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PREFACE 

The papers contained herein were presented at the Sixth International 
Conference on Recent Advances in Structural Dynamics held at the Institute of 
Sound and Vibration Research, University of Southampton, England in July 1997. 
The conference was organised and sponsored by the Institute of Sound and 
Vibration Research and co-sponsored by the Wright Laboratories, Wright Patterson 
Air Force Base. We wish to also thank the following for their contribution to the 
success of the conference: the United States Air Force European Office of Aerospace 
Research and Development. The conference follows equally successful conferences 
on the same topic held at Southampton in 1980,1984,1988,1991 and 1994. 

There are over one hundred papers written by authors from approximately 
20 different countries, making it a truly international forum. Many authors have 
attended more than one conference in the series whilst others attended for the first 
time. 

It is interesting to note the change in emphasis of the topics covered. 
Analytical and numerical methods have featured strongly in all the conferences. 
This time, system identification and power flow techniques are covered by even 
more papers than previously. Also, there are many contributions in the field of 
passive and active vibration control. Papers dealing with nonlinear aspects of 
vibration continue to increase. These observations seem to reflect the trend in 
current research in structural dynamics. We therefore hope that the present series 
of International Conferences will play a part in disseminating knowledge in this 
area. 

We would like to thank the authors, paper reviewers and session chairmen 
for the part they played in making it a successful conference. 

My personal thanks go to the following individuals who willingly and 
enthusiastically contributed to the organisation of the event: 

Dr. H.F.Wolfe Wright Laboratories, WPAFB, USA 
Dr. C. Mei Old Dominion University, USA 
Mrs. M.Z. Strickland ISVR, University of Southampton, UK 

Grateful thanks are also due to many other members of ISVR who contributed to 
the success of the event. 

N.S. Ferguson 
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ON RANDOM VIBRATION, PROBABILITY, AND FATIGUE 

R. D. Blevins 
Rohr Inc., Mail Stop 107X 
850 Lagoon Drive 
Chula Vista, California 91910 

ABSTRACT 

Analysis is made to determine the properties of a random process consisting of the 
sum of a series of sine waves with deterministic amplitudes and independent, random 
phase angles. The probability density of the series and its peaks are found for an arbitrary 
number of terms. These probability distributions are non-Gaussian. The fatigue resulting 
from the    random vibration is found as a function of the peak-to-rms ratio. 

1. INTRODUCTION 

Vibration spectra of aircraft components often are dominated by a relatively small 
number of nearly sinusoidal peaks as shown in Figure 1. The time history of this process, 
shown in Figure 2, is irregular but bounded. The probability density of the time history, 
shown in figure 3 only roughly approximates a Gaussian distribution and it does not exceed 
2.5 standard deviations. 

The time history of displacement or stress of these processes over a flight or a take 
off time can be expressed as a Fourier series of a finite number of terms over the finite 
sampling period T. 

N 

r = ^ancos(wTltn + <?in),   0<in<r,   an>0 (1) 
n=l 

Each frequency un is a positive, non-zero integer multiple of 27r/T. The following model is 
used for the nature of the Fourier series: 1) the amplitudes an are positive and deterministic 
in the sense that they do not vary much from sample to sample, 2) the phases 4>n are random 
in the sense that they vary from sample to sample, they are equally likely to occur over 
the range — oo < <j)n < oo. This last condition implies that the terms on the right hand 
side of equation (1) are statistically independent of each other. 

We can generate an ensemble of values of the dependent variable Y by randomly 
choosing M sets of N phase angles ({<£„},n = 1,2.JV), computing Y at some fixed time 
from equation (1), choosing another set of phases, computing a second value of Y and so 
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on until we have a statistically significant sample of M Y's. This random phase approach, 
introduced by Rayleigh (1880), models a multi-frequency processes where each frequency 
component is independent and whose power spectral density (PSD) is known. 

The maximum possible (peak) value of equation (1) is the sum of the amplitude of 
each term (recall an > 0). The mean square of the sum of independent sine waves is the 
sum of the mean squares of the terms. 

N 

Ypeak = Y2 a" (2fl) 
n=l 

= Na,      for ai = a,2 = an = a (2b) 

T   N N 

YLs = h I  [£ ancos(27rtn/T + <j>n)]2dtn = i £ a\ (3a) 
1   J0     „=1 An=l 

= -Na?,   for a-i = a<i = an = a (3&) 

The peak-to-rms ratio of the sum of N mutually independent sine waves thus is, 

^=2i/*f>J(XX)1/2, (4a) 
Xrms n=1      '    vn=1 

= (2N)V\   /oroi=o2 = on = o. (4b) 

Equation (4b) shows that the peak-to-rms ratio for an equal amplitude series increases from 
21!2 for a single term (N=l) and approaches infinity as the number of terms N approaches 
infinity, as shown in Figure 4. The probability of Y is zero beyond the peak value. For 
example, there is no chance that the sum of any four (TV = 4) independent sinusoidal terms 
will be greater than 81/2 = 2.828 times the overall rms value. 

2. PROBABILITY DENSITY OF A SINE WAVE 

The probability density py (y) of the random variable Y is probability that the random 
variable Y has values within the small range between y and y + dy, divided by dy. p(Y) 
has the units of l/Y. Consider single a sine wave of amplitude an, circular frequency uin, 
and phase <pn. 

Y = an cos{untn + <pn),   0<(t>n< 2TT. (5) 

Y is the dependent random variable. The independent random variables are tn or <j>n. The 
probability density of a sine wave for equal likely phases p(<t>n) = 1/(2TT), or equally likely 
times, p{tn) = 1/T, is (Bennett, 1944; Rice 1944, art. 3.10), 
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The probability density of the sine wave is symmetric about y = 0, i.e., PY{V) = PY(~y)> 
it is singular at y = an, and it falls to zero for \y\ greater than an as shown in Figure 5. 

The characteristic function of a random variable x is the expected value of e^v^x, 

/»oo 

C(f) = /     ef2*f*p(x)dx, (7) 

and it is also the Fourier transform of the probability density function (Cramer, 1970, 
pp. 24-35; Sveshnikov, 1965; with notation of Bendat, 1958). j = v7—1 is the imaginary 
constant. The characteristic function of the sine wave is found using equations (13) and 
(14) and integrating over the range 0 < X < an (Gradshteyn, Ryzhik, Jeffrey, 1994, article 
3.753). 

Cn{f) = 2(™„)-1 / " cos(27TfY))[l - {Y/an)2}-1/2dY = J0(2^/an), (8) 
Jo 

The characteristic function of a sine wave is a Bessel function of the first kind and zero 
order (Rice, 1944, art. 3.16). Equations (6) and (8) are starting points for determining 
the probability density of the Fourier series. 

3. PROBABILITY DENSITY OF THE SUM OF N SINE WAVES 

It is possible to generate an expression for the probability density of Fourier series 
(equation l) with l,2,3,to any number of terms provided the sine wave terms are mutually 
independent. This is done with characteristic functions. The characteristic function of the 
sum of N mutually independent random variables (Y = X\ + X2 + ■■ + Xfj) is the product 
of their characteristic functions (Weiss, 1990, p.22; Sveshnikov, pp. 124-129), 

- /     e^^+x^-+x^p(Xl)p(X2)..p(XN)dX1dX2..dXN, 
-OO        J ~OO 

N      „00 N 

= J] /     e?*«x"P{Xn)dXn = [J Cn(f). (9) 
n=17-oo n=1 

The symbol II denotes product of terms. The characteristic function for the sum of N 
independent sine waves is found from equations (8) and (9). 

C(/)=(n«i-J(27r/On),    unequal an (10) 
t [J0(27T/a)Jiv, a-L = a2 = an = a 

The probability density of Y is the inverse Fourier transform of its characteristic function 
(Sveshnikov, 1968, p. 129). 

/OO 

e-**fvC(f)df (11) 
-OO 
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By substituting equation (10) into equation (11) we obtain an integral equation for the 
probability density of a N-term finite Fourier series of independent sine waves (Barakat, 
1974). 

pY(y) = 2 /    cos(2Tryf) { TT Jo(2irfan) } df,   N = 1,2,3... (12) 

If all N terms of the Fourier series have equal amplitudes a = oi — ai = an = ajv, then 
this simplifies, 

/•OO 

py(y) = 2        cos(27ryf)[Jo(27rfa)]Ndf,   TV = 1,2,3... (13) 
Jo 

These distributions are symmetric about y = 0 as are all zero mean, sum-of-sine-wave 
distributions. Figures 5 and 6 show results of numerically integrating equations (45) and 
(46) over interval / = 0 to / = 15a using Mathematica (Wolfram, 1995). 

Barakat (1974, also see Weiss, 1994, p. 25) found a Fourier series solution to equation 
(45). He expanded the probability density of the TV term sum in a Fourier series over the 
finite interval -Ly < Y < Ly where Ly = ai + a^ + ■■ + aN. The result for unequal 
amplitudes is , 

oo      N . 

»M " 217 + h £{H '°(17)}«»(Z7>. M < Ly. (14) 
2=1    71=1 

For equal amplitudes, a± — a<i — an = a, Ly = Na, and 

»M-2k + Wa£w&N^> '"^ (15) 
i=i 

Figure 6 shows that the Fourier series solution (equation 15) carried to 20 terms to be 
virtually identical to numerical integration of equation (13) and it compares well with the 
approximate solution. Note that theory requires py(\y7\ > Ly) = 0. 

A power series solution for equation (13) can be found with a technique used by Rice 
(1944, art. 16) for shot noise and by Cramer (1970) who called it an Edgeworth series. The 
Bessel function term in equation (13) is expressed as an exponent of a logarithm which is 
then expanded in a power series. 

[J0(torfa)]N = exp(N ln[J0{2naf)}), (16) 

= exp{-N-K2a2f - (l/4)TV7r4a4/4 - (l/9)TV7r6a6/6 + (ll/192)TV7r8a8/8...), 

= [exp(-N^f)][l - i/V.V/4 - l-N^f - (ig - ^)-V/8 + •••] 

Substituting this expansion into equation (13) and rearranging gives a series of integrals, 
which are then solved (Gradshteyn, Ryzhik, Jeffrey, 1994, arts.   3.896, 3.952) to give a 
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power series for the probability density of the equal-amplitude N-term Fourier series sum. 

e-v
a/VYL.),       r(5/2)   ^r  01/0   ,//ov2 

~ ^^^HMA^/^J] (17) 

-^-^^lFl[-4'1/2'y2/(2y-)] + ")'   ]yl<Na 

PY{\V\ > Na) = 0 and Yrm3 is given by equation (3b). There are two special func- 
tions in equation (17), the gamma function T and the confluent hypergeometric function 
iFi[n,f,z]. These are defined by Gradshteyn, Ryzhik, and Jeffrey (1994). 

As N approaches infinity, the peak-to-rms (equation 4b) ratio approaches infinity, and 
equation (51) approaches the normal distribution, 

lim PY(V) =   Jv     e-'a/<2y-2-> . (18) 

as predicted by the central limit theorem (Cramer, 1970; Lin, 1976). 

4. PROBABILITY DENSITY OF PEAKS 

Theories for calculating the fatigue damage from a time history process generally 
require knowledge of the peaks and troughs in the time history. This task is made simpler 
if we assume that the time history is narrow band. If Y(t) is narrow band that is, that 
each trajectory of Y(t) which crosses zero has only a single peak before crossing the axis 
again, then (1) the number of peaks equals the number of times the time history crosses 
the axis with positive slope, and (2) only positive peaks occur for Y(t) > 0 and they are 
located at points of zero slope, dY{t)/dt = 0. Lin (1967, p. 304) gives expressions for the 
expected number of zero crossings with positive slope (peaks above the axis) per unit time 
for a general, not necessarily narrow band, process, 

E{N0+]=        ypYy(0,y)dy (19) 
Jo 

and the probability density of the peaks for a narrow band process. 

^--IPOTä/O yp^A^ (20) 

In order to apply these expressions, the joint probability distribution of Y and Y must be 
established. The joint probability density function Pyy{y, y) of the two random variable 
Y and Y is the probability that Y falls in the range between y and y + dy and y falls in the 
range between y and y + dy, divided by dydy. The derivative of the sine wave Y (equation 
12) with respect to time can be expressed in terms of Y, 

dY/dt = Y = -anun sin{ujnt + cj>n) = ±wn^al - Y2,      \Y\ < an. (21) 
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The joint probability density is the inverse Fourier transform of its characteristic 
function. 

/     e-^^y+f^C(f1,f2)dfldf2 (30) 
-OO J — OO 

The proof of equations (28), (29), and (30) can be found in Chandrasekhar (1943), Willie 
(1987), Weiss and Shmueli (1987), and Weiss (1994, pp. 21-26). 

Since the probability is symmetric about y = y = 0, pYY(y, y) = Pyy(—V> ~v)> on^v 

symmetric terms survive the integration. Substituting, equation (29) into equation (30) 
and expanding gives and integral expression for the joint probability of y and Y. 

/OO       rOO       N .  

/     {Y[M27rany/f! + f!wl)}cos(27rf1y)coS(27Tf2y)df1df2       (31) 
-co J-co   n=l 

It is also possible to expand the joint probability of Y and Y in as double finite Fourier 
series. The result is: 

oo    oo N /. 7 

PYy(y,y) —EE^II JoUaJ(^ + Ä*) }cos(i7ry/Ly W^Y/L^) 
LYLYf=it^0 n=l      V V    LY Ly      ' 

(32) 
aik = 1, i, k > 0; 1/2, i = 0 or k = 0; 1/4, i = k = 0 (33) 

The expected number of peaks per unit time and the probability distribution of the narrow- 
band peaks is obtained by substituting this equation into equations (19) and (20) and 
integrating. The results are: 

Y   i=0 fc=0 n=l V r Y 

T OO       Ot> N I • 7 

PA(A) = W^ EE« II M**»\(-r)2 + (p)2)}W^/Ly)    (35) 

where 
C 1/8, i = k = 0, 

_ J 1/4, i > 0, k = 0 ,„n 
7ifc - 1 (l/2)[(-l)fc - l]/(^)2, z = 0,fc>0, W 

I [{-l)k - l]/(fc7T)2, i>0,fc>0. 

If the frequencies are closely spaced so un w w and hence Ly "* wLy, then one positive 
peak is expected once per cycle, 

E[No+]=cü/(2w) (37) 
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and the probability density of narrow band peaks becomes, 

pA(A) = f-EE^{II M^V*Ttf)}sinA (38) LY  Ut^ „=1 LY LY 

Figure 7 shows probability density of narrow band peaks for N=2,3, and 4 equal amplitude 
(a* = 1) equal frequency series using equation (38). Each sum in equation (38) was carried 
to 40 terms. 

A power series solution for equation (20) can be found if all N terms in the series have 
equal amplitude and frequency. The result is 

,AS     Ae-A*IVy™) ,        i i    A2 I     A4 \ 

In the limit as N becomes infinite these equations become, 

e-(l/2)(y2/Y?m,+y*/YT
2
ms) 

PYY (y. y) = . Y   y.  (4°) 
Z7VX rms^n L rms -*■ rms 

A  -A*/(2Y?ml) 
pA(A) = ^—-2  (41) 

* rms 

Equation (40) is in agreement with an expression given by Crandall and Mark (1963, p. 
47) and equation (41)is the Rayleigh distribution. 

Equations (20), (35), (38), and (41) are conservative when applied to non-narrow band 
processes in the sense that any troughs above the axis (points with Y > 0 and dY/dt = 0 
but d2Y/dt2 > 0) are counted as peaks (Lin, 1967, p. 304; Powell, 1958; Broch, 1963). 

Equations (35), (38) and (41) can provide probability distributions for peaks of narrow 
band processes as a function of the number of sine waves from one to infinity and thus 
they model random processes with peak-to-rms ratios from 21/2 to infinity. 

5. FATIGUE UNDER RANDOM LOADING 

Fatigue tests are most often made with constant-amplitude sinusoidal loading. The 
number of cycles to failure is plotted versus the stress that produced failure and the data 
is often fitted with an empirical expression. MIL-HDBK-5G (1994) uses the following 
empirical expression to fit fatigue data, 

log Nf = Bl + B2log{Seq-BA),   Seq = S{\-R)BK (42) 

Here Nf is the cycles to failure during sinusoidal loading that has maximum stress S per 
cycle.   R is the ratio of maximum to minimum stress during a cycle.   R = — 1 is fully 
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reversed stress cycling. B\ though S4 are fitted parameters. With a little work, we can 
put this expression in the form used by Crandall and Mark (1963, p. 113). 

N = cSjb (43) 

where Sd = S(l - R)B3 -Bitc = 10Bl, and b = -B2. For cycling in a time history that 
has non constant amplitude, Miner-Palmgren proposed that the accumulated damage is 
the sum of the ratios of the number of cycles at each amplitude to the allowing number of 
cycles to failure at that amplitude (equations 42 and 43). 

£> = £ »($)/#/($) (44) 
i 

where n(Si) is the number of cycle accumulated at stress amplitude Si and Nf is the 
number of stress cycles at this amplitude which would cause failure. 

Following Miles(1954) and Crandall and Mark(1963), the expected fractional damage 
for a random stress cycling in system with dominant cycling at frequency f in time tf, is 

E^]=^rpw§)ds        (45) 

where PA{S) is the probability density of a stress cycle having amplitude S and Nf(S) is 
the number of allowable cycles to failure at this stress. Failure under random loading is 
expected when the expected damage is unity. Setting E[D[tdj] = 1 at time td such that 
ftd = Nd, the inverse of the expected number of random vibration cycles to failure is 

<«■>"-fs^ (46) 

This expression can be used to create a fatigue curve for random cycling given the proba- 
bility density of the random stress cycle amplitudes (PA{S)) and a fatigue curve (equation 
42 with parameters Si though S4 and R) for sinusoidal cycling. 

Substituting the probability density expression for narrow band amplitude (equation 
35) and for the fatigue curve(equations 42 or 43) into equation (46) and integrating, we 
obtain an expression for the expected number of cycles to failure as a function of the 
number of sine waves and their amplitudes. For N equal amplitude sine waves this is, 

n    2 OO OO 

M-1 - ^dlp^S (X>fc[^V^f) (47) 
(in(Ly(l-R)B>-Btf+b      f      inB,      ,  FUl+b_} (3         b iV (L,(l-fl)*--BQ2, 
I     (2 + b)Lv{l-R)B>     CO%-R)B,Ly

i''**[il+V'i2'ji+2i' 4L*(1 - R)™>         J 

(Ly(l - R)B> - Brf+b  .  r      JTTB,      1   „„lb,   ,1   36 i2ir2{Ly(l - R)B> - Btf. 
+                T+b               Sm[(l-R)BzLy

lpJ'q[i2 + 2i'ir2 + 2h ±Ly{\-R)2B> 
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Recall that for this case Ly = Na, the rms value is Y^ms = (l/2)Na and the peak- 
to-rms ratio is Peak/Yrms = %/2iV (equations 2 though 4). p.Fg[..] is the generalized 
hypergeometric function which is a series of polynomials. It is described by Gradshteyn, 
Ryzhik, and Jeffrey (1994). 

It is also possible to establish the fatigue curve using the Rayleigh distribution (equa- 
tion 18) and the MIL-HDBK-5 fatigue curve (equation 42). The result is 

9(*-l)/2 wo 
(Nd)~

l = e(1jR?B3Y^exV[-Bl/(2Y?m3{l - R?B%{1 - R)2B3Y?ms)
b/2     (48) 

(2^r[i+|]((i - nr-Y^a+
b-, i, 2^(fiÄ)2B3i 

_ R2  rfi4.- - B* n ß4iriLi + 2'2'2yr2ms(l-Ä)2ß3^ 

+ B4(I - Ä)5*yrms(r[- + -hfu- + -, -, 2yr2ms(1lÄ)2ß3] 

_2rf3 + ^i F[
3
 + 

ö
 

3 g4        n l2 + 2J1   ll2 + 2' 2' 2i;2ms(l - Ä)2B»JJ 

iJ*i [•-] is the confluent hypergeometric function which is described by Gradshteyn, Ryzhik, 
and Jeffrey (1994). 

Much of the complexity of these last two equations arises from the term S4 which is 
associated with an endurance limit in the fatigue equation. That is, equation (42)predicts 
that sinusoidal stress cycling with stress less than BA/{\—R)

B3
 produces no fatigue damage. 

If we set B4 = 0 to set the endurance limit to zero, then equation (48) simplifies to, 

^-OT[lC
+fc/2]^"~(1-fl)B,)"fc (49) 

This result for cycles to failure under Gaussian loading without an endurance limit is also 
given by Crandall and Mark (1963, p. 117). 

Equations (47), (48) and (49) allow us to compute the fatigue curves of a material 
under random loading from a fatigue curve generated under sinusoidal loading (equation 
43) for narrow band random processes with any peak-to-rms ratio from 21'2 to infinity. 

6. APPLICATION 

Figure 8 is the MIL-HDBK-5G fatigue curve for aluminum 2024-T3 with a notch 
factor of Kt=4 under sinusoidal loading with various R values. The fitted curve shown in 
the figure, gives the following parameters for equation (42). 

Bx = 8.3,   B2 = -3.30,   B3 = 0.66,   B4 = 8.4 
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The B2 and S3 are dimensionless. B4 has the units of ksi, that is thousands of psi, and 
10Bl has units of (fcsi)--82. These Si,..B4 are substituted into equations (43), (47), (48), 
and (49). 

The fatigue curves under random loading are computed as follows, 1) the number of 
sine waves N is chosen and this fixes the peak-to-rms ratio from equation (3b), 2) set of 
values of rms stresses are chosen and for each the corresponding sine waves amplitudes are 
computed using equation (3b), a = Srms^/2/N (note that the peak stress much exceed 
B4=8.5 ksi), and 3)the cycles to failure are calculated from equation (47) for finite peak- 
to-rms ratios and equation (48) for Gaussian loading (infinite peak-to-rms). 

For single sine wave, the peak-to-rms ratio is 21/2, equation 4b, and the fatigue curve 
interms of rms stress is adapted from the empirical data fit (equations 42, 43) by substi- 
tuting 21/2Srms for the stress amplitude. 

Nd = c(21/25rms(l - Ä)B3 - B4)~
b (50) 

where b = -B2 and c = 10Bl. Some results are shown in Figure 9 for R=-l. 

7. CONCLUSIONS 

Analysis has been made to determine the properties of a random process consisting of 
the sum of a series of sine waves with deterministic amplitudes and random phase angles. 
The joint probability density of the sum and its first two derivatives is determined. The 
probability density of the sum and narrow band peaks have been found for an arbitrary 
number of statistically independent sine wave terms. The fatigue cycles-to-failure resulting 
from these processes has been found. 

1. The peak-to-rms ratio of the sum of mutually independent terms exceeds unity. If all 
terms have the same peak and rms values then the peak-to-rms ratio of the series sum 
increases with the square root of the number of terms in the series. The probability 
of the series sum is zero beyond a maximum value, equal to the sum of the series 
amplitudes, and below the minimum value. Hence, he probability densities of the 
finite series, their peaks, and their envelope are non Gaussian. 

3. The formulas allow the direct calculation of the probability density of the series and its 
peaks from its power spectra density (PSD) under the assumption that each spectral 
component is statistically independent. 

4. The fatigue curves of a material under random loading with any peak-to-rms ratio 
from 21/2 to infinity can be computed directly from the fatigue curve of the material 
under sinusoidal loading. 

890 



REFERENCES 

Abramowitz, M. and I.A. Stegun 1964 Handbook of Mathematical Functions, National 
Bureau of Standards, U.S. Government Printing Office, Washington D.C. Reprinted by 
Dover. 

Bennett, W.R., 1944 Acoustical Society of America 15, 165. Response of a Linear Rectifier 
to Signal and Noise. 

Bendat, J.S., 1958 Principles and Applications of Random Noise Theory, Wiley, N.Y. 

Chandrasekhar, S., 19A3,Reviews of Modern Physics, 15, 2-74. Also available in Wax, N. 
(ed) Selected Papers on Noise and Stochastic Processes, Dover, N.Y., 1954. 

Cramer, H., 1970 Random Variables and Probability Distributions, Cambridge at the Uni- 
versity Press. 

Crandall, S.H., and C. H. Mark 1963 Random Vibrations in Mechanical Systems, Academic 
Press, N.Y. 

Department of Defense, 1994 Metallic Materials and Elements for Aerospace Vehicle Struc- 
tures, MIL-HDBK-5G. 

Gradshteyn, I.S., I.M. Ryzhik, and A. Jeffrey 1994 Table of Integrals, Series, and Products 
5th Ed., Academic Press, Boston. 

Lin, P.K., 1976 Probabilistic Theory of Structural Dynamics, Krieger, reprint of 1967 edi- 
tion with corrections. 

Mathematica, 1995 Ver 2.2, Wolfram Research, Champaign, Illiinois. 

Miles, J., 1954 Journal of Aeronautical Sciences 21, 753-762. On Structural Fatigue under 
Random Loading. 

Powell, A., 1958 Journal of the Acoustical Society of America 30 No. 12, 1130-1135. On 
the Fatigue Failure of Structure due to Vibrations Excited by Random Pressure Fields. 

Rayleigh, J.W.S. 1880 Philosophical Magazine X 73-78. On the Resultant of a Large 
Number of Vibrations of the Same Pitch and Arbitrary Phase. Also see Theory of Sound, 
Vol 10, art. 42a, reprinted 1945 by Dover, N.Y.. and Scientific Papers, Dover, N.Y., 1964, 
Vol. I, pp. 491-496. 

Rice, S.O., 1944 The Bell System Technical Journal 23 282-332. Continued in 1945 24 , 
46-156. Mathematical Analysis of Random Noise. Also available in Wax, N. (ed) Selected 
Papers on Noise and Stochastic Processes, Dover, N.Y., 1954. 

Shmulei, U. and G.H. Weiss 1990 Journal of the American Statistical Association 85 6-19. 
Probabilistic Methods in Crystal Structure Analysis. 

Sveshnikov, A.A. 1968 Problems in Probability Theory, Mathematical Statistics and Theory 
of Random Functions Dover, N.Y., translation of 1965 edition, pp. 74, 116. 

891 



Tolstov, G.P, 1962 Fourier Series, Dover, N.Y., pp. 173-177. Reprint of 1962 edition. 

Weiss, G.H., 1994 Aspects and Applications of the Random Walk, North-Holland, Amster- 
dam. 

Weiss, S.H. and U. Shmulei, 1987 Physica 146A 641-649.   Joint Densities for Random 
Walks in the Plane. 

Willie, L.T., 1987 Physica 141A 509-523.   Joint Distribution Function for position and 
Rotation angle in Plane Random Walks. 

Wirsching, P.H., T.L. Paez, and K. Ortiz 1995 Random Vibrations, Theory and Practice, 
Wiley-Interscience, N.Y., pp. 162-166. 

892 



NOMENCLATURE 

A amplitude, peak, or envelope 
an amplitude of the nth. sine wave, an > 0 
Bn fitted parameter in equation (42) 
C(f) characteristic function with parameter / 
C{fi,h) joint characteristic function with parameters fi and fa 
E[NP] expected number of positive peaks per unit time 
E[No+] expected number of zero crossing with positive slope per unit time 
iFi confluent hypergeometric function (Gradshteyn, Ryzhik, Jeffrey, 1994, art. 9.210) 
pFq generalized hypergeometric function (Gradshteyn, Ryzhik, Jeffrey, 1994, art. 

9.210) 
/ parameter in Fourier transform 
i integer index 
j imaginary constant, yf—\ 
JQ Bessel function of first kind and zero order 
k integer index 
K complete elliptic integral of first kind, equation (33a) 
Ly Oi + 02 + .. + art, sum of amplitudes 
LY WiOi + a>2fl2 + •• + ^NO-N) sum of velocity amplitudes 
m integer index 
N number of terms in series 
Nf cycles to failure 
n integer index, n=l,2,..N 
PY{V) cumulative probability, the integral of py (x) from x=—oo to y 
PY {X) probability density of random parameter Y evaluated at Y = x 
pxy{x,y) joint probability density of X and Y evaluated at Y = y and X = x 
5 stress 
t time, 0 < t < T 
T length of time interval 
Y sum of N modes or terms, — Ly < Y < Ly 
Y first derivative with respect to time of Y, —LY < Y < LY 

X a random variable 
a<ij dimensionless coefficient, equation (33) 
T gamma function, T[(2n + l)/2] = 7r1/22-re(2n - 1)!! 
7y dimensionless coefficient, equation (36) 
6 Dirac delta function 
■K 3.1415926.. 
n^Lj^Xn a;LX2..2;^v, product of terms 
(j>n phase angle of the nth sine wave, a uniformly distributed independent random 

variable 
u) circular frequency, a positive (non zero) real number 
u)n circular frequency of the nth term, a non zero integer multiple of 2-K/T 
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FREOUENCY(Mj) 

Figure 1 Spectrum of vibration of a component on a turbojet engine cowling.  Note the 
finite number of distinct peaks. 
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TlMEfSECS) 

Figure 2 Sample of the time history associated with the spectrum of Figure 1.  Note the 
signal is bounded, irregular and quasi sinusoidal. 
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NO. or S.D. 

Figure 3 Probability density of the time history of Figures 1 and 2. Note that the maximum 
values do not exceed plus or minus 2.5 standard deviations. 
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Figure 4 Ratio of the peak to the root-mean-square value of a Fourier series of N equal 
amplitude terms (equation /lh) 
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Figure 5 Normal probability density (equation 18) and sine wave probability density (equa- 
tion 6) in comparison with results of numerical integration of equation (13) for N=l and 
N=10. 
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- Asymptotic Integration 

- Edgeworth Series 
Numerical Integration 

- Fourier Series 

Figure 6 Probability density of the sum of three equal-amplitude sine waves computed by 
various techniques. 
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Figure 7 Probability density of peaks in narrow band series with equal amplitudes (a,i 
02-. = 1) and frequencies. 
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Equivalent Stress Equation: 

Loe Nr= 8.3-3.30 log (S^ -8.5) 

«L ra-n sun KI-I.O ai.nt 
t€fn STÄC55 

o 0.0 
4 10.0 

17.0 

x H.O 
o 30.0 
 *. RUNOUT 

I'O" to" 
FRTIGUE Lift.   «CLES 

FIGURE 3.2.3.1.8(h). Best-fit S/N curves for notched, K, - 4.0 of 2024-T3 aluminum alloy sheet, 
longitudinal direction. 

Figure 8 Fatigue curves for notched 2024-T3 aluminum alloy with Kt=4. MI1-HDBK-5G 
(1994, p. 3-115) 
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ACOUSTIC FATIGUE I 





Strain Power Spectra of a Thermally Buckled Plate 
in Random Vibration 

Jon Lee and Ken R. Wentz 
Wright Laboratory (FIB) 

Wright-Patterson AFB, OH 45433, USA 

Abstract 
Several years ago, Ng and Wentz reported strain power spectra measured 

at the mid-point of a buckled aluminum plate which is randomly excited by an 
electrodynamic shaker attached to the clamped-plate boundary fixture. We 
attempt to explain the peculiar features in strain power spectra by generating 
the corresponding power spectra by the numerical simulation of a single-mode 
equation of motion. This is possible because the essential dynamics takes place 
in the frequency range just around and below the primary resonance frequency. 

1. Introduction 
For high performance military aircraft and future high-speed civil transport 

planes, certain structural skin components are subjected to very large acoustic 
loads in an elevated thermal environment [1]. This is because high-speed 
flights call for a very powerful propulsion system and thereby engendering 
acoustic loads in the anticipated range of 135-175 dB. More importantly, 
because of the aerodynamic heating in hypersonic flights and the modern trend 
in integrating propulsion sub-systems into the overall vehicular configuration, 
some structural components must operate at high temperatures reaching up to 
1300°F. Hence, the dual effect of thermal and acoustic loading has given rise 
to the so-called thermal-acoustic structural fatigue [2,3]. 

Generally, raising the plate temperature uniformly but with an immovable 
edge boundary constraint would result in thermal buckling, just as one observes 
flexural buckling as the inplane stress along plate edges is increased beyond a 
certain critical value. This equivalence has been recognized [4,5] and 
exploited in previous analytical and experimental investigations of the thermal- 
acoustic structural fatigue [6,7,8]. An experimental facility for thermal- 
acoustic fatigue, termed the Thermal Acoustic Fatigue Apparatus, was 
constructed at the NASA Langley Research Center in the late 80's. Under the 
acoustic loading of 140-160 dB, Ng and Clevenson [9] obtained some strain 
measurements of root-mean-square value and power spectral density (PSD) on 
an aluminum plate heated up to 250°F. Later, Ng and Wentz [10] have 
repeated the heated Aluminum plate experiment but by randomly exciting the 
clamped-plate boundary fixture by a shaker, and thereby recovering similar 
strain measurements. 

It should be noted that Ng and his colleagues [7,9,10] were the first to 
achieve sufficient plate heating to induce thermal buckling and thus observe the 
erratic snap-through under the acoustic or shaker excitations. Here, by erratic 
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we mean that a snap-through from one static buckled position to another takes 
place in an unpredictable fashion. We reserve the adjective chaotic for a snap- 
through occurring under the deterministic single-frequency forcing [11,12]. It 
has already been observed that certain of the buckled plate experiment can be 
explained, at least qualitatively, by a single-mode model of plate equations. 
This is also validated by a theoretical analysis. Indeed, we showed that a single- 
mode Fokker-Planck formulation can predict the high-temperature moment 
behavior and displacement and strain histograms of thermally buckled plates, 
metallic and composite [13,14]. 

In retrospect, a single-mode model has proven more useful than originally 
intended. That is, the single-mode Fokker-Planck formulation of an isotropic 
plate lends itself to predicting certain statistics of composite plates which are 
simulated by multimode equations or tested experimentally by multimode 
excitations. For a refined and more quantitative comparison, one must inject 
more realism into dynamical models by including the multimode interactions. 
However, before giving up the single-mode plate equation, there is an 
important problem that this simple model is well suited for investigation. That 
is, prediction of the strain PSD measurement by Ng and Wentz [10]. As we 
shall see in Sec. 4, the strain PSD of a thermally buckled plate exhibits a strong 
spectral energy transfer toward zero frequency, and thereby saturating 
frequency range well below the primary resonance frequency. This downward 
spectral energy transfer can be modeled quite adequately by the single-mode 
plate equation without necessitating multimode interactions. 

2. Equation of motion for the aluminum plate experiment 
By the Galerkin procedure, the von Karman-Chu-Herrmann type of large- 

deflection plate equations give rise to infinitely coupled modal equations [15]. 
However, much has been learned from a prototype single-mode equation for 
displacement q [ 13,14]. 

q + ßq + k0{\ -S)q + aq3 = go + g(t), (1) 

where the overhead dot denotes dldt and the viscous damping coefficient is 
ß = 2^JF0 with damping ratio f. For the clamped plate, we have 

fc„=f (y4+2r2/3+i), 
s = T0[l + a-ß) 8V (1 + f {f+1)"2) /6], 

a = !^i{(r2+7-2 + 2/i) + §(\-tf)i%tf+Y*) +4(7+7-'r2 

+(7+4r1)"2+(4r+y"1r2]}. 
go=(7U2y2/3+l)8sT0/6. 

Note that the expressions for s and g0 are specific to the typical temperature 
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variation and gradient profiles assumed in Ref. [15]. Here, y = b/a is the 
aspect ratio of plate sides a and b, and \i is Poisson's ratio. The uniform plate 
temperature T0 is measured in units of the critical buckling temperature. The 
maximum temperature variation on the mid-plate plane is denoted by T08v, and 
T08 is the maximum magnitude of temperature gradient across the plate 

thickness, where <5V and 8g are scale factors. Hence, <5V= 0 signifies no 
temperature variation over the mid-plate plane, and 8g= 0 zero temperature 
gradient across the plate thickness.  Finally, g(t) denotes the external forcing. 

The parameter s represents thermal expansion due to both the uniform 
plate temperature rise above room temperature and temperature variation over 
the mid-plate uniform temperature. The combined stiffness k0{\ - s)q consists 
of the structural stiffness k0q and thermal stiffness -sk0q, which cancel each 
other due to the sign difference. It is positive for s <1, then Eq. (1) has the 
form of Duffing oscillator with a cubic term multiplied by a, which represents 
geometric nonlinearity of membrane stretching. For s >1 Eq. (1) reduces to 
the so-called buckled-beam equation of Holmes [11] with a negative combined 
stiffness. In contrast, ga denotes thermal moment induced by a temperature 
gradient across the plate thickness; hence, it appears in the right-hand side of 
Eq. (1) as an additional forcing. The interplay of the terms involving s, a, and 
g0 can best be illustrated by the potential energy [15] 

U{q) = -g0q + K(l - s)q2/2 + aqV4. (2) 

Fig. 1 shows that U(q) is symmetric when go = 0. For s<l it has a single well 
which splits into a double well as s exceeds unity. Note that the distance 
between the twin wells increases as Vs for large s (Fig. 1(b)). This 
interpretation is valid approximately for g0 > 0. That is, a positive g0 lowers 
the positive side potential (<7>0) and raises the negative side potential (i?<0), 
and thereby rendering the potential energy asymmetric. 

U(q) 

a *        f 

\      /' 
A /' 
A       /' \      /' 

■XL/'      J 

(b) 

Fig. 1 Potential energy,   (a) s<\\ (b) s>\, w = ^k0(s -\)la , d = -{k0{s - l))V4a. 

(  go=0; --- g„>0) 
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It must be pointed out that Eq. (1) is dimensionless and involves explicitly 
only 7 and ß. For the aluminum plate experiment [10], 7=10 in./8 in. and 
fi=^JUJ, so that k0 =23.91 and a=85.33. If we further assume 8V= Sg= 0 for 
simplicity, the thermal parameter reduces to s=T0. Previously, Eq. (1) was 
used for the investigation of stationary Fokker-Planck distribution which 
involves only the ratio ß/F, where F is the constant power input [13,14]. 
Hence, nondimensionalization has indeed spared us from specifying in detail 
other plate parameters. Things are however different in numerical simulation 
because we must know the characteristic scales to correctly interpret time- 
dependent solutions. By retracing the derivation, we find that the dimensionless 
quantities in Eq. (1) are (Eq. (IV. 1) in Ref. [1]) 

q = q/h,    t = ilt*,   g = glg*, (3) 
where the overhead bar denotes the physical quantity. Here, the plate thickness 
h, t*={blK)2^phlD, and g*=p(h/t*)2 are the characteristic length, time, and 
force, respectively (p = mass density, D=Eh3/l2Q.-ß2), E= Young's 
modulus of elasticity), as listed in Table I. We now rewrite Eq. (1) with the 
numerical coefficients (Table I). _ 

q + 0.0978 q + 23.91(1 - s) q + 85.33 q3 = QJ^    , (4) 

where g{t) has the unit of psi. 

 Table I. Parameter values for the aluminum plate experiment 

y,   ii,    I,    k„,    a 10in./8in.,   VOX   0.01,   23.910,    85.332 

*,   *..    *, Ta,     0,     0 

h,   t*,   g* 0.05 in.,   3.305 10"3sec.+,   5.806 10"2 psi+ 

(+) p = 0.098 lb/in3 and E =1.03 107 psi. 

3. Monte-Carlo simulation 
Because of 8 =0, Eq. (4) has the standard form of Duffing (s<l) and 

Holmes (s>l) oscillators. In stead of a single frequency for forcing g(t) [11, 
12], in Monte-Carlo simulation all forcing frequencies are introduced up to a 
preassigned maximum /max so that forcing represents a plausible physical 
realization. Of course, particular interest here is a constant PSD. We shall 
begin with generation of a time-series for random processes with such a PSD. 

3.1 Random forcing time-series 
We adopt here the procedure for generating a time-series of Shinozuka 

and Jan [16], which has been used for a oscillator study [17] and extensively 
for structural simulation applications by Vaicaitis [18,19]. Since it relies 
heavily on the discrete fast Fourier transforms, such as FFTCF and FFTCB 
subroutines of the IMSL library, it is more expedient to describe the procedure 
operationally rather than by presenting somewhat terse formulas.    Let us 
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introduce Nf frequency coordinates which are equally spaced in [0,fmax] with 
the band width Af=fmax/Nf. Now, the task is to generate a time-series of total 

time T that can resolve up to /max. Assume T is also divided into Nt time 
coordinates with the equal time interval At=T/Nr From the time-frequency 
relation T=l/Af, we find fmax=Nf/NtAt.   If we choose 

Nf = f, (5) 

fmax is the Nyquist frequency, consistent with our original definition of the 
upper frequency limit of resolution. 

A random time-series with a constant PSD can be generated in the 
following roundabout way. We begin by assuming that we already have a 
forcing power spectrum Ö (/) of constant magnitude over [0,/max].   Such a 

PSD may be represented by a complex array An=-JC exp(-2md n) (n = 1, ..., 
Nf), where 6n takes a random value distributed uniformly in [0, 1]. Clearly the 
magnitudes of An are C, hence O (/)=C. We then enlarge the complex array 

An by padding with zeros for n =Nf+l, ..., Nt, and Fourier transform it to 

obtain a complex array Bn(n=l, ..., Nt). The random time-series for gn is 

now given by the real part of Bn 

gn = Real part of Bn. (n = 1,..., Nt) (6) 
As it turns out, when g~n is padded with zeros for the imaginary components 
and Fourier transformed, we recover the original array An (n=l, ..., Nf) with 
$ (f)=C.   Since the spectrum area C/max is nothing but total forcing power 

<gz> (say, in psi2), we can relate C with the variance <g2> of pressure 
fluctuations, which is often expressed by the sound pressure level (SPL) in dB, 
according to SPL=10 log<g2 >//>*, where p=2.9 10"9 psi.  Hence, 

C = &±f . (7) 
Jmax 

Here, Eqs. (6) and (7) defined heuristically are meant to explain the 
corresponding formulas (2) and (12) in Ref. [18]. 

For the numerical simulation we first note that the resonance frequency of 
Eq. (1) is fr=Jic^/27t~0.77S for s = 0. This gives the dimensional resonance 
frequency fr/t*~235.5 Hz which is somewhat larger than the experimental 
217.7 Hz (Fig. 3(a)). As shown in Table II, we assign /max=7 (~9/r) because 
the electrodynamic shaker used in the experiment [10] has the upper frequency 
limit 2000 Hz. 

 Table II. Dimensionless parameter values for the numerical simulation 
—_—— 7,   8192,  4096 
./max* t' f ' * 

_    _ 0.071, 585 
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3.2 Displacement power spectrum 
Under a random gn, time integration of Eq. (4) yields a time-series for qn. 

We first comment on the time integration. Although there are special solvers 
[17,20] proposed for stochastic ordinary differential equations (ODEs), we 
shall use here the Adams-Bashforth-Moulton scheme of Shampine and Gordon 
[21], which has been implemented in DEABM subroutine of the SLATEK 
library. Although DEABM has been developed for nonstochastic ODEs, its 
use for the present stochastic problem may be justified in part by that one 
recovers linearized frequency response functions by the numerical simulation 
(Sec. 3.4). Obviously, this does not say anything about the strongly nonlinear 
problem in hand, and it should be addressed as a separate issue. In any event, 
DEABM requires the absolute and relative error tolerances, both of which are 
set at no larger than 10-5 under the single-precision algorithm for time 
integration. Note that actual integration time steps are chosen by the 
subroutine itself, commensurate with the error tolerances requested. Recall 
that gn is updated at every time interval At, and we linearly interpolate the 
forcing value within At. 

We begin time integration of Eq. (4) from the initial configuration at the 
bottom of the single-well potential, q(0)=p(0)=0, for s <1 and the positive 
side double-well potential, q(0)-^jko(s-l)/a and^(0)=0, for s >1. And we 
continue the integration up to T. By Fourier transforming time-series qn, we 
obtain displacement power spectrum ®x(f). This process of integrating and 
transforming is repeated over three contiguous time ranges of T, and the 
successive PSDs are compared for stationarity. Since it is roughly stationary 
after three repetitions, we report here only the PSD of the third repetition. 
From the stationary input-output relation [22] ®x(f)=\Hx(f)\

2®g(f), where 

\Hx(f)\ is the magnitude of system frequency response function, we write 

\Hx(f)\
2 = ^y (8) 

Since <& (/)=C, the \Hx(f)\
2 and &x(f) would have a similar functional 

dependence upon /.    Hence, we call them both the displacement PSD. 

3.3 Strain power spectrum 
Although displacement is the direct output of numerical simulation, one 

measures strain rather than the displacement in plate experiment. At the 
present level of plate equation formulation, the strain e (=sxb2/K2h2) is given 
by the quadratic relation 

£ = C0 + Ci<? + C2<?2, (9) 

where C, are given at the middle {x/a = y/b =1/2) of a clamped plate as follows 
(Appendix D of Ref. [13]) 
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(74+2y2/3 + l)rA 
3(l+M)(y2+l) 

a-py f+l Cx = 
8y2 

r =32fr2   5n    a-ßr2)    (i-w2/4)    (j-w2) 
^      9 [2       16     2(7 +7-1)2     (7+47-1)2     (47 + 7-1)2 

For 6=0 we have Co=0, C\ =4.17, and Q =2.77 (Table I). Hence, Eq. (9) 
engenders only the linear and quadratic transformations, but no translation. In 
any event, translation has no effect on the spectral energy contents. By Fourier 
transforming time-series sn(n=l, ..., Nt), we obtain strain power spectrum 
<E>E(/). Although the forcing PSD is not constant, one computes the forcing 
spectrum ratio as in Eq. (8) and call it the magnitude square of strain frequency 
response function He(f), for the lack of a better terminology. 

3.4 The linear oscillators 
For the pre-buckled (s <1) linear oscillator (a= 0) we rewrite Eq. (4) in 

standard form 

q + 24a>eq + afcl-s)q = *&; (10) 
o 

where col=kg, and obtain 
\Hx(f)\

2 = [(cold -s)- 47T2f2f + (4^ü)0/)
2]-1. (11) 

As shown in Fig. 2(a), the numerical simulation of Eq. (10) recovers \Hx(f)\
2 

as given by Eq. (11) over the entire frequency range. Although the simulation 
of Fig. 2(a) was carried out with SPL=130 dB, it does not depend on SPL 
since Eq. (10) is linear. Physically speaking, Eq. (10) oscillates in a single-well 
potential (Fig. 1(a)). Since the potential energy has two wells (Fig. 1(b)) for 
s >1, we linearize Eq. (1) around the positive side potential well by the 
transformation q=q' +^kn(s-\)la.   Hence, the corresponding linear oscillator 

is 

300 600 "0 300 

f f 
Fig. 2 Linear frequency response functions, (a) Displacement; (b) Strain 

(5 = 0;   Numerical simulation;   «Eq. (11)) 

600 
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q' + 2l;CD0q' + 2a)2
0(s-l)q' = £&. (12) 

O 

In parallel to Eq. (11), the frequency response function of a post-buckled plate 

I Hx{f)\
2 = [(2co2

0(s - 1) - An2f2)2 + WnfrjfT1 ■ (13) 

The resonance frequency f=(00^2{s-\)l2n of a post-buckled (s >1) plate 
should be compared with f=(Og^2{l-s)l27t of the pre-buckled [s <1) plate. 

Now, for the linear oscillators we see that \He(f)P is also given by Eq. (11) 
and (13) for s <1 and >1, respectively (Fig. 2(b)). This is because the spectral 
energy distribution is not at all affected by a linear transformation. 

4. Displacement and strain power spectra 
As we shall see in Sec 4.1, the experimental strain PSD exhibits downward 

spectral energy transfer toward zero frequency, so that there is a considerable 
spectral energy buildup below the resonance frequence as SPL is raised. 
Moreover, it also involves an upward spectral energy transfer which then 
contributes to both the increased resonance frequency and broadened 
resonance frequency peak. Since spectral energy transfers take place around 
and below the primary resonance frequency, it is possible to depict the 
downward and upward spectral energy transfers by the numerical simulation of 
Eq. (4) without necessitating multirnode interactions. We shall first discuss the 
characteristic features of experimental strain PSDs. 

4.1 Experimental strain PSD 
Of the spectra reported in Ref. [10], we consider the following two sets. 

One is the nonthermal set (s=0) consisting of two PSDs of small and large 
SPLs. The other is the post-buckled set (5=1.7) of four PSDs. For the 
convenience of readers, we have reproduced in Figs. 3 and 4 the selected PSDs 
from Ref. [10] by limiting the upper frequency to 600 Hz, and the pertinent 
data are summarized in Table m. 

Table III. Strain power spectra of experiment and numerical simulation __ 

Experiment Numerical simulation 
PSD        Ref. [11]  a/31.6g     SPL(dB)* SPL(dB)    Results  

Fig. 3(a)   Fig. 4a     0.16 138.6 130 Fig. 5  

Fig. 3(b)   Fig. 4c     0.59 149.9 138 Fig. 6 

s^L7 " 
Fig. 4(a) Fig. 6a 0.06 130.1 129 Fig. 7 

Fig. 4(b) Fig. 6b 0.24 142.0 138 Fig. 8 

Fig. 4(c) Fig. 6c 0.70 151.5 143 Fig. 9 

Fig. 4(d) Fig. 6d 1.02 154.6                               146              Fig. 10 

(*) Computed from the acceleration a measured in units of g. 
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Fig. 4 Experimental strain PSD (.s=1.7). (a) 130.1dB; (b) 142dB; (c) 151.5dB; (d) 154.6dB 

The following observations are drawn from the experimental PSDs.   First, 
for the nonthermal plate 
Figure 3(a"): Compare the measured strain /r=217 Hz with the theoretical 
displacementf = 235 Hz of Eq. (4). Note that a small spectral energy peak is 

found at 467 Hz which is about twice (-2.15) the strain fr value. 
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Figure 3(b): With SPL-150 dB the strain fr increases to 240 Hz and the 

spectral width at the half resonance peak has nearly doubled. The spectral 
energy buildups at zero and 515 Hz are more noticeable than in Fig. 3(a). 
Again, 515 Hz is about twice (-2.15) the primary strain fr. 

1 : 1 1 1 1 1        1 1 1 1  
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-4 r                            ^^v; 
.   i   .   i .. i—i—i—i—i— 

300 

f 

600 

600 

600 

Fig. 5 Numerical simulation results under s=0 and SPL=130 dB. 
(a) Displacement ( simulation,• Eq. (11)); (b) Strain ( simulation, • Eq. (11)); 
(c) PSD averaged over 12 frequency intervals ( displacement, —•— strain); 
(d) Strain PSD. 

Next, for the thermally buckled plate 
Figure 4(a): The primary strain /r=227 Hz should be compared with the 

theoretical displacement /r=279 Hz of Eq. (13). A second spectral energy 

peak is found at 537 Hz, much larger than twice (-2.37) the primary strain fr. 

Figure 4(b): Here, the spectral energy buildup is most significant at zero 
frequency. Besides, there appear two spectral energy humps at 100 and 183 
Hz, below the primary strain fr = 227 Hz of Fig. 4(a). Discounting the zero- 

frequency spectral peak, PSD may be approximated by a straight line in the 
semi-log plot, hence it is of an exponential form up to 400 Hz. 
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600 

Figure 4(c): The zero-frequency peak is followed by a single spectral energy 
hump at 115 Hz. Again, PSD can be approximated by a straight line and its 
slope is roughly the same as in Fig. 4(b). 
Figure 4(d): A major spectral energy peak emerges at 130 Hz, followed by a 
minor one at 350 Hz. Theoverall spectral energy level is raised so that the 
magnitude of PSD ranges over only two decades in the figure. 

In Figs. 4(b)-(d) we have ignored the spectral energy peaks at around 500 
Hz, for they are not related to the first plate mode under consideration. This is 
further supported by the simulation evidence to be discussed presently. 

4.2 Numerical simulation results 
After choosing s = 0 or 1.7, we 

are left with SPL yet to be specified. 
Ideally, one would like to carry out the 
numerical simulation of Eq. (4) by 
using SPL of the plate experiment 
(Table III) and thus generate strain 
PSDs which are in agreement with 
Figs. 3 and 4. Not surprisingly, the 
reality is less than ideal. An obvious 
reason that this cannot be done is that 
the forcing energy input is fed into all 
plate modes being excited in 
experiment, whereas the forcing 
energy excites only one mode in the 
numerical simulation. Consequently, SPL for the numerical simulation should 
be less than the experimental SPL, but we do not know a priori how much 
less. We therefore choose a SPL to bring about qualitative agreements 
between the single-mode simulation and multimode experiment. As anticipated, 
the simulation SPLs (Table III) are consistently smaller than the experimental 
values. 

The numerical simulation results are shown in Figs. 5-6 for s = 0 and Figs. 
7-10 for s =1.7. Actually each figure has four frames, denoted by (a)-(d). 
First, frames (a) and (b) depict \Hx(f)P and \He(f)\

2. Since they are very 
jagged at large SPLs, we average the spectral energy over 12 frequency 
intervals and present both of the smoothed-out frequency response functions in 
the same frame (c). Lastly, frame (d) shows 3>£(/) itself. Since there is no 
qualitative difference between <E>£(/) and \HE(f)\

2, we shall call them both the 
strain PSD. We present all four frames (a)-(d) of Figs. 5 and 7, but only the 
frame (c) of Figs. 6, 8, 9 and 10 here for the lack of space. 

First, for the nonthermal plate 
Figure 5: The simulated \Hx(f)\

2 is closely approximated by Eq. (11) with f = 
236 Hz. Note that \He(f)\

2 is also approximated by Eq. (11) for all frequencies 

Fig. 6 PSD averaged over 12 frequency 
intervals   (s=0, SPL=138 dB) 
 displacement; —• — strain 
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600 

600 

Fig. 7 Numerical simulation results under 5=1.7 and SPL=129 dB. 
^Displacement ( simulation,« Eq. (13)); (b) Strain ( simulation, Eq. (13)); 

(c) PSD averaged over 12 frequency intervals (- 
(d) Strain PSD. 

- displacement, —• — strain); 

but zero and 476 Hz, where the strain spectral energy piles up due to the 
quadratic transformation (9). Since 476 Hz is nearly twice (-2.02) the primary 
fr, strain spectral energy buildups are due to the sum and difference of two 

nearly equal frequencies, /, ± f2, where/; =/2=/r. 
Figure 6: The primary strain fr is shifted slightly upward to 253 Hz and the 
spectral width at half resonance peak is 50% wider than that of Fig. 5(c). The 
spectral energy builds up at 525 Hz which is roughly twice (-2.08) the fr. At 
SPL=138 dB we find that the strain spectral energy hump at 525 Hz is about 2 
decades below the resonance frequency peak, as was in Fig. 3(b). 

Now, for the thermally buckled plate 
Figure 7:   The simulated \Hx(f)P and \Hs(f)\

2 are well approximated by Eq. 
(13) around /r=270 Hz which is a little below the linearized /r=279 Hz. 
Unlike in Fig. 5 for s=0, both \Hx(f)\

2 and \He(f)\
2 show spectral energy 

building up significantly near zero and 543 Hz which is twice (-2.01) the fr. 
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Fig. 8 PSD averaged over 12 frequency 
intervals   (s =1.7, SPL=138 dB) 
 displacement; —• — strain 

Note that in Fig. 7(a) the spectral 
energy hump at 543 Hz is about 3 
decades below the primary frequency 
peak, as was in Fig. 4(a). 
Figure 8: After a large zero-frequency 
peak, two spectral energy humps 
appear at 131 Hz and 236 Hz. Note 
that the ratios of these frequencies to 
the fr (131/279 -0.47 and 236/279 ~ 
0.85) are comparable with the same 
ratios (100/227 -0.44 and 183/227 - 
0.81) found in Fig. 4(b). Excluding 
the zero-frequency peak, the overall 
strain PSD is a straight line, hence of 
an exponential form, as in Fig. 4(b). 

Figure 9: The zero-frequency spectral peak is followed by a single major 
energy hump at 154 Hz. The ratio of this to the fr (154/279 -0.56) is 
somewhat larger than the ratio (115/227 -0.51) in Fig. 4(c). The strain PSD 
can also be approximated by a straight line over the entire frequency range, and 
Figs. 8 and 9 seem to have the same slope when fitted by straight lines. 
Figure 10: The spectral magnitude of \HE(f)\

2 is larger than that of \Hx(f)\
2 in 

the frequency range above 300 Hz. The choice of SPL=146 dB was based on 
that the PSD magnitude around 300 Hz is about 2 decades below the main 
spectral peak magnitude at 180 Hz, thus emulating Fig. 4(d). 

All in all, by numerical simulations we have successfully reproduced the 
peculiar features in the two sets of strain PSDs observed experimentally under s 
= 0 and 1.7. 

600 

Fig. 9 PSD averaged over 12 frequency 
intervals   O =1.7, SPL=143 dB) 
 displacement; —•—strain 

600 

Fig. 10 PSD averaged over 12 frequency 
intervals   Cs=1.7,SPL=146dB) 
 displacement; —•—strain 
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5. Concluding remarks 
At low SPL the nonthermal (s= 0) and post-buckled 0=1.7) plates appear 

to have a similar PSD. However, this appearance is quite deceptive in that the 
nonthermal plate motion is in a single-well potential, so that PSD does not 
change qualitatively as SPL is raised. On the other hand, the trajectory of a 
post-buckled plate is in one of the two potential energy wells when SPL is very 
small. However, as we raise SPL such a plate motion can no longer be 
contained in a potential well, and hence it encircles either one or both of the 
potential wells in an erratic manner. This is why the experimentally observed 
and numerically simulated strain PSDs of a post-buckled plate exhibit 
qualitative changes with the increasing SPL, and thereby reflect the erratic 
snap-through plate motion. A quantitative analysis of snap-through dynamics 
will be presented elsewhere. 

Lastly, we wish to point out that a PSD of straigh-line form in the semi-log 
plot was observed in a Holmes oscillator when trajectories are superposed 
randomly near the figure-eight separatrix [23]. 
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ENHANCED CAPABILITIES OF THE NASA LANGLEY 
THERMAL ACOUSTIC FATIGUE APPARATUS 
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Hampton, VA 23681-0001 

ABSTRACT 
This paper presents newly enhanced acoustic capabilities of the Thermal 
Acoustic Fatigue Apparatus at the NASA Langley Research Center. The 
facility is a progressive wave tube used for sonic fatigue testing of aerospace 
structures. Acoustic measurements for each of the six facility configurations 
are shown and comparisons with projected performance are made. 

INTRODUCTION 
The design of supersonic and hypersonic vehicle structures presents a 
significant challenge to the airframe analyst because of the wide variety and 
severity of environmental conditions. One of the more demanding of these is 
the high intensity noise produced by the propulsion system and turbulent 
boundary layer [1]. Complicating effects include aero-thermal loads due to 
boundary layer and local shock interactions, static mechanical preloads, and 
panel flutter. Because of the difficulty in accurately predicting the dynamic 
response and fatigue of structures subject to these conditions, experimental 
testing is often the only means of design validation. One of the more common 
means of simulating the thermal-vibro-acoustic environment is through the use 
of a progressive wave tube. The progressive wave tube facility at NASA 
Langley Research Center, known as the Thermal Acoustic Fatigue Apparatus 
(TAFA), has been used in the past to support development of the thermal 
protection system for the Space Shuttle and National Aerospace Plane [2]. It 
is presently being used for sonic fatigue studies of the wing strake 
subcomponents on the High Speed Civil Transport [3]. 

The capabilities of the TAFA were previously documented by Clevenson and 
Daniels [4]. The system was driven by two Wyle WAS 3000 airstream 
modulators which provided an overall sound pressure level range of between 
125 and 165 dB and a useful frequency range of 50-200 Hz. A 360 kW quartz 
lamp bank provided radiant heat with a peak heat flux of 54 W/cm2. A 
schematic of the facility is shown in Figure 1. Representative spectra and 
coherence plots are shown in Figures 2 and 3. Since that time, the facility has 
undergone significant enhancements designed to improve its acoustic 
capabilities; the heating capabilities were not changed. The objectives of the 
enhancements were to increase the maximum overall sound pressure level 
(OASPL) to 178 dB, increase the frequency bandwidth to 500 Hz and improve 
the uniformity of the sound pressure field in the test section.   This paper 
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documents the new capabilities of the TAFA and makes comparisons with the 
projected performance. 

Test 
section 

Termination 
section 

Wyle WAS 3000 
air modulators 

Figure 1: Schematic of the old TAFA facility. 

"200 300 
Frequency, Hz 

Figure 2: Test section spectra of the   Figure 3: Test section coherence of the 
old TAFA facility. old TAFA facility. 

FACILITY DESCRIPTION 

In order to meet the design objectives, extensive modifications were made to 
the sound generation system and to the wave tube itself. A theoretical increase 
of 6 dB OASPL was projected by designing the system to utilize eight WAS 
3000 air modulators compared to the two used in the previous system. A 
further increase of nearly 5 dB was expected by designing the test section to 
accommodate removable water-cooled insert channels which reduced its cross- 
sectional area from 1.9m x 0.33m to 0.66m x 0.33m. The frequency range was 
increased through the use of a longer horn design with a lower (15 Hz vs. 27 
Hz in the old facility) cut-off frequency, use of insert channels in the test 
section to shift the frequency of significant standing waves above 500 Hz, and 
design of facility sidewall structures with resonances above 1000 Hz. The 
uniformity of the sound pressure field in the test section was improved through 
several means. A new, smooth exponential horn was designed to avoid the 
impedance mismatches of the old design. To minimize the effect of 
uncorrelated, broadband noise (which develops as a byproduct of the sound 
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generation system), a unique design was adopted which allows for the use of 
either two-, four-, or eight-modulators. When testing at the lower excitation 
levels for example, a two-modulator configuration might be used to achieve a 
lower background level over that of the four- or eight-modulator 
configurations. In doing so, the dynamic range is extended. Lastly, a catenoidal 
design for the termination section was used to smoothly expand from the test 
section. 
Schematics of the facility in the three full test section configurations are shown 
in Figures 4-6. In the two-modulator configuration, the 2 x 4 transition cart 
acts to block all but two of the eight modulators. The facility is converted 
from the two- to four-modulator configuration by the removal of the 2 x 4 
transition cart and connection of two additional modulators. In doing so, the 
modulator transition cart slides forward and thereby maintains the continuous 
exponential expansion of the duct. In the four-modulator configuration, the 4 
x 8 transition cart acts to block the two upper and two lower modulators. 
Removal of this component and connection of the four additional modulators 
converts the facility to the eight-modulator configuration. Again, the 
continuous exponential expansion is maintained as the modulator transition 
cart slides forward. 

* X B TRMSTTION 

2X4 TRANSITION 

MODULATOR TRANSITION 

HORN TRANSRTON SECTION 

HORN SECTION 

FLEXBLE HOSE 

WANIFOLO 

ADAPTER PLATE ASSEMBLY 

TEST SECTION 

ADAPTER PLATE ASSEMBLY 

TERMINATION SECTION 

Figure 4: Two-modulator full test section configuration. 
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4 X S TRANSITION HORN TRANSITION SECTION 

HORN SECTION 

ADAPTER PLATE ASSEMBLY 

TEST SECHCH 

ADAPTER PLATE ASSEMBLY 
TERMINATION SECTION 

Figure 5: Four-modulator full test section configuration. 

MODULATOR  TRANSITION ~i 

FLEXIBLE HOSE —\ 

MANIFOLD —»   \ 

j— HCRN TRANSITION SECTION 

/ /— HORN SECTION 

/ / ,— ADAPTER PLATE ASSEMBLY 

/ / j r~ TEST SECTION 

PLATE ASSEMBLY 

TERMINATION SECTION 

\ \ 
\ s_ HORN CART 

^- HORN TRANSITION CART 

Figure 6: Eight-modulator full test section configuration. 

Schematics of the three reduced test section configurations are shown in 
Figures 7-9. In these configurations, the horn cart is discarded and the horn 
transition cart mates directly to the test section. Water-cooled inserts are used 
in the test section to reduce its cross-sectional area. Upper and lower inserts in 
the termination section are used to smoothly transition the duct area to the full 
dimension at the exit. Conversion from the two- to the four-modular 
configuration and from the four- to the eight-modulator configuration is again 
accomplished through removal of the 2 x 4 and 4 x 8 transition carts, 
respectively. 
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+ X 8 TRANSITION 

2 X * TRANSfTICN 

MODULATOR TRANSITION 

asxiBie HOSE - 

ut^P 

HORN TRANSITION SECTION 

ADAPTER PLATE ASSEMBLY 

TEST SECTION 

ADAPTER PLATE ASSEMBLY 

TERMINATION SECTION 

Figure 7: Two-modulator reduced test section configuration. 

* X 8 TRANSITION' 

MODULATOR TRANSITION 

FLEXIBLE HOSE 

MANIFOLD 

HORN TRANSITION SECTION 

PLATE ASSEMBLY 

TEST SECTION 

ADAPTER PLATE ASSEMBLY 

TERMINATION SECTION 

Figure 8: Four-modulator reduced test section configuration. 

TEST PROCEDURE 

Measurements were taken for several conditions in each of the six facility 
configurations. Each modulator was supplied with air at a pressure of 207 kPa 
(mass flow rate of approximately 8.4 kg/s) and was electrically driven with the 
same broadband (40-500 Hz) signal. Acoustic pressures were measured at 
several locations along the length of the progressive wave tube using B&K 
model 4136 microphones and Kulite model MIC-190-HT pressure transducers, 
see Table 1. The positive x-direction is defined in the two-modulator full 
configuration (from the modulator exit) along the direction of the duct. The 
positive y-direction is taken vertically from the horizontal centerline of the 
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MODULATOR TRANSITION 
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HORN TRANSITION CART 

Figure 9: Eight-modulator reduced test section configuration. 

duct and the positive z-direction is defined from the left sidewall of the duct as 
one looks downstream. 

Table 1: Kulite (K) and microphone (M) locations of acoustic measurements. 
Loc. Description Type   Coordinate (m) 

K 7.75, 0, 0 
K 8.71,0,0 
M 8.23, 0.3, 0 
K 8.23,0, 0 
M 8.23, -0.3, 0 
M 2.19, 0, 0 
M 3.66, 0, 0 
M 4.75, 0, 0 
M 12.46,0,0.17 

1 Test Sect. Horizontal Centerline Upstream 
2 Test Sect. Horizontal Centerline Downstream 
5 Test Sect. Vertical Centerline Top 
15         Test Sect. Horizontal/Vertical Centerline 
25            Test Sect. Vertical Centerline Bottom 
28 2x4 Horizontal/Vertical Centerline 
29 4x8 Horizontal Centerline, % Downstream 
30 Horn Tran, Hör. Centerline, % Downstream 
35       Termination Horizontal/Vertical Centerline 

The acoustic pressure at location 1 was used as a reference measurement for 
shaping the input spectrum and for establishing the nominal overall sound 
pressure level for each test condition. For each configuration, the input 
spectrum to the air modulators was manually shaped through frequency 
equalization to produce a nearly flat spectrum at the reference pressure 
transducer. Data was acquired at the noise floor level (flow noise only) and at 
overall levels above the noise floor in 6 dB increments (as measured at the 
reference location) up to the maximum achievable. Thirty-two seconds of 
time data were collected at a sampling rate of 4096 samples/s for each 
transducer in each test condition. Post-processing of the time data was 
performed to generate averaged spectra and coherence functions with a 1-Hz 
frequency resolution. 
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RESULTS 
For each facility configuration, plots of the following quantities are presented: 
normalized input spectrum to the air modulators, minimum to maximum 
sound pressure levels at the reference location, maximum sound pressure 
levels in the test section, maximum sound pressure levels upstream and 
downstream of the test section, and vertical and horizontal coherence in the 
test section. The minimum levels in each case correspond to the background 
noise produced by the airflow through the modulators. 
Normalized input voltage spectra to each modulator for each configuration are 
shown in Figures 10, 15, 20, 25 and 30. These spectra were generated to 
achieve as flat an output spectrum as possible at the reference location for the 
frequency range of interest (40-200 Hz for the full section, 40-500 Hz for the 
reduced section). As expected, the significant difference between the full and 
reduced configurations is seen in the high (>200 Hz) frequency content. 
Figure 11 shows a background noise level of 126 dB (the lowest of all 
configurations) for the two-modulator full test section configuration. Nearly 
flat spectra are observed below 210 Hz for levels above 130 dB, giving a 
dynamic range of about 32 dB. The flat spectrum shape is a significant 
improvement over the performance of the old configuration as shown in Figure 
2. Standing waves are evident at frequencies of 210, 340 and 480 Hz. For this 
reason, the full section operation is limited to less than 210 Hz or to the 220- 
330 and 370-480 Hz frequency bands. The effect of standing waves are 
explored in further depth in the next section. The spectra in Figure 12 indicate 
a nearly uniform distribution in the x-direction throughout the test section. It is 
interesting to note that Figure 13 shows no sign of standing waves upstream of 
the test section, confirming that the cause is associated with the test section. 
Lastly, a near perfect coherence between upstream and downstream, and upper 
and lower test section locations is shown in Figure 14 for frequencies between 
40 and 210 Hz. Again, this is a significant improvement over the performance 
of the old configuration (Figure 3). 
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OASPLs: 125.5, 130.5, 136.6,142.4, 
148.7.154.0,160.4,162.2 
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Figure 10: Normalized input spectrum Figure 11: Min to max SPL at location 
(2-modulator full). 1 (2-modulator full). 
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Figure 12: SPL in test section at max  Figure 15: Normalized input spectrum 
level (2-modulator full). (4-modulator full). 
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Figure 13: SPL along length of TAFA Figure 16: Min to max SPL at location 
(2-modulator full). 1 (4-modulator full). 

500 

Figure 14: Test section coherence (2-   Figure 17: SPL in test section at max 
modulator full). level (4-modulator full). 

The four-modulator full configuration exhibits similar behavior as the two- 
modulator full configuration as seen in Figures 16-19. The lowest level at 
which a uniform spectrum is achieved is 137 dB, giving a dynamic range of 
roughly 30 dB in this configuration.     Lastly, the eight-modulator full 
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configuration results, shown in Figures 21-24, indicate a noise floor of about 
142 dB and dynamic range of 22 dB. 

Figure 18: SPL along length of TAFA Figure 21: Min to max SPL at location 
(4-modulator full). 1 (8-modulator full). 
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Figure 19: Test section coherence (4-   Figure 22: SPL in test section at max 
modulator full). level (8-modulator full). 
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Figure 20: Normalized input spectrum Figure 23: SPL along length of TAFA 
(8-modulator full). (8-modulator full). 
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Frequency, Hz 

Figure 24: Test section coherence (8- 
modulator full). 

Figure 27: SPL in test section at max 
level (2-modulator reduced). 
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Figure 25: Normalized input spectrum Figure 28: SPL along length of TAFA 
(2-modulator reduced). (2-modulator reduced). 

Figure 26: Min to max SPL at location Figure 29: Test section coherence (2- 
1 (2-modulator reduced). modulator reduced). 

The reduced test section configurations are used to increase the frequency 
range and maximum sound pressure level in the test section. Results for the 
two-modulator reduced configuration, shown in Figures 26-29, indicate a 
nearly flat spectrum between 40 and 480 Hz, a noise floor of 129 dB and a 
dynamic range of about 28 dB.  Coherence in the test section is nearly unity 
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over this frequency range. This represents a significant improvement over the 
old facility configuration. Results of similar quality indicate a dynamic range 
of roughly 26 and 29 dB for the four- (Figures 31-34) and eight-modulator 
(Figures 36-39) configurations, respectively. Note that the coherence for these 
configurations is slightly reduced at the high frequencies, but is still very good 
out to 480 Hz. 

200 300 400 500 
Frequency, Hz 

Figure 30: Normalized input spectrum Figure 33: SPL along length of TAFA 
(4-modulator reduced). (4-modulator reduced). 

500 

Figure 31: Min to max SPL at location Figure 34: Test section coherence (4- 
1 (4-modulator reduced). modulator reduced). 

Figure 32: SPL in test section at max  Figure 35: Normalized input spectrum 
level (4-modulator reduced). (8-modulator reduced). 
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Figure 36: Min to max SPL at location Figure 38: SPL along length of TAFA 
1 (8-modulator reduced). (8-modulator reduced). 
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Figure 37: SPL in test section at max   Figure 39: Test section coherence (8- 
level (8-modulator reduced). modulator reduced). 

Table 2 presents a summary of the maximum average OASPL for each facility 
configuration. In each case, the number of active modulators were run at 
maximum power as an independent group (independently for the single 
modulator case) and the results averaged. For example, results for one active 
modulator were obtained by running each modulator individually and 
averaging the resulting pressures. 

Table 2: Summary of maximum average overall sound pressure levels (dB). 

Number of Active Modulators 
Configuration 1 2 4 8 

2-Modulator Red. 160.4 164.3 
2-Modulator Full 156.7 162.2 
4-Modulator Red. 159.1 — 167.9 
4-Modulator Full 155.6 161.2 167.0 
8-Modulator Red. 158.4 — — 171.7* 

8-Modulator Full 153.0 158.4 164.5 170.0 
*Pressure scaled by h from 7-modu ator run 
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DISCUSSION 
In this section, limiting behaviors of the full and reduced test section 
configurations are explored and the effect of test section inserts, modulator 
coupling and wave tube performance are discussed. 

Limiting Behaviors 
The auto-spectra from the full test section configurations exhibit sharp 
reductions in level at approximately 210, 340, and 480 Hz. This behavior 
corresponds to measurements near nodes of vertical (height) standing waves in 
the test section portion of the wave tube. Table 3 summarizes theoretical, 
resonant frequencies and corresponding modal indices of the test section duct 
resonances within the excitation bandwidth. The modal indices m and n 
correspond to half wavelengths in the vertical and transverse (width) directions 
of the cross section, respectively. There are several resonances that may be 
excited below 500 Hz, but only three of these appear to be significant at the 
test section transducer locations (about the horizontal centerline). Because of 
the presence of air flow in the facility and lack of measurements in the cross 
section, it is difficult to correlate the experimental and theoretical modes. 
Measurements of the acoustic pressure at several locations in a cross-section of 
the duct will be necessary to fully characterize the resonant behavior. It is 
sufficient to say that the usable frequency range in the full test section 
configurations is approximately 40-210 Hz near the horizontal centerline. 
Acoustic pressure auto-spectra from the reduced test section configurations are 
essentially flat to almost 500 Hz. This is due to the fact that only two 
resonances are within the excitation bandwidth for this configuration, see 
Table 3. A sharp reduction is noted in the vicinity of 480 Hz. Although the 
(m=l, ra=0) resonance does not appear to be significant, close inspection of the 
data (not shown) indicates its presence. Therefore, the usable frequency range 
for the reduced test section configurations is approximately 40-500 Hz. 

Table 3: Theoretical resonant frequencies of test section duct modes in Hz. 

Trans. 

Index («) 

Vertical Index (m) 

0 12               3               4 5 

0 

1 

0 

1 

Full Test Section (1.9m x 0.33m) 

0.0 

465.41 

84.62        169.24      253.86      338.48 423.10 

473.04      495.23      530.14   | 
lifflRitPS 

Reduced Test Section (0.66m>xr0.33mf , 

0.0 

465.41 

250.61      501.21 

528.59   | 
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Performance of Test Section Configurations 
For constant input acoustic power, the change from full to reduced test section 
configurations should theoretically result in a 4.7 dB increase in OASPL. 
However, Table 2 shows that increases of only 2.1 (e.g. 164.3-162.2), 0.9, and 
1.7 dB were realized for the two-, four- and eight-modulator configurations. 
The system efficiency (actual/expected mean-square pressure) of the two-, 
four- and eight-modulator reduced configurations is 38, 40 and 44 percent, 
respectively, compared with 51, 63 and 62 percent for the two-, four- and 
eight-modulator full configurations. The expected pressure is calculated based 
upon a input-scaled value of the rated acoustic power of the WAS 3000 
modulator assuming incoherent sources (3 dB per doubling). In general, the 
full section efficiency is greater than the corresponding reduced section 
efficiency. While the reason for this phenomena is not known, it is 
conjectured that the lack of expansion in the reduced configurations limits the 
development of plane waves. Therefore, phase and amplitude mismatches 
between acoustic sources may be accentuated. 
Modulator Coupling Performance 
A simplified waveguide analysis for coherent, phase-matched sources predicts 
increases in OASPL as shown in Table 4. Measured performance gains were 
less than predicted because of the assumptions of the waveguide analysis 
(inactive source area treated as hard wall), and possible reductions due to 
phase differences between modulators and non-parallel wave fronts at the exit 
of the modulator cart, see Figures 4-9. The latter effect is due to different 
angles of inclination of the sources relative to the axis of the wave tube. The 
greater gains achieved in the full test section configurations support the above 
contention that they are more efficient than the reduced configurations in 
combining the acoustic sources. 

Table 4: Change in SPL (dB) from 1 to max. number of active modulators. 

Configuration A SPL from 1 Active Mod. (Meas/Pred) 
2-Modulator Red. (2 active mods.) 
2-Modulator Full (2 active mods.) 
4-Modulator Red. (4 active mods.) 
4-Modulator Full (4 active mods.) 
8-Modulator Red. (8 active mods.) 
8-Modulator Full (8 active mods.) 

3.9 / 6.53 
5.5 / 6.53 

8.8 / 13.98 
11.4/13.98 
13.3/22.10 
17.0/22.10 

Wave Tube Performance 
A change in configuration from the two- to the four-modulator configurations, 
and from the four- to the eight-modulator configurations, will result in an 
incremental increase of 3 dB in OASPL if the individual sources are phase- 
matched. This is due to a pure doubling of the power without any change in 
the radiation impedance of the individual sources. For the reduced 
configurations, a 3.6 and 3.8 dB increase are observed, respectively. A 4.8 and 
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3.0 dB increase are observed for the full configurations, respectively. Note 
that a greater than 3 dB increase is possible when the higher modulator 
configuration (for example, the four-modulator reduced configuration) is less 
susceptible than the lower modulator configuration (the two-modulator 
reduced configuration) to phase mismatches between modulators. This seems 
plausible because any such mismatches are averaged over a larger number of 
sources. 

SUMMARY 
Modifications to the NASA Langley TAFA facility resulted in significant 
improvements in the quality and magnitude of the acoustic excitation over the 
previous facility. The maximum OASPL was increased by over 6 dB (vs the 
previous 165 dB) with a nearly flat spectrum between 40-210 and 40-480 Hz 
for the full and reduced test section configurations, respectively. In addition, 
the coherence over the test section was excellent. These improvements, 
however, did not meet the objective for a maximum OASPL of 178 dB. 
There are several reasons why the maximum OASPL did not meet the 
objectives, including a lack of expansion in the reduced configurations and 
phase differences between modulators. A detailed computational analysis 
would be desirable to indicate the source of the inefficiencies and to help 
identify possible means of increasing the overall system performance. 
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"SONIC FATIGUE CHARACTERISTICS OF HIGH TEMPERATURE MATERIALS AND 
STRUCTURES FOR HYPERSONIC FLIGHT VEHICLE APPLICATIONS" 

Dr. I. Holehouse, Staff Specialist, 
Rohr Inc., Chula Vista, California 

1. INTRODUCTION SUMMARY 

A combined analytical and experimental program was conducted to investigate 
thermal-acoustic loads, structural response, and fatigue characteristics of 
skin panels for a generic hypersonic flight vehicle. Aerothermal and 
aeroacoustic loads were analytically quantified by extrapolating existing 
data to high Mach number vehicle ascent trajectories. Finite-element 
thermal and sonic fatigue analyses were performed on critically affected 
skin panels. High temperature random fatigue shaker tests were performed 
on candidate material coupons and skin-stiffener joint subelements to 
determine their random-fatigue strength at high temperatures. These were 
followed by high temperature sonic fatigue tests of stiffened-skin panels 
in a progressive wave tube. The primary materials investigated were 
carbon-carbon and silicon-carbide refractory composites, titanium metal 
matrix composites and advanced titanium alloys. This paper reports on the 
experimental work and compares measured frequencies and acoustically 
induced response levels with analytically predicted values. 

The coupon shaker test data were used to generate material random fatigue 
"S-N" curves at temperatures up to 980°C. The joint subelements provided 
data to determine the effects on fatigue life of skin-stiffener joining 
methods. The PWT sonic fatigue panel tests generated response and fatigue 
life data on representative built-up skin panel design configurations at 
temperatures up to 925°C and sound pressure levels up to 165 dB. These 
data are used in determining the response strains and frequencies of skin 
panel designs when subjected to combined thermal-acoustic loading and to 
identify modes of failure and weaknesses in design details that affect 
sonic fatigue life. Sonic fatigue analyses of selected test panel design 
configurations using finite-element techniques were also performed and 
related to the experimental results. Acoustically induced random stresses 
were analytically determined on a mode-by-mode basis using finite element 
generated mode shapes and an analytical procedure that extends Miles' 
approach to include multi-modal effects and the spatial characteristics of 
both the structural modes and the impinging sound field. 

The paper also describes the instrumentation development work performed in 
order to obtain reliable strain measurements at temperatures in excess of 
conventional strain gauge capabilities. This work focused primarily on the 
use of recently developed high temperature (350"C to 1000°C) strain gauges, 
laser Doppler vibrometers, high temperature capacitance displacement 
probes, and the determination of strain-displacement relationships to 
facilitate the use of double integrated accelerometer data to derive strain 
levels. 
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This work was funded by the USAF Flight Dynamics Laboratory (Kenneth R. 
Wentz, Project Engineer). The complete program report is contained in 
References 1 and 2. 

2. HIGH TEMPERATURE STRAIN MEASUREMENTS 

Conventional adhesively bonded strain gauge installations are temperature 
limited to approximately 350°C. In order to achieve strain measurements at 
higher temperatures, up to 980°C, ceramic layers and coatings were used to 
both attach strain gauges and to thermally protect them. However, such 
strain gauge installations are very sensitive to process parameters which 
often need varying depending upon the test specimen material. Coated 
carbon-carbon is a particularly difficult material to adhere to due to its 
material characteristics and relatively rough surface texture. Carbon- 
carbon also has a near zero coefficient of thermal expansion which presents 
attachment and fixturing problems in a high temperature environment. 

When high test temperatures either preclude or make problematic the use of 
strain gauges, an alternative technique for obtaining strain levels is to 
measure displacements and then determine strain levels using strain- 
displacement ratios. Strain is directly proportional to displacement for a 
given deflected shape, or mode shape, regardless of changes in the elastic 
modulus of the specimen material as it is heated. Consequently, if the 
deflected shape does not change significantly with temperature, high 
temperature test strain levels can be determined from room temperature 
strain and displacement measurements in combination with displacement 
measurements made at the test temperature. 

This measurement technique facilitates the use of non-contacting 
transducers which can be located away from the heated area, such as 
capacitance displacement probes or Laser Doppier Vibrometers (LDV). LDVs 
actually measure surface velocity but their signal outputs can be readily 
integrated and displayed as displacement. Accelerometers can also be used 
to measure displacement by double integrating their signal output. 
However, since accelerometers require surface contact they have to either 
withstand, or be protected from, the thermal environment. When this is not 
readily achievable, it is sometimes possible to install an accelerometer at 
a location on the test specimen or fixturing where the temperature is 
within its operating range, providing the displacement response at the 
point of measurement is fully coherent with the strain response at the 
required location. 

The displacement range limitations of the LDV and capacitance probes 
available to the program resulted in having to use double-integrated 
accelerometer outputs to measure displacements at room temperature and at 
the test temperature. Conventional strain gauges were used to measure 
strains at room temperature. In order to confirm that the strain- 
displacement ratios were unaffected by temperature, limited high 
temperature strains were measured at temperatures up to 980°C. Once the 
strain-displacement ratio for a given specimen type was determined, air- 
cooled accelerometers were used to determine high temperature test strain 
levels. The level of measurement accuracy of this technique was estimated 
to be within 10 percent. 
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The most successful strain measurements made at 980°C utilized a ceramic 
flame spray installation of an HFN type free filament gauge. This gauge 
installation included the use of silicon-carbide (SiC) cement as a base 
coat for the gage, applied over a 1-inch square area of a lightly sanded 
carbon-carbon surface substrate. Lead wire attachments to the gauge were 
made with standard Nichrome ribbon wire anchored to the specimen with SiC 
cement. With this gauge installation, it was possible to make dynamic 
strain measurements for short periods of time at 980°C. 

3. RANDOM FATIGUE SHAKER TESTS 

The instrumented test specimens were mounted in a duckbill fixture and the 
specimen/fixture assembly then enclosed in a furnace. An opening in the 
furnace allows the specimen tip to protrude out in order to accommodate the 
air-cooled tip accelerometer. Figure 1 shows strain gauge locations and 
fixturing for material coupon and joint subelement specimens. 

The test procedure comprised a room temperature sine-sweep in order to 
identify the fundamental mode and its natural frequency, one-third octave 
random loading at room temperature centered around the fundamental natural 
frequency and one-third octave random endurance testing at the required 
test temperature and load level. 

Twelve inhibited carbon-carbon material coupons generated usable S-N data, 
eleven at 980°C and one at 650°C. S-N data points were also generated at 
980°C for two integral joint and two mechanically fastened joint 
subelements. Fixturing problems and specimen availability limited the 
number of S-N data points generated. Figure 2 shows the random fatigue S-N 
data points with joint subelement data points superimposed. The random 
fatigue endurance level for the material coupons, extrapolated from 10 to 
109 cycles, is approximately 320 microstrain rms. The integral joint 
subelements did not fail at the strain gauge locations; consequently, the 
actual maximum strain levels were higher than those shown on Figure 2. 
Taking this into account, it appears that the integral joints have a 
fatigue endurance level of greater than one-half of that for the material 
coupons. The mechanically fastened joint subelements exhibited fatigue 
strength comparable to that of the material coupons. These results 
indicate that carbon-carbon joints and attachments methods are not 
critically limiting factors in the structural applications of inhibited 
carbon-carbon. Figure 3 shows a representative example of the strain 
amplitude and peak strain amplitude probability density functions at room 
temperature for a material coupon specimen. The "peak" function can be 
seen to approximate a Rayleigh distribution, as it should for a Gaussian 
random process. 

Random fatigue S-N data were also generated for enhanced silicon-carbide 
composites (SiC/SiC) including thermally exposed specimens (160 hours at 
980°C), titanium metal matrix composites (TMC) utilizing Ti 15-3 and Beta 
21S titanium matrix materials, titanium aluminide (super alpha two), 
titanium 6-2-4-2, titanium 6-2-4-2-Si (including thermally exposed 
specimens) and Ti-1100. The fatigue endurance levels are shown in Table 1. 
Also shown in Table 1 are S-N data points for uninhibited carbon-carbon 
generated on a previous program (Reference 3). 
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TABLE 1. SUMMARY OF RANDOM FATIGUE ENDURANCE LEVELS. 

MATERIAL 

INHIBITED CARBON-CARBON 

UNINHIBITED 
CARBON-CARBON 

ENHANCED 
SiC/SiC 

5 PLY 

18 PLY 

5 PLY 

18 PLY 

NON-EXPOSED 

THERMALLY EXPOSED 

Ti 15-3 TMC 

BETA 21S TMC 

TEMPERATURE 

1800°F (980°C) 

1800°F (980'C) 

1800°F (980"C) 

1OO0-F (540°C) 

lOOO'F (540-C) 

ROOM TEMPERATURE 

ROOM TEMPERATURE 

18O0°F (980°C) 

1800°F (980°C) 

lOOO'F (540°C) 

ROOM TEMPERATURE 

ENDURANCE LEVEL CORRESPONDING TO 109 

CYCLES: OVERALL RMS STRAIN (MICROSTRAIN) 

MATERIAL COUPONS 

1500°F (815°C) 

TITANIUM ALUMINIDE 
(SUPER ALPHA TWO) ROOM TEMPERATURE 

Ti-6242-Si NON-EXPOSED 

THERMALLY EXPOSED 

(CASE 4)  

Ti 1100 

Ti 6-2-4-2 

1200°F (650aC) 

1150°F (620°C) 

1150"F (620'C) 

1200°F (6S0JC) 

1150-F (620°C) 

ROOM TEMPERATURE 

320 

100 

150 

100 

450 

550 

450 

450 

300 

520 

2250 

200 

510 

410 

735 

480 

700 

675 

SUBELEMENTS 

INTEGRAL JOINTS > 160 

BOLTED JOINTS = 320 

DIFFUSION-BONDED HAT- 

STIFFENEO = 520 

UFI.OED JOINT = 650 
LID BONDED HONEYCOMB 

BEAM = 388  

UIF1 PEP JOINT = 400 

866MISC/039-T1.IH 

12-02-96 
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Figure 4 shows random fatigue S-N curves for the materials tested 
superimposed on one graph for comparison purposes. The Ti 15-3 TMC data 
are not shown since this was a concept demonstrator material utilizing a 
Ti 15-3 matrix material for producibility reasons. Ti 15-3 does not have 
the temperature capability for hypersonic vehicle applications. Titanium 
aluminide data are not shown due to its brittle material characteristics 
making it unsuitable for sonic fatigue design critical structures. Ti-1100 
S-N data were very similar to the non-exposed Ti 6-2-4-2-Si and are not 
shown. Ti 6-2-4-2 coupons were only tested at room temperature before 
being replaced by Ti 6-2-4-2-Si, which has higher structural temperature 
capabilities. 

The fatigue curves in Figure 4 show inhibited carbon-carbon to have higher 
fatigue strength at 980°C than does its uninhibited counterpart. Inhibited 
carbon-carbon also has greater resistance to oxidation at high 
temperatures. 

Although unexposed enhanced SiC/SiC had greater random fatigue strength at 
980°C than did inhibited carbon-carbon, the two materials exhibited similar 
strength at temperature after allowing for thermal exposure. However, 
SiC/SiC has a maximum temperature capability of 1100 to 1200°C compared to 
1700 to 1900°C for carbon-carbon. 

The Beta 21S TMC material demonstrated resonable fatigue strength at 815°C 
and the Ti 6-2-4-2-Si specimens exhibited high fatigue strength at 620°C to 
650"C. 

4. SONIC FATIGUE PANEL TESTS 

These tests were performed in Rohr's high temperature progressive-wave tube 
(PWT) test facility. The facility is capable of generating overall sound 
pressure levels of 165 to 168 dB at temperatures up to 925°C to 980°C, 
depending upon the test panel configuration and material. 

Three rib-stiffened carbon-carbon panels and a monolithic hat-stiffened 
Beta 21S TMC panel were subjected to sonic fatigue testing. Response 
strains were measured on the four panels over a range of incrementally 
increasing sound pressure levels (140 to 165 dB) at room temperature. One 
carbon-carbon panel was subjected to sonic fatigue testing at room 
temperature and the other two tested at 925°C. The TMC panel was endurance 
tested at 815°C. Figures 5 and 6 show a carbon-carbon panel and its 
fixturing installed in the PWT. The panels were attached to the fixture 
via flexures in order to allow for differences in the thermal expansion of 
the panel and fixture materials. Structural details of the panels and 
instrumentation locations are given in References 1 and 2. 

The three carbon-carbon panel configurations encompassed two skin 
thicknesses and two stiffener spacings as follows: 

Panel 1 
Panel 2 
Panel 3 

3 skin bays, 6 in. by 20 in. by 0.11 in. thick 
2 skin bays, 9 in. by 20 in. by 0.11 in. thick 
3 skin bays, 6 in. by 20 in. by 0.17 in. thick 
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Table 2 summarizes the measured room temperature frequencies and strain 
response levels: 

TABLE 2. ROOM TEMPERATURE RESPONSE OF TEST PANELS. 

TEST 
PANEL 

FREQUENCY OF 
IN-PHASE 
MODE (Hz) 

OASPL 
(dB) 

OVERALL RMS STRAINS 
(MICROSTRAIN) 

EDGE OF 
SKIN BAY 

CENTER OF 
SKIN BAY 

CARBON-CARBON NO. 1 267 165 305 149 

CARBON-CARBON NO. 2 155 & 171 145 
150 
165 

126 
191 
558* 

39 
59 

173* 

CARBON-CARBON NO. 3 423 165 69 127 

BETA 2IS TMC 241 165 HIGHEST STRAIN = 287 
AT PANEL CENTER ON 
STIFFENER CAP 

* EXTRAPOLATED ON THE BASIS OF THE STRAIN RESPONSE WITH SPL FOR 
PANELS 1 AND 3. 

Panel 1 was subjected to 165 dB at room temperature for 10 hours at which 
point cracks developed at the ends of the stiffeners. The frequency 
dropped slightly during the ten hour test resulting in the number of cycles 
to failure being approximately 9 million. 

Panel 2 was endurance tested at 925°C at 150, 155 and 160 dB for 3-1/2 
hours at each level, followed by one hour at 165 dB. At this point, cracks 
were observed at the ends of the stiffeners, similar to the cracks in 
Panel 1. 

Panel 3 was endurance tested at 925°C and 165 dB for 10 hours without any 
damage to the panel. 

The TMC panel was endurance tested at 815°C and 165 dB for 3-1/2 hours at 
which time cracks were observed in two stiffener caps at the panel center. 

The high test temperatures for Panels 2 and 3 and the TMC panel precluded 
attaching an accelerometer directly to the panel surface, even with air 
cooling. This prevented the direct measurement of panel displacements at 
925°C. In order to attempt to estimate the high temperature endurance test 
strain levels, a temperature survey was performed on the panel fixturing 
with Panel 3 installed in order to determine an acceptable location for an 
accelerometer. An accelerometer at the selected fixture location tracked 
linearly with the highest reading strain gauges during a room temperature 
response survey. The coherence between the fixture accelerometer and the 
panel strain gauges was 0.9 in the frequency range of panel response. 
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Having established a coherent strain displacement relationship at room 
temperature, the temperature was increased progressively with increasing 
acoustic loading, generating accelerometer and microphone data at 480°C and 
140 dB, 650°C and 155 dB, 860°C and 155 dB, and 925°C at 165 dB. It was 
clear from the data at the higher temperatures and load levels that the 
full spectrum overall rms displacement levels obtained by double integrat- 
ing the accelerometer output signals could not be used to determine high 
temperature strain levels due to high amplitude, low frequency displace- 
ments (displacement being inversely proportional to frequency squared for a 
given "g" level) that were well below the panel response frequency range 
and therefore would not be proportional to panel strain levels. It is 
important to remember here that since the accelerometer is mounted on the 
panel fixture, it is measuring fixture response, some of which is not 
related to panel response. 

After reviewing the various frequency spectra, it was decided to re-analyze 
the data to generate overall rms levels over selected frequency bandwidths 
that would encompass a high percentage of the full-spectrum overall rms 
strains and eliminate the low frequency displacements. If a consistent 
strain-displacement relationship could be established at room temperature 
within a frequency bandwidth such that the strains could be related to the 
full-spectrum overall rms strains, and if the same bandwidth could be used to 
generate displacements at temperatures that were sufficiently consistent to 
relate to strain response, then it would be possible to at least make a 
reasonable estimate of the test temperature strain level. It was determined 
that band-passed response data in the 300 to 600 Hz frequency range gave 
consistent strain-displacement ratios at room temperature. Double-integrated 
band-passed accelerometer outputs (displacements) were consistent with 
increasing sound pressure levels at incrementally increasing test temperatures 
up to the 925°C/165 dB endurance test conditions. Table 3 summarizes the high 
temperature test panel results. 

TABLE 3. HIGH TEMPERATURE TEST PANEL RESULTS. 

TEST PANEL TEST 
TEMPERATURE 

OVERALL 
SOUND 
PRESSURE 
LEVEL (dB) 

HIGHEST 
ESTIMATED 

OVERALL RMS 
STRAIN 

(MICROSTRAIN) 

EXPOSURE TIME, 
ESTIMATED FATIGUE 

CYCLES AND COMMENTS 

(°F) CO 

BETA 21S TMC 
PANEL 

1500 815 165 NOT ESTIMATED 3 1/2 HRS, 3x10" CYCLES, 
STIFFENERS CRACKED AT 
MID-SPAN 

CARBON-CARBON 
PANEL NO. 2 

1700 925 150 155 3 1/2 HRS, 2.3x10° CYCLES, 
NO FAILURE 

155 219 3 1/2 HRS, 2.3x10° CYCLES, 
NO FAILURE 

160 316 3 1/2 HRS, 2.3x10° CYCLES, 
NO FAILURE 

165 453 1 HR, 6.4x10D CYCLES, 
CRACKS AT STIFFENER ENDS 

CARBON-CARBON 
PANEL NO. 3 

1700 925 165 103 10 HRS, 1.7x10' CYCLES, 
NO FAILURE 
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It should be noted that carbon-carbon panels 1 and 2 exhibited cracks at 
the stiffener ends, whereas the maximum measured strains were at the edges 
of skin bays. Consequently, the actual strain levels at the crack 
locations were either higher than the measured levels or there were 
significant stress concentrations at the stiffener terminations. 

5. COMPARISON OF ANALYTICAL AND TEST RESULTS FOR CARBON-CARBON PANELS 

MSC NASTRAN was used to perform finite element analyses on the three 
carbon-carbon panels that were subjected to the sonic fatigue testing 
described in Section 4. The oxidation resistant coating was modeled as a 
non-structural mass, which is compatible with the panel test results. 
Natural frequencies, mode shapes and acoustically induced random strain 
levels were analytically determined for room-temperature conditions and 
compared to the room-temperature panel test results. 

Acoustically induced random stresses were analytically determined on a 
mode-by-mode basis using the finite element generated mode shapes and a 
Rohr computer code based on an analytical procedure presented in 
Reference 4. This procedure extends Miles' approach (Reference 5) to 
include multi-modal effects and the spatial characteristics of both the 
structural modes and the impinging sound field. 

Table 4 shows the calculated and measured frequencies, overall rms strain 
levels and the strain spectrum levels for the in-phase stiffener bending 
mode for the carbon-carbon panels at room temperature. 

TABLE 4. CALCULATED AND MEASURED RESPONSE FREQUENCIES AND STRAIN 
LEVELS FOR CARBON-CARBON PANELS AT ROOM TEMPERATURE. 

STRAIN LEVELS AT EDGE OF SKIN BAY 
NATURAL 
FREQUENCY 

OF IN-PHASE 
MODE 
(Hz) 

OVERALL RMS STRAIN 
(MICROSTRAIN) 

STRAIN 
SPECTRUM LEVEL 
IN-PHASE MODE 
(MICROSTRAIN/Hz) 

FE ANALYSIS MEASURED FE ANALYSIS MEASURED FE ANALYSIS MEASURED 

PANEL 1 
(165 dB) 

305 267 510 305 84 60 

PANEL 2 
(145 dB) 

190 155 & 
171 

133 126 40 41 

PANEL 3 
(165 dB) 

460 423 77 69 16 16 
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The above results show good agreement between the finite element generated 
values and those measured. The level of agreement is particularly good for 
the strain spectrum levels, which are typically more difficult to 
accurately predict. Figure 7 shows the finite-element frequency solution 
for Panel 3. The in-phase mode shape can be seen to have an overall modal 
characteristic due to the relatively low bending stiffness of the 
stiffeners for the skin thickness used. Figure 8 shows the measured and 
finite-element generated strain frequency spectra for Panel 3. 

Details of the finite-element analyses and models are contained in 
References 1 and 2. 

6. CONCLUSIONS AND RECOMMENDATIONS 

1. The high temperature testing techniques and strain measuring 
procedures successfully generated usable random fatigue S-N 
curves and panel response data. The use of strain-displacement 
ratios were shown to be an effective alternative to high 
temperature strain gauge measurements. 

2. In general, the materials and structural concepts tested 
demonstrated their suitability for hypersonic flight vehicle skin 
panel applications. The major exception was Titanium-Aluminide 
Super Alpha Two which was determined to be too brittle. 

3. Inhibited carbon-carbon exhibited significantly higher random 
fatigue strength at 980°C than did the uninhibited carbon-carbon 
— two to three times the random fatigue endurance strain level. 

4. Thermally exposed enhanced SiC/SiC had comparable fatigue 
strength to that of inhibited carbon-carbon at 980°C. 

5. The TMC specimens usefully demonstrated the fatigue strength of 
the TMC concept and the need to develop the concept to 
incorporate higher temperature capability titanium matrix 
materials. 

6. Titanium 6-2-4-2-Si exhibited high fatigue strength in the 590°C 
to 650°C temperature range and also demonstrated the need for TMC 
materials to utilize higher temperature matrix materials in order 
to be cost effective against the newer titanium alloys. 

7. The level of agreement between the finite element analysis 
results for the carbon-carbon panels and the progressive-wave 
tube test data demonstrated the effectiveness of the analytical 
procedure used. The analysis of structures utilizing materials 
such as carbon-carbon clearly presents no special difficulties 
providing the material properties can be well defined. 
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8  It is recommended that further tests be conducted similar to 
those performed in this program but with greater emphasis on 
testing panels having dimensional variations in order to develop 
design criteria and life prediction techniques. Such testing 
should be performed on those structural materials and design 
concepts that emerge as the major candidates for flight vehicle 
applications as materials development and manufacturing 
techniques progress. 
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FIGURE 7   Finite Element Solution for In-Phase Overall Mode 
Carbon-Carbon Panel, Concept 3 
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SCALING CONCEPTS IN RANDOM ACOUSTIC FATIGUE 
BY 

Marty Ferman* and   Howard Wolfe** 

ABSTRACT 
Concepts are given for scaling acoustic fatigue predictions for application to 
extreme environmental levels based on testing " scaled" structures at 
existing, lesser environmental levels. This approach is based on scaling a test 
structure to fit within the capabilities of an existing test facility to attain 
fatigue results, and then using analytical extrapolation methods for predicting 
the full scale case to achieve accurate design results. The basic idea is to 
utilize an existing acoustic fatigue facility to test a structure which has been 
designed (scaled) to fatigue within that facility's limits, employing the 
appropriate structural properties (such as thinning the skins, etc.). Then, the 
fatigue life of the actual structure is determined by analytically scaling the test 
results to apply to the full scale case ( thicker) at higher noise levels for 
example. Examples are given to illustrate the approach with limits suggested, 
and with the recognition that more work is needed to broaden the idea. 

BACKGROUND 
While it is important to continually expand the capability of acoustic test 
facilities , it is perhaps equally important to be able to work with existing 
facilities at any time. That is, facility expansions, enhancements , and 
modernization's should always be sought from time to time, so long as 
practical and affordable from cost effective considerations. Limits should be 
pushed to accommodate larger sizes of test specimens with higher noise levels 
with wider ranges of frequencies, with wider ranges of temperatures, and with 
better capabilities for applying pressures along with any one of several types 
of preloads. These are costly considerations and require considerable time to 
accomplish. Facility rental can be used in some cases to bolster one's testing 
facilities, however if the application suggests a situation beyond any available 
facility for the required design proof, then an alternate is needed. Thus the 
scaling concept suggested here is a viable and useable possibility. 

The Author's basis for the approach stems from their extensive, collective, 
experience in Structural Dynamics, especially work in Acoustic Fatigue, 
Fluid-Structure Interaction, Buffet, and Aeroelasticity/Flutter, and 
particularly from experience with flutter model testing, in which it is quite 
common to ratio test results from a model size to full scale for valid 

*   Assoc. Prof., Aerospace and Mech. Engr. Dept, Parks College, St. Louis 
Univ., Cahokia, IL, 62206, USA 
** Aerospace Engineer, Wright Laboratory, Wright Patterson AFB, OH, 
45433, USA 
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predictions . Flutter is a well recognized area where model data is commonly 
used in nondimensional form to establish design margins of safety, as typified 
in Ref (1-2). Flutter can be nondimensionalized quite broadly as pointed out 
in many works, and is clearly done for a wide range of general cases using the 
"so-called" Simplified Flutter Concept, Ref (3). The degree of the use of the 
flutter model scaling rules varies considerably today, because some people 
are testing as much or more than ever, while others are testing less and relying 
more heavily on advanced theories such as Computational Fluid Dynamics, 
CFD. However, the basic ideas in flutter model scaling are still POWERFUL! 
In fact, this concept has fueled the Author's desires to develop the 
"acoustical scaling" used in the approach presented. Moreover, when starting 
to write this paper, the Authors realized that this type of scaling is also 
common to many related areas of structural dynamics, and thus chose to 
include some examples of those areas to emphasize the main point here! 
For example, experience in fluid-structure interaction and fatigue of fuel tank 

skins, a related work area, serves as another example of scaling structures to 
demonstrate accurate predictions with widely varied environmental levels, 
and a multitude of configurations. Scaling and nondimensional results were 
used extensively in Ref (4 -13), and are cited here because of the immense 
data base accumulated. The work at that time did not necessarily define 
scaling as used here, but hindsight now suggests that there is a clear relation. 

It is becoming well recognized that Buffet is easily scaled , and many 
engineers and investigators are now employing scaling of pressures from 
model to full size applications, and are also using scaled model response to 
predict full scale cases . Some of the earliest and some of the more modern 
results clearly show this aspect. For example, Ref (14 -16) are typical, quite 
convincing, and pace setting regarding scaled data. Buffet models which are 
much more frail that the full-scale cases are used to develop data for full scale 
applications, and besides giving full sized results, provide a guide to safe 
flight testing as has been done more extensively with flutter testing. 

Obviously, acoustical response and fatigue phenomenon are also 
nondimensionalizable and scaleable, Ref (17 -18), for example. This point is 
being taken further here; that is , scaling will be used to take better advantage 
of limited facility testing capability to predict more severe situations, as is 
used in the case of flutter model testing where a larger specimen is predicted 
from tests of a smaller structure using similarity rules. Here in the acoustic 
application, a thinner , or otherwise more responsive specimen, is tested and 
then analytical means are used to make the prediction for the nominal case. 

APPROACH 
The method is shown here is basically an extension of the flutter model 
scaling idea, as applied to acoustical fatigue testing with a particular emphasis 
on random applications. The technique will also work for sine type testing in 
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acoustical fatigue, and perhaps it will be even more accurate there, but most of 
today's applications are with random testing, notably in the aircraft field. 
Thus it is in this area where the method should find more application . The 
Authors have a combined professional work experience of some 70+ years 
and thus have tried to focus this extensive background on an area where gains 
can be made to help reduce some costs while making successful designs, by 
using lesser testing capability than might be more ideally used. It is believed 
that the best testing for random acoustic fatigue, is of course, with (a) the 
most highly representative structure, and as large a piece as can be tested, 
both practically and economically, (b) the most representative environmental 
levels in both spectrum shape and frequency content, (c) test times to 
represent true or scaled time, as commonly accepted, (d) temperatures should 
be applied both statically and dynamically, and finally (e) preloading from 
pressures, vibration, and from boundary loading of adjacent structure. 
Frequently, testing is done to accomplish some goal using a portion of these 
factors, and the remainder is estimated . Thus the Authors believed that there 
is a high potential to extend the flutter model approach to acoustical 
applications. 

Recall that in the flutter model approach , the full scale flutter speed is 
predicted by the rule 

((VF)A)P = [ ((V,,)M)B / (( VF)M)c] x [ ((VF)A)C] (1) 

where VF is flutter speed, the subscripts M and A refer to model and aircraft 
respectively, the subscript C refers to calculated, and the subscript P refers to 
predicted. Thus the equation suggests that the full scale predicted flutter speed 
is obtained by taking the ratio of experimental to calculated flutter speed for 
the model and then multiplying by a calculated speed for the airplane. These 
flutter model scaling ideas are covered in any number of References, i.e. Ref 
(1-3), for example. 

The same concept can be utilized in acoustic fatigue, i.e. the strain at fatigue 
failure relation, (e,N) can be scaled from model structure tested at one level 
and then adjusted for structural sizing and environmental levels. This relation 
can be addressed as done for the flutter case: 

((S,N)A)P = [ (( S,N)M)E /  C(e,N)M) c ] x [ ((s,N)A)c ] (2) 

where s is strain, and N is the number of cycles at failure, where as above in 
Eq (1), the subscripts M and A refer respectively to Model and Full Scale for 
parallelism, while the subscripts E, C, and P have the same connotation again, 
namely, experimental, calculated, and predicted. Thus the full scale case is 
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predicted from a subscale case by using the ratio of experimental to 
theoretical model results as adjusted by a full scale calculation. Flutter model 
scaling depends upon matching several nondimensional parameters to allow 
the scaling steps to be valid. While these same parameters are, of course, not 
necessarily valid for the acoustic relationships, other parameters unique to 
this acoustical application must be considered, and will be discussed. 
Accurate predictions for the method relies on extensive experience with the 
topic of Acoustic Fatigue in general, because concern is usually directed 
towards the thinner structure such as: panels, panels and stiffeners, and panels 
and frames, bays (a group of panels), or other sub-structure supporting the 
panels. These structures are difficult to predict and are quite sensitive to edge 
conditions, fastening methods, damping, combination of static and dynamic 
loading, and temperature effects. Panel response prediction is difficult , and 
the fatigue properties of the basic material in the presence of these complex 
loadings is difficult. However, the experienced Acoustic Fatigue Engineer is 
aware of the limits, and normally accounts for these concerns. Thus the 
method here will show that these same concerns can be accounted for with the 
scaling approach through careful considerations. 

The Authors believe that the method is best explained by reviewing the 
standard approach to acoustic fatigue, especially when facility limits are of 
major concern. Fig (1) was prepared to illustrate these points of that 
approach. Here it is seen that key panels for detail design are selected from a 
configuration where the combination of the largest, thinnest, and most 
severely loaded panels at the worst temperature extremes and exposure times 
are considered. These can be selected by many means ranging from empirical 
methods, computational means, and the various Government guides, Ref (17- 
18), for example. Then detailed vibration studies are run using Finite 
elements , Rayleigh methods, Finite Difference methods, etc. to determine the 
modal frequencies and shapes, and frequently linearity is assessed. Then 
acoustical strain response of the structure is determined for sine, narrowband, 
and broadband random input to assess fatigue life based on environmental 
exposure times in an aircraft lifetime of usage. These theoretical studies are 
then followed by tests of the worst cases, where vibration tests are conducted 
to verify modal frequencies, shapes, and damping, and linearity is checked 
again for the principal modes. This is followed by acoustical strain response 
tests where the strain growth versus noise levels is checked, again employing 
sine, narrowband and broadband random excitation. Note the figure suggests 
that data from the vibration tests are fed back to the theoretical arena where 
measured data are used to update studies and to correlate with predictions, 
especially the effect of damping on response and fatigue, and of course, the 
representation of nonlinearity. Also, the measured strain response is again 
used to update fatigue predictions. These updates to theory are made before 
the fatigue tests are run to insure that nothing is missed.   However, in this 
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case, the required sound presssure level SPL in (dB) is assumed to exceed the 
test chamber's capability. Thus , as shown in the sketch in Fig (2) the key 
strain response curve, s vs dB, is extrapolated to the required dB level. This 
data is merged with the strain-to-failure curve at the right to establish the cycle 
count, N, giving the (s, N) point for this case. The extrapolated data provides 
some measure of the estimated life, but again is heavily dependent upon the 
accuracy of the basic strain response curve, and is especially dependent on 
whether high confidence exists at the higher strains. Linear theory is also 
shown in this case, indicating it overpredicts the test strain response and hence 
shows a shortened fatigue life compared to test data, as is generally the case 
in today's extreme noise levels. This illustration is highly simplified, 
because experienced designers readily know that it is difficult to predict even 
simple panels accurately at all times, let alone complex and built-up structure 
consisting of bays (multi-panel); this will addressed again later in the paper. 

The new concept of scaled acoustic fatigue structures is shown on the sketch 
of Fig (3) where the standard method is again shown, but smaller in size, to 
refocus the thrust of the new idea. The scaling process parallels the standard 
approach, and actually complements that approach, so that the two can be run 
simultaneously to save time, costs, and manpower. Here the panel selection 
process recognizes that the design application requires environments far in 
excess of available facility capability. Thus the scaling is invoked in the 
beginning of the design cycle. As the nominal panels (bays) are selected and 
analyzed for vibration, response and fatigue, scaled structures are defined to 
provide better response within the existing chamber ranges so that they can be 
fatigued and then the results can be rescaled to the nominal case. In this 
manner, appropriate designs can be established to meet safety margins with 
more confidence, and will avoid costly redesign and retrofitting at 
downstream stages where added costs can occur and where down times are 
difficult to tolerate. The concept is further illustrated in the sketch of Fig (4). 
Here the strain response curve of the nominal case and that of the scaled 
version are combined with strain to failure data ( coupon tests) to show fatigue 
results. Note the strain response for the nominal case at the highest dB level 
available gives the fatigue value at point A, while the extrapolated data for 
this curve gives point B. The scaled model being more responsive gives the 
point C, and when rescaled gives the point D which differs slightly from the 
extrapolated point B as it most likely will, realistically. More faith should be 
placed on data from an actual fatigue point than a point based on the projected 
strain response curve. Note, Fig (5) illustrates the winning virtue of the 
scaleable design. The figure shows a hypothetical set of test data for the (s ,N) 
for a structure for various SPLs for the nominal case, open circles, and for the 
fatigue results of the scaled model , closed squares. The scaled model was 
assumed to be thinner here for example,   and   that the scaled data is also 
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rescaled to fit the nominal curve here. The most interesting aspect is shown 
by the two clusters of data, denoted as A and B where there are rough circles 
about drawn about the clusters. Here the emphasis is that tests of the scaled 
model ( and rescaled data) are used to find the higher strain conditions which 
cannot be found from the nominal case. In both cases at the highest strain 
levels, the facility is used to its limits, but with enough testing with the thinner 
case, adequate data is available to make the prediction more accurate using 
Eq (2) for the final correlation as shown here. The statistical scattering of the 
scaled data will be an accurate measure for the nominal case, particularly 
when compared to estimates based on extrapolation of the strain response for 
the nominal case. There are many cautions to be noted with this approach as 
there are with all acoustic fatigue methods, and of course, tests. First, the 
linearity of the modes, either in unimodal sine excitation, multi-mode sine, 
narrow band or broadband random must be carefully handled. The strain 
response of individual locations throughout the structure must be carefully 
monitored in calculations and tests so that strain response is truly understood 
and used to define fatigue life carefully. This is difficult to do in many 
applications where widely varying conditions and durations require some type 
of Miner Rule combination to provide a true measure of fatigue. Similarly, 
strain risers at fasteners, discontinuities, holes, frames, stiffeners, material 
changes along with temperature gradients, temperature transients, require 
final "tweeks" to predictions, regardless. Nonlinearity, especially in the 
multi -mode case, is one of the most formidable foes to conquer for any 
application. 

APPLICATIONS AND EXAMPLES 
The tests of an Aluminum panel of size 10x20 in. and with a thickness of 
0.063 thickness , Ref (19), will be used to illustrate the technique. The panel 
has approximately fixed-fixed edge conditions, and is quite nonlinear in 
terms of strain response, Ref (19). The measured strain response for the panel 
is shown in Fig (6) along with an estimated response curve for a thinner panel 
( 0.040 in ) based on the test data. For this case it is assumed that data were 
needed at 175 dB, while the facility could only achieve 164 dB. The strain 
response for the thinner case was estimated using the classical equation for 
the amplitude of response, 8 ; 

8 = 
\\\cfdxdy\[PSDPif)) 

Mcoy\%V 
where M is the generalized mass, a> is the natural frequency, £ is the viscous 
damping factor , § is mode shape, PSDP is the pressure Power Spectral 
Density, and x,y are the positional coordinates along the plate. Since strain , 
s, is proportional to the amplitude, 
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s= (t/2)(5(()2/5x2)5 (4) 

Combining    Eq (3 and 4) shows that    the    strain response curves are 
proportional to the thickness factor, as given by: 

E 2 =     S,  ( t, /  t2) 
M (5) 

However, it must be noted that this case is nonlinear, and thus, this result is 
not exactly correct, but simply used for an illustration here. The actual data for 
the 0.063 thickness is extrapolated to a required 175 dB, showing a strain of 
1000 micro in/in. The estimated curve for the thickness of 0.040 in. shows ,of 
course, a greater response at all dB levels as it should, and moreover shows 
that only 150 dB are needed to achieve the 1000 micro - strain condition. 
Moreover, the thinner panel will exhibit large enough strains at the lower 
SPLs to improve the fatigue curve where the thicker panel is insensitive. 
Taking the example a step further, the fatigue point of the nominal case is 
shown on a strain to failure plot in Fig (7), employing beam coupon tests of 
Ref (11), which were shown to be excellent correlators with panel fatigue in 
the collection of work in Ref (6-13). The fatigue point for the 164 dB 
excitation, 800 micro-strain, is shown as a triangle, while the extrapolated 
data for 175 dB is shown as the flagged triangle. One test point exists for the 
nominal case, Ref (20), and is shown by a star symbol. Data for the thinner 
panel are shown as circles at the various strain to cycle count cases for the 
various SPLs corresponding to the beam curve. Notably, these points can be 
seen to produce shorter fatigue cases as they should due to increased strains, 
but note that they are also at lower frequencies which would give a longer test 
time than if they were the nominal thickness. The scaled model is seen to 
produce the same point as the extrapolated case in this hypothetical case for 
the 1000 microstrain case ( again, at two different dB levels for two 
thicknesses). A SPL of 150 dB, rather benign, is seen to be quite effective. 
The actual fatigue point at 164 dB for the nominal case required 3 hours and 
was predicted to be 2.8 hrs. The estimated fatigue for the extrapolated case of 
175 dB was estimated to be 1.7 hrs, while the scaled point from the thinner 
panel was estimated to be 2.2 hours which is slightly off, but the Authors 
have had to rely on log plots for much of the data and thus lack someaccuracy. 
Because of lack of actual data, the scatter from the estimate vs the test of the 
nominal case was used to scatter the estimate for the 1000 microstrain case, 
flagged dark circle, as if the use of Eq (2) had been employed directly. One 
must be careful here, because there can be a vast difference between theory 
and test, and this can mislead inexperienced persons applying these methods. 
As noted earlier, related work in fluid-structure and buffet , actually 
demonstrate this type of scaling. To illustrate, several figures are republished 
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here to make this point rather clear. Fig (8) of Ref (8 ) shows the dynamic 
bending strains in the bottom panel of an otherwise rigid fuel tank which is 
being excited vertically with moving base input. The vertical axis is strain 
while the abscissa is the number of g's input. Three panel thicknesses and four 
depths of fluid (water in this case) were used. Note the sharp nonlinear effect 
in the response, rather than linear response growth as force increases. 
Interestingly, the data was nondimensionalized into the curve of Fig (9), Ref 
(8), which was originally intended for a design chart to aid in developing 
strain response characteristics for use in fatigue. This curve displays a 
parameter of response as the ordinate vs an excitation parameter on the 
abscissa. Here, E is Young's modulus, p is density, t is thickness, a is the 
panel length of the short side, h is fluid depth, and the subscripts, p and F refer 
to panel and fluid, respectively. A point not realized previously is that the 
scaling shows that the thinner case can be used to represent the thicker panel 
under the appropriate conditions and when nonlinearity is carefully 
considered. More data with the thinner panels at the extreme conditions were 
unfortunately not taken in several cases of strain response because of concern 
with accumulating too many cycles before running the actual fatigue tests; 
else the thinner cases could have shown even more dramatically the scale 
effect. 

Buffet has been of more interest in the past 15 years because of high angle of 
attack operation of several modern USAF fighters. Much effort was placed 
upon research with accurately scaled models to determine if these could be 
employed as in prior flutter work. The answer was YES! Several figures were 
taken from Ref (16) to illustrate scaling of data from a model of, a fraction 
of the size of a fighter, to the full scale quantity. Fig (10) shows the correlation 
between scaled-up model data, flight test, and two sets of calculations over a 
wide range of aircraft angle of attack for the F/A-18 stabilator. The data is for 
inboard bending and torsion moment coefficients produced by buffeting 
loads. The scaled model data correlates well, the calculations using Doublet 
Lattice (DLM) aerodynamics is close, while the strip theory is not as accurate. 
Fig (11) shows similar type of data for the F/A-18 Vertical Tail for outboard 
bending moment coefficients. Here a wider range of angle of attack was 
considered, and again scaled model data and calculations are close to aircraft 
values. Both cases suggest that model data can be used to supplement full 
scale work and that when combined with theory , are a powerful aid to full 
scale analysis and tests. These tests can be used early in the aircraft design 
cycle to insure full scale success. 

CONCLUSIONS AND RECOMMENDATIONS 
An attempt was made to employ a view of acoustical scaling different from 
that usually taken.  The idea is to develop data for a model that fits within a 
test facility's capability and then by using analytical methods, adjust these 
results to the nominal case using factors from the test based on the ratio of 
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experimental to calculated data. This is analogous to the flutter model 
approach. One example is offered, and similar results from related scaling in 
fluid -structure and buffet work were shown to further the point. While more 
work is needed to fully display the concept, enough has been done to inspire 
others to dig-in and more fully evaluate the approach. The Writers intend to 
do more research, since they fully appreciate this difficult task. 
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ABSTRACT 

A multimodal fatigue model has been developed for flat beams and plates. 
The model was compared with experimental bending resonant fatigue 
lifetimes under random loading. The method was accurate in predicting 
cantilevered beam fatigue lifetimes, but under predicted clamped- clamped 
beam test results. For the clamped plate tests, one calculation was accurate 
and the other predicted about half the test lifetimes. The comparisons and 
the parameters affecting them are presented. 

INTRODUCTION 

While the single mode acoustic fatigue theory is satisfactory for sound 
pressure levels around 158 dB overall and below, there is evidence in the 
literature [1, 2, and 3] that above this level the accuracy of the simple 
response prediction method decreases with increasing sound pressure 
levels. The purpose of the paper is two fold, first to develop a multimodal 
acoustic fatigue life prediction model and secondly, to evaluate its accuracy 
in estimating the fatigue life theoretically by comparing predictions with 
experimental results. 

FATIGUE MODEL DEVELOPMENT 

Many fatigue models are found in the literature. The Miner single mode 
model used by Bennouna and White [4] and Rudder and Plumblee [5] was 
selected to develop a multimodal nonlinear model. The fundamental 
formulation is given by, 

He)" 
N 

N> = Y He)' -1 
(1) 
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where Nt is the total number of cycles to failure, P(e) is the peak strain 
probability density. N is the total number of cycles to failure at incremental 
constant amplitude strain levels derived from a sinusoidal strain versus 
cycles to failure curve. To calculate the fatigue life in hour, Eq (1) can be 
expressed as, 

t (hours)= 
EPD(sd) 1 * 

-Z-—3600xfc 
Nc 

c (2) 

where t is time, Pp(sd) is the peak standard deviation probability density, 

Nc is the total number of cycles to failure at a specified strain level and fc is 
the cyclic frequency. When the mean value is not zero, which is the case 
with axial strain in the beam or plate, the rms value is not the standard 
deviation. The standard deviation is usually employed to compute the time 
to failure. Most of the S-N curves or e-N curves are approximated as a 
straight line on a logarithmic graph. The relationship between the surface 
strain and the cycles to failure is then, 

e = 
K 

Nc. 
(3) 

where K is a constant and a the slope of a straight line on a log-log graph. 
The cyclic frequency fc for a single mode case is taken as the frequency of 
the associated resonance. Two types of peak probability density techniques 
were investigated from multimodal nonlinear strain responses [3]. These 
were called major peaks and minor peaks. The major peaks were counted 
for the largest peaks between zero crossings. The minor peaks were 
counted for all stress reversals or a positive slope in the time history 
followed by any negative slope. The effective cyclic frequency is much 
lower for the major peak count than the minor peak count. However, the 
peak probability density functions or PPDFs compared for these two cases 
were almost the same. The major peak method was selected for further 
study. 

Given a particular peak probability density curve from a measured 
response in an experiment, the number of peaks and the sampling time ts 

can be used to determine the effective multimodal cyclic frequency, 

*cm = number of peaks / ts (4) 
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where f^ is the effective multimodal cyclic frequency.  Substituting the 
multimodal cyclic frequency into Eq (4), 

t (hours) = • 
Fp(sd) 

K/(e)1/ot 
SöOOxfcm \ (5) 

This model accounts for the effects of axial strains which cause the mean 
value not to be zero, nonlinear response and multimodal effects. If the 
mean value is zero, then the standard deviation is equal to the rms value 
and Eq (5) reduces to Eq (2). 

FATIGUE MODEL COMPARISON WITH EXPERIMENTAL 
RESULTS 

The peak probability density function (PPDF) is needed or preferably 
the time history from strain or dynamic response measurements to 
evaluate the fatigue model developed. Also needed are sinusoidal e-N 
curves for the structure, and knowledge of its boundary conditions and the 
equivalent multimodal cyclic frequency. 

Two types of peak probability density techniques were investigated from 
multimodal nonlinear strain responses [3]. These were called major peaks 
and minor peaks. The major peaks were counted for the largest peaks 
between zero crossings. The minor peaks were counted for all stress 
reversals or a positive slope in the time history followed by any negative 
slope. The effective cyclic frequency is much lower for the major peak count 
than the minor peak count. However, the peak probability density 
functions or PPDFs compared for these two cases were almost the same. 
The major peak method was selected for further study. 

Comparison with Beam Data: 

The K and a terms were calculated from E-N and S-N data, where S 
is stress, using Eq (3). Selecting two values of strain and their 
corresponding cycles to failure, yields two simultaneous equations 
which were solved for K and a. Two sinusoidal e-N curves for 
BS1470-NS3 aluminum alloy which has a relatively low tensile strength 
were obtained from Bennouna and White [4 Fig 8]. These were for a 
cantilevered beam and a clamped-clamped (C-C) beam as shown in Fig 
1. The K and a terms calculated were used to compute the cycles to 
failure, Nc, for each strain level. Table I shown is the same as Table I in 
reference [4] except Nc was calculated from Eq (3) to sum the damages. 
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Delta is the sample size. The cyclic frequency was for one mode the one 
resonant response frequency. The time to failure in hours using Eq (2) 
for the cantilevered beam was 16.6 hours compared with 16.2 predicted 
theoretically [4], 15.3 and 15.9 obtained experimentally [4]. Both 
theoretical results were essentially equal, but slightly higher than the 
test results. The time to failure from Eq (2) for the (C-C) beam was 3.04 
hours compared with 2.53 theoretically [4] and 5.25 and 5.92 
experimentally [4]. Both theoretical results were about one half of the 
test results. The K and a terms, the theoretical fatigue life times and the 
experimental fatigue life times are listed in Table EL The table contains 
three sections: lifetimes calculated using a strain gauge PPDF, a 
displacement PPDF and the Gaussian and Rayleigh PDFs. As noted in 
reference [4], failure occurred much earlier for the C-C beam than the 
cantilevered beam for the same strain level. This was attributed to the 
influence of a large axial strain in the clamped- clamped beam. 

Comparison with Plate Data: 

Two fatigue tests were conducted to provide some additional limited 
data for comparison with the fatigue model developed. These tests 
used the base excitation method with a 1.09x10" N (20,000 Ibf) 
electrodynamic shaker. The clamping fixture consisted of a flat 
aluminum alloy 6061-T6 plate 19 mm thick and four clamping bars of 
equal thickness. The radius of curvature of the clamping edges was 4.76 
mm to prevent early fatigue failure. A four bar clamping arrangement 
was selected to prevent buckling of the plate while torquing the 
clamping bolts. The undamped size was 254 x 203 x 1.30 mm which 
results in a 1.25 aspect ratio. Strain gauges were bonded along the center of 
the larger dimension (SG 2) and at the center of the plate (SG 3). 
Displacements were measured with a scanning laser vibrometer at the 
center of the plate. An accelerometer was mounted on the shaker head to 
determine the acceleration imparted to the clamped plate. A flat 
acceleration spectral density was used between 100-1500 Hz. Recordings 
were taken at increasing levels of excitation up to the fatigue test level. The 
time to detecting the first fatigue crack was recorded for each plate. 

The constants K and a were calculated from random single mode S-N 
data for 7075-T6 aluminum alloy [5 p 489]    shown in Fig 1, with 

K = LOlxlO23 and a = - 0.175. The rms stress (S^) was changed to rms 

strain, Srms= Ee^, where E is Young's modulus. The stress was 
measured half way between two rivets along the center line between the 
rivets on the test specimen. The strain gauge location, stress 
concentrations, and the boundary conditions greatly affect the strain 
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level measured. Correction factors are needed for a different set of 
conditions and to convert random data to sinusoidal data. Sinusoidal 
e -N bending coupon curves for 7075-T6 aluminum alloy were difficult to 
find. S-N curves were found for an aerospace material with both 
sinusoidal and random excitations. These curves were nearly parallel. 
The sinusoidal strain was 1.38 times larger than the random strain for 

105 cycles. Multiplying the constant K for the 7075-T6 material by 1.38 

resulted in K = 1.40xl023. 

Early strain gauge failures prevented strain measurement above 500 
microstrain with 20.7 g rms shaker excitation. The fatigue test level was 
115 g rms and the response contained at least six frequency response 
peaks. The major peak strain PPDFs were determined for 5.32 g rms 
and 20.7 g rms as shown in Fig 2 with the Gaussian PDF. Compared 
with the Gaussian distribution, an increased number of peaks occurred 
greater than 1 sigma and smaller than -1 sigma. Also a larger number of 
peaks occurred around zero. The PPDF determined from the 20.7g rms 
test case was used to predict fatigue life, but a new strain estimate was 
needed since the excitation level increased 5.6 times. The displacement 
is directly related to the strain at each excitation level. Displacement 
measurements at the fatigue test level were used to estimate the strain 
level shown in Fig 3. The estimated strain from the figure was 770 
microstrain for SG 2. The scale of the displacement measurements was 
adjusted to coincide with strain measurements at increasing increments 
of shaker excitation. 

The equivalent cyclic multimodal frequency is needed to predict the 
fatigue life. Prediction of the linear modal frequencies is carried out by 
a variety of methods. Usually the first mode prediction is the most 
accurate. The cyclic multimodal nonlinear frequencies have been 
studied for two clamped beams and two clamped plates [3]. These were 
based upon the peak probability density functions (PPDFs) where the 
peaks were counted for a specific time interval, from which the 
nonlinear cyclic multimodal frequencies were calculated. Generally the 
resonant frequencies increased with increasing excitation levels. Those 
for the two beams increased more rapidly than those for the two plates. 
Very little change was noted for the plates. The equivalent cyclic 
multimodal frequency determined via Eq (4) from the SG 2 PPDF was 
348 Hz. 

The time to failure in hours predicted using Eq (5) and the parameter 
mentioned above for the clamped plate was 0.706 hours compared with 
1.17 and 0.92 shown in Table II. The predicted result was slightly lower 
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than the test results.   A £rm,-N curve was calculated with the test Tins 
lifetimes available, by determining a new constant K, assuming the 
slope was the same as for the riveted coupon and applying the 
sinusoidal correction factor. The time to failure in hours predicted 
using Eq 5 and the calculated E-N curve for the clamped plate was 
0.274 hours compared with 1.17 and 0.92 shown in Table H The cyclic 
multimodal frequency used was the same at that determined from SG 2 
and the same strain was used. This prediction was about 1/3 of the test 
results. This method incorporates the failure data at two points. 

The displacement PPDF shown in Fig 4 was used to predict fatigue 
life. The number of displacement peaks increased significantly above 
the strain PPDF around 1 sigma and -1 sigma. The large number of 
peaks around zero was similar to the characteristics observed in the 
strain PPDF. The equivalent cyclic multimodal frequency was 375 FIz, 
slightly higher than that determined from the strain PPDF. However, 
the same frequency (348 Hz) was used to predict fatigue life. The time to 
failure in hours using Eq (5) for the clamped plate was 1.15 hours with 
the riveted E-N curve and 0.446 with the calculated E-N curve shown 
in Table n. This PPDF improved considerably the prediction. The 
Gaussian and Rayleigh PDFs were used to predict the time to failure 
with the same parameters as those used with the riveted e-N curve. 
The lifetime using the displacement PPDF was 1.15 hours, using the 
Gaussian PDF, 0.600 hours and using the Rayleigh PDF, 0.237 hours, as 
shown in Table H The Gaussian PDF under predicts by a factor of 2. 
The Rayleigh PDF under predicts by a factor of 5. 

The spread sheets containing PPDF / N^ data for various sigma 
values were used to determine damage accumulation shown in Fig 5. 
Almost 55% of the normalized damage occurs between -2 and -1 sigma 
and 38% of the damage between 1 and 2 sigma using the displacement 
PPDF. However, the damage is spread more evenly using the available 
strain gauge PPDF. The strain gauge PPDF was recorded at a much 
lower level than the displacement PPDF. The damage accumulation 
compared more closely to Gaussian PDF than the Rayleigh function. 

Damage Model with a Specific Function Describing the PPDF: 

A curve-fitting routine was used to determine a mathematical function 
for a high level strain gauge PPDF for the clamped shaker plate. The 
most important part of the fit is outside the range of -1 to 1 sigma, since 
most of the damage accumulation occurs outside this range. The 
highest ranking function was a tenth order polynomial followed by 
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ninth and eighth order polynomial fits. The goodness of fit in order 
from 1 to 14 ranges from 0.9775 to 0.9625, which are very dose 
statistically. The tenth order polynomial is, 

y = a + bx + cx2 + dx3+ex4+fx5+gx6 + hx7 + ix8+jx9+kx10    (6) 

where a=0.346, b=-0.0148, c=-0.137, d=-0.054, e=0.090, f=0.043, g=- 
0.0400, h=-0.00976, i= 0.00722, j=6.85xl0J'/ k=-4.36xlOJl . Ranked 
fourteenth is a natural logarithmic function. The function and its 
coefficients are, 

lny = a + bx + cx2 + dx3+ex4+fx5 (7) 

where a=-1.088, b=-0.1191, c=-0.1.302, d=0.0104, e=-0.0653, and f=0.0079. 
The function fits the test data similar to the tenth order polynomial and 
may be easier to use. Ranked forty-first is a Gaussian function. The 
function and its coefficients are, 

y = a + b exp[o.5[(x - c) / df } (8) 

where a=-0.0968, b=0.4485, c=-0.050 and d=1.45. The function fits better 
for sigma values of 2 or greater than those of -2 sigma and greater. A 
constant coefficient is used to fit the Gaussian function to permit shifting 
the function to fit the test data. This equation can be used in the PPDF 
in Eq (5), 

Nt = - 
a + bexp{-0.5[(x-c)/dr } 

[K/(e)]1Ax 

a- 
3600fcm \ (9) 

where a=-0.0968, b=0.4485, c=-0.050 and d=1.45. 

CONCLUSIONS 

The prediction of multimodal fatigue life is primarily dependent upon 
the peak probability density function (PPDF) which changes shape with 
increasing excitation levels. The next in order of importance is the 
sinusoidal £-N bending fatigue curve and finally the effective multimodal 
cyclic frequency. 

A multimodal fatigue model was developed with the PPDF estimated 
from a form of the Gaussian function being useful especially in the 
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range of cycles to failure from 106-108. The lifetime predication 
calculations for the clamped-clamed beam was about one half the 
experimental value. For the plate, the calculations was about one half 
the experimental value. Using riveted coupon fatigue data, the 
calculation was accurate. 
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TABLE I 

FATIGUE CALCULATIONS USING EQUATION 5.9 
CANTILEVERED BEAM BS 1470-NS3 (REF 4 FIG 8) 

e/sd sd e Nc=(2.172 PPDF x A PPDF x A/Nc t 
ue U£ xlo'Vsd)-0560 hours 

0.5 425 213 15079045.41 0.213 1.41256E-07 
1 425 425 4390936.857 0.310 7.06000E-07 

1.5 425 638 2125446.064 0.240 1.12917E-06 
2 425 850 1273261.536 0.138 1.08383E-06 

2.5 425 1063 854026.6252 0.060 7.02554E-07 
3 425 1275 617189.6449 0.018 2.91645E-07 

3.5 425 1488 468372.0662 0.005 1.06753E-07 
TOTAL 0.984 4.16121E-06 16.7 
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Figure 3 Strain and displacement as a function of excitation. 
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ACOUSTIC FATIGUE AND DAMPING TECHNOLOGY IN 
COMPOSITE MATERIALS 

By B. Benchekchou and R.G. White 

Abstract 

Considerable interest is being shown in the use of composite materials in 
aerospace structures. Important areas include development of a stiff, lightweight 
composite material with a highly damped, high temperature polymer matrix 
material. The study described in this paper concerns the application of such 
material in the form used in thin skin panels of aircraft and investigation of its 
fatigue properties at room and high temperature. For this purpose, fiexural fatigue 

tests have been carried out at two different temperatures and harmonic 
three-dimensional FE analyses were performed in order to understand the 

dynamic behaviour of plates. Random acoustic excitation tests using a 
progressive wave tube, up to an overall sound pressure level of 162 dB, at room 

temperature and high temperatures were also performed in order to investigate the 
dynamic behaviour of panels made of the materials. Various methods for 

including damping in the structure were examined when parameter studies were 
carried out, and conclusions have been drawn concerning optimal incorporation 
of a highly damped matrix material into a high performance structure. 

1-Introduction 

Significant areas of primary and secondary structures in military aircraft operate 
at high temperature and are subjected to high levels of random acoustic loading, 
because of their closeness to jet effluxes. There is then a need to develop a carbon 

fibre reinforced plastic material with a high temperature polymer matrix and high 
fatigue resistance. Highly damped composite structures should be developed in 
order to better resist dynamic loading and to have an enhanced fatigue life. Work 
previously carried out on improving the damping in fibre reinforced plastic (FRP) 

composites as well as the number of approaches which can be taken to improve 
the damping properties of polymeric composites have been summarised in [1]. 
The aim of the research described here was to study lightweight composite 

materials with a highly damped, high temperature polymer matrix material, by 
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investigating its mechanical and acoustic fatigue properties, the latter investigation 
being carried out using thin, multilayered plates. 

2-ExperimentaI work 

For this type of study, two adequate prepregs were highlighted after investigation: 

SE300 and PMR15. The SE300 material was carbon fibre reinforced prepreg of 

(0°/90°) woven form, 0.25 mm thick and had 60% fibre volume fraction, with no 

suitable data available on the material properties. Dynamic mechanical thermal 

analyser (DMTA) analyses carried out on four specimens ( 20 mm long and 12 

mm wide) with different lay-ups i.e. (0°/90°)4> (+45°/-45°)4, (0°/90°, 45°/45°)s 

and (45°/45o;0°/90o)s, allowed to get provided the material properties. Results 
from DMTA analyses are shown in Table La where the loss factor and the 

Young's modulus values at 40°C and at the glass transition temperature Tg are 
presented. The loss factor values varied from 0.0097 to 0.085 for a range of 

temperature from 40°C to 300°C. 

The PMR15 prepreg was also of (0°/90°) woven carbon form and had 58% 

volume fraction. Six DMTA specimens having the following lay-ups: (0°/90°)4, 

(0°/90°)8, (445°/-45°)4, (+45°/-45°)8, (0°/90°; 45°/45°)s and 

(45o/45o;0°/90o)s were made. Results from DMTA analyses showed that the loss 

factor values varied from 0.0129 to 0.0857 for a range of temperature from 40°C 

to 400°C, with a value of loss factor of 0.1293 at 375°C, the maximum 

temperature for normal use being 352°C. The loss factor and Young's modulus 

values at 40°C and Tg are given in Table l.b. 

Mechanical behaviour of the selected materials 
The fatigue characteristics of these new materials were investigated and results 
were compared with those of well established structural materials. Mechanical 
fatigue tests of SE300 and PMR15 samples using "sinusoidal" loading at a chosen 
maximum strain level, i.e. 8000 uS were carried out and performances compared 
to that of an XAS/914 sample. A mechanical (flexural) fatigue rig was used for 
this purpose to test specimens in a cantilevered configuration. Details of the rig are 
available in [2]. The particular clamp used was designed by Drew [3] to induce 
damage in the centre of the specimen instead of having edge damage, i.e. peeling 
while flexural tests are carried out. In order to investigate the performance of these 
new materials at high temperature, fatigue tests were also carried out on samples, 

at 210°C . This was achieved by using a heating system which consisted of two air 
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blowers (electronically regulated hot-air guns) positioned at 40 mm above and 
below the specimens, which allowed specimens to be tested at a uniform temperature 

of 210±5°C. The aim of the mechanical fatigue test was to determine the number of 
loading cycles needed for damage to occur and its subsequent growth rate in 

cyclically loaded composite specimens of SE300 and PMR15 matrix materials . The 

samples were 140 mm long, 70 mm wide and 2 mm thick. Fatigue tests of SE300 (S3 

and S4) and PMR15 (PI and P2) specimens, at room temperature and at 210°C 

respectively, at a level of 8000 US, located by the peak of the half-sine clamp, have 
been carried out. Ultrasonic scans of specimens S3 and S4 before any loading cycles 
and after 100, 500, 1000, 2000, 5000, 10000, 20000 and 50000 loading cycles are 
shown respectively in Figures l.a-h and Figures 2.a-h. A small delamination, 
indicated by lighter areas in the scans, starts to show in both specimens S3 and S4 
after applying 500 loading cycles and increases substantially after 5000 loading 

cycles. After 5000 loading cycles, the damage area increased more for specimen S4 

than specimen S3, which shows that the latter is slightly more fatigue resistant. In 

other words, when increasing the temperature from 25°C to 210°C, the resistance to 

fatigue slightly decreases. Figures 3.a-h and Figures 4.a-h show the ultrasonic scans 
for PMR15 specimens PI and P2 before and after several loading cycles. For both 

specimens PI and P2, damage starts after 500 loading cycles and increases 
substantially after 20000 loading cycles. At this stage, delamination areas are similar 
for both specimens PI and P2 and just a little more pronounced in specimen P2, 
which shows that the latter is slightly less fatigue resistant. Hence, an increase in 

temperature leads to a decrease in the fatigue resistance properties of the specimens. 
From Figures 1, 2, 3 and 4, one can conclude that the PMR15 specimens tested were 
slightly more fatigue resistant than the SE300 specimens. In fact, damage in 

specimens was generally more defined, clearer and spread more rapidly in the SE300 
samples than was the case for the PMR15 samples. Figure 5 shows damage 

propagation occuring in an XAS/914 sample (XI), with (0°/±45<V0O)s stacking 

sequence, tested at 8000 |iS level and at room temperature, from [3]. Note that 
substantial damage existed after 1000 loading cycles in this specimen, which shows 
that both SE300 and PMR15 are more fatigue resistant than XAS/914 at room 

temperature. 

Acoustic fatigue behaviour of panels of the selected materials 
Investigations were carried out by installing the CFRP plates in an acoustic 
progressive wave tunnel, (APWT) in order to determine the response of CFRP plates 
under broadband acoustic excitation simulating jet noise. The plate was fully 
clamped around its boundaries on to a vertical steel frame fixed to one side of the 

APWT, so that it formed one of the vertical walls of the test section of the APWT. 
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Overall sound pressure levels (OSPL) up to 165 dB of broadband noise in the test 
section of the tunnel was generated by a Wyle Laboratories WAS 3000 siren. A 

heater panel capable of heating and maintaining the temperature of test plates up to 

300°C while mounted on the tunnel was designed and built. Temperatures were 
monitored and controlled via thermocouples on the panel. Plates were excited by 

broadband excitation in the frequency range 80-800 Hz. A B&K type 4136 
microphone mounted at the centre of the test section of the tunnel adjacent to the 

mid-point of the plate were used for sound pressure measurements. Eight strain 
gauges, four on each side of the plate were attached in order to monitor the strain 
distribution in the panel while the rig was running; more details of the experiment 

may be found in [1]. Acoustic tests were run, at various temperatures and OSPL. 
Since plates were excited in the frequency range 80-800 Hz, spectral analyses 
would not include the first natural frequency. The natural fundamental frequency of 
an SE300 clamped panel was found to be 49.02 Hz analytically. The second -and 
third resonance frequencies were 149.5 and 198.5 Hz, as calculated from strain 
spectral densities, from tests carried out with an OSPL of 156 dB and a temperature 

of 162°C. At 162 dB, results showed that the second resonance frequency was 113 

Hz at 150°C and 106.5 Hz at 1950C, which shows that when the temperature and 

the OSPL increased, the resonance frequencies of the plates decreased. Also, it was 

found that the damping increased at elevated temperatures. The overall modal 
viscous damping ratios, for the second mode, were calculated from strain spectral 

densities, for an SE300 panel driven at an OSPL of 162 dB and at 195<>C, and was 
found to be 8.91%; this value is similar to that calculated from analytical 

simulations, for the first mode, which is 8.50% at 242<>C, (see the analytical section 
below). A typical strain spectral density obtained from recorded results is presented 

in Figure 6 for an SE300 specimen, at an OSPL = 156 dB and at 1620Q from a 
strain gauge in the centre of the specimen. Maximum RMS strain values recorded 
from experimental tests, at a strain gauge in the centre of the specimen were, at an 

OPSL =156 dB, 1300 U.S, 1800 fiS and 2800 uS at room temperature and at 90<>C 

and 1620C respectively. These results clearly indicate a trend for significant 

increase in dynamic response with increasing temperature. 

Experiments were also carried out on a PMR15 panel at various OSPL and 
temperatures. Results from tests run at 159 dB and at room temperature show that 
the second and third resonance frequencies were indicated as 112 and 182.5 Hz. 
When the OSPL increased to 162 dB, the second and third resonance frequencies 
decreased to 110.5 Hz and 176.5 Hz. At the same OSPL (162dB) and when 

temperature increased to 281°C, the third resonance frequency became 139 Hz. This 
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shows that, for PMR15 plates, when the temperature and the OSPL increased, the 
resonance frequencies of the plates decreased. It was also clear that modal damping 
increased with increasing temperature. In fact, the overall viscous damping reached 

20%, for the second mode, at an OSPL=162 dB and at 281°C. It must be stated here, 
however, that apparent damping trends could include nonlinear effects which 

influence bandwidths of resonances. Maximum RMS strain values recorded at room 

temperature, by a strain gauge in the centre of the plate were found to be: 2700 p.S at 

153 dB, 2800 fiS at 157.9 dB and 2900 \iS at 159 dB. 

It is clear from these values that increasing the OSPL obviously leads to an increase 
of the strain in the plate. Similar results were observed when the temperature was 

increased. In fact, at an OSPL of 162 dB, the maximum strain values recorded by a 
strain gauge in the centre of the specimen were 3000 uS, 3400 U.S and 5000 p.S at 

105°C, 165°C and 281°C respectively, which clearly indicates the effects of 
temperature. It was observed that both the PMR15 and SE300 panels behaved in a 

non linear manner. 

Attempts to acoustically fatigue a PMR15 panel were made at 162 dB. No signs of 
fatigue damage were shown in an ultrasonic scan of the panel after 1389 minutes of 

running time. 

3-Analytical work 

In order to examine various methods for including damping in a structure, parametric 
studies were carried out using the finite element FE method. ANSYS software has 
been used. A three-dimensional, 3D layered element, SOLID46 was used to build 
theoretical models. The element is defined by eight nodal points, average layer 
thickness, layer material direction angles and orthotropic material properties, [4]. 
Meshes were built in order to carry out modal and harmonic analyses of multilayered 
composite plates (410 mm, 280 mm, 2 mm). The plates were fully clamped along all 
edges, in order to simulate the panels tested in the APWT. Natural frequencies were 

first determined from free vibration analyses and compared to resonance frequency 

values derived from experimental data. Then, the plate was driven by harmonic 

loading at one point of application. The forcing frequency varied from 0 to 400 Hz. 
The amplitude of the load was 50 N. Results for displacements and response phase 
angles relative to the force for a chosen position on the plate as a function of 
frequency were obtained. The approach was then to carry out parameter studies in 
order to examine various methods for including damping in the structure, i.e. to use 
highly   damped   matrix   material   throughout   the   whole   structure   or   possible 
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incorporation in a few layers. Structural damping was included, allowing models to 
run with different damping values in each ply of the panel. Structural damping is 
inherent in the structure and depends on the natural frequency; details on structural 

damping modeling may be found in [1]. Analyses were performed considering 

structural damping for the first mode. The structural damping was then varied for 

plies with the same orientation for a viscous damping ratio \ = 0.01,0.02, 0.05, 0.10 

and 0.20. 

Simulations with SE300 

Models were built up with the following stacking sequence ((45°/45o),(0°/90o))s, 

lay-up used for the experimental plates. Table 2 gives the first three modal 
frequencies of the panel obtained from free vibration analyses results. Harmonic 
simulations were carried out and the overall damping value was calculated for each 
case with results given in Table 3. As can be seen, if high overall damping is needed 
for a structure composed of the SE300 material, increasing the damping value of the 

(45°/45°) orientation plies most significantly increases the overall damping value of 

the panel. In fact, putting a damping value of 20% in the (45°/45°) orientation plies 
leads to an overall viscous damping value of 14.52%, which is better than including 

a 10% damping value in all of the plies of the structure. 

Harmonic analyses of fully clamped plates were also performed with the values of 
material properties taken at several temperatures. Simulations were carried out with 

material properties at 242°C and 300°C. Free vibration analyses permitted 
calculation of the modal frequencies of the panels at the temperatures mentioned 
above. Table 2 also lists the first three modal frequencies from analyses with 

material properties at 242°C and 300°C. The overall viscous damping values, 
obtained from FE simulations, are given for each temperature in Table 4. Again, the 
damping value has been varied through the layers and the overall damping value was 
calculated in order to see which of the plies contributes the most to heavily damp the 

plate. It was found that putting a damping value of 20% in the (45°/45°) orientation 

plies, the first mode viscous damping ratios were 14.62% and 14.55% at 242°C and 

300°C respectively. This shows that this material is more highly damped at high 

temperature and presents better damping properties of the two materials at 242°C. 

Simulations with PMR15 
Free vibration analyses of models built up with the following stacking sequence 

((45o/45°),(0°/90o))s were carried out and the first three modal frequencies of the 
panel are shown in Table 5. Harmonic analyses were run and the overall damping 
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value was calculated for each simulation with results given in Table 6. If high 
overall damping is needed for a structure composed of the PMR15 material, 

increasing the damping value of the (45°/45°) orientation plies most significantly 

increases the overall damping value of the panel. In fact, putting a damping value 

of 20% in the (45°/45°) orientation plies leads to an overall viscous damping value 

of 14.39%, while if (0°/90°) orientation plies have a 20% damping value, the 

overall damping is 7.42%. 

Harmonic analyses of fully clamped plates were also carried out with the values of 

material properties taken at several temperatures. Simulations were carried out 

using material properties at 375°C and 400°C. Free vibration analyses permitted 
calculation of the modal frequencies of the panels at the temperatures mentioned 
above. Table 5 lists the first three modal frequencies from analyses with material 

properties at 375<>C and 400OC. The overall viscous damping values, obtained 
from FE simulations, are given for each temperature in Table 7. Again, the 

damping value has been varied through the layers and the overall damping value 
was calculated in order to see which of the plies contributes the most to heavily 

damp the plate. It was found that putting a damping value of 20% in the (45°/45°) 
orientation plies, the first mode viscous damping ratios were 18.39% and 16.94% 

at 375°C and 400°C respectively. This shows that this material is more highly 
damped at high temperature and presents better damping properties of the two 

materials at 375°C. 

4-Conclusions 

Two matrix materials, SE300 and PMR15, with potential for use in aircraft 

structures in a severe environment, i.e. temperatures up to 300°C were selected for 
this study. Material properties were determined using DMTA techniques and 
results show that these materials have high damping abilities at high temperature. 
Dynamic loading tests, performed in flexure at room and high temperature showed 
that the carbon fibre reinforced PMR15 material is more fatigue resistant than 
SE300 and XAS/914 based composites. Acoustic tests using a progressive wave 

tunnel, up to a random acoustic OSPL of 162 dB, at room temperature and 

elevated temperatures up to 2810C were also performed. When increasing the 
excitation level and the temperature higher strain values in the centre of the panels 
were recorded. Free vibration and harmonic FE analyses permitted determination 

of the natural frequencies and the overall viscous damping values. Resonance 
frequencies determined from results obtained from acoustic tests were similar to 
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natural frequencies obtained from FE simulations. Overall viscous damping values 
obtained from experimental results agreed well with those obtained from the EE 
analyses for SE300 panels. Results obtained for PMR15 panels, from tests, were 
higher than those calculated analytically. Both tests and simulations showed that 
SE300 and PMR15 present higher damping capabilies at high temperatures. 

