
S.F 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE Form Approved 
OMBNO. 0704-0188 

Public reporting ouroen lor inn collection ot information is estimated to average 1 nour per response, including me lime lor reviewing instructions, searcning existing data source» 
garnering and maintaining ihe data needed, and completing and reviewing the collection ot information/Send comment regarding mis burden estimates or any other asoect ot this 
collection ot inlormation. including suggestions tor reducing mis burden, to Washington Headduarters Services. Directorate tor information Operations and Reports 1215 Jefferson 
•Davis Highway. Suite 1204. Arlington. VA 22202-4302. and lo me Office ot Management and Budget. Paperwork Reduction Proiect 10704-0188). Washington DC 20503 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
July 1997 

3. REPORT TYPE AND DATES COVERED 
Technical - 97-13 

4. TITLE AND SUBTITLE 
The Law of the Iterated Logarithm and Central Limit 
Theorem for L-Statistics 

6. AUTHOR(S) 

Deli Li, M.B. Rao and R.J. Tomkins 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 
Center for Multivariate Analysis 
417 Thomas Building 
Penn State University 
University Park, pA 16802 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

t.'.S. Armv Research Office 
P.O. Box'12211 
Research Triangle Park. NC 27709-2211 

11. SUPPLEMENTARY NOTES 

5.  FUNDING NUMBERS 

DAAH04-96-1-0082 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

10.  SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

ftfio 3^S--/^A 

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a.  DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
The main idea in this paper is that we devise an effective way of combining the 
Smirnov's law of the iterated logarithm for empirical processes, and some well-known 
results of limit behavior of L-statistics to establish new results on the central limit 
theorem, law of the iterated logarithm, and strong law of large numbers, for L-statistics 
We show further that this approach can be pursued profitably to obtain necessary and 
sufficient conditions for either almost sure convergence or convergence in distribution 
of some well-known L-statistics and U-statistics. A law of the logarithm for weighted 
sums of order statistics is stated with no proof. 

19970820 015 JEEP QtTAHT? EKSSOITÄ -I 

14. SUBJECT TERMS 
Central limit theorem; empirical processm laws of the iterated 
logarithm, L-statistics, strong law of large numbers. 

15. NUMBER IF PAGES 
32 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Sid. 239-18 
298-102 



THE LAW OF THE ITERATED LOGARITHM 

AND CENTRAL LIMIT THEOREM FOR L-STATISTICS 

Deli Li, M.B. Rao and R.J. Tomkins 

Technical Report 97-13 

July 1997 

Center for Multivariate Analysis 
417 Thomas Building 
Penn State University 

University Park, PA 1G802 

Research supported by the Army Research Office under Grant DAAHO4-96-1-0082. The 
United States Government is authorized to reproduce and distribute reprints for govern- 
mental purposes notwithstanding any copyright notation hereon. 



THE LAW OF THE ITERATED LOGARITHM 

AND CENTRAL LIMIT THEOREM FOR 

L-STATISTICS 

DELI LI
1
,     M. BHASKARA RAO

2
     AND    R. J. TOMKINS

3
 

4 

Abstract The main idea in this paper is that we devise an effective way of 

combining the Smirnov's law of the iterated logarithm for empirical processes, 

and some well-known results of limit behavior of L-statistics to establish new 

results on the central limit theorem, law of the iterated logarithm, and strong 

law of large numbers, for L-statistics. We show further that this approach can 

be pursued profitably to obtain necessary and sufficient conditions for either 

almost sure convergence or convergence in distribution of some well-known L- 

statisties and U-statistics. A law of the logarithm for weighted sums of order 

statistics is stated with no proof. 
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1    Introduction 

Throughout this article, {X, Xn; n > 1} will denote a sequence of independent 

identically distributed real random variables (i.i.d. random variables) with com- 

mon distribution function F given by F(x) = P(X < x), x £ 7£, the real line. 

For each positive integer n, let Xi:n < X^.n < • • • £ Xn:n be the order statistics 

of X\, A*2, • • •, Xn. Let H be a real valued measurable function defined on 

TZ. Linear combinations of order statistics (in short, L-statistics) are statistics 

of the form 

Ln = -Y/ci,nH(Xi:n) 
t=i 

where the weights c;|Tl,  1 < i < n, n > 1, are real numbers. 

Research in L-statistics has been active for more than 20 years. Much 

is known about their limit behaviours including asymptotic normality, Berry- 

Esseen type bounds for normal approximation, Cramer type large deviations, 

the law of the iterated logarithm and the Kolmogorov type strong laws of large 

numbers under quite general conditions. See Helmers (1977), Mason (1982), 

Mason and Shorack (1992), Sen (1978), Shorack (1972), Stigler (1974), Van 

Zwet (1980), Wellner (1977a, b), etc and, in particular, two books by Serfling 

(1980) and Shorack and Wellner (1986) and references therein. To our knowl- 

edge, however, all results established for L-statistics need H(-) to be a known 

function of the form H(-) = Hi(-) — //2O with each Hi | and left continuous. 



