
WflQK 3fAllMMf K

Fusion-Based Register Allocation

Guei-Yuan (Ken) Lueh

May 2,1997
CMU-CS-97-135

pzovea tea p-OD&e reieossg

MIO QMLHY n^lÖjÖÜD 4

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.
Department of Electrical and Computer Engineering

Thesis Committee:
Allan Fisher, Chair

John Shen
Thomas Gross
Jaspal Subhlok

Copyright ©1997 Guei-Yuan Lueh

This research was sponsored in part by the Advanced Research Projects Agency/CSTO monitored by
SPAWAR under contract N00039-93-C-0152.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of ARPA, SPAWAR, or the U.S.
Government.

19970806 094

Keywords: Code generation, register allocation, fusion-based register allocation,
region-based compilation, spilling, splitting, delayed spilling, rematerialization

Abstract

Nowadays, compilers are looking for more optimizing opportunities by performing aggres-
sive code transformations which introduce high register pressure. High register pressure
potentially increases register overhead operations. Register allocation must deal with high
register pressure well so that the performance gain of the code transformations is not thrown
away by the increased overhead operations.

Register allocation must deal with three issues: spilling, live-range splitting, and register
assignment. These issues are closely related to each other. Focusing on one issue and
ignoring the others may deteriorate the quality of register allocation. This dissertation
proposes a novel register-allocation approach that is fusion-based. Fusion-style register
allocation starts off with constructing regions and applies graph fusion along control-flow
edges to combine the interference graphs of regions into the interference graph for the whole
function. Graph fusion integrates spilling, splitting, and register assignment in a seamless
fashion. Fusion-based register allocation is sensitive to the ordering of control-flow edges
that connect regions. Splitting is unlikely to happen at high priority edges (frequently
executed) and likely to happen at low priority edges (infrequently executed).

This dissertation presents a register allocation framework that allows us to model various
register allocation approaches, e.g., Chaitin-style, optimistic, priority-based, and fusion-
style coloring. Fusion-style coloring also provides a nice framework to model various
live-range splitting approaches such as the Tera, SSA, PDG, and Multiflow approaches.

This dissertation evaluates the effectiveness of fusion-style coloring under the register
pressure caused by scope expanding transformations such as unrolling and inlining, whereas
the traditional Chaitin-style coloring breaks down. The experimental results show that the
number of register overhead operations using fusion-style coloring increases slowly. In
other words, fusion-style coloring provides a solution to region-based compilation so that
register allocation is no longer an obstacle to region-based compilation.

This dissertation presents and evaluats several enhancements to register allocation. These
enhancements combine the strengths of both Chaitin-style and priority-based coloring into
one. The integration of these enhancements provides a model of dealing with call cost
(register saves/restores). The experimental results show that the model actually outperforms
some existing approaches that have been adopted by researchers.

A ckno wledgments

I would like to thank my technical advisor Prof. Thomas Gross for his guidance,
wisdom, support, and infinite patience. I would also like to thank Allan Fisher, John Shen,
and Jaspal Subhlok for spending their precious time to serve on my thesis committee.

I am very grateful to Ali-Reza Adl-Tabatabai, my officemate, colleague, and long time
friend for his wisdom, sharp questions, and technical discussions. It was a great pleasure
and wonderful experience to build the cmcc compiler with Ali.

Many thanks go to my friends for their generous help during my wife's pregnancy: Peter
and Helen Lieu, Leaf and Shilling Huang, Thomas and Hui-Ru Tsai, Felix and Sharon Ng.
Their help allowed me to continue focusing on my research work.

I would like to show my gratitude to the members of iWarp/Nectar group who made the
research environment enjoyable and colorful.

I would like to thank my family and my wife's family for their encouragement. Finally,
my deepest thanks go to my wife, Chia-Chian TuanMu, for her unselfish sacrifice, encour-
agement, and support. I am especially indebted to her for taking care of my beloving son,
Sheen, and daughter, Anne, when I worked on my thesis. Without her genuine love, this
thesis would not have been possible. I dedicate this thesis to her.

Contents

1 Introduction 11
1.1 Compiler structure 11
1.2 Register allocation 12

1.2.1 Overview 14

2 Background 17
2.1 Cost model for register allocation 17
2.2 Prior work 19

2.2.1 Optimal 19
2.2.2 Reducing spill cost 19
2.2.3 Reducing shuffle code 24
2.2.4 Reducing call cost 24

2.3 Shortcomings of prior work 26
2.3.1 Chaitin-style coloring 26
2.3.2 Optimal register allocation 27
2.3.3 Splitting prior to coloring 27
2.3.4 Splitting during coloring 28
2.3.5 Program structure based 29

2.4 Challenges 30
2.5 Preview of fusion-based register allocation 31

3 Experimental Framework 33
3.1 The cmcc compiler 33
3.2 The register-allocation framework 34

3.2.1 Modeling existing register-allocation approaches 40

4 Fusion-Based Register Allocation 43
4.1 Overview 43

4.1.1 Region formation 44
4.1.2 Graph simplification 45
4.1.3 Graph fusion 46
4.1.4 Color assignment 46
4.1.5 Properties of graph fusion 47
4.1.6 Example 47

1

CONTENTS

4.2 Fusion operation 48
4.2.1 Finding spanning-E live ranges 49
4.2.2 Unioning non-splitable live ranges 50
4.2.3 Merging cliques 55
4.2.4 Taking a snapshot of the interference graph 55
4.2.5 Unioning splitable live ranges 56
4.2.6 Maintaining the simplifiability (colorability) invariant 56
4.2.7 Critical node 60
4.2.8 Example of critical node 61

4.3 Modeling different splitting approaches 62
4.3.1 Constructing GH 63
4.3.2 Tera 64
4.3.3 PDG 64
4.3.4 Multiflow 65
4.3.5 SSA 65

4.4 Delayed spilling 66
4.4.1 Computing degree 68
4.4.2 Fusing graphs 68
4.4.3 Example of delayed spilling 70

4.5 Biased coloring 71
4.6 Placement of shuffle code 74

4.6.1 Ordering of shuffle code 76
4.6.2 Optimization of placement 77
4.6.3 A more detailed example 79

4.7 Evaluation 79
4.8 Summary 83

Reconciliation 85
5.1 Challenges 85
5.2 Choice of base region 87

5.2.1 Favor small size of the base region 87
5.2.2 Favor big size of the base region 88
5.2.3 Evaluation 90

5.3 Profiling 92
5.4 Sensitivity to number of registers 96
5.5 Different region sizes 97
5.6 Loop unrolling 103
5.7 Function inlining 106
5.8 Execution time and compilation time 109
5.9 Summary 117

CONTENTS 3

6 Call-Cost Directed Register Allocation 119
6.1 Chaitin-style base model 120

6.1.1 Limitations of the base model 121
6.2 Storage-class analysis 122
6.3 Benefit-driven simplification 126
6.4 Preference decision 129
6.5 Splitting to reduce call cost 131
6.6 Evaluationof SC, BS, and PR enhancements 133
6.7 Evaluation of call-cost splitting 142
6.8 Summary 144

7 Comparison of Various Approaches 145
7.1 Optimistic versus non-optimistic 145
7.2 Priority-based vs. Chaitin-style 149

7.2.1 Priority functions 150
7.2.2 Evaluation 152

7.3 Chaitin-style versus CBH 159
7.4 Summary 164

8 Extensions 167
8.1 Rematerialization 167

8.1.1 Prior approaches 169
8.1.2 Rematerialization in fusion-style coloring 170
8.1.3 Optimization of rematerialization 173
8.1.4 Examples of rematerialization 173

8.2 Coalescing 175
8.2.1 Prior approaches 177
8.2.2 Coalescing in fusion-style coloring 178

8.3 Summary 179

9 Conclusions 181
9.1 Summary 181
9.2 Future work 182

CONTENTS

List of Figures

1.1 Simplification (N=3) 15

2.1 Caller-save and callee-save costs 18
2.2 Premature coloring decision with N — 2 30

3.1 Structure of the register allocator. 35
3.2 Spill-code live ranges 38
3.3 Spill code with N = 2 39

4.1 Structure of the fusion-based register allocator. 44
4.2 Simple code fragment for a world with N = 2 48
4.3 Fusion operation 48
4.4 Example of finding spanning-E live ranges 49
4.5 Different possibilities when coalescing h\ (x) and lr2{x) 50
4.6 Structure of unioning 2 non-splitable live ranges 51
4.7 Unioning two live ranges using disjoint-set 52
4.8 Live-range union 53
4.9 Example of merging interference edges 54
4.10 Maintaining simplifiability 57
4.11 Lower register pressure 59
4.12 Critical node (N=3) 62
4.13 Strong fusion operation 63
4.14 Non-optimal spilling (N=2) 67
4.15 Clique summary node 68
4.16 Removing a live range from a clique 70
4.17 Example of delayed spilling (N=2) 71
4.18 Biased coloring 72
4.19 Example of inserting shuffle store 75
4.20 Placement of shuffle store 78
4.21 Code fragment from alvinn with N = 3 80
4.22 All available registers (26 int, 16 double) 82

5.1 Size of base regions (N=2) 89
5.2 Size of base regions (N=2) 90

LIST OF FIGURES

5.3 Transfer operations in alvinn, using all registers, for two different region
definitions 91

5.4 Transfer operations in alvinn, small number of registers, for two different
region definitions 92

5.5 Transfer operations in alvinn, using all registers and profile information. 93
5.6 Transfer operations in espresso, no unrolling 94
5.7 Transfer operations in espresso, with unrolling 95
5.8 Fusion-style > Chaitin-style 98
5.9 Fusion-style « Chaitin-style (profile sensitive) 99
5.10 Fusion-style > Chaitin-style in the static case (fpppp) 99
5.11 Fusion-style > Chaitin-style (small number of registers) 100
5.12 Fusion-style « Chaitin-style 100
5.13 Different region size 101
5.14 Different region size (cont.) 102
5.15 Different region size (cont.) 103
5.16 Overhead operations of register allocation for loop unrolling 105
5.17 Overhead operations of register allocation for loop unrolling (cont.). ... 106
5.18 Function inlining 108
5.19 Function inlining vs. Without inlining 110
5.20 Function inlining vs. Without inlining (cont.) Ill
5.21 Reducing compilation time 115

6.1 Call-cost directed register allocation 120
6.2 Register allocation cost 121
6.3 Storage-class analysis 124
6.4 Structure of the color assignment using storage-class analysis 125
6.5 Effect of simplification order, with Ar = 3 registers (2 callee-save and 1

caller-save) 127
6.6 Structure of benefit-driven simplification 127
6.7 Priority with Ar = 3 registers (2 callee-save and 1 caller-save) 129
6.8 Preference decision example with Ar = 3 registers (1 callee-save and 2

caller-save) 130
6.9 Eliminating caller-save cost by splitting 133
6.10 SC,BS and PR are effective 134
6.11 Only SC is effective 135
6.12 SC and BS are effective 136
6.13 SC and BS are effective (cont.) 137
6.14 No improvement for tomcatv 137
6.15 Register overhead for improved register allocation 138
6.16 Degradation of improvement using static information 139
6.17 Similar trend of improvement as the dynamic case 140
6.18 Similar trend of improvement as the dynamic case (cont.) 141
6.19 Dynamic versus static 142
6.20 Impact of call-cost splitting (CCS) 143

LIST OF FIGURES 7

7.1 Optimistic coloring with N=2 (1 callee-save and 1 caller-save) 146
7.2 Optimistic versus non-optimistic for f pppp (using static information). . . 147
7.3 Priority functions with N=2 (1 callee-save and 1 caller-save) 151
7.4 Priority-based» Chaitin-style 155
7.5 Priority-based < Chaitin-style 156
7.6 Priority-based < Chaitin-style (cont.) 157
7.7 Priority-based >< Chaitin-style 158
7.8 Priority-based coloring with N=3 (1 callee-save and 2 caller-save) 159
7.9 Improved Chaitin-style versus CBH 162
7.10 Improved Chaitin-style versus CBH (Cont.) 163
7.11 Improved Chaitin-style versus CBH (Cont.) 164

8.1 Spilling a rematerializable live range 168
8.2 Shuffle code for rematerialization 172
8.3 Example of rematerialization 174
8.4 Example of shuffle code 175
8.5 Coalescing increases register pressure (N=3) 176
8.6 Coalescing decreases register pressure (N=3) 177
8.7 Structure of coalescing 179

LIST OF FIGURES

List of Tables

3.1 Optimizations performed by cmcc 34
3.2 Performance of optimized code generated by cmcc, relative to optimized

code generated by gcc (version 2.3.2) and MIPS cc on a DECstation
5000/200, and SUN cc on a SPARC 34

3.3 Model different register-allocation approaches 41

5.1 Speed-up of execution time over Chaitin-style coloring (percentage). ... 112
5.2 Compilation time of register allocation (seconds) 113
5.3 Percentage increase of compilation time and improvement of overhead

operations (espresso) 116
5.4 Percentage increase of compilation time and improvement of overhead

operations (espresso) 116

7.1 Optimistic coloring versus Chaitin-style 148
7.2 Comparison of priority-based heuristics (using static information) 153
7.3 Comparison of priority-based heuristics (using dynamic information). . . 154

10 LIST OF TABLES

Chapter 1

Introduction

With the advanced VLSI technologies, performance of processors is approximately doubled

every 18 months, and the density of memory is doubled every 24 months. However, the

gap between the access time of memory and the processor speed enlarges. Based on

the principle of locality, a memory hierarchy is introduced to keep values that processors

operate as close to processors as possible [35]. The memory hierarchy usually consists of

registers, caches (first-level, second-level, and third-level), and memory. Registers are the

storage locations that are closest to the CPU and can be read and written at the clock speed

of the CPU. Accessing data items that are not in registers incurs penalties because the data

must be brought in from the next level of the memory hierarchy. The access time of data

items between two levels may differ in order of magnitude. Because a superscalar machine

can issue multiple instructions in each cycle[39], the penalties for the superscalar machine

are more severe than for a non-superscalar machine. One task of the compiler is managing

register storage locations to keep values that processors are most likely to access in registers

so as to reduce the traffic of going up and down the memory hierarchy.

1.1 Compiler structure

A compiler is a piece of sophisticated and complicated software that translates one source

language to a target machine's object code. To achieve modularity and reusability, a typical

compiler is composed of three major phases: front end, global optimization, and back

end (code generation). The front end usually parses the source code, performs syntax and

11

12 CHAPTER 1. INTRODUCTION

semantic checks, and finally generates an internal representation (IR). Global optimization

performs code improving transformations on IR. The back end translates IR into target

machine code. The main purpose of IR is to cut loose the dependence among the three

phases. For instance, adding a new language to the compiler requires only a new front

end. Ideally, the global optimization and back end do not require any change. Likewise,

translating a source language to a new machine code requires to rewrite only the back end.

There are some phases in the compiler that make the assumption that the target machine

has an infinite number of registers. For instance, global optimization usually performs code

improving transformations based on IR without any knowledge about the source language

and the target machine. Global optimization, therefore, ignores the possibilities that the

temporaries generated during code transformations may not reside in registers. Furthermore,

parts of the back end may also make the same assumption. One implementation of the back

end consists of code selection, code scheduling, register allocation, and code emission. The

code selection maps the IR into an internal instruction representation that is very similar

to the target machine code. The code selection phase uses virtual registers to hold values

of expressions, variables, and constants. The code scheduling phase reorders instructions

to exploit ILP. Register allocation then maps virtual registers to physical registers. The

final phase, code emission, emits machine code. The assumption of an infinite number

of registers simplifies the tasks of those phases because they don't need to apply machine

dependent heuristics to constrain their tasks.

1.2 Register allocation

The task of register allocation is to map virtual registers to a limited number of physical

registers. A common approach is to model the register allocation problem as a graph

coloring problem. The graph comprises nodes and edges. Nodes represent live ranges of

virtual registers; two conflicting (simultaneously live) live ranges are connected by an edge.

The graph is called the interference graph. The interference graph is colored in such a

manner that two conflicting live ranges are assigned different colors (physical registers).

Liveness analysis and reaching analysis determine the live range for each virtual register.

Live ranges that are constructed in this manner, however, may comprise disjoint segments,

1.2. REGISTER ALLOCATION 13

resulting in an unnecessarily high number of conflicts for a live range. Renumbering [13]

and web analysis [38] are two techniques to construct concise live ranges, which result in

interference graphs of potentially lower degree.

Because finding the minimal number of colors for an arbitrary graph is NP-complete

[27], most register allocation approaches assign colors to live ranges in some heuristic order.

The coloring blocks when an approach fails to find a legal color for a live range. We say that

the degree (or register pressure) of the interference graph exceeds Ar (the number of colors).

When coloring blocks, the compiler must somehow lower the degree of the interference

graph to allow coloring to proceed. Two major techniques have been developed to lower

the degree of the interference graph.

Spilling: A live range Ir is assigned a location in memory, and all references to Ir are done

by memory accesses (loads/stores), which are referred to as spill code. A spilled

live range is removed from the interference graph since it is no longer a register

assignment candidate, thus lowering the register pressure.

Splitting: Live-range splitting segments a long live range lr(x) into smaller live ranges

lri(x). Shuffle code is then needed to move the data value x when control passes

from a segment lr\ to another segment lr2. Splitting may reduce the degree of the

interference graph because the smaller a live range, the more likely it is that the live

range interferes with fewer live ranges. The expectation is that each Ir^x) has a

lower degree than lr(x) and that the new graph can then be colored.

Simplification [13] is a common technique that people use to determine the coloring

order in which live ranges are assigned colors. Simplification is based on the observation

that if a node Ir has degree < N, then Ir can be trivially colored no matter what colors are

assigned to the residual graph. Namely, there is always a legal color for Ir even if each of

Ir's neighbors is assigned a different color because at most N - 1 colors are assigned to Ir's

neighbors. Such a node with degree less than Ar is called unconstrained. Simplification

proceeds by successively removing unconstrained nodes from the graph. Each time a node

Ir is removed from the graph, the edges that are incident upon Ir are also removed, and

the degrees of Ir's neighbors are decremented. Once all nodes have been removed from

the graph, colors are assigned to nodes in the reverse order in which they were removed.

14 CHAPTER 1. INTRODUCTION

Simplification blocks when all remaining nodes have degrees > N, and at this time a live

range is picked to be spilled based on a heuristic cost function. Once the spilled live range

is removed from the graph, simplification then may proceed where it blocked because the

degrees of the neighbors of the spilled live range are lowered.

Figure 1.1(a) illustrates a sequence of simplifying an interference graph with Ar = 3.

The graph has 6 live ranges. Shaded live ranges are unconstrained. Initially, only lrt

is unconstrained (degree = 2). The first step removes lr\ from the graph. Irt becomes

unconstrained after removing lr\ and then is removed from the graph. At this point of

time, there are two unconstrained live ranges, /r3 and lrs. Removing either one of them is

legitimate (let's say In). After removing Zr3, all remaining nodes become unconstrained

and can be removed in any order. Assume that lrt, lr$, and lr6 is the sequence of simplifying

the remaining graph. Figure 1.1(b) shows the sequence of assigning colors to live ranges

in the reverse order in which they were removed. Each hatch pattern indicates a color.

1.2.1 Overview

There are 9 chapters in this thesis. The thesis starts off with a review of prior approaches

and addresses the challenges of register allocation (Chapter 2). We then look at the

infrastructure used to implement and evaluate the thesis ideas (Chapter 3). This thesis

introduces a new approach to register allocation that is based on graph fusion. Details and

some important techniques of graph fusion are presented (Chapter 4). Nowadays, compilers

performs aggressive code transformations to improve the code quality. It is very important to

evaluate how register allocation (the fusion-based approach) and other code transformations

interact (Chapter 5). The thesis also describes and evaluates some enhancements of register

allocation (Chapter 6). Chaitin-style register allocation with the enhancements serves as

the base line of our comparison in the thesis. We evaluate the improved Chaitin-style

register allocation with some prior approaches (Chapter 7). Ultimately, the thesis discusses

how the fusion-based approach can be incorporated with other existing register-allocation

techniques (Chapter 8) and then presents the conclusions (Chapter 9).

1.2. REGISTER ALLOCATION 15

0-0 IP

(a) (b)

Figure 1.1: Simplification (N=3).

16 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, I present the cost model for register allocation (Section 2.1), review prior

approaches to register allocation (Section 2.2), address shortcomings of the prior approaches

(Section 2.3), and describe the challenges that a register allocator must deal with so as to

obtain good quality register allocation.

2.1 Cost model for register allocation

Our basic machine model is a RISC processor that requires the operands of all operations

to reside in registers. All our data are based on the code generator for the MIPS R3000 ar-

chitecture. The register allocation cost includes all overhead operations that move operands

in and out of a register; this cost includes, e.g., also overhead operations that move values

from one register to another. That is, we compare the results of a register allocator against

a perfect allocation with unbounded registers. The higher the cost (for a fixed number of

registers), the worse the register allocator has performed.

The register allocation cost is the sum of three components: (i) spill cost (to move values

to and from memory), (ii) call cost (to free up/restore registers upon procedure entry/exit),

and (iii) shuffle cost (moving values from one live range to another).

Register allocation cost must include the call cost. If the register allocator focuses on

the spill cost alone, the evaluation of the register allocator may be overly optimistic. The

call cost, however, is influenced by the compiler's calling convention. Many compilers

divide the registers into two sets, callee-save and caller-save registers, respectively. The

17

18 CHAPTER 2. BACKGROUND

distinction between these registers provides the register allocator with more choices when

minimizing the call overhead [16]. There is a distinct cost associated with each kind of

register assigned to a live range. Assume that there is a program that includes 3 functions,

car, bar, and f oo. Function car calls bar, and function bar calls f oo. When a live

range Ir in bar ends up in a caller-save register and contains the function call f oo (),

we must pay the cost of saving and restoring Ir's value around f oo (). For instance, x

in Figure 2.1 (a) resides in caller-save register $sr. The function call f oo () divides lrx,

because the register allocator, without inter-procedural analysis, assumes that f oo uses all

caller-save registers. If lr ends up in a callee-save register, then this register must be saved

(restored) at the entry to (exit from) bar (Figure 2.1 (b)), because the register allocator

assumes that car demands all callee-save registers after the exit of bar. In Chapter 6,1

present some heuristics that improve the quality of register allocation by reducing call cost.

B2

Func. entry

Bl

f st $sr

V7
st $sr
foo()

id $sr
B3

B4

Func exit
(a) x resides in caller-save register $sr

B2

Func. entry

Bl st Spr
x =

*—[foo()

V7
B3

B4 usex
id $pt

P* , Func exit
(b) x resides in callee-save register $pr

Figure 2.1: Caller-save and callee-save costs.

A live-range splitting approach may partition a live range into smaller segments (smaller

live ranges). Shuffle code is required at the splitting point to move value between two live

ranges. Shuffle code can be of three types:

• shuffle-move (register-to-register): A move instruction shuffles the value between the

two live ranges that are assigned to different registers.

2.2. PRIORWORK 19

• shuffle-load (memory-to-register): A load instruction moves the value from one

spilled live range to the other live range.

• shuffle-store (register-to-memory): A store instruction moves the value from one

live range to the other spilled live range.

There is no need for memory-to-memory shuffle code because the two live ranges of

the same virtual register are always spilled to the same memory location.

2.2 Prior work

A number of improvements over Chaitin-style register allocation have been suggested.

There are two perspectives to discuss prior approaches. We can focus on which kind of

register overhead they attempt to reduce or address their shortcomings. We discuss the two

perspectives separately. In this section, I investigate the major known register-allocation

strategies, with a focus on which kind of register overhead they attempt to reduce. In

Section 2.3, I address shortcomings of some approaches that are relevant to our register

allocator.

2.2.1 Optimal

Goodwin and Wilken take the most aggressive approach [29] that formulates the regis-

ter allocation problem as a 0-1 integer programming problem. The approach takes the

spill, shuffle, and call costs into consideration and yields an optimal result under some

assumptions (e.g., the register allocator does not reorder/reschedule instructions or perform

inter-procedural register allocation).

2.2.2 Reducing spill cost

In essence, there exist two ways to reduce spill cost (i) finding better nodes to spill (i.e.,

better spilling heuristics) and (ii) splitting live ranges (in the expectation that the smaller

live ranges interfere with fewer other live ranges).

20 CHAPTER 2. BACKGROUND

Spilling heuristic

One of the main goals of register allocation is finding a way to assign registers to all live

ranges of the interference graph. The register allocator must spill live range(s) to memory if

the register pressure exceeds Ar. The register pressure is the minimum number of registers

that the register allocator needs for assigning registers to all live ranges. Because the

register allocation problem is NP hard [27], the minimum number of registers that the

register allocator needs depends on the register allocation approach—this number may not

be the same as the theoretical minimum number of colors for the interference graph. The

heuristic that chooses which live ranges to spill has a direct effect on the quality of register

allocation, so various heuristics have been investigated.

• Optimistic coloring [9] is based on simplification. Recall that simplification is a

way to guarantee that there must be registers for the live ranges that are removed

from the interference graph. Simplification is a heuristic approach to coloring which

removes only live ranges whose degrees are less than N, and as such may miss legal

coloring opportunities (too pessimistic). Optimistic coloring improves simplification

by attempting to assign colors to live ranges that would have been spilled by the basic

algorithm. Optimistic coloring delays spilling decisions until the color assignment

phase. Spilling decisions are made during the color assignment phase: when no legal

color exists for a live range to be colored (instead of when simplification blocks), this

live range is spilled.

• Priority-based coloring [16] assigns registers to live ranges based on a priority func-

tion. The priority function captures the savings in memory accesses from assigning

a register to a live range rather than keeping the live range in memory. The approach

makes sure to assign registers to the most important live ranges and to spill the least

important ones if necessary.

• Probabilistic register allocation [54], like priority-based coloring, also assigns regis-

ters to live ranges in a priority manner. Variables initially reside in memory instead

of virtual registers (with load/store for every use/definition). The priority function is

the probability that a variable x will reside in a register at a given use (load) multi-

plied by the benefit (savings) that this use accesses x's value from a register rather

2.2. PRIORWORK 21

than memory. The inverse of the probability roughly indicates the distance between

definitions of the value and its use. The longer the distance, the more likely it is that

the register allocator assigns registers to other live ranges between the definitions and

the use—therefore the lower the probability that the value resides in a register.

• The register allocation algorithm used in the RS/6000 compiler [5] improves on

Chaitin's basic algorithm in two ways. First, the interference graph is colored three

times, each time using a variation of the spilling heuristic (i.e., a different cost

function), and the coloring resulting in the least total spill cost is selected. Second,

when a live range Ir is selected for spilling, instead of inserting a load before each

use and a store after each definition of Ir, the register allocator uses the cleaning

technique that attempts to insert at most a single load and store inside each basic

block. In effect, Ir is split into segments that span at most one basic block.

• Rematerialization [10] spills live ranges that are cheaper to recompute than to

store/load them back/from memory, e.g., loading constant values or computing ad-

dresses.

Live-range splitting

Several approaches have tried to split live ranges. The expense of splitting is that shuffle

code must be inserted when a live range is broken into independent parts, since each part can

be either in a different register or even in memory. The motivation is to reduce the degree

of the interference graph and to allow the spilling of only those live range segments that

span program regions of high register pressure. Several more recent approaches to register

allocation attempt to make graph coloring sensitive to program structure by dividing a

program into regions and prioritizing the regions according to execution probabilities. The

register allocator then colors regions in order of their priorities, and shuffle code is inserted

at the boundaries of these regions.

• Priority-based coloring [16] assigns colors to live ranges in a heuristic order deter-

mined by the priority function. Before colors are assigned, unconstrained (degree

< JY) live ranges are removed from the interference graph, since unconstrained live

22 CHAPTER! BACKGROUND

ranges can always be assigned legal colors after colors have been assigned to other

live ranges. Color assignment blocks when no legal color exists for a live range lr

to be colored, i.e., when all N colors have been taken up by Ir's neighbors. At this

point, lr is split.

Larus and Hilfinger implement the priority-based approach in the SPUR Lisp com-

piler [46].

• Briggs [7] uses the Static Single Assignment (SSA) representation of a program to

determine splitting points. Splitting live ranges is taking place prior to coloring. A

live range is split at a <f> node when the incoming values to the 6 node result from

distinct assignments. The approach also splits all live ranges that span a loop by

splitting these live ranges immediately before and after the loop.

• The Tera compiler (as described in [12]) constructs a tile tree for a program; this

tree corresponds to the control-flow hierarchy of the program. Register allocation

colors the tiles in two phases. The first phase traverses the tile tree from the bottom

up and allocates pseudo registers to the live ranges in each tile using graph coloring.

The second phase walks through the tile tree top-down and binds pseudo registers to

physical registers. As coloring is performed hierarchically, shuffle code tends to be

outside of the tiles at the bottom of the tree.

• The RAP compiler [53] colors the region nodes in a function's Program Dependence

Graph (PDG), proceeding in a hierarchical manner from the leaves to the root.

Chaitin's algorithm is used at each region node. This approach splits live ranges

on region boundaries. A region is a collection of predicates and statements that are

executed under the same control conditions.

• The Multiflow compiler employs trace scheduling as a framework for both register

allocation and scheduling [25]. The trace scheduler picks a trace and then passes

it to the code scheduler; the code scheduler then performs register allocation and

scheduling together. The code scheduler records register usage preferences for the

scheduled trace; this information is maintained for each exit from or entry into a

trace. This information is subsequently used when translating traces that connect

to these exit or entry points, and shuffle code between two traces is not needed if

2.2. PRIOR WORK 23

the value can be kept in the same register. Traces that are compiled first have more

freedom in using registers, and shuffle code ends up on boundaries to traces that are

compiled later. As long as the trace picker presents the traces in an order that reflects

the execution frequency, this scheme favors the most frequently executed parts of a

program.

• The IMPACT compiler takes a similar approach as the Multiflow compiler [34].

The compiler selects a region and performs classical global optimizations, ILP op-

timization, code scheduling, and register allocation. Like the Multiflow approach,

regions that are compiled first have more freedom in using registers; a similar binding

technique is used to eliminate the shuffle code on region boundaries.

• Probabilistic register allocation [54] is a hybrid of the priority-based and program

structure based approaches. The approach consists of three steps, local register

allocation, global register allocation, and register assignment. The global register

allocation step partitions a program into regions based on the loop hierarchy and

proceeds from the innermost loops to the outermost loops. When a variable is

assigned to a register, shuffle code is placed in the pre-header and post-exit of a loop

to load the value of the variable into the register and restore it back to memory (if the

value is updated).

• Coagulation code generation [50] integrates code generation and register allocation

based on the ordering of prioritized control flow edges. The most important (fre-

quently executed) regions have the maximum freedom in using registers, like in the

Mulitflow compiler [25].

• Kurlander and Fischer [45] perform live-range splitting after register allocation to

free up registers that can be used to improve code scheduling. Empty delay slots in

the final schedule are filled with shuffle code to split and spill live ranges. Spilling

frees up registers and these additional registers are used to remove false dependencies

induced by the reuse of registers.

• Kolte and Harrold construct live ranges at a very fine granularity, essentially at every

reference of live ranges [44].

24 CHAPTER 2. BACKGROUND

2.2.3 Reducing shuffle code

Most live-range splitting approaches [12,53, 25, 50,54] reduce shuffle cost by prioritizing

a function into regions and thereby performing register allocation in a hierarchical manner

so as to place shuffle code in less important regions. Some approaches [7, 12, 53, 25]

rely on some similar techniques such as biased coloring [7] to eliminate a shuffle move by

assigning the same color to the two live ranges that the move connects.

2.2.4 Reducing call cost

A register may not be free at procedural boundaries, at call sites (caller-save) or at the

entries/exits of procedures (callee-save). The cost of saving/restoring registers dominates

the register overhead as the number of available registers increases. The register allocator

can reduce the call cost intra-procedurally or inter-procedurally.

Intra-procedural allocation

The register allocator analyzes only the current function without any knowledge about

calling or called functions. Selecting caller-save or callee-save registers for live ranges and

optimizing placement of caller-save and callee-save code are two common approaches to

reduce the call cost.

• The priority function used in the priority-based approach [16] considers both caller-

save and callee-save cost. Register allocation assigns the kind of register to a live

range which yields the maximum savings. If no register of the best type is available,

the register allocator assigns the other kind of register to the live range. The approach

spills live ranges whose savings for the assigned registers are negative.

• The generic callee-save convention saves/restores the values of callee-save registers

at the exit/entry of the function. The code to save and restore is executed inevitably

every time the function is invoked, so there may be redundant saves and restores if

some callee-save registers are never used during the execution of the function. Chow

uses shrink-wrapping [17] to move the callee-save savings andrestorings close to the

2.2. PRIORWORK 25

places where the callee-save registers are used. Hence save and restore operations

are performed only when it is absolutely necessary.

• The "Chez Scheme" compiler optimizes the placement of caller-save code [55].

Measurements show that over two thirds of procedural activations actually make no

calls [55]. The compiler, hence, favors using caller-save registers along the paths that

contain no calls; it uses callee-save registers along the paths where function calls are

inevitable. In other words, live ranges are split at the edge <P,S> where one (P/S) can

reach the exit without making a call and all paths from the other one (S/P) to the exit

contain calls. Shuffle code (a register move) is needed to move a value between two

different classes of register at these splitting points.

Inter-procedural allocation

Inter-procedural register allocation usually assigns registers in a hierarchical manner over

the call graph such that register allocation for a function / can take the register-usage

information of functions g, h that are called by / into account.

• Wall defers register allocation until link time [61]. Variables that are not simultane-

ously live (inter-procedurally) are grouped together to use the same physical register.

Variables of a procedure are never assigned to the same group as the variables of

descendants on the call graph, so that the variables of / get different registers from

g and h (/'s descendants). Save/restore operations of registers across procedures,

therefore, are unnecessary. The code generated by the code generation phase is an-

notated so that the linker knows what instructions must be deleted and can perform

relocation once the register allocator assigns a register to a variable.

• Chow extends priority-based coloring to inter-procedural register allocation that con-

structs a call graph and compiles functions from leaves to the root [17]. The usage

information of callee-save registers is propagated to the upper regions of the call

graph. Function / tries to avoid using the same callee-save registers used by g and h

such that save/restore operations of the registers become redundant and can therefore

be eliminated.

26 CHAPTER 2. BACKGROUND

• Steenkiste develops an inter-procedural register allocator in the context of a LISP

compiler[58]. Because LISP programs tend to spend most of time in the bottom of

the call graph, register allocation is performed from the leaves to the root over the call

graph, like Chow's approach [17]. Different registers (not used by the descendants

of the current function in the call graph) are assigned to live ranges of the current

function.

• The HP compiler [56] performs inter-procedural register allocation using global-

variable promotion and spill-code motion. Global-variable promotion transforms

memory accesses to global variables into register references inside clusters of func-

tions in the call graph. Spill-code motion elevates save/restore code for callee-save

registers to infrequently executed functions.

2.3 Shortcomings of prior work

In the previous section, we study how prior approaches tackle each kind of register over-

head. In this section, we look at prior approaches from the other perspective, i.e., how well

they perform in terms of reducing overall register overhead. Because inter-procedural allo-

cation is not implemented in our register allocation framework, I drop the inter-procedural

approaches out of the discussion here. I classify some prior approaches that attempt to

reduce the spill and shuffle costs into 5 categories: Chaitin-style coloring, optimal register

allocation, splitting prior to coloring, splitting during coloring, and program structure based.

2.3.1 Chaitin-style coloring

The RS/6000 compiler [5] and optimistic coloring [9] improve Chaitin's basic algorithm.

The former tunes the spilling heuristic, and the latter delays spilling decisions so as to

assign registers to more live ranges than without delaying. The main problem with these

two approaches is that the spilling decisions are all-or-nothing: all definitions and uses of a

spilled live range go through memory even though some parts of the live range could have

been allocated a register. It is more beneficial to spill only the troublesome segments of a

live range (i.e., segments that contain few or no references and span regions of high register

2.3. SHORTCOMWGS OF PRIOR WORK 27

pressure), while keeping in registers those segments that have references in regions of high

execution frequency.

2.3.2 Optimal register allocation

Optimal register allocation [29] is an attractive approach which produces an optimal result.

The major problem of the approach is the complexity of the algorithm compilation time

and the resulting memory usage. Modern compilers perform aggressive scope enhancing

transformations such as loop unrolling and function inlining so as to increase ILP and

exploit more optimization opportunities. Optimal register allocation does not scale well

in the presence of scope enhancing transformations. However, as the performance of

processors keeps being doubled every 18 months, and faster integer programming solvers

appear, the approach may become practical in the future.

2.3.3 Splitting prior to coloring

Briggs [7] determines splitting points using the SSA representation of a program. The

approach also splits live ranges that span a loop at the loop boundary. Kolte and Harrold

[44] partition a live range at a finer granularity by considering the ranges of instructions

between loads and stores of a virtual register. These approaches make splitting decisions

prior to coloring.