Conclusions, via parameter studies including material damping, have been drawn 

concerning optimal incorporation of a highly damped matrix material into a high 

performance structure. 
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Table l.a: Loss factor and Young's modulus values at 40°C and at Tg for 
SE300 samples analysed by the DMTA. 

stacking sequences 

(+45/-45)4 (-45/+45)4 (45/45;0/90)s (0/90)4 

Tg(°C) 242 242 240.3 238.71 

TiatTg 0.085 0.085 0.081 0.061 

Tl at 40°C 0.012 0.014 0.010 0.0097 

LogE'at40°C 9.870 9.840 9.970 10:097 

Table Lb: Loss factor and Young's modulus values at 40°C and at Tg for 
PMR15 samples analysed by the DMTA. 

stacking sequences 

(+45/-45)4 (0/90;45/45)s (45/45;0/90)s (0/90)4 

Tg (°C) 372 375 375 375 

TiatTg 0.117 0.124 0.121 0.129 

Tiat40oC 0.0110 0.0138 0.0086 0.0117 

LogE'at40°C 9.583 9.944 9.972 9.875 
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Table 2: The first three modal frequencies for SE300 panel; FE analyses carried out 

with material propert ies at room temperature, at 242°C and at 300°C. 

Room temperature 242°C 300°C 

49.02Hz 44.72Hz 43.61Hz 

155.80Hz 143.27Hz 140.17Hz 

212.04Hz 194.19Hz 189.68Hz 

Table 3: Overall viscous damping values of SE300 panel. Values are calculated from 
results obtained from harmonic analyses; the material damping being considered for 
the first mode. 

Simulation with 

damping of 

(45°/45°)orientation 
plies 

(0°/90°)orientation 
plies 

5% 

10% 

20% 

3.81% 

7.06% 

14.52% 

2.51% 

3.92% 

11.57% 

Table 4: Overall viscous damping values of SE300 panel, for the first mode. 

Temperature 
(°C) 

Overall viscous damping 

25 

242 

300 

1.20% 

8.50% 

5.45% 
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Table 5: The first three modal frequencies for PMR15 panel; FE analyses carried out 
with material properties at room temperature, 375°C and 400°C. 

Room temperature 375°C 400°C 

43.43Hz 32.68Hz 25.54Hz 

130.35Hz 99.65Hz 78.83Hz 

183.96Hz 139.04Hz 109.11Hz 

Table 6: Overall viscous damping values of PMR15 panel. Values are calculated 
from results obtained from harmonic analyses; the material damping being 
considered for the first mode.. 

Simulation with 

damping of 

(45°/45°)orientation 
plies 

(0°/90°)orientation 
plies 

5% 

10% 

20% 

3.76% 

7.26% 

14.39% 

2.44% 

4.10% 

7.42% 

Table 7: Overall viscous damping values of PMR15 panel, for the first mode.. 

Temperature 

(°Q 
Overall viscous damping 

25 

275 

400 

1.33% 

13.24% 

8.6% 
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a: before any loading cycles        b: after 100 loading cycles c: after 500 loading cycles 

d: after 1000 loading cycles e: after 2000 loading cycles f: after 5000 loading cycles 

g: after 10000 loading cycles h: after 20000 loading cycles 

Figure 1. Ultrasonic scans of specimen S3 after applying different numbers of loading cycles. 
(SE 300 material, ambient temperature) 

a: before any loading cycles        b: after 100 loading cycles c: after 500 loading cycles 

d: after 1000 loading cycles e: after 2000 loading cycles f: after 5000 loading cycles 

g: after 10000 loading cycles h: after 20000 loading cycles 

ieure 2. Ultrasonic scans of specimen S4 after applying different numbers of loading cycles. 
(SE300 material, 210°C) 
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a: before any loading cycles        b: after 100 loading cycles c: after 500 loading cycles 

d: after 2000 loading cycles e: after 20000 loading cycles f: after 50000 loading cycles 

g: after 100000 loading cycles h: after 180000 loading cycles 

Figure 3. Ultrasonic scans of specimen PI after applying different numbers of loading cycles. 
(PMR15 material, ambient temperature, 8000U.S) 

;.■■•»•     - Ti..-.*" v 

!v- --.rö-u: l--'\ -. ■■■'!' 
IfcÜ» — _3-^l_ — u 

a: before any loading cycles        b: after 500 loading cycles c: after 1000 loading cycles 

d: after 2000 loading cycles e: after 3000 loading cycles" f: after 5000 loading cycles 

g: after 10000 loading cycles h: after 20000 loading cycles 

Figure 4. Ultrasonic scans of specimen P2 after applying different numbers of loading cycles. 
(PMR15 material, 210°C,8000|xS) 

993 



a: before any 
loading cycles 

b: after 100 
loading cycles 

c: after 500 
loading cycles 

d: after 1000 
loading cycles 

e: after 2000       f: after 5000 g: after 10000 h: after 20000 
loading cycles     loading cycles loading cycles loading cycles 

igure 5. Ultrasonic scans of an XAS/914 specimen fatigued at a level of 8000 itS 
showing the damage propagation; the lay-up is (0/±45/90)s, [3]. 

3ower Spectrum )han2 Avg = 30 

rms 

Lin Hz RCLD 1.6k 

Figure 6: SE300 specimen SI strain spectral density, recorded from strain gauge 
ST2, OSPL =156 dB, temperature = 162°C. 
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THE BEHAVIOUR OF LIGHT WEIGHT HONEYCOMB SANDWICH 
PANELS UNDER ACOUSTIC LOADING 
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Senior Stress Engineer 

Short Bros. PLC 
Airport Road 

Belfast 
Northern Ireland 

SUMMARY 

This paper discusses the results of a progressive wave tube test on a carbon composite 
honeycomb sandwich panel. A comparison was made with the test panel failure and the 
failure of panels of similar construction used in the intake ducts of jet engine nacelles. 
The measured panel response is compared with traditional analytical methods and finite 
element techniques. 

Nomenclature 

Srms = Overall rms stress (psi) or strain (us). 
7t = 3.14159 

f„ = Fundamental frequency (Hz). 
8 = Critical damping ratio (=0.017). 

Lps(fn) = Spectrum level of acoustic pressure (- expressed as a fluctuating rms pressure in psi in a 

1 Hz band). 

Jr = Joint acceptance function (non dimensional). 

Pic = Characteristic modal pressure (psi) 
ph = Mass per unit area (lb/in2) 
sic = Modal stress (psi) or modal strain (us). 

wic = Modal displacement (in). 
a = Panel length (in). 
b = Panel width (in). 
x,y,z = Co-ordinate axes. 

1.0 Introduction 
Honeycomb sandwich panels have been used for some time in the aircraft industry as 
structural members which offer a high bending stiffness relative to their weight. In 
particular, they have proved very attractive in the construction of jet engine nacelle 
intake ducts where, in addition to their load carrying ability, they have been used for 
noise attenuation. 
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2.0 Acoustic Fatigue 
The intake duct of a jet engine nacelle can experience a severe acoustic environment 
and as such the integrity of the nacelle must be assessed with regard to acoustic fatigue 
[1]. Acoustic fatigue characterises the behaviour of structures subject to acoustic 
loading, in which the fluctuating sound pressure levels can lead to a fatigue failure of 
the structure. The traditional approach to acoustic fatigue analysis has assumed 
fundamental mode response and given that aircraft panels will in general, have 
fundamental frequencies of the order of several hundred hertz, it is clear that the 
potential to accumulate several thousand fatigue cycles per flight can exist. 

Techniques for analysing the response of structures to acoustic loads were developed 
originally by Miles [2] and Powell [3]. Other significant contributions are listed in 
References 4-7. Design guides such as AGARD [8] and the Engineering Sciences 
Data Unit (ESDU) series of data sheets on vibration and acoustic fatigue [9], have 
proved useful in the early stages of design. 

Note - further details on the general subject of acoustic fatigue can be found in Ref. 
10, while a more detailed review of the subject up to more recent times is presented in 
Ref. 11. 

3.0 In Service Failures 
In recent years a number of failures have been experienced involving intake barrel 
honeycomb sandwich panels. Failures have been experienced with panels which had 
both aluminium facing and backing skins and carbon composite panels. The metal 
intake liner was observed to have skin cracking and also core failure, while the 
composite panel was only observed to have core failure. 

With regard to the metal panels, flight testing was carried out and the predominant 
response frequency was observed to be at the fan blade passing frequency - much 
higher than the fundamental frequency of the intake barrel; this went some way to 
explaining why the traditional approach in estimating the response did not indicate a 
cause for concern. The response of the panel was also very narrow band - almost a 
pure sinusoid (again differing from the traditional approach of broad band/random load 
and response), and the subsequent analysis of the results was based on a mechanical 
fatigue approach [12]. Subsequent fleet inspections revealed that core failure was 
observed prior to skin failure and it was assumed that the skin failure was in fact 
caused by a breakdown in the sandwich panel construction. The core was replaced 
with a higher density variety, with higher shear strength and moduli. This modification 
has been in service for several years with no reported failures. The modification 
represented only a moderate weight increase of the panel, without recourse to 
changing skin thickness, which would have proved very expensive and resulted in a 
substantial weight penalty. 

As mentioned above, another intake duct, of carbon composite construction, also 
began to suffer from core failure. The panels of this duct had a carbon backing skin 
while the facing skin had a wire mesh bonded to an open weave carbon sheet. The only 
similarity was the use of the same density of honeycomb core (although of different 
cell size and depth). For other reasons this core had been replaced by a heavier variety, 
prior to the discovery of the core failures and the impact of the failures was minimised. 
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Limited data is available on similar failures and only 2 other cases, regarding nacelle 
intake barrels, appear to have been documented [13 & 14], however neither case 
involved sandwich panels. 

A number of theories had been put forward as to the cause of the failures. These 
included neighbouring cells resonating out of phase, cell walls resonating or possibly 
the panel vibrating as a 2 degree of freedom system (the facing and backing skins 
acting as the masses, with the core as the spring) - this phenomenon had originally 
been investigated by Mead [15]. 

4.0 Physical Testing 
A number of tests were carried out with "beam" type high cycle fatigue specimens and 
also small segments of intake barrel. None of these tests were able to reproduce the 
failures observed in service (Figure 1.0) which further served to reinforce the belief 
that the failures were attributed to an acoustic mechanism as opposed to a mechanical 
vibration mechanism, however in an attempt to cover all aspects it was decided to 
carry out a progressive wave tube (PWT) test on an abbreviated panel. 

For simplicity it was decided to test a flat sandwich panel of overall dimensions 
36"x21" (Figure 2.0). The panel was instrumented with 12 strain gauges and 2 
accelerometers. Two pressure transducers were also mounted in the fixture 
surrounding the specimen. 

Testing was carried out by the Consultancy Service at the Institute of Sound and 
Vibration Research (ISVR) at the University of Southampton. 

4.1 PWT Results 
The panel was first subject to a sine sweep from 50 to 1000 Hz in order to identify its 
resonant frequencies. The response of a strain gauge at the centre of the panel has been 
included in Figure 3.0. On completion of the sine sweeps, the linearity tests were 
carried out.. As only 8 channels could be accommodated at one time, it had been 
decided to arrange the parameters into 5 groups, with each group containing 4 strain 
gauges, 2 accelerometers, 1 pressure transducer on the fixture and 1 pressure 
transducer in the PWT (this was required by the facility for the feedback loop). 

The initial tests were carried out with a power spectral density of the applied loading 
constant over the 100 Hz to 500 Hz range, however when using this bandwidth only 
155 dB overall, could be achieved. In an attempt to increase the strain levels it was 
decided to reduce the bandwidth to 200 Hz. The bandwidth (BW) was subsequently 
reduced to 100 Hz and finally 1/3 octave centred on the predominant response 
frequency of the panel. When failure occurred a dramatic change in response was 
observed. The failure mechanism was that of core failure as shown in Figure 4.0. There 
was no indication of facing or backing skin distress. 
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5.0 Comparison With Theoretical Predictions 

5.1 Fundamental Frequency 
From the strain gauge readings the panel was seen to be vibrating with simply 
supported edge conditions. Soovere [7] suggests that "effective" dimensions 
(essentially from the start of the pan down) be used to determine the fundamental 
frequency which is given by; 

t-?>.♦«] 
,2 /     N2 

m\   +(n 
nl/2 

Et 

2(l-u2)M 
(1) 

This equation is applicable to simply supported panels with isotropic facing and 
backing skins, thus for the purpose of applying the above equation, the actual section 
was approximated to a symmetric (isotropic) section. The predicted fundamental 
frequency is given below. It was observed however, that if the panel dimensions are 
taken relative to mid way between the staggered pitch of the fasteners a significant 
improvement was achieved (see "Soovere (2)" in table 1). Alternative frequency 
estimations using an FE model and an ESDU data item [16] are summarised in the 
following table; 

Method Freq.(Hz) % Error 
Measured 228 - 
Soovere 274.3 +20.3 
Soovere 

(2) 
213.3 -6.4 

FE 239.04 +4.8 
ESDU 193 -15.3 

Table 1 - Comparison of calculated frequencies for simply supported sandwich 
panel. 

Note; the percentage error is based on the actual measured response frequency of the 
panel in the PWT. 

Given that the excitation bandwidth extended (at least initially) up to 500 Hz, modes 
up to 500 Hz were obtained from the FE model. In actual fact 2 FE models were used, 
the first was a basic model with 380 elements, however a more detailed model, shown 
in Figure 5.0, (with essentially each element split into 4) was used for the results 
presented in this paper. The predicted modes from the FE model were as follows; 

Mode 
No. 

Frequency 
(Hz) 

Mode No. in x 
direction (m) 

Mode No. in y 
direction (n) 

Figure 
No. 

1 239.04 1 1 6 
2 334.0 2 1 7 
3 430.02 1 2 8 
4 461.37 1 9 

Table 2 - Finite Element Model Predicted Frequencies. 
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5.2 rms Strain 
The predicted strains were calculated using Blevins' normal mode method (NMM) [5], 
with a joint acceptance of unity for the fundamental mode of vibration, using the 
following expression; 

48 Lps(fn) • (2) 

In an attempt to improve the estimated response, the rms strain was calculated for 
each mode within the bandwidth of excitation. The joint accetptance for each mode 
was calculated using equation 3 and the calculated strains for each mode were then 
factored by the relevant joint acceltance term. The overall strain was then calculated 
for all the relevant modes. A comparison with ESDU [16] has also been included, 
however the ESDU method does not provide an indication of shear stress in the core. 

Soovere presents a simple expression for the joint acceptance function for a simply 
supported panel excited by an (acoustic) progressive wave, for the case where n is 
odd; 

.2 8 (1 -Cos(m7t)Cos(cora/ c) . . 
(l-(cora/m7tc)2) um n 

Note, when n is even the joint acceptance is zero. 

Given that the bandwidth varied for the applied loading, the overall SPLs were 
expressed as spectrum levels for the purpose of comparison in the linearity results, the 
results (both measured and predicted) have been summarised in table 3, (SGI results 
have been plotted in Figure 10.0). The results from the ESDU data item [16] have 
been included in table 4 for comparison. 

Note - due to recorder channel limitations SGI & SG2 were not connected at the time 
of failure and no results were available at the highest sound pressure levels. 

OASPL 
(dB) 

Spectrum 
Level SPL 

(dB) 

Measured 
Strains(ne) 

SGI        SG2 

Calculated 

SGI        SG2 

Calculated 
(Multi Mode) 
SGI (us) SG2 

130 107 7 7 8.7 9.2 2.5 2.6 
140 117 20 19 27.5 29.1 8.0 8.1 
150 127 55 60 87.0 92.0 25.4 25.8 
155 132 100 100 154.7 163.7 45.1 45.8 
157 134 130 130 194.8 206.0 56.8 57.6 
163 140 - - 388.7 411.1 202.5 162.7 
164 141 - - 436.1 461.2 312.0 250.7 

Table 3 - Comparison of Measured & Predicted rms Strains 
for the Panel Centre, Facing & Backing Skin Gauges. 
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OASPL 
(dB) 

Spectrum 
Level SPL 

(dB) 

Measured 
Strains ((is) 

SGI        SG2 

ESDU Strains 

(HS) 
SGI        SG2 

130 107 7 7 10.1 29 
140 117 20 19 31.9 91.7 
150 127 55 60 101 290 
155 132 100 100 179.5 515.7 
157 134 130 130 253.6 728.5 
163 140 - - 637 1830 
164 141 - - 1010 2900 

Table 4 - Comparison of Measured & ESDU Predictions of the 
rms Strains for the Panel Centre, Facing & Backing Skin Gauges. 

There is a considerable difference in the calculated response from using a joint 
acceptance of unity for the fundamental mode and that when estimating the joint 
acceptance for each mode and calculating the overall response for several modes, 
however it was observed that if the average value from both methods is used the 
response compares favourably with that measured (-at least for the cases under 
consideration). The average value has been included on the linearity plot for SGI, 
shown in Figure 10.0).In general, the level of agreement between theory and practice 
was considered adequate and it was decided to apply the theory to estimating the shear 
stresses in the core (Table 5); 

OASPL 
(dB) 

Spectrum 
Level SPL 

(dB) 

Core Shear 
Stress (j=l) 

(rms psi) 

Core Shear 
Stress 

(Multi Mode) 
(rms psi) 

Average 
Core Shear 

Stress 
(rms psi) 

Peak Core 
Shear 
Stress 
(psi) 

130 | 107 0.3 0.09 0.19 0.58 
140 117 0.94 0.28 0.61 1.84 
150 127 2.99 0.88 1.93 5.8 
155 132 5.31 1.57 3.44 10.32 
157 134 6.69 1.97 4.33 13.0 
163 140 13.35 5.57 9.46 28.38 
164 141 14.98 8.59 11.78 35.34 

Table 5 - Predicted Core Shear Stress. 

6.0 Discussion & Recommendations 
The ESDU method proved very conservative and will thus give a degree of 
confidence when used in the early stages of the design process. Blevins Normal Mode 
Method was observed to give reasonable accuracy in predicting the highest strains in 
the panel and would merit use when designs have been fixed to some degree; at which 
stage FE models become available. 

For panels whose predominant response is in the fundamental mode it is accepted that 
the contribution from shear to overall deformation is very small. The main concern 
when designing a honeycomb sandwich panel which is subject to "severe" acoustic 
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loads has tended to focus on skin strains and to some degree the properties of the core 
material have been ignored. The fact that low skin strains are observed has the effect of 
giving an impression that there is no cause for concern, however when the properties 
of the core material are low or unknown, some caution is required. There is 
unfortunately no available S-N data for the type of honeycomb used in the construction 
of the panel, however the allowable ultimate strength for the core material is of the 
order of 26 psi, so clearly the 163 dB level was sufficient to cause a static failure while 
the lower SPLs can be assumed to the have contributed to initiating fatigue damage. 
On cutting up the test panel, a large disbond was observed however it did not extend 
to the panel edge where cracking had occurred (the mid point of the long edge being 
the location of maximum shear for a simply supported panel) and it was the opinion of 
the materials department that the failure had not initiated in the disbond. 

The SPLs used in the test were not excessively high and were comparable to service 
environments (an example of which is given in Table 6). It should be noted that while 
the levels in Table 5 are 1/3 octave bandwidths, the actual spectrum is not generally 
flat within each band for engine intakes, but is rather made up of tones (Figure 11). 
These tones or spectrum levels can thus essentially be the band level and thus some 
caution should be exercised when converting intake band levels to spectrum levels 
using the traditional approach [17]. 

1/3 Octave Centre 
Frequency (Hz) 

Sound Pressure 
Level (dB) 

100 141 
125 133 
160 140 
200 142 
250 140 
315 139 

Table 6 - Typical Acoustic Service Environment. 

Note; Overall levels may reach 160 - 170 dB, however they tend to be influenced by 
SPLs at blade passing frequencies, which are much higher than panel fundamental 
frequencies. 

7.0 Conclusion 
It has been shown that although moderate levels of acoustic excitation produce quite 
low overall rms strains in the skins of honeycomb sandwich panels, it is still possible, 
when using very light weight cores, to generate core shear stresses of a similar order of 
magnitude to the allowable ultimate strength of the material. 
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Figure 3.0 - Response of Strain Gauge SGI During Sine Sweep. 

Figure 4.0 - Section Through Failure Region in PWT Panel. 
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Figure 5.0 - PWT Panel Finite Element Model. 

Figure 6.0 - FE Mode 1 (m=l, n=l)      Figure 7.0 - FE Mode 2 (m=2, n=l) 

Figure 8.0 - FE Mode 1 (m=l, n=2)      Figure 9.0 - FE Mode 2 (m=3, n=l) 
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Summary 

Advanced Aircraft are expected to fly in increasingly severe and varied acoustic environments. 
Improvements are needed in the methods used to design aircraft against acoustic fatigue. Since fatigue 
life depends strongly on the magnitude of the cyclic stress and the mean stress, it is important to be able 
to the predict the dynamic stress response of an aircraft to random acoustic loading as accurately as 
possible. 

The established method of determining fatigue life relies on linear vibration theory and assumes that the 
acoustic pressure is fully spatially correlated across the whole structure. The technique becomes 
increasingly unsatisfactory when geometric non-linearities start to occur at high noise levels and/or 
when the structure is significantly curved. Also the excitation is generally not in phase across the whole 
structure because of complex aerodynamic effects. 

Recent advances in finite element modelling, combined with the general availability of extremely fast 
supercomputers, have made it practical to carry out non-linear random vibration response predictions 
using time stepping finite element (FE) codes. 

Using the time domain Monte Carlo (TDMC) technique it is possible to model multi-modal vibrations 
of stiffened aircraft panels without making the simplifying assumptions concerning the linearity of the 
response and the characteristics of the noise excitation. 

The technique has been developed initially using a simple flat plate model. This paper presents some of 
the results obtained during the course of this work. Also described are the results of a study of the 
"snap-through" behaviour of the flat plate, using time domain finite element analysis. For simplicity, it 
was assumed that the dynamic loading was fully in phase across the plate. 

Introduction 

Aircraft structures basically consist of thin, generally curved, plates attached to a supporting framework. 
During flight these stiffened panels are subjected to a combination of static and dynamic aerodynamic 
loads. On some aircraft there may be additional quasi-static thermal loads due to the impingement of jet 
effluxes in some areas. Parts of advanced short take of and landing (ASTOVL) aircraft may be required 
to withstand noise levels up to 175dB and temperatures up to 200deg C. Under these conditions the 
established methods of dynamic stress analysis for acoustic fatigue design are inappropriate and cannot 
be employed. 

British Aerospace (BAe), Sowerby Research Centre (SRC) and Military Aircraft (MA) have been 
developing a method to predict the stress/strain response of aircraft structures in these extreme loading 
situations. The primary .consideration has been the requirement to create an acoustic fatigue design tool 
for dealing with combined static and dynamic loads, including thermally generated "quasi-static" loads. 
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The resonant response of thin aircraft structures to aeroacoustic loading is generally in a frequency 
range which implies that, if defects form, they will quickly grow. Hence to be conservative, it is 
generally assumed that a component has reached its life when it is possible to find quite small defects 
by non-destructive evaluation techniques. Several different materials and construction methods are used 
in modern aircraft and so there are a number of possible failure criteria. In the case of metals, it is the 
presence of cracks larger than a certain size. For composites it can be the occurrence of either cracking 
or delamination. Degradation due to the presence of microcracks may be monitored by measuring the 
level of stiffness reduction which has taken place. 

This philosophy simplifies the type of stress analysis needed, because it is not necessary to model 
structures with defects present. Materials can be assumed to have simple elastic properties which 
remain unchanged throughout their lives. In consequence, it is necessary to know the fatigue behaviour 
in terms of a direct relationship between number of cycles to failure and the magnitude of the "nominal" 
cyclic stress, or strain, at a reference location. 

If considered important and capable of satisfactory treatment, the relationship can be modified to take 
into account material property changes due to the development of very small defects at points of stress 
concentration. For example, metal plasticity in the region of a small crack, could be included in an 
analysis of the stress distribution around a fastener hole. It is well known that plasticity reduces the 
peaks of stress which are predicted at defects by analysis which assumes perfectly elastic material 
behaviour. 

The technique developed at BAe for modelling high acoustic loads combined with possible thermal 
buckling uses the time domain Monte Carlo (TDMC) technique together with finite element analysis by 
proprietary FE codes. Response characteristics are predicted directly in the time domain using 
simulated random acoustic loadings. These may then be used in fatigue life estimations which employ 
cycle counting methods such as Rainflow counting. It is now practical to predict the vibrational 
response of stiffened aircraft panels without the necessity to assume a linear response, and without 
simplifying the spatial and temporal representation of the noise excitation. 

Since the technique uses proprietary finite element codes, quite large and complex models of aircraft 
structure can be analysed in a single run. Standard pre- and post-processor techniques are available to 
speed up generation of the finite element mesh and to display the stress/strain results. 

The initial development work was carried out by modelling the random vibration of a flat plate. For 
fully in-phase random loading at low noise levels the predicted response is predominantly single mode 
and at the frequency calculated by linear theory. However, as the decibel level is increased, the 
frequency of the fundamental rises due to geometrically non-linear stiffening. At very high dB levels the 
predicted response becomes multi-modal; the resonance peaks move to higher and higher frequencies 
and broaden. 

The effect of static loading on the response has been studied as part of these investigations to assist in 
the validation of the methodology being developed. 

Thermal Effects 

In some flight conditions it is possible for a panel to be buckled due to constrained thermal expansion 
and also be subjected to very noise levels at the same time. An example is when a ASTOVL aircraft 
hovers close to the ground for an extended period, panels which are initially curved, or thermally 
buckled panels may possibly be snapped through from one side to the other by a large increase in 
dynamic pressure. 

"Snap-through" can be potentially damaging to the structure of an aircraft if it occurs persistently, 
because the process is associated with a large change in the cyclic bending stress present at the edge of 
a stiffened panel. High performance aircraft must therefore be designed so that snap-through never 
occurs in practice. 

1008 



The dynamic response of curved panels or buckled flat plates is difficult to predict theoretically because 
of non-linear effects. The established acoustic fatigue design techniques, which are based on linear 
vibration theory, are only able to provide approximate predictions of the loading regimes in which 
particular panels might be expected to undergo snap-through. 

The TDMC method can be used to model non-linear multi-modal vibrations of stiffened aircraft panels 
which are also subject to quasi-static stress. In particular calculations may be carried out in the post- 
buckling regime. 

With this technique simulated random dynamic pressure loading, with measured or otherwise known 
spectral characteristics is applied to a curved, or post-buckled panel and the time domain response 
calculated. The magnitude of the dynamic loading may then be increased until persistent snap-through 
is observed in the predicted response. This gives the designer the ability to design out the potential 
problem by systematically altering the most important parameters in order to identify the critical 
regime. 

Fatigue Life Estimation 

Although acoustic fatigue is a complex phenomenon, it has been established that the life of a component 
mainly depends on its stress/strain history. The most important factors in this regard are the magnitude 
and frequency of the cyclic strain and the mean level of stress at the likely failure points. On this basis 
fatigue life can be estimated by carrying out the three stage operation illustrated in Figure 1. 

Stage 1: Determine Loads 

A determination of static design loads is relatively straightforward compared to a calculation of the full 
temporal and spatial dependence of the aeroacoustic pressure on a military jet in flight. This is an 
enormous task in computational fluid dynamics (CFD). Designers have to rely on experimental data 
which can come from measurements on existing aircraft or from scale model tests of jets, for example. 
Existing databases can be extrapolated if the circumstances are similar. Experimental noise data is 
usually in the form of power spectral density curves as opposed to time series fluctuating pressures, but 
either can be used, depending on the circumstances. 

Stage 2: Calculate Stresses 

The technique chosen to obtain the stresses clearly depends on how much knowledge there is about the 
expected loads. In the early stages of design analytic techniques would be used to establish approximate 
sizes and stress levels. However, later on when the design is nearly completion, finite element (FE) 
stress analysis can be used to model the effect of random acoustic loading on the parts of the skin which 
are likely to be severely affected. These calculations would, of course, be done including the effect of 
attached substructure. 

The established method of designing against acoustic fatigue uses a frequency domain technique which 
relies on the validity of linear vibration theory. The method forms the basis of a number of methodology 
documents published by the Engineering Sciences Data Unit (ESDU). Whenever there are large out-of- 
plane deflections the frequency domain method cannot be used because of the "geometric non- 
linearity". From a strictly theoretical point of view such analyses have to be carried out in the time 
domain, although approximate methods are applied with some success. 

The established technique produces inaccurate results for curved panels, buckled panels and for panels 
under high amplitude vibration. Geometric non-linearity usually stiffens a structure in bending so there 
is a tendency to overestimate the stress levels using the frequency domain technique. This conservatism 
is clearly useful from the point of view of safety, but it can lead to possible "over-design". 
Unfortunately this is not always the case when there are compressive static stresses present. The 
established method also fails if the phase of the noise varies significantly over the surface of the 
structure, which is the case in a number of aeroacoustic problems. The techniques under development 
are designed to overcome these problems. 
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Stage 3: Estimate Fatigue Life 

In cases of random acoustic loading it is customary to assume that damage accumulates according to the 
linear Miner's rule. Fatigue life is determined from experimental data in the form of stress (or strain 
amplitude), S, versus number of cycles to failure, N. If a number of cycles, n, of stress/strain, S, occur at 
a level of stress/strain where N(S) cycles would cause failure then the fractional damage done by the 
n(S) cycles is n(S)/N(S). 

Various methods have been developed for obtaining n(S) from the stress (strain) response. If the 
excitation is stationary, ergodic and the response is narrow band random then the function n(S) can be 
shown to be in the form of a Rayleigh distribution and the damage sum can be evaluated from plots of 
root mean square stress (or strain) against number of cycles to failure. If the statistics of the response 
are not Gaussian then it is necessary to count the numbers of stress cycles from the time domain 
response and use constant amplitude S/N curves. It is now widely accepted that the best way of 
counting the cycles is to use the Rainflow method, [1]. 

The Loading Regime 

The loads on an aircraft may be conveniently divided into static and dynamic. 

Loads which vary only slowly are: 

a) Steady Aerodynamic Pressure Loading, 
b) In-Plane Loads transferred from "external structure", and 
c) Thermal Loads due to Constrained Expansions. 

The rapidly varying loads are, of course, the aeroacoustic pressure fluctuations which originate from 
any form of unstable gas or air flow. 

This division is central to the methodology which has been developed because it enables the modelling 
to be carried out in two distinct phases. The, so called, static loads do vary, of course, but the idea is to 
separate effects which occur on a time scale of seconds from the more rapidly varying acoustic 
phenomena. The aim is to split the loads so that the quasi-static effects can be calculated in an initial 
static analysis which does not depend on a particular dynamic loading regime. Any aerodynamic 
pressure may be divided into a steady part and a fluctuating part. The natural place to make the cut-off 
is at 1Hz which means that epoch times for TDMC simulations are then of the order of a second. The 
epoch time must not be too short because of statistical errors, and it cannot be too long because this 
would invalidate the assumption of constant quasi-static loads. In practice, there is another constraint on 
the epoch time. The number of finite elements in the model coupled with the premium on cpu time 
places an obvious limit on the epoch time. 

Comparison of the Time and Frequency Domain Methods 

A flow chart comparing the two methods is given as Figure 2. The main difference between the two 
techniques lies in the representation of the dynamic loads. The FD method uses rms loadings and 
spectral characteristics, whereas the TD method uses the full time series loadings. Gaussian statistics 
are, de facto, assumed by the FD method, but this is not necessarily the case with the TD technique. 

Application of the frequency domain method requires that the response is dominated either by a single 
mode or a small number of modes. To determine whether or not this is the case in practice, a normal 
modes analysis must be followed by a determination of the amount of coupling between the excitation 
and each mode. This can be determined quite accurately even if there is a certain amount of potential 
non-linearity by computing the joint acceptances for each mode, which are overlap integrals of the 
mode shape functions with the spatial characteristics of the excitation. Normally these quantities will be 
dominated by a few of the low order modes. If there is significant coupling into more than one mode 
then it will be necessary to use the TD method instead. 

With the time domain technique it is possible to represent the dynamic loads in a way which models the 
convection of the noise field across the structure. Very complicated loadings can be applied to large 
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models but in consequence it can be difficult to validate the results obtained, because they cannot be 
checked against anything other than test data which is itself subject to confidence levels. In addition it 
must be remembered that the TDMC results themselves are subject to statistical variability. Finally it 
should be noted that TDMC data must be used in conjunction with constant amplitude endurance data. 
Rms fatigue data can only be used with frequency domain results. 

Time Domain Finite Element Modelling 

Until recently, the majority of finite element analyses were applied to static loading conditions or "low 
frequency normal modes analysis". The method involves the use of an implicit code to invert in one 
operation, a single stiffness matrix, which can be very large. The general availability of extremely fast 
super-computers has now made it possible to carry out large scale non-linear dynamic finite element 
modelling using explicit FE codes. These codes use very similar types of element formulation to the 
implicit ones, e.g. shells, solids and bars, but the solution is advanced in time using a central difference 
scheme. 

One potentially very useful capability of time domain modelling is the application of acoustic pressure 
loadings which vary both in the time and spatial domains. If the spectral characteristics are known, 
either from test or from other modelling it is possible to generate samples of random acoustic noise and 
apply these directly to the finite element model as a series of "load curves". 

The technique for determining time series noise was developed by Rice [2] and Shinozuka [3]. They 
showed that homogeneous Gaussian random noise can be generated from the power spectral density as 
a sum of cosine functions with different frequencies and random phase. Noise can be temporally and 
spatially correlated noise by deriving phase differences from cross spectral functions if they are known. 

The TDMC method can be quite costly in terms of central processor unit (cpu) time because the 
solution must be recalculated at each point in time. To reduce execution times, the explicit codes 
employ reduced numbers of volume integration points in the finite element formulations. However in 
this work cpu times are extended because long epoch times are required to ensure adequate statistics. It 
can take more than 24hrs to obtain a solution over a half second epoch if there are a few thousand 
elements in the model. 

Hence there is always a practical limit to the size of a particular time domain finite element analysis, 
(TDFEA). If the loading and geometry are not too complicated, the frequency domain method of 
analysis can be tried initially to gain more understanding of the nature of the response in an 
approximate way. In some cases the vibrational response regime must be considered carefully to decide 
whether TDFEA is really necessary. These may be situations where the non-linear effects are only 
moderate. 

It would be ideal if the full dynamic response of an aircraft could be determined with a fine mesh model 
in one huge operation, but experience has shown that this requires too many elements. It is possible to 
construct full models with reduced stiffness using superelements, enabling flutter and buffet to be 
studied, because these are essentially low frequency phenomena. However, in time domain analysis it 
has been found that models containing a large amount of detail, such as fasteners and individual 
composite material plys, require a great deal of cpu time. To progress we must devise some strategies to 
overcome this situation. Since a full TDFEA can only handle a part of the aircraft structure, it is very 
important that loads external to the area under consideration are properly taken into account. This is 
crucial to the success of this type of modelling as it is to all finite element modelling. 

The most important parameter in any time series analysis is the time step. This is determined by the 
velocity of sound waves in the structural material, and is generally of the order of a/v where a is the 
shortest element dimension and v is the velocity of longitudinal sound. A small time step is therefore 
required when the elements are small and the velocity of sound is large. For an aluminium model with 
1 Omm square elements the time step is about 1.6ns. Hence a TDMC run with a half second epoch time 
needs about a half a million steps. A simple 5000 shell element calculation on a Cray C94 would take 
approximately 10 hours. 
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Dynamic FE models of aircraft structure can be constructed in many ways, using shell elements, beam 
elements and/or solid elements. Special elements exist for damping and for sliding interfaces. Joints can 
be modelled with sliding interfaces, or with short beams, or just with tied nodes. Fasteners can be 
modelled with small solid elements, with short beams or with tied nodes, also. Unfortunately, however 
short beams and small solid elements cause a dramatic lowering of the time step. For example, if the 
smallest fastener dimension is, say 3mm, the time step will have to be reduced to about 0.5(is if solid 
elements are used in the model. The effect on cpu time is such as to make the calculations impractical. 
Sliding interfaces are an efficient way to model skin/substructure contact in explicit analyses, but it is 
important to choose the algorithm carefully because some techniques can consume large amounts of cpu 
time. 

The best practical way of representing stiffened aircraft panels for TDMC analyses is considered to be 
with four noded shell elements simply tied together at their edges. A number of efficient shell 
formulations are avail-able and meshes can be rapidly produced from the design geometry. Of course, 
such models cannot be expected to produce highly accurate stress data in the region of small features 
but this aspect has to be sacrificed in the interests of achieving statistically significant amounts of time 
series data. To improve the accuracy of stress predictions in the neighbourhood of stiffeners etc., it will 
be necessary to couple TDMC analyses with fine mesh static analyses. 

The Generation of Time Series Data 

A number of factors must be borne in mind when generating time series data for TDMC calculations. It 
is important to consider carefully the frequency range and number of points which define the load 
spectrum in conjunction with the epoch time and number of points on the time series. 

The Nyquist Criterion [4] states that the time increment must be less than or equal to one over twice the 
upper frequency on the power spectral density curve. For the sake of argument, take the upper 
frequency to be 1kHz. This means that the time increment must be less than 500us. A more 
conservative time increment is based on the requirement to represent the dynamic response of the 
structure as accurately as possible over a full cycle. Assuming a resonant frequency of 500Hz, which is 
perhaps near the limit in practice, and 10 points per cycle which is more than sufficient, the lower limit 
on the time step works out at about 200p.s. Taking all these factors into consideration, the number of 
points on the spectrum curve should be of the order of 1000 and there should be between 1000 and 
5000 on the time series. Longer epoch times can be used but for reasons of practicality and statistics it 
is better to run more than one short epoch simulation rather than one long simulation. 

Explicit FE modelling frequently requires that the time step be smaller than 200|is. In the example 
given above the time step required by the explicit code was 1.6fxs. Under these circumstances the 
random noise could be defined with a smaller time increment, but going to this level of effort has been 
found to produce no measurable change to the calculated response. 

Static Initialisation 

There are two possible ways of dealing with the effect of static loads in TDMC modelling. Firstly the 
complete analysis can be carried out using the explicit code. To do this it is necessary to apply only the 
static loads to the model and run the code until equilibrium is reached. By introducing a high level of 
artificial damping the stresses created can be relaxed in a relatively short period of time. The time 
required depends on the lowest resonant frequency of the structure and the size of the smallest element 
in the model. This facility is termed "dynamic relaxation". 

The alternative is to make use of another facility in the explicit code called "static initialisation". The 
deformed shape and stress state of the structure with just the static loads applied are first obtained very 
quickly using an implicit code. The solution for the stressed state is then initialised into the explicit 
code prior to the application of the dynamic loads. Dynamic relaxation may be used to smooth out any 
differences between the models. 
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Damping Representation 

Vibrating aircraft structures are damped by several mechanisms, for example friction at joints, re- 
radiation of acoustic waves, and energy loss in viscoelastic materials It is difficult to generalise about 
the relative importance of each damping process in practice. Also reliable quantitative data is not 
available in sufficient detail to justify the inclusion of complex models of damping into the TDMC 
analyses. Test results on vibrating stiffened aluminium panels tend to show that the damping is best 
approximated by a combination of mass and stiffness proportional coefficients. There is a range of 
frequencies in which the damping ratio can be considered to be roughly constant. Until more detailed 
experimental data are available the most expedient approach is to assume a nominal value for the global 
damping ratio which does not change with frequency. Over the years it has become standard practice to 
assume a damping ratio of about 2% for fastened aluminium structures. 

Equivalent Linearisation 

There are some loading regimes in which the non-linear response to high levels of random acoustic 
loading can be approximately found using a linearisation technique combined with a frequency domain 
analysis. The basic idea is to replace the non-linear stiffness term in the general vibration equation by a 
linear term such that the difference between the rms response of the two equations is minimised with 
respect to a shifted fundamental resonance frequency. If an approximate equation for the non-linear 
stiffness is known then it is possible to derive an expression for the shifted "non-linear" resonance 
frequency. The rms response to random acoustic loading may then be found by combining the 
Miles/Clarkson equation with some form of static geometrically non-linear analysis. References to this 
technique are Blevins [5], Mei [6] and Roberts & Spanos [7]. Where the geometry is complex the most 
appropriate form of analysis is clearly finite element analysis. 

Implementation and Validation Studies 

The stress analysis work described in this paper has been undertaken using MSC-NASTRAN and 
LLNL-DYNA. 

NASTRAN is a well known implicit finite element code which is capable of handling very large 
numbers of elements. It has been developed very much with aerospace structural analysis in mind. It is 
basically a linear analysis code, although there are a large number of adaptations to deal with non-linear 
problems. It can also function as a dynamic code, but is much slower than DYNA in this mode because 
it basically needs to solve the complete problem at each time step. The non-linear features which are 
most relevant to the type of stress analysis being discussed here are those concerned with geometric 
non-linearity. Geometric non-linearity is treated by dividing the load into a series of steps, obtaining the 
solution incrementally. In this work, the code has been used for linear and non-linear static analyses and 
for normal modes analyses. 

DYNA is an explicit finite element code originally developed for the calculation of the non-linear 
transient response of three dimensional structures. The code has shell, beam and solid element models 
and there are a large number of non-linear and/or anisotropic material models available. DYNA was 
developed primarily for the modelling of impact and there is no limit, as far as the code is concerned, 
on the size of finite element model which can be analysed. Many of its advanced features relate to 
impact modelling and are not required for this work. One useful feature, however is the laminated 
composite material model based on the equivalent single layer approximation. This code has been used 
for the TDMC calculations presented in this paper. 

Finite element models for the stress analyses were produced using MSC-PATRAN. It has a wide range 
of geometry and mesh generation tools and now has built in interfaces for both NASTRAN and DYNA. 
The element definitions are compatible with both codes and it is a simple matter to toggle between the 
two codes by changing the analysis preference. Not all the features of DYNA are supported and some 
of the parameters must be set by editing the DYNA bulk data produced by PATRAN. 

NASTRAN results were post-processed using PATRAN. DYNA results were post processed using 
TAURUS, which is faster and easier to use than PATRAN for this task: Some special in-house codes 
have been written to generate random acoustic noise from power spectral densities, as described above, 
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and to post process time series output from TAURUS. One of the codes incorporates a fast Fourier 
transform (FFT) routine to determine spectral responses from the DYNA time series predictions. These 
codes are covered under the generic title "NEW-DYNAMIC". 

TDMC Calculations on a Simple Flat Plate 

Calculations have been performed on a very simple model to implement the TDMC technique and 
develop the in-house software referred to above. A PATRAN database was constructed representing a 
simple flat plate, 350mm x 280mm x 1.2mm thick as an array of shell elements 34x28. For simplicity 
the boundary conditions were taken either as simply supported or clamped. There are a number of 
alternative shell element formulations available in DYNA, [8]. The Hughes-Liu shell was used initially 
because of its good reputation for accuracy, but later a switch was made to a similar, but slightly faster 
shell element, called the YASE. It was found that equally satisfactory results could be obtained more 
quickly using this element. 

Analyses without Static Loads 

A series of DYNA calculations were carried out with a fully correlated random acoustic pressure load 
with a flat noise spectrum between 0Hz and 1024Hz. Investigations were carried out into the effect of 
varying the sound pressure level, the epoch time, the mesh resolution, the damping coefficient and the 
stochastic function. 

Figure 3 shows the displacement response of the central node of the model for a sound pressure level of 
115dB (about 12Pa rms), simply supported edges and mass proportional damping set so that the 
damping ratio was equal to 2% at the fundamental (1,1) resonance of the plate. The corresponding 
spectral response is shown in Figure 4. shows a sharp resonance peak at a frequency of 61.0Hz which is 
very close to the theoretical frequency of the (1,1) mode for the simply supported plate. The in-phase 
loading means that only the modes with odd numbered indices are excited. The peaks corresponding to 
the (3,1) and (1,3) modes are, however, not visible on the plot because they are too small. It may be 
concluded from these results that the behaviour of the plate at these pressure level is well within the 
linear regime. 

An investigation into the behaviour of the rms displacement response as a function of SPL was carried 
out by increasing the loading incrementally from 75dB (0.12Pa rms) to 175dB (12kPa rms). The results 
are shown in Figure 5. Also shown are theoretical predictions obtained using the Miles/Clarkson 
formula with NASTRAN linear and non-linear analyses as explained above, see below for discussion. 

The statistical variation of the results was investigated by repeating a half second epoch TDMC run ten 
times with different samples of flat spectrum noise. It was found that the standard error of the rms 
response was about 16%. A second set often repeats were carried out with the epoch increased to 2.5s. 
In this case the standard error reduced to roughly 8%. From the theory of stochastic processes, it can be 
shown that the standard error is inversely proportional to the square root of the epoch time. On this 
basis therefore the ratio between the standard errors should be equal to the square root of five, or 2.23. 
From the analyses this ratio is about 2. Further runs established that these results are not affected by the 
vibration amplitude, even when the response becomes non-linear. 

Cautiously therefore, it can be concluded that the variance of the TDMC results is unaffected by non- 
linearity of the response. This is an important finding because it builds confidence in the technique. In 
many practical situations it may be necessary to rely on just one simulation and an appropriate factor of 
safety. It can be quite time consuming to carry out a large number of repeat TDMC simulations. The 
level of variance would be first established by repeating one load case a number of times, before 
confidently applying it to the results of other load cases. 

Comparisons with Linearised Theory 
The linear theory of plate bending, [9], leads to relationships between the central deflection, w, of a 
rectangular plate and a uniform static pressure load, psm which take the following form. 

pSB1 a b = kcff w (1) 
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where a and b are the length and breadth of the plate, and k.ff is an effective stiffness parameter which is 
a function of the modulus of rigidity of the plate and the edge boundary conditions. For the plate 
studied kcff is about 30N/mm for the case of simply supported edges and 100N/mm for clamped edges. 
The above equation only holds, however, at very low amplitudes, as can be seen from Figure 6. This 
compares geometrically non-linear NASTRAN predictions with the linear theory. Curves are shown for 
both simply supported and clamped boundary conditions. The finite element results show the 
characteristic hardening spring type of non-linearity. 

At higher amplitudes the dynamic behaviour may be approximately predicted using "equivalent 
linearisation" theory, which assumes that the response remains predominantly single mode, but with a 
resonant frequency which rises as the stiffness of the structure increases. When the deflection is large 
the static force-deflection relationship can be written as the sum of a linear stiffness term and a cubic 
non-linear term: 

pM1ab = kw(l+uw2) (2) 

where psta, a b is the force, k is the linear stiffness. The equation is written with the leading term factored 
out to emphasis the point that u. is a constant which is small compared to the rms deflection. In the limit 
of small w we can expect the jiw2 term in the brackets to be negligible compared to one, which means 
that the k in this equation must be the same as k^f above. 

Equation 2 was fitted to the NASTRAN results shown in Figure 6 to find the best fit values of k and u.. 
Table 1 shows the results compared with the effective stiffness calculated from linear plate bending 
theory. It can be seen that the theoretical stiffness is almost identical to the best fit k from the non-linear 
finite element analysis. 

With reference to the results in Figure 5, it is obvious that the nature of the response is strongly 
dependent on the amplitude of the vibrations. For rms displacements up to about 4% of the plate 
thickness the behaviour was completely linear. For displacements between 4% and 150% of plate 
thickness, the response was essentially single mode dominated but the level could not be predicted by 
the Miles/Clarkson approach. The "equivalently linear" solution does, however, agree with the DYNA 
result up to a displacement of about 1.8mm. The linearisation approach cannot be expected to be 
correct for displacements above about 1.5 times plate thickness. Above this point the response predicted 
by DYNA was multi-modal and strongly non-linear. The equivalently linear predictions departed 
considerably from the DYNA results when the vibration amplitude was very high. 

It was also observed that the frequency response peaks became increasingly noisy for higher pressures, 
representing the increased level of non-linearity in the plate vibrations. The increase in the frequency of 
the fundamental mode with acoustic pressure, as calculated by DYNA, is shown in Figure 7. Predictions 
from equivalent linearisation theory and from the theory of Duffing's equation are also included, see 
Nayfeh & Mook [10]. 

f^fCl+Snw™2)0-5 Equiv. Lin. Pred. (3) 

f„i = f (1 + (3/8) wj Duffing's Eq. Pred. (4) 

The DYNA results lie mostly between the two theoretical curves, agreeing particularly well with the 
results of equivalent linearisation theory up to around 700Pa (151dB rms). The level of agreement 
obtained shows that the frequency response behaviour of the DYNA model is similar the theoretical 
predictions, providing an independent check on the results. As might be expected, at around 700Pa the 
agreement begins to breakdown, since the linearisation theories are not valid for deflections which are 
significantly greater than the plate thickness. It may be concluded, however, that the effect of geometric 
non-linearity at high amplitudes is being computed by DYNA in a reasonably accurate manner. A 
detailed comparison with experimental data is needed to determine the accuracy of the DYNA response 
predictions themselves. 
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Due to the increasingly irregular shape of the frequency response functions derived from the DYNA 
time series predictions at high acoustic loads, it was not possible to calculate very accurate peak widths 
for pressures above approximately 135dB (120Pa rms). Figure 8 shows that the width of the peak 
increased with increasing acoustic pressure, but not in a regular manner. When the damping is mass 
proportional, equivalently linear theory predicts that the width of the peak should remain unchanged as 
the pressure rises. This is because the geometric stiffening effect of rising acoustic pressure exactly 
cancels the effect of a smaller damping ratio at the higher resonant frequency. This graph shows this as 
a horizontal straight line at 2.44Hz. The DYNA result is closer to the type of behaviour observed 
experimentally where the width of the peak generally increases with increasing the sound pressure level. 

Analyses with Combined Loads 

Further work was conducted with static loads superimposed on different levels of random acoustic 
loading. These calculations were done using the coupled NASTRAN-DYNA approach outlined earlier. 
That is to say the deformed geometry was obtained by applying the static loads to a NASTRAN model, 
with the results being initialised into DYNA and dynamically relaxed before the dynamic loading was 
applied. Calculations were performed with compressive in-plane loading, static pressure loading and 
thermal loading. With the exception of the thermal runs, the boundary conditions used in these runs 
were identical to clamped, except that symmetrical in-plane movement of the edges was permitted. We 
have called these conditions "semi-clamped". It has been found that the fundamental resonant frequency 
of the plate without static loading is only reduced by a very small amount if the appropriate in-plane 
degrees of freedom are released, see Figure 9. These boundary conditions are actually closer to those 
which exist in reality when a panel in built into a larger structure. 

Figures 10-14 show results of some of the analyses which have been carried out. They give time series 
data along with spectra responses calculated by the in-house post-processing code. Numerical data 
derived from these results are summarised in Tables 3-5. 

A series of analyses have been carried out with compressive in-plane loads equal to one third of the 
theoretical buckling loads in compression. For the plate used, the forces per unit side length were - 
3.46N/mm in the x-direction and -5.46N/mm in the y-direction. The results of one analysis are shown in 
Figure 10. It has been found that the response remains dominated by the fundamental (1,1) mode as 
long as the plate is unbuckled and the SPL is low. The softening effect of the compressive loads on the 
frequency agreed quite well with Rayleigh-Ritz predictions, [5], up to an SPL of ?dB. At higher sound 
pressure levels, the DYNA results reflected stiffness changes which were greater than those predicted 
by the theory. The-same was found in the case of tensile loading. It is believed that these differences are 
due to approximations built into both the Rayleigh-Ritz theory and the DYNA code. 

Figure 11 shows the results of a calculation with a superimposed normal pressure. The magnitude of the 
pressure, 700Pa, was chosen so as to provide an example of "post-buckled" analysis. This size of 
pressure causes the plate to bow out in the centre by about 0.6mm. It is well known that in the post- 
buckling regime the random response of a plate depends upon the magnitudes of both the static and 
dynamic loads. In this case the static loading was large compared to the applied dynamic loads and 
"snap-through" did not occur. The plate simply vibrated about its statically deflected position in the 
fundamental mode with a slightly increased frequency. 

To provide a test of the DYNA thermal stressing capability, and to carry out an investigation into 
"snap-through", several analyses were carried out with a uniform temperature rise of lOdeg C applied to 
the plate with clamped edges. This is quite sufficient to cause buckling because the resulting 
compressive biaxial stress, c, is well above the buckling level, ab. If f is the frequency of the 
fundamental and J is a constant equal to 1.248 because of the clamped boundary condition, the two 
stresses can be determined approximately from 

cr = EaT/(l-v2) (5) 

&     o"b = 4pa2f2/J (6) 
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where E, a, v and p are Young's modulus, coefficient of thermal expansion, Poisson's ratio, and density 
respectively. Using these formulae we find a = 24MPa and ab = 14MPa. 

Analyses were carried out with several different levels of dynamic load. The results of three of the 
calculations are shown in Figures 12,13 and 14. It was found that the threshold for snap-through 
occurred at an acoustic load of about lkPa, see Table 4. Below this level the mean deflection, w, is a 
function of the static load alone, equal to about 2.8mm (the negative sign indicates that the plate has 
bowed in direction of negative z). At higher SPLs the mean deflection reduces because the plate snaps 
backwards and forwards between positive and negative z. The calculated response spectra for these 
higher level runs, show an additional peak at a very low frequency, ie less than 10Hz. This is an artifact 
caused by the snap-through since the fundamental resonance of the clamped plate is at 113Hz. 

Figures 10-14 all show probability density functions derived from the time series data. The fluctuations 
on these plots are caused by the smallness of the epoch time. In all cases, except for the thermal 
calculations with the two largest acoustic loads, it can be seen that the functions are basically Gaussian 
in shape. It may therefore be concluded that it is reasonable to assume that the response of a plate in the 
post-buckled region is Gaussian unless there is a large amount of snap-through. 

Discussion 

The work described is the starting point for investigations and validations using more complex FE 
models. Further work has been carried out using models including curvature, sub-structure and detailed 
features. It is difficult to validate the predictions obtained from such models by comparing with test data 
because the results themselves are open to interpretation. It has been found that the predicted stress 
levels are closer to the test results when the chosen location is away from any small features. The lack 
of good agreement in the neighbourhood of the features can be explained by the relatively coarse mesh 
used in the dynamic models. The overall level agreement was much better than that between predictions 
based on linear or equivalently linear theory and test. On the basis of experience, the latter tend to over- 
predict by upwards of factors of two and three. From this work it has been found that the DYNA 
predictions tend to be greater than test by amounts which vary but are generally much less. The average 
over-prediction was about 40% with a significant change as a function of location. 

TDMC runs can take a significant amount of computer time to carry out and it is believed that to make 
further improvements the technique should be combined with detailed stressing using static finite 
element analysis. Inaccurate results can be obtained if the boundaries of the part of the structure under 
analysis are not properly restrained. In the case of models of aircraft panels this may significantly affect 
the resonant frequencies which in turn affects the level of calculated dynamic stress. In-plane loads on a 
panel, perhaps due to thermal stressing, can alter the fundamental by as much as 100-200Hz. Looked at 
from a theoretical point of view, the only way to solve this problem is to construct a second, coarse 
model of the component, along with some of its surrounding structure. An initial calculation can then be 
carried out with this model in order to obtain the loads and boundary conditions for subsequent 
application to the original model. 

The dynamic phenomenon of "snap-through" cannot be modelled using existing methods and so the 
TDMC / finite element technique offers the engineer a way to determine where the likely regions of 
unstable vibration are located in circumstances where the structure is complicated by attachments etc. 

Conclusions 

This paper has sought to explain how time domain finite element modelling can be used to assist in the 
design of aircraft against acoustic fatigue. Although the technique is computationally intensive, it does 
have a place in the effort to understand complex vibrations, such as the response of structures to 
spatially correlated jet noise excitations, or interactions between high sound pressure levels and thermal 
loads. 

The work at BAe is continuing in an attempt to provide the analyst with a greater ability to determine 
dynamic stress levels in advanced structures with complex loadings. 
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Parameter Stiffness 
k (N.mm-1) 

Stiffness 
Jfe (N.mm-1) 

'Non-Lin Stiff' 
p (mm-2) 

Linear Theory NASTRAN NASTRAN 

Simply Supported 
Clamped 

30.0 
104. 

30.7 
101. 

1.09 
0.266 

Table 1: Values of Parameters fitted to NASTRAN results compared with the 
linear theory values. 

Static Loads 
N, 

Acoustic Load 
Xrms 

Theory DYNA 
Freq "iw Freq Wrms 

(N.mm-1) (N.mm-1) (Pa/dB) (Hz) (mm) (Hz) (mm) 

None None 1.2 (95.6) 113.6 0.00290 114 0.01.2 

-3.46 1.2 (95.6) 93.72 0.00316 94.1 0.00313 

-3.46 643.5 (150.1) 93.72 1.69 115 1.08 

-5.41 -3.46 1.2 (95.6) 68.33 0.00359 68.1 0.00368 

-5.41 -3.46 700 (150.9) 68.33 2.09 103 1.42 

Table 2:   Summary of results of calculations with random acoustic loading 
superimposed on compressive in-plane loads. 

Static Load 
p(Pa) 

Acoustic Load 
P^ (Pa / dB) 

DYNA 
Freq (Hz) w (mm) Wm, (mm) 

None 1.2 (95.6) 114 0.0000 0.01.2 

700 None — -0.646 — 
700 12 (115.6) 115 -0.655 0.0189 
700 700 (150.9) 134 -0.477 1.28 
5k None — -2.89 — 
5 k 12 (115.6) 179 -2.93 0.0152 

5 k 700 (150.9) 173 -2.70 0.999 

Table 3:   Summary of results of calculations with random acoustic loading 
superimposed on static pressure loads. 

Temperature 
T(°C) 

Acoustic Load 
Pmr, (Pa / dB) 

DYNA 
Freq (Hz) w (mm) Wnns (mm) 

None 1.2 (95.6) 114 0.0000 0.00256 

10 None — -2.85 — 
10 1.2 (95.6) 234 -2.86 0.0140 

10 700 (150.9) 219 -2.80 0.197 

10 Ik (154.0) 9.01 2.47 1.02 

10 1.2k (155.6) 5.01 -0.717 2.24 

10 1.5k (157.5) 3.00 -0.376 2.20 

10 2k (160.0) 92.2 0.0185 1.95 

10 4k (166.0) 195 0.0568 2.08 

Table 4:   Summary of results of calculations with random acoustic loading 
superimposed on a thermal load. 
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Figure 1: Illustrating the Process of Fatigue Life Estimation. 
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Figure 2: Flowchart Illustrating the Frequency and Time Domain Techniques. 
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Figure 3: Displacement of central node for 12Pa rms acoustic pressure, DYNA 
calculation. 
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Figure 4: Spectral Response of the fiat plate corresponding to Fig 3. Central 
Node for 12Pa rms pressure, DYNA calculation. 
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Figure 5:   Rms Central Deflection of the plate versus sound pressure level 
Comparison between DYNA results and linear theory. 
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Figure 6: Central deflection of the plate versus pressure, NASTRAN calcula- 
tions compared to linear theory. 
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Damping 2%: stochastic Fn #1:35x29 Nodes 
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Figure 7:   Variation of fundamental frequency of the (1,1) mode with rms 
pressure, Comparison between DYNA and theory. 
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Figure 8: Variation of width of the (1,1) mode resonance peak with rms pres- 
sure, Comparison between DYNA and theory. 
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Figure 9:   DYNA model predictions for random vibration of the plate with 
semi-clamped boundary conditions. 

Figure 10: Random Vibration results with compressive load in the y-direction 
of -3.46N/mm and SPL of l.OPa. 

Figure 11: Random Acoustic Loading of SPL=12Pa superimposed on a static 
pressure of 700Pa. 
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Figure 12: Random acoustic loading of SPL=700Pa superimposed on a thermal 
load of 10 deg, clamped edges. — No Snap Through 

m 
Figure 13: Random acoustic loading of SPL=2kPa superimposed on a thermal 
load of 10 deg, clamped edges. —Nearly continuous snap-through. 
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Figure 14: Random acoustic loading of SPL=4kPa superimposed on a thermal 
load of 10 deg, clamped edges. —Dominant acoustic load. 
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ROBUST SUBSYSTEM ESTIMATION 
USING ARMA-MODELLING 

IN THE FREQUENCY DOMAIN 

by U. Prells, A. W. Lees, M. I. Friswell and M. G. Smart, 
Department of Mechanical Engineering of the University of Wales 

Swansea, 
Singleton Park, Swansea SA2 8PP, United Kingdom 

ABSTRACT 
This paper reflects early results of the research on modelling the influence of 
the foundation on the dynamics of the rotor. The foundation is connected to 
the rotor via journal bearings. Dynamic models exist for the subsystems of 
the rotor and of the bearings; the first is reliable but the latter is uncertain. 
The foundation model is unknown and has to be estimated using rundown 
data.These are measured responses of the foundation at the bearings due 
to unbalance forces of the rotor which are assumed to be known. Uncer- 
tainties in the bearing model will be transfered to the estimated foundation 
parameters. The main scope of this paper is to introduce a method which 
enables the decoupling of the problem of model estimation and the problem 
of the influence of the bearing model uncertainty. 

The influence of changes in the model of the bearings on the estimation 
of the foundation model is mainly due to the sensitivity of the computed 
forces applied to the foundation at the bearings. These are used together 
with the associated measured responses to estimate the foundation model in 
the frequency domain. Using an ARMA model in the frequency domain it is 
possible to estimate a filtered foundation model rather than the foundation 
model itself. The filter is defined in such a way that the resulting force has 
minimum sensitivity with respect to deviations in the model of the bearings. 
This leads to a robust estimation of the filtered model of the foundation. 
Since the filter can be defined in terms of the models of the rotor and of the 
bearings only, the problems of estimating the foundation's influence and of 
the sensitivity of the estimates with respect to the model of the bearings 
are decoupled. 

The method is demonstrated by a simple example of a single-shaft rotor. 
Even if the errors in the bearing model are about 50 % the relative input and 
output errors of the filtered foundation model are of the same magnitude 
as the round-off and truncating errors. 

1    INTRODUCTION 

An important part of a machine monitoring system for fault diagnostics of 
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a turbo generator is a reliable mathematical model. This model includes 
the subsystems of the rotor, the bearings and the foundation. The model of 
the rotor represents the most reliable knowledge, the model of the journal 
bearings is uncertain, and despite of intensive research it is not yet possible 
to define a model for the foundation which reflects the dynamical contribu- 
tion to the rotor with sufficient accuracy. The first step to determine the 
contribution of the foundation on the rotor's dynamic performance is the 
estimation of a reliable foundation model. 

Rundown data are available, i.e. displacements UFB(LO) € <D4m of the 
foundation at the bearings which are due to an unbalance force A/(w) e C2m 

of the m-shaft rotor, given at discrete frequencies w € fi := {o>i, ■ ■ -,wM}, 
and this data may be used to estimate the foundation model. A com- 
mon method ([1],[2],[3],[4],[5]) is to estimate the unknown dynamic stiffness 
matrix F(u>) £ <D4mx4m of the foundation at the bearings using the in- 
put/output equation 

F(cü)uFB{u) = /FBM, (1) 

where the force fFB of the foundation at the bearings can be expressed 
by dynamic condensation in terms of the data uFB, fu and in terms of the 
dynamic stiffness matrices AR, B of the rotor and the bearings respectively 
yielding 

fFB = -BuFB + [0, B)A-R\ ( ^ ) • (2) 

Here the dynamic stiffness matrix ARB of the rotor mounted on the bearings 
is partitioned with respect to the n inner degrees-of-freedom (dof) of the 
rotor and to the 4m connecting (interface) dof 

ARB = ARU ARIB 

A.RBI    ARBB + B 
(Z (p(n+4m)x(n+4m) (3) 

The non-zero components of the force fRr G <Dn in eq. (2) of the inner part 
of the rotor are the components of the unbalance force fv, i.e. introducing 
the control matrix Sv € IT*2™ then fRI = Svfu- The dynamic stiffness 
matrix AR of the rotor is given in terms of the matrices of inertia and 
stiffness which are defined by modal analysis and by its physical data given 
by the manufacturer. Each of the m shafts of the rotor is connected to 
the foundation usually via 2 journal bearings. Since the dynamic stiffness 
matrix B of the journal bearings represents a model for the oil film it consists 
of connecting dof only. It can be shown that B is block diagonal 

B = 
■Bi 0 

B„ 
(4) 

containing the dynamic stiffness matrices Bi = Ki + jcuDi, i = 1, • • •, m, of 
the m bearings. Ki, Di are the matrices of stiffness and damping respectively 
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which result from linearisation and are in general non-symmetric and non- 
singular. Eq. (1) is then used to estimate the foundation transfer function 
F(Lü). This has been discussed in several papers ([1],[2],[3],[4],[5]). Lees et 
al. [3] pointed out that fFB is sensitive with respect to deviations in the 
model of the bearings over part of the frequency range. This sensitivity is 
transfered to the model estimates. 

In this paper a method is introduced which enables the decoupling of the 
two problems of model estimation and of sensitivity of the foundation model 
with respect to the model of the bearings. The basic idea of this method is 
to estimate a transfer function H(w) which maps the displacements UFB(OJ) 

to a force /ff(w) rather than the force /FB(W), i.e. 

H(Lü)UFB(UJ) = /üf(w). (5) 

In extension of the earlier method the force /H(W) can be chosen to be of 
minimum sensitivity with respect to the model of the bearings. This robust 
estimated transfer function H(u>) is related to that of the foundation F(u>) 
by a transformation P(u>) 

H{LO) = P{UJ)F(O (6) 

which of course retains the sensitivity with respect to the model of the 
bearings. But since P(w) only depends on the models of the rotor and the 
bearings in the case of a modification within the model of the bearings no 
new model estimation has to be performed because this has been done ro- 
bustly with respect to such model changes. 

2 THE OPTIMUM CHOICE OF THE 
FORCE VECTOR 

As stated in Lees et al. [3] the sensitivity of the force JFB with respect to B 
is mainly due to the inversion of the matrix ARB in eq. (2). It can be shown 
that the condensation method of estimating the force JFB results from the 
special case of eliminating the last 4m rows of the matrix 

W :-- 
ARH ARIB 

ARBI   ARBB + B 
0 -B 

s- /p(n+8m)x(n+4m) (7) 

which can be written as ARB = TTW € c(n+4m)x(n+4m) by defining the 
selecting matrix of the master dof as 

T:=[e1)---,en+4m]€]R(n+8n^n+4,n), (8) 
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where in general en denotes a unit vector of appropriate dimension contain- 
ing zeros everywhere but in the nth place. In extension to the force /FB 

defined in eq. (2) for an arbitrary selecting matrix T € ]R("+8m)x("+4m) the 
condensation leads to a force fg given by 

IH   :=   T XT 

niT 

In+8m-W(TTW)-   T1 

In+Sm-W^Wy'T1 
0     \fpB- (9) 

^4m 

-.P 

Here Tx e -fo(n+sm)x{im) denotes the matrix which selects the slave dof, 
and in general In denotes the unit matrix of dimension n. Indeed, inserting 
the special choice of T from eq. (8) into eq. (9) leads to the sensitive force 
IH = IFB as defined in eq. (2). 

The reason for the sensitivity of fFB is that the subsystem of the rotor 
has low damping. Near the resonance frequencies of ARB its large condition 
number depends sensitively on B. Thus the sensitivity of fFB with respect 
to B is due to a large condition number of ARB- Let T denote the set of all 
possible selecting matrices, i.e. 

T 
ra+8m {[^•■■.e^J :eik £ R' 

1 < ik < n + 8m,    V   k = 1, ■ • • ,n + 4m}. (10) 

One criterion for an optimum choice of the force fH may be formulated as 
the following minimisation problem: 

Criterion 1: 
The optimum choice is the solution of 

mincond(TTW0, (11) 

where W is defined in eq. (7). 
A low condition number is necessary but not sufficient in order to provide 

a low sensitivity of the force }H. Therefore a numerical test can be applied 
using stochastic deviations in the bearing model. Let A.FQ, AA consist of 
uniform distributed non-correlated random numbers with zero mean values 
and variances equal to 1/3 for alH G 1, ■ • •, 2m. Define 

ABi = ABiisun) := sAKi + junADi, (12) 

where the positive scalars Si,n control the magnitude of the random error 
of the i-th bearing model. Thus, the error AB = AB(s,r) of the bear- 
ing model is well defined for s := (si, • ■ •, s2m)T and r := (rx, • • • ,r2m)T. 
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Regard the force fH = f{w,T,AB) as a function of the selecting ma- 
trix T and the bearing model error AB. For I random samples AB(k) = 
AB(r(k),s(k)),k = 1, ■■•.*, calculate for each frequency w G fi the up- 
per and lower bounds for the real and imaginary part of each component 
fi, i — 1, ■ • •, 4m of the force vector /, i.e.: 

/fma>,r)   :=    max^Mw.T.ABC*:))}, (13) 

/■LnKT)   :=     minRe{/,(W,T,A5W)}, (14) 
fc=l,-",t 

//ma>,T)   :=    maxiIm{/i(o;,T)Aß(fc))}! (15) 

/Lin(w,T)   :=   ^M/^.r.ABC*))}. (16) 

Defining the force vectors 

/max(w,T)   :=   /^„(w)T) + j-/iax(c;,T)) (17) 

/nün(w,T)   :=   /S„(a;ir)+j-/ii>,T), (18) 

the second criterion can be formulated as a minimax problem: 

Criterion 2: 
The optimum selection is obtained from 

4m 

minmax]T|/imax(w,T) - /imin(w,T)|. (19) 

Before the method outlined is demonstrated by an example some aspects of 
the mathematical model of the foundation and methods for its estimation 
based on the input/output equation (5) will now be considered. 

3    ESTIMATION OF THE FOUNDATION 
MODEL 

The purpose of this section is to estimate the unknown foundation model 
represented by the matrix 

F{u) = AFBB{Lü) - AFBi{u)Apl
n(iü)AFiB{iü). (20) 

This expression results from dynamic condensation of the dynamic stiffness 
matrix of the foundation 

AF = AFBB     ApiB 
ApiB    Apii 

(21) 
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which is partitioned with respect to its inner dof (index I) and those dof 
coupled to the bearings (index B). For viscous damped linear elastomechan- 
ical models the dynamic stiffness matrix AF(w) of the foundation is given 

by 

AF{oj) := *£Uu)% e C(fc+4m)x(fc+4m). (22) 
i=0 

The matrices Ai are real valued and represent the contributions of stiffness, 
damping and inertia for i = 0,1,2 respectively. In this case the identifica- 
tion of the foundation model requires the estimation of the three matrices 
Ai which are parameterised by introducing dimensionless adjustment pa- 
rameters aik € Et, for all k = 1, • • •, 1\, i = 0,1,2 (see for instance [6] or 
[7]). Those parameters are related to given real-valued matrices Sik by 

Ni 

AiW^Y,13*"*' '        (23) 
A=l 

Writing the adjustment parameters as one vector aT := (aj,aj, aj) £ W, 
p := No + iVi -I- N2, the estimation of the foundation model is equivalent to 
the estimation of the parameter vector a. The dynamic stiffness matrix of 
the foundation becomes a nonlinear function of this parameter vector 

F(UJ) = F(u>, a) = AFBB{U, a) - AFBi{w, a)Ap)T{u, O)AFIB{U, a)-     (24) 

Substituting the measured quantities for UFB and fc into eqs. (5) and 
(9) the parameter vector a is usually estimated by minimising some norm of 
the difference between measured and calculated quantities, called residuals 
[8]. Using equation (5) is equivalent to the input residual method. Defining 
the ith partial input residual as 

v,(i):=/(wi, a)-/*(<*) G<D4m, (25) 

where the dependency on the model parameters a of the input vector is 
defined by 

f{to, a) := P{UJ)F(W, a)uFB{u), (26) 

the cost function to be minimised is given by 

M 

•Ma):=£fJ(W0w/(0, (27) 

where Wi(i) represents a weighting matrix for the ith partial residual and 
the superscript f denotes the conjugate-transpose. The inverse problem (27) 
is nonlinear with respect to the parameters to be estimated. Thus, there 
is no advantage relative to the output residual method. Defining the ith 
partial output residual as 

v0(i) ■= u{ui, a) - uFB{ui), (28) 
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where the model output is defined by 

u{bj,a) := [0,0,/2(m+i),0]A_1(w,a) 

Su 
0 
0 
0 

/trH, (29) 

with the dynamic stiffness matrix A of the entire model 

■ ARII{u)          ARIB{UJ)                        0 0 

Af      N_    ARBI{u)   ARBB{u) + B{w)             -B{w) 0 
A^a)~          o                 -B{w)           B{<j) + AFBB{cü,a) AFBI(u,a) 

0                     0                      AFIB(oj,a) AFII(Lü,O) . 
(30) 

the cost function to be minimised is 

M 

Jo(a):=Y:^o(i)Wo(i)vo(})- (31) 

Wo(i) denotes a weighting matrix for the ith partial output residual. 
Mathematical modelling is always purpose orientated [9]. In the case 

discussed in this paper the purpose is to estimate the influence of the foun- 
dation on the dynamics of the rotor. For this purpose, no physically inter- 
pretable model is necessary in order to model this influence. In the next 
section an alternative mathematical model is introduced which leads to a 
linear inverse problem. 

3.1    ARM A MODELLING IN THE FREQUENCY 
DOMAIN: THE FILTER MODEL 

Auto Regressive Moving Average models are well developed (see for in- 
stance [10],[7]) in order to simulate dynamic system behaviour. ARMA 
models are defined in the time domain by 

£ A{u{t - iAt) = £ Bif(t - iAt), (32) 
i=0 i=0 

where the present output (state or displacement) u(t) due to the present 
input /(£) depends on n0 past outputs and on n* past inputs. 

In the frequency domain eq. (32) leads to a (frequency-) filter model [7]. 
With reference to eq. (5) it has the form 

(33) 
i=0 

^(jujyAi   uFB{u) =    Y.{ju)kBk   fH(u 
k=0 

=: Ä(w) =:B{u 

1033 



The output and input powers n0,rii respectively, and the matrices 
(■^i)j=o,-,n0, (Bk)k=o,-,ni are called filter parameters and Jiave to be esti- 
mated.' Of course the minimum of det[Ä(w)] and of det[B{u)} correspond 
to the resonance and anti-resonance frequencies of the subsystem of the 
foundation respectively. 

For an optimum choice of P (see eq. (9)) the estimation of A and B can 
be considered to be independent of the precise values of the model of the 
bearings. Thus, the problem of the uncertainty in the bearing models and 
the problem of model estimation are decoupled. If A and B are estimated 
refering to eq. (5) then 

B~lA = H. (34) 

The estimation of the filter parameters is robust with respect to deviations 
in the bearings model. Thus, the uncertainty of the estimation of the foun- 
dation model F is due to the inversion of the matrix P only 

F = P~lH = P-lB~1Ä, (35) 

which represents a problem a priori and which occurs only in the calculation 
of the force of the foundation at the bearings 

fFB = P-1B'1ÄUFB- (36) 

Of course the force vector fFB is sensitive to changes in the bearings model 
but only due to corresponding changes in P. The estimated part B A is 
robust with respect to changes in the bearings model. 

In order to calculate the response uFB no explicit calculation of the 
inverse of P is necessary, 

uFB = Ä~lBfH. (37) 

Since the estimated model and the force fH are insensitive with respect to 
the bearings model the estimation of uFB is robust in this sense. 

Of course the influence of errors in uFB and fu have not yet been taken 
into account. Accordingly the model powers n0,ni, must be estimated as 
well as the matrices Ai:Bk. The estimation method is outlined in the fol- 
lowing section. 

3.2    ESTIMATION OF THE FILTER 
PARAMETERS 

In order to estimate the filter parameters the least squares method can be 
applied to minimise the equation error in eq. (33). Defining the zth partial 
equation residual as 

vB(i) ■= Ä(cJi)uFB{Lüi) - B{wi)}H{ui) (38) 
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the cost function to be minimized is given by 

M 

JE~Y,VB®WE(i)vE(i), (39) 
1=1 

where WE{i) denotes a weighting matrix for the ith equation residual. As- 
suming WE(i) = hm for alH = 1, • • •, M, the filter equation (33) can be 
extended for M excitation frequencies as 

i=0 / Vfc=0 

where U, Z and A are defined by 

U   :=   [UFB(UI),---,UFB(UM)}, 

Z   :=   [/jf(wi),-",/ffW], 
wi 0 

A   :=   j 

0 U>M 

(40) 

(41) 

(42) 

(43) 

The solution of the minimisation problem (39) is equivalent to the normal 
solution of eq. (40) which can be rewritten as 

[Anor ■ -,Ao,-Bni,---,-Bo 
■ „  

=: V 

[/An° 

U 
ZKni = 0 (44) 

Because the filter parameters represented by the matrix V € 
jp_4mx4m(n„+ni+2) are reaj_valued., equation (44) must be satisfied for the 
real and imaginary parts of the matrix Y € (C4m("°+'l-+2)xiW') which finally 
yields 

y[Re {Y} , Im {Y}} =: VX = 0. (45) 

This problem does not lead to a unique solution for the filter parameters. 
Indeed, for any arbitrary non-singular matrix C 

CÄupB = CBhi (46) 

is also a solution. But since one is interested (see eq. (34)) in the product 

B~ Ä (or its inverse) only this final result is of interest and this product is 
unique. 
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As a necessary and a sufficient condition for a full-rank solution V of 
eq. (45) the matrix X G ]R4m(n0+ni+2)x2M has to have a rank deficiency of 

Am, i.e. 
rank(X) = 4m(n0 + n* + 1). (47) 

Of course this problem has to be treated numerically. The rank decision 
is usually made by looking to the singular values i(n0, n*) G ]R4m(n°+n;+2) 
of the matrix X = X(n0,rii). Because one cannot expect to achieve zero 
rather than relative small singular values one has to define a cut-off limit. 
This is due to the fact that the equation error (39) can be made arbitrary 
small by increasing the degree p :— n0 + n* of the filter model. The same 
situation occurs if one looks at the maximum relative input error 

\\B~  {Wi)Ä{Ui)UFB(Ui) ~/g(^)ll ,,„<. 
ei :=    max     rr-r—,—rr, ,        . (4ÖJ 

i=l,-,M ||/ff(wi)|| 

or to the maximum relative output error 

||-A"Vi)i?(fi)/ff(^) ~ UFB(UJ)\\ UQS eo :=   max    r. -,—rr, . (4yj 
i=l,-,M \\uFB(üJi)\\ 

With increasing degree p the errors ej and eo can be made arbitrary small. 
This is a typical expression for an ill-posed problem which can be turned 

into an well-posed problem by applying regularisation methods [11]. To 
choose an appropriate regularisation method needs further investigation and 
is beyond the scope of this paper. In the next section the method of choosing 
the optimum force vector fu is demonstrated by a simple example. 

4    A SIMPLE EXAMPLE 

The test model is depicted in Fig. 1. The one-shaft-rotor is simulated by 
an Euler-Bernoulli beam which is spatially discretised with 10 dof. Accord- 
ing to the partition with respect to inner points and interface points (see 
eq. (3)) the number n of inner rotor dof is 8 and the number of connecting 
dof is 2. Only one translation dof of the rotor is connected to each bearing 
which are modelled by massless springs with stiffnesses ftj = 1.77 • 108 and 
k2 = 3.54 • 108 N/m respectively. The foundation is modelled by an uncon- 
nected pair of masses mi = 90, m2 = 135 kg and springs with stiffnesses 
kfi = k/2 = 1.77 • 108 N/m. The force fu due to an unbalance b = 0.01 
kg-m is given by /u(w) := bio1 G R. The force vector fRl G IR8 is assumed 
to have one non-zero component only, i.e. fju := fu&4- The frequency range 
between 0 and 250 Hz is discretised with equally spaced stepsize of 0.5 Hz. 
The selecting matrix T G IR12*2 of the master dof is assumed to consist of 
the unit vector e4 in order to select out the unbalance force fu because this 
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Figure 1: The simple test model 

excitation is independent of the model of the bearings and therefore of min- 
imum sensitivity. Thus the remaining redundancy consists in eliminating 
one row of the matrix 

G:=[e1,e2,e3,e5,---,e12]TW€lR 11x10 (50) 

The result of the first criterion are depicted in Fig. 2. It shows the frequency 
dependent condition numbers for the elimination of each row of the matrix 
G in turn. This leads to an optimum choice by eliminating the 4-th row of 
G. Thus, the optimum choice of the master dof is given by Tx = [e4,e5]. 
This result is confirmed by applying the second optimisation criterion. 

For this purpose a uniform distributed uncorrelated random error with 
zero mean value is added to the stiffnesses of the bearings simulating a 
model variation of 50 per cent, i.e. ki —>• h + Akiki/2, where Akui — 
1,2, are uncorrelated random numbers with expectation value E{Aki} = 0 
and with variance E{AkiAkj} = (1/3)^. For a size of I = 500 random 
samples, the upper and lower bounds /max, /min and /fl-max, JHmin of the 
force }FB = /FB(W, AS) and of the force fH = f{u,T,AB) respectively 
with the selecting matrix T = [e4,e5], have been calculated. In contrast to 
the maximum difference of upper and lower bounds of the force fFB of ~ 20, 
that of the force fH is of the order of the computational accuracy ~ 10-7, 
and is therefore negligible. In a first step the force fFB is used to estimate 
the filter parameters of the model F of the foundation. Solving the singular 
value decomposition for all input and output powers {rii,n0) G [0, 5]2 C Z2 

the calculation of the maximum relative input and of the maximum output 
errors as defined by eqs. (48) and (49) with fH - }FB leads to the results 
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250 

depicted in Fig. 3. For a model realisation with {jii,n0) = (0,2) the values 
of the maximum relative errors are approximately ej « 7.1 • 10-7 and e0 « 
9.0-1CT7 which corresponds to the computational accuracy Using this model 
the estimates of the filter matrices correspond within the computational 
accuracy to those of the 'true' foundation model. 

Using variations of the force fFB between the bounds /max, /min from 
the second criterion the associated upper and lower bounds of the relative 
input and output error have been calculated. The influence of the variation 
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of the bearing stiffness of 50% leads via the associated variation of the 
force fpB to drastic variations of the relative input and output errors. The 
difference of upper and lower bound of the maximum relative input error is 
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of order 100 and that of the maximum relative output error is approximately 
104. 
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The situation is different using the optimised force fH in order to es- 
timate the filter parameters of the model H. For each input and output 
power (rii,n0) e [0, 25]2 C Z2 the maximum relative input error and the 
maximum relative output error have been calculated. The result is shown in 
Fig. 4. For a maximum relative input error e/ « 6.5 ■ 10-5 a filter model of 
degree 12 is available with the powers (nt, n0) = (4,8). This model produces 
a maximum relative output error eo ~ 10-5. 

Analogous to the robustness investigations for fFB now for the force 
fH the upper and lower bounds of the relative input and of the relative 
output error due to the random variation in the bearing models have been 
calculated. For the chosen model with powers {rii,n0) = (4,8) the difference 
of upper and lower bound of the relative input error as well that of the 
relative output error are of about the same order « 10~4. Thus, compared 
with the order of variation 100 and 104 of the direct foundation model 
estimate the estimate of H is robust with respect to changes in the bearing 
model. 

5    CONCLUSION 

In this paper a method is introduced which enables the decoupling of the 
two problems of model estimation and of sensitivity of the foundation model 
with respect to the model of the bearings. The method produces an opti- 
mised choice of the input/output equation which provides a transfer func- 
tion estimation that is robust with respect to deviations in the model of 
the bearings. For the foundation model estimation a filter model is intro- 
duced. This modelling strategy has the advantage of leading to a linear 
inverse problem. The disadvantage is that with increasing model degree 
the equation error can be made arbitrarily small. Because this error should 
not become smaller than the accuracy of the data, a cut-off limit has to be 
determined a priori. Further investigations should allow the cut-off limit to 
be related to the data errors. 
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Abstract 

Two mathematical hysteresis models, the Duhem-Madelung (DM) 
model and the Preisach model, are introduced to represent the 
hysteretic behavior inherent in nonlinear damping devices. The DM 
model generates the hysteresis with local memory. Making use of the 
Duhem operator, the constitutive relation can be described by single- 
valued functions with two variables in transformed state variable 
spaces. This makes it feasible to apply the force-surface nonparametric 
identification technique to hysteretic systems. The Preisach model can 
represent the hysteresis with nonlocal memory. It is particularly 
suitable for describing the selective-memory hysteresis which appears 
in some friction-type isolators. An accurate frequency-domain method 
is developed for analyzing the periodic forced vibration of hysteretic 
isolation systems defined by these models. A case study of wire-cable 
vibration isolator is illustrated. 

1.  Introduction 

The dynamic response of a structure is highly dependent on 
the ability of its members and connections to dissipate energy by 
means of hysteretic behavior. The assessment of this behavior 
can be done by means of experimental tests and the use of 
analytical models that take into account the main characteristics 
of this nonlinear mechanism. Although a variety of hysteresis 
models have been proposed in the past decades, many structural 
systems exhibit more complicated hysteretic performance (mainly 
due to stiffness or/and strength degrading) which the models in 
existence are reluctant and even inapplicable to depict [1,2]. On 
the other hand, nonlinear vibration isolation has recently been 
recognized as one of effective vibration control techniques. In 

1043 



particular, hysteretic isolation devices have got wide applications 
owing to their good dry friction damping performance. These 
hysteretic isolators may exhibit very complicated features such 
as asymmetric hysteresis, soft-hardening hysteresis, nonlocal 
selective-memory hysteresis [3-5]. None of the models available 
currently in structural and mechanical areas can represent all 
these hysteresis characteristics. Other more elaborate hysteresis 
models need to be established for this purpose. 

In reality, hysteresis phenomenon occurs in many different 
areas of science, and has been attracting the attention of many 
investigators for a long time. However, the true meaning of 
hysteresis varies from one area to another due to lack of a 
stringent mathematical definition of hysteresis. Fortunately, 
because of the applicative interest and obvious importance of 
hysteresis phenomenon, Russian mathematicians in 1970's and 
the Western mathematicians in 1980's, began to study hysteresis 
systematically as a new field of mathematical research [6,7]. They 
also deal with the hysteresis models proposed by physicists and 
engineers in various areas, but they separate these models from 
their physical meanings and formulate them in a purely 
mathematical form by introducing the concept of hysteresis 
operators. Such mathematical exposition and treatment can 
generalize a specific model from a particular area as a general 
mathematical model which is applicable to the description of 
hysteresis in other areas. In this paper, two mathematical 
hysteresis models are introduced and the related problems such 
as identification and response analysis encountered in their 
application to nonlinear isolation systems are addressed. 

2.  Definition of Hysteresis 

Hysteresis loops give the most direct indication of hysteresis 
phenomena. But it is intended here to introduce a mathematical 
definition of hysteresis. Let us consider a constitutive law: uwr, 
which relates an input variable u(t) and an output variable r(t). 
For a structural or mechanical system, u(t) denotes displacement 
(strain); r{t) represents restoring force (stress); t is time. We can 
define hysteresis as a special type  of memory-based relation 
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between u(t) and r[t). It appears when the output r[t) is not 
uniquely determined by the input u(t) at the same instant t, but 
instead r[t) depends on the evolution of u in the interval [0, t] and 
possibly also on the initial value ro, i.e. 

r(t) = 5R[u(-),r0](t) (1) 

where the memory-based functional 5R[u(-),ro](t) is referred to as 
hysteresis operator. In order to exclude viscosity-type memory 
such as those represented by time convolution, we require that 5R 
is rate-independent, i.e. that r[t) depends just on the range of u in 
[0, t] and on the order in which values have been attained, not on 
its velocity. In reality, memory effects may be not purely rate 
independent as hysteresis is coupled with viscosity-type effects. 
However, as shown later, in most cases the rate independent 
feature of hysteresis is consistent with experimental findings, 
especially when evolution (variation in time) is not too fast. 

3.  Duhem-Madelung (DM) Model 

3.1     Formulation 

The DM model can be defined with or without referring to a 
confined hysteresis region. For the structural or mechanical 
hysteretic systems, it is not necessary to introduce the notion of 
bounded curves because there exists neither the saturation state 
nor the major loop. In this instance, the DM model establishes a 
mapping (named Duhem operator) 5R: (u, ro) h-> rby postulating the 

following Cauchy problem [7,8] 

f(t) = gl(u,r) • u+ (t) -g2(u,r)- u_(t) (2a) 
r(0) = r0 (2b) 

where an overdot denotes the derivative with respect to t;   gi(u,r) 
and g2(u,r) are referred to as ascending and descending functions 
(curves) respectively; and 

u+(t) = max[0,u(t)] = |[|ü(t)| + ü(r)] (3a) 

ü_(t) = min[0,ü(r)] = ^[\ü(t)\ - ü(t)} (3b) 

Eq. (2a) can be rewritten as 
f(t) = g[u,r,sgn{ü)}-ü{t) (4) 
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in which the describing function has the form 

j g{u,r,l) = gi{u,r) u>0 
g[u,r,sgn{u )] = \ . 5 

[g(u,r-l) = g2(u,r) u<0 

It is obvious that the DM model is rate independent. In 
addition, it is specially noted that in this constitutive law the 
output r(t) is not directly dependent on the entire history of u(t) 
through [0,t]; but instead depends only on the local history 
covered since the last change of sgn(ti) and on the value of the 
output at this switching instant. It means that the output can 
only change its character when the input changes direction. As a 
consequence, the DM model usually represents the hysteresis 
with local memory except that the functions gi{u,r) and gi{u,f\ are 
re-specified as hysteresis operators. 

Within the framework of DM formulation, the ascending and 
descending functions gi{u,rj and g2(u,r) are just required to fulfill 
suitable regularity conditions and need not to be specified in 
specific expressions, so both the form and parameters of the 
functions can be fine-tuned to match experimental findings. On 
the other hand, the DM formulation can deduce a wide kind of 
differential-type hysteresis models such as Bouc-Wen model, 
Ozdemir's model, Yar-Hammond bilinear model and Dahl's 
frictional model.  For the Bouc-Wen model 

r(t) = K.u(t) + z{t) (6a) 

z(t) = au{t) - ß|ü(t)|z(t)|z(t)|n-1 - yü(t)\z[tf (6b) 

it corresponds to the DM model with the specific ascending and 
descending functions as 

gx (u, r) = a + K - [y + ß sgn(r - Ku)]|r - KU|" (7a) 

gf2(u,r) = a +K - [y - ß sgn(r -Ku)]jr -KU|" (7b) 

and for the Yar-Hammond bilinear model 

f(t) = {a - y sgn(u) sgn[r - ß sgn(ti)]}ti (8) 

its describing function is independent of u(t) as follows 

öf[u,r,sgn(ü)] = gf[r,sgn(ü)] = a -y sgn(u)sgn[r - ß sgn(ü)] (9) 

Hence, the Duhem operator also provides an accessible way 
to  construct  novel  hysteresis   models  by  prescribing   specific 
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expressions of the ascending and descending functions. 
Following this approach, it is possible to formulate some models 
which allow the description of special hysteretic characteristics 
observed in experiments, such as soft-hardening hysteresis, 
hardening hysteresis with overlapping loading envelope, and 
asymmetric hysteresis [5]. 

3.2     Identification 

System identification techniques are classified as parametric 
and nonparametric procedures. The parametric identification 
requires that the structure of system model is a priori known. The 
advantage of nonparametric identification methods is that they 
do not require a priori the knowledge of system model. The most 
used nonparametric procedure for nonlinear systems is the force 
mapping (or called force surface) method [9]. This method is 
based on the use of polynomial approximation of nonlinear 
restoring force in terms of two variables—the displacement u(t) 
and the velocity u(t). For nonlinear hysteretic systems, however, 

the hysteretic restoring force appears as a multivalued function 
with respect to the variables u(t) and u(t) due to its history- 

dependent and non-holonomic nature. This renders the force 
mapping method inapplicable to hysteretic systems, although 
some efforts have been made to reduce the multivaluedness of 
the force surface [10,11]. 

One of the appealing virtues of the DM model is that it can 
circumvent this difficulty. Making use of the Duhem operator, 
the hysteretic constitutive relation of Eq.(l) is described by two 
continuous, single-valued functions gi(u,r) and ga(u,r) in terms of 
the displacement u(t) and the restoring force r(t). Thus, single- 
valued "force" surfaces gi{u,r) and g2{u,r) can be formulated in 
the subspaces of the state variables (u,r,gi) and (u,r,g2\, and can 
be identified by using the force mapping technique. Following 
this formulation, a nonparametric identification method is 
developed by the authors [12]. In this method, the functions 
gi{u,r) and g2(u,r) are expressed in terms of shifted generalized 
orthogonal polynomials with respect to u and r as follows 

g,[u,r) = I IchMS^V") = <I>»G(1,0(r) (10a) 
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g2(u,r) = I UdrtiftjM = Or(u)G(2)0(r) (10b) 

where G(1) = [gf]mxn and G(2) = [gf']mxn are called the expansion- 

coefficient matrices of gi(u,r) and g2{u,i). Some algorithms have 
been proposed to estimate the values of these coefficient matrices 
based on experimentally observed input and output data. It 
should be noted that here the vectors <D(u) and ®(r) are shifted 

generalized orthogonal polynomials [13]. They are formulated on 
the basis of common recurrence relations and orthogonal rule, 
and cover all kinds of individual orthogonal polynomials as well 
as non-orthogonal Taylor series. Consequently, they can obtain 
specific polynomial-approximation solutions of the same.problem 
in terms of Chebyshev, Legendre, Laguerre, Jacobi, Hermite and 
Ultraspherical polynomials and Taylor series as special cases. 

4.   Preisach Model 

4.1     Formulation 

The intent of introducing the Preisach model is to supply the 
lack of a suitable hysteresis model in structural and mechanical 
areas, which is both capable of representing nonlocal hysteresis 
and mathematically tractable. Experiments revealed that the 
hysteretic restoring force of some cable-type vibration isolators 
relates mainly to the peak displacements incurred by them in the 
past deformation [3]. It will be shown that the Preisach model is 
especially effective in representing such nonlocal but selective- 
memory hysteresis, in which only some past input extrema (not 
the entire input variations) leave their marks upon future states 
of hysteresis nonlinearities. 

The Preisach model is constructed as a superposition of a 
continuous family of elementary rectangular loops, called relay 
hysteresis operators as shown in Fig.l. That is [7,14], 

r(t) = H[u(-)](t) = jf|^(a,ß)ya,p[u(f)]dadß (11) 
cc>p 

where |J.(a,ß) > 0 is a weight function, usually with support on a 

bounded set in the (a,ß)-plane, named Preisach plane; ya,p[u(t)] is 

the relay hysteresis operator with thresholds a > ß.   Outputs of 
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these simplest hysteresis operators have only two values +1 and 
-1, so can be interpreted as two-position relays with "up" and 

"down" positions corresponding to ya,ß[u(t)]=+l and y0,p[u(t)]=-l. 

w 
+i 

Fig. 1  Relay Hysteresis Operator 

Hence, the Preisach model of Eq.(ll) can be interpreted as a 
spectral decomposition of the complicated hysteresis operator 5R, 
that usually has nonlocal memory, into the simplest hysteresis 
operators ya,p with local memory. In the following, we illustrate 
how the model depicts the nonlocal selective-memory feature. 

Consider a triangle T in the half-plane a > ß as shown in 
Fig.2. It is assumed that the weight function (i(a,ß) is confined in 
the triangle T, i.e. n(cc,ß) is equal to zero outside T. Following the 
Preisach formulation, at any time instant t, the triangle T can be 
subdivided into two sets: Sf[t) consisting of points (a,ß) for which 
the corresponding ya,p-operators are in the "up" position; and ST(t) 
consisting of points (cc,ß) for which the corresponding ya,p- 
operators are in the "down" position. The interface L(t) between 
Sf(t) and S~(t) is a staircase line whose vertices have a and ß 
coordinates coinciding respectively with local maxima and 
minima of input at previous instants of time. The nonlocal 
selective-memory is stored in this way. Thus, the output r[t) at 
any instant t can be expressed equivalently as [14] 

r{t)= jj"n(a,ß)dccdß- jjn(a,ß)dadß (12) 
S*(t) s-(t) 

It should be noted that the Preisach model does not 
accumulate all past extremum values of input. Some of them can 
be wiped out by sequent input variations following the wiping-out 
property (deletion rule): each local input maximum wipes out the 
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vertices of L{t) whose cc-coordinates are below this maximum, and 
each local minimum wipes out the vertices whose ß-coordinates 
are above this minimum. In other words, only the alternating 
series of dominant input extrema are stored by the Preisach 
model; all other input extrema are erased. 

"(0 i 

S*(0/ 

,a=ß 
WO 

y^~ a=u(t) 

^=u(t) 

Fig. 2  Input Sequence and Preisach Plane 

4.2     Identification 

It is seen from Eq.(l 1) that the Preisach model is governed by 
the weight function |i(a,ß) after determining L(t) which depends 
on the input sequence. |i(a,ß) is a single-valued function with 
respect to two variables a and ß. Hence, the aforementioned 
nonparametric identification method can be also implemented to 
identify ]^(cc,ß) by expanding it in a similar expression to Eq.(lO). 
An alternating approach is to define the following function 

H(<x',ß') =    JJR(a,ß)dadß = pf'nta.ßjdaldß (13) 
T(a',ß') 

where T(a',ß') is the triangle formed by the intersection of the 
line a = a', ß = ß' and a = ß.  Differentiating Eq.(13) yields 

d2H(oc',ß') 
H(a',ßT (14) 

da'9ß' 
Thus, the force mapping identification technique can be applied 
to determine H(cc,ß) consistent with the experimental data, and 

then )4a,ß) is obtained by Eq.(14). 

5.  Steady-State Response Analysis 

Hysteretic systems are strongly nonlinear. A study of the 
steady-state   oscillation   is   one   of  the   classical   problems   of 
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nonlinear systems. Usually, the dynamic behavior of a nonlinear 
system is represented by its resonant frequency and frequency 
response characteristics. In the following, an accurate frequency- 
domain method accommodating multiple harmonics is developed 
to analyze the periodically forced response of hysteretic systems 
defined by mathematical hysteresis models. 

Fig. 3 shows a single-degree-of-freedom hysteretic oscillator 
with mass m, viscous damping coefficient c, and linear stiffness 
k, subjected to an external excitation F{t), for which the governing 
equation of motion is 

m ■ ü(t) + c ■ ü(t) + k ■ u(t) + r(t) = F(t) (15) 

where the hysteretic restoring force r{t) is represented by the DM 
model as Eq.(4). It is worth noting that for the kinetic equation 
Eq.(15), the excitation is F[t) and the response is u{t); and for the 
hysteretic constitutive law Eq.(4), u(t) is input and r(t) is output. 
The causal relationship is different. 

/V / / / //V/V z1 

Fig. 3  Single-Degree-of-Freedom Hysteretic System 

Due to the hereditary nature of the hysteresis model, it is 
difficult to directly solve the kinetic equation Eq.(15) by iteration. 
Here, Eq.(15) is only used to establish the relation between the 
harmonic components of u(t) and r(t). Suppose that the system is 
subjected to a general periodic excitation F[t) with known 
harmonic components F={F0 Fj F2 ••• FN Fx" F2* ••• F*N}

T. The multi- 

harmonic steady-state response can be expressed as 
„ N N 

■ ^aj cos jcot+ ^aj sin jat (16) u(t) = — + u     2 j=i J=I 
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in which a={a0 aY a2 ■■■ aN a[ a2 ■■■ aN}T is the unknown 

vector containing the harmonic components of u(t). Introducing 
Eq.(16) into Eq.(15) and using the Galerkin method provide 

r0=F0-k-a0 (17a) 

r,. = Fj-{k- m -co2/) • a- -c-wj- a*     (;' = 1, 2, ••• , N)     (17b) 

r] =F* +c-aj-aj-(k-m-a2j2)-aj   (j = 1, 2, •■• , N)     (17c) 

where n={r0   rx   r2   ••■ rN   r{   r2   ••■ r*N}
T is the harmonic vector of 

the hysteretic restoring force r(t). Referring to the hysteretic 
constitutive law, we define the determining equation as 

D[t) = f{t)-9[u,r,sgn{ü)]-ü{t) .        (18) 

When a is the solution of u{t), applying the Galerkin method 
into Eq.(18) and considering Eq.(17) achieve 

d(a) = 0 (19) 

where the vector d{a)={d0 dx d2 ■••dN d[ d2 ■■■ d'N}
T is comprised 

of the harmonic components of D(t) corresponding to a. An 
efficient procedure to seek the solution of Eq.(19) is the 
Levenberg-Marquardt algorithm with the iteration formula 

a^=a{k)-{J[a{k)]T -J[aw] + ykl}-1 -J[alk)}T -d[aw] (20) 

where the Jacobian matrix J[aW] = 8d(a)/da\a=a.W ; cp/c is the 
Levenberg-Marquardt parameter and I is identity matrix. 

At each iteration, the function vector d[aW] and Jacobian 
matrix JlaW] should be recalculated with updated values of aW. 
Here, a frequency/time domain alternation scheme by FFT is 
introduced to evaluate the values of d(a) and J[a) at a=a^kl d(a) 
and dd(a)/da are known to be the Fourier expansion coefficients 
of D{t) and 8D(t)/8a respectively. For a given a(fc) and known F, the 
corresponding r[aW] is obtained from Eq.(17), and the inverse 
FFT is implemented for aW and r[a(fcl] to obtain all the time 
domain discrete values of u(t), ü(t), r(t) and r(t) over an integral 

period. Then the time domain discrete values of the function 
D{u,u,r,r,t), corresponding to o=a<fc), are evaluated from Eq.(18). 

Making use of forward FFT to these time domain discrete values 
of D(u,u,r,f,t), the values of function vector d[a<fc)] are obtained. 
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Similarly, the partial differential 8D[t) / da can be analytically 

evaluated in the time domain. Forward FFT to the time domain 
values of 8D(t) j da at ct=a(fc! gives rise to dd[a^k)]/da. 

6.   Case Study 

Wire-cable vibration isolators are typical hysteretic damping 
devices. Dynamic tests show that their hysteresis behaviors are 
almost independent of the frequency in the tested frequency 
range [4,15]. Experimental study and parametric modelling of a 
wire-cable isolator have been carried out [5]. Fig.4 shows the 
experimental hysteresis loops in shear mode. It is seen that for 
relatively small deformations, the isolator exhibits softening 
hysteresis loops. When large displacements are imposed, the 
stiffness of the loops becomes smoothly hard. This nature is 
referred to as soft-hardening hysteresis. Based on the Bouc-Wen 
model, a parametric identification was performed to model these 
hysteresis loops, but the result is unsatisfactory. This is due to 
the fact that the Bouc-Wen model cannot represent such soft- 
hardening nature of hysteresis. 

r (N) 

u (mm) 

Fig. 4 Experimental Hysteresis Loops 

We now use the DM model to represent these hysteresis 
loops, and perform a nonparametric identification to determine 
the functions gi(u,r) and g2(u,r). The simplest Taylor series are 
adopted, i.e. <j>,(r) = (r / r0f~l and i^u) = (u I u0)j'1 (r0 = 20.0 and 

uo = 2.0).  Fig.5 shows the identified "force" surfaces of gi(u,f) and 
g2[u,r) by taking m=n=8.   Fig.6 presents the theoretical hysteresis 
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loops generated by the DM model using the identified gi{u,r) and 
g2{u,r). It is seen that the modeled hysteresis loops are agreeable 
to the observed loops. In particular, the soft-hardening nature is 
reflected in the modeled hysteresis loops. 

Fig. 5  Identified "Force" Surfaces of gi(u,t) and fife(u,r) 

r (N) 

u (mm) 

Fig. 6  Modeled Hysteresis Loops by DM Model 
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After performing the modelling of hysteretic behavior, the 
dynamic responses of hysteretic systems can be predicted by the 
developed method. Fig.7 shows a vibration isolation system 
installed with wire-cable isolators in shear mode. It is subjected 
to harmonic ground acceleration excitation x [t)=Acos2nfl.   The 

equation of motion of the system is expressed as 

m-ü(t) + K-r(t) = -m-xg(t) (21) 

where m is the mass of the system; K is number of the isolators 
installed. u{t) is the displacement of the system relative to the 
ground. r(t) is the restoring force of each isolator and has been 
determined from nonparametric identification. 

Fig.8 illustrates the predicted frequency-response curves of 
the relative displacement when 7n=6kg and K=2. The excitation 
amplitude A is taken as 0.25g, 0.30g, 0.35g, 0.40g and 0.45g 
respectively. The frequency-response curves show clearly the 
nonlinear nature of the wire-cable isolation system. 

*9w 

'/////////////////// 

Fig. 7 Vibration Isolation System with Wire-Cable Isolators 

4 A    /0.45g 
1 r 

3 \  \      0.40g 
Um        2.5 I   \/ 

(mm)   2 f\\   /0.35g 
1.5 ///-k.        ,0.30g 

1 ^A_y///;^^^^o-25g 
0.5 ^ä^^S ^^Saa^sSias=>fc__ 

10 15 20 25 

/(Hz) 

Fig. 8  Frequency Response Curves of Relative Displacement 
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7.   Concluding Remarks 

This paper reports a preliminary work of introducing the 
mathematical hysteresis models in structural and mechanical 
areas. It is shown that a wide kind of differential hysteresis 
models, which are extensively used at present, can be derived 
from the Duhem-Madelung (DM) model. Thus, the mathematical 
properties concerning the DM model are also possessed by these 
models. Two potential advantages appear when the DM 
formulation is used. Firstly, it allows to apply the force mapping 
technique to hysteretic systems. Secondly, it provides an 
approach to construct novel differential models which reflect 
some special hysteretic characteristics. The Preisach model is 
shown to be capable of representing nonlocal hysteresis and 
mathematically tractable. It offers a more accurate description of 
several observed hysteretic phenomena. Emphasis is placed on 
demonstrating the selective-memory nature of this hysteresis 
model. The case study based on experimental data of a wire- 
cable isolator has shown the applicability of the mathematical 
hysteresis model, and the validity of the steady-state response 
analysis method proposed in the present paper. 
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ABSTRACT 

The trend of placing turbines in modern power stations on flexi- 
ble steel foundations means that the foundations exert a considerable 
influence on the dynamics of the system. In general, the complex- 
ity of the foundations means that models are not available a priori, 
but rather need to be identified. One way of doing this is to use 
the measured responses of the foundation at the bearings to the 
synchronous excitation obtained when the rotor is run down. This 
paper discusses the implementation of such an estimation technique, 
based on an accurate model of the rotor and state of unbalance, and 
some knowledge of the dynamics of the bearings. The effect of errors 
in the bearing model and response measurements on the identified 
parameters is considered, and the instrumental variable method is 
suggested as one means of correcting them. 

1    INTRODUCTION 

The cost of failure of a typical turbine in a modern power station is 
very high, and therefore development of condition monitoring techniques 
for such machines is an active area of research. Condition monitoring relies 
on measuring machine vibrations and using them to locate and quantify 
faults, which obviously requires an accurate dynamic model of the ma- 
chine. Although the dynamic characteristics of rotors are generally well 
understood, the foundations on which they rest are not. Since the founda- 
tions are often quite flexible, they can contribute considerably to the rotor's 
dynamic behaviour. 

Finite element modelling has been attempted but the complexity of 
the foundations, and the fact that they often differ substantially from the 
original drawings rendered the technique generally unsuccessful[1]. Exper- 
imental modal analysis is another possible solution, but this requires that 
the rotor be removed from the foundation, and that all casings remain in 
place, which is not practical for existing power plant. However, mainte- 
nance procedures require that rotors are run down at regular intervals and 
this procedure provides forcing to the foundation over the frequency range 
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of operation. By measuring the response at the bearing pedestals (which 
is already performed for condition monitoring purposes) an input-output 
relation for the foundation may be obtained. 

Lees [2] developed a least-squares method to calculate the foundation 
parameters by assuming that an accurate model exists for the rotor, that 
the state of unbalance is known from balancing runs, and that the dynamic 
stiffness matrices of the bearings can be calculated. Although bearing mod- 
els are not in fact well characterised, Lees and Friswell[3] showed that the 
parameter estimates are only sensitive to the bearing stiffnesses over limited 
frequency ranges, which can be calculated. 

Feng and Hahn [4] followed a similar approach but added extra informa- 
tion by measuring the displacements of the shaft. Zanetta[5] also measured 
the shaft displacements but included the bearing characteristics as param- 
eters to be estimated. Although any extra information is desirable in a 
parameter estimation routine the equipment necessary to measure these 
quantities only exists in the newer power stations, and it was desired to 
make the method applicable to older plant as well. In the analysis presented 
here, the measured data consists of the motion of the bearing pedestals in 
the horizontal and vertical directions, although not necessarily in both di- 
rections at every bearing. 

2    THEORY 

2.1    Force estimation 

If D is the dynamic stiffness matrix of a structure defined as 

D(Lü) = K + IUJC-UJ
2
M (1) 

where M, C, K are the mass, damping and stiffness matrices then 

Dx = f (2) 

where x is response and / force. Referring to figure 1 it is seen that the rotor 
is connected to the foundation via the bearings. It is assumed that good 
models exist for both rotor and bearings, and that the state of unbalance 
is known. The implications of these assumptions will be discussed later. 

The dynamic stiffness equation for the whole system may be written as 

Dr       0    \   (  Xr  \  _  (  fT  \  _  (  fur  \  _  (  fbr    \ (3) 
0     Df J\xf J      \ff )      \   0   )      \fbf 

The subscripts r and / refer to the rotor and foundation degrees-of-freedom 
respectively, u refers to the unbalance forces and b to the bearing forces. 
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Figure 1: Rotor-bearing system 

There is a negative sign before the bearing forces /;, since they refer to the 
forces acting on the bearings. The foundation d.o.f are those where the re- 
sponses are measured, in other words no internal d.o.f are represented. Df 
therefore represents a reduced dynamic stiffness matrix. The response mea- 
surements will not be the total vibration level at the bearings but rather the 
vibrations at once-per-revolution and it is assumed that no dynamic forces 
at this frequency will be transmitted to the foundation via the substructure 
onto which it is fixed. 

The equation for the bearings in the global coordinate system is 

D, brr D brf 

Dbfr     Dbfj xf 

_  (   hr\ (4) 

This assumes that the bearings behave as complex springs, in other 
words they have negligible inertia and no internal d.o.f. Substituting (4) 
into (3) we have 

Dtrr     D 
Dtfr     Dtff 

trf 
Xf 

JUr 

0 (5) 

where 

DtTT     Dtrj 

Dtfr     Dtff 

f   = 
DT     0 
0     Df 

+ Dt 

D, 
brr 

'bfr 

Dt 

D 
brf 

bff 
(6) 
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and where subscript t refers to the total model. Solving equation (5) for 
xT leads to 

xr = D£(fUr-Dtrfx/) (7) 
and solving equation (4) for fbf yields 

fbf = -fbr = ~DbTrxr - Dbrfxf (8) 

All quantities in equation (8) are known either from assumed models (DT, -D&) 
or experiment (aj/, fUT). This calculated force fbf may then be used to- 
gether with the measured responses to estimate the foundation parameters. 

2.2    Foundation parameter estimation 

Once the forces have been estimated, the foundation parameters must 
be derived. The dynamic stiffness equation for the foundation is 

Dfxf = fbf (9) 

Although Df is a reduced stiffness matrix it is assumed that it has the 
form of equation (1). Therefore equation (9) may be written as 

W(u)v = fbf (10) 

where v is a column vector formed from the elements of M, C and K and 
W is a matrix formed from the response vector which depends explicitly on 
UJ. Clearly this is an under-determined set of equations, but by taking mea- 
surements at many frequencies it may be made over-determined, and thus 
solvable in a least squares sense. Since the magnitude of the mass, damp- 
ing and stiffness elements normally differ by several orders-of-magnitude, it 
was found expedient to scale the mass parameters by w2, and the damping 
parameters by w, where To is the mean value of the frequency. 

2.3    Errors in estimates 

It is necessary now to examine the effect of errors on the parameter esti- 
mates. Equation (10) is of the form Ax = b, where A has dimension rnxn. 
In this particular case, A depends on the measured response Xf, whilst b 
depends on the measured response, applied unbalance, and assumed rotor 
and bearing models. Therefore the estimated parameters will be sensitive 
to the following errors: 

1. Errors in the rotor model 
2. Errors in the bearing model 
3. Errors in the state of unbalance 
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4. Errors in the measured foundation response 
The rotor model is generally well known, as is the state of unbalance, 

so the main source of error in the estimates is due to measurement noise 
and bearing uncertainty. If the least squares problem is formulated as 

Ax = b (11) 

then 
(A0 + AN)x = b0 + bN (12) 

where the subscript N refers to noise and 0 to data which is noise-free. The 
least-squares estimate is given by 

x = (AjAo + AT
NAN + A^AN + AT

NA0)-
l{A0 + AN)T{bD + bN)   (13) 

Even if the noise on the outputs is uncorrelated with the noise on the inputs 
the expected value of x does not equal that of its estimate: 

E[x] - E\x] ^ 0 (14) 

In other words the estimate x is biased [6]. In order to reduce the bias of 
the estimates, the instrumental variables method can be used. Essentially, 
it requires the use of a matrix that is uncorrelated with the noise on the 
outputs, but which is strongly correlated with the noise-free measurements 
themselves. If W is the instrumental variable matrix, then 

WTAx = WTb (15) 

Expanding 
x = {WTA0 + WTAN)-l{W)T{b0 + bN) (16) 

This means that E[x] = x, in other words unbiased estimates result. 
Fritzen[7] suggested an iterative method for solving for the parameters. 
Initially, equation (10) is solved in a least-squares sense, and the values 
of the estimated parameters are used to calculate outputs for the model. 
These outputs are then used to create W in the same way as the original 
outputs were used to create A, new estimates are obtained, and if neces- 
sary the process is repeated. Experience seems to suggest good convergence 
properties[7]. 

3    SIMULATION 

The method under discussion in this paper was tested on a model of a 
small test rig located at Aston University, Birmingham. This consists of 
a steel shaft approximately 1.1m long, with nominal diameter 38mm. The 
shaft is supported at either end by a journal bearing of diameter 100mm, 
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Figure 2: Rotor-bearing system 

L/D ratio of 0.3 and clearance of 25yum. There are two shrink-fitted bal- 
ancing discs for balancing runs. Each bearing is supported on a flexible 
pedestal to simulate the flexible foundations encountered in power station 
turbines. At present these pedestals are bolted onto a massive lathe bed. 
The rotor is powered by a DC motor attached via a belt to a driving pulley, 
which is in turn attached via a flexible coupling to the main rotor shaft. 

A schematic of the rig is shown in figure 2. Dimensions of each station 
and material properties are given in table 1. A finite element model of the 
rotor with 23 elements was created and short bearing theory was used to 
obtain values for the bearing stiffness and damping[8]. 

The pedestals themselves consist of two rectangular steel plates, 600mm 
x 150mm which have two channels cut into them, and which are supported 
on knife-edges (figure 3). The vertical stiffness arises from the hinge effect 
of the channels, whilst the horizontal stiffness is as a result of the shaft 
centre tilting under an applied load. Treating the supports as beams, the 
theoretical stiffnesses are: 

Ky = 0.55MN/m     Kx = 1.5MN/m 

where x and y refer to the horizontal and vertical directions respectively. 
The masses and damping factors were taken as: 

Mx = My = 50kg      Cx = Cy = 150N ■ s/m 

The estimation theory was tested using this model. The finite element 
model was used to generate responses at the bearings for frequencies from 
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Table 1: Table of rotor rig properties 

Shaft Propert ies 
Station Length (mm) Diameter (mm) E (GPa) P (kg/m3) 

1 6.35 38.1 200 7850 
2 25.4 77.57 200 7850 
3 50.8 38.1 200 7850 
4 203.2 100 200 7850 
5 177.8 38.1 200 7850 
6 50.8 116.8 200 7850 
7 76.2 38.1 200 7850 
8 76.2 109.7 200 7850 
9 76.2 38.1 200 7850 
10 50.8 102.9 200 7850 
11 177.8 38.1 200 7850 
12 203.2 100 200 7850 

Balancing discs 
Station Length (mm) Diameter (mm) Unbalance (kg • m) 

6 25.4 203.2 0.001 
10 25.4 203.2 0.001 

0 to 30 Hz with a spacing of 0.1 Hz. The responses were corrupted by 
normally distributed random noise with zero mean and standard deviation 
of 0.1% of the maximum response amplitude (applied to both real and 
imaginary parts of the response). At each frequency the bearing static 
forces were disturbed by noise drawn from a uniform distribution spanning 
an interval of 20% of the force magnitude, to introduce uncertainty into the 
bearing parameters. The unbalance was assumed to be exactly known. A 
series of 30 runs was performed, foundation parameter estimates calculated 
and the mean and standard deviations of these estimates obtained. 

The magnitudes of the responses at both bearings are given in figure 4, 
which show that there are four critical speeds in the frequency range under 
consideration. A sample of true and estimated forces in the bearings are 
shown in figures 5 and 6. 

The means (/z) and standard deviations (a) of the least-square (LS) 
and instrumental variable (IV) estimates for the foundation parameters 
are shown in table 2. 
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4    DISCUSSION 

The results in table 2 show a clear improvement in parameter estimates 
when the instrumental variable method is used. There is a clear bias in 
the least-squares estimates which is significantly less when the instrumen- 
tal variable method is employed. Also, despite the fact that the bearing 
parameters are assumed to be seriously in error, the estimates appear to be 
insensitive to them. This will be true provided that the bearings are much 
stiffer than the foundation (a reasonable assumption in practice). It does 
appear however that in some cases the standard deviation of the instru- 
mental variable estimate is larger than that of the least-squares estimate, 
a fact which warrants further investigation. 

As far as the rotor model is concerned, impact tests, which are per- 
formed on rotors prior to them entering service, normally give experimental 
frequencies which are within a few percent of the theoretical ones. Thus 
the assumption that the rotor model is accurately known would appear to 
be reasonable. 

The state of unbalance may in theory be established from a balancing 
run. If two successive run-downs are performed, one due to the unknown 
system unbalance and one with known balance weights attached, then pro- 
vided the system is linear the response measurements may be vectorially 
subtracted to give the response due to the known balance weights alone. 
In order to ascertain the effect of unbalance uncertainty on the parameter 
estimates, one run was performed assuming no error in the unbalance. It 
should be noted that this assumes that the system is linear. 

5    CONCLUSIONS 

A method of estimating turbogenerator foundation parameters from 
potentially noisy measurement data is demonstrated. It is shown that 
making use of the instrumental variable method reduces the bias in the 
estimates and improves them quite significantly. 
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SHELL MODE NOISE     IN RECIPROCATING REFRIGERATION 
COMPRESSORS 

Cüneyt Öztürk and Aydin Bahadir 
Türk Elektrik Endüstrisi A.S 

R&D Department 
Davutpasa, Litros Yolu, Topkapi -34020, Istanbul, Turkey 

ABSTRACT 

This study describes the successful endeavor to understand the causes of noise 
that appear on the shell modes of the reciprocating refrigeration compressors. 
The compressor shell is generally considered as the acoustic enclosure that 
reflects the acoustic energy back into the compressor cavity but also as the 
transmitter and radiator of the transmitted acoustic energy that could be 
radiated into the air or transmitted to the structure. Vibrations of the 
compressor shell can easily be characterized in terms of the modal parameters 
that consist of the natural frequencies, mode shapes and damping coefficients. 
The noise source harmonics and the shell resonances couple to produce the 
shell noise and vibration. The harmonic spacing is equal to the basic pumping 
frequency. Results of the studies indicate that important natural frequencies of 
the compressor shell usually stay between 2000-6000 Hz interval. The 
important natural frequencies are first natural frequencies in the lower range 
with the longer wavelengths that radiate well. 

INTRODUCTION 

Compressor noise sources are those processes where certain portions are 
separated from the desired energy flow and transmitted through the internal 
components of compressor to the hermetic shell where it is radiated from the 
shell as airborne noise on vibration of supporting structure will eventually 
radiate noise from some portion of the structure. Noise sources of the 
reciprocating refrigeration compressors can be classified as motor noise, 
compression process noise and valve port flow noise. 
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In reciprocating compressors there is very high density of noise harmonics even 
though they decay in amplitude at high frequencies. Generally, these noise 
source harmonics and the shell resonances couple to produce shell noise and 
vibration 

NOISE GENERATION MECHANISM 
REFRIGERATION COMPRESSORS 

OF THE RECIPROCATING 

Significance of the problem 
The results of the sound radiation characteristics shown at figure 1 indicated 
that certain high amplitude frequency components had very distinctive sound 
radiation patterns. It was suspected these frequencies correspond to excitation 
of either structural resonances of the compressor shell or acoustic resonances of 
the interior cavity space. Resonances those amplify the noise and vibration 
caused by pumping harmonics of a compressor and thus can be the cause of 
significant noise problems. 

Sound power - A-Weighted 

,0 630,0 800,0  1,0k 
Frequency [Hz] 

Figure 1, Noise Radiation Characteristics of Reciprocating Refrigeration 
Compressor. 

Noise sources 
Noise in a compressor is generated during cyclic compression, discharge, 
expansion and suction process. The character of noise sources is harmonic due 
to periodic nature of the compression process. These harmonics are present in 
the compression chamber, pressure time history and loading of the compressor 
through drive system. The motor can not provide immediate response to load 
harmonics and load balance is obtained at the expense of acceleration and 
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deceleration of the motor drive system. Harmonic vibrations of the motor drive 
system can then excite the resonant response in the compressor components 
that can transmit the acoustic energy in very efficient way. The rest of the noise 
sources are, turbulent nature of flow depending to passage through valve ports, 
valve impacts on their seats and possible amplification when matched with 
mechanical resonances. 

MECHANICAL FEATURES OF SHELL 

Mechanical features of the compressor 
The hermetically sealed motor compressor comprises in general a motor 
compressor unit including a motor assembly mounted with a frame and a sealed 
housing within which the compressor is supported by means of plurality of coil 
springs each having one end spring with the frame and the other end connected 
with the interior of the housing. 

The refrigerant gas as it is compressed in the cylinder is discharged through the 
discharge chamber in the cylinder head into the discharge muffler. The 
discharge muffler is generally mounted on the cylinder head attached in 
covering relation to an end face of the cylinder. Where the sealed casing is 
spherical in shape for better noise suppression, an upper end of the cylinder 
head tends to interfere with an inner wall surface of the casing, a disadvantage 
that can only be eliminated by increasing the size of scaled casing for providing 
a desired hermetically sealed motor. 

Compressor Shell 
The shell is easily be characterized with the modal parameters. The ideal shell 
should be designed in a way that keep all the excitation frequencies at the mass 
controlled region of all its modes. But, depending on the very tight constraints 
that come with the gas dynamics and motor locations, it is not allowed to be 
flexible during the design of shell. As a consequence of the existing design 
limitations natural frequencies of the shell usually fall between 1000-5000 Hz. 

SHELL RADIATION 

Figure 1 illustrates how the sound pressure level of a pumping harmonic can 
increase as it nears a resonant frequency. The sound pressure level of the 
pumping harmonic increases around the shell resonances. The resonance 
generally radiates primarily from the large flat sides of the compressor. There 
are three major acoustic cavity resonances 400, 500 and 630 Hz and four major 
structural resonances of the compressor shell: around 1.6 K, 2 K, 2.5 and 3.2 
K. Hz at which noise radiates well in certain directions. 
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SHELL RESONANCES 

Figures 2, 3 and 4 illustrate the frequency responses of the compressor shell 
when measured with the impact hammer method. Figure 2 is the response to 
the excitation in x direction, figure 3 is for the excitation direction and figure 4 
is for the excitation in z direction. 

Front :   32 

(TII/S2)/N 
Log 

8.01 

Figure 2, Frequency response of the compressor shell when excited in X 
direction. 

Front   :    37 
iB8 IP1     r 

(tn/s2)/H 
Log 

8.001 

"T—r ""—i—r -i 1 r 

Figure 3, Frequency response of the compressor shell when excited in   Y 
direction. 
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(m/s2)/N 
Log 

0.01 

Figure 4, Frequency response of the compressor shell when excited in Z 
direction. 

To verify the hypothesis that resonances were contributing to some of the noise 
problems of the reciprocating piston compressor, a modal analysis of the shell 
and interior cavity was performed. 

For the shell modal analysis, the accelerometer to measure the response 
remained stationary, while the impact location was moved. The test was 
performed in this manner for convenience since it was easier to fix the 
accelerometer in one location and strike the compressor with force hammer at 
each grid point to obtain transfer function for each measurement location. 
Identical results are obtained if impact occurred at a single point and the 
response was measured at each measurement location. Preliminary test were 
performed initially to identify an appropriate measurement location at which all 
important natural frequencies of shell are detectable. Several force input and 
response locations were evaluated to determine the best location to mount 
accelerometer to measure the shell response. 

The shell resonances are also calculated by using the Structural FEM analysis. 
Table-1 lists the natural frequencies predicted in these studies. During the finite 
element analysis, the models of the compressor were built, based on the CAD 
models. The shell consists of 7500 elements. The mesh densities are quite 
adequate for the structural analysis in the frequency range of interest. In order 
to investigate the possible influence of the crank mechanism on the natural 
frequencies of the shell, a simple model of the crank mechanism was introduced 
to the FE model. During the calculations, the crank mechanism was simplified 
as a rigid block with certain mass and rotary inertia and modeled with solid 
elements.   The shell and the crank mechanism have been suspended with the 
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springs from 3 positions and in all 6 transitional and rotational directions. 
Depending on the negligible spring effect on the longitudinal direction, 
estimated values have been used in 5 directions. The FE model has been 
assumed to be free-free. 

Mode 
# 

Frequency 
Hz 

Mode 
# 

Frequency 
Hz 

1 1997 21 4716 

2 2027 22 4925 

3 2293 23 4994 

4 2418 24 5110 
5 2605 25 5159 
6 2754 26 5454 
7 2889 27 5476 
8 3258 28 5738 

9 3332 29 5761 
10 3336 30 5783 
11 3376   _j 31 5936 
12 3551 32 5999 
13 3577 33 6035 
14 3606 34 6055 
15 3788 35 6183 
16 3958 36 6237 
17 4383 37 6314 
18 4481 38 6318 
19 4644 39 6670 
20 4702 40 6701 

Table-1, Calculated Natural Frequencies of the Shell 

Figures 5, 6, 7 and 8 illustrate how the mode shapes of the shell vary at the 
mode frequencies of 2754, 3332, 3551 and 3788 Hz . These figures indicate 
that the shell vibrates predominantly along the large flat sides of the compressor 
at points where the suspension springs are attached to the shell wall at these 
natural frequencies. When referred to figure 1 of the noise radiation this 
frequency range is also the range where the noise radiates efficiently from the 
large flat sides of the compressor. Thus, there is good correlation between the 
acoustic data and structural data for these frequencies. The slight discrepancies 
in the structural natural frequencies and the acoustic data. Acoustic data have 
been picked up at the shell temperature of the reciprocating piston compressor 
that could reach up to 110 ° C. 
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Figure 5, Predicted mode shape at 2754 Hz. 
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Figure 6, Predicted mode shape at 3332 Hz. 
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Figure 7, Predicted mode shape at 3551 Hz. 
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Figure 8, Predicted mode shape at 3788 Hz 
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The modal analysis results also indicate that the compressor suspension springs 
are attached to a point on the shell where the shell is comparatively compliant. 
Thus, the vibrational energy transmitted through the springs to the compressor 
shell can and did effectively excite the shell vibrations. Also, significant shell 
vibrations occur along the large flat sides of the compressor shell indicating the 
curvature of the shell needs to be increased to add stiffness to the shell. 

Based on the results of the shell modal analysis, it is recommended the 
suspension springs moved away from the compliant side walls of the shell. A 
four spring arrangement at the bottom of the shell near corners where the 
curvature is sharp would reduce the amount of vibration energy transferred to 
the shell because of the reduced input mobility of the shell at these locations. 

It is also believed increasing the stiffness of the shell by increasing the curvature 
will provide noise reduction benefits. The greater shell stiffness lowers the 
amplitude of the shell vibrations. Figure 9, illustrate the third octave change in 
compressor noise with the same compressor in the new shell. An over all noise 
level of 5 dB A has been obtained. 

Sound power - A-Weighted 

Figure 9   Compressor noise level improvement after the shell modification. 

The increased shell stiffness also raises the natural frequencies of the shell 
where there is less energy for transfer function response. However, there is a 
possible disadvantage to increasing stiffness of the shell. The higher natural 
frequency lowers critical frequency of the shell thus reducing transmission loss 
of the shell. 
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Damping treatments can also have obvious benefits in vibration and noise 
reduction. Visco elastic and Acoustic dampings are considered to avoid the 
shell excitations. The application of dampers can also provide up to 5 dBA 
reductions when appropriately located on the shell. 

CONCLUSION 

The results of studies indicate that structural resonances of the shell are indeed 
amplifying the noise due to the pumping harmonics of the reciprocating 
refrigeration compressor to cause significant noise radiation outside of 
compressor. 

In order to tackle with this noise problem, within the scope of these studies 
two different effective shell noise control are considered based on the results of 
numerical and experimental structural analysis and acoustic features of the 
reciprocating compressor. First, shell noise control method is the redesign of 
the shell with increased stiffness by replacing all the abrupt changes in the 
curvature with the smooth continuous changes. It is apparent that change in the 
shell configuration can shift the first shell resonance from 1750 Hz to nearly 
3200 Hz. The results of the redesign effects can reach up to 3-5 dBA reduction 
on third octave noise levels. Second treatment that could be applied against the 
excitation of shell resonances are considered as the acoustic and viscoelastic 
dampers. These dampers can be chosen to operate efficiently at the shell 
resonant frequencies. These two applications can also provide up to 2-5 dBA 
reduction on the third octave band of the noise emission but the long term 
endurance and temperature dependence of these materials can always be a 
question mark when considered from the manufacturer point of view. 
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A COMPARATIVE STUDY OF MOVING FORCE IDENTIFICATION 
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ABSTRACT 

Traditional ways to acquire truck axle and gross weight information are 
expensive and subject to bias, and this has led to the development of Weigh- 
in-Motion (WIM) techniques. Most of the existing WIM systems have been 
developed to measure only the static axle loads. However dynamic axle loads 
are also important. Some systems use instrumented vehicles to measure 
dynamic axle loads, but are subject to bias. These all prompt the need to 
develop a system to measure the dynamic axle loads using an unbiased 
random sample of vehicles. This paper aims to introduce four methods in 
determining such dynamic forces from bridge responses. The four methods are 
compared with one another based on maximum number of forces to be 
identified, minimum number of sensors, sensitivity towards noise and the 
computation time. It is concluded that acceptable estimates could be obtained 
by all the four methods. Further work includes merging the four methods into 
a Moving Force Identification System (MFIS). 

INTRODUCTION 

The truck axle and gross weight information have application in areas 
such as the structural and maintenance requirements of bridges and pavements. 
However, the traditional ways to acquire that are expensive and subject to bias, 
and this has led to the development of Weigh-in-Motion (WIM) techniques. 
Some systems are road-surface systems which make use of piezo-electric 
(pressure electricity) or capacitive properties to develop a plastic mat or 
capacitive sensors to measure axle weight [1]. Another kind of WIM system is 
the under-structure systems in which sensors are installed under a bridge or a 
culvert and the axle loads are computed from the measured responses e.g. 
AXWAY [2] and CULWAY [3]. All the above mentioned systems can only 
give the equivalent static axle loads. However dynamic axle loads are also 
important as they may increase road surface damage by a factor of 2 to 4 over 
that caused by static loads [4]. Some systems use instrumented vehicles to 
measure dynamic axle loads [5], but are subject to bias. These all prompt the 
need to develop a system to measure the dynamic axle loads using unbiased 
random samples of vehicles. Four methods are developed to determine such 
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dynamic forces from bridge responses which include bending moments or 
accelerations. 

EQUATION OF MOTIONS FOR MOVING LOADS 

The moving force identification methods described in this paper are the 
inverse problems of an predictive analysis which is defined by O'Connor and 
Chan [6] as an analysis to simulate the structural response caused by a set of 
time-varying forces running across a bridge. Two models can be used for this 
kind of analysis. 

A.    Beam-Elements Model 

O'Connor and Chan [6] model the bridge as an assembly of lumped 
masses interconnected by massless elastic beam elements as shown in Figure 1, 
and the nodal responses for displacement or bending moments at any instant 
are given by Equations (1) and (2) respectively. 

Moving Loads       1PM       «IPM-I    —    vP2      J?i 

zs—D—D— D—D—z^ 
Lumped Masses 1 2 ... N-l      N 

Figure 1 - Beam-Elements Model 

{Y} = [YA]{P}-[Y,][Am]{Y}-[Y,][C]{Y} (1) 

{BM} = {BMA]{P}-[BMl][Am]{Y]-[BMI][C]{Y} (2) 

where [P] is a vector of wheel loads, [Am] is a diagonal matrix containing 

values of lumped mass, [C] is the damping matrix, BM, Y, Y, Y are the nodal 
bending moments, displacements, velocities and accelerations respectively, 
[R4] ('i?' can be Y or BM) is an m x n matrix with the ith column representing 
the nodal responses caused by a unit load acting at the position of the ith wheel 
load and [R,] ('i?' can be Y or BM) is an n x n matrix with the ith column 
representing the nodal responses caused by a unit load acting at the position of 
ith internal node. 
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B.    Continuous Beam Model 

Assuming the beam is of constant cross-section with constant mass per 
unit length, having linear, viscous proportional damping and with small 
deflections, neglecting the effects of shear deformation and rotary inertia 
(Bemoulli-Euler's beam), and the force is moving from left to right at a 
constant speed c, as shown in Figure 2, then the equation of motion can be 
written as 

p^A+C^l + EI^A = 5{X-ct)m a1 a ae (3) 

where v(x,t) is the beam deflection at point x and time t; p is mass per unit 
length; C is viscous damping parameter; E is Young's modulus of material; / 
is the second moment of inertia of the beam cross-section; f(t) is the time- 
varying force moving at a constant speed of c, and 8(t) is Dirac delta function. 

\f(t) 

& /7T77 X 
Ct 

—D 
/77T7 

Figure 2 - Simply supported beam subjected to a moving force f(t) 

Based on modal superposition, the dynamic deflection v(x,t) can   be 
described as follows: 

.(x,o = £o„oc)9„(o (4) 

where n is the mode number; <Pn(
x) IS tne mode shape function of the n-th 

mode and qn(t) is the n-th modal amplitudes. 

Based on the above mentioned predictive analyses, four Moving Force 
Identification Methods (MFIM) are developed. 

1085 



FIRST MOVING FORCE IDENTIFICATION METHOD 
INTERPRETIVE METHOD I - BEAM-ELEMENTS MODEL (IMI) 

It is an inverse problem of the predictive analysis using beam-elements 
model. From Equation (1), it can be seen that if Y is known at all times for all 
interior nodes, then Y and Y can be obtained by numerical differentiation. 
Equation (1) becomes an overdetermined set of linear simultaneous equations 
in which the P may be solved for them. However a particular difficulty arises 
if measured BM axe used as input data. Remembering that the moving loads P 
are not normally at the nodes, the relation between nodal displacements and 
nodal bending moments is 

{Y} = [YI>]{BM} + [YC]{P} (5) 

where [1£-]{.P} allows for the deflections due to the additional triangular 
bending moment diagrams that occur within elements carrying one or more 
point loads P. [Yc]can be calculated from the known locations of the loads. 
[YB] and {i?M}are known, but {7} cannot be determined without a 
knowledge of {P}. O'Connor and Chan [6] describe a solution uses values of 
{P} assumed from the previous time steps. 

SECOND MOVING FORCE IDENTIFICATION METHOD 
INTERPRETIVE METHOD II - CONTINUOUS BEAM MODEL (IMII) 

From the predictive analysis using continuous beam model, if the r'th- 
, _ ,   ,   , .      .  inx    , 

mode shape function of the simply supported Euler s beam is  sin——, then 

the solution of Equation (3) takes the form 

v = f>in^K,(0 (6) 

where  V^t), (i = 1, 2, • • •) are the modal displacements. 

Substitute Equation (6) into Equation (3), and multiply each term of 
Equation (3) by the mode shape function sin(j;rx / L), and then integrate the 
resultant equation with respect to x between 0 and L and use the boundary 
conditions and the properties of Dirac function. Consequently, the following 
equation can be obtained 
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IP 
VJ(t) + 2Cj(OU)VJ(t) + a>2u)VJ0) = —smja)t 7 = 1,2,---        (7) 

/J L 

where ar,,, = U) 
A" El 

CM = 
c 

2M&U) 
atthej-thmode. 

If there are more than one moving loads on the beam, Equation (7) can be 
written as 

.  7c(ct-x.)      .  x(ct-x,) 
sin— —     sin ^- X ~2CM~ ~co]v; 

V, 
+ 

2£2a)zV2 + 
w;V2 2 

~ Ml 

k. _2C„co„V„_ <o)y„_ 

L L 

.   2rc(ct-x.) .   27r(ct-x^) 
sin— —    sin — 

.   im{ct-x,) .   nxfct-x,) 
sin— —    sin — 

n(ct-xk) ' 

L 
lK{ct-xk) 

nrc(ct-xk) 
L 

(8) 

in which xk is the distance between the k-th load and the first load and x, = 0. 

If P, P2>..., Pk are constants, the closed form solution of Equation (3) is 

I3    k 

v(x,t) = ^-YpiY- ^  ,^   ,    , -sin"  sin^—±-—'- smco(Jt-x,/c)\ (9) 

in which    a = 
nc 

Leo 

If we know the displacements of the beam at x,, x2, ■■■ ,x,,    the moving 
loads on the beam are given by 

in which    {v}=[v,    v2    •••    v,f        {P}=[Pt    P    ■■■    Pk] 

(10) 

N = ,    where 

U   A         1           .   jnxJ .   jn{ct-x,)    a  . ,     .  , N 
s . = >^—- r-sin- - sin— -- — smo.iM-x, Ic) 
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If l>k, that means the number of nodal displacements is larger than or 
equal to the number of axle loads, then according to the least squares method, 
the equivalent static axle load can be given by 

{M[^nM"[^nv} (n) 

If the loads are not constant with time, then central difference is used to 
proceed from modal displacements to modal velocities and accelerations. 
Equation (8) becomes a set of linear equations in which Pk for any instant can 
be solved by least squares method. Similar sets of equations could be obtained 
for using bending moments to identify the moving loads. 

THIRD MOVING FORCE IDENTIFICATION METHOD 
TIME DOMAIN METHOD (TDM) 

This method is based on the system identification theory [7]. Substituting 
Equation (4) into Equation (3), and multiplying each term by <Pj(x), integrating 
with respect to x between 0 and L, and applying the orthogonality conditions, 
then 

^ + 2^^ + .lqi,(0^P,X0 (12) 
dr dt M„ 

where con is the modal frequency of the n-th mode; E,n is the damping ratio of 
the n-th mode; Mn is the modal mass of the n-th mode, pn(t) is the modal force 
and the mode shape function can be assumed as  0„(x) = sin(nnx I L). 

Equation (12) can be solved in the time domain by the convolution 
integral, and yields 

i   '. 

(13) 

t>0 (14) 

(15) 

Substituting Equation (13) into Equation (4), the dynamic deflection of 
the beam at point x and time t can be found as 

v(x,0 = y ^^sin—'fe-?""""('"r) smo)'„(t- r)sin^^/(r)dr    (16) 
„,\pLto„        L I L 
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A.    Force Identification from Bending Moments 

The bending moment of the beam at point x and time t is 

■ d2v(x,t) 
m{x,t) = -EI- 

(3c2 
(17) 

Substituting Equation (16) into Equation (17), and assuming the force f(t) 
is a step function in a small time interval and f(t) =0 at the entry and exit, then 
let 

C„ 
2Ein:2 n~ .    riTDC , 

sin At, 
pU    w„        L 

Ek -EnO)„&lk 

n    ~e » 

Sl(k) = sm(co'nAtk\ 

„ ...      . .nncAt,. 
S2(T) = sin(——k) 

L 

Equation (17) can be expressed as 
cAr 

(18) 

(19) 

m{2) 

m(3) 
■ = Z c„, 

£,',5,(1)5,(1) 

£;5, (2)5,(1) 

0 

£,15,(1)5,(2) 

•    0 

■     0 /(2) > 

m{N)^ _£,;v-'5,(Ar-1)5,(1) £,;v-25,(7V-2)5,(2)   • ■  K. AN„-\\ 
(20) 

where A; is the sample interval and AM-/ is the number of sample points, and 

b« = CVyi+'5, (N - NK +1)5, (NB -1) 

Equation (20) can be simplified as 

B f    =   m 
(A'-l)x(,VÄ-t) ('V^-l)xl        (,V-l)xl 

(21) 

If N = Nß matrix B is a lower triangular matrix. We can directly find 
the force vector f by solving Equation (21). If N > Nßt and/or N[ bending 
moments (Aty > 1) are measured, least squares method can be used to find 
the force vector f from 
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|"B,1 m, 

B2 f = • 
m, 

.BV ™N, 

(22) 

The above procedure is derived for single force identification. Equation 
(21) can be modified for two-forces identification using the linear 
superposition principle as 

\B" 
0" 

B„ B„ 

LBc BJ 
= m (23) 

where Ba[Nsx(NB-l)] Bb [(N -l-2Ns)x (NB-1)], and Bc [Nsx (NB -1)] are 
sub-matrices of matrix B. The first row of sub-matrices in the first matrix 
describes the state having the first force on beam after its entry. The second 
and third rows of sub-matrices describe the states having two-forces on beam 
and one force on beam after the exit of the first force. 

B.    Identification from Bending Moments and Accelerations 

Similarly the acceleration response of the beam can be expressed as 

f     = V 
.Vxl 

(24) 

The force can also be found from the measured acceleration from 
Equation (24). If the bending moments and accelerations responses are 
measured at the same time, both of them can be used together to identify the 
moving force. The vector m in Equation (21) and v in Equation (24) should be 
scaled to have dimensionless unit, and the two equations are then combined 
together to give 

B/||m|]      |m/||m||, 
(25) 

A/ v 
f = - 

V /   V 

where IWI is the norm of the vector. 

FOURTH MOVING FORCE IDENTIFICATION METHOD 
FREQUENCY DOMAIN METHOD (FDM) 

Equation (12) can also be solved in the Frequency Domain. Performing 
the Fourier Transform for Equation (12), 
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ß» = — T\Z -77-p» (26) 

where 

PAa>) = ^-)p»(t>-ia& (27) 
in J 

ö„(ö)) = ^-k(Oe-i"'df (28) 
271   J 

Let #» = - 5-rr  (29) 
CO" -co-+2^,,©„co 

#H(ö^ is the frequency response function of the n-th mode. Performing the 
Fourier Transform of Equation (4), and substituting Equations (26) and (29) 
into the resultant equation, the Fourier Transform of the dynamic deflection 
v(x,t) is obtained as 

J/(x,co) = X-^0„(x)#„(co)P„(co) (30) 

A.    Force Identification from Accelerations 

Based on Equation (30), the Fourier Transform of the acceleration of the 
beam at point x and time t can be written as 

V{x,co) = -o>2X-^<D„(x)//„(«)P„(^) (31) 

Considering the periodic property of the Discrete Fourier Transform (DFT), 
and let 

Hm(m) = -^L0H(x)HH{m) (32) 

Equation (32) can be rewritten as 
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,m = 0,l, ...,N-1    (33) 

V{m) = £ Hx„(myV„{mpR^) + ^(0)] 

W/2-1   to      

iV/2-l   oo      

*=1  11=1 

+JT #v„ (W)T„ (OT - tf / 2)[F„ (N12) - Uv (N12)] 

where  !fH is the Fourier Transform of the n-th mode shape, and F is the 
Fourier Transform of the moving force. 

Writing Equation (33) into matrix form and dividing F and  V  into real and 
imaginary parts, it yields 

VR 

{N+2)x\ 

ARR An 

ARI     AIR J I Y 
(/V+2)x(;V+2) 

(34) 

(/V+2)xl 

Because  F,(0) = 0,F,(N/2) = 0,V,(0) = 0,V,(N/2) = 0, Equation (34) can 
be condensed into a set of TV order simultaneously equations as 

V    = A F VRI        rtDrRI (35) 

FR and F, can be found from Equation (35) by solving the Nth order linear 
equation. The time history of the moving force f(t) can then be obtained by 
performing the inverse Fourier Transformation. 

If the DFTs are expressed in matrix form, the Fourier Transform of the 
force vector f can be written as follows if the terms in fare real [8]. 

F = —Wf 
N 

where W = C ■i2kx/N 

(36) 

(37) 
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0 0 0    ■• •    0 0 

0 1 2 ■   -2 -1 

0 2 4    • •   -4 -2 

0 -2 -4   • •    4 2 

0 -1 -2   ■ .    2 1 -IN xN 

The matrix W is an unitary matrix, which means 

(38) 

where W* is a conjugate ofW. Substituting Equation (36) into Equation (35), 

N A'x/V, 

(39) 

or 

V=^A WB fB 
iVxl 

(40) 

linking the Fourier Transform of acceleration V with the force vector fB of 
the moving forces in the time domain. WB is the sub-matrix of W. If N = Nß 
fB can be found by solving the Mh order linear equations. UN>Nß or more 
than one accelerations are measured, the least squares method can be used to 
find the time history of the moving force f(t). 

Equation (40) can be rewritten as follows 

v 
/Vxl (w*)r A W. 

/Vx,V 
;Vx/V B 

NxN„ "" 
u 

,V„xl 
(41) 

relating the accelerations and force vectors in the time domain. Also if N = 
Nß fB can be found by solving the Nth order linear equation. If N > Nß or 
more than one acceleration are measured, the least squares method can be 
used to find the time history of the moving force f(t). 

If only Nc (Nc < N) response data points of the beam are used, the 
equations for these data points in Equation (41) are extracted, and described as 

"<-■ 

(wR)
r - V      B /     JV 

A  W„  f 
/V(. x N 

B (42) 
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In usual cases Nc > NB, so the least squares method is used to find the time 
history of the moving force f(t). More than one acceleration measurements at 
different locations can be used together to identify a single moving force for 
higher accuracy. 

B.    Identification from Bending Moments and Accelerations 

Similarly, the relationships between bending moment m (and M) and 
the moving force f can be described as follows, 

M = — B    W   fB (43) 
,Vxl       N NxN NxNB ,v„xl 

m =(w*)r B   WR  fB (44) 

m   =(w*)r B   WB  fB (45) 

The force vector fB can be obtained from the above three sets of 
equations. Furthermore, these equations can be combined with Equations (40), 
(41) and (42) to construct overdetermined equations before the equations are 
scaled. Two forces identification are developed using the similar procedure as 
that for the Time Domain Method. 

COMPARATIVE STUDY 

The first moving force identification method is implemented in a 
computer program using FORTRAN, while the other three methods are 
implemented under the environment of a high performance numerical 
computation and visualization software. The predictive analysis using beam- 
elements model is used to generate the theoretical bridge responses and the 
four moving force identification methods then use these responses to recover 
the original dynamic loads. In this study, if at least 80% of the identified 
forces at any instant of any load lie within ± 10% of the original input force, 
the method is considered acceptable. It is found that all the four methods can 
give acceptable results. 

It is decided to carry out a preliminary comparative study on the four 
methods in order to study the merits and limitations of each method so as to 
consider the future development of each method and devise a plan to develop a 
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moving force identification system which can make use of the benefits of all 
the four methods. 

A. Maximum Number of Forces 

This is to examine the maximum number of axle loads that can be 
identified by each method. Theoretically, provided that sufficient number of 
nodal sensors are installed, IMI and IMII can be used to identify as many loads 
as the system allows. Basically, the number of axle loads cannot be larger than 
the number of nodal sensors. Regarding TDM and FDM, as the formulation of 
the governing equation is derived for two moving forces, the maximum 
number of axle loads that can be identified is two. 

B. Minimum Number of Sensors 

Based on a study of common axle spacings of vehicles currently 
operating on Australian roads, and the cases with zero nodal responses, 
O'Connor and Chan [6] state the relationships of the minimum number of 
sensors used for IMI and the span length of a bridge as follows: 

Using bending moment, for span length L > 4.8m, 

Min. number of nodal moments required = INT\ —  + 4       (46) 

Using displacements, for span length L > 13.8m, 

—-—-  + 6      (47) 

and for span length L < 13.8m, 

Min. number of nodal displacement required = INTl — -1       (48) 

For IMII, it is found that the number of sensors required are generally less 
than that for IMI. Regarding TDM and FDM, the programs are not as flexible 
as that for IMI and IMII and it is not easy to change the number of sensors. 
Meanwhile the sensors are fixed to be at 1/4, 1/2 and 3/4 of the span. 

C.    Sensitivity towards Noise 

In general, all the four methods can compute the identified forces exactly 
the same as those given to the predictive analysis to generate the 
corresponding responses. It is decided to add white noise to the calculated 
responses to simulate polluted measurements and to check their sensitivity 
towards noise. The polluted measurements are generated by the following 
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equations: 

m = mediated + EP x IhaichMl * Noisc (49) 

where Ep is a specified error level; NBist is a standard normal distribution 
vector (with zero mean value and unity standard deviation). 

Several cases are studied using Ep =1%, 3%, 5% and 10%. It is found 
that when using bending moments for IMI and IMII, and if Ep is less than 3%, 
acceptable results can be obtained. For noise which is greater than 3%, a 
smoothing scheme should be adopted to smooth the simulated data. 
Acceptable results cannot be obtained for Ep > 10%. Besides, both IMI and 
IMII cannot give acceptable results when using displacements. 

Both TDM and FDM cannot give acceptable results when using 
displacements only, accelerations only or bending moments only. In general 
TDM and FDM are less sensitive to noise when comparing to IMI and IMII. 
They can give acceptable results for Ep up to 5 % without any smoothing of 
the polluted simulated data. 

D.    Computation Time 

In general, the computer program for IMI only takes few seconds to 
identify moving forces. In order to compare the computation time, IMI is 
implemented in the same environment as the other three methods. It is found 
that IMI and IMII take about 2-3 minutes to give the identified forces for a 
case of two axle loads using a 80486 computer. However, under the same 
working conditions, TDM and FDM almost take a whole day for any one of 
them to identify two moving forces. It is due to the fact that both of them 
require to set up an huge parametric matrix. 

CONCLUSIONS 

Four methods are developed to identify moving time-varying force and 
they all can produce acceptable results. From a preliminary comparative study 
of the methods, it is found that IMI and IMII have a wider applicability as the 
locations of sensors are not fixed and it can identify more than two moving 
forces. However, TDM and FDM are less sensitive to noise and require less 
number of sensors. It is decided to further improve the four methods and then 
a more detailed and systematic comparison can be carried out afterwards. The 
possible development of the methods are described as follows. 
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Both the IMI and IMII are developed to work with one kind of responses, 
e.g. either displacements or bending moments. It is suggested to modify the 
programs to use mixed input parameter, e.g. use bending moments as well as 
accelerations as that for TDM or FDM. Regarding the TDM and FDM, as the 
basic formulations are based on two-axle moving forces, so it is necessary to 
modify the governing equations for multi-axle. In addition, the computation 
time for TDM or FDM under the environment of the high performance 
numerical computation and visualization software used is unbearable. It is 
expected that the time will be significantly reduced if the methods are 
implemented in programs using standard programming languages like 
FORTRAN 90 or C. Then the four methods can be combined together and 
merged into a Moving Force Identification System (MFIS) so that it can 
automatically select the best solution routines for the identification. 
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ABSTRACT 

The identification of nonlinear multi degree of freedom systems involves a 
significant number of nonlinear cross coupling terms, whether the identifi- 
cation is carried out in spatial or modal domains. One possible approach 
to reducing the order of each identification required is to use a suitable 
pattern of forces to drive any mode of interest. For a linear system, the 
force pattern required to drive a single mode is derived using a Force Ap- 
propriation method. This paper presents a method for determining the 
force pattern necessary to drive a mode of interest of a nonlinear system 
into the nonlinear region whilst the response is controlled to remain in pro- 
portion to the linear mode shape. Such an approach then allows the direct 
nonlinear modal terms for that mode to be identified using the Restoring 
Force method. The method for determining the relevant force patterns is 
discussed. The implementation of the method for experimental systems is 
considered and experimental results from a two degree of freedom 'bench- 
mark structure' are presented. 