Furthermore, //i(-) and //2(-) should also satisfy 

\Hi(r-{t))\<Mit-dl{l-t)-d*,       0<t<l (1.1) 

with some fixed M\, di and d-2, where 

F~(t) = inf {s; F(s) >t},     0 < t < 1. 

Some conditions on {CJIT,; 1 < i < n, n > 1} are also needed. One often chooses 

d n = ■/( — ),      1 < i < n, n > 1 
n 

where ./(f) satisfies some continuous condition in (0,1) as well as 

\J(t))\<M2r
bi(i-t)-^,     0<t<l (1.2) 

with some fixed A/2, fci and b<2-   For obtaining either central limit theorem or 

the law of the iterated logarithm for 

f> (£) #(*«„),      n>l, 

further condition on b\, b-2, rf; and c/2 is 

a = max{6] + di,&2 +^2} < 75- 

These conditions sometimes are not easy to be vertified. 

Example 1.1    Let p > 1 and {X, Xn; n > 1} a sequence of i.i.d. random 

variables with common density function 

fracCr\x?{L\x\Y, \x\ > v. 

Ill < c 



where Cp > 0 is a constant such that J_    f(x)dx — 1. Here and the following 

Lx = loge max{e,x} and L%x = L(Lx), x S 1Z. Clearly, 

E(X)=0   and    E(X2) = -^-. 
P- 1 

It is easy to check that 

F(x) = P(X < x) ~ { 
2-

1
CPX-

2
(L|X|)-P as x —► -co, 

1-2-
1
CPX-

2
(L|X|)-P        asi-oo. 

Hence 

F-(t)~{ 
as £-»0+, 

as t->0~. 

(£)   '-"WD)"' 
I (4)"2(.-«)-"(^))"' 

Choose //(x) = x and J(() = 1. It follows that one can not find &i, 2>2, d\ and 

d2 such that (1.1) and (1.2) hold and 

a = max{l>i +dt, 62 +^2} < 7.- 

Thus, by using any result of the law of the iterated logarithm for L-statistics 

established so far, one can not say anything about 

hm sup —/o =- = hm sup —*=^--  
J1-.00     y/2n log log n n-.oo   \/2n log log n 

which the classical Hartman-Wintrier law of the iterated logarithm asserts that 

the limit superior equals to (2Cp/(p— 1)) ' almost surely. As Wellner (1977b) 

mentioned, the classical law of the iterated logarithm does follow only if the 

second moment condition is strengthened to r-th moment condition for some 

r > 2. See Example la on page 492 in Wellner (1977b). 



Example 1.2 Let W be a standard Wiener process on 1Z (i.e. (W((); t > 

0} and {W(—t); t > 0} are two independent copies of Wiener process starting 

from 0), and let {X,Xn\ n > 1} be a sequence of i.i.d. random variables, 

independent of W. For any given path of W, we consider L-statistics 

71 

£-W(Xi:n),    n>\. 

As we know, for almost every path of W, W can not be represented as the form 

W = W| — W-2 with W; f and left continuous. One also can not say anything 

about 

,.     E;i,^w(xi;n)-,4n hm sup / =  
7i- oo x/2nloglogn 

for some sequence {An\ n > 1}, by using any result of the law of the iterated 

logarithm for L-statistics established so far. 

Motivated by these examples above, one of the main objectives of this paper 

is to find necessary and sufficient conditions for the law of the iterated logarithm 

and the central limit theorem, respectively, of L-statistics under some very re- 

laxed conditions on //(■). In fact, from Theorems 2.1 and 2.2 in this paper, we 

can find that the only condition on //(■) we need is E(\H(X)\) < oo. We should 

note that ./(■) is strengthened to be a Lipschitz function of order 1 when //(•) 

is relaxed. 

It is valuable to give an outline of the main idea of proofs of Theorems 2.1 

and 2.2.   Throughout this paper, {U, Un\ n > 1} represents a sequence of iid 



random variables with uniform (0,1) distribution. Then, we have 

{X, Xn; n > 1} i {F*-(U), F~{Un); n> 1} 

where "=" means equal in distribution. This is a well-known fact. It now follows 

that 

{*i:»; 1 < * < «, n > 1} = {F"-(J7i:n); 1 < * < n, n > 1} 

where {/;,„, 1 < t < n, are the order statistics of U{, 1 < i < n. Note that 

P ([/, ^ f/j   for all   1 << j < oo) = 1. 