There are a couple of drawbacks in regard to making splitting decisions too early (prior

to coloring). First, decisions regarding which live ranges to be split and where to split

them are made prematurely. Thus, live ranges may be split unnecessarily, resulting in a

performance degradation due to unnecessary shuffle code. Various heuristics have been

developed to eliminate shuffle code by increasing the chance that the same color is given

to partner live ranges, e.g., biased-coloring or conservative coalescing [7], Rather than

determining the critical regions where splitting and spilling are beneficial, these approaches

split live ranges arbitrarily and greedily, with the hope that later heuristic steps will clean

up unnecessary splits. Second, the places where live ranges are split by these approaches

are not necessarily the places of low execution probability. Although these approaches may

use execution probabilities to splitting points, there is no guarantee that the resulting live

28 CHAPTER 2. BACKGROUND

ranges will fit into registers without spilling. That is, the register allocator runs the risk

of either splitting too much (leading to unnecessary shuffle code), or not enough (with the

consequence that high-frequency live ranges are spilled).

Even though Kolte and Harrold attempt to construct live ranges at the granularity of

instructions between loads and stores, live ranges may be long under some circumstances.

Consider a code for x that contains only one definition and use. Only one live range is

constructed for x. The definition and use may be far apart, and the live range contains a lot

of blocks with high register pressure. Splitting the live range is not possible even though

splitting the parts of the live range that have high register pressure is desirable. Furthermore,

it is unclear how they deal with the issue of eliminating shuffle code.

2.3.4 Splitting during coloring

The priority-based coloring [16] approach is an alternative framework that allows splitting

decisions to be delayed until coloring blocks. Colors are assigned to live ranges in a priority

fashion. When there is no legal color for a live range lr (coloring blocks), the approach

splits lr. To facilitate splitting, the live range for a candidate x is defined as a collection

of live units, where each live unit is a basic block within which x is live. Splitting forms a

new live range lr'(x) by starting from a seed live unit and incrementally adding live units

to the new live range until adding one more live unit renders lr'(x) uncolorable. Live units

are added in a breadth-first traversal of the control flow graph, preferably starting from a

live unit where the first reference to x is a definition. A live range is spilled (i.e., remains

in its home location) when no live units that comprise the live range can be given a register.

An important consideration in live-range splitting is selecting splitting points. To

reduce shuffle cost, shuffle code should be placed at points of low execution probability.

The priority based approach neither takes execution frequency nor program structure into

account when splitting live ranges, and there is no guarantee that splitting points do not end

up along frequently executed edges. Shuffle code induced by a split may end up, e.g., on

a loop back arc. Code motion techniques are used after color assignment to optimize the

placement of the shuffle code.

2.3. SHORTCOMINGS OF PRIOR WORK 29

2.3.5 Program structure based

Program structure based approaches [12,53,25,34,50,54] attempt to make graph coloring

sensitive to program structure by dividing a program into regions and prioritizing the regions

according to execution probabilities. The register allocator then colors regions in the order

of their priorities, and shuffle code is inserted at the boundaries of these regions. As coloring

is performed hierarchically, the higher priority regions have more freedom in using registers,

and shuffle code tends to be outside the higher priority regions. As long as the regions

reflect the execution frequency, they favor the most frequently executed parts of a program.

Those approaches all make early binding decisions when coloring is performed to a

region—either assign real physical registers to live ranges or determine which live ranges

should share the same registers. Early binding decisions impose unnecessary constraints

to lower priority regions because the lower priority regions must bind to the already-made

coloring decisions.

Example of early binding

Let us consider the Tera approach [12] as an example. Figure 2.2 illustrates unnecessary

constraints imposed on register allocation by premature coloring decisions. The approach

constructs a tile tree for a program. The code in Figure 2.2(a) consists of two tiles, one for

the loop (the shaded region) and one for blocks Dx and D6. Recall that the Tera compiler

performs register allocation for the tiles in two phases. The first phase colors each tile in a

bottom up fashion (from the bottom of the tile tree up to the root tile). Pseudo registers are

assigned to live ranges in the first phase. Once two variables in a tile are assigned to the

same pseudo register, the parents of the tile must adhere to this decision.

The loop tile is colored first. The interference graph of the loop tile is depicted in Figure

2.2(b). Inside the loop tile, the live range lr(y) is live in D2 and D5. There are two live

ranges for x, lr(x) and lr'(x), in the loop. The live range lr(x) is live in D2 and D5, and

lr'(x) is live in ß4. Coloring the graph with two registers, lr'(x) is placed into the same

pseudo register as either lr(x) or lr(y). Based on the information inside the loop region,

both choices are reasonable. However, if lr'(x) and lr{y) use the same pseudo register, a

shuffle move is inevitable on either (Äj, B6) or (B5, B6), since lr(x) and lr'(x) merge in

30 CHAPTER 2. BACKGROUND

x. b1
... X ...

frfl '"— Ixfl ■■:■■■•• | ™' £

 =EP -
... X ...

(b)

(a)

Figure 2.2: Premature coloring decision with Ar = 2.

D6. The notation (#m, D„) represents a control-flow edge that goes from block Dm to Dn.

If /r'(a;) and /r(2.-) use the same pseudo register, no shuffle code is required, but that this

mapping is beneficial can only be determined when dealing with B$.

2.4 Challenges

There are several challenges to register allocation. The compiler's decisions to those

challenges influence the quality of register allocation.

• coloring order. In which order are live ranges assigned colors.

• spilling versus splitting: When the register allocator perceives that register pressure

is high and ought to take some actions to lower the register pressure. Both spilling

and splitting live ranges reduce the pressure. The register allocator has to choose

which technique to use to lower the register pressure. Which live ranges are spilled

or split?

• splitting points: In the case of splitting live ranges, how does the register allocator

determine splitting points for the live ranges?

2.5. PREVIEW OF FUSION-BASED REGISTER ALLOCATION 31

• reconciliation: How to reconcile register allocation of two regions is a fundamental

challenge to the program structure based approaches. If the register allocator performs

register allocation for a region and doesn't reconcile the region with other regions,

excessive shuffle code may arise at region boundaries.

• call cost: What is the heuristic of assigning a callee-save or caller-save register to a

live range?

2.5 Preview of fusion-based register allocation

In this chapter, I briefly review prior approaches on register allocation, and address their

shortcomings. None of the heuristic (non-optimal) approaches taken so far considers the

program structure during both splitting and coloring. However, splitting and coloring are

closely related to each other. The decision to allow some live ranges to reside in the same

register (at different times) affects subsequent splitting and coloring decisions. The ideal

model is to postpone the splitting and register binding decisions as late as possible so that

more information can be considered.

Fusion-based register allocation is a bottom-up approach that builds up the interference

graph, starting off with live ranges that extend at most a single region. Each region initially

has its own interference graph. A region can be as small as a single basic block, or as

large as a whole function (in which case the algorithm is identical to Chaitin-style register

allocation). Regions are connected via control-flow edges, which are prioritized. These

edges are then considered in priority order, and the interference graphs of two regions

connected by an edge are merged by fusing the interference graphs. The fusion operator

coalesces live ranges that span the control flow edge and maintains the invariant that the

resulting merged interference graph is colorable, if necessary by splitting (suppressing the

coalescing) of a live range. Thus the fusion operator makes spilling and splitting decisions

when it becomes clear that it is impossible or unprofitable to keep all live ranges in registers.

After all control flow edges have been considered, a single colorable interference graph

remains.

32 CHAPTER 2. BACKGROUND

Chapter 3

Experimental Framework

In this chapter, I describe cmcc, the Carnegie Mellon C Compiler, which provides the

context for my implementation of register allocation. I also describe the register allocation

framework that provides the infrastructure for various register allocation approaches.

3.1 The cmcc compiler

The cmcc compiler is an optimizing, retargetable compiler for a complete programming

language (ANSI C). cmcc consists of three major phases, front end, global optimization,

and code generation. The front-end phase uses the lcc ANSI C front end [24] (written in

C). The code generation of lcc is modified to generate cmcc Intermediate Representation

(IR) operations. The global optimization and code generation phases are coded in C++. The

global optimization phase accepts cmcc's internal IR generated by the front-end phase and

performs global optimizations. Table 3.1 lists the global optimizations performed by cmcc.

The code generation phase performs code selection, local code scheduling (list scheduling),

and register allocation, cmcc produces assembly language for a variety of target machine

architectures: MIPS [40], SPARC [51], and iWarp [6], The results (register overhead

operations and execution time) in this dissertation are based on the MIPS architecture.

Table 3.2 contrasts the optimized code generated by cmcc with the optimized code

produced by gec and the native MIPS cc compiler for the MIPS architecture, and with

the code produced by the native SUN cc compiler for the SPARC architecture. (This table

presents the performance relative to these compilers; a number of less than one means that

33

34 CHAPTER 3. EXPERIMENTAL FRAMEWORK

Loop unrolling and peeling
Linear function test replacement
Induction variable expansion
Induction variable simplification
Constant propagation and folding
Induction variable elimination
Assignment propagation
Partial dead code elimination
Dead assignment elimination
Partial redundancy elimination
Strength reduction
Branch optimizations
Instruction scheduling
Global register allocation (using graph coloring)
Register coalescing

Table 3.1: Optimizations performed by cmcc

MIPS SUN
program gcc -02 cc -O cc -O

alvinn 1.07 0.94 0.79
compress 0.84 0.95 1.04

ear 1.08 0.95 0.99
eqntott 1.14 1.09 0.59

espresso 1.06 1.05 1.02
li 0.98 1.05 1.16

sc 1.07 1.03 1.00

Table 3.2: Performance of optimized code generated by cmcc, relative to optimized code
generated by gcc (version 2.3.2) and MIPS cc on a DECstation 5000/200, and SUN cc
on a SPARC.

cmc c produces better code.) The sample programs are the C programs of the SPEC92 suite.

Overall, even without serious performance tuning, cmcc produces code that is roughly of

the same quality as the code produced by the other compilers.

3.2 The register-allocation framework

In the cmcc compiler, register allocation is performed after code scheduling. The cmcc

register allocator takes a scheduled code sequence in which instructions use virtual registers

and assigns physical registers based on graph coloring.

3.2. THE REGISTER-ALLOCATION FRAMEWORK 35

The cmcc compiler implements a register allocation framework [1] for experimentation

of various register-allocation approaches. A framework partitions the task of the framework

into abstract classes and defines their responsibilities and collaboration [26]. A framework

fosters code reuse by capturing the common structure to its application domain. Various

applications that share the same framework are easy to maintain because the code is concise

and any change or extension to the framework benefits to all applications. Furthermore, a

framework facilitates a/air comparison which is very important forresearches. For example,

if an improvement is added to some parts of register allocation (e.g., the construction of

the interference graph, or color assignment) then all register-allocation approaches can

benefit from the improvement. Using a framework avoids a bias in favor of a one particular

approach.

Graph
Reconstruction

Graph
Construction

} '
Coalescing -> Color

Ordering
Color

Assignment
Spill-code
Insertion

Shuffle-code
Insertion

Figure 3.1: Structure of the register allocator.

I identify seven phases in the register allocator: graph construction, live-range coa-

lescing, color ordering, color assignment, graph reconstruction, spill-code insertion, and

shuffle-code insertion (as illustrated by Figure 3.1). This register-allocation structure allows

us to model a wide range of register allocation approaches. A register-allocation approach

customizes the register-allocation framework by providing specific implementations of the

abstract classes (subclassing).

Graph construction

The graph-construction phase builds the interference graph for the input instruction se-

quence. This phase utilizes the data-flow analysis framework [1] to compute the reaching

and live properties of virtual registers for building live ranges, reaching determines if a

definition of a virtual register reaches the entry/exit of a basic block, live decides if the

value of a virtual register is used/referenced after the entry/exit of a basic block. Various ap-

36 CHAPTER 3. EXPERIMENTAL FRAMEWORK

proaches may split live ranges to lower register pressure while constructing the interference

graph. Details are presented in Chapter 4.

Coalescing

The coalescing phase eliminates copy instructions that move data values between two non-

conflicting live ranges by coalescing the two live ranges into one. If a copy instruction

moves a value from a live range to a physical register, or from a physical register to a live

range (such as calling convention), the coalescing phase sets the partner information. A

live range may have several partners. The partner relationship indicates that a live range

would like to receive the same color as one of its partners. The later color-assignment phase

can thereby take the partner information into consideration and assign colors to live ranges

(biased coloring [7]).

Color ordering

There are two data structures that are used as the interface between the color-ordering and

color-assignment phases: (1) the color stack (C), and (2) the spill pool (5). The color-

ordering phase heuristically determines the order in which live ranges are to be assigned

colors and pushes live ranges onto C based on the ordering — the higher the position within

C, the higher the priority. S keeps all spilled live ranges. While deciding the color ordering,

this phase may make spilling decisions due to lack of colors and may add the spilled live

range to S. The spill-code insertion phase allocates spaces on the local heap for spilled live

ranges in S, and inserts actual spill code.

Color assignment

The color-assignment phase pops live ranges from C and finds legal colors (non-conflicting

colors) for them, i.e. this phase assigns colors based on the ordering computed by the

previous phase and uses the interference graph to make sure that conflicting live ranges are

assigned different colors. Biased coloring, which considers the partner information, is used

to find legal colors so as to eliminate copy instructions. That is, a non-conflicting partner's

3.2. THE REGISTER-ALLOCATION FRAMEWORK 37

color of a live range may be assigned to the live range to eliminate the copy instruction

that move the value between the partner and the live range. Details of biased coloring are

presented in Section 4.5. If this phase is unsuccessful to find a legitimate color for a live

range because all colors are already taken by its neighbors, the live range is then spilled and

added to S.

The spilling that we have discussed so far is called out-of-color spilling because live

ranges are spilled with the goal of reducing register pressure. Register allocation may also

make spilling decisions to reduce the overall overhead operations even though there are still

enough colors for live ranges. This kind of spilling is called call-cost spilling (details are

discussed in Chapter 6).

Graph reconstruction

For simplicity, the color-ordering and color-assignment phases make spilling decisions

under the assumption that a spilled live range does not need any register resource. However,

for load/store machines, memory accesses must be done by load/store instructions, which

require to use a register as one operand (destination/source) [35]. In other words, at every

occurrence of spilled live ranges, there is an instant requirement of a register. Hence, spill

code needs to acquire registers. Reserving registers for spill code is one way of making sure

that there are registers for spill code. A register allocator reserving registers for spill code,

nevertheless, works with fewer colors than one without reserving registers. Our register

allocator reserves no registers for spill code; that is, the register space is not divided into

"local" and "global" registers. To ensure that there are registers for spill code, the register

allocator rebuilds the interference graph (constructs live ranges for spill code) after spilling

live ranges and restarts from the coalescing phase.

There are two ways to reconstruct the interference graph: (1) spill code (a load/store)

is inserted into the schedule immediately before/after a use/definition, the interference

graph is thrown away, and the whole coloring process restarts from the first phase; (2)

the existing interference graph is modified by producing a new small live range for each

occurrence of a spilled live range (no spill code is inserted; the newly produced live ranges

span only one instruction), and the coloring process can then skip the graph construction

38 CHAPTER 3. EXPERIMENTAL FRAMEWORK

phase and proceed from the coalescing phase with the modified graph. Those newly

produced live ranges are called spill-code live ranges. The first approach reuses the code

for constructing the interference graph. The second approach favors compilation speed,

because the interference graph is not rebuilt from scratch, cmcc takes the second approach

(i.e., it reuses the graph, to save compilation time).

code
— — — — — — — — — T

interference
graph

y subvw,Vy, vx
x,

(a)

code
— — — — — — — T

add VxJSturvz i

lcfvx memO'x)

interference
graph

Figure 3.2: Spill-code live ranges.

Figure 3.2 illustrates an example of spill code. Enclosed in dotted lines are sequences

of code. What we are interested in is the live range lrx. The add instruction defines x,

and the sub instruction is the last instruction that uses x. The shaded area in Figure 3.2(a)

is the range in which x is live before lrx is spilled. Any reference of x within the area

accesses the value of lrx. When lrx is spilled, the first approach of reconstructing the

interference graph first inserts the two spill code operations (one store and one load as

shown in Figure 3.2(b)). The graph construction phase then rebuilds the interference graph

for the new code sequence. As a result, the x defined in the add instruction and the a;

accessed by the sub instruction belong to two different live ranges, lr'x and lrx", because

the Id instruction re-defines x (start of lrx"). The second approach of reconstructing

graph constructs the new interference graph by modifying the original interference graph

of Figure 3.2(a). The st and Id instructions are not inserted into the code sequence until

the later spill-code insertion phase.

The next pass of register allocation (restart from the coalescing phase) attempts to assign

registers to all the live ranges including spill-code live ranges. Other live ranges may be

spilled during this iteration, the register allocator repeats register allocation until no more

live range is spilled. Because spill-code live ranges span only one instruction, spilling them

3.2. THE REGISTER-ALLOCATION FRAMEWORK 39

does not help to lower register pressure but increases spill code instead. Therefore, they are

marked non-spillable so that the register allocator won't spill them in subsequent iterations

of register allocation.

Figure 3.3 illustrates an example such that the register allocator needs to perform

multiple iterations of register allocation. A white circle in the figure indicates a definition,

and a black circle indicates a use. Solid vertical lines indicate live ranges of virtual registers.

The example has two colors and three live ranges, x, y, and z. The three live ranges overlap

(as shown in Figure 3.3(a)) so they interfere with each other and must reside in distinct

registers. Hence, the register allocator must spill one live range (assume that x is spilled).

The live range x is broken into two spill-code live ranges (depicted in Figure 3.3(b)).

The dotted line between the two spill-code live ranges indicates the value of x residing in

memory instead of a register. Even though the live range x is spilled already, we see that

the maximum number of register requirement is still three at the use of x (shaded range).

Thus the register allocator must spill another live range (assume that z is spilled) during the

second iteration of register allocation and re-start register allocation over again. After z is

spilled, the maximum number of register requirement is two at any point of the program

(shown in Figure 3.3(c)).

x
O

Qdef

■ use

%

%

(a) (b) (c)

Figure 3.3: Spill code with Ar = 2.

Spill-code insertion

The spill-code insertion phase allocates spaces for spilled live ranges on S. We classify

virtual registers into global and local virtual registers. Global virtual registers are those who

40 CHAPTER 3. EXPERIMENTAL FRAMEWORK

appear in multiple blocks. Local virtual registers are those that appear within one single

basic block. The spilled live ranges that correspond to the same virtual register are always

spilled to the same location. In other words, spaces are allocated to virtual registers. No

space is allocated to a virtual register if no live range of the virtual register is spilled. Global

virtual registers have their own locations. Nonetheless, spaces for local virtual registers

are squeezed/compacted using the same graph coloring technique. That is, the locations

already allocated to the neighbors of a spilled live range are not allocated to the live range.

After spaces for spilled live ranges are allocated, the spill-code insertion phase traverses

each instruction and inserts spill code for each reference of spilled live ranges. Each

reference of a spilled live range has its own spill-code live range, which acquires a register

for loading from or storing to memory. If there exists a source operand (use) of an instruction

and the corresponding live range is a spill-code live range, then a load instruction is inserted

before the instruction to load the value of the operand from memory. If there is a destination

operand (definition) of an instruction which is a spill-code live range, then a store is appended

after the instruction to spill the value of the live range to memory.

Shuffle-code insertion

Register allocation may include one or more live-range splitting approaches to split live

ranges into smaller segments to reduce register pressure. In this register allocation frame-

work, splitting can occur only on control-flow edges (not within a basic block). The

shuffle-code insertion phase goes through control-flow edges and inserts shuffle code for

those live ranges that should span across the edges but reside in different storage locations

instead (details are discussed in Section 4.6).

3.2.1 Modeling existing register-allocation approaches

This section elucidates how various register allocation approaches fit into this register

allocation framework. Table 3.3 shows how the register allocation framework can model

various register-allocation approaches.

Chaitin-style coloring [13, 5] uses a simplification process to determine the coloring

order. Simplification moves all unconstrained live ranges (degree < Ar) to the C stack; when

3.2. THE REGISTER-ALLOCATION FRAMEWORK 41

Phases
Register allocation

Chaitin-style Priority-based Optimistic Fusion-style

Graph construction function function function region
out-of-color spill
split

Graph reconstruction X X X X
Coalescing X X X X
Color ordering simplification

out-of-color spill
priority simplification simplification

Color assignment '
call-cost spill

out-of-color spill
call-cost spill

out-of-color spill
call-cost spill call-cost spill

Spill-code insertion X X X X
Shuffle-code insertion X

Table 3.3: Model different register-allocation approaches.

a node is removed, all edges incident upon the node are also removed, opening up further

opportunities for simplification. If simplification blocks (all nodes have degree > Ar), a

least-cost live range is spilled (added to S) so that the simplification process can proceed.

The Chaitin-style approach makes out-of-color spilling decisions in the color-ordering

phase.

Optimistic coloring [9] also uses simplification to determine the coloring order. When

simplification blocks, however, rather than spilling, optimistic coloring pushes a least-cost

live range onto C, removing the live range from the residual graph. In this manner, a live

range that would have been spilled by the Chaitin-style approach is given another chance

at receiving a register in the color-assignment phase. Optimistic coloring defers out-of-

color spilling decisions until the color-assignment phase, which spills those live ranges that

cannot be assigned legal colors (all colors are taken up by neighbors).

The priority-based coloring that I implement is Chow's priority-based coloring [16]

without live range splitting. Priority-based coloring determines the coloring order according

to apriority function. This approach first separates out unconstrained live ranges and pushes

them onto C, since unconstrained live ranges can always be assigned legal colors. The

priority function determines the order in which constrained live ranges are pushed onto

C (from the smallest to the biggest). During the color-assignment phase, if a live range

cannot be assigned a legal color (because of conflicts with the neighbors' colors), then

priority-based coloring spills this live range.

This framework can also model other approaches to live-range splitting that take the

42 CHAPTER 3. EXPERIMENTAL FRAMEWORK

program structure into account, such as the approaches taken by Tera [12], Multiflow [25],

and RAP [53], as well as splitting based on the SSA representation [7], and the integrated

approach to splitting and spilling provided by fusion-style coloring[48]. Fusion-style

coloring makes splitting and spilling decisions in the graph construction phase. A more

detailed discussion of how fusion-style coloring models other approaches is presented in

Chapter 4.

This framework emphasizes what priority-based coloring [16] and the Chaitin-based

approaches have in common: they all try to determine the color ordering in which live

ranges are assigned colors (registers). Priority-based coloring uses cost analysis as the

priority to determine the ordering and guarantees that the register assignment phase assigns

registers to the most important (high savings of memory accesses) live ranges. Chaitin-

style, optimistic, and fusion-style simplify the interference graph to decide the ordering.

Optimistic coloring is similar to priority-based coloring in the sense that both approaches

delay out-of-color spilling decisions until the color-assignment phase.

Fusion-style register allocation requires the shuffle-code insertion phase to insert code

to move values at splitting points. Shuffle-code insertion is just a nop for the Chaitin-style,

optimistic, and priority-based approaches because these approaches do not split live ranges.

Chapter 4

Fusion-Based Register Allocation

In chapter, I explain the structure of fusion-based register allocation, the fusion operation

that fuses two interference graphs, and some techniques used during graph fusion. In

Section 4.1, I present an overview of fusion-based register allocation. In Section 4.2, I

present the fusion operator that fuses two graphs. In Section 4.3, I discuss how fusion-

based register allocation models different splitting approaches. In Section 4.4,1 describe

delayed spilling that avoids making premature spilling decisions while two graphs are being

fused. In Section 4.5, I describe the biased coloring technique that is used to eliminate

unnecessary move operations. In Section 4.6,1 present the ordering of shuffle code and the

optimization of placing shuffle code. In Section 4.7,1 measure the influence of fusion-based

register allocation for various SPEC92 programs.

4.1 Overview

Fusion-based register allocation identifies regions, builds the interference graph for each

region, and then merges all regions' interference graphs along control-flow edges. In

this section, I concentrate on two essential phases of fusion-based register allocation,

graph construction and color assignment, that make spilling, splitting, and register binding

decisions. Graph fusion takes place during the graph construction phase which is further

divided into three steps (shown in Figure 4.1): region formation, graph simplification, and

graphfusion.

Here we define some notations that are used in this chapter.

43

44 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Stapft

Graph
Reconstruction

Coalescing Color
Ordering

Spill-code
Insertion

Shuffle-code
Insertion

FwmSttott
öraph

ampliJBisrtiwt
'Gtdph FuaJon

Figure 4.1: Structure of the fusion-based register allocator.

• (Dm, Dn) indicates a control-flow edge that goes from block Dm to Dn.

• GR represents the interference graph of region R.

• Iri (x) denotes the segment of a virtual register x's live range lr(x) that extends block

Di, and there is one or more segment for every region Ft where x is live and reaching.

• [lrx , lry] is the interference edge that connects live ranges lrx and lry.

• Irij is the combined live range of /r,- and /r,.

• ncighbor(lr) is the set of all live ranges that Ir interferes with.

• '-p{lr) is the set of all interference edges of Ir.

• GRIUR2 refers to the resulting graph of fusing (or merging) G«, and GR2.

• GRIUR2 represents the resulting graph of fusing GR, and GR2 along the control-flow

edge E.

4.1.1 Region formation

In this phase, regions are formed using any number of possible techniques. A region consists

of multiple blocks (or one single block) and the edges that connect the blocks within the

region. For example, a region can be a single basic block, a trace [47], a superblock [37], a

region as defined in [33], the blocks at a particular static loop nesting level [12], or the blocks

within a PDG region node [53]. Control flow edges that lie outside of regions are then

4.1. OVERVIEW 45

ordered according to some priority functions consistent with the region formation approach,

e.g., edges entering innermost loop regions are placed before those entering outermost loop

regions. One particularly attractive priority function is the use of execution probabilities.

These can be derived either from profile information [23,60], from static estimates such as

loop nesting depth [16], or from static branch estimates [47]. The choice of edge ordering

is orthogonal to register allocation but of course influences the quality of the code, as our

register allocation framework is edge order sensitive: shuffle code is less likely to end

up on edges that are ordered first, and spilling decisions are delayed until later edges are

processed. During region formation, an interference graph GR is built for each region R.

There are two issues related to choosing the size of the base region: spill and shuffle

costs. The smaller the size of the base region, the more likely the register allocator generates

shuffle code and reduces the spill cost because live ranges are allowed to be split at finer

granularity (at the cost of shuffle code) to reduce the spill cost. On the other hand, the

bigger the size of the base region, the more likely the register allocator generates spill code

to reduce the shuffle cost. It is impossible to state that one strategy is better than the other

because the actual outcome depends on characteristics of the programs. Chapter 5 discusses

those two issues in detail.

4.1.2 Graph simplification

The objective of the graph simplification phase is to determine how many live ranges must

be spilled within each region. If an interference graph GR can be simplified, then no

spill code is necessary within region It. But if GR cannot be simplified, then from R's

perspective the cheapest live ranges to spill within R are those that are transparent, i.e., a

live range lr(y) that spans R with no definition or use of y in R. From a global perspective,

the choice of which live ranges are the best ones to spill cannot be determined at this point

in the algorithm. Thus the decision on which live ranges to spill is delayed until more

global knowledge about the reference patterns is available; this phase determines only how

many transparent live ranges need to be spilled within each region. The next phase, graph

fusion, determines which live ranges are the best ones to spill. This technique is referred to

as delayed spilling and is discussed in more detail in Section 4.4. There, we also describe

what to do if the compiler must spill more live ranges than there are transparent ones.

46 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

4.1.3 Graph fusion

The graph fusion phase takes the sequence of control flow edges determined by the region

formation phase and fuses interference graphs along each edge. Graph fusion is based on a

powerful/iwfo« operator that maintains the invariant that the resulting interference graph is

simplifiable (i.e., can be simplified). Live-range splitting decisions are made by the fusion

operator: if fusing two graphs GHl and GH2 along an edge E results in an interference

graph that cannot be simplified, then one or more live ranges that span E are split. Only

the live ranges that span E need to be considered, because in the worst case, splitting all

such live ranges partitions the graph G%lUtl2 back to the two original graphs, GRl and GHl,

both of which are simplifiable. At the end of the graph merging phase, we are left with one

simplifiable interference graph; we know how many live ranges to spill for each region and

where to place the shuffle code, but no physical registers are committed to any live range.

The simplifiability invariant allows us to avoid making any coloring decisions prematurely

during the graph merging phase. For the example of Figure 2.2, assume that we choose

loops as regions. There is no coloring assignment decision for any live range while graphs

of the loop region are fused. All we know is that the interference graph of the loop region

is colorable. The actual coloring decision is deferred till the color-assignment phase.

As more graphs are fused, the delayed spilling mechanism gradually spills live ranges.

The net effect of combining splitting with delayed spilling is that the register allocator may

spill only those segments of a virtual register's live range that do not contain references but

span regions of high register pressure.

4.1.4 Color assignment

In this phase, physical registers are assigned to live ranges. The simplifiability invariant

guarantees that once all interference graphs have been fused, the resulting interference

graph is colorable and out-of-color spilling or splitting decisions have already been made.

Maintaining the simplifiability invariant is necessary, otherwise we are back to the original

problem of making splitting and spilling decisions based on a whole interference graph.

There exist further opportunities for improving the code in this phase: biased coloring

[7] may eliminate shuffle code, optimistic coloring [9] may assign registers to live ranges

4.1. OVERVIEW 47

that have been spilled by simplification, and the enhancements discussed in Chapter 6 may

decide to spill live ranges to reduce call cost (call-cost spilling).

4.1.5 Properties of graph fusion

Initially, each interference graph is sparser (i.e. less constrained) than the function-wide

interference graph Gjunction because each graph is only a portion of Gfunction. As graph

fusion proceeds further, more interference graphs are fused, resulting in denser interference

graphs (i.e. more constrained) than the ones that are fused earlier. Thus, the earlier an edge

is considered by the fusion process, the less likely it is that live ranges are split along that

edge. Fusing graphs based on an edge ordering provides a nice property: if we don't want

shuffle code on a particular edge, we can fuse the interference graphs along that edge first.

Consequently, the decision of where to split is prioritized according to the edge ordering, and

shuffle code ends up on less frequently executed edges. Register allocation now becomes

an problem of edge ordering and forming regions. Compiler writers can determine the

size of regions and the edge ordering to tune the quality of register allocation. Moreover,

maintaining the simplifiability invariant allows register allocation to avoid committing any

register binding decision during graph fusion. As a result, no early binding is made.

4.1.6 Example

We illustrate the above steps with an example. Consider assigning registers to the program

fragment shown in Figure 4.2(a). Assume we have only two physical registers (N = 2) and

that regions are basic blocks. There are three virtual registers (x, y, and z) in this program

with initial live ranges indicated by the vertical bars. The interference graph of each basic

block prior to fusion is depicted in Figure 4.2 (b). Suppose edges 1 and 3 form the most

frequently executed path and edges are fused in the order 1, 3, 2,4. After we fuse graphs

along edges 1, 3, and 2, we obtain the interference graph of Figure 4.2 (c) (interference

graph nodes list live ranges that have been fused). If we now fuse the interference graphs

along edge 4, lr3(y) and Ir^y) are combined, since the only live range spanning edge 4 is

lr(y). However, graph fusion along edge 4 makes the graph unsimplifiable (clique of size

3), so the algorithm undoes combining lr3(y) and Ir^y). lr(y) is effectively split at the

48 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Ej lr^x) lrt(z)
r =L n I ir-n 1

i (M*) 11 (Qj) 11 &<«) 11 .-. i
IYI |

/-<>-N
||Pk n(^i

I few) I I few) ßlliifewiil I

lr2(x)lr2(y)lr2(z)

I

Figure 4.2: Simple code fragment for a world with Ar = 2.

less frequently executed point in this control flow graph. The result is that all values can be

kept in registers with an additional register move instruction at the end of block Z?3.

4.2 Fusion operation

This section describes the essential core of the fusion-based approach,/ksron operation. The

fusion operation fuses two interference graphs into one and maintains the simplifiability

invariant. Figure 4.3 depicts several important steps of the fusion operation: finding

live ranges that span the edge E, unioning non-splitable live ranges, merging cliques,

taking a snapshot of the interference graph, unioning splitable live ranges, and maintaining

simplifiability.

Region
Formation

Graph
Simplification -► <Ji ' ..

tv !■>.>-■.'. Ufll'Vlirr.,
» ^

: IflwHingi * . ' i

Figure 4.3: Fusion operation.

4.2. FUSION OPERATION 49

4.2.1 Finding spanning-E live ranges

For each basic block B, two sets oflive ranges are maintained: Rcachln(B) andLivcOut(B).

Given a live range lr(x), lr(x) e Rcachln(B) if lrx is not defined in B (definitions of lrx

reach the entry of B), and lr(x) e LivcOut(B) if lr(x) is live at the exit of B. Consider

two basic blocks B\ and B2 that are in two regions R\ and R2, and connected by an edge

E = (Z?i, Z?2) in the control flow graph. The Rcachln and LivcOut sets indicate which

live ranges span edge E. That is, if lri(x) £ LivcOut{B\) and /r2(:») £ RcachIn(B2),

one definition of /^(z) comes from /ri(a;) (there may be other definitions reaching lr2(x)

from other paths to B2). To facilitate applying the fusion operation along edge E, we define

an internal structure called span-c that is composed of two live-range pointers, from and

to; "from" points to lri(x) and "to" points to lr2(x).

The first step of the fusion operation traverses LivcOut(B{) and RcachIn(B2) to find

out which live ranges span edge E. The fusion operation attempts to coalesce the live

range segments lri(x) and lr2(x) in the interference graph G%lUH2 so that no shuffle code

is needed for x along E. This step returns a working list, w, of spanne.

The example of Figure 4.4 shows the relationship among the structures of span-c,

Rcachln, and LivcOut. LivcOut(Bi) has three live ranges, lri(x), lr\{y), and lr\{z)

because the virtual registers, x, y, and z are defined in B2 and their values are live at the

exit of B\. RcachIn(B2) contains lr2(x) and lr2(y) because a: and y are defined in B\.

The working list u for edge E records that live ranges of a: and y span E.

... x...

...y...
B2 B3

Figure 4.4: Example of finding spanning-E live ranges.

50 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

ln(x)
lr2(x)

Spilled Transparent Non-transparent
Spilled Spilled Spill (Section 4.4) Split (Section 4.4)

Non-splitable Non-splitable Splitable
Transparent Coalesced, transparent Coalesced, non-transparent

Non-splitable Splitable
Non-transparent Coalesced, non-transparent

Splitable

Figure 4.5: Different possibilities when coalescing lr\(x) and lr2{x).

4.2.2 Unioning non-splitable live ranges

There are two places (unioning non-splitable and splitable live ranges as shown in Figure

4.3) where the fusion operation combines live ranges that span edge E. Basically, both

steps combine "from" and "to" live ranges of span.e into one. A live range segment /r, can

be in one of these three states: it has been spilled, it is represented in G^ and transparent,

or it is represented in GHi and non-transparent (i.e., there is areference). If both segments,

"from" and "to", are spilled, no shuffle code is needed. If ln(x) is spilled and lr2(x) is

transparent, we always spill the combined live range lrn(x) in G^lUHl to eliminate the

shuffle code that is needed otherwise. If ln(x) is spilled and lr2(y) is non-transparent, we

have a split point. Otherwise the segments are coalesced, although if the new interference

graph is not simplifiable, coalescing may be suppressed (i.e., a split). If both lr\(x) and

lr2(x) are transparent, then lrn(x) in G%luRi is non-splitable because spilling those live

ranges do not introduce spill cost. Figure 4.5 enumerates all possible cases of combining

two live ranges. Empty entries in this table are symmetric cases.

This step traverses the u list and coalesces the live ranges whose combined live ranges

are not splitable. Live ranges that are coalesced in this step are removed from w. Combining

two live ranges "from" and "to" consists of three major steps, unioning two live ranges,

merging interference edges, and propagating attributes as shown in Figure 4.6. The small

diamonds in the figure are condition checkers. For instance, the checker on the left-hand

side checks if the combined live range of the current span_e is splitable or not.

4.2. FUSION OPERATION 51

Live Ranges
Spanning-E

Urtoning
Ncdvspl labTe if

Merging
Cliques

Jj
Js_stVi>table

iUfifcringTwo

Snap-shot Unioning
Splitable lr

Maintaining
Simplifiability

fl-0!
SSPä $-►'

$$iiii!i$
! last.elsm

Figure 4.6: Structure of unioning 2 non-splitable live ranges.

Unioning two live ranges

How we union two live ranges depends entirely on the data structures of live range and

instruction. A typical machine instruction is composed of three parts: opcode, source,

and destination operands. Prior to register allocation, operands may access virtual registers

because the code-selection phase of cmcc selects code using virtual registers. Two essential

aspects are kept inside the operand accessing a virtual register, (1) a pointer pointing to

the virtual register, and (2) a pointer pointing to the corresponding live range of the virtual

register at the instruction. At the time of code emission, the code emitter then gets the

physical register of the operand via the live-range pointer. During region formation of the

graph construction phase, an interference graph is built for each region and the live-range

pointers of operands are set properly.