INTRODUCTION 

Force Appropriation [1] is used in the analysis of linear systems to de- 
termine the force patterns which will induce single mode behaviour when 
applied at the relevant natural frequency. This technique is used in the 
aerospace industry during Ground Vibration Tests: each normal mode of 
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a structure is excited using the derived force pattern and thus identified 
in isolation. Current practice, when the presence of nonlinearity is sus- 
pected, is to increase input force levels and monitor the variation of tuned 
frequencies. Some information about the type of nonlinearity present may 
be found, but no analytical model can be derived. Thus predictions for 
behaviour at higher levels of excitation are not possible. 

A number of techniques for identifying nonlinearity, for example the Restor- 
ing Force method [2], have been demonstrated on systems with low num- 
bers of degrees of freedom. Unfortunately, in practice, structures have a 
large number of degrees of freedom, often with a high modal density. A 
classical Restoring Force approach to the identification of such systems 
could involve a prohibitive number of cross coupling terms. The ability to 
treat each mode separately, by eliminating the effects of the cross coupling 
terms, would thus.be advantageous. Subsequent tests could then evaluate 
the cross coupling terms. 

For these reasons it would be useful to extend Force Appropriation to the 
identification of nonlinear systems. An approach has been developed [6] 
that allows an input force pattern to be derived that will result in a non- 
linear response in the linear mode shape of interest. This force pattern is 
derived using an optimisation approach. The mode of interest can then be 
identified using a single degree of freedom nonlinear identification method. 
In this work the Restoring Force method is used to examine the nonlinear 
response of a particular linear mode and an application of this approach 
to a two degree of freedom experimental system is presented. 

THEORY 

The theoretical approach is demonstrated for the two degree of freedom 
system with spring grounded nonlinearity shown in figure 1. The equations 
of motion for this system in physical space are: 

m 0 
0   771 

+ (1 + o)c    —ac 
—ac    (1 + a)c 

(1 + a)k    —ak 
—ah    (1 + a)k + 0 (1) 

where ß is the cubic stiffness coefficient and a is a constant that allows the 
frequency spacing of the natural frequencies to be varied. These equations 
can be transformed to linear modal space using the transformation: 

{x} = MM (2) 

where [<f>] is the modal matrix of the underlying linear system and the 
vector {u} defines the modal displacements. For this symmetrical system 
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the modal matrix is 

M = 
l   l 
l -l (3) 

The equations of motion transformed to linear modal space using the nor- 
malised modal matrix are: 

' m 0 " 
0 m 

/fill 
\«2J >  + 

+ 

c       0 
0 (1 + 2o)c 

k       0 
0 (1 + 2a)k 

\«2j 
+ ß{uX - «2)3/4 

(4) 

where {p} is the modal input vector. It can be seen from the above equa- 
tions that the cubic nonlinearity couples the modes in linear modal space; 
in fact there are a significant number of terms for a single nonlinearity. 
The proposed method aims to determine the force pattern that will reduce 
the response of this system to that of a single mode. 

It was shown in a previous paper [3] that this can be achieved by seeking a 
force vector that will cause motion only in the target mode, by eliminating 
motion in the coupled mode. In practice, physical data from transducers 
are available. Any subsequent transformations would be time consuming. 
It is shown below that causing motion in one mode to be zero is equiva- 
lent to forcing motion in a linear mode shape, mode one in this example. 
Consider the coordinate transformation {2;} = [<j>]{u} or more explicitly 
for the two degree of freedom system in Figure 1: 

Thus 

1 -1 
1    1 

1 -1 
1    1 {:} 

(5) 

(6) 

and enforcing the first mode shape (1,1) in physical space should give a 
second modal displacement of zero. 

1 -1 
1    1 Ml- (7) 

So if an excitation is applied which causes the nonlinear system to vibrate 
in its first linear mode shape, the response will be composed only of ux and 
the influence of the coupled mode, u2, will then have been eliminated. 

The method must therefore derive a force pattern which will cause the 
system to vibrate in one of its linear mode shapes.   It has been shown 
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in a previous paper [3] that if the response contains harmonics then the 
force pattern must also contain harmonics in order to control the harmonic 
content of the response. In theory, the responses will be an infinite series 
of harmonics, but this series is truncated in this case of a cubic stiffness 
nonlinearity to include only the fundamental and third harmonic terms. 

The physical input forces will thus be of the form: 

h(*) = -Fii cos(wext 4- 4>n) + F13 cos^i + <f>l3) (8) 
f2(t) = F21 COS(wra* + fa) + F23 COS^es* + <fej) (9) 

where wex is the excitation frequency. Parameters for these force patterns 
may then be chosen such that only mode one is excited. 

OPTIMISATION APPROACH 

In general, no a priori model of the system exists so an optimisation routine 
is used to determine the force pattern parameters required to maximise the 
contribution of the mode of interest. The objective function, the quantity 
that the optimisation routine seeks to minimise, must be representative 
of the deviation of the response from the target linear mode shape. The 
objective function, F, that was chosen in this case was based on the vector 
norm [4] of the two physical responses, X\ and x2, and is shown below: 

F=v2-11*  *) m 
npts *■   ' 

where <j>i and <j>2 are elements of the mode shape vector for the target 
mode. This summation is carried out over one cycle of the fundamental 
response. The number of data points per cycle is npts and xki the kth 
response at the ith sample. This objective function allows the response 
to contain harmonics and can be extended to more degrees of freedom by 
choosing a reference displacement and subtracting further displacements 
from it. The Variable Metric optimisation method [5] was used in this 
work as it has been found to produce the best results for simulated data. 
The application of this method to a two degree of freedom system such 
as that shown in figure 1 is detailed in [6]. Optimised force patterns are 
obtained at several levels of input amplitude. These force patterns are then 
applied and the Restoring Force method is used to curve fit the resulting 
modal displacement and velocity time histories to give the direct linear and 
nonlinear coefficients for the mode of interest. 
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EXPERIMENTAL IMPLEMENTATION 

The simulated application of this method assumed that certain parame- 
ters were known. In order to carry out an identification of an experimental 
structure, these parameters must be measured or calculated. Some pro- 
cessing of experimental data is necessary in order to apply the Restoring 
Force method. The restoring force of a system can be expressed for a single 
degree of freedom system as: 

h{x,x) = f(t)-mx (11) 

where h(x, x) is the restoring force and f(t) the input force. A similar ex- 
pression applies to the modal restoring force for an isolated mode. Thus the 
input force, acceleration, velocity and displacement must be calculated at 
the each time instant. A similar expression applies to the modal restoring 
force for an isolated mode. In the experimental case it is usual to measure 
acceleration and input force; the remaining two states must therefore be 
obtained by integration of the acceleration time history. Frequency domain 
integration [7] was used for this purpose. High pass filtering was used to 
remove any low frequency noise which can be amplified by this type of 
integration. Several methods have been suggested for estimating modal 
mass, but in this study a method developed by Worden and Tomlinson [8] 
was used. An estimate for the modal mass is obtained and then an error 
term is included in the curve fit which will iteratively yield a more accu- 
rate estimate of the mass. Generally the mass value will converge after one 
iteration. 

The objective function used in the simulations was calculated from the 
displacement time histories. In the experimental case, acceleration was 
used rather than displacement as it was considered that using 'raw' data 
would be quicker and give less opportunity for error. In the simulated 
case, the system parameters were known a priori so the modal matrix 
of the underlying linear system could be calculated. For most types of 
nonlinearity the response of the system at low input force levels will be 
dominated by linear terms. Normal mode tuning [1] was therefore applied 
at low force levels to yield an approximation to the modal matrix of the 
underlying linear system. 

A quality indicator to give some idea of the effectiveness of the optimisa- 
tion performed would be advantageous. Results corrupted by background 
noise, for example, could then be discarded. A perfect optimisation will 
occur when the ratio of measured accelerations exactly matches the mode 
shape ratio specified for the mode of interest. Thus a least squares fit of 
the sampled accelerations was carried out over a cycle of the fundamental 
frequency and the percentage error of the measured mode shape to the 
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required mode shape was calculated. This percentage error will indicate 
whether the optimisation has been successful. 

To assess the accuracy of the parameters estimated using this method, 
an identification was carried out using a conventional Restoring Force ap- 
proach in physical space. A band limited random excitation was used, and 
the physical data processed and curve fitted. The physical parameters were 
then transformed to modal space. The direct linear and nonlinear param- 
eters for modes one and two are shown in table 1. It should be noted that 
although this conventional Restoring Force approach is possible for this 
two degree of freedom system, it will not generally be possible since the 
number of terms in the curve fit increases dramatically when different types 
of nonlinearity and more degrees of freedom are included. It is carried out 
in this case as a means of validating the proposed method. 

EXPERIMENTAL SETUP 

The rig constructed consisted of two masses on thin legs connected in series 
by a linear spring, each mass being driven by a shaker. A cubic nonlin- 
earity was introduced between the first mass and ground using a clamped- 
clamped beam attached at the centre which will yield a cubic stiffness for 
large deflections [9], A schematic diagram of the rig is shown in figure 2. 
The force input by each shaker was measured using a force gauge and the 
acceleration of each mass was measured using an accelerometer in the po- 
sitions also shown in figure 2. Acceleration and force data were acquired 
using a multiple channel acquisition system, the optimisation routine was 
carried out on line. 

RESULTS 

Normal mode tuning of the rig gave natural frequencies of 20.67 Hz and 
24.27 Hz and a modal matrix of: 

3.87    5.03 
5.52 -3.27 (12) 

The excitation frequency was chosen to be slightly lower than the natural 
frequency of the mode of interest in order to avoid the problems associated 
with force drop out which are worst at the natural frequency. For each 
mode optimisation was performed at three input force levels, the highest 
level was as high as possible so as to excite the nonlinearity strongly. The 
optimisation routine was carried out using the voltage input into the signal 
generator as the variable. The force input into the structure was measured 
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for use in the Restoring Force identification but was not used in the opti- 
misation as it is not directly controllable. The details of the optimisation 
for each force level are presented in table 2. The optimised forces and re- 
sulting accelerations for mode one are shown in figure 3 and figure 4. The 
acceleration data for the optimised force patterns were then integrated and 
the modal restoring force for the mode of interest calculated. The initial 
estimate of modal mass for the calculation of the modal restoring force was 
taken from a previous paper [10] in which the rig was identified using a 
using a physical parameter identification method. The mass was estimated 
in this paper to be 2.62 kg, this physical mass will then be equal to the 
modal mass since the modal matrix was normalised to be orthonormal. 
The restoring force data was then transformed to modal space. The modal 
restoring force surface obtained using optimised force inputs for mode one 
is shown in figure 5 and a stiffness section through this surface is shown in 
figure 6. The restoring force time histories were then curve fitted against 
modal velocity and displacement. 

The estimated parameters for mode one are shown in table 3. It can be 
seen that they do not compare very well with those estimates obtained 
using the band limited random excitation. It was suspected that at lower 
excitation levels the estimates were being distorted by linear dependence 
[11]. Linear dependence is a problem which occurs when curve fitting a 
harmonic response from a linear system; the equations of motion may be 
identically satisfied by mass and stiffness terms modified by an arbitrary 
constant. This condition is avoided by the harmonic terms introduced into 
the response by nonlinearity. The curve fit was thus repeated using only the 
data obtained from the highest level of excitation; the estimates obtained 
are shown in table 4. It can be seen that the linear parameter estimates 
now agree well with the band limited random results. The estimates for 
the cubic stiffness coefficient do not appear to agree so well. The standard 
deviation on the cubic stiffness derived from the band limited random 
excitation is approximately a third of the value of the parameter itself. The 
uncertainty on this parameter occurs because the nonlinearity is not very 
strongly excited by this type of excitation. A stiffness section through the 
restoring force surface, figure 7, shows little evidence of a cubic stiffness 
component. If a higher level of excitation were possible then a better 
estimate may be achieved. 

The identification was repeated for mode two. The restoring force surface 
obtained and a stiffness section through it are shown in figure 8 and figure 9. 
It can be seen from the stiffness section that the nonlinearity is not very 
strongly excited. The estimated direct modal parameters are shown in 
table 5. It can be seen that these results agree quite well with those 
obtained using band limited random excitation. It is considered that the 
discrepancy between the two sets of results, in particular the mass and 
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stiffness estimates, is again due to linear dependence. 

CONCLUSIONS 

An extension of the force appropriation method has been proposed for 
nonlinear systems. In this method, an optimisation routine is used to 
determine the force patterns which will excite a single mode nonlinear 
response . The direct linear and nonlinear modal parameters can then be 
estimated from a curve fit of the modal restoring force surface. The method 
was applied to an experimental two degree of freedom system whose modes 
were coupled in linear modal space by a spring grounded nonlinearity. 
A conventional restoring force identification was performed using a band 
limited random signal for comparison. The parameters estimated from the 
single mode responses were found to agree quite well with those from the 
band limited random tests. 
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Modal parameter Mode one Mode two 
k (N/m) 4.87 x 104 6.49 x 104 

c (Nm/s) 10.11 9.49 
/?(N/m3) 3.83 x 108 8.90 x 10« 
m (kg) 2.60 3.06 

Table 1: Direct modal parameters estimated from curve fit of band limited 
random data 

Low forcing Medium forcing High forcing 

Fii (Volts) 1.0 2.0 3.0 
Fax (Volts) 1.0 2.0 3.0 
Wex (Hz) 20.0 20.0 20.0 
initial mode shape ratio 0.72 0.68 0.65 
final mode shape ratio 0.70 0.70 0.70 
target mode shape ratio 0.70 0.70 0.70 
percentage error 0.14 0.03 0.71 

Table 2: Details of optimisation for mode one 
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Model parameter Estimated parameter 
k (N/m) 
c (Nm/s) 
/?(N/m3) 
m(kg) 

3.99 x 10* 
8.60 

5.59 x 108 

2.36 

Table 3: Direct modal parameters estimated from optimised responses 

Model parameter Estimated parameter 
k (N/m) 
c (Nm/s) 
/?(N/m3) 
m(kg) 

4.57 x 10* 
8.62 

6.81 x 108 

2.75 

Table 4: Direct modal parameters estimated using high force level only 

Model parameter Estimated parameter 
k (N/m) 
c (Nm/s) 
/?(N/m3) 
m(kg) 

5.37 x 10* 
10.16 

2.45 x 109 

2.29 

Table 5: Direct modal parameters estimated for mode two 

Figure 1: Two degree of freedom system 
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Figure 3: Optimised forces for mode one at a high force level 
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Figure 4: Accelerations responses to optimised forces 

Figure 5: Modal restoring force surface for mode one 
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Figure 6: Stiffness section through modal restoring force surface for mode 
one 
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Figure 7: Stiffness section through modal restoring force derived from ran- 
dom excitation for mode one 
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Figure 8: Modal restoring force surface for mode two 
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Figure 9: Stiffness section through modal restoring force for mode two 
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POWER FLOW TECHNIQUES II 



THE OPTIMAL DESIGN OF NEAR-PERIODIC STRUCTURES TO 
MINIMISE NOISE AND VIBRATION TRANSMISSION 

R.S. Langley, N.S. Bardell, and P.M. Loasby 
Department of Aeronautics and Astronautics 

University of Southampton 
Southampton SO 17 1BJ, UK 

1. INTRODUCTION 

An engineering structure is said to be of "periodic" construction if a basic 
structural unit is repeated in a regular pattern . A beam which rests on 
regularly spaced supports is one example of a one-dimensional periodic 
structure, while an orthogonally stiffened cylinder is an example of a two- 
dimensional periodic structure. It has long been known that perfectly periodic 
structures have very distinctive vibration properties, in the sense that "pass 
bands" and "stop bands" arise: these are frequency bands over which elastic 
wave motion respectively can and cannot propagate through the structure [1,2]. 
If the excitation frequency lies within a stop band then the structural response 
tends to be localised to the immediate vicinity of the excitation source. 
Conversely, if the excitation frequency lies within a pass band then strong 
vibration transmission can occur, and it is generally the case that the resonant 
frequencies of the structure lie within the pass bands. 

Much recent work has been performed concerning the effect of random 
disorder on a nominally periodic structure (see for example [3-5]). It has been 
found that disorder can lead to localisation of the response even for excitation 
which lies within a pass band, and this reduces the propensity of the structure 
to transmit vibration. This raises the possibility of designing disorder into a 
structure in order to reduce vibration transmission, and this possibility was 
briefly investigated in reference [6] for a one-dimensional periodic waveguide 
which was embedded in an otherwise infinite homogeneous system. The 
present work extends the work reported in reference [6] to the case of a finite 
near-periodic beam system, which more closely resembles the type of 
optimisation problem which is. likely to occur in engineering practice. The 
beam is taken to have N bays, and the design parameters are taken to be the 
individual bay lengths. Both single frequency and band-limited excitation are 
considered, and two objective functions are investigated: (i) the response in a 
bay which is distant from the applied loading (minimisation of vibration 
transmission), and (ii) the maximum response in the structure (minimisation 
of maximum stress levels). In each case the optimal configuration is found by 
employing a quasi-Newton algorithm, and the physical features of the resulting 
design are discussed in order to suggest general design guidelines. 
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2. ANALYTICAL MODEL OF THE NEAR-PERIODIC BEAM 

2.1 Calculation of the Forced Response 
A schematic of an N bay near-periodic beam structure is shown in Figure 1. 
The structure is subjected to dynamic loading, and the aim of the present work 
is to find the optimal design which will minimise a prescribed measure of the 
vibration response. No matter what type of optimisation algorithm is 
employed, this type of study requires repeated computation of the system 
dynamic response as the design parameters are varied, and it is therefore 
important to employ an efficient analysis procedure. In the present work the 
h-p version of the finite element method (FEM) is employed: with this 
approach the structure is modelled as an assembly of elements which have 
both nodal and internal degrees of freedom. Each element has two nodes and 
the nodal degrees of freedom consist of the beam displacement and slope; the 
internal degrees of freedom are generalised coordinates which are associated 
with a hierarchy of shape functions which contribute only to the internal 
displacement field of the element. The internal shape functions used here are 
the K-orthogonal Legendre polynomials of order four onwards - full details of 
the present modelling approach are given in reference [7]. 

For harmonic excitation of frequency co the equations of motion of the 
complete beam structure can be written in the form 

[-<ö2M+(lnr\)K]q=F, W 

where M and K are the global mass and stiffness matrices (assembled from the 
individual element matrices taking into account the presence of any mass or 
spring elements and allowing for constraints), q contains the system 
generalized coordinates, F is the generalized force vector, and r\ is the loss 
factor, which in the present study is taken to be uniform throughout the 
structure. 

Equation (1) can readily be solved to yield the system response q. In the 
present work it is convenient to use the time averaged kinetic and strain 
energies of each of the N bays as a measure of the response - for the nth bay 
these quantities can be written as T„ and U„ say, where 

r„Kö)2/4)?>(1?(1.    C/„KI/4)9X?„- (2'3) 

Here Mn and K„ are the mass and stiffness matrices of the nth bay, and q„ is 
the vector of generalized coordinates for this bay. 

Many of the physical features of the forced response of a near-periodic 
structure can be explained in terms of the free vibration behaviour of the 
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associated perfectly periodic structure. The following section outlines how the 
present finite element modelling approach can be used to study the pass bands 
and stop bands exhibited by a perfect periodic structure. 

2.2 Periodic Structure Analysis 
The finite element method described in section 2.1 can be applied to a single 
bay of a perfectly periodic structure to yield an equation of motion in the form 

Dq=F,   D=-C0
2
M+(1+ZY|)JR:, (4>5) 

where the matrix D is referred to as the dynamic stiffness matrix. In order to 
study wave motion through the periodic system it is convenient to partition D, 
q and F as follows 

D= 

DLL Du DLR 1L 
rFL) 

DlL  D„  Dm q= 1, ,    F= 0 

DRL Dm DRRj M {"-I 

(6-8) 

where L relates to the coordinates at the left most node, R relates to those at 
the right most node, and / relates to the remaining "internal" coordinates. 
Equations (4-8) can be used to derive the following transfer matrix relation 
between the displacements and forces at the left and right hand nodes 

1L 

^v 

<1R DLL-DLP'uDIL DLR-DLp-:DIf 

DRL-DRP])DlL DRR-DRp-,[Dn 

(9,10) 
Equation (9) can now be used to analyze wave motion through the periodic 
system: such motion is governed by Bloch's Theorem, which states that 
(qL FJ=exp(-ie-5)(^Ä -FR) where £ and 5 are known respectively as the phase 
and attenuation constants. A pass band is defined as a frequency band over 
which 8=0, so that wave motion can propagate down the structure without 
attenuation.  It follows from equation (9) that 

{T-le-'z-b) 
0 v J 

(11) 

so that e and 5 can be computed from the eigenvalues of T, thus enabling the 
pass bands and stop bands to be identified. 
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2.3 Optimisation Procedure 
Equations (l)-(3) enable the forced response of the system to be calculated for 
any prescribed set of system properties. The aim of the present analysis is to 
compute the optimal set of system properties for a prescribed design objective, 
and in order to achieve this equations (l)-(3) are evaluated repeatedly as part 
of an optimisation algorithm. As an example, it might be required to minimise 
the kinetic energy of bay N by changing the various bay lengths. In this case 
equations (l)-(3) provide the route via which the objective function (the kinetic 
energy in bay TV) is related to the design parameters (the bay lengths), and the 
optimisation algorithm must adjust the design parameters so as to minimise the 
objective function. The optimisation process has been performed here by using 
the NAg library routine E04JAF [8], which employs a quasi-Newton algorithm. 
This type of algorithm locates a minimum in the objective function, although 
there is no indication whether this minimum is the global minimum or a less 
optimal local minimum. The probability of locating the global minimum can 
be increased significantly by repeated application of the NAg routine using 
random starts, i.e. random initial values of the design parameters. Numerical 
investigations have led to the use of 30 random starts in the present work. 

3. NUMERICAL RESULTS 

3.1 The System Considered 
The foregoing analysis has been applied to a beam of flexural rigidity El, mass 
per unit length m, and loss factor ri=0.015, which rests on N+l simple 
supports, thus giving an ZV-bay near-periodic system. The design parameters 
are taken to be the bay lengths (i.e. the separation of the simple supports), and 
the design is constrained so that the length L„ of any bay lies within the range 
0.9L<L,<l.lL,. where Lr is a reference length. A non-dimensional frequency 
Q is introduced such that Q=coL,2V(m/£J), and the non-dimensional kinetic and 
strain energies of a bay are defined as T,'=Tn(EIIL^\F\2) and 
U„'=U„(EI/L?\F\2) where F is the applied point load. As discussed in the 
following subsections, two objective functions are considered corresponding 
to minimum vibration transmission and minimum overall response. In all 
cases the excitation consists of a point load applied to the first bay and the 
response is averaged over 11 equally spaced point load locations within the 
bay. For reference, the propagation constants for a periodic system in which 
all the bay lengths are equal to L,. are shown in Figure 2 - the present study is 
focused on excitation frequencies which lie in the range 23<Q<61, which 
covers the second stop band and the second pass band of the periodic system. 

3.2 Design for Minimum Vibration Transmission 
In this case the objective function is taken to be the kinetic energy in bay N, 
so that the aim is to minimise the vibration transmitted along the structure. 
Three types of loading are considered: (i) single frequency loading with 0=50, 
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which lies within the second pass band of the ordered structure; (ii) band- 
limited loading with 40<Q<60, which covers the whole of the second pass 
band; (iii) band-limited loading with 23<Q<61, which covers the whole of the 
second stop band and the second pass band. 

Results for the optimal design under single frequency loading are shown in 
Table 1; in all cases it was found that the bay lengths were placed against 
either the upper bound (U=l. lLr) or the lower bound (L=0.9Lr), and significant 
reductions in the energy level of bay N were achieved. In this regard it should 
be noted that the dB reduction quoted on Table 1 is defined as -lOlog(TN/TNr) 
where TNr is the kinetic energy in the final bay of the ordered system. The 
optimal designs shown in Table 1 all tend to consist of a bi-periodic structure 
in which the basic unit consists of two bays in the configuration LU. The pass 
bands and stop bands for this configuration are shown in Figure 3, and further, 
TN for the optimal 12 bay system is shown in Figure 4 over the frequency 
range 0<Q<250. By comparing Figures 3 and 4 it is clear why the selected 
design is optimal - the new bi-periodic system has a stop band centred on the 
specified excitation frequency Q=50. It can be seen from Figure 4 that the 
improvement in the response at the specified frequency Q=50 is accompanied 
by a worsening of the response at some other frequencies. 

Results for the optimal design under band-limited excitation over the range 
40<Q<60 are shown in Table 2. In some cases two results are shown for the 
optimised "Final Energy": in such cases the first result has been obtained by 
forcing each bay length onto either the upper (U) or lower (L) bound, while 
the second result has been obtained by using the NAg optimisation routine. 
If only one result is shown then the two methods yield the same optimal 
design. The "bound" result is easily obtained by computing the response under 
each possible combination of U and L bay lengths - this requires 2N response 
calculations, which normally takes much less CPU time than the NAg 
optimisation routine. It is clear from Table 2 that the additional improvement 
in the response yielded by the full optimisation routine is minimal for this 
case. The response curve for the 12-bay system is shown in Figure 5, where 
it is clear that a significantly reduced response is achieved over the specified 
frequency range; as would be expected an increase in the response can occur 
at other frequencies. It is interesting to note that most of the optimal designs 
shown in Table 2 lack symmetry - however, it follows from the principle of 
reciprocity that a design which minimises vibration transmission from left to 
right will also minimise transmission from right to left. It should therefore be 
possible to "reverse" the designs without changing the transmitted vibration 
levels. This hypothesis is tested in Figure 6 for a 12 bay structure - the figure 
shows the energy distribution for the optimal design UUULUULLLLLU and 
for the reversed design ULLLLLUULUUU. Although the detailed distribution 
of energy varies between the two designs, the energy levels achieved in bay 
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12 are identical, as expected. 

Results for the optimal design under wide-band excitation 23<Q<61 are shown 
in Table 3, and the response curve for the 12-bay optimised system is shown 
in Figure 7. The form of optimal design achieved is similar to that obtained 
for the narrower excitation band 40<Q<60, although there are detailed 
differences between the two sets of results. In each case there is a tendency 
for a group of lower bound bays (L) to occur in the mid region of the 
structure, and a group of upper bound bays (U) to occur at either end. This 
creates an "impedance mismatch" between the two sets of bays, which 
promotes wave reflection and thus reduces vibration transmission along the 
structure. By comparing Tables 1-3, it is clear that the achievable reduction 
in vibration transmission reduces as the bandwidth of the excitation is 
increased. 

3.3 Design for Minimum "Maximum" Strain Energy 
In this case the strain energy U„ of each bay is computed and the objective 
function is taken to be the maximum value of U„. As a design objective, this 
procedure can be likened to minimising the maximum stress in the structure. 
As in the previous section the three frequency ranges Q=50, 40<Q<60, and 
23<Q<61 are considered, and the present study is limited to systems having 
9,10, 11, or 12 bays; the optimal designs achieved are shown in Table 4. 

Considering the single frequency results (£2=50) shown in Table 4, it is clear 
that a large dB reduction is achieved only for those systems which have an 
even number of bays; furthermore, the optimal energy obtained has the same 
value (0.0297) in all cases. This can be explained by noting that for an odd 
number of bays the frequency Q=50 lies near to an anti-resonance of the 
ordered structure, whereas a resonance is excited for an even number of bays - 
this feature is illustrated in Figure 8 for the 12 bay structure. The repeated 

occurrence of the optimal energy 0.0297 arises from the fact that the initial bay 
pattern ULLLUUU occurs in all four designs - it has been found that this 
pattern causes a vibration reduction of over 20dB from bay 1 to bay 8, so that 
the response in bay 1 (the maximum response) is insensitive to the nature of 
structure from bay 8 onwards. 

The optimal "bounded" designs arising for band-limited excitation either tend 
to be of the "UL" bi-periodic type or else nearly all the bays are assigned the 
same length. However it should be noted that in all cases the design produced 
by the NAg optimisation routine offers an improvement over the "bounded" 
design, particularly for the wide-band case (23<0<61). It is clear from Table 
4 that the achieved reduction in strain energy reduces as the bandwidth of the 
excitation is increased. 
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4. CONCLUSIONS 

The present work has considered the optimal design of a near-periodic beam 
system to minimise vibration transmission and also maximum stress levels. 
With regard to vibration transmission it has been found that very significant 
reductions in transmission are achievable with relatively minor design changes. 
The optimum design normally involves placing the design parameters (the bay 
lengths) on the permissible bounds, and this means that a simple design search 
routine can be used in preference to a full optimisation algorithm. With regard 
to minimum stress levels, it has been found that the optimal design for wide- 
band excitation is not normally a "bounded" design, and thus use of a full 
optimisation algorithm is preferable for this case. For both vibration 
transmission and maximum stress levels, the benefits obtained from an optimal 
design decrease with increasing excitation bandwidth, but nonetheless very 
significant reductions can be obtained for wide-band excitation. 
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TABLE 1 
Optimal design ofl-D beam structure, to minimise energy transmission, £1=50. 

Original Energy: Non-dimensional kinetic energy in bay N of the periodic structure. 
Final Energy.     Non-dimensional kinetic energy in bay N of the optimised structure. 

No. of 

Bays, N 

Optimal Pattern Original 

Energy 

Final 

Energy 

Reduction 

(dB) 

4 UULU 0.276E 1 0.804E-3 35.348 

5 ULULU 0.609E-1 0.179E-3 25.304 

8 UULULULU 0.674E 0 0.613E-5 50.408 

9 ULULULULU 0.564E-1 0.135E-5 46.216 

10 TJULULULULU 0.424E 0 0.532E-6 59.017 

11 ULULULULULU 0.535E-1 0.117E-6 56.604 

12 UULULULULULU 0.289E 0 0.461E-7 67.966 

13 ULULULULULULU 0.502E-1 0.101E-7 66.950 

16 UULULULULULULULU 0.154E0 0.346E-9 86.484 

17 ULULULULULULULULU 0.43 IE-1 0.761E-10 87.529 
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TABLE 2 
Optimal design ofl-D beam structure, to minimise energy transmission, 40<Q.<60. 

Original Energy: Non-dimensional kinetic energy in bay N of the periodic structure. 
Final-Energy:     Non-dimensional kinetic energy in bay N of the optimised structure. 

No. of 

Bays, N 

Optimal pattern Original 

Energy 

Final 

Energy 

Reduction 

(dB) 

4 ULLU 0.670E 0 0.103E-1 18.112 

5 ULLLU 0.63 IE 0 0.735E-2 

0.711E-2 

19.338 

19.482 

6 UULLLU 0.384E 0 0.221E-2 22.407 

7 ULLUULU 0.463E 0 0.171E-2 24.335 

8 UULLLLLU 0.430E 0 0.966E-3 

0.914E-3 

26.487 

26.725 

9 UUULLLLLU 0.444E 0 0.341E-3 31.142 

10 UUUULLLLLU 0.449E 0 0.192E-3 

0.189E-3 

33.681 

33.758 

11 ULLUUUULLLU 0.291E0 0.821E-4 35.504 

12 UUULUULLLLLU 0.201E0 0.352E-4 37.558 

13 ULUUUUULLLLLU 0.199E0 0.153E-4 41.148 
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TABLE 3 
Optimal design ofl-D beam structure, to minimise energy transmission, 23<Q<61. 

Original Energy: Non-dimensional kinetic energy in bay N of the periodic structure. 
Final Energy:     Non-dimensional kinetic energy in bay N of the optimised structure. 

No of 

Bays, N 

Optimal pattern Original 

Energy 

Final 

Energy 

Reduction 

(dB) 

4 LLUU 0.536E0 0.581E-1 

0.383E-1 

9.650 

11.460 

5 LLLUU 0.340E 0 0.180E-1 

0.138E-1 

12.762 

13.916 

6 LLLLUU 0.494E 0 0.648E-2 18.821 

7 LLLULUU 0.183E0 0.246E-2 18.715 

8 LLLLLUUU 0.175E0 0.180E-2 19.878 

9 ULLLLLLUU 0.139E0 0.904E-3 21.868 

10 UUULLLLLUU 0.105E0 0.277E-3 25.787 

11 UUULLLLLLUU 0.105E0 0.776E-4 31.313 

12 UUULLLLLLLUU 0.166E0 0.526E-4 34.991 

13 UUULLLLLLULUU 0.973E-1 0.282E-4 35.379 

14 UUUULLLLLLULUU 0.581E-1 0.122E-4 36.778 
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TABLE4 
Optimal design ofl-D beam structure, to minimise "maximum" strain energy. 

Bay No.: Bay in which the optimal minimum "maximum" non-dimensional strain energy occurs 
Original Energy: Initial "maximum" non-dimensional bay strain energy of the periodic structure. 
Final Energy:     Non-dimensional strain energy in bay N' of the optimised structure. 

No of 

Bays, N 

Optimal 

Pattern 

Original 

Energy 

Final 

Energy 

Bay 

No., N' 

Reduction 

(dB) 

Q=50 

9 ULLLUUUUL 0.667E-1 0.297E-1 

0.296E-1 

1 

1 

3.514 

3.528 

10 ULLLUUUULU 0.540E 0 0.297E-1 

0.296E-1 

1 

1 

12.596 

12.611 

11 ULLLUUUULUU 0.69 IE-1 0.297E-1 

0.296E-1 

1 

1 

3.667 

3.682 

12 ULLLUUUULULU 0.404E 0 0.297E-1 

0.296E-1 

1 

1 

11.336 

11.351 

40<Q<60 

9 UUUUULULU 0.486E 0 0.710E-1 

0.449E-1 

1 

1-2 

8.354 

10.344 

10 ULULULULLL 0.606E 0 0.643E-1 

0.45 IE-1 

1 

1-2 

9.743 

11.283 

11 ULULULULLUU 0.456E 0 0.682E-1 

0.425E-1 

1 

1-2 

8.252 

10.306 

12 UUUUUUUUUUUL 0.332E 0 0.550E-1 

0.412E-1 

2 

1-2 

7.808 

9.062 

23<£K61 

9 LLLLLLLLL 0.234E 0 0.203E 0 

0.979E-1 

1 

1 

0.617 

3.784 

10 LLLLLLLLLL 0.200E 0 0.178E0 

0.95 IE-1 

1 

1-2 

0.506 

3.228 

11 UUUUUUUUULL 0.198E0 0.193E0 

0.910E-1 

1 

1-2 

0.111 

3.376 

12 UUUUUUUUULUU 0.314E0 0.182E0 

0.803E-1 

1 

1-2 

2.369 

5.922 
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Figure 1: A simply supported periodic beam. 
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Non-dimensional frequency, Q 
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Figure 2: Propagation constants for a simply supported beam, bay lengths equal to Lr. 
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50 100 150 
Non-dimensional frequency, Q 

200 250 

•Figure 3: Propagation constants for a bi-periodic simply supported beam, with configuration LU. 

0 50 100 150 200 250 
Non-dimensional frequency, n 

Figure 4: Frequency response of a 12 bay structure; — kinetic energy in bay 12, optimised for £1=50. 
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Figure 5: Frequency response of a 12 bay structure; —. kinetic energy in bay 12, optimised for40<fl<60. 
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Fisure 6: Distribution of kinetic energy within a 12 bay structure, showing reciprocity. Also shown is the 
kinetic enerev within the original structure. 
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Figure 7: Frequency response of a 12 bay structure; -. kinetic energy in bay 12, optimised for 23<f2<61. 
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Figure 8: Frequency response of a 12 bay structure; — minimum ''maxim-jr: 

optimised for £1=50. 
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EFFECTS OF GEOMETRIC ASYMMETRY ON VIBRATIONAL 
POWER TRANSMISSION IN FRAMEWORKS 

J L Homer 
Department of Aeronautical and Automotive Engineering 

and Transport Studies, Loughborough University 
Loughborough, Leics , LEU 3TU, UK 

ABSTRACT 

Many sources, such as machines, are installed on supports, or frameworks, 
constructed from beam-like members. It is desirable to be able to predict 
which wave types will be present at particular points in the support structure. 
By using the concept of vibrational power it is possible to compare the 
contributions from each wave type. Wave motion techniques are used to 
determine the expressions for vibrational power for each of the various wave 
types present. The results from the analysis show the amount of vibrational 
power carried by each wave type and the direction of propagation. 
Consideration is given to the effect on the vibrational power transmission of 
introducing misalignment of junctions in previously symmetric framework 
structures. By splitting a four beam junction in to, say, a pair of three beam 
junctions separated by a small distance, it is possible to establish the effects of 
separating the junctions on the various transmission paths. Unlike other 
techniques using vibrational power to analysis frameworks, the model keeps 
the contributions from each of the various wave types separate. This allows 
decisions to be made on the correct vibrational control techniques to be 
applied to the structure. 

INTRODUCTION 

When attempting to control vibration levels transmitted from a machine 
through the various connections to the structure upon which it is mounted, it is 
desirable to be able to identify and quantify the vibration paths in the structure. 
Often large machinery installations are installed on frameworks consisting of 
beam like members. These frameworks are then isolated from the main 
structure. Simple framework models are also used in the initial design stages 
of automotive body shell structures to determine dynamic responses. 

If the dominant transmission path in the framework is identified it is 
possible to reduce vibration levels by absorbing the mechanical energy along 
the propagation path in some convenient manner. By utilising the concept of 
vibrational power it is possible to quantitatively compare the wave type 
contributions to each transmission path. In order to predict vibrational power 
transmission in a framework, it is necessary to identify the wave amplitude 
reflection and transmission coefficients for each joint in the structure. Lee and 
Kolsky [1] investigated the effects of longitudinal wave impingement on a 
junction of arbitrary angle between two rods. Similarly Doyle and Kamle [2] 
examined the wave amplitudes resulting from a flexural wave impinging on 
the junction between two beams. By using the reflection and transmission 
coefficients for different joints, it is possible to predict the vibrational power 
associated with flexural and longitudinal waves in each section of the 
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framework. Previous investigations [3,4] have considered the effects of bends 
and junctions in infinite beams. This work was extended to consider the finite 
members which constitute frameworks [5]. Unlike other techniques [6, 7] 
utilising energy techniques to analyse frame-works, the technique produces 
power distributions for each wave type present in the structure. By comparing 
the results for each wave type, it is possible to apply the correct methods of 
vibration control. 

The technique is used to investigate the effect of geometric asymmetry 
on the vibration transmission, due to steady state sinosodial excitation, in a 
framework structure similar to, say, those used in the automotive industry 
(figure 1). By splitting a four beam junction into a pair of three beam 
junctions separated by a known distance, it is possible to establish the effect of 
junction separation on the dominant transmission paths. The investigation 
presented is limited to one dimensional bending waves and compressive waves 
only propagating in the structure. To consider the addition of other wave 
types ie. torsional waves and bending waves in the other plane, the analysis 
presented here for the junctions should be extended as indicated by Gibbs and 
Tattersall [3]. 

TRANSMITTED POWER IN A UNIFORM BEAM 

For flexural wave motion, consider a section of a uniform beam carrying a 
propagating flexural wave. Two loads act on this beam element, the shear 
force and the bending moment. It is assumed that the flexural wave can be 
described by using Euler-Bernoulli beam theory, so that the displacement can 
be expressed as 

W(x,t) = Afsin(cot-kfX), 

the shear force acting on a section as 
S = Eia3W/3x3, 

and the bending moment on the section as 
B = El 32 W/3x2. 

Then the instantaneous rate of working X at the cross-section is given 
by the sum of two terms (negative sign merely due to sign convention). 

v_caw    a2w      a3w aw       a2wa2w 
X~S1T    ax3t      ax3   at        ax2 axat 

The time averaged power 

^3 „A 2 (P)f = (1/T)     X dt then is given by (P)f = Elk^coAf 
Jo (1) 

For longitudinal wave motion consider a section of a uniform beam 
with a longitudinal wave propagating through the beam 
U(x, t) = Ai sin(cot-kix) 
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The instantaneous rate of working X is then 

X= -EA(3u/3x)ü 

and the time averaged power is 

I (P)i=^     Xdt = i-EAcokiA^ 
(2) 

If dissipation is present in the structure, the modulus of elasticity may 
be considered to be a complex quantity 
E* = E(l + iri) 

where T| represents the loss factor of the material, present due to 
inherent material damping. 
The displacement of a beam at a distance x from the source, due to 
flexural wave motion may now be considered to be, assuming that 
material damping is small. 

-kr|— 
W = Af e     

4 sin(cot - kfx) 

and the resulting time averaged power is given by 

(P)f = EIcok?e-krT^A? 
(3) 

The above reduces to equation (1) at the source. 
Similarly, the displacement of beam, due to longitudinal wave motion 
may be considered to be 

-kjTi- 
U^Aje       2  sin(cot-kix) 

and the resulting time averaged longitudinal power may be rewritten as 

(P),=iEAcokie-k^A? 
(4) 

WAVE TRANSMISSION THROUGH A MULTI BRANCH JUNCTION 

Consider a four branch junction as shown in figure 2. Assuming only flexural 
and longitudinal waves propagating in the structure, the displacements of Arm 
1 will be, where A4 represents the impinging flexural wave arriving from 
infinity. 

Wjfot) = (Aie
k"x + A3eik»x + A4e-ik"x) eicot 

(5) 
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U,(x,t) = ( A eiknx\„icot 

(6) 

Similarly for arms 2 to 4 the displacement will be, 
where \\fn = x cos 9„ and n is the beam number 

Wn(¥n,t) = (B2ne-k^n+B4ne-ik^n)ei«»t 

Un(¥n,t) = (Bbne-ik^)eto 

(V) 

(8) 

Here A3, A4, B4n are travelling flexural wave amplitudes', Ai and 
B2n are near field wave amplitudes and Aa and Bbn are travelling 
longitudinal wave amplitudes. 

In previous work [2] in this field a theoretical model was used in which 
it was assumed that the junction between the beams was a rigid mass. The 
mass or joint is modelled here as a section of a cylinder. This represents the 
physical shape of most joints in practical systems. It has been shown [4] that 
the joint mass has an insignificant effect on the reflected and transmitted 
power for the range of values used in this work. 

The joint mass Mj = pj7tL2Jw/ 4, and the moment of inertia of the joint 
isIj=MjL2/8. 

By considering the conditions for continuity and equilibrium at the 
beam junction the following expressions may be written. 

For each arm 

For continuity of longitudinal displacement 

L 9W 
Uj = Un cos 6n - Wn sin 9n + - -r-a- sin 9n 

2 d\\fn 

For continuity of flexural displacement 

W^UnSinen+WnCOsGn-l ^(l + COs9n) 

For continuity of slope 

9W) _ 9Wn 

3\|/      dyn 
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For the junction 

Equilibrium of forces 

E, I, 
a2w!   L      a3w,     aw 
l^+iElIll^+Ij^ 

n 
= 1 

1 

( 

En In 
V 

32Wn    L33Wr 

9^n      2   9Vn 

3Ui     . _.   a ui 
E, A 

3x dtz I En An—^cosGn +En In—-^sinG,, 
3¥n 

3Vn 

_ T  3JWj    x,    3 
E, I,—-r^ + Mj-y 

3x3 J dt2 =-1 Ai ■ Wi- 
L 3W 

2   3x 

n 
= 1 

1 

( 3 
EnAn^sinen_EnIn^n.cosen 

3Vn 3^n 

WAVE MOTION AT A FORCED OR FREE END 

As indicated in figure 1, the framework has one forced end and one free end. 
Assuming the structure is only excited by a transverse harmonic force, the 
boundary conditions are as follows: 

at the forced end 

3xJ 

El 
32W 

3x2 
= 0 EA 

32U 

3x2 
= 0 

Similarly at the free end the above boundary conditions apply with the 
exception that 

3x3 
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POWER TRANSMISSION THROUGH A FRAMEWORK 

The structure shown in figure 1 consits of one four-beam junction, two three- 
beam junctions and four two-beam junctions. From the equations detailed in 
the above two sections, it is possible to construct matrices of continuity and 
equilibrium equations for sub structures. These may be combined to obtain 
the overall matrix for the system. For the framework shown in figure 1, the 
size of the overall matrix is 60x60. This matrix may be solved to obtain the 
sixty unknown wave amplitude coefficients from which time averaged 
transmitted power for each beam may be calculated using equations (3) and 
(4). 

Normalised nett vibrational power is then calculated at the centre of 
each beam constituting the structure. Nett vibrational power may be 
considered to be the difference between power flowing in the positive 
direction and power flowing in the negative direction for each wave type. 
Normalised nett power is considered to be nett power divided by total input 
power. The input power to a structure may be calculated from the following 
expression [8] 

Input Power = — IFIIVI cos0 

where 0 is the phase angle between the applied force and the velocity 
of the structure at the forcing position. 

Figures 3-6 show the nett normalised power in each arm of a 
framework structure over the frequency range 0-lkHz excited by IN force, 
whose material and geometric properties are given in Appendix 2.  For the 

results shown, angle 1 is 45° and angle x is 40° (or the ratio    VQ =0.89) and 

L = y = 0.1m. Using these parameters the ratio of the length of beam No.6 to 
beam No.4 is 0.12. The predicted flexural power is shown in figures 3 and 4 
and from these it can be seen that the dominant transmission paths are arms 1 
and 5, the forced and free arms. The transmitted power in arm 10 is next 
dominant and comparable to arm 5 in the region 0-600Hz. 

The response for all other arms are small, typically less than 5% of 
input power, with, as would be expected, arms 2 and 9 being approximately 
identical in transmission properties. 

Figures 5 and 6 show the nett normalised power for the longitudinal 
waves in the structure. As the frequency range of interest corresponds to a 
flexural Helmoltz number of 1 to 5 with L being the reference length, the 
conversion of power from flexural to longitudinal waves is minimal. From the 
figures it can be seen that beams 1, 5, 6 and 10 have identical transmission 
characteristics, which would be expected at such large longitudinal 
wavelengths. Significant longitudinal power is only observed in arms 3 and 8 
in the frequency region 200-300Hz. This frequency region coincides with a 
drop in the flexural power due to the structure being at resonance in that 
region. It should be noted that power transmitted through arms 3 and 8 has 
travelled through two junctions. 
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EFFECT OF GEOMETRIC ASYMMETRY 

By altering the ratio of angle 0i to angle 0X it is possible to alter the length of 
beam 6 and hence move a pair of three arm junctions further or closer apart. 
From the discussion in the previous section, it was seen, for the structure 
under investigation, that the dominant flexural path, not surprisingly, is 
through the centre of the structure, whilst the peaks in longitudinal power 
occur in beams 3 and 8. Thus 0X was varied and the effect on transmission in 
the dominant paths noted. 

Figures 7-9 show flexural power for arms 5 and 10 and longitudinal 
power for arm 8 for four values of 9X. The values chosen were 36°, 38.25°, 
40° and 42.75° which are equivalent respectively to 6X over Gi ratios of 80%, 
85%, 90% and 95%. Thus as 9X increases, the structure moves to being 
symmetrical in nature. From figure 7, the increase in junction separation 
decreases power in the frequency region 0-500Hz and increases it in the region 
500-lkHz. In beam 10 (figure 10) the effect on the flexural power is reversed 
with increase in junction separation leading to increased power below 500Hz 
and decreased power above 500Hz. It should also be noted that increased 
junction separation has little effect on the power below 250Hz. The effect was 
also noted on all other beams which had both ends connected to a joint. It 
may be concluded that at long flexural wavelengths the junction separation has 
little effect with the impedance mis-match at the junctions being the important 
criteria to effect transmission. It should also be noted that increasing power in 
one arm ie. 5, causes a decrease in arms ie. 10, connected to it. An example of 
the effect of junction separation on longitudinal power is shown in figure 9. 
This shows nett normalised longitudinal power for arm 8 for the same 
variation in 8X. Again minimal effect is seen at low frequencies, with 
increased junction separation having different effects in different frequency 
region. Increasing junction separation has little effect on the region between 
200 and 300Hz when the longitudinal power was dominant. This would be 
caused by the junction separation having little effect on the structures flexural 
natural frequencies. Only by shifting those would the peaks in longitudinal 
power by shifted in frequency. 

CONCLUSIONS 

Results are presented for normalised nett time average vibrational power for a 
framework structure. The geometric symmetry of the structure is broken by 
allowing one angle to decrease in value. The effects of varying the angle 
change by up to 20% of its original value are investigated. Although the 
results presented are for one example only, highlighted are the fact that 
decreases in power in one part of the structure result in increases in power in 
another part. Also shown was the effect of splitting a junction in to a pair of 
junctions is minimal at low frequencies, or long wavelengths. From the results 
of the analysis it is possible to establish frequencies and positions for 
minimum power on the structure. Other configurations of framework 
structure may be analysed by applying the equations presented. 
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APPENDIX 1 - NOTATION 

A - Cross sectional area Q - Axial force 
Af - Amplitude of flexural wave S - Shear force 
Ai - Amplitude of longitudinal wave T - Time period 
B - Bending moment t - Time 
E - Young's modulus U - Displacement due to 
E* - Complex Young's modulus longitudinal wave motion 
F - Excitation force V - Velocity 

w - Displacement due to 
I - Moment of inertia flexural wave motion 

X - Instantaneous rate of 
Ij - Moment of inertia of joint working 

X - Distance 

J w - Joint width T\ - Loss factor 

kf - Flexural wave number en - Angle of Arm n 

ki - Longitudinal wave number pj - Joint density 
L - Joint length M - Moment force 

Mj - Joint mass * Phase angle 
n - Beam number 

P - Transverse force Vn - Distance along Arm n 
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<P>f - Time averaged flexural power     co    - Frequency (rad/s) 

<P>1   - Time averaged longitudinal power 

Beam Breadth 
Beam Depth 
Youngs Modulus 
Density 
Loss factor 

APPENDIX 2 - MODEL PROPERTIES 

= 33mm 
= 6mm 

5GN/m2 
1180kg/m3 
0.001 

-« ► 

<a> *+- 

** ► 

Figure 1: Framework Structure 

Beam 1 

Figure 2: Four Beam Junction 
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Technical University of Mining and Metallurgy, 
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1. Introduction 

Dynamic behaviour of mechanical structures may be modelled on the basis of 
and with the help of mathematical apparatus used in Statistical Energy Analysis (SEA) 
[5] The method is especially useful to calculate the statistical approach vibroacoustical 
energy flow in middle and high frequency range. With the help of a few parameters, 
sucffas- modal density, damping loss factor, coupling loss factor and the value of 
input power, building linear equations set it is possible to describe the flow of 
vibroacoustical energy in a complicated structure. There is also a possibility of quick 
estimation of the influence of construction method on the vibroacoustical parameters 
of the whole set. In the following work an exemplary application of one of the most 
frequently used software for   calculating the flow of acoustic energy has been 
presented: AutoSEA programme [1]. The aim of the work is practical modelling of 
vibroacoustical energy flows through screw-connection of two plates and comparing 
quantity results with experimental (outcome) measurements. Equivalent coupling loss 
factor has been calculated for a group of mutually combined elements constituting a 
construction fragment. A comparison between the measured results and the value of 
coupling loss factor in linear joint (e.g. in welded one) has also been made. Using the 
method of finite elements, the influence of rubber separator thickness on the value of 
die first several frequencies of free vibrations has been computed as well. 

2. Physical model of plate connection 

A connection of two perpendicular plates has been chosen for modelling the 
flow of vibroacoustical energy in mechanical joints. Connection diagram is presented 
in Figure 1. On the length of common edge the plates has been joined with anglesteel 
by screws. A rubber separator (4) has been placed between the excited plate and the 
anglesteel leg (3). 
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screw   locations 

rubber  layer  (4) 

plate  (1) \onqlesteel   (2)   (3) 

Fig.l. Modelled structure 

3. SEA model 

In order to carry out the vibroacoustical analysis of the system using Statistical 
Energy Analysis a model of the examined structure has been built. It has been 
assumed that in every element of the construction only flexural waves propagate. 
Every Plate and the rubber layer have been modelled with just one appropriately 
chosen subsystem. The anglesteel, however, has been modelled as a continuous 
connection of two plates having the dimensions which correspond to the anglesteel 
legs, the plates themself being set at the right angle. 

point force 

plete  (5) 

olate (!)   o) 

,<3—Pi 

rubber (4) eglesteel (3) englesteel (2) 

Fig. 2. SEA model of a system 

■ rubber 2 mm 

■ englesteel leg ■ 

500   1000  2000  4000  8000 

frequency [Hz] 

■ rubber 4 mm   —— rubber 6 mm 

■ plate 

Fig. 3. Modal densities of the subsystems 
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Using the SEA method we are able to describe the flow of the vibroacoustical 
energy in middle and high frequencies with an algebraic equation set. The examined 
ystem consists of five simple subsystems, of which only one rs exited to vibradon 

with applied force. The flow of vibroacoustical energy in the model presented is 
depicted with the following equation: 

Til tot -M21 
0 0 0 

-"n l2 rl2 tot -11 32 0 0 

0 -Tl23 M3tot -143 0 

0 0 _Th4 ^4 tot -Hs4 

0 0 0 -^45 ^ 5 tot 

^1 tot | Zi 
^2 tot 

^3 tot 
. 

CO 

0 

0 
E4 tot 0 

J ^5 tot 0 

(1) 

where 
„     ='     + E v is a total coefficient of energy loss for every subsystem, 
■Wi.ioi i'- 'lJ 

internal loss factor of the subsystem, 
- coupling loss factor between subsystems, 

- the mean vibrational energy in Af frequency band in i-subsystem, 
- the input power carried into i-subsystem from outside. 

To determine the elements of the coefficients matrix in eq.l it is necessary to 
know [1,4,6] coupling loss factors (CLF) between structural subsystems and damping 

l0SS & In the SEA model in question transmission of the acoustic energy occurs in two 
tvDes of connections between: 
-        the plate and the beam (the point joint of the beam which is parallel to the edge 
of the plate, (transfers flexural waves), 

two plates (linear connections and point joints transferring flexural waves). 

The coupling loss factor between the plate and the beam which vibrate in the 
flexural way (in the case of the point joint), is defined with following equation [1]. 

1.75c 1 

<x).A, *uQ 
(2) 

where: 
c - is the speed of flexural wave, 
T - transmission factor, 
Q - the number of point connections, 
u - angular frequency, 
A - the surface of the plate. 
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The speed of the flexural wave in the first plate cu can be calculated in the 
following way: 

cpl=ja, 
h1E1 

12Pl(l-A) 
* (3) 

In the model under examination formula (2) defines coupling loss factors between the 
anglesteel leg (2) and the beam (4) - (factors ^ and r,43) or the beam (4) and the plate 

(5) - r;45 and r/54. 

The flow of energy between two plates (which are connected at the right angle 
and which vibrate in flexural way) is defined with the following formula in the case 
of linear connection: 

_ 2   cnl (4) 
IIo)iA1 

where: 
1 - is the length of the connection. 
With above formula it is possible to describe the flow of energy through correctly 
made welded joints of plates or, for example, through bent plates. In the system 
presented the factor determines the flow  of energy between anglesteel legs (2) and 
(3) 

The coupling loss factor between two plates with a point joint is described by 
the following formula: 

1 Aici.-       n (5) 
3 <o.Al 

This type of connection occurs  between the plate representing the anglesteel 

leg and the plate (5). _ .     .  . 
After defining the value of factors matrix in the first equation it is possible to 

specify the ratio of the vibroacoustical energy gathered in plate (1) and (5). 

E1 _ (n2toir\ 3tot-M 24^ 32)^ Atofl 5to:' M 54^45) "^ 34^ 43 M 5tot (g) 

E5 r\2lr\72r\4J,r\54 

The damping loss factor is important parameter of every subsystem. For steel 
plates used in the experiment the value of the damping loss factor have been measured 
experimentally with the decay method. The results of the measurements have been 
presented in figure 4. The frequency characteristic of rubber damping has been shown 

in figure 5. 
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4. Experimental research 

Experimental investigations have been carried out for connections made with 
the use of rubber separator (elastic layer) of 50° Shore hardness. The connection was 
build up of two identical, perpendicular plates connected each to another using the 
anglesteel  and the elastic rubber layer. These are the properties and material 
parameters of individual elements: 

plates: 
constructional steel (St3); 
500 * 500 * 2.2 mm; 
2,1 10"  Pa. 

- material 
- dimensions: 
- Young modulus: 

anglesteel: 
- material: 
- dimensions: 
- Young modulus: 

elastic layer: 
- material: 
- dimensions: 

thickness: 

constructional steel (St3); 
L 40 * 40 * 2.2 mm; 
2.1 10"  Pa 

rubber 50° Shore 
500 * 40 mm 
2, 3, 4, 5, 6 mm 

To avoid the loss of mechanical energy in the environment, during measure- 
ments the construction was suspended to the supporting frame with three weightless 
strings in such way that only rigid body motions in the plane perpendicular to the plate 
surface can occur. The excitation of the wide-band type with constant power spectral 
density was applied in the symmetry axis of the plate (5) about 20 mm below the 
upper edge (Figure 1). During the experiment the distribution of vibrating velocities 
on the plate surface was obtain by non contact method using laser-vibrometry. 
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5. FEM model 

Vibration of modelled structure in low frequency has been analyzed by the 
Finite Element Method (FEM). Several FEM models, was build in order to consider 
SS» of the rubber layer. The rubber thickness has been changed fro- 
0 mm to 6 mm The dimensions and material parameters of the plates and the 
«nTLel was constant The structure was fixed in four corners. Calculations were 
2 a dSisTonoTL structure into 608 elements of type BRICKS. The influence 
of me mbber thickness on the eigenfrequencies was remarkable. The results for first 
15 ^frequencies are presented in the table I. In fig. was shown also the changes 
of die value of natural frequencies in comparison with the natural frequencies of 
structure without applying the rubber layer. 

li 1DIC 1.  iiamiai u 

Natural frequencies [Hz] for various rubber layer thickness 

0 mm 2 nun 3 nun 4 nun 5 nun 

127.8 123.1 121.5 119.4 117.5 

297.5 235.8 224.6 212.6 204.6 

507.6 432.5 391.3 357.1 330.0 

1003.2 566.9 525.7 503.7 491.9 

1282.3 807.1 768.9 733.5 712.2 

1900.5 1185.2 1169.4 1123.2 1070.2 

2386.7 1570.2 1483.6 1376.2 1304.6 

3272.3 1851.6 1634.2 1531.6 1490.8 

3603.4 2303.1 2263.4 2167.8 2147.3 

4263.3 2611.2 2539.5 2496.9 2463.7 

4759.5 3192.7 3515 3110.1 2913.2 

5438.4 3926.7 3874.6 3626.4 2937.0 

7627.4 4110.1 4105.5 3639.9 3026.6 

7691.6 5070.7 5137.0 3670.5 3111.2 

11543.2 j            5547.1 5503.9 3721.9 3181.2           | 

The decreasing of the absolute values of the natural frequencies is observed according 
to increasing of the thickness of the rubber layer. Beginning from the third mode of 
libmZ of the system the decrease of the natural frequencies is almost constant for the 
rubber iayer 2 mm or 3 mm and is continuously decreasing for rubber layer 4-6 mm (See 

fig. 6). 
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Fig. 6. Changes of natural frequencies 

6. Comparison with experimental results 

The equivalent coupling loss factor defining the energy flow between the plates has 
been determined experimentally [31 for a model consisting of two subsystems: two plates. 
The coupling loss factor in such two element model may be specified by the following 

equation: 

N, E2tot 

(7) 
- 1 

The quotient of plate energies E,/E2 in a two-element model is relevant to the quotient of 
energy in the first and fifth subsystem (E,/Es) in the five element model presented in figure 
i the value of these quotient is defined with the equation (6) 

In the picture we have presented the values of the equivalent coupling loss factor in 
the connection Individual points in the diagram show the results obtained experimentally. 
The values received in computer simulation have been presented as a continuous diagram. 
The upper curve shows the values of the coupling loss factor in the joint before the 

application of the rubber layer. . 
In the frequency range above ca. 125 Hz we have received a very good comparison 

of experimental results and computer simulation results performed with the AutoSEA 
software At the frequency of about 200Hz there occurs a local minimum of the equivalent 
coupling loss factor between the plates. The value of the minimum is essentially influenced 
by the value of the rubber damping loss factor. The frequency (with the minimum CLF) is 
strongly influenced by the peak frequency of the rubber damping curve. 
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7. Conclusion 

A way of modelling the vibroacoustical energy flow with the help of SEA method has 
been presented in the work. We have examined the screw connection of two plates, where 
a rubber elastic layer has been applied. A comparison has also been made between the results 
of computer simulation of the mechanical energy flow with SEA method and the expenmemal 
results and thus we have noticed the good correlation, especially as far as middle frequencies 

are concerne^ ^.^^ through introduction of the rubber separator has a remarkable 

impact on the acoustic energy flow: 
- The application of the elastic layer in the joint in question lowers the value ot 

equivalent coupling loss factor in the whole frequency range. 
- the value of rubber damping factor has most significant influence on the acoustic 

energy flow through connection in middle frequencies range: 
* The minimum value of the equivalent coupling loss factor m a joint is essentially 
influenced by the rubber separator damping loss factor. 
* The frequency of minimum CLF occurrence is strongly influenced by the peak 
frequency of the rubber damping curve. 

The increasing thickness of the rubber layer produces on decreasing natural frequencies ot 

the structure. 
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Abstract 

Statistical Energy Analysis (SEA) is potentially a powerful method for 
analyzing vibration problems of complex systems, especially at high frequen- 
cies. An important parameter in SEA modeling is the coupling loss factor 
which is usually obtained analytically based on a system with only two cou- 
pled elements. Whether the coupling loss factor obtained in the classical way 
is applicable to a practical problem, which normally comprises of more than 
two elements, is of importance to the success of SEA. In this paper, the varia- 
tion of coupling loss factor between two subsystems due to the presence of a 
third coupled subsystem is investigated. It is shown that the degree to which 
the coupling loss factor is affected depends on how strong the third subsystem 
is coupled. It also depends on the distribution of the modes in the coupled sub- 
systems. This kind of effect will diminish when the damping is high, subsys- 
tems are reverberant, or ensemble-average is considered, but not for individual 

1    Introduction 

SEA is potentially a powerful method for analyzing vibration and acoustic problems 
of complex systems, especially at high frequencies, because of the simplicity of 
its equations compared to other deterministic analysis techniques. SEA models a 
system in terms of interconnected subsystems. The coupling parameter between 
any two subsystems is characterized by a coupling loss factor. If the coupling loss 
factors and internal (damping) loss factors of all subsystems are known, the power 
balance equation (e.g., see [1]) for each subsystem can be established. From this set 
of equations, SEA predicts the system response (due to certain types of excitation) 
in terms of the average energy of every subsystem. The energy can in turn be related 
to other response quantities such as mean velocity or strain. 
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Historically, the SEA power balance equations were initially derived from an 
analysis of two coupled oscillators [2,3]. It has been shown that the energy flow 
between them is directly proportional to the difference in their uncoupled modal 
energies. The theory has then been extended to systems with multi-coupled sub- 
systems (e.g., [4]). Strictly this extension is only applicable if certain assumptions 
are justified [4, 5]. Also the new concept of indirect coupling loss factor, which 
is used to represent the energy flow proportionality between the indirectly coupled 
subsystems, is also introduced. 

In practice, the indirect coupling loss factors are normally ignored in SEA ap- 
plications because they are very difficult to determine analytically. Only coupling 
loss factors between directly coupled substructures are considered. Some analy- 
ses [6-8] have shown that this approximation may lead to significant errors in the 
predicted results if certain conditions are not met in the system. These conditions 
include not only the well known requirement of weak coupling between subsystems 
(e.g., see [6]), but also others, such as given by Langley that the response in each 
element must be reverberant [7]; and by Kean that there should be no dominant 
modes (peaks) inside the frequency-averaging band [8]. However, it is usually dif- 
ficult to know whether these conditions are satisfied for a particular system. In fact 
the above mentioned conditions do not always hold for practical engineering cases. 
On this point of view, the importance of a coupling loss factor for describing the 
coupling between indirectly coupled subsystems are to be further examined. 

A related question is whether the coupling loss factors obtained from the system 
with only two subsystems can still be applied when other subsystems are present. 
Generally, the coupling loss factor is sensitive to the amount of overlap between 
the modes of the two coupled subsystems. When additional subsystems are cou- 
pled to the original two-subsystem model, the mode distributions of the originally 
coupled two subsystems will be affected. The change of mode distributions will fur- 
ther affect the modal overlap between the coupled two subsystems and finally the 
coupling loss factor between them. However, general estimation methods for cou- 
pling loss factor assume that the coupling parameters between two subsystems are 
not affected much by the presence of the other subsystems. Therefore the conven- 
tional approaches of deriving coupling loss factor are mostly based on consideration 
of a two-subsystem model only. One method is the wave approach, by which the 
coupling loss factor used in the SEA applications are derived analytically from aver- 
aged transmission factors of waves that are transmitted through a junction between 
semi-infinite subsystems. This method only takes into account local properties at 
the joints and sometimes may be inaccurate. Recent research [1,7,9-11] based 
on the model with two-coupled subsystems has shown that the coupling parameter 
does depend on other system properties, such as damping loss factor, etc. It can be 
argued that, if there is a third coupled subsystem, the coupling parameters between 
the first two subsystems will also depend on the energy flow to the third subsys- 
tem. Therefore, from a practical point of view, the coupling loss factor estimated 
for two-coupled subsystems, ignoring the indirectly coupled subsystems, can only 
be of approximate value. 
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In this paper, the variation of coupling loss factor between two subsystems due 
to the presence of a third coupled subsystem is studied. In the following sections, 
the coupling loss factor is firstly expressed in terms of global mobility functions. 
The exact solution of mobility functions is only for simple structures. However, for 
general structures, it can be obtained by Finite Element Analysis (FEA) [10,11]. 
The coupling loss factors obtained respectively in the cases with and without the 
third subsystem in the model are compared for two particular system configura- 
tions, respectively. The system used in this investigation is one-dimensional simply 
supported beams coupled in series by rotational springs. By varying the spring stiff- 
ness, the strength of the coupling between the second and the third subsystems can 
be changed. It is shown that the effect of the third coupled subsystem on the cou- 
pling loss factor between the first two coupled subsystems depends on how strong 
the third subsystem is coupled. For each individual case, it is also shown that this 
kind of effect may be positive or negative, depending on the distribution of modes 
in the coupled subsystems. 

2    Coupling Loss Factor by Global Modal Approach 

In this section, a modal method is used to derive coupling loss factor in a sys- 
tem with any number of coupled subsystems. The result is then simplified for two 
cases: (1) a three-subsystem model; (2) a two-subsystem model which is simply 
substructured from the previous three-subsystem model by disconnected the third 
subsystem. 

For a linear system which consists of N coupled subsystems, if "rain-on-the- 
roof" excitation [10] is assumed to be applied to each subsystem in turn, the corre- 
sponding response energy can be expressed as 

Eij=miSj / I        \H[r,s,u>)\- drdsdio (1) 
il  subsiislrnni   snbayaLemj 

where E;; is the total time-averaged response energy of the subsystem i due to 
the excitation on the subsystem j, H[r,s,u) is the transfer mobility function be- 
tween the response points •;■ and the excitation point .s, fi is the averaging range 
of frequency, u.\ in and S are the mass density and the power spectral density of 
excitation. The input power due to the excitation is given by 

üj = Sjf        f      R.e[H(.s,s,Lo)}dsdu (2) 

where /?.e[/-/(*,.s,cj)] is the real part of the point mobility at the position .s. For 
simplicity, two terms, «,-, and bj, are defined as 

a,. 
m.:,b, 

/        \H{r,s,u:)\2 drdsd,u (3) 
Q  .•iubsystcm.i   subsystem.} 

bj    =    Hi =  / / ße[tf(a,s,w)]d«dw (4) 
,S'; 

n    substisl'nvj 
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The mobility function, H[r, s,u), is to be expressed in terms of the global modes 
of the system, which can be obtained by Finite Element Analysis (FEA). By the 
principle of reciprocity of the mobility function, the relation of a,-.,- = a,-,- always 
holds regardless of the strength of coupling and the magnitude of input power if the 
excitation is "rain-on-the-roof". Theoretically applying the Power Injection Method 
[12] we can obtain the SEA equation as 

n = ME (5) 

where II   = {II,, II2,... , UN}T and E = {Eu E2,... , EN}T.  The SEA loss 
factor matrix [77] is 

(''?i + X/'7ii) -V-H 

-Vi 2 

-VIN 

;V 

(»72 + X>72' 
#2 

-'?2A- 

•Wi 

-VN2 

('?A'+ H'?JVi 
(6) 

■m.]rtn       m1al2 

61 b2 
■n?.)a-2i 77?.2«22 

&i 02 

»7,v«A'l 777.,v«/V2 

777.1aLV 

777.-2tt2A' 

bN 

V77,va,v,V 

= — BA-'M"1 

where, •;/,■ is the internal loss factor for subsystem i, ■)/;,■ is the coupling loss factor 
from subsystem i to subsystem j, CJC is the central frequency of the averaging band 
n, 

B = -b; M 777; «y 

From equation (6), the reciprocity principle of the coupling loss factors can be easily 
seen, due to «;,■ = «,■;, 

777,-6,- m.jbj/(ujcTT/2) 

7?).,;6; imbi/(ljJcTr/2) 

■'hi 

'la 
(7) 

Where, (i7i,-6;)/(u;c7r/2) is the averaged real part of point mobility [4] and can be 
regarded as the generalized modal density of the subsystem i. Assuming weak 
coupling and light damping, it approximately equals to the classical definition of 
modal density [13]. Therefore, the relation given by equation (7) also reduces to the 
classical reciprocity principle. 
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2.1    Substructured two-subsystem model 

Subsystem Subsystem Subsystem 
3 

Figure 1: A general SEA model with three coupled subsystems in series 

Consider a whole system with three substructures coupled in series as shown in 
Figure 1. If subsystem 3 is removed, the coupling loss factors between subsystems 
I and 2 are given in the equation 

byCl-22 b\0-V2 

■'?!  +-'?I2 —'?2L 

—'?! 2 »?2+'/2l 

77?.i(«! i«22 — 0-l2^2l) "'-2(oll«22 — <"'l2<"''2l) 

i>2«2 I t>-2 rt 11 

??7i(ai[«22 — «12021 ) ?77.2(«ll«22 — «12«2l) 

1 
b. 

62«21 

M12 

02 

(8) 

777.Lai i«22 m2a22 

The approximation in the above equation is due to aua22 > «t2«2i when the cou- 
pling is weak. Manipulating equation (8) with or without using the approximation 
both can work out the coupling loss factors v712 and ??2i as 

m\b\ )(''i'2^2) 

'/!2 
0,^777.10.11 

-7?2 -'?l 

777, 61 
(9) 

iobi - 777. i 6 ■ 
u)cmia.\ i 

(777,|6|)(?7?,2Ö2) 

•'/2I 

6i 6, 
u!cmiciu 

-m - -'?! 

■;??.■) 6-j 
777.2 b-,- 

bo 
77). lit 

(10) 

Wcm-2Cl22 U7c777.|0|i 

The equations are true regardless of the strength of the coupling. It can be seen that 
rji-2 and /7)i depend on the values of the three terms 777.76;, i]; and 6,-/(u.ym.;a;;). The 
first two are the generalized modal density and the internal loss factor, or in combi- 
nation equivalent to modal overlap factor. The third one, by noting the definitions 
of 6, and an, is the ratio of input power to response energy for the directly excited 
subsystem, i.e., the total loss factor of subsystem i. From equation (8), this term 
can be approximately expressed as 

nu-jiai, i = —;— «»?; + Ylvn 0 0 
Total loss factor 
of subsystem    i miU!cau 
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In the classical wave approach, where semi-infinite subsystems are assumed, the 
total internal loss factors becomes 

(12) Vtotal, 1  = <?1 + Vu      and      lllolaia = '72 + »?21 

where iff is the classical coupling loss factor. Substituting equation (12) into equa- 
tions (9) and (10), 7?,-,- reduces to the classical 77??, which only depends on the local 
properties at the joints rather than other properties of the system, such as damping. 
If the subsystem modal parameters are used to evaluate the term, 6;/(wc?7i;a;;), then 
the total loss factor is just the internal loss factor of the subsystem and the cou- 
pling loss factor is equal to zero. This is reasonable because using the uncoupled 
modal parameters instead of the coupled modal parameters is actually equivalent to 
removing the coupling between two subsystems. 

However, for finite system where the assumption of semi-infinity is not justified, 
there will be no immediate simplication for equations (9) and (10). Numerically, 
FEA can be employed to obtain the global modes and then the coupling loss factor 
can be calculated [10,11]. 

2.2    Full three-subsystem model 

Instead of substructuring, consider the three-subsystem model as a whole system, 
shown in figure 1. Now the order of equation (6) is reduced to 3. With the global 
modal parameters obtained from FEA, the coupling loss factors can be directly 
evaluated. However, when the coupling between subsystems is weak, the order- 
reduced equation (6) is still able to be simplified. Matrix A may be alternatively 
expressed in the form of 

' ou     0      0   1      [   0     «12     0   "       " 
A = 0        «22        0 +       «12        0        «23        + 

0 0        a:33  J L     °        "23        0 

where the terms on the right side are sequentially defined as Ai, A2 and A3. Under 
the assumption of weak coupling, the non-zero entries in Ai, A2 and A3 will be of 
the order 0{s°), 0{sl) and 0(s3), respectively [14]. The inverse of matrix A may 
be approximately written as 

0 0 «13 

0 0 0 
«13 0 0 

(13) 

A"1 = Ar1 - A^AzAi Ar'AaAr1 + Ar1A2Ar
1A2A1" 

+ ••■ (14) 

As an approximation, substituting only the first three terms in equation (14) into 
equation (6) gives 

b, V'|2 M13 

[v]«iM- 

777 ,«u 

62« 12 

777.9« 11«')') 

~b2 

777,3« 1 1 «33 

62 «23 

777. i «| 1 «22 

Ml 3 
777.2 «22 

6302.3 

7773«-59«3.3 

6.3 

77 M «U« 13 777>«22«33 ■<»3«33 

(15) 
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Generally, under the condition of weak coupling, the indirect coupling loss factors, 
7)13 and 7731, are much smaller than the direct coupling loss factors and the internal 
loss factors [5,7,15]. The diagonal elements in [77] can therefore be approximated to 
the sum of internal loss factor and direct loss factor. It can be shown from equation 
(15) that equation (11) remains valid for three coupled subsystems. But in the three- 
subsystem case, the term, bi/(ojcmialt), is to be evaluated by using the global modes 
of the three-subsystem model. 

3    Numerical Examples and Variation Analysis 

In this section, two examples with different configurations are used to show the vari- 
ation of coupling loss factor due to the presence of a third coupled subsystem. The 
coupling loss factor of the two-subsystem model is evaluated by using equations (9) 
and (10). For the three-subsystem model, equations (6) and (15) are used. It can be 
shown that both equations (6) and (15) give the same results as the couplings are 
weak. 

3.1    Structural details and SEA model 

beam 1                 (TTTT)      beam 2 
(a)   2S Z± A Z\ 

K, K2 

beam 1 
{b)   ^ -^^ ^^ ^ (T$TQ       beam 2      (TflQ     beam 3 

Figure 2: A structural model comprising of three beams 

To begin example calculations, consider initially a two-subsystem model (figure 2(a)) 
which is two thin beams coupled through a rotational spring. The group of fiexural 
vibration modes of each beam are taken as a SEA subsystem. The spring provides 
weak coupling between them where only rotational moment is transmitted. When 
beam 3 is connected at the free end of beam 2 to the original two-beam model, 
a three-subsystem model is formed (figure 2(b)). The specifications for the three 
beams are given in table 1. The spring stiffness, K2, is adjustable in order to look 
into the significance of the effect of the third subsystem. There are two cases where 
the length of beam 2 is: (i) L2 = l.Qm; (ii) L2 = 1.1m. The spring constants at 
the joints are chosen to be weak enough to ensure that:(a) the coupling loss factor 
is much smaller than the internal loss factor; (b) the indirect coupling loss factor is 
much smaller than the direct coupling loss factor. 

In the global modal approach (see section 2), the modes of two-subsystem model 
and three-subsystem model are obtained from FEA. In numerical simulation, the 
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Table 1: The specifications of the three beams 

BEAM 1 2 3 
length (m) 2.0 1.0 & 1.1 0.7 
width (mm) 4 
Thickness (mm) 2 
Density (Kg/m3) 7890 
Young's Modulus (N/m2) 196E+9 
Poisson Ratio 0.29 
spring constant, R\ (Nm/rad) 1.0 

central frequency is 200Hz and the averaging band is selected as 100 ~ 300Hz. In 
order to take into account the contribution from the modes out of the band, all the 
modes up to 500Hz are extracted for evaluating the mobility functions irr averaging. 
The modal loss factor is assumed to be the same for each modes used in averaging. 
This means that the internal loss factor is the same for each subsystem and is equal 
to the modal loss factor [11]. The results given are plotted against the modal loss 
factor in order to show the damping effect at the same time. 

3.2    Results and discussion 

Figure 3 shows the identified coupling loss factor ijv2 for the case (i) (L2 = 1.0m) 
with different stiffness of K2. The case of K2 = 0 means that the third subsystem 

io-J 10* 

Modal loss factor r\ 

10'' 

Figure 3: 77 )2 is negatively affected in three-subsystem model 

is not present. It can be seen that the coupling loss factor i]V2 is decreased in the low 
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range of damping while the strength of the coupling between subsystem 2 and 3 is 
increased. The stronger the coupling, the more 7?12 is decreased. 

On the other hand, for the case (ii) where L2 = 1.1m, the different results are 
shown in figure 4 where the presence of the third subsystem would mainly increase 
?;12 in the low range of damping. The increasing magnitude is also dependent on the 
strength of coupling between subsystem 2 and 3. The explanation for the different 
variation trends of i]i2 due to the third coupled subsystem between figure 3 and 4 
will be given later. 

10* 

Modal loss factor r\ 

Figure 4: i]r, is positively affected in three-subsystem model 

From figure 3 and 4, the effect of damping on the coupling loss factor can also be 
observed. In the low damping region, increasing damping would increase coupling 
loss factor. After a certain turnover point, increasing damping would make the 
coupling loss factor decrease and finally 7?12 becomes convergent to a value. This 
agrees with the conclusions drawn in [10, 11]. It is shown that, even though the 
length of beam 2 has a slight difference in figure 3 and 4, the converged values are 
still very close. Thus, the converged value seems not to depend on the variation of 
coupling strength at A'2 and the structural details, although, with the third subsystem 
existing in the system, the convergent speed is faster. Therefore, it is reasonable to 
believe that the converged coupling loss factor at sufficiently high damping only 
depends on the property of the joint rather than other system properties. This joint- 
dependent property of coupling loss factor in the high range of damping accords 
with the assumption in the wave approach. Here, it is convenient to define the 
convergent region in the figure 3 and 4 as the "joint-dependent zone". 

However, before the "joint-dependent zone", coupling loss factor seems very 
sensitive to the variation of damping loss factor as well as the strength of coupling 
between subsystem 2 and 3. It is because in the low damping region the system 
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modal properties have been playing a major role in determining coupling loss fac- 
tor [10, 11]. In general, the coupling loss factor represents the ability of energy 
transmitted between subsystems. It depends not only on the physical strength of 
the coupling (e.g., spring stiffness in the examples), but also on the amount of over- 
lap between the modes of two connected subsystems. The higher modal overlap 
between the modes of two connected subsystem, the more energy is transmitted 
between the subsystems. As a result, the coupling loss factor will be higher even 
though the physical strength at the joint is unchanged. If the modes in one subsys- 
tem are distributed exactly the same as those in one another(for instance, two exactly 
same structures are coupled together), the coupling loss factor would be varied to 
the maximum, and vice versa. Therefore, this region could be likely defined as 
"modal-sensitive zone". 

In the "modal-sensitive-zone", the dependence of coupling loss factor on the 
amount of overlap between the modes of two connected subsystems has been clearly 
shown in figures 3 and 4. For the case (i) illustrated in figure 3, the length of beam 2 
is half of beam 1. Due to the characteristic of mode distribution in beam structure, 
the amount of overlap between the modes of subsystem 1 and 2 is more than that in 
the case (ii) shown in figure 4, where beam 1 is 2 meters and beam 2 is 1.1 meters. 
Therefore, case (i) has higher coupling loss factor than case (ii) in "modal-sensitive 
zone". When the third beam is coupled, the induced variation of coupling loss factor 
depends on how the amount of overlap between the modes of subsystems 1 and 2 is 
affected. It can be increased or decreased and thus the coupling loss factor between 
subsystems 1 and 2 can also be increased or decreased due to the third coupled 
subsystem. For example, the amount of such overlap in case (i) is decreased after 
the third subsystem is coupled. As a result, the coupling loss factor, 7712, becomes 
decreased. 

The above discussed variability of coupling loss factor due to the third coupled 
subsystem has been shown for individual cases. On the other hand, if an ensemble 
of similar structures are considered, this sensitivity may be reduced (as it is some- 
times positive or negative depending on each special situation). However, such a 
variability obtained from two typical examples is nevertheless very useful when 
one individual case is studied in SEA or SEA-like problems. The ignorance of such 
effect of the other coupled subsystems on the coupling loss factor may become one 
of the possible error sources causing SEA failure. 

4    Conclusions 

The variation of coupling loss factor due to the third coupled subsystem is stud- 
ied in this paper. The effect of a third coupled subsystem on the coupling loss 
factor between the first two coupled subsystems depends on how strong the third 
subsystem is coupled. Roughly, along with the damping in the subsystems, "joint- 
dependent zone" and "modal-sensitive zone" are defined according to the different 
variation properties of coupling loss factor. In the "modal-sensitive zone", the ef- 
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feet of a third coupled subsystem on the coupling loss factor could be positive or 
negative. It depends on how the amount of overlap between the modes of two con- 
nected subsystems is affected. This "modal-sensitive" effect may be averaged out 
for an ensemble of structures, but it is important when SEA is applied to individual 
cases. In the "joint-dependent zone", the coupling loss factor is insensitive to the 
strength of the coupling between the second and third subsystems. Since the two 
different zones are allocated according to the system damping (which is equivalent 
to modal overlap factor when the central frequency and modal density are fixed), 
it shows the importance of reverberance in subsystems when the classical SEA is 
applied [7,8]. How to take into account the effect of the other coupled subsystems 
in evaluating coupling loss factor, especially when the system damping is low and 
when an individual case is considered, definitely needs to be further investigated. 
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ABSTRACT 

Previous research into structural vibration transmission paths 
has shown that it is possible to predict vibrational power 
transmission in simple beam and plate structures. However, in 
many practical structures transmission paths are composed of more 
complex curved elements; therefore, there is a need to extend 
vibrational power transmission analyses to this class of structure. 
In this paper, expressions are derived which describe the vibrational 
power transmission due to flexural, extensional and shear types of 
travelling wave in a curved beam which has a constant radius of 
curvature. By assuming sinusoidal wave motion, expressions are 
developed which relate the time-averaged power transmission to 
the travelling wave amplitudes. The results of numerical studies 
are presented which show the effect upon power transmission 
along a curved beam of: (i) the degree of curvature; and (ii) various 
simplifying assumptions made about the beam deformation. 

1. INTRODUCTION 

Previous research into structural transmission paths has 
shown it is possible to predict vibrational power transmission in 
simple beam and plate structures. More recently, transmission 
through pipes with bends, branches and discontinuities has been 
studied, which has led to useful design rules concerning the 
position and size of pipe supports for minimum power 
transmission[l]. However, in many practical structures 
transmission paths are composed of more complex curved 
elements. Therefore, there is a need to extend power transmission 
analyses to this class of structure. 
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Wave motion in a curved beam with a constant radius of 
curvature has been considered by Love [2] who assumed that the 
centre-line remains unextended during flexural motion, whilst 
flexural behaviour is ignored when considering extensional 
motion. Using these assumptions the vibrational behaviour of 
complete or incomplete rings has been considered by many 
researchers who are interested in the low frequency behaviour of 
arches and reinforcing rings. In reference [2] Love also presented 
equations for thin shells which include the effects of extension of 
the mid-surface during bending motion. Soedel [3] reduced these 
equations and made them applicable to a curved beam of constant 
radius of curvature. In an alternative approach Graff [4] derived 
these equations from first principles and also constructed frequency 
verses wavenumber and wavespeed versus wavenumber graphs. 
Philipson [5] derived a set of equations of motion which included 
extension of the central line in the flexural wave motion, and also 
rotary inertia effects. In a development analogous to that of 
Timoshenko for straight beams, Morley [6] introduced a correction 
for radial shear when considering the vibration of curved beams. 
Graff later presented frequency versus wave number and wave 
speed versus wave number data for wave motion in a curved beam, 
when higher order effects are included [7]. 

In this paper, expressions for vibrational power transmission 
in a curved beam are derived from first principles. In the next 
section two sets of governing equations for wave motion in a 
curved beam are presented both of which include coupled 
extensional-flexural motion. The first set is based upon a reduction 
of Love's thin shell equations mentioned above. The second set is 
based upon a reduction of Flugge's thin shell equations [8]. In 
section three, the expressions for stresses and displacements 
presented in section two are used to derive formulae for vibrational 
power transmission in terms of centre-line displacements. By 
assuming sinusoidal wave motion, expressions are developed 
which relate the time-averaged power transmission to the 
extensional and flexural travelling wave amplitudes. In section 
four, corrections for rotary inertia and shear deformation are 
introduced. The results of numerical studies of these expressions 
are presented which show the effect upon wave motion and power 
transmission of (i) the degree of curvature, and (ii) the various 
simplifying assumptions made about the beam deformation. 
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2. WAVE MOTION IN CURVED BEAMS 

In this section the governing relations between displacements, 
strains, stresses and force resultants in a curved beam are presented. 
The centre-line of the beam lies in a plane and forms a constant 
radius of curvature. The cross-section of the beam is uniform and 
symmetrical about the plane and it is assumed that there is no 
motion perpendicular to the plane. It is also assumed that the beam 
material is linearly elastic, homogeneous, isotropic and continuous. 

Consider a portion of the curved beam, as shown in Figure 1. 
The circumferential coordinate measured around the centre-line is 
s, while the outward pointing normal coordinate from the centre- 
line is z, and the general radial coordinate is r. A complete list of 
notation is given in the appendix. For small displacements of thin 
beams the assumptions, known as "Love's first approximation" in 
classical shell theory, can be made [8]. This imposes the following 
linear relationships between the tangential and radial 
displacements of a material point and components of displacement 
at the undeformed centre-line: 

U(r,s)t) = u(R,s)t) + z<|) (s, t) (1) 

W (r, s, t) = w (R, s, t) (2) 

where u and w are the components of displacement at the centre- 
line in the tangential and radial directions, respectively, <|> is the 
rotation of the normal to the centre-line during deformation: 

♦ = R " IT (3) 

( angle of \        /rotational displacement^ 
Vcurvature/        \    of straight beam     / 

and W is independent of z and is completely defined by the centre- 
line component w. 

Circumferential strain consists of both an extensional strain 
and bending strain component. Expressions for these are listed in 
table 1. The strain-displacement expressions of the Love and Flügge 
based equations are identical. However, in the total circumferential 
strain of the Love based theory, the term Z

/R in the denominator 
has been neglected with respect to unity. Assuming the material to 
be linearly elastic, the circumferential stress-strain relationship 
is given by Hooke's Law, whilst the shear strain, ysr, and shear 
stress,   Gsr,   are     assumed to be zero.   Assuming   the material 
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to be homogeneous and isotropic, the material properties E, G and v 
can be treated as constants. Thus, by integrating the stresses over 
the beam thickness, force and moment resultants can be obtained, 
which are listed in table 2. The adopted sign convention is shown in 
Figure 2. 

Equations of motion for a curved beam are presented in [4]. 
These equations are derived in terms of the radian parameter 8. By 

applying the substitution, s = R0, the equations of motion can be 
expressed in terms of the circumferential length, s. These equations 
are listed in [9] along with the Flügge based equations of motion 
which have been obtained by a reduction of the equations of 
motion for a circular cylindrical shell presented in [8]. An harmonic 
solution of the equations of motion can be obtained by assuming 
that extensional and flexural sinusoidal waves propagate in the 
circumferential direction. The harmonic form of the equations of 
motion are also listed in [9]. 

3. VIBRATIONAL POWER TRANSMISSION IN CURVED BEAMS 

In this section the expressions for displacements and stresses 
presented in section two are used to derive the structural intensity 
and power transmission due to flexural and extensional travelling 
waves in a curved beam. The structural intensity expressions are 
formulated in terms of displacements at the centre-line. By 
assuming sinusoidal wave motion, expressions are developed 
which relate the time-averaged power transmission to the flexural 
and extensional travelling wave amplitudes. 

Structural Intensity in the circumferential direction of a curved 
beam is given by [10]: 

at J I   sr at 
f intensity due to "\    ^intensity due to   "\ ,^% 

k= -Os-T + -°sr 

^circumferential stress j    (^radial shear stress J 

By integrating across the beam thickness power transmission per 
unit length in the circumferential direction is obtained: 

h/2 

Ps=    \   Isdz (5) 
-h/2 
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Substituting the Love based circumferential stress-strain relation 
and strain-displacement expression into equation (5) the power 
transmission due to circumferential stress is obtained. (A full 
derivation is given in [9].) By analogy to power transmission in a 
straight beam [1] this can be expressed in terms of an extensional 
component, Pe, and a bending moment component, Pbm- Although 
the transverse shear stress asr is negligible under Love's first 
approximation, the power transmission due to transverse shear 
stress can be evaluated from the non-vanishing shear force, Q, 
because the radial displacement W does not vary across the beam 
thickness. Again, by analogy to power transmission in a straight 
beam [1] this is expressed as a shear force component. Thus, the total 
power transmission in the circumferential direction is given by the 
sum of the extensional, bending moment and shear force 
components. These equations are listed in table 3 along with Flügge 
based power transmission equations which are also listed in table 3. 
Substituting harmonic wave expressions into the Love and Flügge 
based power transmission equations gives expressions for the power 
transmission in the circumferential direction in terms of travelling 
wave amplitudes A and B. For sinusoidal wave motion it is useful 
to develop time-averaged power transmission defined by [1]: 

T/2 

'T <Ps>t = ^     I    Pg(s,t)dt (6) 
•T/2 

where T is the period of the signal.  Time averaged Love and Flügge 
based power transmission equations are given in table 4. 

4. THE EFFECT OF ROTARY INERTIA AND SHEAR 
DEFORMATION 

It is known that shear deformation and rotary inertia effects 
become significant for straight beams as the wave length approaches 
the same size as the thickness of the beam, and for cylindrical shells 
as the shell radius decreases [8]. Thus, the objective in this section is 
to establish more complete equations for power transmission in a 
curved beam and to show under what conditions these specialise to 
the simple bending equations presented in section three. 

Rotary inertia effects are included by considering each element 
of the beam to have rotary inertia in addition to translational 
inertia. Equations of motion for a curved beam which include the 

1167 



effect of rotary inertia are presented in [7]. These equations are 
listed in [9] in terms of the circumferential distance parameter, s. 
Equations for vibrational power transmission can be derived in the 
same manner as described in section three. These equations are 
listed in tables 3 and 4 where it can be seen that the extensional and 
bending moment components when including rotary inertia effects 
are identical to the corresponding Flügge based expressions. 
However, the shear force component now contains an additional 
rotary inertia term. 

If shear deformation is included then Kirchoff's hypothesis is 
no longer valid, and the rotation of the normal to the centre-line 
during bending, <|>, is no longer defined by equation (3) but is now 
another independent variable related to the shear angle, y. 
However, unlike simple bending theory, where the transverse 
shear strain, ysr, is negligible, the transverse shear strain is now 

related to the shear angle, y which is expressed in terms of 
displacements u, w and <|>. The circumferential force, bending 
moment, and shear force obtained from [8] are given in table 2. A set 
of equations of motion for a curved beam which includes the effect 
of shear deformation is presented in [9]. Power transmission 
equations in the circumferential direction can be obtained in a 
manner analogous to that used for Love and Flügge based theories. 
As before, the power transmission due to circumferential stress 
can be identified as consisting of extensional and bending moment 
components. The contribution to the power transmission from the 
transverse shear stress is obtained from the product of the shear 
force resultant and the radial velocity which gives the shear force 
component of power transmission. 

5. NUMERICAL STUDY 

For a given real wavenumber, k, the harmonic equations of 
motion were solved to find the corresponding circular frequency, 0), 
and complex wave amplitude ratio. The simulated beam was 
chosen to have the physical dimensions and material properties of 
typical mild steel beams used for laboratory experiments. Four 
different radii of curvature were investigated, which were 
represented in terms of the non-dimensional thickness to radius of 
curvature ratio,   h/R.   These ratios were 1/io, VlOO/ V1000 and 

VlOOOO- 
Using the Love equations of motion, Figure 3 shows the 

relationship between wave number and frequency for a beam with a 
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thickness to radius of curvature ratio of Vio- The frequency range 
is   represented   in  terms   of  the  non-dimensional   frequency 

parameter Q. = mR/c0, where c0 is the phase velocity of extensional 
waves in a straight bar and the wave number range is represented 
in terms of the non-dimensional wave number, kR. It can be seen 
that two types of elastic wave exist: one involving predominantly 
flexural motion; the other predominantly extensional motion. 
However, for wave numbers less than kR = 1, the predominantly 
flexural wave exhibits greater extensional than flexural motion. 

Solution of the shear deformation equations of motion for a 
curved beam shows that three types of elastic wave exist. These are 
the predominantly flexural and predominantly extensional waves 
of simple bending theory and additionally a predominantly 
rotational wave related to the shear angle. The relationship 
between wave number and frequency for these three wave types is 
shown in Figure 4. 

A numerical investigation of the power transmission 
equations was undertaken using simulated beams with the same 
dimensions and material properties as those used in the previous 
study of wave motion. Figure 5 shows the relationship between 
transmitted power ratio and frequency. For the predominantly 
flexural wave the time-averaged transmitted power ratio is 
calculated by dividing the time-averaged power transmitted along a 
curved beam by a predominantly flexural wave by the time- 
averaged power transmitted by a pure flexural wave travelling in a 
straight Euler-Bernoulli beam. i.e. the ratio (<Pe>t + <Pbm>t + 
<Psf>t)/EIcokf3Af. For the predominantly extensional wave the 
transmitted power ratio is calculated by dividing the time-averaged 
power transmitted along a curved beam by a predominantly 
extensional wave by the time-averaged power transmitted by a pure 
extensional wave in a straight rod. i.e. the ratio (<Pe>t + <Pbn>t + 

<Psf>t)/EScokexB2ex 

6. SUMMARY AND CONCLUSIONS 

In this paper, starting from first principles, expressions for 
vibrational power transmission in a curved beam have been 
derived using four different theories. Love's generalised shell 
equations include extension of the centre-line during bending 
motion were the first set of equations considered. Flügge's 
equations also include centre-line extensions and were the second 
set of equations used. Corrections for rotary inertia and shear 
deformation produced the third and fourth sets of governing 
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equations, respectively. By letting the radius of curvature, R, tend 
to infinity these equations reduce to the corresponding straight 
beam expressions presented in [1]. 

Using the governing equations for each theory, expressions 
were then developed which related time-averaged power 
transmission to the amplitudes of the extensional, flexural and 
rotational displacements. For each theory the effects of curvature 
upon the resulting wave motion and power transmission were 
then investigated using beams with different degrees of curvature. 
From the results of this study it can be seen that vibrational power 
transmission in curved beams can be classified into three different 
frequency regions: 
(i)    below the ring frequency, Q. = 1, curvature effects are 

important; 
(ii)   above the ring frequency but below the shear wave cut-on 

frequency, ^K/cg = 1 the curved beam behaves essentially as a 
straight beam; 

(iii) above the shear wave cut-on frequency, higher order effects 
are important. 
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APPENDIX: NOTATION 

A flexural wave amplitude 
Af amplitude of a purely flexural wave 
B extensional wave amplitude 
Bex amplitude of a purely extensional wave 
C rotation wave amplitude 
E Young's modulus 
G shear modulus 
I second moment of area of cross-section of beam 

Is structural intensity in circumferential direction 
K radius of gyration 
M bending moment on cross-section of beam 
N circumferential force on cross-section of beam 
P transmitted power 
Q shear force on cross-section of beam 
R radius of curvature 
S cross-sectional area of beam 
T period of wave 
U displacement   in circumferential direction 
w displacement in radial direction 
Co wavespeed of extensional waves in a straight bar 
cs 

wavespeed of shear waves in a straight bar 
ds length of elemental slice of curved beam 

es 
total circumferential strain 

h thickness of beam 
k wavenumber 
kex wavenumber of a purely extensional wave 
kf wavenumber of a purely flexural wave 
r coordinate in radial direction 
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Timoshenko shear coefficient 
wave length of extensional waves in a straight bar 

Poisson's ratio 
radial stress 

circumferential stress 

transverse shear stress 

change in slope of normal to centre-line 
radian frequency 

Centre- 
line 

Figure 1: Geometry of a curved beam 
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Figure 2:  Sign convention and force resultants on an elemental 

slice of curved beam 
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Figure 3:  Wave number v. frequency relationship for a curved 
beam predicted using Love theory 
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Figure 4:  Wave number v. frequency relationship for a curved 
beam predicted using shear theory 
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Figure 5:  Transmitted power ratio v. frequency relationship for a 
curved beam predicted using Love theory 
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Abstract 

Vibration transmission between two multi-mode substructures con- 
nected by a spring is investigated. A classical Statistical Energy 
Analysis (SEA) approach is reviewed, and it is seen that some typ- 
ical assumptions which are valid at high frequencies lose accuracy 
in the mid-frequency range. One assumption considered here is 
that of an identical probability density function (pdf) for each reso- 
nant frequency. This study proposes a Parameter-based Statistical 
Energy Method (PSEM) which considers individual modal informa- 
tion. The results of PSEM have good agreement with those of a 
Monte Carlo technique for an example system. 

Nomenclature 

E[    ] expected value 
n,-fc(w) power transmitted between substructure i and k 
Iljfc(w) total power transmitted to substructure k 
Pi power input to substructure i 
T].k coupling loss factor (CLF) 
/i. modal driving force for mode j of substructure 1 

w frequency [rad/sec] 
i,i,-,i ,01 subscripts for decoupled Bar 1 
2,2r,2„02 subscripts for decoupled Bar 2 
Ei,E2 blocked energy 
EQI,EQ2 Young's modulus 
pl,p2 density 
mi,m.2 mass per unit length 
Mi, Mi total mass 
Ci J (2 viscous damping ratio 
Ai,A2 cross-sectional area 
L01, L02 nominal length 
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L\, L2 disordered length 
d, e2 ratio of disorder to nominal length 
k coupling stiffness 
Ri, R2 coupling ratio 
s1,x2 position coordinate 
ai,a2 point-coupling connection position 
Wi, w2 deflection 
Wii, W2r modal amplitude 
Wij, $2r mode shape function 
N-i, N2 number of resonant frequencies 
w1;,w2r resonant frequencies 
wi; , w2r, lower limit of resonant frequencies 
wii , w2ru upper limit of resonant frequencies 
cri,(?2 standard deviation of disorder 

1    Introduction 

Vibration transmission analysis between connected substructures in the 
mid-frequency range is often a daunting prospect. Since the analysis at 
high frequencies requires greater model discretization, the size and com- 
putational cost of a full structure model (e.g., a Finite Element model) 
can become prohibitive. Also, as the wavelengths approach the scale of 
the structural variations, uncertainties (tolerances, defects, etc.) can sig- 
nificantly affect the dynamics of the structure. Starting at what may be 
called the mid-frequency range, deterministic models fail to predict the 
response of a representative structure with uncertainties. 

Therefore, in the mid-frequency range, a statistical analysis of vibra- 
tion transmission may be more appropriate. This approach is taken in 
the procedure known as Statistical Energy Analysis (SEA) [1]. In SEA, 
a structure is divided into coupled substructures. It is assumed that each 
substructure exhibits strong modal overlap which makes it difficult to dis- 
tinguish individual resonances. Therefore, the resonant frequencies are 
treated as random variables, each with an identical, uniform probability 
density function (pdf) in the frequency range of interest. This assumption 
greatly simplifies the evaluation of the expected value of transmitted vi- 
bration energy. A simple linear relation of vibration transmission between 
each pair of substructures is retrieved. The power transmitted is propor- 
tional to the difference in the average modal energies of the substructures. 
This relation is analogous to Fourier's law of heat transfer [1-4]. 

In the low- to mid-frequency region, the modal responses are not strongly 
overlapped. In this case, two typical SEA assumptions are less accurate: an 
identical pdf for all resonant frequencies, and identical (ensemble-averaged) 
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values of the associated mode shape functions at connection positions. In 
this paper, these two assumptions are relaxed. A distinct uniform pdf 
is applied for each resonant frequency, and a piecewise evaluation of the 
transmitted power is performed. This is called a Parameter-based Sta- 
tistical Energy Method (PSEM) because it considers the statistical char- 
acteristics of individual system parameters. This solution can accurately 
capture peaks of transmitted power while maintaining the SEA advantage 
of efficiency 

This paper is organized as follows. In section 2, we briefly review SEA 
along with the associated assumptions and limitations. In section 3, the 
power transmitted between two spring-coupled multi-mode substructures 
is investigated by applying several SEA assumptions. A Monte Carlo solu- 
tion is used for comparison. In section 4, the PSEM approach is presented 
and the results are shown. Finally, section 5 draws conclusions from this 
study. 

2    Overview of SEA 

In Statistical Energy Analysis, the primary variable is the time-averaged 
total energy of each substructure. This is called the blocked energy, where 
blocked means an assumed coupling condition. The assumed coupling con- 
dition may be the actual coupling, a clamped condition at the substructure 
junctions, or a decoupled condition [2, 5]. 

In order to predict the average power transmitted between two directly- 
coupled substructures, a few simplifying assumptions are applied. Some of 
the essential SEA assumptions are summarized by Hodges and Woodhouse 
in Ref. [3]: 

• Modal incoherence: the responses of two different modal coordinates 
are uncorrelated over a long time interval 

• Equipartition of modal energy: all modes within the system have the 
same kinetic energy 

The above conditions make it possible to treat all modal responses as sta- 
tistically identical. The first assumption implies a broad band, distributed 
driving force (often called "rain on the roof) which leads to uncorrelated 
modal driving forces. The second assumption implies that the substruc- 
tures have strong modal overlap, or that the parameter uncertainties are 
sufficiently large that the modes are equally excited in an ensemble average 
sense. Thus, the resonant frequencies are treated as random variables with 
identical, uniform probability density functions (pdfs) for the frequency 
range of interest. 

The SEA relation for the expected value of power transmitted from 
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substructure i to substructure k, E[Uik{">)], may be expressed as 

E\üik(w)] = uriMjT. ~K)= U(j]i"Ei ~ VkiEk) (1) 

where u> is the frequency, -qik is the coupling loss factor, £,• is the blocked 
energy of substructure i, and Nt is the number of participating modes of 
substructure i for the frequency range of interest. The power dissipated by 
substructure i is expressed as 

Hi,diss = uViEi (2) 

where rji is the damping loss factor. Using Eqs.(l) and (2), the equation 
of power balance for substructure i at steady state [1, 2, 5, 6] is 

N N 
Pi   =   Y/

Eina}+"riiEi = uY,(Vii
Ei-rljiEj)+^iEi (3) 

where P; is the power input to substructure i from external sources. Note 
that the first term on the right-hand side is the power transmitted through 
direct coupling between substructures. 

3    Vibration Transmission in a Two-Bar 
System 

The longitudinal vibration of the structure shown in Fig.l is considered 
in this study. The structure consists of two uniform bars with viscous 
damping which are coupled by a linear spring of stiffness k. The spring is 
connected at intermediate points on the bars, xi = a\ and x2 = a2. Bar 
i has nominal length Loi. A parameter uncertainty may be introduced by 
allowing the length to vary by a small random factor £;, which is referred 
to as disorder. The length of a disordered bar is I,- = Loi(l + £,-)• The ratio 
of the connection position to the length, at/Li, is held constant. Bar 1 is 
excited by a distributed force jPi(a;i,t). 

3.1    Nominal transmitted power 

The power transmitted from Bar 1 to Bar 2 for the nominal system (no 
disorder) is briefly presented here. A more detailed derivation is shown in 
the Appendix (see also Refs. [7] and [8]). The equations of motion are 

(4) 
fc[w2(a2,i)-wi(oi,t)]5(zi-ai) 

E02A2£, + m2^jw2{x2,t) + §-tC^2^2,t)) = 
k[wi(ai,t)-vr2(a2,t)}6(x2 - a2) 
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L,= L0, 1+e,)    F,{X,,t) 

V///////////////////////A 
a<   , k UAA. 

Bari 

l2=L02(i+ea) 

Bar 2 

-**, 

Fig. 1: Two-bar system 

where 8 is a Dirac delta function, and (for Bar i) Eai is Young's modulus, 
Ai is the cross-sectional area, m; is the mass per unit length, 'd is the 
viscous damping operator, and w,-(xj,t) is the deflection. The deflections 
of the two bars can be expressed by a summation of modes: 

w1{x1,t) = E Wi^tfufo),    w2(x2,<) = E W2r{t)%2r{x2)        (5) 

where Wu(t) and W2r{t) are modal amplitudes, and ^(zi) and \&2r(z2) 
are mode shape functions of the decoupled bars. These mode shape func- 
tions are normalized so that each modal mass is equal to the total mass of 
the bar, M;. Applying modal analysis and taking a Fourier transform, the 
following equations are obtained: 

    00     w     

M1cj>ljWlj = /,. + fc*i>i)[E W2rV2r{a2) - E Wu$li{a1)} 
  00    00     

M2fa.W2, = **2.(a2)[E Wi,.*i,.(ai) - E W2r<$2r{a2)} 
i=0 r=0 

(6) 

h,   =   (w|. 

sgn(i) 

-W
2 + 

-u,2 + - 

1 • 2&wi,.w)(2 - sgn(i)) 

T-2C2wj.w)(2-8gn(s)) 

1   for i > 0 
0   for i = 0 

where an over-bar (~) denotes a Fourier transform, wx. and ui2i are resonant 
frequencies, (1 and (2 are damping ratios, and fXj is a modal driving force. 
Mode 0 is a rigid body mode, which is why the sgn(i) term is present. 
Note that the damping ratio of each bar is assumed to be the same for all 
modes. 

Next, the modal driving forces are assumed to be incoherent, and each 
spectral density function is assumed to be constant (white noise) over a 
finite range of frequency [2].  After some algebra, the power transmitted 
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from Bar 1 to Bar 2, ni2(w), is found as: 

ni2(w) - M*M2|Ap h~WFk i^i2        (7j 

where 5PlPl is the same uniform spectral density function for each modal 
driving force on Bar 1. 

3.2    Monte Carlo Energy Method (MCEM) 
The disordered case is now considered, where each bar has a random length. 
The ensemble-averaged transmitted power for a population of disordered 
two-bar systems is found by taking the expected value of Eq. (7): 

2^k%Snn ft f l(ai) ft <Pl(aa)^r 

M?M2\A\*  ti   \<f>u\2  rti     \K ^W ~h THTUKW ^   U, 12   2^     TTli      • W 

where JV,- is the number of modes taken for Bar i (this is an arbitrary set of 
modes that have been aliased to the numbers 1,2,- • -,iV,-). Since a truncated 
set of modes is used, Eq. (8) is an approximation. The random variables 
in Eq. (8) are the resonant frequencies of the bars (which are present in 
the terms 4>u, ^2r, and A). 

Equation (8) may be solved numerically using a Monte Carlo method: 
the random variables are assigned with a pseudo-random number generator 
for each realization of a disordered system, and the transmitted power 
is averaged for many realizations. This is called a Monte Carlo Energy 
Method (MCEM) here. It may be used as a benchmark for comparing the 
accuracy of other approximate methods. 

Note that the resonant frequencies of a bar may be found directly from 
the disordered length. Therefore, for the MCEM results in this study, the 
actual number of random variables in Eq. (8) is taken to be one for each 
decoupled bar. That is, the two random lengths are assigned for each real- 
ization, and then the natural frequencies are found for each bar in order to 
calculate the transmitted power. If such a relation were not known, each 
resonant frequency could be treated as an independent random variable. 

3.3    SEA-equivalent Transmitted Power 

An SEA approximation of the transmitted power may be obtained by ap- 
plying several typical SEA assumptions to Eq. (8). (Since Eq. (1) is not 
used directly, this might be called an SEA-equivalent transmitted power.) 
These assumptions were summarized in Ref. [8]:   the coupling between 
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substructures is weak, the modal responses are uncorrelated, the expected 
value of the square of mode shape functions at connection positions is unity, 
and the pdfs of the resonant frequencies are uniform and identical. 

The assumption of weak coupling means that the value of |A| in Eq. 
(8) is approximately one. Applying the second and third assumptions then 

yields 

£[n12] 
2LQ2k2(2Spj 

M\M2 t'=l 

r   1   1 

U,I2J XI* ' w2r 
(9) 

Since the pdf of each resonant frequency is assumed to be uniform, the 

expected values in Eq. (9) are 

■ 2wwi; • cos | + w2 

E{ 
l/4w3 

E[ 

\<h 

i02r 

UU, ■Wli, 
2cos ä

l°9: i\. — 2wwi; • cos I + <JS' 
+ 

-tan 
_l2u>u>ii sin-. 

(10) 

l/^Cy/T 
^2ru - W2r, 

1      _12o>i+2a;2(2C2
2-l) 

—tan      
4W

2C2V
/^ 

(11) 
W2r="2r 

where a = cos_1(l - 2(i), subject to the restrictions (1 - 2d2)2 < 1 and 
(1 -2(|)2 < 1. Finally, since the pdfs of the resonant frequencies are taken 
to be identical, the frequency limits do not depend on the individual modes 
(w1; = OJ2TI = LOI and wljo = w2r„ = uu). Therefore, each sum in Eq. (9) 
simplifies to the product of the expected value and the number of modes 
in the frequency range of interest: 

E\IL 
2C2fcVJV1jV25PiPi 

12] E[> E[ 
W2r 

(12) 
M\M2 

l\<k> 

Equation (12) is the SEA approximation used in this study. 

3.4    Example 

The three formulations of the transmitted power presented thus far — the 
nominal transmitted power in Eq. (7), the MCEM transmitted power in 
Eq. (8), and the SEA-equivalent transmitted power in Eq. (12) — are 
now compared for a two-bar system with the parameters shown in Table 1. 
For the MCEM results, the disorder (ei and e2) was taken to be uniformly 
distributed with mean zero and standard deviation ax- a2 = 10%. 

As a measure of the coupling strength, the coupling ratio, R,, is defined 
as the ratio of coupling stiffness to the equivalent stiffness of a bar at the 
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Table 1: Material properties and dimensions of two bars 

Mi/Ma 21.53/21.53 [Kg] L01/L02 10.58/8.817    [m] 

Eoi/Em 200 x 109/200 xlO9 [N/m8] a1/a2 2.116/7.053    [m] 

Pi/Pi 7,800/7,800 [Kg/ma] oPlPl 1            [N2] 

C1/C2 0.005/0.005 k 4.868 xlO5     [N/m] 

CO [rad/sec] 

Fig. 2: Comparison of the nominal transmitted power, the MCEM results 
(20,000 realizations with <7i = a2 = 10%), and the SEA approximation. 

fundamental resonant frequency, Ri — ^EMMI/KL*-- ^^e case °^ wea^ cou" 
pling is considered here such that R\ = 0.01. 

The nominal transmitted power, the MCEM results, and the SEA ap- 
proximation are shown in Fig.2. The transmitted power calculated for 
the nominal system exhibits distinct resonances. This is due to the low 
modal overlap of the bars in this frequency range. The MCEM results 
show distinct peaks for w < 15,000 rad/s, but they become smooth as 
the frequency increases. The SEA approximation does not capture indi- 
vidual resonances. However, at the higher frequencies where the disorder 
effects are stronger, the SEA approximation agrees well with the MCEM 
results. The frequency range between where the MCEM results are close 
to the nominal results and where they are close to the SEA results (ap- 
proximately 2,500 ~ 15,000 rad/s for this case) is considered to be the 
mid-frequency range here. This range will vary depending on the system 
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parameters and the disorder strength. In the next section, an efficient ap- 
proximation of the transmitted power is presented which compares well 
with MCEM in the mid-frequency range. 

4    Parameter-based Statistical Energy 
Method (PSEM) 

The SEA approximation presented in the previous section does not capture 
the resonances in the transmitted power because of two assumptions: the 
resonant frequencies all have the same uniform pdf, and the values of the 
square of mode shape functions at the connection positions are taken to be 
the ensemble-averaged value. Keane proposed an alternate pdf of resonant 
frequencies in order to apply SEA to the case of two coupled nearly periodic 
structures [9]. This pdf is shown in Fig.3(a). It accounts for the fact that 

Fig. 3: (a) The pdf of the natural frequencies and the resultant transmitted 
power from Ref. [9]. (b) The pdfs of three natural frequencies, and a 
schematic representation of the piecewise evaluation of transmitted power 
for PSEM. The individual modal contributions are extrapolated ( ) and 
summed to calculate the total transmitted power (—). 

the natural frequencies of a nearly periodic structure tend to be grouped in 
several distinct frequency bands. Thus the pdf has a large constant value 
for those frequency bands, and a small constant value elsewhere. The SEA 
approximation of transmitted power is then modified by simply adding a 
positive value or negative value on a logarithmic scale, as demonstrated in 
Fig. 3(a). This solution thus captures some of the resonant behavior of the 
transmitted power. 
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Here, a more general approach is taken for approximating the power 
transmitted between two substructures in a frequency range in which they 
have low or intermediate modal overlap. Each resonant frequency is as- 
signed a uniform pdf. However, the frequency range of each pdf is different; 
it corresponds to the range in which that resonant frequency is most likely 
to be found. (The concept of using "confidence bands" as one-dimensional 
pdfs was suggested but not pursued in Ref. [8].) An example is shown in 
Fig. 3(b) for three resonant frequencies. Furthermore, it is assumed that 
the values of the square of the mode shape functions at the connection 
positions are known. Thus, applying only the first two SEA assumptions 
along with those noted above, Eq. (8) becomes: 

«^^wd^'-HäKI'» w2r 

hA2 

(13) 
This is called a Parameter-based Statistical Energy Method (PSEM) be- 
cause it employs information for individual modal parameters. 

Since each modal pdf is uniform, Eqs. (10) and (11) still hold for the 
expected values in Eq. (13). However, unlike the SEA approximation, each 
expected value is different, because the corresponding frequency bounds are 
unique. Furthermore, note that the pdfs do not cover the entire frequency 
range of interest. The results for each mode are therefore extrapolated 
outside the frequency range of that modal pdf before the individual modal 
contributions are summed. This is shown schematically in Fig. 3(b). PSEM 
is therefore a piecewise evaluation of the expected value of transmitted 
power. 

The PSEM approximation is now applied to the two-bar system of 
Table 1, with the standard deviation of disorder o\ = a2 = 10%. The pdfs 
of the resonant frequencies of Bar 1 and Bar 2 are shown in Fig. 4(a) and 
(b), respectively. For this system, the bounds for each resonant frequency 
may be found directly from the variation of the uncertain parameter. It 
can be seen that the spread of each natural frequency pdf due to disorder 
increases with increasing frequency. 

The MCEM, PSEM, and SEA approximations for the transmitted power 
are shown in Fig. 4(c). There were 20,000 realizations taken for the MCEM 
results at each sampled frequency. This took about 10 hours of computa- 
tion time. In contrast, the PSEM results only required 3 seconds of compu- 
tation time, and the SEA results only required about 1 second. Note that 
the PSEM results show excellent agreement with the much more expensive 
MCEM results. The difference at very low frequencies comes from the fact 
that for the PSEM approximation, the value of the term |A| was assumed 
to be one due to weak coupling. This assumption breaks down as the 
frequency approaches zero. However, the match between the MCEM and 
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Fig. 4: (a) Natural frequency pdfs for Bar 1. (b) Natural frequency pdfs 
for Bar 2. (c) Transmitted powers obtained by MCEM, PSEM, and SEA 
for (7i = o-2 = 10%. 

PSEM results in the mid-frequency range is excellent. Again, it is noted 
that the SEA results converge to those of MCEM (and PSEM) as the fre- 
quency increases. Now it can be seen that the assumption of identical pdfs 
for all modes becomes better with increasing frequency. 

Next, the example system is considered with smaller disorder, <j\ — 
a2 = 1%. Fig. 5 shows the results for this case for what might be called 
the mid-frequency range. Note that even though this is a higher frequency 
range than that considered for the previous case, the pdfs of the resonant 
frequencies shown in Fig. 5(a) and (b) are not as strongly overlapped. 
Thus, several peaks are seen in the transmitted power in Fig. 5(c). Again, 
the PSEM approximation agrees well with the MCEM results, although 
there is more discrepancy for this case. The SEA approximation follows 
the global trend, but does not capture the resonances or anti-resonances. 
The SEA results drop off at the edges because only modes within this 
frequency range are considered to contribute to the transmitted power. 

In addition to PSEM, another piecewise evaluation of the transmitted 
power is considered here. For this approximation, wherever the individual 
mode pdfs overlap, they are superposed to form a pdf for all the modes in 
that "section" of the frequency range. This superposition is demonstrated 
in Fig. 6. Also, if the number of modes in a section is above a certain cutoff 
number, Nc, then it is assumed that their mode shape function values at 
the connection positions are unknown, so that the ensemble-averaged value 
must be used. This is called a multiple mode approximation. The purpose 
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Fig. 5: (a) Natural frequency pdfs for Bar 1. (b) Natural frequency pdfs 
for Bar 2.   (c) Transmitted power obtained by MCEM, PSEM,-and SEA 
for 0\ = CT2 = 1%. 

pdf 
• PSEM 

- Multiple mode approximation 

Fig. 6:   Resonant frequency pdfs for PSEM and for the multiple mode 
approximation. 

of formulating this approach is to investigate what happens as information 
about the individual modes is lost. 

The multiple mode approximation is applied to the example system 
with 0-1 = 0-2 = 10% in Fig.7. For 7VC = 2, this approximation has good 
agreement with MCEM. The match is especially good for w < 10,000. 
Above this frequency, the number of overlapped resonant frequencies in 
each pdf section is greater than Nc, and the loss of mode shape information 
affects the results slightly. For Nc = 0, the values of the mode shape 
functions are taken to be one for the entire frequency range, just as in the 
SEA approximation. As can be seen in Fig. 7, the piecewise construction 
of the pdf roughly captures the frequency ranges of the resonances and 
anti-resonances.   However, the mode shape effect is more pronounced in 
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MCEM 
Multiple mod© approximation r*t= 2 
Multiple modo approximation Nfc= 0 

2.5 

co [rad/sec] 

Fig. 7: Transmitted power obtained from MCEM and the multiple mode 
approximation for a\ = a-i = 10% 

the mid-frequency range. The peak values are now similar to the SEA 
approximation. 

5    Conclusions 

In this study, the power transmitted between two multi-mode substruc- 
tures coupled by a spring was considered. A Monte Carlo Energy Method 
(MCEM) was used to calculate the ensemble average of the transmitted 
power for the system with parameter uncertainties. A classical Statistical 
Energy Analysis (SEA) approximation matched the Monte Carlo results 
in the high-frequency range, but did not capture the resonant behavior of 
the transmitted power in the mid-frequency range where the substructures 
have weak modal overlap. 

A Parameter-based Statistical Energy Method (PSEM) was presented 
which uses a distinct pdf for each natural frequency as well as some indi- 
vidual mode shape information. A piecewise evaluation of the transmitted 
power was performed, and then the modal contributions were extrapolated 
and superposed. The PSEM approximation compared very well with the 
much more expensive Monte Carlo results, including in the mid-frequency 
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range. 
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Appendix 

In this appendix, the nominal transmitted power in Eq. (7) for the mono- 
coupled two-bar system is derived. The procedure follows that of Refs [7, 
8]. 

Plugging Eq. (5) into Eq. (4), 

j2 J2>    » d °° 

EnA^ + m^J X>i,.(i)tfi..(*i) + ^,(£^,(^1^1)) = 
i-   oo oo -| 

Fi{xut) + k E W2r(t)*2r(a2) - Y^Wli{t)^li(a1) 6{Xl - ai)     (A.l) 
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J2 J2 s     00 J oo 

E02A2^ + m2^) £ W2r(t)V2r(x2) + -C2(£ W2r(t)<S2r(x2)) 
' dxi 'di2 

E^.(i)«rii(«i)-E^r(t)*2r(a2] 
;=o r=0 

6(z2 - a2) (A.2) 

Multiplying Eq.  (A.l) by ^(zi), and integrating with respect to xt for 
[0, Li] yields 

r    OO OO 

^=0 «=o 

(A.3) 

where 
U Li 

2Ci,-wiiM1 = / W^sO^frOdn   ,   h, = J F1{x1,t)'^lj{x1)dx1 

0 0 

and uij is the jth resonant frequency of decoupled Bar 1. The damping 
ratio in Eq. (A.3) is now assumed to be the same ((i) for all modes, since 
the differences in the ratio are usually small and this simplifies the equation. 
Taking the Fourier transform of Eq. (A.3) with zero initial conditions leads 
to the following 

•    00 OO      

r=0 

sgn(j)   = 

,   =   (wJ.-w2 + >/=l-2CiWiJ-w)(2-8gnO")) 

1   for j > 0 
0  forj =0 

(A.4) 

where (~) denotes a Fourier transform.   Similarly, applying the previous 
procedure to Eq. (A.2), 

M2cj>2,W2s   =   fc$2s(a2) £^*i.-(«i)-E^2rtf2>2) (A.5) 

<t>2,   =   (w2,-w
2 + \/::I-2C2w23w)(2-sgn(s)). 

Solving for W2l from Eq. (A.4) and (A.5), 

i °°   
W*> = M-L    \MA   &*■ - ^2,(a2)j:W2^2r(a2)} 

(l + Ql)M2?>25 r=0 

(A.6) 

where 

Mi      to       K 
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Calculating the second term in brackets in Eq. (A.6), 

**2>2)X>AM = Afa(1 + ai + aa)^—^ 
fe$a.(qa) ~   ^8,(02)^3, 

(A.7) 

where 

02     M2r^0    ^2r    • 

Plugging Eq. (A.7) into Eq. (A.6) 

1 
W2,= **2.(aa)   yfuVM 

M2fa, 1 + <*i + a2 ^    Mi^ij 
(A.8) 

Coupling force  P, 

Using the definition of transmitted power in Ref. [7], n12(w) is 

IIH   =   Re 

=   Re 

lu^mwiM 
Aw, 

f—lwk- 
1 + a! r£E l_+ai_+O2|2,.=0i=0 

A 

-    M?M2\A\*^0     |&r|*     £^0 «Ml,- V"j 

where i?e[-] denotes the real part of the argument, * is a complex conjugate, 
and 

Suh(u,) = EtfuTh] 

Finally, it is assumed that the modal driving forces, /ly, are uncorrelated. 
Also, the spectral density function of each modal driving force is assumed 
to be constant for the finite frequency range of interest: 

■Sw,-(w) = 

Therefore, Eq. (A.9) becomes 

SPlPl   for   i = j 
0      for   i ^ j. 

n,2 = 2(2kwsnpi ^ ^(aQ ^ nx^w 
M?M2\A\2 

pipi v^ £ 
,■=0     l^li I2    r=0 P2r| 

(A.10) 

(A.ll) 
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Research on Control Law of Active Suspension of a 
Seven Degree of Freedom Vehicle Model 

Dr&Prof.    YuchengLei       LifenChen 
Automobile Engineering Dept, Tong Ji University ,Shang 

Hai,P.R.of China 

Abstract 
In the paper , control law of active suspension is presented , 
which involves 7-DOF vehicle model for improving control 
accuracy .The control law involve vehicle running velocity , 
road power spectrum , suspension stiffness and damping .The 
control law can be applied to multi-DOF control of active 
suspension of vehicle . 
Keywords: Active suspension , control law , Game theory , 
Modeling , 7 - DOF Vehicle Model. 

1. Introduction 
An individual control system for each wheel by applying the 
optimum regulation method for the two degrees of freedom is 
showed in [3] . [4] and [5] also introduce two-DOF feedback 
control method of active suspension .It is difficult for two- 
DOF control method to coordinate multi-DOF kinematic 
distances of entire car . Muti-DOF active control can improve 
coordination control accuracy of entire car, but high speed of 
CPU is asked for control and calculation while control law of 
multi-DOF is got by real-time calculation . And, ride 
performance and handling performance is inconsistent . For 
resolving the problem ,the paper holds a new calculation 
method for optimizing the law that can be programmed for 
real-time control by table-lookup and not by real-time 
calculation .So the method and law can not only improve 
coordination  control   accuracy  ,but  also  develop  control 
speed. 

2. Mathematical Model 
Vehicle is simplified to turn into 7 DOF model . 7-DOF 
vibration motion equation can be written as follow 

[M]Z+ [C]Z+ [£]Z = [C, ]Q+ [K,lß (1) 
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Where [M] is mass matrix , [C] is suspension damping 
matrix , [K] is suspension stiffness matrix , [C,] is tyre 

damping matrix , [K,] is tyre stiffness matrix , Z is 

acceleration matrix ,Z is velocity matrix , Z is 7-DOF 

displacement matrix, Q is road surface input velocity matrix , 
Q is road surface input displacement matrix . 

z=fz,,Z2»««,zY] (2) 

Where   z\   is   vehicle   vertical   acceleration,   Z2   is  roll 
•• •• 

acceleration , Z3 is pitch acceleration , Z,     (i = 4,» • «,7) is 
four tyres vertical acceleration . 

3 General Optimization Method of Control Law 
Objective function of optimization of control law can 
generally got by calculating weighted sum of 7-DOF mean 
square root of acceleration , dynamic deflection and dynamic 
load .it can be written as follows 

J = ±aral+±ßra^+±rk-cTl/Gt (3) 

Where a, (i = 1,- • *,i),ßj (j = 1,« • -,4), y k (k = 1,- • -,4) is 
weighted ratio . Where a.. (i=l, • • • ,7) is 7-DOF mean 

square root of acceleration, afd. (j=l, • • •,4) is 7-DOF mean 

square root of dynamic deflection , <yFtklG (k=l, • • • ,4) is 
7-DOF mean square root of relative dynamic load .a.., 

Zt 

<jfd.,crFM/c can be calculated by resolving (1) using numerical 

method. 
4 Result of General Optimization 

Method of Control Law 
Optimization result of control law of a truck is got using 
above method as figure 1 and 2 , its main parameters as 
follows. 
Wheel distance is 1.4 meter , axle distance is 2.297 meter , 
mass is 1121.3 kg , front tyre and axle's mass is 22.8 kg , 
rear tyre and axle's mass is 35.0 kg , X axis' rotational 
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inertia is 307.4 kg-m2 , Y axis' rotational inertia is 1276.5 
kg-m2 . 
In fig. 1 and 2 , Cl of RMSMIN and C3 of RMSMIN are 
respectively front and rear suspension damping of getting 
minimization of above objective function , it is changing 
while road surface rough coefficient Cv and automobile 
velocity V is changing . Cl and C3 also rise when velocity V 
rises . This is called control law of general optimization 
method of active suspension in the paper . The result in fig. 1 
and fig. 2 has been verified by road test. 

Fig. 1 front suspension Fig. 2 rear suspension 
optimization       damping optimization   damping 

Simulation result can also verify that ride performance's 
increasing (suspension stiffness reducing) will make handling 
performace reduce . So selecting perfect 
a;(z = l,»-«,7),^;0' = 1',,,'4)r*(* = l>-*M) is very difficult 
and inconsistent .The paper advances next game method to 
try to resolve the inconsistent problem . 

5    Game Optimization Method of Control Law 
Because to select weighted ratio of general optimization 
method is difficult , the paper advances a new method of 
optimization of control law — Game Balance Optimization 
Method ,it is discussed as follows . 
Game theory method of two countermeasure aspect can be 
expressed as follows : 
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Vr,=l        ,        r{>0        ,i = l,        2,      ,•••,«, 
(4) 

£ä,=1       ,       Ay>0       J = l, 2,---,m2 

where rx,r2, rm] is probability of selecting i?,, R2, , Rm> of 
countermeasure R ( where R is acceleration mean square 
root   )   ,     and   h„h2, ,hmi   is probability of selecting 

Hx, H2,   , Hmi  of countermeasure H   (   where H is 
mean square root of deflection or handling and 
satiability ) . 
It is called hybrid game method while these probability is 
leaded into the method. Countermeasure R selects r.t in order 
to get maximization of minimization paying expected value 
of column vector of paying matrix , and countermeasure H 
selects hj in order to get minimization of maximization 
paying expected value of row vector of paying matrix . 

If rank of paying matrix is mx x m2 ,R should select r, as 
follows. 
ff «I '»I «I "NI 

MINy£janr;,Yjai2ri,----,Yjaiaji\ > ,„ 

relative       rt 

And H should select h} as follows : 

MIN ^A'ls^A>••••>Za*jhj 

relative        hj 

a0     (i = l, ,/n,     J = l, ,m2) in (5) and (6) is element 
value of paying matrix , basing vehicle theory it can be got 
as follows : 

au = Cl/cj.. + C2afd (7) 

Where Q,C2 in (7) is coefficient of paying matrix ( The 
paper orders they is 1 as an example , as C,,C2' s real value 
about very much condition is related to  some privacy 
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problem it can't be introduced.) . (5),(6) called respectively 
minimization maximization expected value and maximization 
minimization expected value can be abbreviated as 
MAxfelN^ )} and MIN$MAX(£ )} . if riandhj is 

got as optimization of countermeasure , it can be written as 

follows : 
MAX$MIN(Y )}< Optimization      Countermeasure 

(        A-  Y> ^ 
Expected     Value < MIN jMAXQT Jj 

A  probability   association (/;\AJ)   can  be   content   with 

optimization expected value as follows : 
Optimization Countermeasure Expected 

Value=X ]>>,•>}*•*;      (9) 
<=i   ;=i 

Writer advances reformation simplex algorithm for resolving 
the game problem as reference [1] . In the paper the writer 
selects only an example to introduce calculation results as 
follows because the paper has limited space . 
6 Results of Game Optimization Method of Control Law 

Paying matrix as fig. 3 and fig. 4 , optimization result of 
control law of a truck is got using above game method as 
figure 5 and 6 , calculated truck's main parameters as 
follows. 
Wheel distance is 1.23 meter , axle distance is 3.6 meter , 
mass is 13880.0 kg , front tyre and axle's mass is 280.0 kg , 
rear tyre and axle' s mass is 280.0 kg , X axis' rotational 
inertia is 1935 kg-m2 , Y axis' rotational inertia is 710 
kg-m2 . 
In    fig.    3    and   4    ,B(I,J)    is    paying    matrix   value 
a9     (i = l, ,m,     ,y = l, , m2). In fig. 5 and fig. 6, Kl of 
RMSMIN and K3 of RMSMIN are respectively front and 
rear suspension stiffness of getting optimization 
countermeasure expected value of above game method , it is 
changing while road surface rough coefficient Csp and 
automobile velocity V is changing . Kl and K3 also rise 
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when velocity V rises . This is called control law of active 
suspension . The result in fig. 5 and fig. 6 has been verified 
by road test. 

•*V"% 

Fig. 3 paying matrix Fig. 4 paying matrix 
7   Conclusion 

The paper introduces two method to get optimization control 

Fig. 5 front suspension Fig. 6 rear suspension 
optimization stiffness optimization stiffness 

law of active suspension   , and the control law is verified to 
ability to be applied to real control of active suspension . This 
will   develop   control   accuracy   and   speed   of   active 
suspension .Off course , it need being researched further . 
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ABSTRACT 

The role of semiactive dampers in reducing tire dynamic loading is examined. 
An alternative to the well-known skyhook control policy, called 
"groundhook," is introduced. Using the dynamic model of a single suspension, 
it is shown that groundhook semiactive dampers can reduce tire dynamic 
loading, and potentially lessen road damage, for heavy trucks. 

INTRODUCTION 

The main intent of this work is to determine, analytically, the role of 
semiactive suspension systems in reducing tire dynamic loading, and road and 
bridge damage. Although primary suspension systems with semiactive 
dampers have been implemented in some vehicles for improving ride and 
handling, their impact on other aspects of the vehicle remain relatively 
unknown. Specifically, it is not yet known if implementing semiactive 
dampers in heavy truck suspension systems can reduce the tire dynamic 
forces that are transferred by the vehicle to the road. Reducing dynamic forces 
will result in reducing pavement loading, and possibly road and bridge damage. 

The idea of semiactive dampers has been in existence for more than 
two decades. Introduced by Karnopp and Crosby in the early 70's [1-2], 
semiactive dampers have most often been studied and used for vehicle primary 
suspension systems. A semiactive damper draws small amounts of energy to 
operate a valve to adjust the damping level and reduce the amount of energy 
that is transmitted from the source of vibration energy (e.g., the axle) to the 
suspended body (e.g., the vehicle structure). Therefore, the force generated by 
a semiactive damper is directly proportional to the relative velocity across the 
damper (just like a passive damper). Another class of dampers that is usually 
considered for vibration control is fully active dampers. Active dampers draw 
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relatively substantial amounts of energy to produce forces that are not 
necessarily in direct relationship to the relative velocity across the damper. 

The virtues of active and semiactive dampers versus passive dampers 
have been addressed in many studies [3-10]. Using various analytical and 
experimental methods, these studies have concluded that in nearly all cases 
semiactive dampers reduce vibration transmission across the damper and 
better control the suspended (or sprung) body, in comparison to passive 
dampers. Further, they have shown that, for vehicle primary suspension 
systems, semiactive dampers can lower the vibration transmission nearly as 
much as fully active dampers; without the inherent cost and complications 
associated with active dampers. This has led to the prototype application, 
and production, of semiactive dampers for primary suspensions of a wide 
variety of vehicles, ranging from motorcycles, to passenger cars, to bus and 
trucks, and to military tanks, in favor of fully active systems. 

Although there is abundant research on the utility of semiactive 
dampers for improving vehicle ride and handling, their potential for reducing 
dynamic forces transmitted to the pavement remains relatively unexplored. 
This is because most suspension designers and researchers are mainly 
concerned with the role of suspension systems from the vehicle design 
perspective. Another perspective, however, is the effect of suspension 
systems on transmitting dynamic loads to the pavement. 

ROAD DAMAGE STUDIES 

Dynamic tire forces, that are heavily influenced by the suspension, are 
believed to be an important cause of road damage. Cole and Cebon [11] 
studied the design of a passive suspension that causes minimum road damage 
by reducing the tire force. They propose that there is a stronger correlation 
between the forth power of the tire force and road damage than the dynamic 
load coefficient (DLC) and road damage. 

A simple measure of road damage, introduced by Cebon in [12], is the 

aggregate fourth power force A^ defined as 

Na 

4=SPi k= 1,2,3 ..ns (1) 

where Pjk     = force applied by tire j to point k along the wheel path, 

na       = number of axles on vehicle, and 

ns        = number of points along the road.. 
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DLC is a popular measurement frequently used to characterize dynamic 
loading and is defined as the root mean square (RMS) of the tire force divided 
by the mean tire force, which is typically the static weight of the vehicle. The 
equation takes the form: 

RMS Dynamic Tire Force 
Static Tire Force 

This study shows that minimum road damage, for a two degree-of-freedom 
model, is achieved by a passive system with a stiffness of about one fifth of 
current air suspensions and a damping of about twice that typically provided. 
In practice, however, reducing the suspension stiffness can severely limit the 
static load carrying capacity of the suspension and cause difficulties in vehicle 
operation. Further, higher damping can substantially increase vibration 
transmission to the body and worsen the ride. 

In another study by Cole and Cebon [13] a two-dimensional articulated 
vehicle simulation is validated with measurements from a test vehicle. The 
effect of modifications to a trailer suspension on dynamic tire forces are 
investigated. The RMS of dynamic loads generated by the trailer are predicted 
to decrease by 31 per cent, resulting in a predicted decrease in theoretical road 
damage of about 13 per cent. 

Yi and Hedrick compared the effect of continuous semiactive and 
active suspensions and their effect on road damage using the vehicle simulation 
software VESYM [14]. A control strategy based on the tire forces in a heavy 
truck model is used to show that active and semiactive control can potentially 
reduce pavement loading. They, however, mention that measuring the tire 
forces poses serious limitation in practice. 

The primary purpose of this paper is to extend past studies on 
semiactive suspension systems for reducing road damage. An alternative 
semiactive control policy, called "groundhook," is developed such that it can 
be easily applied in practice, using existing hardware for semiactive 
suspensions. A simulation model representing a single primary suspension is 
used to illustrate the system effectiveness. The simulation results show that 
groundhook control can reduce the dynamic load coefficient and fourth power 
of tire force substantially, without any substantial increase in body 
acceleration. 
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MATHEMATICAL FORMULATION 

We consider a model representing the dynamics of a single primary suspension 
in a heavy truck, as shown in Figure 1. 

Truck Mass 

Suspension 
Stiffness 

Suspension 
and Tire Mass 

Tire 
Stiffness 

Suspension 
C      Damping 

Road Input 

Figure 1. Primary Suspension Model 

This model has been widely used in the past for automobile applications, due 
to its effectiveness in analyzing various issues relating to suspensions. 
Although it does not include the interaction between the axles and the truck 
frame dynamics, the model still can serve as an effective first step in studying 
fundamental issues relating to truck suspensions. Follow up modeling and 
testing, using a full vehicle, is needed to make a more accurate assessment. 

The dynamic equations for the model in Figure 1 are: 

M,JC, +C(x, -x2) + K(x] -x2) = 0 

M2x\ -C(xl -x2)-K(xl -x2) + K,xin = 0 

(3a) 

(3b) 

The variables xx and x2 represent the body and axle vertical displacement, 
respectively. The variable xin indicates road input, that is assumed to be a 
random input with a low-pass (0 - 25 Hz) filter. The amplitude for xin is 
adjusted such that it creates vehicle and suspension dynamics that resembles 
field measurements. Such a function has proven to sufficiently represent 
actual road input to the vehicle tires. 

Table 1 includes the model parameters, that are selected to represent a 
typical laden truck used in the U.S. The suspension is assumed to have a 
linear stiffness in its operating range. The damper characteristics are modeled 
as a non-linear function, as shown in Figure 2. 
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Table 1.   Model Parameters 

Description Symbol Value 

Body Mass Ml 287 kg 

Axle Mass M2 34 kg 

Suspension Stiffness Kl 196,142 N/m 

Tire Stiffness Kt 1,304,694 N/m 

Suspension Damping C See Table 2 

The bilinear function in Figure 2 represents the force-velocity 
characteristics of an actual truck damper. The parameters selected for both 
passive and semiactive dampers are shown in Table 2. These parameters are 
selected based on truck dampers commonly used in the U.S. Although we 
examined the effect of damper tuning on dynamic loading, if falls outside the 
scope of this paper. Instead, we concentrate here on comparing different 
semiactive dampers with a passive damper, using the baseline parameters 
shown in Table 2. The semiactive and passive damper characteristics used for 
this study are further shown in Figure 3. 

Compression 
(Jounce) 

Extension 

Figure 2. Nonlinear Damper Characteristics 
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Figure 3. Passive and Semiactive Damper Characteristics 

SKYHOOK CONTROL POLICY 

As mentioned earlier, the development of semiactive dampers dates back to 
early 70's when Karnopp and Crosby introduced the skyhook control policy. 
For the system shown in Figure 1, skyhook control implies 

x,(i,-x2)>0      C-Con 

x,(i,-x,)< 0      C = C0ff 

(4a) 

(4b) 

Where x, and x2 represents the velocities of Mj (vehicle body) and M2 (axle), 
respectively. The parameters Con and Coff represent the on- and off-state of 
the damper, respectively, as it is assumed that the damper has two damping 
levels. In practice, this is achieved by equipping the hydraulic damper with an 
orifice that can be driven by a solenoid. Closing the orifice increases damping 
level and achieves Con, whereas opening it gives Coff. 
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Table 2. Damper Parameters 

Passive Semiactive On-State Semiactive Off-State 

s, 0.25 0.35 0.03 

s2 0.10 0.15 0.03 

vbb 0.254 m/sec 0.254 m/sec 0.254 m/sec 

S3 0.20 0.30 0.03 

s4 0.10 0.15 0.03 

vbj 0.254 m/sec 0.254 m/sec 0.254 m/sec 

The switching between the two damper states, shown in Eq. (4), is 
arranged such that when the damper is opposing the motion of the sprung 
mass (vehicle body), it is on the on-state. This will dampen the vehicle body 
motion. When the damper is pushing into the body, it is switched to the off- 
state to lower the amount of force it adds to the body. Therefore, a semiactive 
damper combines the performance of a stiff damper at the resonance 
frequency, and a soft damper at the higher frequencies, as shown in Figure 4. 

soft damping   (C=Qn) 

hard damping   (C=Con) 

Frequency 

Figure 4. Transmissibility Characteristics for Passive and Semiactive Dampers 
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Figure 5. Groundhook Damper Configurations: a) optimal groundhook 
damper   configuration,   b)   semiactive   groundhook   damper 
configuration. 

This feature allows for a better control of the vehicle body, as has been 
discussed in numerous past studies. The skyhook control policy in Eq. (4), 
however, works such that it increases axle displacement, x2, (commonly called 
wheel hop). Because the tire dynamic loading can be defined as 

DL = Kt x2 (5) 

The skyhook control actually increases dynamic loading. As mentioned earlier 
the development of skyhook policy was for improving ride comfort of the 
vehicle, without losing vehicle handling. Therefore, the dynamic loading of the 
tires was not a factor in the control development. 

GROUNDHOOK CONTROL POLICY 

To apply semiactive dampers to reducing tire dynamic loading, we propose an 
alternative control policy that can be implemented in practice using the same 
hardware needed for the skyhook policy. To control the wheel hop, this 
policy, called "groundhook," implies: 

x2 (x, - x,) < 0     C = Con 

x2 (xl - x2) > 0     C = C0ff 

(6a) 

(6b) 

As shown in Figure 5, the above attempts to optimize the damping force on 
the axle, similar to placing a damper between the axle and a fictitious ground 
(thus, the name "groundhook"). The groundhook semiactive damper 
maximizes the damping level (i.e., C = Con) when the damper force is opposing 
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the motion of the axle; otherwise, it minimizes the damping level (i.e., C = 
C0ff). The damper hardware needed to implement groundhook semiactive is 
exactly the same as 

the skyhook semiactive, except for the control policy programmed into the 
controller. 

SIMULATION RESULTS 

The model shown in Figure 1 is used to evaluate the benefits of groundhook 
dampers versus passive and skyhook dampers. A non-linear damper model 
was considered for the simulations, as discussed earlier. The road input was 
adjusted such that the dynamic parameters for the passive damper resembles 
actual field measurements. Five different measures were selected for 
comparing the dampers: 

• Dynamic Load Coefficient (DLC) 
• Fourth Power of the tire dynamic load 
• Sprung mass acceleration 
• Rattle Space (relative displacement across the suspension) 
• Axle Displacement, relative to the road 

Dynamic load coefficient and fourth power of tire force are measures 
of pavement dynamic loading and are commonly used for assessing road 
damage. They are both considered here because there is no clear consensus on 
which one is a better estimate of road damage. Axle displacement, relative to 
the road, indicates wheel hop and is directly related to DLC and tire force, 
therefore it is yet another measure of road damage. Sprung mass acceleration 
is a measure of ride comfort. Our experience, however, has shown that for 
trucks this may not be a reliable measure of the vibrations the driver feels in 
the truck. The relative displacement across the dampers relates to the rattle 
space, that is an important design parameter in suspension systems, 
particularly for cars. For each of the above measures, the data was evaluated 
in both time (Figures 6-7) and frequency domain (Figures 8-10). In time 
domain, the root mean square (RMS) and maximum of the data for a five- 
second simulation are compared. In frequency domain, the transfer function 
between each of the measures and road displacement is plotted vs. frequency. 
The frequency plots highlight the effect of each damper on the body and axle 
resonance frequency. 

Figures 6 and 7 show bar charts of root mean square (RMS) and 
maximum time data, respectively. In each case the data is normalized with 
respect to the performance of passive dampers commonly used in trucks. 
Therefore, values below line 1.0 can be interpreted as an improvement over the 
existing dampers. As Figures 6 and 7 show, groundhook dampers significantly 
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improve pavement loading, particularly as related to the fourth power of tire 
force. Furthermore, the rattle space is improved slightly over passive 
dampers, indicating that groundhook dampers do not impose any additional 
burden on the suspension designers. 

One measure that has increased due to groundhook dampers is body 
acceleration. As mentioned earlier, in automobiles this measure is used as an 
indicator of ride comfort. In our past testing, however, we have found that for 
trucks it is a far less accurate measure of ride comfort. This is mainly due to 
the complex dynamics of the truck frame and the truck secondary suspension. 
A more accurate measure of ride comfort is acceleration at the B-Post (the 
post 

Tire 
Dynamic 
Force A 4 

Axle 
Displacment 

Body 
Acceleration 

Rattle Space 

Figure 6. RMS Time Data Normalized with respect to Passive Damper 

Tire 
Dynamic 
Force A 4 

Axle 
Displacment 

Body 
Acceleration 

Rattle Space 

Figure 7. Max. Time Data Normalized with respect to Passive Damper 
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behind the driver), which cannot be evaluated from the single suspension 
model considered here. Nonetheless, the body acceleration is included for the 
sake of completeness of data. 

The model shows that skyhook dampers actually increase the 
measures associated with pavement loading, while improving body 
acceleration. This agrees with the purpose of skyhook dampers that are 
designed solely for improving the compromise between ride comfort and 
vehicle handling. The improvement in ride comfort occurs at the expense of 
increased pavement loading. 

10 
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Figure 8. Transfer Function between Axle Displacement and Road Input 

Figures 8-10 show the frequency response of the system due to each damper. 
In each figure, the transfer function between one of the measures and input 
displacement is plotted vs. frequency. These plots highlight the impact of 
skyhook and groundnook on the body and wheel hop resonance, relative to 
existing passive dampers. The frequency plots indicate that the 
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Figure 9. Transfer Function between Body Acceleration and Road Input 
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Figure 10. Transfer Function between Rattle Space and Road Input 

groundhook dampers reduce axle displacement and fourth power of tire 
dynamic force at wheel hop frequency. At body resonance frequency, 
groundhook dampers do not offer any benefits over passive dampers.   The 

1214 



frequency results for body acceleration and rattle space are similar to those 
discussed earlier for the time domain results. The frequency plots show that 
the skyhook dampers offer benefits over passive dampers at frequencies close 
to the body resonance frequencies. At the higher frequencies, associated with 
wheel hop, skyhook dampers result in a larger peak than either passive or 
groundhook dampers. This indicates that skyhook dampers are not suitable 
for reducing tire dynamic loading. 

CONCLUSIONS 

An alternative to skyhook control policy for semiactive dampers was 
developed. This policy, called "groundhook," significantly improves both 
dynamic load coefficient (DLC), and fourth power of tire dynamic load, 
therefore holding a great promise for reducing road damage to heavy trucks. 
The dynamic model used for assessing the benefits of groundhook dampers 
represented a single suspension system. Although the results presented here 
show groundhook dampers can be effective in reducing tire dynamic loading 
and pavement damage, more complete models and road testing are necessary 
for more accurately assessing the benefits. 
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Abstract: Theoretical modelling of the vibration of plate components of a 
space structure excited by piezoelectric actuators is presented. The equations 
governing the dynamics of the plate, relating the strains in the piezoelectric 
elements to the strain induced in the system, are derived for isotropic plates 
using the Rayleigh-Ritz method. The developed model was used for a simply 
supported plate. The results show that the model can predict natural 
frequencies and mode shapes of the plate very accurately. The open loop 
frequency response of the plate when excited by the patch of piezoelectric 
material was also obtained. This model was used to predict the closed loop 
frequency response of the plate for active vibration control studies with 
suitable location of sensor-actuators. 

Introduction 
Vibration suppression of space structures is very important because 
they are lightly damped due to the material used and the absence of air 
damping. Thus the modes of the structure must be known very 
accurately in order to be affected by the controller while avoiding 
spillover. This problem increases the difficulty of predicting the 
behaviour of the structure and consequently it might cause unexpected 
on-orbit behaviour. 

These difficulties have motivated researchers to use the 
actuation strain concept. One of the mechanisms included in the 
actuation strain concept is the piezoelectric effect whereby the strain 
induced  through  a piezoelectric  actuator  is  used  to  control  the 
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deformation of the structure [1]. It can be envisaged that using this 
concept in conjunction with control algorithms can enhance the ability 
to suppress modes of vibration of flexible structures. 

Theoretical and experimental results of the control of a flexible 
ribbed antenna using piezoelectric materials has been investigated in 
[2]. An active vibration damper for a cantilever beam using a 
piezoelectric polymer has been designed in [3]. In this study, 
Lyapunov's second or direct method for distributed-parameter systems 
was used to design control algorithms and the ability of the algorithms 
was verified experimentally. These works have clearly shown the 
ability of piezoelectric actuators for vibration suppression. However, 
they have been limited to one dimensional systems. Obviously, there is 
a need to understand the behaviour of piezoelectric actuators in two 
dimensional systems such as plates. 

Vibration excitation of a thin plate by patches of piezoelectric 
material has been investigated in [4]. Their work was basically an 
extension of the one dimensional theory derived in [1] to show the 
potential of piezoelectric actuators in two dimensions. In their studies, 
it was assumed that the piezoelectric actuator doesn't significantly 
change the inertia, mass or effective stiffness of the plate. This 
assumption is not guaranteed due to the size, weight and stiffness of 
the actuator. Based on this assumption, their model can not predict the 
natural frequencies of the plate accurately after bonding piezoelectric 
actuators. Therefore, it is essential to have a more general model of a 
plate and bonded piezoelectric actuators with various boundary- 
conditions. The model should be able to predict frequency responses 
because this is fundamental to the understanding of the behaviour of 
the system for control design purposes. It is the objective of the current 
study to develop such a modelling capability. 

Previous work [5, 6, 7] has concentrated on the modelling and 
control of a cantilever beam. The method used involved bonding 
piezoelectric material to a stiff constraining layer, which was bonded to 
the beam by a thin viscoelastic layer in order to obtain both active and 
passive damping. Then a Rayleigh-Ritz model was developed and 
used to derive a linearized control model so as to study different 
control strategies. In the work described in this paper, the method has 
been extended to the more complex plate problem. The paper 
introduces a modelling approach based on the Rayleigh-Ritz assumed 
mode shape method to predict the behaviour of a thin plate excited by 
a patch of piezoelectric material bonded to the surface of the plate. The 
model includes the added inertia and stiffness of the actuator and has 
been used to predict the frequency response of the plate. Suggestions 
for future work are also included. 
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Theoretical Modelling 
In developing the Rayleigh-Ritz model of a plate excited by a 

patch of piezoelectric material bonded to the surface of the plate, a 
number of assumptions must be made. The patch of piezoelectric 
material is assumed to be perfectly bonded to the surface of the plate. 
The magnitude of the strains induced by the piezoelectric element is a 
linear function of the applied voltage that can be expressed by 

fcy      t    
v33- 

V 
(1) 

Here d31 is the piezoelectric strain constant, t/K is the piezoelectric layer 

thickness and V33 is the applied voltage. The index 31 shows that the 
induced strain in the '1' direction is perpendicular to the direction of 
poling '3' and hence the applied field. The piezoelectric element 
thickness is assumed to be small compared to the plate thickness. The 
displacements of the plate middle surface are assumed to be normal to 
it due to the bending affects. 

Figure 1 shows the configuration of the bonded piezoelectric 
material relative to the surface of the plate. 

Figure 1.    Configuration of the bonded piezoelectric actuator on the surface of the 
plate. 

In figure 1, Lt and Ly are the dimensions of the plate, *,, x2 , yx and y2 

are the boundaries of the piezoelectric element and u, v and w are the 
displacements in the x , y and z direction, respectively. 

To derive the equations of motion of the plate based on the 
Rayleigh-Ritz method, both the strain energy U and kinetic energy T of 
the plate and the piezoelectric element must be determined. The strain 
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and kinetic energy result from the deformation produced by the 
applied strain which is induced by exciting the piezoelectric element. 
The deformations can be expressed by the combination of the midplane 
displacement and the deformations resulting from the bending of the 
plate. 

