

Dj3 8] false is, perhaps undesirably, satisfied by some observation sequences (if there is

no observation between time 3 and time 8), it cannot be satisfied by any state interval

sequence, which has one or more states at every point in time. This phenomenon can

be exploited by interpreting real-time languages over state interval sequences.

Recall that state interval sequences correspond to deterministic timed state sequences.

Indeed, over deterministic timed state sequences we can give MTL (and TPTL, for that

matter) an interval semantics such that every property that can be defined by a formula

without next operators is closed under stuttering. We have pursued this approach at a

different opportunity [9]; here, we present only the interval interpretation of a small fragment

of MTL. Let p = (c.T) be a deterministic timed state sequence and I a time interval:

p (= p iff p € Co-

p |£ false.

p\= fa -+ fa iE p\=. fa implies p |= fa.

p^=Oj(f) iff p' (= $ for some tf-sumx p' of p with 6 € I-

This interval interpretation of MTL-formulas implies that

p \= D/ <f> iff p' \= <f> for every ^-suffix p' of p with S € I

and, in particular, that p ^ 0/ false if I is not empty.

3.4.2 Expressive completeness

Because of the past operators, MTL can express certain properties more succinctly than

TPTL. Recall, for example, the traffic-light controller from Subsection 2.2.3. Require-

ment (A) — that within 5 time units from any request, the light turns green and stays

green for at least 5 time units — can be naturally specified in both logics:

Dx. (request -* Oy. (y < z + 5 A Dz. (z < y + 5 -♦ ligkt = green))),

D(request -* 0<s 0<5 (light = green)).

?■■■■
i 1

2'

j^g

3.4. METRIC TEMPORAL LOGIC 131

But requirement (B) — that the light should be red if there has not been a request for 25

tirae units — belongs to the class of properties that assert that every effect was preceded

by a cause, which are most naturally expressed by past operators:

D[light = green -* Q<2s request)).

On the other hand, consider the following TPTL-formula, which asserts that "every

p-state is followed by a j-state and, later, an r-state within 5 time units":

Ox.{p -* 0(q A Oy.(r A y < x + 5))).

This property has no natural expression in MTL. However, in the digital-clock model, the

discrete nature of time can be exploited to translate the property into MTL:

s
D(p - \/Ose(q A 0<5-?r)).

e=0

In fact, we show that in the digital-dock model the expressiveness of MTL is no less than

that of TPTL in any crucial way. Only properties that need to be defined, in TPTL,

using absolute time references cannot be denned in our version of MTL. These properties

put constraints on the absolute time of some states in a timed state sequence, such as "the

time of the initial state is 2" (x. x = 2 in TPTL). Thus the inability of MTL to express

absolute time references is of no importance to the analysis of timed transition systems,

whose computations are closed under shifting the origin of time.

Formally, we say that a timed state sequence (<r,J) is initial iff the time of its initial

state is 0; that is, To — 0. The following theorem states that if the expressiveness of a logic

is measured by the sets of initial timed state sequences that are definable, then MTL has

the same expressive power as £7 or, equivalently, TPTL.

Theorem 3.6 (Expressive completeness of MTL) For every formula. $ of CT, there

exists a formula V> of MTL (without past operators) such that p f= <f> iff p \= %> for every

initial timed state sequence p € TSS^.

Proof of Theorem 3.6 As in the proof of the expressive completeness of TPTL, given a

formula (p of CT, we construct a PTL-formula ^', with additional time-difference proposi-

tions Previ and Prev>t and time-congruence propositions Cong^, such that IIi(^) = II(#').

■

*•■'■'%

i, * .

i':>1

a&iilS

;*

v
V

y

*

132 CHAPTER 3. REAL-TIME LOGICS

Furthermore, in <f>' all of the propositions Prevs, Prev>e, and CongeS are either not within

the scope of anv temporal operator, or immediately preceded by a next operator.

From <f>' we obtain the desired MTL-formula rp by eliminating the time-difference and

time-congruence propositions as follows. Since we consider only initial models, we replace

each proposition Prevs, Prev>s, and Cong^ that is not within the scope of any temporal

operator by true or false, depending on whether 6 = 0. Then we replace each subfor-

mula QPrevs by ©=l true, each subformuk OPrev>(by ©>$ true, and each subformula

0C°n9c,s bv Q=cstrue. (Observe that only the strong-next operator needs to be sub-
scripted.) H

¥: i

3.5 Real-time Properties That Cannot Be Verified

At last, let us justify our decisions to

1. restrict the semantics of TPTL, MTL, and the classical theory of timed state se-

quences to the digital-clock model (i.e., the discrete time domain N), and

2. restrict the syntax of timing constraints in TPTL, MTL, and the classical theory of

timed state sequences to comparison, successor, and congruence operations on time.

Indeed, both decisions seem overly limiting for real-time specification languages. For ex-

ample, without addition of time values the property that "the time difference between

subsequent p-states increases forever" cannot be denned. We show, however, that both

restrictions are absolutely necessary to obtain formal verification techniques; without them

there exist neither decision procedures nor complete proof systems.

3.5.1 Timed temporal logic revisited: Undecidable extensions

We consider two natural extensions of TPTL, a syntactic one (allowing addition over time)

and a semantic one (interpreting TPTL-formulas over a dense time domain). Both exten-

sions are shown to be Hj-complete, by reducing a Ej-hard problem of 2-counter mac lines

to the respective satisfiability problems. It follows that they cannot even be (recursively)

axiomatized (for an exposition of the analytical hierarchy consult, for instance, the book
by Rogers [113]).

Mi^S^ä

3.5. REAL-TIME PROPERTIES THAT CANNOT BE VERIFIED 133

A Ej-complete problem

A nortdeierministic 2-countcr mackinr K consists of two counters C and D, and a se-

quence of n instructions, each of which may increment or decrement one of the counters,

or jump, conditionally upon one of tl-.e counters being zero. After the execution of a non-

jump instruction, M proceeds nondeterministically to one of two specified instructions. We

represent the configurations of M by triples (»', c, d), where 0 < t < n, c > 0, and d > 0

are the current values of the location counter and the two counters C and D, respectively.

The consecution relation on configurations is defined in the obvious way. A computation

of M is an infinite sequence of related configurations, starting with the initial configurar <n

(0,0,0). It is called recurring iff it contains infinitely many configurations with the value

of the location counter being 0.

The problem of deciding whether a nondeterministic Turing machine has, over the empty

tape, a computation in which the starting state is visited infinitely often, has been shown

Ej-complete by Harel, Pnueli, and Stavi [52]. Along the same lines we obtain the following

result.

Lemma 3.2 (Complexity of 2-counter machines) The problem of deciding whether a

given nondeterministic 2-counter machine has a recurring computation, is H\-hard.

Proof of Lemma 3.2 Every Ej-formula is equivalent to a Ej-formula x of the form

3/.(/(0) = l AV«.,(/(«),/(x + l))),

for a recursive predicate g [52]. For any such x we can construct a nondeterministic 2-

counter machine M that has a recurring computation iff x is true.

Let M start by computing /(0) = 1, and proceed, indefinitely, by ncadetexministically

guessing the next value of /. At each stage, M checks whether /(z) and /(z +1) satisfy g,

and if (and only if) so, it jumps to instruction 0. Such an M exists, because 2-counter ma-

chines can, being universal, compute the recursive predicate g. It executes the instruction 0

infinitely often iff a function / with the desired properties exists. B

Encoding computations of 2-counter machines

We show that the satisfiability problem for several extensions of TPTL is Ej-complete.

First, we observe that the satisfiability of a formula $ can, in all cases, be phrased as a

jE&^t^j&&

134 CHAPTER 3. REAL-TIME LOGICS

Ej-sentence, asserting the existence of a model for $. Any timed state sequence p for 4>

can be encoded, in first-order arithmetic, by finitely many infinite sets of natural numbers;

say, one for each proposition p in <p, characterizing the states in which p holds, and one to

encode state-time pairs. It is routine to express, as a first-order predicate, that <f> holds in p.

We conclude that satisfiability is in Ej.

To show that the satisfiability problem of a logic is Ej-hard, it suffices, given a non-

deterministic 2-counter machine M, to construct a formula fa such that fa is satisfiable

iff M has a recurring computation. We demonstrate the technique of encoding recurring

computations of M by showing that the monotonicity constraint on time is necessary for

the decidability of TPTL. (From the decision procedure for TPTL that wiil be presented

in Chapter 4 it follows that the progress requirement on time may, unlike monotonicity, be

relaxed without affecting the complexity of TPTL.)

Theorem 3.7 (Nonmonotonic time) Relaxing the monotonicity condition for timed se-

quences renders the satisfiability problem for TPTL Y\-complete.

Proof of Theorem 3.7 We encode the computation T of M by the divergent "time" se-

quence T such that, for all k > 0, T4Jt = t, 74k+l =n + c, T^+j = n + d, and JAlt+3 = n + Jb

for the i-th configuration (t, e, d) of T. Now it is easy to express, by a TPTL-fonnula fa,

that a time sequence encodes a recurring computation of M. First specify the initial con-
figuration, by

x. x = 0 A 0*- x-n A O2*- x = n A O3* * = « (<f>WIT)

(we abbreviate a sequence of m next operators by Om)- Then ensure proper consecution

by adding a G-conjunct fa for every instruction iot M. For instance, the instruction 1 that

increments the counter C and proceeds, nondeternainistically, to either instruction 2 or 3,
contributes the conjunct

Ox. x = l —

(OV(y = 2V y = Z) A \\
Oy. 0* 2. z = y + 1 A

OV 04*-* = y A
V OV 0*2.z = y + l

The recurrence condition can be expressed by a OO-formula:

DOi.x = 0.

(*)

{öRSCUR)

I- :i

/ A

«1

I

3.5. REAL-TIME PROPERTIES TEAT CANNOT BE VERIFIED 135

r
Clearly, the conjunction 4>M oi these n + 2 formulas is satisfiable iff M has a recurring

computation. O

Note that we do not require any propositions in the proof. It follows that first-order

temporal logic with a single state variable ranging over the natural numbers is üj-complete,

provided the underlying assertion language has at least successor (in addition to equality)

as a primitive.

Presburger TPTL

We show that a certain extremely modest relaxation of the syntax of timing constraints leads

to a highly undecidable logic. Consequently, TPTL with addition over time is undecidable.

Theorem 3.8 (Presburger TPTL) If the syntax of TPTL is extended to allow multi-

plication by 2, the satisfiability problem becomes l\-complete.

Proof of Theorem 3.8 To encode computations of M, we use the propositions pi,.. .p„,

r1(and r2, precisely one of which is true in any state; hence we may identify states with

propositions. The configuration (t,c,d) of M is represented by the finite sequence pirfrf

of states.

The initial configuration (po) as well as the recurrence condition (OOpo) can be easily

expressed in PTL. The crucial property that allows a temporal logic to specify the consecu-

tion relation of configurations, aad thus the set of computations of M, is the ability to copy

an arbitrary number of r-states. In real-time temporal logics, the times that are associated

with a state sequence can b* used for copying. With the availability of multiplication by 2,

we are able to have the Jfe-th configuration of a computation correspond, for all i > 0, to the

finite sequence of states that is mapped to the time interval [2*,2*+1). First, we force the

time to increase by a strictly positive amount between successive states (Gx. 0 V-V > *).

to ensure that every st>\t J is uniquely identifiable by its time. Then we can copy groups of

r-states by establishing a one-to-one correspondence of restates (j = 1,2) at time t and

time 2t; clearly there are enough time gaps to accommodate an additional tystate when

required by an increment instruction.

D*.

136 CHAPTER 3. REAL-TIME LOGICS

For instance, the instruction 1 that increments the counter C and proceeds, nondeter-

ministically, to either instruction 2 or 3, can be expressed as follows:

(pi -* Oz. [z = 2x A {j>2 V pz)) A \

°Vi- 0 V2- {Vi < 2x — Oij. (*i = 2y\ A 0*2 • *2 = 2y2)) A

Ai=i,2 °». (y < 2z A r, - Oz. (z = 2y A r^)) A

V Oyi- 0 »a- (»a = 2i -» <>*!.(*! = 2yi A 0*a-*1 A 0 0 *3- *3 = 2y2)))

The first conjunct ensures the proper progression to one of the two specified instructions,

2 or 3; the second one establishes a one-to-one correspondence between states in successive

intervals representing configurations, while the third and fourth conjuncts copy restates

U — 1>2)- The last conjunct adds, finally, an rj-state at the end of the successor configu-

ration, as required by the increment operation. B

We can modify this proof by reducing time to a state counter (Oz. Oy.y = x + 1),

and letting all propositions be false in the resulting additional (padding) states. Thus, the

satisfiability problem for TPTL with multiplication by 2 is Ej-hard even if time is replaced

by a state counter. As a corollary we infer that the first-order theory of the natural numbers

with <, multiplication by 2, and monadic predicates is Ilj-complete. A «imiW result was

obtained independently by Halpern [49], who showed that Presburger arithmetic becomes
Hj -complete with the addition of a single unary predicate.

Dense TPTL

Another possible direction to extend the expressive power of TPTL is to relax its semantics

by adopting a dense time domain; that is, between any two given points in time there is

another time point. We show that the resulting logic is, again, highly undecidable.

Theorem 3.9 (Dense TPTL) If TPTL is interpreted over the rational numbers (i.e.,

TIME = Q), the satisfiability problem becomes T\-complete.

Proof of Theorem 3.9 The proof depends, once more, on the ability to copy groups

of r-states. This time, we are able to have the Jb-th configuration of a computation of M

correspond, for all i > 0, to the finite sequence of states that is mapped to the time interval

[k, k -r 1), because dense time allows us to squeeze arbitrarily many states into every interval

of length 1. Again, we identify every state with a unique time, and can then establish a

"■' ■)

■ J

Bsass^HPSssjaaaagBBSi^

3.5. REAL-TRIE PROPERTIES THAT CANNOT BE VERIFIED 137

one-to-one correspondence of tj-states (; = 1,2) at time f and time t + 1. In fact, we

may simply replace all occurrences of multiplication by 2 in the Presburger-TPTL formula

encoding the recurring computations of M, by a successor operation, in order to obtain the

desired dense-TPTL formula fa . □

This proof goes through for any time domain (T, -<, 5) such that (T, -<) is a dense linear

order, and 5 is a unary function over T that satisfies the following two first-order axioms:

Vx.x -< S(x),

Vx,y.{x<y - S(zHS(y)).

To show that, for arbitrary dense time domains, the satisfiability problem is in Lj, a stan-

dard Löwenheim-Skolem argument is necessary to infer the existence of countable models.

It follows, in particular, that the validity problem for TPTL is Hj-complete in the analog-

clock model.

3.5.2 The classical theory revisited: Undecidable extensions

Now we justify our claim that "the" classical theory of timed state sequences builds on the

theory (N,<, =) of time. The reason is, once again, that more expressive theories of time

cause TL\ -hardness. In fact, the proof technique of encoding 2-counter machines is extremely

robust and can be used to show that a wide variety of real-time specification languages with

an expressive power greater than that of £|< have highly undecidable decision problems.

This suggests that we have been able to characterize an intrinsic boundary between the

decidability and undecidability of formalisms that combine propositions! reasoning about

state sequences with first-order reasoning about time.

Theorem 3.10 (Undecidable theories of real time) The validity problems for the fol-

lowing two-sorted first-order theories are H\-complete:

state theory time theory time function

{from states to time)

1 (N,<) (N.+1) f
2 {U,<)with

monadic predicates
(N.-2) identity f

138 CHAPTER 3. REAL-TIME LOGICS

state theory time theory time function

(from states to time)

s (F\i,<) with

monadic predicates

dense linear order (D,-<)

with "successor" S:

x < S(x)

x •< y -» S(x) -< S(y)

strictly monotonic f

4 (N,<) with

monadic predicates
(N.+1) identity f and

strictly monotonic f

Proof of Theorem 3.10 First, we observe that the satisfiability of a formula <f> can,

in all cases, be phrased as a E*-sentence that asserts the existence of a model for <f>. In
Case 3, the Löwenheim-Skolem theorem ensures the existence of countable models. Thus the

satisfiability problem is in EJ in each case. To prove Ej-hardness, we use again Lemma 3.2;
that is, we show that the satisfiability problem of a language is Ej-hard by constructing a

formula <j>u such that 4>M is satisfiable iff a given nondeterministic 2-counter machine M
has a recurring computation.

(l)-(3) Ei-hardness of the cases 1 through 3 follows immediately from the proofs of

the Theorems 3.7, 3.8, and 3.9, respectively. The TPTL-formulas that are given there to

the encode computations of M can be directly translated into classical first-order formulas

$M that satisfy, in each case, the required restrictions. For example, in case 1 the result

4>M of the translation Classic^ uses only the successor primitive over time and no unary
predicates.

(4) This case corresponds to having two time bases (or "docks") / and f that are

updated, from one state to the next, independently of each other. The result holds already

for the special case in which / is the identity function and /' is strictly increasing.

The encoding of Af-computations is very similar to the one used in the proof of The-

orem 3.8 to establish the Ej-hardness of case 2. We use the unary predicates Pi,...pn,

fi, and rj and require that it most one of these predicates is true of any state; hence we

may identify states with predicate symbols. The configuration (7,e,d) of M is represented

by a sequence of 2* states in the time interval [2*,2fe+1) that starts with a pj-state, and

contains precisely c restates and d ^-states. Even though the assertion language does not

include the primitive of multiplication by 2, which i» used to copy states, multiplication

■7 . .

3.5. REAL-TIME PROPERTIES THAT CANNOT BE VERIFIED 139

by 2 can be simulated with the help of the second time function /'. This can be done by

restricting ourselves to interpretations in which /'(£) = 2t for all i > 0, which is enforced

by the formula

/'(0) = 0 A V». (/'(» + 1) = /'(») + 2).

This theorem demonstrates that extending the syntax or semantics of CT in one of any

number of directions causes tremendous undecidability. On the other hand, we have shown

that the congruence primitives over time can be added to the language without sacrificing

decidability. Furthermore, we have proved decidability for the second-order case of £y as

well. Thus we claim that the first-order theory of (N, <) with monadic predicates (for state

sequences) combined with the theory of (N,<,=) (for time) is the theory of timed state

sequences.

3.5.3 Decidability versus undecidability in real-time logics

Let us consider the wide-ranging implications of Theorem 3.10 for designing real-time spec-

ification languages. We look at the ramifications of all four cases of the theorem. The fact

that the monotonicity constraint on the time function is required for decidability (case 1)

has little consequences in the context of real-time logics, because we are interested only in

monotonic time functions anyway.

Choosing the domain of time

When devising a real-time logic we need to select an appropriate mathematical domain to

represent time. Ideally, to model systems whose state changes can occur arbitrarily close

in time, we like to choose a dense linear order, such as the analog-clock model. Since the

ordering predicate and addition by constant time values are the basic primitives needed to

express the simplest of timing constraints, the undecidability of the resulting theory (case 3)

is a major stumbling block in the design of useful logics over dense time. In fact, a close

inspection of our proof reveals that even the satisfiability of a very simple class of real-time

properties is undecidable in the analog-clock model: the only timing constraints required

to copy sequences of states are, using the notation of MTL, of the form

D©>0 true,

-TSKaHKrasBaessasKSs&üaias&s r^W7CTwjr^*^W . ■■ —-— ■

140 CHAPTEÄ3. REAL-TIME LOGICS

so that any time identifies a unique state, and of the forms

°(P - 0=lq), (f)

D(q - <S>=ap),

to assert that "every p-state is followed by a j-state precisely 1 time unit later" and "every

g-state is preceded by ap-state 1 time unit earlier." Observe that with an interval semantics,

the latter (past) formula is not even needed. It follows our techniques can be used to show

that MTL is undecidable in the analog-clock model:

Theorem 3.11 (Dense MTL) If MTL is interpreted over a dense linear order, the sat-

isfiability problem becomes Y\-complete.

Similar undecidability results can be obtained for the MTL-like branching-time logics

considered by Alur, Courcoubetis, and Dill [7] and by Lewis [82], both of which use an

interval semantics over the set of real numbers to model time.

There are two options to escape the predicament that is caused by this trade-off between

the realistic modeling of time and the ability to verify timing properties:

1. We have adopted the semantic abstraction that, for every observation, we may record

only a discrete approximation — the number of ticks of a digital clock — to the "real,"

physical time. We have justified this decision by identifying the circumstances under

which verification in the digital-clock model is both sound and complete; in Part 2 of

this thesis we will develop concrete verification techniques under the assumption of a

discrete time domain.

2. A re '.ent result has opened the interesting alternative of a viable syntactic concession.

We have shown that MTL without singular intervals (i.e., intervals of the form [c, d]

for c = d) as subscripts of the temporal operators can be decided in EXPSPACE

even in the analog-dock model [9]. This syntactic restriction of MTL ensures that

the time difference between two state changes can be enforced only with finite (yet

arbitrary) precision; in particular, it rules out the specification of the punctuality

requirement (f). Note that (f) is not equivalent to the stronger demand

°{P -* D<i -*) AD(p-. 0<! q)

^i^&Ä&il-*.!-"i-.»

3.5. REAL-TIME PROPERTIES THAT CANNOT BE VERIFIED 141

that "every p-state is followed by a g-state no sooner and no later than after 1 time

unit," which can be expressed without singular time intervals. We do not have the

space to pursue this approach here and instead refer the interested reader to the |

original paper.

Choosing the operations on time

Having constrained ourselves to the discrete time domain of the digital-clock model, we need

to choose the operations on time that are admitted by a real-time specification language.

We have proved (case 2) that the addition of time variables causes undecidability. In fact,

using our results and techniques, we can show the H\-hardness of various real-time logics

that have been proposed in the literature, such as the logics of Jahanian and Mok [63],

Pnueli and Harel [110], Koymans [71], and [104], all of which include addition as a primitive

operation on time. This list demonstrates vividly that it has not been understood until

recently how expressive a theory of time may be added to reasoning about state sequences

without sacrificing decidability. Harel, Lichtenstein, and Pnueli proved later the decidability

of a fragment of what we called "real-time temporal logic" that permits the addition of time

variables [54]. This decidable fragment XCTL (for "explicit-clock temporal logic") puts,

however, such substantial restrictions on the use of time quantifiers that it is not closed

under complementation.

The real-time logic RTL of Jahanian and Mok can be viewed as a two-sorted logic with

multiple monotonic functions from the state sort to the time sort. Our results (case 4)

imply that RTL is undecidable, even if we restrict its syntax to allow only the successor

primitive over time (RTL allows addition over time).

142 CHAPTER 3. REAL-TRIE LOGICS

I

1

I

Part II

Verification

143

I: I

I

>
■; r

m

Chapter 4

Finite-state Verification

We present algorithms for checking if a formula <f> of TPTL or MTL holds over all runs
of a finite-state timed transition system 5. The algorithms use a technique called model

checking: they construct a finite graph — a "tableau" — that represents all models of

the formula <f> and comp re it to the finite graph that represents all possible runs of the
system 5. Thus model diecking is applicable only to

1. logics that have the finite-model property; that is, if a formula is satisfiable, then it

is satisfiable in a finite model. Although timed state sequences are infinite structures

over an infinite time domain, in Chapter 3 we have shown that for any given formula (p

of TPTL or MTL, the infinitary timing information in a model of # can be encoded

by finitely many time-difference and time-congruence propositions. Moreover, we

have seen that the properties that are definable in TPTL and MTL axe regular,

which implies that every model of ^ is "eventually periodic" and can be obtained by
unrolling a finite structure. We will use both observations to represent au models of

the formula 4> by a tableau whose size is doubly exponential in the length of ^.

2. finite-state systems; that is, transition systems whose state graphs, which encode the

consecution (i.e., next-state) relation, are finite. We will extend the notion of finite-
state system to timed transition systems that can be represented by finite graphs.

§1

Since both TPTL and MTL are undecidable in the analog-dock model (see Section 3.5), we

restrict ourselves to the digital-dock modd for modd checking (i.e., TIME = N throughout

145
••s

£gg

146 CHAPTER 4. FIN1TE-£TATE VERIFICATION

this chapter). A model-checking algorithm for a decidable fragment of analog MTL was
presented elsewhere [9].

The first step of the model-checking process yields, as a by-product, decision procedures

for TPTL and MTL: a formula <j> is valid iff the tableau that represents all models of the

negated formula -«j> does not contain any timed state sequences. While being elementary,

the tableau-based decision procedures for TPTL and MTL are still quite expensive; they

run in doubly exponential time. We show that this cost is, however, intrinsic to real-

time reasoning: any reasonably succinct and reasonably expressive extension of PTL is
necessarily EXPSPACE-hard.

4.1 Deciding Timed Temporal Logic

We present a doubly-exponential-time, tableau-based decision procedure for TPTL and

show that the decision problem for TPTL is EXPSPACE-complete. This result establishes,

as we have promised in Chapter 3, that TPTL corresponds to an elementary fragment of the

nonelementary first-order language CT- We then integrate the grammar operators of TETL

into the tableau method. In Section 4.3, we will demonstrate how the tableau techniques

can be applied to verify TETL-properties of finite-state timed transition systems.

4.1.1 Timed tableaux

. ,«

First observe that to solve the validity problem for a formula, it suffices to check if its

negation is satisfiable. Throughout this subsection, we are given a formula tf> of TPTL

and wish to determine iff 0 is satisfiable. The tableau method searches systematically for

& model of <f>. It originated with the propositional calculus (consult [120]), was extended to

modal logics (consult [39]), and was first applied to obtain a decision procedure for a logic

of computation by Pratt [111]. We follow the standard presentation of the tableau-based

decision procedure for PTL [18,130] and begin by constructing the initial tableau for <f>.

Checking the satisfiability of <j> can then be reduced to checking if the finite initial tableau

for 4> contains certain infinite paths. The tableau method for PTL is, in fact, subsumed by

our procedure as the special case in which (p contains no timing constraints.

/ «

StiM

*/
--—prj-. . ■. . ,„„„», „r„..„,.,^ ̂ .-..w,.-..ik ■■^^ ■■■..■..■■■•. ,-...,,.,,.„. ^^~

4.1. DECIDING TIMED TEMPORAL LOGIC
■'i

147

:■ ■■

Preliminary assumptions

For the moment, we assume that

1. d> contains no absolute time references; that is, every term in 4> contains a variable.

Thus we may perform simple arithmetic manipulations so that all timing constraints

in # are of the form x < y+e or x + c < y or x =j y+e, for natural numbers d > c > 0.

2. <f> contains only the temporal operators 0 and 0; that is, the first argument of every

occurrence of the until operator U in <j> is true.

While neither of the two restrictions is essential, they simplify the exposition of the decision

procedure greatly. Later we will show how to accommodate absolute time references, the

until operator, and even general grammar operators. We also assume that <f> is of the form

z. d>'; if necessary, this can be easily achieved by prefixing <j> with any variable z that does

not occur freely in <f>.

Let us say that an infinite timed state sequence p — {a, T) is A-bounded, for a constant

A€N,iff

T,-i < T; < T,-.!* A

for all t > 0; that is, the time increases from a state to its successor state by no more

than A. Recall that we use the convention that T_i = 0; it follows that the absolute time

of the initial state of a A-bounded timed state sequence is at most A. To begin with,

we restrict ourselves to A-bounded models for checking satisfiability. This case has finite-

state character: the times that are associated with states can be modeled by finitely many

(new) time-difference propositions Prtvt, for 0 < 6 < A, that represent, in the initial state,

the initial time 6 and, in all other states, the time increase 6 from the predecessor state.

Formally, we capture the (state and) time information in a timed state sequence p = (<r,T)

by the state sequence & with

*i = ff.U{PretT..T._i}

for all t > 0. This reduction of timed state sequences to state sequences allows us to adopt

the tableau techniques for PTL. Later, we show how we can find an appropriate constant A

for the given formula 4>.

I --

148 CHAPTER 4. FINITE-STATE \rERIFICATION

Updating timing constraints

The key observation underlying the tableau method for PTL is that any formula can be

split into two conditions: a non-temporal ("present") requirement on the initial tM'.> and a

temporal ("future") requirement on the rest of the model (i.e., the successor state). For ex-

ample, the eventuality 0<j> can be satisfied by either <p or 0O<j> being true in the initial state.

Since the number of conditions generated in this way is finite, checking for satisfiability is

reducible to checking for satisfiability in a finite structure, the initial tableau.

The splitting of TPTL-formulas into a present and a future (next-state) condition de-

mands more care; to obtain the requirement on the successor state, all timing constraints

need to be updated appropriately to account for the time increase 6 from the initial state

to its successor. Consider, for example, the formula z.Oy.ip(z,y), and recall that the free

occurrences of z in ip are references to the initial time. This eventuality can be satisfied ei-

ther by having the initial state satisfy y. ij;(y, y), with all free occurrences of z in rp replaced

by y, or by having the next state satisfy the updated eventuality ux. Oy. rp(x - S,y).n For

S > 0, a naive replacement of x by x — 6 would, however, successively generate infinitely

many new conditions. Fortunately, the monotonicity of time can be exploited to keep the

tableau finite; the observation that y is always instantiated, in the "future," to a value

greater than or equal to the initial time z, allows us to simplify timing assertions of the

form x < y + (c + 1) and y + (c + 1) < z to true and false, respectively.

We define, therefore, the TPTL-formula x. iji(z)s that results from updating all ref-

erences in V to the initial time z by the time difference S. For instance, if x.ip is the

formula

z.Oy.(p -» y.y < z + 5),

then z. rp1, x.xj>s, and x.ip* are the following formulas:

x.Oy.(p -» y.y < z-M),

x.Oy.(p -* y.y < z),

z. Dy. (p —> false).

In general, given a TPTL-formria x.rp and 6 € IM, the TPTL-formula x.il>s is defined

inductively as follows:

• x.rf>° equals x.ij>.

\.

4.1. DECIDING TIMED TEMPORAL LOGIC 149

• x. xps+l results from x. r}>s by replacing every term of the form z + (c + 1) with x + c,

and every subformula of the form x < y -t c, y + c < x, and x ~j y + c with true, V'

/eise, and z =d y + ((c + 1) mod d), respectively, provided that the occurrence of x I

in the specified terms and formulas is free in tp . |

The following lemma confirms that this transformation has the intended effect and updates |

all time references correctly; that is, the formula x. xps expresses the condition "x. ^(z - 6)." I

Lemma 4.1 (Time step) Let p = (<r,T) be c timed state sequeiice and 6 € N such that

6 < T0. Then p\=x.ip{ iff p t=[x:=T0-«] ^ for every formula x.tp of TPTL. |

Proof of Lemma 4.1 The proof proceeds by a straightforward induction on the structure |

of \l>. ■ t

I.
Closure of a TPTL-formuJa I'

We collect all conditions that may arise by recursively splitting a formula <f> into its present

and future parts in the closure of (f>. It suffices to define the closure only for formulas

whose outermost symbol is a freeze quantifier. The closure set Closure(z. $') of the TPTL-

formula z. <f>' is the smallest set of formulas containing z. <f>' that is closed under the following

operation Sub:

Sub(z.{u\-*rl>2)) ={2.^1,2-^2},

Sub{z.04>) = {*-^l*>0},
Sub{z.Drj;) ^ {z.r/;,z. 0°^},

Sub(z.x.rf>) = {z.ip[x := z]},

where the TPTL-formula rp[x := z] results from xl> by replacing all free occurrences of x

with z. Note that all formulas in a closure set are of the form z. $.

We say that a constant c> 0 occurs in the TPTL-formula ^ iff ^ contains a subformula

of the form z < y + (c — 1) or z + (e - 1) < y, or ^ contains the predicate symbol =e. Let C

be the largest constant that occurs in the formula <f>. The closure set of <j> is finite, because

z. rjf is z. xj)c for all formulas z. V> in Closure($) and all 6 > C. The sue of the closure set

of <(> depends on both the structure of <f> and the constants that occur in ^.

LJ

150 CHAPTER 4. FINITE-STATE VERIFICATION

Lemma 4.2 (Size of closure) Let n - 1 be the number of boolean, temporal, and freeze

operators in the formula <j> of TPTL, and let k be the product of all constants that occur

in 4>. Then \Closure{$)\ < 2nk.

Proof of Lemma 4.2 Given a TPTL-fonnula z. <p', we define, by induction on the

structure of $', the set Dp of formulas that contains <j>' and is closed under updating of

timing constraints, the set C# is, in addition, closed under subformulas:

Cv = Dp = {p},

Cx<y+c = As<y+e = {* < y + c,x < y + (c - l),... x < y},

Cs=tv+e = Dx=iy+c = {x=dy + (d-l),x =dy + (d-2),...x=dy},

Cfr-fr = C^UC*,UD^^, D<t>i~(h - D*i -* D<h>
c04> - C*U5W, DQ«, = 0-°*.