When two live ranges are unioned into one, the operands having pointers pointing to the

two live ranges must be able to acknowledge the change. That is, the operands must access

the combined live range as opposed to the two old live ranges. One solution is changing the

live-range pointers of the operands to point to the combined one. However, updating the

live-range pointers is not elegant because it is very inefficient to update pointers every time

when two live ranges are unioned. Another way to acknowledge that two live ranges are

unioned is through manipulating the data structure of live ranges. The algorithm, disjoint-

set forests [19], with union-by-rank and path-compression heuristics is used for unioning

two live ranges. Each disjoint set represents one live range. Each live range contains one

parent pointer and rank for the disjoint set. The live range whose parent pointer points to

52 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

itself (root) is the representative of all live ranges that are in the same set. Namely, the root

live range keeps all information regarding color assignment, interference,..., etc. All other

live ranges of the same set need to follow their parent pointers to get to the root live range to

retrieve all information. As a result, the live-range pointers of operands are never required

to be updated using the disjoint-set algorithm.

Figure 4.7(a) illustrates an example of unioning two live ranges of x using the disjoint-

set algorithm. Each shaded region represents one live range. One live range comprises

Iri and h2, and the other consists of /r3, /r4, and lr5. Arrows indicate the parent pointers.

The node whose parent points to itself is the root that represents the live range, e.g. hi

and Ir-s. Unioning the two live ranges is done by simply changing lr{% parent pointer to

point to lr\. \T\ is now the one who represents the union of the two live ranges as shown in

Figure 4.7(b). Finding the root live range for ht, traverses the parent pointers to get to the

root. The traversing path from /r4 to the root is compressed by changing the parent pointer

of each node on the path to point directly to the root (the dotted line illustrated in Figure

4.7(c)). Changing the parent pointer of each node on the traversing path is known as path

compression (the path from /r4 to hi is now shorter than the one of Figure 4.7(b)).

(a) (b)

Figure 4.7: Unioning two live ranges using disjoint-set.

There is one price to be paid for using the disjoint-set algorithm— superfluous memory.

The size of the data structure for a live range is large. The cmcc compiler is developed

on DEC Alpha machines on which each pointer requires 64 bits (8 bytes). Using virtual

functions in C++ costs each object whose class declares virtual functions a pointer that

points to the virtual function table for that class [59,49]. The size of our data structure for

4.2. FUSION OPERATION 53

a live range is 184 bytes. What a non-root live range needs is the parent pointer to proceed

to the root to retrieve live-range information. The other fields of the structure are never

used and therefore wasted. To alleviate the problem, another structure, live-range union,

is created. This structure sits between operands and live ranges. Now, an operand that

accesses a virtual register has a live-range union pointer rather than a live-range pointer.

A live-range union contains a parent pointer, rank as well as a live-range pointer. Only

root live-range unions retain live ranges. As two live ranges are unioned, the combined

live range, lrn, of lr\ and lr2 is either lr\ or lr2. The other one can later be destroyed and

recycled. Live-range union allows the internal representation of register allocation to use

memory not more than necessary.

Figure 4.8 sketches the structures for an instruction, a live-range union, and a live range.

Only the root live-range union, which is shaded, retains the live-range information. The

live ranges of the other two live-range unions have been freed up in the process of unioning

live ranges. To access the physical register that the srcl operand uses, we need to go

through lr.ptr to get to its corresponding live-range union, follow the parent pointer of

the live-range union up to the root, and then query the live range to return the physical

register (see Figure 4.8).

Operand

Instruction

lr_ptr
vreg_ptr.

opcode dst

live-range
union

8KJ1 src2

virtual
register

live range

■

physical_reg ' s"
physical
register

Ledges —

vreg

Figure 4.8: Live-range union.

54 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Merging interference edges

The two live ranges have their own interference edges, v>('r0 and 'f C^)- Pri°r to uniting.

In this step, y(lr\) and <p(lr2) are merged. If lrn is lr\, then each interference edge,

[lr2, X], of lr2 is updated by substituting lr2 with lrx2 ([Irn, X}) where X £ ncighbor(lr2).

Likewise, each edge of v>('r0 *s also updated in a similar fashion if /r12 is lr2. Duplicate

edges occur when lr\ and lr2 interfere with the same live range prior to uniting. In such a

case, duplicate edges are not added to the interference graph and therefore freed up.

The example in Figure 4.9 illustrates merging interference graphs. The interference

graph prior to unioning lr\ and lr2 is given in Figure 4.9(a). '-p(lri) has two edges: [lr\,lrx\

and [lri,lry]. y{lr2) has also two edges: [lr2,lry] and [lr2,lrz]. Both lr\ and lr2 interfere

with lry. After we combine lrx and lr2 into lru, we update <p(lri) and '-p(lr2). The two edges

of '-p(lri) now become [lrn,lrx] and [lr\2,lry]\ the two edges of '${1^) become [lr\2,lry]

and [lrn,lr3]. Merging --pilri) and y{lr2) eliminates one duplicate edge, [lr\2,lry]. The

resulting interference graph is depicted in Figure 4.9(b).

lrl) (lr2 ,

(a) (b)

Figure 4.9: Example of merging interference edges.

Propagating attributes

Each live range has several attributes that are propagated during graph fusion: callerxost,

spilLcost, hasAef, and area. The caller xost attribute is the estimated cost of assigning

a caller-saved register to the live range—the number of saves and restores that must be

executed around function calls if the live range is assigned a caller-saved register. The spill-

cost attribute is the estimated spill cost of a live range. The caller-save cost and spill-cost

properties are used during color assignment to decide whether a live range is assigned a

callee-save register, a caller-save register, or whether it is more profitable to spill the live

4.2. FUSION OPERATION 55

range. The to.de/property is true for a live range lr(x) if there is a definition of x within

lr(x). The has.def attribute indicates whether x's value needs to be stored to memory at

exits from Ir (x); if a live range does not modify the value of a virtual register, then no stores

are required at exits from the live range. The area attribute indicates the size of the live

range and is used for making out-of-color spilling decisions [5],

These attributes are propagated as follows:

• has.dcf(lri2) = has-dcf(lr\) V has-dcf{lri)

• caller.cost(lri2) = caller j:ost(lr\) + caller-C.ost(lr2)

• spill -Cost(lr\2} = spill-cost(lr\) + spill-cost {lr 2)

• arca(lrn) = area{lr\) + arca(lr%)

4.2.3 Merging cliques

The clique summary nodes (Section 4.4) are used to delay spilling decisions. Multiple

cliques may exist on both ends of the edge E as more graphs are fused. The cliques-

merging step deals with how to combine cliques. Details are described in Section 4.4.

4.2.4 Taking a snapshot of the interference graph

As mentioned earlier, combined live ranges may be split to maintain the simplifiability

invariant. As two live ranges, lr\ and lr2, are combined into lrn, their interference edges,

'■p(lri) and ^(/r2), are merged. Duplicate edges may arise and are thrown away. To undo

combining, the register allocator must retain the original interference graph. Otherwise, it

is hard and very inefficient to recompute interference information. This step takes a partial

snapshot of the current interference graph before combining any splitable live ranges.

Because only splitable live ranges need their original interference information, the origial

interference edges of these live ranges are stored. Non-splitable live ranges were already

removed from ui in the step of unioning non-splitable live ranges. Now all live ranges of u>

are splitable. This step, therefore, stores the interference edges of the live ranges of u.

56 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

4.2.5 Unioning splitable live ranges

This step traverses w and combines each pair of live ranges (all resulting live ranges are

splitable). Unioning two splitable live ranges, lrx and lr2 requires two operations that are

similar but not identical to unioning non-splitable live ranges. First, the two live ranges are

combined into one live range, lrn, as described in Section 4.2.2. Nevertheless, the slight

distinction is that there is no path compression between this step and the step that commits

live-range unioning decisions in Figure 4.10. The second operation merges interference

edges without freeing up duplicate edges. There is another noteworthy point—attributes

of live ranges are not propagated at this point of time. All differences of unioning non-

splitable and splitable live ranges originate from the fact that the latter wants to retain the old

interference information so as to split combined live ranges easily, and the former doesn't.

The task of deleting duplicate edges and propagating attributes of splitable live ranges is

deferred till the simpliflability invariant is satisfied.

We avoid compressing paths because updating the parent pointer causes a serious

problem when we want to split a combined live range. Consider the example of Figure 4.7.

Presume that path compression happens prior to splitting combined live ranges. The parent

pointer of /r4 may have been changed to In (Figure 4.7(c)). It is now very hard to split the

combined live range because we have no idea if lr4 belongs to In or lr3 initially, unless

there is some extra bookkeeping. On the contrary, if we don't allow path compression to

happen, then splitting the combined live range can be done by simply changing lr3's parent

to point to itself.

4.2.6 Maintaining the simpliflability (colorability) invariant

The step that maintains simpliflability ensures that the invariant holds by performing sim-

plification on GH!UH2- The algorithm described in [52] is used to deal with register pairs.

This step consists of four major components as depicted in Figure 4.10: computing degree,

removing a LS-N node (degree less than N), lowering register pressure, and committing

the live-range unioning decision. The shaded region simplifies the interference graph until

an empty graph is obtained.

4.2. FUSION OPERATION 57

Live Ranges
Spanning-E

Unloning
Non-splitable lr

Merging
Cliques

Snap-shot Unioning
Splltable lr

^lÄKf-^ ÄSU
■M'M'MWAMAW.W.W

m
MtUMIIIIlMIMMI.I.H

ha s.. critical., node

Ü-6-*

U.M.1.1.1.1.1.1.1.1.1.1.1.1.1.'
'■ 111111 ii > ■ i 111111 ■ I lii 11.. i ■ ■ ■ i i i ■. ■ ■ ■ ■ I:. ■ 11. i ■ ii. i ■ 1111 ■ I

wffltm

! empty_grapli

Figure 4.10: Maintaining simplifiability.

Computing degree

There are two working lists, LS-N and GE.N, used by the simplification. The LS.N list

keeps live ranges whose degrees are less than Ar (Max colors). The GE-N list contains live

ranges whose degrees are greater than or equal to Ar. The computing degree step computes

the degree of each live range of the interference graph and initializes the two lists.

Removing a LS_N node

Again the small diamonds of Figure 4.10 are condition checkers. The checker between the

computing-degree and removing-LS-N steps checks if there are live ranges on the LS-N

list. If LS-N is not empty, then the removing-LS-N step removes one live range from the

beginning of the LS-N list and then removes the live range from the graph. The degrees of

the live range's neighbors are decremented. If any neighbor that was constrained becomes

unconstrained, the neighbor is removed from the GE-N list and inserted into the LS.N

list.

Lowering register pressure

If all remaining live ranges are on the GE-N list (and LS-N list is empty), then simpli-

fication of G^lU^2 blocks. In other words, fusing the interference graphs of GH{ and GR2

58 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

along edge E induces high register pressure. Some actions are required to lower the register

pressure. In a first attempt, we find a transparent live range to spill, instead of splitting

live ranges. Spilling a transparent live range incurs no spill cost (but implies shuffle cost),

and the delayed spilling technique may lower the incurred shuffle cost, i.e. push shuffle

code onto low frequently executed edges. After spilling a transparent live range, degrees

of its neighbors are decreased correspondingly. If there is no transparent live range, then

a coalesced (splitable) live range W\2 is chosen from the remaining constrained nodes to

split. lrn will be split along E back into lr\ and lr2. The choice of which live range to

split is solely based on a node's degree, because the shuffle costs (move) at edge E for all

splitable live ranges are the same. After splitting lru, if lr\ (lr2) becomes unconstrained,

lr\ (lr2) is inserted into the LS-N list. The degree of the interference graph may be lowered

because of splitting, allowing simplification to proceed from the point where it blocked.

If simplification blocks again, additional live ranges are split. Experimental results show

that choosing the splitable live range that has the smallest degree incurs fewer splittings

than choosing the highest degree. The reason is that lr\ and lr2 are more likely to become

unconstrained using the heuristic of choosing the smallest degree. Since the original graphs

GKI and GR2 are simplifiable, then at worst all live ranges that span E are split. Figure

4.11 depicts the flow of the steps to lower register pressure. The splitting step may generate

critical nodes while splitting a combined live range. Section 4.2.7 elucidates how splitting

live ranges generates critical nodes. If a critical node arises, then simplification is reiterated

from the computing-degree step as illustrated in Figure 4.10.

Splitting a splitable live range lr\2 consists of three steps (in the shaded region). Union-

ing the two live ranges, lr\ and lr2, causes one of them to become a child of the other using

the disjoint-set algorithm. The first step removes h\2 from the GE.N list and makes the

child to be a root by changing the child's parent pointer to point to itself. The second step

removes all edges of '-p(lrn), retrieves the two sets of original interference edges, y{lrx)

and v?(lr2), that were recorded in the taking-snapshot step. If the child is lr\ then each edge

of '-p(lri) is updated by changing [lrn, X] to [lru X] where X G ncighbor(lri) (reversing

what had been done in the merging-edges step of Section 4.2.5). Each edge of ¥>(£r2) is

updated similarly if the child is lr2. <p(ln) and ^(£r2) are hereby added back to the graph

again (duplicate edges may still exist and are not put back to the graph). The third step

4.2. FUSION OPERATION 59

ha5._LS._N

Computing
Degree 0

Removing
LS_N Node

Lcwewg:

has criticaLnode

Committing
Union

! emply„graph

lias_traiisparent

has„st>lit:Vl*i:

Splitting ir|2

Figure 4.11: Lower register pressure.

recomputes the degrees of In and lr2. If In (lr2) is unconstrained, In On) is inserted into

the LS-N list. Otherwise, they are inserted into the GE-N list.

If none of the live ranges of the GE.N list is splitable, then simplification must have

produced at least one critical node. Otherwise, simplification should proceed without

blocking. Hence, all nodes are simply removed from the graph, and simplification is

repeated from the computing-degree step.

Committing live-range unioning decision

By the time we get to the "committing unioning decision" step, the simplifiability constraint

is satisfied and all necessary spilling (transparent live ranges) and splitting (coalesced live

ranges) decisions are made. Some live ranges are coalesced and some live-range unions are

suppressed. The step now commits all coalesced live ranges. Namely, those coalesced live

ranges will never be split at edge E. Thus, the attributes of the coalesced live ranges are

then propagated. Duplicate interference edges can now be eliminated. Furthermore, parent

pointers of live ranges are allowed to be updated freely from now on.

60 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

4.2.7 Critical node

When two live ranges lr\ and lr2 are combined into lru, the degrees of their neighbors

can only decrease monotonously (the degree will never increase). If one live range lrx

interferes with lrx and lr2, coalescing lrx and lr2 produces one duplicate edge. The

duplicate edge is then removed from the graph, as a result, the degree of lrx is decreased

by 1. Conversely, splitting a coalesced live range, lrn, increases its neighbors' degrees

monotonously because the removed duplicate edge is added back to the interference graph

(the degree of lrx is increased by 1). One problem arises, due to this property, when splitting

is taking place during simplification (Figure 4.11). One live range is removed (simplified)

from the interference graph only under the condition that the degree of the live range is

less than N. Again, the main observation is that the register allocator is able to find a

legal color for the live range regardless how colors are assigned to the residual graph. The

observation, nonetheless, may no longer hold once coalesced live ranges are split because

the degree of an already-simplifiedlive range may increase and become constrained. Those

already-simplified live ranges that become constrained are called critical nodes. A critical

node can happen only when live ranges are split.

Detecting critical nodes is done by keeping track of the degrees of already-simplified

live ranges. The notation a(lr) denotes the degree of Ir at the time when Ir is removed

from the graph during simplification. After Ir is removed from the graph, a(lr) (cr(lr) < N

at this point of time) is then frozen and not decreased when subsequent live ranges are

removed from the graph. At the time of splitting lrn back to lrx and lr2, a(lr) is increased

by 1 if both lr\ and lr2 interfere with Ir. Whenever cr(lr) is equal to Ar, then Ir becomes a

critical node (the condition <r(lr) < N is violated).

The simplification step of Figure 4.10 never tries to backtrack when critical nodes arise

(because it is hard). Instead, simplification continues until an empty graph is obtained. If

critical nodes arise, then simplification is reiterated from the computing degree step to make

sure that the resulting graph can still be simplified without blocking. The next pass simplifies

the interference graph on which some live range are already split at E. Simplification will

terminate within a fixed number of iterations because a critical node can happen only when

live ranges are split, and there is only a fixed number of splitable live ranges. In reality,

critical nodes happen rarely. As I have observed so far, one more iteration of simplification

4.2. FUSION OPERATION 61

is sufficient to preserve the simplifiability invariant. One implementation could curtail the

chance of generating critical nodes. Always simplifying an unconstrained live range that

has the smallest degree lowers, in general, the degrees of live ranges at the time when they

are simplified. Because critical nodes occur rarely, the technique is not implemented.

4.2.8 Example of critical node

The example of Figure 4.12 shows how splitting live ranges produces a critical node and why

re-performing simplification is essential. Figure 4.12 (a) is the interference graph before

graph fusion. With N=3, the interference graph can be simplified. One legitimate sequence

of removing nodes from the graph during simplification is lr\(x), lr2(x), lri(y), lr2(y),

lr(w), lr{z), and lr(t). Assume that the fusion operation combines ln(x) with lr2(x) first

and Ir-i(y) with lr2(y) next. Figure 4.12(b) portrays the resulting graph after lri(x) and

lr2(x) are combined into lrn{x). As lr\(y) and lr2(y) are combined, two duplicate edges,

Uri2(y),lrn(x)] and [lri2(y),lr(z)], are taken out from the graph as depicted in Figure

4.12(c).

There are five live ranges in the final graph (Figure 4.12(c)). lr\2{y), lr(w), lr(z),

and lr(t) form a clique of size 4. Light shaded live ranges and dotted interference edges

indicate that the live ranges and edges are simplified and removed from the graph. With

N - 3, lrn{x) can be simplified because the degree of lr\2{x) is 2. Then simplification of

the remaining graph blocks because every node has degree = 3 (shown in Figure 4.12(d)).

Splitting lrn(y) back to lr\(y) and lr2(y) adds the two duplicate back to the interference

graph (shown in Figure 4.12 (e)). Consequently, the degree of lrX2{x) is increased by 1;

lrn(x) becomes a critical node. The degrees of lr\(y) and/r2(y) are 2 after splitting/rn(y)

(recall that lr\2(x) is removed from the graph already). Simplification can proceed from

where it blocked by simplifying lrx(y) and lr2(y), and an empty graph is obtained.

Even though an empty graph is obtained, the simplifiability invariant doesn't hold due

to the critical node lrn(x). If we perform simplification on the interference graph of

Figure 4.12(e), we discover that simplification blocks and cannot remove any node from

the graph because all nodes are constrained nodes (degree > 3). When critical nodes arise,

re-iterating simplification splits live ranges as necessary so as to maintain the simplifiability

constraint. That is, if simplification blocks, splitable live ranges are chosen to split. lrl2(x)

62 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

(b)

split lr12(y)

(C)

ifamX - - -4,^ destee=3

(d) (e)

Figure 4.12: Critical node (N=3).

is split in the second pass of simplification on the graph of Figure 4.12(e). As a result, the

maintaining-simplifiability step splits the interference graph of Figure 4.12(c) back to the

original graph (Figure 4.12(a)).

4.3 Modeling different splitting approaches

Before we describe how the fusion-style approach models various splitting approaches, we

need to know how GH for a region R is constructed because different approaches can be

distinguished based on the strategy used to select regions.

4.3. MODELING DIFFERENT SPLITTING APPROACHES

4.3.1 Constructing GH

63

Constructing GR, like graph fusion, also relies on the fusion operation to glue small

interference graphs into one. Namely, both constructing GH and graph fusion use the same

framework of the fusion operation. The fusion operation that fuses the interference graphs

of two regions is called weak fusion (presented in Section 4.2) because splitting live ranges

is allowed during graph fusion. The fusion operation fusing two graphs that belong to

one region is called strong fusion because splitting live ranges is forbidden. A region is

composed of a collection of basic blocks and set of control-flow edges, Reige„ that connect

blocks within the region. GH is constructed in two steps. First, the interference graph is

built for each block in the region. Second, the strong fusion operation is applied to every

edge of Redges ■ The two steps are similar to the region formation and graph fusion of Figure

4.1. Blocks are regions, and graphs of regions are fused using the strong, rather than weak,

fusion operation. Because we don't maintain the simplifiability invariant when we build

Gu, the graph simplification step of Figure 4.1 is not necessary. No spilling decisions are

made during constructing Gn-

MOP:

Graph
Simpltfication \+ fifapft fusion

 --*
•:•;•;•:•>:■:•:■:■:■:■:■:■:•:■:•:•:•:■:■:.:

-N; Snap-shot :!:!|ilR:! Unionina 1; ^.
Splitabls lr plsgf:

Maintaining
Simplifiability \

■ mp

Figure 4.13: Strong fusion operation.

Figure 4.13 depicts the structure of the strong fusion operation. The three steps high-

lighted by dotted rectangle that deal with splitting live ranges are just nop: taking a snapshot

of the interference graph, unioning splitable live ranges, and maintaining the simplifiability

invariant. All live ranges that span E € Redges are non-splitable.

64 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

4.3.2 Tera

The Tera approach can be modeled by using loops as regions. The edge ordering for

the control-flow edges that connect regions are ordered based on the estimated execution

frequency using loop depth—the edges in the inner loops appear in front of the edges in

the outer loops. We thereby perform graph fusion based on the edge ordering. The way

that we model the Tera approach is not identical to what was described in [12] because

fusion-style coloring does not construct the tile tree and perform register allocation tile by

tile. However, both approaches have the same perspective to register allocation. That is, the

inner loops have more freedom in terms of assigning registers. The fusion-based approach

should outperform the Tera approach for two reasons. First, no premature binding decisions

have been made in the fusion-based approach. Second, the Tera approach does not take into

account the edges that connect a parent and a child tile to prevent live ranges from being

split on one of the edges that is executed more often than the others. The fusion-based

approach can prioritize those edges based on profile information so as to avoid splitting live

ranges at frequently executed edges.

4.3.3 PDG

The RAP compiler performs register allocation in a hierarchical fashion based on the PDG.

A region node in the PDG is a collection of predicates and statements that are executed under

the same control conditions. A region node R may consist of subregion nodes. To model

the PDG approach, we can exclude the subregion nodes from R and consider R as a region

in fusion-style coloring. We then traverse the PDG from leaves to the root like the way

that the RAP compiler performs register allocation. During traversing the PDG, we order

control-flow edges by assigning higher priorities to the control-flow edges that connect the

current region to its subregions than to the rest of the control-flow edges that are not yet

assigned priorities. The PDG approach modeledby fusion-style coloring should outperform

the conventional PDG approach for the same two reasons as described in modeling the Tera

approach. First, no premature binding decisions have been made in fusion-style coloring.

Second, the conventionalPDG approach does not take into account the execution frequencies

of the edges that connect a parent region and a subregion whereas the fusion-style approach

4.3. MODELING DIFFERENT SPLITTING APPROACHES 65

can prioritize the edges based on their estimated execution frequencies.

4.3.4 Multiflow

The Multiflow compiler integrates scheduling and register allocation. Scheduling and

register allocation are done on a trace basis. That is, the compiler picks a trace and passes

the trace to the code scheduler; the code scheduler then schedules the code of the trace

and performs register allocation. Because the cmcc compiler does not have the framework

that integrates scheduling and register allocation like the Multiflow compiler, fusion-style

coloring can model only the register allocation part of the Multiflow approach. One key idea

of the Multiflow approach is that traces chosen first have more freedom in using registers—

are not constrained by other traces because other traces are not yet compiled. Fusion-style

color has the flexibility to choose traces as regions, maintains the simplifiability invariant to

delay color-assignment decisions, and uses the delayed spilling technique to defer spilling

decisions. Therefore, unlike the Multiflow approach, traces are never constrained by the

color binding decisions of other traces.

There are two counteractive aspects when register allocation chooses traces as regions.

The code scheduler requires instructions to exploit ILP. The bigger the trace, the more

instructions the code scheduler can exploit. However, the bigger the trace, the more register

pressure the trace imposes on register allocation. Once a trace is picked, no live-range

splitting could happen using the Multiflow approach. As a result, the spilling decisions

made by the register allocator are all-or-nothing spilling. The fusion-based approach, on

the other hand, has the flexibility to further divide a trace into smaller regions and applies

graph fusion to combine the graphs of the smaller regions into the interference graph of the

trace. Live-range splitting is therefore possible within the trace.

4.3.5 SSA

With slight modification, the fusion-based framework can model the approach that uses

the SSA representation to determine splitting points. Constructing GSSA is similar to

constructing GR where R is the region that covers the whole function. Splitting a live range

at a 6 node is the same as splitting the live range at the entry edges of the block that contains

66 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

the d> node because 6 nodes are inserted into the entry of blocks [20]. We apply the strong

fusion operation on every control-flow edge. During the step of unioning non-splitable

live ranges (Figure 4.13), coalescing two live ranges is suppressed if the current edge is a

d>-node splitting point for the two live ranges. The later color assignment eliminates shuffle

moves using biased coloring.

4.4 Delayed spilling

When a region It needs M physical registers to be colored, and M > N, then some live

ranges must be spilled. Considering only local spill costs inside R, the best spill choice is

a transparent live range Lt, since Lt has a high degree in the interference graph, and the

cost of spilling Lt is zero inside R. If we assume that there are T transparent live ranges

in region R, and K live ranges must be spilled, then there are three cases that must be

considered:

K <T: In this case, the number of transparent live ranges is more than the number of

live ranges that must be spilled. However, choosing the transparent live ranges

for spilling should be delayed until the compiler obtains more global information

about the reference patterns of the transparent live ranges. Searching the region's

immediate neighbors does not solve the problem because transparent live ranges may

be transparent across many basic blocks. Delayed spilling deals nicely with this case,

as explained below. A large number of transparent live ranges is common while

processing the high-priority edges.

K = T: In this case, the spill needs are satisfied by spilling all transparent live ranges.

K >T: In this case, all transparent live ranges, as well as K - T live ranges with a

reference inside R, are spilled. The spilling decisions are selected by a heuristic

based on spill cost, area, and the degrees in the interference graph.

Although spilling a transparent live range is very attractive (because it has no spill

cost), it may not be globally optimal. Figure 4.14 shows a flow graph for which spilling

transparent live ranges is not optimal. In Figure 4.14(a), each of Z?i and D2 has three live

4.4. DELAYED SPILLING 67

x =
100,

^transparent gspill
** x y z x y z

j[x y z stx
B1

II

 II

90 loV

2 ...X...
...y...

90 10/

d ...Z...

Bi

Idx

Bo Bo

I I .
lr1(x)lr1(y)lr1(z)

Ml
lr2(x)lr2(y)lr2(z)

I
lr3(z)

(a) (b) (c)

Figure 4.14: Non-optimal spilling (N=2).

ranges simultaneously live. Regions are basic blocks. The vertical lines on the right of the

blocks represent the live ranges of the virtual registers x, y, and z (a lightly shaded line

indicates that the live range is transparent). The number next to each control-flow edge

is the execution frequency of the edge. B\ and D3 have the same execution frequency,

100. Three colors are needed to color the interference graph of Dx and D2. Since there are

only two registers, we must spill one live range from each block. Figures 4.14(b) depicts

the case of spilling transparent live ranges (spilled live ranges are drawn with a hatched

pattern). lr\(x) and/r2(^) are transparent live ranges and spilled to reduce register pressure.

Although the two live ranges do not have spill cost, they need shuffle code to move values

between registers and memory. The shuffle cost is 370 load/store operations. The optimal

result (least overhead operations) in this example is spilling y's live ranges (Ir^y) and

lr2{y)) as depicted in Figure 4.14(c) (only 190 operations of spill code).

I now describe in more detail the delayed spilling technique used to handle the case

where K < T. Since all transparent live ranges conflict with each other, these live ranges

form a clique in the interference graph. The transparent live ranges are therefore collected

into a single clique summary node C in the interference graph, as depicted in Figure

4.15. The node C contains an edge to all other nodes in the graph, since the transparent live

ranges interfere with all other live ranges in a region. The clique summary node is annotated

with the number of transparent live ranges that it represents, i.e., T(C). We record that

68 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Clique of Size T

Figure 4.15: Clique summary node.

rl'(C) = K of the T transparent live ranges must be spilled, without specifying which ones.

The actual size of the clique is thus T(C)- il>(C). The clique is dealt with as a single unit;

eventually rl>{C) live ranges will be spilled. By keeping a summary node in the graph, we

can keep more live ranges in the interference graph than there are registers, and we delay

the decision on which live range(s) to spill until more information is available. The clique

representation affects the graph coloring in two aspects: computing the degree and fusing

graphs.

4.4.1 Computing degree

The degree of an interference graph node is usually computed by summing the number

of interference graph edges that are incident upon the node. With clique summary nodes,

however, additional care must be taken. Consider a clique node C and a regular node lr,

connected by an interference edge E. The degree that edge E contributes to node lr is

T(C) - i>{C) because lr interferes with every nodes inside clique C. The degree that edge

E contributes to clique C is one. In addition to the interference edges of C, the degree of

a clique node must add T(C) - rp(C) - 1 because within the clique, each node interferes

with T(C) - i>{C) - 1 other nodes.

4.4.2 Fusing graphs

As the interference graphs of larger and larger regions are fused, the compiler acquires a

more global understanding of the reference patterns. This knowledge is especially useful

if the order of fusing graphs reflects either program structure or execution frequency.

Contiguous spilled and non-spilled live range segments do not incur shuffle cost within the

4.4. DELAYED SPILLING 69

segments because no shuffle code is required. Therefore, the tendency of progressively

growing live ranges during fusing determines which transparent live ranges need to be

spilled eventually. And the expansion of live ranges is based on the edge ordering, which

makes the spilling decisions sensitive to the edge priority function, e.g., program structure

or execution frequency.

Given an edge E = (BX,B2), the live ranges that span across E are merged. When a

live range lr\ is merged with lr2, and one of the two is transparent, there are three cases to

consider:

1. If lr\ is a spilled live range, lr2 is in a clique C (transparent): lr2 is removed from

C and spilled. Both T(C) and ib(C) are decremented by one because one spilling

decision is made. The decision grows a spilled live range, thereby allowing the

compiler to avoid shuffle code on the edge E (a contiguous spilled live range crosses

the edge E).

2. If Iri is a non-transparent live range, lr2 is in a clique C: The fusion operation makes

a non-spilling decision for lr2 and removes lr2 from C. Only T(C) is decremented.

The decision enlarges a non-spilled live range; since the live range is in a register in

an adjacent region, keeping lr2 in the register (not spilled) eliminates the otherwise

needed shuffle code on the edge E. Hence the compiler favors it over the other live

ranges in the clique.

3. If lr\ is in clique C\ and lr2 is in clique C2 : lr\ and lr2 are coalesced and added

to a new clique, C = C\ n C2. After processing all live ranges across E, there are

three cliques C, C[and C2, where C[= C\-C and C2 = C2 - C. 4>{C) establishes

how many ranges of C must be spilled and is computed as a function of rl?(C\) and

i'{C2). There exists several options to determine how many live ranges to spill from

C; once ti{C) is known, ip(C[) and ti(C2) are computed, ip{C[) = i>(C\) - 0(C)

andtfr(C£) = i&(C2)-0((7):

(a) rl>(C) = min(r(C),max(!/.'(6'1),0(C2)))

(b) ti(C) = min(T(C),min(l/.'(Ci),!/KC2)))

(c) *(C) = min(r(C),max([|g!/..(C1)l, \^(C2)]))

70 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

(d) *{C) = min(r(C),min(r^g0(C,)l, \^(C2)]))

min(T(C),) in the equations is required to make sure that the condition, ip(C) <

T(C), of the clique C holds. The first option tends to lower xp functions of C[and C2

because xl'(C) takes the maximum of il>{C\) and ip{Ct). The third and fourth options

attempt to divide the number of spilled live ranges among cliques proportional to

their sizes.

If T{C) = i>{C) for a clique C at any time during this phase, then all live ranges of

C must be spilled. At that point, C is an empty clique and removed from the interference

graph. When a live range IT is removed from clique C, acopy of p(C) and a new conflicting

edge [lr,C] (because Ir interferes with every live range in C) are generated for L. The

example of Figure 4.16 has 3 live ranges in the clique C. We want to remove lrx from the

clique. A copy of the interference edges (edge 1 and 2) of C is generated (dashed lines).

The new generated interference edge [lrx,C] is added as well.

Clique C

Figure 4.16: Removing a live range from a clique.

4.4.3 Example of delayed spilling

In Figure 4.17(a), each basic block has three live ranges, and they all conflict with each

other. Again, the vertical lines on the right of the blocks represent the live ranges of the

virtual registers x, y, and z (alightly shaded line indicates that the live range is transparent).

Three colors are needed to color the interference graph of each block. Since we have only

two registers, we must spill one live range from each block. Assume that basic blocks are

regions. The graph simplification phase (Section 4.1.2) needs to spill one live range from

each interference graph of basic blocks so as to maintain the simplifiability constraint.

4.5. BIASED COLORING 71

x =

y =
z =

i
...X .

...z.,

lr2(x)lr2(y)lr2(z) V^JIX

'B3

| lr3(x)lr3(y)lr3(z) ^-"idj

... X, y,Z, ... (a) (b) (c)

Figure 4.17: Example of delayed spilling (N=2).

Without delayed spilling, spilling decisions need to be made locally. The decisions may

not be globally optimal. If lr\(y), lr2(z), and lr3(x) are spilled (no spill cost), six load/store

operations (shuffle code) are required to move values between registers and memory, one

store and one load operations for each live range as shown in Figure 4.17(b). The delayed

spilling technique is able to delay spilling decisions by constructing a clique for each block

to collect the two transparent live ranges of the block. The il> function for each clique is

one (one out of two will eventually be spilled). Consider that the interference graphs of Dx

and D2 are fused. The unioning rules described in Figure 4.5 decide that lr2(x) and lr\(y)

shouldn't be spilled because lr\{x) and lr2(y) are non-transparent live ranges. Therefore,

we spill lri(z) and lr2(z) (depicted in Figure 4.17(c)). This spilling decision results in only

four load/store operations.

4.5 Biased coloring

lri(x) and lr2(x) are called adjacent partners if their values are connected by a splitting

point. Two live ranges are remote partners if there is no splitting point between them but

they are parts of the same live range if we construct the interference graph for Chaitin-style

coloring (no live-range splitting). For instance, Figure 4.18(a) depicts an case where the live

72 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

range lr(x) spans across 3 blocks and is split into 3 smaller live ranges, lri(x), lr2(x), and

lr3(x). lri(x) and lr2(x) are adjacent partners, and lr2(x) and lr3(x) are adjacent partners

also. lri(x) and/r3(a;) are remote partners.

A shuffle move is required if Ir^x) and lr2(x) end up in different registers. Biased

coloring [7] is a common technique to eliminate a shuffle move between lri(x) and lr2{x)

by assigning them the same register. We define some notations that are used in describing

biased coloring.

adjaccnt(lr) all adjacent partners of Ir
partncr(lr) all adjacent and remote partners of Ir
color(lr) the assigned color of Ir
avoid(lr) the set of colors that Ir wouldlike to avoid using
avail(lr) {c | c ^ |J color(n)}

n£neiglibor(tr)

Selecting a color for a live range Ir using biased coloring consists of the following steps:

1. choose a color c € avail(lr) A c € (J color(n).
nEadj acent(lr)

2. if not found, choose a color c € avail(lr) Ace (~) avail(n).
nCwicolored adjacent(lr)

3. if not found, choose a color c € avail(lr).

%
i
i

; »

ft©A
(-- !

(b) (c)

Figure 4.18: Biased coloring

4.5. BIASED COLORING 73

The color ordering phase determines the order in which live ranges are assigned colors.

The first step finds an available color matching a colored adjacent partner. The second step

tries to avoid using a color that uncolored partners cannot use. The third step of biased

coloring picks a color freely for lr if none of the previous two attempts succeeds. Hence,

the biased coloring mechanism in [7] has 3 defects.

First, a long live range may be split into several smaller segments. Those smaller

segments may be colored in an arbitrary order. Without considering remote partners, biased

coloring may easily fail to find a color for all the segments. Assume that the color ordering

of the example in Figure 4.18(b) is lr^(x), lr3(x), and lr2(x). Two live ranges circled by

a dotted line are adjacent partners. Green color is assigned to lri(x). When selecting a

color for /r3(x), the register allocator chooses a color that is still available for lr2(x) to

increase the likelihood of assigning lr2(x) and lr^{x) the same color. Because lr2(x) is not

yet colored, and the register allocator doesn't take into account remote partners, it is likely

to assign a color to lr3(x), which is different from lr\(x). As a result, a shuffle code is

inevitable regardless what color is assigned to lr2(x).

Second, the biased coloring approach does not consider the assigned colors of neighbors'

partners (|J |J color(p)) while selecting colors. In other words, when
n€neighbor(lr) p£adjacent(n)

choosing a color for lr, the register allocator may assign the color that Ir's uncolored

neighbors are eager to get even though there are other available colors for lr. In Figure

4.18(c), lrt(x) interferes with lr(y), and the color ordering is lr2(x), lr(y), and lri(x).

Assume that the red color is assigned to lr2(x). As biased coloring picks a color for lr(y),

it has no idea about the assigned color of /ri(oi)'s partner. Consequently, the red color may

possibly be assigned to lr(y) as well. Now it is impossible for lr\(x) to have the same

color as lr2(x) because the red color is a conflicting color for lrx{x). Thus, shuffle code is

required.