Strain Energy 
The strain energy of the plate and piezoelectric material can be 

calculated by 

U = -JVp(ax£x+cjyey+Txyrxy)dVp+-^(axex+ayey+t!<yYxy)dVpe     (2) 

where £ is the inplane direct strain, a is the inplane direct stress, x is 
the inplane shear stress and y is shear strain. dV shows volume 
differential and indices p and pe refer to the plate and piezoelectric 
actuator, respectively. The strains 8, , ey and y xy can be shown to be 

For the Plate: 
_ du      d2w 

dx       dx2 

£y'dx    ZV 
du    dv    „   d2w 

Yv  = 1 2z  A7     dy    dx        dxdy 

For the Piezoelectric actuator: 

(3) 

du        d2w     d3. 

2 _*L_z¥w_d2Ly  _£  _„F (4) 
£>-dy   Z dy2     t/*-?*■  ^ 

du     dv     „   d2w 
y        = 1 2.Z = Y 

ay     ox dxdy    — 

where _ refers to the strains due to the deformation. The stresses a x , 
a    , Y    can be expressed as 
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For the Plate : 

1-U 

1       v, 

0       0 

0 

0 

1-1), 

(5) 

For the Piezoelectric actuator : 

.V 
1-D. 

1 

0       0 

0 

0 

1-1), 

(6) 

where £ is Young modulus and i) is Poisson's ratio for the assumed 
isotropic material. Substituting equations 3, 4, 5 and 6 into 2 yields the 
strain energy of the plate and piezoelectric actuator, 

U = H. ^Ie«2 + 2l)pe8ey + e; + I(1-1Jp)Y
2

w]dVp 

+ ^ L      T^V [  (  ^ - ^ )2 + 2l>>»(  £« ~ ^ )( £V " ^   )2 + ^ ^k ]  dVP3- 

(7) 

Kinetic Energy 
To obtain the kinetic energy, the velocity components in x, y and 

z directions are needed. The velocity components can be calculated by 
differentiating the displacement components which are 

■jw 
u= u— z- 

dx 

v = v — 
dw 

w = w. 

(8) 

Differentiating equations 8 yields 
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dw 
u= u- z— 

ox 

v=v-z— (y) 
dy 

w= w 

where ü , v and w are the velocity components in the x, y and z 
directions respectively. Using these velocity components, the kinetic 
energies of the plate and piezoelectric actuator are obtained as 

dV„ T^pJwMu-z-^v-z-)]^ (io) 

+ lWw+(u-z-)2 + (v-z-)]dVpe 

where p is the mass density. 

Equation of Motion 
The static or dynamic response of the plate excited by the 

piezoelectric actuator can be calculated by substituting the strain and 
kinetic energy into Lagrange's equation 

±(K}JJL+w& (11) 
dt dqt      dqi     o?,- 

where qt represents the ith generalised coordinate and Q: is the ith 
generalised force. As there are no external forces (the force applied by 
the piezoelectric element is included as an applied strain) or gyroscopic 
terms and there is no added damping, Lagrange's equation reduces to : 

dt  dq)      dqi 

Now the equation of motion can be obtained by using the expression 
obtained for the strain and kinetic energy, and the assumed shape 
functions for flexural and longitudinal motion 
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u(x, y, t) = {v|/ (x, y)}T {h(t)} 

v(x,y,t) = ${x,y)}J{f(t)} 

w(x,y,t)={Hx,y)}T{g(t)}. 

(13) 

Here y , E, and <)) are the assumed displacement shape and h , f and g 
are generalised coordinate of the plate response in x, y and z 
directions. Using the shape functions expressed in equations 13, 
substituting equations 7 and 10 into equation 12, and including 
Rayleigh damping yields the equation of motion of the plate in the 
form 

[MM+[cm+[K]{q}={P}V (14) 

where M, C and K are mass, damping and stiffness matrices and P is 
the voltage-to-force transformation vector. Vector q represents the 
plate response modal amplitudes and V is the applied voltage. 

State-Space Equations 
A model of a structure found via finite element or Rayliegh-Ritz 

methods results in second-order differential equations of the form 

[M]{q}+[C]\q}+[K][q}={P}V (15) 

Choosing state variables  x, = q   and     x2 = x,, equation 1 may be 
reduced to a state-space representation as follows : 

q = x2 =-M-'Kq-M-'Cq + M-'PV. 

Equations 15 can then be rewritten as 

(16) 

*/ 0 I    1 X, r o 
— + 

-X2. -M~'K -M~'C_ |_x2_ _M~'p\ 

\q]=\l   0] 
x,~ 

[x2_ 

V 

(17) 

where [ ], { } are ignored. It should be noted that the vector q must be 
multiplied by the shape functions to produce the actual displacement. 
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Results 
The model was used to investigate the response of a simply 

supported plate. In order to maintain symmetry of the geometric 
structure a piezoelectric actuator is assumed to be bonded to both the 
top and bottom surfaces of the plate. So The symmetry of the elements 
causes no extension of the plate midplane and the plate deforms in 
pure bending. In this case the shape functions are assumed to be : 

\|/(x,y) = 0 

£(x,y) = 0 (18) 

<Kx,y) = sm(——x)sin(—y) 
'-x Ly 

where m and n are the number of half waves in the x and y directions. 
The properties of the plate are given in Table 1 and its 

dimensions are 4 = 0.38 m , Ly = 0.30m and tp=L5876mm- Tables 2 and 3 

show the natural frequencies of the bare plate obtained by the thin 
plate theory and the RR model, respectively. Since the shape functions 
used in this example express the exact shape of the simply supported 
plate, the natural frequencies included in Tables 2 and 3 are very close. 

In order to excite the plate, a piezoelectric actuator with 
configuration X] = 0.32 m, x2 = 0.36 m, yx = 0.04 m and y2 = 0.26 m is used above 
and below. The natural frequencies of the plate after bonding the 
piezoelectric actuator to the surface are given in Table 4. The results 
show an increase in natural frequencies, showing that the added 
stifness is more important than the added inertia. 

Table 1: Properties of the plate 

£„(xl09NI m1) 9„{kglrr?) vp 

207 7870 .292 

Table 2: Plate natural frequencies (rad / s), Thin Plate Theory 

"/ 
1 2 3 4 

1 
2 
3 
4 

437.5 
941.4 
1781.2 
2957.0 

1246.0 
1749.9 
2589.7 
3765.5 

2593.5 
3097.4 
3937.2 
5113.0 

4480.0 
4983.9 
5823.7 
6999.5 
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Table 3 : Plate natural frequencies (rad / s), RR Model 

1 437.5 1245.9 2593.2 4479.1 
2 941.3 1749.7 3097.0 4982.8 
3 1781.1 2589.4 3936.6 5822.3 
4 2956.7 3764.9 5111.9 6997.4 

Table 4 : Plate-Piezo natural frequencies (rad / s) 

/ m 

1 444.0 1257.1 2611.3 4502.8 
2 957.2 1775.6 3182.1 5076.7 

3 1854.6 2642.5 4072.3 6029.6 
4 3076.6 3933.8 5224.6 7277.2 

Initially, the piezoelectric actuator was excited by a constant DC 
voltage. The result of this action is shown in figure 2 which shows the 
dominant out of plane displacement around the location of the 
piezoelectric actuator bonded to the surface of the plate. To show the 
modes of vibration, the piezoelectric actuator was excited by a voltage 
with frequencies near to the natural frequencies of modes (2,2) and 
(1,3). The response in figures 3 , 4 show that the piezoelectric actuator 
excited both of these modes. 

Displacement Distribution (X-Y) 

Axial Location, x/lx °-05 

0    0 
Axial Location, y/ly 

Figure 2. Static Displacement 
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Displacement Distribution (X-Y) 

0    0 

Figure 3. Vibration of the plate, mode (2,2) 

Displacement Distribution (X-Y) 

Axial Location, 
0    0 

Figure 4. Vibration of the plate, mode (3,1) 

The frequency response of the plate at the centre was obtained 
by exciting the piezoelectric actuator at a range of frequencies between 
0 and 4000 rad/s. Figure 5 shows the frequency response of the plate 
at its centre. The frequency response of the plate at y = 0.5LX along the 
x-direction is shown in figure 6. It can be seen that the amplitude of 
vibration of some modes are very high compared to that of the other 
modes. Special attention must be given for the suppression of vibration 
of these modes. 
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Frequency Response of the Plate 
-100 

-150 

75-200 
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a-300 

-350 

1.12,ii       : 

. _ _3,V  J 2,3 

■ U- - -  \ "\ /' 

0 1000 2000 3000 4000 
Frequency (rad/s) 

Figure 5. Frequency response of the plate at the centre 

Frequency Response of the Plate 

4000 

Axial Location, x/lx Frequency (rad/s) 

Figure 6. Frequency response of the plate along x-direction 

The results show that it is possible to predict the frequency- 
response of a plate when it is excited by a patch of piezoelectric 
material. Consequently, a sensor model can be also added to the model 
and a signal proportional to velocity fed back to the piezoelectric 
patch. As a result, the closed loop frequency response of the plate can 
be obtained theoretically which is very important for active vibration 
control studies. This also permits the investigation of the optimal 
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location of the actuators and the study of control algorithms for the 
best possible vibration suppression before using any costly 
experimental equipment. 

For this purpose, two patches of piezoelectric (10cmx8cm and 
5cmx4cm), whose specifications are listed in table 5, were bonded to 
the surface of the plate in different locations and then the plate was 
excited by a point force marked by "D" in the figure 7. In figure 7 the 
dash lines are showing the nodal lines of a simply supported plate up 
to mode (3,3). 

.2 

Table 5: Properties of the actuator 

tpJmm) EJxlOwN/m2)pJkg/m3) dJxWl2m/v) 

6.25 7700 -180 .3 

An actuator is most effective for control of a particular mode if 
the sign of the strain due to the modal deflection shape is the same 
over the entire actuator. Consequently, as can be seen from figure 7, 
the actuators are placed between the nodal lines and at the points of 
maximum curvature in order to obtain good damping effect on the 
modes of interest. Then two accelerometers were located at the center 
of the location of the actuators, marked by "S" in figure 7, in order to 
have collocated sensor-actuators. The signals obtained by the 
accelerometers are integrated and fed back to the actuators separately. 
Therefore rate feedback was used in this configuration. This leads to 
the feedback control law 

V = kq (19) 

where k is an amplification factor or feedback gain. Substituting 
equation 19 into equation 17 the closed-loop state-space representation 
of the system can then be obtained as 

X, 0 I V 
_x2. -M -'K -M-'(C-kP)_ _x2_ 

[&- =[' o] 
'xi 

.X2_ 
• 

(20) 

1228 



Then the effects of the actuators on vibration suppression were 
investigated. At first, only the actuator near to the center of the plate 
was used to suppress the vibration. The effect of this is shown in figure 
8. As can be seen, damping in some modes are improved and some 
modes are untouched. 

The second actuator was added to the model to see its effect on 
modes of vibration. 

•s      \ 

Q 

•D 

Piezoelectric 
Actuators 

Figure 7. Plate with Bonded Piezoelectric Actuators 

Frequency Response of the Plate 
-50 

£ -100 

-150 

-200 

-250 

-300 

I   _  _ 

V -J v1^ V V    ML 
X-5^ 

\ /      .      \ 

500  1000  1500  2000  2500  3000  3500  4000 
Frequency (rad/s) 

Figure 8. Open and Closed loop Frequency Response of the plate 
solid line : open loop, dash line : closed loop 
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Frequency Response of the Plate 

m 
-100 

3-150 

-200 

-300 

Figure 9. 

■250 

500     1000    1500   2000   2500    3000   3500   4000 

Frequency (rad/s) 

Open and Closed Loop Frequency Response of The Plate 
solid line: open loop, dash line : closed loop 

The open and closed loop frequency response of the plate when excited 
by the point force and controlled by two actuators is shown in figure 9. 
As can be seen, significant vibration suppression was obtained in both 
lower and higher modes. Also, it shows that the place of actuators was 
successfully chosen. This analysis showed that obtaining reasonable 
but not necessarily optimal placement of actuators in structures is very 
important in order to obtain a high level of damping in the modes of 
interest. Obviously, bonding more than one piezoelectric actuator in 
suitable locations helps to successfully suppress vibration of the plate. 

Conclusions 
A model of an active structure is fundamental to the design of 

control strategies. It can be used to analyse the system and investigate 
optimal control strategies without using costly experimental 
equipment. 

A Rayleigh-Ritz model has been developed to analyse the behaviour 
of a thin plate excited by a patch of piezoelectric material. The model 
has been used for a simply supported plate. It has been shown that the 
model can predict natural frequencies of the plate alone very 
accurately. The obtained mode shapes also correspond to the actual 
mode shapes. The frequency response of the plate can be obtained to 
show the suitability of the model for control design studies. This study 
allowed the behaviour of the system in open and closed loop form for 
active vibration control purposes to be investigated. Two piezoelectric 
actuators were used to investigate their effectiveness on vibration 
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suppression of the plate. The analysis showed that the location of two 
actuators was very important to increase the level of damping in both 
lower and higher frequency modes. The future work will be to extend 
the model to analyse a plate with more than two patches of 
piezoelectric material with optimal configuration, obtained by 
controllability theory, and independent controller for vibration 
suppression, and experimental verification of the theoretical analysis. 
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Active control of sound transmission into a rectangular 
enclosure using both structural and acoustic actuators 

S.M. Kim and MJ. Brennan 
ISVR, University of Southampton, Highfield, Southampton, SO 17 1BJ, UK 

ABSTRACT 
This paper presents an analytical investigation into the active control of sound 
transmission in a 'weakly coupled' structural-acoustic system. The system 
under consideration is a rectangular enclosure having one flexible plate 
through which external noise is transmitted. Three active control systems 
classified by the type of actuators are discussed. They are; i) a single force 
actuator, ii) a single acoustic piston source, and iii) simultaneous use of both 
the force actuator and the acoustic piston source. For all three control systems 
the acoustic potential energy inside the enclosure is adopted as the cost 
function to minimise, and perfect knowledge of the acoustic field is assumed. 
The results obtained demonstrate that a single point force actuator is effective 
in controlling well separated plate-controlled modes, whereas, a single 
acoustic piston source is effective in controlling well separated cavity- 
controlled modes provided the discrete actuators are properly located. Using 
the hybrid approach with both structural and acoustic actuators, improved 
control effects on the plate vibration together with a further reduction in 
transmitted noise and reduced control effort can be achieved. Because the 
acoustic behaviour is governed by both plate and cavity-controlled modes in a 
'weakly coupled' structural-acoustic system, the hybrid approach is desirable 
in this system. 

1. INTRODUCTION 

Analytical studies of vibro-acoustic systems have been conducted by many 
investigators to achieve physical insight so that effective active control 
systems can be designed. It is well established that a single point force actuator 
and a single acoustic piston source can be used to control well separated 
vibration modes in structures and well separated acoustic modes in cavities, 
respectively, provided that the actuators are positioned to excite these 
modes [1,2]. Active control is also applied to structural-acoustic coupled 
systems for example, the control of sound radiation from a plate[3-6] and the 
sound   transmission   into   a   rectangular   enclosure[7-8].   Meirovitch   and 
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Thangjitham[6], who discussed the active control of sound radiation from a 
plate, concluded that more control actuators resulted in better control effects. 
Pan et al[8] used a point force actuator to control sound transmission into an 
enclosure, and discussed the control mechanism in terms of plate and cavity- 
controlled modes. 
This paper is concerned with the active control of sound transmission into a 
'weakly coupled' structural-acoustic system using both structural and acoustic 
actuators. After a general formulation of active control theory for structural- 
acoustic coupled systems, it is applied to a rectangular enclosure having one 
flexible plate through which external noise is transmitted. Three active control 
systems classified by the type of actuators are compared using computer 
simulations. They are; i) a single force actuator, ii) a single acoustic piston 
source, and iii) simultaneous use of both the force actuator and the acoustic 
piston source. For all three control systems the acoustic potential energy inside 
the enclosure is adopted as the cost function to minimise, and perfect 
knowledge of the acoustic field is assumed. The effects of each system are 
discussed and compared, and a desirable control system is suggested. 

2. THEORY 

2.1 Assumptions and co-ordinate systems 

Consider an arbitrary shaped enclosure surrounded by a flexible structure and a 
acoustically rigid wall as shown in Figure 1. A plane wave is assumed to be 
incident on the flexible structure, and wave interference outside the enclosure 
between the incident and radiated waves by structural vibration is neglected. 
Three separate sets of co-ordinates systems are used; Co-ordinate x is used for 
the acoustic field in the cavity, co-ordinate y is used for the vibration of the 
structure, and co-ordinate r is used for the sound field outside the enclosure. 
The cavity acoustic field and the flexible structure are governed by the linear 
Helmholtz equation and the isotropic thin plate theory[9], respectively. The 
sign of the force distribution function and normal vibration velocity are set to 
be positive when they direct inward to the cavity so that the structural 
contribution to acoustic pressure has the same sign as the acoustic source 
contribution to acoustic pressure. 
Weak coupling rather than full coupling is assumed between the structural 
vibration system and the cavity acoustic system. Thus, the acoustic reaction 
force on the strucural vibration under structural excitation and the structural 
induced source effect on the cavity acoustic field under acoustic excitation is 
neglected. This assumption is generally accepted when the enclosure consists 
of a heavy structure and a big volume cavity. It is also assumed that the 
coupled response of the system can be described by finites summations of the 
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uncoupled acoustic and structural modes. The uncoupled modes are the rigid- 
walled acoustic modes of the cavity and the in vacuo structural modes of the 
structure. The acoustic pressure and structural vibration velocity normal to the 
vibrating surface are chosen to represent the responses of the coupled system. 

2.2 Structural-acoustic coupled response 

The acoustic potential energy in the cavity is adopted as the cost function for 
the global sound control, which is given by[2] 

E"=Ttl^pix,cofdV (1) 

where, p„ and c„ respectively denote the density and the speed of sound in air, 
and p(x,co) is the sound pressure inside the enclosure. 
The vibrational kinetic energy of the flexible structure, which will be used to 
judge the control effect on structural vibration, is given by[l] 

Ek=^js\u(y,cofdS (2) 

where, p, is the density of the plate material, h is the thickness of the plate. 

If the acoustic pressure and the structural vibration are assumed to be 
described by a summation of N and M modes, respectively, then the acoustic 
pressure at position x inside the enclosure and the structural vibration velocity 
at position y are given by 

N 

P(x,fl»   =   I>n(*K(ä>) = ¥Ta (3) 
n=l 

M 

"(y,o» = 2<t>Jy)bmm = <E>Tb (4) 
ro=l 

where, the N length column vectors ¥ and a consist of the array of uncoupled 
acoustic mode shape functions y/a(x) and the complex amplitude of the 
acoustic pressure modes aa(aj) respectively. Likewise the M length column 

vectors O and b consist of the array of uncoupled vibration mode shape 
functions 0m(y) and the complex amplitude of the vibration velocity modes 

bm(G>) respectively. 

The mode shape functions y/„(x) and <j)Jy) satisfy the orthogonal property 
in each uncoupled system, and can be normalised as follows. 

V = \vyl(x)dV (5) 

sf=l<l>l(y)ds (6) 
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where, V and Sf are the volume of the enclosure and the area of the flexible 
structure, respectively. Since mode shape functions are normalised as given by 
(Eq. 5), the acoustic potential energy can be written as 

E„=—V—&"a C7) 

Similarly from (Eq. 2) and (Eq. 6), the vibrational kinetic energy can be 
written as 

£tÄbab (8) 
A        2 

Where superscript H denotes the Hermitian transpose. 
For the global control of sound transmission, it is required to have knowledge 
of the complex amplitude of acoustic pressure vector a for various excitations. 

The complex amplitude of the n-th acoustic mode under structural and 
acoustic excitation is given by[9,10] 

an (co) = &&- A„ (coU yn (x)s(x,co)dV + j^ V„ (y)"(y. ®)dsJ (9) 

where, s(x,co) denotes the acoustic source strength density function in the 
cavity volume V, and u(y,co) denotes the normal velocity of the surrounding 
flexible structure on surface Sf. The two integrals inside the brackets represent 
the nth acoustic modal source strength contributed from s(\, co) and u(y,co), 

respectively. The acoustic mode resonance term An(co) is given by 

A„(co) = - J^—r  (10) 

where con and £„  are the natural frequency and damping ratio of the nth 

acoustic mode, respectively. 
Substituting (Eq. 4) into (Eq. 9) and introducing the modal source strength 

qn = J Wn (*)s(x> G>)dV, then we get 

(11) 
2 f M 

a„ (CO) = &-S- A,, (CO) q„ (co) + X C„,,„ • bm (CO) 
V V ™=i J 

where, C„,m represents the geometric coupling relationship between the 
uncoupled structural and acoustic mode shape functions on the surface of the 
vibrating structure Sf and is given by[l 1] 

cn.m=\wn(y)<l>m(y,o»ds (12) 

If we use L independent acoustic control sources, qn can be written as 

?„(fi» = i-^-l¥,Mc,l)dVqcJ(C0) = t,D(hl„qcJ(CO) 
*SqJ 

(13) 
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where Dqnl =— \ WMc,i)dV > and the ^ contro1 source strength qcJ(<a) 
s„.i 

having an area of Sq,i is defined at xCj/. 

Thus, the complex amplitude of acoustic modal pressure vector a can be 
expressed as 

a = Za(Dqqc+Cb) (14) 
2 

whereZa=-^A. 
V 

The matrix A is a (NxN) diagonal matrix in which each (n,n) diagonal term 
consists of An, the (NxM) matrix C is the structural-acoustic mode shape 
coupling matrix, the (NxL) matrix Dq determines coupling between the L 
acoustic source locations and the N acoustic modes, the L length vector qc is 
the complex strength vector of acoustic control sources, and b is the complex 
vibrational modal amplitude vector. The (NxN) diagonal matrix Za can be 
defined as the uncoupled acoustic modal impedance matrix which determines 
the relationship between the acoustic source excitation and the resultant 
acoustic pressure in modal co-ordinates of the uncoupled acoustic system. 
Generally the impedance matrix is symmetric but non-diagonal in physical co- 
ordinates, however the uncoupled modal impedance matrix is diagonal 
because of the orthogonal property of uncoupled modes in modal co-ordinates. 

Since the flexible structure in Figure 1 is assumed to be governed by the 
isotropic thin plate theory, the complex vibrational velocity amplitude of the 
mth mode can be expressed as[10] 

bi0}) = -L-Bm(ct»\l ^,„(y)(/(y,ö)) + PM'(y^)-pint(y^))^   (15) 
pshSf Vs' ' 

where, again ps is the density of the plate material, h is the thickness of the 
plate, 5/ is the area of flexible structure. Inside the integral f(y,co), p"'(y,co), 

and pint(y,ö)) denote the force distribution function, and the exterior and 
interior sides of acoustic pressure distribution on the surface Sf, respectively. 
Because of the sign convention used, there is a minus sign in front of 
piM (y, co). The structural mode resonance term Bm(co) can be expressed as 

w *.-*?KM (I6) 

where com and £m are the natural frequency and the damping ratio of m-th 
mode, respectively. Substituting (Eq. 3) into (Eq. 15), then we get 

1 f N ^ 

psnt>f \ „=i ) 
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where, gc Joj)= f 4>m (y)/(y, co)dS, gpjn (co)=\<t>m (y)p"' (y, ©)dS, 

and cIm = Q,. 
If we use ÜT independent point force actuators, the m-th mode generalised force 
due to control forces, gCi,„, can be written by 

8c„„(o)) = f J *m(y)$(y-ye>t Weii(fi>) = f rU-W0» 
(18) 

where Z)/mt = f 0,„(y)5(y-yc.,Jrf5, and the k-th control point force fck(co) 

is located at yc>k. 

Thus the modal vibrational amplitude vector b can be expressed as 
b = Ys(gp + Dffc-CTa) (19) 

where Ys = B. 
PshSf 

The matrix B is a (MxM) diagonal matrix in which each (m,m) diagonal term 
consists of B,„, CT is the transpose matrix of C, the (NxK) matrix Df 

determines coupling between the K point force locations and the M structural 
modes, gp is the generalised modal force vector due to the primary plane wave 
excitation, the K length vector fc is the complex vector of structural control 
point forces, and a is the complex acoustic modal amplitude vector. The 
(MxM) diagonal matrix Ys can be defined as the uncoupled structural modal 
mobility matrix which determines the relationship between structural 
excitation and the resultant structural velocity response in modal co-ordinates 
of the uncoupled structural system. As with the uncoupled acoustic impedance 
matrix Za, note that Ys is a diagonal matrix. 

From (Eq. 14) and (Eq. 19), we get 

a = (l + ZaCYsC
T)-,Za(Dqqc+CYsgp+CYsDffc) (20) 

b = (l + YsC
TZaC)-1Ys(gp+Dffc-CTZaDqqc) (21) 

Since weakly coupling is assumed i.e. ZaCYsC
T = 0 and YSC ZaC = 0 , then 

we get 

a = Za(Dqqc+CYsgp+CYsDrfc) (22) 

b = Ys(gp+Dffc-CTZaDqqc) (23) 

Although the formulation developed above covers fully coupled systems, weak 
coupling is assumed hereafter for the convenience of analysis. 
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In order to minimise the sound transmission into the cavity, two kinds of 
actuators are used: a single point force actuator for controlling the structural 
vibration of the plate and a single rectangular type acoustic piston source for 
controlling the cavity acoustic pressure. The rectangular piston source is 
centred at (1.85,0.15,0) with the area of 0.15m by 0.15m. This location was 
chosen because the sound pressure of each mode in a rectangular cavity is a 
maximum at the corners, and thus the control source is placed away from the 
acoustic nodal planes [2]. For a similar reason, the point force actuator is 
located at (9/20Li, L2/2) on the plate, at which there are no nodal lines within 
the frequency range of interest. Table 2 shows the natural frequencies of each 
uncoupled systems and their geometric mode shape coupling coefficients 
which are normalised by their maximum value. Some of natural frequencies 
which are not excited by the given incident angle(q> = 0°) were omitted. The 
(m/, mi) and («/, n2, n3) indicate the indices of the m-th plate mode and the nth 
cavity mode, and corresponding the uncoupled natural frequencies of the plate 
and the cavity are listed. A total 15 structural and 10 acoustic modes were used 
for the analysis under 300 Hz, and no significant difference was noticed in 
simulations with more modes. 

3.2 Active minimisation of the acoustic potential energy 

This section considers an analytical investigation into the active control of the 
sound transmission into the rectangular enclosure in Figure 2. Three active 
control strategies classified by the type of actuators are considered. They are; 
i) a single force actuator, ii) a single acoustic piston source, and iii) 
simultaneous use of both the force actuator and the acoustic piston source. 
Although the formulation developed in this paper is not restricted to a single 
actuator, each single actuator was used to simplify problems so that the control 
mechanisms could be understood and effective guidelines for practical 
implementation could be established. 

3.2.1 control using a single force actuator 

A point force actuator indicated in Figure 2 is used as a structural actuator and 
the optimal control strength of the point force actuator can be calculated using 
(Eq. 26). Figure 3(a) shows the acoustic potential energy of the cavity with 
and without the control force. To show how this control system affects the 
vibration of the plate, the vibration kinetic energy of the plate obtained from 
(Eq. 8) is also plotted in Figure 3(b). On each graph, natural frequencies of the 
plate and the cavity are marked '*' and 'o' at the frequencies, respectively. It 
can be seen that the acoustic response of uncontrolled state has peaks at both 
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plate and cavity resonances, and the vibration response of uncontrolled state is 
governed by the plate resonances only because of 'weak coupling'. 
Examining Figure 3(a,b) it can be seen that at the 1st, 2nd, 4th, and 5th plate 
modes corresponding to 52 Hz, 64 Hz, 115 Hz, and 154 Hz, respectively there 
is a large reduction of the acoustic potential energy. This is because the sound 
field at these frequencies is governed by the plate vibration modes, and a 
single structural actuator is able to control the corresponding vibration mode to 
minimise sound transmission. 
The structural actuator reduces sound at cavity-controlled modes as well( 
especially the 2nd and 3rd cavity modes corresponding respectively to 85 Hz 
and 170 Hz), however it has to increase plate vibration significantly. It shows 
that minimisation of the acoustic potential energy does not always bring the 
reduction of structural vibration, and vice versa. Since a cavity-controlled 
mode is generally well coupled with several structural modes, a single 
structural actuator is not able to deal with several vibration modes because of 
'control spillover'[4]. This is the reason why a single acoustic piston source 
used in the next section was introduced. However, it is clear that a single 
point force actuator is effective in controlling a well separated plate-controlled 
mode provided the actuator is not located close to the nodal line. 

3.2.2 control using a single piston force source 

A single acoustic piston source indicated in Figure 2 is used for controlling 
the acoustic sound field directly. The optimal control source strength of the 
acoustic piston source can be determined using (Eq. 26). Figure 4 shows the 
acoustic potential energy of the cavity and the vibrational kinetic energy of the 
plate with and without the control actuators. 
Since a plate-controlled mode is generally coupled with several cavity modes, 
the control effect of the acoustic source is not effective at plate-controlled 
modes (e.g. 52 Hz, 64 Hz, 115 Hz etc.). Whereas, it is more able to reduce 
transmitted sound at the cavity-controlled modes ( e.g. 0 Hz, 85 Hz, 170 Hz 
and 189 Hz) than the structural actuator. As can be noticed from (Eq. 22), the 
external incident wave and force excitation have the same sound transmission 
mechanism, which is vibrating the plate and transmitting sound through the 
geometric mode shape coupling matrix C. Thus, it can be said that the 
structural actuator is generally effective in controlling sound transmission. At 
cavity controlled modes, however, several vibration modes are coupled with 
an acoustic mode. It means that a single acoustic source is more effective than 
a single structural actuator since a single actuator is generally able to control 
only one mode. From the results, it is clear that a single acoustic piston source 
is effective in controlling well separated cavity-controlled modes. It is 
interesting that there is not much difference in the vibrational kinetic energy 
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with and without control state. It means that the acoustic actuator is able to 
reduce sound field globally without increasing plate vibration. 

3.2.3 control using both the piston source and the structural actuator 

In this section, a hybrid approach, simultaneous use of both the point force 
actuator and the acoustic piston source, is applied. The optimal strength of the 
force actuator and the piston source can be obtained from Eq. (26). Figure 5 
shows the acoustic potential energy of the cavity and the vibrational kinetic 
energy of the plate with and without the control actuators. Even at the cavity- 
controlled modes, it can be seen that a large reduction in the acoustic potential 
energy is achieved without significantly increasing the structural vibration. In 
general, more control actuators result in better control effects[6]. However, the 
hybrid approach with both structural and acoustic actuators in the system does 
not merely mean an increase in the number of actuators. As demonstrated in 
the last two sections, a single structural actuator is effective in controlling 
well separated plate-controlled modes and a single acoustic actuator is 
effective for controlling well separated cavity-controlled modes. Since the 
acoustic response is governed by both plate-controlled and cavity-controlled 
modes, the hybrid control approach can be desirable for controlling sound 
transmission in a 'weakly-coupled' structural acoustic system. 
To investigate the control efforts of each control system, the amplitude of the 
force actuator and the source strength of the piston source are plotted in 
Figure 6. There is a large decrease of the force amplitude at the well 
separated cavity-controlled modes, e.g. 85 Hz and 170 Hz, by using the both 
actuators. This trend can also be seen in the case of the piston source strength, 
especially at the 1st and 2nd structural natural frequency (52 Hz, 64 Hz). By 
using the hybrid approach, simultaneous use of both actuators, better control 
effects on the vibration of the plate, the transmission noise reduction and the 
control efforts of the actuators can be achieved. 

4. Conclusion 

The active control of the sound transmission into a 'weakly coupled' 
structural-acoustic system has been considered. The results obtained 
demonstrates that a single point force actuator is effective in controlling well 
separated plate-controlled modes, whereas, a single acoustic piston source is 
effective in controlling well separated cavity-controlled modes. 
By using the hybrid approach with both structural and acoustic actuators, 
improved control effects on the plate vibration, further reduction in sound 
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transmission, and reduced control efforts of the actuators can be achieved. 
Since the acoustic behaviour is governed by both plate and cavity resonances, 
the hybrid control approach can be desirable in controlling sound transmission 
in a 'weakly coupled' structural-acoustic system. 
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incident plane wave 

rigid boundary 

Figure 1 A structural acoustic coupled system with the volume V and its flexible boundary 
surface S/. 

incident plane wave 

the acoustic 
piston source 

Figure 2 The rectangular enclosure with one simply supported plate on   the surface Sf  on 
which external plane wave is incident with the angles of (<p = 0°) and (9=45°). 

Table 1 Material properties 

Material        Density      Phase speed Young's Poisson's        Damping 
(kg/mJ) (m/s) modulus (N/m )        ratio (v) ratio (Q 

Air 
Steel 

1.21 
7870 

340 
207x10s 0.292 

0.01 
0.01 
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Table 2 The natural frequencies and geometric mode shape coupling coefficients of each 
uncoupled system 

Order Plate 1 2 3 ■■'.'.. 4- 5 .   7 10 

Cavity 
Type - (1,1) (2,1) ■■<3,i) : (4,1) (5,1) (6,1) (7,1) 

Freq 52 Hz 64 Hz 86 Hz 115 Hz 154 Hz 200 Hz ;256Hz 

1 (0,0,0) 0 Hz 0.71 0 0.24 0 0.14 0 0.10 

2 (1,0,0) 85 Hz 0 0.67 0 0.27 0 0.17 0 

3 (2,0,0) 170Hz -0.33 0 0.60 0 0.24 0 0.16 

4 (0,0,1) 189 Hz -1.00 0 -0.33 0 -0.20 0 -0.14 

5 (1,0,1) 207 Hz 0 -0.94 0 -0.38 0 -0.24 0 

6 (2,0,1) 254 Hz 0.47 0 -0.85 0 -0.34 0 -0.22 

7 (3,0,0) 255 Hz 0 -0.40 0 0.57 0 0.22 0 

150 
Frequency 

(a) the acoustic potential energy of the cavity 

ISO 
Frequency 

(b) the vibrational kinetic energy of the plate(dB ref.=10" J) 

Figure 3 Effects of minimising the acoustic potential energy using a point force actuator ( 
solid line : without control, dashed line : with control ), where '*' and 'o' are at uncoupled 
plate and cavity natural frequencies, respectively. 
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ISO 
Frequency 

(a) the acoustic potential energy of the cavity 

ISO 
Frequency 

(b) the vibrational kinetic energy of the plate(dB ref.= 10" J) 

Figure 4 Effects of minimising the acoustic potential energy using an acoustic piston source 
( solid line : without control, dashed line : with control), where '*' and 'o' are at uncoupled 
plate and cavity natural frequencies, respectively. 

s . 

ISO 
Frequency 

(a) the acoustic potential energy of the cavity 
Figure 5 Effects of minimising the acoustic potential energy using both a point force 
actuator and an acoustic piston source - continued 
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1SO 
Frequency 

(b) the vibrational kinetic energy of the plate(dB ref=10" J) 

Figure 5 Effects of minimising the acoustic potential energy using both a point force 
actuator and an acoustic piston source ( solid line : without control, dashed line: with control 
), where '*' and 'o' are at uncoupled plate and cavity natural frequencies, respectively. 

ISO 
Frequency 

(a) the strength of the force actuator 

ISO 
Frequency 

(b) the strength of the piston source( unit: m /sec) 
Figure 6 Comparison of control efforts of the three control strategies; using each actuator 
separately ( solid line ) and using both the force actuator and the piston source (dashed line ) 
, where '*' and 'o' are at uncoupled plate and cavity natural frequencies, respectively. 
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A DISTRIBUTED ACTUATOR FOR THE 
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TRANSMISSION THROUGH A PARTITION 
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ABSTRACT 

The paper considers the problem of active control of sound transmission 
through a partition using a single distributed actuator. The use of shaped, 
distributed actuators rather than point sources or locally-acting piezoceramic 
elements offers the possibility of controlling the volume velocity of a plate 
without giving rise to control spillover and avoids an increase in the sound 
radiated by uncontrolled structural modes. Specifically, a form of distributed 
piezoelectric actuator is described in which the electrode takes the form of a 
set of quadratic strips and serves to apply a roughly uniform normal force 
over its surface. 

INTRODUCTION 

The strong piezoelectric properties of the polymer polyvinylidene fluoride 
(PVDF) were discovered in 1969 [1]. The material is lightweight, flexible, 
inexpensive and can be integrated into engineering structures for strain 
sensing and to apply distributed forces and moments for the active control of 
vibration and sound transmission. Such 'smart' materials offer the possibility 
of providing lightweight sound-insulating barriers for application to aircraft, 
ground-based transport and in buildings. 

Lee [2] has set out the underlying theory of active laminated structures in 
which one or more layers of flexible piezoelectric material are attached to a 
plate. Practical sensors using PVDF material have been implemented by 
Clark and Fuller [3], Johnson and Elliott [4-6], and others. In these cases thin 
PVDF films were attached to the structure to sense integrated strain over a 
defined area. In [4] for example a distributed sensor was developed whose 
output is proportional to the integrated volume velocity over the surface of a 
plate. 
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A number of studies have been carried out in which distributed piezoelectric 
actuators form a layer of a laminated system. In [7] the shape of a distributed 
piezoelectric actuator was chosen to be orthogonal to all but one of the natural 
modeshapes of the cylindrical shell system under control. Using this 
approach a set of actuators could be matched to the modes of the system 
under control, avoiding control spillover (i.e. the excitation of uncontrolled 
structural modes). 

In the present paper a single shaped PVDF actuator is applied to a thin plate 
to control the noise transmission through it. The shape of the actuator is 
chosen specifically to apply an approximately uniform force to the plate. 
Such an actuator can be used to cancel the total volume velocity of the plate 
and therefore substantially to reduce the radiated sound power. (If volume 
velocity is measured at the plate surface there is no requirement for a remote 
error microphone.) As noted by Johnson and Elliott [6], the sound power 
radiated by a plate which is small compared with an acoustic wavelength 
depends mainly on the volume velocity of the plate. The simulations in [6] 
show that provided the plate is no larger than half an acoustic wavelength, a 
single actuator used to cancel volume velocity will achieve similar results to a 
strategy in which radiated power is minimised. It is possible to envisage a 
large partition made up of a number of active plate elements designed on this 
basis. 

CALCULATION OF NORMAL FORCES IN THE PLATE 

In this section the equation of motion of the plate and attached PVDF layers is 
set out. The film thickness is assumed to be 0.5 mm. The analysis broadly 
follows that of Dimitriadis, Fuller and Rogers [8], but the individual 
piezoelectric coefficients d„ and d32 are included separately as is appropriate 
for PVDF and a sensitivity function is included to account for variations in 
electrode shape. In addition the bending stiffness of the piezoelectric film is 
included (it is not negligible as the whole plate is covered). The nomenclature 
matches that used by Fuller, Elliott and Nelson [9] but here the analysis leads 
to the inhomogeneous wave equation for the plate-actuator system. 

We consider an aluminium plate of thickness 2hb as shown in Figure 1. The 
plate is covered on its upper and lower surfaces with a piezoelectric film of 
sensitivity <s?{x,y)dir in which dip is the strain/electric field matrix of the material 
(3x6 array) and tyx,y) is a spatially-varying sensitivity function 
(0 < <|>0c,y) ^ 1 )• The two piezoelectric films are assumed to be identical but 
the same drive voltage is applied with opposite polarity to the lower film. As 
a result of this antisymmetric arrangement, the plate is subject to pure 
bending with no straining of the plate midplane. 
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In line with other similar calculations [2,9] it is assumed that any line 
perpendicular to the midplane before deformation will remain perpendicular 
to it when the plate/PVDF assembly is deformed. As a result, the strain at 
any point in the assembly is proportional to distance z through it. (z=0 is 
defined to be on the midplane of the plate as indicated in Figure 1.) The 
direct and shear strains throughout the whole assembly (sx, ey, exy) are then 
given by [10]: 

s  =-z 
as 
dx2 

as 

0   d
2w 

**>'       dxdy 

(1-3) 

in which w is the displacement of the midplane in the z direction. 

The corresponding stresses in the plate (only) follow from Hooke's law as in 
the standard development for thin plates: 

a' = x    l-v 
-(ex+v,ey) 

a  = ■ 
1-v 

-(ey+v,ex) (4-6) 

a',, = ■ 
2(1+ v„) 

in which E, is the Young's modulus and vp is Poisson's ratio for the plate 
material. Stress in the piezoelectric film follows from the constitutive 
equations for the material [2]. The direct and shear stresses for the upper 
piezo film are designated of (1),cfcl) and a%m respectively: 

W;m] "e/ di\ 

K <" = c e, -ty(x,y) dn k .e^. As. 
(7) 

in which V3 is the voltage applied across the actuator film (thickness ha) and 
d31, d32 and d36 are the strain/field coefficients for the material. For PVDF d36 = 
0, but it is included in the analysis for completeness. As in [2], the stiffness 
matrix C is given by: 
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c = 
1-v* x       y pe 

i-vL 

v   E pe    pe 

1-v pe 

2(1 +vj 

(8) 

The stresses in the lower piezoelectric layer are designated af(2),crf(2) and 

o-£!(2), and the form of the expression is similar to the upper layer except that 

the voltage is applied with reversed polarity: 

(9) 

Summing moments about the x and y axes for a small element &5y of the 
plate yields the moment per unit length Mx about the y-axis and My about 

the x-axis; also the corresponding twisting moments per unit length, Myx and 

<2) 

a"cm 

=   C +ty(x,y) 

d3l 

d12 

ßl6_ 

v3 

K 

I'i+K 

Mx=]c"xzdz +   \&:mzdz+ jofl)zdz 
-iii, -I'I-K K 

hi, -i'„ ''••*''» 

My =\cp
yzdz+   \ <5p;mzdz +  J of'zdz 

-iii, -h-K ''!• 

Mx>,= )c%zdz+   ja'^zdz + 'Ja^zdz 

(10) 

(11) 

(12) 
-i>i-K 

andMyx=MXj,. 

The vertical acceleration at each point of the plate d2w I dt2 is obtained by 
taking moments about the x and y axes for a small element Sxby and 
resolving vertical forces as in standard thin plate theory. If the plate is acted 
on by some external force per unit area p(x,y)f(t) then the vertical motion of 

the plate is described by: 

32M 
dx2 ± + 2- 

d2M„,    d2Mv - — m- 
d2w 

dxdy       dy2 dt2 
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in which m is the mass/area of the plate-film assembly. 

The equation of motion of the plate complete with attached piezoelectric film 
is obtained by combining the above equations. For convenience the following 
constants are defined: 

= J±P2L_ (bending stiffness of plate, thickness 2h,) (14) 
"    3(1-v2,) 

= 2Epc(hl+3hah
2

h+3hX)       (beting stifmeSs due to PVDF)   (15) 
3(1-v2

c) 

c =yw (16) 
'pc 1-v: 

The equation of motion of the plate assembly including upper and lower 
piezoelectric layers is then given by: 

(17) 

The left-hand side of this equation determines the free response of the plate- 
film assembly and is recognised as the standard form for a thin plate. The 
first term on the right-hand side is the assumed externally applied normal 
force per unit area. The second term on the right-hand side gives the effective 
normal force per unit area applied to the plate due to the two piezoelectric 
films driven by a voltage V3 . It is clear that this force depends on the 
spatially-varying sensitivity which has been assumed for the piezoelectric 
material. 

An examination of Eqns. (16) and (17) shows that the normal force applied by 
the piezoelectric film depends on the sum of the plate thickness and the 
thickness of one of the film layers. If the film is much thinner than the plate 
(\ « hb) then the applied force becomes independent of the film thickness and 
depends only on the plate thickness, the applied voltage, the electrode pattern 
and the material constants. Eqn. (17) also shows that the normal force is 
applied locally at all points on the plate. No integration is involved, and so in 
contrast with a volume velocity sensor designed using quadratic strips [5], the 
force does not depend on the plate boundary conditions in any way. 
Furthermore, there is no need to use two films oriented at 90 degrees to cancel 
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the cross-sensitivity d3Z. It is also worth noting that no assumption has been 
made about the modeshapes on the plate. 

We can create a uniform force actuator by choosing: 

^Ml = constant, and (18) 
dx 

32<K*,;y) _Q ,19\ 
dy2 

This can approximately be achieved by depositing electrodes in the form of 
narrow strips whose width varies quadratically in the x-direction. (Note that 
the ^-direction is defined as the direction of rolling of the PVDF material, i.e. 
the direction of d}1 for maximum sensitivity.) The form of the electrodes is as 
shown in Figure 2. With this pattern the sensitivity function takes the form: 

Wx,y) = ^r(Lxx-x2) (20) 

where Lx is the length of the strip. Thus $(x,y) = 0 at x = 0 and x = Lx (no 
electrode), while §(x,y) = 1 halfway along at x = LJ2 (electrode fully covers 
the film). 

APPLICATION TO A THIN ALUMINIUM PLATE 

If a plane wave of sound pressure level 94 dB (say) is normally incident on a 
hard surface, it will exert a pressure of 2 Pa rms on that surface. If this 
incident pressure is counterbalanced by a uniform force actuator applied to a 
plate, then the plate could in principle be brought to rest. Thus for active 
control of everyday noise levels the uniform force actuator will need to be 
able to generate a normal force/area of a few pascal over the surface of the 
plate. (When the incident wave impinges on the plate at an oblique angle, 
many natural modes of the plate will be excited and it will not be possible to 
bring it perfectly to rest with a single actuator; however it will remain 
possible to cancel the plate volume velocity as explained earlier.) 

By way of example an aluminium plate of thickness 1 mm will be assumed, 
with a free surface measuring 300 x 400 mm. Attached to each side is a PVDF 
film of thickness 0.5 mm. One electrode of each panel would be masked to 
give quadratic strips of length 300 mm as shown in Figure 2. (The width of the 
strips is unimportant, but should be significantly smaller than the structural 
wavelength of modes of interest on the plate.) In this case it turns out that 

D, = 6.64      for the plate, and 
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D   = 1.27     for the PVDF film. 

The piezoelectric constants for the film are typically 

d31 = 23xl0"12 m/Vand 
i d32 = 3 x 10"12 m/V, giving 
Cn = 3.28 x 10" 

Finally the double derivative of the sensitivity function turns out to be 

^.A = 88.9 (300 mm strip length) 
dx2 

The bending stiffness of the 1 mm aluminium plate is increased by 20% due to 
the addition of two layers of PVDF film of thickness 0.5 mm each. The force 
per unit area due to the actuator is obtained from Eqn. (17): 

d2i) 
force/area = C^d^+v^d^-^V^ 

= 6.96 xlO"3 y3 Pa 

Thus 1000 volt rms would yield a uniform force/area of close to 7 Pa. This is 
not an impracticable voltage level, but previous experience at ISVR suggests 
that care would need to be taken to avoid electrical breakdown through the 
air between electrodes, or over damp surfaces. 

ACTIVE CONTROL OF SOUND TRANSMISSION 

In reference [6] Johnson and Elliott have presented simulations of the active 
control of harmonic sound transmitted through a plate using a uniform force 
actuator. Their actuator might be realised along the lines described in this 
paper. In the simulations presented in [6] the uniform force actuator is used 
with a matched volume velocity sensor having the same electrode shape [4]. 
The advantage of this configuration is that the actuator can be used to drive 
the net volume velocity of the plate to zero without exciting high order 
structural modes in the process (control spillover). Simulations of a 
300x380x1 mm aluminium plate showed that reductions in transmitted sound 
power of around 10 dB were achievable in principle up to 600 Hz using this 
matched actuator-sensor arrangement. 

A further advantage of the distributed matched actuator-sensor pair is that 
the secondary path through the plate (for active control) is minimum phase 
[6], giving good stability characteristics if a feedback control loop is 
implemented to control random incident sound for which no reference signal 
is available. 
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CONCLUSION 

A design of distributed piezoelectric actuator has been presented which 
generates a roughly uniform force over the surface of a plate. An example 
calculation shows that the design is capable of controlling realistic sound 
pressure levels. When used in combination with a matched volume velocity- 
sensor, the actuator-sensor pair will have minimum-phase characteristics and 
will offer the possiblity of feedback control in which neither a reference signal 
nor a remote error sensor will be required. 
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layers of 
PVDF film 

Figure 1: Schematic diagram of thin plate 
covered on both sides with a layer of PVDF film 

Figure 2: Electrode pattern of quadratic strips for 
uniform-force actuator 
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Mechanical Engineering Department 
The Catholic University of America 

Washington D. C. 20064 

Abstract 

Sound radiation from a vibrating flat plate, with one side subjected to 
fluid-loading, is controlled using patches of Active Constrained Layer Damping 
(ACLD). The fluid-structure-controller interaction is modeled using the finite 
element method. The damping characteristics of the ACLD/plate/fluid system are 
determined and compared with the damping characteristics of plate/fluid system 
controlled with conventional Active Control (AC) and/or Passive Constrained 
Layer Damping (PCLD) treatments. Such comparisons are essential in 
quantifying the individual contribution of the active and passive damping 
components to the overall damping characteristics, when each operates separately 
and when both are combined to interact in unison as in the ACLD treatments. 

I. INTRODUCTION 

When a structure is in contact with or immersed in a fluid, its vibration 
energy radiates into the fluid domain. As a result, there is an observable increase 
in the kinetic energy of the structure due to the fluid loading. Because of this 
kinetic energy increase, the natural frequencies of structures which are subjected 
to fluid-loading decrease significantly compared to the natural frequencies of 
structures in vacuo. Therefore, through understanding of the interaction between 
the elastic plate structures and the fluid loading has been essential to the effective 
design of complex structures like ships and submarine hulls. Lindholm et al. [1] 
used a chordwise hydrodynamic strip theory approach to study the added mass 
factor for cantilever rectangular plates vibrating in still water. Fu et al. [2] studied 
the dry and wet dynamic characteristics of vertical and horizontal cantilever 
square plates immersed in fluid using linear hydroelasticity theory. Ettouney et 
al. [3] studied the dynamics of submerged structures using expansion vectors, 
called wet modes which are finite series of complex eigenvectors of the fluid- 
structure system. Recently Kwak [4] presented an approximate formula to 
estimate the natural frequencies in water from the natural frequencies in vacuo. 

When the structure and the fluid domains become rather complex, 
solutions of fluid-structure coupled system can be obtained by finite element 
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methods. Marcus [5], Chowdhury [6], Muthuveerappan et al. [7] and Rao et al. 
[8] have successfully implemented the finite element method to predict the 
dynamic characteristics of elastic plates in water. Everstine [9] used both finite 
and boundary element methods to calculate the added mass matrices of fully- 
coupled fluid-structure systems. 

The above investigations formed the bases necessary to devising passive 
and active means for controlling the vibration of as well as the sound radiation 
from fluid-loaded plates. Passive Constrained Layer Damping (PCLD) treatments 
have been used extensively and have proven to be effective in suppressing 
structural vibration as reported, for example, by Jones and Salerno [10], Sandman 
[11] and Dubbelday [12]. Recently, Gu and Fuller [13] used feed-forward control 
algorithm which relied in its operation on point forces to actively control the 
sound radiation from a simply-supported rectangular fluid-loaded plate. 

In the present study, the new class of Active Constrained Layer Damping 
(ACLD) treatment is utilized as a viable alternative to the conventional PCLD 
treatment and Active Constrained (AC) with PCLD treatment (AC/PCLD). The 
ACLD treatment proposed combines the attractive attributes of both active and 
passive damping in order to provide high energy dissipation-to-weight 
characteristics as compared to the PCLD treatment. Such surface treatment has 
been successfully employed to control the vibration of various structural members 
as reported, for example, by Shen [14] and Baz and Ro [15]. In this paper, the use 
of the ACLD is extended to the control of sound radiation from fluid-loaded 
plates. Finite element modeling of the dynamics and sound radiation of fluid- 
loaded plates is developed and validated experimentally. Particular focus is 
placed on demonstrating the effectiveness of the ACLD treatment in suppressing 
the structural vibration and attenuating the sound radiation as compared to 
conventional PCLD and AC/PCLD. 

This paper is organized in five sections. In Section 1, a brief introduction 
is given. In Section 2., the concepts of the PCLD, ACLD and AC/PCLD 
treatments are presented. In Section 3, the dynamical and fluid finite element 
models are developed to describe the interaction between the plate, ACLD and the 
contacting fluid. Experimental validation of the models are given in Section 4. 
Comparisons between the theoretical and experimental performance are also 
presented in Section 4 for different active and passive damping treatments. 
Section 5, summarizes the conclusions of the present study. 

2.   CONCEPTS OF PCLD, ACLD AND AC/PCLD TREATMENTS 

Figures (1-a), (1-b) and (1-c) show schematic drawings of the PCLD, 
ACLD and AC/PCLD treatments respectively. In Figure (1-a), the plate is treated 
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Figure (1) - Schematic drawing of different surface treatments (a) PCLD, (b) 
ACLDand (c)AC/PCLD. 

with a viscoelastic layer which is bonded directly to the plate. The outer surface 
of the viscoelastic layer is constrained by an inactive piezo-electric layer in order 
to generate shear strain y, which results in dissipation of the vibrational energy of 
the plate. Activating the constraining layer electrically, generates a control force 
F by virtue of the piezo-electric effect as shown in Figure (1-b) for the ACLD 
treatment . Such control action increases the shear strain to y2 which in turn 
enhances the energy dissipation characteristics of the treatment. Also, a restoring 
moment Mp=d2Fp is developed which attempts bring the plate back to its 
undeformed position. In the case of AC/PCLD treatment, shown in Figure (1-c), 
two piezo-films are used. One film is active and is bonded directly to the plate to 
control its vibration by generating active control (AC) force Fp and moment 
Mp=d3Fp.    The other film is inactive and used to restrain the motion of the 
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viscoelastic layer in a manner similar to the PCLD treatment of Figure (1-a). In 
this way, the AC action operates separately from the PCLD action. This is unlike 
the ACLD configuration where the active and passive control actions operate in 
unison. Note that in the ACLD configuration, larger shear strains are obtained 
hence larger energy dissipation is achieved. Furthermore, larger restoring 
moments are generated in the ACLD treatments as compared to the AC/PCLD 
treatments as the moment arm d2 in the former case is larger than the moment arm 
d3 of the latter case. This results in effective damping of the structural vibrations 
and consequently effective attenuation of sound radiation can be obtained. 

3. FINITE ELEMENT MODELING 

3.1 Overview 

A finite element model is presented in this section, to describe the 
behavior of fluid-loaded thin plates which are treated with ACLD, PCLD and 
AC/PCLD treatments. 

3.2 Finite Element Model of Treated Plates 
2 

'Element/ 
Piezo-Actuator        / , V«.-—,_„,,„ 

/jElementy 
„„,~-^-IM 

Visco-elastic 
Core 

_ /_  
/ Elements 

' N 

Active  Constrained  Lajer Damping 
Patch 

*■ y 

Piezo-Actuator 
of ACLD \_ 

[rise« 

Piezo-Actuator 
of AC 

*Z 
4& 

tr—^ y—& 

(b) (c) 

Figure (2) - Schematic drawing of plate with ACLD/AC/PCLD patches. 
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Figure (2) shows a schematic drawing of the ACLD and AC/PCLD 
treatments of the sandwiched plate which is divided into N finite elements. It is 
assumed that the shear strains in the piezo-electric layers and in the base plate are 
negligible. The transverse displacement w of all points on any cross section of the 
sandwiched plate are considered to be the same. The damping layers are assumed 
to be linearly viscoelastic with their constitutive equations described by the 
complex shear modulus approach such that G=G*(l+r|i). In addition, the bottom 
piezo-electric layer (AC) and the base plate are considered to be perfectly bonded 
together and so are the viscoelastic layer and the top piezo-electric layer. 

The treated plate elements considered are two-dimensional elements 
bounded by four nodal points. Each node has seven degrees of freedom to 
describe the longitudinal displacements u, and v, of the constraining layer, u3 and 
v3 of the base plate, the transverse displacement w and the slopes w x and w y of 
the deflection line. The deflection vector {8} can be written as: 

{5} = {u„vpu3, v3!w, wx)wy}T 

= N   {N2}   {N3}   {N4}   {N5}   {N5}„    {Ns},y {S'} 

where {5e} is the nodal deflection vector, {N,}, {N2}, {N3}, {N4}, {N5}, {N5},x, 
and {N5}y are the spatial interpolating vectors corresponding to u„ v„ u3, v3, w, 
wx, and wy respectively. Subscripts ,x and ,y denote spatial derivatives with 
respect to x and y. 

Consider the following energy functional rip for the treated plate/fluid 
system: 

np = ((u-TK+Wc-wp+Wc)dV, (2) 

where U is the strain energy, TK is the kinetic energy, We is work done by external 
forces, Wp is work done by the back pressure inside the fluid domain, Wc is work 
done by the control forces and moments and V is the volume of the plate. These 
energies are expressed as follows 

M^B^feT^f' dxdy 

dxdy 
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j\dv =£ BK £ £(** + Ü» + v^dxdy = ^{8-}>,]{«•}, 

[wedV=i{5=}T{F}, 

I 

(3) 

(4) 

(5) 

2(l-V;2)     j0    j0 

l + l4*vI+^lv.?L 

24(l 

and 

-v^) Jo Jc 

={8f[Kc]{5i 

Jwpdv = {sf[n ]{P=}. 

d2w 

ax2 

h, 

d„        d 

9y 

a2w 

5y2 

dxdy 

dxdy 
.hj   '  h,   ''J ■'&'  ' Ui   '' '  ^ 

where i=l for ACLD control or i=3 for AC control (6) 

(7) 

where {pe} is the nodal pressure vector of the fluid element. In the above 
equation [KJ, [MJ, {F}, [KJ and [Q] are the plate stiffness matrix, mass matrix, 
external forces vector, piezo-electric forces and moments matrix and plate/fluid 
coupling matrix as given in the appendix. In equation (6), d3I,32 are the piezo- 
strain constants in directions 1 and 2 due to voltage Va applied in direction 3. The 
voltage Va is generated by feeding back the derivative of the displacement 8 at 

critical nodes such that Va = -Kdc{5ej where Ka is the derivative feedback gain 
matrix and C is the measurement matrix defining the location of sensors. 

Minimizing the plate energy functional using classical variational methods 

such that idUjd{8e}) = 0 leads to the following finite element equation: 

([K]-^[MP]){6<Hn]{p<} = {F} <»> 
where co is the frequency and [K] = [KJ + [KJ is overall stiffness matrix. 

3.3 Finite Element Model of the Fluid 
The fluid model uses solid rectangular tri-linear elements to calculate the 

sound pressure distribution inside the fluid domain and the associated structural 
coupling effects.   The fluid domain is divided into Na fluid elements.   Each of 
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these elements has eight nodes with one degree of freedom per node. The 

pressure vector is expressed by p = [Nf ]{pe} and [Nf] is pressure shape function 

and {pe} is nodal pressure vector. 
Considering the following functional nf of fluid domain Craggs [16] 

nf =i{pf [Kf]{p<} -iffl>{pf MP'} -co2{pf N»' (9) 

(10) 

■2l* >   L-'J"- I      2 

where [Kf] and [Mf] are the fluid stiffness and mass matrices as given in the 

appendix. Minimization of equation (9) such that {dUjdip'}} = 0 yields the 
fluid dynamics as coupled with the structural vibration: 

([Kf]-co2[Mf]){p<}-co2[n]>} = {0} 

The boundary conditions involved are of the form 

3p/ön = 0, at a rigid boundary 
a p / 8 n = -Pf 526 / 8t2, at a vibrating boundary 

and     p = o. at a free surface 

where pf is fluid density. 

3.4. Solutions of the Coupled Plate/Fluid System 

Combining equations (8) and (10) gives 

[K]-a>*[M?] -[a] 
W[af [Kf]-o>2[Mf]_ 

(11) 

At low frequencies, the fluid pressure is in phase with the structural 
acceleration, i.e. the fluid appears to the structure like an added mass. However, 
as the frequency increases the added mass effect diminishes and the damping 
effect, i.e. the pressure proportional to velocity, increases. For an incompressible 
fluid, the speed of sound c approaches oo, thus the mass matrix of the fluid [Mf] 
vanishes, and equation (11) can be simplified to 

[K]-CO
2
[MP]   -[nj 

n]T       [Kf] -co' 

5C 

= 
F 

_0_ 
(12) 

If the fluid-structure coupled system has free boundary surface, then [Kf] is 
non-singular [Everstin, 1991] and the nodal pressure vector {pe} can be eliminated 
from equation (12) as follows: 

{P<}=-co2[Kf]>]T{5<} (13) 
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Hence, equation (12) yields 

([K]-^([Mp]+K])){6=} = {F} (14) 

where [MJ is added virtual mass matrix defined by [Muthuveerappan, 1979] 

[MaHQ][Kf]>]T (15) 

Equation (14) only involves the unknown nodal deflection vector {5e} of the 
structure. When {F}=0, equation (14) becomes an eigenvalue problem, the 
solution of which yields the eigenvalues and eigenvectors. The nodal pressures 
can then be obtained from equation (13) when the nodal displacements are 
determined for any particular loading on plate. 

4.    PERFORMANCE   OF   PARTIALLY   TREATED   PLATES   WITH 
FLUID LOADING 

In this section, comparisons are presented between the numerical 
predictions and experimental results of the natural frequencies and damping ratios 
of a fluid-loaded plate treated with ACLD, PCLD and AC/PCLD. The effect of 
the Active Control, Passive Constrained Layer Damping and Active Constrained 
Layer Damping on the resonant frequency, damping ratio, attenuation of vibration 
amplitude and sound radiation are investigated experimentally. The vibration and 
sound radiation attenuation characteristics of the fluid-structure coupled system 
are determined when the plate is excited acoustically with broadband frequency 
excitation while the piezo-electric layers are controlled with various control gains. 
The experimental results are compared with the theoretical predictions. 

4.1 Experimental Set-up 

Figures (3-a) and (3-b) show a schematic drawing and finite element mesh 
of the experimental set-up along with the boundary conditions used to describe 
the fluid-structure system. The finite element mesh includes: 24 plate-elements 
and 560 fluid-elements. The coupled system has a total of 815 active degree of 
freedoms. The aluminum base plate is 0.3m long, 0.2m wide and 0.4mm thick 
mounted with all its edges in a clamped arrangement in a large aluminum base. 
The aluminum base with mounting frame sits on top of a water tank. One side of 
the base plate is partially treated with the ACLD/AC/PCLD and the other side is 
in contact with water. The material properties and thickness of piezo-electric 
material and the viscoelastic layer listed in Table (1). The size of the combined 
piezo-electric and viscoelastic patch occupied one-third of the surface area of the 
base plate and it is placed in the middle of plate as shown in Figure (3-b). A laser 
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sensor is used to measure the vibration of the treated plate at node 27 as shown in 
Figure (3-b). The sensor signal is sent to a spectrum analyzer to determine the 
frequency content and the amplitude of vibration. The signal is also sent via 
analog power amplifiers to the piezo-electric layers to actively control the sound 
radiation and structural vibration. The radiated sound pressure level into the tank 
is monitored by a hydrophone located at 5.0 cm below the plate center. This 
position is chosen to measure the plate" mode (1, 1) which dominates the sound 
radiation. The hydrophone signal is sent also to the spectrum analyzer to 
determine its frequency content and the associated sound pressure levels. 

ACLD  Patch       Base Plate Aluminum Base 
(Rigid Wall) 

Water Surface 
(Free Surface) 

Base Plate 
(Vibrating Surface) 
 P135 

Water Tank 
(Rigid Wall) 

(a) (b) 

Figure (3) - The experimental set-up, (a) schematic drawing, (b) finite element 
meshes. 

Table (1) - Physical and geometrical properties of the ACLD treatment 

Layer Thickness(m) Density(Kg/m3) Modulus(MPa) 

viscoelastic 5.08xl0"4 1104 30** 

piezoelectric 28xl0"6 1780 2500* 

* Young's modulus ** Shear modulus 

4.2 Experimental Results 

Experimental validation of the dynamic finite element model of the 
ACLD/plate system in air has been presented by Baz and Ro [15] in detail. Close 
agreement was obtained between the theoretical predictions and the experimental 
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measurements. The dynamic finite element model is therefore valid to provide 
accurate predictions. 

For the uncontrolled treated plate/fluid system, considered in this study, 
the experimental results indicate that coupling the plate with the fluid loading 
results in decreasing the first mode of vibration from 59.475Hz to 10.52Hz. The 
coupled finite element model predicts the first mode of vibration to decrease from 
57.91Hz to 10.24Hz. The results obtained indicate close agreement between the 
theory and experiments. 

Figure (4-a) shows a plot of the normalized experimental vibration 
amplitudes for the fluid-loaded plate with the ACLD treatment using different 
derivative feedback control gains. According to Figure (4-a), the experimental 
results obtained by using the ACLD treatment indicate that amplitude attenuations 
of 11.36%, 48.25% and 75.69% are obtained, for control gains of 2500, 5000, and 
13500, respectively. The reported attenuations are normalized with respect to the 
amplitude of vibration of uncontrolled plate, i.e. the plate with PCLD treatment. 
Figures (4-b) display the vibration amplitudes of the plate/fluid system with 
AC/PCLD treatment at different derivative feedback control gains. The 
corresponding experimental attenuations of the vibration amplitude obtained are 
4.6%, 20.29%, 54.04% respectively. 

1.0- 

.H   0.2- 

ACLD Control 
-'-- Kd=0 
  Kd=2500 
  Kd=6000 
  Kd=13500 

AC/PCLD Control 
 Kd=0 
  Kd=2500 
  Kd=6000 
  Kd=13500 

Frequency (Hz) Frequency (Hz) 

Figure (4) - Effect of control gain on normalized amplitude of vibration of the 
treated plate, (a) ACLD control and (b) AC/PCLD control. 

Figures (5-a) and (5-b) show the associated normalized experimental 
sound pressure levels (SPL) using ACLD and AC/PCLD controllers, respectively. 
The normalized experimental SPL attenuations obtained using the ACLD 
controller are 26.29%, 50.8% and 76.13% compared to 10.02%, 24.52% and 
53.49% with the AC/PCLD controller for the considered control gains. Table (2) 
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lists the maximum control voltages for the ACLD and AC/PCLD controllers for 
the different control gains. 

It is clear that increasing the control gain has resulted in improving the 
attenuations of the plate vibration and the sound radiation into the fluid domain. 
It is evident that the ACLD treatment has produced significant vibration and 
sound pressure level attenuation as compared to the attenuations developed by the 
AC/PCLD or PCLD treatments. It is also worth emphasizing that the ACLD 
treatment requires less control energy than the conventional AC/PCLD treatments 
to control the sound radiation from the plate. 

I o.o 
9 10 11 

Frequency (Hz) 

■ i i i l i i i i 

10 11 
Frequency (Hz) 

Figure (5) - Effect of control gain on normalized sound pressure level radiated 
from the treated plate, (a) ACLD control and (b) AC/PCLD control. 

Table (2) - Maximum control voltage for the ACLD/AC/plate system 

Kd 0(PCLD) 2500 5000 13500 

ACLD 0 21.75V 31.20V 39.60V 

AC 0 26.50V 50.40V 76.38V 

Figure (6) shows the mode shapes of the first four modes of the treated 
plate with and without fluid-loading as obtained experimentally using 
STARMODAL package. Figure (7) shows the corresponding theoretical 
predictions of the first four mode shapes. Close agreement is found between 
experimental measurement and theoretical predictions. 

Figure (8) presents comparisons between the theoretical and experimental 
natural frequencies and the loss factor of a plate treated with the ACLD and 
AC/PCLD for different control gains.    Close agreement between theory and 
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experiment is evident. Note also that increasing the control gain has resulted in 
increasing the damping ratio for both ACLD and AC/PCLD treatments. The 
comparisons emphasize the effectiveness of the ACLD treatment in acquiring the 
large damping ratio to attenuate the structural vibration and sound radiation. 

MODE    1 

Figure (6) - Experimental results of first four mode shapes of treated plate (a) 
without fluid loading and (b) with fluid loading. 

MODE  1 

Figure (7) - Theoretical predictions of first four mode shapes of treated plate (a) 
without fluid loading and (b) with fluid loading. 

5. SUMMARY 

This  paper  has  presented  theoretical  and  experimental  comparisons 
between   the   damping   characteristics   of  plates   treated   with   ACLD   and 
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conventional AC with PCLD treatments. The dynamic characteristics of the 
treated plates when subjected to fluid loading is determined for different 
derivative control gains. The fundamental issues governing the performance of 
this class of smart structures have been introduced and modeled using finite 
element method. The accuracy of the developed finite element model has been 
validated experimentally. The effectiveness of the ACLD treatment in attenuating 
structural vibration of the plates as well as the sound radiated from these plates 
into fluid domain has also been clearly demonstrated. The results obtained 
indicate that the ACLD treatments have produced significant attenuation of the 
structural vibration and sound radiation when compared to PCLD and to AC with 
PCLD. Such favorable characteristics are achieved with control voltages that are 
much lower than those used with conventional AC systems. The developed 
theoretical and experimental techniques present invaluable tools for designing and 
predicting the performance of the plates with different damping treatments and 
coupled with fluid loading that can be used in many engineering applications. 

♦ PCLD 
• ACLD,Kd=2500 
A   ACLD,Kd=5000 

o 
A 

ACLD, Kd=13500 
AC, Kd=2500 
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D AC, Kd=13500 

'N' 11.3- / 
X - / 
^ ■ (a) / o 

a o / ei 
3 ' / oo 
u 11.0- m / c 

'a, u< ■ / S 
C8 • Hr CO 

hi - 
Z 

10.5- *v E 
a 
to a> 
H a, 

•n " PJ 
a. • 
X in n- 

u.us- 

(b) ■          / 
0.06- 

0.04- 

9A 

0.02- 

i i i i I I I I i . . , . . . 

10.0 10.5 11.0 11.5 

Theoretical Natural Frequency (Hz) 

Figure (8) 
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Comparison between theoretical predictions and experimental results, 
(a) natural frequency, (b) damping ratio. 
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APPENDIX 

1. Stiffness Matrix of the Treated Plate Element 

The stiffness matrix [KJj of the ith element of the plate/ACLD system is 
given by Baz and Ro [15]: 

(A-l) 

where [K^, [KJj and [Kb], denote the in-plane, shear and bending stiffnesses of 
the ith element. These stiffness matrices are given by: 

[ Kip ]. = hj £ £[ Bjp ]
T[ Djp ][ Bjp ]dxdy,   j = layer 1,2, and 3 (A-2) 

M=G4iiB<nB><*' (A-3) 

and [ Kb ], = I I [ Bb ]
T[ Djb ][ Bb ]dxdy • j = layer 1, 2 and 3 (A-4) 

with G2 denoting the shear modulus of the viscoelastic layer and the matrices [BJ, 
[Bb], [Bjp], [Djp], and [Djb] are given by 

N-r 
'({N,}-{N,})/d + {Ns 

({N2}-{N4})/d + {N5 

M = 

M- 

{N,}, 

(N,1 +{N, 

N- 

M 

N< 

N, 

2N, 

Kl, 

{N3},+{N4}, 

N,    +N,    +hNs 

{N2}y + {N4}y+h{N3}iW 

{N,}   +{N,}   +h{Ns}    +{N2}i](+{N4}iii+h{Ns}i 
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M-£ 
1 VJ 0 " 

VJ 1 0 

0 0 
1-Vj 

2 

and K1-& 
"l VJ 0 " 

vi 1 0 

0 0 
I-Vj 

2 

. j=l, 2 and 3  (A-5) 

where h = (h,-h3)/2 and d = (h2+h,/2+D) with D denoting the distance from the 
mid-plane of the plate to the interface with the viscoelastic layer. Also, Ij 
represent the area moment of inertia of the jth layer. 

2. Mass Matrix of the Treated Plate Element 

The mass matrix [M,,]; of the ith element of the plate/ACLD system is 
given by: 

K1=K1+K1 (A_6) 

where [Mip]i and [Mb]f denote the mass matrices due to extension and bending of 
the ith element. These matrices are given by 

[Mip]i=p1h1JJJ{N1}
T{N1}+{N2}T{N2})dxdy + p3h3JJbi({N3}T{N3}+{N4}T{N4})dxdy 

+ ipA [ £(K}T{N6} +{N7}T{N7})dxdy 

(A-7) and [ Mb ]. = (p,h, + p2h2 + p3h3) £ jj N5 J[ N5 ]dxdy 

where {N6} = {N,}+{N3}+h{Ns},l and {N7} = {N2}+{N4}+h{N5},y 

3. Control Forces and Moments Generated by the Piezo-electric Layer 

3.1 The in-plane piezo-electric forces 

The work done by the in-plane piezo-electric forces {Fp}{ of the ith 
element is given by: 

(A-8) WM^JUW** 
where j=l for ACLD control or j=3 for AC control. Also, ajp and sjp are the in- 
plane stresses and strains induced in the piezo-electric layers. Equation (A-8) 
reduces to: 
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pxk 

F. pyk ■'■ll^N dxdy 
fork=l,..,4 (A-9) 

3.2 The piezoelectric moments 

The work done by the piezo-electric moments {MJj due to the bending of 
the piezo-electric layer of the ith element is given by: 

^e}i
T{Mp}i 

= hjlla*s*dx*r (A-10) 

Where crjb and sjb are the bending stresses and strains induced in the piezo-electric 
layers. Equation (A-10) reduces to: 

M pxk 

M pyk 

M pxyk 

-.LIHN 
0 

dxdy 
fork=l,..,4 (A-ll) 

4. Stiffness and Mass Matrices of the Fluid Element 

The stiffness matrix [Kf]; and mass matrix [Mf]; of the ith element of the 
fluid system are given by: 

J_ 
Pr 

(A-12) 

(A-13) 
pfc 

where [ßf] = [[Nr]-!t   [Nf]-y   [Nf],2]
T and c is the sound speed. 

5. Coupling matrix of the Treated Plate/Fluid System 

The coupling matrix [Q] of the interface element of the structure/fluid 
system can be presented by: 

["]= H {N5}T[Nf]dxdy (A-14) 
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ANALYTICAL METHODS II 





DYNAMIC RESPONSE OF SINGLE-LINK FLEXIBLE 
MANIPULATORS 

E. Manoach1 G. de Paz2 K. Kostadinov1 and F. Montoya2 

1 Bulgarian Academy of Sciences, Institute of Mechanics 

Acad. G. Bonchev St. Bl. 4; 1113 Sofia, Bulgaria 
2 Universidad de Valladolid, E.T.S.I.I. Dpto. IMEIM. 

C/Paseo del Cauce, s/n 47011- Valladolid, Spain 

1. INTRODUCTION 

The flexible-link manipulators have many advantages over the traditional stiff 

ones. The requirements for light-weight and energy efficient robotic arms 

could be naturally satisfied by using flexible manipulators. On the other hand 

the application of the robotic arm in such activities as positioning in electronic 

microscopes and disc-drivers, hammering a nail into a board or playing tennis, 

also forces the modeling and control of the dynamic behavior of flexible link 

manipulators. 
In most cases the elastic vibrations which arise during the motion must be 

avoided when positioning the end point of a robotic arm. These are a part of 

the reasons that cause a great increase of the publications in this topic in recent 

years. 
In most papers the flexible robotic arms are modeled as thin linear elastic 

beams. In [1-3] (and many others) the Bernouli-Euiler beam theory, combined 

with finite-element technique for discretization with respect to the space 

variables is used for modeling and control of single-link flexible manipulators. 

The same beam theory, combined with mode superposition technique is used 

in [4]. Geometrically nonlinear beam theories are used in [5,6] for the 
modeling of a single-link and multi-link flexible robotic manipulators, 

correspondingly. 
Taking into account the fact that robotic arms are usually not very thin and that 

the transverse shear could play an important role for dynamically loaded 

structures [7] the application of the Bernouli-Euiler beam theory could lead to 
a discrepancy between the robotic arm behavior and that one described by the 

model. 
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The aim of this work is to model the dynamic behavior of a single link flexible 

robotic arm employing the Timoshenko beam theory, which considers the 

transverse shear and rotary inertia. The arm is subjected to a dynamic loading. 

As in [3], the viscous friction is included into the model and slip-stick 

boundary conditions of the rotating hub are introduced. Besides that, the 

possibility of the rise of a contact interaction between the robotic arm and the 

stop (limiting support) is included into the model. The beam stress state is 

checked for plastic yielding during the whole process of deformation and the 

plastic strains (if they arise) are taken into account in the model. The 
numerical results are provided in order to clarify the influence of the different 

parameters of the model on the response of the robotic arm. 

2. BASIC EQUATIONS 

2.1. Formulation of the problem 

The robotic arm - flexible beam is attached to a rotor that has friction and 

inertia. The beam is considered to be clamped to a rotating hub and its motion 

consists of two components: "rigid-body" component and a component 

describing the elastic deflection of the beam (see Figure 1). The motion of the 
flexible beam is accomplished in the horizontal plane and gravity is assumed 

to be negligible. 

Figure 1. Model of one-link flexible manipulator. 
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Tip of the beam (with attached tip-mass) is subjected to an impulse loading. 

Stick-slip boundary conditions due to Coulomb friction of the hub are 

introduced when describing the motion of the beam. In other words, if the 

bending moment, about the hub axis, due to the impact is lower than the static 

friction torque threshold then the hub is considered clamped and the beam 

elastic motion is considered only. When the bending moment exceeds friction 

torque threshold this boundary condition is removed, allowing rotation of the 

hub and the arm. When the hub speed and kinetic energy of the beam become 

again beneath the torque threshold, the hub clamps again. 
The possibility of the rise of a contact interaction between the robotic and the 

stop is envisaged. In this case, if the hub angle exceeds the limit value, the 

robotic arm clamps and a part of the beam goes in a contact with the stop, 

which is modeled as an elastic foundation of a Vinkler type. 

In view of the fact that the impact loading and contact interactions are 

included in the investigations, it is expedient to be considered the rise of 

plastic strains in the beam. 

2.2. Deriving the equations of motion. 

The total kinetic and potential energy of the rotating hub with the attached 

beam (described by the Timoshenko beam theory) and a lumped mass at it's 

tip can be expressed as follow: 

EK = I JpA[ü(x,t)] dx + ijH[9(t)]2 +^MT[ü(l,t)]2 +1 JEl[cp(x,t)] dx 
2 0 

l o 

4f 20 
O M%-< dx (1 a,b) 

In these equation u(x,t) is the total displacement 

u(x,t) = w(x,t)+x0(t) (2) 

and w is the transverse displacement of the beam, <p is the angular rotation, 

9 is the hub angle, E is the Young modulus, G is the shear modulus, k is a 

shear correction factor, p is the material density, JH is the inertia moment of 

the hub, A=b«h is the beam cross-section area, h is the thickness, b is the 

width, I=bh3/12 ,1 is the length of the beam, MTis the tip mass, / is the time. 
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Denoting the work of external forces (applied actuating torque T(t) and the 

beam loading p(x,t))by 

W=T(t)6(t)+ \p(x,t)w(x,t)dx (3) 
o 

the Hamilton's principle can be applied: 

J5(Ek-Ep)dt+J5Wdt = 0 (4) 
'i «i 

Substituting eqns (l)-(3) into eqn (4) after integrating and including damping 

of the beam material, the viscous friction of the hub and the reaction force of 

the elastic foundation the following equations of motion can be obtained: 

(J+jH+MTl^ + d"+MTl^M+jpAx^)dx-T(t) 

a2. 
El—%- + kGA 

dx2 

dt2       ' dt        '     df        0
J dt2 

^_J_^_p/^ = 0,       0<x</,t>0        (5a-c) 
dx      J dt dt 

kGA 
rd2w    dcp']     ,  dvf      Af52w       529 
vox2    dx)     3 at        Kdt2      at2 -d3- pA —T + X—- -R(x,t) = p(x,t) 

The boundary conditions are: 

w(0,t)=<p(0,t)=0 

and the initial conditions are: 

w(x, 0) =Mf(x), w(x,0) = w° (x), <p(x,0)=<ff(x),   <p(x,0) = q>° (x) (?a.d) 

6(t) = 9(t) = 0,   t<tslip (7e,f) 

or6(0 = eboundary) (7e)' 

when    |9(t)|   and kinetic energy of the beam falls simultaneously under the 

Coulomb friction thresholds. 
In eqns (5) the viscous friction coefficient of the hub is denoted by d\, d.2 and 

ds are damping coefficients of the beam material, J is the moment of inertia of 

the beam about the motor axis and R(x,t) is the reaction force of the stop 

disposed from x{ to x2 (x!<x2<l) and modeled as an elastic foundation with 

Vinkler constant  r: 
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Jr[w(x,t)-wslop(x)] for   Xl<x<x2;    |e|>0aop 
tX'J    [0 for   0<JC<X„X2<X</;   |6| < G^, 

The time when the bending moment about the hub axis exceeds the friction 

torque threshold is denoted by tsup. When t>tsup this condition is removed 
(allowing rotation of the hub and the beam) until the moment when the beam 

clamps again. 

2.3. Elastic-plastic relationships 

The beam stress-strain state is usually expressed in terms of generalized 

stresses and strains which are function of x coordinate only. As a unique 
yield criterion in terms of moments and the transverse shear force does not 

exist according to Drucker [8], the beam cross-section is divided into Nz layers 

and for each of them the stress state has to be checked for yielding. 

The relation between the stress vector S = {ox,axz}    and the strain vector 

8 = \ -z—, /(z) cp  [ , can be generally presented as 

where in the case of an elastic material [£>] = [De] = is the elastic 

S=[D]s, (9) 

~E    0" 

0    G_ 

matrix and  f(z)  is a function describing the distribution of the shear strains 

along the thickness. 
On the basis of the von Mises yield criterion, the yield surface is expressed 

as: 

<j»(S) = {a2
v+3aL}1/2-ap>0, (10) 

After yielding during infinitesimal increment of the stresses, the changes of 

strains are assumed to be divisible into elastic and plastic parts 

As = Aee+Aep (11) 

where 
-l 

äze=[De\ AS (12) 
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By using eqns (10), (11) and the associated flow rule [9], following Yamada 

and others [10], the following explicit relationship between the increments of 

stresses and strains is obtained 

. AS = [£><*]As 

where \Dep] is the elastic-plastic matrix: 

-i 

(13) 

(14) 

In this equation H is a function of the hardening parameter. For ideal plasticity 

H is equal to zero, while for a wholly elastic material H -» oo . 

3. Use of mode superposition. 

3.1. Rearrangement of the equation of motion. 

Let the total time interval T on which the dynamic behavior of the structures is 

investigated, be divided into sequence of time increments [t^t !+I], 

In the numerical calculations the following dimensionless variables are used: 

x = xll,   w = w/1,   t =tll c   c = yfETp 

and then omitting the bars, and after some algebra, the governing equations 

can be written in the following form: 

«*9      de     f * \     r       i \ d"0        d9 
—r + c, c- 
d t2      ' d t 

w(l,t) - fcp(x,t) dx  = c3 T(t) + fxp(x,t) dx 
V o )        \ o 

32cp        dq>    32(p 
2 +c4-^--^-T-aßl:7:--(P|=-Gf, 

0 

3w 

dt'      " öt     dx2      ry.dx 

d2w    9(p 

(15 a-c) 

d2w        dw    „ 
—7 + c5 — ~ß dt dt ^dx2     dx 

= -p-G?-Gr 

where a=12P/h? , ß=*G/B, p=pl/(EA), c,= dJ/(cJn), c2= Al3p/(JHp) d= 

P/(C
2
JH) ), c4=d4l

2/El c5=d5l/EA, k2 =5/6. The nonlinear force due to the 

reaction of the foundation is denoted by Gr = R(x,t).l/EA and G{ and G{ are 

the components of the so-called non-linear force vector GP(G1
p,G2

/>) which is 

due to the inelastic strains. It has the presentation (see [7]): 
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;     A/2 

G„(^,+.) = I  JAGf^z, (16a-c) 
y=0 -A/2 

. AGi+1J =L([Dc]Asj+1'j)-L([Dep]Asj+,'j) 

where  Asi+1'' = e(r,ti+1)-s(r,tj), etc. a by    L the following differential 

-dldx       1 
operator is denoted L    ,     „ F '    o     a/ac, 
Boundary condition (6 c) is transformed in 

(Ä -rfU))- -4^*0]     A-MT,(pAl) (6c)' 

3.2 Mode superposition method 

The l.h.s. of eqns (15 b,c) is a linear form and therefore the mode 

superposition method can be used for its solution. As the eigen frequencies 

and the normal modes of vibrations of an elastic beam do not correspond to the 

real nonlinear system, these modes are called "pseudo-normal" modes. 

Thus, the generalized displacements vector v = la-1 <p, w\ is expanded as a 

sum of the product of the vectors of pseudo-normal modes vn and the time 

dependent functions q„(t) as 

v(r,0 = £vB(r)?II(0. (17) 
n 

The analytically obtained eigen functions of the elastic Timoshenko beam are 

chosen as basis functions (see APPENDIX). When the tip mass is attached to 

the beam the eigen functions of the system used in the mode superposition 

method   are   preliminary   orthogonalized   by   standard   orthogonalization 

procedure as it is mentioned in the APPENDIX. 
Substituting eqn (17) into (15 b,c), multiplying by  vm(x), integrating the 

product over the beam length, invoking the orthogonality condition (see (A9)) 

and    assuming    a    proportional    damping    for    the    beam    material 
i ^ 

the following system of ordinary differential \{c^2
n+c$wl)rdr = 2^n(än 

equations (ODE) for 6(t) and qn(t) is obtained: 
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/ \ 

v „ / 
+ c,(r(0 + P(0) M. M (18a,b) 

q„(0 + 2£,ü>„<7„(0 + a>\qH(0 = -<?„ - K„9(t) + Ä? " £ 

In this equations 

Y„ = J<P,, (*)<&> 8„ = J/?(x,f )*„(*)&, K„ = jxw„(x)dx,     P(t)= j"xp(x,0 dx, 
o 

l 

g'(t)= JGp(x,t)vn(x)dx,   gr„(t)= |Gr(x,t)wn(x)dx,      con are the eigen 
0 0 

frequencies of the elastic clamped beam and £n are the modal damping 

parameters. 
The initial conditions defined by eqns (7 a-d) are transformed also in terms of 

qn(0), and q„(0) 

q„(0) = q°n,   q„(0) = q°n, 
1 I 

q0
n = |(w°w„+a-1(p0(p„)dx!      q°n = J(w°wn+a-1(p°(Pn)dx, (19a-d) 

0 0 

The obtained system of nonlinear ordinary differential equations is a stiff one 

and it is solved numerically by the backward differential formula method, also 

called the Gear's method [11]. 
The rise of plastic strains is taking into account by using an iterative procedure 

based on the "initial stresses" numerical approach [7]. 

4. RESULTS AND DISCUSSION 

Numerical results were performed for the robotic-arm with the same material 

and geometrical characteristic as these given in [3] in order to make some 

comparisons. Model parameters are: E=6.5xl0 Pa ,v=0.2, CTP=2.6X10 Pa, 

1=0.7652, b=0.00642 m, h=0.016 m, p=2590 kg/m3 , MT=0.153 kg, JH=0.285 

kgm2 (JH is not defined in [3].) 
The aim of the computations is to show and clarify the influence of the elastic 

or elastic-plastic deformation on the motion of the robotic-arm, to demonstrate 

the effect of the hub friction, slip-stick boundary conditions and the contact 

interaction between the beam and the stop. 
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Only impact loading on the beam is considered in this work, i.e. dynamic load 

p(x,t) and applied torque T(t) are equal to zero. The impact loading is 

expressed as an initial velocity applied to the tip of the beam 0.95 < x < 1. 

Nine modes are used in expansion (15) but the results obtained with number of 

modes greater than nine are practically indistinguishable from these shown 

here. 
For all calculations the material damping is equal to 8% of the critical 

damping. 
The results for the rotation of the hub of the flexible manipulator with an 

attached mass at its tip -1 and without an attached mass -2 are shown in Figure 

2. The hub friction is not considered. The beam is subjected to an impact 

loading with initial velocity w° =-1.95 m/s. As can be expected, the hub angle 

increases much faster in the case of the beam with an attached mass. The 

corresponding beam deflections are presented in Figure 3. The results obtained 

are very close to these obtained in [3] (Fig. 7 and 8 in [3]). The frequencies of 

forced vibrations obtained in [3], however, correspond to the beam without an 

attached mass. 

0.00 1.00 2.00 3.00 4.00 5.00 

t, sec 

0.00 1.00        2.00        3.00        4.00        5.00 

t,sec. 

Figure   2.   Hub   response   without Figure 3. Deflection of the tip of the 

viscous friction.  1  - beam with an beam without viscous friction of the 

attached mass; 2- without an attached hub. 1 - beam with an attached mass; 

mass 2 - without an attached mass 
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The influence of the hub friction on the flexible manipulator response can be 
seen in Figure 4. The viscous friction is set dj=0.1 Nms, the static Coulomb 
friction threshold is equal to 0.06 Nm  and three cases of the hub slip-stick 

threshold are tested:   |G| stick = 0.005 rad.s"1 - 1,   |Ö| stick = 0.0085 rad.s"1 , 

lö! stick = °-01 rad.s'1. For this initial velocity (w° =-1.95m/s) the hub slips 

very fast from the initial clamped state and the beam begins to rotate. As can 
be expected, the consideration of the viscous friction of the hub leads to a 
decrease of the angle of rotation of the beam and changes the linear variation 
of 9 with time. The results show also that the value of the hub speed 

threshold löl stick exercises an essential influence on the motion of the 

rotating system. 

When     9 stick =0.005   rad.s    the 

-0.50 

beam sticks at t = 2.602 s after that 
the hub periodically slips and sticks 
which also leads to damping of the 

motion.   When    |G| stick =  0.0085 

rad.s"1 the start of sticking occurs at 
t = 1.7207 s and after t=2.417 s the 
hub clamps with short interruptions 
till t=3.4 s when due to the elastic 
vibrations it snaps in the direction 

opposite to w°> clamps again at 
3.679s,   slip  at  4.5s,  and  finally 

clamps  at  t=4.5s.   When    |Ö| stick 

=0.0085 rad.s"1 the sticking begins 
at t=l.0525s and very fast (at t«2 s) 
the beam clamps with 6—0.587 rad. 
In order to observe the occurrence of the plastic deformation the beam was 
subjected to impulse loading having larger values of initial velocities. In 
addition,  the  contact  interaction  between  the  beam  and  the  stop  was 
considered. 
The beam-tip deflection in the presence of a contact with the stop disposed at 

x €[0.16, 0.263] and initial velocity w°=-15.95 m/s is shown in Fig. 5. 

Figure 4. Hub response in time with 

dpO.lNms. 1- |e| st^O.OOSrad.s"1, 

2-  löl stick= 0.0085 rad S"
1
 ; 

3- 6 stick" '0.0 Is" 

1284 



In order to reduce the computational time the limit value of 9   was chosen 
8stop=0.0025 rad. When this value was reached the problem was automatically 
resolved with new initial conditions 9=0, w°=w(xstop,tstop), etc. 
As can be seen, the presence of the contact interaction during the process of 
motion of the beam due to the elastic support for x e[0.16, 0.263] leads to a 
decrease of the amplitudes of vibrations in the direction of the stop in 
comparison with the amplitudes in the opposite direction. The variation of the 
beam displacements along the beam length for the first 0.8 s of motion is 
shown in Fig. 6. It must be noted that in this case of loading a plastic yielding 
occurs. It is assumed that beam material is characterized by an isotropic linear 
strain hardening and H=0.5. The plastic yielding occurs simultaneously with 
the contact interaction at t=0.01366 s at the clamped end of the beam. At 
t=0.0186 s the plastic zone spreads to x = 0.158 and at t=0.08767 it'covers the 
length to x =0.31. The last points that yields are x =0.55, 0.61 at t=1.119s. 
Seven    layers    along    the    beam 
thickness,   symmetrically   disposed 
about the beam axis was checked for 
yielding (Nz=7) but the plastic zone 
has  reached  the   second  and  6th 
layers only at the clamped end of the 
beam (x =0). In all other point along 
beam  length  the   plastic   yielding 
occurs only at the upper and lower 
surface  of the  beam.  The plastic 
strains are small and the response of 
the beam is not very different from 
the     wholly     elastic     response. 
Nevertheless, the appearance of such 
kind of plastic deformations in the 
structures   used   for   the   precise 
operations    must    be   taken   into 
account   in   the   manipulator   self 
calibration procedure. 

0.40 

0.30 

0.20 

0.10 

0.00 

-0.10 

Figure 5. Deflection of the tip of the 
beam with time in the case of a 
contact with the stop. r=5.5xl03 Pa 

5. CONCLUSIONS 

In this work a model describing dynamic behavior of a deformable beam 
attached to a rotating hub that has friction and inertia is developed. The 
Timoshenko beam theory is used to model the elastic deformation of the beam. 
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Figure 6. Variation of the elastic-plastic beam displacement along the beam 

length with time in the case of a contact with the stop. 

The slip-stick boundary conditions are also incorporated into the model. 
The possibility of the rise of undesired plastic deformations in the case of a 

high velocity impact on the clamped robotic arm, or in the case of a contact 

with limiting support (stop) is included into the model. 
The analytically obtained eigen functions of the elastic Timoshenko beam 

vibrations are used to transform the partial differential equations into a set of 
ODE by using the mode superposition method. This approach minimizes the 

number of ODE which have to be solved in comparison with another 
numerical discretization techniques (finite elements or finite difference 

methods). 
The results obtained show the essential influence of elasticity on the robotic- 

arm motion. 
The model will be used to synthesise a control of one link flexible 

manipulators and for a self calibration procedure when plastic deformation 

would occur. 
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APPENDIX:   NORMAL   MODES   OF   FREE   VIBRATIONS   OF   A 
CLAMPED TIMOSHENKO BEAM WITH AN ATTACHED MASS. 

Equations (5 b,c) can be decoupled, transforming them into two fourth order 

equations [12] as regards cp and w. 

Solving this equations (with p=0 and R=0) and using the boundary conditions 

(6) (with 9=0), the equations of the frequencies and forms of vibrations of the 

beam are obtained. 

Introducing following denotations 

sh, = {-Q2(l + ß) + K(l + ß)2 ^(a-ßco2)]1'2}"212, 

s2n = {cof,(l + ß) + KG + ß)2 + 4co2,(a-ßco2)]1/2}'/2 12, 

fin = WL + 00 „ß) / Sln ,     f2n = (Sl - CO *ß) / S2n,     f3„ = (si - CO *ß) / Sln , 

the frequencies of free vibrations are determined as roots of equation: 

(Al a-e) 

(A3 a-d) 

a) In the case s,2, > 0   i.e.   co2 < a / ß the frequencies equation is: 

bnb22-bl2b2l=0 , (A2) 

where 
bU = flnSl„ch(Sln) + f2nS2nCOS(S2n)     b\2 = Sln/2nsh(Sln ) + flnsln ^(^2n) 

h\ = -/i«sh(^„) - f2n sin(s2„) + s^sh.^) + s2„ sin{s2n) + 

Usich(sln) + stncos(s2n)] 

b22 = /2» [cos<>2«) - ch(*ln)] + *f slnch(5ln) - 52„ cos(j2„) ■ 
/in 

M^4sh(^) + 52
2„sin(52„)] 

J\n 

and the modes of vibrations are: 

b„ , , ,      , ,      s\ .   • ,      s    fn ^-(ch(sh,x) - cos(s2nxj) + sm(s2„x) - -fshis^x) 
J\n 

(A4 a,b) 

Z. 

-^-(/.„sh^,,,*) + /2„ sin(52„x)) + /2„ (cos(j2„x) - ch(s„,x) 

V) In the case s\n < 0   i.e.   co2 > a / ß the eigen frequency equation (A2) has 

the following presentation: 
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bl 1 = flAnC0S(*ln ) + flns2n C0S(S2n ) 
hi = *i»/2nSin(JlB) - f2„sln sm{s2n) 

b2l = /3Bsin(JlB) -/2„ sin(s2„) - JlBsin(fln) + s2„ sm(s2n) - 

A.[4cos(5,„)-^„cos(52„)] 

b22 = AJcosOiJ - cos(?,„)] - -^ sIncos(s,„) + s2n COS(52„) 

(A5 a-e) 

/i„ 

^^„sm^J - 4 sin(52„)] 
J\n 

and the of vibrations are 

wn{x) = B, 
•f h 

sin(s2„x) - ^-sin(J„,x) - -^-(cos^x) - cos(JI(I*)) (A6a-b) 

9„W = 5„ /2„ (cos02„x) - cost*,,,*)) - -^-(^„sinC^x) - f2„ sin(>2„x)) 

When a mass is not attached at the beam tip the following orthogonality 

condition is fulfilled: 
l 

f0, n^m; 
1, n= m. f(a"'(P„9ffl+w„wJ^: (A7) 

and when an attached mass is considered the modes are orthogonalized by 

standard orthogonalization procedure. 
The constants Bn are obtained from condition (A7). 
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Abstract 

In this paper, the wave reflection and transmission characteristics of an axially strained, 
rotating Timoshenko shaft under general support and boundary conditions, and with geometric 
discontinuities are examined. The static axial deformation due to an axial force is also included 
in the model. The reflection and transmission matrices for incident waves upon these point 
supports and discontinuities are derived. These matrices are combined, with the aid of the 
transfer matrix method, to provide a concise and systematic approach for the free vibration 
analysis of multi-span rotating shafts with general boundary conditions. Results on the wave 
reflection and transmission coefficients are presented for both the Timoshenko and the simple 
Euler-Bernoulli models to investigate the effects of the axial strain, shaft rotation speed, shear 
and rotary inertia. 
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NOMENCLATURE 

As Area of shaft cross section [m2] 
do Diameter of shaft cross section [m] 
C Generalized coordinate of an incident wave [m] 
dt (c,) Translational damping coefficient [N-sec/m] 
Cir (cr) Rotational damping coefficient [N-m-sec/rad] 
c0 Bar velocity [m/sec] 
cs Shear velocity [m/sec] 
D Generalized coordinate of a transmitted wave [m] 
E, G Young's and shear modulus [N/m2], respectively 
/ Lateral moment of inertia of shaft [m4] 
JM (/,„) mass moment of inertia of a rotor mass [kg-m4] 
K Timoshenko shear coefficient 
KR (kr) Rotational spring [N/rad] 
KT (k,) Translational spring [N/m] 
l Length of shaft [m] 
M (m) Mass of rotor [kg] 
P Axial force [N] 
j-jj, t\j Reflection and transmission coefficients, respectively, i = 1 positive traveling 

wave; i = 2 negative traveling wave; j = 1 propagating wave for Cases II and 
IV; j = 2 attenuating wave for Cases II and IV. Both j = 1, 2 for propagating 
wave for Case I 

U (u) Transverse displacement [m] 
X-Y-Z (x-y-z) Reference frame coordinates [m] 

a (K-G)/E 
ß Rotation parameter, see Eqn. (Id) 
£ P/(E-A), axial strain 
e' Non-dimensional axial load parameter, see Eqn. (13b) 
r, f (r, y) Wavenumber [m"1] 
r\, ( TJ ) See Eqns. (20a, b), (22a, b) and (24a, b) 
P Mass density of shaft [kg/m3] 
a Diameter ratio between two shaft elements 
57, (co) System natural frequency for Timoshenko model [rad/sec] 
<55 System natural frequency for Euler-Bernoulli model [rad/sec] 
fl Rotation speed of shaft [rad/sec] 
y7 (Y) Bending angle of the shaft cross-section [rad] 

subscript /, r The left and right side of a discontinuity, respectively. 
superscript -,+     Negative and positive traveling waves, respectively, when used in C and D. 

Otherwise denotes quantities on the left and right side of a discontinuity, 
respectively 

Note: Symbols in parenthesis are the corresponding non-dimensional parameters. 
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1. INTRODUCTION 

The vibrations of elastic structures such as strings, beams, and plates can be described in 
terms of waves propagating and attenuating in waveguides. Although the subject of wave 
motions has been considered much more extensively in the field of acoustics in fluids and solids 
than mechanical vibrations of elastic structures, wave analysis techniques have been employed to 
reveal important, physical characteristics associated with vibrations of structures. One advantage 
of the wave technique is its compact and systematic approach to analyze complex structures such 
as trusses, aircraft panels with periodic supports, and beams on multiple supports [1]. Previous 
works based on wave propagation techniques have been well documented in several books [2-4]. 
Recently, Mead [5] applied the phase-closure principle to determine the natural frequencies of 
Euler-Bernoulli beam models. A systematic approach including both the propagating and near- 
field waves was employed to study the free vibrations of Euler-Bernoulli beams [6]. 

High speed rotating shafts are commonly employed in precision manufacturing and power 
transmission. Despite the usefulness of the wave propagation method in structural vibrations, 
applications of this technique to study the dynamics and vibrations of a flexible shaft rotating 
about its longitudinal axis have seldom been considered. The purpose of this paper is to examine 
the wave reflection and transmission [6] in an axially strained, rotating Timoshenko shaft under 
various support and boundary conditions. The effect of the axial load is included by considering 
the axial static deformations in the equations of motion. This paper is a sequel to another paper 
in which the authors discuss the basic wave motions in the infinitely long shaft model [7]. 

Although there have been numerous studies on the dynamics and vibration of rotating shafts, 
none has examined the effects of axial strains (which cannot be neglected in many applications) 
on the vibration characteristics of a Timoshenko shaft under multiple supports. Modal analysis 
technique has been applied to study the vibration of a rotating Timoshenko shaft with general 
boundary conditions [8, 9], and subject to a moving load [10]. Recently, the distributed transfer 
function method was applied to a rotating shaft system with multiple, geometric discontinuities 
[11]. The wave propagation in a rotating Timoshenko shaft was considered in Ref. [12]. Other 
major works on the dynamics of rotating shafts have been well documented in Refs. [13-15]. 

This manuscript is organized as follows. Governing equations of motion [16] and basic wave 
solutions for the Timoshenko shaft are outlined in Section 2. Each wave solution consists of four 
wave components: positive and negative, propagating and attenuating waves. In Section 3, the 
wave reflection and transmission matrices are derived for the shaft under various point supports 
and boundary conditions. The supports may include translational and rotational springs and 
dampers, and rotor mass. Results are presented for both the Timoshenko and the simple Euler- 
Bernoulli models to assess the effects of axial strain, shaft rotation, shear and rotary inertia. The 
wave propagation across a shaft with geometric discontinuities such as a change in the cross- 
section is examined in Section 4, and the wave reflection at a boundary with arbitrary support 
conditions is considered in Section 5. 

With the wave reflection and transmission matrices as the main analytical tools, it is shown in 
Section 6 how to apply the current results together with the transfer matrix method to analyze the 
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free vibration of a rotating, multi-span Timoshenko shaft system in a systematic manner. The 
proposed approach is then demonstrated by considering the free vibration of a two-span beam 
with an intermediate support. 

2. FORMULATION AND WAVE SOLUTIONS 

Consider a rotating shaft subjected to axial loads and with multiple intermediate supports and 
arbitrary boundary conditions, as shown in Fig. 1. Including the effects of rotary inertia, shear 
deformations, and axial deformations due to the axial loads, the uncoupled equations of motion 
governing the transverse displacement u and the slope \jf due to bending can be derived in the 
following non-dimensional form 

d"u    „       .    diu       _,.„   d3u 

dz dz dr dz dl 

+16a(l + e)(l + e--)|4- = 0, 
a dr 

„.„ dzu        diu    ,. ,, E. d2u 
-2iß—j + a——-16e(l + £ —T 

dr       dr a dz 
(la) 

where, 

+16a(l + e)(l + £--)4-v: 

a dr 

J7T,-^ 
■0. 

■a—■*-- 16e(l + £ )—\ 
dt a dz 

Tn = Pal 
KG 

(lb) 

(lc) 

Figure 1. A rotating Timoshenko shaft model subject to axial loads and with general boundary conditions. 
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a=*G, ß = ^Ln = R^n, « = JL (Id) 
E     H     ET0 E EAS 

Note that u and i/^are the measurements in the complex plane, that is u=ux+iuy and \i/=\ifx+i\ffy. 
E denotes the Young's modulus, p the mass density, As the area of the cross section, a0 the 
diameter of shaft, K the Timoshenko shear coefficient, G the shear modulus and £2 the constant 
angular velocity of the shaft. Details of deriving these equations of motion are found in Ref. 
[16]. 

Assuming and substituting the following wave solutions into Eqns. (la) and (lb) 

u(z,t) = C„e'{?™'\ (2a) 

W(z,t) = Cve^'\ (2b) 

and defining the non-dimensionalized wavenumber y and system natural frequency W gives the 
frequency equation, Eqn. (3a); see Ref. [7], 

y = ya0, (2c) 

75 = - (c =    is known as the shear velocity). (2d) 
c,       '     \  P 

yi-Af+B = Q, (3a) 

where, 

A = (.l + a)wz-2ßä-l6s(l + e-—), (3b) 

a a2 - 2ß ä - 16a (1 + e)(l + e - —) 
a 

(3c) 

The four roots of Eqn. (3a) are 

y = ±-i=(A±VA2-4s)\ (4) 

In general, f is complex. Let cö be real. It can be shown that, with a > 0 and £ the axial strain 

of the elastic solid, the discriminant A2 - AB is positive semi-definite for most engineering 
applications. Hence, it is possible to classify the wave solutions into four distinct cases. Note 
that one may study the wave propagation by considering only a single general form of the wave 
solution. However, the classification procedure identifies the coupled modes of vibration of the 
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Timoshenko shaft model and provides a better understanding on how each wave solution governs 
the wave motions [7]. Based on the algebraic relationships between A and B, the four valid wave 
solutions are obtained as follows. 

CaseI(A>Od.ndB>0): 

u(z, t) = (C,>-'?" + C„y?'! + C;2e-'™ + C;2e«* )em (5a) 

y,(z, t) = {C;xe-™ + C-J™ + C;2e-™ + C^e"* )e/5' (5b) 

CaseII(A>0 and5<0): 

u(z, t) = (C,>-^ + C;,e
,f'< + CAe** + C^/'V5' (6a) 

viz, t) = (c;e-'p'z + c;te
if* + c;2e-f* + c-J« y™ (6b) 

Case III (A <0 and 5>0): 

K(Z, 0 = (C,«"** + C>?'< + Ce"^ + Q«?* )«'a (7a) 

Vr(?,r) = (C;,e-?'z + C;,^1 + C;2e-?=: + C;2e^)eiS (7b) 

Caje/V(A<0 and£<0): 

u(z, t) = (C>-F^ + C- ef" + C^e-'"F=Z + C;2e
T* )«* (8a) 

Vr(z, 0 = (C;,e-F'z + C;/'< + C^"^ + C;2e** )eim (8b) 

where, 

r,=-^(|A| + VAT^ff, r2=^(W-VA2-4|S|f, (9a, b) 

f, =-^(VA
2
+4|B|+|A|)

5
, f2 =-^(,/A2 + 4|5|-|A[)\ (9C, d) 

and the coefficients C+ and C" denote positive- and negative-travelling waves from the origin of 
disturbance, respectively. Important remarks on the basic wave propagation characteristics are 
summarized from [7]. First, the wave solution of Case III does not exist in the real frequency 
space since this type of solution represents a situation in which none of the wave components can 
propagate along the waveguide. Therefore the study of Case III is excluded in the present paper. 
Second, the vibrating motion of the shaft model in Case I is predominately pure shear [17] which 
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is unique for the Timoshenko shaft model, while in Case II and Case IV the flexural mode and 
the simple shearing mode, which are corrected by including the rotary inertia and shearing effects 
in the formulation, dominate. Third, when the shaft rotates at a very high speed and/or the shaft 
is axially strained by tensile loads, the wave solution of Case IV governs the vibrating motion of 
the shaft model in the low frequency range. 

For comparison, the parameters A and B in the simple Euler-Bernoulli beam model are 

A = -2ß&-l6e, (10a) 

B = -16dr, (10b) 

where, the non-dimensionalized natural frequency 5) is defined as 

ä =  (c0 = I— is known as the bar velocity). (10c) 

Note that, because B is negative, wave solutions of Case I and Case III do not exist. 

In general the displacement and the rotation of an infinitesimal shaft element consist of four 
wave components as shown by Eqns. (5a-8b). Once the displacement and the bending slope are 
known, the moment M and shear force V at a cross section can be determined from 

M = EI^-, (11) 
dz 

(du        \ 
V = KAG\—+ iy \. (12) 

Moreover, the kinematic relationship between the transverse displacement and the slope due to 
bending is 

d2u    d2u    . ,dy 

dr     dz oz 

where e' denotes the effects of the axial force and is defined as 

£' = l + e--. (13b) 
a 
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3. WAVE REFLECTION AND TRANSMISSION AT SUPPORTS 

When a wave is incident upon a discontinuity, it is transmitted and reflected at different rates 
depending on the properties of the discontinuity. Consider a rotating Timoshenko shaft model 
supported at z = 0; see Fig. 2. The support simulates a bearing modelled by linear, translational 
and rotational springs, dampers, and a rotor mass which typically represents a gear transmitting a 
torque. Based on Eqns. (5a-8b), group the four wave components into 2x1 vectors of positive- 
travelling waves C+ and negative-travelling waves C", i. e., 

C+ = (14a, b) 

Recall that, depending on the system parameters, the rotating Timoshenko shaft model has four 
(practically three) different wave solutions in the entire frequency region as described in Eqns. 
(5a-8b). Thus C, and C, in the above expression do not always correspond to propagating and 

attenuating wave components, respectively. When a set of positive-travelling waves C+ is 
incident upon the support, it gives rise to a set of reflected waves C~ and transmitted waves D+ . 
These waves are related by 

and 
C"=rC+ (15) 

D+=tC\ (16) 

where r and t are the 2x2 reflection and transmission matrices respectively and are expressed as 

(17) 

(18) 

From Eqns. (5a-8b), suppressing e'm term and excluding Case III, the displacements u and u* 
and the bending slopes y/"and y/+ at the left and right of z = 0, respectively, can be expressed 
in terms of the wave amplitudes of the displacement. For convenience, the over-bar (•) on the 
wavenumbers is dropped hereafter. 

CaseI(A>0 andS>0): 

u~U) = C>"'r'z + C'ule'™ + C>-'*< + C-Ae«*, (19a) 

yr-(z) = r7,0-'r'; -T^V" +7I2C.V* -^C^', (19b) 

~r„ ri2 

/JI 22 

"'., hi 

.f21 22 
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M,JM 

KR 

£ 
u"(z) = C>-'T'; + C;,e'T'= 

+ C e'r's + Cer,s 
'-II2" TS,2e 

( for Case II) KT }   tL c«,, 

u*(2)=D;,e-'r';+D„V-r:; 

C*  —ctr- 
C"  —ctr- 

Oj -   D* 

z=o 

Figure 2. Wave motion at a general support (the disk may be considered as a gear transmitting a torque). 

where, 

r,e'      '"     r2£ 

O«ei7(A>0 andB<0): 

«-(z)=c.«"""" + c,;/r,z + C«~r* + c;2e
r=:, 

^-(z) = n,C,>-'r" -TJ.C-e'1"'1 +J71C:ie-r" -7]2Ci«r", 

«+(Z) = i3>-'r"+D*e-r", 

V/+(z) = 77,Z);,«-ir'I+772D,>-ri2, 

where 
r.2-o>2        r2+<u2 

r,e' iT2e' 

(19c) 

(19d) 

(20a, b) 

(21a) 

(21b) 

(21c) 

(21d) 

(22a, b) 

Case IV (A <0 and B<0): 
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u (z) = 0"r" + C-er" + C;2e-T* + C;2e'T'z, 

V/
+U) = T7lD;,e-r'I+772ö>-^. 

where, 
I?+a>* r,2-ü)2 

772=- 
ir,e' ' ',z     r2e' 

Introducing the following non-dimensional parameters 

K,an K,a„ 
K= — -, m - 

'     KAG'   '      El   '   '     KAG'   '      El 

and by imposing the geometric continuity 

K-(0) = K
+
(0), i/r(0) = y+(0) 

and the moment and force balance conditions at the support 

d \if 
M~ -M   =kw + cry/+Jm—

!-, 
dz 

V* -V = k,u + ctü + mü, 

the following set of matrix equations can be established for each Case. 

CaseI(A>0 andS>0): 

M . JMc) 
 , and J   =    M ' , 
pAa0 El 

(23a) 

(23b) 

(23c) 

(23d) 

(24a, b) 

(25) 

(26a, b) 

(27a) 

(27b) 

1 1 
C+ + 

1 l 
rC+ = 

1 1 

7?1 ?72. -m -Vi] w <h 

i(Yi-V0   KYz-rii). 
C+ + 

tcr, 

-KYx-r)x)   -KYI-VI). 

(28a) 

rC+ 

(k, -mco2) + i(c,co + yl —77,)    (fc, -ma1) + i(.c,a + y1 -772) _ 
tC+,    (28b) 
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Case II (A>0 and B <0): 

[1    ll 
c+ + 

hi ^J 
i 

rCT = 
"i   r 

Vlj hi    HaJ 

-JT,TJ,       -r2T72 

i(r,-77,) r2-iTk 
c* + 

tc+, 

-ir,77,        -r2?72 

- /cr, - 77,) -(r2-ijfe). 

(29a) 

rC+ 

77,(fcr-J„,cö2) + i77,(crü)-r1)    ri2(kr-Jmco2-y2) + iri2cr(o 

(fe, -mü)2) + i(c,ö) + r, -TJ,)     (fc, -mffl2 +r2)+:'(c,üJ-772) 

Caie/V(A<OandS<0): 

tC+,     (29b) 

1      1 

Jl2     TJ, _ 
c+ + 

1 

-T2 

1 
rC+ = 

l    il 
tcr, 

-il 

i(T2 

2^2          " »T,J7, 

i-^i 
<T + 

-«"( 

ir2T72 

r2-r?2 

-il 

)  -(r, 
^i 

(30a) 

rC+ 

'772(fcr-J-„,ü)2) + !772(crü)-r2)    77,(^-7„ö)2-7l) + i77,crö) 

(k, -mco2) + i(c,co + T2 -772)    (fc, -mcü2 +r,) + i(c,ö)-77,) 
tC+,     (30b) 

where Eqns. (15) and (16) have been applied in all Cases. Note that in Eqn. (27a), it is assumed 
that the rotational spring at the support is attached to the cross section of a shaft element such 
that the rotational spring responds only to the slope change due to rotation of the cross section 
and not the total slope change of the neutral axis of the shaft model. This assumption allows the 
shearing motion of the shaft element at the support. Note also that the effect of axial loads on the 
shear force at the support is neglected since the contribution of axial loads to the shear force at 
the support or boundary is small compared to the shear force due to the flexural motion of the 
shaft element. Exact moment and force balance conditions at boundaries for a rotating 
Timoshenko shaft element subjected to axial loads can be found in Ref. [16]. 

The corresponding matrix equations for the simple Euler-Bernoulli shaft model are shown in 
Appendix I. Solving the set of matrix equations simultaneously for r and t gives the elements of 
the reflection and transmission matrices for each Case. The general forms of solutions to these 
sets of equations for each Case is not presented in this paper due to space limitation. However 
one can obtain the solutions in either closed-form or numerically. Note that in Case II and Case 
IV, the first columns of r and t are the reflection and transmission coefficients due to incident 
propagating wave components, and the second columns are due to an incident attenuating wave 
component which is generally termed as near-field since this type of wave decays exponentially 
with distance. When the distance between the origin of disturbance and the discontinuity is very 
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large, these attenuating wave components can be neglected. However, as mentioned by many 
authors, for example Graff [2], attenuating waves play an important role in wave motions by 
contributing a significant amount of energy to the propagating wave components when a set of 
propagating and attenuating waves are incident at a discontinuity and, in particular, when the 
distances between the discontinuities are relatively small, as in the case of closely-spaced multi- 
span beams. In this paper, near-field components are included. In what follows, the effects of 
the point supports on the reflection and transmission of an incident wave are studied. For 
comparison, the results are obtained for both the Timoshenko and the simple Euler-Bemoulli 
models, which hereafter, for brevity, are denoted by TM and EB, respectively. The system 
parameters used in the numerical results are taken from Ref. [10]; a0 = 0.0955 m, p = 7700 
kg/m3, K = 0.9, E = 207xl09 N/m2, G = 77.7xl09 N/m2. 

3.1. Wave reflection and transmission at rigid supports 

Consider two cases: the simple support and the clamped support. The r and t are solved and 
shown as follows. 

•  Simple support (k. = =°, kr = m= c, = cr = J,„ = 0) 

CaseI(A>0 andS>0): 

1 

t = - 

(r2-7i)(y172 + <ö ) 

l 

7i(ä)2-y2
2) y^-rl) 

Yiirt-co2) 72(y,2-©2). 

r2(ü)2-rf) y,(<»2-y2) 
(r2 -y.Xy.r2 +ö2) 1.72(r.2 -®2) r,(r2 -co2) 

CaseII(A>0 and5<0): 

1 

t = - 

'(ir,-r2xr,r2-to2) 

i 
dT.-rjXr.rj-iö)') 

CaseIV(A<0 and5<0): 

1 
(r.-iTjXr.rj + to') 

r,(r2 + a2)     r.dt + ör) 
-;r2(r

2-a2) -tr^-a2) 

iT2(r?-co2)   r,(r2
2+co2)' 

-iT2(r
2-cü2) -r,(r2+ü)2) 

T2(T
2+ü)2)      T2(T

2+co2)' 
-iT.o^-o)1) -iT.cr,2-©2). 

(31a) 

(31b) 

(32a) 

(32b) 

(33a) 
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t = - 
1 

cr.-iTjXr.rj + iö)') 

iT^-co2)    r2(r,
2 + ü)2)' 

-ir.cr'-ö)2) -r2(r,
2 + ü)2) 

(33b) 

•  Clamped support (k, = <=■=, kr = °°, m = c, = cr = 7m = 0); t = 0 for all Cases because no 
wave can be transmitted through the rigid constraints. 

CaseI(A>0 and£>0): 

1 

(7,-72X7,72+<*> ) 

(7,+72X7,72-® ) 27,(72 -a>2) 

-2y, (y2 - or)       -(7, + 72 X7,72 ~ «2). 
(34) 

Ca.se//( A>0andB<0): 

'(r. + iTjXr.rj + iü)1) 

(r.-irjXr.rj-iü)-) 

-2r2(r
2 -co2) 

-2;r,(r2+cö2) 
(r.-iroc©1-^) 

(35) 

Ca.se/V( A <0and£<0): 

(r,-ir2xr,r24-to2) 
(r,+iT2)(iü)2  M.2 

2iT,(r2
2-£ö2) 

r,r2)      -2r2(r
2+ö)2) 

(r. + iTjXr.r. iffl2) 
(36) 

The corresponding reflection and transmission matrices for the EB model are listed in App. I. 

Figures 3 and 4 plot the moduli (magnitudes) of the reflection and transmission coefficients 
for the simple and clamped supports. The finite cutoff frequencies, above which all waves 
propagate, are also marked in the figures. Thus, for the TM model, the wave motions change 
from Case II to Case I when co >coc (coc = 4 in Fig. 3, coc = 4.24 in Fig. 4; coc is slightly altered 
by rotation speed and axial load). The results show that, at low frequencies (co < 0.1 = 3156 
rad/sec), the wave reflection and transmission coefficients of the TM model agree well with those 
of the EB model for both support conditions. However, as the frequency increases, the wave 
propagation characteristics of the TM model differ significantly from those of the EB model. 
These differences can be explained by examining the different modes of vibration. When 
co > coc (in the regime of Case I), the vibrating motion of the TM model is dominated by the pure 
shearing motion [7, 17], and hence the EB model, which neglects the rotary inertia and pure 
shear effects, become inaccurate at high frequency. As discussed in Ref. [7], at the finite cutoff 
frequency, the TM shaft experiences no transverse displacement, and the cross-section of the 
shaft simply rotates back and forth in unison 

In Figs. 3(d)-(f) and 4(d)-(f). for ß = 0 and £ = 0, the reflection and transmission coefficients 
of the EB model are independent of the frequency. This is because from Eqn. (10a), A = 0, and 
Eqns. (9c,d) lead to a single wavenumber T, = T2. From Appendix I, Eqns. (32*-36*), the r and 
t are thus constant matrices. It is also seen that the wave reflection and transmission coefficients 
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for both shaft models are basically independent of the rotation speed over the entire frequency 
range, even at high rotation speed ß = 0.05 = 44,600 rpm. In Ref. [7], it is also found that ß has 
negligible effects on the system frequency spectrum, phase velocity and group velocity. On the 
other hand, the effects of the axial load are significant for both propagating and attenuating 
waves in the regime of Case II, see Figs. 3(b)-(c) and 4(b)-(c). For both shaft models under 
simple support and compressive loads (Figs. 3(b, e)), the reflection coefficient rn of the incident 
propagating wave is reduced significantly in the regime of Case II, while the transmission 
coefficient tu of the propagating wave component increases to balance the energy carried in the 
wave. However, the attenuating wave component tl2 which does not carry any energy loses its 
transmissibility in the same amount as the reflection coefficient rn. Thus, in the presence of a 
compressive load, most of the transmitted wave energy in Case II comes from the propagating 
component of the incident wave. Note that axial tensile loads have the reverse effects on these 
wave components. In the clamped support case, the positive propagating wave component rn is 
constant over the regime of Case II under any loading conditions for the both shaft models, as 
seen in Fig. 4. 

Since there is no damping at the support, the incident power (Unc), reflected power (nren) and 
transmitted power (11™,) in Cases II and IV are related by ninc = IWHItran = (lrnl2+lful2) ninc, 
or lrul2+lfnl2 = 1. This relationship is confirmed by the plots shown in Figs. 3 and 4, where for 
both shaft models, lrul and lfnl cannot exceed one. However in the regime of Case I, in which 
all wave components propagate, the energy balance is Unc = (l^n+^il +lfn+?2il2) Ilinc, or TEinc = 
(Iri2+r22l2+l*i2+*22l2) nine- Together with the plots on the phase of these coefficients (not shown 
to minimize the size of this manuscript), the above relationships can also be verified for wave 
motion of Case I. 
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(a) 0=£=O 
  0 = 0.05, £=0 

rn =r.2='i:=': 

0.01 0.1 

(b) 0=£=O 
  /5=0.05, e=-0.05 

r21 = r2! = 'll = k- 

(d) 0=E=O 

  0=0.05, £=0 

r„ = f1z = /,2 = t22 (upper line) 
^ = rjj = f|j = fji; i, j = 1, 2 (middle dashed line) 
r21 = r22 = f1l = f21 (lower line) 

10 100 

= £=0 
= 0.05, £=-0.05 

r21 - rz2 - fn- f21 

10 100 

0.01 0.1 10 100 

Case II Case I Case II 

Figure 3. Wave reflection and transmission coefficients at a simple support (k, = °° and k,=c,=c,=m = Ja = 0) 

as a function of frequency, (a)-(c) and (d)-(f) are the results for the Timoshenko and Euler-Bernoulli shaft models, 

respectively. The transition from one type of wave motion to another is marked for the case ß = s = 0 ■ 
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support without "resistance". The impedance mismatching (rn = 1, f„ = 0) frequency at which 
the propagating wave component is completely reflected without being transmitted can also be 
determined from Figs. 4(b, d) for the two shaft models. This impedance mismatching frequency 
is located in the regime of Case II for the TM model where the transverse mode dominates the 
vibrating motion of the shaft. Numerical results show that, as the spring constant increases, this 
impedance mismatching frequency increases, but is limited to within the regime of Case II and 
can never be found in the regime of Case I where the pure shearing mode dominates the vibrating 
motion of the shaft (refer to Fig. 3 for the transition of types of wave motion). 

Figure 6 shows the reflection and transmission coefficients for waves incident upon a support 
having both translational and rotational constraints. Since both flexural and shearing modes of 
vibration are constrained at this support, the maximum of the reflection coefficient is expected to 
be higher than the previous case. Figures 6(a-b) and (c-d) are the results for the TM and EB 
models, respectively. The translational and rotational spring constants used in the simulations 
are fc,0= 109 N/m and k^= 109 Nm/rad, respectively. It is noted that in the regime of Case II, i.e., 

Figure 6. Wave reflection and transmission coefficients at an elastic support with translational and rotational springs 
U,=ifc,0, kr*0, c, =cr = m = y„, = 0) as a function of frequency, /3 = 0.05and £ = 0. (a-b) and (c-d) are results 

for the Timoshenko and Euler-Bernoulli shaft models, respectively. 
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(a) ß=e=0 
  8=0.05, £=0 

2.0 

1.5 

1.0 

0.5 

(d)  0 = £=O 
  0 = 0.05, £ = 0 

r12 (upper line)                      " 
r,2=r2, (middle dashed line) 

/ r21 (lower line) 

\                             : 
'.                      (for both ß = 0 & ß = 0.05)                              '. 

(e)  ß-- = £ = 0 
= 0.05, e = -0.05 

/" 

; 

- 

_//(for both ß = E=0& 

/ 

ß = 0.05 e = ■0.05) ■ 

Case II Case I Case II (Case IV)- 

Figure4. Wave reflection coefficients at a clamped support (k, -k, = °° and c, = cr = m=V,„ = 0) as a function of 

frequency, (a)-(c) and (d)-(f) are the results for the Timoshenko and Euler-Bernoulli shaft models, respectively. The 
transition from one type of wave motion to another is marked for the case ß = 0.05, £ = -0.05. 
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3.2. Wave reflection and transmission at elastic supports 

Figure 5 shows the reflection and transmission coefficients for waves incident upon a support 
with a finite translational spring for three different spring constants. Figures 5(a)-(b) and (c)-(d) 
are results for the TM and EB models, respectively. The spring constant used, kl0 = 10? N/m, is 
a typical bearing spring constant value for turbine generators. The plots show that there is no 
significant difference in the moduli between the two shaft models. This is because the incident 
wave does not experience any rotational constraint at the support, and hence the additional rotary 
inertia factor in the TM model has only a small contribution to the wave motions. As the support 
spring constant increases, the curves for both the reflection and transmission coefficients are 
shifted to the right and, as the spring constant approaches infinity, these curves eventually 
become asymptotic to those shown in Fig. 3. Note that an impedance matching (r = 0, t= I), 
where all wave components are transmitted without being reflected, is found in the high 
frequency region for both shaft models. Thus, as the frequency increases, the characteristics of 
waves travelling along the shaft remain unchanged such that waves propagate through this elastic 

. (a) (b) 

1.5 - — 

— 1,2 

- ';, 
1-, 

0.5klok r-    <°ote       as K increases 
/KY"   —  

■to *to tn70 

: (d> — '„ 
-—'.*    o.skwku>zk 

Figure 5. Wave reflection and transmission coefficients at an elastic support with a translational spring (k, *0, 

kr = c, = cr =m = Jm =0) as a function of frequency, /3 = 0.05 and £ = 0. (a-b) and (c-d) are results for the 

Timoshenko and Euler-Bernoulli shaft models, respectively. 
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in the low frequency range, both shaft models have similar reflection characteristics, and both the 
reflection and transmission coefficients are not significantly affected by the rotational spring. 
However, as the frequency increases, the effect of the rotational constraint on the wave motion 
becomes eminent, particularly for the TM model. As seen in Figs. 6(a) and 6(c), the reflection of 
the attenuating wave components are significantly higher than those of the propagating wave 
components. Hence, when a rotating shaft has a clamped support(s) such as a journal bearing, 
contributions from the attenuating wave components should be included in the formulation since 
a significant amount of energy in the propagating component arises from the incident attenuating 
wave component. It is noted that the impedance matching regions seen in Figs 5(a, c) disappear 
when the rotational constraint is added. Moreover, the impedance mismatching frequency shown 
in Figs. 5(b, d), which is found in the regime of Case II, also does not occur. At low frequency in 
Figs. 6 (b, d), there appears to be a mismatching region, but tn is not exactly equal to zero. 
From Figs. 6(a, c), it is seen that there is a frequency at which the positive propagating wave 
component r„ is zero (this frequency is slightly different for the two models). This frequency 
does not correspond to an impedance matching, though the propagating wave is not reflected at 
all but is only transmitted (:,, = 1). Based on other research results [18], this phenomenon likely 
indicates a structural mode delocalization in bi-coupled systems, in which vibrations on both 
sides of the support become strongly coupled. Further research on the vibrations of rotating 
shafts with intermediate supports is being pursued to confirm the mode delocalization. 

Figure 7 plots the effects of axial compressive loads on the wave reflection and transmission 
upon a support with finite spring constant for the Timoshenko shaft model. As seen in Fig. 7(a), 
the reflection coefficient for the incident propagating wave component r\\ is substantially 
reduced in the low frequency range while the reflection coefficient for the incident attenuating 
wave component increases significantly. However, Fig. 7(b) shows the reversed effects on the 
transmission coefficient. It can therefore be concluded that, when the shaft is axially strained by 

(a) — r„(e = 0) 
— - r12(e = 0) 
— r„ (e =-0.05) 
-— r12(e = -0.05) 

0.0 
100 

(b) (,,(£=0) 
f„(£ = 0) 
!,,(£ =-0.05) 
/)2(e = -0.05) 

Figure 7. Wave reflection and transmission coefficients at an elastic support {k, = 4 0 and £, = c, = c, = m = /„ = 0) 

for the Timoshenko shaft model with and without the compressive load, (a) reflection coefficients, (b) transmission 
coefficients. 
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t,,(«=0) 
(,2(£=0) 
(„(£=-0.05) 
(,,(£=-0.05) 

Figure 8. Wave reflection and transmission coefficients at an elastic support (k, = £,„, kr - kr0 and c, = cr = m = 

J,„ = 0) for the Timoshenko shaft model with and without the compressive load, (a) reflection coefficients, (b) 
transmission coefficients. 

compressive loads, the energy contribution from the incident attenuating wave component to the 
energy in the reflected propagating wave is more significant than the strain-free situation in the 
low frequency range, while most of the energy in the transmitted wave derives from the incident 
propagating wave component. 

Figure 8 plots the wave reflection and transmission coefficients along an axially compressed 
Timoshenko shaft model at a support with finite translational and rotational spring constants. 
Similar results to the previous example can be observed in terms of energy contribution from the 
incident attenuating wave component in the low frequency range. However, the effects of the 
axial compressive load on both the reflection and transmission coefficients for the propagating 
wave component (ru and tn) are significantly reduced when compared to Fig. 7. 

3.3. Wave reflection and transmission at damped supports 

Figure 9 shows the effects of both translational and rotational dampers at a support with finite 
translational and rotational spring constants. Figures 9(a, b) and (c, d) are results for the TM and 
EB models, respectively. The translational and rotational damping constants used in this study 
are cua = 2xl05 Ns/m and Cdrc = 64x105 N-m-s/rad, typical values for bearings in turbine 
generators. The curves with symbols (• and ♦) are the results when the rotational damping factor 
is also included in the formulation. It can be seen that If,, I and lf,2l for both shaft models are 
significantly lowered due to the presence of damping. Note that, because of the damping, the 
frequency at which I r„ I = 0 (compare with Figs. 6(a, c)) no longer exists for both shaft models. It 
can also be seen that the effect of the rotational damping factor on the wave reflection and 
transmission is not significant over the entire frequency range for both shaft models. For TM 
model, the contribution of the rotational damping to both I/-,, 1 and If,, I is almost negligible. The 
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support condition considered in this particular example is simulated as an actual bearing support 
adopted in turbine generators. Hence for this particular type of bearing support, the effect of the 
rotational damping on wave reflection and transmission is not considerable. Other numerical 
results (not shown in this paper) show that the wave propagation at the damped support is 
characterized by translational damping rather than rotational damping. Note that similar results 
have been presented for the support without damping (see Fig. 6). 

Figure 9. Wave reflection and transmission coefficients at an elastic support with damping {k, = k,0, K = kr0, c, = c,M, 
cr = CM and m = /,„ = 0) as a function of frequency for ß = 0.05 and £ = 0. (a-b) and (c-d) are results for the 
Timoshenko and Euler-Bernoulli shaft models, respectively. 

3.4. Wave reflection and transmission at a rotor mass 

Consider a gear rigidly assembled to a rotating shaft. The gear is assumed to be perfectly 
balanced and its thickness is sufficiently small such that wave reflection and transmission due to 
the geometric discontinuity between the shaft and the gear can be neglected. However the gear 
does resist the translational and rotational motions of the cross-sectional element of the shaft. 
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Figure 10 shows the reflection and transmission upon the gear when the mass m0 and mass 
moment of inertia Jm0 of the gear are 4 and 16 times of the shaft, respectively. Not shown in 
Figs. 10 (b, d) is that rr = 0, tn = 0 when m= Jm = 0. Like some previous support conditions 

discussed, the effects of the rotor mass are much more significant in the high frequency region 
for both models (particularly around and beyond the cutoff frequency for the TM model). In 
general, the rotor mass decreases the transmission and increases the reflection of the wave. At 
very high frequency, there is basically no wave transmission. Note that, since the geometric 
discontinuity between the shaft and the gear is neglected in this model, one may expect that the 
actual reflection for both the propagating and attenuating wave components would be higher. 

2.0 

(a)   r„[m=m0,Jm = J„e)     \^ 

I 

2.0 

(b)  („ (m = 0 , Jm=0) 

  ',, (m = m„ ,Jm=J„0) 

■ 

1.5 . 1.5  l„(»i = m,,J,.J„) . 
1 

1 

o 
E 

1 
1                       1.0 

0.5 

0.0 

■ 

1/ 
0.5 

00 

^v : 

: id  ,n ( m = m0, Jm = Jm) (d) t„{m = O,Jm=0) 
— '-.i { m = m0, Jm "J«,>   (,,(m = m0 , J„ = J„0) 

. - 1.5  tn(m=m„, Jm = JM) . 

: / "  1.0 

0.5 

on 

: 

/        ; /        \ 
-                                     /             \ 

■ 

Figure 10. Wave reflection and transmission at a rotor mass assembled to a rotating shaft (k, = 0 = kr = c, = c, - 0, 
and m = m0, and J,„ = Jm0) as a function of frequency when ß - 0.05 and s = 0. (a-b) and (c-d) are results for the 
Timoshenko and Euler-Bernoulli shaft models, respectively. 

4. WAVE REFLECTION AND TRANSMISSION AT A GEOMETRIC DISCONTINUITY 

It is common for a rotating shaft element to have changes in cross-section, or to be joined to 
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a,=a0 

C+ Pfcr 

c- - Oj 

ar 

OJ -   D+ 

Case /, J7, or IV 

A, = (l + a)ar-2/3a>-16£(l + £-—) 

B, =ar a or - 2/3<u - 16a (1 + e)(l + e ) 
a 

2=0 Case /, //, or IV 

Ar = (l + a)co2-2ßco-^- (l + g -£L) 
CT" a 

aar-2/3<u-^ (i+g )(I + £    £^) 
cr a 

Figure 11. Wave reflection and transmission at a geometric discontinuity. 

another shaft element by a coupling. Figure 11 shows a typical example of a discontinuous shaft 
model in which two shafts of differing wavenumber and diameter are joined at z = 0. The 

subscripts I and r denote z = 0' and z = 0+ regions, respectively. It is known that when a wave 
encounters a junction or a discontinuity, its wavenumber is changed. It is therefore possible that 
a wave on the left side of the junction can be propagating, while after crossing the junction to the 
right side, the wave becomes attenuating. Therefore, for a Timoshenko shaft, when a wave 
propagates through the junction, there are mathematically nine possible different combinations of 
wave motions to be considered depending on the values of the functions A and B on each side of 
the junction, as depicted in Fig. 12. 

left side right side 

Figure 12. Nine possible combinations of wave motions at a geometric discontinuity of the cross section for the 
Timoshenko shaft model. Subscripts / and r denote the left and the right side of the discontinuity, respectively. 
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For simplicity, assume that material properties such as p, E, and G are the same for both sides 
of shaft element. The displacement continuity, moment and force equilibrium conditions are 
applied at the junction to determine the wave refection and transmission matrices. Results for the 
three most commonly encountered possibilities in the low frequency regime are listed as follows. 

CaseII(A,>0, B, < 0) - Case I(Ar >0, Sr>0): 

1 1 
cr + 

l l 
rC* = 

1 1 

Vu Till. .-Vu -Vv. k. % 
tc\ 

i(Tu-ilu)   T2l-ir]2l 
C* + -'TiiHu        -r2,772, 

-i(Tu-riu)   -(X2,-iT}2l) 
rC* 

-'0- ywr]lr -ia y2,r\2r 

-iC72(y„-77lr)   -io
2(r2r-r}lr). 

tC\ 

Care//(A, >0, B, <0) - Case II (Ar>0, Br<0): 

1 1 
C+ + 

1 1 

r\u Hu. -^w -77 
rC+ = 

1       1 «r, 

KTu-rii,) r2l-in2,_ 
c+ + 

-IT,^,,       -r,,772, 

-«(^-77,,) -(r2,-j7j2,) 
rC+ 

-^4r,r7jlr       -o
4r2rri2r 

-io\rir-riu)   -a2(T2r-ri2rX 
tc\ 

Case II (A, >0, S, <0)-Caje/V(Ar < 0, Sr<0): 

1       1 
c+ + 

1 i 
rC+ = 

" 1 i" 

L-^i, -Till. h2r ^.rj 
tc\ 

-ir./7?./     -r2,77,, 
.!'(r„-77„) r2,-/772, 

c+ + 
-ir„77„       -r,,772, 

-*xr„ -77„) -cr2, - irj2,) 
rCT 

-io-4r2r772r       -o-4rlr77, 

ria2(T2r-ri2r)   -o-2(rlr-77lr) 
tc+. 

where a is the diameter ratio between the shaft elements, defined as 

(37a) 

(37b) 

(38a) 

(38b) 

(39a) 

(39b) 
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(40) 

Note that 77,'s in Eqns. (37a-39b) are given by Eqns. (20a, b), (22a, b), and (24a, b) according to 
the type of wave motion, and r\r' s on the right side of the geometric discontinuity are modified 

as follows. 

77,  =— 7-,V,r=— —for Case I, 

%=- 
Tl-cü2 

nlr = 

K + & 
""=-5ÜT',h'! 

Tl+co' 
— — for Case II, 

;T2r£r 

Tl-0- 
r,x for Case IV, 

(41a, b) 

(42a, b) 

(43a, b) 

where 

e' - 1 + er —-, and £ = —5- 
a 0- 

(44) 

Moreover, the wavenumbers, A and B of the shaft element on the right side of the junction are 
modified as follows. 

where, 
1 fLp p 

A=(l+a)co2-2ßco T- (1 + e,—-). 
' or- a 

B, =03' aä2-2ßüö-^(\ + £r)(l + sr-^) 
a a 

(45a, b) 

(45c, d) 

(46a) 

(46b) 

Corresponding results for the simple Euler-Bernoulli shaft model are listed in Appendix II. 

Figures 13 to 16 show some representative examples of wave reflection and transmission 
upon the geometric discontinuity. In Figs. 13 and 14, the thick and thin curves represent results 
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for the TM and EB models, respectively. The second graph in each figure shows the changes of 
Ai, Bu Ar and Br, and how wave solutions on both sides of the discontinuity change as the 
frequency increases for the TM model. In general, the wave reflection and transmission for the 
EB model are frequency independent except when the shaft is axially strained, while the wave 
propagation characteristics for the TM model are strongly dependent on the frequency. 

Comparing Figs. 13 and 14, it is noted that, for both shaft models, the average reflection and 
transmission rates for a = 0.8 are higher than those for a = 1.2, especially for the attenuating 
wave components. These results imply that incident attenuating waves contribute more energy to 
propagating waves at the discontinuity when the waves travel from a smaller to a larger cross- 
section. In particular, it is noted that the transmissibility of the attenuating wave r]2 has a strong 
dependency on the direction of propagation. Note also that the differences between the two shaft 
models are more pronounced when 0" = 0.8. It is clearly seen from the figures that when 5, and 
Br change from negative to positive, both reflection and transmission coefficients experience a 
sharp jump or drop at the finite cutoff frequencies, due to changes in the types of wave motion. 
In the frequency region (S, > 0 and Br < 0) located between the two cutoff frequencies in Fig. 

€ 1.5 
o 
E 

Thick curves : Timoshenko shaft model 
Thin curves : Euter-Bernoulli shaft model 

"^ 

<L -U 
\^ 

bu 

30 
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60 

- 
/ /      ^ 
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r 

    A, = Ar 
--    B, 
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<— Case II - Case II    ~~ -~ --.          ^              > 

/ / / 
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i ■> 
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—> 

Figure 13. Reflection and transmission of waves incident upon a change in the cross-section, a= 0.8, ß= 0.05, and 
£ = 0. Thick and thin curves are results for the Timoshenko and Euler-Bernoulli shaft models, respectively. Note 
that the ordinates in the lower graphs keep increasing with frequency (abscissa). 
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13, the wave motion on the left side of the junction is governed by the wave solution of Case I 
since all wave components are propagating at a frequency larger than the cutoff frequency, while 
the wave motion on the right side of the junction is governed by the wave solution of Case II. 
Thus, for a = 0.8, some of the propagating wave components on the left side of the shaft element 
cannot propagate as they pass the discontinuity, and become attenuating. A similar, but converse 
conclusion can be drawn for the frequency region (Br > 0, 5, < 0) when a = 1.2, as shown in 
Fig. 14. The results of Figs. 13 and 14 show that, for different system parameters c, ß, and s and 
at any given frequency, the types of wave motion on each side of the discontinuity can be 
different, as depicted in Fig. 12. 

From Eqns. (41a-43b), it is seen that when the Timoshenko shaft is axially strained and CO is 
not sufficiently large, the wavenumber (hence wave propagation characteristics) depends strongly 
on the cross-section ratio a. Figure 15 shows the effects of the axial load on the wave reflection 
and transmission, which are mostly limited to the relatively low frequency region. In Figs. 15(a- 
b), when the shaft is axially compressed (£ = -0.05), the reflection and transmission due to the 
incident attenuating wave component decrease for both a < 1 (plot (a)) and o~ > 1 (plot (b)). 
However, the transmission tu due to an incident propagating wave decreases significantly for 

T>   1.5 
o 
E 

 'lj 
Thick curves : Timoshenko shaft model 
Thin curves : Euler-Bernoulli shaft model 

\ 

— <i2   c£3- 
\ 

; r--> 
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; i.    V ^__r 
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~T\ _  J 
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=Ä:==~?^="=r-=L— '_ v 
■^_-- -.. r-TT.   : 

Figure 14. Reflection and transmission of waves incident upon a change in the cross-section, 0"= 1.2, ß = 0.05, and 
£ = 0. Thick and thin curves are results for the Timoshenko and Euler-Bernoulli shaft models, respectively. Note 
that the ordinates in the lower graphs keep increasing with frequency (abscissa). 
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Thin curves for E = 0 

(Same legend for 
Figs.(b),(c).(d)) 
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Figure 15. Reflection and transmission of waves upon a change in the cross-section when ß = 0.05 for the 
Timoshenko shaft model, (a) CT= 0.8 and £ = -0.05. (b) cr= 1.2 and £=-0.05. (c) (7=0.8 and s= 0.05. (d) a= 1.2 
and £=0.05. Thin and thick curves show the results when the shaft is strain-free (£=0) and strained, respectively. 

a - 0.8 and increases for rj = 1.2 at low frequency. 
Effects of the axial load on the wave reflection and transmission are more significant when 

the shaft is compressed (Figs. 15(a-b)) than when it is under tension (Figs. 15(c-d)). This is 
because the wavenumbers of both the propagating and attenuating wave components are only 
slightly changed. It is also noted that, in the low frequency range, the wave solution of Case IV 
governs the wave motions on both sides of the discontinuity, and the wave components which 
have large wavenumber (TO attenuate, while wave components with small wavenumber (r2) 
propagate along the waveguide as long as A remains negative. 
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5. WAVE REFLECTION AT BOUNDARIES 

When a wave is incident upon a boundary, it is only reflected because no waveguide exists 
beyond the boundary. Consider an arbitrary boundary condition with translation^ and rotational 
spring constraints, dampers, and a rotor mass, as shown in Fig. 16. The reflection matrix at the 
boundary is derived for each Case. Applying the same non-dimensional parameters employed in 
Section 3, and by imposing the force and moment balances at the boundary, which can be 
deduced by eliminating M* and V* inEqns. (27a, b), 

M-= kryr + c,\jr + JJjf, 

-V = k,u + c,ü + mü, 

the reflection matrix for each Case is determined. 

CaseI(A>0, S>0): 

' 77,(17,-S„,)       772(i7,-S,„) ' 

Ky,-77,) + z;s  1(72-^.) + ^, 

CaseII{A>0, B<0): 

T7,(;r,-£,„)     7j2(r2-sj ■ 
/(r.-TU + z,  (r,-i7fe) + s,. 

-77,(i7. +2J   -7?2('72 + Zm) 

K7,-77.)-Zs   !'(72-7?2)-Z, 

-77,(ir,+s„,)   -772(r,+ s,j' 

..•(r.-TT.j-r,  cr2 - iTfc) - z,. 

(47a) 

(47b) 

(49) 

M, yw 

Ks 

(T 

«"(0 = c>"'T,: + c;,e,T,; 

( for Case II) 

C*   " 

C" - 

,_JL 

/fr: 1 
-<=b- 

-Cb- 

z=o 

Figure 16. Wave reflection upon a general boundary. 
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CaseIV(A<0, B<0): 

/(r2-T72)-zs  (r,-iJi)-s, 
(50) 

where 77's in above equations have been defined in Eqns. (20a, b), (22a, b) and (24a, b), and 

2„, = kr + icrm - Jjo2, and X, ~k,+ ic,co - mco1 , (51a, b) 

The corresponding results for the simple Euler-Bernoulli shaft model are listed in the Appendix 
m. By specifying the parameters in the reflection matrix r, results for three typical boundary 
conditions (simple support, clamped support, and free end) can be obtained. 

• Simple support (k, = °°, kr = m = c, = cr = Jm = 0) 

for Case I, II, and IV, 
-1    0 

0    -1 

Clamped support (k, = °°, kr = °°, m = c! = cr = Jm = 0) 

1 

1 

r\ -n2 

l 

H, -v2 

-277,     -(rj,+T72) 

>7i + T?2 2r/2 

-2T7,     -(r?,+Tj2)_ 

for Case I, 

for Case //, 

■Oli +Vi) -2772 
" ''''■" '"■    I for Case /V, 
2T?I (^I+^J 

Free end (k, = &r = m = c, = cr = Jm = 0, and £ = 0) 

1 

A/ 

^(y, +72)-rir2(7?i +n2) iWiOii-Yi) 

-277,7,(77, -7,) -77,n2(7i +72) + 7i7207, +n2). 

(52) 

(53a) 

(53b) 

(53c) 

(54a) 

where, A, = 7],772(y2 -y,) + y,y2(77, - 77,) for Case I, 

1  f- ?7,772 (iy, + 72) + 7i72 (77i + V2) 
2l'n272("72 - 72) 

2^i7i(r?,-7.) ^2('7i+72)- 7,72 (Hi +?72). 
(54b) 

where, A/; = 77,772(jy, -72)-7i7207i -?72) for Case//, 
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2 T2 3 T3 4 T4 5 

Figure 17. An example of a rotating shaft with multiple supports and discontinuities. 

_1_ ^(Ti+iya)-y,72(77i+l2) 2Tj17,(7j,+i7,) 

where, A,v = 77,77,(7, -iy2)-yj1(.T]i -772) for Case IV. 

(54c) 

6. APPLICATIONS 

The reflection and transmission matrices for waves incident upon a general point support or a 
change in cross-section can be combined with the transfer matrix method to analyze the free 
vibration of a rotating Timoshenko shaft with multiple supports and discontinuities, and general 
boundary conditions. The basic idea of this technique has been shown in Ref. [6]. However, due 
to the complex wave motions in the Timoshenko shaft model, such as the frequency dependency 
of the wave reflection and transmission at a cross-section change, it is important to apply the 
proper reflection and transmission matrices consistent with the values of A and B on both sides of 
the discontinuity, particularly when numerical calculations are performed. Consider for example 
the free vibration problem of the rotating Timoshenko shaft model shown in Fig. 17. Denoting R 
as a reflection matrix which relates the amplitudes of negative and positive travelling waves at a 
discontinuity, and defining T, as the field transfer matrix which relates the wave amplitudes by 

C+(z0 + z) = TC+(z0), C-(z0 + z) = T-,C-(Zo), (55) 

the following relations can be found. 
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wj = R5W; , (R, = r5), 

wr„=R*w*> 
i = 2,3,4 (station number), 

\i = left (/) or right (r) 

w-=T,w-,, 

w+ =T w+ 
"2;     Ai"i • 

where in Eqn. (56b), 

R,r = T;R,.+UT\, R„ =r, +t,.(R~' -r,)_1t, 

Solving the above matrix equations gives 

(r.T.R^-Dw^O, 

(56a) 

(56b) 

(56c) 

(56d) 

(56e) 

(56f) 

(57) 

where each element of the matrix is a function of two different wavenumbers and the frequency 
co. For non-trivial solutions, the natural frequencies are obtained from the characteristic equation 

Det[(r,T,R2,T4-I)] = 0. (58) 

The proposed method is applied to an example of a two-span rotating shaft, simply supported 
at the ends and with an intermediate support consisting of translational and rotational springs, as 
shown in Fig. 18. Numerical computations were performed by a PC-based Mathematical. The 
values of the spring constants KT and KR are those introduced in Section 3.2, with <=lm and 
the rotation parameter ß = 0.05. 

Figure 18. A simply-simply supported, rotating two-span shaft with intermediate supports. 
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Figure 19 shows the first eight natural frequencies of the vibrating shaft for both the TM and 
EB models for a classical simple intermediate fixed support (KT-><*>, KR=0) placed at 
various locations. The results confirm the well-known fact that the Timoshenko model leads to 
smaller eigenvalues. Figure 20 shows the first eight natural frequencies of the Timoshenko shaft 
for an elastic intermediate support with three different translational spring constants. It can be 
seen that the effect of the translational spring diminishes for higher modes. The proposed wave 
analysis technique can also be applied effectively to the study of structural mode localizations in 
mistuned, rotating systems. Dynamics of such systems will be addressed in another paper. 

0.50 0.55 
Support location, d 

0.45 0.50 0.55 
Support location, d 

Figure 19. Natural frequencies of a two-span, rotating 
shaft as a function of the support location; intermediate 
support is fixed. 

Figure 20. Natural frequencies of a two-span rotating 
Timoshenko shaft as a function of the support location; 
intermediate support consists of k, and kr. 

7. SUMMARY AND CONCLUSIONS 

In modern high speed rotating shaft applications, it is common that the shaft has multiple 
intermediate supports and discontinuities such as bearings, rotor masses, and changes in cross- 
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sections. In many cases, the ratio of the shaft diameter to its length between consecutive supports 
is large, and the Timoshenko model (TM) is needed to accurately account for the shear and rotary 
inertia effects. In this paper, the wave propagation in a rotating, axially strained Timoshenko 
shaft model with multiple discontinuities is examined. The effect of the static axial deformation 
due to an axial load is also included in the model. Based on results from Ref. [7], there are four 
possible types of wave motions (Cases I, II, III and IV) in the Timoshenko shaft, as shown by 
Eqns. (5a-8b). In practice, Case III does not occur and is excluded in the analysis. For each 
Case, the wave reflection and transmission matrices are derived for a shaft under various support 
and boundary conditions. Results are compared with those obtained by using the simple Euler- 
Bernoulli model (EB) and are summarized as follows. 

1) In general, the two shaft models show good agreement in the low frequency range where the 
wave motion is governed by Case II and Case IV. However, at high frequencies, the types of 
wave motions and propagation characteristics for the TM and EB models are very different. 

2) The effects of shaft rotation on the wave reflection and transmission are negligible over the 
entire frequency range and even at high speed (up to 44,600 rpm). While the effects of the 
axial load are significant, especially in the low frequency range. 

3) When waves are incident at supports with only translational springs, differences in the results 
between the TM and EB models are small, and there exists frequency regions of impedance 
matching and an impedance mismatching frequency (limited to within the regime of Case II). 
The impedance matching and mismatching disappear when a rotational spring is added to the 
support. Instead, there is a frequency at which Irnl = 0 and Ifnl = 1, and vibrations on both 
sides of the support become strongly coupled. This (delocalization) phenomenon suggests 
further research on the vibrations of constrained multi-span beams. When there is damping 
at the support, the frequency at which Irnl = 0 does not occur. Moreover, effects of 
translational damping on the wave propagation are more significant at high frequency, 
especially for the TM model, however effects of rotational damping is not significant over the 
entire frequency range. 