Co* = ^UDD^UDQD*, Da* = °#*,
Cx.4, = Qt32]Ui),>, Dx.+ = a:.!?*.

Here x.E = {x.<p \ <f> e E} for any set E of formulas; the other operators are applied to

sets in an analogous fashion. The case of formulas of the form z + c < y is treated similarly

to the timing constraints x <y + c. Furthermore, let E" = E U {true,false}.

Observe that D* C C$. It is straightforward to show, by induction on the structure
of 4>, that

(1) <j>' € Dp and, hence, <j>' € C*'.

(2) For all S > 0, z. <f>'s € z. I?;, and, therefore, z. <j>'{ € z. C;,.

(3) z. C£, is closed under Sub (use (2)).

From (1) and (3) it follows that Closure(z. <j>') C z.C#. Thus, it suffices to show that

\Dp\ < k and \C#\ < 2ni, which may again be done by induction on the structure of <(>'. B

Initial tableau of a TPTL-formula

Tableaux for TPTL are finite, directed state graphs (Kripke structures) with local and

global consistency constraints on all vertices. Unlike the states of a timed state sequence,

the vertices of a tableau contain not only propositions, but are annotated with arbitrary

4.1. DECIDING TIMED TEMPORAL LOGIC 151

formulas of TPTL. Since the set of propositions that labels a vertex determines a state, we

shall informally refer to the vertices of a tableau themselves as "states," provided this usage

does not give rise to ambiguities. The set of TPTL-formulas that labels a vertex of a tableau

is closed under "subformulas" and its members express conditions on the annotated state

and its successor states. Every vertex contains, in addition, a time-difference proposition

Previ, where 0 < S < A, that denotes the time increase from the predecessor states.

Formally, we define the vertices of a tableau for <j> as the maximally consistent subsets

of the finite universe

Closure'(<f>) = Closure^) U {Prevs | 0 < 6 < A}

of TPTL-formulas. First, we put together all requirements for local consistency. A subset §

of Closure" (<f>) is (maximally) consistent iff it satisfies the following conditions, where all

formulas range only over the finite set Closure"(<f>):

• Prev(is in $ for precisely one 0 < 6 < A; this 6 € N is referred to as 6$.

• z. (z ~ z + c) is in § iff 0 ~ c holds in the natural numbers (for ~ being one of <, >,

and =«f).

• z. false is not in $.

• z. (V>i -♦ V2) is in $ iff either z. V>i is not in $ or 2. rfo is in §.

• z. Dip is in $ iff both z. ip and z. Q) Dip are in $.

• z.x.ip is in $ iff 2. ip[x := z] is in $.

Now we are ready to define the initial tableau of a formula in a way that ensures the

global consistency of both temporal and real-time constraints. The initial tableau T(4>)

for the TPTL-formula <p is a directed graph whose vertices are the consistent subsets

of Closure"(<p), and which contains an edge from § to $ iff, for all formulas 2. 0 ^ in

Closure"(<f>),

z. Oipei iff z.<t>** € *•

The significance of the (finite) initial tableau T(<f>) for the formula <f> is that every model

of ^ corresponds to an infinite path through T[4) along which all eventualities are satisfied

!«afl«Ka«a'«amB^iB^^

152 CHAPTER 4. FINITE-STATE VERIFICATION

in time, and vice versa. This implies a finite-model property for TPTL, in the sense that

every satisfiable TPTL-formula <f> is satisfiable by a model whose state part, extended by

the time-difference propositions Prevt, does not only consist of no more than finitely many

distinct states, but is eventually periodic. To be precise, we say that an infinite path

$: $o —* $i -♦ $2 —» •••

through a tableau is a <p-path iff it satisfies the following three conditions:

Initiality <j> € $0.

Fairness All eventualities are satisfied along $ in time or, equivalently, all missing invari-

ances are violated along § in time; that is, for all z. Dip e Closure" ((p) and t > 0,

z. Uip $ $, implies z.tp* g $j for some j > i with S = £ 6J .
i<k<j

Progress 6^. > 0 for infinitely many t > 0.

We can characterize the length of ^-paths in the initial tableau for <p by reducing every <p-

path to a special form. The following lemma shows that every ^-path is eventually periodic

and bounds the length of the period. This will prove to be important to obtain an upper
bound on the complexity of TPTL.

Lemma 4.3 (Length of ^-paths) Suppose that the initial tableau T(<f>) for the formula

<p of TPTL consists ofm vertices. If T(<f>) contains a <p-path, then it contains a <f>-path of
the form

for I < (2n + l)m, where n is the number of temporal operators in <j>.

Proof of Lemma 4.3 Consider the infinite ^-path § = 0i- ••, and choose i to be the

smallest j such that §j occurs infinitely often in $. Now $< lacks at most n invariances

*■ Ctyki «ach one of which is violated by some vertex ** of §,$i+1... Let *° = $0... $it

$a*-i _ $.. ..$A) and *s* = *fc. ..*i, for all 1 < 4 < n, be finite segments of $ that

contain no other (i.e., inner) occurrences of *<. Delete any loops in every *»', thus obtaining

■■aaa»a«u».ii>iBiiu«»M»ia^ijirfaij»tatKBnagEB«

4.1. DECIDING TIMED TEMPORAL LOGIC 153

the finite sequences §J, for 0 < j < 2n, each of length at most m + 1. It is not hard to see

that the result of deleting duplicated vertices (i.e., $j) from

§°(#1l2...$2n)w

is a ^-path of the desired form. E3

Tableau decision procedure

The following main lemma suggests a decision procedure for TPTL: to determine if the

TPTL-formula <f> is satisnable, construct the initial tableau T(<f>) and check if it contains

any ^-paths.

Lemma 4.4 (Initial tableau for TPTL)

(1) [Correctness] If the initial tableau T{<j>) for the formula <j> of TPTL con-

tains a <f>-path, then # is satisfiable.

(2) [Completeness] If <j> has a A-bounded model, then T{<j>) contains a 4>-path.

Proof of Lemma 4.4 The proof makes essential use of both directions of the time-step

lemma, Lemma 4.1.

(1) Given a ^-path $ = oi • • • through the initial tableau T(d>), define the timed

state sequence p — (a-,T) such that, for all t > 0, p € 0i iff z.p € $,-, and T,- = Tj_i + ÄJ .

Note that the time sequence T satisfies the progress condition because $ does. We show,

by induction on the structure of 4>, that ^ € $,• iff px (= ij> for all f > 0 and ij> € Closure'((f>).

Since 4> € §o> it follows that p is a model of ^.

For a proposition z.p € Closvre~(d>), we have z.p € §» iff p € Oi iff P* 1= z.p. Let •* be
one of <, >, =a, or its negation. By the consistency of §i, z.(z ~ z + c) € $i iff 0 ~ c iff
p* (= z. (2 ~ 2 + c). This completes the base cases.

By the consistency of $j, z.(ifa —» V^) € $i iff either z. ifa $ $< or z.rfo € $». By
the induction hypothesis, this is the case iff either p* j£ z. rfo or p* |= z.rfo; that is, iff

p* N *• (ifo -♦ ^J)-

Now assume that z. O $ € CToittre"(^) and let 6 = 6+. ,; that is, Tj+i = T* + 5. Then

z. 0 V" € $i iff 2. V^ € $t+i • By the induction hypothesis, this is the case iff pi+1 ^= 2. ip*.

By Lemma 4.1, this is the case iff pi+1 \=^.=j.^ 4>; that is, iffp* (= z. Q ij>.

MAUKfcUUSa&S !SäK3SBä!E!3EKiK^ 3

154 CHAPTEÄ 4. FINITE-STATE VERIFICATION

For the case that z. D^ 6 Closure" ((p), we first prove that z. Drp £ $,• iff z. ^Tj-T; £ $^-

for all j > i. Let Sj = Tj - Tt- and note that S = £i<*<j 5^ by our choice of T.

We use induction on j to show that z. dp £ §,- implies z. Dxps> £ $j for all

j > i. Suppose that z. Dip*' £ §j for an arbitrary j > i. By the consistency

of § j, also z. 0 D^Ä> € $j ^d therefore z. Dtp6'*1 € $j+i- Invoking again the
consistency of §,-, we conclude that z. V^' € $j for all j > i.

On the other hand, suppose that z.Dxp g $j. Since $ is a 0-path, there is

some j > i such that z.ips> £ §j.

By the induction hypothesis, it follows that z. Dtp € $; iff p*' (= z.^ for all j > t. By
Lemma 4.1, this is the case iff p? f=[I:_-j\] tp for all j > t; that is, iff p* \= z. Dtp.

Finally, consider the case that z.x.tp £ Closure"($). In this case, z.x.tp £ §< iff

z. tp[x := z] € $t". By the induction hypothesis, this is the case iff p' ^= z. $z := z]; that is,
iff p* f= z.x.tp.

(2) Let p = (<T,T) be a A-bounded model of (p. The subsets §j, for : > 0, of Closure'(<p)

axe defined as follows: Prevj._j._t £ $*, and tp £ §i iff p* ^= ^ for all V € CZo5itre(^). We
show that $ = §o*i • •. is a ^-path through the initial tableau T((p).

By inspecting the consistency rules, it is evident that every §,- is (maximally) consistent.

To prove that $ is an infinite path through T(<p), we also have to show that there is an edge

from $,• to $,+i for all t > 0. Suppose that z. Otp £ Closure"(<f>) and let 6 = T<+1 - T<.

Then z. O tp £ $< iff p{ \= z. Q)tp ifi pi+1 \=[t.-j.] tp. By Lemma 4.1, this is the caso iff
pi+i ^_ 21pl. ^^ iS| ft 2-rpt € $i+i Since aiso PreV{ e $i+i(^ initial tableau for <fi

contains an edge from $j to $,+i.

We now show that the infinite path $ is indeed a <£-path. It satisfies the progress

condition because the time sequence T does. To see that <p € $o» observe that p is a model

of 4>. It remains to be established that all eventualities in $ axe satisfied in time. Suppose

that z. Dtp £ Closure"(4>) and z. Dtp g $<; that is, p* |= z. 0-<tp and therefore p> (=[,.-7] "^

for some ;' > t. Let 6 = T,- - TJ; thus £ =. "£,i<k<}S*k- T*"31 P* ¥* z-tf by Lemma 4.1,
which implies that z.tp* £ $j. H

The usual techniques for checking if a tableau contains an infinite path along which all

eventualities are satisfied, can be straightforwardly adopted to check if the initial tableau

4.1. DECIDING TIMED TEMPORAL LOGIC 155

for the formula <j> contains a $-path: first mark all eventualities that are trivially satisfied,

and then repeatedly mark the eventualities that are satisfied in successor states. The state

graph that remains if all vertices that are not on a ^-path are deleted from T(4») is called

the final tableau for the formula tf>. Hence we have shown that a TPTL-formula 4> has a

A-bounded model iff the final tableau for # is not empty.

The procedure for finding the final tableau is polynomial in the size of the initial tableau,

which contains 0(A-2nfc) vertices, each of size O(ni), where n-1 is the number of operators

in <p and ib is the product of all constants that occur in <j>. Thus, provided that A is dominated

by 2"*, the initial T(<j>) can be constructed and checked for ^-paths in deterministic time

exponential in nib. We show next that A can indeed be bounded by k.

Bounding the time step-width

Given a TPTL-formula <j>, we finally determine the bound A on the time increase between

two successive states such that the satisfiability of <f> is not affected; that is, we choose the

constant A € N such that <f> is satisfiable iff it has a A-bounded model. Let c be the largest

constant in 4> that occurs in a subformula of the form x < y + (c - 1) or x + (c - 1) < y,

and let =e,,... =^ all the congruence predicates that occur in <p. If the time increase S

between two states is greater than or equal to c, it obviously suffices to know the residues of

6 modulo ci,... Cm in order to update, in a tableau, all timing constraints correctly. Indeed,

for checking the satisfiability of (j>, the arbitrary step-width S can be bounded by taking the

smallest representative for each of the finitely many congruence classes.

Lemma 4.5 (Bounded time increase) If the formula <j> of TPTL is satisfiable, then

p \= $ for some p = (cr,l) with Tj < T<_i + k for aü-i > 0, where k is the product of all

constants that occur in $.

Proof of Lemma 4.5 We can, in fact, derive the tighter bound c + 4' < k, for the least

common multiple k' of all e,-, 1 < » < m. Given a model p = (<r,T) of #, let the time

sequence T' be such that, for all t > 0, T< = TJ_a + (T< - T<_a) if Ti+a - T< < c; else choose

T{ to be the smallest S > TJ -I- c with 6 =e Tj. It is easy to see that p' - (e,V) is also a

model of #. B

Combining this result with the tableau method developed above, we arrive at the con-

clusion that the satisfiability of the TPTL-formula ^ is decidable is deterministic time

J»iB«m>«BBre«Bg3&3B5lEg53^rog??35

156 CHAPTER 4. FINITE-STATE VERIFICATION

exponential in nk. Moreover, Lemma 4.3 implies that every satisfiable formula <f> is satisfi-

able in a model whose size is, in the sense mentioned above, exponential in nit. Remember

that we have restricted <j> to contain no until operators and no absolute time references. We

now show that both assumptions can be relaxed.

Until operators

First, let us address TPTL-formulas that include until operators. We take the closure of a

formula <f> with until operators to be closed under the operation

Svb(z.{ihUrh)) = {*.4>i,z.ih,z.Obl>iUrh)}

and add the following condition on the local consistency of a set § C Closure" (<j>) of
formulas:

z. (V>i Ufa) is in $ iff

either z.ifa is in $, or both z.tpi and z. Q (rpiUfa) are in §.

Finally, the fairness requirement on a 0-path §oi2 • • • is generalized to

z. (rpi Utj>i) € $,• implies z. $\ € ij for some j > i with 6 = ^ 6^
i<k<j

for all t > 0. It is not hard to see that the Lemmas 4.2, 4.3, 4.4, and 4.5 allow the addition

of until operators in this way.

Absolute time references

Secondly, let us accommodate absolute time references. Instead of generalizing the tableau

method to constant terms, which contain no variable, we can use a simple observation.

Suppose that we test the TPTL-formula <f> for satisfiability. Let i be a variable that does

not occur in (f> and replace every variable-free term c in <j> by the term x + c, thus obtaining

the new formula <j>R (which may contain free occurrences of x). The following lemma allows

us to reduce the satisfiability problem for <p to the satisfiability problem for the formula

x. 0 4>Rt which contains no absolute time references.

Lemma 4.6 (Absolute time references) A formula <f> of TPTL is satisfiable iff the

formula x. Q 4?1 is satisfiable, where x does not occur in $.

4.1. DECIDING TIMED TEMPORAL LOGIC 157

Proof of Lemma 4.6 (1) Let p — (er,J) be a timed state sequence. We define the timed

state sequence p' = (tr1,!1) such that V0 = 0, and e'i+l - Ci and Vi+1 = T; for all t > 0.

Clearly, if p \= <f>, then p' \=x. Q <t>-

(2) Let p = (<r,T) be a timed state sequence. We define the timed state sequence

p' = (i/.T') such that o\ = ei+i and T(= T<+i - T0 for all i > 0. Clearly, if p j= x. 0<f>,

then p' |= <j>. B

Note that the transformation from # to <j>R does not increase the number of operators

in <p nor the product of all constants that occur in <f>. The following theorem summarizes

our results about the tableau method.

Theorem 4.1 (Deciding TPTL) The validity problem for a formula <f> of TPTL can

be decided in deterministic time exponential in nk, where n - I is the number of boolean,

temporal, and freeze operators in tj>, and k is the product of all constants that occur in <p.

Note that the length / of any TPTL-formula (j>, whose constants are presented in a

logarithmic (e.g., binary) encoding, is within constant factors of n + log k. Thus we have

a decision procedure for TPTL that is doubly exponential in / (although only singly expo-

nential in n, the "untuned" part and, therefore, singly exponential for PTL). The algorithm

we have outlined can, of course, be improved in many ways. In particular, we may avoid the

construction of the entire initial tableau by starting with the initial state, which contains <f>,

and successively adding new states only when needed [130]. This stepwise procedure, how-

ever, does not lower the doubly exponential deterministic-time bound; in fact, as we wJl

show in the following subsection, the decision problem for TPTL is EXPSPACE-hard.

We also remark that while the monotonicity condition on timed state sequences is

essential for the tableau method to work, the progress condition on timed state sequences

(and ^-paths) can be omitted.

4.1.2 Complexity of timed temporal logic

We prove the following theorem, which establishes TPTL as being exponentially harder to

decide than its untimed base PTL, which has a PSPACE-complete decision problem [119].

Theorem 4.2 (Complexity of TPTL) The validity problem for TPTL is EXPSPACE-

complete (with respect to polynomial-time reduction).

nSS^SSSSEE33Z3BSSSSSS-^!X~I

158 CHAPTER 4. FINITE-STATE VERIFICATION

Proof of Theorem 4.2 The proof proceeds in two parts; we fiist show tb '■. JL'PTL is in

EXPSPACE, and then that it is EXPSPACE-hard. The first part Mows tLe argument that

PTL is in PSPACE, which builds on a nondeterministic version of the tableau-based decision

procedure [130]; the hardness part is patterned after the proof by Hopcroft and UUman

that the universality problem of regular expressions with exponentiation is EXPSPACE-
hard [62].

[EXPSPACE] It suffices to show that the complementary problem of checking the sat-

isfiability of a TPTL-formula is in nondeterministic EXPSPACE and, hence, by Savitch's

theorem, in (deterministic) EXPSPACE.

In particular, it can be checked in nondeterministic singly exponential space if the initial

tableau T{<j>) contains a 0-path of the form stated in Lemma 4.3. In trying to construct such

a #-path nondetenninistically, at each stage only the current vertex, the "loop-back" vertex,

and a vertex counter have to be retained in order to construct a successor vertex, loop back,

or, if the vertex counter exceeds the maximal length of the loop, fail. Since both the sue of

each vertex and the length of the loop have, by Lemma 4.2 and Lemma 4.3, respectively,

(singly) exponential representations in the length of <t>, it follows that this nondeterministic
procedure requires only exponential space.

[EXPSPACE-hardness] Consider a deterministic 2n-space-bounded Turing machine M.

For each input X of length n, we construct a TPTL-formula fa of length 0(n ■ log n) that

is valid iff M accepts X. By a standard complexity-theoretic argument, using the hierarchy

theorem for space, it follows that there is a constant c> 0 such that every Turing machine

that solves the validity problem for TPTL-formulas <f> of length I takes space S(l) > 2UI1"' l

infinitely often. Thus it suffices to construct, given the initial tape contents X,

1. a sufficiently succinct formula fa that describes the (unique) computation of M on
X as an infinite sequence of propositions, and

2. a sufficiently succinct formula 4> ACCEPT that characterizes the computation of M on
X as accepting.

Then the implication

<f>x -* 4> ACCEPT

is valid iff the machine M accepts the input X.

i:'i

Ui
f:'';
>

l
I I:
l:
:

I'i;

!'. I

4.1. DECIDING TIMED TEMPORAL LOGIC 159

We use a proposition p, and a proposition q, for every tape symbol t and machine state j

of M, respectively. In particular, po and go correspond to the special tape symbol "blank"

and the initial state of M. We use the following abbreviations for formulas:

Pi- Pi A Ai'^tnP»' A A-1?*)

nj: Pi A q, A hi'^i^Pi' A Aj'#j ^ij' >

s: A"1^»' A A-'ffi-

We represent configurations of M by p-state sequences of length 2n that are separated by

a-states; the position of the read-write head is marked by an r-state. The computation of

M on X is completely determined by the following two conditions:

(1) it starts with the initial configuration, and

(2) every configuration follows from the previous one by a move of M.

Both conditions can be expressed in TPTL. Take <f>x to consist of Ux. Q y. y = z + 1,

forcing time to resemble a state counter, and the following two conjuncts, which correspond

to the n quirements (1) and (2), respectively:

^INITIAL' S A Ox,,0 A X. A2<«<n DV- (V = * + * — PXi) A

x.Dy.{x + n<y < x + 2n -* po),

<)>MOVE- O«. (* — Oy. (y = x + 2n + 1 A *)) A

AP,QJI
D

*-{P * OQ AOO-R -* Oy.(y = * + 2n + 2 A fM(P,Q,R)))-

Here P, Q, and R each range over the propositions p\, tij, and *, and /M(P,(?,ä) refers to

the transition function of M. For instance, if M writes, in state j on input t', the symbol

k onto the tape, moves to the right, and enters state j', then fti[pi>ri'j>Pi") = Pk and

fil[ri'j,PiH,Pi'") = Ti»j'-

The computation of M on X is accepting iff it contains the accepting state F, which is

expressible in TPTL by the formula

4>ACCEPT'- 0\J*ijr-
i

The lengths of ^INITIAL, ÖMOVE, and 4>ACCEPT are 0{nlog n), 0(n), and 0(1), respectively

(recall that constants are represented in binary), thus implying the desired 0(n • log n)-

bound for fa- ■

*&r

160 CHAPTER 4. FINITE-STATE VERIFICATION

4.1.3 Timed extended temporal logic

By putting together the tableau methods for ETL [130] and TPTL, we develop a doubly-

exponential-time decision procedure for TETL. We are given a formula <j> of TETL and

wish to determine if 0 is satisfiable. For the sake of keeping the presentation simple, we

assume that all grammar operators in 4> correspond to productions of the form

g{au...a™) — Oi, \oi3G'{ajl,...ajn).

We also assume that <j> is of the form z. <j>', as usual.

First, we observe that the Lemmas 4.1, 4.5, and 4.6 hold for TETL as they do for
TPTL. It follows that

Lemma 4.6 Absolute time references can be handled as in TPTL.

Jfjmma 4.5 For checking the satisfiability of 4>, we may restrict ourselves to ib-bounded

timed state sequences, where k is the product of all constants that occur in <f>. All

time information can, therefore, again be modeled by ifc time-difference propositions,
Pnv(for all 0 < 6 < k.

Lar'ina 4.1 The TETL-formula z.rl>s updates all references in z. V> to the initial time z

by the time difference 6.

Next, we define the closure for grammar operators. The closure set Closure(z. $') of the

TETL-formula z. <(>' is the smallest set of formulas containing z. <f>' that is closed under the

operation Sub, whose effect on grammar operators is defined by the clause

S«6(z.£(^,...tfm)) = {z.^z.rp^z. OÖ'fe.-fe)}

To determine the number of symbols in a TETL-formula, we count grammar operator to

contribute the number of nonterminal symbols in the corresponding grammar. For this

purpose, we say that a nonterminal symbol occurs in a TETL-formula <f> iff it occurs in a

grammar that is denoted by a grammar operator in <f>. Let n — 1 be the number of boolean

connectives, freeze quantifiers, and nonterminal symbols in <p, and let Jb k be the product of

all constants that occur in 4>- By induction on the structure of 4>, we can show the analog
to Lemma 4.2 for TETL, namely that

\Closure(tf>)\ < 2nk

*%$

ft.,.

i

„vwuSUvi^jil ^tiJ^iiläiviw'^

4.1. DECIDING TIMED TEMPORAL LOGIC 161

for every TETL-fonnula <p.

The universe Closure'(<p) and the edge relation of the initial tableau T(<f>) for the TETL-

fonnula 4> is defined er Ln »he case of TPTL; a subset § of Closure'{<f>) is (maximally)

consistent iff it satisfies, in addition, the following condition on grammar operators:

2.g(ri>lt...rl;m)ism§ iff

either z. ^ is in $, or both 2. u\a and 2. 0 0'(lfo,••• V-jJ are in §.

We show that every model of the TETL-fonnula (f> conesponds to an infinite path through

the initial tableau T(4>) for <f> along which all eventualities are satisfied in time, and vice

versa. An eventuality "->2. Q(xl>i,... V»m)" is called fulßled along the finite path $0*1 • • • $*

through a tableau iff either z.ipi7 $ §0, or k > 1 and -^.^'(t^,,.. .!>,•.) •» is fulfilled along

the path $i§2 • • • $*• An infinite path

§ $0 -♦ $1 —♦ $2 "♦

through a tableau is a <p-path iff it satisfies, in addition to the initiality and progress con-

ditions, the following fairness requirement: for all formulas 2. G{ipi,...^w) in Closttre'(^)

and all x > 0,

if £(thi • • • *l>m) & $i> then the eventuality ->$(t/»i, • • • tfm) is fulfilled along some

finite segment $,$i+i... §*> with k > i, of §.

By combining the corresponding arguments for ETL and TPTL, we can prove for TETL

both Lemma 4.3, which bounds the sue of models, and Lemma 4.4, which establishes the

correctness of the tableau construction. Thus we have a decision procedure for TETL:

Lemma 4.7 (Initial tableau for TETL) The formula <f> of TETL is satisfiable iff the

initial tableau T(<f>) for <fi contains a d>-path.

Since the initial tableau contains 0(k • 2"*) vertices, each of size 0(nk), the initial

tableau T(<f>) can be constructed and checked for ^-paths in deterministic time exponential

in 0(nk). It follows that

Theorem 4.3 (Deciding TETL) The validity problem for a formula $ of TEIL can be

decided in deterministic time exponential in 0(nk), where n-listhe number of connectives,

i "I
I-, ,;

%

J J

\

i

;J

f '

Ijfo^ji

162 CHAPTER 4. FINITE-STATE VERIFICATION

quantifiers, and nonterminal symbols in cf>, and k is the product of all constants that occur

in (p.

Recall that a nonterminal symbol is counted to "occur" in a TETL-formula <j> even if the

corresponding grammar operator does not literally OCCJT in <f>, but the nonterminal symbol

is contain -;d in a grammar whose starting nonterminal symbol occurs in 4>. Also note that

the length of a TETL-formula whose constants are represented in binary, is 0(n + log k).

Consequently, the tableau-based decision procedure for TETL is, as in the case of TPTL,

doubly exponential in the length of the input formula (although only singly exponential in

n and, therefore, singly exponential for ETL).

Complexity of TETL

The following theorem shows that TETL is no harder to decide than TPTL.

Theorem 4.4 (Complexity of TETL) The validity problem for TETL is EXPSPACE-

complete (with respect to polynomial-time reduction).

Proof of Theorem 4.4 (1) To show that TETL is in EXPSPACE, we first use Lemma 4.3

to develop a nondeterministic exponential-space version of the tableau procedure that de-

termines if a TETL-formula is satisfiable, and then apply Savitch's theorem. We refer to

the corresponding proof for TPTL for details.

(2) The EXPSPACE-hardness of TETL follows immediately from the corresponding

result for TPTL. B

4.2 Deciding Metric Temporal Logic

We present a doubly-exponential-time, tableau-based decision procedure for MTL and show

that the satisfiability problem for TPTL is EXPSPACE-complete. This result establishes

that the decision problem for MTL is equally hard as the decision problem for TPTL,

and that MTL, too, corresponds to an elementary fragment of the nonelementary first-

order language £j. In Section 4.3, we will demonstrate how the tableau techniques can be

applied to verify MTL-properties of finite-state timed transition systems.

4.2. DECIDING METRIC TEMPORAL LOGIC 1C3

4.2.1 Metric tableaux

The tableau algorithm for MTL uses the techniques tha.t we have developed for TPTL.

The crucial property that guarantees the finiteness of tableaux is that, in both cases, the

temporal precedence between any two temporal contexts that are related by a timing con-

straint is uniquely determined. For TPTL-formulas, which contain only future operators,

this property is guaranteed by the monotonicity of time; for MTL-fonnulas, which may

contain past operators, it is due to the fact that MTL can relate only adjacent temporal

contexts.

Before giving a formal definition of the tableau method for MTL, we indicate first how

the algorithm proceeds for a sample input. Suppose that the time increases by one unit

from a state to its successor (in general, the time increase between states can be bounded

for any given formula, and thus reduced to a finite number of different cases). In order

to satisfy, say, the formula <0<e rj> in the current state, we have to satisfy either if> now, or

0<e-i i> in the succeeding state. Continuing this splitting of requirements into a present I

and a future part, we will eventually arrive at the condition 0<i ip, which forces ^ to be]

satisfied in the current state. Since every input formula <j> generates only a finite number of \

requirements on states in the described fashion,»/»is satisfiable iff it is satisfiable in a finite j

tableau. By bounding the maximal size of this tableau, we obtain the following result. I

I
Theorem 4.5 (Deciding MTL) The validity problem for a formula $ of MTL can be \

decided in deterministic time exponential in 0(nC), where n — 1 is the number of boolean \

and temporal operators m <j>, and (7 — 1 is the largest constant that occurs in $ as an interval I

end-point. J

I
Proof of Theorem 4.5 Suppose we are given an MTL-formula $ and wish to determine |

iff $ is valid; that is, iff its negation -i# is satisfiable. f

We define the closure set Closure^) of the MTL-formula ^ to be the smallest set |

containing <f> that is closed under the following operation Sub: J

I

Su6(V>i -»rh) = {tfi.tfej, I

Sttfc(©/vo = m, i
Sttb(©nJ0 = w, 1
SubfaUrk) = {A,rk}u{©WiUl-srJ>2)\6>0}, f

L^

BSEa«si2acaECBas^affi!E3Eaasss3iSS! IISZZEZIZ!S:!331

164 CHAPTER 4. FINITE-STATE VERIFICATION

Subi^Sn!?,} = {^i,va} J{©(V>iJ/-«^)!5>0}

such that

1. If I is an interval, then the expression 1-6 stands for the interval {t € N j t + 6 € /}.

Note that if / is bounded by the right end-point d, then I - 6 = It for all 6 > d, and

if J is unbounded and has the left end-point r, then I - 6 = N for all 6 > c. This

observation shows that the closure set of 4> is finite.

2. If J is a congruence expression the form =d c, then the expression 1-6 stands for the

unchanged congruence expression x =rf e.

Let n - 1 be the number of boolean and temporal operators in (f>, and let C - 1 be the

largest constant that occurs in 4> as an interval end-point. It is not hard to see that

\Closure{<j>)\ < 2nC.

As in TPTL, for checking the satisfiability of <f>, we may restrict ourselves to timed state

sequences p = (<r,T) all of whose time steps T; - T.-.x, for i > 0, are bounded by C + k',

where k' is the least common multiple of all d such a the congruence expression of the form

=d e occurs in <4. Let A = C + k'. The time information in p has, therefore, finite-state

character and can be modeled by the (new) time-difference propositions Prtvs and Cong^s,,

for 0 < 6 < A and 0 < 6' < A, As usual, the proposition Prtvf represents, in the initial

state, the initial time 6 and, in all other states, the time difference 6 from the predecessor

state; the proposition Cong^, represents, in any state, the remainder 6' modulo A of the

currert time. For ease of presentation we use, in addition, the time-difference propositions

Nexts, for 0 < 6 < A, to represent, in any state, the time difference 6 to the successor state.

Let Closure'{$) denote the set that is obtained from Closure^) by adding all of the

new propositions Prevs, Next,, and Cong^. A subset * of Closure"(6) is called (maxi-

mally) consistent iff it satisfies the following conditions, where all formulas range only over

Closure'(<f>) (let J be an interval):

• Previ € $ for precisely one 6 with 0 < 6 < A; this 6 € N is referred to as 6j.

• Next, € * for precisely one 6 with 0 < 6 < A; this 6 € N is referred to as 6$.

• Cong^ <= $ for precisely one 6 with 0 < 6 < A; this 6 € N is referred to as 7*.

4.2. DECIDING METRIC TEMPORAL LOGIC 165

• false g 4?.

• Vi -» ^2 € $ iff either Vi £ $ or ^ € $.

• rh Ui ih € $ iff

(1) / ^ 0 and

(2) either Oe/and^e*, ori&€§and ©(faUj^ rj>2) € $.

• in.U=iC^2 € $ iff either 7$ =j c and ^ 6 $, or V>i € $ and 0{inU=dCrl>2) £ $.

• ^1 Si V>2 € $ iff

(1) J # 0 and

(2) either 0 € J and V>2 € $, or Vi € $ and ©(^1 «Sj.^f V2) € $.

• Vi •?=,,£ V^ € $ iff either 7* =j c and ^2 € $, or ^ € # and ©(V»i U=tc *fo) € $.

The injtta/ taWeau T(^) for the MTL-formula ^ is a (finite) directed graph whose vertices

are the consistent subsets of Closure'(<[>), and which contains an edge from $ to $ iff all of

the following conditions are met (let I be an interval):

.** = *;.

• 7t s&7» + ij.

• For all 0/ V € Closure^), ©/^> € $ iff £} € 7 and V € *•

• For all ®B4e\l> € Closure^), ©=,e^ € # iff 7(*) s* e and ^ € ¥.

• For all ©/^ € Oostire(^), ©/V 6 * iff«» € I and rl> € *.