So we have that 

E;i
=1^(^)^(^(^n)) =   n=iAUi.n)H(F-(u,n)) 

a=  Er-i^o^(^-w)) 
+     £7=1 {J(T>n(Ui:n)) - J(f/i:n)) H(F-(Ui:n)) 

= Sn + Rn, n>l 

where £>n is the empirical distribution function of U\, U2,..., Un. Clearly, 

classical results can be applied to the first part Sn above. As for the second 

part /?„, we may try to apply some known results for the empirical processes to 

Rn to obtain what we want. However, we can not misunderstand that, under 

some conditions (except .J(t) = C some constant), both the law of the iterated 

logarithm and the central limit theorem for £™=1 J(-)H(Xi:n), n > 1, only 



depend on X]"=i J(Ui)H(F"~(Ui))> n> 1. We shall know this from Theorems 

2.1 and 2.2. 

This approach is quite simple. The empirical process is a powerful tool 

which has now become a standard technique in proving limit theorems. See, for 

example, Gilat and Hill (1992) Mason and Shorack (1992), Shorack and Wellner 

(1986) and references therein. In Section 3, we show further that this approach 

can be applied to obtain necessary and sufficient conditions for either almost 

sure convergence or convergence in distribution of some well-known L-statistics 

or U-statLstics. This is the second main objective of this paper. 

It is very natural to consider the case of general scores c<in, 1 < i < n, n > 1 

with 

sup       |Cj,n| < oo. 
1< 1<TI,TI> 1 

In this connection, one may ask what we can say about the law of the iterated 

logarithm for 
Tl 

Y,citnH(Xi:n),    n>l. 

We shall have some certain sense about this problem by a result on what we 

call a law of the logarithm for L-statistics. See Section 4. 

2    Main Results 

In this section, we give our main results of this paper as well as their proofs. 

Let A' be a real random variable with distribution function F(x) and U 



a random variable with uniform (0,1) distribution.   Let H(-) be a real Borel- 

measurable function defined on 72. with 

E(\H(X)\)<oo. (2.1) 

Then we write 

H = pi(F, J,H) = E (J(U)H(F- (£/)) 

exists for all ./(•) € C[0,1], the set of continuous functions defined on [0,1]. For 

every given Lipschitz function J(-) of order 1 defined on [0, l], write 

Z = J(U)II(F'-(U)), 
(2.2) 

Y = -Z + n-f*(l{u<t}-t)J'(t)H(F~(t))dt. 

Then Y and Z are two random variables under (2.1). It is easy to see that 

E(\Y\) < oo and  E(Y) = 0 (2.3) 

and that 

if and only if 

a2 = VarfY) = E{Y2) < oo (2.4) 

E(Z') < oo. (2.5) 

Let {£„; n> 1} be a sequence of random variables. We say that {£n; n > 1} is 

bounded in probability if 

lim supP(|£„| > x) =0. 
I-*00n>l 

The main results in this paper are following Theorems 2.1 and 2.2. 



Theorem 2.1 (Necessary and Sufficient Conditions for the LIL of L-Statistics) Let 

{X, Xn; n > 1} be a sequence of i.i.d. random variables and H(-) a real Borel- 

measurable function defined on 72. such that (2.1) holds. Let J(-) be a Lipschitz 

function of order 1 defined on [0, l]. Then 

hmsupJ !—. = L < oo     a.s. (2.b) 
71-.00 \/2nloglogn 

if and only if (2.5) holds. In either case, 

...    .  rXtiAiWiXi^-nfi      - 
lunsup(lun ml)  =  =(—) er      a.s. (2.7) 

7i-.no     »—"o v2nloglog7i 

where a1 is defined by (2.4). 

Theorem 2.2      (Necessary and Sufficient Conditions for the CLT of L- 

Statistics) 

Under the conditions of Theorem 2.1, we have that 

fELi^Wr»:»)-"/*.   n>1|    is bounded in probability (2.8) 

if and only if (2.5) holds.  In either case, 

£!'=■ J(±)H(Xi:n) - up    d    Ar/n    2 

sfn 

where "-!-*" means convergence in distribution. 

N(0,a2) (2.9) 

Two remarks are in order. 

(i) Theorems 2.1 and 2.2, respectively, include the classical LIL and the 

classical CLT, respectively, as special cases. (Take J(t) = 1,£ € [0,1] and 

H(x) =x, x£K.) 

10 



(ii) From the proofs of Theorems 2.1 and 2.2, one can replace ./(£), 1 < 

i < n, 7i > 1 by J(U:n), I < i < n, n > 1 with U,n £ [0,1], 1 < i < n and 

max!<i<n \ti>n - £| = o(^) as n -»co. 