Third, biased coloring does not prioritize the shuffle moves so as to attempt to eliminate

frequently executed shuffle moves.

The biased coloring approach implemented in our register allocator deals with the 3

drawbacks of the classical biased coloring approach adopted by prior reseachers. Partners of

a live range in our biased coloring approach consist of adjacent as well as remote partners.

74 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Partners are prioritized in such a way that adjacent partners have higher priorities than

remote partners and are prioritized based on their estimated execution frequencies because

frequently executed shuffle moves should be eliminated first. The steps are described as

follows:

1. c = color(p), where p = maxjpriority({x \ x € partner(lr) A color(x) £

avail(lr)))

2. if not found, choose a color c € avail(lr) A c g avoid(lr).

3. if not found, choose a color c € avail(lr).

4. if eis found, avoid(n) + — c,Vn € ncighbor(p),\fp € partncr(lr)

The first step chooses one of the assigned colors of Ir's partners based on their priorities.

The chosen color must be a non-conflicting color. The second step tries to find a non-

conflicting color that is not used by the partners of Ir's neighbors. The third step chooses a

non-conflicting color freely. The fourth step propagates the chosen color to the neighbors

of Ir's partners.

4.6 Placement of shuffle code

After the color-assignment phase, shuffle code is inserted as necessary along edges. At an

edge E = (Di, D2), shuffle code is inserted for a virtual register x that has been split at E,

i.e., if lri(x) and lr2(x) have not been assigned the same storage location. Shuffle code can

be of three types: shuffle move, shuffle store, and shuffle load.

One simple rule of inserting a shuffle store on E is that storing the value of x back

to memory when lr\(x) is in a register, and lr2(x) is spilled. The rule, however, is too

conservative because a;'s memory location may already contain the up-to-date value. When

fusing graphs, the fusion operation propagates the has-def attribute indicating if the value

of a live range is defined within the live range. If the has_def attribute of a live range lr(x)

is set, then shuffle stores are needed at the edges that exit to a spilled live range lr'(x).

For example, in Figure 4.19(a), ln(x) is assigned to a register, rlx, and lr2{x) is spilled.

4.6. PLACEMENT OF SHUFFLE CODE 75

lri(x)

(a) (b) (c)

Figure 4.19: Example of inserting shuffle store.

Because x is defined in lrx(x) (has_def is set), the value of in (a;) is stored back to memory

by inserting a shuffle store on edge E\.

When the has.def attribute of a live range is not set (no definition in the live range),

shuffle stores may not needed. For instance, in Figure 4.19(b), lrx(x) is also assigned to

register rla.., and lr2(x) is spilled. However, the value of lr\(x) is not defined in ln(x)

(has_def is not set) and comes from a spilled live range, Ir-j(x). Because the value of x in

its memory location is still up to date, no shuffle store is needed on edge E\.

We have to pay attention if the value of in (x) comes from another live range that is not

spilled and whose has_def is set as shown in Figure 4.19(c). At the exit edge E\ of lr\(x),

the value of x in its memory location is not up to date so a shuffle store is required to update

the memory location of x.

A simple flow-analysis technique is used to compute if the value of a live range lr(x)

in its memory location is up to date or not. The flow analysis operates on shuffle moves

unlike typical flow analyses in the global optimization phase that operate on control-flow

edges. The has-def attribute flows through shuffle moves (forward direction from sources

to destinations). Therefore, in the presence of the flow analysis, we know if a shuffle move

brings a value that is not yet stored back to its memory location. If the value of lr(x) comes

76 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

from a shuffle move and the value in memory is not up to date, shuffle stores are required

at the edges that exit to spilled live ranges regardless of the has_def attribute of lr(x).

4.6.1 Ordering of shuffle code

Shuffle code on edge E =< BUB2> may be placed in Bu B2, or a newly created block

inserted between B\ and B2. If #i has only one successor, which is B2, the shuffle code is

appended to the end of the schedule of Bx. If Bx has multiple successors, and B2 has only

one predecessor, the shuffle code is inserted into the beginning of the schedule of B2. In

these two situations, the shuffle code is executed only when the control flow goes through

E. If B\ has more than one successor and B2 has more than one predecessor, edge E is a

critical edge [42]. The shuffle code inserted in B\ and B2 may be executed when the control

flow does not go through E. Therefore, we perform edge splitting on E [42]; a new block

is created and inserted between B\ and B2. The shuffle code is then put in the new block.

There is an ordering in which shuffle code is inserted. Shuffle stores are inserted first.

Shuffle moves are appended after shuffle stores. Finally shuffle loads are inserted after

shuffle moves. A shuffle store for a virtual register x at edge E means that the live range

lri(x) ends at the exit of Bx and lr2(x) is spilled to memory in B2. In other words, ln(x)

does not interfere with any live range that starts at the entry of B2. Likewise, a shuffle load

for a virtual register x at edge E indicates that live range lr2(x) starts at the entry of B2

and does not interfere with any live range terminating at the exit of B\. The two conditions

imply that shuffle stores should be ahead of shuffle loads. A shuffle move for a virtual

register x indicates that lr\(x) terminates at the end of B\ and lr2(x) begins at the entry of

B2. Therefore, a shuffle move has both the conditions of shuffle store and load. A shuffle

store (lri(y) to memory) should be ahead of a shuffle move (lr\(x) to lr2{x)). Otherwise,

lri(y) conflicts with lr2(x). The value of lri(y) is mangled by the shuffle move if the same

register is assigned to lr\(y) and lr2(x). Similarly, a shuffle move should be in front of a

shuffle load.

Multiple shuffle moves may exist on edge E. Special attention must be given to the

ordering among the shuffle moves to prevent the source value of a move being targeted

by another move. For instance, consider two shuffle moves for x and y {rx3 <- vx2 and

ryA «- ry3). If the ordering for the two moves is rx3 f- rx2 and then r„4 <- ry3, the

4.6. PLACEMENT OF SHUFFLE CODE 77

value of y in ry3 is destroyed by the first move of x. If we swap, however, the two moves

so that ryA <- ry3 comes first, the two shuffle moves are able to exchange values safely.

The approach of finding the ordering for shuffle moves is done by constructing a directed

graph whose nodes are shuffle moves. An arc from a move mv\ to mv2 represents that

the destination of mvx and the source of mv2 share the same register. Traversing from

leaves to roots determines the ordering for shuffle moves. If there is a cycle in the graph,

saving/restoring a register to/from a temporary memory location is necessary to replace

a move in the cycle so as to break the cycle. To cite an instance, consider two moves,

rx2 <- rx3 and ry3 «- ry2. There is a cycle between the two moves. The code sequence

forthe two shuffle moves is st ry2, (temp); rx2 «- rx3; Id ry3, (temp) ;. The

number of overhead operations is counted as 3 (1 load, 1 store, and 1 move), not 2.

4.6.2 Optimization of placement

The insertion of shuffle code is simple and straight forward, but this step may result in

partial redundancies in the code. For instance, the has.def property of a live range lr(x)

determines whether shuffle stores of x are needed on the exit edges of lr(x). When the

definitions of a; are in less frequently executed blocks, and the exit edges (splitting points)

are more frequently executed than the definitions, the shuffle stores are executed more often

than necessary. The code hoisting [41], code sinking [43], and pratial redundancy [15]

techniques can be used to optimize the placement of shuffle loads/stores.

However, based on the estimated costs of def-cost and the estimated costs of the shuf-

fle move (register-to-register), store (register-to-memory), and load (memory-to-register)

operations, a simple effective technique is used to optimize the placement of the shuffle

stores. For each live range, the costs of the shuffle move, store, and load can easily be

obtained since each edge is annotated with the estimated execution frequency (either static

or profile). The def-cost of a live range is the estimated (weighted) number of definitions

within the live range. If the def-cost is less than the cost of shuffle stores, then all shuffle

stores are eliminated by inserting a new shuffle store right after each definition and the

shuffle moves. In other words, for each definition (which includes the shuffle moves), there

is a store writing the new value back to the memory location of the live range so as to keep

the value in memory up-to-date.

78 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

X =
BO

x =
I stx |

^ " ■V^ I r

X B1

B2

X

1

1 stx 1
w »dg» 1 i r »dg« 1

«öftltft

I Idx I I Idx I
■ «dg»2 ir etfg«2

-"1
(a) (I,

BO

B1

B2

Figure 4.20: Placement of shuffle store.

The technique is quite effective in practice. The reason is that the code motion step of

the global optimization phase moves loop-invariant common subexpressions out of loops.

The definitions of those common subexpressions are less frequently executed than the

references inside the loops, and they may be spilled inside part of the loops due to the high

register pressure. In the absence of the shuffle-code placement optimization, shuffle stores

are inserted inside the loops. These shuffle stores are likely to be executed more often than

the definitions.

Figure 4.20 depicts the optimized placement of the shuffle code. The live range x is

defined in B0 and live through out the whole program, x is spilled within the loop, as

indicated by the shaded region. The shuffle code is highlighted in bold face. The straight

forward shuffle code insertion requires two shuffle code operations, depicted in Figure

4.20(a), one shuffle store on Edge 1 (from Bx to the spilled region) and one shuffle load on

Edge 2 (from the spilled region to B2). The shuffle store is executed on every loop iteration

in despite of the fact that x is never modified in B\ and B2. Since x is defined in Z?0, which

is less frequently executed than Edge 1 is traversed, the placement of the shuffle store can

be optimized by eliminating the shuffle store on Edge 1 and inserting a new shuffle store

immediately after the definition of x (depicted in Figure 4.20(b)).

4.7. EVALUATION 79

4.6.3 A more detailed example

In this section, I provide an example to show the interaction between edge ordering and

shuffle code placement. The code fragment of Figure 4.21, is taken from the function

update_weights of alvinn. Presumably there are three registers.

Consider an edge ordering based on loop hierarchy:

(B3,B3),(B,,B2),(B3,B4),(B2,B3),(Bs,Bs),(B1,B2),(B,,B5).

B3 requires all 3 registers for tmp74, tmp7 6, and tmp77, which are all referenced

within the block. In addition, there are two transparent live ranges induced by tmp73 and

tmp75. These two live ranges are spilled when the interference graph G3 is simplified

before graph fusion takes place. B2 also needs all 3 registers, therefore, the only transparent

live range (tmp74) for B2 is spilled.

As we fuse G3 along the first edge (B3, B3), the resulting graph doesn't require any

other splitting or spilling decisions since the simplifiability invariant still holds. While

fusing G2 and G4 along edge (B^,B2), the spilled live range of tmp7 4 grows (to cover 2?4

and B2). After fusing along the remaining edges, the final resulting graph requires shuffle

code to move values among different locations. The shuffle code is highlighted in bold face

in Figure 4.21 (b). For tmp7 5, because there is no definition within the loop, the shuffle

store doesn't have to be on edge (B2, B3) and is placed right after its definition, which is

outside the loops.

If we change the edge ordering so that (Z?4, B2) and (B3, B4) are switched, then the

register allocator ends up with a different spilling decision, as seen in Figure 4.21 (c). The

shuffle load of tmp7 4 on (Z?4, B5) in Figure 4.21 (b) is not needed because B4 is no longer

in tmp74's spill region. Furthermore, the shuffle load of tmp7 5 is placed on (Z?4, B2)

instead of (B3, Z?4), because the spill region for tmp7 5, indicated by a dotted line, contains

Z?4. (So instead of being in the loop, it is now on the loop back edge.)

4.7 Evaluation

I measured the impact of the register allocation strategy for various SPEC92 programs

(alvinn, compress, ear, eqntott, espresso, gcc, li, sc, doduc, fpppp,

tmp73 =....
tmp74 =....
tmp75 =....
for (; tmp73 < limitl ;) {

.. = .. tmp73 ..

.. = .. tmp75 ..
tmp76 =.. tmp75
for (; tmp76 < Iimit2 ;) {

tmp77 = *(tmp76);
*(tmp76) = tmp74 * tmp77;
tmp76 = tmp76 + 4;

}
tmp73 = tmp73 + 400;

}
for (; tmp74 < Iimit3 ;) {

.. = .. tmp74 ..

}

loop 1

loop 2

tmp73 =...
tmp74 =...
tmp75 =...

... tmp73...

... tmp75...
tmp76 =.. tmp75

B1

B2

tmp77 = *(tmp76)
*(tmp76) = tmp74 * tmp77

tmp76 = tmp76 + 4

B3

tmp73 = tmp73 + 400

loop 3 /~X

... tmp74...

^—r~
(a)

B4

B5

tmp73 = ...
tmp74 = ...
tmp75 = ...

B1

^-illlllll.^y ; .l'?.'!".^.4.T.S.""P.7.5.l fäpM<&t m
,tn#$,

Ali „„M^^MM^M
Wm""""} si tmp73~'id tmP74 f^gH:!^

t«ip77 «*{)mp76)

*{tmp7^=tmP74-,(f)V77

tap7S=tmp76 + 4

*Ej Id tmp73 Id tmp75 Eift-ft

" «LmmL

B3

^+'iui<tu"**TId i tmp74

±
. tmp74..

T
(b)

B5

tmp73 =
tmp74 =
tmp75 =
I

B1

| sttmp74 sttmp7S| jjjj

At,. & ldtmr>75 ^fanp7&„,
 1— ' •:•: Hftp7*3 <* .:\tttp?Q

, • I sMmp73 Id tliip74 f ",..".." ."J*..". •

tffip77 «*{tmp76)
♦(tmp7S) = Jjnp74,'(mp77 .

:;;iffip"||:i||i|lij|:||||;

BS

X
tmp73 = tmp73 + 400

^>

tmp75 spiU
region

B4 *---

. tmp74...

VJ7

B5

(c)

Figure 4.21: Code fragment from alvinn with N = 3.

4.7. EVALUATION 81

matrix3 00,nasa7, spice, andtomcatv). I contrast the fusion-based approach with

the results using an improved Chaitin-style approach (with the enhancements of Chapter 6).

I use all registers on the MIPS, adhering to the standard calling convention. We start with

the smallest region size, one basic block, and grow these until we have the interference

graph for the function. All functions within the main loop of alvinn are inlined.

For both approaches, I run two experiments. First, I use only static information to

guide register allocation. That is, we use loop depth to estimate the execution frequency

of a block. In the fusion-based approach, when considering the basic blocks inside a loop,

I use breadth-first order to select edges for fusing. In a second experiment, I use profile

information from a prior execution.

As expected, for programs with many small functions, Chaitin's algorithm works fairly

well, and the fusion-based approach produces identical results. For most of these programs,

use of profile information improves the result, independent of the register allocation strategy.

Let us, therefore, turn our attention to programs with significant register pressure.

alvinn, nasa7, tomcatv, doduc, and f pppp are the programs with high register

pressure, and here we see the limitations of the all-or-nothing approach to spilling that is the

foundation of Chaitin-style register allocation. Figure 4.22 shows that register allocation

based on graph fusion is able to split live ranges properly and thereby cuts for alvinn

nearly 52 % of the overhead required by Chaitin-style allocation using profile information.

Chaitin-style allocation finds the "best" complete live ranges to put into registers, therefore,

the result is not improved by using profile information. Our approach breaks live ranges, as

can be seen by the lower number of spill loads. And profile information provides a better

cost function for the color-assignment phase (when deciding if a caller-save or a callee-save

register should be assigned to a live range, or the live range should be spilled), resulting

in a further improvement. Looking at the results for f pppp using static information, we

see the same story. The overhead of f pppp is reduced by 28 %; the large contribution of

shuffle code indicates that live ranges have been split. If we use profile information, then

both approaches find the "right" live ranges and give the same result. For tomcatv, our

approach removes 40 % of the overhead operations. Because the estimated static execution

frequency provides a good estimation, the profile information does not reduce overhead

operations relative to the static case.

82 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Chaitin+prfl Region Region+prfl

ALVINN

120000000-

» 100000000-

S 80000000-
o

I 60000000-

| 40000000-

I
Q 20000000-

Wm

mm
■A

Chaitin+prfl Region Region+prfl

NASA7

chaitin chaitin+prfl region+ region+prfl
static

DODUC (DDEFLU)

140000000-

120000000-

100000000-

80000000-

60000000-

40000000-

20000000

0-
Chaitin Chaitin+prfl Region Region+prfl

TOM CATV

Chaitin Chaitin+prfl Region Region+prfl
FPPPP

Rggi Shullteload pi] Catleeld/sl ES83 spin load

H Shuttle store pH] Caller Id/st [||| Spll store

1 Shuttle move

Figure 4.22: All available registers (26 int, 16 double).

4.8. SUMMARY 83

There are 3 big functions in doduc: subb, supp, and ddef lu. These three account

for the majority of data movement operations, subb and supp consist of only one big

block. For those types of functions, our register allocator produces the same amount of data

movement operations as a Chaitin-style allocator, since the sole basic block is the complete

compilation unit. One simple way to deal with such blocks is to partition the big block

into smaller blocks so that our approach can be applied to make better spilling and splitting

decisions. We show in Figure 4.22 the result for ddef lu, where large portions of the spill

loads and stores are replaced by shuffle code.

4.8 Summary

In this chapter I present a new approach to register allocation which is fusion-based.

The approach deals with spilling, splitting, and color assignment in an integrated fash-

ion. Fusion-based register allocation produces good results in those situations where a

conventional Chaitin-style allocator breaks down. Of course, there are programs without

significant register pressure. However, as aggressive compiler transformations become

more common, even those simple programs are turned into challenges for a global register

allocator. In the next chapter, I investigate how the fusion-based approach behaves under

the register pressure caused by aggressive code transformations.

84 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION

Chapter 5

Reconciliation

Nowadays, modern processors have multiple function units as well as the ability to dy-

namically detect data dependences and to issue multiple independent instructions per cycle

[57, 21, 4, 32, 31]. To extract as much instruction-level parallelism (ILP) as possible,

modern compilers are looking at increasingly larger regions of a program. Many global

optimizations have also been extended to concentrate on frequently executed regions at

the potential expense of less optimal code in infrequently executed regions. For exam-

ple, superblock optimizations [14] extend code motion, dead code elimination, and other

optimizations to work on regions comprising extended basic blocks. Regions have also

been used to guide predication and if-conversion [22], This general compilation strategy

— wherein the compiler prioritizes frequently executed program regions by concentrat-

ing the scope of an optimization phase on such regions — has been termed region-based

compilation [33]. To exploit the full power of region-based techniques, scope enhancing

transformations, such as loop unrolling and function inlining, are necessary to enable the

formation of large regions that comprise the most frequently executed blocks of a pro-

gram. For example, selective unrolling of innermost loops is an attractive scope-expanding

optimization for region-based compilers [47].

5.1 Challenges

Region-based compilation is at odds with register allocation: standard register allocation

algorithms operate at the scope of an entire function and do not focus their efforts on high

85

86 CHAPTER 5. RECONCILIATION

priority regions. Moreover, scope enhancing transformations, when coupled with aggressive

region-based optimizations (e.g., global instruction scheduling and speculative code motion)

severely increase register pressure, creating serious problems for standard function-wide

graph-coloring register allocators. For example, loop unrolling may increase the register

pressure considerably. After common subexpression elimination, strength reduction, and

code scheduling, the live ranges of the different instances of the (former) loop body now

overlap, and the register allocator faces a more difficult situation than without unrolling.

If the register allocator is unable to handle the unrolled loop, then the benefits of using

aggressive region-based optimizations can be negated by the register allocation strategy.

Furthermore, how to reconcile register-allocation decisions among regions is another

challenge to register allocation. The IMPACT compiler generates code on a region basis.

Reconciliation binding decisions among regions is one big problem for the compiler. To

cite from Hank's thesis [34] that implements register allocation in the IMPACT compiler:

If the register binding information is not taken into account during the

allocation of the current region, separate allocation can quickly produce an

explosion of copy operations at region boundaries.

Consider that lr(x) and lr'(x) are in two adjacent regions, It and R' respectively, and the

two live ranges span across an edge E that connects the two regions. Shuffle code is required

if register allocation assigns lr(x) and lr'(x) different registers. Assume that R is a higher

priority region than R' and is compiled already. The IMPACT region-based register allocator

uses an ad hoc approach to reconcile binding decisions between two regions. To avoid an

excessive number of copy operations (shuffle moves), the IMPACT compiler attempts to

assign lr'(x) the same register as lr(x). If the compiler fails to assign the register of lr(x)

to lr'(x), then lr'(x) is spilled. Copy operations are completely eliminated at the expense

of shuffle loads/stores. In other words, expensive (usually more than one cycle) load/store

operations are used to trade off cheap (one cycle) copy operations. Because the IMPACT

region-based register allocator is incapable to reconcile binding decisions among regions,

we see that this region-based register allocator produces more overhead operations than a

function-based register allocation for 8 of 11 benchmark programs. Moreover, when we see

the measurement of the execution time, we notice that 5 of the 11 benchmarkprograms using

region-based register allocation run slower than using function-based register allocation.

5.2. CHOICE OF BASE REGION 87

In this chapter, I investigate the effectiveness of fusion-based register allocation. There

are three topics to gauge the impact of register allocation by graph fusion on region-based

compilation:

• What is the impact of the choice of the base region (Section 5.2);

• How sensitive is register allocation to profile information, which determines the

various heuristics employed in a register allocator (Section 5.3);

• How sensitive are these approaches to register pressure (Section 5.4).

• How sensitive are these approaches to different region sizes (Section 5.5).

• How sensitive are these approaches to two code transformations, loop unrolling

(Section 5.6) and function inlining (Section 5.7).

5.2 Choice of base region

One of the parameters of fusion-style register allocation is the shape of the base regions

(for which we compute the initial interference graphs). If we choose a complete function

as the base region, then fusion-style register allocation is identical to the (function-wide)

Chaitin-style register allocation. The size of the base region affects spill and shuffle costs.

In this section, we investigate how the size of the base region has an effect on the quality

of register allocation. Section 5.2.1 shows an example that favors a small size of the base

region. Section 5.2.2 depicts an example that favors a big size of the base region.

5.2.1 Favor small size of the base region

The example of Figure 5.1 (a) is taken from Figure 4.2(a). This case prefers a small size

of the base region. We list the execution frequency beside each edge. The most frequently

executed path is Bx -» B2 ->■ Ä». The edge ordering that the register allocator considers

for graph fusion is <BUB2>, <B2,Bti>, <BUB3>, and <B3,B4>. Let us first consider the

case that the size of the base region is one single block. Each interference graph for each

block is shown in Figure 5.1 (b). After graphs are fused along the first three edges, <BX,B2>,

88 CHAPTER 5. RECONCILIATION

<B2,B^>, wd<Di ,B3>, the resulting graph can still be simplified with N=2 (shown in Figure

5.1(c)). As the graph is fused along <B3,B4> by combining lr3{y) and ln(y), the final

graph (shown in Figure 5.1(d)) becomes too constrained; the maintaining-simplifiability

step then splits the live range of y on edge <B3,B4> (we obtain the interference graph in

Figure 5.1(c) by splitting the live range of y). As a result, there are 10 incurred shuffle

move operations using one single block as the size of the base region.

Consider that the size of the base region is increased up to 3 blocks. Namely, the size of

the base region cannot exceed 3 blocks. Region Rx contains the most frequently executed

path Bi -4 B2 ->■ At, and region R2 contains only one single block, B3 (shown in Figure

5.1 (e)). The interference graph of each region is depicted in Figure 5.1 (f). The fusion-based

register allocator performs graph fusion along two edges, <B\,B3> and<Z?3,ß4>. After GHl

and GR2 sie. fused along edge <BUB3>, we get the resulting graph that is the same as the

interference graph in Figure 5.1(c). Like in the previous example using blocks as regions,

fusing this graph along edge <Z?3,Z?4> generates the same graph as the interference graph in

Figure 5.1(d). Again splitting the live range of y takes place to maintain the simplifiability

invariant. There are also 10 incurred shuffle move operations.

As soon as the size of the base region goes up to 4 blocks, all four blocks are in one

region R. All four control-flow edges are in R, no graph fusion is needed. GH is the same

as the interference graph in Figure 5.1(d). Simplification of the interference graph blocks

during the graph simplification phase (Section 4.1.2). Spilling one live range is needed.

The live range of x has the smallest spill cost (190 spill code operations). The spill cost of

the other two live ranges, x and y, are 200. Spilling the live range of x, therefore, incurs 190

spill code operations. The big size of the base region introduces more overhead operations

than the small size of the base region.

5.2.2 Favor big size of the base region

Figure 5.2 (a) is the code depicted in Figure 4.14. The interference graph of each block

is shown in Figure 5.2(b). The lightly shaded live ranges are transparent live ranges. The

register pressure of B\ and B2 is 3. Regardless the size of the base region, the register

allocator has to make out-of-color spilling decisions for the base regions that consist of

Bx or B2. If the size of the base region is small, the quality of register allocation may be

5.2. CHOICE OF BASE REGION 89

x =
z =

Bl

90 ,10

... z...
y =

... X ...

b2 y =
... z...

90 ̂ -^0

...y...
B4

(a)

(c)

33 [

(d)

(e) (0

Figure 5.1: Size of base regions (N=2).

90 CHAPTER 5. RECONCILIATION

x

100. t
y =
z =

90 1 1Ö\

...X...

...y...

90 10/

...z...

(a) (c)

Figure 5.2: Size of base regions (N=2).

hurt by making spilling decisions locally. If we use blocks as the base regions, the graph

simplification step spills lr\(x) and lr2(z) because the register allocator favors spilling

transparent live ranges. Although the register allocator does not produce spill code using

the spilling decision (spill transparent live ranges), it pays 370 shuffle load/store operations

(100 shuffle stores of x on the edge entering B\, 90 shuffle loads of x on <BX,B2>, 90

shuffle stores of z on <B\,B2>, and 90 shuffle loads of z on <B2,Bi>).

However, if we put all three blocks into one region, the register allocation has a more

global view so as to make wise spilling decisions. The interference graph of the region

is shown in Figure 5.2(c). The graph simplification step then spills lr(x) which has the

smallest spill cost (90) and is composed of lr^(x) and/r2(a:)- The spilling decision generates

90 spill code operations and 100 shuffle store operations on the edge that enters B\. The

big size of the base region introduces fewer overhead operations than the small size of the

base region.

5.2.3 Evaluation

To test the hypothesis that fusion-style register allocation handles scope-enlargement grace-

fully, I increase the scope of the base region by using loop bodies as base regions. In Figure

5.3, I report the performance using basic blocks and loop bodies as the choice of base

regions, both with and without loop unrolling. Without loop unrolling, the performance

5.2. CHOICE OF BASE REGION 91

of the basic block regions is identical to the performance of the loop body regions. When

loops are unrolled, however, using single basic blocks as the base regions produces fewer

overhead operations — using the larger regions formed by loop bodies after loop unrolling

incurs a slight penalty. Nevertheless, even the worst case for fusion-style register allocation

(i.e., the case where the base regions are the unrolled loop bodies) produces only 50% of

the overhead operations generated by a Chaitin-style register allocator. In the best case,

using fusion-style register allocation results in only 12% of the transfer operations required

by Chaitin-style register allocation.

8,000,000

w 6,000,000
c o
1 4,000,000 ■
0)
a.
O 2,000,000

m

T ^ , u— 1 «» 1

Chaitin-style Chaitin-style Region=Loop Region=Loop Region=BBIock Region=BBIock
Default Unrolled (4x) Default Unrolled (4x) Default Unrolled (4x)

D
Shuffle

Callee_ld_st

Caller_ld_st

Spilljd

SpilLst

Figure 5.3: Transfer operations in alvinn, using all registers, for two different region
definitions.

Figure 5.4 depicts the result of compiling for a smaller number of registers (11 integer,

9 floating point registers). Notice the big difference in the number of overhead operations

(with unrolling) between the base Chaitin-style register allocator and the fusion-style register

allocator (almost a factor of 4). The choice of regions, however, has no noticeable impact

on fusion-style register allocation; there just are not enough registers to keep all values in

registers. We notice a large number of shuffle operations for loop unrolling code, indicating

that the register allocator tries hard to keep values in registers, even if this means that a

live range must be broken into smaller segments. From Figures 5.3 and 5.4 we see how

poorly the function-wide approach (Chaitin-style) performs compared to a region-based

framework:

• without unrolling, the fusion-style approach executes 50% of the operations executed

by the Chaitin-style approach;

• with unrolling, using the fusion-style approach results in 25% of the operations

required by the Chaitin-style allocator.

92 CHAPTER 5. RECONCILIATION

Furthermore, when the scope is expanded via loop unrolling, the fusion-style approach, in

the small-number-of-registers scenario, executes only 60% of the data movement operations

executed by the Chaitin-style approach when given all available registers.

18,000,000 -I

15,000,000 *
, 6,000,000 <•

3,000,000

0-

m M.

Chaitin-style Chaitin-style Region=Loop Region=Loop Region=BBIockRegion=B8lock
Default Unrolled (4x) Default Unrolled (4x) Default Unrolled (4x)

I I Shuffle

D Callee_ld_st

H Caller_ld_st

■ Spilljd

E SpilLst

Figure 5.4: Transfer operations in alvinn, small number of registers, for two different
region definitions.

5.3 Profiling

The figures presented so far in this section were obtained using static information for edge

ordering and heuristics. Information obtained from program execution can sometimes

improve a register allocator's heuristics, thereby leading to a better register allocation.

Figure 5.5 contrasts the performance of a Chaitin-style register allocator for alvinn with

two variants of the fusion-style register allocator when using profile information.

For all approaches, the results for the unrolled versions of the program are improved

noticeably by using profile information. Compare the results for Chaitin-style allocation

of Figure 5.3 and 5.5 (the two left-most columns). We see that in the unrolling case,

the number of overhead operations is cut in half for Chaitin-style register allocation using

profile information as compared to Chaitin-style register allocation using static information.

Without unrolling, the improvement is minor. This is not surprising. With unrolling, there

are more values that can be put into registers. But without profile information, the heuristics

to choose spilling candidates misguides the register allocator. When the compiler uses

profile information, better heuristic choices are possible, and we see a clear improvement

since there exists many candidates to pick from in the unrolled code.

Fusion-style allocator is able to exploit the same effect (better heuristics). Since fusion-

5.3. PROFILING 93

style register allocation is edge-order sensitive, we can expect additional effects from the

improved edge ordering that is obtained from the use of profile information. Comparing

Figure 5.3 with Figure 5.5, we see that the use of profile information reduces the number of

overhead operations by 50% (for the unrolled loops). The number of load operations due

to spilling is significantly reduced, and we see also a reduction in the number of operations

to save or restore caller-save registers. This reduction of spill overhead indicates that the

profile information improved the heuristics that allow the register allocator to make better

spilling decisions. The change in caller-save register induced overhead implies that the

profile information allowed the register allocator to control the growth of live ranges. If

there are sufficient registers, without any checks and balances, fusion grows live ranges

until a live range conflicts with other live ranges. As the live range grows, it is more

likely to include function calls. These, however, incur a cost if the value is in a caller-save

register. If there are only a few references to the value, then it might be better to leave the

live range in memory. Access to accurate profile information allows the register allocator

to better analyze the tradeoff among caller-save registers, callee-save registers, and spilling

(See Chapter 6). This improved decision making accounts for the better results depicted

in Figure 5.5. We also see in Figure 5.5 that profile information results only in minor

improvements if we use blocks as base regions.

Shuffle D Callee_ld_st Callerjd_st Spilljd SpilLst

4,000,000

«, 3,000,000 •
c o
<S 2,000,000
0>
a
O 1,000,000

0
m

Chaitin-style Chaitin-style Region=l_oop Region=Loop Region=BBIock Region=BBIock
Default Unrolled (4x) Default Unrolled (4x) Default Unrolled (4x)

Figure 5.5: Transfer operations in alvinn, using all registers and profile information.

For another view, I present in Figure 5.6 the results from compiling espresso, using

the high-register-pressure scenario. We notice that the Chaitin-style register allocator

requires significant spill loads, whereas the fusion-style allocator causes significant shuffle

activity (some of these operations are stores). Furthermore, looking at the influence of the

choice of the base region, we notice that basic blocks as base regions provide only slightly

94 CHAPTER 5. RECONCILIATION

better, but vastly different results. The number of spill loads is reduced dramatically, which

indicates that the fine-grain base allows the register allocator to keep values in a register that

end up in memory using the slightly coarser-grain base of a loop nest. In other words, the

register allocator is able to split live ranges, but moving values from one storage location to

another implies shuffle code. About half of the shuffle code are load operations, the other

half stores. Register moves play almost no role for this program. The discussion of the

differences between basic blocks and loop nests as a base region extends to using complete

functions as abase region, as is done in a standard Chaitin-style allocator. We see again that

a finer-grain choice of base region (loops vs. functions) reduces the number of overhead

operations.

140,000,000

120,000,000

100,000,000

80,000,000

O 60,000,000

40,000,000

20,000,000

ffli

Nl Shuffle

D Calleejd _st

H Callerjd. .st

ll Spilljd

SpilLst

Chaitin-style Chaitin-style Region=Loop Region=BBIook Region=Loop Region=BBIock
Default Default Default Default Default Default

(+ Profile) (+ Profile) (+ Profile)

Figure 5.6: Transfer operations in espresso, no unrolling.

Figure 5.7 depicts the result when compiling the programs with loop unrolling. Clearly,

expanding the scope implies a penalty for register allocation. The fusion-style approach,

however, requires only half of the overhead operations that are inserted by a Chaitin-style

allocator. Again, profile information helps although not as much as in the absence of

unrolling.

5.3. PROFILING 95

200,000,000

180,000,000

160,000,000

140,000,000

120,000,000

<n
c

to
'f 100,000,000
a> a.
O

80,000,000

60,000,000

40,000,000

20,000,000 •

H Shuffle

D Calleejd_st

H Caller_ld_st

H Spilljd

m SpilLst

m
T ~™ 1 I 1-

Chaitin-style Chaitin-style Region=Loop Region=BBIook Region=Loop Region=BBIook
Default Default Default Default Default Default

(+ Profile) (+ Profile) (+ Profile)

Figure 5.7: Transfer operations in espresso, with unrolling.

96 CHAPTER 5. RECONCILIATION

5.4 Sensitivity to number of registers

The transformations of region-based compilers increase register pressure, and another way

to assess how a register allocator deals with register pressure is to investigate how sensitive

the allocator is to the number of registers that are available. Clearly, as we increase the

number of registers, there comes the point of diminishing return. The next figures depict the

number of overhead operations as we allow the register allocator to use more registers (the

number of additional registers is shown on the X axis). Recall that the MIPS architecture has

separate register banks for integer and floating-point values. The notation (Rj,Rf,Ei,Ef)

of the next figures shows the combination of caller-save and callee-save registers for the

two register banks. IU and Rf are the number of caller-save registers for integer and

floating-point values, respectively. £, and Ef are the number of callee-save registers for

integer and floating-point values. The standard calling convention of the MIPS machine

uses 4 registers of the integer bank to pass arguments and 2 registers to pass function-return

values; in addition, 2 floating-point registers pass arguments and 2 floating-point registers

can hold a function-return value. All these registers are caller-save registers. Hence, the

register allocator uses at least (6,4,0,0).

Looking at the SPEC92 programs, we can classify them roughly into 5 classes:

1. Fusion-style > Chaitin-style: Fusion-style register allocation produces consistently

better results than Chaitin-style allocation. Examples are alvinn, espresso,

nasa7, and tomcatv (Figure 5.8).

2. Fusion-style « Chaitin-style (profile sensitive): Programs sensitive to getting accurate

frequency information (i.e., given the same frequency information, both fusion-style

and Chaitin-style register allocation perform about the same), compress, sc, li,

and gcc are four examples (Figure 5.9).

3. Fusion-style > Chaitin-style (static case): The heuristics that determine which live

range to spill are sometimes helped by profile information, and in this case, a Chaitin-

style allocator may obtain the same results as fusion-style allocation; see Figure 5.10

for an example (f pppp). The results for the Chaitin-style allocator are marginally

better than the result for fusion-style allocation. Even with profile information, the

5.5. DIFFERENT REGION SIZES 97

register allocator must make many guesses, and results like those depicted in Figure

5.10 indicate that the spilling decision still depends on some heuristics.

4. Fusion-style > Chaitin-style (small number of registers): Fusion-style register al-

location produces fewer overhead operations than Chaitin-style allocation when the

register allocator uses a small number of registers. As the number of register in-

creases, the difference of register overhead diminishes, ear and matrix300 are

two examples (Figure 5.11).

5. Fusion-style « Chaitin-style: Finally, there are programs where neither the choice

of register allocation strategy nor the use of profile information seems to make a

difference. Examples of this class of programs are eqntott, doduc, and spice

shown in Figure 5.12.

5.5 Different region sizes

In this section, we evaluate the influence of different region sizes to fusion-based coloring.

Three kinds of region are investigated, blocks, loops, and traces. The region-formation

phase determines a trace by selecting a seed block and growing the trace along desirable

paths. A trace T is expanded in the forward as well as the backward direction:

• forward: T is expanded forward by adding block Bk to T if the condition is satisfied.

^ frcq(E) ^ 0 frcq(Bk) .
3E =< Bj,Bk > Aß,- € TA J 7 ' > ßh J

f 7 *' > 7 3 J frcq{Bj) frcq(sccd)

• backward: T is expanded backward by adding block ß; to T if the condition is

satisfied.