• For all ©=,e ip £ ao5«re(^), ©=,« V € * iff 7($) =4 c and V € #•

We show that all models of ^ correspond to certain infinite paths through the initial

tableau T(4>) for <p, and vice versa. An infinite path

§ : $0 —* $1 —* $» -* • • •

through a tableau is called a $-path iff it satisfies the following conditions (let 7 be an

interval):

166 CHAPTER 4. FINITE-STATE VERIFICATION

• §o contains no ©-formula,

• For all i > 0, faUjih € §i implies fa € f j for some j > i with Ei<4<j£+($fc) € I.

• For all i > 0, fa £44e fa € $i implies V>2 € $> for some j > i with 7($j) =d c.

• 6$. > 0 for infinitely many t > 0.

It is not difficult to show that an MTL-formula 4> is satisfiable iff the initial tableau T{<f)

for <f> contains a p-path; the proof is similar to the corresponding argument for TPTL.

Since the T(<f>) contains 0{k ■ 2nC) vertices, each of size 0(nC), where k is the product of

all constants that occur in 4>, the initial tableau for <f> can be constructed and checked for

^-paths in deterministic time exponential in 0{nC). 0

4.2.2 Complexity of metric temporal logic

Note that although the (worst-case) running time of the tableau algorithm is slightly faster

for MTL than for TPTL (for which the product of all constants appears in the exponent),

it is still doubly exponential in the length of the input formula (under the assumption of

binary encoding of constants). We show that the decision problem for MTL is indeed as
hard as the decision problem for 1PTL.

Theorem 4.6 (Comr .exity of MTL) The validity problem for MTL with or without

past temporal opev jors is EXPSPACE-complete.

Proof of Theorem 4.6 From a nondeterministic version of the tableau algorithm, it

follows that MTL is in EXPSPACE. The corresponding lower bound can be shown similarly

to the analogous result for TPTL, by simulating EXPSPACE-bounded Turing machines.

In particular, both of the TPTL-formulas ^INITIAL **& 4>UOVE that are used in the proof

of Theorem 4.2 can be directly translated into MTL without using past operators. B

We point out that while PTL is PSPACE-complete, both TPTL and MTL are expo-

nentially more expensive. In fact, a closer look at our proof of the EXPSPACE-hardness of

4.3. MODEL CHECKING 167

TPTL suggests that any extension of PTL that allows the expression of a certain minimal

set of timing constraints such as

°(P - 0=cff),

which enforces that "the time of one state is a constant distance c from the time of another

state," is EXPSPACE-hard, provided that all time constants are encoded in binary. Even

the simplification of the digital-clock semantics that identifies next-time with next-state

(i.e., time as a state counter) is of no help in complexity: our techniques can be used to

show that already the introduction of the abbreviation 0* f°r a sequence of k consecutive

next operators makes PTL EXPSPACE-hard. It follows that the succinct encoding of time

constants makes real-time reasoning (at least) exponentially more expensive than untimed

reasoning.

4.3 Model Checking

Model checking is a powerful and well-established technique for the automatic verification of

finite-state systems that compares a propositional temporal-logic specification of a system

against a state-graph description of the system (for a survey of model checking and its

applications, see, for example: [29]). Model-checking algorithms were first developed for

branching-time logics [28, 36]. We build on the model-checking algorithm by Lichtenstein

and Pnueli for the l'near-time propositional temporal logic PTL [83].

Let us briefly review the main ideas that underlie model checking in the untimed case.

Suppose that a system S is represented as a finite state graph (Kripke structure) T(S);

that is, all possible runs of 5 correspond to infinite paths through T(S) that satisfy certain

fairness requirements. Furthermore, suppose that the specification of 5 is given as a formula

4> of PTL. The tableau construction for testing the satisfiability of the negated formula -xp

can then be used to solve the verification problem:

Do all possible runs of the system S satisfy the specification <j>?

The algorithm proceeds in two steps:

1. We construct the initial tableau T(-xp) for ->^, which captures precisely the models

of -i#. Then we can reformulate the verification question as follows: is there an

3:?^S^iSE232!?C23

168 CHAPTER 1. FINITE-STATE VERIFICATION

infinite path that is common to both finite state graphs, T(S) and r(->0), and that

corresponds both to a possible run of 5 and a model of ->0? Clearly, the system 5

meets the specification <j> if and only if this is not the case.

2. The reformulated verification problem can be solved by a product construction on

finite Kripke structures. We construct the product of the two state graphs T(S) and

T(-(j>) and check if it contains an infinite path that satisfies certain fairness conditions.

The tableau methods for TPTL and MTL allow us to generalize the model-checking

approach to real-time systems and real-time properties. We define timed state graphs in

a way so that they subsume our system model — finite-state timed transition systems.

Then we define the product of such timed structures, which leads to an algorithm that

determines if a finite-state timed transition system meets a specification that is given in

TPTL or MTL. We also show that the problem of checking if a formula <f> of TPTL or

MTL is satisfied in a given structure is EXPSPACE-complete and thus, in general, equally

hard as deciding if <j> is satisfiable in any structure. The complexity of the model-checking

problem, however, is doubly exponential only in the sue of the formula, which is usually

much smaller than the size of the structure.

4.3.1 Finite-state real-time systems

Let us define the notion of finite-state real-time system as a finite state graph (Kripke

structure) that contains finitely many time-difference propositions. We call these timed

structures tableaux, and show that finite-state timed transition systems can, just like for-

mulas of TPTL and MTL, be represented as tableaux.

Timed Kripke structures

Let Ps be a finite set of propositions. We represent finite-state real-time systems by finite,

directed state graphs whose vertices are labeled by sets of propositions. Each vertex contains

finite

State information A proposition p € Ps holds at vertex v iff v is labeled with p.

4.3. MODEL CHECKING 169

Time information Every vertex is labeled with precisely one time-difference proposition

Prevg or Prev>s that indicates that the time difference from the predecessor vertices

is exactly S time units or at least S time units, respectively.

Formally, a (real-time) tableau T = (V,<r,S~,Vo,E) over the set Ps of propositions consists

of

• a finite set V of vertices,

• a state labeling function a: V —» 2Ps that labels every vertex v with a state o~v C P$,

• a time labeling function 6~ : V —» N X 2 that labels every vertex t> with a time-

difference proposition S~, which is either Prev$ or Prev>s for some S € N,

• a set VQ C V of initial vertices,

• a set E C V2 of edges.

In accordance with the intuitive operational semantics that is associated with a tableau,

we say that a timed state sequence p = (tr, T) over N is a computation of the tableau T iff

there is an infinite path voV\Vi ... through T such that for all t > 0,

(1) ff; = arVi and

(2) if S~ = Prevg, then Tj = T,_i -f 6; otherwise Tj > Tj_! + S~.

Thus every tableau T defines a digital real-time property — the set II(T) of computations

of T. We say that the tableau T satisfies the formula <j> of TPTL or MTL iff there is a

computation of T that is a model of <j>. Dually, the formula <f> is called valid over the tableau

T iff all computations of T are models of <j>:

n(T) c n(*).

The problem of model checking is to determine iff a formula is valid over a tableau. By

representing finite-state timed transition systems as tableaux, we can subject them to model-

checking algorithms.

170 CHAPTER 4. FINITE-STATE VERIFICATION

Finite-state timed transition systems

In Chapter 2, we have introduced timed transition systems as our model for real-time

systems. Here we associate a tableau T(S) with every finite-state timed transition system 5

such that the computations of T(S) are exactly the runs of 5:

11(7(5)) = Det(IL(S)).

Then we can use model checking to verify that all runs of a finite-state timed transition
system satisfy a formula of TPTL or MTL.

Let 5 = (£,0,7",/,u) be a finite-state timed transition system; that is, the set £ of

states is finite. We may therefore assume that every state of 5 is uniquely characterized by

a subset of a suitable finite set Ps of propositions (i.e., E = 2Ps). For instance, every timed

transition system that is defined in the transition diagram language of Chapter 2 uses the

interpretations of a finite set of variables as states; if each of these variables ranges over a

finite domain, then 5 is a finite-state transition system. We construct the tableau T(S) in
two steps:

1. First, we dispense with all timing requirements of the timed transition system S

by adding the timing information to the states. For this purpose, we have defined,

in Subsection 2.1.2, the explicit-dock transition system 5* = (£',©', T*) that is
associated with 5.

2. Secondly, we merge the infinite number of states of S' into a finite number of equiv-

alence classes.

The explicit-clock transition system S' contains infinitely many states, because the clock

variable t and the delay counters dT range over the infinite domain N. Let Cs -1 € N be the

largest constant of all finite minimal and maximal delays of S. To reduce the information

that is provided by the clock variable t to a finite domain, we use the following simple

observation. Let p = (ff.T) and p' = (ff,T) be two timed state sequences such that for all

x > 0, either T< - T;_i = TJ - TJ_X or both Tf - Ti_a > Cs and V{ - TJ_j > Cs. Then p is

a run of 5 iff p' is a run of 5. Thus it suffices to model time by the finite set

Prev = {Prev0,...Prevcs-i,Prev>cs}

4.3. MODEL CHECKING 171

of time-difference propositions. The information that is provided by the delay counters

has also finite-state character, because if the value of a delay counter is, in any state, at

least Cs, then its actual value is of no importance.

Thus we define the equivalence relation ~ on the states of 5' such that a ~ </ iff

(1) c~ = a'~ and

(2) for all transitions r € 7", either a[dr) = <r'(dr) < Cs or both <x(dT) > Cs

and (r'idr) > Cs

for all a,er' € E*. The tableau T(S) = {V,c,6~,V0,E) for 5 is defined as follows:

• Every vertex v = (s, t) of T(S) is a pair that consists of an equivalence class s of states

of 5* and a time-difference proposition t:

V = {[c-].» | a € 2'} x Prev.

• If v = ([ff-]..,*) for a € 2J, then <r„ = tr".

• Ifv= (s,t), then 5~ = t.

• A vertex t; = ([o-]^,t), for a € £*, is initial iff a~ € ©.

• There is an edge from the vertex ([<r]^,*) to the vertex (\<r%,t'), for <7,<r' € £*, iff

either there is a transition T € T such that (<r,ff') € T* and t' = Prero,

or (0,0*) € T£ and t' = P»"etV'(t)-<r(t)»

or (<r,ff') 6 TJ and or'(t) - <r(t) > Cs and t' = Pnv>Cs-

It is not hard to see that if the timed transition system S contains no maximal delays oo,

then the tableau T(S) for 5 defines the set Det(U(S)) of runs of 5. We have not provided

any means to place fairness assumptions on tableaux, which is necessary to handle infinite

upper-bound requirements and can be done analogously to the untimed case [83].

We remark that the tableau T(S) for 5 contains 0(|E| • Cs ') vertices, because there

are \T\ delay counters each of which ranges over a domain of size Cs + 1- Thus there is

an exponential blow-up in moving from the description of a timed transition system to a

tableau (independent of whether the maximal and minimal delays of the system are given

in a unary or a binary encoding).

172 CHAPTER 4. FINITE-STATE VERIFICATION

4.3.2 Model-checking algorithms

Suppose that we are given

1. a finite-state real-time system in form of a tableau Ts over the set Ps of propositions.

Let Cs be the largest constant S for which Ts contains a time-difference proposition
Prevg or Prev>s.

2. a formula <fi of TPTL or MTL over the set P of propositions. Recall that the product k

of all constants in ^ is the largest constant 6 for which the initial tableau T(<j>) for <f>

contains a time-difference proposition Prevg.

We define the product T = Ts X T{4>) of the two structures Ts and T(4>) to be a finite,

directed graph whose vertices are pairs of Ts-vertices and T(4>)-vertices:

• Each vertex (v, §) of T consists of a vertex v of Ts and a vertex $ of T(<t>) such that

1. the state information in t; and § is compatible; that is, p € <rv iff p € § (or

z.p € §, in the case of TPTL) for all propositions p e Ps n P.

2. the time information in v and § is compatible; that is, either S~ = 6$, or
Sj = Prevk and S~ € {Prevs,Prev>s} for some S > k.

• T contains an edge from the vertex (t^, §i) to the vertex (t>2, $2) iff Ts contains an
edge from t>i to v2 and T{<f>) contains an edge from #j to $2.

The size of the product Ts x T(<f>) is clearly linear in the product of the sizes of Ts and T{<f>).

For both TPTL and MTL we say that an infinite path through the product Ts x T{4>)

is a ^-path iff its second projection is a ^-path through T(^); it is an initialized ^-path

iff, in addition, it starts at a vertex whose first projection is an initial vertex of Ts- The

following lemma, which follows immediately from Lemma 4.4 and the proof of Theorem 4.5,

confirms that our product construction has the intended effect.

Lemma 4.8 (Tableau product) The tableau Ts satisfies the formula <f> of TPTL or

MTL iff the product Ts X T(<j>) contains an initialized <f>-path.

This lemma suggest a model-checking algorithm. To see if all runs of a finite-state timed
transition system S satisfy a formula <f> of TPTL or MTL:

P
11

m

p.i *
i

§■■■■

fhl

la

4.3. MODEL CHECKING 173

1. Construct the tableau T(S) for 5.

2. Construct the initial tableau T(->4>) for the negated formula -y<j>.

3. Construct the tableau product T - T{S) x T(->^).

4. Check if T contains a -i^-path. The system 5 meets the specification ^ iff this is not

the case.

According to different versions of fairness, various variants of the notion of Späths through

the tableau product can be defined, and checked for, as in the untimed case [83]. This allows

an extension of the method to arbitrary finite-state timed transition systems, which may

contain maximal delays of co. Since a structure can be checked for 0-paths in polynomial

time, the running time of the algorithm is determined by the size of the tableau product T,

which contains 0(\T{S)\ •]T(<f>)\) vertices. Recall that the size of T(S) may be exponentially

larger than the description of 5, and the size of T(<f>) may be two exponentials larger than (j>

itself. Thus

Proposition 4.1 (Model checking) The problem if all runs of a finite-state timed tran-

sition system S are models of a formula <f> of TPTL or MTL can be decided in deterministic

time exponential in \S\ ■ 21*', where \S\ is the size of the system description and \<f>\ is the

length of the formula.

The model-checking algorithm we have outlined can, of course, be streamlined in myriad

ways. To begin with, it is not necessary to construct both tableaux and the product

in their entirety, but all four steps of the algorithm can be overlapped. For details, we

refer the reader to recent developments in untimed model-checking procedures (see, for

example, [24]). We also remark that the product construction of timed structures can

be used to check if one finite-state timed transition system implements (refines) another

finite-state timed transition system.

m

1

4.3.3 Complexity of model checking

We show that the problem of determining if a formula ^ of TPTL cr MTL is valid in a given

structure is, in general, equally hard as the problem of determining if ^ is unconditionally

valid.

I
1*
I? -,
f" i
f' 'i

174 CHAPTER 4. FINITE-STATE VERIFICATION

Theorem 4.7 (Complexity of model checking) The problem of deciding if a formula

of TPTL or MTL (with or without past temporal operators) is valid over a tableau is

EXPSPA CE-complete.

Proof of Theorem 4.7 [EXPSPACE] As is the case for PTL [119], timed and metric

model checking are polynomial-time reducible to the validity problems for TPTL and MTL,

respectively. Given the formula <j> and the tableau T = (V,c,S~,V0,E), we construct a

formula <fo, whose length depends polynomially on the sizes of both T and 0, and which is

valid iff ^ is valid over T. For every vertex u,- € V, we introduce a new proposition pi and
build the MTL-formula

Pi - (A iA A -1?A V ©«-. a-). (*)

where)f- stands for the time-bounded operator ©_$ if 6~ = Prer«, and for ©>g if

5~ = Pret>>$. Furthermore, let the formula ij> assert that exactly one of the propositions

Pi, for Vi € V, is true. It is not hard to see that the formula

(V Pi A D(tf A /\ T/-,)) -» ^ (£r)
vi€V0 v,€V

has the desired properties. Note that the antecedent of the formula <fo contains no past

operators and, thus, can be directly translated into TPTL.

[EXPSPACE-hardness] To reduce the validity problems for TPTL and MTL to model

checking, it suffices to give a tableau T of constant size such that formula <f> is valid iff <j>

is valid over T. Simply choose T = (V,<r,6-,V,V2) to be the complete graph over all

subsets of P, the propositions that occur in <f>, and label all vertices by the time-difference
proposition Pret>>0. D

Since our translation from finite-state timed transition systems to tableaux involves an

exponential blow-up in size, Theorem 4.7 does locate the exact complexity of verifying

finite-state timed transition systems. Indeed, as we shall see next, a finite-state timed

transition system can be directly er ceded in TPTL or MTL without an exponential factor.

Encoding finite-state transition systems

Let P be a finite set of propositions and 5 = (E,0,T,/,u) a timed transition system

with E = 2P. We construct a formula <j>s of MTL without past operators, the logical

.,./.

PI

h

%A

t'%

*>'-y?"

4.3. MODEL CHECKING 175

representation of the finite-state system S, such that the possible runs of 5 are exactly the

models of 4>s', that is,

Det(Jl(S)) = lifts)-

Since <ps will contain no past operators, it can be directly translated into TPTL.

For all states cr C P of 5, let <f>g be the conjunction

A 9 A A -S

that characterizes the state tr. The condition that a transition r £ T is enabled is then

expressed by the formula

enabled(r) : \f <j>c.
3<T'6£.(«rA')€r

Recall that all runs are deterministic timed statf; sequences; that is,

(«tosr)

For every transition r € T, we use a new proposition takenr that indicates, in any state of

a run of 5, if the transition r is taken. Consequently, we require that

(#)

«aienT -» V ft, A ©&..).

The formula #s consists, in addition to the conjunct

<f>DET A D /\ (4 A <£),

of the following four conjunctive parts:

Initiality V,€e $*•

Consecution oyTS7takenT.

Deterministic lower bound AT€T E(-ienaM«f(T) —» D<iT ->iofcenT).

Deterministic upper bovad hre7 0(enabled(T) ~* ^u, (faien-,. V -ienabled(r)).

I :1

1» t

ft■.■' ■' ,'•:■■;

I 1

{j

^

176 CHAPTER 4. FINITE-STATE VERH'ICATION

It is not hard to see that a timed state sequence p is indeed a model of <j>s iff p is a rtin of

the system 5. Three additional remarks axe in order.

1. The logical representation reveals that every real-time property that is defined by

a timed transition system is an intersection of the time-invariant property that is

defined by the underlying untimed transition system, bounded-invariance properties

that ensure all lower-bound requirements, and bounded-response properties that en-

sure the upper-bound requirements. It fellows that timed transition systems can be

encoded by any logic that that can express bounded-invariance and bounded-response

properties. Also, the digitizability of the set of runs of S follows as a corollary to
Proposition 3.1.

2. If every pair of states in £ is related by at most one transition in T, then the auxiliary

propositions takeur are not needed and the formula 4>s employs, just like 5, only
propositions from P:

taken,. ~ \f (fa A ©<£„.)■
(<r,<r')€T

We say that a timed transition system that satisfies this condition is terse. The

terseness of S ensures that every run p of S uniquely determines the infinite sequence

of transitions that are taken along p. Note that terseness, however, does not imply

determinism. We point out that, for example, all timed transition systems that are

defined in the timed transition diagram language are terse.

3. Note that the length of the formula <j>s is polynomially related to the size of the

description of 5 (provided that all natural number constants in fe and 5 are given by

the same encoding). By an argument similar to the proof of Theorem 4.7, it follows

that the problem of verifying a finite-state timed transition system with respect to a

TPTL-specification or an MTL-specification is in EXPSPACE.

m

Chapter 5

Deductive Verification:

General Part

In Chapter 4, we have shown that the real-time temporal l^jic TPTL yields to algorithmic

techniques for the verification of finite-state systems. For a given timed transition system S,

the tableau-hased methods, however, may not be

1. applicable, because the state space of 5 is infinite. For exampte, thir is the case for all

programs that contain variables that range over infinite domains, such as the integers.

2. feasible, because the state spice of 5 is too large. This problem, which is knoTU

as the "state explosion problem," arises especially with highly parallel systems, as

the number of states in a transition system grows exponentially with the number of

parallel processes. The growth of the state space is particularly hindering for state-

based real-time verification, which is, as we have seen, exponenti&lly more expensive

than untimed verification.

Thus it is imperative that a formal approach to real-time verification provides both semantic

(i.e., algorithmic) as well as syntactic (i.e., deductive) methods. In this chapter, we develop

a complete proof system for TPTL to complement the model-checking algorithm. The

proof system can be used for the deductive verification of real-time systems even if they

cannot be represented as finite-state graphs.

Just as p.. oof systems for the propositional temporal logic PTL consist of a general,

modal, part and special axioms for linear structures, we arrive at the proof system for

177

■H

178 CHAPTER 5. DEDUCTHT VERIFICATION: GENERAL PART

TPTL in two steps. First (in Section 5.1), we axiomatize the freeze quantifier for arbitrary

modal lopes that are interpreted over Kripke structures in which a value is associated with

every possible world, completely independent of the notion of "time." Since these modal

logics are fragments of the corresponding first-order versions, we dub them half-order. We

also show that half-order modal logic generalizes the classical first-order predicate calculus,

which can be embedded.

Secondly (in Section 5.2), we obtain half-order temporal logic by restricting ourselves

to certain linear structures. We interpret possible worlds as system states, the accessibility

relation as temporal ordering between states, and the value that is associated with a state

as its time. The resulting structures are timed state sequences and, hence, precisely the

interpretations for TPTL. By adding appropriate axioms for linear structures and the

timing constraints that are admitted in TPTL, we obtain a complete proof system for

TFTL. In fact, the choice of timing constraints of TPTL turns out to be crucial; we show

that half-order temporal logic in general is II\ -hard, and therefore not axiomatizable.

Finally (in Section 5.3), we indicate how the proof system for TPTL can be used to

verify TPTL-specifications of timed transition systems.

J

■•

im

»*

5.1 Half-order Modal Logic

We introduce modal logics that are interpreted over Kripke structures each of whose possible

worlds (states) s has a value \s\ associated with it. OrÜtary first-order function and relation

symbols, including equality, perform operations and '.ests on these values. However, instea .

of ordinary universal (and existential) quantification, the access to values is kept extremely

local: the freeze quantifier "z." binds z to the value that is associated with the current

state. For example, the formula x. Oy-p(x,v)» true in an interpretation with initial stat^ »

iff there is a state t accessible from s such trat the relation p, as interpreted in t, holds

between the value \s\ associated with $ and the value |t| associated with t.

There is a wide, and largely confusing, variety of different ways to add conventional quan-

tification to modal logic, for only some of which completeness results have been achieved,

and some of which are known to be incomplete (see [43] for an excellent survey). The

situation for the freeze quantifier is, fortunately, much cleaner: we show that modal log-

ics with freeze quantification are axiomatizable, yet not necessarily decidable, fragments of
w

11

5.1. HALF-ORDER MODAL LOGIC 179

certain corresponding first-order modal logics. This explains the attribute "half-order" for

the freeze quantifier.

5.1.1 Syntax and semantics

The formulas of half-order modal logic are built from first-order atoms, which include equa-

tions, by boolean connectives, the modal operator D, and the freeze quantifier. Let V be

an infinite set of variables, and F and R be sets of function and relation symbols, respec-

tively. We assume that all of these sets can be effectively enumerated. The terms r, atomic

formulas a, and formulas <f> of half-order modal logic are inductively denned as follows:

T := x\ff

a := TTJ = TJ | pir

^ := Q | false | fa -+ fa | 00 | z. <j>

for x € V, f € F, and p € Ä- We write * to denote a tuple of terms; for example, if / is

a binary function symbol then fit stands for f*i*2t or /(JT1,T2). The boolean connectives

true, -i, A, V, and «-» are defined in terms of fals2 and -» in the standard way; O^ is an

abbreviation for ->O-i0. Throughout this chapter, we use x and a (possibly subscripted) to

stand for arbitrary terms and atomic formulas, respectively; formulas are, as usual, denoted

by fa ip, and <p.

An interpretation

M = (£,-»o.T,||,gc]«€v,[S!/er.b>W>*o)

for half-order modal logic consists of

• a set £ of states,

• an accessibility relation -*a Q £2 oa the states,

• a set T of values,
• a value function ||: £ -» T that associates a value \s\ with every state a,

• a rigid assignment function [r] € T for all variables s € V,

• a rigid assignment function [/]: f -* T for all function symbols / 6 F,

• a flexible assignment function [p]: £ -» 2* for all relation symbols p € R,

• an initial state *o € £•

ISO CHAPTER 5. DEDUCm'E VERIFICATION: GENERAL PART

Note that all terms are given a state-independent (rigid) meaning, while the interpretation

of relation symbols is state-dependent (flexible). The rigidity restriction on terms is required

for the completeness proof; the flexibility of relation symbols is necessary to cover TPTL,

whose prepositions are interpreted in a state-dependent fashion.

The interpretation M is a model of the formula <j> iff M r= 0, for the following inductive

definition of the satisfaction relation j= :

M N *i = *2 hT fa} = [xj], for [/*! = !/](!*]).

M f= px iff I*J 6 M(*o)-

M t& false.

M ^ fa —► #2 iff M ±= fa implies M j= fa-

M \= 2^ iff M[s0 := s] j= 4> for all « € £ with *o -»a ■»•

M^=i.^ iff ,M[[x] := |«o|] 1= <t>-

Here A1[JO := »] denotes the interpretation that differs from M. only in its initial state, s;

the interpretation <M[[xJ := |«ol] differs from M only in its assignment function for x. Thus,

the semantic clause for formulas of the form 0# specifies that ^ is interpreted in all states

accessible from the current state. The clause for x. $ asserts that all occurrences of x in $

refer to the value that is associated with the current state.

The formula # is satisfiable (valid) iff some (every) interpretation is a model of $. We

write ^= 4> to denote that <j> is valid. Two formulas are equivalent iff they have the same

models. While it is customary in modal logic to separate the initial state from a Kripke

structure, we have merged both components of an interpretation, because we are only
interested in general validity, not validity in a given structure.

Observe that we can faithfully embed half-order modal logic into a first-order modal

logic with the set T of values as constant domain for all states, and rigid terms, with the

exception of one flexible constant symbol, say t, that denotes, in every state, the value

associated with that state; that is, |t](«) = |«|. The freeze quantifier x.^ is translated as

Vx. (x = t -♦ 4>)

I,
'

/ •'■

■yu-immii'TwltiW""^!

5.2. HALF-ORDER MODAL LOGIC 181

(or, equivalently, 3x.(x = t A 0)). In other words, half-order modal logic captures the

fragment of first-order modal logic in which every rigid (global) variable is, immediately

upon introduction, bound to the current value of the flexible (state) variable t. This makes

the conventional first-order quantifiers superfluous.

5.1.2 Proof system

Let Kp be the propositional modal logic that is determined by the class of all Kripke

structures. We extend the proof system for Kj> by axioms and inference roles for both

the freeze quantifier and equality. Recall that the deductive calculus for Kp consists of a

complete proof system PROP for propositional logic, say,

PROP1 all tautologies are axioms,

from <fa

PROP2 and fo -> <fa

infer fa,

as well as the following axiom schema and necessitation rule, which completely characterize

the modal operator O with respect to Kripke semantics [81]:

Kl a(fa -► fa) -* Ofa -♦ Ofa,

from ^
K2

infer O^.

Let us abbreviate the formula ^ —► Oxj> to ^ => i> (this convention will serve our purposes

better than the standard interpretation of # => $ as D(^ -* V)); the operator =* associates

to the right, as does -». The freeze quantifier is characterized by an axiom schema that

asserts its functionality,

Ql x.(fa -♦ fa) ~ (x.fa — z.fa),

and an introduction role for every modal context,

from fa => ••• s> 4>n => V»
Q2

infer fa s> $„ =» x. Vs provided that * j? fa tax all 1 < t" < n

/!

•f r

/

A'

IIMMBWB.'WLJMWB;
1
« HK*Jg»Mg,WlwWM^^ «HBII^MIfcBMBBMMmBtti^^

1S2 CHAPTER 5. DEDUCTIVE VERIFICATION: GENERAL PART

(we ^rite x £ # iff the variable x occurs freely in 4>). The simplest instances of this rule

(take n = 0) are of the form

Q2-
from d>

infer x.<p.

Only the elimination of vacuous quantifier occurrences is sound:

Q3 x.4> ~ <p if x g <f>.

Let#(xi := x2) (and ^[xi := *2]) denote a formula that results from <p by safely replacing

zero, one, or more (all, respectively) free occurrences of Ti by x2. Safe replacement means,

as usual, that no free occurrence of Xj that is replaced, is within the scope of a quantifier

binding a variable of x2; whenever we write <p{x^ := x2j, there is the implicit condition that

all free occurrences of xj in <j> can be safely replaced by x2. We add conventional congruence

axioms for equality, for instance,

EQ1 x = x,

EQ2 xi = xs -» Q -» Q(XI := x2),

two axiom schemata that assert the rigidity of terms,

RIG1 xj = x2 -♦ Oxj = x2,

RIG2 xa £ xj -» üxi 5* xs,

and an axiom schema that states that the value associated with every state is unique,

QEQ x.y.z = y.

To tammarue, we are given the logical axioms PROPl, Kl, Ql, QS, EQl-2, RIGl-

2, and QEQ, and the inference rides PROP2, K2, and Q2. A half-order normal logic

is a set of formulas that contains all logical axioms and is closed under all inference rules.

Note that, since the proof system includes PROP and Kl-2, every normal logic contains

all instances of valid schemata of the prepositional modal logic K/>.

5.1. HALF-ORDER MODAL LOGIC

Sample proofs

183

We demonstrate the use of the proof system by deriving some additional theorems of half-

order modal logic that will be useful later.

Lemma 5.1 (Sample theorems) Any normal logic contains the following formulas:

Q4 z.~<4> «-» -<x.<t>.

EQ3 xi = x2 -♦ ^ -» tf>(*i'■= *2)■

EQ4 r.x = x -» (x.<t> *-* $z :=»]).

VAR1 x.<f> -* y.<j>[x:=y] ify&4>-
VAR2 (f> «-» 4>' if <f>' results from 4> by safe renaming of bound variables.

VAR3 x.y.<j> ♦-» x.<j>[y:=x].

Proof of Lemma 5.1 Q4 states that the freeze quantifier is its own dual. It follows from

Ql:

•(& - fob*) *■* (*•& -» x.false)

by Q3 and PROP.

EQ3 generalizes the equality axiom EQ2 to arbitrary formulas 0. To establish it, we

use induction on the structure of 4>. The atomic base case holds by EQ2. The prepositional

cases follow from the induction hypothesis by PROP. Observe that

n = x2 - Cty -» (D^)(x! := x2)

equals
T! = xa -» Cty — 0<f>(*i := xa>,

which follows from the induction hypothesis by K2, Kl, RIGl, and PROP. If x g xx and

x g »a, then (x.#){xi := x2) equals x.#(xi := x2), and

T1=X2 -» x.j — x.^(xi :=x2),

follows from the induction hypothesis by Q2", Ql, Q3, and PROP. If, on the other hand,

x € xi or * € xa, then (x. ^)(xi := x2) must be x. fa the corresponding inductive step holds

by PROP.

•

184 CHAPTER 5. DEDUCTHT VERIFICATION: GENERAL PART

From now on, we will often omit to mention applications of PROP explicitly. Similarly

to our use of PROP, we may refer to any of Kl-2 and Ql-4 simply by K or Q. We write

Q" if all applications of the rule Q2 are instances of Q2".

EQ4 will be used extensively in the completeness proof, and can be derived from EQ3

by Q"

VARl shows that bound variables can be renamed at the top level of formulas; it follows

from EQ4 by Q* and QEQ.

VAR2 generalizes VARl and is shown by structural induction.

VAR3 demonstrates that adjacent quantifiers can be combined; it follows from EQ4 by

Q' and QEQ. Together with Ql, VAR3 implies that every formula 4> is equivalent to some

formula x. $' that contains at most one quantifier per modal level; that is, every quantifier

in <t>' follows a modal operator. Alternatively, any formula can be put into a normal form

in which every quantifier precedes a modal operator or an atomic formula. B

Soundness

Let $ be a set of formulas and A* the intersection of all normal logics containing $. Clearly,

A* is again a normal logic; the formulas cf $ are called the nonlogical axioms of A». In
particular, K = Ag is the smallest normal logic, and ± = A|^e}, the set of all formulas, is

the largest one. Our goal is to show that K is precisely the set of all valid formulas; that is,

that the given proof system is both sound and complete for half-order modal logic. First

we show that every formula of K is true under every interpretation; the completeness proof

is deferred to the next subsection.

Lemma 5.2 (Soundness) The logical axioms are valid. If all of the antecedents of an

inference rule are valid, then so is the consequent.

Proof of Lemma 5.2 The soundness of PROP, Kl, Ql, EQl-2, RIG 1-2, and QEQ

follows immediately from the definition of truth under an interpretation. The argument for
K2 is the same as in propositional modal logic.