Proof of Theorem 2.1     Note that (1..1), (1.2) and (1.3) hold and that 

the classical LIL asserts that 

ymmm    \Sn-nn\ lim sup —j= 
7i—oo   \/2n log log n 

-lim-.irizr-,(^w^(^))-A«)i (2.10) 
n—oo v/2n log log n 

< co    a.s. 

if and only if (2.4) holds. So the first part of the theorem follows provided we 

show that, under the conditions of the theorem, 

|p   I 
limsup-T^JT" <2-1B(J)E(\H{X)\)    a.s. (2.11) 

n—oo     v27t log log 71 

where 

B{J) =     sup 
0<8<£<1 

J(S) - J(t) 

s-t 
< CO. 

Clearly, 

Kl  < mnY   , Urt   ,„      xx J(TT      x,     Er=ll^(^(^n))l       <      max \J(Vn(Ui:n)) - J{Ui:n)\ s  
%/2n log log n i<i<« \J2n log log n 

< BW(iWin.m.)-^i).a=J2aäai 
\i<»<n / \J2n log logn 

\ 1/2 / 1 \     " 
- sup \Vn{t)-t\-(-)Yt\H{F-{Ui))\. 
nj      o<t<i \n/ ~t 

<     B(J)1        n 

2 log log 

By Sinirnov's (1944) law of the iterated logarithm, 

71—»OO 

n \l/2 ,_       ,      1 
liin sup ( -—-—-  )        sup   \Vn(t) — t\ — -    a.s. 

\27iloglogny      0<t<i 2 

11 



and by Kolmogorov's strong law of large numbers, 

lim (^f^lHiF-Wl^ E(\H(F-(U))\) = E(\H(X)\)    a.s. 
n 

Consequently, (2.11) and hence the first part of the theorem follows. 

We now prove that conditions (2.1) and (2.5) imply that (2.7) holds.  Con- 

sider the following two Banach spaces 

B. = {/>(•); IIMOIIi = I \h{F~(t))\dt < coj 

and 

B2 = (/>(•); HMOII2 = (jf' J2(t)h2{F-(t))<UJ      I. 

Let A4 denote the class of all real valued functions h(-) defined on Tv. satisfying 

h'{x)   is continuous on  'R. 

and 

h'{x) = 0   when \x\ is large enough. 

It is easy to show that $ is a dense subset of both E$i and Bi-  It follows that, 

for any given e > 0, since (2.1) and (2.5) hold, there exists HF\-) S A4 such that 

E{\II(X)-He{X)\)<e      Var(Y-Ye)<e 

and 

Var(Z-Ze) <£ 

where 

Z, = J(U)Ht(F-(U))     ße = E(Z£) 

12 



Write 

Yt = -Zt+n£ - / (I{u<t} - t)J'(t)H£(F~(t))dt. 
Jo 

H€() = H(-)-H£(-)    and    ß£=fi-fi£. 

Noting (1.3), (2.10) and (2.11), we have that 

Z.UAi)&e(Xisn)-nßt 
lim sup 

y/2n log log n 

Let 

Then 

< v/VarCZ - Z£) + 2-lB(J)E(\He(X)\) 

<el/'2 + ±B(J)e     a.s. 

H?{x) =  /     H'e(x)I{H,{x)>0}dx, 
J -oo 

He  (x) = - K(x)hn^x)<0}dx. 
J — oo 

H€{x) = Ht{x)-H;{x). 

(2.12) 

One now can easily check that ./(•) and Ii£{-) satisfy all conditions for Theorem 

4 of Wellner (1977b) (See also Theorem 19.2 on page 665 of Shorack and Wellner 

(1986)). We thus have 

hmsup(hminf)———" = =(—) ae     a.s. (2.13) 
y/2n log log n 

where 

a* = Var (J (/{f/<(} - t)J(t)dH,.(F~ (*))) • 

13 



Since J() is a Lipschitz function of order 1 defined on [0,1], we have that 

/ (I{u<t}-t)J(t)dH€{F~(t)) 
Jo 

^-J(U)He(F-(U)) + ß£- f (I[u<t}-t)J'(t)He(F~(t))dt 
Jo 

= Yt. 

Thus 

a1 —> a2 = Var(r)     as e 1 0. 

Letting s [ 0 and combining (2.12) with (2.13), (2.7) follows, and the proof of 

the theorem is complete.   □ 

Proof of Theorem 2.2 A proof of Theorem 2.2 can be culled from the 

proof of Theorem 2.1 with obvious modifications. In fact, instead of using 

Smirnov's (1944) LIL for empirical processes, we use the following celebrated 

result which is due to Kolmogrov (1933). That is, for all A > 0, 

lim P (y/Ti sup  \Vn{t) - | > A ) = 2y,exp(-2A:2A2). 
"-°°   V    O<KI /     £j 

Tlius, Kolmogrov's SLLN implies that (2.8) holds if and only if 

|El,/(^)/r-(^))-n;i, n^    .s boundcd .n probabiHty 

which is equivalent to (2.5). Thus, the first part of Theorem 2.2 follows. 