_. frcq(E) ^ n frcq{Bi) ^
3E =< Bi,Dj > hB, €TA;

H) ' > ß A /)K ' > 7 3 J frcq(Bi) frcq(sced)

frcq(Bj) and freq(E) are the estimated execution frequencies of block Bj and edge

E respectively. The two constants, 3 and 7, are set to 0.5. These two conditions are the

conditions used in the IMPACT compiler to form regions [34].

98 CHAPTERS. RECONCILIATION

5,000

J \o t-{ t-£ oo
? eo o\ o o

**t "*. "1 oo o\ d

<o vo vo vo
«n vo « K
o o o o o o o <

I10-

Chaitin-style

Chaitin-style
(Profile)

Fusion-style

Fusion-style
(Profile)

r ^^ ~~ "T—i—i—i—i—i- I i i

««(S mm tt ifi

© r* i-i of v\ TTT m «£ «£~v\ v\ \q"to" vq' vo ^o" <o" *o
d H H ci ri m m" 'f Tt in vl >o >o K K w" «o M
irt m* 'q « K ^ » » oj oj d d d o" o o" d d

nasa7 alvinn

q H H ci ri m m t| 'J w m* « ifl t^* ^ » oo M
«i i/i « >o r>" r* oo oo o\ oC o o o oo o ©o

d —| « cJ w| m m ^ Tt m* in io vo r-* r{ oo co oo"

"i "I ^ *. K K M" °°! °i °i 0* °" 5 5 2 2 2 £
K f-" oo" oo o<* oC o* d -< -H [). ^ —' ~~' "**' ~~' ~~' —' ««es tn m t fv ■ vo

tomcatv espresso

Figure 5.8: Fusion-style» Chaitin-style.

5.5. DIFFERENT REGION SIZES 99

V
"4J-.0"J>-«-'>-<l—>"iS-<>

i i i i i—rr-i—i—n—r~r

120-

o-H PI N cj m m *r v in vi iq »q « « »o >c o_
o H -* rf ri m" m v" t] vi vi >q *q h K oo M M
in m" 'o >d K ^ M W » * d d o o d d d d

"^^-o-cc^-fS

"**%>

**«>1HV "Nj-O-""!

"^Vo-c».

i i i—m—r-n—i i i i i—i—r

4^<sc^to"(^^'*w^'rt'ovo"r-;r^oqoooo*
! >o q ^ ^ » ce a w d d d d d d d d
r oo » oi of o o -i -H H. M. "t H. H. 1 rt. "1

li sc

o ■-- H CJ d m m *t -<t \r> \n o o \o \o *o \o >o
O •"■ HD« incn <t «t vi vt *o *o t- r- 00

m m *o vo r* t- oo oo <^ o\ o o o o o o o o

' n cs tn c*i «+ ** »

compress

i i i—i i i
o' H' ;-*^' ci'to' <*f ^ "*£ Ci-T wV vo ^T *5 *5 *5 *? **"i

mm * * f". ^. w. M oi o» o o o ooo oo
K r- oo* oo* oT o\" d d H H H. 1 H. 1 H. H. H. H.
V •—■ ^- *—• v_< w ,_ ,-1 r-i rirldfl Cl Tf "t W> VD

gcc

Figure 5.9: Fusion-style « Chaitin-style (profile sensitive).

IS

8*20-
""SOS:

—i—i—i—i i i i—TH—i—m—n—i i i
OH?rtrtm«??ioiö'£'^lq^qiq'qiq
rn m* « « r" K a: oo »' of d d d d d d d d
r-* K oo" oo oC oC o" d H r" I "^ "^ H. "^ rt. H. "1

Figure 5.10: Fusion-style > Chaitin-style in the static case (fpppp).

100 CHAPTER 5. RECONCILIATION

160-

140-

■p-120-

flOO-

| ac

t 60-
8.
O 40-

20-

0-

I

^ """V-^
V-c*.

\~«\
^^CYÄ^ityOT-a-fö- -T—n—r

o ^« ff f?t?t?v'T.vi vi vq *o vq *q *q >o >o
d -H -- rT r| c> m if ^r v{ ui \q ^q r-| r-* » » w*
i*»n*o\0[~-r-ooQooCoCoooo © o o o

w PÜ 2^ *2 5 -1* -? ~- T; 3 ~- I: -- .«• vrf r-Tr-ToJod^o^o^oo —• ^ ■
v{ v{ ID vo K K w M* oC oC d o o o o o oo
N|£» oo'oCoCo'o" —H _, H H N el m m T* I-* m" vj

ear matrix300

Figure 5.11: Fusion-style > Chaitin-style (small number of registers).

1—i—i—i—r

i f"i *"i **! **i ^ ^ ''i *^ *°« *°- *°~ **£ ^ ^ *°-
i K N! "i ''i 't 't "i "i ^ ^ K ^ "! °°iM- o" —i' ^ of cJ

in «n \d vo t-"
j£ K co oo* 2^.

**i **1 *t
m n -r
P^ 00 00
oC o" Ö"

Tf mm
^ m" in
0*0*0"

till
vq \q *q \q
«' «" K ^
o" o o o*

\q vo vo
oo co oo"
o* o* o

«HHHrtNrtl tn TJ- M- w-i vo

eqntott doduc

1,000

-™i—i—i—i— „„_^
o^^^Mm^^^minvq^S!qvo,o_\qvq
q -j >H IN' ri m tn * "<f| vi vi vq vq K r; » w «o
vnv)Vov©r-t"-oo©QO*o*o©ooooo©

<MNnmirTrvi\o

spice

Figure 5.12: Fusion-style « Chaitin-style.

5.5. DIFFERENT REGION SIZES 101

-*- Region=Loop

Region=Bb

Region=Trace

I I I I 1 I I I I I I I I I I

i« v: K h oo co of oC d o" d o" d o d o"

i i ~ -1—i i i—i i i i—r -r

hhWOOCKOiOOrtr
in* w c" *o K h to » d d d d d d d d d d
K K co cc d d d d H H"

H. H. H. H. ^ [l H. *;J

alvinn compress

-i—i-

id id *d *d K K cc co os o> 000*0*00*00

35-

s3°- 4

r f 15-

<S*10-

?>^s

Hää CV
5-

0- T—r-r-
">*V-„.,...r,

1 1 1 1 1 I'll'

OHHftNnmft i^ifl iq «««««iq
°! ^ H! "i K "im! 11 "i "i ^ ^ ^ ^ ^ ■"! "i vj in d »q ^ ^ cc 00" a" o" o" o* o d d o o o
t-" t~-" CO* CO" Ol" CjC O d r- rH H. "^ —- — — -—-_- —• ,— ,-. ,-r .-< c) O d (^ Tf m«

ear eqntott

I I I—I I I—I I I—I—I I I
0 rs M m m ■f ■*t vo VO vo vO \o VO VO
0 —1 — (N (N t*i <*i ■■* TT lO v-> *o VO t- t- CO 00 CO
U1 in VO vo r- r- 00 00 o> 0\ 0 0 O 0 0 0 0 0

d o» en ei rr Tf >n VO

0 (N (N m tn ** '* VO VO VO VO VO vo vO
0 r-" I-H Ol M m f> ■* -* »n <J-I VO VO t- t- 00 00 00
m lO VO VO t- t- 00 CO c» O 0 O O O O 0 0 0

l^*WO

espresso gcc

Figure 5.13: Different region size.

102 CHAPTER 5. RECONCILIATION

^* ^ c{ cJ m m v* t[v{ vi vo vo h[^ w* « co
m" « >o r» r{ oo to oi* oj d d o oo o oo
l"C Do" CO 0\ 0\ O O ^H ^H ^"1 "*1 »•,*,*»•>

o*^^c^Mtnc*"^^vo^vovor^i^oo*c»oo
«1* l/i C « h K CO 00 Oi o^ o o o oo© oo
I-* f-* oo oo ON ON O O ^H *—< *""! *■ *» •.•»*»

_ <cic^cooM"^^^vqvqvovqvqvqvq
o*^^c4^c**c**Tj*^^^vo*ioi^r^co_c«co
in «n «J vd r-* r-* co* oo* oj o; d o' d o" d o oo

T—I I I
o" S" ** ts cT FT m rr ■<£ <rt W VD" vo" vo' vo' vq' vovo'
<zT i-T .-* <sf ^£ ro en *^ *e^ »rt w-T \o «f r^ (-^ oo oo oo
w* m* *o" ^o t-* r- to" oo" o>" os" d d d d o o o o
r^T f-T oo on fl\ Q\ o O tH rH *"* 1"i '"I **"! '"I » * »

600'

j500-

doduc

2in

20-

15-

10-

5- 5"'!:-H^wl

*^c^c^wt*i^^v^vnvo*vot^r-*cwco*oo*
rvovor^r^c»co*o{o*o"o"o"o*o*o*o"o*
" CO 0O O* 0\ O O H iH "^ H. H, "1 H. "1 "1 "1

fpppp

<HrtMtOM t rf irt in « \q >o

vnvnvovo*t^r~co*co*o"o*c*o o o
•-* *S SS SS Si 2i ° ° ""^ ""' r-f r-i rn c^i

vq vo, vq
t— OO* 00* 00*
o" o" o" o*

matrix3 00 nasa7

Figure 5.14: Different region size (cont.).

5.6. LOOP UNROLLING 103

-n—i i i i i i i i i i

in n «' c" h[^ » » » ^ d o o d d d ö d
M^M»O>»OOH.

iKu"T*o\or{r-{ooooo{o{oooooo"oo
K r- to »j oi ado-««1""1 ~1 "1 —1 ""1""1 —1

spice tomcatv

Figure 5.15: Different region size (cont.).

Figures5.13,5.14, and5.15 depict the experimental results of fusion-style coloring with

three different region sizes. There are several noticeable aspects. None of the region sizes

always outperforms the others because the results highly depend on program characteristics

and combination of registers. The influence diminishes as the number of registers increases

because the number of registers is then sufficient for all different region sizes. In general,

alvinn, espresso, gcc, and doduc prefer a small size of the base region. For gcc

and doduc, the results of using traces as regions are as good as using blocks, f pppp,

nasa7, and tomcatv prefer a big size of the base region (loops or traces).

5.6 Loop unrolling

Loop unrolling is the code transformation that exposes multiple loop iterations to the

compiler. Classical global optimizations such as constant folding, common subexpression

elimination, and strength reduction can be applied across different loop iterations. Loop

branches and exits inside unrolled loop bodies may be eliminated. Code scheduling can take

advantage of the bigger scope of loop bodies and extract ILP among multiple loop iterations.

However, the beneficial opportunities to global optimizations and code scheduling do

not come for free because of increased register pressure. More common subexpression

elimination opportunities imply that more live ranges are needed for the temporaries to

hold the increased number of common subexpressions. Strength reduction replaces a more

expensive (more cycles) expression by a cheaper (fewer cycles) expression. A temporary

104 CHAPTER 5. RECONCILIATION

that is live throughout the loop is required to hold the value of the expression. Hence, the

more expensive expressions are replaced by cheaper expressions, the more temporaries (live

ranges) are introduced. All in all, the larger scope of unrolled loop bodies implies that more

live ranges are required because there exist more values, variables, and expressions. More

aggressive code scheduling implies that the number of live ranges that are simultaneously

live increases because more otherwise disjoint live ranges now overlap.

I run experiments with different combinations of register for alvinn, espresso,

nasa7, and tomcatv with unrolling to see how graciously Chaitin-style and fusion-style

coloring behave in the presence of unrolling. To allow an easy comparison, the results of

Figure 5.8 are repeated in Figures 5.16 and 5.17. There are two interesting aspects. First,

unrolling does not impose serious register pressure for some SPEC92 programs. For nas a7

and tomcatv in both the static and dynamic cases, Chaitin-style and fusion-based register

allocation with unrolling produce a similar number of overhead operations as without

unrolling. Second, unrolling generates register pressure for alvinn and espresso.

We see that the curves of Chaitin-style and fusion-style register allocation with unrolling

diverge further apart than without unrolling. For alvinn, fusion-style coloring with

unrolling generates twice as many overhead operations as without unrolling (25 % less than

Chaitin-style with unrolling) when the number of registers is small. Nonetheless, as the

number of registers increases, fusion-style coloring is able to deal with the high pressure

caused by unrolling and produces roughly the same number of overhead operations as

without unrolling. When analyzing the increase of overhead operations for Chaitin-style

with unrolling relative to without unrolling, we see that Chaitin-style coloring is not able

to handle the increased register pressure benignly for alvinn. The number of overhead

operations for unrolling using profile information grows only 50 % at (7,5,0,0) but is tripled

for the other combinations of registers. The number of overhead operations in the static

case increases less than 80 % when the number of registers is small (prior to (8,6,2,2)) but

is quadrupled when the number of registers exceeds (8,6,2,2). For espresso, the gap

between Chaitin-style and fusion-style enlarges and the merge points of the curves shift to

the right. Here we see that fusion-style handles high register pressure graciously.

5.6. LOOP UNROLLING 105

-»- Chaitin-style --•■• Fusion-style

Chaitin-style
(Profile)

Fusion-style
(Profile)

I I I I I I I I I I I IJ
o "i—' 'T-> C* C? m t*T ^ ^ *n" lo 6? ^ ^1 *5 *? *°. **?.'
°ü ^ H[°i ^ "i ^ 't 't "i "i ^ ** ^ ^ °^ *iw-
r- r- oo* oo" o^ o^ o o H H 'I 'I. H. H. H. H. 't "I.

I I 1 I I I I I I ^^^_

in w >o *o h K w w oj oj d o o o o o o ©
Kr^cdoo*o^oCo"o*^i^""l*""i^^'""i"""i""t*"l ww*—-www,-,,-, ,-H ^(Sfj^ cn^t Tfrm'o

alvinn (no unrolling
350'

alvinn (unrolling)

t-1-00 S£, w w 0\ Ov o o £ 3 cfrfc

c=> -^ -^ oJ o? T"^ co -^ -^ u-T w-> vcf vo r~£ r~i «? oo oo
in w* vo *o r>* r{ oo oo * * o o o oo o o o
t~~ r-H oo oo o\ a\ O o ^-i «M *"*! ""1 ^. ^"1 ^- ^"1 **1 "-

espresso (no unrolling)
5,000-

4,500-

espresso (unrolling)

- " ci r) to «*i, ^ ^t v-j v-t \o *o »o vq \q *o vo
q « ^ fl c| M w f' Tt* « v" \o \o I-" r{ »5 M w
V) V) >o *o K r* » oo oC oj o" o o o o oo o
i-" r~" w » ov oi d o" H ^' H. "■'. H. H. ^. "1 H. H.

1N.'IM.m. "*.'-"*
^ "1 ^ 'H ^l ^ **l -«^ ^3^ »O »O ^0 ^3 r-^ t-^ CO 0
vi" "* d d f~ f- M M o{ o> d d d o o o <
t-" r"» c." ." .* _" _" * * - - . __ _^ ' --'----- — — — — — •<* -<r x

nasa7 (no unrolling) nasa7 (unrolling)

Figure 5.16: Overhead operations of register allocation for loop unrolling.

106 CHAPTER 5. RECONCILIATION

-1—1—I I 1 I I—I I I I I I I I I I

vi vi >o >q ^ Is- oo oo oj ov d d d d o o oo
"• "" "" "" ^1 ^ rJ r* m* en 1-" Tt m" >o* t— r-oooooo^oo^H-H*

I I I I) I I I 1 I—I—r

o -I rt* (S of (^ rt Tt* T(V{ in vo »o t^ t~- w » oo
ifl in vo >o h" ^ w M o<* o{ d d o oo o o o
r-* r-* oo* oo" <^" oC o* o* -" -5" *"1 "~1 *~i """- "J *3 Z< Z<

tomcatv (no unrolling) tomcatv (unrolling)

Figure 5.17: Overhead operations of register allocation for loop unrolling (cont.).

5.7 Function inlining

Function inlining is a code transformation that expands the compilation scope beyond

function boundaries. Functions are artificial boundaries induced by programmers. Those

boundaries may not be the best partitioning borders as far as compilers are concerned.

Function inlining affects the compiler in several aspects:

• global optimization: Compilers can improve the quality of a program once they

know that certain values are constants in the program. Constant folding can calculate

the value of an expression at compile time instead of run time [2], Branch folding

eliminates a conditional branch if the result of the comparison of the branch is

known at compile time. Loop unrolling prefers constant loop bounds. When a

constant is passing to a function call as an argument, without inter-procedural constant

propagation [11,30], the compiler must be conservative and assume that the argument

is not a constant. Consequently, some optimization opportunities are lost.

Function inlining also exposes more opportunities to the global optimizer to find

common subexpression between the caller and callee. Moreover, functions are no

longer barriers for code motion [36], e.g. a loop invariant of the callee can be moved

outside a loop of the caller.

• memory aliasing: Without inter-procedural analysis, it is impossible for compilers to

get the information regarding incoming arguments. In such a case, compilers usually

5.7. FUNCTIONINLINING 107

make conservative assumptions on memory aliasing; that is, two memory accesses

always alias if both use incoming arguments as base addresses. Conservative memory

aliasing constrains code scheduling to move instructions— two memory accesses

must be issued in order. Function inlining replaces formal parameters by their

actual parameters. The memory aliasing information is improved (more precise) as a

result [3].

• ILP: Without function inlining, the compiler is limited by the traditional scope of the

compilation unit (function). The bigger the compilation scope, the more likely code

scheduling is able to exploit ILP (more likely to find independent instructions). [33]

shows that some C programs spend 80 % of their execution time in functions with

fewer than 250 operations prior to inlining. After inlining, those C programs spend

50 % of their execution time in functions with more than 1000 operations.

• calling convention: Passing parameters to the callee and returning a value to the caller

are usually done via argument registers and stack. For example, the caller moves

outgoing arguments, if there are any, to argument registers or pushes the arguments

onto the local stack if all argument registers are used up by prior arguments. The

callee then follows the same convention to get actual parameters and moves them

to their corresponding formal parameters. Function inlining eliminates the overhead

for moving arguments, returning function values, adjusting the stack frame, and

saving/restoring the return address.

• register allocation: Two counteractive factors are happening to register allocation

when functions are Mined: increment of spill cost and decrement of call cost. When

a function call, bar (), is replaced by the function body of bar, the number of

live ranges in the current function increases and all live ranges that contain the call

originally interfere with all new live ranges introduced by bar. In other words,

function inlining increases register pressure and hereby potentially introduces more

spill code operations. Nevertheless, if the compiler divides the register file into callee-

save and caller-save registers, the call cost may be reduced because the function call

boundaries no longer exist. As long as the reduction of the call cost exceeds the

increase of the spill cost, register allocation benefits by inlining.

108 CHAPTER 5. RECONCILIATION

Figure 5.18 sketches an example in which register allocation benefits by inlining. In

Figure 5.18 (a), function f oo contains a loop body that is executed many times and

has a call to a leaf function bar. The shaded regions are the most frequently executed

paths of the two functions. Hence, there is high cost to save/restore a callee-save

register at the entry/exit of bar; there is high cost to save/restore a caller-save register

around the call site bar (). That is, assigning a callee-save register to a live range

in bar needs to pay high callee-save cost; assigning a caller-save register to a live

range containing the call bar () needs to pay high caller-save cost. After function

bar is inlined, the necessity of saving/restoring registers at bar's function boundary

disappears (shown in Figure 5.18(b)). f oo is now a leaf function (no caller-save

cost) and the only function boundary for the code. Therefore, assigning callee-save

registers to the live ranges that were in bar pay the callee-save cost at f oo's function

boundary which is less frequently executed than bar's; assigning caller-save registers

to the live ranges that contained the call bar () pays no caller-save cost.

foo () {
prologue

foo(){
prologue

1
bar() ^m

epilogue

Y^Z

epilogue

"" -.. _1

(a) epilogue
}

(b)

Figure 5.18: Function inlining.

compilation: As functions are inlined, the code size grows. Consequently, the

complexity of the compilation time and memory requirement increase as well [33].

5.8. EXECUTION TIME AND COMPILATION TME 109

The compiler has to control the complexity so that the compilation time and memory

requirement are acceptable and practical.

In this Section, I evaluate the influence of inlining on register allocation. Only data

of alvinn, ear, espresso, compress, and sc are presented because the cmcc

compiler, presently, does not have the infrastructure for doing function inlining. It would

be very tedious and inefficient to analyze and inline functions manually, espresso has

one compilation flag "-DNO JNLINE". By default, some frequently executed functions are

inlined. To increase register pressure, some functions of alvinn, ear, compress, and

sc are inlined manually. All functions (6 functions) of alvinn are inlined into the main

function. All performance data of alvinn, ear, and espresso in this thesis are the

inlined versions unless it is explicitly stated that the non-inlined versions are used.

Register overhead with and without inlining are given in Figure 5.19 and Figure 5.20.

For easy comparison, the register overhead figures of the inlined versions of alvinn,

ear, and espresso, and the non-inlined versions of compress and sc are taken from

Section 5.4. There are several observable aspects. The curves of Chaitin-style and fusion-

style without inlining either merge quickly (espresso) or are tightenly together (alvinn,

ear, compress, and sc). Second, ear and espresso with inlining produce fewer

overhead operations than without inlining for both Chaitin-style and fusion-style coloring

because the reduction of the call cost exceeds the increase of the spill cost. The overhead

operations of alvinn, compress, and sc with inlining for both Chaitin-style and fusion-

style coloring increase because the increment of the spill cost is bigger than the decrement

of the call cost. Third, fusion-style not only benefits from the reduction of call cost, but

also handles big compilation scopes well and splits live ranges at low frequently executed

paths to reduce spill cost (live-range splitting is very effective in the presence of inlining).

For these reasons, the gap between the curves of Chaitin-style and fusion-style register

allocation enlarges. Examples are alvinn, espresso, and compress.

5.8 Execution time and compilation time

There are two other dimensions of interest to compiler designers: execution time related to

register overhead and compilation time. Table 5.1 shows the speedup due to fusion-style

110 CHAPTER 5. RECONCILIATION

Chaitin-style

Chaitin-style
(Profile)

Fusion-style

Fusion-style
(Profile)

14-

"£■12-

O 4

^^^^"B^SlsQsaCt-^i

°* ■*!H! ^ K m!n! 11 "i "i *!! ^ ^ ^ "i "iM. intn*ovor^*r^oo*oo*a~a"oooc*oooo
K I-" OO 00 Hi" OS O d rn" H 'l ^. H. [1 ^. [t H. ^.

alvinn (no inlining)

-i—i—i—i—i—i—i—i—i—i—i—i—i—i—i-

OH PNN<?!???^'rt!q(q««1o^?
o'rHrHcltNtncn^t^^^^VOr^r^CJOCOOO
in" >n id o* K r- w oo oi c»ooo ooo oo
K K co oo" o\ oC d d rn* H ^ Hf ^. ^. ll. ^. fl ^.

alvinn {inlining}

o" '—i i-i" CV IN' in' in ^ «>*, in'v\ *o & *? *? *°." ^ i°-
o^^clc^cn*w^^^u^*o»ot^r-*oo"ccoc
W «' *d *o K K oo o3 oj o{ d d d d ö d o o

&' h 00 CO C* ON* O O H" rt" ". 1 rt. "1 H. 1 H. "J w—-«_w~,.~l,^^H_HtN,rqtntn.tj.TJ.ln\0

MM« wir * m m >o « *q iq >q >o >o

xo^dt^r^oo'oo'ovchocdoooo'ocr

ear (no inlining) ear (inlining)

&T -H" --T H" rf in' en ^ ^ «^ £n <q <& d? <2T ® <& <*?
Ö. H! "4 °i '"i ^t <"
in u-T \d \d r- p>"oo"t

W c)' e-V en' en" ^ ^ in in" <o €T G^

vj m" >o « r" r- w oo oC o[d d o o
*_-*_--—'*_._-^*^H^H —t —i csrstn tn

f" 00* 00* 00
o" o* o* o*

espresso (no inlining) espresso (inlining)

Figure 5.19: Function inlining vs. Without inlining.

5.8. EXECUTION TIME AND COMPILATION TIME 111

g30-

las-

I I I

i/i vi *o vo' K r». <o M* o\" w o d o o o o o o
<~* **-" »»*"* 5 S if üf If rf Hr Ir IT" Ir ^r « •^ ^_* *_• WVWH H H H pi N W (»I ^- Tf Ml «

1 nVfT^
o" P £? M" C-T ST c*T ■*$. Tt. VI vj. *o \q »o -o *o ^o xq
O^^pJ^^rnTfr^^Vl'O*Or--_r~;00000q
vi >o 10 >oW[» w ojojdo o o 00 co
K K 00 » o* of d O H H *". "1 ^. jj . . . -

compress (no inlining)
200T

compress (inlining)

180- S==<*'=G-

-a**<\

"**<to*>«SW

o~ ^H' ^-~ ba" bl' en' <r\ *£ 5; «I •?? <? ■? ^ 'o ^ ^ *?

t-T t-r eo 00 oC oC o* o" -* -f "1 ~! "1 "1 3 ~t "1 J3

I I I I I I I I I I

O^H—*c^citntn^^"\l^ivovor{r-xoooo_a3
tfl" VI* « * ^ K w » o- 01 o o o 00000
K K »>. s» PV ?i e ° ~ d "3 M- ~- "3 —- -- "3 3

sc (no inlining) sc (inlining)

Figure 5.20: Function inlining vs. Without inlining (cont.).

112 CHAPTER 5. RECONCILIATION

program All registers 14 int, 14 float

espresso 0.0 7.5
nasa7 2.4 5.6

tomcatv 8.4 7.0

Table 5.1: Speed-up of execution time over Chaitin-style coloring (percentage).

register allocation (compared to a Chaitin-style register allocator with various enhance-

ments). These data are for the MIPS architecture; the execution time has been measured

on a DECstation 5000. The table shows that fusion-style coloring can speed-up execution

time by up to 8.4 % over Chaitin-style coloring.

Table 5.2 shows the cost of fusion-style register allocation; this table lists the contribution

of register allocation to overall compilation time (seconds) for the cmcc compiler, cmcc is a

research compiler and not fine-tuned for compilation speed; overall cmcc takes about twice

as long as the native compiler. The data are collected on a DEC AlphaStation (333MHz).

We compile the SPEC92 programs and measure the compilation time for Chaitin-style and

fusion-style register allocation, using loops as well as single basic blocks as base regions.

We also stress register allocation by performing the unrolling transformation (unroll 3 times)

to enlarge the code size for some of the programs.

The complexity of simplification isO(V + £) where V is the number of live ranges and £

is the number of interference edges. After fusing graphs along an edge, fusion-based register

allocation performs simplification to maintain the simplifiability invariant. Hence, at first

sight, we expect to see that the fusion-based approach has a big increase of compilation

time because the complexity of maintaining the simplifiability constraint is Ö(T * (V + £))

where T is the number of fusion operations. From the table, however, we see that—except

for gcc—register allocation time increases only by a small constant factor (< 2), even

when the base regions are basic blocks and the compiler applies a fusion operation on every

control-flow edge. For gcc (c-parse.tab.c), the size of the control-flow graph of the yylex

routine is tripled by loop unrolling (unroll 3 times). The size grows from (415 blocks,

660 edges) to (1426 blocks, 2246 edges). Even in such a big control-flow graph, the cost

of the fusion operations increases only about by a factor of 3 if the base regions are loops.

To put this data into perspective, the complete code generator including register allocation

is responsible for less than 20% of the total compilation time. So although fusion-style

5.8. EXECUTION TIME AND COMPILATION TIME 113

program Chaitin
Region

LOOP BB

alvinn inline 1.3 1.6 1.6
alvinn inline unroll 4.8 5.2 5.7
compress 1.7 2.0 4.4
compress unroll 3.9 5.2 11.9
ear 4.2 5.5 8.2
ear unroll 15.7 26.6 49.5
eqntott 4.7 6.1 10.7
eqntott unroll 18.3 29.3 74.4
espresso 29.3 39.6 71.6
espresso unroll 104.0 175.6 417.2
li 5.0 5.9 9.4
li unroll 11.7 16.5 32.8
sc 15.1 25.5 62.8
sc unroll 33.2 71.2 160.1
gcc 148.7 211.7 669.7
gcc (c-parse.tab.c) 7.0 14.7 61.2
gcc (c-parse.tab.c) unroll 22.1 55.0 166.7
doduc 51.4 78.1 128.8
fpppp 60.6 70.8 83.6
matrix300 1.1 1.7 2.5
matrix300 unroll 4.1 7.5 11.0
nasa7 7.4 10.9 13.8
nasa7 unroll 55.2 80.1 100.9
spice 118.2 311.0 392.4
tomcatv 3.4 3.7 3.7
tomcatv unroll 12.7 17.2 30.7

Table 5.2: Compilation time of register allocation (seconds).

allocation incurs a price in compilation time, the increase is acceptable.

There are two major factors that keep the compilation time spent on register allocation

low: partial graphs and cliques. When graphs are fused along edge E that connects two

regions, R\ and Ri, the fusion operation needs to deal with only Gnt and GR2 and not all the

graphs in the program. Clique summary nodes also help to speed up the compilation time

spent on simplification because simplifying a clique removes all transparent live ranges in

the clique from the graph. Consider that a clique C contains T transparent live ranges.

Each transparent live range in C interferes with T - 1 transparent live ranges in C and

114 CHAPTER 5. RECONCILIATION

ncighbor(C). Therefore C represents T live ranges and 7 *('J
2~

1)} + T* | ncighbor(C) |,

where | ncighbor(C) | is the number of neighbors of C. Removing C and ip(C) from the

interferencegraphisequivalenttoremovingriiverangesand^Y^+T* | neighbor(C) \

interference edges. These two reasons keep the price of compilation time within a reasonable

and acceptable range.

Fusion-based coloring provides a nice framework to tackle the compilation time problem

if the compilation time ever becomes unacceptable or is a big concern to the compiler. The

fusion operation takes longer and longer as more and more graphs have been fused because

the fusion operation gradually deals with bigger graphs, which cover larger regions, and

makes all delayed spilling decisions (live ranges are removed from cliques). Graph fusion

is based on the edge ordering, so fusing graphs on the edges that are less important (less

frequently executed) is more expensive in term of compilation time, yet has less influence

on the overall register allocation overhead. To curtail the time spent on graph fusion, we

can set a threshold to control the number of control-flow edges along which graphs are

fused. The threshold can be based on the time that has already been spent on register

allocation or the number of the total control-flow edges that connect regions. As soon as

register allocation passes the threshold, the graphs of the regions that are not yet fused with

any other graphs are all lumped into one big region Rremaining (splitting live ranges is not

allowed within the region). Building the graph GHremaining is as fast as building the graph

for Chaitin-style coloring. We then apply the fusion operation to the edges that connect

Rremaining and other regions.

The example in Figure 5.21 is a code fragment of compress. The shaded region

is the most frequent path. We can apply graph fusion to the region. The fusion-style

coloring is able to further divide the region into smaller sub-regions so that finer granularity

live-range splitting is thereby possible within the region. The remaining blocks belong to

one region, Rremaining- The register allocator treats Rremaimng as a typical region. The

interference graph, GHrcmaining, is constructed, the graph is simplified so as to make sure

that the simplifiability invariant is satisfied. The register allocator can either apply the

fusion operation on edges, Eu E2, E3, £4, E5, and E6, to reconcile the two regions, or does

nothing and let the color-assignment phase eliminate shuffle code using biased coloring.

Tables 5.3 and 5.4 show experimental results of the compilation time versus register

5.8. EXECUTION TIME AND COMPILATION TIME 115

^T>-
3-^

I *c^m
l^Z^^-'

^S
S^

-^^

P
V3:
z>

|,-R remaining

Figure 5.21: Reducing compilation time.

116
CHAPTER 5. RECONCILIATION

Fusion%

Time

Fusion 1} ^ 100

Chaitin

Overhead

Chaitin _l)^m

Fusion

(14i,14f) (lli,8f) (14i,14f) (lli,8i)

100 128.0 120.6 62.6 59.5

90 122.0 114.9 58.4 16.6

80 116.3 112.0 44.2 14.2

70 106.6 100.9 31.9 4.7

60 93.1 87.4 27.3 7.8

50 78.9 72.2 6.3 -4.1

40 66.0 60.7 7.4 -5.8

30 51.2 47.9 6.9 3.8

20 36.4 33.8 12.0 7.7

10 21.4 20.3 2.8 7.8

Table 5.3: Percentage increase of compilation time and improvement of overhead operations

(espresso).

Fusion%

Time

Fusion m

Chaitin

Overhead

Chaitin m

Fusion

(14i,14f) (lli,8f) (14i,14f) (lli,8f)

100 128.0 120.6 62.6 59.5

90 126.8 118.0 62.6 56.6

80 117.2 110.6 59.2 42.5

70 107.5 100.9 45.1 36.0

60 97.0 91.7 31.5 25.4

50 85.2 77.7 26.9 24.3

40 72.0 65.6 24.8 18.4

30 57.2 51.3 16.6 14.9

20 41.9 38.7 16.6 12.7

10 25.6 23.8 11.6 13.0

Table 5.4: Percentage increase of compilation time and improvement of overhead operations

(espresso).

5.9. SUMMARY 117

overhead operations for espresso. For the experiment, fusion-style coloring uses blocks

as the base regions and profile information to guide register allocation. Data for two

register combinations, 14 integer and 14 floating-point, and 8 integer and 11 floating-point

registers, are collected. The left-most column is the percentage of total control-flow edges

along which fusion-style coloring applies fusion operations. The "Time" columns indicate

the percentage increase of compilation time of fusion-style coloring relative to Chatin-style

coloring. The "Overhead" columns are the percentage reduction of overhead operation over

Chaitin-style coloring when we use fusion-style coloring.

Table 5.3 is the result of applying fusion operations on the first k percentage of total

control-flow edges. During the region formation phase in Figure 4.1, the register allocator

collects blocks that are connected by the last 100 - k percentage of control-flow edges in

the edge ordering into one region R. That is, those edges are in the region R. When looking

at the overhead columns, we can observe one noticeable aspect that for a cutoff point of

50% in the (14i,14f) case, the improvement due to fusion drops to a few percentage over

Chaitin-style coloring. There is a big overhead improvement drop for the (1 li,8f) case even

though we apply fusion operations on 90% of edges. We also see cases where fusion-style

coloring produces more overhead operations than Chaitin-style coloring. The reason is that

the region R contains frequently executed blocks. Consider the example of Figure 5.21. If

E6 is R, then R contains B3. The register pressure of infrequently parts of R, therefore,

may cause shuffle code on frequently executed edges, <D2,D3> and <D3,D1>. Furthermore,

collecting infrequently executed edges into R deprives the opportunities of placing shuffle

code on those edges. Here we see the case that a bad choice of regions impacts the quality

of register allocation badly. Hence, we take another approach that collects the blocks

connected by the first k percentage of edges into one region. In other words, the region is

frequently executed. The result is shown in Table 5.4. This table indicates that the approach

is able to maintain good overhead improvement while reducing compilation time.

5.9 Summary

In this chapter, I have discussed four aspects of register allocation: the size of base region,

profile information, sensitivity to register pressure, and sensitivity to unrolling and Mining

118 CHAPTER 5. RECONCILIATION

code transformations. The results confirm that fusion-style register allocation keeps the

overhead operations under control. Even in the presence of scope expanding transforma-

tions, loop unrolling and function inlining, the number of overhead operations generated

by the fusion-based approach either grows slowly or is reduced by splitting live ranges at

infrequently executed edges. These results indicate that register allocation is no longer an

obstacle to region-based compilation. Compilers that use some form of region for other

optimization phases now have a path to reconcile register allocation with region-based

optimization.

Furthermore, our results indicate that profile information improves the performance

of the register allocator. As gathering profile information becomes more common in

optimizing compilers, fusion-style register allocation becomes increasingly attractive, since

fusion-style allocation is well-prepared to directly take advantage of profile information.

As the implementations of high-performance processors include more and more hardware

support for dynamic instruction reordering, optimizers and schedulers in the compiler have

to analyze larger and larger regions of a program. Region-based compilation provides an

attractive framework to organize these compilations. With fusion-style register allocation,

the compiler can now include register allocation in a region-based framework.

Chapter 6

Call-Cost Directed Register Allocation

The register allocation cost is the sum of three components: spill, call, and shuffle cost.

The register allocation cost must include the call cost. If the register allocator focuses on

the spill cost alone, the register allocator may have an overly optimistic image of the task.

The call cost, however, is influenced by the compiler's calling convention. Many compilers

divide the registers into two sets, callee-save and caller-save registers, respectively.

Choosing the right kind of register for live ranges plays a major role in eliminating the

register-allocation overhead when the compiled function is frequently executed or function

calls are on the most frequently executed paths. Picking the wrong kind of register for a

live range incurs a high penalty that may dominate the total overhead of register allocation.