4) Contributions of attenuating wave components to the energy in the reflected and transmitted 
waves are significant when the shaft is axially strained and when the support has a rotational 
constraint. Thus attenuating waves should be included in the formulation. 

5) Unlike the spring supports, in which waves are easily transmitted at high frequency, the rotor 
mass support diminishes the wave transmission as the frequency increases. 

6) When waves are incident at a geometric discontinuity such as a change in the cross-section, 
there are nine possible combinations of wave motions on both sides of the discontinuity. It is 
shown that differences of the results between the TM and EB models depend on the diameter 
ratio (and hence the direction of the wave incidence). Moreover, incident attenuating waves 
contribute more energy to propagating waves at the discontinuity when the waves travel from 
a smaller to a larger cross-section. When the shaft is axially strained, the effects of the load 
on the wave propagation are primarily limited to the low frequency range. 

The reflection and transmission matrices are combined with the transfer matrix method to 
provide a systematic solution method to analyze the free vibration of a multi-span, rotating shaft. 
Since the procedure involves only 2x2 matrices (while including the near-field effects already), 
strenuous computations associated with large-order matrices are eliminated. 
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APPENDIX I 

The reflection and transmission matrices for a wave incident upon a generalized support for 
the simple Euler-Bernoulli shaft model can be obtained by solving the following sets of matrix 
equations. Asterisks in the equation numbering denote correspondence to the equations for the 
Timoshenko model. 

CaseII(A>0, 5<0): 

1 

-AT,    - 

1 
c* + 

"   1 

F2. 

~-r >2   r 
3 

-2 
2 

r2. 

c+ + 

rC+ = 

-iT 

1        1 

-iT,   -r, 
tcr, 

1 2 

r3 rC+ 

(29a) 

-r,2 + iT,(kr + icrco- Jmco2)   r2 + r,(kr + icrco- Jma
2) 

(k, - ma2) + i(c,co + F3) (k, -mco2 - T,3) + ic,a> 
tc\ (29b) 

CaseIV{A<0, B<0): 

1 

-iT2    - 

1 " 

-r,. 
c+ + 

"    1 

iT 

r 
2  r,_ 

rC+ = 
- 

-r I   r 
3 
2 k c

+ + '-r,
2 

-ir3 r, 

iT, 
tc\ 

rCT 

(30a*) 

• r2 + iT., (kr + icrCO - JmC02)    r2 + T, {kr + icrco - /,„©2)' 

(k, -mC02) + i(c,CO + rl) {k, -mm2 -T?) + ictco 
tcr, (30b) 

where, the following non-dimensional parameters are employed. 

k,=- 
K,ao 
El •.*,= 

Kra0 

El ". c, £/ 
£^,m = ^,/ro=Z^,andc       £     (25*) 
El pi       m      El \P 
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For simple and clamped supports, the reflection and transmission matrices are listed as follows. 

• Simple support (k, = <*>, kr = m = c, = cr = Jm = 0) 

CaseII{A>0, S<0): 

1 
;r,-r2 

CaseIV(A<0, B<0) 

1 

r2    r2 

-iT,    -iT, 
t = - 

iT,+r. IT12L     * 2 

-iT,    -iT, 1 

■2j 
ir,+r, 

»T,    r,' 
-IT,  -iy 

r2   -,T, 

-r,   IT, 

• Clamped support (fc, = °°, &r = <*>, m = c, = cr = 7„, = 0); t = 0. 

CaseII(A>0, B<0): 

1 iT,+r, 2T, 

Ca.se/V(A<0, S<0): 

;r,+r, 

-2IT,   -(/r,+r2) 

-ar,-r2)   -2/r, 
-2r,     jr.-r. 

(32a*, b*) 

(33a*, b*) 

(35*) 

(36*) 

APPENDIX II 

The reflection and transmission matrices for a wave incident upon a cross-sectional change 
for the simple Euler-Bernoulli shaft model can be determined by solving the following sets of 
matrix equations. Only two representative combinations are shown. 

Case II (A, >0, B, < 0) - Case II {Ar >0, Sr<0): 

C+ + rC+ = 
-jr.,  -r„        iT„  r„ -ir„  -r,. 

tcr 

-r2   r2 

iT3   -r3 c+ + 
-tr„ 

* 21 

r3 rC+ -o-T,2    a4r2
r 

*o-4r3   -o-4r3, 
tcr 

(38a) 

(38b) 
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Case II (A, >0, B, <0)- Case IV (Ar < 0, Br<0): 

l      l 

-ir„   -r2,_ 
c f + 

" 1     1" 

.*T„  r2,_ 
rC+ 

a 
r2   r2 - 
M/        i2/ 
-3           p3 

1/           '■11. 

c+ 
+ 

-Z 

^2       p2 " 
1/       * 2/ 

p3       p3 
1 U      12/. 

r< "i+    

I 

1 

-zT\, 

1 
tc+, 

tc+, 

where, Tir and IV have been defined in Eqns. (45c, d), and Ar and Br are given by 

(39a) 

(39b) 

A=-2ßä-l6-r, 

B = -16- 
.co~ 

(46a) 

(46b*) 

APPENDIX HI 

The reflection matrices for a group of waves incident upon a general boundary for the Euler- 
Bernoulli shaft model are listed as follows. 

CaseII(A>0, B<0): 

■r.cr.+sj r2(r2-zm) 
2-z'r,3 2,+r;3 

T.cr.-iLj -r2(r2 + 2„,y 
-2 -zT,3 2,+r3 

Cattr/V(A<0, S<0): 

-r2(r2+z,„) r,(r,-zj 
2,-JT,

3
       2s+r,3 j 

T^-ffij -r^r. + x,,,)' 
-2 -zT3 £,+r,3 

where, 
2„, = y,„ö)2 - fcr - ic,.ö), and 2, =k,-ma1 + ic,co. 

(49*) 

(50*) 

(51a*, b*) 

If the rotating shaft is strain-free, then r can be reduced to simple forms representing typical 
boundary conditions such as simple support, clamped support, and free end as shown in Ref. [6]. 
Note that for those supports in the strain-free case, the reflection matrices are constant. 
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ANALYTICAL MODELLING OF COUPLED VIBRATIONS OF 
ELASTICALLY SUPPORTED CHANNELS 

YavuzYAMAN 
Department of Aeronautical Engineering, Middle East Technical University 

06531 Ankara, Turkey 

An exact analytical method is presented for the analysis of forced vibrations 
of uniform thickness, open-section channels which are elastically supported at 
their ends. The centroids and the shear centers of the channel cross-sections do 
not coincide; hence the flexural and the torsional vibrations are coupled. Ends 
of the channels are constrained with springs which provide finite transverse, 
rotational and torsional stiffnesses. During the analysis, excitation is taken in 
the form of a point harmonic force and the channels are assumed to be of type 
Euler-Bernoulli beam with St.Venant torsion and torsional warping stiffness. 
The study uses the wave propagation approach in constructing the analytical 
model. Both uncoupled and double coupling analyses are performed. Various 
response and mode shape curves are presented. 

1. INTRODUCTION 

Open-section channels are widely used in aeronautical structures as stiffeners. 
These are usually made of beams in which the centroids of the cross-section 
and the shear centers do not coincide. This, inevitably leads to the coupling of 
possible flexural and torsional vibrations. If the channels are symmetric with 
respect to an axis, the flexural vibrations in one direction and the torsional 
vibrations are coupled. The flexural vibrations in mutually perpendicular 
direction occur independently. In the context of this study, this type of 
coupling is referred to as double-coupling. If there is no cross-sectional 
symmetry, all the flexural and torsional vibrations are coupled. This is called 
as triple-coupling. The coupling mechanism alters the otherwise uncoupled 
response characteristics of the structure to a great extent. 

This problem have intrigued the scientists for long time. Gere et al [1], Lin 
[2], Dokumaci [3] and Bishop et al [4] developed exact analytical models for 
the determination of coupled vibration characteristics. All those works, though 
pioneering in nature, basically aimed to determine the free vibration 
characteristics of open-section channels. 

The method proposed by Cremer et al [5] allowed the determination of 
forced vibration characteristics, provided that the structure is uniform in 
cross-section. The use ofthat method was found to be extremely useful when 
the responses of uniform structures to point harmonic forces or line harmonic 
loads were calculated.   Mead and Yaman presented analytical models for the 
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analysis of forced vibrations of Euler-Bernoulli beams [6]. In that they 
considered finite length beams , being periodic or non-periodic, and studied 
the effects of various classical or non-classical boundary conditions on the 
flexural response. Yaman in [7] developed mathematical models for the 
analysis of the infinite and periodic beams, periodic or non-periodic Kirchoff 
plates and three-layered, highly damped sandwich plates. 

Yaman in [8] also developed analytical models for the coupled vibration 
analysis of doubly and triply coupled channels having classical end boundary 
conditions. In that the coupled vibration characteristics are expressed in 
terms of the coupled wave numbers of the structures. The structures are first 
assumed to be infinite in length, and hence the displacements due to external 
forcing(s) are formulated. The displacements due to the waves reflected from 
the ends of the finite structure are also separately determined. Through the 
superposition of these two, a displacement field is proposed. The application 
of the end boundary conditions gives the unknowns of the model. The 
analytical method yields a matrix equation of unknowns which is to be solved 
numerically. The order of the matrix equation varies depending on the number 
of coupled waves. If the cross-section is symmetric with respect to an axis 
( double-coupling) and if the warping constraint is neglected, the order is six. 
If there is no cross-sectional symmetry (triple-coupling) and if one also 
includes the effects of warping constraint, the order then becomes twelve. 
This order is independent of the number of externally applied point forces. 
Although the method is basically intended to calculate the forced response 
characteristics, it conveniently allows the computation of free vibration 
characteristics as well. The velocity or acceleration of a point can easily be 
found. The mode shapes can also be determined. Both undamped and damped 
analyses can be undertaken. 

This study is based on the models developed in reference [8] and aims to 
analyze the effects of non-classical end boundary conditions on the coupled 
vibratory responses. If the ends are elastically supported (which may also have 
inertial properties) the problem becomes so tedious to tackle through the 
means of classical analytical approaches. The current method alleviates the 
difficulties encountered in the consideration of complex end boundary 
conditions. 

In this study a typical channel, assumed to be of type Euler-Bernoulli beam, is 
analyzed. It represents the double-coupling. Effects of the elastic end 
boundary conditions on the resonance frequencies, response levels and mode 
shapes are analyzed. Characteristics of otherwise uncoupled vibrations are 
also shown. 
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2. THEORY 

2.1 Flexural Wave Propagation in Uniform Euler-Bernoulli Beams 

Consider a uniform Euler-Bernoulli beam of length L which is subjected to a 
harmonically varying point force F0 e imt acting at x=xf. The total flexural 
displacement of the beam at any xr (0 < xr < L) can be found to be [5-8], 

w(xr ,t) = ( I An ek
n x r + F0 i an e \ ' Vr'    ) e tot (1) 

The first series of the equation represents the effects of four waves which are 
being reflected from the ends of the finite beam. They are called free-waves. 
The second series accounts for the waves which are being created by the 
application of the external force F0 e 

imt on the infinite beam. Those waves are 
known as forced-waves. kn is the n'th wave number of the beam and 
kn =(ma>2/EI)"4 where m= Mass per unit length of the beam, co= Angular 
frequency, EI= Flexural rigidity of the beam. a„ values are the complex 
coefficients which are to be found by satisfying the relevant compatibiliy and 
continuity conditions at the point of application of the harmonic force [6,7]. 
An values, on the other hand are the complex amplitudes of the free waves and 
are found by satisfying the required boundary conditions at the ends of the 
beam. Once determined, their substitution to equation (1) yields the flexural 
displacement at any point on the finite beam due to a transversely applied 
point harmonic force. More comprehensive information can be found in [7]. 

2.2 Torsional Wave Propagation in Uniform Bars 

If one requires to determine the torsional displacements generated by a point, 
harmonically varying torque, a similar approach to the one given in Section 
2.1 can be used. In that case, the total torsional displacement can be written as: 

*(xr,t) = (zB„ek„\+T0be-klYx
t
l    ) e iwt (2) 

n = i 

k is the wave number of the purely torsional wave and is known to be 
k=(-pI0co2/GJ)"2 . k2= -k| and GJ=Torsional rigidity of the beam, p=Material 
density, I0=Polar second moment of area of the cross-section with respect to 
the shear centre. T0e

m ' is the external harmonic torque applied at x=xt and 
b=l/(2kGJ). Bn values are the complex amplitudes of the torsional free-waves 
and are found by satisfying the appropriate end torsional boundary conditions. 

The consideration of the warping constraint T0 modifies equation (2) to the 
following form. 
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4(xr,t) = (ZCne
k

n\+To2cneVYV    ) e m (3) 
n-l ml 

Now kn are the roots of 

Er0k„4-GJkn2-pI0co2=0 (4) 

cn values are found by satisfying the necessary equilibrium and compatibility 
conditions at the point of application of the point harmonic torque acting on an 
infinite bar [8]. C„ values are determined from the end torsional boundary 
conditions of the finite bar. 

2.3   End Boundary Conditions for Uncoupled Vibrations 

2.3.1 Purely Flexural Vibrations 

Consider an Euler-Bemoulli beam of length L which is supported by springs at 
its ends. The springs provide finite transverse and rotational constraints Kt and 
Kr respectively. The elastic end boundary conditions can be found to be: 

El w"(0) - Kr,i w'(0)=0 El w'"(0) + K,,i w(0)=0 
EIw"(L) + Kr,rw'(L)=0 EIw'"(L) -Kt,rw(L)=0 (5) 

dw(x) d2w(x)        J    ,„    d3w(x) . 
Here w'=  —. w"= ——r^    and w'"=      . 3    ■ w(x) is the spatially 

dx dx" dx 
dependent part of equation (1) and second subscripts 1 and r allows one to use 
different stiffnesses for left and right ends. A more comprehensive study on 
these aspects can be found in references [6,7]. 

2.3.2 Purely Torsional Vibrations 

Now consider a bar of length L which is supported by torsional springs, 
having finite Ktor,at its ends. The elastic end boundary conditions requires that, 

Torque (0) - Kt0r,i <b(0)=0 and Torque (L) + Ktor,, <j)(L)=0 (6) 

Depending on the consideration of the warping constraint T0, the torque has 
the following forms 

d<Kx) d<j>(x) d3(j.(x) 
Torque(x)=GJ —— or   Torque(x)= GJ —-— - El 0    , 3 (7) 
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<(>(x) in equation (7) should be obtained either from equation (2) or equation (3) 
depending on the warping constraint T0. 

2.4 Doubly-Coupled Vibrations 

Now, consider Figure 1 . It defines a typical open cross-section which is 
symmetric with respect to y axis 

y,5<- 

1 

i 

Z 

1 

c 
4 c 

Pz 
0 

1 

V z 

(a) 

: y.^ <- 
Pzcy 

to 
p, 

(b) 

Figure 1 : A Typical Cross-section of Double-coupling 
( a. Coordinate System, b. Real and Effective Loadings 

C: Centroid, O: Shear Centre) 

A transverse load applied through C results in a transverse load through O and 
a twisting torque about O. In this case the flexural vibrations in z direction are 
coupled with the torsional vibrations whereas the flexural vibrations in y 
direction occur independently. The motion equation of the coupled vibrations 
is known to be [1,2]. 

<?4w       92w <92<j) 

a4<i>      d2§       a2w      a2<t>  „ 
Eroä^"GJäx^+c>m^+pI°^=0 at2 at2 (8) 

If one assumes that, 

w(x,t) = wneVeiffit 

(Kx^^eVe^ (9) 
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Then, it can be found that, a load Pz through the centroid will create the 
following displacements at any x (0 < x < L) along the length of the 
channel [8], 

w(x,t) = (|Ane
k

n
x+Pziane-k

n
lx-xf

l  )etot 

<j>(x,t) = (£ ¥nAn e
k n

x + Pz t Tn an e^1 ™f') e 
m (10) 

n-l n-t 

Now kn values are the coupled wave numbers, An values are the complex 
amplitudes of the coupled free waves, a„ values are the complex coefficients 
which are to be found by satisfying the required compatibility and continuity 
conditions and ¥„= ((EI5 kn

4-mco2) / (cymco2)) [8]. 

If required, the warping displacement u(x,t) can be found from <|>(x,t )as 

u(x,t)=.2As^ (11) 
ox 

where As is the swept area. 

Here 2j gives the order of the motion equation. j=3 defines the case in which 
the effects of warping constraint are neglected and j=4 represents the case 
which includes the warping effects. 

A„ values are found by satisfying the necessary 2j end boundary conditions. If 
warping constraint is neglected, the required six boundary conditions have the 
general forms given in equations (5) and (6). But the forms of w(x) and <j>(x) 
are now those given by equations (10) with j=3. If the warping constraint is 
included in the analysis the boundary conditions become eight. The six of 
those are again found by considering equations (10) with j=4 and substituting 
the resultant forms into equations (5) and (6). The remaining two can be 
found by evaluating equation (11) at both ends. 

When the flexural and torsional displacement expressions are substituted into 
the relevant equations, a set of equations is obtained. For the case of a load 
Pz and no warping constraint, the following equations can be found for j=3. 

EI5w"'(0) + Kt,iw(0)=0 

Els (E kn3 A„+ (-1) Pz£ - k,,3 a „ e -kn' 
x
f' ) 

+ Kt,i(£
iAn+PzZan e-k

n
lx

f')=0 (12) 
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EI$w"(0) - Kr,i w'(0)= 0 : 

EI4( £ kn
2An + Pz i kn

2an eV V) 

-Kr;I(iknAn+ Pz£-knan eV x
f')=0 (13) 

dd)(x), 

dx 
u -k   I x   k GJ( £ kn Tn A„+ (-1) (Pz Cy) £ "kn^nan e "V Xf ') 
n-l n>I 

-K«or.i ( 2 ^n An + (Pz c,) t »P„ an e "k „' x
f ')=0 (14) 

dd>(x), 
GJ-^lx=L+Ktor,r <|>(L)=0: 

dx 

GJ( Ik„T„ An ek„L+ (Pz cy) £-knTn an e-k„lL"x
f') 

+ Kt0r,r (!%An ek
n

L +  (Pzcy) £ Wnan e_k
n' L" "f ')=0 (15) 

EI4w"(L)+ Kr,rw'(L)=0: 

Els (2 kn
2Ane

k
n

L+(Pz) i kn
2an e "kn'

L'xf'  ) 

+ Kr,r ( £ k„A„ ekn
L+ (Pz) Z-kna„ e"k„|L'xf' )=0 (16) 

EIsw'"(L)-Kt,rw(L)=0: 

Ekd k„3Ane
k

n
L +(PZ)   i-k„3an e^n'^r1  ) 

-Kt,,(E Ane
k„'+(PZ)  i ane-kn

luV)=0 (17) 

Here (-1) multipliers are included due to the symmetry and anti-symmetry 
effects. 

Those equations can be cast into the following matrix form. 

-{Terms containing Pz} (18) 
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An eighth order equation represents the necessary matrix equation for the 
determination of A„ values if the warping constraint is included in the analysis. 
In that case, equations (12), (13), (16) and (17) are valid with j=4. On the other 
hand equations (14) and (15) should be replaced by, 

(GJ—:—-Er0—r-j— )lx=o  -Ktor,i <p(0)-0 • 
dx dxJ 

(GJ( £ k„ ^n A„+ (-1)(Pz cy) £ -knTnan e *„' x
f') - 

n°I n-l 

Er0( £ kn3 T„ A„ + (-1) (P2 cy) i -kn 3 ¥„ an e -k „' x
f')) 

-K,or,l ( Z ^n An + (Pz Cy) £ »P„ an e * „' "f ')=0 (19) 

_Td*(x) d (j)(x) , ,wM-n- 
(GJ —  Er0 3     )l x=L   + Ktor,r <KL) ~0 ■ 

dx 
2j 

dxJ 

~k L •k   iL-x  I (GJ( 2 k„ T„ A„ eV + (Pz cy) £ -k„ ¥„ a„ e "K „   ' xf )- 

Er0( 2 k„3 ¥n An e
k
n

L+ (Pzcy) i-k„3^nan e"k„lL-Xf')) 

~k L +  Ktor,r  ( 2 ^n A„ e\L +    (Pz Cy)  £ T„ 8„ e * „ 
k   I L- x ')=0 (20) 

where j=4. The remaining two equations are found by considering the warping 
of the extreme ends. If the ends are free to warp the axial stress is zero, if the 
ends are not to warp the axial displacements are zero at both ends. No elastic 
constraints are imposed on end warping. If the left end is free to warp and the 
right end is not to warp, the required boundary conditions can be shown to be: 

u'(0)=0 : (2 kn
2 y„ An + Pz £ T„ an kn

z e "Kn '   t) = 0 

k     IL-x   k u(L)=0 :(2 kn e\L ¥„ An + Pz2 ^a,, (-kn) e"\ ,LV) = 0 

All the equations can be put into the following matrix form 

(21) 

(22) 

= -{Terms containing Pz} (23) 
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Required An values are numerically found from equations (18) or (23). Their 
substitution to the appropriate forms of equations (10) and (11) yield the 
required responses at any point on the beam. 

3.RESULTS AND DISCUSSION 

The theoretical model used in the study is shown in Figure 1 and has the 
following geometric and material properties: 

L=l(m), A= 1.0*1 O^m2),  h = 5.0*10"2 (m),   I5 = 4.17*10-8 (m4), 
cy = 15.625*10"3 (m), J = 3.33*10"" (m3), Io=7.26*10"8 (m4), p= 2700 (kg/m3), 
ro=2.85*10-12(m6),E = 7*1010(N/m2), G = 2.6* 10,0(N/m2). 

Structural damping for torsional vibrations is included through, complex 
torsional rigidity as GJ*=GJ(l+fß). For coupled vibrations, it is also included 
through the complex flexural rigidity as EIs*= EI^I+Z'TI). 

First presented are the results for purely torsional vibrations. A bar assumed to 
have the given L, p, I0, G and J values is considered. The bar is then restrained 
at both ends by springs having the same torsional stiffness Ktor. A very low 
damping, ß=10"6, is assigned and the resonance frequencies are precisely 
determined. It is found that, the introduction of a small Ktor introduces a very 
low valued resonance frequency. That fundamental frequency increases with 
increasing Ktor and as torsional constraint reaches to very high values, it 
approaches to the fundamental natural frequency of torsionally fixed-fixed 
beam. Table 1 gives the fundamental frequencies for a range of Ktor values and 
Figure 2 represents the fundamental mode shapes for selected Ktor values. 

Table 1: Uncoupled Fundamental Torsional Resonance Frequencies 

(ß= =io-' ',No Warping Constraint) 

Ktor rNi Frequency \Hz] 

0 0. 
io-2 1.606 
10-' 5.035 
10° 14.683 
10' 28.407 
102 32.678 
103 33.187 
104 33.239 
1020 33.245 
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Figure 6 on the other hand represents the low frequency torsional receptances 
of the case in which the warping constraint is taken into consideration and 
the ends are free to warp. This graph is included in order to show the variation 
of fundamental torsional resonance frequencies for a range of Ktor values. 

~*~ K,ar= 5.10 J 
GS360K10,= 1.10'? 
m*4 K,„= 5-10-; 
aaaaaK10,= i.io" 
»M«K,^ 5« 10 
□BBBQK,„= 1.10° 

FREQUENCY (Hz) 

Figure 6. Fundamental Frequencies of Purely Torsional Vibrations 
(ß=0.01, x=0.13579[m],Warping Constraint Included, Ends are Free to Warp) 

The second part of the study investigates the characteristics of doubly-coupled 
vibrations. Now, the effects of each constraint are separately considered. A 
channel having the given parameters is supported at its ends by springs Kt, Kr, 
and Ktor. Warping constraint is included in the analysis and the ends are 
assumed to warp freely. First analyzed is the effects of Kt0r. For this Kt =1020 

[N/m] and Kr=1020 [N] are assigned at both ends of the channel and kept fixed 
throughout the study. Ktor is varied and the frequencies are shown in Table 2. 

Table 2 Effects of Ktnr in Doublv-coupled Vibrations 
(K,=1020 [N/m] and Kr=1020 [N], Warping Constraint Included) 
A: First Torsion Dominated Frequency [Hz] 
B: First Flexure Dominated Frequency [Hz] 

Ktor [N] A B 
KT2 1.607 134.603 
10-' 5.069 134.936 
10° 15.620 138.258 
10' 39.725 169.247 
102 56.691 318.423 
10J 59.528 422.061 
104 59.828 430.642 
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F=   1.606 Hz.K^lO"' 
F=   5.035 Hz,Kl0,= 10:' 

t+t+t F= 14.682 Hz,K„,= 10° 
aaaaa F=28.407 HZ,K1O,=IO°! 

F=33.187 Hz,K,„=10M 

ND  LENGTH 

Figure 2. Fundamental Mode Shapes of Purely Torsional Vibrations 
(ß=0, No Warping Constraint) 

Then, the warping constraint F0 is included in the analysis and the results of 
purely torsional vibrations are presented again. The beam had the same Kt0r 
values at both ends and the numerical values of the relevant parameters are 
taken to be those previously defined. Figure 3 represents the fundamental 
mode shapes for which the ends are free to warp, whereas Figure 4 shows the 
mode shapes of the case in which there is no warping at the ends. 

F=     1.607 Hz 
F=     5.069 Hz 

ff+H F=   15.623 Hz 
aaaaa F= 39.790 Hz 

F=  59.785 Hz 

0.4 0.6 
ND  LENGTH 

K,„=10 , 
K,.,= 10-' 
Kw='0° 
K,„=10' 
K^IO* 

Figure 3. Fundamental Mode Shapes of Purely Torsional Vibrations 
(ß=0, Warping Constraint Included, Ends are Free to Warp) 
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F=     1.607  Hz 
oseeoF=   5.080 Hz 
W+t F=  15.975 Hz 
iv>AAAr= 47.769  Hz 

F= 117.205 Hz 

K,„=10 * 
KIO,=IO:' 
K,„=10° 
K,.,= 10! 
K,„=105 

0.4 0.6 
ND  LENGTH 

Figure 4. Fundamental Mode Shapes of Purely Torsional Vibrations 
(ß=0, Warping Constraint Included, Ends Can Not Warp) 

Figure 5 is drawn to highlight the effects of end warping. Both ends of the 
channel are restrained with Ktor=l*10' [N] and all the other parameters of the 
study are kept fixed. Figure 5 represents the direct torsional receptances of 
two cases in which the ends of the channel are allowed to warp and not to 
warp in turn. It can be seen that the prevention of end warping increases the 
resonant frequencies. 

10 i 

Ends con  warp 
Ends  con   not  warp 

100.0 150.0 200.0 
FREQUENCY (Hz) 

250.0 

Figure 5. Frequency Response of Purely Torsional Vibrations 
(ß=0.01, x=0.13579 [m], K,or=l*10' [N], Warping Constraint Included) 
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It can be seen that, when it has lower values Ktor is more effective on the 
torsion dominated resonance frequencies. For the higher Ktor values, the 
effects are more apparent on the flexure dominated frequencies. 

Figure 7 represents the direct flexural receptance of the channel for 
a set of selected end stiffnesses. Torsion dominated resonances at 59.528 [Hz], 
206.071 [Hz] and 476.649 [Hz] appear as spikes. The flexure dominated 
resonance occurs at 422.061 Hz. 

10 "n 

o  10 
< 

10 ■'■ 

!-,  TO' 

10 
200.0        300.0 
FREQUENCY   (Hz) 

400.0 

Figure 7. Frequency Response of Doubly-coupled Vibrations 
(rpO.001, ß=0.001, x=0.13579[m], Warping Constraint Included, 
Ends are free to warp, Kr=1.1020[N], Kt=1.1020 [N/m], Ktor=1.103 [N]) 

Then the effects of the rotational spring, Kr, are considered. The ends of the 
channel are assumed to be restrained with Kt =10 [N/m] and Ktor =10 [N]. 
The resulting frequencies are given in Table 3 for a range of Kr values. 

Table 3 Effects of Kr in Doublv-counled Vibrations 
(Kt=1020 [N/m] and Ktor =1020 [N], Warping Constraint Included) 
A: First Torsion Dominated Frequency [Hz] 
B: First Flexure Dominated Frequency [Hz] 

KrfNl A B 

io-2 58.678 205.344 
10° 58.679 205.358 
102 58.699 206.688 
103 58.858 218.055 
104 59.437 289.738 
105 59.799 405.667 
106 59.855 429.345 
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It is seen that Kr is not effective on torsion dominated resonance frequencies, 
but plays significant role for flexure dominated resonance frequencies. 

Finally considered the effects of the transverse spring Kt. Again, the channel is 
assumed to have very high Kr and Ktor values at both ends and Kt values are 
varied. Table 4 shows the resonance frequencies. 

Table 4. Effects of K, in Doubly-coupled Vibrations 
(Kr=1020 [N] and Ktor=1020 [N], Warping Constraint Included) 
A: First Torsion Dominated Frequency [Hz] 
B: First Flexure Dominated Frequency [Hz] 

K,   [N/ml                 A B 
10'                          1.369 70.455 
102                        4.328 70.501 
10J                       13.592 70.973 
104                       39.282 77.379 
10s                       58.095 159.665 
106                       59.699 361.255 
108                       59.860 431.215 

It can be seen that the transverse stiffness, like torsional stiffness, effects both 
flexure and torsion dominated frequencies. 

4.CONCLUSIONS 

In this study, a new analytical method is presented for the analysis of forced 
vibrations of open section channels in which the flexible supports provide the 
end constraints. The dynamic response of open section channels is a coupled 
problem and their analysis requires the simultaneous consideration of all the 
possible vibratory motions. The wave propagation approach is an efficient tool 
for this complicated problem and the developed method is based on that. 

The current method analyzes the forced, coupled vibrations of open section 
channels. The channels, taken as Euler-Bernoulli beams, have uniform cross- 
section and a single symmetry axis. That consecutively leads to the coupling 
of flexural vibrations in one direction and torsional vibrations. The excitation 
is assumed to be in the form of a harmonic point force, acting at the centroid. 
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Various frequency response curves of uncoupled and coupled vibrations are 
presented for a variety of different elastic end boundary conditions( which may 
also have the inertial properties). The developed method, although aimed at 
determining the forced vibration characteristics, is also capable of determining 
the free vibration properties. This is also demonstrated by presenting various 
mode shape graphs. It has been determined that the transverse and the torsional 
stiffnesses play more significant role as compared to the rotational stifness. 

The method can be used in analyzing the effects of multi point and/or 
distributed loadings. This can simply be achieved by modifying the terms of 
the forcing vector without increasing the order of the relevant matrix equation. 
The developed method can also be used in the analysis of elastically 
supported, triply-coupled vibrations of uniform channels. Results ofthat study 
will be the subject of another paper. 
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ABSTRACT 

Much previous work has appeared on the response of a two-dimensional 
periodic structure to distributed loading, such as that arising from a harmonic 
pressure wave. In contrast the present work is concerned with the response 
of a periodic structure to localised forcing, and specifically the response of the 
system to both harmonic and impulsive point loading is considered by 
employing the method of stationary phase. It is shown that the response can 
display a complex spatial pattern which could potentially be exploited to 
reduce the level of vibration transmitted to sensitive equipment. 

1. INTRODUCTION 

Many types of engineering structure are of a repetitive or periodic 
construction, in the sense that the basic design consists of a structural unit 
which is repeated in a regular pattern, at least over certain regions of the 
structure. An orthogonally stiffened plate or shell forms one example of an 
ideal two-dimensional periodic structure in which the fundamental structural 
unit is an edge stiffened panel. Although a completely periodic structure is 
unlikely to occur in practice, much can be ascertained regarding the structural 
dynamic properties of a real structure by considering the behaviour of a 
suitable periodic idealization. For this reason, much previous work has been 
performed on the dynamic behaviour of two-dimensional periodic structures, 
with particular emphasis on free vibration and the response to pressure wave 
excitation [1,2]. However, no results have yet been appeared regarding the 
response of two-dimensional periodic structures to point loading (as might 
arise from equipment mounts), and this topic forms the subject of the present 
work. A general method of computing the response to both harmonic and 
impulsive loading is presented, and this is then applied to an example system. 

Initially the response of a two-dimensional periodic structure to harmonic 
point loading is considered, and it is shown that the far-field response can be 
expressed very simply in terms of the "phase constant" surfaces which 
describe the propagation of plane waves.    It is further shown that for 
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excitation within a pass band two distinct forms of response can occur: in the 
first case the amplitude of the response has a fairly smooth spatial distribution, 
whereas in the second case a very uneven distribution is obtained and "shadow 
zones" of very low response are obtained. The second form of behaviour is 
related to the occurrence of caustics (defined in section 3.3), and the 
distinctive nature of the response suggests that a periodic structure might be 
designed to act as a spatial filter to isolate sensitive equipment from an 
excitation source. 

Attention is then turned to the impulse response of a two-dimensional periodic 
structure. It is again shown that the response can be expressed in terms of the 
phase constant surfaces which describe the propagation of plane waves. The 
application of the method of stationary phase to this problem has a number of 
interesting features, the most notable being the fact that four or more 
stationary points can arise. It is found that a surface plot of the maximum 
response amplitude against spatial position reveals features which resemble the 
"caustic" distributions obtained under harmonic loading. 

2. RESPONSE TO A HARMONIC POINT LOAD 

2.1 Modal Formulation and Extension to the Infinite System 
A two-dimensional periodic structure consists of a basic unit which is repeated 
in two directions to form a regular pattern, as shown schematically in Figure 
1. Each unit shown in this figure might represent for example an edge 
stiffened curved panel in an aircraft fuselage structure, a three-dimensional 
beam assembly in a roof truss structure, or a pair of strings in the form of a 
" + " in a cable net structure. The displacement w of the system can be 
written in the form w(n,x), where n={nx n-} identifies a particular unit and 
JC = (X, x2 Xj) identifies a particular point within the unit. The coordinate 
system x is taken to be local to each unit, and the precise dimension of both 
x and the response vector w will depend on the details of the system under 
consideration. 

The present section is concerned with the response of a two- 
dimensional periodic structure to harmonic point loading of frequency co. In 
the case of a system of finite dimension, the response at location (n,x) to a 
harmonic force F applied at (0,JCO) can be expressed in the standard form [3] 

^)=EE^^M^, (1) 
P    g w   {\+iri)-us2 

where r\ is the loss factor, 4>pq(n,x) are the modes of vibration of the system 
and upg are the associated natural frequencies. The modes 4>pq which appear 
in equation (1) are scaled to unit generalized mass, so that 
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£ £ f p(x)<j>T
pq(n,x)<l>pq(n,x)dx=l, (2) 

where V represents the volume (or equivalent) of a unit and p(x) is the mass 
density. The present concern is with the response of an infinite system, or 
equivalently the response of a large finite system in which the vibration decays 
to a negligible level before reaching the system boundaries. In this case the 
response is independent of the system boundary conditions, and it follows that 
any analytically convenient set of modes can be employed in equation (1). As 
explained in reference [4], it is expedient to consider the Born-Von Kärmän 
(or "periodic") boundary conditions, as in this case the modes of vibration can 
be expressed very simply in terms of propagating plane wave components. 
In this regard it can be noted from periodic structure theory [5] that a 
propagating plane wave of frequency « has the general form 

w(n,x)=Re{g(x)exp(jeini+ie2n2+iut)}, (3) 

where ex and e2 are known as the propagation constants of the wave (with - 
ir<e,<x and ~ir<e2<ir for uniqueness), and g(x) is a complex amplitude 
function. By considering the dynamics of a single unit of the system and 
applying Bloch's Theorem [5], it is possible to derive a dispersion equation 
which must be satisfied by the triad (u,e1,e2) - by specifying ex and e2 this 
equation can be solved to yield the admissible propagation frequencies w. By 
way of example, solutions yielded by this procedure for a plate which rests on 
a grillage of simple supports are shown in Figure 2 (after reference [6]). It 
is clear that the solutions form surfaces above the e,-e2 plane - these surfaces 
are usually referred to as "phase constant" surfaces, and a single surface will 
be represented here by the equation w=0(£1,e2). The phase constant surfaces 
always have cyclic symmetry of order two, so that Q(61,e2)=Q(-e1,-e2); for an 
orthotropic system the surfaces also have cyclic symmetry of order four, and 
therefore only the first quadrant of the ere2 plane need be considered 
explicitly, as in Figure 2. 

The key point about the Born-Von Kärmän boundary conditions is that 
a single propagating wave can fully satisfy these conditions providing e^ and 
e2 are chosen appropriately. The conditions state that the left hand edge of the 
system is contiguous with the right hand edge, and similarly the top edge is 
contiguous with the bottom edge, so that the system behaves as if it were 
topologically equivalent to a torus. If the system is comprised of Nx xN2 

units, then a propagating wave will satisfy these conditions if efl^lirp and 
e2N2=2irq for any integers/? and q. Following equation (3), the displacement 
associated with such a wave can be written in the form 
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^pq{n,x)=Re{gpq(x)txp{k,pn,ne2qn2nupqt)}, (4) 

where elp and e2q are the appropriate values of the phase constants, and 
wM=0(e!;„62?). Now since 0(eIp,e2,)=0(-e1;„-e2?) it follows that a wave of 
frequency u>pq travelling in the opposite direction to wpq will also satisfy the 
boundary conditions.  This wave (wpq say) will have the form 

wpq{n,x)=Re{g;q{x)txy(-ielpnrk2qn2nwpqt)}, (5) 

where it has been noted from periodic structure theory that reversing the 
direction of a wave leads to the conjugate of the complex amplitude function 
g(x). The two waves represented by equations (4) and (5) can be combined 
with the appropriate phase to produce two modes of vibration of the system 
in the form 

*!„("»*) 
«M«'*) 

Re 

Im 
2gjx)exp(ie n^ie n2). 

(6) 

By adopting this set of modes it can be shown [4] that equation (1) can be re- 
expressed as 

N,/2 NJ1 

w(n,x)=  £     £ 
2g;,(x)FTgpq(x0)exp(-ielpnrie2qn2) (?) 

co-(l+z'ij)-u2 

where N, and N2 have been taken to be even, and the amplitude function gpq 

is scaled so that 

g=[2p(x)VN^r%(x),    (1/10 \fpq{x)f;q(x)dx=\, \fPq(x\ (8,9) 

where the normalized amplitude function fpq is defined accordingly. The 
summation which appears in equation (7) includes only those modes associated 
with a single phase constant surface 0(€,,e2); if more than one surface occurs 
then the equation should be summed over the complete set of surfaces. The 
summation will include NXN2 modes for each surface, which is consistent with 
known results for the modal density of a two-dimensional periodic structure. 

Equation (7) yields the response of a finite system of dimension Nx XN2 

to a harmonic point load - this response is identical to that of an infinite 
system if the vibration decays to a negligible amount before meeting the 
system boundaries. If the system size is allowed to tend to infinity in equation 
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(7) then neighbouring values of the phase constants elp and e2q become closely 
spaced (since d£j;,=e1J,+I-£li,=27rW1 and de2j=e2i?+l-e2?=2irW2), and in this 
case the summations can be replaced by integrals over the phase constants to 
yield 

—K -IT 
[Qie^ninr,)-^ 

where c1)=Q(e1,e2) and g(x) is the complex amplitude associated with the wave 
(w,6,,€2). The evaluation of the integrals which appear in equation (10) is 
discussed in the following sub-sections. 

2.2 Integration over e, 
The integral over e, which appears in equation (10) can be evaluated by using 
contour integration techniques. Two possible contours in the complex 6, plane 
are shown in Figure 3; to ensure a zero contribution from the segment 
Imfa)== ± °° > the upper contour is appropriate for «,<0 while the lower 
contour should be used for «2>0. For each contour the contributions from 
the segments elR=-ic and e1R=ir cancel, since the integrand which appears in 
equation (10) is unchanged by an increment of 2x in the real part of ev The 
only non-zero contribution to the integral around either contour therefore 
arises from the segment which lies along the real axis. The poles of the 
integrand occur at the el solutions of the equation 

[Q(eve2)nUir,)-^0, (11) 

for specified e2 and w. By definition there will be two real solutions1 in the 
absence of damping (77 =0) providing the frequency range covered by the 
phase constant surface includes u. Any complex solutions to equation (11) in 
the absence of damping will correspond physically to "evanescent" waves 
which decay rapidly away from the applied load. The present analysis is 
concerned primarily with the response of the system in the far field (that is, 
at points remote from the excitation source), and for this reason attention is 
focused solely on those roots to equation (11) which are real when ij=0. The 
effect of damping on these roots can readily be deduced: if 17 is small then it 
follows from equation (11) that a real solution e, will be modified to become 
6I-i(w/2)(3fi/3€I)"

1
) and hence the real pole for which BQ/de^O is moved to 

the upper half plane, while that for which dO/de,>0 is moved to the lower 
half plane.  Given that the residue at such a pole is proportional to (dQ/deJ'1, 

'One positive and one negative. These solutions will have the form ±e^ 
for an orthotropic system. 
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it follows that the sign of the residue which arises from the contour integral 
is determined by the integration path selected, and hence by the sign of nx. 
These considerations lead to the result 

win x\- ~mM f g'^expHVr'V^ (12) 

^ ' }      2TT    J 0130/36,1(1+11?) 

where ei(e2,u) is the appropriate solution to equation (11). The evaluation of 
the integral over e2 is discussed in the following section. 

3.3 Integration over e2 

Since the present concern is with the response of the system at some distance 
from the excitation point, the integral over e2 which appears in equation (12) 
can be evaluated to an acceptable degree of accuracy by using the 'method of 
steepest descent [7]. With this approach it is first necessary to identify the 
value of e2 for which the exponent -ifoni+e^) is stationary. The condition 
for this is 

{dejde2)n^n2=0. (13) 

Now et and e2 satisfy the dispersion relation, equation (11), and thus equation 
(13) can be re-expressed in the form 

(30/362)nI-(30/3£])«2=0, (14) 

where it has been noted from equation (11) that, for fixed w, del/de2=- 
(30/3e2)/(30/3e1). In the absence of damping the wave group velocity lies in 
the direction (d0/3ej 30/3e2), and in this case it follows from equation (14) 
that the group velocity associated with the required value of e2 is along {nx n2). 
For light damping this result will be substantially unaltered, although damping 
will have an important effect on the value of the exponent -i(61«1+e2«2) at the 
stationary point.  This effect can be investigated by noting initially that 

3(61«1+£2n2)/37j=(3e1/3rj  de2/dv).(n,  n2). (15) 

Now it follows from equation (11) that for light damping (17 «1) 

(30/3e,  30/3e2).(3e,/3??  3e2/3r?) = -/w/2, (16) 

and hence equations (14)-(16) can be combined to yield the following result 
at the stationary point 

d(e1n1+e2n2)/dr] = -iun/2cs. (17) 
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Here cg=V[(dQ/dei)2+(d^/de2)2] is the resultant group velocity and 
n^V[n1

2+n2
2] is the radial distance (in units) from the excitation point to the 

unit under consideration. It follows that in the immediate vicinity of the 
stationary point the exponent -[{e^+e^) can be expanded in the form 

-/(€,«, +e2n2) = -/(€,«! + e2n2)0-(«i7 nl2c)a-inx{b2eJbe2\[e2-{en)aYI^, 

(18) 
where the subscript 0 indicates that the term is to be evaluated at the 
stationary point under the condition TJ=0; for ease of notation, this subscript 
is omitted in the following analysis. The method of steepest descent proceeds 
by substituting equation (18) into equation (12) and assuming that: (i) the main 
contribution to the integral arises from values of e2 in the immediate vicinity 
of the stationary point; (ii) the integrand is effectively constant in thjs vicinity, 
other than through variation of the term e2-(e2)0 which appears in equation 
(18); (iii) under conditions (i) and (ii) the integration range can be extended 
to an infinite path without significantly altering the result. The method then 
yields [7] 

w(n,x) = -if 'F%[2ÜV\ 8Ü/de{ \ flMx)p(x0) \ nß\ld& \ 

xexpl-ie^-ie^-wmllCg-KTr/tysgnin^dhJdel)}^ 

(19) 
where/is the normalized complex wave amplitude which appears in equation 
(9), and all terms are to be evaluated at the stationary point. 

The stationary point associated with equation (19) is that point for 
which the group velocity is in the (n^ n2) direction. Geometrically, this is the 
point at which the normal to the curve u=Q,(eu e2) in the e,-e2 plane lies in the 
(«, n2) direction. Three such curves are shown schematically in Figure 4, 
together with a specified (n, n2) direction. For the frequencies ojj and u3 the 
situation is straight forward, in the sense that a unique stationary point exists 
for any (n, n2) direction. For the frequency w2 the situation is more complex, 
since: (i) two stationary points occur for the (n^ %) direction shown, and (ii) 
no stationary point exists if the (^ n2) direction lies beyond the heading 0 
shown in the figure (the dashed arrow represents the normal with maximum 
inclination to the e, axis). In case (i) equation (19) should be summed over 
the two stationary points, while in case (ii) the method of steepest descent 
predicts that w(n,x) will be approximately zero, leading to a region of very 
low vibrational response. If the direction (n, n2) coincides with the dashed 
arrow, then equation (19) breaks down, since it can be shown that d2el/de2=0 
at this point. The heading indicated by the dashed arrow represents a caustic 
[7], and the theory given in the present section must be modified for headings 
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(«, JU) which are in the immediate vicinity of the caustic - full details of the 
appropriate modifications are given in reference [4]. An example which 
illustrates the application of equation (19) is given in section 4. 

3. RESPONSE TO AN IMPULSIVE POINT LOAD 

If the system is subjected to an impulsive (i.e. a delta function applied at 
?=0), rather than harmonic, point load, then equation (10) becomes [8] 

w(n,x,t)=(iVIM,/27T2) [ [ g" (x)Fa'g(x0)e,xp(-ie1nl-z'e2/z,) (1/w)sinwf <&,&,, 
LI (20) 

where w = Q(el,e2). The method of stationary phase can be applied to this 
expression to yield [8] 

w(n,x,tMl/2V7i)[p(x)P(x0) \J\ YmRe{-(i/W(x)FTf(x0)... 

exp(-/e,tt, -ie2n2+iüt+iS)}, 

(21) 
where all terms are evaluated at the stationary point, and J and 8 are defined 
as 

7=020/Ö6l)(a2C!/3e^)-02Q/aeiae2)
2,    5=(x/4)sgn(320/öe?){l+sgn(7)}. 

(22,23) 
In this case the stationary point is given by the solution to the equations 

»,=00/36,)*,    «2=OQ/3€,)r. (24,25) 

In practice equations (24) and (25) may yield multiple solutions (stationary 
points), in which case equation (21) should be summed over all such points. 
Furthermore, stationary points having 7=0 indicate the occurrence of a 
caustic, and equation (21) must be modified in the immediate vicinity of such 
points as detailed in reference [8]. An example of the application of equation 
(21) is given in the following section. 
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4. EXAMPLE APPLICATION 

4.1 The System Considered 
The foregoing analysis is applied in this section to a two-dimensional periodic 
structure which consists of a rectangular grid of lumped masses m which are 
coupled through horizontal and vertical shear springs of stiffness kx and fc 
respectively. Each mass has a single degree of freedom consisting of the out- 
of-plane displacement w, and a linear spring of stiffness k is attached between 
each mass and a fixed base. It is readily shown that the system has a single 
phase constant surface of the form 

0 2(eI,€2)=M1(l-cos€1)+pc2(l-cos£2)+^, (26) 

where n^lkjm, ix2=2k2/m, and w„2=k/m. The function 0 can be used in 
conjunction with the analysis of the previous sections to yield the response of 
the system to harmonic and impulsive point loading; in this regard it can be 
noted that for the present case p(x)=m, V=l, and/(x) = l. 

4.2 Response to Harmonic Loading 
The surface fi(e,,e2) is shown as a contour plot in Figure 5 for the case 
m=1.0, «„=0, AM = 1-0, jU2=0.57. Results for the forced harmonic response 
of this system at the two frequencies « = 1.003 and « = 1.181 are shown in 
Figures 6 and 7. In each case the response of a 40 x40 array of point masses 
is shown; a unit harmonic point load is applied to mass (21,21) and the loss 
factor is taken to be TJ=0.05. Two sets of contours are shown in each Figure: 
the smooth contours have been calculated by using equation (19) while the 
more irregular contours have been obtained by a direct solution of the 
equations of motion of the finite 1600 degree-of-freedom system. By 
considering the results shown in Figure 6, it can be concluded that: (i) for the 
present level of damping the finite system effectively behaves like an infinite 
system, and (ii) the analytical result yielded by equation (19) provides a very 
good quantitative estimate of the far field response. It can be noted from 
Figure 5 that no caustic occurs for u=1.003, in the sense that equation (14) 
yields only one stationary point which contributes to equation (19). In 
contrast, a caustic does occur for the case « = 1.181, and this leads to the very 
irregular spatial distribution of response shown in Figure 7. Two stationary 
points contribute to equation (19), and constructive and destructive 
interference between these contributions is responsible for the rapid 
fluctuations in the response amplitude. It is clear that the response exhibits 
a "dead zone" for points which lie beyond the caustic heading (in this case 
30.25° to the nraxis), as predicted by the analysis presented in section 2. 

4.3 Response to Impulsive Loading 
The impulse response of a system having m=1.0, /*! = !.0, /x2=0.57, and 
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w„2=0.25 has been computed. The impulse was taken to act at the location 
nl=n2=Q and the time history of the motion of each mass in the region - 
10 <(nun2) < 10 was found by using equations (21)-(23). For each mass the 
maximum response \w\ was recorded, and the results obtained are shown as 
a contour plot in Figure 8. In accordance with Fourier's Theorem, the 
impulse response of the system contains contributions from all frequencies, 
and therefore the spatial distribution of |w\ can be expected to lie somewhere 
between the two extreme forms of harmonic response exhibited in Figures 6 
and 7. This is in fact the case, and the response shown in Figure 8 retains a 
distinctive spatial pattern. As discussed in reference [8], the results shown in 
Figure 8 are in good agreement with direct simulation of the impulse response 
of the system. 

5. CONCLUSIONS 

This paper has considered the response of a two-dimensional periodic structure 
to both harmonic and impulsive point loading. With regard to harmonic 
loading, it has been shown that the spatial pattern of the response is strongly 
dependent on the occurrence of a caustic: if no caustic occurs then the 
response has a fairly smooth spatial distribution, whereas the presence of a 
caustic leads to an irregular spatial distribution and a "dead zone" of very low 
response. This type of feature is also exhibited, although to a lesser degree, 
in the spatial distribution of the response to an impulsive point load. This 
behaviour could possibly be exploited to reduce vibration transmission along 
a specified path, although the practicality of this approach for a complex 
system has yet to be investigated. The present analytical approach can be 
applied to all types of two-dimensional periodic structure - the information 
required consists of the phase constant surface(s) fi(e,,e2) and the associated 
wave form(s) f(x), both of which are yielded by standard techniques for the 
analysis of free wave motion in periodic structures [1,2]. 
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Figure 1. Schematic of a two-dimensional periodic structure. The arrow indicates' the reference unit 
(with re=0) while the circle represents a general point (n,x). The structure may have a third spatial 
coordinate X), which for convenience is not shown in the figure. The point load considered in section 
3 is applied at the location of the arrow. 

Figure 2. Phase constant surfaces for a plate which rests on a square grillage of simple supports. 
Q is a non-dimensional frequency which is def'"-"1 as Q=o>LV(m/D), where m and D are respectively 
the mass per unit area and the flexural rigidii, _. the plate, and L is the support spacing. 
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Figure 3.  Integration paths in the complex s^ plane. 
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Figure 4. Schematic of three constant frequency contours in the e,-e2 plane. The arrows indicate 
normals to the contours which are aligned to a fied direction (n, «J. The dashed arrow indicates 
the caustic heading in the first quadrant for the case a2. 
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Figure 5. Contour plot of the phase constant surface for the case /i, = 1.0, ^=0.57. The contours 
are separated by an increment Aw=0.1477. The two contours considered in section 4.2 are indicated 
as follows: (a) u = 1.033; (b) w = 1.181. 

Figure 6. Response \w(n,x)\* of the 40x4. ...ass/spring system to a unit harmonic force of 
frequency u = 1.033 applied at the location i=j=2l. The contours correspond to the response levels 
Kn,Jt)|2=0.01, 0.02, and 0.05. 
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Figure 7. Response |H>(/Z,X)|
2
 of the 40x40 mass/spring system to a unit harmonic force of 

frequency a> = 1.181 applied at the location i=j=21. The contours correspond to the response levels 
|K>(n,jt)|2=0.01, 0.025, and 0.05. 

Figure 8. Contours of the maximum response |w|; the levels shown are 0.06, 0.08, 0.1, 0.12, and 
0.2. 
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ABSTRACT 

The in-plane vibration of a slider-mass which is driven around the surface of a 
flexible disc, and the transverse vibration of the disc, are investigated. The disc 
is taken to be an elastic annular plate and the slider has flexibility in the 
circumferential (in-plane) and transverse directions. The static friction 
coefficient is assumed to be higher than the kinetic friction. As a result of the 
friction force acting between the disc and the slider system, the slider will 
oscillate in the stick-slip mode in the plane of the disc. The transverse vibration 
induced by the slider will change the normal force of the slider system acting 
on the disc, which in turn will change the in-plane oscillation of the slider. For 
different values of system parameters, the coupled in-plane oscillation of the 
slider and transverse vibration of the disc will exhibit quasi-periodic as well as 
chaotic behaviour. Rich patterns of chaotic vibration of the slider system are 
presented in graphs to illustrate the special behaviour of this non-smooth 
nonlinear dynamical system The motivation of this work is to analyse and 
understand the instability and/or squeal of physical systems such as car brake 
discs where there are vibrations induced by non-smooth dry-friction forces. 

NOMENCLATURE 

a, b    inner and outer radii of the annular disc 

c        damping coefficient of the slider in in-plane direction 

h        thickness of the disc 

i = V=T 
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k  k transverse and m-plane stiflhess of the slider system 
'   p * 

m mass of the shder 
r radial co-ordinate in cylindrical co-ordinate system 

r0 radial position of the shder 

qu modal co-ordinate for k nodal circles and / nodal diameters 

t time 

tsliA the time of the onset of sticking 

u, u0 transverse displacement of the shder mass and its initial value 

w, w0 transverse displacement of the disc and its initial value 

D flexural rigidity of the disc 

D* Kelvin-type damping coefficient 

E Young's modulus 
N initial normal load on the disc from the shder system 

P total normal force on the disc from the shder system 

R„ combination of Bessel functions representing mode shape in radial 

direction 
0 circumferential co-ordinate of cylindrical co-ordinate system 

/*k, jus     kinetic and static dry fiction coefficient between the shder and the 

disc 
v Poisson's ratio 

<f damping ratio of the disc 

p specific density of the disc 

cp absolute circumferential position of the shder 

^stick absolute circumferential position of the shder when it sticks to the disc 

\j/ circumferential position of the shder relative to the drive point 

y/u mode function for the transverse vibration of the disc corresponding to 

03 u natural (circular) frequency corresponding to qu 
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Q       constant rotating speed of the drive point around the disc in radians per 
second 

INTRODUCTION 

There exists a whole class of mechanical systems which involve discs rotating 
relative to stationery parts, such as car brake discs, clutches, saws, computer 
discs and so on. In these systems, dry-friction induced vibration plays a crucial 
role in system performance. If the vibration becomes excessive, the system 
might fan, or cease to perform properly, or make offensive noises. In this 
paper, we investigate the vibration of an in-plane slider system, with a 
transverse mass-spring-damper, attached through an in-plane spring to a drive 
point which rotates at constant speed around an elastic disc, and the vibrations 
of the disc. Dry friction acts between the slider system and the disc. 

Dry-friction induced vibration has been studied extensively [1-4]. For car brake 
vibration and squeal, see the review papers [5,6]. The stick-slip phenomenon of 
dry-friction induced vibration is studied in the context of chaotic vibration [7- 
10]. Popp and Stelter [7] studied such motion of one and two degrees of 
freedom system and found chaos and bifurcation. They also conducted 
experiments on a beam and a circular plate (infinite number of degrees of 
freedom). These theoretical works are about systems of less than three degrees 
of freedom, and the carrier which activates the friction is assumed to be rigid. 
In this paper, we consider an elastic disc so that the transverse vibrations of the 
disc are important. As a result of including the transverse vibrations of the disc, 
rich patterns of chaos, which have not been reported previously are found. If 
there is only sliding present at constant speed, the problem is reduced to a 
linear parametric analysis which was carried out for a pin-on-disc system in 
[11] and for a pad-on-disc system in [12,13]. 

IN-PLANE OSCILLATION OF THE SLIDER SYSTEM 

As the drive point, which is connected to the slider-mass through an in-plane, 
elastic spring, is rotated at constant angular speed around the disc, the driven 
slider will undergo stick-slip oscillations. The whole system of the slider and 
the disc is shown in Figure 1. 
The equation of the in-plane motion of the slider system relative to the rotating 
drive point, in the sliding phase, is, 
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while in sticking, the equation of the motion becomes, 

Y = -n(t-tsüA). (2) 

The relationship between the relative motion of the slider system to the drive 
point and its absolute motion (relative to the stationary disc) is 

q> = Gt + y/,      (p = & + \)/. (3) 

We consider the foEowing initial conditions which are intended to simulate 
what happens in a disc brake. The slider system is at rest and there is no normal 
loading on the disc from the slider. Then a constant normal load is applied 
which causes transverse vibrations in the disc. At the same time, the drive point 
is given a constant angular velocity. Other initial conditions are possible, so 
that there is no loss of generality. 
First, sliding from the initial sticking phase occurs when, 

JcvroVf>jusP. <4) 

The slider will stick to the disc again when, 

y/ = -Q,    \kpr0\f/\< jUsP   (during sliding), (5) 

or it will begin to slide again if 

^ = -/2,    \kvr0if^>/usP   (during sticking). (6) 

Consequently, the slider system will stick and slide consecutively on the disc 
surface. 

TRANSVERSE VIBRATION OF THE ANNULAR DISC 

The equation of motion of the disc under the slider system is, 

ph^ + D'V4w + DV*w = --8(r-r0)5(9-<p)P. (7) 
dt2 r 

The total force P is the summation of initial normal load N and the resultant 
of the transverse motion u of the slider. Its expression is, 

P = N + mü + cü + k(u-u0). (8) 

Since it is assumed that the slider system is always in perfect contact with the 
disc, then, 
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u(t) = w{r„(p(t),t). (9) 

Substitution of equations (8) and (9) into (7) leads to, 

ph^ + D*V<^ + DV,w = -h(r-r0)8(9-<p)[N + 
^   dt2 dt r 

..dw    .,a2w    „. d2w    d2w.      ,. öw , SM^ (\o\ 
^Te+(pW+2<p^i+lF)+c{(pYe+^)+ (10) 

k(w-w0)]. 

Note that equation (10) is valid whether the slider system is sticking or sliding. 

When the slider sticks to the disc, equation (10) reduces to, 

/)/!^+i)-V>+i)VV = --5(r-r0)5(Ö^)x 
dt2 dt r (11) 

d2w      dw ., 
[N + m—r + c—+ A(w-w0)]. 

dt        at 

COUPLED VIBRATIONS OF THE SLIDER AND THE DISC 

Assume that the transverse motion of the disc can be represented by, 

w(r,0,t) = t Z^M)?*,«, (12) 
k=0 /=-« 

and, 

¥»(?,&) = -r=r^W«p(i^ , (13) 

where R„(r) is a combination of Bessel functions satisfying the boundary 

conditions in radial direction at the inner radius and outer radius of the disc. 

The modal functions satisfy the ortho-normahty conditions of, 

b 

(14) 
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Equations (10) and (11) can be simplified by being written in terms of the 
modal co-ordinates from equation (12). 
During sticking, the motion of the whole system of the slider and the disc can 
be represented by, 

qu +2£y uqa + 0)\qu=—j=Ru(ra)txV(-il(P)- 

-^r± E^(rÄ(r0)exp[i(s-/>]x (15) 
phu     r=0 s=-» 

and, 

The sticking phase can be maintained if 

r0k?\¥\<MXN+-rL=± t ^(r)exp(i/^)x 
■Jphb   *=°'=-° (17) 

{mqa+cqa+tiqa-q„(PJ\}l 
While in sliding, the motion of the whole system can be represented by, 

qu +2fr„q„+a)lq„=--j==^Rkl(r0)exp(-il<p)- 

1    itKtoRMacpiKs-mx (18) phb2 £o st 

{rriqis +i2s<pq„ +(^q>~ s2tf )qa ] + c(qa +is qxjn) + 
%„-<?„(<>)]}, 

and, 

r0(m^ + ^^) = -^Sign(^)[Af+T==rZ £ KM* 
■yjphb   <■=<>*=-*> 

exp(is<p){m[q„ +i2spq„ +(isy-s2cp2)qj+ (19) 
c(q„+is<pqj + k[q„-qa(0)]}]. 

The shding phase can be maintained if, 
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\KrA<VsiN+-T=?t E.K„(>o)exp(i^)x 
1 sjphb  '=° ~^° 

{m[q„+i2spq„+(isp-s2<P2)<lJ+ (20) 
<qa^S^qa) + k[qa-qn(0)]}], 

when, 

yr = -D or  q> = 0. (21) 

COMPUTING PROCESS 

As the slider system sticks and slides consecutively, the governing equations of 
the coupled motions of the whole system switch repeatedly from equations 
(15), (16) and (17) to equation (18), (19) and (20). The system is not smooth. 
Since the condition which controls the phases of the slider system itself 
depends on the motions, it is also a nonlinear system, whether /zk is a constant 

or a function of relative speed q>. In order to get modal co-ordinates, we have 
to truncate the infinite series in equation (12) to finite terms. Then numerical 
integration is used to solve equations (15), (18) and (19). Here a fourth order 
Runge-Kutta method is used for second order simultaneous ordinary 
differential equations. 
Since equation (18) has time-dependent coefficients, time step length has to be 
very small. Constant time step lengths are chosen when the in-plane slider 
motion is well within the sticking phase or the sliding phase in the numerical 
integration. As it is imperative that the time step should be chosen such that at 
the end of some time intervals the slider happens to be on the sticking-sliding 
interfaces, we use a prediction criterion to choose next time step length when 
approaching these interfaces. Therefore, at the sticking-sliding interfaces, the 
time step length is variable (actually smaller than it is while well within sticking 
or sliding). Nevertheless, the interfaces equations ( equation (17) or equations 
(20-21)) are only approximately satisfied [10]. 

When transverse motion of the slider system becomes so violent that the total 
normal force P in it becomes negative or becomes several times larger than 
the initial normal load N, we describe the system as being unstable. Then the 
motion begins to diverge. But this instability should be distinguished from a 
chaotic motion which is bounded but never converge to a point. 
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NUMERICAL EXAMPLES 

The following data are used in the computation of numerical examples: 
a = 0.065m, & = 0.12m, r0 = 0.1m, h = 0.001m; £ = 120GPa, v = 0.35, 

D'= 0.00004; ^,=0.4, ^k=0.24, * = 1000N/m, £p =100N/m, 

m = 0.1kg, /? = 7000kg / m3. The disc is clamped at inner radius and free at 

outer radius. Note that in these numerical examples, the disc thickness is 
deliberately taken to be very small in order to reduce the amount of computing 
work. However, this will not affect the qualitative features of the results or 
conclusion drawn from the results thus obtained. The first five natural 
(circular) frequencies are 451.29, 462.73, 426.73, 508.23, 508.23. We will 
concentrate on the vibration solutions at different levels of initial normal load. 
But occasionally solutions at different rotating speed or different damping 
ratios are investigated. Unless specified expressly, the Poincare sections are for 
the in-plane vibration of the slider system. 
First of all, we study the effect of the normal load TV. Take /2=10 and 

Al =   when N js very small, the Poincare section is a perfect ellipse 
20o)0v 

which indicate the in-plane vibration of the slider system is quasi-periodic, as 
the transverse vibration of the disc is too small to affect total normal force P. 
A typical plot of such motion is shown in Figure 2 for iV=0.5kPa. As N 
increases, the sticking period gets longer, the bottom part of the ellipse evolves 
into a straight line, indicating phase points within the sticking phase. One of 
such plots is given in Figure 3 for N =3kPa. A further increase of N not only 
lengthens the straight line part of the Poincare section, but also creates an 
increasingly ragged outline in the arch part of the plot. The curve is no longer 
smooth and it seems that the in-plane motion begins to enter a chaotic state 
from the quasi-periodic state. Figure 4 presents the Poincare section plot for 
Af =7.5kPa. There is a transition period from quasi-periodic motion to chaotic 
motion, extending from JV=6kPa up to JV=9kPa. Chaos becomes detectable 
at A/"=10kPa, whose Poincare section is shown in Figure 5. Then chaotic 
vibration follows. When 7V=15kPa, the arch part of the Poincare section 
becomes so fuz2y and thick that it should no longer be considered as a curve, 
but rather a narrow (fractal) area. A 'blow-up' view of the arch part reveals 
that phase points are distributed across the arch. Both plots are shown in 
Figure 6. Between iV=17.1kPa and 18.325kPa, the vibration of the süder 
enters a new stage, with Poincare sections looking like star clusters as 
illustrated in Figures 7 and 8. This kind of motions are rather extraordinary and 
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have not been reported in other works on stick-slip motions with a rigid 
carrier. Afterwards, the 'arch-door' like Poincare sections come back (see 
Figure 9). The difference from previous Poincare sections of lower N is that 
the new Poincare sections look like overlapping of earlier Poincare sections, 
which indicates a clear layered structure, as shown in Figure 10 and more 
obviously in the left hand side of Figure 11. At this stage, the vibration is very 
chaotic. To give the reader a better picture, the Poincare section of a fixed 
point on the disc at (r0 = 0.1m and 0 = 0), is also shown in the right hand side 
of Figure 11. The Poincare sections of the slider-mass and a point on the disc 
are also given in Figures 12-15. In Figure 12 for N=30.5kPa, the vibration 
goes unstable. Here again, the Poincare sections have not been reported 
elsewhere. 
If disc damping is increased, vibration will become more regular, as shown in 
Figure 13. Comparing Figures 11 with 13, we see that increase of disc damping 
makes the vibration more concentrated though not always smaller. Unstable 
vibration can be stabilised with more disc damping, as seen from Figure 14. 

If there is no damping at all, the resulting vibration due to dry friction will be 
unstable, even at very small normal load N. In Figure 15, the motion of the 
slider tends to run away in the tangential direction from the normal ellipse 
attractor, while the motion of the disc goes unbounded. 
Increasing the speed of the drive point seems to make vibration more chaotic 
and more unstable, as shown in Figures 16-18. At this stage, however, we are 
unable to make a definite conclusion on rotating speed as there might be 
intervals of regular motions and intervals of chaotic motion for Q. More 
numerical examples must be computed to draw a positive conclusion on this 
parameter. 
The correlation dimension is not a good measure of the vibration for the 
current problem because its values fluctuate in some numerical examples. This 
failure was perhaps first discovered in [7]. The reason can be either that the 
system is non-smooth, or that the system has multiple degrees of freedom, or 
both. Therefore, the correlation dimension or any other fractal dimensions is 
not presented in this paper. 

CONCLUSIONS 

In this paper, we studied the in-plane stick-slip vibration of a slider system with 
a transverse mass-spring-damper driven around an elastic disc through a spring 
from a constant speed drive point, and transverse vibrations of the disc. The 
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whole system had been reduced to six degrees of freedom after simplification. 
From numerical examples computed so far, we can conclude that: 

1. Both vibrations are very complex as this is a multi-degree of freedom, non- 
smooth system Rich patterns of chaotic vibration are found. Some have not 
been reported elsewhere. 

2. For the normal pressure parameter, smaller values allow quasi-periodic 
solutions. Greater pressures result in chaotic motions. At certain large 
pressures, the vibrations become unstable. 

3. Disc damping makes vibration more concentrated to smaller areas and when 
sufficiently large it can stabilise otherwise unstable vibration. 

4. An increase in the rotating speed can make the vibration more chaotic or 
more unstable. 

5. Correlation dimension is not a good measure of the vibration of this multi- 
degree of freedom, non-smooth dynamical system 

6. Much more investigation needs to be carried out in understanding and 
characterising the vibration of multi-degree of freedom, non-smooth dynamical 
systems. 
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Abstract 
This paper presents a time-domain modal formulation using the finite element method for 

large-amplitude free vibrations of generally laminated thin composite rectangular plates. Accurate 
frequency ratios for fundamental as well as higher modes of composite plates at various maximum 
deflections can be determined. The selection of the proper initial conditions for periodic plate 
motions is presented. Isotropie beam and plate can be treated as special cases of the composite 
plate. Percentage of participation from each linear mode to the total plate deflection can be 
obtained, and thus an accurate frequency ratio using a minimum number of linear modes can be 
assured. Another advantage of the present finite element method is that the procedure for obtaining 
the modal equations of the general Duffmg-type is simple when compared with the classical 
continuum Galerkin's approach. Accurate frequency ratios for isotropic beams and plates, and 
composite plates at various amplitudes are presented. 

Introduction 
Large amplitude vibrations of beams and plates have interested many 

investigators [1] ever since the first approximate solutions for simply supported 
beams by Woinowsky-Krieger [2] and for rectangular plates by Chu and Herrmann 
[3] were presented. Singh et al. [4] gave an excellent review of various formulation 
and assumptions , including the finite element method for large amplitude free 
vibration of beams. Srirangaraja [5] recently presented two alternative solutions, 
based on the method of multiple scales (MMS) and the ultraspherical polynomial 
approximation (UPA) method, for the large amplitude free vibration of a simply 
supported beam. The frequency ratios for the fundamental mode, CO/CDL, at the ratio 
of maximum beam deflection to radius of gyration of 5.0 (W^/r =5.0) are 3.3438 
and 3.0914, using the MMS and the UPA method, respectively. Eleven frequency 
ratios including nine from reference [4] were also given (see Table 1 of reference 
[5]). It is rather surprising that the frequency ratio for the fundamental mode at 
Wroax/r =5.0 for a simply supported beam varied in a such wide range: from the 
lowest of 2.0310 to the highest of 3.3438, and with the elliptic function solution by 
Woinowsky-Krieger [2] giving 2.3501. Similar wide spread exists for the vibration 
of plates. Rao et al. [6] presented a finite element method for the large amplitude 
free flexural vibration of unstiffened plates. For the simply supported square plate, 
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frequency ratios from six different approaches were reported (see Table 1 of 
reference [6]). The frequency ratio at W^/h = 1.0 varied from a low of 1.2967 to a 
high of 1.5314, with Chu and Herrmann's analytical solution [3] at 1.4023. 

This paper presents a finite element time domain modal formulation for the large 
amplitude free vibration of composite plates. The formulation is an extension from 
the isotropic plates [7], and the determination of initial conditions for periodic 
motions was not employed in reference [7]. The convergence of the fundamental 
frequency ratio is investigated for a simply supported beam and a simply supported 
square plate with a varying number of finite elements and a varying number of 
linear modes. Accurate frequency ratios for fundamental and higher modes at 
various maximum deflections, and percentages of participation from various linear 
modes, are obtained for beams and composite plates. 

Formulation 
STRAIN-DISPLACEMENT AND CONSTITUTIVE RELATIONS 

The von Karman strain-displacement relations are applied. The strains at any 
point z through the thickness are the sum of membrane and change of curvature 
strain components: 

{e} = 
sx 

u,x yx/2' -W,xx 

Ev > = • v,y • + • w2
y/2 • + z- -w,yy 

ixy u,y+v,x w,xw>y -2w,xy. 

:{e°m} + {eS} + z{K} (1) 

where je^j and {ejj]are the membrane strain components due to in-plane 

displacements u and v and the transverse deflection w, respectively. The stress 
resultants, membrane force {N} and bending moment {M}, are related to the strain 
components as follows: 

[A] [BI 
[B] [D] 

(2) 

where [A] is the elastic extensional matrix, [D] is the flexural rigidity matrix, and 
[B] is the extension coupling matrix of the laminated plate. 

ELEMENT DISPLACEMENTS, MATRICES AND EQUATIONS 
Proceeding from this point, the displacements in equation (1) are approximated 

over a typical plate element , e.g. rectangular [8] or triangular [9], using the 
corresponding interpolation functions. The in-plane displacements and the linear 
strains are interpolated from nodal values by 
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1 = [Hm]{wm},{e°m} = [Bm]{wm} (3a,b) 

where [HJ and [B„J denote the displacement and strain interpolation matrices, 
respectively, and {wm} is the in-plane nodal displacement vector. The transverse 
displacement, slopes and curvatures are interpolated from the nodal values by 

w = [Hb]{wb}, :[G]{wb},  W = [Bb]{wb} (4a,b,c) 

where [Hb] and [G] and [Bb] denote the bending displacement, slope and curvature 
interpolation matrices, respectively, and {wb } denotes the nodal transverse 
displacements and its derivatives. Through the use of Hamilton's principle, the 
equations of motion for a plate element undergoing large amplitude vibration may 
be written in the form 

K] 
0 

{*b} 
{*m} 

[kE 

[kBf   K 
i]    [klbm] 

0 
"klNm]+[klNB 

[klmb] 
or 

[m]{w} + {[k] + [kl] + [k2]}{w} = 0 

fc2b] 
0 

{wb} 

(5) 

where [m] and [k] are constant matrices representing the element mass and linear 
stiffness characteristics, respectively; [kl] and [k2] are the first order and second 
order non-linear stiffness matrices, respectively; [klNm] depends linearly on 
unknown membrane displacement ({Nra }= [A][B„J{wm}); DCINB] depends linearly 
on the unknown transverse displacement ({NB}=[B][Bb]{wb}); [kltaJ depends 
linearly on the unknown plate slopes and represents coupling between membrane 
and bending displacements; and [k2b] depends quadratically on the unknown plate 
slopes. 

SYSTEM EQUATIONS 
After assembling the individual finite elements for the complete plate and 

applying the kinematic boundary conditions, the finite element system equations of 
motion for the large-amplitude free vibration of a thin laminated composite plate 
can be expressed as 

[M]{W}+ ([K]+[K1(W)] + [K2(W)]){W} = 0 (6) 

where [M] and [K] are constant matrices and represent the system mass and 
stiffness respectively; and [Kl] and [K2] are the first and second order nonlinear 
stiffness matrices and depend linearly and quadratically on the unknown structural 
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nodal displacements {W}, respectively. Most of the finite element large amplitude 
free vibration results for plates and beams in the literature, e.g. references [1,6] and 
others, were based on eq. (6) using an iterative scheme and various approximate 
procedures. The system equations are not suitable for direct numerical integration 
because: a) the nonlinear stiffness matrices [Kl] and [K2] are functions of the 
unknown nodal displacements, and b) the number of degrees of freedom (DOF) of 
the system nodal displacements {W} is usually too large. Therefore, eq. (6) has to 
be transformed into modal or generalized coordinates followed by a reduction of 
the number of DOF. In addition, the general Duffing-type modal equations will 
have constant nonlinear modal stiffness matrices. This is accomplished by a modal 
transformation and truncation 

n 

{W} = ^qr(t)W
(r)=[*]{q} (7) 

r=l 

where  {(j)}(r) and COLT are the natural mode (normalized with the maximum 

component to unity) and linear frequency from the eigen-solution  a>Lr[M]{ 

<t>}(r)=[K]{<i>}(r). 
The nonlinear stiffness matrices [Kl] and [K2] in eq. (6) can now be expressed 

as the sum of the products of modal coordinates and nonlinear modal stiffness 
matrices as 

M 

[Kl] = ]Tqr(t)[Kl(<»w)] (8) 

n      n (rs) 

[K2] = ]T ]T qr (t)qs (t)[K2($(r), $(s))] (9) 
r=l  s=l 

The nonlinear modal stiffness matrices [Kl](r) and [K2](IS) are assembled from the 
element nonlinear modal stiffness terms [kl](r) and [k2](rs) as 

([Kl](r), [K2](rs)) =     Y ([kl](r), [k2](rs)) (10) 
all elements 
+ bdy. conds. 

where the element nonlinear modal stiffness matrices are evaluated with the known 
linear mode {<)>}r. Thus, the nonlinear modal stiffness [Kl](r) and [K2](IS) are constant 
matrices. Equation (6) is thus transformed to the general Duffing-type modal 
equations as 
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[M]{q} + ([K] + [Klq] + [K2qq]){q} = 0 

where the modal mass and linear stiffness matrices are diagonal 

([M],[K]) = [d.]T([M],[K])[<I>] 

and the quadratic and cubic terms are 

(11) 

(12) 

it 

[Klq]{q} = [*]T  ]Tqr[Klf 

K2qq]{q} = [<D]T ££qrq8[K2]<»> 
U=l  s=l 

[*]{q> 

[*Kq> 

(13) 

(14) 

All modal matrices in eq. (11) are constant matrices. With given initial 
conditions, the modal coordinate responses {q} can be determined from eq. (11) 
using any direct numerical integration scheme such as the Runge-Kutta or 
Newmark-ß method. Therefore, no updating of the vibration modes is needed [10]. 
For periodic plate oscillations have the same period T, the response of all modal 
coordinates should also have the same period T. Since the initial conditions will 
affect greatly the modal response, the determination of initial conditions for periodic 
plate oscillations is to relate each of the rest modal coordinates in powers of the 
dominated coordinate as 

arq1(t;IC) + brq1
2(t;IC) + crqJ(t;IC)+ = qr(t;IC), r = 2,3, ...n 

■     (15) 

where the a,, br, cr ,   are constants to be determined, and IC denotes initial 
conditions. For a three-mode (n=3) system, it is accurate enough to keep up to the 
cubic term only in eq. (15) and this leads to two set of equations 

a2q1(tp;A>B>C) + b2qf(tp;A>B,C) + c2q3(tp;A,B,C) = q2(tp;A,B,C), p = 1,2,3 

a3q1(tp;A,B,C) + b3qJ(tp;A,B,C) + c3qf(tp;A,BIC) = q3(tp;A,B,C), p = 1,2.3 

(16a,b) 

in which the modal coordinates qi, q2 and q3 at tp are known quantities and the 
initial conditions are qi(0)=A, q2(0) =B, q3(0)=C and q^O) = q2(0) = q3(0) = 0. 
Practically, only eight equations are needed to determine the eight unknowns a2, a3, 
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bi, b3, c2, c3, B and C through an iterative scheme. However, the number of 
equations can be more than the number of unknowns for accurate determination of 
initial conditions and the least square method is employed in this case. 

The time history of the plate maximum deflection can be obtained from eq. (7). 
The participation value from the r th linear mode to the total deflection is denned 
as 

max|qr| 
n 

^max|qi 

i=l 

(17) 

Thus, the minimum number of the linear modes for an accurate and converged 
frequency solution can be determined based on the modal participation values. 

Results and Discussions 
ASSESSMENT OF SINGLE-MODE ELLIPTIC FUNCTION SOLUTION 

The fundamental frequency ratio oo/cct = 2.3051 at W^/r =5.0 for a simply 
supported beam obtained by Woinowsky-Krieger [2] using a single-mode and 
elliptic function is assessed first. The conventional beam element having six (four 
bending and two axial) DOF is used. A half-beam is modeled with 10, 15, 20 
elements, and the lowest four symmetrical linear modes are used in the Duffing 
modal equations. Table 1 shows that a 20-element and 1-mode model will yield a 
converged result. The percentages of participation from each mode for various 
values of Wmax/r are given in Table 2. The modal participation values demonstrate 
that a single mode (n=l) will yield an accurate fundamental frequency because the 
contribution from higher linear modes to the total deflection is negligible (< 0.01 % 
for Wmax/r up to 5.0). There is a small difference in frequency ratios between the 
present finite element and the elliptic integral solutions. This is due to the difference 
between the axial forces of the two approaches, the finite element method (FEM) 
gives a non-uniform axial force in each element; however, the average value of the 
axial force for each element is the same as the one in the classic continuum 
approach. The lowest (2.0310) and the highest (3.3438) frequency ratios at W^/r 
=5.0 in reference [5] are not accurate. 

Frequency ratios for higher modes of the simply supported beam are obtained 
next. A model with 40-elements and 3-anti-symmetric modes for the whole beam is 
employed for the frequency ratio of the second nonlinear mode. The mode 
participations shown in Table 2 indicate that a single-mode approach will yield 
accurate frequency results. And the frequency ratios for the second mode are the 
same as those of the fundamental one. Thus, the present method agrees extremely 
well with Woinowsky-Krieger's classic single-mode approach. 
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The time history of the first two symmetric modal coordinates and the beam 
central displacement, phase plot, and power spectral density (PSD) at maximum 
beam deflection Wraax/r = 5.0 for the fundamental frequency (or mode) are shown in 
Fig. 1. The time scale is non-dimensional and Ti is the period of the fundamental 
linear resonance. It is noted that although the central displacement response looks 
like a simple harmonic motion, it does have a small deviation from pure harmonic 
motion due to the second small peak in the spectrum. This is in agreement with 
classical solution that the ratio of the frequency of the second small peak to that of 
the first dominant peak is 3. 

Now we are ready to assess the single-mode fundamental frequency of a simply 
supported square plate obtained by Chu and Herrmann [3]. A quarter of the plate is 
modeled with 6x6, 7x7, 8x8 and 9x9 mesh sizes and 1, 2, 4 or 5 symmetrical 
modes are used. The C1 conforming rectangular plate element with 24 (16 bending 
and 8 membrane) DOF is used. The in-plane boundary conditions are u = v = 0 on 
all four edges. Table 3 shows that the 8 x 8 mesh size in a quarter-plate and 4- 
mode model should be used for a converged and accurate frequency solution. Table 
4 shows the frequency ratios and modal participation values for the lowest three 
modes at various W^/h for a simply supported square plate (8x8 mesh size in a 
quarter-plate). It indicated that at least two linear modes are needed for an accurate 
frequency prediction at Wmax/h =1.0, and the contribution of higher linear modes 
increase with the increase of plate deflections. The modal participation values also 
show that the combined modes (1,3)-(3,1) and (2,4)-(4,2) are independent of the 
large-amplitude vibrations dominated by (1,1) and (2,2) modes, respectively. The 
time history, phase plot, and PSD at the maximum deflection Wmax/h =1.0 for the 
fundamental mode are shown in Fig. 2a, and Tn is the period of the fundamental 
linear resonance. There is one small peak in the spectrum and the frequency ratio of 
the second small peak to the first dominant one is 3. The low (1.2967) and the high 
(1.5314) frequency ratios at WIIiax/h =1.0 given in reference [6] are not accurate. 

The influence of the initial conditions on periodic motion is demonstrated in Fig. 
2a and 2b. In Fig. 2a, the modal coordinates all have the same period, and the initial 
conditions are determined from eq.(15). They are qn(0)/h=1.0, qn+3i(0)/h= - 
0.0155, qn-31 (0)/h = 0.0, q33(0)/h=0.000813, and qi5+5i(0)/h= 0.00011, and initial 
velocities are null, whereas in Fig. 2b, qn(0)/h=1.0 and all others are null. The 
modal coordinates do not have the same period. 

CLAMPED BEAM 
It is thus curious to find out whether multiple-mode is required for the clamped 

beam. Convergence study of the fundamental frequency ratios at W^/r =3.0 and 
5.0 shown in Table 5 indicates that a 25-element (half-beam) and 4-mode model 
will yield accurate and converged results. The time history, phase plot and PSD at 
Wmax/r =5.0 are shown in Fig. 3. The modal participation values in Table 6 and the 
PSD in Fig. 3 confirm that at least two modes are needed for accurate frequency 
results. 
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SYMMETRIC COMPOSITE PLATE 
A simply supported eight-layer symmetrically laminated (0/45/-45/90)s 

composite plate with an aspect ratio of 2 is investigated. The graphite/epoxy 
material properties are as follows; Young's moduli Ex = 155 GPa, E2 = 8.07 GPa, 
shear modulus GI2 = 4.55GPa, Poisson's ratio Vn =0.22, and mass density p = 
1550 kg/m3. A 12 x 12 mesh is used to model the plate. The in-plane boundary 
conditions are fixed (u=v=0) at all four edges. The first seven linear modes are used 
as the modal coordinates. Table 7 gives the fundamental frequency ratios and mode 
participation values for the linear modes in increasing frequency order. The modal 
participation values indicate clearly that four modes are needed in predicting the 
nonlinear frequency, and other three of the seven are independent of the 
fundamental nonlinear mode. Figure 4 shows the time-history, phase plot, and PSD 
atWan/hsl.O. 

UNSYMMETRIC COMPOSITE PLATE 

A simply supported two-layer laminated (0/90) composite plate of 15 x 12 x 
0.048 in. (38 x 30 x 0.12 cm) is investigated. The graphite/epoxy material 
properties are the same as those of the symmetric composite plate. A12 x 12 mesh 
is used to model the plate. The in-plane boundary conditions are fixed at all four 
edges. The first four linear modes are used as the modal coordinates. Table 8 gives 
the fundamental frequency ratios and mode participation values for the linear modes 
in increasing frequency order. From the phase plot, the time histories and PSD 
shown in Fig. 5, it can be seen that the total displacement response has a non-zero 
mean (i.e. the positive and negative displacement amplitudes for all modal 
coordinates are not equal). The quasi-ellipse in the phase plot is not symmetrical 
about the vertical velocity-axis. In the PSD at Wmax/h =1.0, it is observed that there 
are four small peaks in the spectrum and the frequency ratios of the second, third, 
fourth and fifth peak to the first dominant one are 2, 3, 4 and 5, respectively. This 
observation indicates that the displacement response includes the 
superharmonances of orders 2, 3, 4, and 5. The curves, which the positive and 
negative displacement amplitudes are plotted against the fundamental frequency 
ratio, are also given in Fig. 5. The difference between the positive and negative 
amplitudes increases as the frequency ratio increasing. 

Conclusions 
A multimode time-domain formulation, based on the finite element method, is 

presented for nonlinear free vibration of composite plates. The use of FEM enables 
the present formulation to deal with composite plates of complex geometries and 
boundary conditions, and the use of the modal coordinate transformation enables to 
reduce the number of ordinary nonlinear differential modal equations to a much 
smaller one. The present procedure is able to obtain the general Duffing-type modal 
equations easily. Initial conditions for all modal coordinates having the same time 
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period are presented. The participation value of the linear mode to the nonlinear 
deflection is quantified ; they can clearly determine the rninimum number of linear 
modes needed for accurate nonlinear frequency results. 

The present fundamental nonlinear frequency ratios have been compared with 
the single-mode solution obtained by Woinowsky-Krieger for simply supported 
beams and by Chu and Herrmann for simply supported square plates. The 
Woinowsky-Krieger's single-mode solution is accurate. For all other solutions, 
however, two or more modes are needed. The nonlinear frequencies for 
symmetrically and unsymmetrically laminated rectangular composite plates are also 
obtained. The phase plot and power spectral density showed that nonlinear 
displacement responses are no longer harmonic, and multiple modes are required 
for isotropic clamped beams and isotropic and composite plates. 
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Table 1. Convergence of the fundamental frequency ratio at W^ 
simply supported beam 

K/r =5.0 for a 

No. of elements No. of modes 
and 4 modes ((B/COL)I and 20 elements (0S/00L)I 

10 2.3537 1 2.3506 
15 2.3511 2 2.3506 
20 2.3506 3 2.3506 
-- 4 2.3506 

Table 2  The lowest two frequency ratios and the modal participations for a 
simply supported beam 

Elliptic 
integral [2] 

(CO/COji 

FEM 

(<B/00L)I 

Modal Participation % 

WJlr qi q3 q* 
0.2 1.0038 1.0038 100.00 0.000 0.000 
0.4 1.0150 1.0149 100.00 0.000 0.000 
0.6 1.0331 1.0331 100.00 0.000 0.000 
0.8 1.0580 1.0581 100.00 0.000 0.000 

1 1.0892 1.0892 100.00 0.000 0.000 
2 1.3178 1.3179 100.00 0.002 0.000 
3 1.6257 1.6258 100.00 0.004 0.000 
4 1.9760 1.9761 99.99 0.005 0.000 
5 2.3501 2.3506 99.99 0.009 0.000 

Wmax/r (C0/O)L)2 (ö>ADL)2 qi q4 q6 

0.2 1.0038 1.0038 100.00 0.000 0.000 
0.4 1.0150 1.0149 100.00 0.000 0.000 
0.6 1.0331 1.0332 100.00 0.000 0.001 
0.8 1.0580 1.0582 100.00 0.000 0.001 

1 1.0892 1.0893 100.00 0.000 0.002 
2 1.3178 1.3181 99.99 0.000 0.006 
3 1.6257 1.6260 99.98 0.000 0.015 
4 1.9760 1.9768 99.98 0.000 0.021 
5 2.3501 2.3512 99.96 0.000 0.037 

Table 3. Convergence of the fundamental frequency ratios for a simply 
supported square plate (Poisson's ratio=0.3) 

Mesh sizes (CO/COL),! WmJh No. of modes (CO/CöLJU WmJk 
and at and 

8x8 mesh 
at 

4 modes 1.0 1.4 1.0 1.4 

6x6 1.4174 1.7423 1 1.4058 1.7028 

7x7 1.4163 1.7396 2 1.4169 1.7433 

8x8 1.4164 1.7403 4 1.4164 1.7403 

9x9 1.4164 1.7400 5 1.4163 1.7401 
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Table 4. The lowest three frequency ratios and the modal participations for a 
simply supported square plate (Poisson's ratio=0.3) 

WmJh 

0.2 

Elliptic 
integral [3] 

(00/ffiL) n 

1.0195 

FEM 

(ca/cöLhi 

Modal Participation % 
qn qn + q3i qi3 - q3i q33 qis + qsi 

1.0195 99.93 0.07 0.00 0.00 0.00 
0.4 1.0757 1.0765 99.72 0.27 0.00 0.01 0.00 

0.6 1.1625 1.1658 99.38 0.59 0.00 0.02 0.00 
0.8 1.2734 1.2796 98.93 1.02 0.00 0.05 0.01 

1.0 1.4024 1.4163 98.34 1.57 0.00 0.08 0.01 
1.2 1.5448 1.5659 97.54 2.30 0.00 0.15 0.01 
1.4 1.6933 1.7401 96.29 3.42 0.00 0.27 0.02 

WmJh 

0.2 N/A 
(C0/(ÖL)21 

1.0243 
qji q23 q« q43 — 

99.93 0.06 0.01 0.00 — 
0.4 N/A 1.0976 99.50 0.45 0.03 0.01 — 
0.6 N/A 1.2072 98.15 1.28 0.54 0.02 — 
0.8 N/A 1.3411 97.54 2.41 0.00 0.05 — 
1.0 N/A 1.5126 96.24 3.69 0.00 0.08 — 
1.2 N/A 1.6900 94.90 4.92 0.03 0.15 — 
1.4 N/A 1.8952 93.54 6.01 0.01 0.44 — 

WmJh 

0.2 N/A 

(C0/C0L)22 

1.0245 

qzj q» + q42 q24 - q42 q44 — 

100.00 0.00 0.00 0.00 — 
0.4 N/A 1.0751 100.00 0.00 0.00 0.00 — 
0.6 N/A 1.1611 99.99 0.00 0.00 0.01 — 
0.8 N/A 1.2806 99.98 0.01 0.00 0.01 — 
1.0 N/A 1.4041 99.93 0.01 0.00 0.06 — 
1.2 N/A 1.5551 99.97 0.01 0.00 0.01 ... 
1.4 N/A 1.7074 99.98 0.02 0.00 0.00 — 

Table 5 Convergence of the fundamental frequency ratios for a clamped beam 

No. of (CO/<BL)I WmJi No. of modes (Cö/©L)I WmJx 
elements at and at 

and 4 modes 3.0 
1.1751 

5.0 25 elements 3.0 5.0 

10 1.4046 1 1.1835 1.4497 

15 1.1740 1.4009 2 1.1745 1.4061 
20 1.1732 1.3999 3 1.1737 1.4001 
25 1.1731 1.3996 4 1.1731 1.3996 
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Table 6  The fundamental frequency ratios and the modal participations for a 
clamped beam 

WmjT Elliptic 
integral 

FEM 

(co/coL)i 

Modal Participation   % 

qi Q3 q* qv 

1.0 1.0222 1.0222 99.78 0.20 0.02 0.00 
2.0 1.0857 1.0841 99.33 0.58 0.08 0.02 
3.0 1.1831 1.1731 98.35 1.44 0.17 0.04 

4.0 1.3064 1.2817 97.37 2.28 0.29 0.07 
5.0 1.4488 1.3996 96.26 3.22 0.42 0.11 

Table 7   The fundamental frequency ratios and the modal participations for a 
simply supported rectangular (0/45/-45/90)s composite plate (a/b=2) 

WmJh 
(<B/CBL)I! 

Modal Participation % 

qn qi2 qzi q* q22 q* q3i 

0.2 1.0408 99.51 0.00 0.00 0.41 0.07 0.00 0.02 
0.4 1.1490 96.57 0.00 0.00 3.01 0.24 0.00 0.17 
0.6 1.3484 92.93 0.00 0.00 4.55 0.47 0.00 2.04 
0.8 1.5241 98.51 0.00 0.00 0.53 0.94 0.00 0.02 
1.0 1.7190 97.43 0.00 0.00 2.39 0.11 0.00 0.07 
1.2 1.9258 95.78 0.00 0.00 3.57 0.62 0.00 0.02 
1.4 2.1409 94.27 0.00 0.00 4.84 0.77 0.00 0.13 

Table 8   The fundamental frequency ratios and the modal participations for a 
simply supported rectangular (0/90) composite plate 

WmJh 

(<D/C0L)II 

Modal Participation % 
q.i qi3 qsi q33 

0.2 1.0358 97.83 1.18 0.82 0.18 
0.4 1.1432 95.13 2.25 2.24 0.38 
0.6 1.2993 94.53 3.86 1.18 0.60 
0.8 1.5432 88.56 4.36 4.77 2.31 
1.0 1.7880 89.15 3.31 5.06 2.48 
1.2 2.0142 92.22 2.89 3.15 1.74 
1.4 2.2823 92.01 2.92 2.92 2.15 
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Figure 1. Time histories, phase plot and PSD tor the fundamental 
mode at W„lr =5.0 ot a simply supported beam 
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Figure 2a. Time histories, phase plot and PSD for the fundamental 
mode at Wmu/h =1.0 of a simply supported square plate 
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Figure 2b. Time histories, phase plot and PSD for the fundamental 
mode at W™«/h =1.0 of a simply supported square plate 
with improper Initial conditions 
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Figure 3. Time histories, phase plot and PSD for the fundamental 
mode at WJr =5.0 of a clamped beam 
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Figure 4. Time histories, plot and PSD for the fundamental 
mode at Wmajtfh =1.0 of a simply supported 
(0/45/-45/90)s rectangular plate 
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for the fundamental mode at W„«/h =1.0 of a simply 
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NONLINEAR FORCED VIBRATION OF BEAMS BY THE 

HIERARCHICAL FINITE ELEMENT METHOD 

P. Ribeiro and M. Petyt 

Institute of Sound and Vibration Research, University of Southampton, Southampton 

SO 17 1BJ, UK 

Abstract: The hierarchical finite element (HFEM) and harmonic balance 
methods are used to derive the equations of motion of beams, in steady-state forced 
vibration with large amplitude displacements. These equations are solved by the 
Newton and continuation methods. The stability of the obtained solutions is 
investigated by studying the evolution of perturbations of the solutions. Additionally, a 
method that allows a quick examination of the stability of the solution is presented and 
applied. The convergence properties of the HFEM, the influence of the number of 
degrees of freedom and of in-plane displacements are discussed. The HFEM results are 
compared with experimental results. Symbolic computation is used in the derivation of 

the model. 

A - extension coefficient 
b - width of the beam 
B - coupling coefficient 
[C] - damping matrix 
D - bending coefficient 
[D] - Jacobian of {F} 
|D| - determinant of [D] 

E - Young's modulus 
[E] - elastic matrix 
{f} - vector of out-of plane shape functions 
{F} - vec. of amplitudes of generalised forces 

&\ - vector of generalised forces 

{F} - vector of dynamic forces 
{g} - vector of in-plane shape functions 
h - length of the finite elements 
h - thickness of the beam 
[Klb] - linear bending stiffness matrix 
[Kip] - linear stretching stiffness matrix 
[K2],  [K3]  and [K4]  - components of 
nonlinear stiffness matrix 
[Knl] - nonlinear stiffness matrix 
L - length of the beam 
[M] - mass matrix 
[MJ - bending mass matrix 
[Mp] - in-plane mass matrix 
[N] - matrix of shape functions 
I Nw(x)J - row matrix of out-of-pl. sh. f. 

pj - number of in-plane shape functions 

NOTATION 

p0 - number of out-of-plane s. funct. 

{qp} - in-plane displacement function 
{qw} - transverse displacement function 
r - radius of gyration 
t-time 
u - in-plane displacement 
Ur - generalised in-plane displacements 
w - transverse displacement 
Wr - generalised out-of-pl. displ. 
{wc}, {wj - coef. of cosine and sine terms 
x - axial coordinate of the beam 

a - loss factor 
ß - damping factor 
eg,so - linear membrane and bending strains 

s[ - geometrically nonlin. membrane strain 

{si }> (s2}" linear and geom. nonl. strains 
5W   - virtual work of the external forces 
5WV - virtual work of the internal forces 

8W   - virtual work of the inertia forces 

X - characteristic exponent 
p - mass density 
CD - angular frequency 
a>0. - natural frequencies 

[ojj]   - diagonal matrix  of squares  of 

natural frequencies 
C, - Viscous damping ratio 
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1-INTRODUCTION 

In real systems, due to large amplitudes of the excitation, small stiffness or 

excitation with a frequency in the neighbourhood of resonance frequencies, vibrations 

with large amplitudes can occur. In this case, the linear theories may not allow a good 

representation of the dynamic characteristics of the system. 

A typical case study of vibrations in the nonlinear regime is the forced vibration 

of beams, with large displacements. Although a large amount of investigation has been 

carried out in this field [1, 2, 10, 18 and others], a method that would allow the 

inclusion of higher order mode contributions and damping, without increasing 

excessively the number of degrees of freedom (d.o.f.) is desirable. The purpose of this 

work is to apply and investigate the advantages of a method that satisfies these 

conditions: the hierarchical finite element method (HFEM). 

In the HFEM, to achieve better approximations, higher order shape functions 

are added to the existing model. Convergence tends to be achieved with far fewer 

d.o.f. than in the /z-version of the finite element method [4, 11]. The linear matrices 

possess the embedding property, meaning that the associated element matrices for a 

number of shape functions n=ni are always submatrices for n=n2, n2>ni. The existing 

nonlinear matrices of an approximation of lower order, ni, can be used in the derivation 

of the nonlinear matrices of the improved approximation, n2. This makes the construction 

of a more accurate model, potentially quicker in the HFEM than in the //-version. 

We are going to consider that the time variation of the solution may be 

expressed by harmonics and use the harmonic balance method (HBM). Compared with 

perturbation methods, the main advantages of the HBM are its simplicity, the fact that 

it is not restricted to weakly non-linear problems and, for smooth systems, the 

assurance of convergence to the exact solution [5]. 

In nonlinear vibrations, the frequency response curves can have multi-valued 

regions, turning and bifurcation points. In these regions, we are going to use a 

continuation method [8, 14], because, if the Newton method alone is applied, the 

solution will depend heavily on the initial guess and convergence is very difficult to 

achieve. 

Symbolic computation [15] will be utilised, allowing an easier and more 

accurate construction of the model. 
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2 - MATHEMATICAL MODEL 

The beam is assumed to be elastic and isotropic, with thin uniform thickness h. The 

effects of transverse shear deformations and rotatory inertia are neglected. The transverse 

displacement is large compared with the beam thickness, but is very small compared with 

the length of the beam (w « L). The slopes are also very small: (w x)
2 «1. 

The displacement components u and w may be expressed as the combination of 

the hierarchical polynomial shape functions, 

0 f,f2...fpo 

{q}T=Lu,    ...   UPi    W,    ...   Wj. (2.1) 

The hierarchical polynomials used in this study were derived from Rodrigue's form 

of Legendre polynomials [4]. Only one element was used to model the whole beam and 

only the shape functions that satisfy the boundary conditions were included in the model. 

Applying the theory of Bernoulli-Euler, expressing the strain as 

w= 
U.x 

-w. 

(w,x)
2/2' 

0 -j;iM8if=w+M. (2.2) 

and equating the virtual work of the inertia forces (D' Alembert principle) to the 

virtual work of the external and elastic restoring forces we obtain: 

(2.3) {5q}T{F} - b £({&, }T + {6s2}
T)[E]({s,} + {s2})dL = {5q}T[M]{qj, 

[E] = 
A    0 

0    D 
I A D = JO,z2)Edz; [M] = phbjL[N]T[N]dL. 

The stiffness matrices are defined by: 

bJL{5s1}
T[E]{s1}dL={5q}T[Kl]{q},bJL{8e1}

T[E]{s2}dL={5q}T[K2]{q}, 

b}L{6s2}T[E]{s1}dL={8q}T[K3]{q}5b[{5s2}
T[E]{e2}dL={5q}T[K4]{q}.    (2.4) 

Considering only transverse forces, if P(t) represents a concentrated force acting 

at the point x=Xj and Pd (x, t) represents a distributed force, the generalised forces are 

{F} = (jLPd(x,t){N»(x)}dL + PJ(t){N»(xj)}). (2.5) 

In real systems energy is dissipated; consequently, damping should be included 

in the present model. For a large variety of materials experimental investigations show 
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that the energy dissipated per cycle is not dependent on the frequency and is 

proportional to the square of the amplitude of vibration [12, 13]. The corresponding 

type of damping is called hysteretic. We will represent it by a matrix proportional to 

the mass matrix and frequency dependent: 

[C] = f[M] (2.6) 

Considering that damping in the beam results only from the action of the linear axial 

and bending strains, we have the following equations of motion: 

f     1 IK 
[Mp 0 " M+ ^Mp 

co 
0 M*( Kip 0 

+ 
0     K2 IN- -\l _ 0 MJ U 0 iMb 

ß) 

[qwj   v _ 0 KlJ [K3   K4j ̂ [qwJ i* 
(2.7) 

The in-plane inertia can be neglected for slender beams [3] and the damping 

contribution due to the axial stress is generally negligible compared to that due to the 

bending stress [12]. With these approximations and because [K3] = 2[K2] , ref. [4], we 

can simplify the equations of motion to obtain: 

K]{qw} + f[Mb]{qw} + [Klb]{qw} + [Knl]{qw} = {F}; (2.8) 

[Knl] = [K4] - 2[K2]T[Klp ]"' [K2]. (2.9) 

To integrate exactly terms involving shape functions or its derivatives, present 

in the stiffness and mass matrices, symbolic computation was employed, using the 

package Maple [15]. 

If the external excitation is harmonic and if initial conditions are such that no 

transient response exists, then {qw(t)} may be expressed, in a first approximation, as: 

{qw(t)}={wc}cos(cot)+{ws}sin(cot) (2.10) 

We are going to insert this equation into the equations of motion (2.8) and 

apply the HBM. This method can be easily implemented in a program written with the 

symbolic manipulator Maple. Forthat, one defines the command trign using the Maple 

library of trigonometric functions, trig, in the following way: 

trign: =readlib('trig/reduce') [15, 17]. trign, thus defined, replaces all nonlinear 

trigonometric functions by linear ones1. With the command coeff one selects the terms 

in cos(cot) and sin(cot). In this way, we obtain equations of motion of the form: 

T 1 1 For example cos3(©t) is replaced by -cos(a>t)+—cos(3cot) 
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{F}=   -G> 
X 0 " 

+ 
0 MbJ 

0       ßMb 

-ßMb      0  _ 
Kl„      0 

0     KlbJj 
w. 

w. F2I     10 
{0}, 

(2.11) 

{Fj=|f[Knl]{qw}cos(cot)dt=gKNLl + iKNL3j{wc}+iKNL2{ws};   (2.12) 

{Fj-^f [Knl]{qjsin(art)dt =^KNL2{we}+QKNLl + |KNu){w.}> (2.13) 

where KNL1 is a function of {wc} only, KNL2 is a function ofboth {w0} and {ws} and KNL3 
is a function of {ws} only2. These three matrices are, as well as M* and Klb, symmetric. 

3 - STUDY OF THE STABILITY OF THE SOLUTIONS 

We will study the problem of local stability of the harmonic solution by adding 

a small disturbance to the steady state solution 

{q} = k} + {öqw} (3-D 

and studying how the variation of the solution evolves. If {8qw} dies out with time 

then {qw} is stable, if it grows then {qw} is unstable. 

Inserting the disturbed solution (3.1) into equation (2.8), expanding the 

nonlinear terms into Taylor series around {qw} and ignoring terms of order higher 

than {5qw}, we obtain the variational equation: 

[Mb]{Sqw} + ^[Mb]{5qw} + [Klb]{5qw}+^
]{qr}^5q^=W-     °2) 

The coefficients a([Kn%»}) are periodic functions of time. With symbolic 

manipulation, they can easily be expanded in a Fourier series. If {qw} is of the form 

(2 10) and since 8llKnlN'w) is quadratic in {qw}, we have: 

M^M=[[Pi] + [p2]coS(2cot) + [p3]sin(2o3t)]. (3.3) 

2 With this formulation, KNL2 must be calculated using 2[_N^J{WC}LN^J{W,} , otherwise -KNL2 

should be considered instead of i.KNL2 ■ 
4 
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Simplification (3.14) was possible because the damping matrix is, after 

transformation into modal coordinates, equal to a scalar matrix. 

Now, following Hayashi [7, page 93], we will express the solution of (3.14) in 

the form: 

{öl} = eM({b1}cos((öt) + {a,}sin(cot)) (3.15) 

which should allow us to determine, in a first approximation, the first order simple 

unstable region. 

Inserting (3.15) into (3.14) and applying the HBM, we find 

(XJ[l] + X(M1] + [M0])f
b,U{?} (316) 

where 

[M,] = 
0       2co[l] 

-2<a[l]      0 
(3.17) 

K] = 
[BmjB]-U + (\l)\] + l^} 

2(B 

[Bf[D2,][B] 

[BfMB] 

[B]T[D.M- 
'    2      flßNA 

CT +   - — w+h2] 

(3.18) 

To determine the characteristic exponents, X, we transform this system into [16] 

0 w 
L-[M0] -[M,]Jlr} = HrJ' (3.19) 

where {X} is a vector formed by {b^, {a,}. The values of X are the eigenvalues of 

the double size matrix in the previous equation. Bearing in mind that it is the stability 

of the variable {ö£} in which we are interested we substitute equation (3.15) into 

equation (3.13) to obtain 

fx Hit 
{5£} = el  2al {{b,}cos(cot) + {a1}sin(a)t)}. (3.20) 

Iß  :. If the real part of Xr --— is positive for any K then the solution is unstable, 
2 a) 

otherwise it is stable. 
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For undamped systems, it was demonstrated in [8], that important conclusions 

about the stability of the solutions can be deducted from the determinant of the 

Jacobian of {F}. We are going to extend the demonstration to systems with mass 

proportional damping. 

Applying the derivation rule for composite functions, we obtain the derivatives 

of {F,} and {F2} with respect to {wc} and {ws} as follows: 

[Dn] 
d{F, 

[D12] 

P2l]= 

[D22]= 

ö{w 

5{w: 

d{¥2 

3{w 

d{¥, 

d{\ 

2 fT    8 =lf    *    ([Knl]{ qw})|mcos(cot) 
TJo 5{qw}U     jnwVa{wc}     v dt. 

2 fT    5 ^f^Maf^M*. 
2 rT     d 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Matrices [I] and [Mo] are symmetric and matrix [Mi] is skew-symmetric. This 

means that the eigenvalues of equation (3.16) are either purely imaginary or purely real 

[8]. If X is imaginary the solution is always stable; if X is real the stability limit is 

defined by 

2 as) 2 CD 

Inserting (3.25) in (3.16) we arrive at 

'[B]T[Dn][B]-^[l] + [<] [B]T[D12][B] + P 

[B]T[D21][B]-ß [B]T[D22lB]-a>2[l]^]JlaJ-l0 
b, 

(3.25) 

(3.26) 

The matrix in the previous equation is [B]
T
[D][B], where [D] is the Jacobian 

of {F} with respect to the vector of coefficients of the cosine and sine terms, given by 

[D] = d{F}/3 
w. 

(3.27) 

A non-trivial solution of (3.26) exists if 

det([B]T[D][B])=0 o |B|2|D|=0o|D|=0. (3.28) 

The last equivalence is true, because [B] is a non-singular matrix. Thus, we proved that 

in the stability limit, the determinant of the Jacobian of {F}, |D|, is zero. 

1399 



|D| is a polynomial in the coefficients {wc} and {ws} and in a; therefore, it is a 

continuous function in those coefficients. All the experimental and numerical analysis 

of nonlinear vibration of beams, indicate that the shape of vibration, defined in our 

model by {wc} and {ws}, is a continuous function of the amplitude and the frequency 

of vibration. Thus, we conclude that |D| varies in a continuous way through the FRF 

(frequency response function) curve. Hence, if there is a change in its sign between 

two consecutive points of the FRF curve, then |D|=0 for a particular point between 

these two. In that particular point, the stability limit might have been crossed. 

So, a complete study of the first order solution's stability may be carried out by 

determining only the characteristic exponents of the first solution and when |D| changes 

sign or when [D| is approximately zero. As |D| is needed in the continuation method and, 

when the Newton method is applied, can be easily calculated from [D], this results in 

substantial time savings. 

4 - APPLICATIONS 

A clamped-clamped beam made in an aluminium alloy with the reference 7075- 

T6 was analysed. Its material [9] and geometric properties are: 

E = 7.172*1010 N/m2, p = 2800 kg/m3, h=0.002 m, b=0.02 m, L = 0.405 m 3. 

For aluminium, a typical value of the loss factor (which is multiplied by the 

stiffness matrix) is <x=0.01 (£=0.5%), but the measured value in reference [18] was 

approximately equal to 0.038 (Cßl.9%)4. In order to have the same damping 

coefficient for the first mode of vibration, the value of the damping factor is: 

ß = co01
2xcx. (4.1) 

The beam was modelled using the HFEM, as described in section 2. To solve 

the system of equations (2.11), Newton's method was used in the nonresonant area. In the 

vicinity of resonance frequencies it is difficult to obtain convergence by the Newton method 

3 Except in the comparison with experimental results, where L=0.406 (value of Wolfe's clamped- 
clamped beam length). 
4 Wolfe did not think that the measured damping ratio was only due to material damping. He also 
attributed the obtained value to damping in the joints and to the coil magnet arrangement used to 
excite the beam. 
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and a continuation method was applied [8, 14]. The derivation of the Jacobian matrix 

present in both methods was performed symbolically [15]. 

Because the excitation force will be applied in the middle of the beam and both 

the beam and the boundary conditions have symmetric properties, only symmetric out 

of-plane shape functions and antisymmetric in-plane shape functions will be used5. 

4.1 - Study of convergence with number of shape functions 

With four out-of-plane (p0) and four in-plane shape functions, convergence of 

the value of the first linear natural frequency is achieved (Table 1). This number of 

shape functions will be the starting value for our nonlinear analysis. The number of 

degrees of freedom of the present damped model is equal to 2xp0. 

Exactl8J p0=2, pi=2 p„=3, p:=3 p„=4, p=4i p0=5, p;=5 

396.6 396.613 239 396.605 011 396. 605 008 396. 605 008 

In Figures 1, 2 and 3 we can see the FRFs in the vicinity of the first, third and 

fifth mode, obtained when a force P of 0.03 N was applied. Near the first mode there is 

no increase in accuracy by using more than four out-of-plane and four in-plane shape 

functions (p0=4, p;=4). However, for the third mode, as the amplitude of vibration 

grows, the results obtained with p0=4 and p;=4 depart from the ones obtained with 

more shape functions. The FRF curve constructed with p0=5 and pi=5 is quite similar 

to the coincident FRFs obtained with p0=6, p;=6 and with p„=7, pr=7. In the 

neighbourhood of the fifth mode, convergence seems to be achieved with p„=8 and 

pi=8. 

4.2 - Influence of in-plane displacements 

In Figure 4 the FRFs obtained considering and neglecting the in-plane 

displacements are compared. As in references [1] and [10], we found that the in-plane 

displacements 'reduce' the non-linearity, in the sense that the non-linearity caused by 

them is of the soft spring type and counterbalances the hard spring type non-linearity 

5 To check if the nonlinearity introduced any coupling and consequent antisymmetric terms m the 
response, a model including symmetric and antisymmetric, in- and out-of-plane shape functions was 
considered. It was confirmed that, with these boundary conditions and with the one harmonic 
representation of the solution's time dependency, there is no such coupling. 
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caused by the transverse displacements. This 'reduction' of nonlinearity is due, as the 

formulation of the nonlinear stiffness matrix - eq. (2.9) - shows, to the effects of in- 

plane deformation on the stiffness of the structure. 

4.3-Study of stability 

In Figures 5 and 6 we can see the stability studies carried out in the 

neighbourhood of the first and third resonance frequencies, using p0=6, p;=6 shape 

functions and with an excitation force of amplitude P = 0.03 N. In all cases, |D| 

changed sign when the stability condition of the solutions changed. 

4.4 - Comparison with experimental results 

In Figures 7 and 8 we can see the comparison between the FRF obtained with 

the HFEM, using p„=6, p;=6 shape functions, and the experimental results [18] when a 

force P = 0.134 N is applied in the centre of the beam. Two values were used for the 

damping factor: ß=0.01c0g, and ß=0.038a>o,. 

The HFEM provides a FRF with a slope similar to the experimental one around 

the resonance frequency. This indicates that the nonlinear stiffness is well represented 

by the model. 

The turning point corresponding to the largest amplitude of vibration, where the 

jump phenomena occurs, obtained with the HFEM, point B, does not match the 

experimental one, point A. With the typical value used for the loss factor in aluminium 

alloys, a=0.01 (ß=0.01aio1), the maximum amplitude of vibration was more than double 

the one measured. However, the HFEM solutions represented in Figure 7 after point A are 

very close. Thus, in a real system, a small perturbation would easily make the shape of 

vibration change into an unstable one and a change, or jump, to a stable shape of vibration 

at a lower amplitude could be observed before the largest computed amplitude of vibration 

was achieved. With the measured loss factor, a=0.038, the largest amplitude of vibration 

obtained with the HFEM, was around a half of the measured maximum amplitude. 
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5 - CONCLUSIONS 

The HFEM dynamic model of a beam vibrating with large amplitudes was 

constructed with small time expense. This is due to the small number of degrees of freedom with 

which convergence is achieved, to the easy way in which the number of d.o.f. are reduced, 

benefiting from the symmetry properties of the problem, and to the embedding properties6 of 

the HFEM. 

For the amplitudes of vibration displacement studied, with relatively few d.o.f. 

the FRF curves were accurately determined until the 5th order mode, inclusive. If 

modes of order higher than 5th are to be studied, then the inclusion of more elements 

instead of more shape functions should be considered, as shape functions of excessive 

high order turn the construction of the matrices quite time consuming. The comparison 

with experimental results showed a very good prediction of the slope of the FRF by the 

HFEM. The largest amplitude of vibration and the correspondent turning and jump 

point, are greatly influenced by the amount of damping used. 

Using the flexibility of choosing the shape functions in the HFEM model it was 

shown that the in-plane displacements cause a softening-type nonlinearity. 

With the continuation method the multi-valued regions of the FRF curves were 

completely and automatically described. 

To determine the characteristic exponents that establish the stability of the 

solution, we solved an eigenvalue problem. Due to the reduced number of degrees of 

freedom of the HFEM model this was quickly solved. More important, it was proven 

that in the stability limit the determinant |D| is zero. Thus, we only have to determine 

the characteristic exponents of the first solution and when there is an indication that 

|D| =0 for a particular point, to check if the stability of the solution changed. This 

results in significant time savings. 

With symbolic computation, the matrices involved in the HFEM model and the 

Jacobian matrix necessary in the continuation and Newton methods, were easily and 

exactly derived, thus reducing the numerical errors. Symbolic computation was also 

helpful in the application of the HBM. 

6 Here we include the HFEM's advantages in the derivation of the nonlinear stiffness matrix. 
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FIGURES 

Figure 1 - FRF in the vicinity of the first mode of vibration. x=0.5xL. 
o p0=4, pi=4; Q p0=5, pi=5;0 p0=6, pi=6; + p0=7, pi=7. 

Figure 2 - FRF in the vicinity of the third mode. As above. 
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Figure 3 - FRF in the vicinity of the fifth mode. x=0.5xL. 
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Figure 5 - Stability study. First mode. x=0.5xL. □ stable solution; 
+ unstable solution; p0=6, pi=6. 
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ABSTRACT 
A co-rotational finite element formulation for the geometrically 

nonlinear dynamic analysis of spatial beam with large rotations but 
small strain is presented. The deformation nodal forces and inertia 
nodal forces are derived by using the d'Alembert principle and the 
virtual work principle. The gyroscopic effect is considered here. 

The beam element developed here has two nodes with six degrees 
of freedom per node. Some angular velocity coupling terms, which 
are so called gyroscopic forces, are obtained in inertia nodal force. 

An incremental-iterative method based on the Newmark direct 
integration method and the Newton-Raphson method is employed 
here for the solution of the nonlinear dynamic equilibrium 
equations. Numerical examples are presented to demonstrate the 
accuracy and efficiency of the proposed method. 

INTRODUCTION 
In recent years, the nonlinear dynamic behavior of beam 

structures, e.g., framed structures, flexible mechanisms, and robot 
arms, has been the subject of considerable research. In [1], Hsiao and 
Jang presented a co-rotational formulation and numerical 
procedure for the dynamic analysis of planar beam structures. This 
formulation and numerical procedure were proven to be very 
effective by numerical examples studied in [1]. However, it is only 
limited for planar beam structures. A general formulation for three 
dimensional beam element is not a simple extension of a two 
dimensional formulation, because large rotations in three 
dimensional analysis are not vector quantities; that is, they do not 
comply with the rules of vector operations. In [2] a motion process 
of the three dimensional beam element is proposed for the large 
displacement and rotation analysis of spatial frames. In [3] a co- 
rotational formulation for three-dimensional beam element is 
proposed. However, it is only limited for nonlinear static analysis. 

The objective of this study is to present a practical formulation for 
the dynamic analysis of three dimensional Euler beam. The 
kinematics of the beam element proposed in [3] is adopted here. 
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The element deformations are determined by the rotation of 
element cross section coordinates, which are rigidly tied to element 
cross section, relative to the element coordinate system [2, 3]. The 
three rotation parameters proposed in [3] are used to determine the 
orientation of the element cross section coordinates. In order to 
capture the gyroscopic effect, the relation between the time 
derivatives of the rotation parameters and the angular velocity and 
the angular acceleration is derived here. The beam element 
developed here has two nodes with six degrees of freedom per node. 
The element nodal forces are conventional forces and moment. 
The deformation nodal forces and inertia nodal forces are derived 
by using the d'Alembert principle and the virtual work principle in 
the current element coordinates. An incremental-iterative method 
based on the Newmark direct integration method and the Newton- 
Raphson method is employed here for the solution of the 
nonlinear dynamic equilibrium equations. Numerical examples 
are presented to demonstrate effectiveness of the proposed method. 

FINITE ELEMENT FORMULATION 

Basic assumptions 
The following assumptions are made in the derivation of the 

nonlinear behavior: (1) the beam is prismatic and slender, and the 
Euler-Bernoulli hypothesis is valid; (2) the centroid and the shear 
center of the cross section coincide; (3) the unit extension and twist 
rate of the centroid axis of the beam element are uniform; (4) the 
cross section of the beam element does not deform in its own plane, 
and strains within this cross section can be neglected; (5) the out-of- 
plane warping of the cross section is the product of the twist rate of 
the beam element and the Saint Venant warping function for a 
prismatic beam of the same cross section; (6) the deformations of the 
beam element are small. 

Coordinate systems 
In this paper, a co-rotational total Lagrangian formulation is 

adopted. In order to describe the system, following [3], we define 
three sets of coordinate systems (see Fig. 1): 
(1) A fixed global set of coordinates, Xj(z = 1,2,3); the nodal 
coordinates, displacements, and rotations, and the stiffness matrix 
of the system are defined in this coordinates. 

(2) Element cross section coordinates, xf (i = 1,2,3); a set of element 
cross section coordinates is associated with each cross section of the 
beam element. The origin of this coordinate system is rigidly tied to 
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the shear center of the cross section. The x{ axes are chosen to 
coincide with the normal of the corresponding cross section and the 

x£ and xf axes are chosen to be the principal directions of the cross 
section. 
(3) Element coordinates, x{ (i = 1,2,3); a set of element coordinates 
associated with each element. The origin of this coordinate system 
is located at node 1; the xx axis is chosen to pass through two end 
nodes of the element, and the x2 and x2 axes are determined from 
the orientation of the element cross section coordinates at two end 
nodes using the way given in [2]. The deformations and stiffness 
matrices of the elements are defined in terms of this coordinates. 
In this paper the element deformations are determined by the 
rotation of element cross section coordinates relative to this 
coordinate system. 

Rotation vector and rotation parameters 
For convenience of the later discussion, the term 'rotation vector' 

is used to represent a finite rotation.   Figure 2 shows that a vector 
b  which as a result of the application of a rotation vector 0a is 

transported to the new position b'.  The relation between b and b' 
maybe expressed as [4] 

b' = cos <j>b + (1 - cos <t>){a • b) + sin<p(a. x b), (1) 

where <p is the angle of counterclockwise rotation, and a is the unit 
vector along the axis of rotation. 

In this paper, the symbol { } denotes column matrix. Let e, and ef 

(z = 1,2,3) denote the unit vectors associated with the x; and xf axes, 

respectively. Here, the traid ef in the deformed state is assumed to 
be achieved by the application of the following two rotation vectors 
to the traid e; : 

where 
6„ = 0„n, Qt = Öit, (2,3) 

n = {0, 62/(6% + 0|)V2, 03/(0f + 6bV2} 
= {0, n2r n3}, 

t = {cos0„,02,03}, 

cosdn ={i-el-dlfl2, 

e2 = -^l,     %-*&, (4) 
ds ds 
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in which n is the unit vector perpendicular to the vectors ei and 

ef, and t is the tangent unit vector of the deformed centroid axis. 

Note that ef coincides with t. 0„ is the inverse of cos0„. v(s) and 
w(s) are the lateral deflections of the centroid axis of the beam 
element in the x2 and x3 directions, respectively, and s is the arc 
length of the deformed centroid axis. 

The rotation vectors 0„ and Qt are determined by 0; (z' = l,2,3). 
Thus, 0,- are called rotation parameters in this study. 

Using Eqs. (l)-(4), the relation between the vectors e,  and  ef 
(z = 1,2,3) in the element coordinate system may be obtained as 

ef = [t, Rj, R2] = Re;, 
Rx = cos dtfi + sin0ir2, 
R2 = -sin 6^ + cos0]r2, 

rx = {-03,cos0„ +(l-cos0„)H2
J,(l-cos0„)n2«3}' 

r2 ={02,(l-cos0„)«2w3,cos0M +(l-cos0„)nf}, (5) 

where R is the so-called rotation matrix. 
Let 0 = {0X, 02, 03} be the vector of rotation parameters, <50 be the 

variation of 9. The traid ef corresponding to 0 may be rotated by a 
rotation vector <5<j> = {<5fo, ö<j>2, <503> to reach their new positions 
corresponding to 0 + <50 [3]. When 02 and 03 are much smaller 
than unity, the relationship between 60 and (5<j> may be 
approximated by 

.50 = 

1 03/2   -02/2 
-03      1 0 

02 0 1 

(5(j> = T-1<5<j>. (6) 

If both sides of Eq. (6) is divided by öt, the first time derivative of 0 
maybe expressed by 

0 = 

1      03/2 -02/21 

-03       1 0 (f^T-1^, 

02        0 1 

(7) 

where the symbol ( ) denotes differentiation with respect to time t. 
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0,-(i = 1,2,3) denote the angular velocities about the x± axes. 
From Eq. (7), the second time derivative of 6 may be expressed by 

may be expressed as 

0 = f_1<j) + T"1i, (8) 

where <fo(z' = 1,2,3) denote the angular accelerations about the x-t 

axes. 

Nodal parameters and forces 
The global nodal parameters for the system of equations 

corresponding to the element local nodes j (j = 1, 2) are I7y, the X2- 
(i = 1,2,3) components of the translation vectors Vj at nodes ;', and 
<&„■, the X; (i = 1,2,3) components of the rotation vectors <&, at 
nodes j. Here, the values of <Pj are reset to zero at current 

configuration. Thus, #t>y-, the variations of *y-, represent 

infinitesimal rotations about the X; axes [3], <J>y and öy represent 
angular velocities and angular accelerations about the Xj axes, 
respectively. The generalized nodal forces corresponding to <5<I>y are 
the conventional moments about the X,- axes. The generalized 
nodal forces corresponding to <5lZy, the variation of LZy, are the 

forces in the X,- directions. 
The element employed here has six degrees of freedom per node. 

Two sets of element nodal parameters termed 'explicit nodal 
parameters' and 'implicit nodal parameters' are employed. The 
explicit nodal parameters of the element are used for the assembly 
of the system equations from the element equations. Thus, they 
should be consistent with the global nodal parameters, and are 
chosen to be uy, the x{ (i = 1,2,3) components, of the translation 

vectors u^ at nodes ;' (j = 1, 2) and 0y, the *,- (t = 1,2,3) components 
of the rotation vectors <j);- at nodes j. Similarly, the generalized 

nodal forces corresponding to wy and öfaj are /y and my, the forces 
in the *,- directions and the conventional moments about the x-t 

axes, respectively. 
The implicit nodal parameters of the element are used to 

determine the deformation of the beam element. They are chosen 
tobe My, the x{ (t = l,2,3) components of the translation vectors u;- 
at nodes ;' and 0y, the nodal values of the rotation parameters 0,- 
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(z = 1,2,3) at nodes ;' (/' = 1, 2). The generalized nodal forces 

corresponding to buV] and 88^ are /^ and m|, the forces in the x-t 

directions and the generalized moments, respectively. Note that 

■?■   are   not   conventional   moments,   because   <50y   are   not m 
■v    y 

infinitesimal rotations about the x; axes. 
In view of Eq. (6), the relations between the variation of the 

implicit and explicit nodal parameters may be expressed as 

8qe = . 

<5ux1 ri    o    o    o j '<5ux 

00! 0   Ti1   0     0 «^l 

<5u2 0     0     10 <5u2 

<562 0     0     0   T21 ö$2 

• = T^öq, (9) 

where      8uj^{8uljr8u2j,8u3j},       SQj = {88^,88^,88^},      and 

ö$j ={%;,%;,%;}/ 0' = *' 2)"    X Snd   0   3re  **  identit7 aXld Zei'° 

matrices of order 3x3, respectively.   TJ1 (7 = X 2) are nodal values 

of T'1. 
Letf = {f1,m1,f2,m2K f9 ={fi,mf,f2,mf}, where fj={fij,f2j>hjh 

mj={mlj,m2j,m3j} and m? -{mf^mf^mf,-} (/ = 1/ 2)' denote **"* 
internal nodal force vectors corresponding to the variation of the 

explicit and implicit nodal parameters, <5q and, <5qe, respectively. 
Using the contragradient law [5] and Eq. (7), the relation between f 

and, fe may be given by 

f = Toj,f . (10) 

Kinematics of beam element 
The deformations of the beam element are described in the current 

element coordinate system. From the kinematic assumptions made 
in this paper, the deformations of the beam element may be 
determined by the displacements of the centroid axis of the beam 
element, orientation of the cross section (element cross section 
coordinates), and the out-of-plane warping of the cross section [3]. 
Let Q (Fig. 1) be an arbitrary point in the beam element, and P be the 
point corresponding to Q on the centroid axis. The position vector 
of point Q in the undeformed and deformed configurations may be 
expressed as 
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(11) 

r = xc(s)e1 + v(s)e2 + w(s)e3 + ye| + zef + duwe.{, (12) 

r = xet + ye2 + ze3 

and 

where xc{s), v(s) and w(s) are the xv x2 and x3 coordinates of point 
P, respectively, s is the arc length of the deformed centroid axis 
measured from node 1 to point P.   xc{s) may be expressed by 

*c(s) = wn+J^cos0„ds, (13) 

where «n is the displacement of node 1 in the x1 direction, and 
cos0„ is defined in Eq. (4). 
Here, v(s) and w(s) in Eq. (12) are assumed to be the Hermitian 

polynomials of s , and 0x(s) in Eq. (12) is assumed to be linear 
polynomials of s, and may be given by 

v{s) = {N1,N2,N3,N4}f{«2i, 031,"22>032> = N^6' 
Zü(s) = {N1,-N2,N3-,N4}i{M31,021/"32^22} = NcUc, 

01(s) = {N5,N6}i{011,0i2} = N^, (14) 

1,.    .,2,-    -     „     Sn    .2, iVi-^(i-?)2(2+ix ^2 = g(i-r)a-^ 

A/3 = 1(1 +1)2 (2 - |),   N4 = |(-1 + |2)(1 + IX 

JV5-I(1-|X ^6=|(1 + |), (15) 

where S   is the arc length of the centroid axis of the beam element 
and may be expressed by 

S = 2t/f*ca&6l&, (17) 

where  I is the chord length of the centroid axis of the beam 
element, and cos0„ is given in Eq. (4). 

The  way to  determine  the  current element cross  section 
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coordinates at both ends, element coordinates, and element implicit 
nodal parameters corresponding to displacement increments is 
given in [2, 3]. 

If x,  y, and   z   in Eq. (11) are regarded as the Lagrangian 
coordinates, the Green strains sn, s^, and e13 are given by 

1 
-11-2 \dx) \3x} 

1(3x^1 dx 

If *)'(*). (18) 
"    2\dx) \dz) 

Substituting Eqs. (4), (5), (12), and (13) into Eq. (18), en, s12, and e13 

can be calculated. 
Element nodal force vector 

The element nodal force vector fe (Eq. (10)) corresponding to the 
implicit nodal parameters are obtained from the d'Alembert 
principle and the virtual work principle. For convenience, the 
implicit nodal parameters are divided into four generalized nodal 
displacement vectors u, (f = a,b,c,d), where 

u„={«n,H12}, (19) 

and ub, uc, and ud are defined in Eq. (14).. 
The generalized force vectors corresponding to <5u;, the variation 

of u, (i = a,b,c,d) are 

h = fb + t'b = {/21'"J31'/22'm32>' 

fc = f? + 4={/31,™|r/32^22>' 

fd-d + fk-{<,»&>' (20) 

where f- and fj (j = a,b,c,d) are the deformation nodal force vector 
and the inertia nodal force vector, respectively. 

The virtual work principle requires that 
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äaXa + totfo + eakc + Safa _ 

=JL (anöen + 2al2öe12 + 2a13ös13 + pötTi)dV', 

where an = Esn, a12 = 2Gs12 and cr13 = 2Gs12, where E is the 
Young's modulus and G is shear modulus, p is the density, and V 
is the volume of the undeformed beam. 

If the element size is properly chosen, the values of the nodal 
parameters (displacements and rotations) of the element defined in 
the current element coordinate system, which are the total 
deformational displacements and rotations, may always be much 
smaller than unity. Thus only the first order terms of nodal 
parameters are retained in deformation nodal forces. However, in 
order to include the effect of axial force on the lateral forces, a 
second order term of nodal parameters is retained. Because the 
values of the nodal parameters of the element may always be much 
smaller than unity, it is reasonable to assume that the coupling 
between the nodal parameters and their time derivatives are 
negligible. Thus only zeroth order terms of nodal parameters are 
retained in inertia nodal forces. 

From Eqs. (4), (5), and (12)-(21), the deformation nodal forces and 
the inertia nodal forces may be expressed as 

fd
a~

AE{S
L-

L){-l,l},          fd
b=(kb + kgb)ub, (22,23) 

f^ + k^K,               ff = GKdY6«]{-lAh (24,25) 

f,-mBüfl» (26) 

4 = (mbt + m^üfc - 2pJz fNj, Ws , (27) 

£ = (md + m0.)üc - Iplypi'jtäds , (28) 

fd = mdüd - p{Iy-Iz)pide26idSr (29) 
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where A is the cross section area, L is the initial length of the beam 
element, k; and k?- (;' = b,c) are bending and geometric stiffness 

matrices of conventional beam element [5,6], and / is the torsional 
constant,   p is the density, ly and Iz are the moment of inertia of 

the beam cross section about the xf and xf axes respectively. ma is 
the consistent mass matrix of bar element for axial translation, m,-t 

and m,y (i = b,c) are the consistent mass matrices of elementary 
beam element for lateral translation and rotation, respectively, and 
md is the consistent mass matrix of bar element for axial rotation. 
These mass matrices can be found in [5, 6]. The underlined terms in 
Eqs. (27)-(29) are inertia forces induced by the gyroscopic effect, and 
are called gyroscopic forces. 

Element Matrices 
The element stiffness matrices and mass matrices may be obtained 

by differentiating the element nodal force vectors with respect to 
nodal parameters, and time derivatives of nodal parameters. 
However, element matrices are used only to obtain predictors and 
correctors for incremental solutions of nonlinear equations in this 
study. Thus, approximate element matrices can meet these 
requirements. The stiffness matrices and mass matrices of 
elementary beam element given in [5, 6] are also used here. 

Equations of motion 
The nonlinear equations of motion may be expressed by 

FJ?=F/+FD-P = 0 (30) 

where FR is the unbalanced force among the inertia nodal force F , 

deformation nodal force FD, and the external nodal force P. F  and 

FD are assembled from the element nodal force vectors in Eq. (10), 
which are calculated using Eqs. (10) and (22)-(29) first in the current 
element coordinate system, and then transformed from current 
element coordinate system to global coordinate system before 
assemblage using standard procedure. 

APPLICATIONS 
An incremental iterative method based on the Newmark direct 

integration method and the Newton-Raphson method is employed 
here for the solution of the nonlinear dynamic equilibrium 
equations. 
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The example considered is a right-angle cantilever beam subjected 
to an out-of-plane concentrated load as shown in Fig. 3. Four 
elements are used for discretization. A time step size of At = 0.25 is 
used. The cantilever undergoes a finite free vibration with 
combined bending and torsion after the removal of the applied 
load; the time histories of out-of-plane displacements of the elbow 
and of the tip are given in Figs. 4 and 5. It is seen that the present 
results are in excellent agreement with those given in [7] and [8]. 
However, it should be mentioned that the beam elements used in 
[7] and [8] are derived using fully nonlinear beam theory and total 
Lagrangian formulation. Thus, the beam elements used in [7] and 
[8] are much more complicated than that proposed here. 

CONCLUSIONS 
A co-rotational finite element formulation for the geometrically 

nonlinear dynamic analysis of spatial beam with large rotations but 
small strain is presented. The deformation nodal forces and inertia 
nodal forces are derived by using the dAlembert principle and the 
virtual work principle. The gyroscopic effect are considered here. 

The nodal coordinates, displacements, rotations, velocities, 
accelerations, and the equation of motion of the system are defined 
in a fixed global set of coordinates. The beam element developed 
here has two nodes with six degrees of freedom per node. The 
element nodal forces are conventional forces and moments. All of 
element deformations and element equations are defined in terms 
of element coordinates which are constructed at the current 
configuration of the beam element. The element deformations are 
determined by the rotation of element cross section coordinates, 
which are rigidly tied to element cross section, relative to the 
element coordinate system. In conjunction with the co-rotational 
formulation, the higher order terms of nodal parameters in 
element nodal forces are consistently neglected. 

An incremental-iterative method based on the Newmark direct 
integration method and the Newton-Raphson method is employed 
here for the solution of the nonlinear dynamic equilibrium 
equations. Numerical examples are presented to demonstrate the 
accuracy and efficiency of the proposed method 

It is believed that the co-rotational formulation for 3-D beam 
element presented here may represent a valuable engineering tool 
for the dynamic analysis of spatial beam structures. 
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Abstract 
A multimode time domain formulation based on the finite element method for large 

amplitude vibrations of thin composite plates subjected to a combined harmonic excitation 
and thermal load is presented. By using the modal reduction method, the system equations of 
motion in physical coordinates are transformed into the linear modal coordinates and the 
sizes of the system matrices are reduced drastically. The reduced system modal equations can 
be handled easily with less computational efforts. The frequency-maximum deflection 
relations of simple harmonic, superharmonic and subharmonic responses are predicted by 
choosing suitable initial conditions. The procedure for the selection of the initial conditions is 
also presented. A laminated composite plate is studied in great detail. External loadings 
considered are harmonic excitations or combined harmonic and thermal loads. The steady 
state responses of the linear modal coordinates are presented in details at several frequencies. 
Their phase plots, power spectrums and time domain graphs are given and discussed . 

Introduction 
The increase use of advanced composites as high performance structural 

components necessitates accurate prediction methods which reflect their 

multilayered anisotropic behavior. Thin laminated composite plates subjected to 

severe harmonic lateral loadings are likely to encounter flexural oscillations 

having amplitudes of the order a plate thickness. For the prediction of forced 

vibration response, the multilayered anisotropic behavior, the complex 

boundary conditions, and the complex loading cases such as the present of the 
thermal loads make the problem even more difficult. Methods of analysis 

dealing with large deflections are thus becoming increasingly important. 
Whitney and Leissa [1] have formulated the basic governing equations for 

nonlinear vibrations of heterogeneous anisotropic plates in the sense of von 

Karman.   Based  on  those  equations,   a  number  of classical  continuum 
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approaches exists for the analysis of nonlinear plate behavior. In general, the 

Galerkin's method is used in the spatial domain, where the plate deflection is 

expressed in terms of one or more linear vibrational mode shapes; and various 

techniques in the temporal domain such as the direct numerical integration, 

harmonic balance, incremental harmonic balance, perturbation, and multiple 

scales methods, to cite a few, are employed. Excellent collections of classical 

continuum solutions and reviews on geometrically nonlinear analysis of 

laminated composite elastic plates are given by Chia [2,3] and Sathyamoothy 

[4]. The internal resonance of nonlinear systems has been thoroughly 

investigated using the multiple scales by Nayfeh and Mook [5]. Most recently, 

Wolfe et al. [6] have reviewed various analytical methods and have obtained 

experiment data on beams and plates excited sinusoidally or randomly. Most of 

the classical continuum solutions of composite plates have been limited to 

single-mode approximation. This is due to the difficulties in obtaining the 

general Duffing-type multiple-mode equations using the Galerkin's approach 

especially for arbitrarily (unsymmetrically) laminated composite plates with 

complex boundary conditions. 
The finite element method has proven to be a powerful and versatile 

approach for structural problems of complex geometries, boundary conditions, 
and loadings. Reddy [7] has reviewed the application of finite element methods 

to linear and nonlinear anisotropic composite plate problems. In this paper, the 
nonlinear steady state periodic responses of thin rectangular arbitrarily 

laminated composite plates excited sinusoidally with or without the presence of 

thermal load are presented using the finite element time domain modal method. 

A rectangular composite plate is studied in detail. 

Formulation 
The finite element system equations of motion for large amplitude vibrations 

of a thin laminated composite plate can be expressed as 

[MjfwJ+plJwj + ^-tKNrl+tKKW^ + fK^W^W} = {P(t)}+{PT} 

(1) 

where [M], [C], [K], [KOT] , {P(t)} and {PT} are constant matrices and vectors 
and represent the system mass, damping, linear stiffness, thermal effort and 
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loads, respectively; and [Kl] and [K2] are the first and second order nonlinear 

stiffness matrices and depend linearly and quadratically on the unknown 

structural nodal displacements {W}, respectively. The derivation of the element 

matrices and load vectors and their explicit expressions are referred to 

references [8,9]. 
The system equations of motion presented in eq. (1) are not suitable for 

direct numerical integration because: a) the nonlinear stiffness matrices [Kl] 

and [K2] are functions of the unknown nodal displacements, and (b) the 

number of degrees of freedom (DOF) of the system nodal displacements {W} 

is usually too large. Therefore, eq. (1) has to be transformed into the modal or 

generalized coordinates of much smaller DOF. Various reduction methods for 

nonlinear problems have been summarized in an excellent review article by 

Noor [10]. For nonlinear dynamic problems, the base vectors need updating 

using the modal methods presented in [10]. In the present formulation, the 

forced general Duffing-type modal equations will have constant nonlinear 

modal stiffness matrices, therefore updating of the base vectors is not needed. 

This is accomplished by a modal transformation and truncation 

n 

{W} = ^qr(t)M
(r)=[$]{q} (2) 

r=l 

where the system mode shapes are the solution from the linear eigen-problem 

0>r[M]{<|>}(r) =[K]{(|>}(r). The nonlinear stiffness matrices [Kl] and [K2] in 

eq. (1) can now be expressed as the sum of the products of modal coordinates 

and nonlinear modal stiffness matrices as 

[Kl] = ^qr[Kl«t»(r))]r (3) 

r=l 

and 

^=XXqrqs[K2(*(r)^(s))](rs) (4) 

The nonlinear modal stiffness matrices [Kl]w and [K2](rs) are assembled from 

the element nonlinear modal stiffness [kl](r) and [k2](K) as 
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([Klf\[K2fs)) =    ^T ([kl](r),[k2](rs)) (5) 
all elements 
+ bdy. conds. 

where the element nonlinear modal stiffness matrices are evaluated with known 

system linear mode {<|)}r. Thus, the nonlinear modal stiffness matrices [Kl](r) 

and [K2](rs) are constant matrices. Equation (1) is thus transformed to the 
forced general Duffing-type modal equations as 

[M]{q}+[c]{q}4-([K] + [Klq] + [K2qq]){q}= {F(t)} (6) 

where the modal mass, damping, and linear stiffness matrices are 

([M], [C], [K]) = [<K]T ([M], [C], [K] - [KOT ])[<&] (7) 

and the quadratic and cubic terms in modal coordinates and the modal force 
vector are 

f   n A 

[Klq]{q} = [<I>]T£qr[Kl](r) 

r
  n     n 

[^{ql^f^^qrqs^]' 

[*]{q} 

[*]{q> 
V r=l  s=l 

{F} = [*]T({P(t)}+{PT}) 

(8) 

(9) 

(10) 

All modal matrices in eq. (6) are constant matrices. With given initial 
conditions, the response of modal coordinates {q} can be determined from eq. 
(6) with any direct numerical integration scheme such as the Runge-Kutta or 
Newmark-ß method. Therefore, no updating of the vibration modes is needed. 
The following is the description of the selection of the initial conditions for 
periodic motions. 

With the input of suitable initial conditions, three types of solutions, periodic 
or nearly simple harmonic, superharmonic and subharmonic solutions, can be 
obtained. The selection of each type solution is based on the solution of the 1- 
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DOF Duffing equation obtained by using the modal reduction method 

described earlier. For example, the system equations of motion of a symmetric 

composite plate can be reduced to 1-DOF model (Note: the quadratic term is 

gone because the plate is symmetric) as 

Mrqr+Crqr+Krqr+K2rqj: =Frsin(cot) (11) 

where Mr, Cr, Kr, K2r and Fr are scalar constants and represent the modal mass, 

damping, stiffness and force; co is the forcing frequency and the subscript "r" 

denotes the linear modal number. The solution of eq. (11) can be assumed as 

qr =AiCos(cot)+ A3cos(3cot) for the simple harmonic and superharmonic 

solutions, then two sets of Ai and A3 can be obtained by the substituting of the 

assumed qr into eq.(ll). One set is for the simple harmonic solution and the 

other set is for the superharmonic solution. Based on these solutions, the initial 

displacement of the r-th modal coordinate in eq. (6) is chosen as A+A3. The 

initial velocities and all other initial displacements are zero. Similarly, it is 

assumed that qr =Aicos(cot)+ Aißcos(cot/3) for the subharmonic solution. 

Then, all those initial conditions can be found by repeating the procedure just 

described. 

Results and Discussions 
A simply supported eight-layer symmetrically laminated (0/45/-45/90)s 

composite plate is studied in great details. The plate is of 15 x 12 x 0.048 in. 

(38.1 x 30.5 x 0.122 cm). The inplane boundary conditions are immovable, i.e. 

u=v=0 on all four edges. The graphite-epoxy material properties are : Ei=22.5 

Msi (155 GPa), E2 =1.17 (8.07), Gn = 0.66 (4.55), vl2 = 0.22 and p = 0.1458 

x 10"3 lb-s2/in4. (1550 kg/m3). The C1 conforming rectangular plate element is 

used in the finite element model and the plate is modeled with 12 x 12 (144 

elements) mesh. The element has a total of 24 DOF (16 bending and 8 

membrane). The lowest six natural frequencies ((%, r=l,6) and their 

corresponding mode shapes are : C0i = 55.46 Hz for (1,1) mode, (% = 125.736 

Hz for (2,1) mode, 0)3 = 151.951 Hz for (1,2) mode, co4 = 216.475 Hz for (2,2) 

mode, cos =250.585 Hz for (1,3) mode and co6 = 310.774 Hz for (3,1) mode. 
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Two load cases considered are uniformly distributed harmonic excitation over 

the plate with and without the presence of temperature. A constant modal 

damping factor, c, = G/(2Mr (Or), of 0.02 and a four-mode solution are used in 

the examples (Only the (1,1), (2,2), (1,3) and (3,1) modes are considered 

because the uniformly distributed excitation cannot induce any response of the 

(1,2) and (2,1) modes, see Table 7 of [11]). 

Harmonic Excitations 
A uniformly distributed pressure load of the form p(x,y,t) =pc sincot is 

considered for the forced vibration problem. The force intensity is maintained 

at p0 = 0.00438 psi (30.2 Pa), however, the forcing frequency co is varying in a 

wide range from 0 to 4.5 times of the lowest linear natural frequency ©i. The 

results are shown in Figs. 1 to 4, where the designations for the total responses 

are indicated in Fig. 1, while the time-histories, phase plots and power spectra 
are given in Figs. 2 to 4. To make clear the behavior of the vibration response 

at particular frequency, each modal coordinate is depicted for understanding 
the simple harmonic, superharmonic and subharmonic response of the nonlinear 

system. 

Figures 2a-c correspond to the responses of the three forcing frequencies at 

0.6, 2.4 and 3.8 times of cot labeled as (1) to (3) in Fig. 1. It can be seen that 

the total response of the centre of the plate is dominated by the first mode (It 

should be noted that the centre of the plate has zero contribution from the (2,2) 

mode). The frequency responses of the four modal coordinates are composed 
of superharmonic frequency components of order 2, 3, 5 .. etc. , as well as the 

input driving force frequency. At the frequency of the point (3) in Figs. 2c and 

2d, the corresponding time histories of the second, third and fourth modal 
coordinates are unsymmetric as that of the first modal coordinate is symmetric. 

Hence, the plate is vibrating with a non-zero equilibrium position due to the 
unsymmetric responses of the second, third and fourth modes. 

In Figs. 3a and 3b, which correspond to the responses of two points (4) and 

(5) at co = 2.4 coi and 4.2 co1 in Fig. 1, the total response of the centre of the 

plate is almost pure simple harmonic at that particular frequency range. 

In Fig. 4a, which corresponds to the response of the point (6) at co = 3.8 COi 

in Fig 1, the centre of the plate is mainly composed of subharmonic response of 

order 1/3. In the time histories of the four modal coordinates of Fig. 4b, it can 

be seen that the subharmonic component in the total response is contributed by 
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the (1,1) modal coordinate, and the responses of the higher modal coordinates 

are pesudo harmonic. 

Combined Harmonic and Thermal Loads 
In addition to the uniform pressure p0 sincot, a steady state temperature 

change of 2.9Tcr is also applied to the composite plate ( where the buckling 

temperature Tcr =13.79 °F). The forcing frequency is taken as co = 1.45ffli and 

it is kept at that constant frequency of excitation, however, three pressure 

intensities at p„ = 6, 10 and 14 x 10"3 psi are considered. The responses are 

shown in Figs. 5a-c. The results are shown after the transient response being 

damped out, this is demonstrated by the quasi-steady state time histories in 

Figs. 5a and 5c. 
When the pressure load is small at 0.006 psi (41.3 Pa), the plate exhibits 

small oscillations about one of the thermally buckled positions (WmJh 

=1.0237) shown in Fig. 5a. With increase of the pressure loading, the amplitude 

of vibration increases. Fig. 5b shows the so-called snap-through or oil-canning 

phenomenon at p0 = 0.010 psi (68.9 Pa), the plate behavior is chaotic and has 

two potential wells. With the further increase of the pressure loading, the plate 

exhibits large amplitude oscillations through the two buckled positions as 
shown in Fig. 5c at p0 = 0.014 psi (96.4 Pa). The plate motion is periodic at 

low and high pressure loads, however, the plate response composes of 

superharmonic frequency components of order 2 and 3 at the low pressure and 

of order 3 and 5 at the high pressure as shown in the PSD plots. 

The substance of the transition of the three distinct plate behaviors, from the 

small osculations into the chaotic motion then into the large amplitude 

vibrations with the increase of forcing intensity, is shown in Fig. 6. In the low 

pressure range, the plate could also vibrate about the another equally possible 

bifurcation buckled position shown with dotted lines. 

Conclusion 
Based on the finite element method, a multimode time-domain formulation 

for nonlinear forced vibration of composite plates is presented. The main 

advantage of this method is that the system matrix equation derived from the 

FEM can be transformed into a set of general type Duffing equations with 

constant system matrices and much smaller DOF. The selections of initial 
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conditions for the subharmonic, simple harmonic and superharmonic responses 

are presented. Through detailed descriptions, the frequency response 

characteristics, phase plots, time histories and the power spectrums have been 

illustrated for the three types of responses. The responses of a thermally 

buckled composite plate under harmonic excitation with fixed forcing 

frequency and various amplitudes are also obtained. Snap-through motion is 

observed at moderate pressure loads. 
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Abstract 

The investigation reported in this presentation is concerned with the prediction 
of geometrically large nonlinear responses of laminated composite plate and 
shell structures under dynamic loads by employing the hybrid strain based flat 
triangular laminated composite shell finite elements. Large deformation of 
finite strain and finite rotation are emphasized. The finite element has eighteen 
degrees of freedom which encompass the important drilling degree of freedom 
at every node. It is hinged on the first order shear deformable lamination 
theory. Various typical laminated composite plate and shell structures under 
dynamic loads have been studied and representative ones are presented and 
discussed in this paper. Shear locking has not appeared and there is no zero 
energy mode detected in the problems studied. It is very accurate and efficient. 
Consequently, it is relatively much more attractive than other elements 
currently available in the literature for large scale nonlinear dynamic response 
analysis of laminated composite plate and shell structures. 
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1. INTRODUCTION 

Many modern structures such as nuclear reactor containment installations, 
naval and aerospace structures, and their components, must be designed to 
withstand a variety of intensive dynamic disturbances. Because of their many 
attractive features over isotropic materials more and more structures or 
components in the aforementioned systems are made of laminated composite 
materials. The investigation reported in this paper is therefore concerned with 
the prediction of geometrically large nonlinear responses of laminated 
composite plate and shell structures, of complicated geometries, under transient 
excitations. With complicated geometries analytical solution is impossible and 
therefore a versatile numerical method, the finite element method has been 
employed. A hybrid strain based flat triangular laminated composite shell 
finite element has been developed by the authors [1,2] for the nonlinear 
analysis of plate and shell structures under static loadings. The present 
investigation is an extension of [1,2] to cases with the aforementioned 
dynamic forces. Among various attractive features of the derived element 
stiffness and consistent element mass matrices five are worthy of listing here 
for completeness. These are: (a) their ability to deal with large nonlinear 
elastic response of finite strain and finite rotation, (b) the fact that they are in 
explicit expressions and therefore no numerical integration is necessary, (c) the 
obtained results of a relatively comprehensive tests [2, 3] show that the 
element is free from shear locking, (d) the element gives correctly six rigid 
body modes, and (e) the finite element has three nodes and eighteen degrees 
of freedom (dof) which encompass the important drilling degree of freedom 
(ddof) at every node. It is based on the first order shear deformable lamination 
theory. It is a generalization of the low-order flat triangular shell element for 
isotropic materials developed earlier by Liu and To [4]. 