To show Q3 to be valid, we use the following fact:

M |= 4> iff M[lz] := u] \= tf> for all * $ <j> and values u of M. (t)

5.1. HALF-ORDER MODAL LOGIC 185

This can be established by induction on the structure of <f>.

It remains to be shown that Q2 is sound. Suppose that 4>i =>•••=> #n => i> is valid

and x £ (f>i for all 1 < t < n. Now consider an arbitrary interpretation M, and show that

fa =>...=> ^n => x. ^ is true under Al. Let *o be the initial state of M, and let

Assume that the interpretation M[s0 := «,■] ^= fa for all 1 < »' < n, and show that «.^ is

true under M[so := *„]. Since fo =»•••=> #n => V is valid, it is in particular true under

M[\x] := |a„|]. By (f), we infer from JM[50 := *,•] (= & and z g & that

•M[s0 := *<>M ••= l*n|] 1= 4>i

for all 1 < t < n. The desired conclusion M\s0 := sn, [x] := |«„|] |= ip follows. B

5.1.3 Completeness

Our completeness proof is typical for quantified modal logics, and combines techniques from

both propositional modal logic and classical first-order logic. The organization of the proof

follows largely similar proofs that are surveyed by Garson [43].

• As is common in propositional modal logic, we construct, for any consistent formula, a
model whose states are maximally consistent sets. The basic idea of the construction

of this "canonical'' model is to guarantee that all formulas that are contained in a

state, are true in that state.

• As usual in Henkin-type proofs of the completeness of classical first-order logic, we

take as the set of values the equivalence classes of terms under equality (which requires

the rigidity of terms) [55].

A completeness condition has to be put on the maximally consistent sets to assure that

all of them have values associated with them. So in order to give the canonical-model

construction, we have to develop the notions of consistency and completeness of sets of

formulas first.

A..,.,..

186 CHAPTER 5. DEDUCTWE VERIFICATION: CJNERAL PART

Consistent sets

Given a normal logic A, we write $ HA <p iff

fa _..._♦ 0n _♦ ^ £ \

for some finite subset {& | 1 < t < n} of $, and HA ^ iff <f> £ A. Throughout this subsection,

we assume A ^ 1 to be fixed, and suppress the subscript of the derivability relation h .

The concept of consistency is the familiar one. A set $ of formulas is called consistent

ifi" $ \f false; it is maximally consistent iff, furthermore, either <j> € $ or -up € § for all

formulas #. The following lemma is, as usual, established using PROP.

Lemma 5.3 (Consistency) For every set $ of formulas and formula 4>:

(1) $ U {->(£} is consistent iff $ \f fa

(2) If $ is consistent, then either § U {</>} or $ U {~«t>} is consistent.

(3) For any maximally consistent set $, fa -* fa € $ iff 4>\ & $ or fa 6 $.

Complete s^ts

By <£ - x we denote a *et of formulas that result from binding all free occurrences of x

in ^ by a single quantifier. More precisely, </> — x is the smallest set satisfying the following

condition: if <j> is of the form

*i =>•••=> tf„ => tf,

where i £ & for all 1 < i < n, then

^ => ••• => ^n => z.^i £ 4>-X.

Note that, in particular, z.$ €<l>-x.

A set $ of formulas is complete iff § I- #[z := x] for all terms * implies $ I- 4>' for

all #' € ^ - as. By part (1) of Lemma 5.3, it follows that completeness is equivalent to

the condition that, if $ U {-*<(>'} is consistent and <f>' € <j> — x for some formula ^ and

variable x, then there is a term x such that § U {-<4>[x := r]} is consistent. In particular,

the completeness of a set $ ensures that, whenever $ contains the formulas <j>[x := r]

for all terms x, then 9 entails x. fa This means, intuitively speaking, that some term * is

h.*>^a^.,^~«

5.1. HALF-ORDER MODAL LOGIC 187

interpreted as the value of the current state. The general form of the completeness condition

is necessary to guarantee this property, which allows us to assign terms as values to complete

sets, for all states in the canonical model.

Saturated sets

Maximally consistent, complete sets of formulas are called saturated. Given a consistent

formula <fo, we will define a model for fa whose states are saturated sets. Part (1) of

the following lemma ensures that <f>o is contained in some saturated set, while part (2)

guarantees that that there are enough such sets for constructing a model. Note that the

general form of the quantifier introduction rule Q2 is needed to show the former.

Lemma 5.4 (Existence of saturated extensions)

(1) Every finite consistent set of formulas has a saturated extension.

(2) Every complete consistent set of formulas has a saturated extension.

Proof of Lemma 5.4 Both parts are shown by applying variants of the Lindenbaum

procedure to extend a consistent set $o to j. maximally consistent set $. Enumerate all

formulas <fo, fa,..., and let §i+a, for all» > 0, be either $U {&}, if this set is still consistent,

or $,• U {->&}, otherwise. Each set $,• is consistent by part (2) of Lemma 5.3, implying that

«>o

is maximally consistent.

(1) Suppose that §0 is finite. Then we can guarantee the completeness of $ as follows:

whenever §,• is extended by a formula ->$' and # € ^ - x fat some formula # and variable x,

then we add also ->#[z := y], for some new variable y £ §j U {#}. Although at every stage

several new formulas may be added, each set $j is finite, which assures the existence of new

variables at all future stages. It remains to be shown that this process preserves consistency.

Assume that $ U {-xp', -><t>[x := y]} is inconsistent; that is,

r- §f -* -y<f>' -* ->#z := y] -» false (f)

for some conjunction §/ of formulas in §. We derive a contradiction, by showing that, in

this case, already

I- */ -» V - false, (J)

- —*

188 CHAPTER 5. DEDUCTIVE VERIFICATION: GENERAL PART

implying the inconsistency of $ U {->#'}. Let 4>' be <f>1 =>••=> <pn =j> x. ^', with z £ fa for

all 1 < i < n. Use Q to infer from (f) that

h §/ — -i<j/ — 0i => ••• => <£n r* j,.^[z:=j/],

and conclude (J) by VAR2 and PROP.

(2) First we show that, if a set $ is complete, then so is $ U {<f>}. Assume that

$ U {4>} h ip[x := x]

for all terms x, let z be such that x g <f> and ip' E V - i; by VAR2 it suffices to show thai

$ U {<p} h p'. From our assumption, it follows by PROP that

$ I- ^ —► y>[z := x]

for all terms x; hence § h 0 -» ^' by the completeness of § (and Q", in case <p' equals

x. <p). The desired conclusion follows.

Now suppose that §0 is complete. Then all the finite extensions §;, i > 0, are complete;

that is, whenever §; is about to be extended by the formula ->$' and (f>' € <j> - x for some

formula <f>, there exists a term x such that §j U {->4>{x := x]} is consistent. We extend §<

in this fashion, and continue the Lindenbaum process by checking whether -*<f>' can still be

added consistently. Since every formula contains only a finite number of quantifiers, each

stage is completed within a finite number of steps. B

In the canonical model, the value associated with a state (saturated set) a containing

x. T = x will be the equivalen;e class of the term x under equality. The next lemma

guarantees that such a term exists (part (4)), and that equality is a congruence relation

(parts (1) to (3)).

(1) ss, = {(x!,X2) I xa = x2 € s} is an equivalence relation.

(2) xj A, #2 implies that /ifi ss, /x2 for all f € F.

(3) *i ss, x2 andpxj € s implies j>x2 € s for dip £ R.

(4) {x | i.i = x € s} = [x]^, for some term x.

ft
l

Lemma 5.5 (Value of saturated sets) For every saturated set s of formulas: *|

a

5.1. HALF-ORDER MODAL LOGIC 189

Proof of Lemma 5.5 Parts (1), (2), and (3) follow from EQ.

(4) QEQ and Q4 imply that -iy. -iz.y = x 6 s. Since s is complete, z.x, = x € s for

some term x, not containing i; thus z.z = x, £ s by EQ and Q". From EQ4:

z.x-"K\ -» (x.z = x2 «-» »1 = x2),

we infer that [x,]-., = {x | x. x = x € s}. 0

Canonical model

Now we are ready to define the canonical modelten a given consistent formula 0o- ^et

M(4n>) = (2,-»D,T,||,Ia!]«ev,[/l/€F.blp€Ä.*o)

be an interpretation such that:

• so is a saturated extension of {4>o}- By » we denote a,0.

• S is the set of saturated sets s with K, = ==.

• <-»Dt iff # € t for all O0 € s.
• T is the set of equivalence classes [x]--.

• |s| = {x I x. z = x £ s}.

• [*] = [*]*.

• mm») = [/*]*■ |
• [*]* 6 bl(*) iff px € 5. I I

Note that the interpretation M(<po) is well-defined: a saturated extension of {fa} exists f

by part (1) of Lemma 5.4; Lemma 5.5 guarantees that ss is an equivalence relation, that |

\s\ € T, and that f/J and [p] are properly defined. f
i

The values of the canonical model are equivalence classes of terms under equality. It |

is straightforward to show, by structural induction, that all terms are interpreted as them- I

selves, modulo equality. §

Lemma 5.6 (Term model) |x] = [x]Ä.

The states of the canonical model are saturated sets. The following main theorem shows

that every state s of M(<f>o) contains precisely the formulas that are true at 3. Since fo € *oi

it follows immediately that the interpretation M(<j>o) is a model of fo.

r

r

m&

1

190 CHAPTER 5. DEDUCTWE VERIFICATION: GENERAL PART

Theorem 5.1 (Canonical model) Let M. be a canonical model (of any formula) with

the initial state so. Then 4> £ s iff M[SQ := a] fc= <j> for every state a of M and every

formula <f>.

Proof of Theorem 5.1 We apply induction on the structure of <f>. The atomic cases fallow

from Lemma 5.6. The prepositional cases are consequences of the induction hypothesis and

part (3) of Lemma 5.3.

If Dip £ s and s —»n i, then <f> £ s and, by the induction hypothesis, M[so ■— s] \= $■

Now assume that U<f> £ s — that is, ->D^ £ a —, and show that M{*o '•= *] (£ D<j>. This

follows from Lemma 5.8 (see below) by the induction hypothesis.

For the quantifier case, choose a term T, such that x.x = x4 £ s. Consequently, we

have that M[so := s] t= z.^iff M[so := a,{x} := |«o|] \= 4 "T, by Lemma 5.7 (given below),

M[SQ := s] i= 4>\x := r,} iff, by the induction hypothesis, 4>[x :— r,] £ a. From EQ4:

X.X—T, —» (z.^ «-► <f>[x := *,]),

we conclude that M[so := a] |= x. <j> iff x. 0 £ s. ■

In the proof of Theorem 5.1, we invoked the following two lemmas. To show that

substitution behaves as expected, can be done by straightforward structural induction.

To show that there are enough states in the canonical model, we use the fact that every

complete consistent complete set has a saturated extension.

Lemma 5.7 (Substitution) M[[x) := [*■]] (= $ iff M (= (j>[x := *].

Lemma 5.8 (Succession) If a £ £ and ->0# 6 *, then there is a t £ £ such that a -»a t

Proof of Lemma 5.8 Suppose that a £ £ and -iO# € «. Let

$ = {^|D^i}uH}.

We show that $ is (1) consistent and (2) complete. Thus, a »aiurated extension t of $ exists

by part (2) of Lemma 5.4; furthermore, t £ I because »«= a:, by BIG 1-2, and a -*o t by

the definition of -*o-

MM

5.1. HALF-ORDER MODAL LOGIC 191

(1) Suppose that $ is inconsistent, that is,

I- ^fi —♦•••—♦ V'n ~» ""^ -* /tt£sC

for some □<& € «, 1 < « < n. By K2 and repeated application of Kl,

O(-i0 -» /o£»e) g s,

implying that a<£ € * (use K). Since also ->0<^ € *, it follows that s is inconsistent, a

contradiction.

(2) Assume that $ i- <p[z := r] for all terms x, let x be such that z g ^ and <p' € ¥> - *;

by VAK.2 it suffices to show that § H y>'. Similarly to part (1), by K it follows that

D(-itf -» ys[z := *]) 6 »

for all r. Hence □(-># -♦ p') € « by the completeness of s (if tf equals z.y>, use Q" and

K), and -^ -> y>' € * by the definition of $. Since also -.# € *, we conclude that $ I- y>'.

□
Thus we have shown that every consistent formula ->$ is satisfiable by the corresponding

canonical model A4(-w£). By part (1) of Lemma 5.3, it follows that K <t> for every valid

formula <f>. Recall that we have assumed an arbitrary normal logic A; thus K contains

precisely all valid formulas:

Corollary 5.1 (Completeness) A formula <p of half-order modal logic is valid iff4>£ K;

that is, \=<j> iff HK 4>.

We remark that it is an interesting open question under which conditions the general

form of the quantifier introduction rule Q2 can be replaced by the simpler rule Q2". We

conjecture that this is case for all normal logics A«, such as K, whose set * of noalogical

axioms satisfies certain closure properties.

5.1.4 Syntactic and semantic extensions

In order to treat the real-time temporal logic TPTL as a half-order modal logic, we admit

multiple moda) operators and semantic restrictions on the corresponding accessibility rela-

tions. By axiomatiting accessibility relations that are equivalence relations, we show that

half-order modal logic subsumes first-order classical logic.

■ ■■-■'-•-•'

■j

CHAFTER 5. DEDUCTIVE VERIFICATION: GENERAL PART

J Multimodal logics

Half-order versions of mxJtimodal logics are straightforwardly defined by admitting several

modal operators Cj in the syntax. An interpretation contains, accordingly, a separate

accessibility relation —a, C E2 for each operator O,-.

Multimodal normal logics are closed under the axiom schemata Klj, RIGl,, and

RJG2,, as well as the inference rules K2<: one for each modal operator 3,-. As for the

inference rule Q2, consider every formula # —» □, t£, for any operator Dj, to be of the form

4> => 4\ For example, if x £ ^, ifo, then from

*vt may infer

<h -* £>i{<h — 32r.V>)-

The completeness proof given above is easily generalized to show that multimodal K (the

smallest multimodal normal logic) contains precisely all valid formulas.

Accessibility conditions

It is often useful to consider only a certain class C of interpretations for half-order model

logic. We say that a formula ^ is C-valid, and write C f= #, iff 4> is true under all interpre-

tations in C; we also write § \r <f> for 4> € A*. A set $ of nonlogical axioms is sound for the

class C of interpretations iff

\- $ implies C f= ^

for all formulas 0. This is the case if

1. C ^= ^ for all nonlogical axioms ^ € $, and

2. all inference rules are sound for C; that is, if the antecedent of K2 or Q2 is C-valid,

then so is the consequent.

The set $ of nonlogical axioms characterises the class C of interpretations completely iff

C\=<f> iff #h$

for all formulas ^.

5.J. HALF-ORDER MODAL LOGIC 193

%

Here we restrict ourselves to classes C of interpretations whose accessibility relations

—z satisfies a certain condition C, and add nonlogical axioms to our proof system so that

all C-valid formulas can be derived. For example, consider the class REFL of interpretation«

with a reflexive accessibility relation. The reflexive interpretations REFL clearly satisfy all

formulas of the form
REFL 00 - 0.

In order to show that adding these formulas as nonlogical axioms does not exclude any

reflexive interpretations, we have to prove that all inference rules axe sound for REFL. An

inspection of the proof of Lemma 5.2 reveals that the inference rules are sound for any

class C that is determined solely by a condition on the accessibility relation. To show

that the chosen nonlogical axioms are sufficient to characteröe reflexive interpretations

completely, simply observe that, with the axiom schema REFL, the accessibility relation

of the canonical model is reflexive. It follows that

REFL\=4> iff REFL 1-0

for all formulas 0. The other parts of the following lemma are established similarly. (In

fact, the proofs are identical to the corresponding arguments for propositional modal logic,

and can, for example, be found in [46].)

Lemma 5.9 (Accessibility conditions) The following nonlogical axiom schemata char-

acterize the corresponding conditions on the accessibility relation -»oCE' completely.

• Reflexivity: 00 -♦ 0.

• Symmetry: O0 —» DO0.

• Transitivity: 00 -» 000.

• Seriality and functionality (for all s 6 £ there is a [unique] t € £ such that » —a t):

O0 -* O0 and 00 «-» 00.

• Weak connectivity (J -»o * and s —Q t' implies that t -*0 ** or t = t' or f —a t):

O((0! A O0i) - 0,) V C((0, A O0j) - 0j).

-''/.

\

194 CHAPTER 5. DEDUCmX VERIFICATION: GENERAL PART

Embedding classical logic

We have seen that half-order modal logic corresponds to a fragment of first-order modal

logic, because the fxeere quantifier can be expressed by conventional quantification in com-

bination with a state variable. Alternatively, half-order modal logic can be viewed as a

generalization of first-order classical logic. By showing how to embed classical first-order

logic faithfully into a half-order normal logic, we prove the undecidability of the latter one.

Suppose that all predicates are rigid. Then we can read the combination "Dx." of a

modal operator and the freeze quantifier as a universal quantifier with restricted scope:

it ranges only over the values of adjacent states. Similarly, uOx.n can be viewed as a

local existential quantifier. By pursuing this idea, we see that ordinary quantifiers are

representable in a half-order modal logic with a universal accessibilty relation, that is, in

whose models every state is accessible from every other state.

Let RIGID-S5 be the smallest normal logic containing the following nonlogical axioms:

SYMM 4> - DOtf,

TRANS D<£ — DO<£,

RIG 3 px -» Op* for all p € R,

EX OX.* = T.

m

Note that in the presence of EX, which implies O tnte, the schema

REFL 00 — 4>

is derivable from SYMM and TRANS, while SYMM and RIG4 imply

RIG4 -ip* -» O-ijrir for all p € R.

Together, the schemata REFL, SYMM, and TRANS characterise, as for the prepo-

sitional modal logic S5, accessibility relations that axe equivalence relations. The axiom

schema EX assures that enough states are accessible (i.e., in the same equivalence class as

the initial state). RIGS and RIG4 assert that all relation symbols are rigid.

Let 0 be a classical formula over the first-order language (F, R), and let 0° the formula

of half-order modal logic that results from replacing all quantifiers V*. and 3«. by Ox. and

Oz., respectively. The following theorem states that this translation preserves validity.

I
II

P

m
IS

P

m.

■■:' ./•

5.1. HALF-ORDER MODAL LOGIC 1S5

Proposition 5.1 (Embedding of classical logic) A formula <f> of first-order classical

logic is valid iff the formula #G of half-order modal logic is contained in RIGID-S5.

Proof of Proposition 5.1 (1) First we show that

^D - D<j>° € RIGID-S5 (t)

for any classical first-order formula (j>. We proceed by induction on the structure of <f>,

assuming that all negations in <p have been pushed inside in front of atomic formulas. If 4>

is an atomic formula or its negation, use one of RIGl-4. The propositions! cases Mow

from the induction hypothesis by K. If ^ is of the form Vx. i>, then

Dx.ip0 -* DOz.rl>°

holds by TRANS. Finally, suppose that the outermost symbol of $ is an existential quan-

tifier. In this case the inductive step is an instance of 0<f> -♦ DO^, which follows from

SYMM and TRANS by K.

Now assume that <f> is provable by a complete Hilbert-style proof system for the first-

order predicate calculus, say the one given in the textbook by Enderton [38]. Any classical

deduction of <j> (in the given proof system) can be transformed into a half-order modal

derivation of 4>°, thus implying that 4>° € RIGID-S5. The only interesting case is the

derivation of the translation of the classical quantifier axiom V>[* := *] -* 3*.tf in

RIGID-S5: from EQ4, by K infer

Ox.x = * - OtfD[x:=*] O*.^0,

which implies tf°[« := *] -* Ox. tf° by EX and (f)-

(2) The second direction of the theorem is shown by semantic reasoning. Assume that

0° e RIGID-S5; we show that ^ is true under an arbitrary classical first-order interpre-

tation I. Define the class C/ of interpretations for half-order modal logic to contain all

interpretations
Mz = (£,-»o,T,||,[*]i,ft7]/,b].'o)

such that

• both E and T are the universe of 7,

i 1

.7

I-
i

i

A.

!«*»sm*»k>.'. =äfc-.',;.

196 CHAPiXtf 5. DEDUCTWE VERIFICATION: GENERAL PART

• -»a = E2 is universal,

• || is the identity (i.e., |«| = s), and

• 1*1 € |pl(j) iff If} € [pjj,

where fr);, |/]/, and [pjj/ are the assignment functions of 7 for variables, function symbols,

and relation symbols, respectively. Since any state of Mi can be taken to be initial, we

obtain a set Cj of interpretations. It is not hard to see all interpretations in Cj satisfy

the nonlogical axioms of RIGID-S5, and that all inference rules are sound for the class Cj.

Furthermore,

Ci\=<t>° iff I\=<f>.

The theorem follows. Q

Since classical first-order logic is undecidable, so is RIGID-S5. This shows that axiom-

atizable half-order normal logics are not necessarily decidable. On the other hand, it is

not hard to see that every satisfiable formula 4> of half-order logic is satisfiable under an

interpretation that contains only a bounded finite number of states and a finite number of

values (at most one for every state and one for every term in <f>). It follows that K itself is

decidable in the half-order case.

5.2 Half-order Temporal Logic

In this subsection, we study half-order extensions of the linear propositions! temporal logic

PTL. The semantics of half-order temporal logic is restricted to interpretations with a state

structure that is isomorphic to the natural numbers N; these "temporal'' interpretations are

essentially infinite sequences of states. The syntax of half-order temporal logic contains two

modal operators: the next operator 0» which is interpreted as "at the immediate successor
state," and the always operator D meaning "at all successor states."

We show that, unlike in the prepositional case, there cannot exist a complete half-order

proof system for temporal structures in general. Yet we introduced a decidable half-order

temporal logic, TPTL, for the specification and verification of real-time systems. The

decidability of TPTL is due to a careful choice of both the set of values (monotonically

increasing natural numbers) and the corresponding operations (the tero and successor func-

tions, and the order relation on N). Here we extend our proof system for half-order K to

obtain a complete proof system for TPTL.

»
§ ;

s-sgagaA^^a^mHMmfcdafe^^

5.2. HALF-ORDER TEMPORAL LOGIC 197

5.2.1 Syntax and semantics

The formulas of timed temporal logic (TPTL) are the formulas of half-order modal logic

with the two modal operators 0 an(^ c> wbere

• the set F of function symbols contains only the constant symbol 0 and the unary

function symbol 5 (as in Successor), and

• the set R of relation symbols contains only propositions P (i.e., relation symbols that

take no arguments) and the binary relation symbol < (recall that equality is included

in all half-order modal logics).

Abbreviations such as < and +5 are defined as usual. We omit congruence relations to

simplify our discussion. The until operator U will be added later. While all formulas of

TPTL, as defined in Chapter 3, used to be closed, we admit now free variables and interpret

them universally over the time domain N (as "parameters").

TPTL is interpreted over digitally timed state sequences, which are temporal structures

whose values are monotonically increasing natural numbers. More precisely, a (digitally)

timed state sequence is an interpretation

M = (2,-o.-o.N»ll«M-ev,l/W,bW.»o)

for half-order modal logic such that

• —»O ünp05** a linear order

«r0 -*o "i ~*0 ** ~*0 '" *

on the set E = {<rf 11 > 0} of states,

• -+a is the reflexive transitive closure of ->o>

• k»l< k,+i|foraHt >0,
• for all n € N, there is some i > 0 such that |<r<| > n,

• 0 denotes «ero (i.e., |0j = 0),
• S denotes the successor function on N (i.e., JS]|(n) = n + 1), and

• < rigidly denotes the order relation on N (i.e., [<](<r,m,n) iff m < n).

198 CHAPTER 5. DEDUCTI\rE VERIFICATION: GENERAL PART

We denote the set of timed state sequences by TSS^ or simply TSS*.

The correspondence with the previous definition of timed state sequences is obvious:

any timed state sequence can be viewed as an infinite sequence of states a* C P, for i > 0,

together with an assignment function for the variables. Each of the states ff{ specifies the

propositions that are true in that state (let p G <Tj iff«rt- € [p]), and has a value |<r<| associated

with it. The values satisfy the monotonicity condition that, foT all t > 0,

and the progress condition that, for all n £ N, there is some i > 0 such that

kil > "■

Both conditions are motivated by the original design of TPTL as a real-time logic: the

values that are associated with the states can be interpreted as time-stamps; think of state

a as representing the state of a system at time \a\. From this point of view, the freeze

quantifier "x." binds the associated variable x to the "current" time.

Recall that, even though time is discrete, the notion of "next time" is entirely indepen-

dent of "next state"; successive states may have the same or vastly different times associated

with them, as long as the time does not decrease. If desired, the requirement that the time

increases always by 1 between successive states, and thus acts as a state counter, can be

expressed within TPTL, by the formula

Ox. Oy.y = x + l. (0+i)

5.2.2 Proof system

We extend the proof system for half-order K by axioms for timed state sequences. The §

following three axiom schemata completely characterize temporal structures in propositional • |

temporal logic [40]: |

LIN1 O0 +* -Oh {
LIN2 00 — <t> A OOci, |

LIN3 4> - 0(0 -. O*) - D4>- I

5.2. HALF-ORDER TEMPORAL LOGIC 199

Note that LINl asserts the functionality of -*Q, and that LLN2 immediately implies

REFL: C# — <f>. LIN3 gives an induction principle.

In addition, we need a set of axioms that allows us to derive all universal sentences of

the decidable classical first-order theory of (N,0,5, <). For instance, the following group

of NAT axioms from the texbook by Enderton has this completeness property, as can be

shown by a quantifier elimination procedure [38]:

NAT1 x < Sy «-» x < y,

NAT2 s<yVx = yVy<se,

NAT3 x < y -» y {. x,

NAT4 x <y - y < z -* x < x,

NAT5 i^O.

The axiom MON states that the time is monotonically increasing from state to state;

the axiom schema PRO asserts that time diverges and assures that all free variables are

interpreted as finite natural numbers:

TSS"\=<f> iff TPTLh^

for every formula <p of TPTL. It is straightforward to convince yourself that every nonlogical

axiom is TSS^-valid (i.e., true in all timed state sequences). Moreover, as timed state

sequences are dosed under suffixes, all inference rules are sound for 755". Before proving

completeness, we derive some additional formulas that will be useful later.

MON i. Oy-*<y. f
PRO OsB.x>>y, I

RIG5 xa < xj -* 0*1 < T2- |
i I

RIG5 is sufficient to guarantee the rigidity of < (see the upcoming lemma on sample |

theorems). I
4

Let TPTL be the set of formulas consisting of LINl-3, NATl-5, MON, PRO, and §

RIG 5. We show that TPTL is the smallest normal logic that contains the nonlogical

axioms TPTL; that is, %<

Si'-'

i

a

200 CHAPTER 5. DEDUCTIVE VERIFICATION: GENERAL PART

Sample proofs

The following theorems can be proved purely propositionaUy (see, for example, [46] for the

derivations):

TRANS D<t> -» O3<0,

LIN4 D<p «-♦ <£ A On<^,

LIN5 D(D& — fe) V D(D^2 — *i),

LIN6 Ü(D(<6 -► D<£) — <*>) — OO<0 -♦ 0<f>.

Lemma 5.10 (Sample theorems of TPTL) Any normal logic that is closed under the

axioms TPTL contains the following formulas of TPTL:

MON' e.Oy.e<y.

RIG6 Tti <£ r2 — 0*i t *i-

RIG7 vi < *2 -♦ Dxi < *j.

RIGS TTj j£ TTj -♦ DTI J£ «-2.

TSSi D*. Oy-y = * -♦ *• Oy.y = z.

TSS2 e.Oy.y=z -» (e.D# ♦-* Dz.^).

Proof of Lemma 5.10 MON' generalizes the monotonicity axiom MON. Its proof

demonstrates the application of the induction schema LIN3. By applying Q" to LIN3, it

suffices to derive the "base case"

x.y.z < y

and the "inductive step"

x.D(y.z< y — Qy.x < y).

The base case follows from QEQ by Q" (let us begin to suppress to mention applications of

the equality axioms EQ). To show the inductive step, by Q2" and K2a it suffices to derive

From NAT:

By Q- and K0:

y*<y -» Ov-*< y-

* üs y -* y£* —» z< z.

0*£y -♦ 0-y<* -» (>•*<*•

*■■

i-A

• (F..

&■:■■

5.2. EALF-ORDER TEMPORAL LOGIC 201

By RIGl-20, RJG5, and Q":

y.x <y ~» y. Oz.y < z -* Qz.x < z.

The desired conclusion follows by MCN, R.EFL, and VAS.2.

BIG6 can be inferred from NAT:

*i ft ri *■* (xj = x2 V r-x < Ti)

by EIG10, RIG5, and K0. RIG7 (and RIG8) follow from LIN3 by BJG5 (KIG6,

respectively) and K2o. Note that the rigidity axioms RIGl-2o are similarly derivable

from RJG1-2Q, and thus can be omitted.

TSS1 is again derived by induction. By applying Q" to LIN3, it suffices to derive the

base case x. y.y = x, which holds by QEQ, and the inductive step

Ox. Oy.y = x -* x.D[y.y = x -» Oy.y = x).

Using Q", Ka, and VAR2, it suffices to show that

y. Q)z.z= y -* y.y = x -* Qz.z = x,

which follows from EQ4 by Q".

TSS2 follows from EQ4 by KD and Q". H

Updating time references

Let Nezts and Next>^ be abbreviations for the two formulas

*• 0 V- V = * + *>

*• Oy-y > « +A,

respectively, which assert that the time difference between the current state and its successor

state is exactly 6 6 N (greater than A 6 N, respectively). These time-difference formulas

will be used to update, in TPTL-formulas, references to the times of previous states. For

example, the formula *.OV> holds in a state that contains Next{ iff x.rp is true in that

state and, intuitively speaking, uz.Q^[z := x — S]n is true in its successor state. If S is

--- - •- ■••- -^

202 CHAPTER 5. DEDUCTWE \rERIFICATION: GENERAL PART

greater than the number of successor symbols occurring in rp and z. \p is closed, then the

monotonicity of time can be exploited to simplify, to true or false, all timing constraints in

"z. Dxp[x := z - S}" that refer to the current time x.

Let z. 4> be a closed formula of TPTL. As in Chapter 4, we write z. ^ for the TPTL-

formula that expresses the condition "x.$[x := z - £]"; that is, z.^* results from x.<j> by

updating all references of <f> to the current time z by the time difference 6. From now

on, whenever we write x.tp1, there is an implicit condition that the formula z. <j> is closed.

According to Lemma 4.1, we have that

M[x := |ffo| - 8} (= <f> iff .M|=z-^

for every time difference 6 6 l\l and timed state sequence M. with |<7o| > £. On the syntactic

side, we have to make sure that our proof system is strong enough to derive the following

facts about the updating of time references.

Lemma 5.11 (More theorems of TPTL) Let A be the number of successor symbols in

the formula <f> of TPTL. Any normal logic that is closed under the axioms TPTL contains

the following formulas (let x be different from y):

ÜPD1

UPD2

UPD3

UPD4

CLOCK

y.y = x + 6 -* {<f>[y:=x} <- y.<f>s).

y.y>z + A -♦ (tf>[y:=x] <-> y.<t>*).

Nexts -f (z. O^ «-* 0-<^)-
Next>äk - (x.O<f> -» Qi.<pA).

(Vo<*<A^«rt«) V Next>A.

Proof of Lemma 5.11 UPDl and UPD2 constitute the syntactic counterpart to the

time-step lemma, Lemma 4.1; they capture the essence of the definition of z. <f>*. The proofs

of UPDl and UPD2 proceed by induction on the structure of <j>. Consider UPDl. By

Q* it suffices to derive

y = x + S -+ (<f>[y := z] «-» $s).

The base cases follow from NAT. We present only the inductive step that introduces a new

quantifier. By the condition of safe substitutivity, in

y = z + 6 - ((z.<f>)[y:=z] ~ (z.tf)

fc.ii,i. II'

5.2. HALF-ORDER TEMPORAL LOGIC 203

the variable z has t_ be different from both x and y; hence derive

y-x + 6 — {z.<f>[y:= x] *-* z.<ps),

which follows from the induction hypothesis by Q".

UPD3 follows from UPD1 by K0, Q", and VAR2 (rename y so that it does not occur

in (f>). UPD4 follows similarly from UPD2.