As for the scx:oud part of Theorem 2.2, note that, for any 6 > 0. 

„flEL,■/(^)(//(x,:n)-/r,(xi:n))-n(,i-,it)\ ^ K\ 
Inn sup lim.sui) /' I  — ■=  > 0     = U 

v^ ; 

(2.14) 

14 

lim sup 
- [i) 71-»no 



and by Theorem 19.1 on page 664 of Shorack and Wellner (1985), 

a,/(i)w->.j,^^ (2,5) 

Combining (2.14) with (2.15), (2.9) follows.   D 

3    Applications and Examples 

In this section, weshow further how either our approach addressed in Section 

1 or Theorems 2.1 and 2.2 can be applied to obtain necessary and sufficient 

conditions for either almost sure convergence or convergence in distribution of 

some L-statistics or even U-statistics. 

As an application of our approach, we state the following interesting result. 

Its proof is left to the readers. 

Theorem 3.1 Let {X, Xn\ n> 1} be a sequence of i.i.d. random variables 

and //(•) a real Borel-measurable function defined on "R. Let J(-) be a Lipschitz 

function of order 1 defined on [0, 1]. Then, we have 

(i)   If there exists a real sequence {bn; n > 1} such that 

bn—.oo    as  n—► oo (3.1) 

and 

15 



then, for any real sequence {An\ n > 1}, 

limsupn_too(hminfn-,0o)^'-1
/o ,,    ,——— y^nOog log n)bn /g ß^ 

= llmSUp™(llmlnf—)^    a.s. 

(ii)     If there exist sequence {bn; n > 1} and {An\ n > 1} such that (3.2) 

holds and 

Tr^wwiF-m-An ± c{x) (3 4) 
s/nbn 

where («'(:;:) is a distribution function, then 

As a corolaary of Theorem 3.1, we have 

Corollary 3.2   Let //(•) and J(-) be the same as in Theorem 3.1. Let 

Z = J(U)H(F~(U)). 

If 

£(|//(A')|) <oo,      E{Z2) =oo 

and Z is in the domain of attraction of the normal distribution, then, there exist 

sequence {.4n; n > 1} and {D„ > ü; n > 1} such that 

on 

where /i„ may be chosen as 

JV(0,1) (3.C) 

«„ = sup L :   c-2ß(Z2/{|Z|<c}) > i| 

16 



and An may be taken as 

An = £-E(ZI{\Z\ < £?„}). 
tin 

Proof Since Z is the domain of attraction of the normal distribution, we 

have that 

^■f*-^" JL N(O, i) 
Bn 

for some {An; n > 1} and {Z?„; ?i > 1} and they may be chosen as above, where 

{Zn; n > 1} is a sequence of i.i.d. random variables with common distribution 

function as Z's. Note that E(Z2) = oo. So 

Bn = y/n{B*/n) = s/nb^,     n > 1 

with bn = ^2,/?i —► oo as n —► oo.   Now, it follows that E(\H(X)\) < oo 

implies that (3.2) holds. By Theorem 3.1, (3.6) follows.   D 

Remark It is interesting to note that, when E(\H(X)\) < oo, E(Z2) = oo 

and Z is in the domain of attraction of the normal distribution, An and Bn are 

determined by Z, not Y. 

'   Let {A', A'„;  n > 1} be a sequence of i.i.d.   random variables.   Gini's mean 

difference, 

—-—-    V    \Xi-XA 
n(n-l)     ^     ' ;l 

1<»<J<" 

considered as a U-statistie for unbiased estimation of the dispersion parameter 

0=E(\Xl-Xa\), 

17 



is introduced in both Serfling (1980, page 263) and Shorack and Wellner (1986, 

page 676). It may be represented as an L-statistic as follows 

—^—    T    \Xi-Xi\ = -Tl(4-^-\-2)Xisn. run-I)     t-* •"      n 4-^      n — 1 
(3.7) 

i=l 1<»<J<" 

Using 'riicorems 2.1 and 2.2 and our approach, we can establish the following 

result. 

Theorem 3.3    (i)   (Kolmogorov's SLLN for Gini's mean difference) 

2 v^ 
lim sup—      >       \Xi — X,|<co     a.s. 
u-rxs   n(n- 1) ,,,f-<, v l<Ki<n 

if and onlv if 

In either case. 

lim 

E(\X\) < oo. 

(3.8) 

(3.9) 

2 
71—0O n(n — 1) 

£     \Xi-Xj\=0=E(\Xl-X2\)    a.s. (3.10) 
i<t<j<?i 

(ii)   (I,IL for Gini's mean difference)   For some 0, 

lim sup 

if and onlv if 

2 log log 71 11(71 — 1) 
J2    \Xi-Xj\-0 

l<i<j<n 

E(X2) < 00. 