In this chapter, I present three improvements, storage-class analysis, benefit-driven

simplification, and preference decision that are effective in selecting the right kind of

register for a live range. Also I describe one enhancement to fusion-style coloring that

takes call and shuffle cost into account to make splitting decisions. In Section 6.1, I

present an allocator based on Chaitin-style coloring with a simple cost model. This register

allocator is used as the base for performance comparison. In Section 6.2,1 describe the

first enhancement, storage-class analysis, that decides the storage class for live ranges. In

Section 6.3,1 present benefit-driven simplification that determines the color ordering in a

novel manner. In Section 6.4, I present the third enhancement, preference decision, that

determines the preferable kind of register for live ranges. In Section 6.5, I describe the

fourth enhancement, call-cost splitting, which splits live ranges to reduce call cost. In

Section 6.6,1 evaluate the effectiveness of the first three enhancements. In Section 6.7,1

119

120 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

evaluate the influence of the call-cost splitting enhancement.

Figure 6.1 sketches the framework of the register allocator. The shaded regions are

the places where the four improvements are implemented. Storage-class analysis and

preference decision are implemented in the color-assignment phase; benefit-driven sim-

plification is done in the color-ordering phase; call-cost splitting is implemented in the

graph-construction phase. The improvements by no means can only be used by our register

allocator. Indeed, because various register allocation approaches have been implemented

in this same framework, these approaches may all benefit from the improvements. For

instance, fusion-style, Chaitin-style, and optimistic coloring all profit by storage-class

analysis, benefit-driven simplification, and preference decision. Priority-based coloring,

however, cannot use benefit-driven simplification because it does not use simplification to

determine the coloring order.

Graph

:Cc-nsuip;liun
'

Coalescing :::::::i§rc(äFJfl9}:::;::: 1 . ; M* »
Spill-code
Insertion

Shuffle-code
Insertion

Figure 6.1: Call-cost directed register allocation.

6.1 Chaitin-style base model

Chaitin-style coloring simplifies an interference graph to determine the coloring order and

spills live ranges based on spill cost (either static estimated or dynamic spill cost) when

simplification blocks. A live range that contains calls prefers using a callee-save register so

the color-assignment phase attempts to find a callee-save register. If there is no callee-save

register left (taken by all the live range's neighbors), a legal caller-save register is assigned

to the live range. A live range containing no calls prefers using a caller-save register so

the color-assignment phase attempts to find a caller-save register. If there is no caller-save

register left, a legal callee-save register is assigned to the live range.

This simple model is used as the base for comparison. It allows us to access the signifi-

cance of each improvement in terms of reducing overall overhead operations. Although the

6.1. CHAITIN-STYLE BASE MODEL 121

base model is simple, it is not unreasonable. In Chapter 7, we compare this base model to a

more sophisticated approach to handle call cost which is implemented in various compilers.

However, for a significant number experiments, the simple base model outperforms the

other approach.

6.1.1 Limitations of the base model

Figure 6.2 depicts the register allocation cost for two programs from the SPEC92 suite,

eqntott and ear, for various combinations of caller-save and callee-save registers.

Again, the MIPS architecture has separate register banks for integer and floating-point

values. The notation (,Ri,Rf,Ei,Ef) of the x-axis of Figure 6.2 shows the combination of

caller-save and callee-save registers for the two register banks. IU and Rs are the number

of caller-save registers for integer and floating-point values, respectively. E{ and Ef are the

number of callee-save registers for integer and floating-point values.

to *r rr «n *o

o* *S rn" rJ ci <*T (*i* *f ■% «o >n *q *>_ r-_ r-_ oo «3 c
Wv*o*oc^c-{ooooaic{oooooooc
t-" r- od" o£ oT oC o a' ** -J ~- !*. ^ - - - - J

ear eqntott

Figure 6.2: Register allocation cost.

From Figure 6.2, we see that giving the register allocator more registers can reduce the

spill cost dramatically. The spill cost is cut down to 0.8 % with (10,8,4,4) registers for

eqntott and to 0.5 % with (9,7,3,3) registers for ear. However, simply focusing on the

spill cost is misleading; the figure shows that spill cost is no longer an issue once a certain

number of registers is available. As the figure illustrates, we must take the call cost (caller-

122 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

save and callee-save cost) into consideration. There are two noteworthy aspects: first, the

contribution of the call cost to total register allocation cost is significant. Second, giving the

register allocator more registers may actually worsen the register allocation cost because

some live ranges may now reside in the registers whose call overheads introduce more

memory accesses than the spill cost of the live ranges. Cohn and Lowney [18] measured the

dynamic call cost for various Windows/NT applications and SPEC95 programs. For more

than half of the programs, the call cost is 10% - 25% of their execution time. If the register

allocation does not take the call cost into consideration, the call overhead introduced by the

register allocation may end up on the hot part of the program [18].

6.2 Storage-class analysis

A live range can reside in one of these storage classes (assuming that registers are divided

into caller-save and callee-save registers):

• memory,

• a caller-save register, or

• a callee-save register.

Each storage class has an associated cost. Storage-class analysis decides where live ranges

reside, based on two functions, benefit.caller and benefit malice. The two functions

model the benefits provided by these two storage classes over the default location (memory).

These functions are defined for each live range Ir. For each Ir, bcnefit.callcr{lr) is

defined as the weighted reference counts of the spill code minus the weighted caller-save

cost. bencfit.callcc(lr) is defined as the weighted reference counts of the spill code

minus the weighted callee-save cost. The weighted reference counts and call cost are

derived using either estimated execution frequency (static) or profiling information of some

prior execution (dynamic). That is, these two functions indicate the estimated number of

load/store operations that are eliminated if a caller-save (or callee-save) register is assigned

to Ir. The two functions are similar to the priority function of [16], except the benefits are

not normalized by the size of the live ranges.

6.2. STORAGE-CLASS ANALYSIS 123

During the color-assignment phase, the selection of the kind of register to use is based

on these two functions. If bcnefitjcallec(lr) > bcncfit.caller(lr), finding an available

callee-save register for Ir is attempted prior to finding an available caller-save register. If

benefit-callcc(lr) < bcncfit-callcr(lr),il is preferable to put Ir into a caller-save register

over using a callee-save register. The accuracy of the two benefit functions depends on the

accuracy of the estimated execution frequency.

The simplification phase guarantees that the color-assignment phase finds registers for

live ranges that are on the color stack (C). However, sometimes not using a register (i.e.,

spilling a live range) is better than using the wrong kind of register because the cost of

using the register (callee-save or caller-save cost) could be greater than the spill cost of

the live range. Figure 6.3 illustrates the effect of assigning the wrong kind of register to

live range x. The shaded regions indicate the most frequently executed paths. Using a

caller-save register for live range x in Figure 6.3 (a) incurs a high cost; keeping x in a

caller-save register can only make the result of register allocation worse because x must be

saved and restored once for each use of x in the loop. The two memory accesses required to

save/restore the caller-save register are more than the single restore operation, which would

be required if x had been spilled.

Likewise, in Figure 6.3 (b), keeping x in a callee-save register results in a higher register-

allocation overhead than spilling because saving and restoring the value of the callee-save

register happens on the most frequently executed path.

Our algorithm models register assignment as a possible improvement. That is, we

start out with the assumption that a live range resides in memory (is spilled) and then try

to determine if allocating a register reduces the overhead operations. This model allows

us to spill live ranges to reduce the overall number of load/store operations even though

there are available registers. The two benefit functions give us a good indication if a

live range Ir is a worthwhile candidate for register residence. If Ir gets a caller-save

register and bcncfit-callcr(lr) < 0, then spilling Ir reduces the load/store counts by

| bcncfit-callcr(lr) |.

While assigning registers to live ranges, the color-assignment phase makes spilling

decisions right away for the live ranges that are supposed to get caller-save registers (i.e.,

spill when benefit .caller (Ir) < 0). There are two ways to make spilling decisions for

124 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

Entry

Exit

(a) High caller-save cost

Exit

(b) High callee-save cost

Figure 6.3: Storage-class analysis.

live ranges that receive callee-save registers. The first approach models callee-save costs as

occuring only once for each callee-save register. For the first live range Ir that uses a given

callee-save register, making the spilling decision then is similar to making the decision to

use a caller-save register. That is, if bcncfit-callcc(lr) < 0, then Ir is spilled to memory.

For a live range that is not the first user of a callee-save register, the live range can use

the callee-save register for free (since there in no need to spill the register). The second

approach views callee-save costs as shared by all live ranges that share a callee-save register.

That is, the first live range to use the register does not pay all the costs; the cost is spread over

all users. The spilling decisions for live ranges that (potentially) get callee-save registers

are not finalized until the color-assignment phase finishes. At that time, it is known which

live ranges may use a specific callee-save register. For a callee-save register r, and S(r)

the set of live ranges that share r, if Eire*» spill.cost{lr) < callc.cj;ost(r), then all live

ranges of 8(r) are spilled.

Our experimental data indicate that the second approach performs better than the first

one for some SPEC92 programs, for others it makes no difference. To illustrate why this

is the case, consider two live ranges with spill cost 4000 that share the same callee-save

register, and the callee-save cost is 5000. The first approach does not assign any of the two

live ranges to the callee-save register because of the high first-use cost. At the end, spilling

6.2. STORAGE-CLASS ANALYSIS 125

the two live ranges introduces 8000 load/store operations (assume that they also have high

caller-save cost, or all caller-save registers are taken by their neighbors). However, the

second approach assigns the two live ranges to the register — a decision that saves 3000

load/store operations over spilling.

The flow of the color-assignment phase using storage-class analysis is depicted in

Figure 6.4. This phase pops live ranges out of C and assigns a register to each of them. If a

live range Ir prefers a callee-save register (benefitxallcc(lr) > bcncfit-callcr(lr)), the

register allocator first attempts to find a legal callee-save register. If a callee-save register

is found, then the next step, choosing a caller-save register, does nothing because Ir is

already assigned a register that Ir desires. A live range that prefers a caller-save register is

also assigned a register in a similar fashion. For simplicity, bcncfit.callcc(lr) < 0 is the

heuristic to spill a live range that receives a callee-save register. The condition benefit > 0

means bcncfitjcallcc(lr) > 0 for callee-save registers , and bcncfit.caller(lr) > 0 for

caller-save registers. The spill step merely adds a live range with benefit < 0 to the spill

pool (S).

Graph --

Graph
Construction

' Coalescing Color
Ordering

Spill-code
Insertion

Shuffle-code
Insertion W

,"
Be . prefer_ca I* J-f* »- Spi«

>

W

/ ft, >% -i
sack

\ /S fe.1

1 i i
 \ \ ' bcnen>>=0

- n

! coiov..stack.is..e.;;^)ty

Figure 6.4: Structure of the color assignment using storage-class analysis.

126 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

6.3 Benefit-driven simplification

Simplification removes live ranges one by one from the interference graph and pushes them

onto C. The reverse ordering in which live ranges are pushed onto C is the ordering in

which they are assigned colors. Simplification is a nice and easy way of packing live ranges

into registers but there is no cost model, and therefore, decisions during simplification

may turn out to handicap the color-assignment phase. If the target machine has only one

kind of register, the order of removing already-unconstrained live ranges does not have any

influence on the final register overhead, because using each register incurs the same cost.

But for a machine with a mixture of registers of different costs, the position of a live range

on C plays an important role in reducing the register overhead.

Each live range has two benefit functions, benefit jcallcr and bcncfit-callcc, which

determine the preferred kind of register. Live ranges on top of C have a higher chance

to obtain the preferred kind of register, because fewer registers are already taken by other

live ranges. For example, Figure 6.5 (a) depicts an interference graph consisting of 3 live

ranges. All prefer using a callee-save register. There are only two callee-save registers

available. One live range must use a caller-save register. With Ar = 3, all three live ranges

are unconstrained. A legal color stack is shown in Figure 6.5 (b) (obtained by removing

lry, lr3, and then lrx). The top two live ranges, lrx and lrs, are assigned callee-save

registers during the color-assignment phase and lry ends up in the caller-save register.

This assignment then saves 3200 load/store operations over spilling. However, the best

ordering during simplification is lr;s, lry, and then lrx, so that lrx and lry can obtain the two

callee-save registers; this assignment actually saves 4100 load/store operations.

During simplification, if there is more than one unconstrained live range, then the live

range that has the smallest priority is removed. Now we can view C as a priority-based

color stack; the higher position a live range on C, the more likely the live range has more

freedom with regard to picking registers. Hence register allocation based on this color stack

is now similar to priority-based coloring [16]. In other words, benefit-driven simplification

unifies the priority-based approach with simplification-based register allocation.

The flow of simplification used by Chaitin-style, optimistic, and fusion-style coloring

to determine the color ordering is depicted in Figure 6.6. Moreover, Figure 4.10 and Figure

6.3. BENEFIT-DRIVEN SIMPLIFICATION 127

benefit..caller = 1,000(lrx
benefit callee - 2,000

, benefit caller =1,000
' benefit _c<Mee. = 2,000

benefit_caller= 100
benefit, collee - 200

(a) (b)

Figure 6.5: Effect of simplification order, with N = 3 registers (2 callee-save and 1
caller-save).

Graph **

Graph
Construction

L Coalescing : COIW
jilijggfefjngri;:;:!:

Color
Assignment

Spill-code
Insertion

—te. Shuffle-code
Insertion —w

hss._l£.N

Cornpating
Degree

HIIIIM I

toSuftpfify

III Mill ,

f.. «,« IJ^ *.'v'l"

IIII111" III II ,

iCIi'XJsinij Or.«
to SpdL

^M I I I HlVl II I I

lüüüiÄÄ \ empty _gvaph

Figure 6.6: Structure of benefit-driven simplification.

6.6 demonstrate that the same simplification framework has been shared by various register

allocation approaches. In the color-assignment phase, cliques no longer exist, and no live-

range splitting is allowed because fusing graphs is already completed. Hence, the task of

the "lowering pressure" step in the color-assignment phase is quite different for and much

simpler than that in Figure 4.10. Here the lowering-pressure step simply chooses one live

range based on a heuristic to spill and relaxes the degrees of the live range's neighbors. The

removing-LSJST step in Figure 6.6 is composed of choosing one unconstrained live range

with the smallest key to simplify and relaxing the degrees of the live range's neighbors.

One implementation of keeping track of the unconstrained live range with the smallest key

128 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

in LS-N is implementing LS.N using a heap structure [19]. In the "relaxing degree" step,

as constrained live ranges become unconstrained, the live ranges are inserted into the LS-N

heap based on a key function, bcncfit.ca.llcr and bcncfit.ca.llcc form the foundation of

our experiments to investigate different strategies to order unconstrained live ranges during

simplification. Specifically, we investigate two keys to order live ranges:

• msx(bcnc fit .caller, bcncfitjzallce)

• or
(| benefit.caller — bcncfit.callcc | if benefit, caller > 0 and

benefitjcallcc > 0
max.(bcncfit.callcr, bcncfitjzallcc) otherwise

Priority-based coloring uses this strategy to prioritize so as to make sure that the live

range with maximum savings has the highest priority to occupy a register. However,

this strategy, when implemented as part of benefit-driven simplification, increases the

register overhead for some SPEC92 programs, compared to register allocation without

using benefit-driven simplification. This strategy is not suitable for Chaitin-style register

allocation because simplification guarantees that all live ranges on C can find registers;

in other words, making sure that live ranges with bigger savings own registers is not a

concern for Chaitin-style coloring. What Chaitin-style coloring cares about is the incurred

penalty of using the wrong kind of register — it cares more about the delta between the

two benefit functions rather than the maximum of the two. Therefore the second strategy

is used. The delta is the incurred penalty of assigning the wrong kind of register to a live

range. If benefit .caller (Ir) and bcncfitjcallcc(lr) are greater than or equal to zero, the

key function is the difference of the two benefit functions. Otherwise, the maximum of the

two benefit functions is used as the key function.

The example in Figure 6.7 illustrates how the key functions make a difference in register

allocation overhead. The interference graph in Figure 6.7 (a) comprises three live ranges,

lrx, lry, and lrz. Using the first definition, lrx and lry have higher priorities (2000) than

lrs (1500). The order in which live ranges are removed from the graph is lr3, lry, and lrx.

Because all three live ranges prefer a callee-save register, lrx and lry are assigned the two

callee-save registers. The total savings amounts to 4500 load/store operations. With the

second definition, lr,, has a higher priority than lrx and lry, because for lrz the penalty of

6.4. PREFERENCE DECISION 129

using the wrong kind of register is higher than for the other two. Thus lr,. ends up on top

of C. The second definition yields a better allocation than the first one (andresults in a total

savings of 5300 load/store operations).

6.4 Preference decision

One shortcoming of Chaitin-style register allocation is that low-priority (small-savings)

live ranges with high degree may take away the kind of register that high-priority (big-

savings) live ranges crave for. Benefit-driven simplification tries to prevent this situation

from happening. Nevertheless, there is still no guarantee that live ranges with high priority

get the registers they prefer, because simplification is sensitive to the degree of live ranges

(a live range can be removed from the interference graph only if the live range's degree

is less than Ar). The color-assignment phase, however, examines only the two benefit

functions, benefit malice and bcncfit-callcr, to determine what kind of register a live

range should get without caring about the needs of other live ranges. This restricted view

of the color-assignment phase is the cause of unnecessary overhead operations.

Therefore, prior to the color-assignment phase, we provide a separate phase that pre-

determines the preferable kind of register for some live ranges. The purpose of this phase is

to minimize the caller-save overhead. This phase goes through each function call in order of

weighted execution frequency and makes the preference decision for live ranges across the

function call. For a function call, if the number (L) of the live ranges that contain the call

and prefer callee-save registers is less than or equal to the number of available callee-save

benefit_caller - 1,800
bei:sfu_cai.lee - 2,000

y . benefit_callcr = 1,800
benefa.saUee - 2,000

benefit..patter = 500
benefit callee ■■■■■■ J ,500

lr,

(a) (b)

Figure 6.7: Priority with Ar = 3 registers (2 callee-save and 1 caller-save).

130 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

It; K lry lv. K

benefit_caller 100 100 100 .100 100

benefit_callee ./yy 400 200 200 4000

(b)

Figure 6.8: Preference decision example with Ar = 3 registers (1 callee-save and 2 caller-
save).

registers (M), then there is no preference decision that needs to he made. If L is greater

than M, then regardless of how registers are assigned, at least L - M live ranges must use

caller-save registers rather than callee-save registers.

We sort those live ranges using a key function. The least L - M live ranges are

annotated so that their preferable kind of register is caller-save regardless of the fact that

benefit.callcc > bcncfitjcallcr. After registers are assigned to those live ranges, just

like for regular live ranges, register allocation uses bcncfit.callcc and bcncfitjcallcr to

analyze if they should reside in registers or memory. The key is defined as:

caller .cost if bcncfitjcallcr > 0
spilLcost otherwise.

caller.cost(lr) is the overhead incurred for Ir using caller-save registers which is equal to

spilLcost - bcncfitjcallcr. For those live ranges with bcncfitjcallcr > 0, caller.cost is

used as the key (caller.cost is the overhead). For the live ranges whose bcncfitjcallcr < 0,

the key is spilLcost because storage-class analysis spills them if they do not get callee-save

registers. In other words, spilLcost is the incurred penalty for not using a callee-save

register.

Figure 6.8 (a) depicts an interference graph with five live ranges. The two benefit

functions of each live range are listed in the table of Figure 6.8 (b). Callee-save registers

are the precious resources in this example (all live ranges are competing for callee-save

registers). The key values of live ranges which are used in benefit-driven simplification are

lrt (100), lry (100), lrs (100), lrx (300), and lrw (3900). Only lrw can be removed at first

given N = 3, because the degrees of the other live ranges are greater than or equal to 3. Let

the subsequent order in which live ranges are removed from the graph be lr.,, lru lry, and

6.5. SPLITTING TO REDUCE CALL COST 131

lrx. The ordering in which live ranges are assigned colors is lrx, lry, lrt, lr.,, and lrw. lrx

then takes away the callee-save register and leaves no callee-save register but the caller-save

registers for lrt, lry and lrw to use (lr, gets the same register as lrx). This assignment

saves 900 load/store operations (300 and 600 for using caller-save and callee-save registers,

respectively). If live ranges lrx and lrw contain the same (high-frequency) function call,

then lrx is forced to reside in a caller-save register instead of the callee-save register. This

color assignment then saves 4500 load/store operations (lrx, lr, and lrt get the caller-save

registers, and lrw and lry reside in the callee-save register).

6.5 Splitting to reduce call cost

Fusing two interference graphs tends to grow live ranges aggressively to reduce the shuffle

cost as long as the colorability invariant is maintained. Storage-class analysis, benefit-driven

simplification, and preference decision are the techniques that adjust spill, caller-save, and

callee-save costs. Caller-save cost may be reduced at the expense of spill cost. Growing

a live range aggressively could potentially include more call sites into the live range.

Consequently, the caller-save cost of the live range increases. High caller-save cost of a live

range, lr, means two things when a caller-save register is assigned to lr. lr either is spilled

or pays high caller-save cost.

One improvement to fusion-based coloring is to limit the growth of live ranges that

cross function calls by suppressing coalescing. That is, the technique can be applied only to

live-range splitting approaches. The improvement is called "call-cost splitting" that splits

live ranges to reduce call cost. By suppressing the growth of a live range containing calls,

the (smaller) live range has a chance to get the best kind of register or be spilled (at lower

spill-cost), thus reducing the overall load/store counts. Even though the graph is colorable,

it may be better if the live range is split at infrequently executed edges; then we pay the

lower shuffle cost (along these edges) instead of the higher caller-save cost at all call sites.

The unioning-splitable step (Section 4.2.5) is the place where the call-cost splitting takes

place. Prior to unioning two splitable live ranges, In and lr2, along edge E, the call-cost

splitting determines if suppressing combining In and lr2 on edge E could likely reduce

overhead operations. There is no guarantee that splitting on edge E is effective because the

132 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

final result is unknown till the color-assignment phase.

A register allocation heuristic should take every aspect of the cost model into account,

and avoid making any decision based on part of the cost model. Hence we discuss call-cost

splitting from the viewpoints of shuffle, spill, and call costs.

. shuffle and spill costs: Splitting lrx and lr2 on edge E = (DUD2) induces shuffle

code on E. The shuffle cost on E should be cheap relative to either In or lr2.

In other words, one of the live ranges can afford the induced shuffle cost. The

condition we check is frcq(E) > sPilLcost(ln)/aV freq(E) > spilLcost(lr2)/a,

where frcq(E) is the estimated execution frequency of E and a is a constant that

is controlled by the user or the register allocator, "a = 100" means that one live

range's spill cost is at least 100 times more than the potentially incurred shuffle cost.

A big a indicates that live ranges are allowed to grow larger than a small a—split less

frequently. The bigger the number of registers, the more likely the color-assignment

phase assigns the preferable kind of register to a live range. Therefore, call-cost

splitting should happen less frequently (use a big a). If the number of registers is

small, live ranges are competing for their preferred kind of registers. Thus, call-cost

splitting should be applied more frequently (use a small a).

• call cost: The previous condition decides if E is a good splitting point. We want to

determine if coalescing In and lr2 into lrn may introduce more overhead operations

than suppressing In and lr2 provided that lr12 ends up in a caller-save register. Here

we look for the case that one live range (say In) has benefit waller > 0 and the other

live range (say lr2) has benefit.caller < 0, because we get benefit.callcr(ln2) <

bcncfit.callcr(ln) if coalescing of the two live ranges is not suppressed. In addition,

we check the condition caller.cost(lr2) > 2*frcq(E). Splitting In and lr2 prevents

caller.cost{lr2) from being added to caller,cost{ln) at the expense of shuffle cost.

Once coalescing of In and lr2 is suppressed, not only is shuffle code generated at the

entry to lr2, but also is shuffle code potentially introduced at the exit of lr2 because

lr2 is a stand alone live range. We use 2 * freq(E) to estimate the possible incurred

shuffle code operations.

6.6. EVALUATION OF SC, BS, AND PR ENHANCEMENTS 133

h lri (xl

shuffle code

Figure 6.9: Eliminating caller-save cost by splitting.

Figure 6.9 depicts an example of how caller-save cost is reduced by splitting. In this

example, the live range x is live through out the whole program. Assume lr(x) is not split,

i.e. x occupies one register in Figure 6.9 (a). If the register is a caller-save register, lr{x)

pays a high caller cost (saving and restoring x around function f oo). It is much cheaper

to split the live range of x into ln(x) and lr3(x) along the edge (D2, £3), as illustrated by

Figure 6.9 (b). Now Ir^x) can reside in either memory or a callee-save register (if the

callee-save cost is low).

6.6 Evaluation of SC, BS, and PR enhancements

In this section we report on an empirical evaluation. We measure the influence of differ-

ent combinations of the improving techniques for various SPEC92 programs: (alvinn,

compress, ear, eqntott, espresso, gcc, li, sc, doduc, fpppp, matrix300,

nasa7, spice, and tomcatv). We pay special attention to the issue of deciding between

a caller-save and a callee-save register for a live range. The y-axis of the figures in this

section shows the register overhead produced by a base Chaitin-style coloring (with the

simple cost model) divided by the overhead of an improved-version Chaitin-style register

allocator using various combinations of the enhancements (storage-class analysis, benefit-

driven simplification, and preference decision). The bigger this number, the less overhead

is there in the improved version. SC, BS, and PR stand for Storage-Class analysis, Benefit-

134 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

driven Simplification, and PReference, respectively. We can classify the SPEC92 programs

(compiled using profile information) into 4 classes.

• Each optimization contributes a significant fraction of improvement. Examples are

nasa7 and ear shown in Figure 6.10. For nasa7 and ear, there is not much room

for optimizations to reduce overhead operations if only a smaller number of registers

is available. With more registers, the optimizations have more freedom to choose the

right kinds of storage class (caller-save registers, callee-save registers, or memory)

for live ranges.

tf -i 4 pt pf «T m* Tt ^| M< w ^ tf K r{ « » M
m fl xJ rf ^ t>' » » ff »' d o' o' o' o o o o
f^ p « » «' » o* d -' -' rt H H H H H H H

_ H H d rf m n » v' w ^

I I I I I I I I I I I I I I I I I

o-H-Tp* N m m v T w «j tf »| t-_ f-. « » »

r^ K * £ ^ ^ °* °" 2 H I; !j !/ !/ «' v" A m*

nasa7

Figure 6.10: SC, BS and PR are effective.

• Only storage-class analysis has a dramatic improvement; spilling live ranges that have

the wrong kind of registers helps reducing the overall overhead operations. Examples

are li, sc, andmatrix300. See Figure 6.11.

• Pre-determining the preferred kind of registers for live ranges does not affect the

overall number of overhead operations. Examples of this class are compress,

eqntott, espresso, gcc, fpppp, doduc, and spice (shown in Figure 6.12

and Figure 6.13).

• For programs that have low callee-save and caller-save costs, such as tomcatv,

which consists of only one big function and no calls, none of the three techniques

6.6. EVALUATION OF SC, BS, AND PR ENHANCEMENTS 135

i i i—i—n—rn—i i I—r—T

O H H c| (■{ M W t" t" "1 "l 'O *C f* Is" » » W
in ifl w »o t-- (> oo" oo ©^ O» o o © ©* © o* o o
p* p** 00 00 ON ON © © ^ ™H » * * » ~ •- »■ . ~ *_-*_'W%_<W'w<^^_^«r) (^ («-, f^ ff ,j- m V©

I I I I I I 1 I I I I I 1 1 I I I

C- C< SS- S- S- 2i- c

matrix300

~i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—1~

li

Figure 6.11: Only SC is effective.

136 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

i i i i i i i i i ' i „„„

o" -J ~ ri ci fi *** ■** ** "I* "i **? ^C K ^ °°. w- w-

compress

ill i i i i i i i „.„,-.
j' 4 „" (^ pt ifT rn" ^' tf « «i »" »' ^ f, M « *.

eqntott

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 '

©- -J -* rJ cJ o" f? V* ■** *i *l *» ^1 ^ ^ °°. °°. °°.

. 1 1 1 1 1 1 1 1 1 1 1 1

o -' «' M f) rt" n v ■*' "l "i *o *° r{ ^ "^ w. °°. vni/T*o\or^r--odooo^o^oooooooo
C fc S s s S s s 2 a 3 3 m" m ■»- 2 2 2

espresso gcc

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o rt M pi ri rt m ^' w wi* tfi w *4 ^. ^ * " .

C&BSSäS'S'SdplBnrf 3 s «J <£

1—1—1 1 1 1 1 1—1 1 1 1 1 r-T"

o H -J N ri m' w » V «11*1 v>. *o r-, t-, «c oc ec
m v^ « w ^ t{ » »' o; * © 2 S 2 S 2 2 2
r~ t~» 00 ». ^. ?■. o © -* -* - - - „r _^ _; ,„- ^

fpPPP

Figure 6.12:

doduc

SC and BS are effective.

6.6. EVALUATION OF SC, BS, AND PR ENHANCEMENTS 137

i i i i i i i i—r-t-1—r

©*-J-Herrie>tn*f-^«ivi'ö ^ ^. f; *. *. *.

c c s s ä ä s s d d g- 3 2 a s s a a

spice

Figure 6.13: SC and BS are effective (cont.).

makes any difference. All the ratios of Base-Chaitin/Improved-version for the three

improvements are 1.0 (Figure 6.14).

. i i i i i i i i i ' i ' ' „„

/ «i «" 2 c K «i rf ^ *[°" 2 2 2 S' H S' 2*
si si sä s£ e> sS 2 3* - - 3 r* <* <* •? •* "> £

Figure 6.14: No improvement for tomcatv.

Figure 6.15 shows the effect of these improvements on the programs from Figure

6.2. This figure depicts the register overhead for ear and eqntott with the three

improvements. For the ear and eqntott programs, the improved Chaitin-style coloring

reduces the register overhead by a factor of 45 and 66 (i.e, with the base register allocator,

there are 45 (66) times as many overhead operations as required by the improved Chaitin-

style coloring).

I also evaluate how storage-class analysis, benefit-driven simplification, and preference

decision reduce register overhead operations using static information. Again static informa-

138 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

140-

120-

"glOO-
p3

I 80-
S

■S 60-

40-

20-

0-

S

ill

|g| spilljd

m spilLsl

Till I t I I I i
£T I-T in" ri" öi"<?\ en' -r' "if* v? v? ^ © *5 *? *? *? ^?
o -" - pj rl m* m ^ ■v" v? "n « 'O r{ ^ w co oo
m* m* « >o r-" ^ M oo » o\ d o o o © o o ©
CCRSSS2 2 3 d3 «"rf3 53>rf*?

45

40-|

"35- 1
J 30- 1 R
S :i = Fl
§•25- ; ;

I20" -| : ?

«•loJil

:': n

o-Hw- ■H.H.H.H.n.H.H.I.a.H.w.Bi,-,-,-
Or- -H ts rg m c
o ** --£ ci rf **i < : *. "1 "1 *^

f oT o> o o

*o io *0 *o

o o © o
»3 OO
© o

eqntott

Figure 6.15: Register overhead for improved register allocation.

tion uses the loop hierarchy (nesting levels) as an approximation of the execution frequency

of a basic block. The results are shown in Figures 6.16, 6.17, and 6.18. Figures 6.17 and

6.18 show those programs that exhibit the same trend of improvement as using dynamic

information. The three improvements, rather than ameliorate, deteriorate the quality of

register allocation (generate more operations than the base Chaitin) for the programs in

Figure 6.16.

The three improvements are based on the analysis of spill cost, benefit-caller and

bcncfitjcallcc which solely depend on the accuracy of the estimated execution frequency.

Using the loop hierarchy to estimate the execution frequency treats every block within the

same loop as having the same execution frequency. In practice, this assumption is not

always true. When the static information does not capture the actual execution pattern of

a program, the techniques may worsen the register-allocation result. For example, the live

range lrx in Figure 6.19 crosses the function call of f oo (), which is in the loop (DA).

Based on the static information, the loop is considered to be more frequently executed than

the rest of the blocks. bcncfit.callcc{lrx), therefore, is greater than bene fit .caller {lrx).

The color-assignment phase, therefore, attempts to put lrx into a callee-save register at first.

There are two outcomes for lrx of the color-assignment phase: {\)lrx obtains a callee-save

register or, (2) lrx gets a caller-save register and then is spilled to memory by the storage-

class analysis due to the high caller-save cost. If, in fact, the shaded region depicts the most

6.6. EVALUATION OF SC, BS, AND PR ENHANCEMENTS 139

. -j—i—i i i—i i i—i—i i i i n

-» H ci N M" m V V «* 'A « >c r-, ^ » M »
in\o*or^'t--od«S'oCo£o©oo©2 2 2

C. C- S- £- S- 2- ON » O O ' , ri n < ,^- *r m »o

w _ „ K c4 m («' f" 'J w in tf <4 r-; K » <
i/iiK^^r^t-'eooooTc^oooooooe

11 £ S i ä 2" £* d d ?! «' «? cn ** ^ 2 «■

compress sc

SH»-«HS-«'

I I 1 1 1 I I I I I I 1 I I I I

o" -I «' cl rt rf i^ t; t| in vi *4 ^ ^ f; * °°" °°
/ in ^ ^ K p- » M" a o; o o o o 33 2 S
ö & e ss sS sS 3" s d d ^J ^ J* £ r? -f tf £

1 i 1 1 1 1 i 1 1 1 i 1 1 ' ' 1

• 4 J et et m" ro -f V in «n w> vrf t-{ t* 00 06 w
»«nvo^tfr^c^oooooTofooooooo ©

spiee

1 1 1 1 1 1 i 1 1 1 1 i 1 1 1 1 '

o-r-J'c-ic^Mt^'» ' « «i * 's. f; ^ "t °°. °^. 1/1 ifl »rf MJ r>" r~" w" (f o> w 0000 00 © ©
r-* t^" of wf tf w" o" o" « -f "^ M. ^. "J "• U "^ j.-

* sc

-*- SC+BS

-+- SC+BS+PR

gec

Figure 6.16: Degradation of improvement using static information.

140 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

-1—I—I-!—TH—I—I I I—I—I I I—I—r~T

o H* H rj (^ M « if Tf irt in » >o K K ec » «
in in *© «3 t--r^ooooo>'o''ooo*ooo'oo
böäääässdd^N" £ £ v- v «n *>

alvinn

t£-i2rW~är£i^^£ rv
o H rt* N c4 m ci ^ ^" >^ "i * * r-, ^ » M oo
VI in w «* r- f; M oq oj Oi o ooooo oo
h r- »" M ^" oi o" o H 4 H. H. H- -- H- H- H. ^3- in '

ear

I I I I I I I I I 1 I I 1 I I 1 I

°' H" H" H ^1 n! w" ^" T' "i "1 ^! ^ h! K w! K w. >nin\o\ot-^i>eoworQ\o"csoocrooo

"*.. *o, "1 ^ ^Q. ^ "l ^ ^ ^1
q -" -J r{ fj (tj iff v •vl vi vi « v) r{ ^ « « oo
U"£v{\OiOt'~r--*OO^o£oCOiO ooooo oo
r- f" oc oo 0\" oJ O O H H "^."l"-!*"!^,^,"^..

espresso

0-9 I I I I I I I I I I 1 I I I I I 1 I

tf H" H c{ o[m m v v vj vi tf ^ ■"' K K M! w^
v{ in *rf *o" f> K oo* oo oC a" c> cJ o" rf o" C) o" cJ
t*t^*cwoo"oCoCo"'o-H'-H"^"t'~--*^"J^-"~?rJ

eqntott

1.7- fi.
1.6- f.
1.5-

1.4- *S£
1.3-

1.2-

1.1-
jn~^^-*'

1- fa-*"^™**^

0.9-

; *. f". f". M. m. w.
in *n *oior~t~-oooooiO>oooooooo
t-r~-*oo*ooo>oCoo-H —i ""I "^ *"? "^ ^ _^ , - „^

doduc fpppp

Figure 6.17: Similar trend of improvement as the dynamic case.

6.6. EVALUATION OF SC, BS, AND PR ENHANCEMENTS 141

8 2-

>
£ 1.6. /

/
T*#

I IIJ J^l
= -i -i n <i "i tj ;
ö *S s£ ä 2S £ 3 !

I I I I I -r-r i i

. o o o o o
r e> *f *f •« !£

0- „; _; pi M" «i Ni v i wi tfi *q *o t-, t-. °° co CO vJv{*o*o*r-*t~oooo.o>OiOOOooooo

matrix300 nasa7

1.5-

o | | | | l l I I I I I I I I I I I I

© _; _.* ci ri fi ^ *£ ^t "I ^1 *°- ^ ^ ^ "* ^ °^
vT vj vo *o c-. r-. oo. oo o.. o± © o © © o o © ©

—< —« M M tr, tr, *r ■

tomcatv

Figure 6.18: Similar trend of improvement as the dynamic case (cont.).

142 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

frequently executed path instead, then case (1) pays high callee-save costs, and case (2)

incurs high spill costs. The register overheads of compress, sc, gcc, li, and spice

(Figure 6.16) are hurt due to this reason. There is one noticeable aspect. When the number

of registers is small, the more improvements are added into register allocation, the worse the

register allocation result. As the number of registers increases, we see that the integration

of all three improvements can make up the inaccuracy of the static estimated execution

frequency. That is, the result of SC+BS+PR is better than SC. If the static information

gives us a good indication about the actual execution pattern of a program, we see a similar

improvement trend as using dynamic information (as shown in Figures 6.17 and 6.18).

B2

x = pi

r—
-^

»\
fc

A '
1 7I

foo ()
use x

B|;|I
/

_
y s »"7

use X &B5

Figure 6.19: Dynamic versus static.