CLOCK is, in fact, derivable for any constant A > 0 and exclusive-or connectives,

implying that every state contains a unique time-difference formula. From NAT:

0<6<&

infer
x. Oy.x<y — CLOCK

by Q", KQ, and LINl. CLOCK foUows by MON and REFL. a

5.2.3 Completeness

We show that the proof system for half-order K together with the nonlogical axioms TPTL

is complete for TPTL. The organization of the proof follows largely the completeness proof

of Gabbay, Pnueli, Shelah, and Stavi for the prepositional case, PTL, as presented by

Goldblatt [46]. We proceed in two main steps:

Filtration Given a consistent TPTL-formula <f>0, the r -onical-model construction does

not directly provide a timed state sequence, becaus. »D is not the transitive closure

of -»o- ^ order t0 have tte indllction axiom LIN3 force -*a to be the transitive
closure of ->Q, we have to be able to characterize, by a TPTL-formula, all states

that are reachable from the starting state by repeated traversal of -*o- Tlxis can be

achieved by collapsing the states of the canonical model into a^nite number of finitely

representable states (i.e., finite, consistent sets of formulas). Our filtration process is

derived from the tableau-decision procedure for TPTL.

Unrolling While the structure MF{<h) that is obtained by filtration of the canonical

model .M(#o) satisfies the desired transitive-closure property, it is still not a time I

state sequence. The problem is that a state may have multiple successor states. Thvs,

- - - -■•■■ ■"',J

201 CHAPTER 5. DEDUCTI\rE VERIFICATION: GENERAL PART

in a second step, we unroll the states of MF(<£o) into a timed state sequence MT{4>o)-

If the unrolling is done carefully, in a way that r,*sc -*es the truth of all eventualities,

then the resulting "canonical" timed state sequence MT(4>o) is, at last, a model for &>•

Let us assump that fo do* i not any contain timing assertions that compare a variable

with a natural number, and that 0o is closed. Abrolute c;me references (such as x = 5 or

x -f 1 > 3) and free variables ("parameters") have to be treated with some care; we delay

their discussion until later. We also assume that al» bound variables in #o are distinct; this

can always be achieved by renaming. Let

M{<fo) = (£,— o.-^o.T.H.W«ev,[/I/€F,ib]j»€fl»«o)

be the canonical model for <t>o, as constructed in the previous section. First, we remark that

we may forget about the actual values (timer) that are associated with the states in M[4>o),

because the formulas Nextg keep track of the time differences between adjacent states. In

any timed state sequence, we can reconstruct the times from these time-difference formulas,

modulo the initial time.

Filtration

Let A be the number of successor symbols S occurring in fo. The key observation underlying

the filtration is that we can restrict our attention to a finite number of time-difference

formulas, namely Nextg for all 0 < I < A and Next>^. This is because if the time

difference between two states is larger than A, its actual value has no bearing on the truth

of 0o; thus every model of <f>o can be compressed into a model all of whose time steps are

at most A + 1 (simply reduce larger time steps to A + 1). It follows that the truth of any

TPTIrformula is determined by the truth of finitely many "subfornralas." The closure

Closvre{4>o) of &> under subformulas is defined essentially as in Chapter 4, as the smallest

(i.e., finite) set containing z. 4>o for some z g ^o that is closed under the following operation

Sub:

Sub(z.(<f>i -*<l>2)) = {z.if>i,z.<fo},

Svb{z. 0 4>) = {*-4>{ I 0 < S < A + 1},

Svb(z.U4) = {*.*,*. 0°^}>
Sub{z.z.<t>) = {z.<f>[x:=z]}.

5.2. HALF-ORDER TEMPORAL LOGIC 205

Let the finite filtration set T contain all formulas in Closure^) as well as the time-difference

formulas Nextf, for 0 < S < A, and A'CII>A- Note that the outermost symbol of every

formula in T is a quantifier.

For s,s' € E, let s ^r »' iff

jnr = *'nr,

and sF = {s' \ s' ~/r *}. We overload the symbol € by writing 4> € aF iff <t> £ a' for aU

*' ~f J (observe that ~f is an equivalence relation). Let

MF(<fo) = (E'.-g,-£,!>&«. «ft

be the state structure that results from the canonical model M{4>o) by ignoring the values

and identifying all states that agree en T:

• 2*" = {.sF | a € 2 and $o -*c *} (the reachable consistent subsets of T),

• $F -♦£> r*" iff *' -»o *' ^or some *'""/" * ant^ some f' *»F *»

• <F -♦£ tF iff *(-»o)n* *°r some n - ® ^e t^t3^vt transitive closure of

-S).
• b>]F(aF) iff P € «' for all *' ~jr *.

Note that there are only finitely many states aF, each of which can be uniquely identified
by a characteristic formula <p(s) € a, which is a finite conjunction of formulas and negated

formulas from T:

Let *r -»5 *F iff f°r *^ *' T *> there is some t' -f t such that a' -*Q f. The following
lemma is proved similarly to the prepositional case [46].

Lemma 5.12 (Filtration)

(1) -»Q is serial.

(2) a —D t implies a*" —F tF.

(8) -»o « reflexive, transitive, and connected (i.e., sF -*F tF or tr -*F sF).
(4) -♦£ is reflexive, transitive, connected, and -*% C -»§.

205 CHAPTER 5. DED'CCTIYE VERIFICATION: GENERAL PART

Proof of Lemma 5.12 (1) LINl ensures the functionality of -*Q by Lemma 5.9; this

implies the seriaiity of -»Q. We remark that —Q is, however, not functional.

(2) Suppose that $ -»□ t. Let $ be the finite disjunction of all characteristic formulas

<£(r) vrith sF —F rF; clearly p € r iff sF —F rF Use the induction schema LIN3 to show

that E# g *, which implies that # € f.

(3) Rcflexivity and transitivity hold by definition. Lemma 5.9 implies that the relation

-*z is reflexive because of REFL, transitive because of TRANS, and weakly connected

because of REFL and LIN5; hence it is connected on all staies reachable from so by -»o-

The connectivity of -*F follows by part (2).

(4) The reflexivity, transitivity, and connectivity of —•£ follow from the corresponding

properties of -*o (see part (3)). Part (2) implies that —F C -»£. B

Unrolling

Lemma 5.12 implies that MF[4>o) consists of a finite sequence of strongly connected -♦£-

components, each one of which consists of a finite sequence of strongly connected -»£•

components. We will construct a temporal model for 0o by unrolling MF(#o) into an infinite

sequence of states. This has to be in a way such that, whenever some state contains an

eventuality z. Of, then it is satisfied in a state that is unrolled "later." The following lemma

guarantees this property for the unrolling that maintains the order of strongly connected

-»^-components, and repeats all states in the final -*Q-component infinitely often.

lemma 5.13 (Unrolling) Assume that -i# is equivalent to a formula in I\ Let s € £ be

such that t*" /♦£ sF for some t. If D$ $ s, then either $ £ s, or <j>$.t for some t such that

sF^FtF andtF7UFsF.

Proof of Lemma 5.13 Let ->^ be equivalent to a formula in T; then, for all s,t with

i— F t, 0€*iff^€t and, by KQ, 0$ 6 s iff Dtp 6 t. The proof proceeds as in the

prepositional case, using Lemma 5.12 and LIN6 [46]. B

Lemma 5.13 allows us to unroll MF(fo) in the described fashion, into an infinite se-

quence of states Ci, for t > 0, such that

• <ro = *£,

\

.'.(

5.2. HALF-ORDER TEMPORAL LOGIC 207

• ffi ~*Q <T,J.I, and

• whenever c, -~ sF, 0(p g s, and $ is equivalent to some formula in T, then

<p £ t for some t such that <r; = rr for some ;' > t.

CLOCK implies that every state a contains one of the time-difference formulas. We reas-

sign, in accordance with the time-difference formulas, times to all the states, thus obtaining

the canonical timed state sequence

MT(<j*>) = (ST, -£, -S. N, i|r, [*]r€Vf \p]^p,<r0),

where

•tir = {<Ti\i> 0},

• -»0S{te»»i+l)l*£°}i
• -*5 is the reflexive transitive closure of -»Q>

• kt+ilr = k»lT + * if Nexls € ffi, and

i^t+if = Wi\T + A + 1 if Next>A € <Ti,

• MV) iff bf(^)-

Note that |er0|
r and [i]r are left arbitrary; they need to be specified only in case #o

contains any absolute time references or free variables, respectively. The following main

theorem asserts that we have indeed constructed a model of <fo. The proof depends crucially

on Lemma 4.1 as well as UPD3 and UPD4, which ensure the consistency of all timing

constraints.

Theorem 5.2 (Canonical timed state sequence) Let MT{fo) be the canonical timed

state sequence for the formula & of TPTL. Then 4> 6 <r,- iff «MT(^o)[(To :- *i] N 4> for all

s > 0 and 4> € Closure^).

Proof of Theorem 5.2 We apply induction on the structure of ^, for 4> € Closure(4>o).

If # is of the form z.p for some proposition p, use QS. The case that ^ is of the form

z.m = n, z.m<n,z.z + m = 2 + n, or z.z + m< z + n follows from NAT and Q". The

propositional cases are established by Q*. If ^ is of the form z.z.ri>, use Lemma 5.7 and

VAE3.

20S CHAPTER 5. DEDUCTIVE VERIFICATION: GENERAL PART

Now suppose that <j> is of the form z. Q V and ki+ii7" = lcj\|r + i; that is, Nexig £ «

if £ < A, and Nexty^ € i otherwise. Furthermore, by the definition of -»Q there are «,<

such that £?i = 5F, <Ti*i = tF, and J -»Q t. Then,

A<r(^o)[ffo := ffi] f= *• 0 tf

iff 2.^'* 6 t by Lemma 4.1 and the induction hypothesis. LINl and the canonical-model

construction imply that z.^f £ t iff Oz.tf £ s; and Oz.x^ € * iff 2. 0 ^ € ff; follows

from UPD3 or UPD4.

Finally, suppose that $ is of the form z. Dip. Let 6j = |<r,-|r - \ffi\T for all ;' > t. In this

case,

MT(6o)[eo ■= <n] i= z. Dtp

iff z. y*> £ (T;- for all j > i, by Lemma 4.1 and the induction hypothesis.

We show that z. Dtp £ <r; implies z. D^> £ <rt- for all 3 > 1, by induction on j\ then

2. ^ € <Tj by LIN4 and Q". Assume that z.Oxps> £ <r,- and Nextg> £ ffj, and show that

z. Dip*'**' £ ffj+i- By the definition of -*Q there are 5,t such that Cj = a-5", <TJ+I = tF,

and « -*o *• From z- D^fj e *> by Z-IN4 ^^ Q* z- 0 D^' € s. Since JVexif € «, by
UPD3 or UPD4 Q)z. (Dyf>)f £ *; that is, (>• n^**' 6 *. Hence z. 0^>+'' £ t by the

canonical-model construction.

Conversely, assume that z.Orp £ ft and 2. ^ £ cr,- for all 3 > i, and show a contradic-

tion. First observe that, by induction on 3, it follows that 2. Oip6> £ ffj for all j > i.

We distinguish two cases. If 8j > A for some j > t, then 2.0^A 6 ffj and 2. ^A £ "j<

for all j' > ;. Let ffj = *r. Since 2 g 0^A, by Q" 2.0^A is equivalent to Oz.ip*; hence,

by Lemma 5.13 there is some j' > 3 with a? = tF and 2.^A 6 t, contradicting z.xpA & Vj<.

On the other hand, suppose that there is some 3 > i such that Sj> is constant for all

j' > 3\ tten there is some such ;* > t such that ffj = sF and 5*" is in the final -^-component

of MF{<fa). Therefore Nezt0 £ t*" for all tF with sF -»§ tF. By part (2) of Lemma 5.12,

Next-o € t for all f such that » -»o t; thus Otfexto 6 a by Theorem 5.1. By TSSl,

z. Dr. 1 = 2 € *, and by TSS2, z.Otp*' is equivalent to Oz.il>*>. Hence, by Lemma 5.13

there is some j' > 3 with z.tf> £ ffj>, again a contradiction. B

This finishes the completeness proof for TPTL. Wa conclude by indicating how absolute

time references, free variables, and until operators can be incorporated into our argument.

5.2. HALF-ORDER TEMPORAL LOGIC 209

A detailed formal treatment of these cases is straightforward and left to the ambitious

reader.

Absolute time references

To handle absolute time references, we include in the filtration set T all formulas of the

form 2. z = S for 0 < S < A, as well as z. z > A. In the definition of the canonical timed

state sequence MT(<h), let |<r0| = S ilz.z = 6 £ ff0, and |<r0| = A + 1 if z.z > A € <r0- The

additional base cases in the proof of the main theorem can be shown by induction on the

canonical state sequence.

m m
Im

R<

Free variables

If «£o contains free variables, then it is no longer the case that every model can be compressed

into a model all of whose time steps are at most A + 1. However, it is not hard to see that,

if ^o contains A" free variables, then <fa is satisfiable iff it is satisfiabie by a timed state

sequence all of whose time steps are at most A' = (N + 1)(A + 1). This is because, in any

interpretation, the difference between any two times that are either associated with a state

or a free variable, can be reduced to A + 1 without changing the truth of &>.

Thus the completeness proof goes through if we take the filtration set T large enough

(replace A by A'), and include all formulas of the form z. z = z + 6 and x = y + S, for

0 < 6 < A', as well as z. z > z + A' and x > y + A', for all free variables x,y 6 c\> (recall

that z g fo). For this purpose, it is necessary to redefine the the time-update function z.$

for TPTL-formulas <f> with free variables; for instance, let z. {z < x)1 be the formula

J.(z<lV2 = l).

The axiom PRO ensures that the variable assignment function of the canonical timed state

sequence can be defined properly. If the progress condition on timed state sequences is

dropped, we can obtain a complete proof system by replacing the nonlogical axiom PRO

with the weaker version

PRO' Ox.<0y.y>x -► Ox.x>z.

We point out that the canonical-model construction for TPTL-formulas with free vari-

ables leads to a tableau-based decision procedure for TPTL with free variables, whose

ä)

r

i
/

' 11

//■

x

KS3KS iSJ®lt"sir3s.,;3Jsi,;i:^?,ris

210 CHAPTER 5. DEDVCTWE ITRIFICATION: GENERAL PART

validity problem is, therefore, no harder than determining the validity of closed TPTL-

fonnulas.

Until opcrstors

Also the addition of the temporal until operator U yield» no surprises. The syntax of

TPTL can be extended to admit formulas of the form fa Ufa such that for any timed state
sequence M:

M (= fa Ufa iff M[tr0 := <Ti] (= fa for some t > 0, and M[tTo := v,) (= & for all 0 < j < i.

By adding, to TPTL, the two axiom schemata

UNTIL1 faUfa -» Ofa,

UNTIL2 faUfa ~ {fa V (fa A 0(faUfa))),

which characterize the until operator completely in PTL [40], we obtain a complete proof

system for TPTL. From an generalization of Theorem 5.2 to absolute time references and
until operators it follows that

Corollary 5.2 (Completeness of TPTL) A formula <j> of TPTL is valid if and only if
TPTL I- <p.

5.2.4 Nonaxiomntizable extensions

We show that half-order temporal logic in general is, unlike TPTL, not (recursively) axiom-

atizable and, therefore, highly undecidable. From TPTL we obtain TPTL* by restraining

time to provide a state counter that starts, in the initial state, at 0, and by adding the unary

function symbol 2- that is interpreted, on N, as multiplication by 2. With Theorem 3.8, we

have proved the validity problem for TPTL2-formulas to be Hj-hard, which implies that

there is no complete proof system for this logic, as well as for TPTL with addition. Here

we show that if half-order temporal logic were axiomatizable, for any choice of function and

relation symbols, then so would be TPTL2. It follows that temporal interpretations cannot
be completely characterized in half-order modal logic.

Let 4>3 denote the conjunction of the following formulas of TPTL2:

i

t

*

lfe-.i:-iiü

s^^BssBBa^jas^r&a^

5.2. HALF-ORDER TEMPORAL LOGIC 211

COUNT1 x.x = 0,

COUNT2 D*- Oy-y = 5z,
SUCC1 Dx.Sx ± 0,

SUCC2 □r.Dy.(Sx = Sy -♦ x = y),

LESS1 Dx.x ^ z,

LESS2 üz. 0°»-(*<y *v{*),
DOUB1 2-0 = 0,

DOUB2 Gz.(2-5z = SS(2-z)).

Recall that a temporal interpretation for half-order modal logic is one in which the set

of states together with the two accessibility relations —»Q and -*Q is isomorphic to the |
r.

structure (N,+l, <); the set of values as well as the interpretation of all function and relation f

symbols is left arbitrary. The following proposition states that #2, viewed as a formula f
of half-order modal logic with uninterpreted function and relation symbols, completely §

characterizes multiplication by 2 in temporal interpretations. |

Proposition 5.2 (Half-order temporal logic) A closed formula ^ of TPTL2 is valid

iff the formula tf -* rj> of half-order modal logic is true under all temporal interpretations.

I*

Proof of Proposition 5.2 It is not hard to see that the closed formula ^2 of half-order |

modal logic is true under a temporal interpretation I

M : eo -*o v\ -+o °* ~*0 *" 1
|

iff the set of values of M contains N (modulo isomorphism), |<r,-| = » for all t > 0, and the 1

function and relation symbols 0,5, <, and 2- are, on N, interpreted as the zero and successor j

functions, the ordering relation, and multiplication by 2, respectively. The proposition 1

follows. ■ I

i
Since TPTL2 is nj-hard, so is the restriction of half-order modal logic to temporal j

I
interpretations. We have, in fact, shown that any extension of TPTL with a single unin- §

terpreted unary function symbol is Hj-haxd, because this function symbol can be forced, |

by 4>7, to be interpreted as multiplication by 2 on the natural numbers. II

*;■■.. ;i

fr*

212 CHAPTER 5. DEDUCTI\rE VERIFICATION: GENERAL PART

5.3 Proving Timed Transition Systems Correct

We present two methods for the deductive verification of timed transition systems (the

terminology exogenous versus endogenous is taken from Pnueli [106]):

Exogenous Just as transition systems can be explicitly encoded by temporal formulas, we

have seen that timed transition systems can be encoded in TPTL or MTL. Any proof

system for these logics can, therefore, be used to derive properties of a timed transition

system, to prove the equivalence of two timed transition systems, or to prove that one

timed transition system refines another timed transition system. In the untimed

case, the possibility of encoding systems by temporal formulas and proving temporal

implications was seen by Pnueli [107] and has more recently been strongly advocated

by Lamport [79].

Endogenous If we wish to prove properties of a given timed transition system S only, we

may, instead of presenting the system as a temporal formula, add proof rules to our

proof system that need not be unconditionally sound, but only sound for reasoning

about the runs of S. In the untimed temporal framework, this approach of reasoning

about a single hidden program was first advocated by Pnueli [106] and has been

greatly refined by many researchers (see, for example, [91, 105], and compare the

related framework of UNITY [26]).

Indeed, as Pnueli points out, both methods have had a long tradition in program verification

before the advent of temporal logic [106]. While the exogenous approach is, by staying fully

within logic, both more uniform and more general, Pnueli has argued that the endogenous

approach, when applicable, is preferable for any specific verification task, because it equips

the verifier with the strongest possible tools for a particular class of verification problems.

In the case of real-time reasoning, we have already provided the foundation for an exoge-

nous verification method; it will be discussed in the following subsection. Thereafter, an

endogenous method for real-time verification will be motivated and fully developed in the

next chapter.

5.3. PROVING TRIED TRANSITION SYSTEMS CORRECT 213

5.3.1 Reasoning about explicit programs

Suppose we axe given a finite-state timed transition system 5. We can use the proof system

for TPTL to show that all runs of 5 meet the TPTL-specifkation ip in two steps:

1. Write the logical representation 4>s of 5, as defined in Subsection 4.3.3. Then

n(*s) = Det(E(S)y,

that is, the runs of the system 5 axe exactly the models of the TPTL-fonnula <pS-

2. Prove that the TPTL-formula <f>s-* ip is valid.

Even if the timed transition system 5 has an infinite number of states, this approach is, in

principle, possible, provided we complement the proof system for TPTL with capabilities

to reason about the infinitary data domains of 5. Thus, a proof system for exogenous

real-time verification can be partitioned into two parts:

General part Axioms and proof rules to establish the validity of TPTL-formulas. This

part provides the tools for domain-independent reasoning.

Domain part Axioms and proof rules to reason about the underlying data domains of a

system. This part generally consists of first-order theories of data types.

By giving a complete proof system for TPTL, we have presented a general part. However,

while our proof system is of theoretical interest, its derivations are on a level that is much

too low to be practical. This point will be illustrated in the following segment. Thus,

to make real-time vsrification feasible for systems that lie outside the scope of decision

procedures, the proof system for TPTL has to be extended by useful derivable metarules.

Deriving new proof rules

A typical step in a the deduction of a bounded-response property requires the chaining of

more local bounded-response properties. Hence the following inference rule turns out to be | j

very practical:

from Oz.(& -» Oy.{<h A y <* + ">))

O-TRANS and Ox.(fo -» Oy.(<h A y < * + n))

infer Ox.(& -» Oy.(& A y < z + m + n))

Bs

214 ■ CHAPTER 5. DEDUCmrE VERIFICATION: GENERAL PART

for all constants m,n > 0, provided that neither z nor y occurs free in any of fa, fa, and fa.

Since O-TRANS is sound over all timed state sequences, by our completeness result it must

be derivable within the given proof system for TPTL. However, this derivation, which we

are going to sketch briefly, is extremely tedious; it vividly demonstrates the need of practical

high-level inference rules for real-time verification.

So let us derive O-TRANS. In fact, we show the stronger assertion that the two an-

tecedents of O-TRANS imply the consequent:

Ox.{fa -♦ Oy. {fa A y < x + m)) -♦

Ox. {fa - Oy.{fa A y<x + n)) -

Dx.{fa — Oy.{fa A y<x + m + n))

is valid. By KD, TRANS, Q", and VAR2, it suffices to derive

x. 0{fa A y.y < x + m) -»

D{fa — y. 0{fa A z. i < y + n)) -»

i. <>{fa A z.z < x + m+ n),

which can be rewritten (use KD) as

D(y. D{z.z < y + n -» ->fa) -♦ -<fa) -*

x.D{z.z < x + m + n -* -*fa) -*

x.O{y.y <x + m -» -<fa).

By Q", KD, and TRANS show

D(y. D{z.z<y + n — -ifa) -* ->fa) —

Dy. 0{z.z < x +m + n -* -\fa) —»

D(y.y<x + m -♦ -1^2).

Applying KD and Q" again, it suffices to derive

D{z.z <x + m + n -* ^fa) -► y<x + m -* 0(z.*<y + n -♦ ->fa).

By RIGIQ, RIG7, K', and Q", show

y<x + m -» z < y + n -» z<x + m + n,

which follows from NAT.

5.3. PROVING TMED TRANSITION SYSTEMS CORRECT 215

5.3.2 Reaponing about one implicit program

Suppose we wish to verify a particular timed transition system 5. The endogenous approach

to verification allows us not only to extend the repertoire of available proof rules by useful

derivable rules such as C>-TRANS, but to complement a general proof system for TPTL

with tools that are sound for reasoning about the given system 5 only. Thus, an endogenous

proof system contains three components [88]:

General part As before, this part consists of a complete proof system for TPTL and

derived theorems and metarules of TPTL; it provides the tools for system and domain-

independent reasoning.

Program part This part consists of axioms and proof rules that restrict the models under

consideration to the execution sequences (runs) of a particular system (program); it

exploits the structure of the given timed transition system S to provide powerful took

for reasoning about S.

Domain part As before.

To offer strong and practical proof rules, the program part is, ideally, designed in accordance

with proof methodologies for different classes of real-time properties (see, for example, [91]

for the untamed case). In the following chapter, we will present two alternative program

parts, which correspond to two different proof methodologies, for the derivation of bounded-

invariance and bounded-response properties of timed transition systems.

216 CHAPTER 5. DEDUCTIVE VERIFICATION: GENERAL PART

f

Chapter 6

Deductive Verification:

Program Part

We present high-level proof rules for verifying that; all runs of a timed transition system

satisfy a bounded-invariance property or a bounded-response property. In fact, we discuss

two alternative proof methodologies that are quite different in flavor:

Explicit-clock reasoning The explicit-clock style of establishing real-time properties ac-

cesses absolute time explicitly as a state parameter. The proofs in this style rely on

global invariants and have the flavor of untimed safety arguments.

Bounded-operator reasoning The hidden-clock style of establishing real-time properties

refers to time implicitly only, through the relative offsets of time-bounded temporal

operators. The proofs in this style proceed by incrementally combining local timing

properties and resemble untimed liveness arguments.

Consider, for example, the bounded-response property 11^ that is denned by the MTL-

formula

O(P - 0<3?), (4$)

which states that "every p-state is followed by a g-state within 3 time units." We have

shown, in Subsection 1.2.3, that this property is a (real-time) safety property. Indeed, even

though it has been expressed by a "liveness-like" formula (employing a bounded version of

the liveness operator O), the bounded-response property II3 can, alternatively, be denned by

217

9

*!

218 CHAPTER 6. DEDUCTHE VERIFICATION: PROGRAM PART

a temporal formula that uses the untimed safety operator U (unless) and a dock variable t

that refers, in any state, to the current time:

D((p A t = z) — (t<2 + 3)U(}At<;-f 3)).

This formula states that if p happens at time z, then from this point on, the time will not

exceed 2 + 3 either forever (which is ruled out by the requirement on timed state sequences

that time progresses eventually) or until q happens. It follows that g must occur within 3

time units from p. Consequently, no new proof rules are necessary for the explicit-clock style

of real-time verification: if the system states are augmented by a clock variable, real-time

properties can, in principle, be verified using a standard, uniform set of untimed rules. This

approach of proving timing properties has been advocated, among others, by Lamport [79].

On the other hand, when using the time-bounded temporal operators of MTL for the

specification of real-time properties, one discerns a clear dichotomy between the definition

of upper-bound properties, such as the bounded-response formula

D(p — 0<3g) (tf)

considered above, and lower-bound properties, such as the bounded-in variance formula

D(p - 0<3-,g), (tf)

which states that "no p-state is followed by a g-state within less than 3 time units.'' While

upper-bound properties assert that something good will happen within a specified amount

of time, lower-bound properties assert that nothing bad will happen for a certain amount

of time. Clearly, the MTL-specification of upper-bound properties bears a close resem-

blance to the temporal definition of the liveness properties of untimed response, and the

MTL-specification of lower-bound properties closely resembles the temporal definition of

the safety properties of untimed invariance. The second proof system we present cultivates

this similarity by introducing separate proof principles for the classes of lower-bound (i.e.,

bounded-invariance) and upper-bound (i.e., bounded-response) properties. These proof

principles, which often follow intuitive correctness arguments for timing properties more

closely than the use of an explicit clock variable, can easily be seen to be natural extensions

of the proof rules for the untimed invariance and response classes, respectively [90].

k^ii^A"!^

6.1. PROPERTIES OF TIMED TRANSITJOS SYSTEMS 23.9

6.1 Properties of Timed Transition Systems

Throughout this chapter, we prove properties of a given fixed timed transition system

5 = (I,0,7V,u). We assume that 5 is associated with a concrete real-time system P

that belongs to one of the classes we have discussed in Chapter 2; the modeled system P

may, for example, be a multiprocessing or a multiprogramming system, a shared-variables

or a message-passing system. It follows that S is defined by a set of timed transition

diagrams, one for every component process of P, and that the set £ of states consists of

all interpretations of a finite set V of data and control variables that range over finite or

infinite domains. Throughout this chapter, we use the following assumptions about V:

1. We assume that, in addition to data and control variables, V contains sufficiently

many auxiliary variables that range over the natural numbers N and are not changed

by any of the transitions of 5. We will on occasion need a "new, rigid" variable,

and for tb'r purpose we employ one of the auxiliary variable that have not been used

previously.

2. We assume that, for every variable x € V, there is a corresponding unique primed

variable i' £ V that ranges over the same domain as x.

6.1.1 State properties

We are given an assertion language — a first-order language with equality that contains

interpreted function and predicate symbols to express operations and relations on the do-

mains of the variables in V. A state formula is a first-order formula p of the assertion

language such that only variables from V occur freely in p. Thus, every state in E provides

an interpretation for the state formulas. If the state formula p is true in state e, we say

that c is a p-state. We use the following abbreviations for state formulas:

• For any transition T € T, the enabling condition enabled(T) asserts that r is enabled.

In particular, enabled{rj) abbreviates true for the idle transition TJ.

• For any transition r € T and state formulas p and q, the verification condition

{p}r{q} asserts that if p is true of a state <r € S, then q is true of all r-successors

CHAPTER 6. DEDVrm'E VERIFICATION: PROGRAM PART

of c. In particular, {p} 77 {q} stands for the universal closure of the formula p —» q.

For any set T C T of transitions, we vrrite {p} T {q} for the conjunction

of all individual verification conditions.

• For any transition T € T and state formulas p and g, the inverse verification condition

{p} T~ {q} asserts that if p is true of a state a € E, then q is true of all T-predecessors

of er. Observe that all inverse verification conditions are definable by ordinary verifi-

cation conditions:

{p}r~ {q} is equivalent to {~
,
?}T{-'P}.

In particular, {p} rf {q} is equivalent to {p} 17 {q} for the idle transition 17. For

any set T C T of transitions, we write {p} T~ {5} for the conjunction of the inverse

verification conditions for all transitions in T.

Note that while the truth value of an enabling condition depends on the state in which it is

interpreted, the verification conditions are state-independent and, thus, equivalent to closed

formulas.

In the case that the timed transition system 5 is associated with a shared-variables

multiprocessing system P, it is not hard to see that the enabling and verification conditions

of all transitions can indeed be expressed by state formulas. Suppose that P consists of the

m processes Pi, for 1 < t < m, and the data precondition 6, which is a state formula:

W!A||...||Pm].

Let us assume that each process Pj, 1 < t < m, is given by a timed transition diagram with

the locations {4.- • •£,.} and the entry location 4- We write atj*x for Xj = J., and at J%

for Tj = ly, that is, the control of the process Pj is at the location Zj. We abbreviate any

disjunction at_/j V atJFk further, to atJjk.

1. For each entry transition rj € T of Sp, the enabling condition enaMed(TJ) is equivalent

to the state formula

1 6.1. PROPERTIES OF TRIED TRANSITION SYSTEMS 221

and the verification condition {p} TQ {q} is equivalent to the universal closure of the

formula

(p A enabled^) A (at_4)' A /\ (y' = y)) - ?',
vsv-{*i}

where the formula q' is obtained from q by replacing every variable with its primed

version; for example, (azjj,)' stands for *■• = l\. The inverse verification condition

{?} (To)~ {?} is equivalent to the universal closure of

(p' A enabled^) A (a«4)' A /\ (y' = y)) - ?.
ir€V-{*j)

2. All other nonidle transitions of Sp correspond to edges in the timed transition dia-

grams for the processes Pj. Let rj_fc € T be such a transition and assume that the

corresponding edge that connects the location £j to the location tk and is labeled by

the instruction c -♦ £ := e. Then, the enabling condition enabled(i^_^k) is equivalent

to
atJ) A c,

and the verification condition {p} r'"_fc {q} is equivalent to the universal closure of the

formula

(p A enabled{TJ_k) A {atjCj A (£' = e) A /\ (y' = y)) -► q'.

The inverse verification condition {p} (rj_t)~ {q} is equivalent to the universal closure

of

(p' A enabled(T^k) A (ai4)' A (£'= e) A /\ (y' = y)) - «.

It is also straightforward to express the enabling and verification conditions as state for-

mulas, if the timed transition system 5 is associated with any of the other concrete real-time

systems that we have introduced in Chapter 2, such as message-passing, inultiprogramming,

dynamic, and priority systems.

Synchronous multiprocessing systems

Our examples will be drawn from timed transition systems S that are associated with

multiprocessing systems P of the form

222 CHAPTER 6. DEDUCTIVE VERIFICATION: PROGRAM PART

all of whose component processes start synchronously (i.e., at the exact same time). We call

such a system synchronous and model it by a single entry transition that sets all control

variables, simultaneously, to the entry locations of the individual processes. For multipro-

cessing systems P, it is convenient to define the folio-wing two additional abbreviations for

state formulas:

• The ready condition ready holds precisely in the initial states 0 of Sp\ it indicates

that none of the processes of P has started yet. Consequently, the ready condition

ready of Sp stands for the state formula

0 A (A ««4)-
l<t<m

• The synchronous starting condition start indicates that all processes of P have entered

their entry locations, but none has proceeded any further; that is, start abbreviates
the state formula

8 A (A ««4).
l<i<m

Note that if P is synchronous, then the two verification conditions

{ready} 7" - TJ {start},

{start} (T - T/)~ {ready}

are valid (by T - r we denote the set difference T - {T}).

6.1.2 Temporal properties

Temporal formulas are constructed from state formulas by boolean connectives and time-

bornded temporal operators. They are interpreted over timed state sequences whose states

are drawn from £ and whose times are natural numbers. In this chapter, we are interested in

proving two classes of real-time properties of timed transition systems — bounded-invariance

properties and bounded-response properties. Thus we restrict ourselves, semantically, to

the digital-clock model, which was justified in Subsection 3.1.2, and, syntactically, to the
following fragment of MTL:

• Every state formula is a temporal formula.