It is noted that one of the earlier work that employed triangular shell 
element is due to Noor and Mathers [5]. In the latter a mixed type triangular 
element was proposed. The element has six nodes, and 78 dof. It was based 
on the shallow shell theory and was shear deformable. Recently, Lin et al. [6] 
developed a finite element procedure to analyze composite bridges. The finite 
element procedure was based on small elasto-plastic strains and updated 
Lagrangian formulation. The element used was flat and constructed by the 
superposition of a discrete Kirchhoff bending element and a linear strain 
triangular membrane element. It has six nodes. There are three translational 
and three rotational dof at its comer nodes and three translational dof at mid- 
side nodes. In 1994 a flat triangular shell element was presented for static 
nonlinear analysis by Madenci and Barut [7]. It is based on the so-called free 
formulation concept for analyzing geometrically nonlinear thin composite 
shells. A corotation form of the updated Lagrangian formulation is utilized. 
The theoretical basis was on the geometrically nonlinear Kirchhoff plate theory 
without considering the effects of transverse shear deformation. The element 
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is of displacement type. It has three nodes and six dof for each node. While 
such formulation has some advantageous features computationally the element 
is relatively less efficient because (a) the linear element stiffness matrix 
consists of a basic and a higher-order stiffness matrices in the sense of 
Bergan and Nygard [8] for isotropic materials, and (b) the important effects 
of transverse shear deformation in the plate component of of this element has 
been disregarded. A more recent contribution on triangular elements is made 
by Zhu [9]. The natural approach is used to construct a curved triangular shell 
element for static analysis of geometrically nonlinear sandwich and composite 
shell structures. The element has six nodes. There are six dof at each corner 
node and three dof at each mid-side node. Updated Lagrangian description was 
adopted in the procedure. In the element formulation the transverse shear 
deformation was considered by assuming constant transverse shear stress 
distribution. 

In the next section the formulation of element stiffness matrices is 
outlined. Section 3 deals with the derivation of element matrices. Section 4 is 
concerned with the application of the derived elements to three example 
problems of plate and shell structures. The concluding remarks are included 
in Section 5. 

2. FORMULATION OF ELEMENT STIFFNESS MATRICES 

Finite element formulation for the derivation of a family of simple 
three-node, six dof per node, hybrid strain based laminated composite 
triangular shell finite elements for large scale geometrically nonlinear analysis 
is briefly outlined in this section. Large deflection of finite strains and finite 
rotations are included. The first order shear deformation theory and the 
degenerated three dimensional solid concept are adopted. In particular, element 
matrices for one member of the family are derived explicitly with the 
symbolic computer algebra package MACSYMA. To minimize the algebraic 
manipulation involved in the derivation, updated Lagrangian description is 
employed in the incremental formulation of the finite element procedure. In 
essence, the present formulation is an extension of the work by Liu and To [4] 
for isotropic materials to multi-layer laminated composite shells. Therefore, in 
the development the present approach follows closely that of the last reference. 

2.1 Incremental variational principle 
The Hellinger-Reissner functional %R can be written as 

*HR - / 
(ee)TCeu   _   I(ee)TC(ee) dV - W (1) 
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where, 
ee        is the independently assumed strain field; 
eu        is the strain due to displacement; 
C        is the material stiffness matrix or elasticity matrix; 
W is the work done by external forces, 

and the superscripts e and u indicate that the quantities are from independently 
assumed strain field and displacement field, respectively. For geometrically 
nonlinear analysis with incremental formulation and updated Lagrangian 
description, the static and kinematic variables in current equilibrium 
configuration at time t are assumed to be known quantities and the objective 
is to determine their values in the unknown subsequent equilibrium 
configuration at time t+At. For a time increment At, that is from time t to 
(t+At), one has 

AIT
HR " ATi^CA^Ae8) - itm(t+At) - «^(t) , (2) 

or, with reference to equation (1), 
A
*HR - / [(ee)TC(Aeu) + (AeE)TC(Aeu) 

(3) 

-(Aee)TC(Aec) - (Aee)TC(ee - eu)] dV - AW . 
2 

where, 
Au       is the vector of incremental displacement; 
Aec      is the vector of independently assumed incremental updated 

Green strains; 
Aeu      is the vector of incremental updated Green 'geometric' strains 

or incremental Washizu strains; 
AW     is the work-equivalent term corresponding to prescribed body 

forces and surface tractions in configuration Ct+4t. 

Equation (3) is the incremental form of Hellinger-Reissner variational 
principle. For updated Lagrangian description, the integral is evaluated at the 
current configuration C'. In the equation, the term 

|(AeE)TC(ee - eu) dV 

1440 



is the so-called compatibility-mismatch. Numerical results of Saleeb et al. [10] 
showed that though totally discarding the term resulted in convergence 
difficulties, while including the term in only the first iteration of every load 
step yielded essentially the same results as those having the term under all 
circumstances. However, Liu and To [4] reported no difficulties for 
convergence when the term was ignored. In the current study, this term is also 
disregarded. Then equation (3) can be recasted as 

A7tHR = / [ oTAeu + (Aee)TC(Aeu) 
V° (4) 

--(Aee)TC(AeE)]dV-AW, 
2 

where oT = (ee)TC is the Cauchy (true) stress vector at the current 
configuration C'. In this equation, the incremental Washizu strain Aeu can be 
expressed in two parts 

Ae^ - Ae;» + AT,,» <5a) 

and they are related to the incremental displacement by 

Ae£ - l(Auy + AUj.) ,   AT,S
U
 - ^AuyAu^ (5b,c) 

where the Einstein summation convention for indices has been adopted and the 
differentiation is with respect to reference co-ordinates at the current 
configuration C'. 

Substituting equation (5a) into (4) yields 

An     -   f [_ i(Aee)TC(Aec) + (Ae*)TC(Aeu) + aTAE
u 

{       2 (6) 
+ O

T
ATT + (Ae,)TCATin ] dV - AW , 

where a is the Cauchy stress vector. 

Discarding the higher order term, (Ae^ CATI
  , results in 

A
*HR "   f [~ -(AeB)TC(Aee) + (AeE)TC(Aeu) 

i       2 (7) 
+ oTAeu + aTAnu] dV - AW . 
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2.2 Hybrid Strain Formulation 
Element stiffness matrices for a hybrid strain based finite element can 

be derived directly from equation (7). Generally the independently assumed 
strain field and displacement field can be written as 

Ae° = P Aa ,   Au = 4> Aq (8a'b) 

where P is the strain distribution matrix, $ is the displacement shape function 
matrix, Ace is the vector of incremental strain parameters and Aq is the 
incremental nodal displacement. Substituting equations (8a, b) into (7), and 
defining 

H - / PTCP dVe ,      Ge - / PTCBL dV. 'e ' 

V - / B^alB^ dVe ,      Fx - / BL
To dVe , 

(9) 

one can show that 

Auj^Aq.Aa) - £[ - ^AaTHAa + AaTGeAq 

+ F^Aq + lAq^Aq - FTAq ] 

(10) 

where F is the external nodal force vector in the neighbour configuration 
associated with the AW term in equation (7); BL and BNL are the linear and 
nonlinear strain-displacement matrices, while cc is the matrix containing the 
Cauchy stress components at the current configuration. 

Finally, one can show that 

<k£ + V) A1 ■ W * At) - Fx .     k£ - G.TH->Ge       (1 la'b) 

where the expression in equation (1 lb) is the element "linear" stiffness matrix. 
The term kNL defined in equation (9) is the "nonlinear" or initial stress 
stiffness matrix and F, is the pseudo-force vector. The right hand side of 
equation (11a) is the equilibrium imbalance. 
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3. ELEMENT MATRICES AND THEIR UPDATING 

The derivation of nonlinear element stiffness matrices, constitutive 
equations, mass matrices of the element shown in Figure 1 are outlined here. 
In addition, updating of configuration and stresses at every time step is 
considered here for completeness. 

3.1  Nonlinear Element Stiffness Matrices 
For the assumed displacement field, an arbitrary point within an 

element is governed by 

r1' 
3 

t 
ri 

sl 

i-l 

t 
Si 

in 0 

+ c'E^Vi' 
(12) 

i-l 

The incremental displacements of an arbitrary point within the element are 

' Au< 
3 

' Au/ 

Av' -E5. 
i-l 

Av/ 

[Aw' ) Aw; 

+ cTMAv/)- (13) 
i-l 

Employing quadratic polynomials for the translational dof and including ddof 
lead to 

Au' 

Av1 

Aw* 

3 

ESi 
i-l 

Au/ 

Av/ 

AW; 

3 

+ E 
i-l 

i-l 

Aj(ii) Ai(12) 

Ai(2i) Ajpj) 

Ai(3i) Ai(32) 

0 0    pV A6A 

0 o  5, - Aes\ 

-Pi -5,   0 Ae/i 

Ae,'; 

A6i 

(14) 
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In the foregoing, 
u=u1?1+u2?2+u3?3+pietl+p2e a+pjSo 

v = v1?1+v2?2+v3?3+qietl+q2e a+%6ü 

w=w1c1+w2?2+w3?3-p1erl-p2er2-p3er3 

-qi6si-%6S2-q30s3. 

0r = 6rl?l+8^2 + 0r3^ 

6t=eti^+e^2+e«3?3 

(15a) 

(15b) 

where 

Pi = C^i^-*«^! »   5i - (bsi^-^a)^ > 

P2 = Cau5i-«23^3)52 '   52 - (Mi-ka^ ' 

P3   -   (^3^2 -a3l5l)?3  '     53   "   023^2-b31^)^3  • 

The remaining symbols have been defined by Liu and To [4] and are not 
repeated here for brevity. 

For the assumed strain field, the strain vector in equation (8a) may be 
written as 

AeE 
+ c 

AxE (16) 

where 

AC = PmAam ,   AX
E - PbAab 

AY
e - PsAas 

(17a) 
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with 

Aam={Aa1 Aa2 Aa3}T , 

Aab={Aa4Aa5Aa6}T,Aas={Aa7Aa8Aa9}T, 

and 

1  0 0 "1 0 0 

Pm = 0  1  0 

0 0  1 
.    pb = 0  1  0 

0 0  1 

J 

Ps = 
-s3(l-2S2)      83(1-2^)           0 

-r3(l-2?2)  (13-^(1-2^) r2(l-2?3) 
> 

where the subscripts m, b and s denote the membrane, bending a 
shear components of P in equation (8). 

By defining 

H^ = / PjA'P. da ,   H^ - / Ps
TCA

TPm da , 
a                                                          a 

Hffi - / PjCAPs da ,   ^ - / PS
TE'PS da , 

a                                                        a 

Hbm - / Pb
TB'Pm da ,   Hte - / Pb

TCB
TPs da , 

a                                                     a 

Hmb - / P*B'Pb da ,   Hsb - / Ps
TCB

TPb da , 
a                                                    a 

«bb - / PbTD/pb da 
a 
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where a is the area of the triangular shell element and 

,/_ 1 A' - E cca)k(VVi) .B'^E (ca)k(hkA-i) > 
* k-l k-1 

D' - { E (c.)k(^-^-i). E7 - KiKjE (cy AA-i). 
•*   k-l k-l 

cA - E (CJA-U. cB - { E (cab)k(tk-hk-i) 
k-l z k-l 

(19) 

in which the integer n is the number of laminae in the laminated composite 
structure. Then the matrix H in equation (9) becomes 

H = 

H„„ H„u H__ TTITT> mD tns 

Hbm Hbb Hbs 

Hsm Hsb Hss 9x9 

Similarly by defining 

G^ - / ^A'Bm da , G^ - / Ps
TCA

TBm da , 
a a 

G^ - / PjCABs da , G„ - / Ps
TE'Bs da , 

a a 

Gbm - / P^Bfc» da , Gta - / Pb
TCB

TBs da , 
a a 

Gmb - / Pjß'Bb da , Gsb - / Ps
TCB

TBb da , 
a a 

Gbb = / PjD'Bb da 

(20) 

(21) 
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one has the matrix 

G      + G v + Gmo mm mb ms 

Gbm 
+ Gbb + Gte 

G^ + Gsb + G, 

(22) 

9x18 

Therefore, with the ddof considered the element stiffness matrix can be shown 
to be 

k - k' + k    + k (23) 
K  -   KL   +  JCJJ  +   ÜJJL 

where the linear element stiffness matrix kL' and the "nonlinear" or initial 
stress stiffness matrix kNL are defined by in equations (9) and (11), while the 
stiffness matrix associated with the ddof k^ is defined as 

k<M = E(G
re)k(VVi)/BdTBd<k> (24) 

k-l 

in which 

B, Bdl  Bd2Bd3jlxl8 

and 

B di \li,s    -\lt.r    0    0    0     h*\(Pl..-«l.r) 

with i = 1,2,3. 
The "nonlinear" or initial stress stiffness matrix kNL can be obtained if 

the nonlinear strain-displacement matrix BNL and the matrix ac which contains 
the Cauchy stress components at the current configuration are available. The 
matrix BNL is defined by equation (45) of Liu and To [4]. 

The matrix ac is constructed from the Cauchy stress vector a and 
defined as 

°llI3 °12I3 a3lh 

Ollh °22I3 °23I3 

^l1?    °2^h      °3    . 

(25) 
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with I3 being the 3x3 identity matrix and 03 a 3x3 null matrix. The transverse 
stress components of a are considered constant over the thickness, and all 
components of a are calculated and updated for each time step at the centroid 
of each element. 

3.2 Constitutive Equations 
For finite strain problems in the elastic range, the reduced stiffness 

matrix is a function of stresses. To incorporate finite strains in the analysis, 
several approaches can be applied. The following adopted from reference [4] 
is to add the linear elastic matrix a correction matrix which is a function of 
Cauchy stress. To begin with, the correction terms in tensor form becomes 

^ikVVV«'^^0/*) (26) 
ijkl 

where 8mn is the Kronecker delta. Note that this equation comes as a result of 
transforming the Jaumann stress rate to the incremental second Piola-Kirchhoff 
stress. If the stress and strain vectors are 

|T 

(27) { °11   °22  °33   °12  °23   °31 }■ 

e   ~   I   eil  e22 e33  ei2 e23 ß31   ' 

the matrix form of equation (26) is 

4ou 0 0 2°12 0 2a13 

0 4°22 0 2°12 2°23 0 

2 

0 

2o12 

0 

2°12 

4033 

0 

0 

CTll + °22 

2°23 

°13 

2a13 

°23 

0 2°23 2°23 °13 °22 + °33 °12 

2o13 0 2o13 °23 °12 °ll + °33 

(28) 

In present investigation the so-called degenerated concept is adopted and 
therefore the elastic modulus in the normal direction to the plane of the shell 
structures is considered zero. Consequently the stress and strain in the 
transversal direction are ignored. In the linear analysis the constitutive 
relations for a lamina have been defined as 

o = Q e <29> 
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where 

'   -   {°x °y  °xy  °yz °n  »     > 

e  "   t  e, ey exy eyz ezx  JT 

(30) 

and 

Qn Q12 Qi6 ° ° 

Q12 Q22 Q26 0 0 

Ql6 %6 Ö66 ° 0 

0 0 0 ÖM 0,5 

0 0 0 0,5 Q55 

The corresponding matrix from equation (28) is 

" 4ax     0      2axy       0 2on 

0     4oy    2oxy    20y2     0 

2% 2oxy  ox+ay   o„ 0yz 

0     2oyz     o^       ay oxy 

C- -^ 
2 

yz 
a        a xy J 2a „     0 zx 

The material stiffness matrix for a lamina thus becomes 

C - Q + C 

(31) 

(32) 

(33) 

where 

C - 
[^3x3     iPa&3x2 

t^aj2x3     L^dJ2x2 

in which Ca, Cb, and Cab = Cba are given in equation (19). 
With the consideration of large deformation and finite strain, the 

constitutive equations for a multilayered structure or laminate can be written 
as 
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N 

M )■ 

A'   B'   C 

B'   D'   C 

L«   Cp 'A    ^B 

A Em 

B 
• X 

;/ 
8x8 

. y . 

or simply 

C e„ (34) 

where N, M and Qs are the vectors of stress resultants corresponding to 
membrane, bending and transverse shear, respectively. The matrices A', B', 
D', E', CA and CB have been defined in equation (19). 

3.3      Element Mass Matrices and Updating of Configurations and 
Stresses 
In the present study, with the updated Lagrangian description, the 

consistent mass matrix is formulated in the current configuration C'. The mass 
matrix is then updated at each time step. The assumptions are that the angular 
velocities and accelerations are small enough to be discarded. By following the 
procedures of Liu and To [4] the consistent element mass matrix can be 
obtained as 

(35) m = m„ m„ + rn, 

in which mB and mro[ are translational and rotational components of the 
consistent element mass matrix, respectively. Matrix md is the part associated 
with the ddof. When it is used for the incremental formulation with updated 
Lagrangian description, updating relevant quantities at each incremental step 
are required before evaluating the mass matrix. All these mass matrices are 
obtained explicitly with the symbolic computer algebra package MACSYMA. 

For each incremental step, the configuration and stresses have to be 
updated. Details of the steps can be found in the reference by Liu and To [4] 
and therefore are not included here. However, it may be appropriate to point 
out that the linear consistent element matrix for multi-layer composites has 
been employed by the authors [11] for vibration analysis of plates and shells. 

4. EXAMPLES OF LAMINATED COMPOSITE PLATE AND SHELL 

There are two main objectives in this section. First, accuracy of results 
obtained by the presently derived element matrices is studied. Second, the 
validity and conceptual adequacy of the formulation and assumptions made in 
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the derivation of element matrices are assessed. For brevity, one multi-layer 
plate, one multi-layer shell structure, and a cantilever panel with free end step 
moment are included here. More example problems can be found in To and 
Wang [3], and Wang and To [12]. 

4.1 Multi-Layer Plate Under Uniformly Distributed Step Disturbance 
The square plate considered has two layers. Its geometrical dimensions 

are: side length a = 2.438 m and total thickness h = 0.00635 m. Each layer of 
the laminate has equal thickness. The plate stacking scheme is cross-ply 
(0/90). The layer material properties are: E; = 6.8974 x 1010 N/m2, E, = 25 E* 
G12 = G13 = 0.5 E2, G23 = 0.2 E2, v12 = 0.25 and density p = 2498.61 kg/m . 

It is supported by hinges at its four edges. At these edges U or V (note 
henceforth upper case of deformation variable refers to global co-ordinate) 
parallel to the edges are not constrained. These boundary conditions are 
denoted as BC1 in reference [13]. For the purpose of direct comparison with 
the results reported in the latter reference, one quarter of the plate is modeled 
by a 4 x 4 D mesh (see Figure 1 for the definition of D mesh). Thus, the 
boundary conditions applied are: V = 0X = 0.0 at AB, U = W = 0X = 0.0 at 
BC, V = W = 0y = 0.0 at CD and U = 0y = 0.0 at AD. In addition, all 0Z are 
constrained. After application of the boundary conditions there are 158 
unknowns in this case. 

The uniformly distributed transversal step disturbance with intensity p0 

= 490.5 N/m2 is applied to the plate. In the analysis, the option of inclusion 
of directors [3, 12] and small strain are selected. The time step size is At = 
0.001 seconds. The responses at the centroid obtained by using the HLCTS 
element are plotted in Figure 2. They are compared with those reported by 
Reddy [13] in which results were obtained with a nine-node rectangular 
isoparametric element. In the latter transverse shear was considered. Excellent 
agreement can be observed. Before leaving this subsection it may be 
appropriate to mention that the nonlinear element stiffness matrix presented 
in reference [13] is nonsymmetric while the one derived in the present 
investigation is symmetric. In fact, when the system is conservative the 
nonlinear element stiffness matrix can be shown to be symmetric. 

4.2      Spherical Shell Segment Under A Uniformly Distributed Step 
Disturbance 
The geometry of the spherical shell is shown in Figure 3 in which the 

shell is simply supported. The geometrical properties are: radius R = 10.0 m, 
the side length of the projected plane b = 0.9996 m and the total thickness h 
= 0.01 m. The spherical shell is considered having two equal thickness layers 
and they have the (- 45/45) lamination scheme. The pertinent material 
properties are: E, = 2.5x10" N/m2, E, = l.OxlO10 N/m2, G12 = G13 = 0.5xl0l 

N/m2, G23 = 0.2xl010 N/m2, Poisson's ratio vI2 = 0.25 and density p = 1.0x10 
kg/m3. For comparison to results available in the literature one quarter of the 
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shell is modeled by the proposed hybrid strain based shell element (identified 
as HLCTS for brevity and convenience) with 4 x 4 D mesh. The boundary 
conditions applied to the finite element model are: V = 0^ = 02 = 0.0 at line 
AB, V = W = 0X = 0.0 at BC, U = W = 0y = 0.0 at DC and U = 0y = ©z = 0.0 
at AD. The number of equations to be solved after the application of the 
boundary conditions is 189. A distributed step pressure is applied to its outer 
surface (pointing toward the outer surface). It has an intensity p = 2000.0 
N/m2. The time step used were 0.03 s, 0.01 s and 0.005 s. As there was no 
significant difference and for efficient reason throughout the computation the 
time step of 0.03 s was adopted. The nonlinear transient response at the apex 
(central point A of the shell) is obtained and plotted in Figure 4. The problem 
has been solved by Wu et al. [14] who applied a curved high-order 
quadrilateral shell element. The latter has 48 dof and was developed based on 
the classical lamination theory. It is observed that there is a discrepancy of 
about 8%, with respect to the HLCTS element results, for the amplitudes 
between the two set of results. However, they have the same vibration period. 
It is believed that the present results are more accurate as the element used in 
the present investigation is shear deformable. 

4.3 Cantilever Panel With Free End Step Moment 
To demonstrate the use of the proposed shell element for structures 

undergoing large rotation and large deformation a four layer cross-ply 
cantilever panel is considered here. More computed results for this case can 
be found in references [3] and [12]. It is symmetrically laminated with the 
stacking scheme (0/90/90/0). Its geometrical properties are: L = 1.2 m, b = 0.1 
m and h = 0.01 m. The material used for this cantilever is the high modulus 
graphite/epoxy composite. Its properties are: E[ = 2.0685x10" N/m , E2 = 
5.1713x10' N/m2, G12 = 3.1028xl09 N/m2, GI3 = G23 = 2.5856x10' N/m2, p = 
1605 kg/m3 and Poisson's ratio v12 = 0.25. A step moment M about an axis 
parallel to the width of the panel is applied to the free end. The amplitude of 
this moment is mo = 1000.00 N-m. 

The panel is discretized by a 12 x 1 A mesh. At the fixed end, all dof 
are constrained. The finite element model has 144 unknowns. 

The time step At = 0.001 s is employed in the trapezoidal rule direct 
integration. The nonlinear transient responses at the end of the cantilever are 
solved by selecting the options of director included, small strain and constant 
thickness in the digital computer program developed. The computed end 
deflections are plotted in Figure 5. As noted in reference [3,12], the inclusion 
of directors in the formulation [15] is crucial as the directors are important 
parameters that constitute the so-called "exact geometry" for large rotation 
problems. 
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5.  CONCLUDING REMARKS 

The hybrid strain based laminated composite flat triangular shell 
(HLCTS) element for the static analysis of geometrically nonlinear laminated 
composite plates and shells has been further developed and employed to solve 
various dynamic problems. A relatively comprehensive study for various plate 
and shell structures idealized by this element has been performed and three 
representative examples are included to demonstrate its accuracy, efficiency 
and conceptual adequacy. It is concluded that the HLCTS element is attractive 
for large scale finite element analysis and modelling of shell structures 
undergoing geometrically large deformation of finite strain and finite rotations. 
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Figure 1     Flat triangular laminated composite shell element 
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Figure 2   Response of a cross-ply plate 

Figure 3   Spherical shell segment under a uniformly distributed load 
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Figure 4   Apex response with quarter shell considered 
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THE FREE, IN-PLANE VIBRATION OF CIRCULAR RINGS 
WITH SMALL THICKNESS VARIATIONS 
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University Park, Nottingham NG7 2RD, England 

Abstract 

Geometric imperfections which cause thickness variations will always 
exist in nominally circular rings and cylinders due to limitations in 
manufacturing processes. The effects of circumferential thickness variations on 
the natural frequencies of in-plane vibration are studied. The circumferential 
variations in the inner and outer surfaces are described, in a very general way, 
by means of Fourier series. Novozhilov thin-shell theory is used in conjunction 
with the Rayleigh-Ritz method to obtain the natural frequencies. Results are 
presented which show the effects of single-harmonic variations in the inner and 
outer surface profiles, taking account of the profile amplitude of, and the spatial 
phasing between, the inner and outer profiles. The frequency factors calculated 
from the numerical method are in good agreement with those obtained from the 
Finite Element method. 

1. Introduction 

The free vibrations of circular rings or shells had been studied by many 
authors for over a century. The early theoretical works are summarised by 
Love [1]. Most of these works are restricted to perfect rings or shells. 
However, in practice, geometric imperfections (thickness variations and 
departure from true circularity) are produced in the manufacturing process. 
These affect the natural frequencies and mode shapes. It is weE known that in any 
truly axisymmetric structure the vibration modes occur in degenerate pairs which 
have equal natural frequencies and mode shapes which are spatially orthogonal but 
of indeterminate circumferential location. The main effects of thickness variations 
are to split the previous equal natural frequencies and remove the positional 
indeterminacy [2]. Although these effects are often practically unimportant, there 
are some applications (especially inertial sensors based on vibration rings or 
cylinders [3]) where the small frequency splits and fixing of the modal positions is 
of primary practical significance. There is therefore a requirement to be able to 
predict in detail the effects on vibrational behaviour due to small departures from 
perfect circularity of the kind produced by manufacturing tolerances. 
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The vibration of imperfect bells and rings were studied in the general 
way using group theory [4,5]. In reference [5] the selection rules for frequency 
splitting of thin circular rings were presented qualitatively. In reference[6] the 
frequency splitting behaviour of a thin circular ring was investigated both 
experimentally and analytically by first order perturbation theory. In reference 
[7], the classical frequency equations, which are generally used to predict the 
natural frequencies of a thin circular ring, were modified to describe an 
eccentric ring by using the perturbation method. In reference [8], Fourier series 
functions were used to represent the circumferential thickness variations of an 
eccentric cylinder. Love thin-shell theory, which is only strictly suitable for a 
perfect ring or cylinder, was applied to investigate the free vibration of non- 
circular shells. 

In this paper, the free in-plane vibrations of thin rings of rectangular 
cross section with circumferential variations in thickness are studied. The 
circumferential variations in the inner and outer surfaces are described, in a very 
general way, by means of Fourier series. Novozhilov thin-shell theory [9], in 
conjunction with the well-known Rayleigh-Ritz method, are applied to analyse 
the vibration characteristics for in-plane flexural vibration of the ring which is 
considered as a special case of a thin shell [2,6]. The numerical method is used 
to investigate the effect of single-harmonic circumferential variations in the 
inner and outer surface profiles. The effects of harmonic number, amplitude and 
spatial phasing between the inner and outer profiles are investigated. Some 
important trends and patterns of effects of profile variations on the splitting of 
the natural frequencies are observed. The results obtained by using the 
numerical method developed in the current investigation are validated by 
comparison with Finite Element predictions. 

2. Method of Analysis 

2.1 Geometry 

Consider a thin ring of mean radius r„ having a rectangular cross- 
section of mean thickness h (« ra) and axial length L (« ra). The inner and 
outer surface vary along the global circumferential direction (Figure 1). rP 

denotes the distance from the centre of the mean radius of the ring to the point 
P on the middle surface. 

Two coordinate systems are used in the formulation of the equation of 
deformation. 
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* Global polar coordinates (a', ß', \'). These are directed along the global 
axial, circumferential and radial directions. The initial geometry of the 
undeformed, imperfect ring is defined using this coordinate system. 

* Local curvilinear coordinates (a, ß, £). These are directed along the local 
axial, tangential and normal directions relative to the true middle surface and 
coincident with the principal coordinates of the middle surface. This local 
coordinate system is required for implementation of Novozhilov shell theory 
which specifies displacements in the local tangential and normal directions. 

YP is the angle between the global and local coordinate systems at the point P 
of the middle surface. 

All the displacements, thicknesses, and radii in this paper are expressed 
dimensionlessly by dividing by U, where U is the representative length and is 
defined as the mean radius r„ of the ring. 

% 

Figure 1. A thin ring having circumferentially arbitrary surfaces 

The shape of the middle surface of the ring is determined by the inner 
and outer surfaces which can be expressed by Fourier series as follows: 

t(V) =fo++ ittfcosdp ) + $,/; sin(jp) 
j=i 

n ß') =/<f+E fr cos<^' >+X I7 sin(jv > 

a) 

(2) 
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where / *(?>') and / ~(ß') denote respectively the outer and inner surface 
functions with respect to the global circumferential coordinate ß' and fo* ,f*, 
ff, fo', fi~ and//" are the Fourier coefficients which are defined in the usual 
way [10]. 

The middle surface of a shell or ring is defined as the locus of the points 
which lie at equal distances, A$ "and hf from the outer and inner surfaces along 
the direction normal to the mid surface (see Figure 2). 

..-%• 
r '$■> 

of" 

middle surface    *t    :    ..-^"\^        At point P 

Figure 2. The bounding surfaces and the middle surface 

For given inner and outer surfaces, /~(ß/>') and/+(ß/) defined in the 
global coordinate system, the true middle surface can be determined using an 
iterative numerical procedure which is fully described in [11]. Once the point P 
on the true middle surface has been determined, the corresponding h{, hf, RP, 
yP and ßP can be calculated. These will be used in the step-by step integrations 
which determine the strain energy and kinetic energy of the ring. 

2.2 Equations of Motion 

The strain energy for a thin ring whose length is much smaller than the 
mean radius takes the form [2,6]: 

s = eAEL\*>\ki en2m+v*)<$'*> (» 
■?        J ß ,  J A, 
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Based on Novozhilov thin-shell theory, the normal strain ePp in equation 
(3) is given as 

6W= 1 + %/R f£g+^Kß) (4) 

with 
ep = v, t/R + w/R (5) 
Kß= -1/R (w,t/R+v/R),t (6) 

where eg, Kp characterise the deformation of the middle surface of the thin ring 
and subscript ", p " denotes partial derivatives with respect to ß. epis the strain 
tangential to the middle surface and Kp is the change of curvature, v, w are the 
nondimensional local displacement components of the point P on the middle 
surface along the tangential and normal directions respectively. 

Substituting equations (4)-(6) into equation (3), then integrating with 
respect to the thickness from h g~ to h $*, neglecting the 4th and higher powers 

of h C and h %~ and noting that f"'   F(ß) [ h^2 - h^2] <fß = 0 where F($) is 

an arbitrary function of ß, the strain energy of a thin ring can be derived in 
terms of the local displacements v ,n> as follows: 

S= £EL\*> {[(v,i)2 + 2wv,t + w2](l/R)[hS-ln-] 

+ [w2+2ww,w + (w,w)2] —j[ht*3 -h%~3] 
3K 

+ [2ww9 ß + 2w, ß w, ßß - 2v w - 2vw, ßß ] —ff 1/R ),^[h^   - h $~ ] 
3K 

+ [(v,t)2 + v2-2™,*l-^r (TJ/KWW -h^Udfi      (7) 
3R 

Similarly, the kinetic energy of a thin ring, based on Novozhilov thin- 
shell shell theory, can be expressed as follows: 

T= &.£ {[(v,,f.(w,,f]R[kC.kO + 
2     JPi 

[3(v,lf-4v,lw,lf + (w^f]^-[hi*a-hC']}d^ (8) 

in which p is the density of the ring, and the subscript' „ ' denotes the partial 
derivatives with respect to time. 
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For free vibration the tangential displacement v and the normal 
displacement w which satisfy the boundary condition can be assumed to take the 
following forms respectively: 

v = £ (vn sin nß - v^ cos nß) e 

n 

iwt 

w = ~£(w   cosnß + w   sinnß)g 
n 

iwt 

(9) 

(10) 

where v„ and wn are the undetermined amplitude coefficients of the tangential 
and normal displacements of the middle surface respectively. The superscripts 
"s" and "c" refer to the fact that these coefficients are multiplied by sine and 
cosine terms respectively. 

Substituting equations (9) and (10) into equations (7) and (8), then 
applying the Rayleigh-Ritz procedure, the general frequency equation of the 
free vibrations for a thin ring is obtained and can be expressed in the following 
general matrix form: 

K* M* 9i = 
0 

0 
(11) 

where K and M represent stiffness and mass matrices of size 2(N+1), and q 
denotes a vector of generalised coordinates v„, w„ etc. The matrix elements in 
equation (11) are given in [11]. Since in the general case the cross-section of 
the ring will not be symmetric with respect to ß = 0, the classification of the 
modes as being "symmetric" and "antisymmetric" is meaningless. In the special 
case of a perfect circular ring, the off-diagonal terms [K ], [K^J, [Msc] and 
/Af7 appearing in equation (11) are null matrices, then equation (11) can be 
uncoupled into two equations: one is for the symmetric modes and the other is 
for the anti-symmetric modes with respect to ß = 0. 

The frequency factors of the ring, Aa , are the eigenvalues of equation 
(11) and are defined by 

A, = a>i UP (12) 

where co„ is the natural frequency of the nth radial mode. The frequency factor 
An is proportional to the square of natural frequency w„ . 

For a given value of n equation (11) will yield a pair of values of An. 
These will be equal in the case of a perfect ring but will be slightly different in 
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the case of an imperfect ring, giving rise to a higher frequency mode and a 
lower frequency mode for each value of«. 

It should be noted that the matrix elements in equation (11) are 
expressed as integrals of the functions he\ hf, Rp, YP and ßP with respect to 
the tangential coordinate ß. These functions are expressed in terms of the local 
coordinates. Hence it is necessary to make a transformation to express these 
functions and integrals in terms of the global coordinates, so that the integrals 
can be evaluated over the global circumferential coordinate ß' from 0 to 2n. 

3. Results and Discussion 

By using different combinations of trigonometric functions in equations 
(1) and (2), it is in principle possible to model any closed thin ring. For the 
purpose of illustration we will consider a nominally circular ring with a single 
harmonic variation in the inner and outer surfaces, given by 

f(ß')=r: +h/cosiß' 

f~(ß')=r*~ + hfcos(jß'-<fr) 

(13) 
(14) 

where hf and hf are the amplitudes of the imperfections of the outer surface 
and the inner surface measured from the mean outer radius rf and the mean 
inner radius r~ respectively, $ is the spatial phase angle between the 
trigonometric functions of the inner and outer surfaces at ß' =0, and /, j are the 
harmonic numbers of the surface variations. Figure 3 illustrates i =j = 3 for 
three values of <j>. 

-2 0 

0 = 0 

Figure 3. Different spatial phase angles 4 for i=j=3 
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Results for the combinations of the geometric imperfections of i =j = 2, 
3, 4, 5, 6, hf* = hf = O.lh, O.Olh , and $ = 0, ic/4, JC/2, 3JI/4, n are presented 
here. The ring dimensions and material properties are as follows:    ra* = 
40.75mm, r~ = 37.83mm, L = 2 mm , E = 206.7 xlO9 N/m2, p = 7850 kg/m3. 

Note that hs = O.lh corresponds to a departure from circular which is 
much larger than would occur in practice due to imperfection. The results for hf = 
O.lh are presented to highlight the effects. Practically however, hf = O.Olh 
represents a more realistic variation in thickness. 

Convergence studies indicated that for hf, hf = O.lh the use of 30 terms 
in the solution series (equations 9 and 10) gave 4 significant figure accuracy or 
better for the frequency factors A* for k = 0,1, ... 6. This was considered to be 
acceptable for the purposes of the illustrative examples considered here. 

In a parallel Finite Element study, beam elements, and two- and three- 
dimensional plane stress elements used to model an imperfect ring. In order to 
get 4 significant figures or better, 120 elements were used to model the 
complete ring. Comparison of the results obtained from the numerical method 
and the Finite Element Method shows that 

(i) there is good agreement between the curves of frequency factors 
obtained by the Finite Element method and the numerical method. 

(ii) the trends and patterns of frequency splitting are nearly identical 
irrespective of the analysis methods or the types of finite elements used. 

In considering the effect of single harmonic variations of the profile of the 
inner and outer surfaces on the natural frequencies of different radial modes, the 
discussion will focus on three aspects: 

(a), the effect of the harmonic number of the profile; 

(b). the effect of the magnitude of the profile variations; and 

(c). the effect of the spatial phasing between the profile variations of the 
inner and outer surfaces. 

The frequency splits shown are often very small (~ 0.001%). Note 
however that in some inertial sensor applications, such small frequency splits 
may be of practical significance. 
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(a) The effect of profile harmonic number 

Table 1 compares the frequency factors A„ obtained for a perfect ring 
and an imperfect ring for <|> = 0, JT/2, it, hf = hf = O.lh, and i =j = 2 to 6. It is 
evident from these results that: 

For the flexural modes (« > 2): 

(i) When i , j are. equal and even (see Table 1), frequency splitting only 
occurs in the nth mode where n = ki I 2 and k is an integer. The 
maximum frequency splitting occurs in the n = i 12 modes (i.e. k = I ) 
and the splitting decays as k increases. 

(ii) When i , j are equal and odd (see Table 1) frequency splitting only 
occurs in the nth mode where n = ki and k is an integer. The maximum 
frequency splitting occurs for k = 1, and splitting decreases as k 
increases. 

It should be noted here that frequency splitting in the higher modes 
exists but is very small, e.g., for $ = 0, i = j = 2 and hf = O.lh , frequency 
splitting occurs in the 2nd and higher radial modes. It can be seen from Table 1 
that the splits in frequency factor are 0.019% at the 2nd mode, 0.001% at the 
3rd mode, and less than 0.001% at the 4th mode or higher mode. These 
correspond to actual frequency splits of about 0.01%, 0.0005% and less than 
0.0005% respectively (equation (12)). 

For the radial extensional mode( n = 0), no frequency splitting occurs. 

It is clear from Table 1 that the trends and patterns of frequency splitting 
are the same for § = 0, n/2 and 7t. However, frequency splitting is less for ty = 0 
than for <)> = n under the same conditions. Frequency splits for ty between 0 and 
n are intermediate between those for <(> =0 and <(» = it. 

The above patterns are in agreement with the qualitative results 
published in reference [5] in which only the conditions for non-splitting are 
established. 
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Table 1. The difference of frequency factors A on the radial 
modes w(n)[the parameters of profile variations are 

taken as hf=0.1h, i=j=2 to 6 and (a)<|>=0; (b)<j>=Tt/2; (C)$=JC] 

(a) <(>=0 

Pe rfect 
A(0) 
1.0005 

A(2) 
0.003313 

A(3) 
0.02645 

A(4) 
0.09693 

A(5) 
0.2525 

A(6) 
0.5406 

i= 2 high 
low 

-0.011% -0.023% 
-0.042% 

-0.041% 
-0.042% 

-0.038% -0.036% -0.035% 

i= 3 high 
low 

0.075% -0.047% -0.088% 
-0.153% 

-0.133% -0.108% -0.094% 
-0.095% 

i= 4 high 
low 

0.457% 2.155% 
-2.287% 

-0.134% -0.150% 
-0.594% 

-0.349% -0.240% 
-0.248% 

i= 5 high 
low 

1.631% -0.171% -0.141% -0.332% -0.229% 
-1.816% 

-0.838% 

i= 6 high 
low 

5.656% -0.171% 2.406% 
-2.726% 

-0.267% -0.715% -0.302% 
-5'.624% 

(b) <(i=7r/2 

i= 2 high 
low 

A(0) 
0.007% 

A(2) 
0.336% 

-2.427% 

A(3) 
-0.595% 
-0.676% 

A(4) 
-0.971% 
-0.972% 

MS) 
-1.169% 

A(6) 
-1.272% 

i= 3 high 
low 

0.090% -1.231% 0.336% 
-2.559% 

-0.721% -0.869% -1.038% 
-1.040% 

i= 4 high 
low 

0.382% 14.58% 
-18.71% 

-1.150% 0.287% 
-2.871% 

-0.868% -0.828% 
-0.901% 

i= 5 high 
low 

1.236% -5.642% -1.239% -1.201% 0.212% 
-3.703% 

-1.172% 

i= 6 high 
low 

4.111% -5.620% 13.12% 
-17.59% 

-1.316% -1.404% 0.117% 
-6.370% 

(c 

i= 

) 4>=it 

2 high 
low 

A(0) 
0.026% 

A(2) 
0.690% 

-4.827% 

A(3) 
-1.132% 
-1.340% 

A(4) 
-1.908% 
-1.912% 

A(5) 
-2.308% 

A{6) 
-2.514% 

i = 3 high 
low 

0.106% -2.469% 0.709% 
-4.934% 

-1.312% -1.637% -1.989% 
-1.993% 

i= 4 high 
low 

0.314% 18.81% 
-26.96% 

-2.227% 0.528% 
-4.993% 

-1.388% -1.447% 
-1.532% 

i= 5 high 
low 

0.881% -10.89% -2.400% -2.135% -0.018% 
-5.031% 

-1.510% 

i= 6 high 
low 

2.808% -10.81% 16.78% 
-25.36% 

-2.396% -2.134% -1.881% 
-5.060% 

Note: 1. difference = [A (n)-A (n)p«r£«ct]x 100% / A (n)p.rf«et: 

2. A(n) = ——(03(n) ,  where (ü(n)   is the natural frequency at 
E 

the nth radial mode. 
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Table 2. The difference of frequency factors A on the radial 
modes w(n)[the parameters of profile variations are 
taken as hf=0.01h, i=j=2 to 6 and (a)<|>=0; (b)<t>=7t/2; (c)<t>=7i ] 

(a) <|>=0 
A(0)    A(2) A(3) A(4)   A(5)    A(6) 

Perfect     1.0005 0.003313 0.02645 0.09693  0.2525  0.5406 
i= 2 high     =0      =0 =0 =0     =0     =0 

low 

i= 3 high   0.001%     =0 -0.001% -0.001% -0.001% -0.001% 
low              " -0.002% 

i= 4 high  0.005%  0.222% -0.001% -0.001% -0.004% -0.002% 
low          -0.223% " -0.006% 

i= 5 high  0.016%  -0.002% -0.002% -0.003% -0.002% -0.009% 
low             " " "   -0.019% 

i= 6 high   0.060%  -0.002% 0.256% -0.003% -0.008% -0.003% 
low              " -0.260% "       "   -0-. 063% 

(b) $=7t/2 
A{0)    A(2) A(3) A(4)   A(5)    A(6) 

i= 2 high    =0    0.004% -0.006% -0.010% -0.012% -0.013% 
low          -0.024% 

i= 3 high  0.001%  -0.012% 0.003% -0.007% -0.009% -0.010% 
low              " -0.026% 

i= 4 high  0.004%  1.684% -0.011% 0.003% -0.009% -0.009% 
low          -1.725% " -0.029% 

i= 5 high  0.012%  -0.058% -0.012% -0.012%  0.002% -0.012% 
low             " " "   -0.038% 

i= 6 high  0.044%  -0.057% 1.550% -0.013% -0.014%  0.001% 
low             " -1.595% "      "   -0.069% 

(C) <t>=Jt 
A{0)     A(2) A(3) A(4)    A(5)    A(6) 

i= 2 high    =0    0.008% -0.012% -0.019% -0.023% -0.025% 
low          -0.048% 

i= 3 high  0.001%  -0.024% 0.008% -0.013% -0.016% -0.020% 
low             " -0.050% 

i= 4 high  0.003%  2.360% -0.021% 0.006% -0.014% -0.015% 
low          -2.440% " -0.050% 

i= 5 high  0.009%  -0.114% -0.023% -0.020%    =0  -0.015% 
low             " " "   -0.051% 

i= 6 high  0.028%  -0.112% 2.165% -0.023% -0.020% -0.018% 
low             " -2.251% "      "   -0.051% 

Note: 1. difference = [A (n) - A (n)p.r£Mc]x 100% / A(n)p.r£.0i: 

2. A (n) = -^— (ä2(n),   where W(n)    is the natural frequency of 
E 

the nth radial mode. 
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(b) The effect of profile amplitude 

The effects of varied profile amplitude (hf = hf = O.lh and O.Olh) upon 
the frequency factors A„ for $ = 0, n/2, n and i =j = 2 to 6 can be seen by 
comparing Tables 1 and 2. It may be concluded from these results and others 
which are presented in [11] that: 

(1) When n = i/2, frequency factor splitting due to variable profile magnitude 
compared with the frequency factor of the perfect ring is nearly 
proportional to the profile amplitudes, hf and hf. 

For example, for i = j = 4, § = n and A/ = hf = O.lh ,0.01h (see Tables 1 
and 2), the magnitude of frequency splitting at the 2nd mode is 45.77% for 
hf = O.lh and 4.80% for hf= O.Olh. These correspond to actual frequency 
splits of 24% and 2.4% respectively (equation (12)) 

(2) For modes other than those for which n=i/2, splitting of frequency factors 
is nearly proportional to the square of the profile amplitudes, hf and hf. 

For example, for £ = j = 4, $ = n and hf = hf = O.lh ,0.01h (see Tables 1 
and 2), the magnitude of frequency factor splitting at the 4th mode are 
5.521% for hf= O.lh and 0.056% for hf= O.Olh. 

These results shown in Tables 1 and 2 for <j> = 0 and <{> = rc/2 show that 
the general nature of the trends regarding the effect of profile amplitude 
variations on the frequency factors are the same for all values of § , although 
the magnitudes of the changes in frequency factors depend on <|>, as discussed in 
the following section. 

(c) The effect of spatial phase angle variations 

The effects of the variations of spatial phase angle ((> on the frequency 
factors are shown in Figure 4, from which it is evident that 

(1) As frequency splitting occurs (see Figure 4.a-4.d ), the maximum frequency 
splitting is obtained at § = it and the minimum splitting occurs at $ = 0. It 
is clear that the maximum frequency splitting occurs in the n= i/2 modes. 

(2) In modes for which no frequency splitting occurs (see Figure 4.e and 4.f), 
the minimum frequency difference compared with that of the perfect ring is 
detected at <j> = 0 and the maximum at <j> = it. Irrespective of the value of 
<|> , the frequencies of these modes are always less than the corresponding 
frequencies of the perfect ring. 
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4. Conclusions 

In this paper, Novozhilov thin-shell theory and the Rayleigh-Ritz procedure 
have been applied to derive the frequency equations of a thin ring with a rectangular 
cross-section and a circumferential profile variatioa Profile variations are 
represented, in the general way, by Fourier series functions and the method gives 
quantitative predictions of frequency splitting. The observed frequency splitting 
patterns are in agreement with previously published qualitative results. Numerical 
results have been presented for example cases in which the inner and outer profiles 
are nominally circular with superimposed single-harmonic variations in radius. The 
effects on frequency splitting of the harmonic number of the profile variation, and 
the amplitude and spatial phasing between the inner and outer surfaces have been 
investigated. 
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FREE VIBRATION ANALYSIS OF TRANSVERSE-SHEAR 
DEFORMABLE RECTANGULAR PLATES 

RESTING ON UNIFORM LATERAL ELASTIC EDGE SUPPORT 
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770 King Edward Ave., 
Ottawa, Canada  KIN 6N5 

ABSTRACT 

Utilizing the Superposition Method a free vibration analysis is conducted for 
transverse-shear deformable rectangular plates resting on uniformly distributed 
lateral elastic edge support. Edges are free of moment. The thick isotropic 
Mindlin plate is utilized for illustrative purposes. The Mindlin equations are 
satisfied throughout. Typical computed results are plotted for a square plate. 

INTRODUCTION 

It is well accepted that classical rectangular plate boundary conditions denoted 
as simply supported or clamped are often not achieved in real structures. This is 
because of elasticity in the edge supports. Furthermore, in many rectangular 
plate installations elastic edge supports may be utilized intentionally. For this 
reason a number of studies of effects of elasticity in the edge supports on 
rectangular plate free vibration frequencies have been conducted and results 
published. Almost all of these studies have been devoted to the free vibration 
behaviour of thin isotropic plates. Studies by the author, related to this family of 
vibration problems, have been devoted to situations where elastic stiffness is 
uniformly distributed along the edges as well as cases where the stiffnesses are 
arbitrarily distributed. All of his studies have been conducted by means or the 
Superposition Method and in a fairly recent article he has demonstrated that all 
of these families are amenable to analytical type solutions [1]. 

In this paper we exploit the powerful Superposition Method to analyse the free 
vibration behaviour of transverse-shear deformable plates resting on uniform 
lateral elastic edge support. This represents a much more complicated problem 
than the thin isotropic plate problems discussed above. For our purposes we 
choose the thick shear-deformable Mindlin plate and base our solution on 
Mindlin theory. 

In the interest of keeping the literature review up to date the recent publication 
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of SAHA KAR, and DATTA [2] is drawn to the attention of the reader. They 
report on a study of thick Mindlin plates resting on edge supports with uniform 
lateral and rotational elasticity. They have employed a Rayleigh-Ritz energy 
approach Plate lateral displacement is represented by a rather complicated set 
of Timoshenko beam functions, each extremity of each beam being attached to 
a local lateral and torsional spring. It will be seen that no such functions need be 
selected in the superposition approach adopted here. Another related paper is 
one by the present author dealing with Mindlin plates where lateral displacement 
along the plate edges is forbidden but uniform rotational elastic support is 
provided [3] This problem is somewhat easier to solve since edge lateral 
displacement is forbidden and, unlike the present problem, mixed derivatives do 
not show up in the boundary condition formulation. This latter problem was 
shown to be amenable to solution by the modified Superposition-Galerkin 
Method which is extremely easy to use when it is applicable. 

MATHEMATICAL PROCEEDURE 

A solution to the present problem is obtained through the superposition of the 
ei^ht ed-e-driven forced vibration solutions (building blocks) shown 
schematically in Figure 1. All of the non-driven edges have slip-shear support. 
This type of support, indicated in the figure by two small circles adjacent to the 
edae implies that the edge is free of torsional moment and transverse shear 
forces. Furthermore, rotation of the plate cross-section along the edge is 
everywhere zero. 

We be-in by examining the first building block. Its driven edge is free of 
torsional moment, and rotation of the plate cross-section along this boundary is 
every where zero. This latter condition is indicated by two solid dots adjacent to 
the ed-e Driving of this edge is accomplished by a distributed harmonic 
transverse shear force of circular frequency o. The spatial distribution of the 
shear force is expressed as, 

0,1,.,=  E    Emcos(m-l)7t£ (1) 

where k is the number of terms required in the series. 
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Fig. 1 Schematic representation of building blocks utilised in theoretical 
analysis. 

We now examine the response of the above building block to this harmonic 
excitation. The proceedure followed is almost identical to that described in an 
earlier publication [4]. A concise description will be provided here for the sake 
of completeness. 

The governing differential equations which control the response of thick Mindlin 
plates are written in dimensionless form as, 

14 A2 

3iw+±^w+£^ + i^a + üüw = o (2) 
de     <|>2   arf      3£     *   dr]        v3 

a2^ | v. a2^ | y2 a2fr„    y3 

dEr + 4>2   dj\2     <$> d^dr\    tf 
^+9W]+^W=0      (3) 

a? 12 

d2^        1     32f        v. 3>E 

dEr      §2v,   dry      4> v, a£arj    ^ v h vi 
^   4> a-nJ    12v. Tl1     w 
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Transverse shear forces, bending moments, etc., are written as, 

aw „    ,     iaw 

^"TT   * Sri '    '    dn      * di'     **    dl    4> ari 

When subjected to the first term of the driving force (Eqn 1) the response 
of the building block will be essentially that of a Timoshenko beam. The 
governing differential equations reduce to a set of two which may be 
written as 

d if d if v3 

(6) 

and 
iiin'- dX   v34>- 

dT1" *h 

ldw), * *-4>h^   , 

1 ^    d)   dr, j 12 

It is convenient to represent the lateral displacement W, and plate cross- 
section rotation as, 

W(T|) = X(rj),     and     ty,, Ol) = Z (T|) 

The governing differential equations may then be written as 

X"(T1) + am|Z'(T1)+bm|X(T1) = 0 (8) 

and 

Z"(11) + ara3X'(T1) + bm5Z(T1) = 0 (9) 

where superscripts imply differentiation with respect to t\. Coefficients 
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aml.... etc., are defined in reference [4]. 

Applying the appropriate differential operators to this set of equations 
the parameter X (T|) is eliminated and a second order ordinary 
homogenous differential equation is obtained involving the parameter Z 
(r|). It is found that for our range of interest the roots of the characteristic 
equation associated with this differential equation are always real. There 
are then three possible pairs of roots depending on the coefficients in the 
above differential equation. Designating these pairs of real roots as 
R, and R2/ three possible forms of solution exist as follows, 

Casel, R,,R2<0-0     Case2, R,<O0;R2>0-0     Case3, R,,R2>0-0      (10) 

In all work reported here it has been found that only, case 2, has been 
encountered. 

It will be obvious that the functions X {r\) and Z (r\) must be symmetric 
with respect to the I axis. We may therefore write for case 2, 

X(r|) = Am cos an + Bm cosh ßn, (11) 

and 

ZM = An, Sm, cos a T! + Bm Sm2 cosh ß x\ (12) 

where        a = /[RJ ,   and     ß = /[Rj 

Expressions   Sml and Sra2are obtained by taking advantage of the 
coupling of equations 8 and 9, as was done in Reference [4]. 

We then impose the boundary conditions, Q^ = Em, a n d ^ = 0, a t x\ = 1, 
in order to evaluate the unknowns  Am and Bm of Equation (11). 
Accordingly we obtain, 

p 
X(n) = -^-{cos <XTI + X 1 cosh ßn}, (13) 

X2 

and 
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Z(T!) = ^{Sm,sin on + XI  Sm2 sinh ß TI}, 
X2 

(14) 

where XI and X2 are easily evaluated. 

Next we examine the response of the first building block to driving terms 
where m>l. We follow the proceedure described in Reference [4]. 

Levy type solutions for the parameters W, fy etc., are written as, 

W&Ti) = Xm(T|) cos mir? (15) 

WS.Ti) = YjJi) sin mug (16) 

t|f.(5,Tl)  =    Zm(Tl)   COSmTT^ (17) 

It will be noted that all required boundary conditions along the edges, \ 
= 0, and £ = 1, are satisfied. 

Next, the above expressions (Eqns 15,16,17) are substituted in the set of 
governing differential equations. The following set of coupled ordinary 
differential equations, written in matrix form are obtained 

0 0 aml xm' Ki K2 0 xm o1 

Y   " m ■+ 0 0 am2 • Ym' ■+ bra3 
bm4 0 • Ym 

._ - 0 

zm" m .am3 am4 0 V 0 0 V Z^ 
0 

(18) 

Again, the quantities aml.... etc., are defined in Reference [4]. 

Applying the appropriate operators on the above equations, as was done 
in Reference [4] we are able isolate a single homogenous sixth order 
ordinary differential equation involving the dependent variable Ym (TJ), 

only. Because first, third, and fifth order derivates are missing from this 
equation the associated characteristic equation can be formulated as a 
cubic algebraic equation.  Again it is found that for the range of the 
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present study all of the roots are real. Designating these roots as 
R ,R,, and R3, it follows that four solution cases are possible depending 
on the coefficients of the characteristic equation. They are, 

Case 1, R,, R,, and R3 < 0-0      Case2, R,, R2 < 0-0 ; R3 > 0-0 
'      " (19) 

Case3, R, < 0-0 ; R2 and R3 > 0-0      Case4, R,, R, and R3 > 0-0 

Inthepresentstudy only case 3, and case 4 are encountered. Introducing a=^j\Rl \ , 
p_ r^\ , and Y = J\^\ and recognizing that Zm(TI)must be 
antisymmetric about the \ axis while Xm(Ti)and Ym(Ti)must be 
symmetric, we are able to write for case 4, 

Ym(rO = Am  cosh cer|+Bm  cosh  ßri + Cm  cosh  y T\       ■   (20) 

Utilizing the coupling of the ordinary differential equations, as in 
Reference [4], it follows that we may write, 

Xm(Ti) = AmRra, cosh aTi + BmRm2 cosh ßr] + CmRm3 cosh Y^|    (21) 

and 
Zm(T!) = AmSml cosh <XT! + BraSm2 cosh ßTi+CmSm3 cosh YTI     (22) 

The quantities RmI,..., Sml,... etc., are evaluated following steps described 
in Reference [4]. Expressions for Ym (TI ), Xra (n), etc., for case 3 will differ 
from the above expressions only in that Cosh a r\ must be replaced by cos 
ar\. 

The unknown constants Am, B m, etc., of the above solutions are evaluated 
by enforcement of boundary conditions along the edge, t\=l. These 
conditions comprise zero torsional moment, zero edge rotation, with 
transverse shear force Q^ = En). For case 4 we obtain 

Y  (n) =-^-{cosh a ri+Xl cosh ßri+X2 cosh YTI} (23) 
X3 

with the functions Xfr,) and Zm(r,) differing from Ym(T,) only in that 
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Rml and Sml, etc., must be included. 

We therefore now have the exact response of the first building block to 
the imposed driving force components available. It will be observed in 
Figure 1 that the second, fifth, and sixth building blocks differ from the 
first only in that they are driven along different edges. Solutions for their 
response are therefore easily extracted from that of the first. 

Focusing our attention on the third building block we find that its driven 
edge is free of transverse shear forces and torsional moment. It is driven 
by a distributed cross-section harmonic rotation. The spacial distribution 
of this imposed driving rotation is also represented by the series of 
Equation 1. 

The reader will appreciate that a solution for the third building block is 
obtained by following steps identical to those described for the first. Only 
the imposed boundary conditions along the driven edge differ. Solutions 
for the quantities W, T|T5, etc., will be identical in form to those already 
developed for the first building block except that quantities XI, X2, etc., 
will be slightly different. We designate them as X1P, X2P, etc., for the 
edge-rotation driven building blocks. Solutions for the remaining four 
building blocks of Figure 1 are therefore available. 

THE EIGENVALUE MATRIX 

This matrix is shown schematicaly in Figure 2. It is generated following 
established practices. Let us first consider the transverse force 
equilibrium condition along the edge, r\ - 1. It is readily shown that this 
equilibrium condition is written in dimensionless form as, 

Q11 + KLIW = 0 (24) 

The plus sign of this equation must be replaced by a minus sign when we 
formulate the corresponding equations for the edges, T|=0, and £=0. 
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Fig. 2 Schematic representation of Eigenvalue matrix based on 
three-term function expansions. Short bars indicate non- 
zero elements. M or V on inserts to right indicate edges 
along which moment or lateral force equilibrium is 
enforced. 

To construct the first three equations upon which this matrix is based we 
superimpose all eight building blocks and expand their net contribution 
to displacement W in a cosine series. The transverse shear force along the 
edge, T|=l, is already available in such a series. We then express the left 
hand side of equation 24 in series form and require that each net 
coefficient in this series must vanish. This leads to 3 homogenous 
algebraic equations relating the 8 k unknowns where, for the illustrative 
matrix of Figure 2, k equals 3. 

A second set of three homogenous algebraic equations is obtained by 
enforcing the corresponding lateral equilibrium condition along the edge, 
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5 = 1. Moving down the matrix of Figure 2 it is seen that a third and 
fourth set of equations are obtained by enforcing the moment 
equilibrium condition, i.e., net bending moment equals zero along the 
same edges, in an identical fashion. Finally, it is seen in Figure 2 that four 
more sets of equations are obtained by enforcing the required 
equilibrium conditions along the edges, n=0, and 5=0. 

We thus have, in general, 8 k homogenous algebraic equations relating 
the 8 k unknown driving coefficients. The coefficient matrix of this total 
set of equations forms our Eigenvalue matrix. 

Certain measures can be taken to greatly simplify and expedite 
generation of the matrix. It will be observed (Fig. 2) that the matrix is 
composed of 64 natural segments. This array of segments may be 
referred to through the indices (I, J). It is expedient to first generate the 
matrix without including contributions related to the driving shear 
forces along the building block edges (Eqn. 24). The matrix is then 
completed by adding the quantity 1.0 to diagonal elements of segments 
(1,1) and (2,2), and subtracting 1.0 from the diagonal elements of 
segments (5,5) and (6,6). 

Physical reasoning leads also to another vast signification. One may 
begin by generating the elements of the matrix lying below the first four 
building blocks, only, (Fig. 2). Following a proceedure as discussed in 
Reference [4], and exercising caution with respect to necessary sign 
changes, all of the remaining segments of the matrix may be extracted 
from those already generated. 

Eigenvalues are, of course, those values of the dimensionless frequency, 
A.2, which cause the determinant of the Eigenvalue matrix to vanish. 
Mode shapes are obtained after setting one of the non-zero driving 
coefficients equal to zero and solving for the others. 

PRESENTATION OF COMPUTED RESULTS 

It will be appreciated that problems involving vast arrays of stiffness 
coefficients, plate aspect ratios, thickness-to-length ratios, etc. can be 
resolved by the proceedure described above. Only a single typical 
problem and its solution will be discussed here, for illustrative purposes. 

We consider a square plate with equal dimensionless lateral elastic 
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stiffness imposed along each edge. Results are presented for two 
thickness-to-length ratios, 0.01, and 0.1. Two important observations 
may be made before examining these results. First, for the very thin plate 
of thickness-to-length ratio, 0.01, we expect the Eigenvalue vs edge- 
stiffness ratio curves to almost co-inside with those for a thin isotropic 
plate based on thin plate theory. Secondly, we recall that the Eigenvalue 
limits for a thin plate will equal 0.0, and 2 %2, as the elastic stiffnesse 
approaches natural limits of 0.0, and infinity. 

25 

20 

Fi2.3 

<£•= 1.0 

FIRST   MODE 

KL,=   KL2=   KL3= KL4 

<4   - 0.01 

1000 

Eigenvalues vs. Stiffness parameter for square plate first 
mode vibration with equal elastic support along all edges. 

Results of a free vibration study of the above plate are presented in 
Figure 3. It will be noted that computed Eigenvalues are plotted against 
the parameter KL1 / (j>*. By presenting data in this manner it is found 
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that Eigenvalues for both the thick and the thin plate can be plotted on 
the same Figure. The absissa of the figure appears in five logarithmic 
decades. This range has been selected with a view to providing 
information for the reader over the region of greatest interest. It is found 
that in fact the thin-plate curve approaches the known limits disucssed 
above. Furthermore, utilizing computing schemes related to Reference 
[1], it has been shown that this same curve lies extremely close to that 
obtained for thin plates based on thin plate theory. Because Mindlin 
theory takes rotary inertia into effect and does not consider resistance to 
transverse-shear induced deformation to be infinite the thin plate curve 
of Figure 3 will lie only perceptably below that of its companion curve 
based on classical thin plate theory. The lower limit for the thicker plate 
curve of Figure 3 will also equal zero. However, the upper limit, equal 
to that of a simply supported thick Mindlin plate will lie below the 
classical value of 2ix2. This is seen to be the case in Figure 3. 

DISCUSSION AND CONCLUSIONS 

The superposition technique is seen to constitute an accurate, straight- 
forward technique for obtaining analytical type solutions to the problem 
of analysing free vibration of Mindlin plates resting on uniform lateral 
elastic edge support. Convergence is found to be rapid. The seven terms 
utilized here in representing building block solutions are found to be 
more than sufficient to provide four digit accuracy in computed 
Eigenvalues. 

The reader will appreciate that the analysis described here could easily 
be modified to handle plates with lateral elastic support along less than 
four edges. Plates, for example, with two adjacent free edges and the 
other two given uniform lateral elastic edge support can easily be 
handled. It is only necessary to set the elastic stiffness coefficients equal 
to zero for the first two edges. It will also be appreciated that through 
proper choice of building blocks one can analyse plates with one or more 
edges resting on elastic support while the others are given various 
combinations of simply supported, clamped, or free boundary conditions. 
Natural extensions of the present analysis would lead to the solution of 
problems involving the same plates resting on arbitrarily distributed 
elastic edge support and combinations of lateral and rotational elastic 
support. 
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LIST OF SYMBOLS 

a, b Plate edge dimensions 

D = E h3/(12 (1 - v2)), Plate flexural rigidity 

E Youngs modulus of plate material 

G Modulus of elasticity in shear of plate material 

h Plate thickness 

ku k2, etc., Basic  lateral  spring  stiffness   along  plate  edge. 
Subscript 1 indicates edge, rpl. 2,3,4, indicate edges 
moving counter-clockwise from 1. 

KL1, KL2, etc.,      Dimensionless lateral elastic edge coefficients, 

k, aw        k, aw 
= —!  ,   -= ,etc. 

K2 Gh       K2 G h 

Me, M, Dimensionless bending moments associated with \ 
and Ti directions, respectively 

Min Dimensionless twisting moment 

Q5, Qn Dimensionless shear forces associated with E, and r\ 
directions, respectively. 

W Plate lateral displacement divided by side length a 

£, n Distances along plate co-ordinate axes divided by 
side lengths a, and b, respectively 

K2 Mindlin shear factor = 0.8601 

v Poisson ratio of plate material 

v, =(l-v)/2 

= (l + v)/2 v '2 

V3 = 6 K2 (1 - v) 

cj) Plate aspect ratio = b/a 

(j)h Plate thickness ratio = h/a 
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\|iE, !);„ Plate cross-section rotations associated with £ and r\ 
directions, respectively 

w Circular frequency of plate vibration 

X1 = to a2 Vp/D, Free Vibration Eigenvalue 

p Mass of plate per unit area 
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The wave equation 
Introduction 

(l) 

is arguably the most widely-studied differential equation in science and engineering. It is used to model 
physical systems in diverse fields such as acoustics, wave propagation, vibration, electromagnetics, fluid 
mechanics, heat transfer, and diffusion. Eigensolutions of the two-dimensional wave equation, governed 
by the Helmholtz equation, are the focus of this paper. We present a perturbation method to analytically 
calculate eigensolutions when asymmetric perturbations are present in the boundary conditions. The 
axisymmetric, annular domain case serves as_the unperturbed problem. Possible boundary condition per- 
turbations include deviation of the domain P from annular and variation of the parameter p along the 
boundary dP. The eigensolution perturbations are determined exactly, and their algebraic simplicity 
allows extension of the perturbation through fifth order. Both distinct and degenerate eigenvalues of the 
unperturbed problem are examined. Boundary condition asymmetry splits the degenerate unperturbed 
eigenvalues. We derive simple rules predicting this splitting at both first and second orders of perturbation. 
To illustrate the method and quantify its accuracy, the case of domain shape perturbation from circular is 
addressed in detail and comparisons are made with the exact solutions for elliptical and rectangular 
domains. . . 

Methods used to analyze eigensolutions of the wave equation on irregular domains have been pri- 
marily numerical; for example finite element, finite difference and others. In addition to an extensive sum- 
mary of theoretical results, Kuttler and Sigillito [1] provide a comprehensive review (142 references) of the 
application of these and other less popular methods. Mazumdar also reviews approximate methods 
invoked for this problem [2,3,4]. The above methods can be augmented by conformally mapping the 
irregular domain to a circle [5]. In the spirit of perturbation, Joseph [6] employed a parameter differentia- 
tion method to obtain derivatives of the distinct eigenvalues as the domain changes. The requirement of a 
smooth mapping function from the unperturbed domain to the irregular one and the restriction to distinct 
eigenvalues of the unperturbed problem limit its applicability. By assuming expressions for the lines of 
constant deflection in the fundamental eigenfunction, Mazumdar obtained estimates for the fundamental 
eigenvalue for arbitrarily shaped domains [7]. Accuracy of this method depends on the availability of a 
good estimate of the lines of constant deflection. Morse and Feshbach [8] used a perturbation analysis dif- 
ferent than that presented herein to study the Helmholtz equation on irregular domains. Expansion of the 
eigenfunction perturbations in infinite series of the unperturbed eigenfunctions leads to a convergence 
problem restricting the analysis to second order perturbation in the eigenvalue and first order m the eigen- 
function. Nayfeh used a perturbation formulation similar to that of this work to calculate the eigenvalue 
perturbation to first order; no eigenfunction perturbations are presented [9]. This work draws on the results 
of Parker and Mote [10,11], where a formal procedure for obtaining exact eigensolution perturbations is 
developed. 
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eg«, (9)-     - 
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eg;(6) = 
e$i(ß) 

Ro 
(4) 

= 0        P (5a) 

-dP (5b) 

Eigensolution Perturbation Formulation 
The eigenvalue problem resulting from separation of the spatial and temporal dependence in (1) by 

the assumption q = p(R, 9)e'     is 

- V2p - Q2p = 0        P (2a) 

p+ßp„=0 3P:3P/U3P<, (2b) 

where subscript n denotes the normal derivative. We examine two classes of asymmetry that .normally 
preclude exact determination of the exact solution to (2): irregular P and variation of ß along dP. These 
asymmetries are treated as perturbations of the axisymmetric, annular domain eigenvalue problem, 
(i)  Irregular Domain Shape:  The  two-dimensional,  doubly-connected  domain  P   in  Fig.   1   is 
P: R; (9) < R < R0 (9), 0 < 9 < 2K The deviations of the boundaries 9P/ and dP0 from circular are 

egtdäjsRifß) - R, zg0(Q)^R0(Q)-R0 (3) 

where P, and R0 are the average radii of the inner and outer boundaries. The variables q, p, and t of (1) 
and (2) are dimensionless; scaling the domain with the additional dimensionless variables 

R ^' ~     D   r. 
R0 Ro 

yields the eigenvalue problem for constant ß = ß0 

- V2p - m2p 

p + ß0 p„ = 0 

where P: y+ eg,(9)<r <1 + gg0(9), 0<9<27t. 
Boundary quantities on dP are approximated by Taylor series expansion about r = y, 1. For exam- 

ple, 

P lr=i+£?0 =P \r=i + (eg0)pr Ui + l/2\(eg0)
2
Prr |r=1 + l/3!(eg0)

3prrr |r=I + • • • (6) 

A similar expansion is developed for p 13ij.. The expansions pn \ gp- require asymptotic expansion of pn 

in terms of derivatiyes with respect to the polar coordinates r and 9 [12]. Introduction of the expansions 
forp and/>„ on dP into (5b) yields 

-W2p -a2p =0        P:y<r<l,0<9<27t (7a) 

(p -$0pr) + zCp +Z2Dp +e3Ep + ■■■ =0 r=y (7b) 

(p +$0pr) + ECp +Z2Dp +Z3Ep + ■■■ =0 r = 1 (7c) 

where C,D,C,D, • • ■  are linear boundary operators with variable coefficients depending on g,-(9) and 

(ii) Variable ß along dP: For annular domains with ß —> ß0 + e ß(9), the eigenvalue problem becomes 

-V2p -a2p =0        P:y<r<l,0<9<27t (8a) 

(p-ßopl.)-eß(9)pr=(p-ßop(.) + eCp=0       r=y (8b) 

(p +ß«,pr) + eß(9)pr=(p +ß0iPr) + eCp =0       r = l (8c) 

which is of form identical to (7). 
We seek eigensolutions of (7) where the boundary perturbations may result from either or both of the 

asymmetries discussed above. The eigensolutions are represented as asymptotic series in the small param- 
eter e 
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co2 = cü2 + eji + e2ri + S
3
K + e4x + e5o + 0(e6) (9) 

p = u + ev + e2w + £35 + e4r + e5z + 0(e6) (10) 

Subsequent analysis shows that confinement of the perturbation terms to the boundary conditions ensures 
that the Bessel and trigonometric forms of the eigenfunction perturbations in (10) do not depend on the 
boundary perturbations. Only the coefficients of these Bessel and trigonometric functions depend on the 
boundary condition operators. Because of this essential point, the method presented in the sequel for 
finding exact solutions for the eigensolution perturbations on irregular domains can be readily applied to 
find exact eigensolution perturbations for any problem of the form (7). 

With the inner product < e,/ > = Jj ef dA, the normalization <p ,p > = 1 and (10) give 
P 

<w,v> = 0    <u,w> = - '/2<v,v>    <u,s> = -<v,w> 
(11) 

<u,t> = - < v,s> - Vi<w,w> 
The eigenvalue perturbations |i, T|, K, %, and C are determined subsequently in terms of the boundary 

conjunct J(e ,f) 

J(e,f) = < -V2e,f>-<e, -V2/>= J [efn -fen]ds- (12) 
BP 

Irregular Domain Eigensolution Perturbation 
We demonstrate the solution procedure for_eigenvalue problems of the form (7) by examining an 

irregularly-shaped domain with outer boundary dP and boundary condition p | Sp = 0. Use of (4) and (6) 
yields 

-V2p -Ö?/? =0        P:0<r<l,0<8<27C (13a) 

p + Eg pr + \/2\{Zgfprr + \fl\(zg?pnr + lW(Eg)4pmr + l/5!(£g)5prnn =0    r = 1   (13b) 

where the subscript o denoting the outer boundary has been omitted. Substitution of (9, 10) into (13) 
yields the sequence of perturbation problems 

-V
2
M-CO

2
M=0              P (14a) 

u = 0                                  dP (14b) 

-V2v -Cü2v =\LU P                                                                             (15a) 

v = - g ur dP                                                                             (15b) 

-V2w-C02w=|J.v+'riM P                                                               (16a) 

w = -gvr -{W.)g\r dP                                                             (16b) 

- V2s -C025 = |IW +T)V + KM P                                                                          (l?a) 

s = - gwr - (l/l)g\r - (l/6)g\rr        dP (17b) 

-V2r -co2r = [is +r\w + KV +X« P (lga) 

r =   -gSr- (l/l)g2
Wrr - (l/6)g\rr - (l/24)g\rrr dP (18b) 
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-V2z -a?z =\it + ^s +KW +xv + cu 

z = -gtr-{1/2)g2srr-{1/6)g\rr-(V24)g\rrr -(l/120)g5K„ 

Solution of (14) gives the orthonormal unperturbed eigenfunctions 

1   Jo(®mOr) 

P 

dP 

"mO- 
KA   Jl(<BmO) 

= Rm0(r)       m>0 

h{(i>mnr)     COS«9_r,     /   J COSnG 
-Wcom„)    sinne =Ä«-lr;1sJn«G 

m>0, n>0 

(19a) 

(19b) 

(20) 

(21) 

where m and n denote the number of nodal circles and nodal diameters in the eigenfunction. The unper- 
turbed eigenvalue C0ra„ is the (m + 1)" root of the characteristic equation Jn (CO) = 0. C0m„ is a distinct 
eigenvalue for n =0 and a degenerate eigenvalue of multiplicity two for n > 1. u^ are orthonormal 
eigenfunctions associated with the degenerate eigenvalues. 

For the circular domain P, the boundary conjunct (12) is 
271 

J{eJ)= j[efr-fer]r=ldO ' (22) 
o 

The following relations are used subsequently 

*»oO)= - 
"mO 

R,noW-- 
com a„, R,nnW = 

gO) =I,gj cosjQ+ZgjsmjQ (24) 

(25) G(Q) = 5
2(6) = G0 + 2 G/cosje + X G/sin/e 

7=1 7=1 

Use of the Fourier representation (24) allows treatment of arbitrary boundary shapes, including kinked or 
discontinuous boundaries. The constant term in (24) vanishes because R is the average radius of the boun- 
dary. 

Solution of Perturbation Equations 
Distinct Eigenvalue Perturbation 

Consider perturbation of a distinct unperturbed eigensolution (Cum0. um0> (tne subscript mO will be 
omitted in the sequel). Using solvability conditions for the perturbation problems (15-19), Parker and Mote 
present formal expressions for the distinct eigenvalue perturbations in terms of the boundary conjunct 
[10,11] 

\L = -J{u,v) T| =  -J{u,w ) 

G=  ■ 

K=   -\1<U,W >-J(li,s) (26) 

X= -\L<u,s> -r\<u,w> -J{u,t)        G= -ii.<u,t> -r\<u,s> -K<U,W> -J(u,z) 

1st Order Perturbation: The first order eigenvalue perturbation |I is evaluated from (26a), (22), (14b), 
(15b), (20), and (24) 

2lt 2TI 

\i = j[urv]r=ldQ= -[R0{l)]2jgdQ = Q (27) 
0 0 

The result \i = 0 substantially simplifies subsequent calculations. It results because the radius of the unper- 
turbed circular domain is the mean radius of the irregular domain. 
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In their treatment of boundary shape perturbation of the Heimholte equation, Morse and Feshbach 
[8] noted convergence difficulties when the eigenfunction perturbation is expanded in a series of the unper- 
turbed eigenfunctions. For the similar case of plate boundary shape perturbation, Parker and Mote [12] 
encountered a divergent series for the second order eigenvalue perturbation when the first order eigenfunc- 
tion perturbation is expanded in a series of the unperturbed eigenfunctions. These problems do not occur 
when the exact solution for the eigenfunction perturbation is determined. Furthermore, the exact solution 
is more accurate, computationally efficient, and notationally convenient than the infinite series expansion. 
In the sequel, exact eigenfunction perturbation solutions are determined through fourth order perturbation, 
thereby allowing exact calculation of the fifth order eigenvalue perturbation. 

The eigenfunction perturbation v( r, 9) is decomposed as 

v = c u + v" + v» (28) 

The first term results because u is a non-trivial solution of the homogeneous form of (15a,b); c is a con- 
stant to be determined. The second term is the general solution of the homogeneous form of (15a). The 
third term of (28) is a particular solution of the inhomogeneous equation (15a). Because of (27), 

vp = 0 (29) 

Additionally, 

v'1 = J^Jj(.(ar)[Bj cos,/e + Cj sinjQ] (30) 

where the j = 0 term is omitted because its contribution is included in the first term of (28).  The 
coefficients in (30) are calculated from (15b) 

B, = C;  =■ 
C0£ 

(31) 
7r'/:y;(co) J     nnJjm 

where g- and gj ate from (24). Substitution of (28) into the normalization condition (11a) yields 

c = -<u,vh +vp> = 0 (32) 

and the solution for v is complete. 
2nd Order Perturbation: The second order eigenvalue perturbation T| is evaluated from (26b), (22), 
(14b), (16b), (20), (28-32), (24), and (25) 

2TC f oo y    ((f\) 1 

Tl = j [«, (- g\ - H*2«,r)]r=1 <*e = CD
2j G0 + 2 [; - o-jr^-] [ (*/)2 + (Sjf] >    (33) 

The solution to (16) is decomposed as 

w = d u +wk +wp 

where the definitions of the terms in (34) are analogous to those in (28), and 

(47t)W£0    -/l(CD) 

(34) 

(35) 

= ZJj(<or)[Ej cosjQ + Fj sin;9] 
J=I 

EJ = 
CO 

(471) ^ (CO) 

_c     ~ r ^m+i(<a). 
Gf+ E    m -ö)-r—— 

(36) 

The coefficients E: and F: in (36) are determined from (16b) 

8m(gC
m+j + Sm-j) + gmigm+j + Sm-j)     m >J 

gmigm +j + gj-m) + gfn(g'm +j " Sj-m)      m<J 

8m Sin + 8m 82m m=J 
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Fj=- 
(4K)'

/
VJ(CO) 

From the normalization (lib), 

8m(8m+j ' Sm-j) ' 8m\8m+j ' Sm-j' 

8m(Sm+] + 8j-m) ' 8m\8m+j ~ 8j-m> 

8m Sim'Sm 8 2m 

d =   - '/2< V, V > - < U , Wp > 

1- 
2m-W»)   ,  ^-riW 

CO     Jm(.C0) 7,2(0)) 

m >/ 

m<j 

m =j 

(37) 

[(^)2 + (g/J2]-^T ®1 v 
Z   m=l 

The particular solution (35) is the critical component of the solution (34). With wp known, calculation of 
£,■ and F,- is straightforward for any perturbed boundary conditions (7b,c). 

Equations (27-37) provide exact, closed-form expressions for both the eigenvalue and eigenfunction 
perturbations through second order. Their simplicity is remarkable given that they apply for an arbitrary 
deviation in boundary shape. 
3rd Order Perturbation: The third order eigenvalue perturbation (26c) is 

2K 

K= -J(u,s)= $[ur{-gwr-Vig2vrr - (1/6)g2urrr)]r^dQ (38) 
o 

Derivation of a closed-form expression for K is analogous to (33) and straightforward. The value of the 
expression is minimal, however, because (38) can be evaluated easily using computer algebra software for 
a specified g (6). Little insight can be gained from the algebraic details at third order perturbation. 

The third order eigenfunction perturbation s ( r, 6) is 

A particular solution for the KM term in (17a) is known by analogy with (35) 

Sl     ' (4TC)'
/2

CO   ^I(CO) 

A particular solution associated with the Ttv term of (17a) is 

J? 
Tir 

Finally, 

As in (30) and (36), 

— E-O+iCwHS; cos;6 + Cj sinjQ] 
2 co j=l 

(39) 

(40) 

(41) 

(42) 

(43) sh = X Jj(.®r)[Hj cos;9 + Lj sin;6] 

where numerical evaluation of Hj and Lj for specified g (9) is readily achieved, e in (39) is found from 
(lie) 

e = -<v,w> -<u,sp> 

4th Order Perturbation: The fourth order eigenvalue perturbation % is found from (26d) 
„2 

JE 
2C0Z 

%=-^ + ^T-J(u,t) 

(44) 

(45) 
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The fourth order eigenfunction perturbation t (r, 6) is 

t=fu+th +t" (46) 

Expansion of (18a) yields 
-V2t -®2t =(% + T\d)u +Kvh +T\wh +T\wp P (47) 

A particular solution of (47) is 

tP = t\ + t\ + t\ + t\ (48) 

(X + Hd)r ^i(^) (49) 
1      "    (47t)'/2CO      ii(0» 

'? = " ¥- £ ^;+i(^) [S; cosjG + C, sin;9] (50) 
2cojtl 

'? = " T^1 £ •/;+i(cor) t£; cosje + F;- sin;9] (51) 
2»;., 

-|2 
f? = JMJ [cor70(COr) - 27,(0))] (52) 

4        (6471)h co3 7 [(a) 

f£ is the only 'new' particular solution not determined by analogy with previous particular solutions. 
Coefficients of th are calculated from (18b). The normalization (1 Id) gives 

/ = -i/2<w,w>-<v,.s>-<w,rp> (53) 

5th Order Perturbation: From (26e), the fifth order eigenvalue perturbation <J is 

0= -Tie -Kd+^--J(u,z) (54) 
or 

Degenerate Eigenvalue Perturbation 
Consider perturbation of a degenerate unperturbed eigenvalue C0m„ and the associated n nodal diam- 

eter orthonormal eigenfunctions u^ (21) (the subscript mn will henceforth be omitted). Because of the 
eigenvalue degeneracy, the unperturbed eigenfunction u is an element m the linear space spanned by u 
and us 

u =acu° + as us (55) 

ac andas are determined subsequently. The normalization <u,u> = 1 requires 

ac
2 + as

2=l (56) 

Boundary condition asymmetry splits the degenerate unperturbed eigenvalue and fixes the coefficients ac 

and as in (55). These effects might occur at first order perturbation, though, if not, they are predicted at 
some higher-order perturbation. ,    , .,. .. . 

Because uc and us are solutions of the homogeneous forms of (15-19), two solvability conditions 
must be satisfied at each order of perturbation. We follow the method of Parker and Mote [10]. 
1st Order Perturbation: The solvability conditions for (15) yield 

ac\i= -J{uc,v) as\L= -J(us,v) (57) 

Evaluation of (57) yields a symmetric, algebraic eigenvalue problem 
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■CO* 

gin fit r« 
Sin -gin ]-■ 

L 

= ft Da = |ia 

Hl,2 = ±C02[(fi,)2 + (fi)1 ,2l'/4 (58) 
The eigenvalues of D are the first order perturbations of CO. The eigenvectors of D fix the coefficients in 
(55). The degenerate eigenvalue splits into distinct eigenvalues as a result of boundary asymmetry if and 
only if .the (I are distinct. The magnitude of LI for an n nodal diameter eigenvalue is proportional to 
Kgln) +(fii) ] '■ This leads to the splitting rule: If either or both of g\n and g in are nonzero, the n 
nodal diameter eigenvalues split at first order perturbation; otherwise the eigenvalues remain degenerate. 
When no first order splitting occurs, (I = 0 but ac and as remain undetermined. 

The eigenfunction perturbation v (r, 6) is decomposed as 

v = cc u
c + cs us + vh + vp (59) 

where the first two terms result from the two independent solutions of the homogeneous form of (15). Par- 
ticular and homogeneous solutions of (15a) are 

Jn+l(ar) ■ (ac cos n 9 + as sin n 9) (60) 
Hr 

(27t)'/2C0    ^+l(CO) 

v   =    2   //(cor)[B;COs;9 + C/sin./8] (61) 

where the j = n term of (61) is included in the first terms of (59). Using (15b), 

ac(gf+n + gj-n) + as{gj+„ -g]_) j>n 

ac(g/+» + gn-j) + as(gf+„ + g*_j) j <n (62a) 

o-c gn + as g
s

n j = 0 

B, 
CO 

(2n)'%(a) 

CJ = 
CO 

(2%)AJj (co) 

O-c ( gj+n + gj-n)'as( gj+n " gj-n) j > « 

ac ( gj+n - gn-j) " «s (gj+n - gn-j) j <n 
(62b) 

Coefficients cc and cs completing the solution (59) are calculated at second order perturbation, just as ac 
and as of (55) are calculated at first order perturbation. 
2nd Order Perturbation: The two solvability conditions for (16) and (1 la) yield 

o>2fi     V--®2gin a2as 

(ü'a. r\/a2 

V-2(n + 1) 
2co2 

H2(« +1) 
2co2 

ac - J(uc,w ) 

as - f(us,w ) 

H(« + 1) 
2 

(63) 
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J(UC ,w) = J(UC ,w)\Cc =Cs =0: 

\ln 

\ln or 
g^-co2(G0+'/2GIn)-—   2   [j-oo 

* j=0.j*n 
■ CO— 1 Pi 

;=0J*n 
(64a) 

y(Ms,w) = 7(«i,w)lCc=C;=0 s <■. = n — A/- i^-g^-co2('/2Gin)-co2  £   [j 
j=0,j*n 

■ CO     ...    ] ß; 

+ fl. ^-co2(G0 + 'AG|„)-^ 
;=0,;*n 

Jj(.(0) 

]Tj\=acY +asZ 

(64b) 

(g/+„ +g/_J2 + (g/+n + gj-n)2 ~8j-¥n8j-n "** 8j~n8j+n j>n 

(gj+n + S«-;)2 + (*/+» - ?«-j)2 ß;=| 8j+n8n-j "** Sn-jSj+n j<n 

.2(tf)2 8n8n ;'=0 

fe/^-g/^^ + te/^-g/-,,)2 8j+n8j-n "*" 8j+n8j-n ;>n 

(gj+n - Sn-jf + (gj+n + Sn-jf 8,= 8j+n8n-j " 8j+n8n-j j<n 

{Kgtf ^/2[(gCn)2-(gSn)2] ;=0 

5. = (l/4)( a,- - T;) is used in (66). The operator in (63) is inverüble if and only if the unperturbed eigen- 
value splits at first order perturbation; cc, cs, and Tl are calculable from (63). If gin = gin = °> men 

|J. = 0, the operator in (63) is singular, and ac and as are unknown. In this case, the component equations 
of (63) yield 

ac J{us,w) - as J(uc,w) = Y {a2 - a2) + (Z - X)ac as =0 
(65) 

r\ = -acf(uc,w)-asf(us,w)= -Xa2-2Yacas -Za2 

where X,Y, and Z are defined in (64). The first of (65) and (56) can be solved for two unique 
a = (ac as)

T if and only if one or both of the following inequalities hold 

CO 
J/+i(<a) 

•A+i(co) 
X*Z -» '/2G|„+   £   ü-o-jT-r- 

]ß,*0 
(66) 

r\ is then calculated from (65b). Equations (66) are second order eigenvalue splitting rules: If either or 
both of (66) are satisfied, the n nodal diameter eigenvalues split at second order; otherwise they do not. 
When Y = 0 andX = Z, (65b) and (56) yieldT| = -X = -Z while (65a) is identically satisfied. Thus, 
Tl is calculable despite the lack of second order splitting and the continuing indeterminacy of aCiS. In the 
sequel, we assume the degenerate eigenvalues split at first order. If they do not, the development described 
by Parker and Mote [11] is required. 

The second order eigenfunction perturbation w (r, 9) is 

w =dru
c +d,us +wh +wP (67) 
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(2%iA® Jn+i(.a>) 
[ (ucc + r\ac) cos n 9 + (\lcs + T)as) sin n 9] (68) 

^ = "-!r-   £   /;+i(cor)[SJcos./9 + C/sin./9] (69) 

H2r 
(32u)/:coJyn+1(co) 

[00r7„(©r) - 2(n + l)/n+1(cor)](ac cosn9 + as sinn9)      (70) 

wp = wf + w§ + wf 

w * =    2   //(«>'■)[ Ej cos ; 6 + F,- sin;' 6] 

(71) 

(72> 
y=0,;'<« 

Components wp sie. associated with the three inhomogeneities of (16a) resulting from an expansion analo- 
gous to (47). The particular solution (71) is the essential element allowing calculation of the E,- and F: 
from (16b). 
3rd Order Perturbation: The solvability conditions for (17) and (lib) give 

\i. + (£>2gc2n      (£>2gS2n      <& ac 

®2gS2n       H-®2gL   CO2 fl, 

ca2ac co2<2j 0 K/CO2 

-\i<uc,wp>-T\<uc,v> -J(uc,s) 
-\l<us,wp>-l\<us ,v> -J(us,s )     (73j) 

■ ar[1/2<v,v> + ac <uc,wp> + as <us,wp>] 

The operator in (73) is identical to that in (63), and the assumption of first order eigenvalue splitting 
ensures its invertibility in the calculation ofdc, ds, and K. 

The third order eigenfunction perturbation J (r, 9) is 

j = er uc + e, us + sh + sp 

'1 
(27t)'/2C0   /n+i(0)) 

(74) 

(\xdc + T|cc + Kac) cos n 9 + (p.ds + i\cs + Kas) sin n 9]     (75) 

si = " T-   2   JM<or)[Bj cos;9 + C, sin;9] 
Z(0j=GJ*n 

(76) 

*? = " i^T" [cü7-y„(cor) - 2(« + l)Jn+i(ur)](ac cosnQ + as sinnQ)      (77) 
(32:i)/2co37K+i(co) 

■r'4 = -i^r   £   JJ+i^>r)[Ej cosjB + FjsiajQ] (78) 
2co 

5§=   - -[arJn(ar)-2(n + l)Jn+l((or)] 
(327i)'/2co37„+1(co)' 

((Hcc +T|ac)cosn0 + (\ics +Tiai)sinn9) (79) 

*P6 = " T7T   X   [oor7,«Dr) - 2(; + l)/;+1«ür)](B;- cosjB + C, sin;9) (80) 
8C0  ;=o,;*n 
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,? = __^L±2L_K(cor) + r2(»2-^n+l)Jn+l«i>r)]{ac cosn9 + a, sinnS) (81) 
(2887t)'/2co47„+1(co)     " 2co 

j" = si + ^ + 5? + s% + sp
5 + SP

& + S? (82) 

j h =    X   // (Cör )t Hj cos J e + Li sin ■> 91 

where the #}, L,- follow from (17b). 
4th Order Perturbation: From the solvability conditions for (18) and (1 lc) 

(83) 

(S?ar 

®282n       ®2"c 

\i-®2gc
2n m2as 

(era. X/co2 

(84) 

-\L<uc ,sp>-T\<uc,w> -K<uc,v> -f(uc,t) 
-\L<us,sp> -r\<us,w> - K<us,v> -J(us,t) 

- co2 [< v, w > + ac <uc,sp> + as <us, sp >] 

The presented boundary perturbation method applies for general boundary conditions of the form 
(7b,c). For annular domains, the Bessel function Yn((S)mnr) is included in (20, 21); particular solutions 
associated with this additional term are almost identical to those associated with Jn((£)mnr) [10]. If dif- 
ferent unperturbed boundary conditions are considered, the unperturbed eigenfunctions (20, 21) do not 
change form; only the normalization coefficients change. Consequently, the form of the right-hand side of 
(15a) is unchanged, and the particular solutions (29, 60) apply .except for a change in their leading 
coefficients. Different first order boundary condition perturbations C and C change only the values of the 
coefficients Bj and Cj in (30, 61). Instead of (15b), these coefficients are determined by the general per- 
turbed boundary condition (7c) 

[ v" + ß0 v*]3P = - Cu - [ v? + ß0 v
P]3P (85) 

Calculation of B, and C, is always possible by Fourier expansion of (85). Thus, the forms of v in (28) 
and (59) are unaffected by changes in either the perturbed or unperturbed boundary operators. As a result, 
only coefficients of the particular solutions (35, 71) change for different boundary conditions. This reason- 
ing extends to higher order perturbations, and consequently the presented particular solutions admit exact 
eigensolution perturbations for general boundary condition perturbations. 

Example Problems 
The numerical accuracy achievable by the presented method is illustrated by modeling elliptical and 

rectangular domains with a circle. 
Elliptical Domain ,     , ,. 
      " ' ' :(1 - b /a~)   is described by 

1 - e~ 

An elliptical domain of eccentricity e 

R = 
l-e2cos26 

(86) 

where a and b are the semi-major and semi-minor axes, respectively (Fig. 2). The. average radius R (3b) 
and the Fourier coefficients of g (6) (24) are calculated by quadrature. Though R depends on a and e, 
g (6) depends only on e. For an ellipse, gf = 0 for j odd and gj = 0 for all j. Eight non-trivial terms 
through g ig were used in the calculations. 

The dimensionless, fundamental, elliptical domain eigenvalue O.00a of (2) evolves from the funda- 
mental circular domain eigenvalue. (We identify the perturbed domain eigensolutions using subscripts mn 
denoting the number of nodal circles m and nodal diameters n in the circular domain eigensolutions from 
which the perturbed eigensolutions evolve.) Table 1 compares the fundamental eigenvalue predicted by 
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perturbation to the exact values computed by Daymond [13]. A maximum error of 0.32% is calculated for 
eccentricities through e = 0.9 -> b/a = 0.4359. For the extreme eccentricity 
e = 0.9611 ->b/a = 0.28, the perturbation results degrade substantially. Even without comparison with 
a known solution, the degradation is evident by the poor convergence of the perturbation with increasing 
order. For e = 0.9611, the asymptotic expansion (9) for the fundamental frequency is 

ä2 = 5.7831 + 0 + 5.1154 - 5.3966 + 4.7782 + 1.7258 (Oca) = -=?- =   3'^°  = 7.2790 
R    ,        U.4/OI0 

In contrast, for e = 0.9 

Ö? = 5.7831 + 0 + 1.6774 - 0.6083 + 0.3098 - 0.0005 (n0o°) = -=^~ = ^fjfj, = 4.2287 
Ra=\       U.03ZS4 

The agreement between perturbation and the exact values is illustrated in Fig. 3. Results for perturbation 
of the one nodal diameter circular domain eigenvalue are also given in Fig. 3, where the exact values were 
obtained by optically scanning Fig. 1 of Troesch and Troesch [14] and digitizing points through e = 0.9. 
Differences between the results so obtained and the perturbation values are all less than 3%, which is 
approximately the precision of the scanned and digitized results. Tabular results for the (Q.0la)l2 eigen- 
values are presented in Table 1. 

Rectangular Domain 
Consider the rectangular domain of dimension 2a x2b where t, = b/a< 1 (Fig. 4). The average 

radius R and the Fourier coefficients of g (9) are calculated by quadrature. R depends on a and q, but 
g (6) depends only on \. Also, gf = 0 for ;' odd and gf = 0 for all;'. Ten non-trivial terms through g2o 
were used in the calculations (Fig. 4). 

Table 2 compares the fundamental eigenvalue Q.00a from perturbation to the exact value for 
1 > % > 0.3. Comparisons are shown for first through fifth order perturbation approximations. For a fifth 
order perturbation approximation, errors in the fundamental frequency are less than 0.5% for £> 0.6, 1.3% 
for \ = 0.5, and 4.7% for \ = 0.4. For % = 0.3, the error is 22.% and perturbation is not effective. The 
behavior of the asymptotic approximation (vertical column of Table 2) reveals a large expected error even 
in the absence of a known solution. 

Substantial improvement in the predicted fundamental eigenvalue results when the perturbation is 
extended from first to second order. The accuracy obtainable from a second order perturbation is 
significant because the closed-form expression (33) gives T) for an arbitrary shape perturbation. Improved 
accuracies are achieved with third order and fourth order perturbations. For rectangular domains, fifth 
order perturbation affords no increase in accuracy. Though the accuracy achieved using fourth or fifth 
order perturbation may not be needed, the higher order perturbations develop confidence in the conver- 
gence of the predicted eigensolutions through the decreased magnitude of the higher order terms. 

Comparisons of perturbation predictions and exact eigenvalues are shown in Table 3 for rectangular 
domains. For square domains, all predicted values differ from the exact values by less than 1%, and the 
agreement is also excellent for \ = 0.95 and !; = 0.9. The lowest four eigenvalues provide excellent esti- 
mates for I; = 0.7,0.8, as shown in Fig. 5. Where the predicted and exact values differed substantially, the 
failure of the higher order perturbations to approach zero in the asymptotic expansion is evident. 

It is interesting that two distinct circular domain eigenvalues can merge to form a degenerate eigen- 
value pair on a square domain. For instance, the(m,ra) = (l,0) circular domain eigenvalue and one of 
the degenerate (m, n) = (0,2) circular domain eigenvalues merge to form the degenerate eigenvalue pair 
Q.a =4.9673 in the square domain. In contrast, the degenerate eigenvalue pairs Q,a =3.5124 and 
Qa = 5.6636 in the square domain evolve from the degenerate eigenvalue pairs (m,n) = (0,1) and 
(m,n) = (0,3) in the circular domain. Perturbation predicts the splitting of the degenerate square 
domain eigenvalues (Fig. 5). 

Conclusions 
1. Eigensolutions of the wave equation with perturbations of the boundary conditions are derived by exact 
solution of the sequence of perturbation problems through fifth order. Perturbations of the domain from 
circular and variation of boundary condition parameters along the boundary curves are included in the class 
of perturbations for which the method applies. Exactness of the perturbation solutions means no approxi- 
mation is introduced other than truncation of the asymptotic series (9, 10). 
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2. The derived solution offers a combination of analytical and computational advantages: 
• exact perturbation through fifth order yields excellent accuracy for perturbations of substantial magni- 

tude (such as the elliptical and rectangular domain perturbation examples); 
• Fourier representation of the perturbations allows treatment of general continuous or discontinuous 

asymmetries; . 
• algebraic simplicity of the results permits convenient use of the eigensolutions m applications such as 

inverse and forced response problems; 
• admissible functions as required in Ritz-Galerkin analysis are not needed; 
• results are easily derived and verified using computer algebra software. 
3. Rules governing splitting of the degenerate unperturbed eigenvalues are derived at both first and second 
orders of perturbation. These rules take simple algebraic forms in terms of the Fourier coefficients of a 
general asymmetry. The rule for first order eigenvalue splitting is such that it can be applied by inspection. 
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4. 

6. 

9. 
10. 

11. 

12. 

13. 

14. 

e=0.4 e = 0.5 e=0.6 e=0.7 e=0.8 e=0.9 e =0.9611 

&00a 

Exact 
Pert. (5) 
% Error 

2.5165 
2.5165 
0.00% 

2.5968 
2.5968 
0.00% 

2.7202 
2.7202 
0.00% 

2.9215 
2.9215 
0.00% 

3.2933 
3.2936 
0.01% 

4.2151 
4.2287 
0.32% 

6.2432 
7.2790 
17.% 

(Qoi«Oi 

(ßoiö)2 

Pert. (4) 
Pert. (4) 

3.9212 
4.0956 

3.9864 
4.2822 

4.0878 
4.5646 

4.2559 
5.0154 

4.5726 
5.8259 

5.3318 
7.7601 

Table 1: Comparison of the fundamental elliptical domain eigenvaluecomputed using pertur- 
bation to the exact solution of Daymond [13]. Perturbed eigenvalues evolving from the 0 
nodal circle, 1 nodal diameter circular domain eigenvalues are also presented, e denotes the 
eccentricity of the ellipse. Numbers in parentheses indicate the order of perturbation. 
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ßooa §=1 4=0.9 4=0.8 4=0.7 4=0.6 4=0.5 4=0.4 4=0.3 

Exact 2.2214 2.3481 2.5145 2.7391 3.0531 3.5124 4.2295 5.4665 

Pert. (5) 

% Error 

2.2243 

0.13% 

2.3511 

0.13% 

2.5183 

0.15% . 

2.7460 

0.25% 

3.0665 

0.44% 

3.5597 

1.3% 

4.4293 

4.7% 

6.6599 

22.% 

Pert. (4) 

% Error 

2.2193 

-0.10% 

2.3455 

-0.11% 

2.5109 

-0.14% 

2.7325 

-0.24% 

3.0409 

-0.40% 

3.4797 

-0.93% 

4.1413 

-2.1% 

4.9888 

-8.7% 

Pert. (3) 

% Error 

2.2127 

-0.40% 

2.3394 

-0.37% 

2.5027 

-0.47% 

2.7230 

-0.59% 

3.0278 

-0.83% 

3.4672 

-1.3% 

4.0995 

-3.1% 

4.9403 

-9.6% 

Pert. (2) 

% Error 

2.2479 

1.2% 

2.3753 

1.2% 

2.5430 

1.1% 

2.7700 

1.1% 

3.0923 

1.3% 

3.5830 

2.0% 

4.4038 

4.1% 

5.9903 

9.6% 

Pert. (1) 

% Error 

2.1430 

-3.5% 

2.2608 

-3.7% 

2.4049 
-4.4% 

2.5859 

-5.6% 

2.8209 

-7.6% 

3.1400 

-11.% 

3.6013 

-15.%' 

4.3353 

-21.% 

Table 2: Comparison of the fundamental rectangular domain eigenvalue computed using 
perturbation to exact values. 4 = b/a denotes the aspect ratio of the rectangle. The numbers 
in parentheses indicate the order of perturbation. 

Qmna 

(m, n) (0,0) (0, 1)! (0, 1)2 (0,2)2 (0,2), (1,0) (0,3h (0.3)2 

4=1 
Exact 

Pert. 

%Err. 

2.2214 

2.2243 

0.13% 

3.5124 

3.5081 

-0.12% 

3.5124 

3.5123 

0.00% 

4.4429 

4.4322 

-0.24% 

4.9673 

4.9679 

0.01% 

4.9673 

4.9656 

-0.03% 

5.6636 

5.7064 

0.76% 

5.6636 

5.7071 

0.76% 

4 = 0.95 
Exact 

Pert. 

%Err. 

2.2806 

2.2836 

0.13% 

3.5502 

3.5442 

-0.17% 

3.6610 

3.6553 

-0.16% 

4.5613 

4.5499 

-0.25% 

4.9941 

5.0136 

0.39% 

5.2032 

5.2027 

0.00% 

5.7569 

5.8693 

2.0% 

5.8716 

5.8873 

0.27% 

4 = 0.9 
Exact 

Pert. 

%Err. 

2.3481 

2.3511 

0.13% 

3.5939 

3.5879 

-0.17% 

3.8278 

3.8218 

-0.16% 

4.6962 

4.6831 

-0.28% 

5.0252 

4.9148 

-2.2% 

5.4665 

5.5454 

1.4% 

5.8644 

6.1071 

4.1% 

6.1062 

6.1390 

0.54% 

4 = 0.8 
Exact 

Pert. 

%Err. 

2.5145 

2.5183 

0.15% 

3.7047 

3.6984 

-0.17% 

4.2295 

4.2219 

-0.17% 

5.0290 

5.0063 

-0.45% 

5.1051 

5.0071 

-1.9% 

6.0963 

3.9446 

-35.% 

6.1342 

6.6318 

8.1% 

6.6759 

6.7169 

0.61% 

4=0.7 
Exact 

Pert. 

%Err. 

2.7391 

2.7460 

0.25% 

3.8607 

3.8493 

-0.29% 

4.7549 

4.7478 

-0.15% 

5.4783 

5.4315 

-0.85% 

5.2194 

8.7571 

68.% 

6.9128 

imag. 

6.5076 

6.1737 

-5.1% 

7.4289 

7.0269 

-5.4% 

Table 3: Comparison of rectangular domain eigenvalues from perturbation to exact values, cj = b/a 
is the aspect ratio, m and n are the numbers of nodal circles and nodal diameters in the circular 
domain eigenfunction from which the corresponding rectangular domain eigenfunction evolves. 
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«rej 

Figure 1: The dashed lines denote the annular Fig™« 2: ElliPse of eccentricity e=0.9 (2>/a=0.4359). 
domain for perturbation. The radii equal the The circle is the base domain for the perturbation. The 
average radii of the irregular boundaries. radius of the circle equals the average radius of the ellipse. 

O  a 
nnn 

8-- 

0.4 0.6 
Eccentricity, e 

Figure 3: Elliptical domain eigenvalues. The subscript mn denotes the number of nodal circles (m) 
and nodal diameters (n) in the circular domain eigenvalue, a is the semi-major axis of the ellipse. The 
solid lines are from the exact solutions of Daymond [13] and Troesch and Troesch [14]. The symbols 
are values predicted by perturbation. 
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Figure 4: Rectangle of aspect ratio \ = 0.9. The 
approximate rectangle is a 10 term Fourier approx- 
imation. The circle is the domain for perturbation. 

Aspect Ratio, C, 

Figure 5: Eigenvalues of a rectangle with aspect ratio ^ = b/a. Solid curves denote exact 
values. Symbols denote values predicted by perturbation. 
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ABSTRACT 

It is known that the problem of finding the spectrum of a complex 
conservative system with interaction of finite rank between its subsystems 
can be reduced to investigation of some symmetric characteristic matrix. 
If the system exhibits symmetries of one kind or another, the problem can 
be further simplified. It is shown how one can decompose the problem 
for a symmetric system by using results of the representation theory of 
groups. Considering a group of rigid symmetries of the system and its 
representation in the interaction space, one can obtain the spectrum of the 
system by investigating a number of reduced characteristic matrices, the 
sum of their orders being equal to the rank of the interaction. 

1    INTRODUCTION 

It is well known that the problem of finding dynamic characteristics 
of a complex structure consisting of distributed and/or finite-dimensional 
subsystems which interact at a finite number of points can be reduced to 
investigation of some matrix of relatively small order (see, e.g., [1-10] and 
references therein), which is sometimes referred to as the characteristic 
matrix. If the system exhibits symmetries of one kind or another, the 
problem can be simplified from the computational standpoint. The aim 
of this paper is to develop a technique for investigation of such systems. 
To facilitate discussions, we shall restrict our consideration to conservative 
systems. To reduce the original spectral problem to the problem of inves- 
tigation of a characteristic matrix, we will apply the technique used in the 
structural analysis method [5, 6]. 
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2      FORMULATION OF THE PROBLEM 

Let us consider a linear complex mechanical system consisting of a finite 
number of distributed and/or finite-dimensional subsystems interacting at 
a finite number of points. Let us write the equation governing small sta- 
tionary vibrations of jth isolated subsystem in the following operator form 

Aj(\)Xi = Fj,j = l,...,R, (1) 

where Fj is a vector function of amplitudes of external harmonic general- 
ized forces acting on the subsystem, Xj is an amplitude response vector 
function, A = w2, w is a circular frequency, Aj(X) is a self-adjoint operator. 
In the case of a distributed subsystem, Aj{\) is a differential operator; for 
a finite-dimensional subsystem, it is given by a matrix. 

Let the subsystems interact elastically at a finite number-of points 
(e.g., they are connected to each other by means of a finite number of 
conservative springs). Let us denote by X the i?-component vector func- 
tion of responses of the system, the j'th component of X being vector 
function Xj. Clearly, the interaction forces depend on displacements of 
only those points that take part in the interaction; i.e., they depend on 
some finite-dimensional vector Y £ RN rather than on response vector 
function X, which, in the general case, belongs to some functional space. 
Denote by S an operator transforming X into the vector Y: Y = SX. Let 
the interaction be given by a stiffness matrix K such that the amplitude 
vector of generalized interaction forces F G RN is given by the equation: 
F = — KY. As the interaction is assumed to be conservative, the matrix K 
is positive semidefmite. To transform vector F into the right-hand sides 
of equations (1), the adjoint operator S* is used (see [5, 6] for more de- 
tail). Assuming zero external forces, one arrives at the following equation 
governing free stationary vibration of the system under consideration 

(A(A) + S'KS)X = 0 , (2) 

where A(X) is a diagonal operator matrix A(X) = dia.g[Aj(X)6jk}jt'^-i gov- 
erning vibration of the aggregate of the non-interacting subsystems. The 
discrete spectrum of the system is defined to be the set of numbers A such 
that equation (2) has non-trivial solutions. More detailed discussions con- 
cerning such a formulation of spectral problems, as well as some examples, 
are given in [5, 6]. 

It is well known (e.g., [1, 3-6]) that if operator A~l(X) can be calcu- 
lated, the problem of finding the spectrum can be reduced to the problem 
of investigating some characteristic matrix. The matrices can be defined 
differently, but all of them have an important property: if A-1 (A) exists, 
problem (2) has non-trivial solutions if, and only if, the characteristic ma- 
trix is singular. 
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In this paper, we will take advantage of the definition of the charac- 
teristic matrix used in the structural analysis method [5-7]. As the stiff- 
ness matrix K is positive semidefinite, it can be factored in the form [11]: 
K = aTa, where a is NxN matrix, and N is the rank of matrix K. The 
characteristic matrix of order N is then defined by the equation 

Q{X) = I + aSA-l{X)S'aT . (3) 

Properties of eigenvalues and eigenvectors of the matrix that guarantee 
finding all eigenfrequencies of the system in a given frequency range are 
discussed in [6]. To save room, we will not discuss here the ways of in- 
vestigation of those values of A at which A-1 (A) does not exist (detailed 
discussions of this case as applied to nonsymmetric structures can be found 
in [8, 9]), as this has no effect on the decomposition discussed. 

Let now the subsystems (or part of them) be identical or can be divided 
into a few groups of identical ones and interact in such a way that the com- 
plex system exhibits symmetries of one kind or another. It is reasonable 
to suggest that these symmetries can be used to simplify the problem and 
also understand and classify solutions. The technique to be discussed in 
this paper allows one to decompose matrix (3) into a number of matrices 
of lesser orders such that the spectrum of the system can be obtained by 
investigating these matrices separately. 

3    DECOMPOSITION OF THE INTERACTION 
SPACE 

Let G be a group of symmetry of the immovable system, elements of 
the group g £ G being either rotations or reflections that transform the 
system into itself. Clearly, as we consider systems with a finite number of 
interaction points, G can be only a finite group. For the same reason, we 
can consider a representation of the group in a finite-dimensional space. 
Actually, it follows from the results discussed in [5, 6] that at a given eigen- 
frequency w0_there is one-to-one relationship between eigenfunctions of the 
system and iV-dimensional vectors from the kernel of the matrix Q(WQ) 

KerQ(o>o). However, as /V-dimensional space come into existence as a re- 
sult of a formal procedure of the factorization of the stiffness matrix K, it 
may be difficult to build a representation of the group in this space. There 
are two physical ./V-dimensional spaces relevant to the problem, namely, 
the space of displacements of the points at which the subsystems interact 
with each other and the space of generalized interaction forces. Either of 
them can be used to build a representation of the group. Let, for defmite- 
ness, it be the space of displacements Y = SX; we denote it by letter L 
and will call the "interaction" space. It is evident from general consider- 
ations that at a given eigenfrequency there exist one-to-one relationship 
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between the eigenfunctions of the system and vectors of the corresponding 
displacements of the connection points. 

Let the system free vibrate at some eigenfrequency, and let Y G L be 
the corresponding vector of the displacements of the connection points. 
From this point on, we will call it, for brevity, the "eigenvector" of the sys- 
tem. Any rotation or reflection g £ G transforms the eigenvibration into 
some, generally speaking, different eigenvibration, the eigenvector Y being 
transformed into some other eigenvector Y9. Let us introduce linear oper- 
ators (matrices) T(g) by the equation: T{g)Y = YS, g <= G. Clearly, T{g) 
is a real unitary representation of group G and can be constructed for any 
particular configuration of the interaction points and a given coordinate 

system. 
As will be seen from the next section, the decomposition of the spectral 

problem can be obtained if we succeed in decomposing the space L into a 
number of mutually orthogonal real subspaces 

L = Ll + --- + Lm (4) 

such that any eigenvector of the system Y could be represented in the form 
Y = £ Yj, where Yj 6 Lj is also an eigenvector of the system corresponding 
to the same eigenfrequency. In other words, we need such a decomposition 
that either an eigenvector Y belongs to a subspace Lj or (in the case of 
a multiple eigenfrequency) there exist such elements of the group gk and 
real numbers ßk, which are not all zero, that YlkßkT{gk)Y G Lj. Because 
of lack of room, we restrict our discussions to substantiating reasoning and 
give the results without proofs. 

Let Ti(g),.■ ■ ,Tg(g) be real nonequivalent irreducible unitary represen- 
tations of the group G and representation Tj(g) of dimension TJ occurs raj 
times in T(g). The following lemma is valid. 
Lemma 1 For any given j, there exist such gk £ G and real numbers ßk, 

fe = l,...,ri + l> ihatZkßkTj{gk) = 0. 

The proof is based upon application of Cayley-Hamilton theorem [11] to 
the matrix Tj(g) with g being an element of a cyclic subgroup. It is well 
known [12] that the space L can be decomposed into £'=1 m, mutually 
orthogonal invariant subspaces each of which is transformed by one of 
the irreducible representations. Let us denote by Lj (j — l,...,q) the 
direct sum of all invariant subspaces transformed by the representations 
equivalent to the real representation Tj(g). Using Lemma 1, one can prove 
the following theorem. 

Theorem 1 For any eigenfrequency, an eigenvector Y either belongs to 
one of the subspaces Lj or can be represented in the form Y = J2 Yj, where 
Yj € Lj is also an eigenvector of the system. If an eigenvector of the 
system belongs to a subspace Lj, then the multiplicity of the eigenfrequency 

is equal to rj. 

1504 



Thus, we have obtained the desired decomposition (4) of space L with m 
being equal to the number of real nonequivalent irreducible representations 
of point group G. To take advantage of decomposition (4), one needs 
projectors Pj onto the subspaces Lj : PjL = Lj. The projector on the 
subspace Lj is given by the formula [12, Chapter 4] 

Pi = rj-Zntimg), (5) 
n see 

where n is the order of the group G, and Xj{g) is tne character of Tj(g). 
It turns out that under certain conditions some of subspaces Lj, which 

are transformed by representations whose dimensions are greater than one, 
can be decomposed in turn. 

Theorem 2 Let Tj(g) be a real irreducible representation of a group G of 
dimension rj > 1, and let there exist an element of the group g0 of order 
rj such that the matrix T3{g0) has all different complex eigenvalues. Then 
the subspace L3 can be decomposed into p, subspaces, where, for even r3, 
Pj = T-J/2 + 1, and, for odd rj: pj = {rj + l)/2. 

The theorem allows one to obtain more subtle decomposition (4) with m 
being greater than the number of real irreducible representations. 

Let us obtain formulas for projectors onto the subspaces of a decompos- 
able subspace Lj. As mentioned above, Lj is the direct sum of subspaces 
Lk-, k = 1,.. . ,mj, transformed by the representations equivalent to Tj{g). 
Let us consider for a while Lj as complex subspaces. It is evident that 
eigenvalues of the matrix Tj(g0) are numbers (\ i = 0,1,..., rj - 1, where 
C is a primitive rf root of 1 {(,T> = 1). Let e\ be the corresponding eigen- 
vectors of matrix Tj{g0) belonging to the subspace V\. If rj > 2, some 
vectors t\ are complex, and, for each complex vector ef, there is its com- 

plex conjugate vector e|. Denote by I)- [i = 0,1,... ,Pj - 1) the subspace 
of L) spanned either by vector ef, if t\ is real, or by two vectors ef and 

e\. Denote by L:<1 the direct sum of subspaces Z*^, k - l,...,mj. It is 
the decomposition of Lj into pj real subspaces Ljti that is established in 

Theorem 2. 
Let us take the above eigenvectors e*, i = 0,1,..., r;- - 1 for the or- 

thonormal basis in subspace Lj and write the representation Tj(g) in ma- 

trix form Tj{g) = [4(ff)l. i, / = 0,1,..., r;- - 1, which is the same in all 
subspaces V], k = 1,... ,m.j. Using the results of [12, Chapter 4], one can 
obtain formulas for projectors P,-,; on the subspaces Ljj 

hi = ~ E iiti)T{9) , * = 0 and i = pj - 1 (for even r3) ,        (6) 

Pi,i = - E(4(ff) + tU9))T(g) , otherwise. (7) 
n    rn 
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Note that the eigenvectors of the system Yj%i 6 Z-j,,- exist or do not exist 
in all subspaces Ljj simultaneously, so that the multiplicity of the corre- 
sponding eigenfrequency of the system is equal to r, as before. 

4    DECOMPOSITION OF SPECTRAL PROBLEM 

In the previous section, we have decomposed space L of displacements 
of the connection points. One could take for L the space of generalized 
interaction forces and obtain the same decomposition. It is not difficult to 
prove that if the system free vibrates and the corresponding eigenvector 
Y belongs to a subspace Lj then the corresponding vector of interaction 
forces F — —KY also belongs to the same subspace Lj. This allows one 
to introduce matrices Kj — PjKPj, j = 1,..., m, and consider m spectral 
problems of the form (2) in which the matrix K is replaced by KJ; here 
projector Pj is given either by formula (5) or by (6)-(7). Matrices Kj 
can also be presented in the factorized form: Kj = aja, where Qj is 

NJXN matrix, and Nj is the rank of Kj. Let us define, analogously to (3), 
matrices Qj{X) of orders Nj by the formula 

Qj(X) = I + ajSA~1{X)S*aJ . (8) 

It turns out that to obtain the spectrum of the system, one can investigate 
separately matrices Qj(\) instead of one matrix Q(A). Let Uj be the set 
of values of A such that matrix <3j(A) exists and is singular. Denote by U 
the union of the sets Uj, j = 1,..., m. If some A occurs r times in U, we 
say that it has multiplicity r. 
Theorem 3  1.  The sum of orders Nj ofQj(X) is equal to the order N of 

QW- ' 
2. The set of the eigenvalues of the system different from those of the 
isolated subsystems coincide with the set U. 

The eigenvalues of the isolated subsystems are investigated separately. The 
approach used in [5, 6, 8, 9] for nonsymmetric systems can be modified and 
applied to symmetric ones. 

Remark. In the general case of a 3D structure consisting of several 
substructures, the subsystem points that take part in the interaction can 
be divided into a few independent groups, called "interaction sections," 
such that the interaction forces acting on the subsystems at the points 
belonging to a certain interaction section depend on displacements of only 
those points that belong to this interaction section. This subdivision of 
the interaction points into independent interaction sections implies a pri- 
ori decomposition (not connected with the symmetry of the system) of the 
interaction space and results in a block-diagonal form of the stiffness ma- 
trix K (under an appropriate numbering of the interaction points).  This 
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implies also that we can build representations of the group in different 

interaction sections separately. 

5    PROJECTORS FOR THE GROUPS Cn AND Cnv 

As an illustration, let us decompose the interaction space and calcu- 
late projectors for two cases of symmetry. First, consider a system having 
n-fold axis of symmetry such that rotations about the axis through an- 
gles C£ = ^, k = 0,1,..., n - 1, transform the system into itself. The 
rotations C£ form the cyclic abelian group Cn of order n. It has [12] n 
one-dimensional complex irreducible representations. Combining pairs of 
complex conjugate representations into real two-dimensional representa- 
tions, one obtains m real irreducible representations, where, for even n, 
m = n/2 + 1, two representations being one-dimensional and the others 
being two-dimensional; for odd n, m = (n + l)/2, with one representation 
being one-dimensional. Calculating the characters of the representations 
and applying formula (5), one obtains formulas for the projectors onto the 
subspaces L0 and Ln/2 (for even n) corresponding to the one-dimensional 
real representations 

Po = ig T{Ck
n) , P, = igt-lflK-)   (even n) , (9) 

n feo n fc=o 

and onto the subspaces Lj corresponding to the two-dimensional real rep- 

resentations 

2^        2*kj k f 1,...,|-1,   forevenn, 
J = n £C°S(^"mCJ ' J = \  1,...,^,       for odd n. ^ 

As a second example, let us consider the group of symmetry C„„, which 
also describes symmetry arrangements with one n-fold axis. But apart 
from the rotations, there are n reflections transforming the system into 
itself. The order of the group is equal to In. Let us choose the elements 
of the group as follows: C° = e, C^ ■ •., C^1, ^, <TVC\,..., avCl~x, where 
<jv is a reflection in a certain symmetry plane passing through the n-fold 
symmetry axis. It is known [12] that for odd n this group has two one- 
dimensional (To,! and T0,2) and (n - l)/2 two-dimensional real nonequiv- 
alent irreducible representations. For even n, it has four one-dimensional 
(T0,i, T0,2, Ta,i, and Ta,2) and (n - 2)/2 two-dimensional representations. 
Calculating the characters of the one-dimensional representations and ap- 
plying formula (5), one obtains the projectors onto the subspaces corre- 
sponding to the one-dimensional representations 

1 fd^E^ + VS), (ii) 
2nk=o 
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Po,2 = ^E{nCt)-T(avC^)), (12) 
zn fc=0 

and (if n is even) 

Pf a = T- E(-l)* (r(C") + T(avCt)) , (13) 
fc=0 

^ = T- t(-l)k {nCk
n) - T{avC

k
n)) . (14) 

It is not difficult to show that bases in the spaces L, corresponding 
to the two-dimensional representations Tj(g) can be chosen in such a way 
that the matrices Tj(av) are diagonal: Tj(crv) = diagfl,— lj. This means 
that the two-dimensional representations Tj(g) satisfy the conditions of 
Theorem 2 with g0 = crv, and, hence, each of the subspaces Lj can be 
decomposed into the sum of two real subspaces Lj — Ljß + Lj^. Applying 
formula (6), one obtains the projectors onto the subspaces Ljt0 and Ljt\ : 

Ph0 = -nf cos(^) {T{Ck
n) + T(*VCH)) , 

n k=o            n 
(15) 

Phl = Ig cos(^) (T{CS - T{avC
k

n)) , 
n fc=o           n 

(16) 

j 1,..., 2=2,   for even n, 
J -{ l,...,a=i,   for odd n. 

vhere 

6    AN EXAMPLE OF CONSTRUCTION OF A 
REPRESENTATION 

In the previous section, we obtained formulas (9)—(16) for the projec- 
tors for the symmetry groups Cn and Cnv- To take advantage of these 
formulas for a given symmetric structure, it is required only to construct 
a representation of the group in the corresponding interaction space. The 
aim of this section is to demonstrate, by way of a simple example, how 
such a representation can be constructed. 

Let a symmetric structure consist of seven interacting subsystems, and 
let its symmetry be described by the group Cßv. Let the 6-fold axis of 
symmetry be perpendicular to the plane of the sheet. Keeping in mind 
Remark in Section 4, let us consider one interaction section of the sys- 
tem. Let the interaction points belonging to this section be located at 
the vertices of a regular hexagon as shown in Fig. 1. Here the circles 
denote the interaction (connection) points of the subsystems belonging to 
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Fig. 1: An interaction section for a system with C6v symmetry group 

the considered interaction section. The kind of the subsystems (finite- or 
infinite-dimensional) is of no concern at this stage, since a representation is 
constructed in a finite-dimensional interaction space. Note, however, that 
the configuration shown in Fig. 1 could represent, e.g., a section of a bundle 
of seven identical 3D beams by a plane perpendicular to the longitudinal 
axes of the beams. 

Let the points be connected to each other through some springs, and 
the interaction be described by a stiffness matrix of interaction K. To 
construct a representation, a particular configuration of springs is of no 
importance. It is required only that this configuration satisfy the same 
symmetry conditions. That is, the system of springs transforms into itself 
under any rotations and reflections belonging to the considered group CSv. 

To simplify the consideration and to save room, we will assume first 
that the interaction points are allowed to vibrate only in the plane of the 
figure, and the interaction forces also belong to this plane. Thus, the 
interaction space L in this example is 14-dimensional. The construction 
of the representation is simplified if we represent the displacement of each 
interaction point in its own coordinate system, the origin of which is placed 
at the equilibrium state of the point. The coordinate systems associated 
with point 1 and central point 7 are shown in the figure. The coordinate 
system of point k (k = 2,..., 6) is obtained from that of point / by rotation 
about the symmetry axis x (passing through the central point) through the 
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angle Cg = ^- The vector of displacements of the interaction points is 
given by Y = [j/i, zi,...,y7, z7]T E R14, where yu and zk are the coordinates 
of the displacement of the &th point in its own coordinate system. 

As discussed in the previous section, the group Cg„ consists of 12 el- 
ements. Let <rv be the reflection in the symmetry plane passing through 
the 6-fold axis x and points 1 and 4, and Cg be the counterclockwise ro- 
tation about the 6-fold symmetry axis x through the angle Cg. Let the 
elements of the group be chosen in the same way as in Section 5: Cf — 
e,Cl,...tClvv,<rvCl,...,(TvCl Since T{gxg2) = T{gi)T{g2)ygilg2 £ G 
[12], we need to construct only the matrices T(Cg), k = 1,..., 5, and T(<7„). 

It can be checked directly by examining Fig. 1 that the representation 
T is given by 

n°v) = 

net) = 

£000000 
0 0    0    0    0 £   0 
0 0    0    0    £ 0    0 
0 0    0    5    0 0    0 
0 0    £   0    0 0    0 
0 £    0    0    0 0    0 
0 0    0    0    0 0    £ 

0 0/000 0 
0 0   0   7   0   0 0 
0 0   0   0/0 0 
0 0   0   0   0/ 0 
/ 0    0   0   0   0 0 
0/0000 0 

, T{C\) = 

0 / 0 0 0 0 0 
0 0 / 0 '0 0 0 
0 0 0 / 0 0 0 
0 0 0 0 / 0 0 
0 0 0 0 0 / 0 
/ 0 0 0 0 0 0 

■■,T{Cl) 

o o o o o o r\ 

ooooo/   o 
/ 0 0 0 0 0 0 
0 / 0 0 0 0 0 
0 0 / 0 0 0 0 
0 0 0 / 0 0 0 
0 0 0 0 / 0 0 
0 0 0 0 0 0 r5 o o o o o o r2 

where 0 stands for the 2x2 matrix of zeros, / is the 2x2 identity matrix, 
£ is the diagonal matrix £ = diag[l, — 1], and 

r* = cos 2irks 

sin(^)   -cos(^ 

Clearly, T(C°) is the identity matrix of order 14, and the other five 
matrices are obtained by means of the formula T(avC6) = T((TV)T(CQ). 

Now, whatever is the stiffness matrix corresponding to this interaction 
section, the interaction space is decomposed into eight subspaces, and the 
projectors onto these subspaces are easily constructed by means of formulas 
(11)—(16) at n = 6. Repeating this procedure for the other interaction 
sections and applying the technique discussed in Section 4, we obtain eight 
characteristic matrices such that the spectrum of the original problem can 
be obtained by investigating these matrices. The orders of these matrices, 
in the general case, are different and determined by a particular stiffness 

1510 



matrix of the interaction. However, according to Theorem 3, the sum of 
their orders is equal to the order of the characteristic matrix of the system 
when it is investigated without regard for its symmetry. 

Note finally, without going into detail, that the consideration of a more 
general case, the case of space displacements of the interaction points, 
presents no additional problem. Let, for example, the vibration of a bundle 
of seven 3D beams be analyzed. Let the beams be connected to each 
other through some number of translational and torsional springs located 
in a plane perpendicular to the longitudinal axes of the beams. Let the 
interaction section of the bundle be as shown in Fig. 1. In this case, the 
displacement of each interaction point (which is actually a cross-section 
of the corresponding beam) is described by six (three linear and three 
angular) coordinates. Introducing the third axis for each coordinate system 
and the Eulerian angles, one can construct the representation in the 42- 
dimensional interaction space. Writing the matrices of the representation 
in terms of 6x6 matrix blocks, one will obtain them exactly in the same 
form as in the previous case of plane vibrations. Blocks 0 and /, in this case, 
are 6x6 zero and identity matrices, respectively; E is a diagonal matrix 
of ones and minus ones; and Tk describes the coordinate transformation 
under rotation about the 6-fold symmetry axis through the angle C£. A 
concrete form of matrices E and Th depend on the chosen enumeration of 
the six coordinates describing the position of the point in the interaction 

space. 

7    NUMERICAL ILLUSTRATIVE EXAMPLE 

The aim of this section is to give a simple numerical example of decom- 
position of the interaction space. Since the result of the decomposition of 
the interaction space (i.e., the number of nonempty subspaces and their 
dimensions and, hence, the number of the reduced characteristic matri- 
ces and their orders) does not depend on the kind and complexity of the 
subsystems and is determined only by the symmetry group, the configu- 
ration of the interaction points, and the stiffness matrix of the interaction 
between the subsystems, we will consider a structure consisting of the sim- 
plest subsystems—concentrated masses. 

We will consider a system possessing the symmetry group C6v and take 
advantage of the representation constructed in the previous section. Let 
the free-free spring-mass system shown in Fig. 2 perform plane vibration. 
Here the circles denote identical masses m = 1, and the lines connecting 
the masses denote linear springs of the stiffness k = 1. 

The direct analysis results in a conventional matrix formulation of the 
spectral problem. The eigenvalues (eigenfrequencies squared) are obtained 
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Fig. 2: A spring-mass system of 7 masses and 12 springs 

by means of solving the eigenvalue problem 

(K - \M)h = 0, (17) 

where M is the identity mass matrix of order 14, and the stiffness matrix 
K of the same order is easily constructed by means of Fig. 2. The direct 
computations yield 3 rigid body and 11 elastic modes. The eigenvalues 
corresponding to elastic modes are 0.849 (2), 1.000 (1), 1.229 (2), 2.000 (1), 
2.651 (2), 3.000 (1), and 4.271 (2). The numbers in the parentheses indicate 
the multiplicities of the eigenvalues. 

The interaction space in this degenerate example is also 14-dimensional. 
Denote Kj — PjKPj, where Pj is one of the eight projectors defined by 
equations (11)—(16). As follows from the discussions of Section 4, spectral 
problem (17) can be decomposed into the eight problems 

(Kj - \M)h = 0. 

Factoring the matrices Kj, Kj = aja,-, and applying equation (8), we 
arrive at the eight characteristic matrices Qj(X). For this example, Qj(X) = 
I — (1 /A)<7j, where qj = ccjCtj, and the nonzero eigenvalues are found as 
solutions to the eight characteristic problems: (qj — XI)z = 0. 

The table below presents the dimensions of the characteristic matrices 
(the third row) corresponding to each of the projectors defined by equa- 
tions (11)—(16) and the eigenvalues obtained by solving the corresponding 
characteristic problems. 
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J 1 2 3 4 5 6 7 8 

Projector ft,i Po,2 ft,i •^3,2 -Pi.o ^1.1 ^2,0 ^2,1 

Nj 1 0 1 1 2 2 2 2 

A 2.000 ™ 1.000 3.000 1.229 
4.271 

1.229 
4.271 

0.849 
2.651 

0.849 
2.651 

As can be seen, all the repeated eigenvalues of the original problem are 
split now; they appear as solutions of different eigenvalue problems (one 
eigenvalue corresponds to a symmetric vibration with respect to any ver- 
tical symmetry plane passing through the 6-fold symmetry axis, and the 
other corresponds to the antisymmetric vibration). Note also that the di- 
mension of the characteristic matrix corresponding to the projector P0,2 is 
equal to zero. This implies that the system has no eigenvibration such that 
the corresponding vector of interaction forces belongs to the space L0,2- 

In conclusion, note that though the decomposition of the spectral prob- 
lem for this simple example results in no advantages (the time required to 
factor all the matrices Kj is greater than the time required to solve the 
original problem (17)), the situation becomes dramatically different in the 
case where complex subsystems are involved. To make the point clear, 
let us imagine that Fig. 2 represents the interaction section for a system 
consisting of seven complex subsystems. Let circles denote the connec- 
tion points of the subsystems. Assume that the Green's operators of the 
subsystems are available (e.g., they can be calculated by means of the 
modal series). If one applies some substructuring method for investigation 
of such a system, one arrives at the investigation of a certain relatively 
small matrix (if the structural analysis method [5, 6] is used, the order 
of the characteristic matrix will be equal to 14), which, however, depends 
nonlinearly on the spectral parameter A. The finding of the system spec- 
trum, in this case, will require many iterations involving calculation of the 
matrix and search for its singularity points (zero determinant). The use 
of the system symmetry in this case will allow one to reduce the spectral 
problem to investigation of seven characteristic matrices of orders one or 
two (see the above table). Since the skeleton factorizations of the matrices 
Kj are implemented only once (before the iterations), the effect of using 
the decomposition is evident. 

8    CONCLUDING REMARKS 

The method of investigation of complex symmetric structures has been 
presented. The technique is based upon results of the group representa- 
tion theory. To obtain the decomposition of the spectral problem, the 
interaction space of the system is decomposed by means of real irreducible 
representations of the group describing the symmetry of the system. The 
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projectors onto the subspaces of the interaction space are given for the two 
symmetry groups. 

If the structure under investigation possesses the symmetry described 
by the group Cn or Cnv, in order to decompose the spectral problem, one 
can take advantage of the results presented in the paper. In this case, one 
needs only to build a representation of the group in the relevant interaction 
space. The way of construction of the representation of the group C&v for a 
particular configuration of the interaction points is presented in Section 6; 
it can be easily extended to other configurations that fall in the group Cn 

Öl' Cnv 
As to other kinds of symmetry, a general scheme of application of the 

method discussed in the paper can be briefly summarized as follows: 
(i) First, the symmetry group relevant to the investigated structure is de- 
termined. 
(ii) Second, the connection points of the subsystems are separated mental- 
ly from the structure, divided into independent interaction sections, and a 
representation of the group is built for all interaction sections, 
(iii) Then, one should abstract from the structure and to find the decom- 
position of the interaction space. This is achieved through "finding real 
irreducible representations of the group. For many groups, these represen- 
tations are available in the literature. Note, however, that they are often 
complex, and one should combine pairs of complex conjugate irreducible 
representations to obtain real representations. The case where certain 
subspaces transformed by representations of order greater than one can 
be split is more difficult for analysis. To determine whether or not this is 
possible, one can take advantage of Theorem 2 or try to find other criteria, 
which may occur more convenient in particular cases. This stage is com- 
pleted with the construction of the projectors onto the subspaces of the 
interaction space. The projectors are built by means of formal application 
of formulas (5) or (6)-(7). 
(iv) Finally, the reduced characteristic matrices are constructed by means 
of the technique described in Section 4. 

At last, note that, in the authors' opinion, the approach discussed in the 
paper can be used to develop a method for analysis of another interesting 
class of structures—the structures that are not symmetric but consist of 
identical subsystems (or several sets of identical subsystems). The group 
relevant to such a class of systems is a subgroup of the permutation group. 
We suppose that the close examination of this case from the standpoint of 
the group representation theory may lead to the development of an efficient 
method for analysis of this important for applications class of structures. 
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SUMMARY 

For elastically supported cantilever beams, this paper presents an 
explicit solution of response statistics to seismic input at the base -of the 
beam. The excitation is modeled by modulated filtered white noise. The 
modulation is described by the sum of exponentially decaying functions, 
accounting for nonstationarity of strong ground motion. The solution was 
obtained by analysis in the time domain using the state space approach and 
impulse response. An example is also included here to demonstrate the 
application to bridge piers, in developing probabilistic seismic response 
spectra for design and retrofit of bridge structures. 

1. INTRODUCTION 

Although various methods have been suggested for random vibration 
problems, only a few explicit solutions have been reported for random 
vibration under nonstationary excitations t'-3-7-8-101. Explicit solutions are 
often desirable for their advanced abilities of verifying approximation 
methods and providing insights of the problem. This paper contributes to the 
knowledge in this area by presenting an explicit solution for the 
displacement, velocity, and acceleration of a structural system with 
continuous parameters. It is subjected to strong ground motion modeled by 
exponentially modulated filtered white noise. The double filter in casecade 
suggested by Clough and Penzien I41 is included in the excitation. This 
solution was obtained by analysis in the time domain using the state space 
approach and the impulse responses. 

2. EQUATION OF MOTION 

Consider a vertical cantilever beam with constant cross section. Its 
horizontal displacement V(x,t) at time t and distance x from its base is 
giverned by the following motion equation, with an assumption of viscous 
damping: 
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mc V"(x,t) +cc V'(x,t) + El V'v(x,t) = 0 (1) 

where the number of primes to V(x,t) indicate the orders of partial 
derivatives with respect to time t, and the Roman superscript denotes that 
with respect to location x along the length of the beam. mc and cc are 
constants for mass and damping per unit length, and El is a constant 
denoting the flexural stiffness of the beam. 

After the displacement V(x,t) is decomposed into pseudo-static and 
dynamic displacements: 

V(x,t)=V,(x,t) + Vd(x,t) ; Vs (x,t)=f(t)(l-x/L) (2) 

Eq.(l) becomes 

mc Vd"(x,t) + cc Vd'(x,t) + El Vd
!V(x,t) = - mc f"(t)(l-x/L) (3) 

It is assumed here that the damping term Cc f (t)(l-x/L) is negligible. The 
associated initial and boundary conditions are identified as follows: 

Vd(x,0) = 0 Vd'(x,0) = 0 (4) 

k, Vd(0,t) + El Vd
,n(0,t) = 0 

kr Vd'(0,t) - El Vd"(0,t) = 0 
Vd

m(L,t) = 0 
Vd"(L,t) = 0 (5) 

The boundary condition at the base (x=0) in Eq.(5) describes dynamic 
equilibrium involving deformations at the base. kt and kr denote the elastic 
stiffness for translation and rocking, respectively. This inclusion is intended 
to model effects of the foundation. For example, deep pile foundations may 
be modeled by setting k, and kr equal to infinity. 

The ground acceleration is modeled by a nonstationary random 
process, described by the product of a deterministic modulation T|(t) and a 
stationary process g(t): 

f'(t) = ri(t) g(t) (6) 

il (t) is described by the sum of a series of exponential functions in a general 
form: 

Tl(t)=Zi=1.Naiexp(bit) (t>0; T!(0)=0; n(oo)=0) (7) 
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where a, and b; are real constants, and b, must be negative. This general 
form of modulation is used here for including several popular models and 
ease of mathematical derivation. g(t) is assumed to be a white noise process 
with zero mean and filtered by the Clough-Penzien filter m modeling soil 
effects in cascade. Its spectral density function Sgg(co) and autocorrelation 
function Rgg(iO are respectively given by 

<asl
4 + (2gcoslco)2 co4 S 

Sgg(w) = (8) 
(cogl

2-©2)2 + (2gcoglco)2 (oog2
2-o2)2 + (2Q203g2<a)2   2n 

S 1 
REE(T)= - Ik=lp2 exp(-^6k(agk11|) 

4 <;ekcügk 

[(Cak+Cbk)coscogdk I T I +  (Cak-Cbk)sincog(ik | x | ] (9) 

where Cak and Cbk (k=l,2) are respectively as follows: 

agl- wgl ujg, ujgI ujgl 

Ca! = - — [(l + 8g2-16Q,4)(l- —) - 8^,2 (1-2Q2
2 + 2Q,2 )] 

D cos2
4 cog2

2 cog2
2 cog2

2 

2co„,6 co,,,2 co 2 0/ 36i ")si "Jji "ei 

cbl = — [(i+8g2-i6g4xi-2g2— + 2g.2—)-2g2(l )] 2     __A  or    2/ 
-bl iA*   '  "^gi "lv"^si •"■*   "^gl '    "=S2 

D cog2
2 cog2

2 cos2
4 

a>g,4cög2
2                             cogl"           ffig,2            cogl

2 ©gl
2 

ca2 = — [(i+8Q,2-i6cgl
4)(i—) - sg2—(l-2g2 + 2g2 )] 

D                                  cog2
4           cog2

2            cog2
2 cog2

2 

2®gl
2cog2

4   cogl
2   cogl

2                                        cogl
2 cogl

2 

Cb2 = [ — ( 8g2 + 16gV)(l-2g2 + 2^2 ) 
D      cog2

2    mg2
2                                        cos2

2 cog2
2 

+2C,2(1 )] (10a) 

and 
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U)el UJj, Wgl u>sl 

D = - 4M|1V(l-2gJ + 2^i—)(l-2^2 + 2^,2—) 
2 CO.,2 CO,,2 CO,2 V 

\1 + ©/(! )2 (10b) 

In Eqs.(8) to (10), £,,, Q2, 
m

si. 
an^ cog2 are characteristic damping ratios and 

frequencies of the respective subfilters indicated by subscript k=l,2. o)gdk 

= (Dgk(l-^sk
2)1/2 (k= 1,2) are their characteristic damped frequencies. S/2it is 

a constant indicating the intensity of white noise. 
Note that Rgg(x) is the Fourier inverse transform of Sgg(co) : 

Rgg(t) =L" Sgg(co) exp(^x) do (11) 

where i=(-l)m is the imaginary unit and Rgg(t) was obtained by 
decomposing Sgg(co) into the sum of two terms: 

S Cak cagk
2 + C*©2 

Sgg(o))= — Lk=,,2  (12) 
2TT (cogl

2-G)2)2 + (2d;gIcDgIco)2 

and performing the inverse Fourier transform individually for each term by 
the method of residues "2I. Note that the Kanai-Tajimi filter tlU51 can be 
represented in Eqs.(8) to (10) by setting cog2=0, leading to Ca,=cogl

2, 
CbI=4^g,

2cogi2, and Ca2=Cb2=0 [61. On the other hand, coglH>-a> eliminates the 
effect of the Kanai-Tajimi filter. Note that this seismic excitation model of 
modulated cascade-filtered white noise covers nonstationarity of intensity, 
but not that of frequency contents. Either or both of them may be observed 
in strong motion records. 

3. SOLUTION BY STATE SPACE FORMULATION 

3.1 Modal Decoupling 

Eq.(3) is solved here by separating the two variables x and t, and 
using modal superposition: 

Vd(x,t) = Z,.1A„>i(x)V,(t) (13) 

where <j>; (x) is the ith mode shape and V^t) is the normal coordinate for that 
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mode. Using modal orthogonality, Eq.(3) becomes a series of decoupled 
equations of modal motion: 

Vi"(t) + 2 £ a, V,'(t) + co,2 VKt) = S; f'(t) (14) 

where 

co,2 = a'EI/m, 

Si = l0
L *i(x) (1-x/L) dx / J0' <j>; 2(x) dx 0=1,2...) (15) 

CO; and Q are respectively modal natural frequency and damping ratio. S: is a 
factor indicating the extent of participation of the mode. The mode shapes 
are given as 

<)>; (x) = cLi sinfox) + c2i cosfox) + c3, sinhfax) + c4i coshfox) (16) 

a, related to the natural frequency is the solution to the eigen value problem, 
and the coefficients of c,, to c4i are obtained by meeting the boundary 
condition in Eq.(5) for every mode. 

3.2 Modal Solution in State Space 

Let the state variables for mode i be denoted by 

Vi(t) = (Vi(t), V,'(t), V^t))7 (17) 

where superscript T denotes transpose of matrix. The inclusion of V;"(t) is 
to provide a complete picture of the system behavior, and to be able to 
describe the maxima of displacement as discussed later. 

The solution to Eq.(14) can be shown in the following convolution 
form: 

Vi(t) = -S-,C, Jo'ZiG-OfCOdT (18) 

where Q is a matrix of system parameters for mode i, and Z;(t) is a time- 
dependent vector: 

(19a) 
f 0 l/codi 0] 

c, = i 1 <* CD/CO,, ol 
I -2£ <0; (Q CO^/COji-COji l) 
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Zj(t) = (exp(- C,i 03,0 cos codit, exp(- Q a,t) sin cadit, 5(t))T (19b) 

where codi = co^l-i!; ;2)1/2, and 8(t) is the Dirac delta function. 
Since the ensemble expectation of V;(t) is a zero vector due to zero 

mean of the input process g(t), the covariance matrix of v^t) is 

R^t) = E[v,(t) v,T(t)]   = S2 C, B,(t) C,T 

B,(t) = Jo'Jo* ri(x,)il(x2)Rss( 1T.-*21 )zi(t-t1)zi
T(t-T2)dT1dT2 (20) 

where E stands for ensemble expectation.  This double integration has been 
performed as shown in l6] by analysis in the time domain. 

It will be seen below that the covariance matrix for two different 
modes (say m and n) is needed for further analysis. This matrix can be 
similarly expressed as: 

Rvmvn(t) = E[vm(t) v„T(t)]   = Sm S„ Cm Bmn(t) Cn
T 

Bm„(0 = U1 Tl(T,)n(t2)R«( I V^2 I )Zm(t-T,)Zn
T(t-T2)dT1dT2 (21) 

This integration is also carried out in the time domain.  The results of Bmn(t) 
are explicitly given in Appendix.   Note that when m=n=i, Bmn(t)= Bj(t). 
Eqs.(20) and (21) show that the statistics of the nonstationary responses are 
expressed as product of a stationary part  (constant C|  matrix)  and a 
nonstationary part (matrix B,(t) or Bmn(t)). 

3.3 Mean Square Total Response in State Space 

With the elementary terms given, the covariance matrix R,v(t) of the 
vector of dynamics state-variables v(t) can be now formulated as follows: 

v(x,t) = (Vd(x,t), Vd(x,t), Vd"(x,t))T 

= (S.-.A.-AW 
vd), £i=,.2....iWVi'd), Zi-u.^-WV,"«)        (22) 

Rvv(t) = E[v(x,t) vT(x,t)] 
= In,-.*... E.-u....4>n,toSm <t>nWS„ Cm Bmn(t) C„T 

^„.„(x.t) R„v,12(x,t) Rvv,13(x,t) "I 
= | Rvv,21(x,t) Rvv,22(x,t) Rvv,23(x,t) I (23) 

iR^Cx.t) R^x.t) Rvv.33(x,t)j 

Note that the second group of subscripts indicates the physical quantities by 
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l=displacement, 2=velocity, and 3 = acceleration. This system of 
identification will be used hereafter for variances. Of the summed terms in 
Eq.(23), the dominant terms are often those referring to the same mode, i.e. 
(«x)Sn)2CnB„(t)Cn

T(n=l,2,...). 

4. NUMERICAL EXAMPLES 

4.1 Unit Step Modulation 

The modulation function given in Eq.(7) is in a general form to 
describe nonstationarity of earthquake excitations. It can be reduced to 
several commonly used models. For example, the unit step function model 
of modulation is a special case represented by N = l, a, = 1, and b,=0 in 
Eq.(7). This model is perhaps the earliest modulation envelope for modeling 
nonstationarity of earthquakes pl. When effects of the filter is eliminated by 
setting cogl-»ao and a>g2=0, the solution in Eq.(20) for a mode reduces to the 
response of an oscillator to white noise modulated by the step function, with 
natural frequency co0, damping t;0, and, of course, the modal participation 
factor S0 = l inEq.(14): 

S exp(-2i;0co0t) 
Rw„(t)= {1+ [ - l+;0

2cos2cod0K0(l-(;0
2)"2sin2co110t]} (24) 

4^0ca0
3 (1-&) 

S 
Rw u(t) = exp(-2^0co0t)( 1 - cos2cod0t) = R^,« (25) 

4co0
2(l-Co2) 

S exp(-2^co0t) 
R,v H(t) = { 1 + [ -1 +<;o

2cos2cod0t+«Ko2)1'2sin2cDI10t]}       (26) 
4<;0o0 (Ko2) 

S exp(-2<^co0t) 
Rv» ,3(t) = { "I + [l-2Co2+^o2cos2co<10t+<;0(l-i;0

2)"2sin2©dot]} 
4^0co0 (K„2) 

= Rw.3i(t) (27) 

S 
Rw23(0 = exp(-2^0co0t)[ 1 + (l-2Q2)cos2wd0t -2^(1- ^2)"2sin2cod0t] 

4(1- So2) 
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= Rvv.32(t) (28) 

Rw.33(t) ->•« (29) 

The first three terms have been given elsewhere [3-101. The last term is 
contributed by the white noise acceleration input, representing an impulse of 
infinite peak at time lag T=0. 

4.2 Shinozuka-Sato Modulation 

Another group of modulation models is described by the Shinozuka- 
Sato model [131, which is a special case of N=2 in Eq.(7). Examples are 
a, =2.32, a2=-2.32, b,=-0.09, and b2=-1.49 for El Centro earthquake, and 
a, = 12.8, a2=-12.8, b^-0.14 , and b2=-0.19 for Taft earthquake I5I\ The 
latter is used in this example, with cos, = 6.47: rad/s, C,sl = 0.65, cog2 = 
0.32TC rad/s, and Q, = 0.5 [,6). 

For a typical reinforced concrete pier of highway bridges, L=12m, 
El/m, = 250 kN/kg-m3, and ^=0.04 (i=l,2,...) are used here. The constant 
damping is used because it is felt that the one inversely proportional to the 
modal frequency as defined in Eq.(15) is not realistic for concrete structures. 
Three sets of stiffness ratio rt=k,L3/EI and rr= krL/EI are used here: r, -» °o 
and rr-» oo, r, =1 and r=l, r,= l and rr=0.1. The variances of displacement, 
velocity, and acceleration at the top (free) end of the beam (x=L) are shown in 
Figs.l to 3 for the three cases, respectively. Unit intensity is used here. a>, is 
the first natural frequency of the beam. It is seen that decrease of the 
foundation stiffness causes the response to increase, showing the importance 
to take into account the foundation stiffness. They also show that the peak 
responses are slightly delayed by lower foundation stiffness. On the other 
hand, additional analysis results show that the internal forces (shear and 
moment) are reduced by lower foundation stiffness. 

4.3 Application to Probabilistic Response Spectrum 

The mean square response statistics shown here may be used to 
develop probabilistic seismic response spectra for interested failure modes. 
An example is given here. Consider a bridge span with one end supported 
by an abutment with fixed bearings and the other by a pier with expansion 
bearings. The fixed bearings and the bridge deck (superstructure) are 
modeled as an SDOF system with mass M, damping C, and stiffness K 
subjected to the strong motion acceleration f'(t) through the abutment: 

Mw"(t) + Cw'(t) + Kw(t) = -Mf'(t) (30) 
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where w(t) is the horizontal displacment of the deck relative to the abument. 
The relative displacment u(t) at the end supported by the pier is focused 
here: 

u(t)= w(t)-V(L,t) (31) 

where u(t) = (u(t),u'(t),u"(t))T. It is critical to understand the dynamics of 
the system when designing the bridge to cover the failure mode of span 
collapse due to excessive relative displacement u(t). The covariance of u(t) 
can be readily expressed as 

Ruu(t) = Rww(t) - R,w(t) - Rv„(t) + Rw(t) (32) 

Rvv(t) has been given in Eq.(23), R„w(t) can be expressed using Eq.(20), 
RwV(t) and Rv„(t) can be readily formulated using Eq.(21) and taking 
summation over the significant modes involved in vector V(t). Note that the 
length of cantilever beam L in Eq.(31) is omitted in Eq.(32). 

Now let us define the failure of excessive relative displacement. Let 
E[M(-oo,t)] be the mean rate of displacement maxima at time t and 
E[M(U,t)] be the mean rate of displacement maxima above a given level U, 
they are respectively [121: 

E[M(-oo,t)] = - L"duL° u" pUtU.iU-(u,0,u",t)du" (33) 
E[M(U,t)] = - Ju"duL° u" pu.u..u.(u,0,u" ,t)du" (34) 

where pu,u-,u-(.) is the joint probability density function for u, u', and u". If 
g(t) in Eq.(6) is assumed to be a Gaussian excitation, these state variables 
are also Gaussian variables. E[M(-oo,t)] and E[M(U,t)] are then derived as: 

X\t) Ruu.331,2(t)       1 
E[M(-oo,t)] =  (35) 

In   R,,22"
2(t)  1-X2(0 

U 
E[M(U,t) = E[M(-«j,t)] {0( ) 

MOR^,,"2« 
U2 x(0 u 

- x(t) exp[ (l-x2(t))] 0( ) } (36) 
2X2(t) ^.„(t) X(t) R,u,„"2(t) 

where 
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|R(t)| 
tf (t) =  

Ruu.n(t) Ruu.22(t) K&® 

X(t) = Y,3(t) - Y,2(t) Y23(t) 

rm(t) = R«,.«n(t)/[R1111.inn,(t)RI1UilB(t)],fl (m,n=1,2,3, m n) (37) 

|R(t)| is the determinant of R^t), and <£(.) is the cumulative probability 
function for the standard normal variable. 