6.7 Evaluation of call-cost splitting

Given the importance of getting the rightkind of register in the previous experiment, we take

a positive action to limit the growth of live ranges, as describedin Section 6.5. Because call-

cost splitting can only be applied in fusion-style coloring, the base with which we compare

this optimization is fusion-style coloring without call-cost splitting instead of Chaitin-style

coloring. Fusion-style coloring with and without call-cost splitting all perform storage-class

analysis, benefit-driven simplification, and preference decision. Figure 6.20 presents the

results for alvinn, nasa7 and eqntott for call-cost splitting. We run the experiment

using static and dynamic information, alvinn and nasa7 use all registers; eqntott

6.7. EVALUATION OF CALL-COST SPLITTING 143

II Shullle load m CaBee Id/sl m Spil load

■ Shuttle store H CaUerld/st H Spit store

D Shuflle move

Region Region+ Region+prfl Region+
CCS prfl+CCS

alvinn
120000000-

g 100000000-
o

8 80000000-

g 60000000-

| 40000000-

I
Q 20000000-

ma
Region Region* Region+prfl Region+

CCS prfl+CCS

nasa7

Region Region+ Region+prfl
CCS

Region+
prfl+CCS

eqntott

Figure 6.20: Impact of call-cost splitting (CCS).

uses 14 integer and 14 floating-point registers.

Recall that a live range that is assigned a caller-save register but has high caller-save

cost and low spill cost is spilled to memory during the color-assignment phase, even though

there are enough registers to hold the live range. Once a live range is picked to be spilled at

this stage, no splitting is attempted. In other words, all references go through memory. The

effect of such a decision is to increase the amount of spill code to reduce loads and stores

of the caller-saved registers. The spill code that we see in Figure 6.20 (i.e., for alvinn

and eqntott) is due to such live ranges that we spilled during color assignment. The

call-cost splitting suppresses coalescing of two live range segments lr\ and lr2 if one of

them (say lr2) has high caller-save cost. As a result, the spill cost of those live ranges stays

low. If those live ranges get caller-save registers, they would probably be spilled to memory

during color assignment because of a high caller-save cost and a low spill cost. Without

coalescing, lrx (with low caller-save cost) gets the desired caller-save register; lr2 ends

144 CHAPTER 6. CALL-COST DIRECTED REGISTER ALLOCATION

up in a memory or in a callee-saved register. If lr2 is in memory, extra shuffle loads and

stores are required. If lr2 is in a callee-save register instead, no shuffle loads and stores are

needed, but shuffle moves must be inserted. However, on most modern machines, moves

are cheaper than loads/stores.

The results shown in Figure 6.20 illustrate the benefits nicely. The call-cost splitting

succeeds in isolating high caller-save cost regions at less frequently executed edges. Con-

sequently, the color-assignment phase spills fewer live ranges to memory. In the case of

alvinn, about half of all overhead operations are shuffle moves. For eqntott, there are

more shuffle moves than shuffle loads or stores.

Overall, in the case of alvinn, the fusion-based approach of dealing with spilling and

splitting, including call cost optimization, reduces total data movement overhead by 80 %

compared to a Chaitin-style allocator.

6.8 Summary

In this Chapter, I have presented and evaluated the four enhancements, storage-class anal-

ysis, benefit-driven simplification, preference decision, and call-cost splitting. The ex-

perimental results show that the call cost dominates the register overhead as the number

of register increases, because the register allocator is able to assign registers to most live

ranges. Ignoring the call cost may lead the register allocator to choose the wrong kind of

register for live ranges and introduce, as a result, more overhead operations.

Chaitin-style coloring with all the enhancements (of Sections 6.2 - 6.4) combines

the benefits of Chaitin-style allocation (pack more live ranges into registers) with the

advantages of priority-based coloring (high priority live ranges have more freedom in

choosing registers). The experimental data show that the improvement over ordinary

Chaitin-style coloring can be up to a factor of about 50 in the number of overhead operations

(55 for ear and 66 for eqntott).

Moreover, I have presented and evaluated a new technique, call-cost splitting, which

constrains the growth of live ranges during graph fusion to reduce caller-save cost.

Chapter 7

Comparison of Various Approaches

Chapter 6 describes three enhancements, storage-class analysis, benefit-driven simplifica-

tion, and preference decision. Experimental results have shown that the integration of the

three enhancements provides an effective call-cost model to reduce call cost relative to

the base Chaitin-style allocator. It is important to evaluate the enhanced model with other

existing model that is adopted by prior researchers to see if the enhanced model is practical

or not. Various register allocation approaches share the same register allocation framework,

e.g., Chaitin-style, optimistic, priority-based, and fusion-based coloring. The framework

allows us to compare as well as integrate the enhancements with those approaches. It is

interesting to see if the enhancements are effective in approaches other than Chaitin-style.

In this chapter, I compare various different register allocation approaches and discuss

their strengths and weaknesses. In Section 7.1,1 contrast optimistic coloring with Chaitin-

style coloring. In Section 7.2,1 discuss the similarity between priority-based and Chaitin-

style using the three improvements of Chapter 6. In Section 7.3, I evaluate a register

allocator using another call-cost model that has been adopted by prior researchers.

7.1 Optimistic versus non-optimistic

Optimistic coloring [9] delays spilling decisions of live ranges until the live ranges actually

fail to find legal colors. Optimistic coloring aggressively tries to find colors for those oth-

erwise spilled live ranges. If we exclude call cost from the overhead operations, optimistic

coloring guarantees to deliver a result at least as good as Chaitin-style coloring. If none

145

146 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

K K lry K

benefit_caller 100 200 100 -2SG

benefit_callee 200 100 200 50

Figure 7.1: Optimistic coloring with N=2 (1 callee-save and 1 caller-save).

of the live ranges spilled by Chaitin-style coloring gets a color, then the register overhead

is the same as that of using Chaitin-style coloring. If some otherwise spilled live ranges

are assigned colors, then optimistic coloring produces a superior result. However, if we

use the actual cost model from Section 2.1, which includes the call cost, trying to squeeze

more live ranges into registers may not be a good idea because the call cost of keeping

live ranges in registers may be higher than the live ranges' spill cost. Figure 7.1 presents a

situation where optimistic coloring generates more register overhead operations. Given two

registers, one callee-save and one caller-save, simplification blocks because the degree of

all live ranges is equal to 2. Optimistic coloring pushes all live ranges onto C and is able to

assign legitimate colors for them. What may happen is that lrx and Ir, use the callee-save

register, and lrw and lry use the caller-save register. In this case, the high caller-save cost

of lrz causes an inferior result.

Table 7.1 compares the overhead of optimistic and base Chaitin-style coloring using

static and dynamic information to estimate execution frequencies. The value in each entry

is the quotient Base-Chaitin/Optimistic. The darkly shaded regions (< 1.00) highlight the

cases where optimistic coloring results in more overhead operations than base Chaitin-style

coloring. The lightly shaded regions (> 1.00) indicate that optimistic coloring outperforms

base Chaitin-style coloring. The (blank) rest (= 1.00) indicates that optimistic coloring has

no influence. Surprisingly, optimistic coloring does not improve overhead operations for

most of the cases and, in addition, deteriorates the result of register allocation more often than

ameliorates it. There are a couple of reasons for that: (1) if the register allocator assigns

registers to the live ranges that have high spill cost, assigning registers to the otherwise

spilled live ranges that have low spill cost makes only a small difference. Therefore we

notice only a small improvement. (2) If the live ranges spilled by the base register allocator

7.1. OPTIMISTIC VERSUS NON-OPTIMISTIC 147

end up in the wrong kind of registers, the overall effect is negative. Optimistic coloring

is sometimes effective for a small number of registers because the smaller the number of

registers is, the more live ranges are spilled. Yet even in the best cases, the influence of

optimistic coloring is small (within ± 6 %) except for f pppp when using static information

(up to 36 % improvement in the number of overhead operations with a small number of

registers).

0.8

Improved Chaitin

Optimistic

Optimistic + Improved Chaitin

I I I I I I I I I III ^

$ rZ r^ c* r* <n tri-<f>£ v\ v\ ti *or-_ t-^ooccoo
*o»or~r~w"ooo£cr>_oooooooo

tt!

Figure 7.2: Optimistic versus non-optimistic for f pppp (using static information).

I incorporate optimistic coloring into improved Chaitin-style coloring (i.e., includ-

ing storage-class analysis, benefit-driven simplification, and preference decision enhance-

ments). Except for f pppp when using static information, the results are almost identical to

those obtained by improved Chaitin-style coloring alone. This result is no surprise because

the improvement of optimistic coloring is small, and the storage-class analysis spills the live

ranges that are not worthwhile residing in registers; this optimization may actually undo the

color assignment done by optimistic coloring. For instance, consider the example of Figure

7.1 again. The storage-class analysis checks the estimated saving (benefit) of keeping alive

range in a register and spills the live range to memory if the saving is negative. lr:, is then

spilled to memory in the color assignment phase. The result is the same as Chaitin-style

coloring that spills lr-, when simplification blocks. Figure 7.2 shows in more detail the

improvements due to optimistic coloring, improved Chaitin-style coloring, and improved

Chaitin-style with optimistic coloring for f pppp using static information. Optimistic col-

148 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

STATIC
o
o*

r£
*o

CO

r-.

CO

CO

CO

©

00
©

in
o

<o

© o*
CO*

<5
o

to*

r-
o

oo*
o

00
o*

oo"
o

alvinn
compress UOS

MM ffi$s

ear 0,ä8 SiSSS :?J83S

eojitott OS&K ' Ä* 0,<« .
espresso 10! iglisg; ®$$ gl§

w& ft1*!* ■#$$M W*i*S :&%:>. wm :tefe
gcc

li

:(;#(;:;

sc
doduc

fpppp
matrix300

nasa7

spice
tomcatv

&

.\.m

:1.3B

ma
i.ot
■I.Q1

1.36

:i»2;

Ä;
DJW.

i;.ofi
1,01

l.Ql

:l,0i

■•A
1.19

):.0t

i;ce
1W:

to?
M0>

i.«4:

1.07

: 1,05

m
m

102
Ä: $>£&!:

Ä

WM isi
9£*

DYNAMIC

alvirm

compress

eqntott

fpppp

355(13
«

Ä
;Ei$;

;«:■?«;

äti«:
Ä

®m
mm
iOSSS

®§9*

matrix300

spice

*M

KSS

151

*$$
W&
wm
wm

w$

W:

v\-

$m
m$

wm

$££ :B$

8SI

«
fie*

3¥§S

ma

ffl£

®?«

IP

:s»5
®M «

•
IffiSg;

K$»
«$&

li«i

fiöli

Iffiä*

;iK9ä::

WS:-

ssas
»®fi

1 /.7

sm

i§91; II iggfjT:;

iffss;

\am

WM

Ä

Ä

®SS
■Xl.f*

Ä $s?;:-

«»I;

Table 7.1: Optimistic coloring versus Chaitin-style.

149 7.2. PRIORITY-BASED VS. CHAITIN-STYLB

oring performs well with a small number of registers, but the enhancement drops as the

number of registers increases. Improved Chaitin-style coloring, on the other hand, performs

well as the number of registers increases, because the more registers are available, the more

freedom the register allocator has to choose between caller-save and callee-save registers.

We see the improvements of optimistic coloring plus improved Chaitin-style coloring as the

two are integrated. When the number of registers is small, improved Chaitin-style coloring

is not very effective, so we see only the contribution of optimistic coloring. As the number

of registers increases, optimistic coloring has less influence and improved Chaitin-style

coloring picks up, so we see the enhancement due to improved Chaitin-style coloring.

7.2 Priority-based vs. Chaitin-style

The use of a benefit function to sort live ranges invites a comparison with priority-based

coloring [16]. At first sight, Chaitin-style coloring and priority-based coloring appear to

have little in common. Priority-based coloring assigns registers to live ranges based on a

priority function and splits a live range Ir when no legal register exists for Ir.

Chaitin-style and priority-based coloring share a major core if priority-based coloring

simply spills rather than splits live ranges when it runs out of colors. That is, both

approaches try to determine the color ordering in which live ranges are assigned colors

(registers). Chaitin-style coloring simplifies the interference graph to decide the ordering

in which live ranges are assigned colors. The color-assignment phase then guarantees to

assign registers for all non-spilled live ranges based on the ordering. Priority-based coloring

uses cost analysis as the priority to determine the ordering and guarantees that the color-

assignment phase assigns registers to the most important (high savings of memory accesses)

live ranges. The two approaches aim at two different directions: (1) Chaitin-style coloring

finds an ordering that packs live ranges into registers—potentially it uses fewer colors

than priority-based coloring, and (2) priority-based coloring wants to make sure that the

most important live ranges are in registers even though it may require more colors (or spill

more unimportant live ranges). Both approaches have their own strengths and weaknesses.

Chaitin-style coloring with all three enhancements is a hybrid of the two approaches that

uses Chaitin-style coloring as the framework for packing live ranges and uses storage-class

150 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

analysis and benefit-driven simplification to achieve the same effect as the priority-based

approach.

7.2.1 Priority functions

Reducing register overhead operations is the primary goal of the priority function. Hence,

the more memory accesses saved by assigning a register to a live range, the higher the

priority of the live ranges is. The bigger a live range, the more conflicting live ranges

cannot use the same register as the live range. That is, higher register pressure is introduced

if bigger live ranges reside in registers. Higher register pressure is more likely to cause

overhead operations. Therefore, the bigger a live range, the lower the priority of the live

range is. Based on the two conditions, we use —s—- ,;,,.(£)— & tne

priority function for priority-based coloring, sizc(lr) is the number of basic blocks that Ir

contains. This priority function is the same as the one used in [16]. The spilling heuristic

of Chaitin-style coloring and optimistic coloring is 'j^ff • The neuristic tends t0 sPin

live ranges that have low spill cost and high degree. The priority function and the spilling

heuristic are alike. The numerator of the priority function reflects the spill cost because the

bigger the spill cost, the bigger the two benefit functions are. The denominator reflects the

degree of live ranges because the bigger the live ranges, the more likely the live ranges have

higher degree.

There are a few ways to determine the color ordering for priority-based coloring:

• removing unconstrained: Unconstrained live ranges are removed from the interfer-

ence graph and pushed onto C. The remaining live ranges are pushed onto C from the

least priority to the highest priority. Chow uses the same approach in [16].

• sorting unconstrained: Unconstrained live ranges are not pushed onto C in a priority

fashion if we simply remove unconstrained live ranges. That is, the kind of regis-

ter that a higher-priority live range wants is possibly taken away by lower-priority

live ranges. Sorting unconstrained live ranges alleviates the problem by pushing

unconstrained live ranges onto C also in a priority manner.

• sorting: All live ranges are purely sorted in terms of their priorities. The sorting

7.2. PRIORITY-BASED VS. CHAITIN-STYLE 151

approach guarantees that the higher the priority, the more likely that live ranges are

assigned their preferred kind of register.

All three heuristics produce nearly identical register overhead (± 10%) for most cases.

A detailed comparison is given in Tables 7.2 and 7.3. RU, SU, and S indicate Removing

Unconstrained, Sorting Unconstrained, and Sorting, respectively. There are two rows for

each SPEC92 program, RU/SU and RU/S. The entry is the ratio of the register overhead of

the two heuristics, e.g., 1.04 for RU/SU means that the RU heuristic introduces 4% more

overhead operations than the SU heuristic. The empty entries in the tables indicate the

two heuristics generate the same register overhead (ratio is 1.00). The experimental results

show that the RU and SU heuristics give identical results except in a few cases. S(orting

approach) yields much better results (less overhead) for ear (both static and dynamic) and

espresso (dynamic).

Figure 7.3 shows an example where S yields a better result than RU and SU. Given N=2

(1 callee-save and 1 caller-save), lrv is the only unconstrained live range (degree = 1). RU

and SU then remove lrv and assign colors to the rest live ranges in the priority order, lrx,

lr,, lr.w and lry. The callee-save register is assigned to lrx because lrx is considered the

highest priority live range. As a result, lrv can reside only in the caller-save register. The

RU and SU approaches save 5900 load/store operations. S treats lru as the highest priority

live range and assigns the caller-save register to lrv. This assignment saves 8500 load/store

operations.

lrw ^ lry «>. lrv

benefit_caHer 1500 2000 1000 1500 4000

beneflt_callee 1000 1000 400 1000 1000

size 4 3 4
'■'

2

degree 2 3 2 1> 1

priority 350 667 250 50() 2LH.H.J

(a) (b)

Figure 7.3: Priority functions with N=2 (1 callee-save and 1 caller-save).

152 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

7.2.2 Evaluation

We compare improved Chaitin-style coloring with priority-based coloring using the sorting

heuristic. We can classify the SPEC92 programs based on the results into 3 classes. Figures

7.4,7.5,7.6, and 7.7 show the results.

• Both priority-based and improved Chaitin-style coloring are doing equally well.

Examples are alvinn, eqntott, gcc, and li (Figure7.4). For alvinn, packing

live ranges is important for small numbers of registers. When the number of registers

increases, packing live ranges becomes less important (because high spill-cost live

ranges are most likely to find registers) so we see that the two approaches yield similar

results.

• Improved Chaitin-style coloring is superior to priority-based coloring, compress,

ear, sc, doduc, nasa7, spice, and tomcatv fall into this category (Figures

7.5 and 7.6). For nasa7, improved Chaitin-style coloring produces slightly fewer

overhead operations than priority-based coloring when the number of registers is

small. When the two approaches have more registers, the results start to diverge.

Chaitin-style coloring produces a similar improvement trend in both the dynamic

and static cases. Priority-based coloring, nevertheless, does not improve overhead

operations a lot over the base in the static case. In this case, priority-based coloring

introduces 4 times more overhead operations than improved Chaitin-style coloring.

The same scenario happens to ear as well. For tomcatv, the priority-based

approach spills more live ranges than the improved Chaitin-style approach, both in

the static and dynamic cases, due to the inability of packing live ranges densely.

For sc, improved Chaitin-style coloring yields bigger improvement than priority-

based coloring in the dynamic case. We, therefore, classify it into this class although

priority-based coloring using static information has slightly fewer overhead operations

than improved Chaitin-style coloring.

• There is no clear winner between the two approaches. Examples of this class are

espresso, fpppp andmatrix300 (Figure7.7). For espresso,priority-based

coloring is clearly superior to improved Chaitin-style coloring in the dynamic case

but not in the static case. If we compare the results for fpppp (static) (Figure 7.7)

7.2. PRIORITY-BASED VS. CHAITIN-STYLE 153

STATIC
o
o*
vi"

6 00

en

oo"
o"

00
d"

ON

vT

3
O O

on"

<o"

o"
C-"

*0
0O~
o"
it"

oo"
o"

00
O

alvinn RU/SU I-.Ö1 1:J11:

RU/S t:02 iws: 1,03! xm),W

compress RU/SU

RU/S titti;

ear RU/SU
ill RU/S 1*4 «; $Hj| 2^5 569 3,S9;: m 3iS5: :U*Z 1>H Ä 9K??Ä

eqntott RU/SU
VfW 10?

1*2

1 ov l.Wv

11»:

1.05 («if li02

espresso RU/SU

RU/S &ste $*> 1« ;$$.&g|:; I«! t.or ;Ä),01 1.0* ;«*J; [$M Wi 1,1« J.U4),<W

gcc RU/SU «i»::

RU/S ;«««;; Ä ;$?i Äii iÄ Ä; i#m Ä; ;;$*: M$i :^:i 'MM :;?*?;::

li RU/SU

RU/S $?£; ij$i :0»£ *;«»; :i>m--

sc RU/SU

RU/S **$» 1,01 102 102: l.Ofr 1.1)6 IM- ij>y-

doduc RU/SU

RU/S mm »s»; ;&ss; Sä» 101: 1:01: IS?;; M* ;&(»; i*8fe :.«:!»: ;???#; ®Mi $$M
fpppp RU/SU

RU/S tu &Sfc « Ä w& Al Ä iü;: $m Ä ;«fi; 1:01.: 1.0) 1,01: Mi: MS';

matrix30C RU/SU

RU/S Ä $!$
nasa7 RU/SU

RU/S $$! •$M $$*
spice RU/SU

RU/S $& 4% &?$ W& ■S-& •pK-^* ;ü ®$! M :p£: $$$■ IS??* :$*?■ Si«: ;S>« ;&$>; W& jOJjfe

tomcatv RU/SU

RU/S ;&& . i&ss m && si« S'S* 1.04 ;>** 1.04 1.05 t»%

RU: reir iovin eun< :onst raine d s U:so rting uncc astrs ined S:s(jrtinj

Table 7.2: Comparison of priority-based heuristics (using static information).

154 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

DYNAMIC
o
cT
vn vC vo;

es
vo

to CO

o"

*t"
""L

o*

vo
vo*
o"

VO

vo"
o"

VO

c-"
o"

c"

VO

r-"
o"

•<t"

VO.

oo"
o"

•*"

vo_
oo"
o"

vn

oo"
o"

VO"

aivinn RU/SU
RU/S W2: 1,02 1.08:

>•«■
1.«: 1.02:;

compress RU/SU li«! tflt i:03

RU/S 0»3* <«: 8S&;;: VM 108 WO

ear RU/SU
RU/S Ä *S>s X54; 3.17: *>*»: 45.04 4i.S4: 52. W 34,00; 1034 20.34: 2034

eqntott RU/SU 1.18 1.01:: l-W::

RU/S Mi: 1.01: ita :l:0i::: 1.05:: 102 4.02::

espresso RU/SU 1.Ü5 104. «:«E* M*8 **K* *?s:s MM l.ot

RU/S Ä 1ÖH:': im W- W :ö&' *<*' '(.W: 144: \ii lia i'ütf" l?6 *:?*:;: 1.1? 142 : Hi*?S' ;iiS?:::::

gcc RU/SU
RU/S » ite Ml JU«: i-te: l&n :»i: 4:0?: 1.01 :«M 1.01 ;i;&s j:»::: :}:«:: :):«:: J:« . ;)#:;:: :>#::

li RU/SU
RU/S 8M Ä

sc RU/SU
RU/S SBS» *9K)M

doduc RU/SU
RU/S I8SSS 838!; w& 8S& I««!* Wf WM :8*s; jg;§5;::j; Ä* :Ä: AS ftüffÄ $§£;? iSSfti

rpppp RU/SU
RU/S m$i Ä Ä *0lW :ii|?g

matrMOO RU/SU
RU/S

nasa7 RU/SU
RU/S Wk $$: Ä

spice RU/SU
RU/S w& m m% $i! m Ü :&?Jä Wfi Ä; $;§•?*: SÄ 83$$; Mag $:Ü§*:

tomcatv RU/SU
RU/S ;a^K 'im :Et?; $$£ 88$ S3$ 4$5 I!36 IDS

] RU: rem ovin nine onsti ainei J SI J: so -ting unco nstra ined S sortir lg

Table 7.3: Comparison of priority-based heuristics (using dynamic information).

1.2. PRIORITY-BASED VS. CHAITIN-STYLE 155

70-

60-

50-

I
a
i 30-
3

20-

10-

o4J!¥*T#TlV^^r,ii • i i i i i i i i i

tnin\o*oc~r-^ooooo^o^oooc>o©©©

— Improved
(static)

Chaitin »*. Priority-based
(static)

•■-
Improved
(dynamic]

Chaitin -ft- Priority-based
(dynamic)

4-,

-Ä 3.5-
/$

3- -Xf
Iw- &

e 2-
0>

3 1.5- «
1- («-*-*■

W&3r.

0.5- \--ft~o

■ 1 1 1 I
S" Cf Ä fTcTfÖ1 ft ^ =? 6? <X <S <S <£<$<$ £;<?
O H H" (M C^ f>f*i,T',f1'tl''i'4*4r£t"{c40^00. / m" >o" *o K K » M ^| o>_ o o © © © © 22
K h »' oo" ov »'. o o H* •■ H- H> _» -*_£■. _? ..r

1.8-,

eqntott

1.6-»< * * * » * ■&

1.4- S«««*"«

1.2-

1-

0.8-

0.6- I I I I I I I I 1 I I I 1 I I I i

alvinn

r d c{ «*? e? •* rf «n vT v© yf K r-f oS oo_ oo;
"vot~-t-^oJoooTc>roo 222222
" oo* of of o* © ■ * - —' —■ —■ i M N M n t '

I I I I I I 1 I I \ I I I I

°" H' -* H ^ n' n' ' "f "" "1 *. ^ h. ift w io vo i-.|>oo"oo;ofofo© 22
^r£oo"copfof©©'-',,H.--»

I I I
© & <S- £•
K W M 00

li gec

Figure 7.4: Priority-based « Chaitin-style.

156 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

-T—i—n
£ fj ^ <*?

I I I I I I 1 I I t

*CTr«a"'u"l'<AVOVor-^t-"'0O eo oo
© o © o p oo c* *> © •

^ü»H---Ht>Jr<*^f^2;3^J^

compress

r n ^i H! «*1 "I ^ v- - -
>* wT \o *o c» (■• * M. 'I °1 2
' P-* «T oo* * Oi o © N' N 2 2 2 S '

ear

| 0.8.

I I I I I I I I I I I I '' ' I'

O H -H M N rt M * V* «' « « « f~. t^ w. M. W.
«" m' » w ^ K rf ^ »' »' o ° ° S 2 S 2 2
6088äeiSS.32 3 3 S rf s 2' 2" 2

jS_-„s-»-*-is--2-'«--»' ./*
»■B-H-«-W*^

•4? ;3»-«

0.6 | | | | | I I I I I I I I I I I I I

o «* -H* M N n m V v m' « » w t^ r-, w » »
m vt w x> t- K rf rf oi o' o o 2 2 S 2 2 2
t G S. S ä Si S S d 3 3 3 m «a 2- s- «J 2"

doduc

m a ofr-iw ■»■«■■» a «■!«■««■■»■■» « ah«-«

\r***~
o" 4 4 rl cf m rt' TT" v « w «* >o ^ ^ » "i »
m' in tf <c' K r" »' »' "! * ° 2 2 2 o « 2 H

6 £ £ £ £ £ 2* 2* d :5 ^ 3 <* m ■* *f £ £

0-6 1 | | | 1 I I I I 1 I I 1 1 I I ' '

o* H H fi N ri e? T* «f «n «A \o *o t-^ r-, oo oo, oo_
iK / «" >o ^ h »" « o; 1 0 3 o g o S 2 S
r" K » » * J, o o - " igg'aassa:

nasa7 tomcatv

Figure 7.5: Priority-based< Chaitin-style.

7.2. PRIORITY-BASED VS. CHAITIN-STYLE 157

0.6 | | | | | | | | l I I 1 I I I I I

3 _- _t 3 cJ rf m •/ ■»' "> <rf >» «> t-. f. « •». °°
' -' -'-V h to» ft|9 o o 223 5 2 3
CfcSS « ^oi o o '

spice

Figure 7.6: Priority-based < Chaitin-style (cont.).

with the results shown in Figure 7.2, we notice a similarity between priority-based

coloring and the integration of improved Chaitin-style and optimistic coloring. When

the number of registers is small, we see the trend of optimistic coloring. As the

number of registers increases, we see the trend of improved Chaitin-style coloring.

From the experimental results, improved Chaitin-style coloring is superior to priority-

based coloring in two ways: (1) Chaitin-style coloring is able to pack more live ranges into

a set of registers, which potentially introduces fewer spill code operations, (2) the priority

function used in priority-based coloring may cause low spill-cost live ranges to take away

the preferable registers of high spill-cost live ranges.

The example in Figure 7.8 illustrates how the second case happens with N=3 (1 callee-

save and 2 caller-save). The two benefit functions, benefit.caller and benefit.callcc, of

each live range are shown in the table. Priority-based coloring considers lrv to have the

highest priority because of high spill cost. Subsequently, the callee-save register is assigned

to lry, which leaves the two caller-save registers for lrm lrx and lrz. This color assignment

results in a bad register assignment because the penalty of picking the wrong kind of register

for lrw is high. The assignment ends up with saving 8300 memory accesses. Benefit-driven

simplification, on the other hand, can first simplifies either lrx or lr,. Consequently, all

remaining nodes are unconstrained (degree = 2). Benefit-driven simplification using the

second strategy (Section 6.3) puts lrw on the top of the color stack because lrw has the

highest penalty of picking the wrong kind of register. As a result, improved Chaitin-style

158 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

espresso fpppp

=>. -. -in n

matrix300

Figure 7.7: Priority-based >< Chaitin-style.

7.3. CHAITJN-STYLB VERSUS CBH 159

coloring saves 11000 memory accesses. This is the reason why priority-based coloring

yields much more overhead operations for nasa7 and ear in the static case.

K K lry -'.'.

benefit_caller 300 2000 4000 200o

benefit_callee 3000 2400 4500 240<">

size 4 jt 4 '.;

degree 3 2 3 ■2

priority 750 800 1125 800

(a) (b)

Figure 7.8: Priority-based coloring with N=3 (1 callee-save and 2 caller-save).

7.3 Chaitin-style versus CBH

In this section, we compare improved Chaitin-style coloring with another base model that is

implemented in various compilers. This model extends Chaitin-style coloring to explicitly

model the calling convention. According to Briggs [8], this model also extends hierarchical

coloring(as described for the Tera compiler [12]). Based on the main components, we name

this cost model "CBH" (forChaitin/Briggs-Hierarchical coloring). Although the CBH cost

model has been adopted by prior researchers, there is no published report of the model's

effectiveness.

The comparison of this section serves three purposes. First, it allows us to know if

our base Chaitin-style coloring is a reasonable base or not, relative to a model adopted by

other compilers. Second, the comparison presents the effectiveness of the CBH cost model.

Third, the comparison also shows if the call-cost directed Chaitin-style model outperforms

CBH.

In the CBH approach, live ranges that cross calls interfere with all caller-save registers.

In other words, none of the caller-save registers can be assigned to live ranges that contain

calls. A live range is introduced for each callee-save register extending from the entrance

160 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

of a routine to the exit of the routine. The live range is called a callee-save-register live

range. Each callee-save-register live range has two references, one at the entry and the

other at the exit (these represent save/restore of the callee-save register at the entry/exit).

With the execution frequency of the routine, we can get the spill cost for the live range.

The call cost is then modeled by CBH just like regular spill cost. Register allocation

performs simplification to determine if it is worthwhile using a callee-save register. When

simplification blocks, one live range with the least spill cost is chosen from the remaining

live ranges, including the callee-save-register live ranges. Choosing a callee-save-register

live range as opposed to a regular live range to spill means spilling each remaining ordinary

live range is more expensive than saving/restoring the callee-save register at the entry/exit.

Once a callee-save register is spilled, the callee-save register can then be assigned to live

ranges. This is similar to the way Chow handles callee-save registers [16]. That is, the first

live range that uses a callee-save register pays the callee-save cost.

I compare CBH with improved Chaitin-style coloring. To allow an easy comparison

of the new figures with the figures in Section 6.6,1 use the same base line. The data for

improved Chaitin-style coloring in Figures 7.9, 7.10, and 7.11 are the data (SC+BS+PR)

from Section 6.6. Again the y-axis of all figures shows the ratio of register overhead

operations relative to the register overhead produced by the base Chaitin-style. The bigger

the number on the y-axis, the more overhead operations are removed.

We can analyze the data from several different perspectives. CBH represents a model

of call cost that is conceptually simple (always a good property). CBH does not allow live

ranges that cross calls to use caller-save registers because they interfere with all caller-save

registers. Those extra interference edges, however, may overly constrain register allocation,

especially when there is not a sufficient number of callee-save registers because all live

ranges crossing calls are competing for callee-save registers. Examples of programs that

exhibit this behavior are alvinn, compress, ear, espresso, gcc, li, sc, doduc,

matrix300, and spice. For those SPEC92 programs, high spill-cost live ranges that

cross calls are spilled because there are only a small number of callee-save registers. As the

number of callee-save registers increases, the constraints become less critical, and CBH is

able to assign registers effectively for alvinn, ear, andmatrix300.

Then there are cases where improved Chaitin coloring and the CBH approach pro-

7.3. CHAITIN-STYLE VERSUS CBH 161

duce almost identical results, i.e. the same number of overhead operations, f PPPP and

tomcatv fall into this category.

Sometimes the CBH approach does not improve the quality of register allocation using

profile information. Examples are compress, li, sc, gcc, doduc, nasa7 and spice.

For those programs, we see that CBH cannot catch up with improved Chaitin-style coloring.

The main reason for this situation is that many live ranges on the most frequently executed

paths also cross call sites that are on less frequently executed paths. All those live ranges

are competing for callee-save registers regardless the fact that the call sites contained in the

live range are not frequently executed. Consequently, those live ranges are either assigned

callee-save registers or spilled. As aresult, CBH spills more than necessary and incurs high

register overhead (spill code) for such programs. On the other hand, improved Chaitin-

style coloring pays caller-save cost at occasionally executed paths and assigns caller-save

registers to live ranges that do not cross calls on frequently executed paths.

Another noteworthy aspect is that CBH requires a fair number of registers to make up

the deficiency of its call cost model for matrix300 and nasa7. The data for improved

Chaitin-style coloring and CBH of matrix300 (dynamic) show that improved Chaitin-

style coloring continues improve beyond using (9,7,3,3) registers, whereas CBH still suffers

from the lack of callee-save registers until it has 4 additional integer and 3 additional floating-

point callee-save registers. nasa7 follows a similar pattern. For ear and eqntott, we

see a similar trend although it is less pronounced. However, the situation is not as severe as

for matrix300 or nasa7, and CBH needs only a few more registers to compensate the

limitation of its call cost model.

For ear and nasa7, improved Chaitin-style coloring achieves a big improvement for

both the static and dynamic cases. CBH, however, produces roughly identical overhead

operations as the base Chaitin-style coloring in the static case. From those figures, we can

derive the conclusion that improved Chaitin-style coloring is superior to CBH and the "base

model" is actually reasonable after all. For a lot of register ranges, the base Chaitin-style

allocator is actually superior to the CBH-style allocator.

162 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

Improved Chaitin
(static)

Improved Chaitin
(dynamic)

CEH
(italic)

CBH
(dynamic)

4-

3.5-

3-

2.5

2-

1.5-

1.

0.75-

0.5.

0.25

o4nToTafaf:

»-«-«"' ̂

f

. . . 1 I I 1 1 I I 1 I I '

„ - „ cs M <n e> ■* ■» *n «ft «> «>. t-. t-, eo oo ec
i/f m" ><f «T r-' K te" « » o* o ° 3 233 S3
£ £ Sf ?£ £ £ 3" S* 3 d ^ K rf c* -r < £ £

alvinn

»—*-•*

i i i i i i i ij^'j ' '

nu-T'^'^t^r^oiJ'e'ooCoi © 52

I I I I
C ©© <o ©

^,rIc4'e^c^^'Tf>2!

compress
50.

40

i 3°-

0 20.
6

« 10-

I I I—I—P
f Off f[S!
i -< <s o tt t
i lO « h h I

I I I I I I I I I

■ m «i « xj K K to » «
cease.

ear eqntott

. i i i i i i i i i i i i ' i > ' . . i i i i I i I i I i I ' ' ' '

o « -"' c{ ci v\ ?i ■< ■£ n "i ^1 *"- ^ 2- ~- ~* ~- v{ v{ vo *o I- r~ « cc ©i ■* o © o © o © o ©

espresso <30C

Figure 7.9: Improved Chaitin-style versus CBH.

7.3. CHAITIN-STYLE VERSUS CBH 163

1.75-

1.5-

|U5-

•a
e '■

£ 0.75.

0.5

*.«- j^.4..«-s»"«"»-'

^js-e-tua-s-8

0.25 1 ! | ! | | | | | I I I I I I I I I

o 4 rt" M M w" m t' ^' 'i "i * * f; ^. °°. M. M.
m «i » » ^ K » * *. * 2 2 2 S S S 2 2
t c s s ä a 2] a 2 3 g' 3 g g s j a 2

;>-O*^0*f-.

0 I i i I—I I I I I I I—I I I I I I I

o 4 H" M M m pi v if fi vi w »e r^ r-, w » »
■/Ivf'O'oriKooecO'. *. 22222S22
tCSSs£ää233B^2ä£2 33SS

COS2.S2.as

I I I I I I I '^J^'JJ„J,

rt^o \o I-. f; ce « (?>. » o o 22;
, -H ;H rt rf W M "T

doduc

1 i 1 1 1 \ 1 1 1 1 1 1 1 1 1 '

fpPPP

5- 6
f-
h-

1-

0-

«HHHS

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 '

pCr-0O g2, P*, $£, ° 2 '

d H H N* ri m ■ '
v} vi 10 >o t-* K ; a d --.

matrix300 nasa7

Figure 7.10: Improved Chaitin-style versus CBH (Cont.).

164 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

13-

1.2-

1.1-

s
•8 0.9-

I"' «0.7.

0.6

01

0.4

A \
i i i i i i \ i i i i i i i i i '

o* -T -» c-T cJ ej Pl "£ *T. "i »\ « ^o r-; r^ w oo oo

& t £ ä £ e s s d d 3 3 £ «- ^ ■*" ^' *"

spice

i i i i i i i i i i i i i i '

tomcatv

Figure 7.11: Improved Chaitin-style versus CBH (Cont.).