58

6.1. PROPERTIES OF TIMED TRANSITION SYSTEMS 223

• Every boolean combination of temporal formulas is a temporal formula.

t If p is a state formula, 4> a temporal formula, and / € N, then pU>; £ is a temporal

formula; recall that it is true over the timed state sequence p = (<r,T) iff either all «rit

for i > 0, are p-states, or there is some position * > 0 such that T, > To + /, 4> is

true over the t'-th suffix pi of p, and all <rj, for 0 < ;' < i, are p-states. We use the

abbreviations pU <j>, C<jp, and p U>, <j> for the temporal formulas pU>o #, pU>j true,

and p A (p U>j 4), respectively.

• If (j> is a temporal formula and u £ N, then 0<u <j> is a temporal formula; recall that it

is true over the timed state sequence p = (er, T) iff there is some position » > 0 such

that Tj < T0 + ti and <f> is true over the t-th suffix p* of p.

Prom now on, we use the convention that the letters p, q, r as well as p (and primed

versions) denote state formulas, while the letters 4>, tf>, and x stand for arbitrary temporal

formulas.

S-validity and S-soundness

The following definitions and comments apply equally to timed an-; untuned transition

systems as well as to all formulas that axe interpreted over timed stat'. sequences and state

sequences, respectively. Recall that the run fragments of a (timed) transition system are

obtained by closing its runs under suffixes. We say that a formula ^ :s S-valid iff it is true

over all run fragments of the (timed) transition system S. While (general) validity — truth

over all (timed) state sequences — implies 5-validity for every system S, the converse does

not necessarily hold. In fact, even a state formula p that is 5-valid may not be true in some

states of S that do not occur along any run of S and, hence, p may not be generally valid.

If a formula 4> is 5-valid, then it is, by definition, satisfied by all runs of 5. Thus, to

show that the given system S meets the specification <f>, it suffices to show that (f> is 5-valid.

This observation has two important ramifications:

1. Since the set of run fragments of 5 is closed under suffixes, a formula ^ is S-valid iff the

invariance G^ is S-valid. Therefore, as we are concerned with S-validity only in this

chapter, we may omit all outermost unbounded always operators from specifications.

224 CHAPTER 6. DEDVCTTX'E VERIFICATION: PROGRAM PART

2. A proof rule is called S-sound iff the 5-validity of all premises implies the 5-validity

of the conclusion. Clearly, a generally sound rule may not be 5-$ound, and vice versa.

Therefore, for verifying properties of the given system 5 by proving 5-validity, we

restrict ourselves to 5-sound proof rules.

We uhall build extensively on both remarks throughout this chapter, and begin by discussing

some immediate applications of S-validity and 5-soundness in the foUowing two segments.

Bounded invariance and bounded response

First, we point out that the bounded-unless and bounded-eventually operators of the frag-

ment of MTL that we have chosen for this chapter suffice to define both bounded-invariance

Mid bounded-response properties of the given timed transition system S.

Bounded invariance The bounded-invariance formula

p — D<tq

is 5-valid iff for every run {a, T) of S and all t > 0 and ; > »',

if o-j is a p-state and lj < T,- + /,

then Oj is a g-state;

that is, no p-state is followed by a -ig-state within time less than /. A typical ap-

plication of bounded invariance is to state a lower bound / on the termination of a

multiprocessing system 5 with the termination condition r: the temporal formula

ready -* 0<j-ir

asserts that, if not started before time t, then 5 will not reach a final state before

time t + l.

Bounded response The bounded-response formula

p -» 0<uq

is 5-valid iff for ever run (ff.T) of 5 and all t > 0,

1!«

fi -
is

6.1. PROPERTIES OF TIMED TRANSITION SYSTEMS 225

if <Tj is a p-state,

then there is some g-state CTJ, with j > i, such that lj < T,- + u;

that is, every p-state is followed by a g-state within time u. A typical application of

bounded response is to state an upper bound u on the termination of a multiprocessing

system 5 with the termination condition r: the temporal formula

start -* 0<ur

asserts that if all component processes of S are started synchronously at time t, then

5 is guaranteed to reach a final state no later than at tun? t + u. As the runs of timed

transition systems are closed under shifting the origin of time, we shall, without loss

of generality, henceforth assume that t = 0.

Monotonicity rules

Secondly, we introduce two important proof rules that are S-sound for every tuned transition

system S. The monotonicity rule U-MON allows us to weaken any of the three arguments

of the bounded-urdess operator:

U-MON P - P1 i> -> i>' /'</

(pu>i 4>) -» (p'u>» if)

rr<

?'■■ %\ v >
f..

A similar monotonicity rule holds for the bovnied-eventuaUy operator:

O-MON <j> - <f>' «'>«

(0<„*) - (o<„.^)

It is not hard to see that both monotonicity rules are generally sound as well as S-sound

for every timed transition system S. Since propositional reasoning, too, is S-sound for

every system S, we will refer to applications of the two weakening rules and propositional

reasoning in derivations through the simple annotation "by monotonicity." For example,

from the bounded-rtnless formula

P -» jU>jr, 3

fci

;ai»^«ia4y~«Aii«AamKi'^

226 CHAPTER 6. LEDVCTWE VERIFICATION: PROGRAM PART

we can establish, by monotonicity, both the bounded-invariance formula

and the unbounded unless formula

p — c</g

qVr.

Note that every unless formula can be read as an untimed formula of PTL and interpreted

ever state sequences; that is, it defines an untimed safety property.

6.2 Explicit-clock Reasoning

We point out that none of our state formulas is able to refer to the value of the time, and

the only references to time that are admitted in temporal formulas are bounds on temporal

operators. In this section, we investigate the consequences of extending the notion of state,

by adding a state variable t that represents, in every state, the current time. This extension

is interesting, because once we are given explicit access to the absolute time through the

clock variable t, both bounded-invariance and bounded-response formulas can, equivalently,

be written as unbounded unless formulas and, consequently, be verified by conventional

untimed techniques for establishing safety properties of transition systems.

6.2.1 Explicit-clock temporal logic

For the given timed transition system S and a bounded-invariance or bounded-response

formula #, we formalize the explicit-dock approach by

1. Translating the timed transition system 5 into the untimed explicit-clock transition

system 5*, which has been defined in Subsection 2.1.2. Note that if the states of 5

are all interpretations of the set V of variables, then the states of S* assign values to

all variables in the set

V = V U {t} U {b% | T € T},

which is augmented by the clock variable and a delay counter for each transition of 5.

2. Translating the specification ^ over V into an untimed unless formula 0* over V such

that the explicit-clock formula <j>' is S'-valid iff 4> is 5-valid:

I I

r

•i%

/

; .''',

6.2. EXPLICIT-CLOCK REASONING 227 : :)

• The explicit-clock translation of the bounded-invariance formula p -* D<{ q is

•
(p A t = z) — q U (t > z + /),

for a new, rigid variable z € V that ranges over N (recall that V supplies suitable j a

variables that occur neither in the description of 5 nor in 4>)-

• The explicit-clock translation of the bounded-response formula p -* 0<„ q is

(pAi = ;) -» (t < * + u) U j

for a new, rigid variable z € V that ranges over N.

Both unless formulas use the rigid variable z to record the time of the p-state. In the

case of bounded-response properties the erplicit-clock translation exploits the facts

that all run fragments of 5 are deterministic timed state sequences and that the time

is guaranteed to reach and surpass z+u, for any value of z. We emphasize that neither

of the state formulas p and q may contain free occurrences of the clock variable or any

of the delay counters.

Prom the properties of explicit-clock transition systems that we have inferred in Chapter 2,

it is not hard to conclude that the explicit-clock formula <j>* is indeed 5*-valid iff 0 is

S-valid. We remark that, since both bounded-invariance and bounded-response formulas

define safety properties, there has been no need to add fairness assumptions to the explicit-

clock transition system.

Unt ixned temporal reasoning about real time

Our observations suggests a method for verifying bounded-invariance and bounded-response

properties of timed transition systems: to prove the 5-validity of the temporal formula 4>>we

establish instead the 5*-validity of the untimed safety formula <(>'. To show the unbounded

unless formula <f>', a single untimed unless rule suffices [89]:

UNLESS p - (<p V r)

¥> -» g
p -* q\Jr

'$

y

CHAPTER 6. DEDUCTIVE VERIFICATION: PROGRAM PART

We point out that ell three premises of the unless rule are state formulas over the augmented

st. V of variables; their S'-validity is usually shown by proving them generally valid. The

state formula <p is called the invariant of the rule, because the main (i.e., second) premise

asserts that <p is preserved by all transitions of the system 5* (unless the desired state

condition r is established).

To see that the rule UNLESS is 5*-sound for the untimed transition system S' with

the set T' of transitions, suppose that the three premises of the rule are true in all states

that occur along any run fragment of 5', and consider an arbitrary run fragment c of 5*

that contains a p-state ff{. By the first premise, c^ is either an r-state, thus satisfying

the consequent of the rule, or the invariant ip holds at <TJ. The second premise guarantees

that <f) holds at all subsequent states either forever or until an r-state is encountered. Since

if implies q by the third premise, the consequent follows in either case.

To demonstrate the explicit-clock style of reasoning about timing properties, we look

first at a trivial, yet already insightful, example; the verification of a more elaborate system

will be carried out at the end of this section. Consider the single-process system P with

the data precondition x — 0 and the following timed transition diagram:

{* = 0} (£)- z = 0? ■© [2,3]

Both the lower bound on the termination of P,

ready -» n<2-iat_£i,

is translated into the explicit-dock formula

(ready At = 2) -» (-.o*_/i)U (t > z + 2),

which can be derived by the unless rule from the invariant

(atj± At>:)V (at Jo A t > z + dc-i)

(we write do—i for the delay counter of the transition TO-^ ; recall that is ranges over the

set {0,1,2,3} only). The upper bound on the termination of P,

start -* 0<3atJi,

6.2. EXPLICIT-CLOCK REASONING 229

is translated into the untimed unless formula

(start At = :) — (t < z + 3) U atJLu

which can be concluded by the unless rule from the invariant

at .to Ai = 0A2<t<z + 3At<; + do_a.

The asymmetry of the invariants for establishing the lower and the upper bound reflects a

subtle difference in the corresponding arguments, which will be fully exploited in the next

section, where we will devise separate proof methodologies for deriving lower bounds and

for deriving upper bounds.

Relative completeness

Let us conclude with two remarks about the explicit-clock style of proving real-time prop-

erties by untimed techniques:

1. The method applies to every formula <j> of TPTL or MTL that can be faithfully

translated into an explicit-clock formula <f>'\ that is, <j>' is S'-valid iff # is S-valid.

2. The method is complete relative to reasoning about the data domains. This is because

the unless rule has been shown complete, relative to state reasoning, for establishing

unless formulas, provided the underlying data types and the assertion language are

sufficiently powerful to encode runs of transition systems [89]. It follows that every

bounded-invariance and bounded-response property of 5 can be shown by untimed

reasoning:

Theorem 6.1 (Relative completeness of explicit-clock reasoning) Let S be a timed

transition system and let $ be a bounded-invariance or a bounded-response formula. If <(>

is S-valid, then the unless formula <t>' can be derived by the unless rule relative to state

reasoning.

6.2.2 Example: Race condition

As our main example, we present a multiprocessing system that looks innocent at first

glance but turns out to be rather intricate, because its execution time depends on an

t '),

%■' ":-i

|- ■' ■ ■ <i

t ■ ■■

i-:' J
!' ■ ■ "J

'f ' ''"■: !": ■. u

t. ■/ M
y- -. . -5

fc .- -v

i ■

£ , '\

'"-.• ■ ":

V .'\

'$' ■ *■

\--.A
r •. ■?
% - ■ '•:

I :
1-- . ■<

!■-', -i
4- ■ ■■?
I -5
I •'■■.;;
f ;

!■■ i
t ■ ■■::■*

k •*■:

$ ' I

k ■• -
I ■ . .{
'%■. ■:■ 4

I" ■
fc(' 1

i- ■'■ I & "'•
!■■'■ ;' ■-. ■■-?

&'■'■ : ■■ ''■7i!

%- ■ "■'■

%■.■ . .'■•

230 CHAPTER 6. DEDVCTNE VERIFICATION: PROGRAM PART

interesting interplay of the minimal delays and maximal delays of transitions that belong

to different processes. Consider the following timed transition diagram definition of the

increment-decrement system:

y := y - 1

*#0? | [1,10] [0,0]Jj,#0?

[0,0] [0,0]

z:=0 •© 11.10]

We wish to analyze the worst-case (maximal) running time of the synchronous two-process

shared-variables multiprocessing system

{J = l,y = 0}[P1||.P2].

Note that the first process, Pi, consumes the maximal amount of time if its first loop, in

which the value of y is incremented, is executed as often (fast) as possible — 11 times: the

control of Pj may enter the first loop 11 times before and at time 10, the latest time at

which the second process closes the loop, and it may spend another 10 time units in the

first loop after the guard has been reversed. In this worst (slowest) case, the first loop is

left at time 20 with y = 11 and, thus, the second loop may use up no more than 110 time

units. It follows that Pi terminates by time 130.

Assuming that assignments cost at least 2 time units (instead of 1), tests still being free,

the maximal value of y would be only 6, implying termination by time 80: the increase of

individual lower bounds decreases the composite upper bound! This phenomenon vividly

demonstrates that real-time reasoning amounts to more than simply adding up minimal

delays or maximal delays of individual transitions; it shows that lower-bound and upper-

bound requirements are not independent, but may jointly affect the global time bounds of

a system.

Let us now formally prove the upper bound 130 on the termination of Pi by explicit-

clock reasoning. To simplify the derivation, we may assume that both processes start

simultaneously at time 0. Then we can infer the explicit-clock formula

(start A t = d£_i = d2_, = 0) -» (t < 130) U at J\

6.3. BOUNDED-OPERATOR REASONING 231

by the unlexs rule from the following global invariant:

{atJl A at 4 A (y = t = dg_x = 0 V 1 < y < t = d^i)) V

(atJL\ A atJL\ A y + d}_0 < t = d^) V j

(at-Zj A atJL\ A 1 < y < 11 A t < 20) V j

(oUj A atJ\ A y < 10 A t < 10 + d_0) V

(atJL\ A atJ>\ A y < 11 A t + lOy < 130) V j

(atJL\ A af-/J A 1 < y < 11 A t + lOy < 130 + dj_2).]

This proof of timely termination resembles a mechanical, exhaustive case analysis of all \

possible state-time combinations that can occur during an execution of the two processes of |

the increment-decrement system. In the following section, we will introduce an alternative ;

style of deriving the desired bound on termination that follows much more closely the)

intuitive argument we have outlined above. J

I
6.3 Bounded-operator Reasoning |

In this section, we present an alternative, and quite different, proof method for establishing |

bounded-response and bounded-invariance properties of the given timed transition system 5 |

— a method that does not employ the clock variable t or any other reference to the absolute |

time. For this purpose, we formulate the property we wish to prove using the time-bounded |

temporal operators of MTL and employ, without detours, a deductive system for deriving |

the 5-validity of bounded-invariance and bounded-response formulas. The proof rules fall |

into four categories: |

1. The single-step rules derive real-time properties that follow from the lower-bound or f

upper-bound requirement for a single transition. I
I

2. The transitivity rules combine two local real-time properties of the same type — that 1

is, either two bounded-invariance properties or two bounded-response properties — |
I

into a composite timing property. I

3. The induction rules combine arbitrarily many local real-time properties of the same |

type into a global timing property. I

4. The crossover rules combine local real-time properties of opposite types into a com- 1

posite timing property. I

i

■lii i-'r'tti1 nri irni'M

090 CHAPTER 6. PEDt'CrrST VERIFICATION: PROGRAM PART

At the end of this section, we will show this proof system to be relatively complete for

a restricted class of verification problems and discuss some of the limitations of bounded-

operator reasoning.

6.3.1 Deterministic rules

First we present the bounded-operator methodology for verifying deterministic systems: a

timed transition system 5 is called deterministic if any two guards that are associated with

outgoing edges of the same vertex in the timed transition diagram representation of 5 are

disjoint. Nondeterministic systems require more complex (conditional) single-step reasoning

and will be treated in the next subsection.

Single-step rules

The single-step lower-bound rule uses the minimal delay lr € N of a transition r £ T to

infer a bounded-unless formula:

u-ss p -* -icnabled(r)

p -» <P

{<p)T-r{<f>}

<P — 9

(y>A enabled(r)) ~* r

P — «U>jTr

The rule U-SS derives a temporal (bounded-unless) formula from premises all of which are

state formulas, whose S-validity is usually shown by proving them generally valid. The

state formula <p is called the invariant of the rule. Choosing r to be true, the rule infers &

bounded-invariance property,

P — °<U?

(note that the last premise holds trivially in this case). To see why the rule U-SS is S-sound,

observe that whenever the transition r is not enabled, it cannot be taken for at least lr time

units.

The single-step upper-bound rule uses the maximal delay Mr € N of a transition r € T

to infer a bounded-response formula:

6.3. BOUNDED-OPERATOR REASONING 233

O-SS p — (<p V q)

tp —* cnabled(r)

{>P}T-T{<pwq}

{<P)r{q}

P — o<UTg

This rule derives a temporal bounded-response formula from premises all of which are state

formulas. The state formula <p is again called the invariant of the rule. To see why the rule

O-SS is 5-sound, recall that the transition T has to be taken before it would be continuously

enabled for more than Ur time units.

To demonstrate a typical application of the single-step rules, we consider again the

single-process system P with the data precondition x = 0 and the following timed transition

diagram:

« = °>—®-«gf-©

The process P confirms that z = 0 and proceeds to the location t\. Because of the delay

interval [2,3] of the transition T0-I, the final location t\ cannot be reached before time 2

and must be reached by time 3. Using single-step reasoning, we can carry out a formal

proof of this analysis. The bounded-invariance property that P does not terminate before

time 2,

ready -» C^iaÜi,

is established by an application of the single-step lower-bound rule U-SS with respect to

the transition T0_I (let the invariant <p be at J±,o)- The bounded-response property that P

terminates by time 3,

start -» 0<3 at Ji,

follows from the single-step upper-bound rule O-SS with respect to the transition TO_I (use

the invariant at Jo A x = 0).

CHAPTER 6. DEDUCTWE VERIFICATION: PROGRAM PART

Transitivity rules

To join a finite number of successive real-time constraints into a more complicated real-

time property, we introduce transitivity rules. The trarMtive lower-bound rule ombines

fviro bounded-unless formulas:

U-TRANS 4> - pU>;,x

H(pV q)U>ll+tlip

We refer to the formula x as the link of the rule. The transitive upper-bound rule combines

two bounded-response formulas:

O-TRANS <(> - 0<ttlx

<t> — o <U1+UJ i>

The formula x is again called the link of the rule. Both transitivity rules are easily seen to

be generally sound as well as 5-sound for every timed transition system S.

We demonstrate the application of the transitivity rules by examining the single-process

system P with the following timed transition diagram:

{x = 0}- z = 0?
[2,3] <&-l^h®

We want to show that P terminates not before time 4 and not after time 6. First, we prove

the lower bound on the termination of P:

ready —» D<i-iatJ2-

By the transitive lower-bound rule U-TRANS, it suffices to show the two premises

ready -> (-*atJ2)U>iatJo, (1)

at Jo -* hatJj) U>2 true. (2)

6.3. BOUNDED-OPERATOR REASONING 235

Both premises can be established by single-step lower-bound reasoning. To show the

premise (1), we apply the rule U-SS with respect to the transition T0_I, using the in-

variant at JXi0; the premise (2) follows from the rule U-SS with respect to the transition

Ti_2 and the invariant atJoj.

The upper bound on the termination of P,

start -» 0<8ßt-^j,

is concluded by the transitive upper-bound rule O-TRANS. It suffices to show the premises

start -* 0<3 (at.ii A x = 0),

(atJi A x = 0) -» 0<3 atJ2,

both of which can be established by single-step upper-bound reasoning (use the invariants

at Jo A x = 0 and atJi Ai = 0, respectively). Note that for lower-bound reasoning the

link at Jo identifies the last state before the transition T0_I is taken, while for upper-bound

reasoning the link atJ\ Ai = 0 refers to the first state after TO_I is taken.

For an example with a (deterministic) branching structure, consider the process P' with

the following timed transition diagram:

We show that P' terminates either at time 3 or at time 4. The proof requires a case analysis

on the initial value of x, which determines which path of the transition diagram is taken.

The lower bound

ready —► D<3 -latJs

is implied by the two bounded-invariance formulas

{ready A x = 0) -» 0<3 -i<zf Js>

(ready A x j± 0) -» ü<3 -mt J$,

I
I

236 CHAPTERS. DEDVCTWE VERIFICATION: PROGRAM PART

both of which can he derived by transitive lower-bound reasoning (as links use the two state

formulas atJ^.o A z = 0 and atJ±0 Ar^O, respectively). The upper bound

start -* 0<4 at-^3

follows by a similar case analysis and transitive upper-bound reasoning.

So far we have examined only single-process examples. In general, several processes that

communicate through shared variables interfere with each other. Consider the synchronous

two-process shared-variables multiprocessing system with the data precondition x = 1 and

the following timed transition diagrams:

{' = !}

* -^3HaH§
The first process, Pi, is identical to a previous example; with a minimal delay of 2 time

units and a maximal delay of 3 time units, it confirms that x = 0 and proceeds to the

location t\. However, this time the value of x is not 0 from the very beginning, but set to 0

by the second process, P2, only at time 1. Thus, Pi can reach its final location £\ no earlier

than at time 3 and no later than at time 4.

For a formal proof we need the transitivity rules. The bounded-invariance property

ready •— D<3 -iatJ.\

is established by an application of the transitive lower-bound rule U-TRANS. It suffices

to show the premises

ready — {->atJ\) U>i {at JL\fi A x = 1),

(«U^o A x = 1) -» (-<atj\)[)>3 true,

both of which follow from single-step lower-bound reasoning. Similarly, the transitive upper-

bound rule 0-TB.ANS is used to show the bounded-respoii:t: property

start -* 0<AatJ{

from the link atJ.\ A x = 0.

6.3. BO VNDED- OPERA TOR REASONING 237

Induction rules

To prove lower and upper bounds on the execution time of program loops, we need to

combine a state-dependent number of bounded-invariance or bounded-response properties.

For this purpose it is economical to have induction schemes.

The inductive lower-bound rule U-IND generalizes the transitive lower-bound rule U-

TRANS; it combines a potentially large number of similar bounded-unless formulas in

a single proof step. Assume that the new, rigid variable i £ V ranges over the natural

numbers N; for any n € N:

U-IND (y?(t) A i > 0) - pU>, <p{i - 1)

<p(n) -* pl)>„./v?(0)

By ip(i - 1) we denote the state formula that results from the inductive invariant <p(i) by

replacing all occurrences of the variable t with the expression t - 1; the formulas <p(n)

and ip{0) are obtained analogously. Note that every instance of the rule U-IND, for any

constant n € N, is derivable from the transitive lower-bound rule U-TRANS.

For a demonstration of inductive lower-bound reasoning, we consider the following single-

process system P:

[0,0] z^O?

J x = 0?
[0,0] ■©

The process P decrements the value of * until it is 0, at which point P proceeds to the

location /j. Since * starts out with the value 5, and each decrement operation takes at

least 2 time units, while the tests are instantaneous, the final location l3 cannot be reached

before time 10. This lower bound,

ready —» O<io -\atJLi,

follows by transitivity and monotonicity from the two bounded-unless properties

ready -► {^atJ3)\)>3(atJi A x = 5), (1)

238 ■ CHAPTER 6. DEDUCTIVE VERIFICATION: PROGRAM PART

[atJi Ai = 5) — (iatJ2)U>t(atJl A x = 1). (2)

The first property, (1), is enforced by two single-step lower bounds; the second property,

(2), can be derived by the inductive lower-bound rule U-IND from the premise

(atJLX A x = t + 1 A t > 0) -♦ (->atJ2) U>2 (atJx A x = i),

which is concluded by transitive reasoning.

The inductive lower-bound rule has a twin that combines several similar bounded-

response formulas by adding up there upper bounds u. In fact, both induction rules can be

generalized, by letting the bounds I and u vary as functions of t. In its more general form,

we state only the inductive upper-bound rule. It uses again a new, rigid variable t <= V that

ranges over the natural numbers N; for any n € N:

O-IND (p(i) A i > 0) - <><«,. <p(i - 1)
tp(n) - 0<So«s«««V(0)

Every instance of this rule is derivable from the transitive upper-bound rule O-TRANS.

The general form of the inductive upper-bound rule is useful to prove upper bounds for

programs with loops whose execution time is not uniform. An example for such a system

is the following odd-even variant of the process P:

<&

odd(x)1 * *:=*-l|[2,2] [0,0]

®
x#0? [2,3]|et>en(x)? — z := x - 1

x = 0?
[0,0]

The upper bound

start —» 0<i3 atJLi

follows by single-step reasoning and transitivity from the bounded-response property

start -* 0<12 {at Jo A x = 0),

which can be concluded by the inductive upper-bound rule O-IND from the premise

(at Jo A x = i A j > 0) - 0<2+C„BW (at JO A x = * - 1)

(the expression even(i) evaluates to either 1 or 0 depending on whether the value of t is

even). This bounded-response formula follows from transitive reasoning.

ts

1

I
I

6.3. BOUNDED-OPERATOR REASONItii 239

Crossover rules

So far we have presented only proof rules that combine properties of the same type. However,

as the increment-decrement example of Subsection 6.2.2 has demonstrated, the addition

of delays of the same type is insufficient for deriving all bounded-invariance and bounded-

response properties of a timed transition system: both local lower bounds and upper bounds

may jointly affect a global bounded-invariance (or bounded-response) property.

Specifically, to mimic the informal argument for the timely termination of the increment-

decrement system by a bounded-operator proof, we need the crossover upper-bound

rule:

O-MIX u<l

P — <0<up

9 -» °<ii
{p}(T-n)- {?}

P -» -iready

P — 0<u(P A q)

This rule is a modification of the temporal formula

(0<up A C<tq) - 0<„(p A q),

which is valid if ti < L We need the more complicated rule because the reasoning about

about lower and upper bounds is* asymmetric: while bounded-invariance formulas refer,

intuitively, to the last state before a transition is taken, bounded-response formulas refer

to the first state after a transition was taken. This phenomenon is captured by the inverse

verification condition

{p}(T-Tr)-{«>,

which asserts that, in any run fragment (er, T) of S, if c\+i is ap-stateanda,+i ^ Cj, thenc,-

is a g-state; note that, in this case, T<+i = T<, because all run fragments are deterministic

timed state sequences. Also observe that for any state <T< in a run fragment such that er,-

falsifies the ready condition, there is a run that contains a predecessor state that is different

from <Ti. The 5-soundness of the rule O-MIX follows.

M

H

m

Si

M

T'Sssff:

240 CHAPTER 6. DEDUCTIVE VERIFICATION: PROGRAM PART

We give here only a brief sketch of the bounded-operatcr proof for the bounded-response

property - ;

start -» O<i3o atJL\

of the increment-decrement system. The derivation relies, as expected, on an interplay |

of lower-bound and upper-bound rules. First we show that within 10 time units Pi can »ft

increase the value of y at most to 10:

ready -* D<n (y < 10); |

this is done by inductive lower-bound reasoning. Then we apply the crossover upper-bound | ■

rule O-MIX to the single-step upper bound f

start -* O<io(atj\ A x = 0), p

thus obtaining the bounded-response property |

start -* O<io{y < 10 A atd\ A x = 0). |

From here we proceed by pure upper-bound reasoning, performing a case analysis on the f

locations of P\. a

The increment-decrement example illustrates the trade-off between bounded-operator |

reasoning and explicit-clock reasoning beautifully. Compare the two proofs of the upper I

bound on termination: while the bounded-operator (or "hidden-dock") style of real-time f \

verification of this section refers to time only through the relative offsets of time-constrained !•

temporal operators, the explicit-dock style of the previous section uses ordinary untimed |;

temporal operators and refers to the absolute time in state formulas. Both styles trade off |

the complexity of the temporal proof structure against the complexity of the state invariants: |
$

• The hidden-clock approach relies on complex proof structures similar to the proof |*

lattices for establishing ordinary (untimed) liveness properties [105, 90] and uses rd- r

ativdy simple local invariants. p

I • The explicit-clock method employs only the plain unless rule — an (untimed) safety * |

rule — but requires a powerful global invariant. |<

While the crossover upper-bound rule combines a bounded-invariance property and a

bounded-response property into a bounded-response property, its counterpart, the crossover

lower-bound rule, yidds a bounded-unless property:

I"«

u

*"%a^rff&'B^j^^ Jsa^uiw««MBiaawMMia^^

6.3. BOUNDED-OPERATOR REASONING 241

U-MIX «</

P — °<JP

ff — 0<uff

{P}7 - T/ {?}

$ -♦ gU(?A ->p)

P -» pU>(?

This rule is S-sound, because it originates with the valid temporal formula (for u < /)

(a<i?AO<u(jU(gA^))) -» p\)>iq.

Note that the last premise, which contains only an unbounded unless operator, can be

established by untimed reasoning. In the following subsection, we will move further into

this direction by delegating as much of the derivation of timing properties as possible to

conventional untimed proof systems.

The crossover lower-bound rule U-MIX can be used to derive the lower bound

ready —» 0<2 -iatJ\

of the increment-decrement system.

6.3.2 Conditional rules

Unfortunately, the proof rules we have designed are not strong enough to show tight bounds

on nondeterministic systems. To see this, consider the following nondetenninistic variant P

of a process encountered previously:

As before, P terminates either at time 3 or at time 4. However, during an execution of P,

one of the two transitions To..! and TO_J is chosen nondeterministically. Thus we cannot

{

242 CHAPTERS. DEDUCTH'E VERIFICATION: PROGRAM PART

carry out a case analysis with respect to a state formula that selects a unique guard. Instead,

we proceed in two steps. First we establish an untimed safety formula that enumerates all

possible nondeterministic choices. Then we decorate the unbounded temporal formula with

time bounds.

Step 1 To establish th: "-validity of a temporal formula <f> that contains only unbounded

unless operators (i.e., U>o), it suffices to show that <f> is true over all run fragments

of the untimed transition system S~ that underlies 5. This can be achieved with

the help of any conventional untimed proof system (for instance, the procf system of

Manna and Pnueli [91]).

For example, to derive the lower bound 3 on the termination of our example P, we show

the untimed formula

ready - ((aUx IT at Jo U+ atJJ V (atJ± U+ atJ0 U
+ atJ2)) (t)

(nested unltss operators associate to the right).

Step 2 To add time bounds to this disjunction of nested unless formulas, we need con-

ditional single-step rules. They establish single-step real-time bounds under the as-

sumption that a particular disjunct has been chosen. The time bounds can, then, be

combined by the transitivity rules and conditional crossover rules.

Nondeterministic lower bounds

The conditional single-step lower-bound rule uses the minimal delay I? € N of a transition

T€T:

U-CSS p -* -yenabled{r)

{q}T-r{q V -,r}

(pU+sU+0-A*)) - (pU£,«U+,T(rA*))

The rule U-CSS is S-sound for any temporal formula 4>.

In our example, we use the conditional single-step lower-bound rule U-CSS with respect

to the transitions r0_i and To_2 to derive the conditional single-step bounds

(aUiU+aOoU+aUi) -» (atJ± 11+ aOoU^aUa),

I]

6.3. BOUNDED-OPERATOR REASONING 243

(aUxV+aU0i}+aU2) - (atJ1 U+ atJ0 U^ atJ2).

They allow us to conclude, üom (|),

ready - ((atJ± U+ at J0 U£2 otJj) V (at Jj. U+ ct J0 U£j atJ2)). (t)

To collapse nested bounded-unless operators, we use the temporal formula U-COLL:

U-COLL (pU>hqV>h<P) -* ((pV q)l)>h+i2<t>)

Note that this temporal formula, which is generally valid, can be derived by from transitive

lower-bound rule U-TRANS by using the two tautologies

(*U>i,*) - (?U>,2^).

From ({) we obtain by collapsing and monotonicity

ready — ({at Jo U£2 aiJ\) V (at Jo U£a at J2))\

that is, using the (untimed) validity p -» p U p and monotonicity,

ready - ((atJo U£2 atJj U+ o^j) V (atJo U£a atJ2 U+ atJ2)).

Adding conditional single-step lower bounds for the transitions Ti_3 and T2_3 gives

ready -» ((atJo^U at^i u>i «*-0 v («*-4>U>i «*-fcU£, atJ2)),

and by collapsing and monotonicity we iinally arrive at the desired bounded-invariance

property

ready —» 0<s-iat_/s.