< 00     a.s.        (3.11) 

(3.12) 

In either case. 0 = /vflA'i - X2|) and 

limsup(lim inf) 
„-00      » -"°    V 2U>fr\0frU  \ 71(11 - I)      +-? 

£     |A\-A-,| -Ö    =(-) o 

(3.13) 

18 



where 

a2    =    Var(r) 
/•oo  r  .00 -12 (3.14) 

=     J      [j     \y-x\dF(x)\   dF(y)-62 

and 

Y = -(2U - l)F~ (U) + 6 - 2 / (I{u<t} - t)F~ {t)dt. 
Ja 

(iii)   (CLT for Gini's mean difference)   For some 6, 

\/n j —      2_]     \Xi — Xj\ — 0 I ; 71 > 1 >    is bounded in probability 
y"vn _   ) Kj<J<n J J 

(3.15) 

if and only if (3.12) holds. In either case, 0 = E{\Xi - X2\) 

2     £ "   - "U 

where a1 is defined as in (3.14). 

^ UsTTn     D    l^-X.I-ö    ^7V(0,a2) (3.16) 

Remark   Shorack and Wellner (1986, page 677) obtained (3.16) under the 

assumption that E(\X\2+S) < 00 for some 6 > 0. 

Proof of Theorem 3.3  Take J(t) = U - 2, 0 < t < 1 and H(x) = x, x G 

ft. Then (3.9) implies that 

lb» a..JW)f-w) .  f\4l.2)F-m 

=     f   f \F-(t)-F~(s)\dsdt 
Jo Jo 

=    0     a.s. 

and 

lim  £?='M = 0     a.s. (3.17) 
"-»«j    ny/bn 
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where bn = yjn/ log log n —► oo  as n —► oo. By Theorem 3.1, we have that 

(3.18) limEk^il^ = 0   a.s. 
n 

Note that (3.9) also implies that 

£?-,(■/(£*)-■/(£))*:. 
<—^2\Xi\—► 0    a.s.   as n—- oo.   (3.19) 

i-l 

So (3.7), (3.18) and (3.19) together imply that (3.10) holds. 

Wc now ]>rove that (3.8) implies (3.9). Obviously, (3.8) implies that 

2 n 

li»isup ——  JT \X-zi-i - X2i\ < oo    a.s. 
71-00   2n(2n - 1) ^-i 

Since {| A"^«-1 — A'a„|; n > 1} is a sequence of i.i.d. random variables, it follows 

that E[\X\ — A'2|1/2) < oo which is equivalent to 

E(|X1|
1/2)<oo. 

Thus (3.19) holds. Combining (3.8) with (3.19), we have that 

IE:-.^)*i:nl 

(3.20) 

Iimsup ■ 
71—»OO 

< oo    a.s. (3.21) 

Note that (3.20) is equivalent to 

lim  SLLEI! = 0    a.s. 
7i-oo    ns/n2 

By Theorem 3.1 and noting (3.20), 

!E;'=l-'(W-("i)l Iimsup 
oo v'27l(loglog7l)?|.'J 

Iimsup 
iruAvx.ni 

7i —oo     y'27i.(l()g \o%1l)ri* 

=    0     a.s. 
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which implies that, for all e > 0, 

E(\J{U)F*-{U)\$-
€
\=  [  \{4t-2)Ft-{t)\*-cdt<oo. (3.22) 

Since |J(0)J(1)| = 4 > 0, it is easy to check that (3.22) is equivalent to 

ti\F~(t)\i-<dt    =    /_°^|x|*-<dF(s) 

=    E(\X\$-*)<oo. 

In particular, we have that 

£(|*|7/,2(L2|X|))<oo 

which is equivalent to 

lim        /^=l|X'1 =0    a.s. 
n-°° 7i\/7i10/7/loglogn 

Using Tlieorem 3.1 and noting (3.21) again, we have that 

lim      \Yl^J(Ui)F-(Ui)\        =    lim \EtiJ(Ui)r-(Ui)\ 
u-°° v/2?;.(log log7i)7i'"/7/ log log n n-°° y/2n17/7 

=    0     a.s. 

which is equivalent to 

£(|J([/)F-(C/)|14/17)<oo 

and hence 

£(|X|u/17)<oo. (3.23) 

Since rj > j^, (3.23) implies that 

iim     ff1-.!*!    =0   a.s. 
«-•«> nyjnj log log 7i 
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Using Theorem 3.1 and noting (3.21) again, we have that 

lim      \T.tim)F-(Ui)\        =      lim  \Z?-iW)F~(Ui)\ 
n-°° v/2n(log logn)n/ log log n n—°° \fln 

<    co     a.s. 

which is equivalent to 

E(\J(U)F~(U)\) <oo 

and hence (3.9) follows. The proof of (i) therefore complete. 