Let probability of failure due to excessive displacement be 

Pf = Probability [ maximum u > U ] 
= I0

Ts E[M(U,t)] dt / J0
Ts E[M(-oo,t)] dt (38) 

where Ts is the interested time length, being the time interval of significant 
seismic input. Pf indicates the likelihood that peak displacements exceed a 
given level U. For a given Pf and seismic input intensity S, variation of the 
threshold level U as a function of structural system frequency and damping 
is defined here as probabilistic displacement response spectrum, because it is 
associated with a probability to be exceeded. This spectrum can be used for 
design to control displacement. For example, the minimum seat width 
requirement for highway bridges subjected to seismic hazard may be derived 
using this approach for risk-based design. For the example of bridge pier 
discussed above, it is found that when the pier's first natural frequency is 
close to that of the superstructure-bearing system, U may be significantly 
lower. This is because the two systems behave very much similarly due to 
their similar dynamic properties so that their relative displacement u(t) 
approaches zero. Note that this concept of probabilistic response spectra can 
be applied to acceleration for force control design. 

5. CONCLUSIONS 

An explicit solution is presented in this paper for random vibration of 
elastically supported cantilever beams subjected to the strong ground motion 
modeled by modulated cascade-filtered white noise. It may be used to 
develop probabilistic response spectra for risk-based seismic design and 
retrofit specifications. 
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I      Bmn.ll     "mn,12     &m 

I     *>mn,2I     "mn.22     "m.  

V    Bmn,3I     "mn,32     Bjnn.33    ' 

3mn.ll     Dmn,12     a™<t.Vi 

Bmn(0  =        I     Bmn.2l     Bmn.22     Bmn.23      I (A1) 

1 

Bm„.n(t) = S exp(-ffl„£m-co„Qt £k„,2 Ei.LN Sj=i.N a^j * 

+ g3(«km.akn.Pjta.Hik„)-g4(«km.ßkn.Pjta^ikn) 

+ gl(ßkm.ßkn.Pjkm.^ikn)-g2(ßkm.akn.Pjkra.^iJ 

+ g3(ßkm.ßkn.Pjkm.^ikn)-g4(ßkm'akn.Pjta.M'ikn) 

+ gs(akm.ak„, JJ.jkm, Pikn)-g6(«km. ßltn. M-jkm. Pikn) 

+ g7(akm.akn.M-jkm.Pikn)-gs(akm.ßk„.^jkm.Pikn) 

+ g5(ßkm.ßkn.M-jkm.Pikn)-g6(ßkm.CCkn.l^jkm.Pikn) 

+ g7(ßkm.ßkn^jkm.Pikn)-g8(ßkm.akn^jkm.Pikn) 

+ Qkff>Sk/öjdk(Cnk-Cbk)[g9(akm.ak„,Pjkm.^kn)-glo(ata.ßkn.Pjkm^ikn) 

+gn(aim,ak„,pjfan,^k„)-gi2(akni,ßk„,Pjl!m,|xiJ 

-g9(ßkm>ßkn.Pjkm.lJ'ikn) + glo(ßkm.akn.Pjta.hkn) 

-gn(ßkm.ßkn.Pjkm.ftkn) + gl2(ßlcm.akn.Pjkm.^kn) 

+ gl3(akn..0lkn.Hjkn>»Pikn)-gl4(akm.ßkn.M'jkm.PiJ 

+ gl5(akm.akn.^km>Pikn)-gl6(«km.ßkn^ji™.Pikn) 

-gl3(ßta.ßkn.^jkm.Pikn) + gl4(ßkm.akn^jkm:Pikn) 

-gl5(ßkm.ßk„.Hjkra.Pikn)+gl6(ßkm.ak„^jkm-Pikn) (A2) 

Bm„,12(t) = B„m,21(t) (A3) 

1 

Bm„.13(0 = S [Si.,,N a, exp(b;t)] Ik=u  Ej=1.N ^ exp(bjt) * 

8Qk»Ek 

{(Cak + Cbk)[gI8(akm, pjkm) + g.sCßkm, Pjkm)] 

+^k®Sk/»£dk(Cak-Cbk)[-g17(akm,pjkm)+gi7(ßkm,Pjkm)]} (A4) 

1 

Bm„,2i(t) = S exp(-comi;m-conQt Zk=1,2 Ei=,.N 2j=1,N aft * 

16<;Ek<aSk 

{(Cak + Cbk) [-g9(akm.akn.Pjkm.^ikr.)+glo(akm.ßkn.Pjkm.^J 

-gll(0'ta.akn.Pjkm.^ikn)+gl2(a|cm'ßkn.Pjkm.M'ikn) 

-g9(ßkm>ßkn.Pjta>liikn)+glo(ßkm.akn.Pjkn1'l
J-ikn) 

-gll(ßkm.ßkn.Pjkm^ikn)+g|2(ßkm.akn.Pjkm.^ikn) 

+ gl3(«km.akn>M'jkm.Pikn)-gl4(«km.ßkn.lJ-jkm.Pikn) 

+ g|j(akra.akn.|J'jkm.Pikn)-gl6(a|tm.ßkn.M-jkm.Pikn) 

+ gl3(ßkm.ßkn.^jkm.Pikn)-gl4(ßkm.akn.M-jkm'Pikn) 
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+ gl5(ßkm.ßkn^jkm.Pik„)-gl6(ßkm.akn.l
J-jkm.Pikn) 

+(;EkcoEk/cügdk(Cak-Cbk)[g1(akm,ak„,pjkm,H.ikn)-g2(akm,ßkn,pjkm,^k„) 

+ gsCCkm-CCkn. Pjkm^iknVg^km. K> Pjkm^ikn) 

-gl(ßkm.ßkn.Pjkm-M+g2(ßkm.akn.Pjkm^ik„) 

-gsCßkm.ßkn.Pjkm.M-iJ + g^ßkm.akn.Pjta-l^ikn) 

-gsCakm.CCta^jto^PiJ+gsCakm.ßkn^jta-PiJ 
-g7(akm,ak„,iJ.jkm,pikn)+g8(akm,ßkn,|a.jkm,pik„) 

+ g5(ßkm.ßkr1^jkm.Pikn)-g6(ßkm,ak„,Hjkm^Pikn) 
+ g7(ßkm.ßkn^jkm.Pikn)-g8(ßkm.akn,Hjkm,Pik„) (A5) 

1 
Bm„,22(t) = S exp(-com^;m-CDnQt Ik=u Si=1.N Ij=1,N a^ * 

16Q,kcogk 

{(Cak+Cbk)[g1(akn,,akn,pjkm,^ikn)+g2(aknl,ßkn,Pjlcm,M.ik„) 

+ g3(a!cm.akn'Pjkm.^kn) + g4(akm.ßkn.Pjkm>M-ikn) 

+ g1(ßkm.ßkn.Pjkm.^kn)+g2(ßkm.ak„.Pjkm^ikn) 

+ g3(ßkm.ßkn.Pjkm^ikn)+g4(ßkm.akn.Pjkm^ikn) 

+ g5(akm.akn^jkm.PiJ+g6(Ckm.ßkn^jkm.PiJ 
+g7(akm.ot

kr,„ujkm,pik„)+g8(akm>ßkn,M.jkm,pikn) 

+ g5(ßkm, ßkn^jkm.Pikn) + g6(ßkm>akn. Hjkm- Pikn) 

+ g7(ßkm-ßkn.Rjkm-Pikn)+gs(ßkm.akn.M-jkm.Pik„)] 
+^gkcügk/<»gdk(Cak-Cbk)[g9(akm,akn, pjkm, nikn)+gi0(akm, ßk„, Pjkm^ikn) 

+ gn(ata,CCkn'Pjkm^ikn) + gl2(akm-ßk,,.Pjkm.^kn) 

-g9(ßkm.ßkn.Pjkm.^k„)-g.o(ßkm.akn,Pjkm^ikn) 

-gll(ßkm>ßkn.Pjkn,.)J-,k„)-gl2(ßkm.akn.Pjkm^ikn) 

+g13(akm,akn)njkm,pikn)+g14(akm,ßk„,njkm,pik„) 

+ gl5(akm.akn,^|tm,Pik„)+gl6(akm.ßkn^jkm.Pikn) 

-gl3(ßkm.ßkn.M-jkm.Pik„)-gl4(ßkm.«kn>M-jkm.Pikn) 

-gl5(ßkm.ßkn.^km.Pikn)-gl6(ßkm.akn.^jkm.Pik„)] (A6) 

1 
Bm„.23(t) = S [Ii=1,N a, exp(bit)] Zk=1,2  Sj=1,N aj exp(bjt) * 

8<V»Sk 
{(Cak+Cbk)[g17(akm, pjta)+g17(ßkm- Pjkm)] 
+Qkmgk/cog(Jk(Cak-Cbk)[g18(akm)pjk)-gI8(ßkm,pjkm)]} (A7) 

Bm,3I(t) = B^^t) (A8) 

Bm„.32(t) = B^t) (A9) 

Bmn,33(t) = E=,.N a, exp(b,t)]2 Rgg(0) (A10) 
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where ato, ßta, ujta. and p,n are functions of system parameters given below: 

Pj.„ = bj -r- Cfflm + CstGD!k , uto = bi - C,Q„ - C5kCÜ!k 

(i.j = l,2 N; k=l,2; m,n=l,2,...) 
(All) 

Note that functions 2, through g„ are not given here due to limited space. 

Fie.l Variance of Top Displacement, velocity, and Acceleration 
(S = 1, r, -»■ <= and rr-> «0 
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Pia -> Variance of Top Displacement, Velocity, and Acceleration 
(S = l,r1=lOandr=l) 

5.00 

i.OO 

8 3-°° 

>   2.00 

1.00 

0.00 

R. 3 Variance of Top Displacement, Velocity, and Acceleranon 
(S = l,r=landrr=0.1) 
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ABSTRACT 

An effective scheme for random vibration signal synthesis from partial co- 
variance information is introduced. The proposed scheme is based upon 
a Fast Rational Model estimation approach, combined with a discrete 
ARMA(2n,2n-l) vibration signal representation and a dispersion analysis 
methodology. Unlike previous approaches, the proposed scheme provides 
accurate synthesis without resorting on nonlinear operations, and provides 
the tools for effective representation order determination. Furthermore, it 
mathematically guarantees the estimated representation stability and in- 
vertibility properties, implying that all types of vibration signals, including 
those characterized by sharp spectral peaks or valleys, can be handled with- 
out difficulty. The effectiveness of the scheme is demonstrated via synthesis 
test cases, through which the benefits of representation overfitting are also 
presented. 

G(s) 
Gj 

h 
S(w) 

7(T) 

7[fcT] 
0(B) 
9(B) 

List of Symbols 

receptance transfer matrix 
j-th term of the Green's function 
j-th term of the inverse function 
power spectral density function 
continuous time autocovariance function 
discrete time autocovariance function 
autoregressive polynomial 
moving average polynomial 
i-th autoregressive parameter (j = 1,2, ■ • • 
j-th moving average parameter (i = 1,2,- 
i-th continuous pole (i = 1,2, ■ • •, 2n) 

,2n) 
■-,2n-l) 
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B 
R 
T 

V 
n0 

n 

i-th vibration mode dispersion percentage (i = 1,2, • • • ,n) 
innovations variance 

backshift operator (Bx[t) = x[t - 1]) 
number of specified autocovariance samples 
sampling period 
truncated inverse function order 
number of structural degrees of freedom 
number of degrees of freedom in the signal representation 

Superscript: 
%    :    indicates iteration number. 

Conventions: 
[•]    :    function of a discrete variable. 
(•)    :    function of a continuous variable. 
Vector/matrix quantities are indicated in bold-face characters. 

1.     INTRODUCTION 

In this paper the problem of digitally synthesizing stationary random 
vibration signals from partial (incomplete) covariance information is con- 
sidered. The problem is important for generating vibration signals to be 
used in the computer or laboratory based simulation and testing of various 
types of structural systems, including machine, vehicle, aerospace, and civil 
engineering structures. 

The problem of equi-spaced in time vibration signal synthesis from 
complete, analytically available, covariance information may be tackled via 
well known spectral factorization techniques [1], which yield an appropriate 
stochastic realization that may be subsequently used for synthesis purposes. 
The practically much more important problem of synthesis based upon a 
finite (truncated) number of available covariance samples is equivalent to 
that of finding an admissible extension of the partially specified covariance 
sequence, and obtaining an analytical description that can be used for 
vibration synthesis. A complete analytic description, which automatically 
implies an admissible extension of a given covariance sequence, as long as 
the latter corresponds to a rational spectral density, is provided through 
the Auto Regressive Moving Average (ARM A) representation [2]. 

Limiting attention to purely AutoRegressive (AR) based vibration 
synthesis leads to the well-known Yule-Walker equations which are linear in 
terms of the representation parameters [2]. Unfortunately purely AR based 
schemes are ineffective for proper synthesis, especially when the partially 
specified covariance corresponds to relatively sharp valleys in the spectral 
domain [3,4]. Purely Moving Average (MA) representations, such as the 
ones advocated by Abdul-Sada and Mahmood [5] in a different context, 
are also inappropriate for describing the relatively sharp spectral peaks 
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of vibration signals.   These considerations unambiguously lead to mixed 
Autoregressive Moving Average (ARMA) based vibration signal synthesis. 

Unfortunately, ARMA based synthesis is a much less tractable prob- 
lem, leading to a non-linear mathematical optimization problem [1-3]. To 
circumvent this difficulty Gersch and Luo [6] proposed a mixed scheme, in 
which the AR parameters are obtained through the Yule-Walker equations, 
while the MA parameters are obtained via a non-linear modified Newton- 
Raphson procedure. In subsequent work, Gersch and co-workers [7,8] uti- 
lized proper extensions of the Two Stage Least Squares (2SLS) method 
introduced in time series analysis by Durbin [9]. The 2SLS method is, nev- 
ertheless, known to be characterized by statistical inefficiency and limited 
achievable accuracy [10]. In related work within a broader context, Geor- 
giern [11] attempted finding an admissible extension of a partially specified 
covariance sequence via a method that recursively updates ARMÄ repre- 
sentations of dimension increasing with the sequence length. This method, 
however, requires a-priori information on the representation's zero loca- 
tions. For very simple cases, corresponding to low order MA polynomials, 
this information may be, perhaps, derived from the asymptotic behavior 
of the partial autocorrelation coefficients. Nevertheless, such a procedure 
cannot be used with realistic MA polynomials of interest in the vibration 
synthesis problem. 

In this paper an effective scheme for ARMA based vibration signal 
synthesis is introduced. The scheme is based upon a Fast Rational Model 
estimation approach [3,4], combined with the covariance invariance prin- 
ciple and a dispersion analysis methodology. The covariance invariance 
principle [2] is used for relating the continuous and discrete vibration sig- 
nal representations, and leads to a special ARMA(2n,2n-l) structure for the 
latter. The Fast Rational Model approach, originally introduced within the 
context of spectral estimation from available signal samples [3,4], is used 
for effective parameter estimation, while the dispersion analysis method- 
ology [12] is used as the main tool for representation order determination. 
The scheme uses the specified autocovariance samples as a pseudo-sufficient 
statistic, and develops a strongly consistent ARMA representation based 
upon exclusively linear operations. An additional important property of the 
proposed scheme is that it is capable of mathematically guaranteeing the 
stability and invertibility of the obtained ARMA representation; a feature 
implying that, unlike alternative techniques, it can handle the practically 
significant classes of vibration signals characterized by sharp spectral peaks 
or valleys without any difficulty. 

The paper is organized as follows: The proposed vibration signal 
synthesis methodology is presented in Section 2, synthesis test cases are 
considered in Section 3, and the conclusions of the work are summarized 
in Section 4. 

VIBRATION SIGNAL SYNTHESIS METHODOLOGY 

2.1 Fundamentals 

Consider a linear viscously-damped n0 degree-of-freedom structural 
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system described by the vector differential equation: 

M-x(t)-|-C-*(t)+K-x(0 = f(0 (1) 

where M,C,K represent the n„ x n0 mass, viscous damping, and stiffness 
matrices, respectively, and f(f), x(£) the n0-dimensional force excitation 
and vibration displacement signals, respectively. Laplace transforming (1) 
leads to: 

X(s) = [M ■ s- -I- C • s -1- K]-1 • F(.s) = G(a) • F(s) (2) 

in which s represents the Laplace Transform variable and G(s) the system's 
receptance transfer matrix. 

Let Gij(s) represent the ij-th element of G(s), that is the transfer 
function relating the i-th displacement with the j-th force. Assuming that 
the force excitation is a stationary zero-mean uncorrelated stochastic signal, 
that is: 

E{fj(t)} = 0 Eifiih) ■ fjih)} = a) ■ 8(tx - t2) 

with E{-} indicating statistical expectation and S(-) the Dirac delta func- 
tion, the resulting vibration displacement Xi(t) will, in the steady-state, be 
a stationary stochastic signal with zero mean and autocovariance [2]: 

l{r)=aj-        g(t)-g(t + \T\)-dt = J2d^eßklrl (3) 
J0 fc=i 

In these expressions (the latter of which assumes distinct poles) g(t) repre- 
sents the impulse response of the receptance transfer function Gjj(s), and 
yUfc, di; (k = 1,2, •• • , 2n0) the structural poles and corresponding autoco- 
variance expansion coefficients, respectively. 

The uniform instantaneous sampling of the stochastic vibration dis- 
placement x(t) (the subscript being, for the sake of simplicity, suppressed) 
leads to a discrete-time stochastic signal x[kT\ {k = 0,1,2,-- -), with T rep- 
resenting the sampling period, which is characterized by an autocovariance 
function j[kT} satisfying the covariance invariance principle [2]: 

7[*T] = l(r)\r=kT (4) 

Assuming that x(t) is band-limited, and that the conditions of the Nyquist 
theorem are satisfied, the continuous and discrete spectral densities satisfy 
the relationship [1]: 

SD(UJ) = J;SC(U) (_!<<,;< I) (5) 

in which u represents frequency in rads/sec, and Sc(w), S
D

(CJ) the con- 
tinuous and discrete densities, respectively. 

Denoting the discrete time kT in normalized form as simply A;, or 
t (t = 0,1,2,---), the sampled displacement signal may be shown [2] to 
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admit a stable and invertible AutoRegressive Moving Average (ARMA) 
representation of orders (2n0,2n0 - 1), that is: 

2n0 2iio-l 

x\t) !■ £ <f>l: ■ x[t - k] = w{t] \-   Y, °k ■ u'[t -k}=* 
fc=i fc=i 

=>   0(ß) ■i[t] = Ö(ß) ■«>[*] (6) 

In the above «>['] represents a discrete, zero-mean, uncorrelated (inno- 
vations) sequence with variance a2

0, and <pk {k = 1,2, ■ • •, 2?i0) and Ok 
(k - 1,2, • • • ,2n„ - 1) the autoregressive (AR) and Moving Average (MA) 
parameters, respectively. The AR and MA polynomials are denned as: 

4>{B) = l+4>vB + --- + <hnB-B*tt°        6{B) = \-\-0vB + ---+e2n^rB2n°-1 

with B denoting the backshift operator (B ■ x[t] = x[t — 1]). 

Once determined from the specified partial covariance sequence, a 
proper ARMA representation of the form (6) may be used for vibration 
signal synthesis. 

2.2 The Algorithm 

The vibration synthesis problem treated concerns the generation (re- 
alization) of discrete random vibration displacement signals with covariance 
characteristics conforming to a prescribed partial (truncated) autocovari- 
ance sequence 7[/c] (Ar = 0,1,2, • - ■ ,R). 

The vibration signals of interest may be viewed as responses of linear 
viscously damped structural systems of the form (1) subject to uncorre- 
lated force excitation, and may be synthesized via discrete ARMA(2n,2n-l) 
representations of the form (6) driven by realizations of pseudo-random un- 
correlated sequences characterized by zero mean and variance a%. Toward 
this end both the ARMA representation and innovations variance of„_need 
to be determined from the given covariance information. This is achieved 
via the Fast Rational Model estimation approach, which consists of a se- 
quence of stages, with each one based on exclusively linear operations [3,4], 
as well as the dispersion analysis methodology (see [12] for a treatment 
of the notion of modal dispersion) for representation order determination. 
The resulting synthesis algorithm may be outlined as follows: 

In Stage 1 a truncated, p-th order, version of the ARMA represen- 
tation's inverse function {Ij}p

j=l (Jo = I) [R > P > 2?i with p generally 
selected asp« (2.5 •• • 5) x 2n] is obtained through the estimator expres- 
sions: 

E/j-7[*-j]+7[fc] = 0 (/c = 1,2, ••-,?) (7) 

D 

In Stage 2 initial MA parameter estimates 6°. (k = 1,2, • • •, In - 1) 
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are obtained by solving the set of equations: 

2n-l 

/,-+ £ 0fc ■ 0-* = 0 Ü = 2nH-l,.--,4n-l) (8) 
A.-1 

D 

In Stage 3 AR parameter estimates 4>) Li = 1,2, ■ ■ •, 2n) are obtained 
via the estimator expressions: 

2n 

E^-^'Mfc-j] -l-71-1[*] = 0        (fc = l,2,---,2n) (9) 
i=i 

in which the superscript i denotes iteration number and 7i-1[fc] the auto- 
covariance function of the signal: 

i-lM   A 
s,-1[t] 

x[t] 
e^iB) (10) 

The samples 7t_1[fc] of this autocovariance are computed by assuming 
7t_1[/c] w 0 for \k\ > R. This leads to the following set of equations, 
which may be solved for 7i~1[ft] (k = 0,1, ■ • •, R): 

J2AUJ)-ii-1[i] = i\j]       (j = 0,1,2, ■••,£) 
1=0 

in which: 

A{j,l) 
a.j+1 1 = 0 

a.j+i + a\j-i\     I T^ 0 

where a.j = 0 for j £ [0, In - 1], and: 

it=0 

(11) 

(12) 

(13) 

a 
In Stage 4 updated MA parameter estimates 0*- (j = 1,2, • • ■, 2n — 1) 

are obtained based upon the expressions: 

j'-i 

9i = -Ij-Y,di-IJ-^ + 4 (j = 1.2,---,2n-l) 
fc=i 

In fftage 5 the innovations variance is estimated as: 

(0* = 
2n 

7[0] + E^-7[i] 
J'=I 

2n-l 

n-£*]■•<?$ 

(14) 

D 

(15) 
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with Glj representing an estimate, obtained at iteration i, of the j-th sam- 
ple of the AR.MA representation's Green's function [2]. This is achieved 
through the recursive expressions: 

G) = 0)-f:4-CU (j-1,2, ■■-,211-1) (16) 
fc=i 

with Gi = 1, G) = 0 for j < 0. Following this, the representation's 
autocovariance generating function and spectral density may be obtained 
as: 

(17) 
with j denoting the imaginary unit. O 

In Stage 6 the dispersion percentage 6j {j — 1,2, • • •, n) of each vi- 
bration mode, expressing the mode's normalized energy contribution in the 
signal representation, is (in the underdamped case) computed as: 

6,= (do^! -l-d2i)- (£rf^ (%) (j = l,2,---,n) (18) 

with the quantities dj (j = 1,2, • ■ •, In) being defined by Eq. (3). D 

Stages 1 through 6 are repeated for signal representations with suc- 
cessively increasing number of degrees of freedom n, and, in Stage 7, the 
proper number of degrees of freedom is selected as: 

n* = max{n|    \5Ö\ > e    Vj} (19) 

with e indicating a small positive threshold value selected in accordance 
with the desired synthesis accuracy. Q 

In Stage 8 the vibration signal is synthesized by exciting the obtained 
ARMA(2?z*, 2n" - 1) representation by a simulated zero mean uncorrelated 
sequence with variance (CT.^)

1
- E 

Remark 1. For a given signal representation order, stages 3 and 4 of the 
algorithm are iterated until convergence is achieved. The estimation results 
of the iteration characterized by minimal innovations variance (a2

wf are 
selected as best. 

Remark 2. The invertibility of an estimated ARMA(2n,2n-l) representation 
may be mathematically guaranteed via slightly modified MA parameter es- 
timators in stages 2 and 4, that are based upon the stability property of 
zero-lag least-squares inverses (alternative versions A and B in Fassois [4]). 
Alternative version B may be used in stage 3 in order to guarantee the 
representation stability as well. The guaranteed stability and invertibility 
properties are of primary importance, as they imply that all types of vi- 
bration signals, including those characterized by sharp spectral peaks or 
valleys, may be synthesized without difficulty (see section 3). 
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772! = 0.5 kg h = 100 N/m <=i = 0.5 N*sec/m 

m2 = 2.0 kg h = 100 N/m c2 = 0.5 N*sec/m 

m3 = 1.0 kg h = 150 N/m c3 = 1.5 N*sec/m 

£4 = 100 N/m c4 = 1.5 N*sec/m 
C5 = 0.6 N*sec/m 

C6 = 0.5 N*sec/m 

Figure 1:  Schematic representation of the three degree-of-freedom struc- 
tural system of Test Case I. 

3.     SYNTHESIS TEST CASES 

Two test cases, in which the scheme is used for the synthesis of sig- 
nals matching a specified portion of the covariance structure of selected 
vibration displacements, are presented. 

3.1 Test Case I 

In Test Case I the synthesis of signals matching part of the covari- 
ance structure of the displacement of mass 1 of the three degree-of-freedom 
system of Figure 1 when excited at that point by a continuous-time uncor- 
related force is considered. This type of signal is characterized by spectral 
peaks at 1.04 and 3.32 Hz, with a spectral valley between them, as well as 
a much less obvious third peak at 2.68 Hz (solid curve in Figure 2). 

The auto covariance function j[k] is specified at lags k = 0,1,2, • • •, 
50 (R — 50), the sampling period is selected as T = 0.075 sees, the inverse 
function order as p = 25, and the maximum allowable number of iterations 

The spectral density of the synthesized, theoretically sufficient, ARMA 
(6,5) representation is compared to the theoretical spectral density in Fig- 
ure 2(a), from which very good agreement is observed. A similar remark 
may be made for the autocovariance function of the synthesized represen- 
tation (not shown). 

Allowing the representation order to be increased to 2n = 8 [ARMA 
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Figure 2: Synthesized ( ) versus theoretical (—) spectral density func- 
tion: (a) ARM A (6,5) based synthesis, (b) ARMA(8,7) based synthesis 

(Test Case I; R = 50). 
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Figure 3: ARMA(10,9) based synthesis results: (a) synthesized (x) versus 
specified (o) autocovariance function, (b) synthesized ( ) versus theoret- 
ical (—) spectral density function (Test Case I; R = 50). 
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0 25 
TIME (sec) 

Figure 4:   ARM A (10,9) based vibration displacement signal realization 

(Test Case I; R = 50). 

(8,7) model] leads to visible improvements in the synthesized representa- 
tion spectral density [Figure 2(b)], as well as in its autocovariance. These 
improvements are more evident at autocovariance lags higher than 10, and 
at frequencies corresponding to the neighborhood of the spectral valley 
located between the two peaks. 

A further increase of the representation order to 2n = 10 [ARMA(10,9) 
model] leads to an almost perfect match of both the specified autocovari- 
ance and spectral density, as the theoretical and synthesized curves are 
practically indistinguishable (Figure 3). The extra poles introduced in this 
case may be grouped into two pairs: a real and a complex conjugate, and are 
both characterized by small dispersion percentages. These results suggest 
that, despite the theoretical sufficiency of the ARMA(6,5) representation, 
which is also confirmed by the Akaike Information Criterion (AIC) [1], over- 
fitting is beneficial in achieving the highest accuracy in matching the spec- 
ified autocovariance characteristics. Portion of a vibration displacement 
signal realization obtained by the synthesized ARMA(10,9) representation 
is depicted in Figure 4. 

The effects of the number of lags R, at which the autocovariance 
function is specified, have been also investigated. Lowering R to 35 (from 
its current value of 50) does not appreciably change the synthesized repre- 
sentation's spectral density, although it does lead to slight deterioration in 
the neighborhood of the spectral valley and at the high frequency end. On 
the other hand, increasing R to 100 produces a spectral density that is es- 
sentially identical to that of the R = 50 case, and almost indistinguishable 
from the theoretical. 

3.2 Test Case II 

In Test Case II the synthesis of signals matching part of the covari- 
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->x 

mi = 1.0 kg 

m2 = 1.0 kg 

m3 = 2.0 kg 

d = 0.6 N*sec/m 

c2 = 0.5 N*sec/m 

cz = 0.6 N*sec/m 

Ci = 1.5 N*sec/m 
c5 = 0.5 N*sec/m 
C6 = 0.7 N*sec/m 

Figure 5:  Schematic representation of the three degree-of-freedom struc- 
tural system of Test Case II. 

Ai = 100 N/m 

k2 = 100 N/m 

Ä3 = 100 N/m 

kA = 100 N/m 

ance structure of the displacement of mass 1 of the three degree-of-freedom 
system of Figure 5 when excited at that point by a continuous-time un- 
correlated force is considered. This type of signal is characterized by three 
spectral peaks at 1.29, 2.03 and 2.81 Hz, with sharp valleys among them 
[solid curve in Figure 6(b)] - a case of recognized difficulty. 

The autocovariance function y[k] is specified at lags k — 0,1,2, ••■, 
50 (R = 50), the sampling period is selected as T = 0.0884 sees, the inverse 
function order as p = 25, and the maximum allowable number of iterations 

Similarly to the previous case, vibration signal synthesis is based upon 
an overfitted ARMA(10,9) representation. The extra poles include a real 
and a complex conjugate pair, and are all characterized by small dispersion 
percentages. The autocovariance and spectral density of the synthesized 
ARMA(10,9) representation are compared to those specified in Figures 6(a) 
and 6(b), respectively. Evidently, the autocovariance function is very close 
to the specified, and certainly very satisfactory, although the matching is 
not characterized by the "perfection" of the previous case. This is verified 
from the representation's spectral density plot as well, which indicates some 
deviation from the theoretical density, especially in the neighborhood of the 
first - and sharpest - spectral valley. This is, nevertheless, expected, due 
to the difficulties associated with signals characterized by sharp spectral 
valleys. The fact itself that the algorithm operated properly in this case is 
due to its important inherent stability characteristics. Portion of a vibra- 
tion displacement signal realization obtained by the estimated ARMA(10,9) 
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Figure 6: ARMA(10,9) based synthesis results: (a) synthesized (x) versus 
specified (o) autocovariance function, (b) synthesized ( ) versus theoret- 
ical (—) spectral density function (Test Case II; R = 50). 

1545 



30 
TIME (sec) 

Figure 7:   ARM A (10,9) based vibration displacement signal realization 
(Test Case II; R = 50). 

representation is presented in Figure 7. 

4.     CONCLUDING REMARKS 

In this paper a linear multi-stage scheme for effective random vibra- 
tion signal synthesis from partial covariance information was introduced. 
The scheme was shown to achieve accurate synthesis without resorting on 
nonlinear operations. Moreover, by providing mathematically guaranteed 
estimated ARM A representation stability and invertibility, it was shown 
to be capable of effectively synthesizing all types of vibration signals, in- 
cluding the difficult classes of signals characterized by sharp spectral peaks 
and/or valleys. In particular: 

• Signals characterized by sharp spectral valleys were found to be most 
difficult to synthesize, with the synthesis accuracy generally lagging 
in the neighborhood of the spectral valley. 

• Representation overrating, with the additional modes characterized 
by relatively small dispersion percentages, was shown to be necessary 
in achieving maximum synthesis accuracy. 

• The required minimal number of autocovariance samples for accurate 
synthesis was found to be about 12n0, with n0 denoting the number of 
structural degrees of freedom. Increasing the proportionality factor 
to about 16 was shown to lead to some improvement, but further 
increases were of no significance. 
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Abstract 

The study of motion of aerospace systems and buildings, that house 
sophisticated and expensive electronic equipment under intensive transient 
disturbances, has in recent years become an important issue in the design and 
analysis process. Central to the study is the problem of predicting motion and 
first passage time of the system under such disturbances. 

Owing to the intensity and nature of the excitation, and the non- 
linearity of the deformation of the complex system, techniques available for 
the response predicting is very limited. To provide a more realistic and 
accurate prediction of response and assessment of the first passage probability, 
in this paper the extended stochastic central difference method is proposed. 
The recursive response statistics and first passage time of a multi-degrees of 
freedom non-linear system under excitations treated as narrow band non- 
stationary random excitations are considered. Results of a two degrees of 
freedom non-linear system indicate that the technique proposed is very 
efficient and accurate compared with the Monte Carlo simulation data. 

Professor and corresponding author 
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1. INTRODUCTION 

The study of motion of aerospace systems and buildings, that house 
sophisticated and expensive electronic equipment under intensive transient 
disturbances, has in recent years become an important issue in the design and 
analysis process. Central to the study is the problem of predicting motion and 
first passage time of the system under such disturbances. 

Owing to the intensity and nature of the excitation, modulated wide 
band random excitation process is a highly idealization and consequently, even 
for a two degrees of freedom (dof) linear system it can lead to large 
differences between the responses of the system under such an excitation 
process and those using a more realistic representation of narrow band non- 
stationary random disturbance [1]. For a single dof nonlinear system, the first 
passage time based on wide band random excitation is very significantly 
different from that using the narrow-band random excitation process [2]. A 
survey of the literature seems to suggest that no analytical or computational 
technique, bar the Monte Carlo simulation (MCS) method, is available for the 
prediction of motion and first passage time of multi-degrees of freedom 
(mdof) nonlinear systems under narrow band non-stationary random excitation. 
When the number of dof is large and the excitation is a narrow band non- 
stationary process, even the application of the MCS can be difficult if not 
impossible. The difficulty lies in the choice of centre frequency, bandwidth 
and amplitude of the response from the filter in order to model the narrow 
band process that is being approximated and applied to the non-linear system. 
To provide a more realistic and accurate prediction of response and assessment 
of the first passage probability, in this paper the extended stochastic central 
difference (SCD) method is proposed. The recursive response statistics and 
first passage time of the mdof non-linnear system under excitations treated as 
narrow band non-stationary random excitations are considered. 

The organization of this paper is as follows: a brief introduction to the 
extended SCD method is given in the next section which is followed by a 
consideration of the two dof system under narrow band non-stationary random 
excitation in Section 3. The versatile statistical linearization (SL) or equivalent 
linearization (EL) technique is applied at every time step to linearize the two 
dof non-linear system. The scheme adoptedWe is scheme IV in reference [3]. 
Section 4 is concerned with the modified adaptive time scheme (ATS) and the 
first passage probabilities. Computed results are included in Section 5 while 
remarks are in Section 6. 
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2.  STOCHASTIC CENTRAL DIFFERENCE METHOD FOR NARROW-BAND 
RANDOM EXCITATIONS 

Consider a mdof system under narrow band random excitations, which 
are obtained from output of a filter perturbed by modulated Gaussian white 
noise excitations. The governing equations of motion in matrix notation are 

M{f+Cff+Kff=e(t)w(t), (la>b) 

MyY+CyY+KyY-f, 

where Mt, Cf and Kf are the mass, damping and stiffness matrices of the filter 
while My, Cy and Ky are the mass, damping and stiffness matrices of the 
system respectively; f is the stochastic displacement vector of the filter, and 
Y is the stochastic displacement vector of the system; e(t) is a vector of time- 
dependent deterministic modulating functions; the over-dot and double over 
dot are the first and second derivatives, respectively; w(t) is a zero mean 
Gaussian white noise process. 

Recursive expressions for the mdof filter and mdof system described 
by equation (1) can be derived [1]. For example, the recursive expression for 
system responses can be shown as 

Ry(s+l) - N2yRy(s)N?y + N3yRy(s-l)N3
T

y + 

(Af)4NlyRßN* ♦ N2yDy(s)< + N3yDy
T(s)N2

T
y (2) 

+ {Lt?NlyG{s)Nl + (At)2NlyG(s)TN2
T
y 

+ (MfN3yH(s)N[y + (AtfNlyH(s)TN3
T

y 

where R,(s) = <fsfs
T>; Ry(s) = <YSYS

T>; D (s) = <YSY,,T> = N2y Ry(s-1) + N: y\"J  S ~ S-1 3y 

Dy
T(s-l) + (At)2 NIy G(s-1)T, G(s) = <Y,f,T>, H(s) = <Y,,fs

T>, f, = f(s) is f at 
time step ts, At=ts+1-ts, Ys = Y(s) is Y at time step ts, the angular brackets 
denote ensemble average of the enclosing quantity while the superscript T 
desingates the transpose of the matrix; 

Nly~[My + (Atl2)CyY
l,N2y-Nly[2My-(At)2Ky], 

N3y = Nly[(At/2)Cy-My],      - 

G(s)-(Af?NlyDf
T(s)+N2yH(s) 

+ N3y H(s-1) N* + N3y G(s-2) N3
T

f, 

H(s) - G(s-1) N2
T

f + (Af)2 Nly Rp-2) N3
T

f 

+ N2y G(s-2) N3
T

f + N3yH(s-2) N3
T

f. 
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Equation (2) is applicable to systems under multiple narrow band random 
excitations generated by the filter matrix equation. 

In order to provide the required response statistics for the first passage 
probability computation, the covariance of displacement and velocity 
responses, and the covariance of velocity response are considered in the 
following. Starting from the central difference method, the velocity vector at 
the current time step is given by 

Y(s) = -L[F(s+l)-y(s-l)] 
2Ar 

which upon post multiplying the transpose of displacement vector Y(s) gives 
the covariance matrix of velocity and displacement as 

(Y(s) YT(s)) = -L- [ D(s+1) - D T(s) ] , 0) 
2 At 

since DT
y(s) = <YSYS.,

T>T = <YS.,YS
T>. Similarly, the covariance matrix of 

velocity responses becomes 

(Y(s)YT(.s)) - —L- \R fe+1) + R(s-l) - (AtfN HT(s) 
4(Af)21   y y y 

-N2yDy(s)-N3yRy(s-l) (4) 

-(AtfHW?y-Dy
T(s)N?y 

- R?(s-1)N£] . 

The foregoing is the so-called extended SCD method. When the excitations are 
wide band stationary or non-stationary random processes the above equations 
reduce to those of the SCD method. Equations (2), (3) and (4) can be applied 
to the response analysis of mdof systems under narrow band non-stationary 
random excitations. The corresponding first passage probability can be 
evaluated as in reference [4]. For non-linear systems whose nonlinearities are 
explicitly defined, however, the following technique is employed in 
conjunction with the modified ATS before the computation of first passage 
probabilities can be performed. 

3. NON-LINEAR SYSTEMS AND STATISTICAL LINEARIZATION 

Consider the two dof system shown in Figure 1. The system is 
subjected to a narrow band non-stationary random excitation at its base and 
the restoring force of the spring connecting the two masses M, and M2 has 
quadratic and cubic nonlinear terms associated with, respectively, parameters 
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T|' and e'. This two dof system under a modulated white noise excitation was 
considered by Kimura and Sakata [5], and Liu and To [3, 6]. Practical 
examples that can be modeled by this system are: (a) soil-structure coupled 
system, (b) a primary building structure with secondary system representing 
installed equipment under an earthquake excitation, and (c) an offshore oil 
platform with a secondary equipment such as the drill string tower under 
strong wave impact. 

If one introduces relative displacements or inter-story drift in the 
language of earthquake engineering such that Yt = y1 - y0 and Y2 = y2 - y„ 
where y0, y, and y2 are, respectively, the absolute displacements with respect 
to the base, the matrix equation of motion can be expressed as [3, 5, 6] 

2C,W      -2uC2 

-2C,W   2(l + u)C2 

I     un72
2 - uEy2

3 

\l-[i)r\Y.2 + (W)eiV 

(5) 

or written in a more compact form 

M Y + C Y + K0Y + g(Y) = r(t) (6) 

in which 

M 
1    0 

0    1 
,  c 

'2^W -2(xC2 

-2C,W       2(l + u)C2 

Kn 

W2 

-W1 

-v- 
l + u 

gVO - 
UTI72

2
 - v-zY? 

,     r(T) 
eWfl I 
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where the over-dot and double over-dot denote, respectively, the first and 
second derivatives with respect to x. In equation (6) the non-stationary random 
excitation is represented as a product of a deterministic amplitude modulating 
function e(x) and a zero mean narrow band random process which is related 
to the response from the filter. The symbol I is assumed to be constant. Note 
that the following definitions have been applied in equations (5) and (6) 

o>; - KJMi ,   tt\ - KJM2 ,   2d«! - CJM, , 

(7) 
2C,co, = CJM2 ,   r\ = r\'lM2v>l > »2UJ2   ~  ^2'm2 '     'IM /"x2 

e = e'/M2a2 .   V- = M2/M1 , 

W =  WJ/UJ ,    x  =  co2f . 

such that equations (5) and (6) are dimensionless. Therefore, the symbol x in 
this section should not be confused with the x used in the time co-ordinate 
transformation (TCT) in reference [6]. 

The discretization of equation (6) in the x domain leads to 

MYS + CYS + K0YS + g(.Ys) - r, (8) 

where the subscript s is a positive integer denoting the time step xs such that 
Ax = xs+1 -xs and x0 = 0. 

Since this is a non-linear system, the mean of its response will in 
general be non-zero even though the excitation is of zero mean. It is generally 
agreed that the assumption of Gaussian response in the linearization technique 
of Caughey [7] is approximately satisfied for weakly nonlinear systems. In the 
present investigation the highly nonlinear systems are approximated as a series 
of weakly nonlinear or linear systems and therefore one can assume that the 
response at every time step is Gaussian. Experience [3,6] with nonlinear 
systems under wideband random excitations shows that such an assumption is 
acceptable as very accurate results were obtained. In spirit similar to 
references [3,6], equation (8) can thus be represented by the following 
linearized equation 

MY+CY+ K   7  = /, W eq 
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where Keq is the equivalent stiffness matrix which is time dependent.   It is 
determined by the following equation 

(Keg\j dYfs) 
ij - 1,2. (10) 

Upon substituting the non-linear term g(Y) into equation (10) and carrying out 
the operation one has 

KJ.S) - K0 + 
0 2\i.r\<Y2(s)> - 3\ie<Y2(s)> 

0     2(l-n)Ti<y2(s)> + 3(l + u)e<72(s)> 

(11) 

With equation (11), one can then apply the SCD technique to equation (9) and 
perform the operation to obtain the recursive expression which is identical to 
that described in Section 2 above. The modified ATS to be introduced in the 
next section has to be employed with the SCD method to update the Keq at 
every time step. 

As the system is non-linear and therefore ensemble averages of 
responses are not zero in general, however, the following recursive ensemble 
average of response vector clearly indicate that it is zero if the system starts 
from rest 

m(5+l) - N2y(s)m(s) + N3ym(s-l) . (12) 

where m(s+l) is the ensemble average of system response vector at the next 
time step. 

To circumvent this problem, the g(Y) term of equation (6) is moved 
to the right hand side (RHS) such that 

M Y{s) + C Y(s) + K0 Y(s) = r(s) - g(Y(s)) (13) 

As will be seen in the following this equation is applied only for the initial 
states of the response predictions. Substituting the central difference 
approximation of velocity and acceleration terms 

Y(s) 
1 

2 Ax 
[ y(S+i) - Y(s-i)}, 

(14) 
1 Y(s) = —L-[ 7(S+1) - 2Y(s) + Y(s-l)} , 

(AT)
2 
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into equation (13) one has 

Y(s+1) = N2yY(s) + N3yY(s-l) + (Az)2Nlyr(s) 

- (AT)
2Nlyg(Y(s)) , 

(15) 

where 

Nlv = JVlv [ 2M - (Ax)% ] . >        "ly 
(16) 

Taking the ensemble average of equation (15) one obtains 

m(s+l) - W2), m(s) + W3y m(s-l) - {^?Nly<g(J(s))> 

\ir\<YJs)2> - 

'g(Y(s))> 

us[3<K(s)><y2(s)2> -2<72(s)>3] 

(l-u)7i<y2(s)2> + 

(i+u)e[3<y,(s)><y2(5)2>-2<y2(5)>3] 

(17) 

that 
Substituting equation (17) into equations (2) and (13) one can show 

Ry(2) - (Ax)*NlyRß)Nly
T ,   m(2) - [0   0]r, 

m(3) - -(Ax)2n<y2(s)2>iVIy[u   1-u ]r . 
(18) 

As soon as the above non-zero ensemble averages are found, one can return 
to equation (12). For s > 3, equation (12) can be applied to obtain the non- 
zero ensemble averages. Of course, the recursive mean squares are given by 
equation (2). Up to this stage, the SCD method with modified ATS technique 
can be applied to the system to compute its responses to random excitations. 

4. MODIFIED ADAPTIVE TIME SCHEME AND FIRST PASSAGE PROBABILITIES 

As described by Liu and To [6], the time step size in a non-linear 
system varies with the variance of displacement response, the time step size 
has to be updated accordingly. This strategy is known as the adaptive time 
scheme (ATS). In the present analysis the terms that have to be considered for 
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the time step updating are Ry(s-1), G(s-2), H(s-2), Rf(s-2), Nly, N2y and N3y. 
This has become more critical in the extended SCD method because the error 
would come from not only the system but also the responses of the filter. The 
interpolation scheme is employed to compute the time step size when it is 
warranted to do so for the nonlinear system whose natural frequency at every 
time step is different. 

With the variances of displacement and velocity at every time step 
computed by the extended SCD method, the first passage problem can now be 
considered. Approximate first passage probabilities based on the modified 
mean rate of various crossings proposed earlier by the first author [4] are 
computed. In the latter the trapezoidal rule was employed to evaluate the first 
passage probabilities and uniform time step was assumed. For nonlinear 
system employing the SCD or extended SCD method and modified ATS, the 
time steps are different. Therefore, the interpolation scheme is applied in the 
present investigation such that the trapezoidal rule can be adopted for the 
computation of first passage probabilities. 

5. NUMERICAL RESULTS 

Numerical examples are presented in the following. Parameters of the 
system in Section 3 are: 

W-ii-1.0,     d - C2 - 0.1 , (19) 

such that the two dimensionless natural frequencies of the corresponding linear 
system, that is when T| and e are both equal to zero, are cosl = 0.618 and cos2 

= 1.618. The amplitude modulating function e(x) chosen is 

e(T) - 4(6-005^ - e-ou) . (20) 

Numerical results presented in this section include two examples. The 
first example is the one with the centre frequency of the one dof cof = 1.0 and 
the second is with cof = 1.618. Each example has a two dof system described 
in Section 3 and a single dof filter. The latter equals to one of the two linear 
dimensionless natural frequencies of the, non-linear system. The other is 
between the two linear dimensionless riaturaTfrequencies. Damping ratio of the 
filter (band width) in the two examples are £f = 0.01, 0.1 and 1.0. The narrow 
band random excitation to the system is the response taken directly from the 
filter which is perturbed by a non-stationary zero mean Gaussian white noise. 
The spectral density of the Gaussian white noise is S0 = 0.00012. The narrow 
band random excitation to the system is at its base. MCS is also carried out 
in order to verify the results by the extended SCD method. Other pertinent 
system parameters are TI = -1.0 and e = 1.5. 
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It was observed that the results of the case where cof = 1.0 and £f = 
0.01 became unstable for both the extended SCD and MCS methods. An 
attempt was also made to compute responses of the system excited by a 
narrow band process with cof = 0.618. In this case, instability occurs when £f 

equals to 0.01 and 0.1. Note that the spectral density of the white noise 
process is one order of magnitude smaller than what was used in reference [6]. 
This is because when S0 = 0.0012 was used, the response of the system 
becomes unstable. Representative response statistics for S0 = 0.0012 are 
present in Figures 2 and 3 in which the covariances of displacement and 
velocity responses were not included for clarity since they are very close to 
the variance <Y2

2>. From the figures, one observes that the results by the SCD 
method has an excellent agreement with those using the MCS. The 
computational time using a Silicon Graphics Inc. engineering workstation with 
64 megabyte random access memory and 60 mega Hz single central processor 
the extended SCD method is approximately 15 seconds while that for the MCS 
is about 57 minutes. Consequently, one can conclude that the extended SCD 
method is very efficient and accurate compared with the MCS data. 

For the first passage probabilities, two sets of results were studied. 
They are: (i) results concerned with narrow band non-stationary random 
excitations, and (ii) comparison of narrow band non-stationary random 
responses to wide band non-stationary random responses. It was observed that 
in term of first passage probability the difference between narrow band non- 
stationary and narrow band stationary random excitations is insignificant and 
therefore these results are not presented here. In set (i), results obtained by the 
MCS technique are included for direct comparison. Some typical results of 
first passage probability l^ based on the two stage process with allowance for 
the actual duration of clumps at low threshold levels are presented in Figures 
4 and 5. The results for set (ii) are plotted in Figures 6 and 7. In these figures 
NB designates narrow band, and WB wide band. With reference to the results 
in Figure 7, one can conclude that the first passage probability of the model 
with narrow band random excitation is very much different from that with 
wide band random excitation. 

Before leaving this section it may be appropriate to note that although 
the filter and system parameters for sets (i) and (ii) are identical the 
corresponding plots in Figures 5 and 7 are different. For the results in set (ii) 
and plots in Figures 6 and 7 the input to the system is a product of an 
envelope function and a stationary narrowband random process. However, for 
the results in set (i) and plots in Figures 4 and 5 the input to the system is the 
output of the filter whose input is a product of an envelope function and a 
zero mean stationary white noise process. In other words, in the MCS one is 
unable to have an absolute control over the exact narrowband nonstationary 
input to the system. The extended SCD method, however, has no such a 
restriction and therefore has an added advantage over the MCS in controlling 
the input to the system. 
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6.  REMARKS 

In this paper the extended stochastic central difference method is 
introduced. The recursive response statistics and first passage time of a multi- 
degrees of freedom non-linear system under excitations treated as narrow band 
non-stationary random excitations are considered. Results of a two degrees of 
freedom non-linear system indicate that the technique proposed is very 
efficient and accurate compared with the Monte Carlo simulation data. 

One also observes that the first passage probability of the two dof 
model under narrow band random excitation is very much different from that 
with wide band random excitation. This suggests that correct representation of 
the excitation process as a wide band or narrow band random process is 
extremely important if more reliable conclusions are to be drawn and used in 
the design process. 
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RANDOM RESPONSE OF DUFFING OSCILLATOR 
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ABSTRACT 
The random response of a Duffing oscillator excited by a quadratic 
polynomial of filtered Gaussian process is considered. The problem is 
approached by the use of Ito's stochastic differential calculus. Being 
the system nonlinear, the moment equations (ME) constitute an infinite 
hierarchy, to close that a procedure different from the classical cumu- 
lant-neglect closure method is used. This procedure operates in two 
phases, in the former of which the system is linearized so that the ME 
are solved exactly. In the second phase the actual system is considered: 
the equations for the moments of m-th order contain moments of order 
m+2. To solve them an iterative scheme is used, in the first step of 
which the higher order moments are considered as known quantities 
and take the values that have been estimated on the linearized system. 
In the applications the new procedure is shown to converge towards 
the solution obtained by simulation requiring a charge for calculation 
considerably lesser than that of cumulant-neglect closure method. Care 
is taken to detect possible multiple solutions when the excitation is 
narrow-banded. 

1. INTRODUCTION 

The study of nonlinear dynamical systems under random excitation 
of polynomial form is of considerable interest in the theory of random 
vibration as well as in engineering applications. In fact, important ran- 
dom dynamical agencies can be properly represented as polynomial 
forms of filtered Gaussian processes. This is the case of gusty wind [1] 
and random sea waves [2-4]. In this way, both the system and the exci- 
tation are nonlinear, which increases the difficulties in characterizing 
the response statistically. System response is probably well far from 
Gaussianity, since the non-normality is caused by both the non- 
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normality of the input (memoryless transformation of normal process) 
and non-linearity of the response process itself. 

Nonlinear random vibration problems can be approached by sever- 
al ways, such as equivalent linearization, perturbation, quasi-harmonic 
method, multiple time scales, and Ito's stochastic differential calculus. 
In this paper the last approach is followed. It is possible since the exci- 
tation is idealized as the output of a linear filter excited by a Gaussian 
white noise. Ito's stochastic calculus provides a straightforward proce- 
dure for deriving the differential equations in terms of response mom- 
ents or in terms of the probability density function [5-9]. Nevertheless, 
in presence of nonlinearities in both the excitation and the system man- 
y difficulties arise. The so-called Fokker- Planck-Kolmogorov (FPK) e- 
quation, which gives the probability density function of response, can 
be solved analitically in very few cases, especially when the transient 
response is considered (e.g. see [10]). If the moment equation (ME) ap- 
proach is used, the equations of moments of order k involve higher and 
lower order moments than k, that is the ME constitute an infinite hier- 
archy. In order to solve this problem closure schemes have been pro- 
posed [9,11,12]. Among the closure schemes the cumulant-neglect clo- 
sure method is certainly the most popular. However, although this 
method  is  generally  efficacious,   it  has   some   shortcomings.   The 
moments of order higher than k that appear in the equations for the 
moments of order k are expressed as a function of the lower order 
moments setting the corresponding cumulants equal to zero. Since 
these functions are nonlinear, the ME too become nonlinear. In such a 
way computational difficulties arise. Moreover, a nonlinear system 
may have more acceptable solutions (it is recalled that a solution is 
acceptable when all even moments are positive and Cauchy-Schwartz 
inequality is satisfied). These multiple solutions must be considered 
with care, possibly determining whether they are stable or not. The 
significance of multiple solutions in terms of statistical moments of the 
response of a nonlinear dynamical system is still an open question [13- 
16]. However, in some cases such as a Duffing oscillator multivalued 
response moments are expected in the presence of a narrow-band 
excitation [17]. These different values of variance correspond to differ- 
ent local states around which the system oscillates with abrupt jumps 
between the different states. Furthermore, the steady-state probability 
density function (PDF) of response is bimodal or multimodal, even if it 
is unique, since FPK equation has one solution only. In other cases that 
have been studied by the writers and Prof. Di Paola [18] the simulated 
response does not show any jump and the significance of multivalued 
response is not clear. 
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In this paper a new closure scheme is adopted. The procedure oper- 
ates in two phases, in the former of which advantage is taken of the 
fact that the ME of linear systems excited by polynomial forms of 
Gaussian processes [2, 19] or delta-correlated processes [20,21] are ex- 
actly solvable. Hence, the nonlinear system is replaced by a linear one, 
whose parameters are chosen in such a way to minimize the error 
between the original and the linearized system in some statistical sense 
[22,23]. The statistical moments, which are exact for the latter, are cal- 
culated to an order larger than that one chosen for the original system. 
The reason for this choice will be explained in the next section. In the 
second phase, the ME of the original system are considered. Now, the 
procedure operates iteratively: in the first step the higher order mom- 
ents that appear in the equations for the moments of k-th order are con- 
sidered as known quantities taking the values that have been eval- 
uated for the linearized system. In the generic i-th step these moments 
are set equal to the values obtained in the step z'-l. The iterations are 
carried on till the moments do not change appreciably. This procedure 
is applied to a Duffing oscillator excited by a quadratic polynonial of a 
filtered Gaussian process. The damping and the nominal vibration pe- 
riod of the oscillator are kept constant, while the bandwidth of the fil- 
ter is varied in order to ascertain the effects of this quantity on the re- 
sponse. The results of the proposed approach are compared with those 
of Monte Carlo simulation. When the bandwidth of the filter is narrow, 
eventual multivalued responses are searched using either the 
stochastic differential calculus or Monte Carlo simulation. 

2. PRELIMINARY CONCEPTS 

In the study of nonlinear vibrations the Duffing equation plays a 
fundamental role. In normalized form it reads as 

'x(t) + $0x(t) + G>l\x(t) + £x(t)3~\ = F(t)     (1) 

in which ß0 is the coefficient of viscous damping, oo0 is the pulsation of 
the corresponding linear oscillator (e = 0), and the term ex(t f repre- 
sents the nonlinear restoring force, acting as a hard or soft spring for 
positive or negative values of e, respectively. In random vibration 
studies F(t) is generally assumed to be a Gaussian process, since this 
type of stochastic process allows the use of analytical methods. When 
F(t) is a Gaussian white noise, the reduced Fokker-Planck-Kolmogorov 
equation [10] associated with (1) admits an analytical solution [24] as 
follows 
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f   1 i\ X 

+ £ — 
2 4 7tltf„ ^ ^ * j 

x1 

+ — 
2 

(2) 

in which p(x,x) is the steady-state joint probability density function 
(PDF) of x,x; C is a normalization constant, and zv„ is the strength of 
white noise, which is expressed as F(t) = ^jnw0W(t), being W(t) a unit 
strength Gaussian white noise. 

However, not all excitations are so broad-banded that they can be 
idealized as a white noise. Very narrow-banded excitations can be 
considered as monochromatic, say 

F(t) = A(t)cos®ft + B(t)sina>ft     (3) 

in which A(t) and B(t) are two slowly varying Gaussian processes. 
Otherwise, a frequent idealization of F(t) is thinking it as the output of 
a second order linear filter, say 

F(t) = yf(t)       yf(t) + $fyf(t) + (üjyf(t) = ji^W(t)   (4) 

where W(t) is a unit strength Gaussian white noise. The steady-state 
FPK equation associated with the augmented system of (1) and (4) has 
not an analytical solution, since this system is not amenable to the 
classes of detailed balance or of generalized stationary potential [10]. 
However, the primary excitation in (4) is a Gaussian white noise, so 
that the problem can be suitably framed in the context of Ito's 
stochastic differential calculus [5-9]. 

Likewise to the deterministic response of Duffing oscillator sub- 
jected to a sinusoidal excitation, in which there appear phenomena 
such as multiple valued, subharmonic and superharmonic, responses 
and the associated jumps in response levels, for sufficiently narrow 
bandwidths of the excitation the random response can exhibit multiple 
values of the statistical moments, particularly of the variance. This fact 
was revealed by the analyses performed by some researchers that used 
different approaches. Some used equivalent linearization technique 
[13,14,25-27]. Lennox and Kuak [28] faced the problem through a 
combination of deterministic and stochastic averaging. Other authors 
preferred the methods of multiple time scaling, quasi-harmonic 
analysis and harmonic balance [29-31]. More recently, Ito stochastic 
calculus with a non-Gaussian closure was used in Ref. 16. However, 
the significance of the multiple solutions generated by equivalent 
linearization and Ito's calculus is still an open question. The 
discussions about this subject in Refs. 15,16 are remarkable. 

This paper concerns the response of Duffing oscillator (1) to an ex- 
citation of the form 

F(t) = a0+alyf(t) + a2yf(t)
2    (5) 
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being yft) the output of a filter such as (4). It is recalled that (5) can 
represent wind excitation by properly choosing the coefficients a0-a2. In 
a literature search made by the writers no theoretical and applied stud- 
ies have been encountered regarding the response of Duffing oscillator 
to excitations of the form (5) or of the more general form 

F(t) = aQ +a1yf(t) + a2yf(t)
2+ +amijf(t)m    (6) 

Clearly, the problem is rendered more difficult by the twofold non- 
linearity in both the structure and the excitation. If Ito's calculus is 
applied, the ME form an infinite hierarchy with many higher order 
terms arising from the term ex3 in (1) and the term a2y

2
f in (5). In this 

way, a large number of cumulant-moment relationships must be set 
equal to zero to close the hierarchy, making the ME highly nonlinear. 
Furthermore, these last are more than two hundred, if the statistical 
moments of fourth order are to be computed. Even if the steady-state 
solution is of concern, and, hence, the ME become algebraic, it is 
cumbersome to find a solution and more physically realizable 
solutions may exist. In order to overcome these difficulties, advantage 
is taken from the fact that the statistical moments of a linear system 
excited by a polynomial form of a filtered Gaussian process are 
calculated exactly [2, 19-21]. Therefore, in the first step of the 
procedure that is here proposed the system (1) is linearized. The 
statistical moments that are computed in this way constitute a first 
estimate of the moments of the actual system and are the basis of the 
algorithm with which the hierarchy of ME is closed. 

3. ITERATIVE PROCEDURE 

3.1 Linearized system 

In the first phase of the iterarive procedure Eq. (1) is substituted by 
x(t)+$0x(t) + (ü2ex(t) = F(t)    (7) 

in which F(t) is given by (5), and a; is the linearization parameter. 
Making the mean square error between (7) and (1) minimum [22, 23] it 
is got 

o^=co0
2+eG^-E[x4]/E[x2]    (8) 

in which £[•] denotes ensemble average. Since the linearization is 
confined to the structure, and the excitation holds the nonlinear form 
(5), x(t) is not a Gaussian process so that the relationship E[x4] = 3(E[x2]- 
E[x]f is not valid. Being E[x4] unknown a priori, the equivalent 
linearization is applied iteratively starting from a tentative value of the 
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fourth moment of x. The statistical moments are computed to the 
fourth order, and a new value of coe

2 is calculated by using (8). The 

iterations are terminated when at step n coe n - co^J ^ 8£, being 8£ of 

the order 10"2. It is recalled that the non-Gaussianness of the response 
makes it very difficult to derive an analytical relationship for response 
variance as it is done in Refs. 25,26. Thus, the search of eventual 
multiple values of variance is made numerically. 

In order to compute the statistical moments of the response, Ito's 
differential rule is applied [6-9]. The state variables x, = x, x2 - x, x3 = 
yf, and x4 = yj are introduced and Eqs. (4,7) with the excitation (5) are 

written in incremental form, say 

dxi = x2-dt    (9a) 

dx2 = -ß0x2 •dt-a^xl -dt + ciQ ■dt + alx3 -dt + a2x\ -dt   (9b) 
dx3 =x4-dt   (9c) 

dx4 =-$fXi-dt- co ?x3 • dt + -Jnzv0 • dB   (9d) 

in which dB is the increment of a unit Wiener process (Brownian mo- 
tion) that is related to white noise by the formal relationship dB/dt = 
W(t). 

The stationary first order moment (statistical average) of x is 

E[x] =£[*!] = co 72{a0+a2E[*f]}     (10) 

E[x] depends on the mean square value EJxf = En/c , that is known, 

being yf a Gaussian process. 
The equations for the stationary second order moments read as 

2E[x1x2] = 0    (11a) 

E[x^]-ß0E[x1x2]-cö2E[x1
2]+fl0E[x1] + fl1E[x1z3] + fl2E[x1x|] = 0(llb) 

-2ß0E[x|]-2cö2E[x1x2] + 2a0E[z2]+2fl1E[x2x3]+2fl2E[x23:2]=:0 

(lie) 
In Eqs. (11) there are moments of order lower and higher than the 
second. The former,   E[x{]  and £[^2], are known. Viceversa, the 

moments of the types E[z,-zfc] (i = 1,2; k = 3,4), and Ep^zl] (i = 1,2; 

r+s - 2) are unknown. However, Eqs. 11 do not constitute an infinite 
hierarchy even if there are third order moments. The technique pro- 
posed by Muscolino [20] is used to solve the problem. It requires the 
solution of two linear and uncoupled sets of equations that are written 
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for the moments E[z,-zfc], and EJzjzJzl], respectively. Analogously, the 

evaluation of the moments of third and fourth order of *i,X2 requires 
the solution of five and six linear uncoupled sets of equations, 

respectively. Once convergence is obtained for co e, the moments of the 
linearized system are computed to the sixth order. In this way, a first e- 
stimate of the response moments is obtained. 

3.2 Nonlinear system 

Now we return to the actual system driven by Eq. (1). Eqs. (1,4) are 
written in incremental form: Eq. (lib) is replaced by 

dx2 = -ß o*2 ' dt - co o*i • dt - eco \x\ ■ dt + a0 - dt + ax ■ x3 ■ dt + a2 ■ x3 ■ dt 
(12) 

The ME of the actual system are written applying Itö's differential rule 
again. They constitute an infinite hierarchy really, since in the 
equations for the moments of k-th order there are moments of order 
fc+2 because of the term ecog^i in (12). In this paper a new technique is 
used to close the hierarchy profiting by the solution that has been 
obtained for the linearized sys tern. This technique operates iteratively. 

Let us examine some ME of the actual system. The statistical aver- 
age is given by 

E[x1] = E[x] = coö2{fl0 +a2E[x32]}-£Eh3]    (13) 

E[x] depends on the third order moment E[xf~\, which in the first step 

is assumed to be known and take the value that has been computed for 
the linearized system. In the other iterations it takes the value of the 
previous one. 

The equation for a moment of order m can be written as 

.Upq =PM-p-i,<;+i -<?ßoM-p(? -^o^p+i^-i -<?«OoRM+2 +<7flo!J-M-i+ 

+qa1E\x^xl~lx3 +<7a2E x[x£~ xj      (14) 

in which p + q = m and |i    = E\x[xq
2 . If the structure is exposed to a 

stationary excitation for a sufficiently long time, it reaches the sta- 
tionary and the l.h.s. of (14) vanishes. In Eq. (14) there are different 
types of moments: The fifth addendum has an order lower than m and 
has been already evaluated, while the first three addenda are of the m- 
th order, and as many equations as these moments can be written. 
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However, the fourth term and the last two are additional unknowns. 
The cross-moments among xv x2 and the variables of the filter are eval- 
uated writing the corresponding equations down, as for the linearized 
system, and the hierarchy is overcome. The fourth addendum M-M+2 is 

an effective hierarchical term. In the first step of the iterative proce- 
dure it takes the value that has been computed for the linearized 
system, while in the generic i-th iteration it takes the value of the 
iteration i-l. In this way, the equations for the moments of different 
order and type are considered separately with an evident computa- 
tional advantage. Furthermore, the ME remain linear, while in the 
cumulant-neglect closure method [11, 12] the cumulant-moment rela- 
tionships introduce non-linearities of degree as higher as the level on 
which the closure is made. In the case under examination with four 
state variables, computing the moments to the fourth order, there 
would arise more than two hundred equations, and this large nonlin- 
ear set of equations would be hardly solvable with a personal comput- 
er. Viceversa, using the proposed approach the response moments are 
computed by solving linear systems with a small number of equations. 
Since the highest order moment appearing in (14) has the order m+2 
and the moments of the actual system are computed to the fourth 
order, the moments of the linearized system are evaluated to the sixth 
order. 

3.3 Search for multiple solutions 

Since the writers did not find any study on Duffing oscillator ex- 
cited by a polynomial form of filtered Gaussian process, it was not 
possible either to affirm or to exclude the possibility of a multivalued 
variance in the presence of a narrow-band excitation. Hence, there is 
need of ascertaining whether the response moments under a given 
excitation are unique or not. The polynomial form (5) of the excitation 
does not leave room to a simple expression for the variance as in the 
case of a filtered Gaussian excitation [13,14,25-27]. Moreover, the 
bandwidth of the excitation cannot appear explicitly in this case. Thus, 
an iterative-numerical procedure is used for searching multivalued 
responses. 

The search is made with reference to the linearized system, since it 
is simpler to be done. From Eqs. (11) we find for the mean square 
values of x, and x,, respectively 

E[x1
2] = ooJ2{E[r|] + fl0E[a:1]+fl1E[x1X3] + fl2E[x1x|][    (15a) 
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E[X
2
] = ßöa{aiE[x2x3] + a2E[x2xf]}   (15b) 

Eq.    (8)    giving    the    linearization    parameter    is    written    as 

©2 = a>2,{l + efcE[x2]]. The procedure must accomodate for the possi- 

bility of a multivalued variance. After obtaining convergence for coe 

and computing the statistical moments, the ratio k = E[x*]/E[x?]2 is 

calculated and substituted in the expression of a2, which at its turn is 

inserted in Eq. (15a). In Eqs. (15) there are the moments £[*,], E[xx3], 

and E[xpc3
2] (£=1,2) that obviously depend on co^: As a first approx- 

imation these moments are assumed to take the values obtained at the 

end of the iterations for finding a2. In this way (15a) becomes'a quad- 
ratic equation in the unknown E[x,2]. Obviously, the two roots must be 
real, but from a theoretical point of view it cannot be excluded that 
both result positive. If this were the case, the iterative procedure would 
be reentered and split into two different searches. The two sets of sta- 
tistical moments that would be computed would become two different 
bases for the iterative search operated on the actual system. In this way 
the iterative computation of the moments of the actual system becomes 
twofold, but a priori it is not possible to affirm whether the con- 
vergence is towards two different states or towards the global state 
corresponding to the unique solution of the FPK equation. The re- 
search for a multiple solution is made by simulation too, as will be 
explained in next section. 

4. APPLICATIONS 

The procedures outlined in previous sections have been applied to 
a Duffing oscillator characterized by the following values of the 
parameters in Eq. (1): ßo = 0.6283, which corresponds to a ratio of 
critical damping of a 5 %; co0 = 2TC; e = 0.5. The coefficients of Eq. (5) are: 
ao = 10, a:=a2 = 1. The filter (4) is characterized by ay = 2n, and w0 = 5. 
As regards ß;, it takes the values 0.1257,0.3770,1.2567, which correspond 
to relative dampings of 0.01,0.03, and 0.10, respectively. The bandwidth 
parameters associated with these two values are 0.1131, 0.1949, and 
0.3386, respectively. The bandwidth parameter is defined as 

q = [l- X; /(\X2)\
n, being Xt the i-th spectral moment [32]. In the case 

of Eq. (4) the formula q = (1.16C/15 -0.21)2'2 gives an accurate estima- 

tion [33]. It is remarked that the set of parameters ay = 2K,   ß, = 0.1257, 
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Table 1: results for Duffing oscillator, ßf = 0.1257 
E[x] E[x2) 4*J] *[**] 

(1) 0.258459 0.105127 0.050338 0.028410 
(2) 0.273143 0.073133 0.024813 0.008744 
(3) 0.281231 0.080166 0.023150 0.006769 

Stochastic differential calculus: (1) linearized system, (2) actual system. 
(3) Simulation 

Table 2: results for Duffing oscillator, ßf = 0.3770 
E[x] E[x>] E[S] E[x<] 

(1) 0.248404 0.078837 0.028604 0.011598 
(2) 0.253232 0.073950 0.023958 0.008564 
(3) 0.257975 0.067416 0.017316 0.004505 

(l)-(3) as in Table 1. 

Table 3: results for Duffing oscillator, ß, = 1.2567 
E[x] E[x-] E[x>] *[*4] 

(1) 0.246996 0.064276 0.017517 0.004976 
(2) 0.248568 0.064627 0.017491 0.004913 
(3) 0.254055 0.064595 0.016426 0.004180 

(l)-(3) as in Table 1. 

and w0 = 5 would cause a multivalued response with a large 
probability if the filter output were directly applied to the structure. 
The steady state response only is considered computing the statistical 
moments to the fourth order. 

The results obtained by the use of the procedure proposed in this 
paper are checked against numerical simulation. It has not been 
possible to perform a comparison with the standard cumulant-neglect 
closure method, for both the hardware and the software available to 
the writers were inadequate for solving a nonlinear algebraic system of 
more than two hundred equations. Two types of simulations have been 
performed, the former of which is a standard Monte Carlo simula- 
tion. Samples with 10,000 histories of motion starting from zero val- 
ues of both initial displacement and velocity are constructed and 
analyzed using ordinary statistical tools. The motion lasts for 30 s and 
Eq. (1) is solved by applying a fourth order Runge-Kutta scheme. 
However, the classical simulations cannot reveal multivalued 
responses,   since the averages are performed on a large  number  of 
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Fig. 1 - Power spectral 
density of the output of 
filter (4), ß;= 0.1257. 
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Fig. 2 - Top: typical time history of the output of filter (4). Bottom: re- 
sponse displacement x(t), ß; = 0.1257. 

samples. Roberts [15] suggested another type of simulation, in which a 
limited number of motion histories is simulated, but each history lasts 
for a relative long time and is analyzed alone. Recently, Cusumano and 
Kimble [34] proposed the so-called stochastic interrogation experimen- 
method, in which, differently from Robert's method, the histories of 
motion have random initial conditions. Furthermore, Cusumano and 
Kimble consider large samples and trace the Poincare maps to reveal 
the presence of basins of attraction. Due to hardware limitations, these 
two types of simulation are performed with samples of 10 histories   of 

1575 



1.20 

0.80 

0.40 

0.00- 

-0.40 - 

"I    x(t) 

I ' I T I   t(s) 
0.00 200.00 400.00 600.00 

Fig. 3 - Response displacement x(t), ß; = 0.3770. 

motion. When the initial conditions are random, the initial displace- 
cement and velocity are independent normal variates with zero mean 
and unit variance. 

Tables 1-3 show the principal statistical moments obtained by using 
the three methods, for ß; = 0.1257, 0.3770, and 1.2567, respectively. The 
statistical linearization fails to yield accurate estimates of the statistical 
moments for the case ßr = 0.1257. In the other two cases the results for 
the first two moments are quite acceptable, while the estimates of both 
the third and fourth moment are too high. In general, the proposed 
approach for closing the hierarchy of the ME constitutes a substantial 
improvement over the linearization even if the third and fourth 
moment of the intermediate case are greatly overestimated (by a 38.4 % 
for E[x3] and by a 90 % for E[x4]). Clearly, as higher the order of a 
moment is, as worse the approximation of the stochastic differential 
calculus. Using a higher order of closure should improve the accuracy, 
but this requires the use of more powerful computers. 

The performance of the proposed approach is noticeable in the first 
case, say ß; = 0.1257. This case is characterized by a very narrow- 
banded output of the filter (4) (Fig. 1), even if the a simulated history 
of yft) does not resemble a sinusoid (Fig. 2, top). Performing the search 
for multiple solutions, Eq. (15a) has two real roots, but one of them 
only is positive. Nevertheless, examining a single motion history 
lasting for 1,500 s (Fig. 2, bottom) there appears a strange phenomenon. 
After exposing the system to the excitation for almost 400 s, one can 
note that evenly spaced peaks rise, whose periodicity is 90-100 s about. 
During these peak phases the oscillations occur around the unchanged 
mean value, but their amplitude increases time after time and seems to 
be unbounded. The writers think that it is improper to define this 
phenomenon as a multivalued response; rather, this behavior might be 
assimilated to a kind of instability. An ever increasing amplitude 
means an increasing mean square value that, perhaps, might be 
detected by making a non stationary analysis. Thus, the statistical 
moments that have been calculated with both stochastic differential 

1576 



calculus and simulation, whose motion histories last for 30 s, are 
correct for the stationary segment of the response, only. The same 
trend can be noticed for the case ßf = 0.3770, but it is slightly faded. 

5. CONCLUSIONS 

A method is presented to close the hierarchy of the ME of nonlinear 
systems excited by polynomial forms of filtered Gaussian processes. 
This method operates in two phases in the former of which resort is 
made to statistical linearization that yields a first estimate of the 
moments of the non-Gaussian response. In the second phase the ME of 
the actual system are considered. They constitute an infinite hierarchy 
to close which, instead of using the classical cumulant-neglect closure 
method that may be cumbersome from a computational point of view, 
an iterative procedure is used. This is based on the estimate of the 
response moments that has been obtained for the linearized system. 

The proposed method is applied to a Duffing oscillator excited by a 
quadratic polynomial of a filtered Gaussian process. The bandwidth 
parameter of the filter is varied from a very narrow one to a medium 
one to ascertain whether the response may be multivalued as in the 
case of a simple narrow-banded filtered excitation. In the case of a 
narrow-banded excitation a phenomenon different from those reported 
in literature occurs. After a certain time system response seems to lose 
the stationarity and periodically shows peaks with ever increasing 
amplitude. This phenomenon cannot be detected either by the 
stochastic differential calculus, if the ME are solved for the steady 
state, or by the customary simulation in which the histories of motion 
have a brief duration. In order to reveal this behavior it is necessary to 
study responses lasting some hundreds of seconds. However, the 
response moments that are given by the proposed approach are 
substantially correct for the stationary segment of the response. 
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ABSTRACT 

This paper considers the numerical solution of the Fokker-Planck-Kolmogorov 
(FPK) equation which governs the transition probability density function (pdf) 
for a certain class of non-linear system. In order to provide a numerical solution 
for the pdf which is well behaved at its tails (and thus better suited to extreme 
value problems), the FPK equation is transformed to give an equation for the log- 
pdf. The resulting non-linear partial differential equation is solved using a 
weighted-residual approach. This technique is applied to first and second order 
systems, including the Duffing oscillator. The accuracy of the technique is 
assessed by comparison with analytic solutions and numerical simulation. 

1. INTRODUCTION 

Many different types of structure, such as offshore structures, are subjected to 
random loading. In the design of these structures it is particularly important that 
the statistics of the response are obtained so that the maximum stresses and 
fatigue life of the structure can be predicted. For the situation when the system 
is linear and the excitation is Gaussian the response statistics are well-known. 
However, most practical engineering structures are non-linear to some extent and 
the problem of predicting the response statistics is much more difficult. 

For systems which are subjected to white-noise excitation, the response is a 
Markov process and the transitional probability density function (pdf) is governed 
by the Fokker-Planck-Kolmogorov (FPK) equation. For other systems the FPK 
equation can be applied provided that the response is a higher order Markov 
process. In both these cases the problem of predicting the response statistics 
reduces to solving the FPK equation for the transitional probability density 
function. The difficulties associated with finding exact solutions to this equation 
have lead a number of authors to develop approximate solution procedures [1-3]. 
Although these techniques are limited to the analysis of low order systems, they 
have been applied to a number of practical engineering problems (e.g.[3,4]). 

The most commonly used numerical solution procedures are the Galerkin 
technique [1], the Finite Element method [2] and the path-integral method [3]. 
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Wen [1] developed a Galerkin method for the solution of the non-stationary FPK 
equation, in which the joint probability density function was expanded in terms 
of Hermite polynomials. The disadvantages of this technique are that it tends to 
have a low-rate of convergence for systems which are strongly non-linear and the 
accuracy of the tails of the distribution is not guaranteed - yielding negative 
values . In contrast, the Finite Element method [2] provides a more robust 
numerical solution procedure which, in principle, has the potential to deal with 
all types of non-linearity and give an accurate prediction of the tails of the 
distribution. However, a large number of elements, and hence a large amount of 
cpu time, are needed to give sufficient resolution over the tails of the distribution 
in order for it to be used for the prediction of extremes. The path-integral method 
proposed by Naess [3] has recently been shown to provide an accurate means of 
estimating the response pdf, including the tails. However, this too requires a 
substantial amount of cpu time, and is very much at a developmental- stage. 

In contrast to the above techniques, the primary aim of the present work is to 
accurately estimate the tails of the response distribution. This is achieved by 
considering the log-pdf, which has the advantage of ensuring that the resulting 
probability density function is always positive. This approach has recently been 
applied by Di Paola et al. [5] in which the log-pdf was expanded as a Taylor 
series. For the examples considered there, which included various first order 
systems and the Duffing oscillator, it was shown that this technique gave good 
agreement over the main body of the pdf, but no results for the tails of the 
distribution were reported. A disadvantage of the adopted Taylor series solution 
method is that it can not be used to analyse systems which contain non-linearities 
whose derivatives are discontinuous at the origin (e.g. x\x\). 

In this paper an approach similar to that proposed by Di Paola is used in which 
an orthogonal expansion for the log-pdf is obtained. More specifically, a Hermite 
polynomial expansion of the log-pdf is obtained by using a weighted-residual 
approach to solve the governing differential equation for the log-pdf. The main 
advantage of using this approach compared to a Taylor series solution is that it 
is reasonably easy to incorporate non-linearities such as x\x\ into the analysis. 
The accuracy of the proposed numerical solution procedure to predict the 
response statistics of various first and second order systems is investigated by 
comparison with analytic results or numerical simulation. 

2. THE FPK EQUATION AND LOG-PDF EQUATION 

Many references (for example [6]) give details of the derivation of the Fokker- 
Planck-Kolmogorov (FPK) equation for the determination of the transient 
probability density function (pdf) of non-linear systems subjected to random 
excitation. Here, the FPK is simply stated and then used to derive the associated 
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log-pdf equation. 

In order to apply the FPK equation it is necessary to write the equations of 
motion of the system in state-space notation as follows: 

z = g(z)+Aw, (1) 

where z is a vector containing the displacements and velocities of the system, A 
is a square matrix (assumed here to be constant), g(z) is a general vector function 
of the variables z, and w is a vector of uncorrelated Gaussian white noise 
processes, each having a spectral density of unity. 

If z constitutes a Markov process, the FPK equation which governs the 
transitional probability density function p(z,t) is given by [6]: 

Ä£=£ 4w4;E t *«ÄT^fcOl (2) 
dt      17t dz.1 J   2f=i j-\    'dzdz, •   i 

where n is the dimension of z and B is a matrix given by: 

B =2izAA T. (3) 

As mentioned in the introduction, equation (2) can be solved numerically using 
the Galerkin method, the Finite Element method and the path-integral technique. 

In order to obtain an equation which is more suitable for determining the tails of 
the response distribution (and hence extremes) it is convenient here to express the 
probability density function (pdf) as follows: 

p(z,0=exp(p(z,0), W 

where p is the log-pdf, i.e.: 

p(z,0=lnp(z,0- (5) 

Differentiating equation (5) with respect to t gives: 

dp(z,Q _    1    dp(z,t) _ ^ 
dt      p(z,t)    dt 

Using equations (4) and (6), equation (2) can be re-written in terms of the log-pdf 
p(z,t) as follows: 
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dpfeO, 
dt 

d8,      dp 1     fi        n 

27T 1=1 j'l 

_9^p_ + öpöp 
3z dz    dz dz. 

'   j       •    i 

(7) 

Equation (7) is a non-linear partial differential equation governing the transient 
log-pdf, and forms the basis of the technique proposed here. In what follows a 
weighted residual procedure for solving this equation is presented. 

3 WEIGHTED RESIDUAL SOLUTION FOR THE LOG-PDF 

The weighted residual solution of equation (7) is considered for a first order 
system and then for a second order system. 

3.1 First Order Systems 
For the case of first order systems equation (7) can be written as follows: 

dp(z,t)__dg     dp(z,t)+B \d2p(z,t) 

dt dz dz \   dz2 

dp(z,t) 
dz 

(8) 

In the weighted residual approach adopted here the log-pdf and the system non- 
linearity are expressed as the sum of a finite number of weighted Hermite 
polynomials, such that: 

p(z,f) =£ X.(t) tf ,(z),     g(z) =£ u(ff((z), (9,10) 

where 

H(=_—fg(z)tf/(z)e    2dz, 

WÜHL 
(ID 

and Hfz) is the z"th Hermite polynomial. 

Substituting equations (9) and (10) into equation (8) gives: 
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E V,=-E n,-^ -E E nM-ir+* 
i=0 (=0 °Z       (=0   ;=0 OZ 

EÄEEAA.^ 
(=0     ' dz2      (=0   ;=0 ;  ÖZ     3z =0 y=o 

(12) 
Multiplying equation (12) by Hkexp(-z2/2)/f2ii, integrating over z from -~ to °° 
and using the properties of the Hermite polynomials given in Appendix A gives: 

1=0   /=0 

m      m 

B (fc+2)ait2+E E iAi.i[i-\j-\,k] 
i=o y=o 

(13) 

jfc=0,l,...H 

where I[i,j, k] is an integral of a triple Hermite product which, using the properties 
given in Appendix A, may be shown to be given by: 

I[ij,k] = JHfx)H/.x)H^c)e   2 dx -- 
i\j\k\\J2iz 

'".+l+*ll[i-l+i 
2    2    2j  1, 2    2    2) 

UL-h. 
2    2    2j 

(14) 
where k\s the smallest of i,j and k. 

Equation (13) represents a set of first order, non-linear, differential equations 
which can be solved numerically for \k(t) using standard integration techniques. 
The calculated values can then be substituted back into equation (9) to yield an 
expression for p(z). To ensure that this is a valid pdf, the coefficient A.„ is 
modified to ensure that the normalisation condition is satisfied. 

For the situation when the response of the system is stationary (ie. dA.k/dt=0 for 
all k), equation (13) reduces to a set of non-linear algebraic equations. Although 
the solution of these equations can, in principle, be calculated using standard 
numerical methods, these methods require a good first estimate of the solution in 
order to achieve a good rate of convergence. For the systems considered in the 
numerical examples section, the stationary pdf is calculated by integrating 
equation (12) until stationary conditions are achieved. 

This section has shown how a weighted residual approach can be used to obtain 
a numerical solution to the log-pdf equation for first order systems. In what 
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follows this technique is extended to deal with second order systems. 

3.2 Second order systems 
An identical procedure to that presented for first order systems is now applied to 
a general second order system. 

Let the log-pdf be expressed as follows: 

p(z,,V) =E E *M« Hp{zx)Hq{z2), (15) 
p--\ ?=i 

and the system non-linearity be expressed as: 

where 

. _ 22 

hm = T-^!!s(^2)H,(z1)Hm(z2)txp(-Zj-~Z-^)dzldz2, (17) 

and H, is the f'th Hermite polynomial. 

A set of non-linear, first order differential equations in terms of Xpi/ can be 
obtained by substituting equations (15) and (16) into equation (7), multiplying by 
Hp(z ,)#,,(z2)exp(-(z,2 +zz

2 )/2)/(2ic), integrating over z, and Zj from -«to », and 
making use of equation (14). This yields an equation of the form: 

^OT
=EaA+SE*VtaV'«' (18) 

ij ij    l.m 

where a>s and ft j/,,, are constant coefficients dependent upon the system considered. 
As in section 3.1, equation (18) can be solved numerically for \pq and then the 
log-pdf can be obtained from equation (15). This procedure is used in the 
following section to calculate the response statistics of some example systems. 
In addition, it may be noted that the extension of the weighted residual technique 
to multi-dimensional systems is straight-forward. 
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4 NUMERICAL EXAMPLES 

The techniques described above are used here to determine the stationary 
response statistics of: i) first order systems and ii) second order systems. In all 
cases the initial response conditions are assumed to have a Normal distribution 
and the stationary response statistics are obtained by integrating the equations 
governing the Hermite coefficients until stationary conditions are obtained. The 
response pdf can then be obtained by substituting the Hermite expansion for the 
log-pdf into equation (4) and applying the normalisation condition (to ensure that 
it is a valid probability density function). 

4.1 First Order Systems 
Two first order systems are considered here. The first consists of a system with 
a polynomial non-linearity, while the second consists of a drag non-linearity. In 
both cases the results obtained using the proposed technique are compared with 
the exact analytic solutions available, and both the pdf and log-pdf of the 
response (z) are plotted. 

4.1.1 Polynomial non-linearity 
The first order system considered here has the following equation of motion: 

i = -j^ax'+M (19) 

where a,=0.1, a2=0.0, a3=0.05, a 4=0.0, a ==0.01, and/(f) is a zero mean, Gaussian, 
white-noise excitation with a constant spectral value K=\l%. The stationary 
distribution in this case is given by: 

p{x) =Asxp(-2 f£ a? 'dz^ (2°) 

where A is the normalisation coefficient. 

The distribution of x for this case is shown in Figure 1, where Figure la) shows 
the pdf and Figure lb) shows the log-pdf. In these figures a comparison with the 
exact result, given by equation (20), is made with the results obtained using the 
proposed technique with m=4 and m=6 in equation (9), and an equivalent 
Gaussian distribution. In both cases it is seen that the response statistics are 
highly non-Gaussian, and the proposed technique gives better agreement with the 
exact result with m=6 than with m=4. Further, for the case when m;>6 it is found 
that the proposed technique agrees exactly with the exact result. In many respects 
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this agreement obtained using the proposed technique is not surprising since the 
stationary pdf can be expressed exactly in the assumed form when ms6. 
However, there is no guarantee that the transient response can be expressed in this 
assumed form. 

4.1.2 Drag non-linearity 
The system considered here has the following equation of motion: 

x = -x\x\+fit), (21) 

where fit) is a zero mean, Gaussian, white-noise excitation with a constant 
spectral value K=l/iz. The exact distribution in this case is given by: 

p(x)=AexV(^-), ■       (22) 

where A is the normalisation coefficient. 

Unlike the system considered in section 4.1.1, the drag non-linearity and log-pdf 
can not be expressed exactly using Hermite polynomials, and is therefore a more 
difficult system to analyse using the proposed technique. 

Figure 2 shows the statistical distribution of x for this situation, where Figure 2a) 
shows the pdf and Figure 2b) shows the log-pdf. In these figures a comparison 
with the exact result, given by equation (22), is made with the results obtained 
using the proposed technique with m=3 and m=7 in equation (9), and an 
equivalent Gaussian distribution. It is seen that the response statistics are highly 
non-Gaussian and that using an increased number of Hermite polynomials to 
represent the log-pdf gives improved agreement with the exact result, especially 
at the "tails" of the distribution. This is not surprising since the technique 
proposed here deals with the log-pdf and is therefore well-suited to determining 
the tails of the distribution. 

4.2 Second Order Systems 
From a practical point of view it is the response statistics of second (and higher) 
order systems which are of vital importance to design engineers. In order to 
demonstrate the performance of the proposed technique, two second order 
systems are considered. In each case results are obtained for the displacement (z,) 
pdf and the velocity (z2) pdf, and the results are plotted as a pdf s and log-pdf s. 

4.2.1 Duffing Oscillator 
The equation of motion considered in this case is given by: 
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Z- -*2-z,-*,3+/l0, (23) 

where / (0 is a zero mean, Gaussian, white-noise excitation with a constant 
spectral value £=1/TC. In this case it is well-known [6] that the displacement and 
velocity are statistically independent, and exact analytic results are available for 
the displacement and velocity pdf s, such that: 

pO^C.expC--*,2--*,4),     p(z2)=C2exp(-i-z2
2)- (24,25) 

where C, and C2 are normalisation constants. 

The stationary response statistics for this case are shown in Figure 3, where the 
analytic results have been compared with those obtained using the proposed 
technique and an equivalent Gaussian distribution. In this case it is found that the 
proposed technique gives identical results for the jpdf (and hence displacement 
and velocity statistics) provided that a sufficient number of Hermite polynomials 
are used (i.e. n;>4 and m;>5 in equation (15)). In some respects this is not 
surprising since it is known that the stationary jpdf can be expressed exactly in 
the assumed form given by equation (15), provided a sufficient number of terms 
are used. However, as in previous examples, it is unlikely that the transient 
response statistics can be expressed exactly in this form. 

4.2.2 Duffing Oscillator with cubic damping non-linearity 
The equation of motion considered in this case is given by: 

zx = -zv      z^-Zz—zl-z^-zl+flt), (26) 

where / (t) is a zero mean, Gaussian, white-noise excitation with a constant 
spectral value .8=1/it. Although there is no exact analytic result available for the 
displacement distribution in this case, it is shown in Appendix B that there exists 
an analytic result for the velocity statistics, such that: 

2 4 

p(z2)Mexp(-^—£-), (2?) 
2     16 

where A is the normalisation constant. 

The stationary response statistics for this case are shown in Figure 4, where a 
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comparison is made with numerical simulation and exact results. In the proposed 
representation n=4 and m=8 are used in equation (15), and an equivalent 
Gaussian distribution is shown for comparison. Up to the highest levels obtained 
by simulation, the proposed method gives excellent agreement. 

5 CONCLUSIONS 

A numerical method for solving the associated FPK equation governing the 
response statistics of non-linear systems subjected to random vibration has been 
presented. The main advantage of this method over alternative techniques is that 
it ensures that the tails of the response distribution remain positive, suggesting 
that it well-suited to extreme value prediction. For the numerical examples 
considered this was shown to be the case, in which excellent agreement with 
exact analytic solutions and numerical simulation were obtained, especially at the 
tails of the distribution. Although, in principle, the procedure developed is 
applicable to an «-dimensional system, the computer costs increase rapidly with 
n. However, the remarkable increases in computer performance over the past 
decade suggests that the present procedure may, in the near-future, become a 
viable option for calculating the response statistics of higher order systems. 

REFERENCES 

1. Wen, Y.K. Approximate method for nonlinear random vibration, 
Proceedings of the American Society of Civil Engineers, Journal of the 
Engineering Mechanics Division, 1975,101,389-401. 

2. Langley, R.S. A finite element method for the statistics of non-linear 
random vibration, Journal of Sound and Vibration, 1985,101(1), 41-54. 

3. Naess, A. and Johnsen, J.M. Response statistics of nonlinear, compliant 
offshore structures by the path integral solution method, Probabilistic 
Engineering Mechanics, 1993, 8, 91-106. 

4. Roberts, J.B. A stochastic theory for nonlinear ship rolling in irregular 
seas,  Journal of Ship Research, 1982,26, 229-245. 

5. Di Paola, M, Ricciardi, G., and Vasta, M. A method for the probabilistic 
analysis of nonlinear systems, Probabilistic Engineering Mechanics, 
1995,10(1), 1-10. 

6. Lin, Y.K. Probabilistic Theory of Structural Dynamics, McGraw-Hill, 
New York, 1967. 

1590 



APPENDIX A - PROPERTIES OF HERMITE POLYNOMIALS 

The following properties of the set of Hermite polynomials are used in section 3. 

k[H"iZ)e'2dZ   =°   "=° (A1) 

dH (z) .... 
 n—=nH   ,(«)■ (A2) 

dz "~l 

APPENDIX B - ANALYTIC SOLUTION FOR THE VELOCITY 
STATISTICS OF A PARTICULAR CLASS OF SECOND ORDER 

SYSTEM. 

For the second order systems considered in the numerical examples section the 
associated FPK equation (equation (2)) can be written as follows: 

dP{2^) __ dp(zvz2) afg^^Myj] %J
2
P^^2\ (B1) 

where 

g(z,,*2) =£,(*,) %(*2)- (B2) 

Substituting equation (B2) into equation (B1) and integrating over z, from -<*> to 
°° gives: 

3g, d2
P(z2) 

-—lp(z )-KK -. 
&2 2 &' 

(B3) 
The first term on the right hand side of equation (B3) will reduce to zero since for 
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it is reasonable to assume that as the displacement (z,) increases (or decreases) 
without bound jp(z,,z2) will tend to zero. 

Provided that p{z^ is continuous, the third term on the right hand side of 
equation (B3) can be re-written as: 

[gfij     -'  2 dz.= 
2 2 

[g,(zMzi'z2>dzi ■ (B4) 

The term in square brackets on the right hand side of this equation will reduce to 
zero provided that g, is an odd function and p(z„z2) is symmetric with respect to 
z, for all values of z,. This condition is satisfied by the systems considered in 
sections 4.2.1,4.2.2 when the response is stationary (i.e. dp/dt=0). Consequently, 
for the examples considered in the numerical examples section the third term 
appearing in equation (B3) reduces to zero provided that the term on the left 
hand-side is set to zero (i.e. stationary conditions). 

Making use of the above observations and re-arranging, equation (B3) can be 
written as: 

d\g2(z2)p(z2)}     J2
P(Z2) 

dz2 

%K i-=0. (B5) 

This is the associated stationary FPK equation for the first order system whose 
equation of motion is: 

i2 = -gp2)+M- (B6) 

Thus, it has been shown that the stationary distribution z2 (alone) is identical to 
that of a one-dimensional Markov process. Further, the solution of equation (B5) 
can be written as: 

p(z,)=^exp(-—-fg(.z)dz), (B7) 
o 

where A is the normalisation constant. Consequently, the velocity statistics of the 
second order systems considered in the numerical examples section can be 
obtained analytically. This result is used to validate the accuracy of the results 
in the numerial examples section. 
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Figure 1. The stationary response statistics of the system given by equation (19): 
-, exact solution; - • -, proposed technique (m=4); , equivalent Gaussian 
distribution, (a) displacement pdf, (b) displacement log-pdf.  (Note: the exact 
solution and proposed solution (m=6) agree exactly in this case.) 
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Figure 2. The stationary response statistics for the system given by equation (21): 
-, exact solution; - • - , proposed technique (m=3); • • -, proposed technique 
(m=7);   , equivalent Gaussian distribution, (a) displacement pdf, (b) 
displacement log-pdf. 
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Figure 3. The stationary response statistics for the Duffing Oscillator given by 
equation (23): , exact solution; - • -, proposed technique; , equivalent 
Gaussian distribution, (a) displacement pdf, (b) displacement log-pdf, (c) velocity 
pdf, (d) velocity log-pdf. (Note: the exact solution and proposed solution agree 
exactly in this case) 
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Figure 4. The stationary response statistics for the Duffing Oscillator with cubic 
damping (see equation (26)): , numerical simulation ((a) and (b) only); - • -, 
proposed technique; - - , exact solution ((c) and (d) only); , equivalent 
Gaussian distribution, (a) displacement pdf, (b) displacement log-pdf, (c) velocity 
pdf, (d) velocity log-pdf. 
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On the use of Finite Element solutions of the FPK equation 
for non-linear stochastic oscillator response statistics 

M. Ghanbari* and J. F. Dunne 
School of Engineering, University of Sussex, 

Falmer. Brighton. U.K. BN1 9QT. 

SUMMARY 

Numerical solutions of the stationary Fokker-Planck equation are obtained via 
Langley's FE method and applied to non-linear oscillators driven externally by 
Gaussian white-noise. A SDOF model appropriate to large amplitude random 
vibration of a clamped-clamped beam excited by band-limited noise, is used to 
demonstrate convergence of predicted response marginal density functions and 
extreme-value exceedance probabilities. Experimental verification of this beam 
model is shown at marginal density level using calibrated FEM-FPK 
predictions and measured data. Convergence of a 4D FEM-FPK version is also 
demonstrated at marginal density level, corresponding to a pair of non-linear 
oscillators. This 4D method is applied up to a practical storage limitation 
imposed using a systematic FEM node numbering scheme. 

1.0 INTRODUCTION 

Finite element analysis has now found widespread application in the field of 
stochastic dynamics for mathematical modelling of structures exposed to 
random type loading. Applications vary from wave induced response 
prediction for fixed and compliant offshore structures, seismic response 
modelling of building structures during earthquakes, wind buffeting problems in 
aerodynamics, and of course for modelling the effects of roughness on road and 
rail vehicular motions [1][2]. 

Predictions of reliability, in the form of appropriate response 
statistics, can usually be obtained for linear structures from a finite element 
structural model, combined with linear statistical and normal distribution theory 
[3]. In cases where significant nonlinearities are present, accurate response 
statistics cannot be obtained with linear theory, justifying alternatives such as 
Monte Carlo simulation in the time-domain. Simulations can be very effective 
in obtaining low-level statistics, for example the first few response moments 
(even when there are many degrees-of-freedom). But to obtain highly accurate 
information in the tails of the marginal response amplitude probability density 
function (pdf), or to obtain accurate low-level extreme-value exceedance 
probabilities, conventional simulations are impractical owing to the enormously 
long runs needed to obtain confident probability estimates. Response amplitude 
probabilities are useful for initial reliability assessment, whereas extreme-value 
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statistics are very important for quantifying the likelihood of dangerously high 
amplitudes being reached within a specified period of time, since these can 
often be related directly to risks elsewhere. 

Focusing initially on extreme-value statistics, a number of 
vibration type approaches have been developed using a combination of 
vibration theory, control techniques and simulation [4-8]. These methods are, 
under certain conditions, capable of producing highly accurate results, although 
for broad-band excitation, there is still a need for a direct, accurate, and 
efficient approach which does not involve complicated intermediate stages or 
simulation. More generally, within the theory of stochastic processes, there are 
several important asymptotic routes to extreme-value prediction appropriate for 
high response amplitude levels or long sample path durations. Local maxima 
statistics for example, can be used to construct extreme-value statistics, 
assuming independence of specified response maxima [9] - an. approach 
frequently used for linear structures with Gaussian responses. Another 
approach [8] uses the asymptotically Poisson character of local maxima at high 
levels. An alternative route, via threshold crossing statistics, assumes 
independence of up-crossings, by ignoring 'bandwidth' [5], an effect related to 
the concentration of energy on response sample paths within a narrow band of 
frequencies. 

Threshold crossing statistics can be approached via the joint pdf 
for a response amplitude process and its first derivative, which in turn can be 
obtained for a general class of non-linear systems via Markov process theory 
using the stationary Fokker-Planck-Kolmogorov (FPK) equation [2] [10]. This 
equation can often be constructed directly from the equations of motion for a 
stochastic dynamic system, provided the excitation sources can be modelled as 
broad-band. Although few exact FPK solutions are known, in the past 30 years 
there have been several types of numerical method proposed (references [11- 
16] are just some examples of functional-type solutions, not to mention finite 
difference methods). A good numerical solution opens-up possibilities for 
obtaining accurate tails of the response amplitude pdf, and accurate extreme- 
value statistics, thereby avoiding the need for enormously long simulations. 
Whilst numerical FPK solution methods obviously differ in accuracy and 
efficiency, there is one school of thought to suggest that finite element 
structural modelling, followed by FE solution of the FPK equation, offers an 
attractive and unified approach to structural reliability assessment. 

But the accuracy of FEM-FPK predictions depend on the use 
of a sufficient number of elements in the approximation, and to achieve a 
certain level of accuracy, this is affected by the dimension of the problem, the 
strength of nonlinearity in the model, and on the probability levels considered. 
Computer storage limitations may also prevent the required number of elements 
from being used. Furthermore stationary FPK solutions contain no 'bandwidth' 
information at the sample level. Therefore, the assumption of independent up- 
crossings, intrinsic to  all FPK based extreme-value predictions, must be 
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checked using an alternative such as Monte Carlo simulation. But to justify 
such lengthy checking, a realistic non-linear model is appropriate, for example 
a large amplitude model for clamped-clamped beam vibration excited by broad- 
band noise [17]. 

In this paper, a SDOF beam model, and a pair of non-linear 
oscillators, are used to demonstrate use of Langley's FEM-FPK method. In 
both models, the parameters are known, and only external Gaussian white- 
noise excitations are assumed. For the SDOF (beam) model, the rate of 
convergence of the response amplitude pdf via the FEM, is demonstrated as 
more nodes are used. FEM-FPK based extreme exceedance probabilities are 
then compared with long Monte Carlo simulations to show convergence with 
increasing nodes, and to confirm the insensitivity of bandwidth effects at the 
probability levels considered. The model is justified at the pdf level, by showing 
calibrated FEM-FPK predictions and experimental measurements. A.4D FEM- 
FPK version is then applied to a pair of non-linear oscillators. This is to 
establish the level of convergence reached in the response amplitude pdf, with 
practical storage limitations imposed using a systematic FEM (global) node 
numbering system. 

2. The FPK Equation and Stationary Response statistics 

When the force vector components arising in a structural dynamic model can be 
treated as broad-band Gaussian processes, Markov process theory allows the 
(forward) transition probability density function to be modelled using the 
Fokker-Planck (FPK) equation (and backward transitions via the Backward 
equation) [2]. From these densities important response statistics can be 
obtained for use in reliability assessment. Under certain conditions, statistical 
properties of response trajectories cease to vary with time allowing a simpler 
(stationary) FPK equation to be constructed. The starting point for 
constructing the stationary FPK [10] is to express the system of (non-linear) 
equations of motion: 

MX + F(X,X) = f(t) (1) 

in appropriate state space form as follows: 

z = g(z_) + Aw(t) (2) 

where z represents an nxl vector Markov response process, w(t) is an 
assumed nxl vector of zero-mean uncorrelated Gaussian white-noise 
processes, whose spectral densities are unity, scaled by a constant square 
matrix A, and g is an nxl vector of (non-linear) system functions. The 

stationary FPK equation associated with equation (2), can be obtained by 
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identifying so called drift and diffusion coefficients [10] and by focusing on 
steady-state trajectories. This leads to the partial differential equation: 

where 5 = 2^4Arand p{z) is the stationary joint probability density function 

(jpdf) associated with the solution trajectories of the dynamic model. Boundary 
conditions take a variety of forms [2], in addition to the normalisation condition 
requiring that the total probability must sum to one. Very few exact solutions 
to equation (3) are known which is one important reason why numerical 
methods are increasingly used. 

2.1 Marginal Densities and Extreme-Value Statistics 

From the stationary FPK solution p(z), marginal density functions, and 
corresponding moments, can be obtained by successive integration. The joint 
bi-variate pdf for a response and its first derivative, can be used to obtain the 
mean threshold crossing rate [10]. If this is accurate, then it offers an 
approximate route to the distribution of extreme-values for response process 
Zi ■ The required bivariate density function is in general obtained by integration 

as follows: 

P(zi,z;+1)=jp(z)dz (4) 

and from equation (4), the mean upcrossing rate is determined from: 

+~ 

t>+(uT)= jzi+lp(uT,zi+1)dzi+l (5) 
o 

where uT refers to the level of interest, and dz corresponds to the reduced 
state space in which variables z,- and zM do not appear. The Poisson 

assumption of independent upcrossings [6] gives the approximate extreme- 
value distribution for z,(?) in the form: 

^MK) = prob{M(T) < uT} = e-^
)r (6) 

where M is the largest value of response process zx (?) in the interval T. From 
this, the exceedance probability for extreme-value is defined as: 
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P{M(T) > uT} = l-F(uT) (7) 

3. Finite Element Solution of the Stationary FPK Equation 

There have been several finite element FPK solution methods proposed such as 
the methods of Langley[12], Bergman[14], Spencer and Bergman[16] (also 
applied to the Backward equation). These methods are essentially special 
applications of the weighted residual (WRM) Galerkin-type approximation, 
using shape functions defined over a finite, rather than infinite region. The 
Finite element method, for example proposed by Langley, has the additional 
advantage of being able to deal efficiently with spatial dependence in the FPK 
equation - a feature which does not normally occur in general structural 
analysis problems. We do not propose to examine these methods in any detail, 
except to give a brief outline of Langley's method in the usual context of the 
WRM appropriate for a stationary multi-dimensional FPK equation since this is 
used later. 

In Langley's method [12], general use is made of piece-wise 
shape functions to approximate, within a number finite elements, both the 
solution P(z), and the non-linear gt(z) appearing in equation (3). These 

elements are usually rectangular for 2D, cuboid for 3D etc., and the total 
number of nodes for a single n-dimensional element is m = 2" ■ The solution 
P(z) over the entire domain is approximated in terms of the (unknown) nodal 

values of the pdf as follows: 

m 

Shape functions N^z.) are chosen to take unit values at a specified node, and 

zero at other nodes within a particular element. For nodes which do not fall 
within a particular element, the shape function values are zero. 

In trial solution (8), the usual far-field boundary conditions are 
modified to account for use of a finite region, namely that p(z) -» 0 when 
(z) -» ±a where a is some large finite value. Substitution of trial solution (8) 
for all elements over the entire finite region, allows the FPK equation residual 
to be formed as follows: 

^ll^[p(z)]-tj-[sMrp^}=*<a (9) 

Equation (9) gives a measure of how well the entire solution p(z) satisfies 
equation (2) and if the shape functions are chosen correctly, one hopes that the 
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residual will reduce uniformly to zero as the number of elements is increased. 
Weighted residuals are formed as follows: 

jjjR(z)w(z)dz = 0 (10) 

to provide the basis for selecting the nodal values of the approximate solution. 
The weight functions w(z), are chosen appropriately to be the same nodal 
shape functions N^z) within those elements in which a particular node of 
interest falls. For all other elements, the weight functions are taken to be zero. 
This converts the weighted residual statement (10) to a finite number of 
summations over all elements, which in principle generates the same number of 
(linear) equations as unknown nodal probability values. This (generally sparse) 
system of linear equations is in fact singular, but a unique solution can be 
obtained by imposing the normalisation condition: 

\p{z)dz = \ (11) 

To make best use of finite elements, the simplest type of shape function is used 
to remove much of the burden in organising the FE code. The simplest choice 
is indeed a piece-wise linear (Lagrange) function, where n-dimensional shape 
functions can be constructed using appropriate multiples of the one-dimensional 
version. However, were a trial solution to be attempted using these Lagrange- 
type functions directly in equation (10), the FPK equation being second order, 
would cause the first term to vanish since linear shape functions have only C0 

continuity. This problem was overcome [12] by integrating equation (10), to 
generate the weak form of weighted residual statement for the FPK equation: 

7EE5J^[w(s)]^b(2)^-Sj^(^(2)|-Ns)]^ = 0 (12) 
^  i=l  ;=1 R OZ; OZj ,=i R OZj 

Equation(12) applied over all the finite elements will yield a system of linear 
equations for p. which can be obtained uniquely by imposing the normalisation 

condition (11). As mentioned, far-field boundary conditions are applied at a 
finite, rather than an infinite boundary, determined in practice using equivalent 
linearization. This boundary is chosen at 5 or 6 standard deviations in all 
directions where the probability density outside this region is assumed to be 
zero. The non-linear functions g;(z_) appearing in equation (3) can also, for 

reasons of computational efficiency, be approximated within a particular 
element using the same shape functions as follows: 

m 

gtö^gM® (13) 
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This has the advantage of reducing the amount of pre-processing required to 
handle the spatial variability in the FPK equation and is therefore useful where 
parameter or model variations are intended. Once p(z) is calculated in the 
above manner, the extreme-value exceedance distribution can be approximated 
from equations (4)-(7). 

A storage problem however arises in the use of the FEM, since 
the linear coefficient matrix is of dimension Nn x Nn, where N is the number 
of nodes. This obviously becomes excessive for anything more than the 2- 
dimensional problem. Iterative solution techniques [18] can be used to solve 
linear equations without need to store the coefficient matrix. But these methods 
are suited to sparse matrices with narrow bandwidth, such as arise in structural 
FEM - the best known being the Frontal solution method. Unfortunately the 
benefits of using space saving methods in the FEM-FPK are to some extent 
lost, as it can be shown that even if the theoretical bandwidth is no -more than 
3n , the practical bandwidth is significantly more than this when a systematic 
nodal numbering scheme is used. Therefore for large n (say > 3), unless an 
extremely sophisticated global node numbering system is used, the bandwidth 
grows rapidly with the node number and the advantages of space saving 
methods are not realised. For small n (e.g. n=l or 2) storage requirements are 
not so critical, so a good solution can be obtained using standard sparse 
system solution techniques. 

4. Application to SDOF Model 

The first application of this FEM-FPK is to a SDOF oscillator model: 

Z + 2£fi)„Z + a,ZZ2 + a2Z\z\ + co2„Z + fc3Z
3 = Aw(t) (14) 

which represents a system with both linear and non-linear damping, and linear 
plus cubic stiffness. The excitation w(t) is a unit intensity stationary zero mean 
Gaussian white noise process, scaled to required level by parameter A. Some 
evidence will be shown shortly to confirm this as a realistic vibration model for 
one dimensional large amplitude vibration of clamped-clamped beam, at least 
in the tails of the response amplitude marginal probability density function [17]. 
First we intend to show convergence of predicted FEM-FPK pdf solutions with 
increasing nodes; and then extreme exceedance predictions based on the FEM- 
FPK using equations (3)-(7), in both cases predictions are compared with 
Monte Carlo simulations - this includes an assessment of the Poisson 
assumption using equation(5). To complete the section, pdf predictions using a 
calibrated form of model (14), are compared with experimental measurements 
of clamped-clamped beam vibration. 

Putting oscillator model (14) into state space form, gives a two- 
state vector Markov model: 
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'dz: 

dz2: 

z2 dt + 
0   0' 

0   A 

'  0   ' 

db(t) -2^co„z2-cciZ2zl -a2z2\z2\-co2„z1 -k3zl 

and the corresponding stationary FPK equation (3) can then be written as: 

(15) 

M2^-^-(z1/(2))+^-to1,2,+a1z2^ + a2z2lz2l+a)*z1+*iz1
3)/(s)) = 0 

oz2    ozx oz2 
x 

... (16) 
subject to far-field and normalisation boundary conditions as described in 
section    2.    The    parameter    values    used    for    the    model        are    : 
£ = 0.0,«, = 0.812,a2 = 0.015, a>H = 144.34,^ = 3021, A = 200. Application 

of statistical  linearization     gives   |   =0.0138   and   simulation -reveals   a 
eq 

bandwidth parameter value £ - 0.97. Note although explicit parameter values 
are given here, only damping to intensity ratios appear in the FPK solution, 
which confirms that bandwidth effects cannot be accounted for, hence the need 
for an independent check on the accuracy of extreme-value predictions. 

I     I Monte Carlo 
—«— F.E 6x6=3S nodes 

■ F.E 3x3=9 nodes 

■ F.E 15x15=225 nodes 

•* , ■»*—&-i , Y , Y . Y i Y | *■ 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v 
/<yZl 

Figure 1.: Response amplitude marginal density function for SDOF model via FEM-FPK 
solutions and simulation. 

To  check FEM-FPK predictions,  conventional time-domain 
simulations are used here. These   involve three stages : 1) construction of 
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excitation sample paths ; 2) numerical integration, using a standard 4th order 
Runge-Kutta scheme; and 3) post-processing, involving transient removal to 
create a number of output sample paths for estimation of marginal response 
densities, and for creation of sections of length T, for use in estimation of 
extreme exceedance probabilities. A truncated Whitaker filter [19] is used to 
allow convergence of numerical integration using white-noise excitation 
samples assembled at discrete time intervals of duration At, giving a Nyquist 

bandwidth f„ = %At. In the use of the Whitaker filter At is fixed, allowing 

interpolation to smaller time steps AT, producing rapid reduction of the 
truncation error. 

Figure 1. shows the response marginal pdf obtained via FEM- 
FPK and simulation. Using symmetry over 1/4 region, the number of nodes in 
the FEM is increased as shown, from 9 nodes to a total of 225. This number 
does not create computational or storage problems using a systematic FEM 
node numbering scheme, and convergence has clearly occurred by 225 nodes 

Figure 2. shows extreme exceedance probabilities using FEM- 
FPK predictions via the threshold crossing rate equation (5) in equations (6) 
and (7), compared with very long Monte Carlo simulations. Two durations 
have been examined: T=l second, as shown in figure 2a. ; and T=100 seconds 
in figure 2b. In both figures, convergence of FEM-FPK predictions are 
compared with converging simulation results for reducing AT in the Whitaker 
filter. Note that the simulations seem to have converged for 
AT = 0.001 seconds , and the FEM-FPK predictions seem to similarly converge 
but only when a total of 961 nodes is used. Results for 225 nodes, which are 
perfectly adequate for marginal density predictions as shown in figure 1, are 
clearly not accurate for extreme-value statistics. The final level of agreement 
between simulation and FEM-FPK predictions would suggest that the Poisson 
assumption does indeed hold   below probabilities of 10"1, justifying use of 
equation(6). 

The statistical variability in extreme exceedance estimates p is 

predicted using the ratio cr. / p = \/4W, where cr - is the standard deviation 

in p and N is the sample size. For low probabilities, a large value N=1000 
extreme-values was needed for each duration, giving confident estimates of p 
above 10'2. The CPU time needed here for the simulations varied between 30 
and 300 times the FEM-FPK requirement. 

Figure 3 shows FEM-FPK predictions, based on a calibrated 
SDOF model (14), via the parameter estimation method [20], compared with 
direct measurements of large amplitude beam vibrations [17]. This experimental 
clamped-clamped beam rig was lm in length, and 25mm by 3mm section, with 
density p = 7850kg /m3 and Young's Modulus E = 190GN/m\ Band- 
limited white noise excitation was applied using a shaker positioned near one 
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Figure 2.: Extreme Exceedance probabilities for SDOF model. FEM-FPK predictions 
compared with Monte Carlo simulations: a) T=l second; b) T=100 seconds. 

 Simulated Response (delta t=0.004 sec)  Simulated Response (delta f=0.002 sec) 

  Simulated Response (delta t=0.001 sec) —A- F.E 15x15=225 nodes 

—•— F.E 21x21=441 nodes -X- F.E 31x31=961 nodes 

end of the beam, the central amplitude being measured with an accelerometer. 
Full details of the rig, instrumentation, and data processing procedure can be 
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Figure 3.: Response amplitude marginal density functions for beam model. Calibrated SDOF 
model showing FEM-FPK predictions and experimental measurements: a) linear 
model; b) non-linear model, 

found in [17]. For this beam, linear theory gives the first three small amplitude 
natural frequencies as 15Hz, 42Hz, and 82Hz respectively, whereas measured 
large amplitude responses are concentrated around 25Hz in a single-degree- 
of-freedom type motion without any observed responses above this bandwidth. 
Figure 3a shows a calibrated linear model, in contrast to figure 3b, which 
compares a calibrated version of equation (14). The magnitudes of the raw 
parameter estimates obtained using the moment method [20] are given as : 
£/A2 = 5.09xl0"8, ajA2 =18.26xl(T6, ajA2 =0.47xlO"6, a>„ =132.56, 
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and fc, = 2322. Note, the intensity level A need not be known for FEM-FPK 

predictions at the same excitation level as the measured data. This is 
advantageous since excitation may in general be difficult to measure. 

5.  Application to a pair of non-linear oscillators 

A 4D FEM-FPK version can be applied for example to an isolating suspension 
system [21], which in general represents a pair of coupled non-linear equations: 

x + ax + Kxx + K3x
3 + yx62 = A^w^t)] 

e+ße + G:e+G3e
3 +y9x2 = A2w2(oj 

(17) 

By setting zx = x, z2 = 6 and z3 = x, z4 = 6 the state space model becomes: 

f 7 \      f 

Z2 

\z4j 

-az3 -KyZi -K3z\ -jzxz\ 

-ßz4 - Gxz2 - G3z\ - yz2z
2 

+ 

WO     0     0     OY   0   1 
Wi(0 

0     0     0     0 

o 4,  o  A2 V- J 

0 

\W2(t)j 

(18) 

where A: and A^ are white noise intensities; A!2and A21 are cross-correlations, 
all scaled by a factor 2% . The FPK equation can be written as follows: 

„   ,td1p    „   ,     d2p        Aid
2p     d ,     .      d   .     . 

2izA\ —4r+2TO4, , —-4—+ TIA, —^ - — (z3p) - — (z4p) 
" dz3az4 az4     dzx dz2 dzl 

+ \(ccz3 +KlZl + K.z3 +rzlz
2

2)p}+-^-[(ßz4 + Gxz2 + G3z2 +yz1z
2

2)p] = 0 d_ 

dz3
lx J    aZi, 

... (19) 
Equation  (19)  can  be  solved  exactly in specific  cases,   such  as  when: 

A      A 
An =AZ1= 0,— = -%■ = 27 (a nonzero constant), the solution is then: 

a     ß 

/Xz!,z2lz3,24)=Cexp - — j-^z'+^zf+^Qz? +-G£ +^Tz2zl 
a_ 2 §_ i 

Zi   0. z4 2\      2A, 

... (20) 
To  establish the finite region for application of the 4D FEM-FPK, the 
equivalent linear forms of equations (17) are: 

x + cd + (Kr + 3K3a
2

x +ya2
g)x = A^^t)] 

6 + ß6 + (G1+3G3c
2

g+yc72x)d = A2w2(t)\ 
(21) 

Solving (21) for the amplitude and velocity mean-square values leads to: 
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<y?=- 
nAx 

aiK^K^l+yol) 
and en 

Mi (22) &   (23) 

A, and  erf 
«4? (24) &   (25) 

9     /JC^+SGjffJ+rö) °      cc 
To demonstrate this 4D FEM-FPK, the parameter values were set to: 
£, = 01= 1.0 and K3 = G3 = 0.5, with 7 = 0.0 and A,=A2= 1/VTT . Note, 

although introducing no change to the FEM-FPK solution method, setting 
7 = 0.0 effectively uncouples equations (17) - which can in fact then be solved 
with a 2D FPK [10]. But from the FEM viewpoint the problem can still be 

0.6- 
Exact solution 

1296 nodes 
= 81 nodes 

1 ■ ' " 1 
.it 1 iti - 

0.0      0.5       1.0       1.5      2.0      2.5       3.0      3.5       4.0 

Figure 4.: Response amplitude marginal density function for pair of nonlinear oscillators. 
4D FEM-FPK predictions compared with exact solution. 

seen as if it were 4D, the advantage being that exact marginal densities can be 
trivially obtained from the exact jpdf. Use of statistical linearisation [1], gives 
(after 11 iterations) converged values of ax = cr9 = 0.538 which are used, 

along with symmetry, to define the finite FE region: 
0 < zj < 3.7 ,0 < z2 < 5.0,0 < z3 < 3.7,0 < z4 < 5.0. This region is made-up of 

4D equivalents of cuboid elements, each with 16 nodes. Figure 4 shows 
response amplitude marginal density predictions obtained with this 4D FEM- 
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FPK compared with the exact solution. Only two cases are considered, 
namely 34 = 81 and 64 = 1296 nodes respectively. This second case involves 
solution of a linear system of equations in 1296 unknowns. But since a 
systematic node numbering system is used, the bandwidth of the coefficient 
matrix is very much larger than the minimum value of 81. Although the 
comparison for the second case, shows good agreement, very many more nodes 
would clearly be needed to obtain accurate extreme-value statistics. This would 
not be possible with the present approach owing to computer storage 
limitations. 

6. Conclusions 

Accurate stationary response amplitude pdfs are shown to be efficiently 
obtained using a 2D FEM-FPK approach applied to a realistic non-linear model 
for SDOF clamped-clamped beam vibration. This model has been corroborated 
experimentally at the marginal density level. Application of the FEM to 
extreme-value prediction, via threshold crossing statistics, shows good 
agreement compared with simulation, for a beam type model. Moreover, 
application of a 4D FEM-FPK associated with a pair of non-linear oscillators, 
shows reasonable agreement with the exact solution at the marginal level. But 
for n > 2, use of a systematic FEM node numbering scheme is not suitable for 
extreme-value prediction owing to the large bandwidth of the FEM coefficient 
matrices. To circumvent this problem for application to higher dimensions a 
sophisticated global node numbering scheme is needed to enable space saving 
linear equation solution techniques to be of benefit. 
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Abstract 

The simulation of mechanical system random vibrations is important in 
structural dynamics, but it is particularly difficult when the system under 
consideration is nonlinear. Artificial neural networks provide a useful tool for 
the modeling of nonlinear systems, however, such modeling may be inefficient 
or insufficiently accurate when the system under consideration is complex. 
This paper shows that there are several transformations that can be used to 
uncouple and simplify the components of motion of a complex nonlinear 
system, thereby making its modeling and random vibration simulation, via 
component modeling with artificial neural networks, a much simpler problem. 
A numerical example is presented. 

Introduction 

Structural system random vibration simulations are required in a wide 
variety of applications. Development of techniques that can generate such 
simulations accurately and efficiently is important, particularly in frameworks 
where numerous simulations are required, frameworks like Monte Carlo 
analysis. In practically all situations where the excitation is Gaussian and the 
system under consideration is nonlinear, the responses will be nonlinear and 
non-Gaussian, and it is important that simulations preserve the characteristics 
of the response as accurately as possible. 

Artificial neural networks (ANNs) have been applied to the autoregressive 
modeling of nonlinear system random vibrations. Investigations have shown 
that nonlinear structures can be modeled with ANNs, at least in the case of 
simple systems. (See, for example, Yamamoto, [15].) In principle, 
complicated systems can also be modeled using ANNs. This can be done 
directly (i.e., without any substantial transformation of the input or output 
data) using many types of ANNs. As the complexity of the system increases, 
an ANN that can naturally and efficiently accommodate a large number of 
inputs must be used for system simulation. When a mechanical system is 
modeled using an autoregressive ANN to directly simulate motions at a large 

* This work was supported by the United States Department of Energy under 
contract No. DE-AC04-94AL85000. Sandia is a multiprogram laboratory 
operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy. 
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number of degrees of freedom, a very large number of exemplars of motion 
will be required to train the ANN to accurately represent the system. The 
reason is that it takes a large number of exemplars to adequately populate a 
high dimensional input space. 

This paper shows how the ANN modeling of nonlinear structures can be 
made more efficient and accurate when using data measured during 
experimental, stationary random vibration. There are a number of operations 
that can be performed on the data to accomplish these goals. Among these are: 
(1) principal component analysis, (2) localized modal filtering, (3) elimination 
of statistically dependent components of motion, and (4) transformation of the 
components of motion to statistically independent, standard normal random 
signals. These operations are briefly described in the following sections, along 
with the modeling of the components with two types of ANN - the feed 
forward back propagation network (BPN) and the connectionist normalized 
linear spline (CNLS) network. An example is included to assess the random 
vibration simulation capabilities of the ANNs. The accuracy of the simulations 
is evaluated in terms of spectral and probabilistic measures. 

Data Reduction 

It is important to reduce the dimensions of motion of a complex system for 
the reason listed in the introduction, i.e., the amount of data required to train a 
very complex system directly is great. Further, because the CNLS net is a local 
approximation network, it is important to minimize the number of network 
inputs. The reason is that network size grows rapidly with the number of 
inputs. To limit the complexity of the input/output mappings required to model 
a complex system, the system motions can be decomposed into simple 
components. In general, the ANN modeling of physical systems can often be 
made more efficient and accurate by preprocessing the training data using any 
of a number of simplifying transformations. Among these are: (1) principal 
component analysis, (2) localized modal filtering, (3) elimination of statistically 
dependent components of motion, and (4) transformation of the components of 
motion to statistically independent, standard normal random signals. The hopes 
in using these transformations are that the ANN required to model a component 
of behavior will be simpler than a model for the entire system, and that a 
simpler model will be easier to train. Exactly how these transformations fit into 
the response simulation framework will be discussed more later, the overall 
framework is described in Figure 4. These operations are briefly described in 
the following subsections. 

Principal Component Analysis - SVD 

Principal component analysis of complex structural system motions is 
aimed at decomposing the motions into their essential constituent parts. A 
special example of this is the modal decomposition of linear systems, and 
analogous decompositions can be defined for nonlinear systems using, for 
example, singular value decomposition (SVD), or a principal component 
analysis ANN. 
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SVD is described in detail, for example, in Golub and Van Loan [4]. It can 
be used to decompose linear or nonlinear structural motions in the following 
way. Let A: be an nxN matrix representing the motion of a structural system 
at N transducer locations and at n consecutive times. The form of the SVD is 

X = UWVT = uwvT (1) 

V is an N x N matrix; its columns describe the characteristic shapes present in 
the rows of X. W is an NxN diagonal matrix whose nonnegative elements 
characterize the amplitudes of the corresponding shapes in V. The elements in 
W are normally arranged in descending order. Its largest elements correspond 
to the most important components in the representation. U is an nxN matrix; 
its columns are filtered versions of the motions represented by the columns in 
X. The reason that U is said to be a filtered form of the motions in AT is that 
the columns of both V and U are orthonormal with respect to themselves. 
Therefore, 

U = XVW~l (2) 

and VW~l serves as a filtering coefficient. Because some of the elements of W 
may be zero or nearly zero, indicating components that do not contribute 

substantially to the characterization of AT, the elements of W~ are taken as the 
inverses of the diagonal elements in W that are greater than a cutoff level; zero 

or near zero elements in W are replaced with zeros in W~ . The approximate 
equality on the right side of Eq. (1) indicates that some components of the 
representation can be zeroed, and still maintain a good approximation to AT. In 
the experimental framework, the components of W whose ratio to the 
maximum value is lower than the experiment noise-to-signal ratio are set to 
zero. The matrices u, w, and v are the matrices U, W, and V with 
components removed. 

The columns of the matrix u are the principal components of the 
representation. It is the evolution of the system represented in the columns of u 
which we seek to simulate. Once models are established to simulate system 
response through simulation of the columns of u, the models can be used 
along with system initial conditions to predict structural response. The 
predicted response can be used, along with Eq. (1), to synthesize response 
predictions in the original measurement space. 

Principal Component Analysis - ANN 

ANNs can be used in a number of application frameworks, and one of the 
focuses of this paper is to show how components of a complex system motion 
can be modeled with ANNs. However, a particular ANN can also be used as a 
means for decomposing complex system motions into simpler components. 
This ANN is the principal component ANN (PCANN). (Baku and Hornik, 
[2]) The PCANN is simply a multi-layer network of perceptrons like the 
standard BPN (Freeman and Skapura, [3]), but it has a particular geometry, 
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shown in Figure 1. Let (xA be a row vector of iV elements, the jth row of data 

in the matrix X defined above. Then the collection of all the rows of X provide 
n exemplars - both input and output - for training the PCANN in Figure 1. 
Some important features of the ANN in Figure 1 are that (1) it is a BPN with 
one hidden layer, and (2) the number of neurons, R, in the hidden layer is 
smaller than N, the number of columns in the measurement matrix. The idea 
behind the PCANN is that it compresses the information in the input layer into 
the information present in the hidden layer, then uses this information to 
reconstruct, as accurately as possible, the original signal on the output layer. 
To obtain optimal effect from the PCANN, sigmoidal activation functions 
would normally be used in the hidden and output layer neurons. However, 
when linear activation functions are used in the hidden and output layer 
neurons, the ANN weights are related to the components of the SVD, Eq. (1). 

Figure 1. Geometry of the principal component artificial neural network. 

Let the jth row of u be the hidden layer outputs, («yJ in Figure 1. The 
columns of u are the principal components of the PCANN representation. It is 
the evolution of the system represented in the columns of u which we seek to 
simulate. Once models are established to simulate system response through 
simulation of the columns of u, the models can be used along with system 
initial conditions to predict structural response. The predicted response can be 
used, along with the portion of the PCANN to the right of the hidden layer, to 
synthesize response predictions in the original measurement space. 

Normally, only one of the principal component analyses described in this 
and the previous sections would be applied to the data. 

Modal Filtering 

Modal decomposition of complex system motions is often used for the 
simplification of mechanical system response when the model for the system is 
assumed linear or approximately linear. In fact though, data-based modal 
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decomposition can be used on any collection of data; its purpose is to break the 
data into simple narrowband components, thereby simplifying system 
characterization, and perhaps simulation. When such a decomposition is used 
on nonlinear system or general system data, it is often referred to as modal 
filtering. 

Modal filtering of measured data can be performed in one of two 
frameworks. First, a single modal analysis can be used to filter measured data 
into its component parts. The problem with this is that when a system is 
nonlinear, its characteristics can change with response magnitude, and the 
number of principal components (modes) also changes. It is difficult for a 
single model to accurately capture such changes. The second alternative is to 
specify multiple modal filters, and use each one in a particular range of 
response amplitudes. A very simple realization of this type of analysis would 
involve the use of two modal models. One would be applied to data below a 
particular threshold, and the other would be applied to data above the 
threshold. A more complicated application creates a linear modal model at each 
step in a system analysis. Such a model is described in Hunter [7]. 

The form of a modal filter is similar to the SVD, but the means for 
obtaining the filter factors is much different. Meirovitch [9] describes the 
theoretical operations included in the definition and use of a modal filter. 
Allemang and Brown [1] outline practical means for performing data-based 
modal analysis. The form of the modal filter can be expressed as 

X = VSf = us<pT (3) 

where X is the same mechanical system motion representation as above. The 
columns of <j) represent the characteristic shapes of the system, and the diagonal 
matrix S contains normalizing factors. When X comes from a linear system the 
columns of U are the linear modal components of the system motion. As with 
the SVD, the approximate equality on the right indicates that some components 
of the representation can be eliminated, and still maintain a good approximation 
to X. It is the evolution of the columns in u (a reduced form of U) which we 
seek to simulate. Once models are established to simulate system response 
through simulation of the columns of u, the models can be used along with 
system initial conditions to predict structural response. The predicted response 
can be used, along with Eq. (3), to synthesize response predictions in the 
original measurement space. 

When multiple decompositions are used to filter the motions of a complex 
system, then multiple expressions like Eq. (3) are used to obtain modal 
components. 

Elimination of Statistically Dependent Components 

Although some of the principal component analyses of the previous 
sections may produce orthogonal components, some of the components may 
be completely or highly statistically dependent upon others. For example, a 
structure may have two modes with nearly the same modal frequency. One 
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modal motion may be nearly a sine wave, and the other may be nearly a cosine. 
The motions are practically orthogonal, but they are still statistically dependent. 
Statistical independence of sources implies orthogonality, but orthogonality 
does not necessarily imply statistical independence. For the sake of efficiency, 
we seek to eliminate statistically dependent components from the set to be 
modeled, then reintroduce these components during physical system 
simulation. In this way, ANN modeling of structural behavior is simplified. 

When a dependency exists, it can be characterized using the conditional 
expected value of the variables in one column of u given values in another 
column of u. This requires approximation of a joint probability density 
function (pdf) of the data, and this can be obtained using the kernel density 
estimator. (See Silverman, [13].) The pdf approximation is known as the 

kernel density estimator (kde). Let (w,), j = 1,...,«, denote the row vectors of 

the matrix u. The kde of the random source u is given by 

/«(«) 
1     " 

nhNk 
CC-(Uj) 

- oo < u < oo (4) 

where a is an N x 1 variate vector, K(.) is a kernel function, and h is a 
window width parameter of the kernel function. The kernel function can be any 
standard probability density function, and often the pdf of a multivariate 
standard normal random vector is used. That is 

*w=^exp(-H (5) 

where x is the N x 1 variate vector. Using the kde in Eq. (4), the estimator for 
the conditional pdf of elements in one column of u given the values in another 
column of u can be obtained using the standard formulas. (See, for example, 
Papoulis [11].) 

A statistical dependency between two columns of u can be detected by 
forming the bivariate pdf estimator of the random source of the two columns 
using the kde with data from the columns in question, then evaluating and 
plotting the conditional expected value of one variable, given a range of values 
of the Other variable. At each point where the conditional expected value is 
evaluated, the conditional variance can also be evaluated. The conditional 
expected value and variance can be evaluated for situations in which the data in 
the two columns of u are lagged with respect to one another. If a lag is found 
where the conditional variance is uniformly small, i.e., small at all locations 
defined by the conditioning variable, then a statistical dependency has been 
detected, and the functional form of the dependency is defined by the 
conditional expected value. The dependent variable can be eliminated from 
modeling consideration. When modeling has been completed and it is 
necessary to restore the eliminated component, this can be accomplished using 
the conditional expected value developed here. 
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The effect of eliminating components of motion that are completely 
dependent on other components is to eliminate some columns in the matrix u. 
Denote the reduced matrix ur\ our objective is to model the evolution of the 
columns of ur with an ANN. 

Rosenblatt Transform 

The previous step produces a description of the motion of a complex 
structure in terms of a set of components, none of which is completely 
statistically dependent on others. We can further transform the components, the 
columns of ur, into signals that are statistically independent with Gaussian 
distributions. The transformation that accomplishes this is the Rosenblatt 
transform. (See Rosenblatt, [12].) The Rosenblatt transform has the following 
form. 

22=^"1(42l«1(«2l«l)) (6) 

zN = ®-\FUN]UX„MN_X{CCN I ah...,aN_i)) 

where the zh i = l,...,N, are uncorrelated, standard normal random variables, 
&(.) is the cumulative distribution function (cdf) of a standard normal random 

variable, ®~l(.) is its inverse, and the F(.) are the estimated marginal and 
conditional cdf's of the random variables that are the sources of the columns of 
u. These approximate cdf s can be obtained by integrating Eq. (4), and this can 
be accomplished directly when the kernel used in Eq. (4) is Eq. (5). 

The Rosenblatt transformation is uniquely invertible because the exact and 
approximate cdf s used in Eq. (6) are monotone increasing. The data in the 
matrix u can be transformed to the standard normal space by using it in Eq. (6) 
in place of the a's. The matrix z is composed of the elements z;, i = l,...,N, 
and is the same size as the matrix ur with the same number of nonzero 
columns. 

It is the evolution of the values in these columns that is to be simulated with 
ANNs. Because the columns in z are statistically independent, we need only to 
create ANN models for signals in individual columns. Once models are 
established to simulate system response through simulation of the columns of 
z, the models can be used along with system initial conditions to predict 
structural response. The predicted response can be used, along with the inverse 
form of Eqs. (6), to synthesize response predictions in the original 
measurement space. 
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Modeling of Component Motion with ANNs 

Our ultimate objective is to simulate complex system motion, and we aim to 
do this by simulating the components of system motion obtained using the 
decompositions and transformations described above. Many ANNs are suitable 
for this task. The two that we consider in this paper are the feed forward back 
propagation network (BPN) and the connectionist normalized linear spline 
(CNLS) network. The BPN is the most widely used ANN and it is described 
in detail in many texts and papers, for example Freeman and Skapura [3], and 
Haykin [5]. The BPN is very general in the sense that it can approximate 
mappings of relatively low or very high input dimension. It has been shown 
that, given sufficient training data, a BPN with at least one hidden layer and 
sufficient neurons can approximate a mapping to arbitrary accuracy (Hornik, 
Stinchcombe, and White, [6]). 

The CNLS network is an extension of the radial basis function neural 
network (Moody and Darken, [10]). It is described in detail in Jones, et.al., 
[8]. It is designed to approximate a functional mapping by superimposing the 
effects of basis functions that approximate the mapping in local regions of the 
input space. Because it is a local approximation neural network, we cannot use 
the CNLS network to accurately approximate mappings involving a large 
number of inputs. The CNLS network has not been widely used for the 
simulation of oscillatory system behavior. 

To simulate a column in z using either of the ANNs described above, we 
configure the net in an autoregressive framework. This configuration uses as 
inputs previous response values and the independent excitation, and yields on 
output, the current response. Figure 2 shows such an application 
schematically. The quantity Zß denotes an element in the ith column of z at the 
jth time index. The quantity <?y denotes the excitation at the jth time index. Lj 
denotes a lag index. There are m system response input terms; there are M+2 
excitation terms The configuration shown in Figure 2 implies our belief that 
there is a mapping 

zy+U = 8i(zji>zj-Luh--->zj-Lm,i><Ij+l><lj>-"><Ij-LM) (?) 

and that the ANNs can identify that mapping. The subscript i on the function 
g(.) indicates that the functional mapping varies from one column of z to the 
next, and a different ANN models each mapping. It is normally anticipated that 
the time increment, At, separating system motion measurements that are the 
rows of the matrix X is small relative to the period of motion of the highest 
frequency component we intend to simulate. 

We seek to train both types of ANN to model the behavior of the 
oscillations represented in the columns of z. One ANN of each type (BPN and 
CNLS net) is used to model each column of z. The inputs to the ANN are 
current and lagged (past) values of the transformed response and the one-step- 
into-the-future value, the current value, and lagged values of the excitation. 
The ANN output is the transformed response one step in the future. Both the 
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ANNs are trained using the scheme described in Figure 3. The ANN inputs 
are transformed using a feed forward operation. The ANN output is compared 
to the desired output, and the error is used to modify the ANN parameters. The 
BPN uses a back propagation and gradient descent scheme in each training 
step. The CNLS network uses least mean square (LMS) plus random sampling 
scheme to identify its parameters. The desired effect of training in both types of 
ANN is to modify the parameters of the network to diminish the error of 
representation of the input/output mapping. 

zj,i -» 

zJ-hi -* A 
zJ-LmJ -» N 

Qj+1 -> N 
<?;-> 

Zj+U 

IJ-LM —» 

Figure 2. Schematic of ANN in autoregressive configuration. 

Figure 3. Schematic describing training sequence for ANNs. 

Summary 

Figure 4 summarizes the decomposition, simulation, and modeling of 
structural motion described in the previous sections. The principal component 
analysis in the second box in the top row refers to one of the following: SVD, 
PCANN, or modal filtering. The synthesis in the fourth box in the second row 
refers to the corresponding inverse operation - Eq. (1), the right half of Figure 
1, or Eq. (3). 
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In the example that follows, one form of principal component analysis will 
be combined with ANN simulations to model a nonlinear structure's random 
vibrations. 

Decomposition and Modeling Operations 

Struct. 
Motions 

Elimof 
Dependent 
Comps 

Transform 
to indep, std 
norm comps 

Simulation of Response 

Simulate 
Comps w/ 
ANNs 

Inverse 
Rosenblatt 
Transform 

Restore 
Dependent 
Comps 

Synthesize 
Using 
Approp Eq 

- 
Struct 
Motion 
Simulation 

Figure 4. Summary of operations in system simulation. 

Numerical Example 

We simulate in this example the motion of a simple, nonlinear 10 degree- 
of-freedom system excited with a Gaussian white noise. Figure 5 shows a 
schematic of the system. The damping connecting the masses is linear viscous. 
The springs have a restoring force that is a tangent function. The system 
physical parameters are summarized in Table 1. Training data for the neural 
networks were generated by computing response over 8192 time steps (box 
number one on the top line in Figure 4); excitation and responses at ten 
locations were recorded. The time increment between response realizations is 
0.04 second. Figure 6 shows the displacement response at the 10th mass. This 
is the location where the simulation-to-experiment comparisons are made in the 
present example, and where the simulation yielded the poorest match to the 
experimental results. 

The responses were placed in a matrix X as referred to in the previous 
sections, and its SVD was computed (box number two on the top line of 
Figure 4). The singular values of the response indicate that accuracy of about 
89% should be achieved by simulating the system response with its first four 
components. The four components were not strongly statistically dependent, 
so none was removed. The kde of the four components indicate that none is 
highly non-Gaussian, therefore, the Rosenblatt transform was not used. The 
first four components of the response were modeled with both BPN and 
CNLS nets (box number five on the top line in Figure 4). 

The entire system was tested in autoregressive operation, as described in 
Figure 2, using data generated over 1000 steps of response computation. The 
initial conditions and excitation were used to start then execute a random 
vibration response simulation with ANNs in the space of u (box number one 
on the second line of Figure 4). The test was iterated, i.e., the estimated 
responses at step j were used as initial values for response predictions at time 
indices greater than j. The first and most significant column of u from the test 
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data and the first column from the ANN simulated data are compared in 
Figures 7a and 7b. This is the dominant component of the response. The match 
is good, particularly in view of the fact that the simulation is iterated. Note that 
although these and later response predictions remain fairly well in phase with 
the test responses, this is not usually the case. Typically, we hope that the 
simulated response amplitudes match the test responses well, and accept the 
fact that phase will usually be lost. Figures 8a and 8b compare the spectral 
densities of the signals shown in Figures 7a and 7b. (These were computed 
using the technique described, for example, in Wirsching, Paez, and Ortiz, 
[14].) A block size of 256 data points was used, along with a Hanning 
window, and an overlap factor of 0.55. The first harmonic of motion, at 0.25 
Hz, is very well matched. A third harmonic of motion appears to be present in 
both the test and simulated signals; the BPN provides a better match of the 
third harmonic than the CNLS net. Figures 9a and 9b compare the kde's of the 
signals shown in Figures 7a and 7b. The responses are clearly non-Gaussian, 
as anticipated because of nonlinearity, and to some extent the simulated 
component responses match the character of the test response. This match 
needs to be improved to maximize the quality of the simulation. (Some of the 
mismatch is caused by the limited data - 1000 points - upon which the 
comparison is based.) However, as will be seen, the simulated synthesized 
responses have kde's that match test response kde's quite well. 

Table 1. Parameters of the test system. 

Tangent Maximum Viscous 
ndex Mass Stiffness Deformation Damping 

1 1.0 40 1.0 0.40 
2 0.95 38 1.0 0.38 
3 0.90 36 1.0 0.36 
4 0.85 34 1.0 0.34 
5 0.80 32 1.0 0.32 
6 0.75 30 1.0 0.30 
7 0.70 28 1.0 0.28 
8 0.65 26 1.0 0.26 
9 0.60 24 1.0 0.24 

10 0.55 22 1.0 0.22 
11 2 1.0 0.02 

The simulated responses are now reconstructed by substituting into Eq. (1) 
using the simulated u (box number four on the second line of Figure 4), and 
the results are compared to the test response at mass 10 (box number five on 
the second line of Figure 4). The result from the BPN simulation is shown in 
Figure 10a; the result from the CNLS net simulation is shown in Figure 10b. 
Of course, the matches are quite good since the dominant component is well 
simulated by both ANNs. Figures 11a and lib compare the spectral densities 
of the signals shown in Figures 10a and 10b. The spectral densities estimated 
from the simulated signals match those of the test signals well up to the 
frequency where components are no longer simulated; the CNLS net does a 
slightly better job of matching the test spectral density than the BPN. At mass 
10 the rms response of the test signal is 0.45 in, and the rms values of the 
simulated responses are 0.47 in and 0.40 in for the BPN and CNLS net, 
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respectively. The corresponding kde's of test and simulated responses were 
computed and are shown in Figures 12a and 12b. The probabilistic character of 
the responses appears to be matched well by the ANN simulations. 

q 

a    i—i i—r^ 
$-Ar i   -Ar~ '"  -Ar io -Ar\ 
$  1     ' '    2     11   S 

Figure 5. A nonlinear spring-mass system. 
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Figures 6. Response at mass 10 to Gaussian white noise input. 
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Figures 7a and 7b. Comparison of test and ANN simulated responses - 
Component 1. BPN simulation on left; CNLS simulation on right. ANN 
simulation - solid line; test data - dashed line. 
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Figures 8a and 8b. Comparison of the spectral density estimates of test and 
ANN simulated responses - Component 1. BPN simulation on left; CNLS net 
simulation on right. ANN simulation - solid line; test data - dashed line. 
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Figures 9a and 9b. Comparison of the kernel density estimators of test and 
ANN simulated responses - Component 1. BPN simulation on left; CNLS net 
simulation on right. ANN simulation - solid line; test data - dashed line. 
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Figures 10a and 10b. Test (dashed) and simulated (solid) responses at a mass 
10 in the simple system - BPN (left), CNLS net (right). 
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Figures 11a and lib. Test (dashed) and simulated (solid) estimated response 
spectral densities at mass 10 in the simple system - BPN (left), CNLS net 
(right). 

Figures 12a and 12b. Test (dashed) and simulated (solid) response kde's at 
mass 10 in the simple system - BPN (left), CNLS net (right). 

Conclusions 

A sequence of operations leading to the simulation of nonlinear structural 
random vibrations with ANNs is described in this paper. Such simulations are 
desirable because of their efficiency and relative accuracy. It is argued that if 
the motions can be decomposed and transformed into simple components, then 
the simulation will be simpler and more accurate. A numerical example 
confirms that relatively simple motions can, indeed, be modeled with ANNs - 
the BPN and CNLS net (a local approximation network) in particular. Given 
sufficient training data accurate simulations of simple components should 
always be possible, though obtaining satisfactory accuracy may require 
substantial effort. Accurate simulations should correctly reflect probabilistic, 
spectral, and all other characteristics of the simulated component responses. 
When component responses are correctly modeled then system level responses 
will be simulated accurately. 
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ABSTRACT 
In this paper, we report a set of vibration transmission experiments that are conducted to investigate how the 
pseudoelasticity of shape memory alloys (SMAs) affects the transmissibility characteristics of a spring-mass system, 
where a shape memory alloy rod is used as a spring. The tests are conducted by subjecting the SMA bar under 
tension-compression and under bending. The test results indicate that compared with ordinary alloys, SMAs have a 
much higher damping. Most importantly, the damping property depends on the amplitude of the responses indicating 
that the spring-mass system is nonlinear. Furthermore, the high damping property persists to the high frequency 
limit (above 1 KHz) permitted by the equipment setup. 

Keywords: Shape memory alloys, Nitinol, vibration damping, hysteresis 

1. INTRODUCTION 

Shape memory alloys (SMAs) such as Nickel-Titanium (NiTi) and Copper- Zinc-Aluminum (CuZnAl) exhibit nonlin- 
ear mechanical properties. Specifically, in a temperature environment which is higher than the phase transformation 
temperature of the material, when an applied stress exceeds a certain threshold, stress induced phase transformation 
generates large strains in the material so that the material can accommodate large strain with little change in the 
applied load. On the unloading cycle, a reverse phase transformation takes place, thus no permanent deformation 
remains. Moreover, the stress-strain relationship during this loading and unloading cycle shows hysteresis. This 
phenomenon is called pseudoelasticity. The lower elastic modulus and higher material damping of SMAs are desir- 
able characteristics of passive vibration control systems. Previous investigations show that the damping of SMAs 
displays a peak and the elastic modulus demonstrates a trough in the vicinity of the phase transformation during 
the heating and cooling processes [l]-[3]. Some researchers have pointed out that the pseudoelasticity of SMAs can 
augment passive damping significantly in structural systems and SMAs have potential application in passive vibra- 
tion control [4]-[5j. Recently, a research study has been undertaken to measure acceleration transmissibility of NiTi 
shape memory alloy springs [6]. 

Among all of these studies listed above, the investigators failed to realize that the measurements on the damping 
coefficient and Young's modulus depend on the specific test methods used. In [7], we have used continuum models 
of pseudoelastic SMA model to illustrate the nonlinear nature of the dynamic response of SMAs. In this paper, we 
present experimental evidence on the nonlinear behavior of the materials. 

When used as actuators, SMAs typically have a very slow response to thermal actuations unless SMAs are made 
into very fine filaments. For this reason, SMAs have the perception of being limited to low frequency applications. 
But when used as a passive vibration damper, the high damping property is not limited to low frequency applications. 
Here, we demonstrate the high damping property of SMAs to a high frequency permitted by our equipment setup. 

(Send correspondence to Z.C.F.) 
Z.C.P.: Email: zfengQmit.edu; Telephone: 617-253-6345; Pax: 617-258-5802 
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Figure 1. The experimental setup of the tension-compression test. 

2. EXPERIMENTAL SETUP AND PROCEDURE 
Our vibration tests include tension-compression test and bending test. The experimental setup for these two types 
of tests are similar. Fig. 1 is a schematic diagram of the tension-compression test setup. A test specimen is mounted 
vertically by a clamping fixture attached to a shaker. Its top end is fixed to a mass. In bending test, the specimen is 
fixed horizontally at one end and with a mass of 150g at the other end. The base harmonic motion is generated from 
HP3562A Dynamic Signal Analyzer, then amplified through B&K Power Amplifier 2707 and finally provided by B&K 
Exciter body 4801 with general purpose head 4812. Both base excitation and the response at the end of a specimen 
are picked up by two accelerometers Picomin 22 and PCB 309A respectively. The signals pass through two Kistler 
5004 Charge Amplifiers to be feed into an HP 3S62A Dynamic Signal Analyzer to obtain transmissibility curves. 
The transmissibility curves are easily acquired from the frequency response measurement by a sine sweep within the 
frequency range of interest. During each measurement, the base motion level is kept constant and recorded in voltage 
for convenience. All test specimens are circular rods, acting as springs in the testing mechanical spring-mass system. 
The SMA rods are binary NiTi alloys obtained from Shape Memory Applications Inc. of Santa Clara, California. 
Steel and aluminum rods are also used as our specimens for comparison. For each specimen, the transmissibility 
properties of the system are investigated under several base motion levels to observe the nonlinearity of the system 
dynamics. All tests are carried out at room temperature. 

3. TENSION-COMPRESSION VIBRATION TRANSMISSIBILITY EXPERIMENT 

The parameters of specimens are listed in Table 1. The acceleration transmissibility curves obtained are shown in 
Fig. 2-Fig. 5, where the mass in the spring-mass system is 250g. It is readily seen that the pseudoelasticity of SMAs 
does have significant effects on vibration transmissibility characteristics. The NiTi rods behave as nonlinear softening 
springs. When the base motion level increases, the resonant peak shifts to lower frequency and the peak becomes 
lower. This indicates that the equivalent elastic modulus of the NiTi rod becomes lower and its material damping 
becomes higher as the base motion level (measured by the input voltage to the shaker) increases. Higher base motion 
levels result in larger strains in the rods. For example, the strain amplitudes in the NiTi #2 rod are about 0.001%, 
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Figure 2. Tension-compression vibration transmissibility curves of NiTi Rod # 1 at different base motion levels. 

0.008%, 0.015% and 0.03% corresponding to the base motion levels 0.3V, 2.0V, 4.0V and 8.0V respectively. This 
amplitude dependence of the elastic and damping properties of the material is significally different from those of 
conventional alloys. Fig. 4 and Fig. 5 are the transmissibility curves of a steel rod and an aluminum rod. Under two 
different base motion levels, the transmissibility remains the same. Since the system response at resonances is very 
big owing to the very low damping of the materials, our experimental setup prevents us to test higher input levels. 
Quantitative results related to the transmissibility curves are listed in Table 2. 