Nondeterministic upper bounds

Conditional upper-bound reasoning does not require the nesting of unless operators. The

conditional single-step upper-bound rule uses the maximal delay ttr € N of a transition

T€T:

244 CHAPTER 6. DEDUCTIVE VERIFICATION: PROGRAM PART

O-CSS p — enabled{T)

(pV<P) - O<tlT0

Clearly, the rule O-CSS is 5-sound for any temporal forruula <f>. Note that the second ,

premise of this rule is trivially valid if r becomes disabled by being taken, as is the case

for all transitions of a timed transition system that is given by timed transition diagrams

(recall that we have ruled out self-loops in transition diagrams). It is also worth pointing

out that both conditional lower-bound and conditional upper-bound reasoning rely only on

assumptions that are built only from state formulas by positive boolean connectives and

unbounded unless operators and, therefore, define untuned safety properties. Accordingly,

the first step of conditional reasoning can be carried out by any untimed method for deriving I

safety properties. I

To derive the upper bound 4 on the termination of our example P, we show first the |

untimed formula f

start -» ((atJoUat.ii) V (atJ0U atJ2)). §

By the conditional single-step upper-bound rule O-CSS with respect to the transitions T0_I

and To—21 we derive the conditional single-step bounds |:

(at-i0Uat-*i) -» Ooaf.ii, |

(at Jo U atJLi) -* 0<2 at J2. |
£'■

They allow us to conclude I

if'.-'

start -♦ (0<2 atJLi V 0<2 at J2). |

Now we can proceed by unconditional upper-bound reasoning to arrive at the desired »f

bounded-response property |y.

start -* 0<4 atJ.%. |
«?■;

£;

Conditional crossover reasoning |
$•'

For combining assumptions that contain both lower bounds and upper bounds, we need the |

conditional crossover lower-bound rule U-CMIX and the conditional crossover upper-bound f

rule O-CMDC: I
k *--
i

■■

6.3. BOUNDED-OPERATOR REASONING 245

U-CMIX u<l (j) _ (-,p A -ig)

(((? V g) U>(<£) A (p U ((? U 4>) A 0<u </>))) - (pU>i-uqU4>)

O-CMIX </ <t> — (-1? A -.5)

(0<utf A (pUgU>^)) - Q<u-t(gU^)

Both crossover rules, which really are schemas of valid temporal formulas, will be essential

for the proof of relative completeness of conditional bounded-operator reasoning.

6.3.3 Relative completeness

Suppose we are given an untimed proof system that is complete for nested unless formulas.

Although such a proof system cannot exist for most data domains, there are temporal proof

systems that are complete relative to state reasoning [92]. Assuming that all untimed safety

properties of the given timed transition system S can be derived, we prove two results about

the power of bounded-operator reasoning:

1. First, we use the simplifying assumption that the nontrivial timing constraints of 5 are

cither all minimal delays or all maximal delays. This case does not require crossover

reasoning, and our proof system (without crossover rules) can indeed derive every

bounded-invariance and bounded-response property of S. We prove relative com-

pleteness by constructing a "constraint pattern" of transition delays for any given

property. This technique can be generalized to the following case.

2. Secondly, we show that our proof system (with crossover rules) can derive every

bounded-invariance and bounded-response property that satisfies, relative to the given

timed transition system S, the sufficient condition of stability. Roughly speaking, a

temporal formula <f> will be called stable for S iff the truth of * at any state along a

run of 5 can be determined without any information about the history of the run.

In addition, we will argue that bounded-operator reasoning, as we have presented it, is

strictly less powerful than explicit-clock reasoning and cannot be used to derive every

bounded-invariance and bounded-response property of 5.

S. '' ' ' ■%

1; ■. ■■■;

t- .p.

€ '■ A

}■■: ' '''•''*

£ ' 'V>

I i
•p-; ■

r ■ -. . .;
t . .-i

!■■■■■-.'3
§ ' -i
%-■ 4

r. 4
■!>■ ,.>i

f,. ■■$
r. ■ ■ 1
«'■' :■■■';."

*' '■ ''-:1

t ' ";
%■ -. '■'?

! \

It '■?

b ■ J
£-• ■ ■;=

r /■-$
§;;:.:-i
t ■> #'.' '. J

i ' 'i

f • ^
t ":•:":!

_JL^^J3

246 CHAPTER 6. DEDVCm'E VERIFICATION: PROGRAM PART

Theorem 6.2 (Relative completeness of bounded-operator reasoning) (The uni-

directional case) Let S = (E,0,7",/,u) be an operational timed transition system such that

either lT =, 0 for all r e T or m = or for all T £ T. Let $ be a bounded-invartance or

a bounded-response formula. If <j> is S-valid, then it can be derived by the monotonicity,

transitivity, and conditional single-step rules relative to untimed safety reasoning.

Proof of Theorem 6.2 (1) Suppose that all maximal delays of 5 are co. First we observe

that, under the given restrictions, untimed reasoning is complete for untimed properties

of 5. This is because in the absence of finite maximal delays there is a time sequence T

for every run fragment <r of the untimed weakly-fair transition system S& that underlies 5

such that (cr,T) is a run fragment of 5 (choose all time steps large enough). It follows that

any untimed temporal formula that is 5-valid is also S^-valid and, thus, can be established

by untimed reasoning.

Any bounded-response property is either trivially not S-'-alid or can be established by

untimed reasoning. Now suppose that the bounded-invariance property

p -* c<t-iq (1)

is 5-valid; we show that it can be derived within our proof system. The main idea is to see

that in order for (1) to be valid, for any p-state in a run of 5 there has to be a sequence of

nonoverlapping single-step lower bounds that add up to at least / before a g-state can be

reached. We show that there are only finitely many such ways in which a g-state can be

delayed for / time units; hence they cai be enumerated by a single untimed formula.

Consider an arbitrary run fragment p = (<r,T) of S such that <r„ t > 0, is a p-state.

Let er, be the first 9-state with j > i; if no such state exists, let 3 = 00. We write rk for the

transition that is completed at position k > 0 of p. A lower-bound /-constraint pattern for

ffi.,j is a finite sequence of nonoverlapping single-step lower bounds between t and j that

add up to at least /. Formally, a constraint pattern C is a sequence of transitions TJ, ,... 7t„.

The pattern C is a lower-bound /-constraint pattern iff

l<t<n

it is a lower-bound constraint pattern for <Xi..j iff

(a) t = to < »1 < • ■ • < in <j and

6.3. BOUNDED-OPERATOR REASONING 247

(b) for all 1 < ifc < n, the transition rtk is not enabled on some state <Tjk such

that n_i < ;'k < ik.

A lower-bound constraint pattern for ffi.,j can be visualised by annotating the run fragment p

with backward arrows that represent single-step lower bounds:

Ji J2 «2
—»

Two constraint patterns are equivalent iff one is a subpattern of the other (i.e., can be

obtained by omitting transitions). It is not hard to show the following two properties of

lower-bound constraint patterns:

Property A There is a lower-bound /-constraint pattern for ffi.j (use the truth of (1) over

the t'-th suffix of p).

Property B There are only finitely many different equivalence classes of lower-bound /-

constraint patterns.

We add, for every transition r € T, the boolean variable completed,, to our language; it

is intended to be true in a state <rt-, t > 0, of a run p = (<T,T) iff the transition T is completed

at position t of p. For our purpose, it turns out to be sufficient that completed, satisfies

the two axioms

{true} r { completed, },

{true} T-T {-^completed,}. (f)

By Property A, there is an untimed formula of the form

(-,g) U {->q A -lenaWeifo)) U+ (-<q) U+ (-13 A completed,t)U* ...

U+ {->q A completed,)

that is true over the t-th suffix of p. Since there are, by Property B, only finitely many

formulas of this form, p -» rj> {at some finite disjunction rj; of nested unless formulas is 5-

valid and, thus, given by untimed reasoning. From (t) we infer by the conditional single-step

lower-bound rule U-CSS with respect to any transition T 6 T that

{->enabled{r)) U£,y>U+ {completed, A </>) -»

(-<enabled{T))U+t<p\}$lr {completed, A $)

^'tlii'iiiiriii,'

24S CHAPTER 6. DEDUCTB'E VERIFICATION: PROGRAM PART

for any state formula <p and temporal formula <$>. Hence we can decorate the untimed

nested unless formula with time bounds. By repeated collapsing and monotonicity similar

to the sample lower-bound derivation above, we arrive at the desired bounded-invsxiance

property (1).

(2) Now suppose that all minimal delays of 5 are 0; the proof proceeds similarly to

the previous case. Untimed reasoning is complete for untimed properties of 5, because 5

is operational. Any bounded-invariance property is either trivially not 5-valid or can be

established by untimed reasoning. So let us assume that the bounded-response property

p -» 0<uq (2)

is 5-valid. Consequently, every p-state in a run of 5 has to be followed by a f-state that

can be reached by a sequence of overlapping single-step upper bounds that add up to at

most u. We visualize single-step upper bounds by forward arrows:

«i

Formally, let p — (c,T) be a run fragment of S such that ffj, t > 0, is a p-state, and let Cj

be the first g-state with j > i. For the sake of simplicity, we assume that the transition .fc,

which is completed at the position Jb > 0 of p, is not enabled on a^ (otherwise split t\

into two identical transitions with different names). A constraint pattern T,,,.. .T^, is an

upper-bound «-constraint pattern iff

l<fc<n

it is an upper-bound constraint pattern for Oi.j iff

(a) t = to < ij < • • < in-i < j < in and

(b) for all 1 < k < n, the transition TJ4 is enabled but not completed at all

states Cjk such that ik-i < jk < »V

It is not hard to see that upper-bound constraint patterns also satisfy the two crucial

properties:

6.3. BOUNDED-OPERATOR REASONING 249

Property A There is an upper-bound u-constraint pattern for ov.j (use the truth of (2)

over the t-th suffix of p).

Property B There are only finitely many different equivalence classes of upper-bound

u-constraint patterns (use the operationality of 5).

By Property A, there is an untuned formula of the form

(enaM«f(Ti,) A ^completedT.)U (enabled^) A -<completedrt)U ...

[) (enabled(rin) A -< completed Ti)\)q

that is true over the i-th suffix of p. By Property B, there is again a finite disjunction ip

of nested unless formulas such that the implication p -» ^ is 5-valid and, therefore, given

by untimed reasoning. By repeated application of the conditional single-step upper-bound

rule O-CSS, transitivity, and monotonicity, we arrive at the desired bounded-response

property (2). More specifically, to collapse nested bounded-eventually operators, we can use

the valid temporal formula O-CGLL, which is derivable from the transitive upper-bound

rule O-TitANS:

O-COLL (0<UlO<Ui4>) -» O<U1+UJ0

-.$
:1

The need for history information

Now let us, as promised, generalize the relative completeness result to timed transition

systems that contain both nontrivial minimal delays and nontrivial maximal delays. To

illustrate some of the complications that arise in the general case, we consider the syn-

chronous two-process multiprocessing system with the following timed transition diagram

definition:

Pi- Pr- —®

Ml

250 • CHAPTER 6. DEDUCTB'E VERIFICATION: PROGRAM PART

Both processes of this system operate perfectly synchronous, at the exact same speed, but

they are "out of phase," because the second process, F2t starts to loop only 1 time unit

after the first process. Pj. For instance, the bounded-response formula

atJ\ - 0<iatj\ (f)

is 5-valid for the timed transition system 5 that is associated with the concrete system

PIWIPJ- A proof of the bounded-response property (f) in the explicit-clock style of reasoning

uses the delay counters of transitions in an essential way. Since we have, in the version of

bounded-operator reasoning that we have presented, no way of referring to the history of a

state in a run, we cannot derive the property (f). This deficiency can, of course, be remedied

by introducing a mechanism whose expressiveness is equivalent to explicit delay counters.

One option that preserves the flavor of bounded-opeiator reasoning is the addition of time-

constrained past temporal operators for referring to the immediate history of a state in a

run of a system. Here we choose not to pursue this extension, but rather prove the relative

completeness of bounded-operator reasoning for a restricted set of verification problems

only. For this purpose, we define the notions of lower-bound and upper-bound stability.

Stable properties

A state formula p is called lower-bound-stable for the timed transition system 5 iff for every

run (ff,T) of 5 and all t > 0,

if <r, is a p-state and ffj+i is not a p-state and the transition T € T is enabled

on both Ci and ffj+i, then lr = 0.

The formula p is upper-bound-stable for S iff for every run (of,T) of 5 and all t > 0,

(To is not a p-state, and if (Tj+i is a p-state and <r< is not a p-state and the

transition r £ T is enabled on both Ci and ffi+i, then ttr = oo.

For instance, the ready condition ready is lower-bound-stable for every timed transition

system S and the synchronous starting condition start is upper-bound-stable for every

system 5. If the timed transition system 5 is associated with a single-process system, then

every state formula of the form at JU is both lower-bound stable and upper-bound stable

6.3. BOUNDED-OPERATOR REASONING 251

(if t 9^ l) for 5. Clearly, if p is lower-bound-stable (or upper-bound-stable) for any timed

transition system, then so is the stronger assertion p A 5.

Given a timed transition system 5, we say that a bounded-invariance property

P — °«?

is stable for 5 iff the antecedent p is lower-bound stable for 5. Similarly, a bounded-response

property

p -» 0<u?

is jtab/e for 5 iff its antecedent p is upper-bound stable for 5. We will show that every

stable bounded-invariance and bounded-response property of S can be derived by bounded-

operator reasoning. As we have just seen, this includes all bounded-invariance and bounded-

response properties with the antecedents ready and start, respectively, as well as all prop-

erties of sm^/e-process systems whose antecedents contain a conjunct of the form atJ-i, for

any location U- The trouble with the bounded-response property (f) of the <u>o-process

system given above is that its antecedent atJ\ is not upper-bound stable: a transition of

the process Pi may enter or leave the location l\ while a transition of the competing process

P3 is enabled and counting towards its maximal delay of 2.

We show that stability is a sufficient condition for relative completeness. In fact, as the

following argument will reveal, our definition of stability has been motivated by the attempt

to generalize the constraint pattern technique that we used to prove Theorem 6.2.

Theorem C.3 (Relative completeness of bounded-operator reasoning) (The bidi-

rectional case) Let S be an operational timed transition system and let $ be a bounded'

invariance or a bounded-response formula that is stable for S. If $ is S-vclxd, then it

can be derived by the monotonicity, transitivity, conditional single-step, and conditional

crossover rules relative to untimed safety reasoning.

Proof of Theorem 6.3 We give only a brief sketch of the proof, which parallels the proof

of Theorem 6.2. Suppose we wish to derive the S-valid stable property #. In the presence

of both rninimal and Tn^rinnal delays, constraint patterns are not linear, but resemble, in

general, zigzag sequences of single-step upper bounds and single-step lower bounds. Let us

draw single-step lower bounds by backward arrows and single-step upper bound by forward

252 CHAPTER 6. DEDVCTT\TE VERIFICATION: PROGRAM PART

arrows. Then, a lover-bound constraint pattern for the run segment ev.; may be of the

form:

-i

—t-

Dually, an upper-bound constraint pattern for ffj..;- may be of the form:

er: *--

We hope that these pictures give enough intuition to justify the omission of the straight-

forward, but tedious, formal definition of general constraint patterns. For the relative com-

pleteness proof to go through, we have to establish the familiar two properties of constraint

patterns for both the lower-bound case and the upper-bound case:

Property A Existence of a constraint pattern for Cj..j (use the S-validity of <j> as before).

Property B Existence of at most finitely many different equivalence classes of constraint

patterns. This is where the stability of «J comes into play: while the operationally

of S ensures the existence of a constraint pattern for <TJ..J that does not cross beyond

the position ;', th* stability of <f> guarantees, by definition, that no constraint pattern

for <Ti..j crosses below the position t. Since S has only finitely many transitions, it

follows that there can be only finitely many distinct constraint patterns within the

finite interval from t to j.

Both properties ensure the existence of an 5-valid untimed formula that characterizes all

constraint patterns. It is not hard to see that the conditional crossover rules U-CMIX

and O-CMIX, which have been designed for exactly this purpose, suffice to collapse any

reversal of direction in a zigzag constraint pattern. B

Chapter 7

iscnssion

The time has come to look back and see what has been accomplished, and what remains

to be done. Once we agreed that real-time verification is a genuine object for theoretical

investigation, we were immediately confronted with several decisions. To avoid distraction

from the issues that concern time, we chose a simple model of computation and represented

reactive systems by sets of infinite sequences of state changes. With regard to time, we

faced two questions:

Semantics Eow should we model time? While physicists seem fairly unanimous in their

opinion that, above quantum level, time is best approximated by the real line, philoso-

phers and logicians have proposed a curious variety of different models of time. These

models range from linear to branching to partial-order time and from discrete to dense

to continuous time, to name just a few (consult, for example, [25,124]). We believe

that for computer scientists, the choice should be directed by two issues:

1. Given a certain mathematical model of physical time, what can we prove in the

model and how difficult is it to do so? This question can, for any given model, be

formulated and answered in precise complexity-theoretic terms. In the analog-

dock model we encountered tremendous hurdles in the form of undecidability

results. Hence we opted for the more abstract digital-clock model and an indirect

approach to real-time verification.

2. If we have proved something in a certain mathematical model of physical time,

what, if anything, have we proved about physical time? Needless to point out,

253

?54 CHAPTER 7. DISCUSSION

"verification" of a real-time system in, say, the digital-clock model is only sensible

if the result gives us some insight into the physical reality. After all, that flight

control system we just proved "correct" has to operate in dense time.

The question we have posed, however, must inevitably remain somewhat vague

and philosophical (what is the "physical reality"?) and thus — unfortunately —

is often neglected. We believe that the classical physicists' model of time as the

real line captures all aspects of reality that we are interested in, and we suggest

that it serves as the point of reference for rating the adequacy of any real-time

verification method that deems it convenient to assume, for computational or

other reasons, a more abstract representation of time. As a case in point, we

justified our use of the digital-clock model by showing that a large and important

class of real-time systems and real-time properties is digitizable.

Syntax How should we define real-time properties? Given our model of time and computa-

tion, real-time properties are sets of timed state sequences. We chose to build on the

established verification framework that has been developed for temporal logic. Thus

we essentially looked at two ways to specify real-time properties — transition systems

and temporal logics.

One commonly raised objection to temporal logic as a real-time specification language

is that the very purpose of the temporal operators is the abstraction of time. Since, for

the definition of timing properties, it is necessary to reintroduce time as a first-order

domain, one should dispense with the temporal operators altogether. We showed that

this argument leads to unnecessarily unwieldy and expensive specification languages.

Instead, we pursued a more careful, and often more natural, introduction of time than

by first-order time variables, which gave us the crucial benefit of elementary decision

procedures.

To summarize, we have succeeded in incorporating time conservatively into transition

systems and temporal logic. We have demonstrated that qualitative temporal reasoning

about state sequences, be it model checking or theorem proving, can be naturally and

conservatively extended to quantitative temporal reasoning about timed state sequences.

Along the way, we identified the restrictions on syntax and semantics necessary for obtaining

elementarily decidable instances of the real-time verification problem. We showed that only

a very weak arithmetic over a discrete domain of time can be combined with reasoning

»Ö

7.1. SOME CONNECTIONS KITH RELATED RESEARCH 255

about state sequences to obtain decidable real-time logics. Then we presented two ways of

constraining the syntax further to find elementary real-time extensions of linear temporal

logic with the full expressive power of the maximal decidable theory of timed state sequences.

Thus, the two temporal logics TPTL and MTL occupy a position among real-time logics

that ii as theoretically appealing as the standing of the untuned logic PTL is for qualitative

reasoning.

In addition, we have provided evidence that timed transition systems naturally model

many classes of real-time systems of practical importance, just as we have demonstrated

that both TPTL and MTL are practical real-time specification languages. This is why we

believe that the model-checking algorithms and the proof methodologies that we presented

are important milestones on the long and winding road to the formal verification of "real"

real-time systems.

7.1 Some Connections with Related Research

Even though the field is, by any standard, extremely young, there has been a surge of

literature on the formal analysis of real-time systems in recent years. As the number of

researchers has proliferated, so has the number of models and languages that have been

studied. The proceedings of a recent workshop on the topic "Real Time: Theory in Practice"

will provide an excellent starting point for anybody who wishes to explore the range of

endeavors that are under way [31]. We have already pursued, throughout the thesis, concrete

comparisons with formalisms that are directly related to the issues being discussed. So

instead of trying (and necessarily failing) to give an exhaustive list of all proposals for

formal reasoning about the combination of time and computation, we take this opportunity

to attempt, first, a classification of the semantical assumptions of typical approaches. This

will allow us to focus, thereafter, on the formalisms that are interpreted over models closely

related to timed state sequences.

7.1.1 Semantic alternatives: Real-time models

In interpreting systems and specifications over timed state sequences, we have assumed a

state-based, discrete, interleaved, linear, asynchronous model of computation:

P.

MWJ«B^W-.ftWT<n^«UIW-W

156 CHAPTER 7. DISCUSSION

State-based because states are our primitive components of system behaviors. Alterna-

tives include action-based models, whose semantic primitives are state changes. It may .

be argued that state-based approaches axe more general, because states can encode

not only individual actions but entire histories of actions [78].

Although the choice of semantics is, in principle, often independent of the syntax • ;,"

of a language, there are certain classes of languages that traditionally have been

interpreted over certain domains. While temporal logics are usually (but by no means

necessarily) given a state-based semantics, process algebras generally refer to actions.

Consequently, unlike temporal logic, process algebra cannot treat time explicitly as a

state variable, and the need arose early on to extend process algebras with operators

that refer to time. By now there are more proposals of how this may be done than we

can enumerate and compare here; we only point to the real-time extensions of CSP

by Reed and Roscoe [112], the real-time extensions of CCS by Möller and Tofts [101] f

and by Wang [128], the real-time extensions of ACP by Nicollin, Richier, Sifakis, and

Voiron [103] and by Baeten and Bergstra [14], and the formalism Communicating

Shared Resources of Gerber and Lee [44]. |

Discrete because we allow only countably many state changes. Alternatives include models |

for continuous processes and models for hybrid systems, which combine both discrete f

and continuous components [87]. A continuous process may change its state at every |

real point in time according to, say, a set of differential equations. |

Interleaved because we model concurrent activity by nondetenninistic interleaving. Al- |

tematives include partial-order models and other "truly concurrent" models such as it

Petri nets (for issues about interleaving versus true concurrency, consult, for instance, |

the tutorials in [30]). For real-time extensions of Petri nets, we refer the reader to the ♦ f

proposals by Merlin and Färber [98] (see also [20]) and by Walter [127], and to the f

related work by Gabrielian and Franklin [41]. I
i);

Linear because we identify systems that agree on the sets of their possible behaviors. f

Models that adhere to the combined assumption of interleaving and linearity are of- I

ten called trace models, because they represent reactive systems as sets of traces. |

Alternatives include branching models with various stronger notions of system equiv- |

alence such as bisimulation (for the entire spectrum of possible equivalences, see, for f

7.1. SOME CONNECTIONS WITH RELATED RESEARCH 257

example, [125]). These models are traditionally studied in process algebra and, to

some extent, in branching-time temporal logic.

Branching-time temporal logics clearly can be extended in the same ways in which we

have augmented linear-time temporal logic, by freeze quantifiers or by time-bounded

temporal operators. The latter approach has been pursued by Alur, Courcoubetis,

and Dill [7], who obtained the surprising result that branching-time MTL, while still

undecidable, permits model checking in the analog-clock model. The same conclusions

apply to branching-time TPTL [6]. A similar result was independently shown by

Lewis; he, too, gave a model-checking procedure for an MTL-like branching-time

logic [82].

Asynchronous because we allow state changes at any real point in time. The combined j

assumption of discreteness and asynchronicity is sometimes referred to as finite vari- j

ability [17], because only finitely many state changes can occur between any two t?

points in time. Alternatives include synchronous models, in which all concurrent ac- |

tivity happens in lock-step; that is, the term "synchronicity" is used in the sense of
"i

Milner [100]: all component processes are clocked by a global clock. |
J

The combined assumption of true concurrency and synchronicity has been called max- i

imal parallelism by Pnueli and Harel [110] (although the term has also been used in |

connection with a weaker notion of synchronicity [73]). Pnueli and Harel contrast a |

maximally parallel semantics with our asynchronous interleaving semantics. Maxi- f

mally parallel models identify "next-state" with "next-time* and, therefore, the next I

operator of traditional temporal logics can be used to reason about real-time proper- |

ties. This approach has been taken by Pnueli and Harel [110] and by Gabrielian and |

Iyer [42] for linear-time logics, and by Emerson, Mok, Sistla, and Srinivasan [37] for J

a branching-time logic. Clearly, any such "calculus of the next operator" is strictly |

subsumed by our methods, because synchronous systems can be modeled by timed I

transition systems and time can be faxed to act as a state counter in both TPTL

and MTL. Moreover, we showed in Chapter 4 that the simplifying assumption of |

synchronicity does not make real-time verification any more tractable. |

258 CHAPTER 7. DISCUSSION

7.1.2 Syntactic alternatives: Real-time languages

Now let us point to some of the work that builds on the model of computation that we

have used. There are two main categories of languages that have been proposed to de-

fine sets of timed state sequences — temporal-logic-based formalisms and automata-based

formalisms. We include in this discussion all languages that can be interpreted over timed

state sequences, even if their original semantics are somewhat more restrictive than ours, for

example, "truly concurrent" by requiring that time increases strictly monotonically. Also,

while almost every concrete proposal assumes a particular model of time — usually either a

discrete or a continuous time domain — most of the languages in the following two groups

can be interpreted in both the digital-clock model and the analog-clock model.

Temporal logics The overwhelming majority of extensions of temporal logic for real-time

reasoning fall into one of two classes:

1. Logics with time-bounded temporal operators similar to MTL. This approach

to the specification of timing properties has been advocated by Koymans, Vy-

topil, and de Roever [71, 72, 74], although an early proposal by Bernstein and

Harter can be viewed as a precursor [19]. Shasha, Pnueli, and Ewald [117] and

Pnueli and Harel [110] have also used this method of expressing timing con-

straints. All of these proponents have been interested in deductive verification

only and have employed ad hoc proof techniques that make use of a few valid

fonnulas of MTL. While Koymans' syntactic and semantic assumptions are far

too permissive to obtain model-checking algorithms, Pnueli has applied the logic

primarily in the overly restrictive synchronous case. Under the assumption of

being given a complete axiomatization for MTL, Hooman and Widom presented

a relatively complete proof system for verifying MTL-specifications of CSP-like

programs [61].

2. Logics with an explicit time variable; that is, a state variable that refers, in any

state, to the current time. In Section 3.1, we called a generic version of this

type of language "real-time temporal logic." Scattered examples of this method

of expressing timing constraints have been used by Pnueli and de Roever [109]

and by Ron [114]. More systematic expositions of the logic can be found in

the work of Harel, Lichtenstein, and Pnueli [53, 54, 110] and of OstrofF, who

/

7.1. SOME CONNECTIONS KITH RELATED RESEARCH 259

has presented a wide variety of interesting applications [104]. More recently,

the use of a time variable has been advocated by Lamport and Abadi in the

Temporal Logic of Actions [80]. All of these proponents have employed, for

real-time verification, untimed safety proof methods in the spirit of Section 6.2.

OstrofT has given model-checking procedures for a limited set of properties. Only

Harel, Lichtenstein, and Pnueli have been interested in questions of decidability

and, after we showed their logic to be undecidable, they identified a nonlogical

decidable fragment that has a model-checking algorithm. We already critiqued

the introduction of a t x? variable into temporal logic in Chapter 3 and found it

to be both unnecessarily unwieldy for specification and prohibitively expensive

for finite-state verification. It was these drawbacks that led us to design the logic

TPTL.

The kind of assertional reasoning about real-time safety properties that refers,

in state assertions, to an explicit time variable can also be carried out in non-

temporal Hoare-styie proof systems. This approach has been advocated for var-

ious kinds of programming languages; for instance, by Haase [47], Shankar and

Lam [116], Schneider [115], and Hooman [60].

Real-time extensions of interval temporal logics (for example, [27, 97,102]) do not fit

properly into either of these two categories. Also the leal-time logic RTL of Jahanian

and Mok [63], essentially an extension of Presburger arithmetic with unary predicates,

is quite different in flavor from conventional temporal logics. In Section 3.5 we showed

it to be undecidable. Jahanian and Stuart have identified some decidable classes of

RTL-formulas and presented, similar to OstrofT, specific model-checking procedures

for individual classes of timing properties [65].

Automata As an alternative to logical languages, both specifications and implementations

can be described in automata-based formalisms. We distinguish between operational

and nonoperational approaches, in the sense that only the former restrict us to con-

gruous definitions of real-time properties and, therefore, only they can serve directly

as machine models or programming languages:

1. Timed transition systems fall, as we showed in Section 2.1, into the executable

class. Similar state-transition systems with minimal delays and maximal delays

on transitions have been defined by Pnueli and Harel [110] and by OstrofT [104].

■ß

1

260 CHAPTER 7. DISCUSSION

Bur eh has used unit delays only ;23". Jahanian and Mok have modified State-

charts to Modeckaris by incorporating minimal and maximal time delays J64J.

All of these references use the state-transition systems as implementation lan-

guages only and specify real-time properti".* in one of the logical languages we

discussed above.

A second group of researchers has used automata for both specification and im-

plementation. Merritt, Modugno, and Tuttle have augmented I/O automata,

which distinguish between input and output events, with minimal and maximal

transition delays [99]. A variant of this model has been studied by Lynch and

Attiya, who verify real-time properties by mappings between automata [85]. Ag-

garwal and Kurshan have extended Büchi automata in a similar way and use

finite-state techniques for the verification of real-time properties [3].

2. Alur and Dill have added timing constraints to finite automata over infinite

sequences in a much more flexible way than by putting only minimal and maximal

delays on transitions [8, 9, 33, 34]. A comprehensive account of finite-state

verification techniques that are based on this powerful notion of timed automata

has been compiled by Alur [6]. Lewis has proposed a similar nonoperational

extension of finite automata with time [82].

As far as we know, nobody has formally addressed the issues of real-time stuttering,

safety, liveness, and operationality, nor has anybody attempted to use the digital-

clock model for the verification of continuous properties. Although we presented

model-checking algorithms for the verification of timed transition systems only, it is

not difficult to use our digital methods to check if, say, a timed automaton meets a

temporal-logic specification.

We remark that while the extension of aut amata with minimal and maximal delays on

transitions resembles the time-bounded temporal operators of MTL, the timed automata

of Alur and Dill can be thought of as an augmentation of finite automata with the freeze

quantifier of TPTL (although, in the automata context, time variables that are bound

to the current time are, instead, called "docks" or "timers" that are "set" to the current

time). Thus there seem to be, independent of any particular language, two principal styles

of adding timing constraints to untimed formalisms:

toi.^^.--.,-.

7,2 SOME DIRECTIONS FOR FUTURE RESEARCH 261

Local Lower and upper bounds on the time differences of adjacent states or actions or tem-

poral contexts oniy. The tune-bounded temporal operators of MTL and the minimal

and maximal transition delays of timed transition systems fall into this category.

Global Lower end upper bounds on the time differences of any two states or actions or

temporal contexts. In TPTL, for example, a freeze quantifier can be bound in one

temporal context and checked for its value, later, in an arbitrarily distant temporal

context (provided certain scoping rules are obeyed). Similarly, & timed automaton

can set a clock with a transition and check its value, later, at an arbitrarily distant

state. Also, while local timing constraints seem to dominate in process algebras and

Petri nets, is is not hard to come up with such formalisms that permit global timing

constraints.

We used the discreteness of time to show that MTL and TPTL are equally expressive in

the digital-clock model. Yet it is doubtful that the global style of defining timing relations

is in general no more expressive than the local style. In particular, we suspect that there

are real-time properties in the analog-clock model that can be defined in TPTL but not

in MTL. This remark anticipates our final comments, which briefly discuss some open

problems in real-time verification.

7.2 Some Directions for Future Research

It is perhaps a sign of the vitality of a field that the answer to every question opens several

new questions. Indeed, little has been solved in formal reasoning about real-time systems.

Thus we find it appropriate to conclude by raising, in no particular order, a few problems

that we would like to see addressed:

• Making verifieition practical. Clearly, the applicability of our verification techniques

has not matured beyond the level of toy examples. We hope, however, that we have

demonstrated the theoretical suitability of temporal logic for real-time verification,

and that our languages will generate sufficient interest to warrant research on improv-

ing the practicality of our approach. The improvement of the finite-state verification

methods is particularly pressing in the real-time case, which we showed to be expo-

nentially more difficult than untimed verification. For this purpose, it will be essential

to

262 CHAPTER 7. DISCUSSION

1

1. Deal with the state explosion problem of model checking by, say, symbolic and

partial techniques [24, 45].