Using tlie same technique as it has just been used above, one can show that 

either case of (3.11) and (3.15) implies that (3.12) holds and 0 = E(|X1-X2|). 

Now applying Theorems 2.1 and 2.2, (ii) and (iii) follow.   D 

Another important application of our approach and results is on the expec- 

tation of order statistics. Let 9k = E(X\..k) where X\..k is the minimum value 

(smallest order statistic) in a sample of size A;. Then an estimate of 0^ based on 

a sample of size n is 

-l 
T«=(*)      £minf*«>'■•■'*«*} 

(71,*) 

where the sum Yl(n,k) ^ taken over all subsets 1  < i\   <  ■ ■ ■  < u.  < n of 

{1,2,..., n). Obviously, Tn is also a U-statistic. 

As it is deduced in Lee (1990, page 65), Tn can also be represented as an 
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L-statistic as follows 

■l 

Tn      =      (k)~    Er-"*(*n-l)^i:n 

P) 
1 v^n 

(fc-1)! 
E"=i(n — *)(n — i — l)---{n — i — k + 2)X{:. 

W1 
1)! 

(£?=,(« - i)"-1*^ + C, £?_, (n - i)*"2**» + • ■ • + Cfc_2 Er-i(n - *)*:») 

where C\, C-i,..., Ck-2 are constants depending on A; only. Note that 

and, for i = 1,2, ...,7t, 

(7i-i)"--'' 

(nfc/fc!)(fc- 1)! 
= < 

o(*). 

fc-1 

i>2. 

So we take J(£) = (1 -£) , 0 < t < 1 and H(x) =x, x£TZ. Using Theorems 

3.1, 2.1 and 2.2, we have the following results. 

Theorem 3.4 Let {X, Xn; n> 1} be a sequence of i.i.d. random variables. 

Then, we have 

(i)   If there exists p > | such that 

E(\X\') < oo 

then the following three statements are equivalent 

tf(|min{X,,Xi,...,Xfc}|)<oo 

A; 

(3.24) 

Inn sup — 
71—+00       71 

i=l 

< CO     a.s. 

(3.25) 

(3.2G) 
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limsup|T„| <oo     a.s. (3.27) 
n—+00 

In every case, we have that 

,     n      , . v fc-l 

lim Tn =  lim - V ( 1 - - )       X{.n = Ok     a.s. (3.28) 
n->oo n-»oo n *—' \ n / 

(il)   If £(|X|) < oo, then the following five statements are equivalent: 

E ((1 - U)2k-'2{F~(U))2) = f°° (1 - F(x))2k-2x2dF{x) < oo        (3.29) 
J — OO 

V21oglogn/ 
lim sup 
n-.oo   V 2 log log n 

öfc| < oo     a.s. 

lim sup —■—  
ii—oo   sqrt2n log log n 

fe-i 

£(-=)"*•-* < oo     a.s. 

(3.30) 

(3.31) 

inll2(Tn - 0k); n > l\   is bounded in probability, (3.32) 

{—■=.    y^(l )h~lXi.n     ; ti > 1 >     is bounded in probability. 
v^vf=r    n         k)      j 

(3.33) 

In every case, we have that 

1/2 
lim sup(lim inf)    ——  (T„ - 0k) 

11-00       n^°°      \21oglog7l/ 

= limsiip(liminf)-7 = I }(1  
n — oo       n-»oo     ^271 log log 71   \r^ » 

+ 
= (-) fctfk     a.s. 

)fc_1^-T (3.34) 

n^(Tn-Ok)^N(0,k2al) 

0k\   d % B'-^-1*-?P^^) 

(3.35) 

(3.3G) 

where 

a* = Var(n) 

24 



Yk    = 

-  I 
(i-u)k~lr-(u) + j-f {ku<t\ -0(i-*)(i-t)k-*F~{t)dt 

{I{u<t>-t)(l-t)k-ldF~(t)dt. 

Remark   If we replace 

by 

Then, similarly wc have that 

— Y^ max{Xh,...,Xik} 

mm{Xil,...,Xik} 

max{Xil,...,Xik}. 

{kj (»,*:) 

£ »*-**<:„ + DlJ2ik~2^n +•■■ + £>*_,£ X™ 
(fc)(A:-l)! V.= i i=i .=i        / 

where üi, D-i, ..., Dk- \ are constants depending on k only. Thus, we can state 

an analogue of Theorem 3.4 for U-statistic 

—- ]T max{Xu,...,Xik},     n>k 
(k) (».. .,*) 

and L-slatistic 
k-l 

if we want. Thus, we can not only give an alternative proof of Theorem 1.1 of 

Ciilat and Hill (1992), but also improve their result. For example, under the 

assumption (.'{.'24), we have that 

r k 
hmsup — 

71—»OO       72- 

n     / ■ \ k-l 

E(j)   *- < co     a.s. (3.37) 
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if and only if 

E(\msx{Xi, .... Xk}\)<co. (3.38) 

In either case, we have that 

lim -r'yik-1Xi..n = E(max{Xl, ..., Xk\)      a.s. (3.39) 
n-»oo 71* ^—' 

i=l 

Example Let {X, Xn\ n> 1} be a sequence of i.i.d. random variables with 

common density function 

/(x,= 6(-*)»/«/{^-l>- 

It is easy to check that 

E(\X\) = oo. 