The nonlinearity of the system dynamics is apparent in the amplitude dependence of the damping ratio and the 
resonance frequency. This is seldom appreciated in the past. Although the damping ratio and the material Young's 
modulus are often measured using vibration tests, only one excitation level is used in many tests. Thus this nonlinear 
phenomenon is often not noticed. 

Table 1. Parameters of Test Specimens of 
Tension-Compression Vibration 

Specimen Length (mm) Diameter (mm) Mass (g) 
NiTi # 1 240 5.86 42.3 
NiTi # 2 250 4.96 31.6 

Steel 617 4.80 86.9 
Aluminum 716 6.36 61.2 
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Figure 3. Tension-compression vibration tfansmissibility curves of NiTi Rod # 2 at different base motion levels. 
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Figure 4. Tension-compression vibration transmissibility curves of steel rod at different base motion levels. 
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Figure 5. Tension-compression vibration transmissibility curves of the aluminum rod at different base motion levels. 

Table 2. Some Experimental Results of 
Tension-Compression Vibration 

Specimen 
Base Motion 
Level (V) 

Resonant 
Frequency (Hz) 

Modal Damping 
Ratio (%) 

Resonant Peak 
Value (dB) 

NiTi # 1 
0.3 684.2 0.52 39.6 
2.0 673.0 0.83 35.5 
8.0 650.0 1.30 30.9 

NiTi # 2 

0.3 613.0 0.55 38.8 
2.0 596.5 1.00 32.1 
4.0 583.0 1.10 29.2 
8.0 551.9 1.60 25.6 

Steel 
0.5 714.6 0.09 55.9 
2.0 714.5 0.10 54.3 

Aluminum 
0.5 533.3 0.12 55.6 
2.0 533.2 0.10 55.9 

Our results listed in Table 2 show that SMAs have higher dampings at a frequency above 500 Hz. This indicates 
that the pseudoelastic properties of SMAs persist up to reasonably high frequencies relevant to vibration and acoustic 
control. It is well known that the higher damping of the materials is associated to the movement of the boundaries 
between different metallurgical phases. It is believed that such movement of interfaces takes place at the speed of 
sound in the solid. Therefore, the higher damping properties of pseudoelastic SMAs are expected to persist up to 
even higher frequencies. 

To investigate the damping properties of pseudoelastic SMAs at even higher frequencies, we conducted another 
set of tension-compression tests. To acquire higher resonant frequency of the system, we shorten the specimens and 
use a smaller mass of 150g. The lengths of the specimens of NiTi # 1, NiTi # 2 and steel rods are 150mm,120mm and 
230mm respectively. Fig. 6, Fig. 7 and Fig. 8 are their transmissibility curves measured. It is evident that the SMA 
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Figure 6. Tension-compression vibration transmissibility curves of NiTi Rod # 1 at higher resonant frequency. 

rods are effective as vibration isolators up to a frequency over IK Hz. The limited power of the shaker prevented us 
from experimenting with even higher frequencies. Some quantitative measurements related to the transmissibility 
curves are given in Table 3. 

Table 3. Some Experimental Results of 
Tension-Compression Vibration at Higher Frequency 

Specimen 
Base Motion 
Level (V) 

Resonant 
Frequency (Hz) 

Modal Damping 
Ratio (%) 

Resonant Peak 
Value (dB) 

NiTi # i 

0.3 1028 0.23 39.6 

1.0 1021 0.51 37.1 

2.0 1011 0.53 34.8 

4.0 997 1.10 32.4 

NiTi # 2 

0.3 1061 0.39 41.8 
1.0 1052 0.68 37.7 

2.0 1039 0.83 34.5 
4.0 1016 0.96 31.0 

Steel 
0.3 1504 0.02 70.2 

2.0 1503 0.01 70.9 

From Table 2 and Table 3 we can see that the SMA specimens have damping ratios which are an order of magnitude 
higher than those of steel specimens. When the SMA specimens are subjected to maximum base excitation delivered 
by the shaker (which has 100 pound maximum force), the peak tension-compression strain remains less than one 
percent. Since NiTi materials have been shown to have very good fatigue life if the strain is less than 2 percent [8], 
it is thus safe to say that even higher damping ratio can be achieved in practical usage if the SMA component is 
designed to operate at close to 2% peak strain. A 2% peak strain seems to be small, but it is nearly an order of 
magnitude higher than the maximum elastic strain in many conventional metal alloys. 
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Figure 7. Tension-compression vibration transmissibility curves of NiTi Rod# 2 at higher resonant frequency. 
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Figure 8. Tension-compression vibration transmissibility curves of the steel rod at higher resonant frequency. 
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The tension-compression tests at large strains could be conducted using a larger shaker. We point out, however, 
that in conducting such tests, lateral (bending) vibration must be prevented. Since the base motion is also a source of 
parametric forcing of the bending modes, the tension-compression tests can be complicated by the onset of parametric 
instability of the bending modes. 

4. BENDING VIBRATION TRANSMISSIBILITY EXPERIMENT 

To examine the damping properties of SMAs under larger strains, we conducted bending tests. In the bending 
tests, the resonance frequency (the fundamental mode) is much lower than the tension-compression mode, thus the 
shaker can exert a much larger displacement. The parameters of specimens are listed in Table 4. The acceleration 
transmissibility curves are shown in Fig. 9 - Fig. 12. The same qualitative trend as the tension-compression 
experiment is seen. As we would expect, the resonant peaks of the system with NiTi rods are more heavily suppressed 
than the tension-compression tests. For example, the resonant peaks of the systems with specimen NiTi # 1 and 
NiTi # 2 drop from 35.5 dB to 18.9 dB and from 32.1 dB to 14.4 dB respectively for the same base motion level of 
2 V. Since strains generated in bending tests are larger than in tension-compression tests and larger strains lead to 
larger areas of the hysteresis loop in the stress-strain curve of the NiTi rods, higher damping and lower equivalent 
elastic modulus occur in the NiTi rod. This indicates that the pseudoelasticity of SMAs makes SMAs more effective 
particularly in large- amplitude vibration controls. Unlike the tension-compression vibration tests, the acceleration 
transmissibility curves for the steel and the aluminum rods at different levels of base motion no longer collapse to a 
single one. This nonlinearity is not caused by the constitutive laws of the material but rather by the geometric and 
inertial nonlinearity owing to the large amplitude of the vibration. In addition the compliance of the fixture may 
also contribute to the nonlinearity. Some quantitative measurements related to the transmissibility curves are given 
in Table 5. 

Table 4. Parameters of Test Specimens of Bending Vibration 
Specimen Length (mm) Diameter (mm) Mass (g) 
NiTi # 1 100 5.86 17.6 
NiTi # 2 80 4.97 10.1 

Steel 200 4.80 28.2 
Aluminum 150 6.36 12.8 

Table 5. Some Experimental Results of Bending Vibration 

Specimen 
Base Motion 
Level (V) 

Resonant 
Frequency (Hz) 

Modal Damping 
Ratio (%) 

Resonant Peak 
Value (dB) 

NiTi # 1 

0.1 24.8 2.2 28.0 
0.3 24.1 2.9 26.0 
1.0 22.4 4.4 20.9 
2.0 20.9 4.6 18.9 

NiTi # 2 

0.1 22.8 3.5 23.2 
0.3 21.9 4.5 20.3 
1.0 19.8 6.8 16.3 
2.0 18.2 7.1 14.4 

Steel 
0.1 22.2 0.18 51.5 
0.3 22.1 0.34 43.8 

Aluminum 
0.1 23.1 0.097 47.3 
0.3 23.0 0.17 46.0 

Although larger peak strains can be achieved in the bending tests, peak strain occurs only at locations farthest 
from the neutral axis. Perhaps the more cost effective way of utilizing SMAs in bending vibration control is to place 
SMAs away from the neutral axis in a composite beam. 
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Figure 9. Bending vibration transnfissibility curves of NiTi Rod # 1 at different base motion levels 
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Figure 10. Bending vibration transmissibility curves of NiTi Rod # 2 at different base motion levels 
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Figure 11. Bending vibration transmissibility curves of the steel rod at different base motion levels 
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Figure 12. Bending vibration transmissibility curves of the aluminum rod at different base motion levels 
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5. CONCLUSION 

Our test results indicate that compared with conventional alloys, SMA materials have a much higher damping ratio. 
In fact, the material properties are nonlinear. We observe that the resonance frequencies and the damping ratios 
are dependent on the excitation levels. When conventional parameters such as the damping ratio and the Young's 
modulus are used to characterize these nonlinear materials, we must realize that these parameters will be dependent 
on the test methods and procedures. 

As we would expect based on the fact that the stress-induced phase transformation takes place at the speed 
of the sound, the higher damping associated with pseudoelasticity persists to frequencies high enough for practical 
vibration and acoustic applications. 
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ABSTRACT 

The reduction in thermal deflection and random response of composite 
plates with embedded shape memory alloy fibers (SMA) at. elevated 
temperatures is investigated. The stress-strain relations are developed for a 
thin composite lamina with embedded SMA fibers. Finite element equations 
and computational procedures are presented for composite plates with 
embedded SMA with the consideration of nonlinearities in geometry and 
material properties. The results demonstrate that SMA can be effective in 
reduction of thermal deflection and random response of composite plates at 
elevated temperatures. 

INTRODUCTION 

For some alloys, a given plastic strain can be completely recovered 
when the alloy is heated above the characteristic transformation (austenite 
finish, Tf) temperature. This shape memory effect phenomenon is attributed 
to the material which undergoes a change in crystal structure known as a 
reversible austenite to martensite phase transformation. The solid-solid phase 
transformation also gives an increase in Young's modulus by a factor of three 
or four and an increase in yielding strength approximately ten times. The 
transformation temperature can be altered by changing the composition of the 
alloy. Many alloys are known to exhibit the shape memory effect. They 
include the copper alloy family of Cu-Zn, Cu-Zn-X (X=Si, Sn, Al, Ga), Cu- 
Al-Ni, Cu-Au-Zn and the alloys of Ag-Cd, Au-Cd, Ni-Al, Fe-Pt and others 
[1]. Nickel-Titanium alloys (Ni-Ti orNitinol) are the most common SMA [2], 

SMA has been used as actuators for active control of buckling of 
beams [3] and shape control of beams [4]. It is also being investigated in 
active vibration control of beams [5], rotating disk/shaft system [6], large 
space structures [7] and flow-induced vibration [8]. The design of extended 
bandwidth SMA actuators was also investigated [9]. 

Composites with embedded SMA fibers use shape memory alloy fibers 
as reinforcements which can be stiffened or controlled by the addition of heat. 
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The concept of active damage control of hybrid material systems using the 
SMA as embedded induced strain actuators has been proposed [10]. Active 
vibration control of flexible linkage mechanisms using SMA fiber-reinforced 
composites has been investigated [11]. Acoustic transmission and radiation 
control by use of the SMA hybrid composites was presented [12, 13]. 
Manufacturing of adaptive graphite/epoxy structures with embedded Nitinol 
wires was recently reported [14]. Detailed formulations of the bending, modal 
analysis and acoustic transmission of SMA reinforced composite plates have 
been presented [15, 16]. 

A limited number of investigations on the thermal postbuckling 
deflection of SMA fiber-reinforced composite plates exists in the literature. A 
feasibility study on reduction of thermal buckling and postbuckling deflection 
of composite plates with embedded SMA fibers was reported [17] and the 
passive control of random vibrations of SMA embedded composite plates 
using the analytical continuum method was presented [18]. The finite element 
analysis of random response suppression of composite panels using SMA was 
recently proposed [19]. In all those investigations, the material nonlinearities 
were not considered. 

In the present paper, the stress-strain relations for a thin composite 
lamina with embedded SMA fibers are presented. Governing equations for 
postbuckling and random vibration of SMA fiber-reinforced composite plates 
are presented using the finite element method. Solution procedures using the 
incremental and Newton-Raphson iteration methods are presented. Numerical 
examples are given. 

CONSTITUTIVE AND FINITE ELEMENT FORMULATION 

Consider a thin composite lamina; for example, graphite-epoxy, 
having an arbitrary orientation angle and with SMA fibers embedded in the 
same direction as the graphite fibers. The stress-strain relations for such a 
lamina in the principal material directions are derived in Appendix. For a 
general k-th layer with an orientation angle 9, the stress-strain relations, Eqs. 
Al 7 and Al 8, become 

and 
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where [0*] and [0]mare the transformed reduced stiffness matrices of the 
composite lamina and the composite matrix, Ts is SMA stimulating 
temperature (austenite start temperature), respectively. The resultant force 
and moment vectors of the SMA fiber-reinforced composite plate are defined 
as 

or 
'A*   B* 

B*   D* 

NA. AL 
(3) 

K j [A<J [M^\ ' [Ma 

where the laminate stiffness [A*], [B*] and [D*] are all temperature 
dependent, the recovery inplane force {TV*} and moment {M'} vectors are 
dependent on temperature and prestrain (see Fig. A2). The vectors {Ng} and 
(M0) are the force and moment vectors due to initial stress {a°}. The 
recovery and the thermal inplane forces and moments due to the SMA 
recovery stress and the temperature change, respectively, are 
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(5) 

(6) 

The inplane strain and curvature vectors, {s°} and {K}, are defined 
from the von Karman strain-displacement relations as 

e* ".* *1'2 
zy 

■  =  < v,y 
■ + • wfy/2 ■ + • 

V», [U.y+V^ W.*W,y, 

} + z 
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(7) 

= {S°}+Z{K} 

where wo is the initial deflection (sum of the converged thermal deflections 
from previous incremental steps) which is necessary for the nonlinear material 
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properties considered, and u and v are the in-plane displacements and w is the 
transverse deflection measured from the initial deflection position. 

The governing equations for a SMA fiber-reinforced composite plate 
subjected to a combined thermal and random excitation loads can be derived 
through the use of a variational principle. The system equations in finite 
element expression can be written in the form 

M, 0 
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P* 

or 

= {PO)} + {PAT}- iP'}- {P. } + {PATO) ' {PL} ~ {P«o} 
(8b) 

where [M] is the system mass matrix, [K] and {P} are the system stiffness 
matrices and the load vector, respectively; [K'r] and [^Ar] are geometric 

stiffness matrices due to the recovery stress a*( or {N*}) and thermal 
inplane force vector {NAT}, respectively; [K<r] and [Ko] are the geometric 
stiffness matrices due to the initial stress {oo} and the initial deflection {Wo}, 
respectively; [Nl] and [N2] are the first and second-order nonlinear stiffness 
matrices which depend linearly and quadratically upon displacement {W}, 
respectively; [NU] is the first-order nonlinear stiffness matrix which is 
linearly dependent on the displacement {W} and the known initial deflection 
{Wo}. The subscripts b and m denote bending (including rotations) and 
membrane components, respectively; subscripts r, a and o represent that the 
corresponding stiffness matrix or load vector is dependent on the recovery 
stress a*, initial stress {GO} and initial deflection {Wo}, respectively; and the 
subscripts B, Nm and NB indicate that the corresponding stiffness matrix is due 
to the extension-bending coupling laminate stiffness [B], membrane force 
vectors {Nm} (=[A*]{s°}) and {NB} (=[B*]{K}), respectively. The stiffness 
matrices [K], [Nl], [NU] and [N2] are also temperature dependent and all the 
matrices in Eq. (8b) are symmetric. Detailed derivations of the governing 
equations and expressions for the element matrices and load vectors are 
referred to [19-21]. 
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SOLUTION PROCEDURES 

Equation (8b) is a set of nonlinear ordinary differential equation with 
respect to time t, and some of the load vectors are independent to time t. The 
solution for Eq. (8b) consists of a time-dependent solution and a time- 
independent solution as 
{W) = {Ws) + {W(t)}t (9) 

where {Ws} is the time-independent solution and its physical meaning is the 
large thermal deflection, and {W(t)}t is the time-dependent dynamic solution 
whose physical meaning is small random oscillations about the static 
equilibrium deformed position {Ws}. 

Thermal Deflection or Postbuckling 
For nonlinear material properties of SMA, the incremental method 

should be employed. This implies that the material properties are treated as 
constant within each small increment of temperature. Substituting Eq. (9) into 
the system equation of motion, Eq. (8b), and neglecting the higher order terms 
of {W(t)}! for small random response, two sets of equations can be obtained. 
One is the time-independent nonlinear algebraic equations which yield the 
thermal postbuckling deflection {Ws} and it can be written as 
([K]-[KNAT] + [K;] + [Ka] + [K,] + tiNll+[Nh]s+UN2ls){Ws} 

= {PAT}-{Pr'}-{P<,} + {PATo}-{Pr:}-{Pao) 
where the nonlinear stiffness matrices, [Nl]s, [Nl0]s and [N2]ss, linearly and 
quadratically depend on the thermal displacement {Ws}. The temperature 
dependent nonlinear material properties are handled with small temperature 
increments of AT, and the material properties are thus considered to be 
constants within each small temperature increment. The initial deflection and 
initial stress are both zero at the first temperature increment. The effects of 
initial deflection and stress are thus included in the formulation. One effective 
approach for solving Eq. (10) involves the application of Newton-Raphson 
iterative method. Thus, the i-th iteration Eq. (10) can be written as 
[KuJ!{AW)l+i={AP}I (11) 

then [^Un]i+1 and {AP}i+1 are updated by using 
{W,)M=<W,h + {W}M (12) 

The solution process seeks to reduce the imbalance load vector {AP}, and 
consequently {AW}, to a specified small quantity ( 10"5   in this study). The 
tangent stiffness matrix and the imbalance load vector are 
[Kln]i=[K]-[KlliT] + [Z] + [Ktt] + [K0] + [Nl]ti+[Nl.h+[N2]ui     (13) 
and 

1645 



{A?},. = {p„) - {pr-} -{pj+{p^}- {p;0}- {p00} 

- ([*] - lKmT] + [<] + [*„] + [*„] + H^L + [# U* + ÜN2]ssi){Ws)i 

where the nonlinear stiffness matrices [Nl]», [Nlo]» and [N2]ssi are evaluated 
using {^};. The total thermal deflection is the sum of the converged {Ws} 
from the many small temperature increments. 

Random Response Analysis 
The other equation derived from Eqs. (8b) and (9) is a dynamic 

equation, and it can be written as 

[M\{W{t)}t 

+ ([K]-[KmT] + [K;]HK,] + lK0] + [Nll +W.]. +[N2U{W{t)}t    (15) 

= W)} 
The sum of stiffness matrices in Eq. (15) is exactly the converged tangent 
stiffness matrix from Eq. (11). Therefore, there is no need to assemble the 
system stiffness matrices by considering the effects of SMA recovery stress, 
thermal stress, and thermal deflection from each element as in the 
conventional finite element approach. By set {P(t)}=0, Eq. (15) is a standard 
linear eigenvalue problem, and the natural frequencies and mode shapes of 
vibration about the thermally deflected position are obtained. 

Substituting a modal transformation and truncation of {W), = [§]{q} 
into Eq. (15) with the consideration of damping, a set of uncoupled modal 
equations about the thermally deflected or buckled position can be expressed 
as 

Ut)+K*rir(t) + *?1r(t) = frt>»r 1=1, 2,..., N (16) 
where the modal mass, stiffness and force are 

Thus, the root mean square (RMS) of maximum deflections and strains can be 
easily determined. 

RESULTS AND DISCUSSION 

The results shown in this study were based on an SMA fiber- 
reinforced composite laminate, where the graphite-epoxy composite was 
treated as matrix. The following material properties were used in the analysis: 

SMA-Nitinol Graphite-Epoxv 

Ts   \00°F(37.7S°C) Ei    22.5(155) 

Tf   145(62.78) Ez    1.17(8.07) 
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E's   From Reference [2] Gl2 0.66(4.55) 

a *   From Reference [2] 
G* ■ 3.604 Msi (24.9 GPa),T<Ts u.n     0.22 
G*   3.712 Msi (25.6 GPa), T>Ts 
u      0.3 p 0.1458 xlO-3 (1550.07) 

p     0.6067 *W* lb-s2/in\6450Kg/m3) a. -0.04 x 10"6(-0.07 x 10"6) 

a     5.7xl0-*/".F(10.26xl0-VC) a2 16.7 xlO"6(30.1 xlO"6) 

The finite element used in this investigation is the three-node Mindlin (MTN3) 
plate element with improved transverse shear [22]. A reference or ambient 
temperature T0 = 70° F and a uniform temperature distribution are used in all 
the examples. 

Thermal Deflection 
A simply supported 15x12x0.048 in. rectangular (0/90/90/0)* laminate 

with or without SMA fibers is studied in detail. The mesh size is 10x8x2 for 
the full plate. Figures  1  and 2 show the maximum deflections versus 
temperature for a laminate with no SMA fibers (vs=0) and with 10%, 20%, 
30% SMA fibers and 3% prestrain (vs = 10%, 20%, 30% and sr =3%), 
respectively. It is seen that the thermal deflection of the panel without SMA 

approximately reaches 2 times the plate thickness (Wmax/h=2) at 200° F. For 
the panel with different volume fraction of SMA, Fig. 2 shows that the 
thermal   deflection   drops   dramatically   after  the   SMA  is   activated   at 
transformation temperature (T>Ts) and the deflection will increase gradually 
when the thermal expansion effects become dominant. The most important 
phenomenon is that although the Young's modulus of SMA is lower than that 
of the composite matrix material, the thermal deflections of the panel can be 
reduced because of the effects of recovery stress of SMA. It can be seen that 
the thermal deflections (Wmnx/h) are less than 1.0 at 200° F and less than 1.5 
at 300° F. Figure 3 shows the maximum deflection versus temperature for a 
laminate with 30% SMA fibers and 3%, 4% and 5% prestrains. Compared to 
Fig. 2, it is seen that the volume fraction of SMA fibers is more effective than 
the prestrain of SMA   in the reduction of thermal deflection. The thermal 
deflections versus temperature for a clamped 15x12x0.048 in. rectangular 
(0/90/90/0)s laminate are shown in Fig. 4. The clamped plate is more stiff than 
the simply supported. The critical buckling temperature for the clamped 
laminate without SMA is slightly higher than the SMA transformation 
temperature Ts. This leads to the postponement of thermal deflection until 

300° F for the clamped laminate with 10% SMA and 3% prestrain. In this 
clamped case, this implies that the thermal deflection can be completely 
eliminated for the highest operating temperature less than   300°F.  The 
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thermal deflection in the temperature range between the critical buckling 
temperature and SMA activated temperature for the simply supported case 
shown in Figs. 2 and 3 can also be suppressed by: 1) selecting the proper 
percentages of SMA fiber volume fraction and prestrain, and 2) altering the 
transformation temperatureT* by changing the composition of alloy. 

ttandom Response . 
For panels with SMA, the dynamic response is affected by the 

components of stiffness due to SMA ([K]) and due to recovery stress of SMA 
(rr 1) Note that the Young's modulus of SMA is lower than that of the 
composite matrix, thus the panel becomes less stiff when SMA fibers are 
embedded. The increase in the dynamic response, observed for some^case is 
due to the relatively lower modulus and higher mass density of the SMA. On 
the other hand, large inplane tensile forces are induced by the recovery stress 
of SMA and this effect will decrease the dynamic response of the paneL 
Figure 5 shows that the RMS(W.«/h) of the panel with 10% SMA fibers and 
5% prestrain at \70°F is slightly larger than that of the panel without SMA at 
170°F In this case, the recovery forces induced are not sufficient to 
overcome the loss of stiffness due to the modulus deficiency of SMA fibers. 
However the panel with 20% and 30% SMA fibers and 5% prestrain provide 
ample recovery forces to significantly reduce the panel dynamic response. 

Figure 6 shows the total maximum deflection of panel with no SMA 
fibers (vs=0) and for three SMA prestrain values sr = 3, 4 and 5% for each 

nonzero SMA volume fraction (vs=10, 20 and 30%) at 170°F and 
SSL=100dB. It clearly indicates that the six graphite/epoxy panels with SMA 
volume fraction of either 20% or 30% and sr =3, 4 and 5% are all 
acceptable designs. Compared to the panel with no SMA fibers, those panels 
give much small amount of maximum RMS random deflections as well as 
thermal deflections. . 

The power spectral density (PSD) of the maximum deflection at 100 

dB is shown in Fig. 7 for three cases: no SMA at 70° F; 10% SMA and 3% 
prestrain at 170°F; and 30% SMA and 5% prestrain at 170°F, respectively. 
It is seen that the SMA fiber-reinforced plates exhibit significant peak- 

amplitude reduction and frequency increase at 170° F. 

CONCLUDING REMARKS 

The stress-strain relations for a thin composite lamina with embedded 
SMA fibers have been developed. The finite element method has been 
successfully implemented to analyze the thermal deflection and random 
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response of SMA fiber-reinforced composite plates with the consideration of 
nonlinear material properties of SMA and nonlinearity in geometry. 

With the proper percentages of SMA volume fraction and prestrain 
and also the altering of transformation temperature by changing the alloy 
composition, the thermal deflection can be dramatically reduced. This 
reduction in thermal deflection could be useful in practical applications by 
maintaining optimal aerodynamic configuration for flight vehicles and 
eliminating snap-through motions. 

The RMS maximum deflection can be reduced with some 
combinations of SMA volume fraction and prestrain. After the SMA is 
activated and the recovery forces induced are sufficient to overcome the loss 
of stiffness due to the modulus deficiency of SMA, the dynamic response can 
be significantly reduced. 
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APPENDIX 

Stress-Strain Relations of a SMA Embedded Composite Lamina 
A representative volume element of a SMA fiber-reinforced composite 

lamina is shown in Fig. Al. The element is taken to be in the plane of the 
plate. The composite matrix, for example graphite/epoxy, has the principal 
material directions 1 and 2 and the SMA fiber embedded in the 1-direction. 

In order to derive the constitutive relation for the 1-direction, it is 
assumed that a stress o, acts alone on the element (o2 = 0) and that the SMA 
fiber and composite matrix are strained by the same amount, s, (i.e., plane 
sections remain plane), the 1-direction stress-strain relation of the SMA fiber 
can be described as 

G1S = £>,+<C T>TS (Al) 

or 

<,U=E;&-*,&T), T<TS (A2) 

where  Ts is the austenite start temperature and a= is the thermal expansion 
coefficient. The Young's Modulus   E*   and the recovery stress  ar*   are 
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temperature dependent, indicated by superscript (*). The recovery stress a * is 

also dependent on the prestrain sr. For Nitinol, a * and £* can be determined 
from Figs. A2 and A3, respectively [2]. Similarly, the one-dimensional stress- 
strain relation in the 1-direction for the composite matrix can be expressed as 
°lm=£im(e,-almAr) (A3) 

The resultant force in the 1-direction (c2 = 0) is distributed over the 
SMA fiber and composite matrix and can be written as 
oA=ouAs +G}mA„, (A4) 

where (a,, Ax), ipu,As) and (v]m,Am) are the (stress, cross section area) of 
the entire element, SMA fiber, and composite matrix, respectively. Thus, the 
average stress o, is 

Vl=GuVs+°l»,Vn, (A5) 
where vs = As I Ax and vm = Aml Ax are the volume fractions of SMA and 
composite matrix, respectively. When T>Ts, the SMA effect is activated and 
the one-dimensional stress-strain relation in the 1-direction becomes 
a, = (£>, +o*)vs +£,«(8, -almA7>„, 

= £,*£,+ a^-^.a./.Ar 
where 

£;=£,mv„+£X (A7) 
When T<Ts, the SMA effect is not activated and the stress a, is 

°i = £*Si - (£XV* + £)malmv„,)AT 

= £*(s, -a*AT) 
where 

• (£l».ai».V».+£XVJ /AON a, = —, K*y) 

A similar constitutive relation may be derived for the 2-direction by 
assuming that the applied stress a2 acts upon both the fiber and the matrix 
(a, = 0). Thus, the one-dimensional stress-strain relations in the 2-direction 
for the SMA fiber and the composite matrix become 

c2s=o2 = E;(z2s-asAT) (A10) 
and 
°2m=°2=£2m(e2m-a2mAr) (All) 
respectively. The recovery stress does not appear in Eq. (A10), since the SMA 
fiber prestrain sr and recovery stress G* are considered to be a 1-direction 
effect only. 

The total elongation is due to strain in the composite matrix and the 
SMA fiber and may be written in the form 
A*2=Amz2m + Asz2s (A12) 
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Thus, the total strain becomes 

*2=&2»V.+*2,V, (A13) 

Since o2 =£*(e2l -a,AT), Eqs. (A10) and (All) may be substituted into 
Eq. (Al 3) to give 

s2=jr+a2AT 
(A14) 

Therefore, the modulus and thermal expansion coefficient in the 2-direction 
become 

r-     zr* 

.2- ._ _.    . (A15) 

and 
o-2=ct2mvm+asvs (A16) 
Expressions for the hybrid composite Poisson's ratios and shear moduli follow 
from similar derivations. 

The constitutive relations for a thin composite lamina with embedded 
SMA fibers can be derived using a similar engineering approach to give 

£, £ 2m     s 

(E2 mv,+E',vm) 

<*2ra vm +a.svs 

12. 

and 

°i 

^2 

"12 

öl'l 

02. 

Q;2 

Q' 

Q;2 

0 " e. «i 

0 s2 ■+• 0 ■v,-[< a2 

Q;6\ lr.2, 0^ 0_ 

vmAT,    T>TS  (A17) 

0       0 

0 " 
c 

Sl a, 
A 

0 • s2 
. _ . a2 ■Ar 

e;J \ 7.2. 0^ J 
r<7i (A18) 

where [0]m and [Q*] are the reduced stiffness matrices of the composite 
matrix and the composite lamina, respectively. The [Q*] matrix is temperature 
dependent and is evaluated using the previously derived relations as 

(£,\m2) = (E^ihu.K +(£», (A19) 
and 

(E2mK, Gl2mG*) 
(A20) IF* C* \ —   

^'^j = [(£2m,G!2Jv,+(£;,G>J 
where the u's are Poisson's ratios and the G's are the shear moduli. The 
thermal expansion coefficients a* and o^are derived in Eqs. (A9) and (Al6). 
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SIGNAL PROCESSING I 



DESCRIPTION OF NON-LINEAR 
CONSERVATIVE SDOF SYSTEMS 

Michael Feldman Simon Braun 

Faculty of Mechanical Engineering 

Technion — Israel Institute of Technology 
Haifa, 32000, Israel 

1 INTRODUCTION 

There are several methods developed for the analysis and identification of non-linear dy- 
namic systems and vibration signals [2, 8, 7, 9]. In the recent past the characterization 
of the response of non-linear vibration systems has been approached using the Hubert 
transform in time domain [4, 3]. The objective was to propose a methodology to identify 
and classify various types of non-linearity from measured response data. The proposed 
methodology concentrates on the Hilbert transform signal processing techniques essentially 
on signal envelope and instantaneous frequency extracting, which enables us to estimate 
both systems instantaneous dynamic parameters and also elastic (restoring) and friction 
(damping) force characteristics. When the traditional phase plane (3/, j) of a non-linear 
system is replaced by the complex plane (y, y), the signal envelope, the instantaneous 
frequency, and the obtained backbone takes an unusual fast oscillation (modulation) form 
[1]. In addition, the obtained envelope of the signal gains a bias in comparison with the 
phase plane amplitude [1]. This naturally occurring fast modulation and the bias requires 
more detail investigation. Further use of the Hilbert methodology for non-linear structures 

also invites more sophisticated analysis. 

2 PHASE PLANE REPRESENTATION 

The differential equation of motion for SDOF non-linear conservative vibration system 
may be written as my + K{y) = 0, where m - the mass, y - the acceleration, and K{y) 
- the restoring force which is a function of displacement y. The restoring force contains 
the linear stiffness and also any additional non-linear restoring force component. The 
second-order differential equation of a conservative system will then take the general form 

y + k(y) = Q (1) 
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Figure 1: Phase plane (dash line) and Analytic signal (bold line) representation of Duffing 

equation (e = 5) 

where the term k(y) = K(y)/m represents the restoring force per unit mass as a function 
of the displacement y. 

Traditionally we introduce a new variable y, which enables us to exclude time from 
the equation of motion although y and y are still time dependent, so y = % = ^y. In the 

new coordinates Eq.(l) takes the Mowing form: f = ^- Using of the new variable y is 
a traditional way of study the motion of an oscillator by representing this motion on the 
y, y plane (Fig. 1), where y and y are orthogonal cartesian coordinates [2]. Hence, the 

time for a full cycle becomes 

ry 

' = 4/ 
Jo 

dy 

p]f"~ /(0# 
(2) 

where ymBX - the maximum value of the displacement, so the velocity corresponding to 
ynlx in an extreme position is zero, /(•) = k(-). It is a well known fact that the expression 
obtained for T is a function of j/mox, thus for non-linear systems the period of oscillation 
depends on the total stored energy (non-isochronism of oscillation in non-linear system). 
We shall now divide the angle corresponding to the quarter of a complete circle into n 
equal small sectors dcj> = £. Next, we use Eq.(2) to estimate the integral, but separately 
for each i small interval with new limits: from h = cos[\ - d(f>(i - 1)] to Z„ = cos(| - d<j> i) 

T(0 = 4/ 
du 

'i fiSf^fitW 
(3) 

where u = y/ym*x- In this case only for a linear restoring force the last equation results in 
a constant value 27r. In general case of non- linear system the current period is a varying 
function of a phase angle (Ti(<f>) ^ const). An inverse function of the current period will be 
called an current angular frequency w;(<£) = §F. The current angular frequency does not 
remain constant, but fluctuates between a maximum and a minimum as the radius vector 
rotates between the y - and y-axes of the phase plane. Also the radius vector of phase 
plane r(4>) becomes to modulate, from its minimum up to the maximum value r(<j>) = 
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Figure 2: Solution (a) and periods (b) of the Duffing equation (e = 5, n = 100, bold line 
- the current period, dash line - the mean value of period 

Jy((f,y + y*{4>) = Jy{<t>)2 + 2fy"'~ f(Odt- To illustrate this interesting phenomena of the 
current period modulation let us consider an example of Duffing equation. 

y + (iW)y = ° (4) 
where e is the non-linear parameter. For the purpose of calculating the current pe- 
riod of free vibration, we substitute expression Eq.(4) into Eq.(3) and obtain T(i) - 
A r!» du Figure 2   shows the free vibration signal obtained via numeric 

J''    J(l-v2)(l+'(.l+u2)/2))' .    ,     ... 
integration of the Duffing equation together with the calculated current period of the so- 
lution for the total number of small sectors n = 100. It is clear that the the current 
period oscillates two times faster than the non-linear solutions. Now it is clear that the 
known direct integration for the total period Eq.(2) produces only an average value T 

which corresponds to the total cycle of the motion. 

3    COMPLEX PLANE REPRESENTATION OF AN- 
ALYTIC SIGNAL 

Let us consider another important technique of representation of vibration process in the 
time domain on the base of rotating vectors. According the analytic signal theory real 
vibration process y{t), measured by, say, a transducer, is only one of possible projections 
(the real part) of some analytic signal Y(t). Then the second projection of the same 
signal (the imaginary part) y{t) wiU be conjugated according to the Hubert transform. 
Using the traditional representation of analytic signal Y(t) in its complex, trigonometric 
or exponential form Y(t) = y(t) + jy(t) = |y(*)| [ cosrfr(t) + j sin^(t) ] = A{t) e*™ one 
can determine its instantaneous amplitude (envelope, magnitude) 

A(t) = \Y(t)\ = Jy>(t)+y>(t) = e^*™ 
and its instantaneous phase 

V>(i) = arctan4^ = Mlnn*)] 

(5) 

(6) 
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The instantaneous angular frequency is the time-derivative of the instantaneous phase: 

,*\   im y(t)m-mm _Im u(t) = ij){t) = -^  lm 
Y(t) 
no (7) 

Each point on complex plane is characterized with the radius vector A(t), and the polar 
angle ^ (Fig. 1). The analytic signal method is an expedient effective enough to solve gen- 
eral problems of vibration theory, among them - analysis of free and forced nonstationary 
vibrations (transient processes) and non-linear vibrations. 

3.1 The Hilbert transform 
The single-value extraction (demodulation) of an envelope and other instantaneous func- 
tions of a signal is an issue based on the Hilbert integral transform [7]. The Hilbert Trans- 
form of a real-valued function x(t) extending from -co to +oo is a real- valued function 
denned by H[y(t)\ = y{t) = \ fZo ^ dr, where y(t) - the Hilbert transform of the initial 
process y(t), and meaning of the integral implies its Cauchy principal value. Thus y(t) is 
the convolution integral of y{t) with (1/xi), written as y(t) = y(t) * (1/xi) . The double 
Hilbert transform yields the original function with an opposite sign, that's it carries out 
shifting of the initial signal in -x. The power (or energy) of a signal and its Hilbert trans- 
form are equal.  For n(t) lowpass and y(t) highpass signals with nonoverlapping spectra 

[7], 
K[n(t)y(t)] = n(t) »(*). (8) 

3.2 Approximate non-linear system representation 

The showning non-linear restoring force k(y) of the second-order conservative system Eq. 1, 
can be recast into multiplication of varying non-linear natural frequency w0(y) and of the 
system solution y+u%(y)y - 0. Let's assume that the varying non-linear natural frequency 
u0(y) could be separated into two different parts [5]. The first part w0 is much slower and 
the second component w^y) is faster than the system solution, so the equation of motion 

will be   
y + [ "l + "l(y)} y = o (9) 

The proof of the decomposition of a signal into a sum of low- and high-pass terms, based 
on Bedrosian's theorem about the Hilbert transform of a product, could be found in [6]. 
Now according to nonoverlapping property of the Hilbert transform Eq. (8 ) we use the 

Hilbert transform for both sides of Eq. 9 y + u%y + wf(y)y = 0. Multiplying each side of 
the last equation by j and adding it to the_corresponded_sides of Eq. 9 we get a differential 

equation in the Analytic signal form Y + u$Y + [ w\ + ju\ }y = 0, where Y = y + jy. This 
complex equation can be transformed to the commonly accepted form 

Y + j801Y + u2
01Y = 0 (10) 

,„2,„-, 
where u& = w0

2 + uly2+^y5 - the varying natural frequency, 6n = "lV;M|Vi - the fast 
varying fictitious friction parameter, and Y = y + jy - is the complex solution. 
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The obtained equation of the non-linear system has the varying natural frequency, 
consisting of slow ÜJJ and fast component, and also has the fast varying fictitious friction 
parameter S0i- It should be pointed that this non-stationary equation is not a real equation 
of motion. It is just an artificial fictitious equation which produce the same non-linear 

vibration signal. 

3.3 Non-stationary equation of motion in the analytic signal 
form 

Taking into account the analytic signal representations, enables one to consider this equiv- 
alent equation of motion so as to estimate instantaneous natural frequency and instanta- 

neous damping coefficient. 
Some general form of a differential equation of motion in the analytic signal form could 

be written 
Y + 2ho(A)Y + uZ{A)Y=0 (11) 

where Y - the system solution in the analytic signal form, h0 - the instantaneous damping 
coefficient, w0 - the instantaneous undamped natural frequency. This equation of motion 
will have varying coefficients that satisfied the envelope and instantaneous frequency of 

non-linear oscillated solution. 
Solving two equations for real and imaginary parts of Eq.(ll), we can write the expression 
for non-stationary coefficients as functions of a first and a second derivative of the signal 
envelope and the instantaneous frequency. 

•M-*-! + % + £ 

where u0(t) - instantaneous undamped natural frequency of the system, h0(t) - instan- 
taneous damping coefficient of the system, w, A - instantaneous frequency and envelope 
(amplitude) of the vibration with their first and second derivatives (w, A, A). 

3.4 Two-component signal representation 

Let us consider a conservative system having a single degree of freedom that are gov- 
erned by simple non-linear differential equation having the form Eq. 1 Assuming k can be 

expanded, one can rewrite Eq. 1 as [8] 

y + £ anyn = 0 (13) 
n=l 

where an = -r&(n)(yo) and fc(n> denotes the nth derivative with respect to the argument. 
We assume that the solution of Eq. 13 can be represented by an expansion having the 
form y(t, e) = eyi(t) + e2y2{t) + e3T/s(0 + • • • where the yn are independent of e. Retaining 
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Table 1: Formulas for extreme and mean values of instantaneous frequency and amplitude 

of biharmonics 

Inst. amplitude Inst, frequency 

Amin = Ai — At 

Am_x = Ai+A2 

Ä = A1Jl + Al/Al 

i 1         ,1       n~u\ 

Wmax - Wi + ,1,/^+! 

<"-<"_ + __?/äf+r 

two first main terms of the solution we will get an equation where each of amplitude and 
frequency is a function of linear and non-linear parameters of the system (Eq. 13). 

y[t) = j/_ + 2/2 = At cos u>it + A2 cos w2< (14) 

Universally known that the more close the frequency of the first term to the precise solution 

Wl _* 2x/T (Eq. 2) the better approximation. 
Consider the non-linear solution that consists of two quasi-harmonics each one with 

different amplitude and frequency in time domain. In this case, the signal can be modeled 
as a weighted sum of two monocomponent signals, each one with its own instantaneous 
frequency and amplitude function. Assuming that each individual signal has a large band- 
width and time duration product (with a purely positive IF), application of the Hilbert 
transform for both sides of Eq.(14) will produce an analytic signal of the form: 

Y{t) = Ale
Mt + A3e

iutt (15) 

The envelope and the instantaneous frequency of double-component vibration signal 

Y(t) are: 

A(t) = {Al + A\ + 2AiA2 cos[(w2 - wi)t}}1/2, (16) 

w<*> = «1 + (W1_^)-M»(*)        • (17) 

From Eq.(16) it can be seen that signal envelope consists of two different parts, that 
is a constant part included sum of component amplitudes squared A\, A\ and also a 
fast varying (oscillating) part, the multiplication of these amplitudes with function cos of 
relative phase angle between two components. The same inference could be made about 
the instantaneous frequency of the two-terms solution. The obtained formulas for extreme 
and mean values of instantaneous frequency and amplitude of the biharmonics are shown 

in Table 1. 
It is significant that the mean value of the instantaneous amplitude is very close to the 
corresponded amplitude of the first harmonics (Ä « A_). Also mean value of the instanta- 
neous frequency agrees closely with the frequency of the first harmonics (w « UJX). Again 
consider an example of the Duffing equation (Eq. 4). Using for instance the method of the 
analytic signal representation [9] one can get an equation for the first order approximation 

of the free vibration frequency 

4 = 1 + ■ 
"Sea1 

(18) 
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Figure 3: Backbone of the Duffing system (e = 5) 
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Figure 4:  The solution (a) and the instantaneous frequency (b) of the Duffing equation 

(C = 5) 

where a = ym&x is some maximum of the displacement.   This approximation of free vi- 
bration frequency (dot line on Fig. 3) maps an approximate backbone very close to the 

traditional precise backbone (bold line on Fig. 3). 
Let now an approximate solution be in a form which includes the first two harmonics only 

y(t) - yi(t) + y2(t) = Atcosuxt + A2 cos w2i (19) 

where u>2 = 3wx, A2 = *g-, Ax = 1 - A2 , K - numerical coefficient. The instantaneous 
frequency and the envelope of the solution derived from the Hubert transform takes the 
form of oscillated functions with double frequency (Fig. 4). The approximate double 
component solution (e = 5, ke = 156) coincides very closely with the numerical solution 
(Fig. 4, a). The corresponded envelope (dash-dot line), and instantaneous frequency (b) 

of the Duffing equation is also plotted in Figure 4. 
Maximum values of the envelope A(t) (Eq. 16) are equal to the chosen maximum of 
displacement a, but all other points of the envelope (dash-dot line on Fig. 4, a) including 
the average value of amplitude A are smaller than the maximum of displacement a. Now 
it is clear that for non-linear conservative vibrations two different estimations of amplitude 
could be suggested.  The first estimation is the maximum of displacement ymax which is 
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equal to the maximum of envelope ymax = Am&x. The second estimation is the average value 
of envelope Ä. The difference between the average value of envelope Ä and the maximum 
of displacement a could be considered as a small bias of amplitude of the solution. 

It is vital to note that the mean value of the instantaneous frequency ü obtained 
through the Hubert transform is equal to the theoretical value of the free vibration fre- 
quency (Eq. 2 ). On Fig. 4, b the dash line shows these two coincident functions, ü = 2-K/T 

This fact indicates that the Hubert transform is best representation of non-linear vibra- 

tions. 

3.5 Free vibration frequency and amplitude dependence 
Because we considered several different representations of vibration amplitude it is evident 
that we get some different backbone depictions. A traditional theoretical precise backbone 
of non-linear system is a dependency between the average free vibration frequency ü (cor- 
responded to the average total cycle of vibration, Eq. 2) and the maximum displacement 
Umax (Fig- 3, bold line). For a conservative system with a chosen maximum displacement, 
the theoretical backbone is no more than a point (+ on Fig. 3). As far as we can use the 
mean value of the envelope Ä, a dependency between this mean value and the average 
free vibration frequency w could be a new kind of the theoretical backbone (dotted line on 
Fig. 3). But the difference between these two backbone definitions is very small and cor- 
responds to the small bias. According to the traditional vibration system representation, 
conservative non-linear system has a constant amplitude. It means that vibrations of a 
conservative Duffing system should map on backbone plot just as a point with a constant 

amplitude and frequency. 
A somewhat different backbone for a conservative system is gained according to the in- 
stantaneous frequency and amplitude representation. Eliminating the time dependent os- 
cillating part cos[(u2 - u^t] from Eq.(16) and Eq.(17), we shall find the equation between 
signal instantaneous characteristics (envelope and frequency) and initial four parameters 

of signal components 

A2 = (Al-Al)^-^)^ Ai ^ A^ _, ^ (20) 

u>x + u>2 ~ 2w 

Equation (20) determines the signal envelope Aasa function of instantaneous frequency 
u in the form of an hyperbola, whose length and curvature depends on four initial pa- 
rameters of the biharmonics. So according to the Hilbert transform the instantaneous 
backbone of a non-linear conservative system stretches to a very short hyperbola (dashline 
on Fig. 3). This short length of hyperbola is the same for both the numerical solution and 
the approximate double component solution. The hyperbola goes very close both to the 
traditional theoretical point of maximum displacement (+) and to the approximate mean 
value of envelope (Fig. 3, o). Figure 3 also includes two additional backbones (short dash 
lines) corresponding to different maximum values (o) of the displacement. 

3.6 Real non-linear force estimation 
The proposed direct time domain method based on the Hilbert transform allows a direct 
extraction of the linear and non-linear parameters of the system y + uj0(y)2y = 0 from the 
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Figure 5: Cubic force characteristics of Duffing model (e = 5) 

measured time signal y of output. The resulting non-linear algebraic equations (Eq.12) 
are rather simple and do not depend on the type of non-linearity that exists in the struc- 
ture. When applying this direct method for transient vibration, the instantaneous modal 
parameters are estimated directly, with the corresponding equation 

y + Soiy + ^oil/ = ° (21) 

where u& - is the fast varying natural frequency, 50i - is the fast varying fictitious friction 
parameter, y - is the displacement, and y - is the Hubert transform of the displacement. 
With this representation of a non-linear solution we can try to solve an inverse identifi- 
cation problem, namely, the problem of estimation of the initial non-linear elastic force 

characteristics. 

3.6.1    Decomposition technique 

Let us consider the case of a conservative system with an initial non-linear spring. Accord- 
ing to Eq. 11 this real non-linear elastic force will produce two different fictitious members 
(elastic and hysteretic damping). The new restoring force, here assumed to be a function 
of displacement y and its Hilbert transform y. This restoring force includes both the fast 
hysteretic damping 60ly and the fast elastic force u&y. It means, that the initial non- 
linear spring force u>0{y)2y is split into two terms, and, by summing over the terms, the 
initial non-linear force characteristics can be extended. Therefore a simple composition of 
these two members of equation of motion (Eq. 21) will result in the real non-linear force 

characteristics: 
k[y(t)} = 2h0(t)y + w2

0(t)y (22) 

where k[(y)] is the real elastic instantaneous force, h0(t) is the instantaneous damping 
coefficient, u0(t) is the instantaneous undamped natural frequency. Fig. 5 shows an exam- 
ple of the instantaneous elastic force identification for the Duffing system (Eq. 4). Fig. 5 
includes the results of the identification according to formula Eq. 22 together with the 
initial cubic force characteristics k(y) = (1 + 5y2)y, but these lines agree so closely that 

there is no a difference. 
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3.6.2    Scaling technique 

Instead of the previous identification of the detail force characteristics, we can express only 
the relation between the maximum of elastic force and the maximum of displacement. It 
can be determined by following consideration. The total energy of a conservative vibration 
system is constant. During free vibration of the corresponded fictitious model (Eq. 11), for 
each moment the energy is partly kinetic, partly potential, and partly fictitious alternating 

positive or negative damping. 
To estimate maximum of elastic force we can find time points when all energy is stored 
in the form of strain energy in elastic deformation and the fictitious damping energy is 
zero. Using for instance the biharmonics representation of non-linear vibrations (Eq.15) 
one can show that these time points correspond to the maximum of displacement. This 
is an important conservative vibration system property, that around every peak point of 
the displacement the corresponding value of the velocity is equal to zero and vice versa. 
Therefore around every peak point of the displacement the contribution of the velocity in 
the varying instantaneous elastic force is negligibly small: y(U) = A(U), y(ti) = 0. The 
number of these peak points is far less than a total number of points of a vibration signal. 
Therefore it could be recommended to extract the envelope of the fictitious elastic force 
u>l(t)y to obtain the average value of the envelope. The obtained average envelope has 
a small bias relative to maximums of the spring force. Using the Hubert transform and 
the obtained expressions we can extract the maximum values of non-linear elastic force 
corresponded to the maximum of displacement (circle and star point on Fig. 5). 

4    CONCLUSIONS 
We can draw the following conclusions from the analytic signal representation. 
Whatever the method of non-linear vibration representation, both the instantaneous fre- 
quency and the amplitude of free vibration is a complicated signal.   Non-linear solution 
could be represented by an expansion of members with different frequencies or by a time 
varying signal with oscillated instantaneous frequency and envelope. 
The instantaneous frequency and envelope of non-linear vibration obtained via the Hubert 
transform are time varying fast oscillating functions. For example in the presence of a cubic 
non-linearity and a threefold high harmonics, the frequency of the instantaneous parameter 
oscillation is twice that the main frequency of vibration. 
The mean value of the instantaneous frequency obtained through the Hubert transform 
is equal to the theoretical total cycle average value of the free vibration frequency. The 
maximum value of vibration envelope is equal to the maximum of displacement. These 
facts indicates that the Hubert transform is one of the best representations of non-linear 
vibrations. Naturally there is a small difference (the bias) between the average value of 

the envelope and its maximum value. 
The dependency between the average envelope and the average instantaneous frequency 
plots the backbone that practically coincides with the theoretical backbone of non-linear 

vibrations. 
Using the proposed Hubert transform analysis in time domain we can extract both the 
instantaneous undamped frequency and also the real non-linear elastic force characteristics. 
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Abstract 

This paper presents a new technique for calculating Hilbert trans- 
forms of nonlinear system Frequency Response Functions (FRFs). 
The method employs rational function and pole-zero decomposi- 
tions of the FRF. The new method allows Hilbert transforms for 
zoomed, or generally truncated, data without the use of correction 
terms. The method is validated using a computer simulation of a 
Single Degree-Of-Freedom (SDOF) nonlinear oscillator. 

INTRODUCTION 

It is well-known that the occurrence of nonlinearities in engineering 
structures can have a significant effect on their behaviour. The most spec- 
tacular examples of this can be found in the literature relating to chaotic 
systems; the response of such a system to a deterministic excitation can 
be unpredictable beyond a short time scale. Also, any stability analysis 
for a nonlinear system will depend critically on the type of nonlinearity 
present. The question of detecting structural nonlinearity is therefore of 
some importance. 

The Hilbert transform is now established as a means of diagnosing 
structural nonlinearity on the basis of measured Frequency Response Func- 
tion (FRF) data [8]. It is essentially a mapping on the FRF G(u), 

W[G(«)] = G(u;) = ~ r dü^- (1) v   " iirJ-oo     Sl — u 

(where the integral is to be understood as a principal value). This mapping 
reduces to the identity on those functions corresponding to linear systems. 
For nonlinear systems, the Hilbert transform results in a distorted version 
G, of the original FRF, with the form of the distortion often yielding some 
indication of the type of nonlinearity. 
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The origin of the distortion is well-known [10]; suppose G{u) is decom- 

posed so, 

G(w) = G+H + G-(w) (2) 

where G+(o>) (resp. G~(w)) has poles only in the upper (resp. lower) half 
of the complex w-plane. It is a straightforward exercise in the calculus of 
residues [9], to show that (with u on the real line), 

VKJ-o 

du 
iirJ-oo(Q. — p)(ft — w)      W' 

if p is in the upper half-plane, and, 

1   /•«> du 
iirJ-«>{ti -p)(fl - w) w-p 

if p is in the lower-half plane. It follows that, 

(3) 

_r ^ = —L_ (4) 
ri-ooffi-p)(fi - w) w — p 

«[ff'H] = ±G±H (5) 

The distortion suffered in passing from the FRF to the Hubert trans- 
form will then be given by the simple relation, 

AG(u) = H[G(u)] - G(LJ) = -2G-(OJ) (6) 

This relation has already yielded some interesting results [4] and is the 
basis of the technique presented in this paper. The advantages of the new 
approach over the standard time- or frequency-domain methods will now 
be explained. 

One of the major problems in using the Hilbert transform on FRF data, 
occurs when non-baseband (data which does not start at zero frequency) or 
band-limited data is employed. Practically speaking, all data will fall into 
one of these categories and the problem of neglecting the contribution of 
the 'out of band' data always exists. Establishing baseband data is rarely 
a problem in simulation work, but can be a problem with experimental 
testing. For example, it is known [5], that the use of random excitation 
for nonlinear systems produces a FRF which is invariant under the Hilbert 
transform. This means that other excitation signals must be used. Most 
commonly, a stepped-sine signal is used, and this is time-consuming due to 
the need to reach a steady-state condition at each frequency increment. As 
a consequence, this excitation is usually applied over a limited frequency 
range, say uimin to uimax. 

Unfortunately, the idealised Hilbert transform of (1), is an integral over 
a doubly-infinite frequency range. In practice, the data over the intervals 
(-co, umin) and (wmox, co) will be unavailable. By making use of the parity 
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(oddness or eveness) of the real and imaginary parts of the FRF, the Hubert 
transform can be cast in the following form, 

2r „ 5G(ft) fi ,-x 
RG(w) = —/   du    0

V   ; (7) 

SGu;   =—      du —^ (8) 

and now the integrals are over the range 0 to oo; data will be missing from 
the intervals (0, wmin) and (uimax, oo). 

The problem of truncated FRF data is usually overcome by adding 
correction terms to the Hubert transform evaluated from wmin to ^Wc- In 
general, two corrections are needed, one for each of the missing intervals. 

In order to display the inconvenience of the procedure, a review of the 
relevant theory follows. It will later be shown that the method proposed in 
this paper circumvents the problem of the missing intervals i.e. truncation 

of the data. 

CORRECTION TERMS 

There are essentially three methods of correcting Hilbert transforms, 
they will be described below in order of complexity. 

The Fei Correction Method 

This approach was developed by Fei [2] for baseband data and is based 
on the asymptotic behaviour of the FRFs of linear systems. The form of 
the correction term is entirely dependent on the FRF type; receptance, mo- 
bility, or inertance. As each of the correction terms is similar in principle, 
only the term for mobility will be described. 

The general form of the mobility function for a linear system with 
proportional damping is, 

G(w) = £ «i-J+k^ (9) 

where: Ak is the complex modal amplitude of the kth mode; uik is the 
undamped natural frequency of the kth mode and & is its viscous damping 
ratio. By assuming that the damping is small and that the truncation 
frequency, uimax is much higher than the natural frequency of the highest 
mode, equation (9) can be reduced to (for w > oimal), 
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which is an approximation to the 'out of band' FRF. This term is purely 
imaginary and thus provides a correction for the real part of the Hubert 
transform via equation (7). No correction term is applied to the imaginary 
part as the error is assumed to be small under the specified conditions. 

The actual correction is the integral in equation (1) over the interval 
(umax, oo). Hence the correction term, denoted CH(w), for the real part of 
the Hilbert transform is, 

c>)._2 7 »«1._i£* /   *       (11) 
fc=l Wfllll 

which, after a little algebra [2], leads to, 

CR(    ) -u7nax^(G(uJmas)) /oWx + u\ .^\ 

1TU1 \U>max—w) 

The Haoui Correction Method 

The second correction term which again, caters specifically for baseband 
data, is based on a different approach. The term was developed by Haoui 
[3], and unlike the Fei correction has a simple expression independent of 
the type of FRF data used. The correction for the real part of the Hilbert 
transform is, 

V    ' 7T    J tt2 — U2 

The analysis proceeds by assuming a Taylor expansion for G(u>) about 
wmax 

aQd expanding the term (1 - w2/fi2)-1 using the binomial theorem. 
If it is assumed that wmM. is not close to a resonance so that the slope 
dG(u)/du (and higher derivatives) can be neglected, a straightforward cal- 
culation yields, 

c» = cH(o) - s(g(hw)) 
It 

where CR{0) is estimated from, 

+ 2w*      + 
771 ax 

CR(Q) = »(G(0)) 

"U/mas 
2    fjn9{G(n)) "I ■K    J 

d.O. 

0+e 

(14) 

(15) 

Using the same approach, the correction term for the imaginary part, 
denoted by CJ(u>), Can be obtained, 

1672 



C\wmax) = -5ft(G(uwx)) 
7T 

WWW 

— + ^-r- + T-r- + ■ ■ 
Wmar ^max    '    5uL 

(16) 

The Simon Correction Method 

This method of correction was proposed by Simon [7]; it allows for trun- 
cation at a low frequency, wmin, and a high frequency wmax. It is therefore 
suitable for use with zoomed data. This facility makes the method the most 
versatile of the three. As before, it is based on the behaviour of the linear 
FRF, say equation (9) for mobility data. Splitting the Hubert transform 
over three frequency ranges: (0, wm;n), (^miv.,^max) and (wmM, oo), the 
truncation errors on the real part of the Hubert transform, BR{w) at low 
frequency and the now familiar CR(w) at high frequency, can be written 

^^JT^M (17) 
■K    J U2 — W* 

0 

and 

O^.-l/aOgSdi (18, 
■K    J il2 — W* 

Wmai 

If the damping can be assumed to be small, then rewriting equations 
(17) and (19) using the mobility form (9), yields, 

^.)_i7«£_!* (i.) 
o k 

and 

Evaluating these integrals gives, 

B  (w) + C (w) = - £ ^T^f) rlQ {(wmax - wk){wk + ay.) j 

+wln(^ + W^—-iJ\)\ (21) 
\(w - wmin)(wmai + wjy j 

The values of the modal parameters Ak and Wk are obtained from an 
initial modal analysis. 
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Summary 

None of the three correction methods can claim to be faultless; trunca- 
tion near to a resonance will always give poor results. Considerable care 
is needed to obtain satisfactory results. The Fei and Haoui techniques 
are only suitable for use with baseband data and the Simon correction re- 
quires a prior modal analysis. The following section proposes an approach 
to the Hilbert transform which does not require correction terms and thus 
overcomes these problems. 

THE RATIONAL POLYNOMIAL METHOD 

The basis of this approach to calculating a Hilbert transform is to 
establish the position of the FRF poles in the complex plane and thus 
form the decomposition (2). This is achieved by formulating a Rational 
Polynomial (RP) model of the FRF over the chosen frequency range and 
then converting this into the required form via a pole-zero decomposition. 

A general FRF may be expressed as the sum of a number of modes, 
e.g. equation (9) for the mobility form. This 'summation' form is readily 
expanded into a rational polynomial representation, 

where, 

7lQ Tip 

Q(o,) = X>^ PH = X>a/ (23) 

and the polynomial coefficients a^ and &;, are functions of the natural fre- 
quencies, dampings and Ak of the modes. Modal analysis methods in the 
frequency-domain assume either a summation form (9) or an RP form (22). 
The coefficients are determined using optimisation schemes which find the 
parameters which best fit the data. Various methods exist which max- 
imise the numerical conditioning and precision of the resulting coefficients. 
The RP models fitted for the current work use an 'instrumental variable' 
approach which minimises the effects of noise and produces unbiased coef- 
ficients. The details of the method can be found in [1]. 

Once the RP model GRP is established, it can be converted into a 
pole-zero form, 

71(3 

n (« - «) 
GRP(U) = %  (24) 

new-») 
»=i 
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where g; and p; are the (complex) zeroes and poles respectively of the 
function. The next stage is a long division and partial-fraction analysis in 
order to produce the decomposition (2). If yf (resp. p~) are the poles in 
the upper (resp. lower) half-plane, then, 

w+     r+ If-    p- 

^PH-E-3^       G-RP(u) = Z-±r (25) 
t=l W        Pi i=l r* 

where C? and C~ are coefficients fixed by the partial fraction analysis. N+ 
(resp. N-) is the number of poles in the upper (resp. lower) half-plane. 
Once this decomposition is established, the Hilbert transform follows from 
(6). (It is assumed here that the RP model has more poles than zeros. 
If this is not the case, the decomposition (2) is supplemented by a term 
G°(w) which is analytic. Equation (6) which is used to compute the Hilbert 
transform is unchanged.) 

The procedure described above is demonstrated in the following section 
using data from numerical simulation. 

SIMULATION DATA 

A simulated Duffing oscillator system with equation of motion, 

y + 20y + lOOOOy + 5 x W9y3 = X sin(wi) (26) 

was chosen to test the calculation technique. Data was generated over 256 
spectral lines from 0 to 38.4 Hz in a simulated stepped-sine test based on 
a standard fourth-order Runge-Kutta scheme [6]. The data was truncated 
by removing data above and below the resonance leaving 151 spectral lines 
in the range 9.25-32.95 Hz. 

Two simulations were carried out. In the first, the Duffing oscillator 
was excited with X = 1.0 TV giving a change in the resonant frequency 
from the linear conditions of 15.9 Hz to 16.35 Hz and in amplitude from 
503.24xl(T6 m/N to 483.0xlO"6, m/N. The FRF Bode plot is shown 
in Figure 1, the cursor lines indicate the range of the FRF which was 
used. The second simulation took X = 2.5 N which was a high enough 
to produce a jump bifurcation in the FRF. In this case the maximum 
amplitude of 401.26xl0~6 m/N occurred at a frequency of 19.75 Hz. Note 
that in the case of this nonlinear system the term 'resonance' is being used 
to indicate the position of maximum gain in the FRF. 

RESULTS 

The first stage in the calculation process is to establish the RP model 
of the FRF data. On the first data set with X = 1, in order to obtain an 
accurate model of the FRF, 24 denominator terms and 25 numerator terms 
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were used. The number of terms in the polynomial required to provide an 
accurate model of the FRF will depend on several factors including: the 
number of modes in the frequency range, the level of distortion in the data 
and the amount of noise present. The accuracy of the RP model is evident 
from Figure 2 which shows a Nyquist plot of the original FRF, G(u) with 
the model GRP{OJ) overlaid on the frequency range 10 - 30 Hz. 

The next stage in the calculation is to obtain the pole-zero decompo- 
sition (24). This was accomplished here by solving the numerator and 
denominator polynomials using a computer algebra package. The zeros 
and poles are given in Tables 1 and 2 respectively. It may not be nec- 
essary to obtain the zeroes of the model, this is under investigation. In 
order to check the stability of the root extraction, the pole-zero model was 
compared with the measured data, an exact overlay was obtained. 

The penultimate stage of the procedure is to establish the decompo- 
sition (2). Given the pole-zero form of the model, the individual pole 
contributions are obtained by carrying out a partial fraction decomposi- 
tion, because of the complexity of the model, a computer algebra was again 
used. 

Finally, the Hilbert transform is obtained by flipping the sign of G~(u), 
the sum of the pole terms in the lower half-plane. The result of ths calcu- 
lation for the low excitation data is shown in Figure 3 in a Bode amplitude 
format. The overlay of the original FRF data and the Hilbert transform 
calculated by the RP method is given, the frequency range has been limited 
to 10 - 30 Hz. 

A simple test of the accuracy of the RP Hilbert transform was carried 
out. A Hilbert transform of the low excitation data was calculated using 
a standard FFT based technique [5] on an FRF using a range of 0-50 Hz 
in order to minimise truncation errors in the calculation. Figure 4 shows 
an overlay of the RP Hilbert transform (from the truncated data) with 
that calculated from the FFT technique. The Nyquist format is used. The 
figure shows that a satisfactory level of agreement has been achieved with 
the new calculation method. 

The second, high excitation, FRF used to validate the approach con- 
tained a bifurcation or 'jump' and thus offered a more stringent test of the 
RP curve-fitter. A greater number of terms in the RP model were required 
to match the FRF. Figure 5 shows the overlay achieved using 32 terms in 
the denominator and 33 terms in the numerator. There is no discernable 
difference. Following the same calculation process as above leads to the 
Hilbert transform shown in Figure 6, shown with the FRF. 

CONCLUSIONS 

A method of calculating Hilbert transforms from truncated Frequency 
Response Function (FRF) data is presented which has no need for cor- 
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rection terms. The rational polynomial (RP) technique operates without 
needing the functional form of the FRF data, it applies equally well to 
receptance, mobility and inertance forms. 

The main limitation in the method is in the ability of the RP curve-fitter 
to match the measured FRF. Sensitivity of the method to noise must be 
investigated. A further problem relates to uniqueness and overfitting of the 
model. This has already been addressed in the context of modal analysis 
e.g. through the use of stability plots, and the solutions discovered there 
should apply. 

The implementation of the algorithm used here was based on C code 
and computer algebra. It is intended to produce a single unified program 
to carry out the various steps. 
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Numerator Roots 

-1214.211008298219 - 726.1763609509598t 
-198.1314154141764 + 30.3650219120307Ü 
-183.7196601591438 + 0.07476628997601653^ 
-173.0468329728469 - 0.5823124151722738i 
-167.4159433485794 + 0.2499312686227596i 
-148.7724514912166 - 0.5776974464158378i 
-106.029245566151 + 6.329765806548005i 
-105.755520052376 - 6.440071308643175i 

-103.9415121027209 - 0.2292638139578766i 
-100.8868331667942 + 13.96371388356606i 
-100.3491120108979 - 13.55839223906875i 

-65.16772266742481 - 0.01242815581475099i 
-1.161302705005027 x lO-20 + 1357.57238929329Ü 

65.16772266742481 - 0.01242815581475099i 
100.3491120108979 - 13.55839223906875i 
100.8868331667942 + 13.96371388356606i 
103.9415121027209 - 0.2292638139578766i 
105.755520052376 - 6.440071308643175i 
106.029245566151 + 6.329765806548005J 

148.7724514912166 - 0.5776974464158373i 
167.4159433485794 + 0.2499312686227509i 
173.0468329728468 - 0.5823124151722609i 
183.7196601591439 + 0.07476628997601194i 
198.1314154141764 + 30.36502191203071i 
1214.211008298219 - 726.1763609509598i 

Table 1: Polynomial Numerator Roots for HCS1 data 
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Denominator Roots 

-198.1567099579465 + 30.40483782876573* 
-183.7196564899432 + 0.07470973423345939* 

-173.0468138842385 - 0.5822232400350739* 
-167.4160993615824 + 0.2497687709924406*' 

-148.7725565604598 - 0.577414017829206*' 
-106.1570440779208 - 5.352981785468519*' 
-105.7091945278726 + 6.50265208908201* 
-103.941962628465 - 0.2315241290997767*' 
-102.9807367369542 - 9.76073164473401* 
-100.121488863284 + 14.0251938763936* 
-97.6024028604877 - 15.11650445816473* 

-65.16768960663572 - 0.01273266773843805* 
65.16768960663572 - 0.01273266773843805* 
97.6024028604877 - 15.11650445816473*' 
100.121488863284 + 14.0251938763936* 
102.9807367369542 - 9.76073164473401*' 
103.941962628465 - 0.2315241290997704* 
105.7091945278726 + 6.502652089082006*" 
106.1570440779208 - 5.352981785468523* 
148.7725565604598 - 0.5774140178292062* 
167.4160993615824 + 0.2497687709924413* 
173.0468138842385 - 0.5822232400350746* 
183.7196564899432 + 0.07470973423345935* 
198.1567099579465 + 30.40483782876573*' 

Table 2: Polynomial Denominator Roots for HCS1 data 
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Figure 1: Bode plot of low exitation Duffing oscillator FRF. 
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Figure 2:  Overlay of RP model GRP(u) and original FRF G(u) for low 
excitation Duffing oscillator. 
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Figure 3: Original G(u) and RP Hubert transform GRP{UJ): Duffing oscil- 
lator - low excitation. 
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Figure 4: Comparison of RT and FFT Hilbert transforms for low excitation 
Duffing system. 
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Figure 5:  Overlay of RP model GRP(w) and original FRF G(u) for high 
excitation Duffing oscillator. 
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Figure 6: Original G(w) and RP Hilbert transform GRP(U): Duffing oscil- 

lator - low excitation. 
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Fractional Fourier Transforms and their Interpretation 

D.M. Lopes, J.K. Hammond and P.R.White 
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Abstract 

Fractional Fourier Transforms arise naturally from optical signal 
processing. However, their interpretation for one-dimensional signals 
are still to be fully explored. This paper is concerned with fundamental 
aspects, including: 

• Definition and relation to optics 
• Interpretation of signal decomposed in terms of 'linear chirps' 
• A generalised concept of group delay 
• The relationship to time-frequency distributions 
• Analytic and computational examples showing the relevance 

of the decomposition for non-stationary signals occurring 
commonly in acoustics 

Introduction 

The Fourier Transform (FT) is perhaps the most widely used 
tool in the signal processor's armament. It's simple definition, both in 
the analogue and digital domains enables fast and efficient 
computation. However, we should sometimes consider whether the 
information given to us via the FT, could not be better represented in 
some other form. The Fractional Fourier Transform (FRFT) is a 
generalisation of the traditional FT, which by changing a given 
parameter in the transform allows us to continuously move between 
the time and frequency domains. First used for solving fractional 
differential equations, the transform later found use in optical physics, 
and this link is explored in the first section. It can be shown that the 
FRFT can be viewed as a transform which has a set of basis functions 
consisting of 'linear chirps'; this is covered in the second section. These 
are simple harmonic waves, whose frequency changes linearly with 
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time. In the third section we concern ourselves with the question : 
'Given a signal, at what time does linear chirp make its maximum 
contribution?' This is a generalisation of the work done by Zadeh [9] 
for the traditional Fourier case. We then investigate the link between 
the FRFT and Time-Frequency Distributions (TFD). The link between 
the FRFT and the Wigner Distribution (WD) is explored. We complete 
the paper by illustrating the above work using an analytical and 
numerical examples of the manner in which the FRFT decomposes 
signals. 

The FRFT and its Relation to Optical Physics 

The simplest way of visualising the form of the FRFT is to 
consider it in terms of simple optical physics. Figure 1 shows such an 
example of a simple projector type system. Ozaktas [5] was the first to 
view the FRFT in this form, and started transition of the transform 
from pure mathematics into more general usage. Even from this 
simple system, it is useful to define a few key points. The input image 
into the system can be considered to be the resultant image produce 
immediately behind the lens, labelled cc=0 on the figure. As we move 
further away from the lens the image converges at the focal plane, this 
is labelled on the figure as a=x/2 [1]. 

At the focal plane the image produced is the 2-D Fourier 
transform of the input image. If the input image is constant coherent 
light across the whole of the input image plane, then at the focal plane 
we would expect to simply see a point of light. This is because the 
Fourier Transform of a constant is a delta function, as in this case we 
are dealing in two dimensions it therefore follows that we should see a 
'spot' in the centre of the screen. 

As we move past the focal plane the image begins to expand 
once more. At a certain distance we will recover a scaled version of the 
original image, this point is labelled a=K. At this point we have 
applied two Fourier transforms to the input image, resulting in a scaled 
version of the input. This is as expected from the theory of the Fourier 
transform. We have therefore seen that the Fourier transform of the 
input signal is at a distance from the lens of CC=Tü/2 and that the 
operation is repeated at a distance of OC=K. At distances from the lens, 
which are not multiples of K/2, the resultant image is a fractional 
Fourier Transform of the input image. 

These optical properties are stated in mathematical terms in [2- 
3].    A given transform (Fa) can be considered to be a FRFT, if it 
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conforms to the a set of properties as outlined in Almeida's paper [4]. 
(Where I is the identity operator) 

1. Zero Rotation: 
2. Consistency with the Fourier Transform 
3. Additivity of Transform : 
4. Periodic: 

F°=I 
p7r/2_ pj 

pßpa _ pa+ß 

F27t=I 

Although these properties define the FRFT completely, they do 
not uniquely define it. However it has been shown that the majority of 
the definitions given in the literature are consistent. 

Figure 1: Propagation of Light through a lens 

Convergent Lens 

Light Source 

x/2 

Linear Representation of the FRFT 

Almeida [4] defined such a FRFT as follows : 

Xa(u) = jx(t)Ka(t,u)dt ^ x(t) = \xa{u)K_a(u,t)du        (1) 

Were KJt,u) is the kernel of the FRFT as is defined as : 

KJt,u): 

l-;cot(o:) j\ — \coi(a)-jutcsc(a) 

In 
8{t - u) a = 2nn      ne.Z 

a + 7t = 2nK 
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Where t is the time variable, and u is the generalised frequency 
axis (i.e. «-» co as a-»7i/2). Almeida approached the FRFT in much the 
same manner as other authors on the topic. Starting from the basic 
properties of the FRFT, he expressed the FRFT in a form similar to that 
expressed by Ozaktas [5]. Almeida stated that the FRFT consists of 
expressing x(t) on a basis formed by the set of functions defined by the 
kernel Ba (u,t). The basis is orthonormal since it can be shown that: 

JBa(u,t) B'a{att)dt- S(u-u') (2) 

The basis functions are 'chirps', i.e. complex exponentials with 
linear frequency modulation. The FRFT can now be viewed as the 
decomposition of the signal in terms of linearly changing harmonic 
waves or 'chirps', sweeping at a rate dependant upon the parameter a. 
This can be seen to be consistent with the definition of the FRFT as a 
generalised FT, since in the limit as the parameter CX-MI/2, the linear 
chirps become simple harmonic waves. 

We also can consider the FRFT to be a rotation of the TF plane. 
If a=0 then we are along the time axis and thus the input signal 
remains unchanged. If a=n/2, then we are on the frequency axis, and 
thus the FRFT should be precisely the same as the FT. At rotations 
which are not multiple of rt/2, we are then in a domain which is neither 
time nor frequency but a mixture of both. 

The parameter a can be considered to be the chirp rate, that is 
the rate at which the swept sine waves of the basis functions increase in 
frequency. As a->ix/2 the basis functions revert to the simple harmonic 
waves, as a reduces down to zero, the rate at which the chirps change 
in frequency increases. It can be shown that as oc-»0 that a chirp in 
Eqn. 1 can be viewed as a Delta function [10, p.99]. The definition of 
the transform as written in terms of the kernel function as defined by 
Almeida and Ozaktas then becomes consistent with the viewing the 
FRFT as a rotation of the FT plane. 

Almeida's linear representation of the FRFT as a decomposition 
of a signal in terms of linearly modulated harmonic waves allows an 
intuitive hold upon the transform, and can be seen to be of vital 
importance over the next few pages. 
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The Generalised Concept of Group Delay 

The idea of Group Delay (GD) was well explained by Zadeh, [9, 
p. 441-444] the core of his idea is as follows. In it's traditional 
definition GD is the amount by which a given (very small) band of 
frequencies make their maximum contribution towards a signal. 
Zadeh was able to show that the GD of a given signal could be 
expressed as follows : 

where  A  is   the  bandwidth  of  the   group   of  frequencies   under 

consideration, and 0' = —    .  This can be viewed as a sum of cosine 
d(0 »„„ 

waves, modulated by a sinc(x) type function, which has its centre (and 
maximum value) at -f. This means that by finding <p' we can find the 
time at which a band of frequencies make their maximum contribution 
to the signal. 

A classical example of group delay can be seen if we introduce a 
pure delay into the input signal. A pure delay of a signal introduces a 
phase shift in the FT as follows : 

Y(x(t-x))=Y(x(t))e -jcot 

The complex exponential does not change the amplitude of the 
FT, but introduces a linearly changing phase whose negative gradient, 
-<$>', is proportional to the delay introduced into the signal. It thus 
follows that the derivative of the phase, -0', is constant, and is the 
amount by which the signal has been delayed. This serves to reaffirm 
the definition of group delay, since we defined -0' as the time at 
which a band of frequencies make their maximum contribution, which 
in this case is the amount by which the signal has been delayed. 

We now show that is it possible to extend Zadeh's original 
definition using the FRFT, to answer the question : At what time does a 
'chirp' of rate a, with centre uon, along the u axis make it's maximum 
contribution to the signal? Starting from our original definition of 
XJu), taking the inverse transform back into the time domain and writing 
the transform in terms of an modulus and phase it follows that: 
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.,    ll-jcot(a)r . . .   ; —«»(«H««**)-«,,) 
x{t) = J— J Aa(u).eK Jdu (3) 

By dividing up the u axis into equal segments of length A. Then 

m=J  \      X   J Aa(u)-e du  (4) V      2K      n=-oo  J
nA 

If we make A sufficiently small so that for all segments Aa is 
constant, we can make the following re-arrangement, defining the 

centre of the bandwidth as w„„ = | n + — |A: 

, ,       l-ycot(g)   v    A ,     ^ \~co,(a)+'"csc(a,^(u)L      ,« 
V       2K      n^oo ^ 

Furthermore if we require that A be sufficiently small that over 
each internal nA..(n+l)A we can use the Taylor expansion for ^u), 
centred around u,m, giving 

dip 
<pa(u) = <f)a(uim) + (u-um) 

du 

By defining <j>' = -^    , and making the above substitution into Eqn. 5 
du 

we can write 

«™+A    ; -ÜtÜ 
, x       l-ycot(a)   ^    Af      "™f    ;-^~ " ""       ""   L       rz\ x(t)=        J X   A>J       e du      (6) 

After a little manipulation of the exponential it is possible to show : 

h _ jcot((x)       ~ -J(^-coi(a)+««(«„)-B„/csc(a)  "<>»+A   j ~cot(o)+((csc(a)-iJ')(«-«,„) 

(7) 

V -i^ «=-oo „     A 

The integral can be expressed in terms of Error functions, and it 
is then possible to write Eqn. 7 as follows: 
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P^)      V2       x 
A'      In       V;cot(a) 

£  U„(0* 
.J/r=['!ii2<2l+Csc:(a)l+t(-u,„csc(Q:)-2u„„tsc(ce)c<)iCar)-20'csc(a))-0,I{u,,„)+2oV/,,„c<>i(a 

[Erf[2]-Erf[l]] 

Where Erf [1], [2] are defined as : 

';V2(-2M„„ cot(a) - A cot(oQ + Itcsc(a) - 20') 
Etf [1] = £rf 

Erf[2] = Erf 

47;cot(a) , 

jj2(-2u„n cotja) + A cot(g) + 2f csc(a) - 20) 

4jjcot(a) 

(8) 

Although somewhat complicated the result can be considered to 
be a generalisation of Zadeh's result, as a-wc/2, the above result 
simplifies down to Zadeh's result. Loosely the Erf terms can be 
considered to be the general form of the sine function used in the 
traditional Fourier case. The parameters u„„ and <j)' shift the centre of 
the function, A effects bandwidth, and a tightens the function about 
the centre. As with the Zadeh definition, we now wish to find the 
maximum value of the modulating function, to determine when the 
chirp makes it's maximum contribution. By elementary mathematics 
this can be found as : 

t = -(M„„ cos(or) + <j)' sin(ce)) (9) 

This can be checked against Zadeh's result by setting the sweep 
rate to ct=7t/2. The result is interesting, because of the underlining 
simplicity hiding the complex mathematics preceding it. Stated again, 
this can be seen as the maximum time at which a linearly swept sine 
wave makes its maximum contribution to a given signal. 

The FRFT and if s Relation to TFD's 

The concept of GD (and instantaneous frequency) allows us to 
view the internal structure of analytical signals. However, for non- 
stationary or time-varying signal we need some other method to view 
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the changing frequency components of a signal (i.e. [1]). The use of 
Time-Frequency analysis allows us to construct a TF plane, allowing 
the visualisation of the signal in terms of time and frequency. 
Almeida's most significant contribution to the field of FRFT was to link 
the FRFT and Time-Frequency analysis. Almeida viewed the FRFT in 
terms of a rotation of the Time-Frequency Distribution (TFD) and the 
application of a Fourier Transform. More important still was the link 
that Almeida established between the Wigner Distribution (WD) which 
is one such method of constructing the TFD and the FRFT. 

After a little mathematics (see [4])  Almeida's deduced that the 
WD could be written as : 

Wx(t,a>) = 2e2j"vjya^)X'a(2u-^ e-2im*d$ (10) 

Where u = t cos a + co sin a, and v = -1 sin a + co cos a 

The left hand side of this equation is the WD of X^u) computed 
with the arguments {t,co), and the right is the WD oix(t) computed with 
arguments (u,v). The equation shows that the WD of Xa is the same as 
the WD of x if we take into account the rotation due to the change of 
variables. 

" This is equivalent to saying that the WD of Xa is the WD of x, 
rotated by an angle of -a, or that it is simply the WD of x expressed in 
the new set of co-ordinates (u,v)." Almeida, [4, p. 3088] 

Lohmann and Soffer's paper [6] shows essentially the same 
property, but use the Radon transform to produce the required 
rotation and projection. Since Almeida published his paper, other 
authors have established this link not just for the WD, Ozaktas et al. [7] 
showed that the same properties were true for all members of the 
Cohen class which are rotationally symmetric about the origin. 

Another way of viewing the FRFT is as a rotation and projection 
of the TF plane. Figure 2 shows this idea. We can assume that a linear 
chirp is simply a straight line in the TF plane. If we rotate the time and 
frequency axis by the sweep rate of the chirp, and project along the u 
axis, we have constructed the FRFT. This is an intuitive representation 
of the mathematics given by Almeida and Ozatkas. This rotation and 
projection is called the Radon transform, and in [6] the presentation of 
the FRFT as a Radon transformed WD was shown. 
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Figure 2 - FRFT is terms of rotation and projection. 

Frequency 

Time 

Examples 

1. Rectangular Function 
The first of our examples, shows the analytical decomposition 

for a rectangular function. The FRFT can be written in terms of Fresnel 
integrals, as expressed below : 

XM) = 2cot(a)    2 
..i .r~* K 

2bß-y 
-K 

2aß-y (11) 

Where K is defined as the Fresnel integral: 

x 

K(x) = \ 
J7TT~ 

(12) 

This function is shown in Figure 3. The function can be seen to 
evolve as the sweep rate is changed. As a-*0 we can seen that the 
FRFT tends towards the rectangular function as expected. As the 
sweep rate increases the function develops, with oscillations in the 
transforms becoming slower. As a->n/2 the function develops into the 
a sine type function, the Fourier transform of a rectangle. 
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Figure 3 - Modulus of the FRFT of a Rectangular Function. 
1.5      Alpha 
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2. Doppler Type Signals 
The acoustics of a moving sound source are extremely- 

complicated, both the shift in frequency (Doppler shift) due to the 
movement of the source, and the propagation delay of the speed of 
sound must be taken into account. In the following example, we 
simplify the situation by considering the Doppler shift without 
propagation delay. In order to simulate the change in level of the 
sound experienced due to the distance of the vehicle from the 
microphone, we will use a Gaussian function to reduce the signal to 
zero at the beginning and end of the signal. 

If the source and receiver approach each other at speeds of v 
and u respectively, and the source emits a tome frequency of/, when 
stationary, then it is possible to show ([8], p. 415) that the receiver will 
hear a frequency/' where : (c is the speed of sound) 

f = f0 
c + u (13) 

This change in frequency is known as the Doppler Shift. A schematic of 
the type of system we are trying to model is shown in Figure 4. 

If the microphone is stationary, and the car moves passed it at 
constant speed, then a modified form of the equations [8] describes the 
frequency received by the microphone (the signal is shifted in time in 
order to keep the equations causal) : 

f = fo 1 + - 
VCOSI my (14) 
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were <j)(t) ■ 
-tan 

7r-tan 

VV(f-10)y 
(        X        ^ 

v(t-lO) 

t<\0 

t>\0 

Figure 4 - Schematic of the System to be Modelled 

t=o 
Vehicle 

velocity * time Direction of Travel 

Microphone 

This is a non-linear function; however as the car approaches the 
microphone, it becomes almost linear. Figure 5 shows the changing 
frequency component with time for two different (simulated) vehicle 
speeds. (The curve for the faster speed is marked with '+' signs.) We 
will assume for the sake of simplicity, that the vehicle emits only one 
tone, and that it travels at constant velocity. 
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Figure 5 - Change of Frequency according to Velocity 
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The greater the velocity of the vehicle, the steeper the curve. 
The angle, 0, varies from 0..K. The rate of decrease of frequency can be 
found, and is shown to be 

f       (      ~     ^ 

dt 

xf0 sin tan" 
v(r-10) J) (15) 

c(/-10)2 1 + 
v2(r-10)2 

Since the rate of change of frequency is almost linear at the point 
when the vehicle passes the microphone, application of the FRFT (at 
the correct sweep rate setting) will produce a strong spike like 
distribution. From the knowledge of the sweep rate and thus the rate 
of change of frequency, it is possible to infer the velocity of the vehicle. 
Using this simple model of a Doppler shifted signal, and making some 
basic assumptions (the observation point i.e. microphone is stationary, 
constant velocity, and single pure tone emission of the source) we 
simulate the situation. The synthesised signal is shown in Figure 6, 
and its Spectrogram is depicted in Figure 7. 

From the synthetic signal the FRFT is used to find the sweep 
rate which best matches that of the input. Thus is we pick the right 
sweep rate, the chirp produced by the vehicle will show up as a spike, 
or an least a peak in the distribution. In our example case were we 
know the input parameters, 
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it is possible to predict at what sweep rate, and were on the u domain 
we expect to see a rise in the distribution. In this example case it has 
been possible to predict the sweep rate and position of peak on the 
axis, however in a real situation this would not be the case. Multiple 
transforms would have to be taken on the data, possibly in some 
iterative way to find the peak in the distribution. However due to the 
nature of the delay equations, and the low sweep rate, the location of 
the peak will not change very much from one velocity to another. 

The result of the application of the FRFT can be seen in Figure 8, 
the peak which was expected does not stand out greatly from the rest 
of the data because of the way in which the signal changes. Close to 
the region we are considering to be a linear chirp, other almost linear 
chirps are also present. These other chirps spread out the distribution 
into the form seen in Figure 8. 

From the knowledge of the rate of change of frequency, it is a 
simple manner to calculate the passing velocity of the vehicle. 
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Figure 7 - TF Plane of input signal. 
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Conclusions 

In this paper we have covered some of the theory and applications of 
the fractional Fourier transform. We have shown that the fractional 
Fourier transform can be considered to be a generalised version of the 
Fourier transform, having a basis of swept sine waves rather than 
harmonic waves. We have considered the notion of 'group delay' as 
being the time and which a band of frequencies, and generalised this 
idea to the form where by we can answer the question 'At what time 
does a chirp, of a given sweep rate make it's maximum contribution to 
a signal ?' The link between the FRFT and TF has been explored. We 
have investigated some examples of signal using this technique. Finally 
we have outlined one application of the FRFT as a way of determining 
the degree of shift in a Doppler type signal. 
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Abstract 

Structures with discrete periodic variations in impedance may exhibit pass 

and stop bands and the related wave localization and delocalization phenomena 

in their frequency response. Localization, similar to Anderson localization in 

atomic systems, occurs in the pass-band frequency range when the periodicity 

is perturbed and waves are thereby inhibited from propagating. Conversely, 

delocalization occurs in the same systems in the stop-band regions where 

perturbing the strict periodicity allows for relatively more propagation. 

Localization and delocalization are demonstrated in several systems: 

specifically, a beaded string, membranes and plates with periodic stiffeners 

attached, and a "jungle gym", i.e. a connected beam structure. It is 

demonstrated that these effects depend on the interactions between 

discontinuities. 
Introduction 

A structure with strictly periodic impedance discontinuities exhibits pass and 

stop bands in its frequency response. The pass bands are frequencies at which 

waves traverse the structure relatively unimpeded and thus give rise to modes 

which span the entire structure: i.e. global. Stop bands are frequencies at 

which waves are impeded from traversing the structure and give rise to modes 

which are confined near the source: i.e. local. When the strict periodicity of 

the structure is disturbed by. e.g., randomly varying the distances (or 

equivalently. the wave propagation speed) between discontinuities, the pass- 
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and stop-band character in the frequency response is , in some degree, spoiled. 

The "spoilage" of the strict pass-band behavior results in the long range wave 

propagation becoming shortened with the attendant localization of the modes. 

This effect is called localization. Similarly, the "spoilage" of the strict stop- 

band behavior results in a lengthening of the wave propagation and a 

delocalization of the modes. This effect is called delocalization. Both 

localizing and delocalizing cause the long and short range wave propagation, 

respectively, to tend towards a middle ground, called a "yellow" band (amber 

to some), where waves are neither short nor long and where modes are neither 

global nor local. It is proposed that delocalization is as important a phenomena 

as localization with relevance to practical applications. 

These phenomena occur in a wide variety of dynamic systems ranging from 

atomic lattices to rib-stiffened ship hulls.""4) In fact, the phenomenon of 

localization in atomic systems was popularized by P. W. Anderson in 1958 

who characterized it as "absence of diffusion in certain random lattices".(:" 

Anderson was working with the wave equation describing the electron density 

in crystalline lattices and noted that randomizing the spacings of an originally 

regularly spaced crystal tended to inhibit the diffusion of electrons from a point 

of injection. The analysis here is limited to macroscopic systems obeying 

linear wave equations since the effects are fundamentally phase interference 

and. as such, depend on superpositon of wave functions. This is not to say 

that localization does not exist in non-linear systems, it is just that the model 

used to describe it here is limited to linear systems. Further, the analysis is 

limited to one-dimensional systems in the sense that the wave equation for the 

structure must be separable into functions of a single spatial variable which 

contains a periodic discontinuity. 
Both localization and delocalization depend on a spoiling of the strict 

periodicity of a system. There are many ways to effect this "spoilage": one 

which will be used extensively here and which will be used to establish a 

benchmark for quantification of the phenomena, is to randomize the lengths of 

the connected ID systems. The prototypical complex of connected ID systems 

is shown in Fig. 1 and it is the length (b) of the constituent systems, 

enumerated 1-N. which are to be randomized, i.e. 
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en =  b(l + ocRn) , 0<a<l     , (la) 

where Rn is a random number between -1 and 1, and a controls the degree of 

randomization: e.g., a = 0.1 is referred to as 10% randomization and the 

lengths are uniformly distributed, 0.9 < (1„)< 1.1. The benchmark from 

which to quantify localization and delocalization which is proposed here is the 

limit which is approached when a system is completely randomized. 

"Complete randomization" as used here means that a = 1 and if an ensemble 

average is taken over a large number of realizations of Fig. 1, each with a 

different set of Rn's then the oscillatory nature of the phase change in the 

amplitude of a wave traversing a system will average to zero. With the phase 

effects averaged, the diminution of a wave traveling through the set of systems 

will depend on the average propagation loss factor, 

and the cumulative transmission coefficient, 

TN(co) =   nTn(co)     . de) 
n=l 

Without the ensemble averaging over realizations of Fig. 1, each with a 

different set of Rn, the phase effects must be accounted for. This may be done 

through the use of an impulse response matrix 

g(xlx',co) = (gji(xjlx'i,co))     , (2a) 

in the sense that it relates a response in system j at the coordinate location Xj to 

an impulse in system i at the coordinate location x'x . More generally, in linear 

systems in which wave solutions superpose, Eq. (2a) is the Green function 

kernel which relates the response at any point in any system, 

v(x , co) = {v.(x-, co)} to a distributed drive at a particular frequency through 

the usual relation; 
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v(x , a) = J dx' g(x I x', a) pe(x', a)    .      (2b) 

The impulse response matrix, Eq. (2a) is formulated for a connect set of 1-0 

systems such as shown in Fig. 1 by following waves as they emanate from 

the drive position x'; and propagate with multiple reflections and transmissions 

at the junctions between systems/6) 

Periodic Complex - Pass and Stop Bands 

Equation (2) is used to calculate a response and to demonstrate the 

phenomena of localization and delocalization in a set of dynamic systems such 

as shown in Fig. 1. Certain parameters must be specified in order to do this: 

specifically, the number of systems, their lengths, their impedances, and their 

manner of attachment to each other. Accordingly, seven systems are assumed, 

all stationary in time and all supporting a single, non-dispersive wave type 

which propagates according to: 

vj(xj,©) = e-ikJlxr't'j|   v(x';,a)     , (3) 

The time dependent factor, eiCDt, is implicit in Eq. (3) and 

kj =kojü~ilV 

koj = CO/CJ 

Cj = the phase speed of waves propagating in the jth 

system, generally may depend on frequency 

(i.e. dispersive) but will be taken to be constant 

here. 

■q. = 1(T3, the propagation loss factor for the jth 

system 
Cj = the length ofthejth system, bis the unperturbed 

length 

mj = the mass of the jth bead. 
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The response, as calculated by Eq. 2 and Reference 5 for an infinite flexible 

string with 8 equally spaced point masses (beads) attached is shown in 

Fig. 2a. For the periodic complex all lengths are the same I j = b; also Cj = c, 

Tij = T\ and mj = m. The complex is driven in the first bay as indicated and 

the magnitude of the ratio of the response relative to the response at the drive 

point x' is plotted as a function of position in the complex. The drive 

frequency is (co/co,) = 10 where ©j is the fundamental resonance of the 

unperturbed bay, i.e. <a{ = 7cb/c. The beads are concentrated masses equal to 

0.3 times the mass of the string in the unperturbed bay. The standing wave 

patterns in the bays are evident as is the exponential decrement of the response 

as the excitation traverses the complex. 
Figure 2a illustrates the exponential attenuation characteristic of wave 

propagation through a cascade of connected one-dimensional systems. The 

attenuation shown here is due to the combined effect of the propagation loss 

factors of the individual bays (this is negligible here) and the phase interference 

due to the reverberation within the bays. The degree of attenuation, i.e. the 

slope of the log-response vs. distance curve is a function of frequency, and it 

is this variation with frequency which gives rise to pass/stop band phenomena. 

Accordingly, a series of responses of the type shown in Fig. (2a) are 

calculated for a set of increasing frequencies and shown in Fig. (2b). The 

frequency range encompassed by the calculation is 0 < {(ü/(üx) < 20 and the 

pass and stop bands appear as frequencies where the complex is transparent or 

opaque respectively to the waves traversing the complex. 

An alternate presentation of the response which shows the pass/stop band 

phenomena more explicitly, is the response at the end of the complex, 

essentially the transmissibility of the complex, as a function of frequency. 

The plot in this format which corresponds to the parameters of Fig. (2b) is 

shown in Fig. (2c). The peaks in the response shown here correspond to the 

pass bands of the complex and are identical to the pass bands as identified in 

Fig. (2b) as frequencies where the response shows minimal attenuation in x. 

The minima in Fig. (2c) are the stop band frequencies which are more difficult 

to identify in Fig. (2b) because, for clarity, the data shown there is 

"shadowed" by curves in the foreground. The benchmark attenuation for the 
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system discussed earlier which delineates between pass and stop band 

behavior is shown by the dashed line in Fig. (2c) 

A-Periodic Complex - Localization and Delocalization 

The phenomena of localization and delocalization are demonstrated by 

calculating the response of the complex where the lengths of the individual 

systems are randomized. Accordingly, a system response with all parameters 

the same as in Fig. (2) except that a = 0.2 in Eq. (la) is shown in Fig. (3). 

Note the disruption of regularity in the decrement as the excitation traverses the 

systems. The transmissibility shown in Fig. (2c) for the regular complex is 

repeated for the randomized one and shown in Fig. (3c). It should be kept in 

mind that the calculations shown in Fig. (3) are for a specific realization of 

randomized lengths and would not be exactly the same for a different 

realization of the random number set used to generate the lengths; different 

realizations, however, show similar behavior. The dashed line in Fig. (3c), 

again represents the benchmark attenuation. 
The demonstration of localization/delocalization lies in the fact that the 

peaks and valleys, respectively, of the transmissibility shown in Fig. (3c) 

have moved toward the benchmark value. This is more true at higher 

frequencies where the length perturbations represent a larger fraction of 

wavelength. 

Special  Cases 

Two more complex structures are considered. The first is an infinite 

membrane with an array of 8 stiffeners or ribs attached as shown in Fig. 4a. 

In the unperturbed case, the rib spacings are all equal and of length b and the 

ribs are modeled as line impedances. The structure is driven and the response 

is assessed along lines parallel to the ribs at positions x' and x respectively, as 

shown. It should be noted that the pass/stop band and localization phenomena 

do not depend strongly on the magnitude or nature of the rib impedances; i.e. 

they can be mass-like, resistive, spring-like, resonant, etc. The pass- and 

stop-band characteristics for this structure where the rib impedances are mass- 

like with a mass equal to 0.3 times the mass in a bay of length b are shown in 

Fis. 4b. The solid curve is the transmissibility vs. frequency of the periodic 
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(unperturbed) case, and the dashed curve is the aperiodic (perturbed) case with 
a =0.2. Again, the normalizing frequency CO, is the fundamental resonance 

of the system of length b. It should also be noted that if a thin plate were used 

in place of a membrane, the data shown in Fig. 4b would be similar but show 

a progressive widening of the frequency separation of adjacent bands with 

increasing frequency due to the dispersive nature of the plate free-wave 

propagation. The membrane was given a propagation loss factor of 

i\ = 5 x 1(T3 in the direction of propagation and the slight progressive 

decrement of the pass-band peaks with frequency reflects this; i.e. the structure 

would exhibit unity transmission at the center of the pass bands if there were 

no loss. 
A second example of localization/delocalization effects in more complex 

systems is the planar array of connected one-dimensional systems shown in 

Fig. 5a. The array dimensions are 13b x 7b where b is the length of the 

unperturbed system, and, for this example, the bead impedances were taken to 

be zero. The drive and assessment positions were at x', = 0.3b and 

x, 0 = 0.5b respectively, as shown. The transmissibility of the regular 

(unperturbed) complex is shown as a function of (co/co,) by the solid curve in 

Fig. 5b and one realization of a perturbed case with a = 0.2 by the dashed 

curve. 

Conclusions 

The phenomena of localization and delocalization is demonstrated in several 

mechanical systems. The canonical system is an infinite string with a finite 

array of beads attached in which wave localization and delocalization occur in 

the pass and stop frequency bands respectively when the strict periodicity of 

the bead spacing is disturbed. The phenomena are also demonstrated in a 

membrane with a finite array of attached ribs. The final example is a two 

dimensional, planar, array of beads connected with wave-bearing elements. 

Strong localization and delocalization occur in this system also. 
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Fig. 1. The prototypical complex of connected one dimensional systems, an infinite 
suing with seven eaually spaced beads attached 
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Fig. 2. Periodic bead spaceing; a) the positions of the beads and the response as a 
function of distance along the string at a single frequency, b) spatial responses as 
in a) but at a series of frequencies, and c) the response at bead number 7 as a 
function of frequency, the dashed line is the product sum of the transmission at 
beads 1 to 7 inclusive and deleniates between pass and stop bands. 
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Fig. 3. A-periodic bead spaceing; in the same format as Fig. 2. 
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b) 
Fig. 4 a) An infinite membrane with 14 ribs attached, b) The transmissibility 
as a function of frequency for the regularly spaced ribs (solid line) and for 
one realization of a set with 20% random variation in rib spaceing (dashed 
line). 
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Fig. 5 a) A 13 x 7 planar array of connected 1-D systems driven at x' in system 
#1; b) the transmissibility as measured in system #202 as a function of frequency 
for the regular system (solid line) and for one realization of systems with 20% 
random variation in lengths (dashed line). 
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ABSTRACT: 
A method to estimate mass and stiffness matrices of shear building from 

modal test data is presented in this paper. The method depends on that 
measurable points are less than the total structural degrees of freedom, and on 
first two orders of mode of structure are measured. So it is applicable to most 
general test. By giving a method to estimate modal data of immeasurable points, 
global mass and stiffness matrices of structure are obtained by using first two 
orders of modal data. By use of iteration the optimum global mass and stiffness 
matrices are gained. Finally an example is studied in this paper. Its result shows 
that this method is reliable. 

l.Introduction: 

Measurement of the dynamic characteristics, natural frequencies and mode 
shapes of structure from modal dates is developed in recent years. Naturally, 
there is only a finite number of points on the structure for which data can be 
collected. These points are generally a small subset of the total degrees of 
freedom(DOF) in a finite element model of the structure. In fact, the number of 
measurement points may also be less than the total number of vibrational 
modes identified in the test, specially when utilizing modern instrumentation 
with high sampling rates and powerful, inexpensive scientific workstations for 
data for n mode, where /?>/, there is not a unique model of classical mass and 
stiffness form with physical DOF that possesses order-n dynamics given only 1 
spatial measurement points. 

Much research in recent years has focused on methods for correlation or 
reconciliation of finite element models that inherently possess very large-order 
dynamics to the limited sensor and frequency data obtained from modal 

testing. '~3 

The primary goal of the present paper is to investigate direct solutions to the 
inverse vibration problem when the number of sensors 7 is less than the number 
of identified modes n. We will show that mass and stiffness matrices of 

1713 



dimension n, referring to the total DOF, can be found from the / identified 
modes and the modal dates of the / points. 

In this paper, the unmeasured modal dates are evaluated by the measured 
modal dates. Finally, the mass and stiffness matrices are obtain by first two 

order modes. 

2.EvaIuation of unmeasured modal dates 

Recent work in the area of structural identification has included the 
determination of mass and stiffness matrices directly from continuous time 
system realizations. 4 This approach is that it requires the dimension of the 
physical mode to be equivalent to the number of second-order states, implying 
that the number of independent sensors measured are equal to the number of 
identified modes. A more practical approach is to enrich the computer mass 
and stiffness matrices with the complete set of measured modes, independent of 
the number of sensors. This allows the resulting to express contributions of all 
of the modes observable from the available sensors. We begin by developing 
the concept of reduced the measured modal dates. 

If structure is regard as shear building, we can assume that 1) the total mass 
of the structure is concentrated at the levels of the floors; 2) the floors are 
infinitely rigid as compared to the columns; and (3) the deformation of the 
structure is independent of the axial forces present in the columns. These 
assumptions transform the problem from a structure with an infinite number of 
degree of freedom to a structure that has only as many degrees as floor levels. 
Clearly the stiffness matrix of shear building is a triangular matrix, and the mass 
matrix is a diagalization matrix. The mass and stiffness matrices of shear 
building can be written as: 

  0 

K = 

-k2      k2+k3 

M = 

m, 

-K-,  K-i+K  -K 
-K      K 

o 

(i) 

m. 

m. 

0 m. 

High building always has standard floor levels. It is to said that these levels 
have the same mass and stiffness.    Assumed that the standard levels are i, 
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i+1 -j, j<n, i*l, where n is the total levels of building. In a word there are j- 
i+l=d standard levels, and the frist level is not standard level. If i-1 and j levels 
are placed sensors, these two points become measured points. We will use the 
modal dates of these two points to evaluate the modal dates of unmeasured 

points. 
Suppose that we are given an arbitrary undamped MDOF system. The 

differential equation of the system is given by: 

MX+KX = F 
where M is the structural mass matrix, K is the structural stiffness matrix. X is 

the vector of generalized modal deflections, X is the vector of generalized 
modal accelerations. F is the vector of external forces. Considered the 
corresponding characteristic equation: 

(K-XlM)^>l = 0 

where I, is the /th eigenvalue, and 4>,is the /th corresponding mode shape or 

eigenvector. Eq(l) can be also written as: 
( **     o 

^ba 

0 

0 

0 

0 

mbb 

0 

0 

0 = 0 (2) kbc  -\    0     mbb     0     k, 

where a-1,2, i-1, b=i,i+l, j-1, c=j,j+l, n, the mass matrices maa, 
rriuu   m   are diaaanalization matrices, and the stiffness matrices can be written 

as: 
'0   ■■■   -k~ 

^■ba 
-kT 

and kbc = 

0 

~k: 

0 

0 

= k! (3) 

Eq.(2) is partition of Eq.(l). The second line of Eq.(2) can be expressed as: 

This reduction concept considers the influence of mass. Substituting Eq.(3) 
into Eq(4), we have: 

0 

kbb<bb - A.,m;A =< (5) 

0 

dxj 
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Expanding Eq.(5), we have: 
(fc,. + kMW, -kM^>i+]-Xlm^i = kfa,, 

-fc,^,. +(fc,+, +fci+2)<|)W -fcw*i+2 -^^«^7  = 0 

(6) 

Because from level /' to level j are standard level, so their stiffness and mass 
have following relationships. 

k = ki=ki+1=-=kj 
(7) 

m = m; ■mM=--=mj 

substituting Eq.(7) into Eq.(6), Eq.(6) can be simplifies to: 
/T 

4k} = 

2-\[ÖL -1 

-1       2-/La   -1 

0 

♦J-I 

0 
= D      (8) 

0 ■■■       -1   2-A.,ajj 

where  a = p   {♦J} = (Ww,-ij.If.D = |i»°'-^}T.  "sing least 

square approach the unmeasured modal shape {<(),,} can be obtained: 

{i} = (ATA)-MrD (9) 

By mean of Eq(9) those unmeasured DOF can be expressed by measured 
DOF. It is to said those modal dates from i to j-1 can be evaluated by (i-l)th 
and jth level modal dates. In this method the influence between the mass of 
DOF and level displacement is considered. Using this method measured points 
can be reduced. 

3.The evaluation of mass and stiffness matrices 

Expanding Eq(l) we have: 
Cfcj +k2)§n -k2tyl2 -A.,m,<|>H =0 

-fc2<t>,; +{k2 +k3)§l2 -k3<bl3 -A.,m2<|>u =0 

In order to evaluate mass and stiffness of structure, equation (10) can be 
written as: 

(10) 
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hi -*A <t>(; -<f>l2 
0 ' 'V 

i, Aij 

<j>i2 "ij 

<t>r2_il 

<t>In-l -"t>ln-2 

-<t>n,-2 <L-;-<L 

m, 

/c, 

fn, 

K 

(11) 
= 0 

where r is the rth mode. This equation can be simply written as: 
B{b} = 0 (12) 

where {b} = {fc„m7, K,mnY ■In order t0 solve this ecluation the number 

of equations should equal the number of unknown. Because the number of 
equation is 2 X n, so we used two order modes.  Clearly matrix B is a singular 
matrix. In order to assuming mn = 1, the Eq.(12) can be expressed as: 

f   0   ' 

B {»}- (13) 

where B' is the matrix that eliminate the last two lines and last two columns of 
matrix B. {b'} is the vector that eliminate the last member of vector {b}. 
Using least square approach {b'} can be obtained. 

0 

{b'} = CBT-ST'S'1 (14) 

The mass and stiffness matrices obtained by Eq.(14) are not the real value. 
There is a constant rate between evaluate value and real value. 

The following procedure has developed for evaluated the global mass and 
stiffness matrices of shear building. 
Step 1: Choose the initial parameter oc0 

a is the ratio between the mass and the stiffness of standard levels. We 
1 

defined the initial parameter ct0 = —. 
A., 

Step 2: Evaluate the mode shapes of unmeasured DOF 
In this step Eq.(9) is used to estimated the two order mode shapes {(j)}( and 

{<j>} .   Where  {§}  and {§} are the Ith and rth corresponding mode shapes. 
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Tal )Ie2. 
ki(N/m) k2 k3 IQ mi(kg) TÜ2 m3 TTU 

Real value 18000X 
6 

18000 
X3 

18000 
X3 

18000 
X3 

18000 
X5 

18000 
X2 

18000 
X2 

18000 
X2 

Evaluation 2.9948 1.4994 1.4994 1.4994 2.4991 0.99896 0.99896 1.0 

5. Conclusion 
A new method to evaluated mass and stiffness matrices of shear building 

from modal test dates is presented in this paper. This approach based on the 
number of measurement points less than the number of total degrees of 
freedom of structure. In this method only first two order modes are used and 
the influence of mass is considered. By mean of this method it is possible of 
using modal test dates to evaluate the global mass and stiffness matrices and 
the damage of structure. 
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THE PROBLEM OF EXPANDING THE VIBRATION FIELD FROM 
THE MEASUREMENT SURFACE TO THE BODY OF AN ELASTIC 

STRUCTURE 

Yu.I.Bobrovnitskii 
Blagonravov Institute of Mechanical Engineering Research of the Russian 

Academy of Sciences, Moscow 101830, Russia 

Introduction 

Knowledge of the distribution and magnitude of the dynamic stresses of 
an engineering structure due to extensive vibration is important for the 
estimation of the structure reliability and its mean service time. Another 
practical problem where it is needed is control of the structural vibration: 
knowledge of the stresses and displacements allows one to compute the vector 
field of the vibration power flow which makes visible the sources and 
transmission paths of vibration and thus indicates adequate means to control it 
[1,2]. 

Commonly used sensors, e.g., accelerometers or strain gauges, can 
measure the vibration parameters (acceleration or strains) in discrete points. 
Some instruments developed in the last decade such as laser interferometers [3] 
and the vibrometers based on the near field acoustic holography [4], can 
measure continuous distribution of the vibration amplitudes at a certain surface. 
Nevertheless in practice, at best only a part of the structure surface is accessible 
for measuring vibration directly. For most of the interior points of the structure 
body as well as for some portions of its surface, mounting sensors is impossible 
or impractical. So, the only way of estimating the stress-strained state of the 
whole structure is to expand the vibration field from the measurement surface 
to the structure body. 

In this paper, an approach to such expansion is proposed which is 
applicable to complex elastic structures of which a part of the surface is 
accessible for direct vibration measurements while the rest of the surface and 
the body are not. This approach consists of measuring the distribution of the 
amplitudes for three components of the vibration displacement (or acceleration) 
on a portion of the accessible surface. For the volume contiguous with this 
portion, a special boundary-value problem which is called here the problem of 
field reconstruction (FR-problem) is stated and solved (see Fig.l). As a result, 
the displacement (and stress) field of this volume is determined (reconstructed) 
through the measurement data. Then, using the vibration amplitudes measured 
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on another portion of the 
accessible surface, one can 
similarly determine the 
displacements and stresses in 
another volume, etc., until 
the whole structure is 
investigated. 

The idea of 
reconstructing the general 
pattern from incomplete or 
indirect data is not new and 
is often used in mechanics 
and structural dynamics. It is 
used, for example, in the 
mode shape expansion 
methods of the model 
updating techniques, where 
the responses measured on a 
part of the DOF's of the FE- 

model are expanded to the slave (unmeasured) DOF's using the equations of 
motion [5], Another example is reconstruction of the time history and 
localisation of external forces from the measured structural responses [6]. 
All the cases, where the idea of reconstruction is realised, are distinguished by 
the statement of the corresponding mathematical problem and by physical 
peculiarities. In this paper, the key problem is stated as reconstruction of the 
vibration field in a finite elastic solid from the amplitudes of the displacements 
of a part of its boundary free of tension. In structural dynamics, such statement 
was first proposed in Ref. [7] relating to measurement of the vibration power 
flow in solids. Similar statements are met in a number of papers on the static 
theory of elasticity (e.g., [8]) for reconstruction of the stresses inside a machine 
part through the measurement of the strains on its surface. 

In what follows, the rigorous mathematical formulation of the FR- 
problem is given and its general properties are studied. Results of the computer 
simulation and of the laboratory experiment are presented which prove the 
practicality of the approach suggested. 

Fig. l.An elastic structure (a) of-which only the 
upper surface S is accessible for vibration 
measurement; (b) boundary value problem for 
the chosen volume V: displacements u and 
force fare specified on S. 

Formulation of the problem 

For a selected elastic volume V of the structure (Fig. lb), the problem of 
the   harmonic  field  reconstruction   can  be  formulated   as  follows   (time 
dependence exp(-ia> t) is omitted): 
find a solution to the homogeneous Lame equations 
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/uAu(x)+(A.+/J)gra.ddivu(x)+pco2u(x)=0,   x e V, (l) 

which satisfies the conditions 

u(s) = uo(s), f(s) =0,     s eS, (2) 

on the upper part S of the surface. Here x= (x,, x2, x3) are the co-ordinates of a 
point of the volume V, u = (u,, u2, u3) is the displacement vector, f=(fi,f2, 
f3) is the vector density of the forces acting on the surface, A and ß are the 
elastic Lame coefficients, and u0(s) are the known (measured) displacement 
amplitudes. 

The formulation (1),(2) is not traditional for equations of the elliptic 
type: the boundary conditions on the part S of the surface are overdetermined, 
i.e., both the displacements and the forces are specified, whereas no quantities 
are specified on the rest part 0 of the surface. 

The boundary-value problem (1),(2) may be formulated as an integral 
equation. Let G(x/q) be the 3x3 matrix of the Green's functions describing the 
response (displacement vector) at a point x e V to a unit force at a point q e 
0. Assuming x = s e S, the problem (1),(2) may be rewritten as 

uo(s) =ffG(s/q)f(q)dQ. (3) 

This is a set of three Fredholm equations of the first kind, where the unknowns 
are the reaction forces f(q) acting on the inaccessible surface 0; the matrix 
G is assumed to be known. If the forces f(q) are found from Eq.(3), then the 
displacement field of the volume V can be computed as 

u(x)=//G(x/q)f(q)dQ. (4) 

The formulations (1),(2) and (3),(4) are convenient for investigating the 
general properties of the problem. In practice, preferable is the formulation 
based on the expansion of the field in the normal modes of V 

u(x) =Zan<pn(x), (5) ft. 

where the forms <p„(x) are assumed to be known and the amplitudes a„ must 
be determined from the first boundary condition (2) on S: 

uo(s) =Zan<pn(s). (6) 
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Eq.(6) represents an expansion of the known function uo(s) in terms of the 
functions <pn(xj, non-orthogonal on S, which can be reduced in different ways 
to a set of linear algebraic equations. In practice, the number of normal modes 
is taken to be finite, and the number of the unknowns a„ in Eqs.(5),(6) as well 
as the number of the algebraic equations is finite, too. Discretization of the 
continuous operators in (l)-(3) also leads to finite systems of linear equations. 
Thus, in all the above formulations the problem of the field reconstruction 
reduces to the linear operator equation of the first kind 

Af=u, (7) 

where, in theory, the functions u(s) and f(q) are elements of two functional 
spaces U and F, and A is a linear operator. In practice, u and / are vectors 
of two Euclidean spaces, and  A   is a rectangular matrix operator. ■ 

General properties and formal solution 

The problem of field reconstruction has the following general 
properties. The problem has a bounded solution if the vector-function u0(s) is 
sufficiently smooth -see below. The solution, if it exists, is unique. It means that 
the absence of information on the inaccessible part Q of the boundary is 
completely compensated by the overdetermined boundary conditions (2) on the 
accessible part S. The proof of the uniqueness is based on the Almansi's 
theorem[9] according to which if on a part (even very small) of the surface of a 
finite elastic body displacements and stresses are simultaneously equal to zero, 
then the stresses are zero everywhere and the body is at rest. Almansi proved 
the theorem for statics; an extension to the dynamic theory of elasticity is given 
in the paper [7]. One more property: the solution of the FR-problem does not 
continuously depend on the input data: small variations Auo of the prescribed 
function may cause large variations A/ of the solution. This can be concluded 
from the general properties of the Fredholm integral equations of the first kind 
with continuous kernels (the case of Eq.3). Hence, the problem of field 
reconstruction belongs to the class of ill-posed in the sense of Hadamard 
problems of mathematical physics. 

Ill-posed problems are often met and solved in various scientific 
disciplines. For example, the mathematical problem of differentiating functions 
is ill-posed; the mechanical problem of reconstructing the external forces 
through the structural response mentioned above is also ill-posed, etc.[10,ll]. 
All the existing methods of treating such problems are principally based on the 
idea of replacing the ill-posed problem with a well-posed problem appropriately 
chosen with the aid of an additional information concerning the desired 
solution. For treating the field reconstruction problem, the most appropriate is 
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the Singular Value Decomposition (SVD) technique[12]. Below follows the 
solution of the FR-problem obtained by this technique. 

Let oy > a? >... be the singular values of the operator A in Equation 
(7), and {fi, f2, ... } and {ut, u2, ... } be the singular pair, i.e. two sets of 
orthonormal functions (Note that af are the eigen values of the Hermitien 
operators A*A and AA*, while f and uj are their eigen functions). 
Representing a given function u as a series in terms of Uj and seeking the 
solution as a series in f, one can obtain the following exact formal solution to 
the problem (7): 

f=Z(bj /cj) fj,     where    u = EbjUj. (8) 

It is seen from Eq.(8) that a bounded solution to the problem exists (the series 
converges) if the given function u is sufficiently smooth or, more exactly, if 
the coefficients bj of its expansion (8) tend to zero more rapidly than the 
singular values OJ . For real structures, the singular values tend to zero very fast 
(exponentially), therefore the exact functions of distribution of the vibration 
amplitudes at the accessible part S of the surface should be and actually are 
very smooth and do not contain components rapidly oscillating along the 
surface, i.e., addenda in (8) with large numbers j. However, small but finite 
random errors in u, experimental or due to rounding in a computer, have wide 
spatial spectra and result in expansions (8) with non-zero coefficients bj of large 
numbers which, after enhancing by the small singular values, may cause large 
errors in the solution /, making it unstable. 

The simplest way to overcome the difficulty is to seek an approximate 
solution which involves a finite number N of terms in the singular value 
decomposition, i.e. to truncate the series' in (8). With a judicious choice of N 
this solution does not differ too much from the exact solution (8), because the 
exact (not contaminated by noise) vibration function u does not contain 
components with high numbers. On the other hand, this solution cuts off the 
rapidly oscillating components j >N, thereby reducing the inaccuracy due to 
experimental or computer errors in the input data. Truncating the series (8), we 
restrict the solution by smooth functions and this is the additional a priori 
information which makes the problem well-posed. However, the choice of the 
best truncation number N is a difficult and unstudied question, and answering 
it was one of the objectives of the computer simulation and laboratory 
experiment. 

Results of computer simulation 

In computer simulation, two simple structures were studied - a finite 
longitudinally vibrating rod and a thin elastic strip executing vibrations in its 
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 1 ;■_ 

Q 
(a) 

_l  

plane(Fig.2).The rod(Fig.2a) 
is excited by a harmonic 
force at the left end. The 
accessible for measurement 
part is supposed to be the 
region S at the right end 
(data region), while the rest 
part 0 of the rod is 
considered as the 
reconstruction region. The 
complex displacement 
amplitude u(x) satisfies the 
Bernoulli's equation of 
longitudinal vibrations [13] 
with a complex Young 
modules. This boundary 
value problem has an 
analytical solution which has 
been used for computing the 

input data "measured" in the region S and for estimating the accuracy of 
reconstruction in the region 0. In calculations, a modal model was used with 
the modes corresponding to the free boundary conditions at both ends: 

{u„(x) = (e„/I)"2 cos (rr(n-i)x/l); s,=l, s„=2 for n = 2,3,...}. 
The solution (5) has here the form of a finite sum 

y 
H SS (b) 

// 
0 

1   1 
// 

\L x     \ 

-H 0 

Fig. 2. Two simple structures used in computer 
simulation: a longitudinally vibrating rod (a) 
and an elastic strip vibrating in its surface(b). 

A/ 

u(x) = £anun(x) (9) 

with unknown amplitudes a„. Equating the representation (9) to M measured 
values of u at M points of the region S gives a set of M linear algebraic 
equations with N unknowns that were solved by the SVD-technique. 

The elastic strip (Fig. 2b) of height 2H comparable with the elastic 
wavelengths vibrates in its plane. It is supposed that only upper surface y =H 
of the strip is accessible for measurement. It is required to reconstruct the 
vibration field in the region V with the following dimensions: / =3H. 
Vibrations of the strip satisfy the dynamic equations of the plane stress state and 
the boundary conditions of absence of stresses at y =-H and y = H. As it is 
known, they are analogous to vibrations of an elastic layer. Therefore, the field 
in the strip is represented as a sum of N Lamb's normal modes [13]: 

(ux(x,y); Uy(x,y)} = £[an (uxn
+(y); uyn

+(y)} txp(ik„x) + (10) 
""      b„ (uxn(y); uyn-(y)} exp(ikn(l-x))J, 

where the k„ are the propagation constants, i.e., the roots of the Rayleigh- 
Lamb dispersion equation, and the expressions in brackets describe the mode 

1724 



forms. On the accessible surface >> =H of the strip, M/2 equidistant points are 
chosen at which the displacement components, ux and w» are computed 
using the exact solution. (The exact solution is taken as in an infinite strip 
excited by a unit .y-force applied to the point (-4H, H), i.e., at the distance 4H 
from the region of interest V). Equating the "measured" amplitudes to (10) 
gives a set of M linear algebraic equations with N unknown mode 
amplitudes, a„ and b„, which can be found by the SVD-technique. 

The results of computer simulation obtained for the two different 
structures on Fig. 2 (the first structure is one-dimensional and the second is two- 
dimensional) are similar. They are also similar to those obtained for other 
structures (the author verified them for an acoustic waveguide and for a 
circular cylindrical shell). So, they are rather general. 

The first and practically most important result is the existence of an 
optimal model: there is a number N0 of normal modes (model-parameters) 
which renders minimum to the reconstruction error. It means that too 
complicated and exact models containing an excessive number of model 
parameters N > N0 as well as rough models with a small number of the 
parameters N < No, give larger errors of field reconstruction than the optimal 
model with No parameters. The best number No depends on the structure 
type, geometry, frequency, etc., but most of all on the accuracy and amount of 
input data. 

Fig. 3 presents the 
field reconstruction 
error A versus the 
number of the model 
parameters 
computed for the 
strip on Fig.2b. The 
error A is defined 
as relative square 
module deflection of 
the reconstructed 
displacement from 
the exact one 
averaged over the 
reconstruction 
region V.     In 
computing these 
plots, a random 
error of prescribed 
standard value 8 is 
added to the 

"measured" data. Four curves in Fig,3 correspond to various values of the 

0,8-I ^id1        40~3        40S       40* 
A fill 0,6- 

< 

K      ill 
0,4- 

■ <    /        / ♦<~      /        /        / 
% >        /       ♦ 

XA        ♦            / 0,2 J 

*-♦-♦-♦-♦ 
n _ 

1      3     5     7     9    11    13    15    17 
N 

Fig. 3 The reconstruction error A versus the number 
of model parameters N for various values of the 
input error 8. 
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Standard error 8. It is seen, that each curve of the field reconstruction error has 
a pronounced minimum beyond which the error sharply increases reaching 
arbitrary large values. This result seeming paradoxical has a clear physical 
explanation. The reason lies in random errors of the input data. 
If there were no input errors, i.e., if the input data were known mathematically 
exactly, the reconstruction error would monotonically decrease with the 
number of modal parameters N: the more exact is the model the better is the 
approximation. When input errors are introduced, the decreasing of A(N) 
holds only to a certain limit since for large N the errors in the input data, 
enhanced by small singular values (see equation 8), may give an arbitrarily 
large error in the result of reconstructing the field. 

200 
a 
0) 

6) 
CD 

■Q. 
CD 
CO 
CO 

-200 

(b) 

0 1 0.2          0.4          0.6          0.8 
Coordinate along the rod,x/l 

Fig. 4. Amplitude (a) andphase(b) ofthe bardisplacement 
exact -solid lines, reconstructed - dotted lines: kl=4.7; 
loss factor 0.05; number of modes used N = 2.  
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g.5 As in Fig.4: N= 12 (the best model) 

Thus, for each 
value of the input 
error, there exists 
an optimal number 
of the model 
parameters which 
corresponds to the 
minimal error in the 
reconstructed field. 
Curves, similar to 
the curves in Fig.3, 
are obtained also 
for other structures. 
For example, when 
30% of the bar in 
Fig.2a are 
accessible for 
measurement and 
the input error is 
equal to 10"7, the 
best number of 
modes is No =12. 
Fig.4-6 present the 
displacement 
amplitude and 
phase distributions 
along the rod for a 
rough model (N 
=2), the optimal 
model (N=12) and 
an excessively 
complicated model 
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0.2 0.4 0.6 

Coordinate along the rod, 

Fig. 6 As in Fig. 4: N = 30. 

0.8 
x/l 

0.45 

(N= 30). It is seen 
that in all cases the 
reconstruction 
error, being small in 
the measurement 
region S, increases 
with distance from 

Another finding 
in the computer 
simulation concerns 
the amount of input 
data necessary for 

obtaining the best solution. Fig.7 presents a typical dependence-of the field 
reconstruction error on the number M of measurement points in the region  S 
for alongitudinally vibrating bar (Fig.2a). 
It is seen, that the reconstruction error is 
unstable when the number   M is small. 
With  increasing     M    the  error     A 
becomes stable and decreases tending to 
a    certain    constant    value.    Similar 
dependencies take place for the strip and 
other structures. The optimal amount of 
the input data correspond to the number 
of measurements M two or three times 
the number N of the model parameters 
involved.   A   further   increase   of the 
amount of data does not improve the 
results and is, therefore, unjustified. 

It   should   be   noted   that   all 
components of the prescribed displacement vector are needed in order to obtain 
the best reconstruction error.  This follows from the uniqueness theorem 
mentioned above: the problem of field reconstruction is uniquely solvable only 
if the full displacement vector on the accessible surface is available. 

50 10       20        30       40 
Mnfcer of rrEaarefrert poirts, M 

Fig. 7 Reconstruction error versus 
number of measurement points 

Some experimental results 

To verify the proposed method, a laboratory experiment has been 
carried out on a circular cylindrical shell (Fig. 8). A finite open shell with 
dimensions in mm 900x300x3.5 is excited by a shaker with harmonic signals. 
The amplitudes and phases of vibration are measured at the surface S by a 
small (2g) 3-component accelerometer, the data are fed into a PC. The 
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PC 

Power Amplifier 
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B&K 1027 

Fig. 8 Experimental set-up 
amplitudes and phases of vibration in the region 0 are reconstructed (by the 
algorithm described above) and compared with the actual ones. The 
reconstruction error is computed with respect to the actual field of the region 
O. In modelling the vibration field in the shell, the displacement vector is 
represented by the series of the normal modes which satisfy the simplest shell 
equations (the Donnel-Mushtari theory [14]). The maximal number of the 
normal modes used is 52. These modes correspond to the circumferential 
numbers up to m=J0. The evanescent modes decaying more than 40 dB at the 
distance from the region S+Q to the end of the shell or to the shaker, are 
excluded from the model. The total error of measuring complex vibration 
amplitudes is estimated as 0.07 < S< 0.08. 

Fig. 9 and 10 
show the dependencies 
of the reconstruction 
error A (solid lines) 
on the complexity of 
models used for one of 
the frequencies (f = 
700 Hz) and for two 
different amount of 
input data. The curves 
are obtained as 
follows. 
First, the simplest 
models containing the 
normal modes of one 
single circumferential 

6 

5 

4 

3 

2 
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0 
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-2 

••- errors 
-■—errorQ 
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"-f: 

8      9     10    11 

Fig. 9 Logarithm of error and condition number vs. 
model complexity MC (see text); input data 60%. 
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Fig. 10 As in Fig. 9: input data 40% 

number m are tried. 
Among 11 models 
with m = 0,1,. ..,10, 
the best model is 
chosen which gives 
the minimal error in 
describing the 
measured data (in 
practice, only these 
data are actually 
available). In both 
cases of Fig. 9,10 it is 
the model with the 
circumferential 
number m = 6. It 
corresponds to the 

model complexity MC = 1 in Fig. 9,10. Then, all models with two 
circumferential numbers {MC = 2 in Fig.9,10,) are considered: one is m, = 6 
and another is chosen among 10 models with m2 # 6 which gives the minimal 
error in describing the input data (It is found that m2 equals 5 in the case of 
Fig.9 and m2 =4 for Fig. 10). After that, all models with three circumferential 
numbers (MC=3) are investigated, etc., until all the models are exhausted. 
Thus, the dashed curves in Fig.9,10 correspond to the best models of various 
complexity for the measurement region S of the shell. Therefore, these curves 
decrease monotonically, at least, do not increase, with the number of the model 
parameters. At the same time, the error of the expansion to the reconstruction 
region O (solid curves in Fig.9,10) has tendency to increase with the number 
of the model parameters. More exactly, they have minima beyond which they 
increase monotonically. For very complicated models, the reconstruction error 
may reach hundred of thousand. With these curves, correlate the curves of the 
condition number (dotted lines). 

Now, the question how to choose the optimal model which minimises 
the reconstruction error in the inaccessible region (i.e., corresponds to the 
minimum of the solid line curves in Fig.9,10) using only the information about 
vibration of the measurement (accessible) region (i.e., using the dashed and 
dotted line curves in Fig.9,10) may be answered as follows. As one can observe 
from Fig.9 and 10, the error of describing the measured data (dashed lines) 
first rather rapidly decreases with the model complexity and then becomes 
almost constant. The best model just corresponds to the transition from the 
interval of rapid decrease to the interval of stable values of the dashed line 
curve. Conversely, the curves of the condition number (dotted lines in Fig.9,10) 
first grow slowly with MC but, after the best model is reached, their growth 
becomes rather fast. 
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Thus, it can be concluded that the optimal model can be approximately 
identified from the behaviour of the curves of the error in the input data and of 
the condition number. From the physical point of view, this "rule of thumb" is 
obvious - see explanation of Fig.3. But quantitatively, it is rather uncertain: one 
can only find an interval of models within which the best model lies. E.g., for 
the cases of Fig.9,10 the intervals correspond to MC = {4,5,6} and {2,3,4} 
where the reconstruction error equals {0.35, 0.25, 1.2} and {0.64, 0.75, 0.85} 
while the minimal values in these cases are 0.25 and 0.51. Much more certain 
identification of the best model can be made if at least one measurement point 
is taken in the reconstruction region; in other words, if it is possible to place at 
least one sensor into the needed part of the structure. In this case, however, 
another procedure of the optimal model identification is required. 

Summary 

The problem of expanding the vibration field from the measurement 
surface to the volume of an elastic structure is rigorously posed and studied 
theoretically and experimentally. When formalised, this problem, also called as 
the field reconstruction problem, is a non-traditional boundary value problem 
for differential equations of elliptic type. The conditions for existence of a 
solution are found and the uniqueness theorem is proven. A general solution 
based on the generalised singular value decomposition is obtained. 

Results of computer simulation with simple structures are presented. 
Most attention is paid to studying the accuracy of the expansion to unmeasured 
parts of the structure. Relations between the expansion accuracy, the 
measurement errors and the complexity of the vibrational model of the 
structure (number of model parameters) are established. A salient feature of 
these relations is that, for a given input data accuracy, there is an optimal model 
which minimises the expansion error. 

Results of laboratory experiments with a steel cylindrical shell executing 
forced harmonic vibration are also presented aiming to verify the obtained 
relations. Procedures of choosing the optimal models are discussed. 
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ABSTRACT 
A new approach based on the measurement of the gear torsional vibrations is 
proposed to evaluate the equivalent gear error of a spur gear pair and to 
identify the natural frequency and the damping of the system. The test bench is 
modelled as a single degree of freedom system and must be realised by using 
stiff bearings and torsionally compliant shafts. The algorithm is based on the 
use of the harmonic balance method. Results can be obtained by using a quite 
simple experimental apparatus. The proposed approach has some advantages 
with respect to the traditional metrological methods. The effect of 
measurement errors on the accuracy of the identification is also investigated. 

1. INTRODUCTION 
In the last decades many papers were published on the effect of gear 

errors on the dynamic response of gear pairs, e.g. references [1-16]. In fact 
vibrations of gear pairs are largely affected by the amplitude and phase of 
deviations of the tooth profile from the true involute one. Pitch, pressure angle 
and mounting (eccentricities and misalignments) errors also are of great 
importance. Therefore gear errors must be checked to avoid bad working 
conditions of high speed gears and silent reducers. Moreover profile 
modifications are introduced to reduce gear vibrations and their accuracy must 
be verified. Analytical [3, 14, 17-18], numerical [2, 9-13, 15, 19-24] and 
approximate [6] methods were proposed in the past to simulate the dynamics 
of a spur gear pair, and single [2-3, 5-12, 21-22], multi [4, 20, 23-24] or 
infinite [25] degrees of freedom were used by different authors to model the 
system's behaviours. Multi axes reducers were investigated e.g. in references 
[13-14]. 

In the present study an approach based on the measurement of the gear 
torsional vibrations is proposed to evaluate the equivalent gear error of a spur 
gear pair and to identify the natural frequency and damping of the system. The 
equivalent error is a function of the gear position and is related to the errors of 
the driving and the driven gears and to the non-dimensional stiffness of the 
teeth; its dimension is length. The system is analytically studied by using a 
single degree of freedom system capable of modelling the experimental test 
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bench, which therefore must be realised using stiff bearings and torsionally 
compliant shafts. If gear pairs have different center distances, an appropriate 
housing or different housings must be built. 

The algorithm is based on the use of the harmonic balance method [26]: 
it is applied to spur gear pairs having low contact ratio £ (i.e., 1 < s < 2) and is 
suitable to identify pitch, profile, pressure angle and runout errors. Results can 
be obtained by using a quite simple experimental apparatus requiring only the 
measurement of vibration response of the driven gear during a revolution for 
at least three different rotational speeds. The gear pair must be tested with a 
fixed static load. When testing a single gear this must be coupled with a 
reference gear. 

The proposed approach presents some advantages with respect to the 
metrological methods used to measure gear errors on driving and driven gears 
[10]. In fact these methods, that uses control machines, provide the charts of 
profile errors and cumulative pitch and runout errors for each tooth of the two 
gears. On the contrary, using the proposed technique, the equivalent error is 
obtained; it is directly related to the gear vibrations and therefore is 
particularly appropriate to evaluate the gear accuracy from a dynamic point of 
view. In fact it is well known that some modifications of the tooth involute 
profile can provide a reduction of the vibration level, so that the effect of these 
modifications, the accuracy of gear profiles and mounting can be checked by 
using the equivalent error. 

The effect of noise on the identification of the equivalent error and 
modal parameters is also investigated. Some simulated tests are performed 
with noise polluted vibration responses of the gear pair. 

2. VIBRATION SIMULATION 
A pair of spur gears is modelled with two disks coupled by nonlinear 

mesh stiffness, mesh damping and excitation due to gear errors. One disk (the 
driving gear) has radius Ri and mass moment of inertia /i, while the other (the 
driven gear) has radius i?2 and mass moment of inertia h; the radii R\ and R2 
correspond to the radii of the base circles of the two gears, respectively. 

The transmission error, defined as the difference between the actual and 
ideal positions of the driven gear, is expressed as a linear displacement along 
the line of action. The sign convention used for the transmission error is 
positive behind the ideal position of the driven gear. Analysing gears with low 
contact ratio £ (i.e., 1 < s < 2), the nonlinear equation of motion for the 
dynamic transmission error x can be written as: 

mx + cx + f](x,t) + f2(x,t) = WQ, (1) 

where 

x=Ri81-R2d2, (2) 

being Q\ and dz the angular displacements of the two gears; the equivalent 
inertia mass m of the system is: 
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m=/l/2/(/1/?2
2 + /2i?1

2); (3) 

W0 is the static load given by 

W0 = ri/Ä,=T2/JR2> (4) 

being T\ and T2 the driving and driven torques, respectively; fj (x, i) are the 
elastic forces of the meshing tooth pair;', for j = 1, 2 

f(rt,J
kMx~eM       whenx-e;(r)>0 

^'j~[0 when;t-ey(f)<0. 

Obviously, equation (1) can be easily extended to high contact ratio gears. In 
equation (5) hit) and k2(t) are the time-varying meshing stiffness of the two 
pairs of meshing teeth. The error functions ei(f) and e2(t) are the displacement 
excitations representing the relative gear errors of the meshing teeth; when 
two pairs of teeth come into contact there will be two separate error functions, 
each acting on a different spring. It is assumed that positive error functions 
give a positive transmission error. Error functions represent the sum of pitch, 
profile, pressure angle and runout errors. Moreover, when separation of tooth 
pairs occurs, because of the relative vibrations and backlash between the gear 
teeth, the dynamic forces j; (x, t) are zero, according to equation (5); these are 
the nonlinear terms in the equation of motion. In equation (1) a constant 
viscous damping is assumed. 

The total stiffness of the gear pair is given by k(t) = k\_(t)+k2(t). Let us 
introduce the meshing circular frequency 6) = zi2 , where Q is the angular 
velocity of the driven gear [rad s"1] and z its number of teeth. The stiffness 
kj(t), which is a periodic function, has a principal period T=2n/co. The 
behaviour of kfit) and kit) are discussed, e.g., in references [3, 6, 10] and in 
section 4. 

Now the case when x-efif) > 0 is considered, i.e., when there is contact 
between the two gears. Therefore the following study is correct when there is 
no tooth separation between driving and driven gears. The phenomenon of 
tooth separation is described, e.g., in [13]. The equation of motion (1) can then 
be written as a second order linear ordinary differential equation: 

x + 2 £ ß)0 x + col Kit) x = F0 + col K\ (0 ei (0 + ®l K2 (0 e2 W . (6) 

where: K(t) = k(t)/km, K,it) = fc,(r)/*„,, K2it) = k2(t)/k,„, F0=Wjm and £ 
is the damping ratio; K, K\ and K2 are non-dimensional functions. Moreover 

T 

the average value of the mesh stiffness is km = (l/T)jk(t)dt and co0 = -Jkm/m 
o 

is the natural circular frequency of the undamped system with stiffness equal 
to its integral average value. 

It is useful to introduce the following Fourier expansion of the 
equivalent error [m] 
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Kl(t)e](t) + K2(t)e2(t)= £<e''"ß' , (7) 

where i is the imaginary unit. The expression on the left side of equation (7) 
represents the equivalent error of the gear pair; in fact, it is the excitation due 
to gear errors on the right side of equation (6). It is assumed that this function 
has a principal period zT, i.e. the time revolution of the driven gear, and 
therefore has principal circular frequency Q. Strictly the same tooth of the 
driving and driven gears mesh together only after a period s\zT, where s\ and 
52 are the integers that express the gear ratio x as the rational number x = sjs2 

(usually x < 1). In this study the error components having circular frequency 
lower than Q are neglected. It is important to observe that in many cases the 
profile errors can be considered the same for all the teeth of the gear, i.e. they 
all have principal period T; therefore the coefficients dn for n = z, 2z, 3z,... are 
due to periodic profile errors, whereas the others are due to pitch, pressure 
angle and runout errors. 

The expansion of the non-dimensional total meshing stiffness is 

K(t)=tLa„ei"za' ■ (8) 

The solution of the equation of motion (6) is obtained by using the harmonic 
balance method. Therefore the dynamic transmission error x is expanded into 
a complex Fourier series 

x(.t)=tLc,e*a' . (9) 

Substituting equations (7-9) into equation (6) the following equation is found 

'L\-n2n2c„+2int(O0ncl,+CoZ Y,cn_zjaj e""2' 
n=— L j=— (10) 

'Fo + fltfM «'"*'. 

Equation (10) gives the following algebraic linear system 

AC = F, (11) 

where the elements of the matrix A are given by 

Aj={-n2 O2 +2inC coon)SnJ+co^ Wn.jCc^j^ , (12) 

j 1   if (n - j) I z is integerl 
8„ j is the Kronecker delta and y/.=i ,       . f. Moreover it ; Y"-J    [0   otherwise J 
is: 

1736 



c = i F = 

co2dN 

cold, 

F0+w2
0d0 

a>ld_, 

. a>ld_N  . 

(13-14) 

3. IDENTIFICATION OF MODAL PARAMETERS AND 
GEAR ERRORS 

The aim of this work is to identify the equivalent gear error; therefore 
the vector F in equation (11) is now unknown. On the contrary the contact 
ratio £, the shape of the stiffness function K(t) and all the constants an of the 
expansion are known. The transmission error x(t) is then experimentally 
measured for different rotational speeds ß of the driven gear; in particular, 
only rotational speeds where no tooth separation occurs must be chosen. It is 
obvious that the dynamic transmission error varies according to the speed ß, 
so that the constants c„ of the expansion and the vector C are functions of ß. 
Equation (12) shows that also the matrix A is a function of ß; whereas the 
vector F is independent of it. Therefore it can be written 

F = A(ß)C(ß). (15) 

In equation (15) the vector C(ß) is obtained experimentally and the matrix 
A(ß) theoretically by using equation (12). However in order to compute the 
matrix A the modal parameters fflo and C, of the system must be identified 
because they appear in equation (12). These parameters can be determined by 
using the following equation: 

A(ß,)C(ß,) = A(ß2)C(ß2) = A(ß,.)C(ß;) = constant, 

where ß are fixed rotational speeds. Then 

£l -n2Q2cn+2ini;co0Qcn+C02
0 X^a,. = constant. 

(16) 

(17) 

Computing the left hand side of equation (17) for different rotational speeds, 
e.g. ßi, Ü2, ß3, and subtracting first the quantity computed for Dq. to the one 
computed for Q\ and then subtracting the quantity computed for Q?, to the one 
computed for ßi, one obtains the following linear system 
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£2ni[ß, c„ (fl,)- A c„ (fl,)]     £ X«y k^(ß,)-c^(A) 
1 

Xn2[A2c„(ß,)-ß2
2c„(ß)]j 

CO2 

(18) 

The linear system (18) allows to identify the modal parameters coo and £and, 
using equation (15), the vector F that gives the equivalent gear error. 
Considering that usually ©0

2 d0 is negligible with respect to Fo, also the ratio 
Wo/m can be identified; therefore if the static load Wo is known, the reduced 
mass m of the system is obtained. Actually all the constant terms of the 
identified vector F can be attributed to the static load, giving to do the zero 
value. In fact the static load can be easily considered as the mean value of the 
load during the gear meshing and a non zero coefficient do is equivalent to 
change the static load. 

In system (18) one can substitute the quantity computed for the 
difference Q2-&3 to one of the two differences previously computed. However 
it is important to observe that with measurements at three different speeds 
only two linearly independent equations can be obtained for the system (18). 

Due to the errors introduced in the experimental measurement of the 
dynamic transmission error x (errors in C) it is preferable to solve an 
overdetermined system using different velocities to obtain additional 
equations in system (18). Moreover the problem is ill-conditioned, so that the 
errors on the known vector C are amplified in the solution. In order to 
overcome this problem, it is necessary to use only the more significant 
harmonics in the identification when significant measurement errors or 
differences between the single degree of freedom model and the actual test 
bench are observed; therefore all the sums involved in system (18) must be 
stopped at an integer n not too large because higher order harmonics involved 
in C only introduce noise and does not give additional information. This 
process is similar to the use a low-pass filter on signals coming from sensors 
used in experiments. A discussion on this phenomenon is deferred to section 
5. The natural circular frequency of the system can be evaluated theoretically 
or experimentally and the damping ratio can be also experimentally 
determined by an impact test, using the logarithmic decrement, or can be 
assumed in the range between 0.07 and 0.1, as verified by many authors [6, 
10]. Therefore the results of the identification can be compared to data 
obtained in a different way. 

The vector F can be also determined by using equation (15) or the 
following expression: 
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F = (l//)2>(fl,)C(fl,). (19) 

This procedure provides a good accuracy in the computation also in presence 
of measurement errors, and the average reduces the errors that are introduced 
in the experimental measurement of x (and then in C). 

4. APPLICATION OF THE METHOD 
In the numerical simulations the stiffness function proposed by Cai and 

Hayashi [6] was used; in particular the following function can be introduced 

/(f) = ^{(^f[f + ((£"1)/2)r]2+if[f + ((£_1)/2)T] + a55j-    (20) 

The two non-dimensional meshing stiffness K\(t) and K2(t) are directly 
obtained by equation (20), i.e.: 

Ki(t) = f(t)    for 0<t<T (21) 

_\f(t-T)   if t>T-{(e-l)/2)T 

^"i 0 if f<T-((£-l)/2)r 

\f(t + T)   if f<((£-l)/2)rl 
+\J v       ; , '   \ for 0<f<T. 

0 if (>(£-l)/2T 

(22) 

The meshing stiffness is therefore a function of the contact ratio e. The two 
non-dimensional meshing stiffness Ki(t) and K2(t) are shown in Figure la (e = 
1.8) along the meshing period 7=2 7z/©, and the non-dimensional total meshing 
stiffness K{t) is plotted in Figure lb. The integral average stiffness of the pair 
km is related to the maximum stiffness of one pair of teeth &MAX by the 
following expression: km =0.85£ kMAX. The ISO/DIS 6336-1.2 (1990) design 

code gives a formula to evaluate &MAX- 
In order to simplify the experimental measurement of the dynamic 

transmission error, only a test on the driven gear can be performed. Usually 
only the acceleration of the driven gear x2 = i?2 02 is measured; however the 
acceleration x can be obtained by using the following relationship 

x, = x, (23) 
m, +1712 

where m\ and m2 are the reduced masses of the driving and the driven gear, 
respectively. The measured acceleration, can be related to the coefficients c„ 
by equation (9), to yield: 

x2=—nh— Q2%nn
2eM\ (24) 
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Equation (24) shows that the coefficient c0 cannot be obtained by vibration 
measurement; however this coefficient can be easily determined because it is 
the mean value of the dynamic transmission error x. A good estimation of this 
value is c0=W0/km . In the identification process it is very important to use 
only measured accelerations when no tooth separation occurs. Therefore it is 
generally necessary to avoid rotational speeds larger than half the main 
resonance speed COo- 

The benchmark for gears can be obtained by a variable speed motor and 
a brake. Torsional flexible shafts, with a natural frequency lower than 1/10 of 
the natural frequency OOQ of the gear pair, and stiff bearings must be used in 
order to well approximate a single degree of freedom system. The rotational 
speed can be measured by a proximity sensor that counts the number of 
passing teeth; the load is measured by a dynamometer and the acceleration of 
the driven gear by accelerometers. In particular two identical accelerometers 
which are mounted on the gear through two small aluminium blocks are used; 
they can be placed on opposite sides of a diameter and must have tangential 
orientation. A summing amplifier sums up the signals from the accelerometers 
to eliminate the effect of eccentricity. A slip ring is introduced to bring the 
signals to the amplifier. In alternative a laser rotational vibrometer can be 
employed to measure vibrations of the driven gear; in this case accelerometers, 
slip ring and summing amplifier can be eliminated. Lubrication of the meshing 
teeth must be provided. 

5. NUMERICAL RESULTS 
To verify the proposed method the gear pair tested by Umezawa et al. 

[10] is studied. The two gears are finished by a MAAG grinding; the 
characteristics of both the gears are: module = 4, number of teeth = 48, face 
width = 10 mm, pressure angle = 14.5°, diameter of standard pitch circle = 
192 mm; the gear ratio is 1. The contact ratio s is 1.8, the rotational speed 
range Ü = 400 -s- 3000 rpm (41.89 -*- 314.16 rad s"1), the torque 196 Nm and 
the teeth have involute profile. The profile errors are about 6|J.m at the root of 
the driving gear and at the tip of driven gear; these profile errors are reported 
in reference [10]. The natural circular frequency is fflo = 48x3062 rpm (2450 
Hz) and the value of the damping ratio £is 0.07. 

The response of the gear pair is polluted with noise on the gear data and 
modal parameters. It is assumed that only profile errors are significant in this 
case, so that all the other errors are neglected. As a consequence of this 
hypothesis, the dynamic transmission error has a principal period equal to the 
meshing period T. The response x is discretized with 201 points in the period. 
Then the noise is added to the response before computing the vector C. In 
particular the noise is generated using random numbers added to the time 
response. These random numbers are obtained by a normal distribution having 
zero mean value and variance cr= lev*max, where max is the maximum value 
of the response x in the period and lev is the error level. As a consequence of 

1740 



the assumed distribution, the 68 % of the points have noise within ±<j, the 95 
% within ±2cr and the 99.7 % within ±3a. 

First, equation (18) is used to identify the modal parameters of the 
system from noise polluted responses. In particular eight responses at 
rotational speeds Q = 60, 65, 68, 70, 80, 90, 100, 120 rad s"1 with an error 
level /ev = 0.02 are employed. This error level gives responses having a 
difference within ±6% with respect to the true value. In Figure 2a the percent 
difference between the identified natural frequency Cüo and the actual value is 
plotted versus the number of harmonics used in the identification. The range 
of harmonics of the meshing frequency a=zQ that gives correct results is 
4<n<8. In Figure 2b the data relative to the damping ratio £ are reported. 
Figure 3 is similar to Figure 2 but it is obtained for an error level lev = 0.005 
(difference within ±2.5% with respect to the true value). In this case the range 
of useful harmonics increases. Figure 2 and 3 show that it is not convenient to 
exceed in the number of harmonics. In fact, for the considered problem, the 
amplitude of coefficients c„ decreases with n so that higher order harmonics 
are largely affected by the noise. Being the identification process an ill 
conditioned problem, it is necessary to employ only harmonics having a good 
signal to noise ratio. 

In Figure 4 the equivalent error obtained by using the profile errors 
given in reference [10] and equations (7), (20-22) is shown; this one can be 
called the "actual" equivalent error. In Figure 5 the equivalent error is 
identified by using a response at Q = 60 rad s"1 without noise. In this case 15 
harmonics are used to describe the function. The difference between Figures 4 
and 5 can be surely attributed to the truncation error. 

Then eight responses at rotational speeds speeds Q = 60, 65, 68, 70, 80, 
90, 100, 120 rad s"1 with an error level lev = 0.005 are used to identify the 
equivalent error; the result is given in Figure 6 where the actual modal 
parameters (fflo and £) are used. Figures 5 and 6 are very similar and they well 
describe the "actual" error reported in Figure 4. Also in the case of an error 
level of /ev = 0.02 and using the actual modal parameters a quite good 
evaluation of the equivalent error is reached, as shown in Figure 7. 

The effect of an incorrect identification of the modal parameters a>o and 
f on the evaluation of the equivalent gear error is then investigated in Figure 
8; in this case an error of +10% on the frequency and +40% on the damping 
ratio is used to evaluate the equivalent error by responses having a noise level 
lev = 0.02. Also in this case a quite good result is obtained. 

6. CONCLUSIONS 
The reconstruction of the equivalent gear error by acceleration 

measurement of the driven gear of a spur gear pair is quite good also in the 
case of measurements affected by noise. In particular the identification of the 
natural frequency and damping of the system is obtained by an overdetermined 
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linear system to minimise the error; to obtain correct results only lower order 
harmonics must be considered. Then these data can be used to evaluate the 
equivalent gear error that is not largely affected by the inaccuracy in the 
identification of the natural frequency and damping. 

The proposed method seems to have advantages in the quality control of 
a large production of gears having the same center distance; in this case the 
same housing can be used. Moreover the gear can be tested together with a 
reference gear or with the companion gear to check the actual gear pair. As a 
limitation, the method can be only applied to systems having stiff bearings and 
torsionally compliant axes, requiring an appropriately designed experimental 
apparatus. 
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Figure 1. (a) The non-dimensional meshing stiffness K\(t) and K2(t). (b) The 
total meshing stiffness K(t). 
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Figure 2. Results of the identification with an error level Zev=0.02 (a) Percent 
difference between the identified cub and the actual value vs. the number of 
harmonics used in the identification, (b) Percent difference between the 
identified £and the actual value vs. the number of harmonics. 
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Figure 3. Results of the identification with an error level /ev^O.005 (ä) Percent 
difference between the identified CüQ and the actual value, (b) Percent 
difference between the identified £and the actual value. 
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Figure 4. Actual equivalent gear error. 
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Figure 5. Identified equivalent gear error by response without noise. 
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Figure 6. Identified equivalent gear error by responses with a noise level 
/ev=0.005; actual modal parameters. 
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Figure 7. Identified equivalent gear error by responses with a noise level 
/ev=0.02; actual modal parameters. 
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Figure 8. Identified equivalent gear error by responses with a noise level 
lev=0.02; +10% of the actual value of OQ and +40% of the actual value of £ 
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