2. Deal with timing information by symbolic constraints rather than constant de-

lays .

3. Combine model checking and other decision procedures with theorem proving

technology.

4. Decompose and compose systems, specifications, and correctness proofs [2, 15,

16].

Finite-state techniques will prove to be particularly useful if they can be practically

applied not only to the verification of given systems but also to the automatic inference

of time bounds and the automatic synthesis of system skeletons [34, 36, 94].

• Increasing the scope of verification. There are several problems about the deductive

verification of real-time properties that have been left open in this thesis:

1. Find a complete axiomatization for MTL (some axioms for a more general version

of MTL than ours have been suggested by Koymans without claim of complete-

ness [71]).

2. Classify more complex real-time properties than bounded response and bounded

invariance to obtain a hierarchy of real-time properties similar to the untimed

hierarchy of temporal properties [93], and find relatively complete proof methods

for all classes of properties in the real-time hierarchy.

3. Determine which analog property is established if the digital-dock model is u?ed

to show that a timed transition system meets an arbitrary (i.e., not necessarily

digitiiable) specification that is given as a formula of TPTL or MTL.

• The analog-clock model We feel strongly that in the analog-clock model, the interval

semantics (see Section 3.4) is more appropriate than the timed state sequence seman-

tics and recently we identified a real-time temporal logic that yields to finite-state

verification techniques under an analog interval interpretation [9]. This result and

the analog verification methods for timed automata [8] suggest that our indirect ap-

proach through the digital-dock modd may be unnecessarily roundabout. However,

from a theoretical perspective, the picture regarding the analog-dock modd is far

from complete.

7.2. SOME DIRECTIONS FOR FUTURE RESEARCH 263

We showed that the appealing untimed identification of finite-state properties with

w-rejcular languages leads also to a clean notion of "finite-state real-time property" in

the digital-clock model: the class of digital finite-state real-time properties is exactly

the class of properties that can be defined by sentences of the second-order theory of

timed state sequences or, alternatively, by the temporal logic TETL or, alternatively,

by timed automata or, alternatively, by several equivalent untimed formalisms with

additional time-difference and time-congruence propositions. Moreover, this class is

dosed under all boolean operations and all problems of relevance to verification are

elementarily decidable. It is, on the other hand, not obvious to us what constitutes

"finite-state" information about a sequence of real numbers. Thus we have asked the

question [12]:

7s there an agreeable notion of finite-state real-time property in the analog-

dock model? The set of such properties ought to be closed under all boolean

operations, have an elementarily decidable emptiness problem, and be, in a

suitable sense, "maximal."

An acceptable characterization of analog finite-stats properties would also lead to a

theory of expressiveness of analog languages, including analog TPTL, analog MTL,

and timed automata.

Local clocks and hybrid systems. By adding time to transition systems, we introduced

a single variable that changes continuously in the analog-clock model. This quality

distinguishes time from all other system components. From here it is not hard to

conceive of timed transition systems that permit all variables to change continuously

as functions of time. We may, for example, add differential equations to all states of

a timed transition system. The equations in a state govern the continuous change of

all variables as long as the control of the system resides in the state. For instance,

consider the following timed transition diagram, which models a thermostat:

264 CHAPTER 7. DISCUSSION

7 > 70 - heat := false [6,6] [6,6] T < 65 - heat := true

The boolean variable heat indicates if the heater is turned on. The real variable T

represent? the room temperature and changes continuously: when the heater is turned

on, it increases as a function of time; otherwise it decreases. The heater is turned off

whenever the temperature rises above 70 degrees, but there is a delay of 6 time units

from the time that the temperature actually passes the threshold to the time that the

heater is turned off; the heater is turned on again as soon as the temperature falls

below 65 degrees after another sensory and mechanical delay of 6 time units.

What we have just described is called a hybrid system, because it combines discrete

and continuous elements. It can be given the semantics of Maler, Manna, and Pnueli,

which is an extension of our interval semantics to several continuously changing vari-

ables [87]. As the results of Section 3.5 may prove to be insurmountable obstacles for

the finite-state verification of hybrid systems, the interesting questions concern proof

methods for hybrid real-time properties. We also remark that variables that change

implicitly as functions of time, without the system taking any of its discrete transi-

tions, can be used to model (analog or digital) local clocks, an important concept in

many distributed algorithms.

Frteze quantification. The freeze quantifier, which has turned out to be so useful

in dealing with time, can, in principle, be added to any prepositional modal logic,

completely independent of the notion of time Indeed, there seem to be some intriguing

prospects for other applications of freeze quantification. Suppose, for example, that

with every state of a program, we associate not a single-stamp but an entire vector

containing the current values of all program variables, say, u\,...uu- The freeze

quantifier "z." binds this tuple to the variable z, and we have k functions, value-of -u;

for 1 < t < Jb — one to access each component of z (i.e., the value of Ui). This allows

us to assert program properties, such as the condition that the program variable u is

Z3

7.2. SOME DIRECTIONS FOR FUTURE RESEARCH 265

increased by 1 in the next execution step:

z. 0 V- value-of-u(y) = value-of-u(x) + 1

or, in half-order dynamic logic:

x. (u := u + 1) y. value-of-u(y) = value-of-u(x) + 1

(for an introduction to dynamic logic, see, for example, [51]). This property is ordi-

narily stated in a much richer, first-order, modal logic:

Vz.(tt = x -♦ (u := u-f l)tt = i + 1).

It can be argued that most transition axioms and input-output relations are more

naturally written without universal quantifiers and auxiliary variables. In addition,

similar to the real-time case there may be trade-offs between the expressiveness and

complexity of programming logics with different forms of quantification.

Other applications of the freeze quantifier can be found in half-order logics of knowl-

edge. For example, in the course of the knowledge-based analysis of a protocol,

Halpern and Zuck introduced the notation "p©;" to denote the proposition pi for

the value I of the variable i in the current state [50]. This condition can be natu-

rally expressed by freeze quantification. One may also attempt to interpret the freeze

quantifier as a kind of personal pronoun that ranges over the domain of agents that

are reasoning or the processors of a distributed system (for aa overview of the use of

epistemic logics in distributed computing, we refer to [48]).

J

265 CHAPTER 7. DISCUSSION

»*

Bibliography

[1] ABADI, M., AND LAMPORT, L. The existence of refinement mappings. In Proceed-

ings of the Third Annual Symposium on Logic in Computer Science (1988), IEEE

Computer Society Press, pp. 165-175.

[2] ABADI, M., AND LAMPORT, L. Composing specifications. In Stepwise Refinement of

Distributed Systems: Models, Formalism, Correctness, J. de Bakker, W.-P. de Roever,

and G. Rozenberg, Eds., Lecture Notes in Computer Science 430. Springer-Verlag,

1990.

[3] AGGARWAL, S., AND KURSHAN, R. Modeling elapsed time in protocol specification.

In Proceedings of the Third IFIP WG6.1 International Workshop on Protocol Specifi-

cation, Testing, and Verification (1983), H. Rudin and C. West, Eds., Elsevier Science

Publishers (North-Holland), pp. 51-62.

[4] ALPERN, B., DEMERS, A., AND SCHNEIDER, F. Safety without stuttering. Infor-

mation Processing Letters 23, 4 (1986), 177-180.

[5] ALPERN, B., AND SCHNEIDER, F. Defining liveness. Information Processing Letters

21, 4 (1985), 181-185.

[6] ALUR, R. Techniques for Automatic Verification of Real-time Systems. PhD thesis,

Stanford University, 1991.

[7] ALUR, R., COURCOUBETIS, C, AND DILL, D. Model checking for real-time systems.

In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (1990),

IEEE Computer Society Press, pp. 414-425.

267

268 BIBLIOGRAPHY

[8] ALUR, R., AND DILL, D. Automata for modeling real-time systems. In ICALP

90: Automata, Languages, and Programming, M. Paterson, Ed., Lecture Notes in

Computer Science 443. Springer-V°rlag, 1990, pp. 322-335.

[9] ALUR, R., FEDER, T., AND HENZINGER, T. The benefits of relaxing punctuality. In

Proceedings of the Tenth Annual Symposium on Principles of Distributed Computing

(1991), ACM Press, pp. 139-152.

[10] ALUR, R., AND HENZINGER, T. A really temporal logic. In Proceedings of the 30th

Annual Symposium on Foundations of Computer Science (1989), IEEE Computer

Society Press, pp. 164-169.

[11] ALUR, R., AND HENZINGER, T. Real-time logics: complexity and expressiveness.

In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (1990),

IEEE Computer Society Press, pp. 390-401.

[12] ALUR, R., AND HENZINGER, T. Time for logic. SIGACT News 22, 3 (1991).

[13] APT, K., FRANCEZ, N., AND KATZ, S. Appraising fairness in languages for dis-

tributed programming. Distributed Computing 2, 4 (1988), 226-241.

[14] BAETEN, J., AND BERGSTRA, J. Real-time process algebra. Formal Aspects of

Computing 3, 2 (1991), 142-188.

[15] BARRINGER, H. The use of temporal logic in the compositional specification of con-

current systems. In Temporal Logics and their Applications, A. Galton, Ed. Academic

Press, 1987, pp. 53-90.

[16] BARRINGER, H., KUIPER, R., AND PNUELI, A. Now you may compose temporal-

logic specifications. In Proceedings of the 16th Annual Symposium on Theory of Com-

puting (1984), ACM Press, pp. 51-63.

[17] BARRINGER, H , KUIPER, R., AND PNUELI, A. A really abstract concurrent model

and its temporal logic. In Proceedings of the 13th Annual Symposium on Principles

of Programming Languages (1986), ACM Press, pp. 173-183.

[18] BEN-ARI, M., MANNA, Z., AND PNUELI, A. The temporal logic of branching time.

In Proceedings of the Eighth Annual Symposium on Principles of Programming Lan-

guages (1981), ACM Press, pp. 164-176.

*

BIBLIOGRAPHY 269

[19] BERNSTEIN, A., AND HARTER, JR., P. Proving real-time properties of programs

with temporal logic. In Proceedings of the Eighth Annual Symposium on Operating

System Principles (1981), ACM Press, pp. 1-11.

[20] BERTHOMIEU, B., AND DIAZ, M. Modeling .ind verification of time-dependent sys-

tems using time Petri nets. IEEE Transactions on Soßware Engineering SE-17, 3

(1991), 259-273.

[21] BUCH!, J. Weak second-order arithmetic and finite automata. Zeitschrift, ßr mathe-

matische Logik und Grundlagen der Mathematik 6 (1960), 66-92.

[22] BÜC3I, J. On a decision method in restricted second-order arithmetic. In Proceedings

of the First International Congress on Logic, Methodology, and Philosophy of Science

1960 (1962), E. Nagel, P. Suppes, and A. Tarski, Eds., Stanford University Press,

pp.1-11.

[23] BURCH, J. Combining CTL, trace theory, and timing models. In CAV 89: Auto-

matic Verification Methods for Finite-state Systems, J. Sifakis, Ed., Lecture Notes in

Computer Science 407. Springer-Verlag, 1989, pp. 334-348.

[24] BURCH, J., CLARKE, E., MCMILLAN, K., DILL, D., AND HWANG, L. Symbolic

model checking: 1020 states and beyond. In Proceedings of the Fifth Annual Sympo-

sium on Logic in Computer Science (1990), IEEE Computer Society Press, pp. 428-

439.

[25] BURGESS, J. Basic tense logic. In Handbook of Philosophical Logic, D. Gabbay and

F. Guenthnex, Eds., vol. U. D. Reidel Publishing Company, 1984, pp. 89-133.

[26] CHANDY, K., AND MISRA, J. Parallel Program Design: A Foundation. Addison-

Wesley Publishing Company, 1988.

[27] CHAOCHEN, Z., HOARE, C, AND RAVN, A. A calculus of durations. Information

Processing Letters. To appear.

[28] CLARKE, E., EMERSON, E., AND SISTLA, A. Automatic verification of finite-state

concurrent systems using temporal-logic specifications. ACM Transactions on Pro-

gramming Languages and Systems 8, 2 (1986), 244-263.

I

270 EIBLIOGRAPHY

[29] CLARKE, E., AND GRÜMBERG, 0. Research on automatic verification of finite-state

concurrent systems. In Annual Review of Computer Science, J. Traub, B. Grosz,

B. Lampson, and N. Nilsson, Eds., vol. II. Annual Reviews, 1987, pp. 269-290.

[30] DE BAKKER, J., DE ROEVER, W.-P., AND ROZENBERG, G., Eds. linear Time,

Branching Time, and Partial Order in Logics and Models for Concurrency. Lecture

Notes in Computer Science 354. Springer-Verlag, 1988.

[31] DE ROEVER, W.-P., Ed. Real Time: Theory in Practice. Lecture Notes in Computer

Science. Springer-Verlag. To appear.

[32] DEDERICHS, F., AND WEBER, R. Safety and liveness from a methodological point]

of view. Information Processing Letters 36, 1 (1990), 25-30.

[33] DILL, D. Timing assumptions and verification of finite-state concurrent systems. In

CAV 89: Automatic Verification Methods for Finite-state Systems, J. Sifakis, Ed., •]

Lecture Notes in Computer Science 407. Springer-Verlag, 1989, pp. 197-212.

[34] DILL, D., AND WONG-TOI, H. Synthesizing processes and schedulers from temporal

specifications. In CAV 90: Automatic Verification Methods for Finite-state Systems,)

R. Kurshan and E. Clarke, Eds., Lecture Notes in Computer Science. Springer-Verlag. jj

To appear.

[35] EMERSON, E. Temporal and modal logic. In Handbook of Theoretical Computer

Science, J. van Leevwen, Ed., vol. B. Elsevier Science Publishers (North-Holland), \

1990, pp. 995-1072. \

[36] EMERSON, E., AND CLARKE, E. Using branching-time temporal logic to synthesize]

synchronization skeletons. Science of Computer Programming 2, 3 (1982), 241-266. ^ §3

[37] EMERSON, E., MOK, A., SISTLA, A., AND SRINIVASAN, J. Quantitative temporal §'

reasoning. Presented at the First Annual Workshop on Computer-aided Verification, |

Grenoble, France, 1989. |;

/ «• %

[38] ENDERTON, H. A Mathematical Introduction to Logic. Academic Press, 1972. f

[39] FITTING. M. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing f

Company, 1983. f

gre^:;:?;^^:&:g35^^

BIBLIOGRAPHY 271

[40] GABBAY, D., PNUELI, A., SHELAH, S., AND STAVI, J. On the temporal analy-

sis of fairness. In Proceedings of the Seventh Annual Symposium on Principles of

Programmiug Languages (1980), ACM Press, pp. 163-173.

[41] GABRIELIAN, A., AND FRANKLIN, M. Multi-level specification and verification of

real-time software. Communications of the ACM 34, 5 (1991), 50-60.

[42] GABRIELIAN, A., AND IYER, R. Integrating automata and temporal logic: a frame-

work for specification of real-time systems and software. In The Unified Computation

Laboratory, C. Rattray and R. Clark, Eds. Oxford University Press. To appear.

[43] GARSON, J. Quantification in modal logic. In Handbook of Philosophical Logic,

D. Gabbay and F. Guenthner, Eds., voi. II. D. Reidel Publishing Company, 1984,

pp. 249-307.

[44] GERBER, R., AND LEE, I. Communicating Shared Resources: a model for distributed

real-time systems. In Proceedings of the Tenth Annual Real-time Systems Symposium

(1989), IEEE Computer Society Press, pp. 68-78.

[45] GODEFROID, P., AND WOLPER, P. A partial approach to model checking. In Pro-

ceedings of the Sixth Annual Symposium on Logic in Computer Science (1991), IEEE

Computer Society Press, pp. 406-415.

[46] GOLDBLATT, R. Logics of Time and Computation. CSLI Lecture Notes 7. Center for

the Study of Language and Information, Stanford, California, 1987.

[47] H^ASE, V. Real-time behavior of programs. IEEE Transactions on Software Engi-

neering SE-7, 5 (1981), 494-501.

[48] HALPERN, J. Using reasoning about knowledge to analyze distributed systems. In

Annual Review of Computer Science, J. Traub, B. Grosz, B. Lampson, and N- Nilsson,

Eds., vol. II. Annual Reviews, 1987, pp. 37-68.

[49] HALPERN, J. Presburger arithmetic with unary predicates is Hi-complete. The

Journal of Symbolic Logic 56, 2 (1991), 637-642.

[50] HALPERN, J., AND ZUCK, L. A little knowledge goes a long way: simple knowledge-

based derivations and correctness proofs for a family of protocols. In Proceedings of

lA^isi

BIBLIOGRAPHY

the Sixth Annual Symposium on Principles of Distributed Computing (1987), ACM

Press, pp. 269-2S0. %

[51] HAREL, D. Dynamic logic. In Handbook of Philosophical Logic, D. Gabbay and

F. Guenthner, Eds., vol. II. D. Reidel Publishing Company, 1984, pp. 497-604.

[52] HAREL, D., PNUELI, A., AND STAVI, J. Propositional dynamic logic of regular

programs. Journal of Computer and System Sciences 26, 2 (1983), 222-243.

[53] HAREL, E. Temporal analysis of real-time systems. Master's thesis, The Weizmann

Institute of Science, Rehovot, Israel, 1988.

[54] HAREL, E.. LICHTENSTEIN, 0., AND PNUELI, A. Explicit-clock temporal logic. In

Proceedings of the Fifth Annual Symposium on Logic in Computer Science (1990),

IEEE Computer Society Press, pp. 402-413.

[55] HENKIN, L. The completeness of the first-order functional calculus. The Journal of

Symbolic Logic 14, 3 (1949), 159-166.

[56] HENZINGER, T. Half-order modal logic: how to prove real-time properties. In Proceed-

ings of the Ninth Annual Symposium on Principles cf Distributed Computing (1990),

ACM Press, pp. 281-296.

[57] HENZINGER, T., MANNA, Z., AND PNUELI, A. An interleaving model for . sal time.

In Proceedings of the Fifth Jerusalem Conference on Information Technology (1990),

IEEE Computer Society Press, pp. 717-730.

[58] HENZINGER, T., MANNA, Z., AND PNUELI, A. Temporal proof methodologies for

real-time systems. In Proceedings of the 18th Annual Symposium on Principles of %

Programming Languages (1991), ACM Press, pp. 353-366.

[59] HOARE, C. Communicating Sequential Processes. Prent'ce-Hall, 1985.

[60] HOOMAN, J. Specification and Compositional Verification of Real-time Systems. PhD

thesis, Technische üniverüteit Eindhoven, The Netherlands, 1991.

[61] HOOMAN, J., AND WIDOM, J. A temporal-logic-based compositional proof system

for real-time message passing. In PARLE 89: Parallel Architectures and Languages

BIBLIOGRAPHY 273

Europe, E. Odijk, M. Rem, and J.-C. Syre, Eds., vol. II, Lecture Notes in Compvter

Science 366. Springer-Verlag, 19S9, pp. 424-441.

[62] HOPCROFT, J., AND ULLMAN, J. Introduction to Automata Theory, Languages, and

Computation. Addison- Wesley Publishing Company, 1979.

[63] JAHANIAN, F., AND MOK, A. Safety analysis of timing properties in real-time sys-

tems. IEEE Transactions on Soßware Engineering SE-12, 9 (1986), 890-904.

[64] JAHANIAN, F., AND MOK, A. A graph-theoretic approach for timing analysis and

its implementation. IEEE Transactions on Computers C-36, 8 (1987), 961-975.

[65] JAHANIAN, F., AND STUART, D. A method for verifying properties of Modechart

specifications. In Proceedings of the Ninth Annual Real-time Systems Symposium

(1988), IEEE Computer Society Press, pp. 12-21.

[66] JAY, F., Ed. IEEE Standard Dictionary of Electrical and Electronics Terms,

fourth ed. The Institute of Electrical and Electronics Engineers, Piscataway, New

Jersey, 1988.

[67] JAYASIMHA, D. Communication and Synchronization in Parallel Computation. PhD

thesis, University of Illinois at Urbana-Champaign, 1988.

[68] KAMP, J. Tense Logic and the Theory of Linear Order. PhD thesis, University of

California at Los Angeles, 1968.

[69] KELLER, R. Formal verification of parallel programs. Communications of Üii>. ACM

19, 7 (1976), 371-384.

[70] KELLEY, J. General Topology. Springer-Verlag, 1955.

?-"v.'S

[71] KOYMANS, R. Specifying real-time properties with metric temporal logic. Real-time i ,

Systems 2, 4 (1990), 255-299. f;f

£"■ [72] KOYMANS, R., AND DE E.OEVER, W.-P. Examples of a real-time temporal specifica-

tion. In Tlie Analysis of Concurrent Systems, B. Denvir, W. Harwood, M. Jackson, g

and M. Wray, Eds., Lecture Notes in Computer Science 207. Springer-Verlag, 1985,

pp. 231-252.

■ 1

274 BIBLIOGRAPHY

[73] KOYMANS, R., SHYAMASUNDAR, R., DE ROEVER, W.-P., GERTH, R., AND ARUN-

KUMAR, S. Compositional semantics for reai-time distributed computing. Informa-

tion and Computation 79, 3 (1988), 210-256.

[74] KOYMANS, R., VYTOPIL, J., AND DE ROEVER, W.-P. Real-time programming and

asynchronous message passing. In Proceedings of the Second Annual Symposium on

Principles of Distributed Computing (1983), ACM Press, pp. 187-197.

[75] KOZEN, D. Results on the propositional ^-calculus. Theoretical Computer Science

27, 3 (1983), 333-354.

[76] LAMPORT, L. Provjig the correctness of multiprocess programs. IEEE Transactions

on Software Engineering SE-3, 2 (1977), 125-143.

[77] LAMPORT, L. Spt.r' rjg concurrent program modules. ACM Transactions on Pro-

gramming Languages and Syl'ms 5, 2 (1983), 190-222.

[78] LAMPORT, L. What good is temporal logic? In Information Processing 83: Proceed-

ings of the Ninth IFIP World Computer Congrets (1983), R. Mason, Ed., Elsevier

Science Publishers (North-Holland), pp. 657-668.

[79] LAMPORT, L. The temporal logic of actions. Tech. rep., DEC Systems Research

Center, Palo Alto, California, 1991.

[80] LAMPORT, L., AND ABADI, M. Refining and composing real-time specifications. In

Real Time: Theory in Practice, W.-P de Boever Ed., Lecture Notes in Computer

Science. Springer-Verlag. To appear.

[81] LEMMON, E. Algebraic semantics for modaJ logics. The Journal of Symbolic Logic

31, 2 (1966), 191-218.

[82] LEWIS, H. A logic of concrete time intervals. In Proceedings of the Fifth Annual

Symposium on Logic in Computer Science (1990), IEEE Computer Society Press,

pp. 380-389.

[83] LICHTENSTEIN, O.. AND PNUELI, A. Checking that finite-state concurrent programs

satisfy their linear specification. In Proceedings of the 11th Annual Symposium on

Principles of Programming Languages (1984), ACM Press, pp. 97-107.

BIBLIOGRAPHY 275

[84] LICHTENSTEIN, O., PNUELI, A., AND ZUCK, L. The glory of the past. In Logics of

Programs, R. Parikh, Ed., Lecture Notes in Computer Science 193. Springer-Verlag,

1985, pp. 196-218.

[85] LYNCH, N., AND ATTIYA, H. Using mappings to prove timing properties. In Proceed-

ings of the Ninth Annual Symposium on Principles of Distributed Computing (1990),

ACM Press, pp. 265-280.

[86] LYNCH, N., AND TUTTLE, M. Hierarchical correctness proofs for distributed algo-

rithms. In Proceedings of the Sixth Annual Symposium on Principles of Distributed

Computing (1987), ACM Press, pp. 137-151.

[87] MALER, 0., MANNA, Z., AND PNUELI, A. A formal approach to hybrid systems.

Unpublished manuscript, 1991.

[88] MANNA, Z., AND PNUELI, A. How to cook a temporal proof system for your pet lan-

guage. In Proceedings of the Tenth Annual Symposium on Principles of Programming

Languages (1983), ACM Press, pp. 141-154.

[89] MANNA, Z., AND PNUELI, A. Proving precedence properties: the temporal way. In

ICALP 83: Automata, Languages, and Programming, J. Diaz, Ed., Lecture Notes in

Computer Science 154. Springer-Verlag, 1983, pp. 491-512.

[90] MANNA, Z., AND PNUELI, A. Adequate proof principles for invariant« and liveness

properties of concurrent programs. Science of Computer Programming 4, 3 (1984),

257-289.

[91] MANNA, Z., AND PNUELI, A. The anchored version of the temporal framework.

In Linear Time, Branching Time, and Partial Order in Logics and Models for Con-

currency, J. de Bakker, W.-P. de Roever, and G. Rosenberg, Eds., Lecture Notes is

Computer Science 354. Springer-Verlag, 1989, pp. 201-284.

[92] MANNA, Z., AND PNUELI, A. Completing the temporal picture. In ICALP 89:

Automata, Languages, and Programming, G. Ausiello, M. Dezani-Ciancaglini, and

S. Ronchi Delia Rocca, Eds., Lecture Notes in Computer Science 372. Springer-Verlag,

1989, pp. 534-558.

.'•■■>

mrj&iwimzamm&m&äi'smä^

276 BIBLIOGRAPHY

[93] MANNA, Z., AND PNUELI, A. A hierarchy of temporal properties. In Proceedings of

the Ninth Annual Symposium en Principle* of Distributed Computing (1990), ACM

Press, pp. 377-408.

[94] MANNA, Z., AND WOLPEE, P. Synthesis of communicating processes from temporal-

logic specifications. ACM Transactions on Programming Languages and Systems 6,1

(1984), 68-93.

[95] MCNAUGHTON, R. Testing and generating infinite sequences by a finite automaton.

Information and Control 9, 5 (1968), 521-530.

[96] MCNAUGHTON, R., AND PAPERT, S. Counter-free Automata. The MIT Press, 1971.

[97] MELLIAR-SMITH, P. Extending interval logic to real-time systems. In Temporal Logic

in Specification, B. Banieqbal, H. Barringer, and A. Pnueli, Eds., Lecture Notes in

Computer Science 398. Springer-Verlag, 1989, pp. 224-242.

[98] MERLIN, P., AND FäRBER, D. Recoverability of communication protocols: impli-

cations of a theoretical study. IEEE Transactions on Communications COM-24, 9

(1976), 1036-1043.

[99] MERRITT, M., MODUGNO, F., AND TUTTLE, M. Time-constrained automata.

In CONCUR 91: Theories of Concurrency, Lecture Notes in Computer Science.

Springer-Verlag. To appear.

[100] MlLNER, R. Calculi for synchrony and asynchrony. Theoretical Computer Science

25, 3 (1983), 267-310.

[101] MOLLER, F., AND TOFTS, C. A temporal calculus of communicating processes.

In CONCUR 90: Theories of Concurrency: Unification and Extension, J. Baeten

and J. Klop, Eds., Lecture Notes in Computer Science 458. Springer-Verlag, 1990,

pp. 401-415.

[102] NARAYANA, K., AND AABY, A. Specification of real-time systems in real-time tem-

poral interval logic. In Proceedings of the Ninth Annual Real-time Systems Symposium

(1988), IEEE Computer Society Press, pp. 86-95.

[103] NICOLUN, X., RICHIER, J.-L., SIFAKIS, J., AND VOIRON, J. ATP: an algebra

for timed processes. In Proceedings of the IFIP WG2.2/2.S Working Conference on

H

l»gSOflfflggaaSBiS3iBBBBEJ5^#^^

BIBLIOGRAPHY 277

Programming Concepts and Methods (1990), M. Broy and C. Jones, Eds., Elsevier

Science Publishers (North-Holland), pp. 415-442.

[104] OSTROFF, J. Temporal Logic of Real-time Systems. Research Studies Press, 1990.

[105] OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs.

ACM Transactions on Programming Languages and Systems 4, 3 (1982), 455-495.

[106] PNUELI, A. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science (1977), IEEE Computer Society
Press, pp. 46-57.

[107] PNUELI, A. The temporal semantics of concurrent programs. Theoretical Computer
Science 13, 1 (1981), 45-60.

[108] PNUEU, A. Applications of temporal logic to the specification and verification of

reactive systems: a survey of current trends. In Current Trends in Concurrency,

J. de Bakker, W.-P. de Roever, and G. Rozenberg, Eds., Lecture Notes in Computer

Science 224. Springer-Verlag, 1986, pp. 510-584.

[109] PNUELI, A., AND DE ROEVER, W.-P. Rendezvous with Ada: a proof-theoretical

view. In Proceedings of the SIGPLAN AdaTEC Conference on Ada (1982), ACM

Press, pp. 129-137.

[110] PNUELI, A., AND HAREL, E. Applications of temporal logic to the specification

of real-time systems. In Formal Techniques in Real-time and Fault-tolerant Sys-

tems, M. Joseph, Ed., Lecture Notes in Computer Science 331. Springer-Verlag, 1988,
pp. 84-98.

[Ill] PRATT, V. A near-optimal method for reasoning about action. Journal of Computer

and System Sciences 20, 2 (1980), 231-254.

[112] REED, G., AND ROSCOE, A. A timed model for communicating sequential processes.
Theoretical Computer Science 58,1/2/3 (1988), 249-261.

[113] ROGERS, JR., H. Theory of Recursive Functions and Effective ComputabUity.

McGraw-Hill Book Company, 1967.

-™- I-- '- —■ ■■" """• ~"-"~* *- "1

278 BIBLIOGRAPHY

[114] RON, D. Temporal verification of communication protocols. Master's thesis, The

Weirmann Institute of Science, Rehovot, Israel, 1984.

[115] SCHNEIDER, F. Real-time, reliable systems project. In Proceeding} of the ONR

Kickoff Workshop for the Foundations of Real-time Computing Research Initiative
(1988), Office of Naval Research, pp. 28-32.

[116] SHANKAR, A., AND LAM, S. Time-dependent distrituted systems: proving safety,

liveness, and timing properties. Distributed Computing 2, 2 (1987), 61-79.

[117] SHASHA, D., PNUELI, A., AND EWALD, W. Temporal verification of carrier-sense

local area network protocols. In Proceedings of the 11th Annual Symposium on Prin-

ciples of Programming Languages (1984), ACM Press, pp. 54-65.

[118] SISTLA, A. Theoretical Issues in the Design and Verification of Distributed Systems.
PhD thesis, Harvard University, 1983.

[119] SISTLA, A., AND CLARKE, E. The complexity of proposition^ linear temporal logics.
Journal of the ACM S2, 3 (1985), 733-749.

[120] SMULLYAN, R. First-order Logic. Springer-Verlag, 1968.

[121] STOCKMEYER, L. The Complexity of Decision Problems in Automata Theory and

Logic. PhD thesis, Massachusetts Institute of Technology, 1974.

[122] THOMAS, W. A combinatorial approach to the theory of «-automata. Information
and Control 48, 3 (1981), 261-283.

[123] THOMAS, W. Automata on infinite objects. In Handbook of Theoretical Computer

Science, J. van Leeuwen, Ed., vol. B. Elsevier Science Publishers (North-Holland),
1990, pp. 133-191.

[124] VAN BENTHEM, J. The Logic of Time. D. Reidel Publishing Company, 1983.

[125] VAN GLABBEEK, R. Comparative Concurrency Semantics and Refinement of Actions.

PhD thesis, Vrije Universiteit te Amsterdam, The Netherlands, 1990.

[126] VARDI, M. A temporal fixpoint calculus. In Proceedings of the 15th Annual Sympo-

sium on Principles of Programming Languages (1988), ACM Press, pp. 250-259.

?

BIBLIOGRAPHY 279

[127] WALTER, B. Timed Petri nets for modeling and analyzing protocols with real-time

characteristics. In Proceedings of the Third IFIP WG6.1 International Workshop on

Protocol Specification, Testing, and Verification (1983), H. Rudin and C. West, Eds.,

Elsevier Science Publishers (North-Holland), pp. 149-159.

[128] WANG, Y. Real-time behavior of asynchronous agents. In CONCUR 90: Theories of

Concurrency: Unification and Extension, J. Baeten and J. Klop, Eds., Lecture Notes

in Computer Science 458. Springer-Verlag, 1990, pp. 502-520.

[129] WOLPER, P. Synthesis of Communicating Processes from Temporal-Logic Specifica-

tions. PhD thesis, Stanford University, 1982.

[130] WOLPER, P. Temporal logic can be more expressive. Information and Control 56,

1/2 (1983), 72-99.

[131] WOLPER, P., VARDI, M., AND SISTLA, A. Reasoning about infinite computation

paths. In Proceedings of the 24th Annual Symposium on Foundations of Computer

Science (1983), IEEE Computer Society Press, pp. 185-194.
:

12

f
r

1-1

•: .

••'«

P^

lüii

sv
|:l

|,1

i

ta