Thus, Theorem 1.1 of Gilat and Hill (1992) can not be applied to 

n—»oo n    *-^ 

However, note that -f > ^, 

£(|X|3/4) < oo 

and 

E(\max{Xi, ..., Xfe|) < oo,    for all Jfc > 2. 

So (3.37), (3.38) and (3.39) imply that, for every k > 2, 

Hm  — Tih-lXi[n    =     E(max{Xu ..., Xk}) 
n—»oo 7t     *—* 

-1 
1 5fcx 

rfx 

5fc-6 
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4    The Law of the Logarithm for L-Statistics 

Let {X, Xn; n> 1} be a sequence of i.i.d. random variables with 

E(X) = 0   and   E(X2) = 1 (4.1) 

and let J() be a Lipschitz function of order 1 defined on [0,1]. LIL for weighted 

sums of form £"_, ^(u)^»' n — * established by Tomkins (1975, 197C) implies 

that 

Hmsup £/-' J(")Xi = ( f1 J*(t)dt) a.s. (4.2) 
\/2n log log 7i 

By comparing (4.2) with (2.7), we can find that both (4.2) and (2.7) have the 

same framework except for two differences. One of them is, usually, 

/  J2(t)dt # Var(V) 
Jo 

where Y is defined as in (2.2). On the other hand, Li, Rao and Wang (1995) 

show that, for almost all chices {cjin; 1 < i < n, n > 1} of triangular arrays of 

real numbers with 

sup      |ci|7l| < co, 
l<t<7i,n>l 

the weighted sums 
71 

22ciiUXi,    n > 1 
«=i 

obey the Law of the Logarithm, i.e., 

()< hm sup       i— < co     a.s. (4..J) 
n —oo >/27llog7l 
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It follows that 

r 2Ji=l ci,nXi\ hmsup— =■ = oo     a.s. 
n—oo    v2nloglogn 

In this section, we give a version of (4.3) for L-statistics with no proof. See Li, 

Rao and Toinkins (1993) for the details of its prrof. Before we state our result, 

we introduce some more notation. Let I = {(i,n); 1 < i < n, n > 1}. For a 

given probability measure v on the Borel cr-algebra of TZ, let S = S(v denote 

the support of v. We will consider only those probability measures for which 

S is bounded. Let P' = is1 be the product probability measure on the Borel 

cr-algebra of S1. 

THeorem 3.1 (A Law of the Logarithm for L-Statistics) Let {X, Xn\ n > 

1} be a sequence of i.i.d. random variables and H(-) a real valued measureable 

function defined on 1Z such that 

E(H2{X)) <oo. 

Then, for any given probability measure u on the Borel cr-algebra of H. with 

bounded support S = S(u), there exists a set fio C S1 such that 

/"(fio) = 1 (4.4) 

and for any {ci,„;  (i,n) £ 1} £ fio, 

1- (V     ■   c\ Y!i=\ Ci,nH(Xi:n) - n\i        + limsup(hminf) —.  =( —) a     a.s. (4.5) 
n-»     "-« y/2n\ogn v   ' K     ' 

where 

/* = E{II{X)) f tu(dt)     a2 = E (H2{X)) ([{*-[ sv{ds))2v{dt)\ . 
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Remark    If E(H(X)) = 0 and 0 < E (H2(X)) < oo, then for almost all 

choices {ciin; (i,n) € Z} of triangular arrays of real numbers with sup(irt)€l |ciiTV| < 

M < co for some constant M > 0, the L-statistics 

n 

Y^Ci,nH(Xi,n),   n>l 
i=l 

obey the Law of the Logarithm, i.e., 

0 < Inn sup '*-"''  < oo     a.s. 
u-.oo \/27ilogn 

It follows that 

limsup  = = oo     a.s. 
ti—oo        v 2n log log n 

Thus, for almost all choices {c<in; (i, n) € 1} of triangular arrays of real numbers 

with suP(iiU),-/ |CJ|71| < M < oo, the LIL for L-statistics 

J2ci,nH(Xiin),   n> 1 
t=i 

fails. 

NOTE 

Some of the results of this paper were taken from the technical report of Li, Rao 

and Toinkins (1993). 
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