7.4 Summary

In this chapter, I evaluate the effectiveness of optimistic coloring. The results indicate that

the influence of optimistic coloring is small in general. In addition, optimistic coloring

needs to take call cost into account. Otherwise, the overall effect may be negative.

From the experimental results, improved Chaitin-style coloring is superior to priority-

based coloring. Chaitin-style coloring is able to pack more liveranges into a set of registers.

The enhancements described here allow Chaitin-style allocation to order live ranges, thereby

achieving similar benefits as can be obtained from the priority function of priority-based

coloring. As a result, low spill-cost live ranges do not take away the registers preferred by

high spill-cost live ranges.

Coloring based on the CBH cost model imposes the constraint of not assigning caller-

save registers to live ranges containing calls. Due to this constraint, callee-save registers

then become the most critical resources in a lot of cases. As a result, the caller-save

registers may be underutilized; live ranges containing calls are spilled although the calls

may be executed only infrequently.

One interesting aspect of register allocation is that each model hits some aspects of

dealing with call cost. There are some programs (or some register ranges for some programs)

where the priority-based and/or CBH-style approaches perform reasonably well, as there

are situations where optimistic allocation performs well. One of the challenges is to devise

7.4. SUMMARY 165

an approach that combines the benefits of all models, and I demonstrated that storage-

class analysis, benefit-driven simplification, and preference decision can be integrated into

Chaitin-style coloring. This improved Chaitin-style register allocator provides an effective

way to deal with modern calling conventions for a wide range of programs.

166 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES

Chapter 8

Extensions

There are two important techniques of register allocation that have not yet been covered

so far: coalescing and rematerialization. Both techniques improves the quality of register

allocation. Coalescing tries to eliminate unnecessary copy instructions. Rematerialization

replaces spill code by instructions that recompute the values. It is important to see how

coalescing and rematerialization interact with fusion-based register allocation. There are a

couple of interesting questions that we would like to be able to answer. Can fusion-based

register allocation implement rematerialization (Section 8.1)? Can fusion-based register

allocation improve coalescing quality (Section 8.2)? In this chapter, we discuss each of

these aspects in detail.

8.1 Rematerialization

Most modern processors require multiple cycles to access the cache, i.e., a memory access

needs more than one cycle; on the other hand, several values can often be recomputed using

a single instruction. Rematerialization recognizes that some values are cheaper (require

fewer cycles) to recompute than to spill to memory and uses the instructions that recompute

the values to replace the spill code. Because the register allocator knows the value of a

rematerializable live range, to spill a live range, it is not necessary to insert a store after

each definition of the live range. Then instead of inserting a load before each use of the live

range, register allocation places there the instruction that recomputes the value. [10] lists

opportunities for rematerialization:

167

168 CHAPTERS. EXTENSIONS

• immediate loads of constants: For a machine that has the immediate addressing mode,

immediate loads of integer constants can be accomplished, e.g., using li on MIPS,

set on SPARC, or ldil on Alpha processors.

• computing effective address: The constant offset of the stack frame can be computed

using add with immediate addressing mode, e.g. "add srl, fp, 64".

• loads: The value of a load from a known constant location in either the stack

frame or the static data area can be reloaded using one load instruction, e.g., "load

srl, 64 (f p)". Although the load instruction is as expensive as the spill load, we

save/eliminate spill stores that write the value to the spill location.

• loading non-local frame pointer from a display.

The cost of spilling a rematerializable live range ought to be modeled differently from a

live range whose value can not be «materialized. For instance, fusion-based coloring uses

one of the three heuristics in [5] to choose one live range from the set of constrained live

ranges. The heuristic is degre^^lea(lry where cost(lr) is a function of spilLcost(lr) (the

weighted reference count). Assume that a memory access takes two cycles. The cost(lr)

is redefined as follow:

_ / rcmatcrializati<mjcost(lr)) if Ir is rematerializable
cost{lr) - | spm_cost(lr)*2 otherwise

rcmatcrializationjcost(lr) is the weighted cycle count of recomputing the value of Ir.

J10
x = &a

y = m/3

H
10

... *(x)...

100

(a)

10

Bi

B2

ho

x = &a
y = m/3
star© y

r^ 10

... *(x) ...
loady
...y...

-inn ▼

(b)
100

Bi
1 10

x = &a
y = m/3

r* 10

... *(x)...
...y ...

mo ▼ 100

(c)

Figure 8.1: Spilling a rematerializable live range.

Bi

8.1. REMATERIALIZATION 169

Consider the two live ranges, lrx and lry, in Figure 8.1(a). Both x and y are defined in

D\ and referenced once in D2. lrx and lry have the same spilLcost. The numbers next to

control-flow edges are execution frequencies. Spilling x or y to memory incurs 220 cycles.

Figure 8.1(b) shows the code after we spill y. lry can not be «materialized because the

cost of recomputing "y=m/3" is expensive. lrx can be «materialized because recomputing

address a can be done using one instruction. The rematerialization_cost of lrx is 100 cycles.

Assume that the register allocator requires to spill either lrx or lry. The register allocator

recognizes that «materializing lrx is cheaper than spilling lry using the redefined spilling

heuristic (depicted in Figure 8.1(c)).

8.1.1 Prior approaches

Chaitin et al. proposed and implemented the «materialization technique in the IBM PL.8

compiler [13]. Briggs et al. [10] show that there are cases where the value of a live range

is rematerializable in some parts of the live range, but not the whole live range. The

«materialization technique in the IBM PL.8 compiler was not integrated with live-range

splitting. Hence, once the rematerializable value of a live range is killed within the live

range, they give up potential opportunities of «materializing some parts of the live range

and spilling the rest.

Briggs et al. [10] extend Chaitin's approach by splitting each live range into its com-

ponent values using the SSA representation [20] so that each live range has exactly one

definition. The goal is to isolate rematerializable values so as to expose all possible oppor-

tunities of «materialization. Wegman and Zadeck's sparse simple constant algorithm [62]

is modified to propagate «materialization tags to each value. Because splitting each live

range into its component values may cause excessive shuffle code (moves), conserva-

tive coalescing and biased coloring techniques are used to eliminate unproductive moves.

Again the shortcoming of their approach is that splitting decisions are made prematurely.

Conservative coalescing and biased coloring techniques do not guarantee to remove all

unproductive moves. In addition, splitting points may be on frequently executed paths.

Failing to eliminate those splitting points causes a lot of excessive shuffle code.

170 CHAPTER 8. EXTENSIONS

8.1.2 Rematerialization in fusion-style coloring

This section presents how rematerialization can be implemented in fusion-style register

allocation. There are 3 phases in which fusion-style coloring deals with rematerization:

propagating rematerialization tags, graph construction, and shuffle code insertion. A new

phase is inserted before the graph construction phase to propagate rematerialization tags.

Therefore, when constructing a live range, we know if the live range is rematerializable or

not.

Propagating rematerialization tags

The modified Wegman and Zadeck's algorithm used in [10] does not fit into our model

because the actual splitting decisions are not yet made and live ranges are not yet built. We

can use data-flow analysis to propagate rematerialization tags. The data-flow equations are

defined as follows:

Remln(D) = [j RcmOut(J)
Jefred(B)

RcmOut(B) = (Rc.mIn(D) ■ -^RcmKill(B)) + RcmGcn(B)
RcmGcn(B) = [instx \ instx g B A the value of instx is never killed in B)
RcmKill(B) = \instx \ dcfx e B)

The notation instx represents an instruction whose target is virtual register x and

the value is rematerializable, e.g. "add i, fp, 64". instx € B indicates that the

instruction instx shows up in the schedule of block B. dcfx e B denotes that there

is an instruction in B whose target is virtual register x. Hence, RcmGcn(B) is the set

of all instructions that appear in block B and whose values are rematerializable and not

killed/modified. RemKill(B) is the set of all instructions whose values are rematerializable

and targets are defined in B.

Graph construction

Once we have computed the data-flow analysis for rematerialization, we can set the rema-

terialization attribute for each live ranges. The attribute for a live range that does not span

across blocks (local) can simply be determined by checking if the value of the live range is

171
8.1. REMATERIAL1ZATI0N

rematerializable or not. If a live range ln(x) is Uve at the entry of a block Bu and there

is only one definition instx in RcmIn{Bx), the «materialization attribute of /r,(x) is set.

Likewise, for a live range lrx{x) that is defined in a block B, and live at the exit of a block

Bu *e «materialization attribute of ln{x) is set if instx is in RcmOut{Bx) (there can

only be at most one instx from ßi in RemOut{B\)).

The rematerialization attribute is propagated, like has.def, during the graph fusion

phase. When two live ranges, In and lr2 are combined, the rematerialization attribute of

the combined live range lrn is non-rematerializable if one of them is non-rematerializable.

rcmatcrialization(lr12) = rcmatcrialization{ln) A rcmatcrialization(lr2)

Shuffle code insertion

On an edge E = (BUB2), shuffle code is inserted for a virtual register x that has been split

on E, i.e., if ln(x) and lr2(x) have not been assigned the same storage location. Again

we use the notations r\x and rlx to indicate the two registers that are assigned to ln(x)

and lr2(x) respectively. There are three cases to consider when register allocation inserts

shuffle code for rematerializable live ranges.

• shuffle store (lr2(x) is spilled): A shuffle store was supposed to be inserted on edge E

to store the value of In (x) as shown in Figure 8.2(a). If lr2(x) is «materialized, then

the shuffle store is not necessary and removed (as depicted in Figure 8.2(d)) because

lr2(x) does not access memory.

• shuffle load (ln(x) is spilled): A shuffle load was supposed to be inserted on edge E

to load the value of ln(x) as shown in Figure 8.2(b). If ln(x) is «materialized, the

shuffle load is then replaced with the instruction that recomputes the value of ln{x)

as depicted in Figure 8.2(e).

• shuffle move: A shuffle move was supposed to be inserted on edge E to copy the

value of ln{x) to lr2{x) as shown in Figure 8.2(c). If ln{x) is rematerializable and

the definitions of ln{x) can be eliminated, the shuffle move is then replaced with the

instruction that «computes the value of ln(x) (as depicted in Figure 8.2(f)). Section

8.1.3 lists the conditions for eliminating definitions of a rematerializable live range.

172 CHAPTER 8. EXTENSIONS

lr2(x)

(e) (f)

Figure 8.2: Shuffle code for rematerialization.

8.1. REMATERIALIZATION 173

8.1.3 Optimization of rematerialization

There is one optimization that we can do to improve the result of rematerialization by

eliminating the instruction instx of a live range lrx. Removing instx of lrx must meet three

conditions:

• lrx is rematerializable.

• lrx contains no use (only the definitions).

• Every spilled adjacent live range of lrx that uses lrx's value is «materialized (no

shuffle store is inserted).

8.1.4 Examples of rematerialization

The example of Figure 8.3(a) is taken from [10]. Assume that we use loops (or blocks) as

regions. Register allocation first performs the data-flow analysis of propagating rematerial-

ization tags; then it identifies that ln(p) and lr2(p) are rematerializable, but not lr3(p) (two

distinct definitions reach B3). Consider the case where B2 has a lot of register pressure, but

Bi and B3 don't. The register allocator chooses lr2(p) to spill and «materializes it during

the graph simplification phase. After fusing graphs, we obtain the result in Figure 8.3(b).

Live ranges of p are split on <BUB2> and <B2,B3>. The shuffle store on <BUB2> is elim-

inated; the shuffle load on <B2,B3> is replaced with "p=Label" (in B') which recomputes

the value of p. The instruction "p=Label" in B\ satisfies all three conditions and is removed.

Consequently, fusion-based register allocation with the rematerialization analysis is able to

obtain the result in Figure 8.3(c) which is the "ideal" result described in [10].

Moreover, if the register allocator keeps track of the three conditions, the register

allocator can perform the optimization and removes lrx while fusing graphs rather than

after fusing all graphs. Removing lrx during the graph fusion phase alleviates register

pressure because lrx does not occupy one register resource. As a result, subsequent graph

fusion could benefit from the optimization (the resulting graph contains one live range fewer

than otherwise).

The example in Figure 8.4(a) shows a case where the fusion-style approach provides a

better framework than Briggs et al. The code consists of two loops. The number next to

174

1

CHAPTER 8. EXTENSIONS

i
1 p = Label Bi Bl

p = Label Bl 1 t \ 1» rt^Ofl:... ■ * it mum

p = Labe!
... *(P).- 111 p = Labe!

... *(P) - H r \ i '

... *(P) -
B2 1

r

/ mmm
B' L

r
/

'

p = La bei B' p K Label

\ " r*u
p = p + 1 B3 p = p + 1 B3 p = p + 1 B3

L
(

\
1)

L ' 1
(b) (c)

Figure 8.3: Example of rematerialization.

a control-flow edge is execution frequency. We notice that the code is not loop intensive.

On average, the trip count of the first loop is 2; the trip count of the second loop is 4. The

shaded region is the most frequently executed path. Assume that the code in Z?3 causes high

register pressure, and register allocation needs to spill one live range. Briggs et al. split the

live range of p on <B5,B6> and spill p to memory in Du D2, B3, Z?4, and B5. The splitting

and spilling decisions result in 110 overhead cycles (100 cycles of shuffle cost on <B5,B6>

and 10 cycles for "p=Label" of B3) as shown in Figure 8.4(b).

If fusion-style coloring chooses loops as regions, shuffle code on <Bs,B6> is inevitable

because register pressure of B3 causes the live range of p to be spilled to memory in the

first loop, like the result of Figure 8.4(b). Hence, there are 100 overhead cycles (100 for

shuffle code, 10 for "p=Label" of B3, and -10 for eliminating "p=Label" of #i). However,

if fusion-style coloring chooses blocks as regions, the graph-fusion framework is able to

identify and isolate the troublesome block B3, and therefore fusion-style coloring spills p

only in B3. Consequently, there are only 20 overhead cycles (10 for "p=Label" of B3 and

10 for shuffle cost on <B3,B5> as shown in Figure 8.4(c)).

8.2. COALESCING 175

p = Label

I* 2 ÄÜ

Pi

N

4
? p = Labe!

t
I'l'l'I'I'LllLllllll,

1

a^" Sgg
*(p>- B3

^Fij ^.
p4\

wm
%

-<T5»-J
; p:: Labs! $|£ J .(p) E„*.

B
:IC<D SM^iS n = t.«bf>l

p = Label

n
B1

p = Lubes!
...*(P)...

B - Label

$3

B2

B5

B4

p = p + 1

iilp
(a)

8.2 Coalescing

P=p+- P=P+I

(b)

Figure 8.4: Example of shuffle code.

(c)

During compilation, a compiler may generate unnecessary copy/move instructions. The

compiler can eliminate a copy instruction that moves a data value between two non-

conflicting live ranges by coalescing the two live ranges into one. In general, copy/move

instructions originate from 4 different sources:

• users' code: Users may write an assignment "x = y" which copies y's value to x.

Global optimization eliminates the copy assignment by performing copy propagation

and dead code elimination. Copy propagation first propagates y to every use of x if

possible. Then dead code elimination eliminates the assignment if all uses of x are

replaced by y. The assignment remains if not all uses of x are replaced by y.

• global optimization: Global optimization may produce copy assignments. For in-

stance, the "a+b" expression of statement "x = a+b" may be a common subexpres-

sion. The statement is then replaced by a copy assignment "x = trap" where imp

is a compiler generated temporary to hold the value a+b.

• calling convention: The protocol of passing parameters and function return values

between a caller and callee is called calling convention. That is, with a given calling

176 CHAPTER 8. EXTENSIONS

convention, a caller knows where to save outgoing parameters and retrieve function

return values. A callee knows where to retrieve incoming parameters and save its

return value. Most modern processors have a few registers reserved for the calling

convention (argument and function return registers). If an outgoing or incoming

parameter resides in aregister, moving the outgoing parameter to an argument register

or moving an argument register to the incoming parameter is a copy instruction.

Likewise, passing function return values may also require copy instructions.

• live-range splitting: If register allocation splits live ranges, shuffle moves may be

needed to move values at splitting points.

When two live ranges, Zn and lr2, are coalesced into one, the two sets of interference

edges, p(Zr-i) and -?{lr2), are combined as well. Apparently, the interference graph after

coalescing may have different register pressure. Coalescing may reduce register pressure

as well as increase register pressure.

coalesce
lri and If2

Figure 8.5: Coalescing increases register pressure (N=3).

Figure 8.5 shows a case where coalescing two live ranges increases register pressure.

With N=3, we can simplify the interference graph on the left hand side by first removing

Zri and lr2. Then the remaining three live ranges become unconstrained and are removed

from the graph. The graph can be colored using 3 colors. Coalescing In and lr2 produces

a clique of size 4, which cannot be colored using 3 colors.

Figure 8.6 shows a case where coalescing two live ranges decreases register pressure.

There is a 3-color solution for the interference graph (red color for lrx and lr„, green color

for lry, and blue color for Zn, lr2, lrt, and lrw). Before coalescing, the graph can not

be simplified because simplification blocks as soon as lrt is removed from the graph (all

remaining nodes' degrees > 3). Thus, register allocators that rely on simplification to

determine the color ordering fail to color the graph with N=3. Optimistic coloring does

8.2. COALESCING 111

coalesce
Ir-] and Irg

Figure 8.6: Coalescing decreases register pressure (N=3).

not guarantee to find a 3-color solution. For example, simplification of the graph before

coalescing blocks as soon as lrt is removed from the graph. Optimistic coloring may decide

to defer spilling lrx and remove it from the graph and tries to find an available color for

lrx later. One legitimate ordering of simplifying the remaining graph is In, lr2, lrw, lry,

and lrz. When assigning colors to live ranges in the reverse order, optimistic coloring may

assign the red color to lrs and lry, the green color to lr%, and the blue color to lrt, lr.w,

and In. As a result, there is no available color for lrx. After coalescing In and lr2, 3

duplicate edges, [lrn,lrx], [lrn,lry], and [lrn,lrx] are eliminated, and a graph G which is

less constrained than the original graph is obtained. The graph G can be simplified with

N=3 by removing nodes in the order of lrt, lrz, lrn, lrw, lrx, and lry.

8.2.1 Prior approaches

Chaitin et al. eliminate a move instruction when the live ranges of the source and destination

do not conflict [13]. After all possible desirable copy instructions are eliminated, the entire

interference graph is rebuilt from scratch. Then Chaitin et al. rerun the coalescing module

because some copy instructions that at first were impossible to be eliminated may now be

redundant. The coalescing module is reiterated until no more copy instruction is eliminated.

The problem with the approach is that coalescing live ranges may increase register pressure

as shown in Figure 8.5. Therefore, coalescing may render the final resulting graph more

constrained, and register allocation results in more spill code than without coalescing.

Briggs uses coalescing, conservative coalescing, and biased coloring to eliminate copy

instructions [7]. All possible copy instructions except shuffle moves are coalesced using

CHAPTER 8. EXTENSIONS
1 /o

the approach of Chaitin et al. The main goal of splitting live ranges is reducing register

pressure. Shuffle moves are coalesced conservatively so as to prevent introducing extra spill

code. The conservative coalescing approach coalesces two live ranges under the constraint

that the resulting live range has less than N neighbors whose degree > N. The constraint

makes sure that the resulting live range is not spilled. Biased coloring is a final attempt to

clean up unproductive shuffle moves by assigning the same colors to live ranges that the

moves connect. Conservative coalescing may suppress coalescing two live ranges under

the condition that the resulting live range may be spilled. In fact, the resulting live range

is not spilled. Namely, conservative coalescing is too conservative. Consider the example

of Figure 8.6. After we coalesce In and lr2 into lrn, we can simplify the resulting without

blocking. Conservative coalescing, on the other hand, believes that lru will be spilled

because there are 3 neighbors, lrx, lry, and Zr„ whose degrees > 3.

George and Appel take an iterated coalescing approach that integrates coalescing into

simplification [28]. Live ranges are categorized as either move-related or non-move-related.

A move-related live range copies a value to/from other live ranges. Simplification removes

only non-move-related live ranges. Simplification blocks when the residual graph consists

of only move-related live ranges or non-move-related ones whose degrees > N. George and

Appel then perform conservative coalescing on the residual graph. The iterated coalescing

approach is likely to coalesce more live ranges than the conservative approach because the

residual graph is less constrained than the entire graph. A move-related live range may

become non-move-related after coalescing. The iterated coalescing approach reiterates

from simplification to remove non-move-related live ranges. If no live ranges can be

coalesced, and all non-move-related live ranges have degrees > N, then a move-related live

range of low degree is chosen to be considered as non-move-related. That is, the iterated

approach gives up the hope of coalescing the live range with others and then reiterates from

simplification again.

8.2.2 Coalescing in fusion-style coloring

Presently, our register allocator uses different approaches to eliminate copy instructions for

Chaitin-style and fusion-style coloring. For Chaitin-style coloring, we coalesce two live

ranges connected by a move if they don't interfere. Fusion-style coloring splits live ranges

8.3. SUMMARY 179

only when necessary to reduce spill code. Hence, coalescing live ranges at splitting points

is unnecessary because coalescing them increases spill code (undoes splitting decisions).

Therefore, fusion-style coloring uses biased coloring to eliminate copy instructions.

Copy instructions originating from users' code and global optimization are actually

artificial splitting points and may be on frequently executed paths. Using biased coloring to

eliminate these two kinds of copy instructions may not be ideal because biased coloring may

fail to eliminate a frequently executed copy instruction. Fusion-style coloring is sensitive

to edge ordering and therefore able to handle high register pressure well by splitting live

range at infrequently executed edges. These nice properties allow us to have a different

viewpoint on coalescing the two kinds of copy instructions. We can aggressively coalesce

live ranges without worrying much about the incurred register pressure because fusion-style

coloring is able to alleviate the pressure by spilling transparent or splitting live ranges. One

feasible implementation of this aggressive coalescing approach is performing Chaitin-style

coalescing prior to fusion-style coloring as shown in Figure 8.7. Chaitin-style coalescing

contains two steps, graph construction and aggressive coalescing. The graph construction

step builds the function-wide graph Gjuncnon. If live ranges are coalesced in the second

step, then Gjunction is thrown away, and the two steps are repeated until no more live ranges

can be coalesced.

Graph

Graph
Construction

L Coalescing Color
Ordering

Color
Assignment

Spill-code
Insertion

Shuffle-code
Insertion

!£ \L
Figure 8.7: Structure of coalescing.

8.3 Summary

In this chapter, I present how to integrate rematerialization and coalescing with fusion-

style coloring. Rematerialization and fusion-style coloring cooperate with each other

180 CHAPTER 8. EXTENSIONS

seamlessly. Fusion-style coloring is able to isolate high register-pressure regions so as

to avoid rematerialization happening on frequent executed paths. Rematerization helps

fusion-style coloring by pruning useless rematerializable live ranges out of the interference

graph (alleviates register pressure). Because of the ability of handling high register pressure

in fusion-style coloring, it is feasible to eliminate frequently executed copy instructions by

spilling transparent live ranges or splitting live ranges at infrequently executed places.

Chapter 9

Conclusions

9.1 Summary

This dissertation has proposed a novel register-allocation approach which is fusion-based.

Fusion-style register allocation starts off with constructing regions and applies graph fusion

along control-flow edges to combine the interference graphs of regions into the interference

graph for the whole function. Graph fusion integrates spilling, splitting, and color binding

in a seamless fashion. The delayed spilling technique avoids making premature spilling

decisions. Maintaining the colorability invariant splits live ranges only when necessary. No

color binding decisions are ever made during graph fusion. More importantly, fusion-style

coloring is sensitive to the ordering of control-flow edges that connect regions. Splitting

is unlikely to happen at high priority edges (frequently executed) and likely to happen

at low priority edges (infrequently executed). As to fusion-style coloring, the register-

allocation problem becomes a problem of determining the edge ordering and selecting

regions. Fusion-style coloring provides a nice framework for register allocation which

models various live-range splitting approaches such as the Tera, SSA, PDG, andMultiflow

approaches.

This dissertation has presented how rematerialization and coalescing can be integrated

with fusion-style coloring. Fusion-style coloring is able to leverage rematerialization by

isolating the high register pressure region and avoiding inserting rematerialization code into

frequently executed paths. Rematerialization is also able to leverage fusion-style coloring

by pruning unnecessary rematerializable live ranges during graph fusion to alleviate register

181

182 CHAPTER 9. CONCLUSIONS

pressure so as to benefit subsequent graph fusion by lowering register pressure. Fusion-style

coloring allows register allocation to split live ranges at infrequently executed edges or spill

low-cost live ranges to trade off against frequently executed copy instructions.

It is very important to look at register allocation from the compiler's perspective because

the compiler is more interested in how the register allocator interacts with the rest of

the compiler. This dissertation has shown that fusion-style register allocation provides a

framework that is well-prepared for region-based compilation. Fusion-style coloring is

able to deal with the register pressure caused by scope expanding transformations such as

unrolling and inlining, whereas the traditional Chaitin-style coloring breaks down. In other

words, fusion-style coloring provides a solution to region-based compilation so that register

allocation is no longer an obstacle to region-based compilation.

This dissertation has presented and evaluated several enhancements to register alloca-

tion. Chaitin-style register allocation with these enhancements integrates both Chaitin-style

and priority-based coloring into one so that one's strengths compensates the other's weak-

nesses. The experimental results have shown that Chaitin-style register allocation with the

enhancements actually outperforms some existing approaches that have been adopted by

researchers.

9.2 Future work

Even though this dissertation has demonstrated that fusion-style coloring is superior to

other register-allocation approaches, there still remain some future work to be done. Two

important areas require investigations and evaluations:

First, integrating fusion-style coloring into interprocedural register allocation is possible

and may provide pleasing results. Consider a call graph with 3 functions, /, g, and h. f

calls g\ g calls h. Assume that h is compiled and requires 2 callee-save registers, pn and

pr2. Interprocedural register allocation can treat pn and pr2 as caller-save register instead

of callee-save. If g uses the two registers, then save/restore code are have to be inserted

around the call site h(). However, the call site h() may be frequently executed. Because

fusion-style coloring is edge-ordering sensitive, it provides a nice framework to deploy

register save/restore code on less frequently executed paths. The places of saving/restoring

9.2. FUTURE WORK 183

pri and pr2 can be moved further away from the call site h() as graphs are fused.

Second, another important areais to integrate fusion-style coloring with code scheduling.

If there are more than N non-transparent live ranges simultaneous live at one point, we

know that the register allocator must spill some live ranges to lower the register pressure. If

the code scheduler is sensitive to register allocation in the first place, then register allocation

can avoid spill and shuffle code. For instance, when scheduling code, the scheduler makes

sure that there are no more than Ar simultaneously live non-transparent live ranges at any

given point. Whole or partial live ranges are allowed to be spilled to satisfy the condition

during code scheduling. Because spill code is produced during code scheduling, the spill

code can be scheduled right away instead of after register allocation.

184 CHAPTER 9. CONCLUSIONS

Bibliography

[1] A. Adl-Tabatabai, T. Gross, and G. Y. Lueh. Code reuse in an optimizing compiler. In

Proc. SIGPLAN Conference on Object-Oriented Programming Systems, Languages,

andApplications,yd.ges 51-68. ACM, October 1996.

[2] Jeffrey D. Ullman Alfred V. Aho. Principles of Compiler Design. Addison-Wesley

Publishing Company, Reading, Massachusetts, 1984.

[3] R. Allen and S. Johnson. Compiling c for vectorization, parallelization, and inline

expansion. In Proc. SIGPLAN Symp. on Programming Language Design and Imple-

mentation, pages 241-249. ACM, June 1988.

[4] D. Alpert and D. Avnon. Architecture of the pentium microprocessor. IEEE MICRO,

pages 11-21, June 1993.

[5] D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Y. Mansour, I. Nahshon,

and R. Y. Pinter. Spill code minimization techniques for optimizing compilers. In

Proc. ACM SIGPLAN '89 Conf. on Prog. Language Design and Implementation, pages

258-263. ACM, July 1989.

[6] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore,

C. Peterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb, iwarp:

An integrated solution to high-speed parallel computing. In Proc. Supercomputing

'88, pages 330-339, Orlando, Florida, November 1988. IEEE Computer Society and

ACM SIGARCH.

[7] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, April

1992.

185

186 BIBLIOGRAPHY

[8] P. Briggs. Personal communication, 1996.

[9] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for reg-

ister allocation. In Proc. ACM SIGPLAN'89 Conf. on Prog. Language Design and

Implementation,yages 275-284. ACM, July 1989.

[10] P. Briggs, K. D. Cooper, andL. Torczon. Rematerialization. In Proc. ACMSIGPLAN

'92 Conf. on Prog. Language Design and Implementation, pages 311-321. ACM, June

1992.

[11] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant

propagation. InProc.ACMSIGPLANSym. on Compiler Construction, pages 152-161.

ACM, July 1986.

[12] D. Callahan and B. Koblenz. Register allocation via hierarchical graph coloring. In

Proc. ACM SIGPLAN'91 Conf. onProg. Language Design and Implementation, pages

192-203, Toronto, June 1991. ACM.

[13] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.

Markstein. Register allocation by coloring. Research Report 8395, IBM Watson

Research Center, 1981.

[14] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to assist classic

code optimizations. Software Practice and Experience, 21(12):1301-1321,Dec 1991.

[15] F. Chow. A Portable, Machine-independent Global Optimizer - Design and Measure-

ments. PhD thesis, Stanford University, 1984.

[16] F. C. Chow and J. L. Hennessy. A priority-based coloring approach to register alloca-

tion. ACM Trans, on Prog. Lang. Syst., 12:501-535, Oct. 1990.

[17] FC. Chow. Minimizing register usage penalty at procedure calls. In Proc. SIGPLAN

Symp. on Programming Language Design and Implementation, pages 85-94. ACM,

June 1988.

[18] R. Cohn and PG. Lowney. Hot cold optimization of large windows/nt applications.

In Proc. Micro 29, pages 80-89. ACM, 1996.

BIBLIOGRAPHY 187

[19] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT-Press, 1990.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

Computing Static Single Assignment Form and the Control Dependence Graph. ACM

Transactions on Programming Languages and Systems, 13:451-490, October 1991.

[21] Richard Sites (editor). Alpha Architecture Reference Manual. Digital Equipment

Corp., Burlington MA, 1992. EY-L520E-DP.

[22] J. Z. Fang. Compiler algorithms for if-conversion, speculative predicate assignment

and predicated code optimizations. In 9th International Workshop, Languages and

Compilers for Parallel Computing. Springer, August 1996.

[23] J. A. Fisher and S. M. Freudenberger. Predicting conditional branch direction from

previous runs of a program. In Proc. Fifth Intl. Conf. on Architectural Support for

Prog. Languages and Operating Systems (ASPLOS V), pages 85-97. ACM, October

1992.

[24] C. Fräser and D. Hanson. A Retargetable C Compiler: Design and Implementation.

Benjamin/Cummings, 1995.

[25] S. Freudenberger and J. Ruttenberg. Phase ordering of register allocation and in-

struction scheduling. In R. Giegerich and S. L. Graham, editors, Code Generation -

Concepts, Tools, Techniques, pages 146-170. Springer Verlag, 1992.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,

1995.

[27] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

oj7NF'-Completeness. W. H. Freeman and Company, 1979.

[28] L. George and A. W. Appel. Iterated register coalescing. In Conf. Record of the

23th Annual ACM Symp. on Principles of Prog. Lang., pages 208-218. ACM, January

1996.

188 BIBLIOGRAPHY

[29] D.W. Goodwin andK. D. Wilken. Optimal and Near-Optimal Global Register Alloca-

tion Using 0-1 Integer Programming. Software-Practice and Experience, 26:930-965,

August 1996.

[30] D. Grove and L. Torczon. A study of jump function implementations. In Proc.

SIGPLAN Symp. on Programming Language Design and Implementation, pages 90-

99. ACM, June 1993.

[31] T. Halfhill. Amd vs. superman. Byte, pages 95-104, November 1994.

[32] T. Halfhill. Intel's p6. Byte, pages 42-58, April 1995.

[33] R. Hank, W. Hwu, and B. Rau. Region-based compilation: An introduction and

motivation. In Proc. 28th Annual ACM/IEEE Intl. Symp. on Microarchitecture, pages

158-168, Ann Arbor, Nov 1995. ACM/IEEE.

[34] R. E. Hank. Region-based compilation. PhD thesis, University of Illinois at Urbana-

Champaign, 1996.

[35] J. L Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufman, 1990.

[36] W. W. Hwu and P. P. Chang. Inline function expression for compiling realistic C

programs. In Proc. SIGPLAN Symp. on Programming Language Design and Imple-

mentation, pages 246-257. ACM, June 1989.

[37] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. O. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.

The superblock: An effective technique for vliw and superscalar compilation. Journal

of Supercomputing, 7(l,2):229-248, March 1993.

[38] M. S. Johnson and T. C. Miller. Effectiveness of a machine-level global optimizer. In

Proc. ACM SIGPLAN '86 Symp. on Compler Construction, pages 99-108. ACM, July

1986.

[39] Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, 1991.

BIBLIOGRAPHY 189

[40] G. Kane and J Heinrich. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs,

New Jersey, 1992.

[41] J. Knoop, O. Rufhing, andB. Steffen. Lazy code motion. In Proc. ACM SIGPLAN'92

Conf. on Prog. Language Design and Implementation, pages 224-234. ACM, June

1992.

[42] J. Knoop, O. Ruthing, and B. Steffen. Optimal code motion: Theory and practice.

ACMTrans. on Prog. Lang. Syst., 16(4): 1117-1155, July 1994.

[43] J. Knoop, O. Ruthing, and B. Steffen. Partial dead code elimination. In Proc. ACM

SIGPLAN'94 Conf. on Prog. Language Design and Implementation, pages 147-158.

ACM, June 1994.

[44] P. Kolte and M. J. Harrold. Load/store range analysis for global register allocation.

In Proc. ACM SIGPLAN '93 Conf. on Prog. Language Design and Implementation,

pages 268-277. ACM, June 1993.

[45] S.M. Kurlander and C.N.Fischer. Zero-cost range splitting. In Proc. ACMSIGPLAN

'94 Conf. on Prog. Language Design and Implementation, pages 257-265. ACM, June

1994.

[46] J. R. Larus and P. N. Hilfinger. Register allocation in the spur lisp compiler. In Proc.

ACM SIGPLAN Sym. on Compiler Construction, pages 255-263. ACM, July 1986.

[47] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix,

J. O'Donnell, and J. C. Ruttenberg. The multiflow trace scheduling compiler. Journal

of Supercomputing, 7(1,2):51-142, March 1993.

[48] G. Lueh, T. Gross, and A. Adl-Tabatabai. Global register allocation based on graph

fusion. Technical Report 96-106, Carnegie Mellon University, School of Computer

Science, March 1996.

[49] Scott Meyers. More Effective C++. Addison-Wesley, 1996.

[50] W.G.Morris. Ccg: A prototype coagulating code generator. In Proc. SIGPLAN Symp.

on Programming Language Design and Implementation, pages 45-58. ACM, June

1991.

190 BIBLIOGRAPHY

[51] MasoodNamjooandAnantAgrawal. Implementing spare: A high-performance 3 2-bit

rise microprocessor. SunTechnology, Winter, 1988.

[52] B. R. Nickerson. Graph coloring register allocation for processors with multi-register

operands. In Proc. ACM SIGPLAN'90 Conf. on Prog. Language Design and Imple-

mentation, pages 40-52. ACM, June 1990.

[53] C. Norris and L. L. Pollock. Register allocation over the program dependence graph.

In Proc. ACM SIGPLAN '94 Conf. on Prog. Language Design and Implementation,

pages 266-277. ACM, June 1994.

[54] T. A. Proebsting and C. N. Fischer. Probablistic register allocation. In Proc. ACM

SIGPLAN '92 Conf. on Prog. Language Design and Implementation, pages 300-310.

ACM, June 1992.

[55] O. Waddell R.G. Burger and R.K. Dybvig. Register allocation using lazy saves, eager

restores, and greedy shuffling. In Proc. SIGPLAN Symp. on Programming Language

Design and Implementation, pages 130-138. ACM, June 1995.

[56] V. Santhanam and D. Odnert. Register allocation across procedure and module bound-

aries. In Proc. SIGPLAN Symp. on Programming Language Design and Implementa-

tion, pages 28-39. ACM, June 1990.

[57] S. Song, M. Denman, and J. Chang. The powerpc 604 rise microprocessor. IEEE

MICRO, pages 8-17, October 1994.

[58] P.A. Steenkiste and J.L. Hennessy. A simple interprocedural register allocation algo-

rithm and its effectiveness for lisp. ACM Transactions on Programming Languages

and Systems, 11(1): 1-32, January 1989.

[59] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

[60] D. Wall. Predicting program behavior using real or estimated profiles. In Proc. ACM

SIGPLAN '91 Conf. on Compiler Construction, pages 59-70. ACM, June 1991.

[61] D.W. Wall. Global register allocation at link time. In Proc. ACM SIGPLAN '86 Symp.

on Compiler Construction, pages 264-275, Palo Alto, June 1986. ACM.

BIBLIOGRAPHY 191

[62] M. N. Wegman and F. K. Zadeck. Constant Propagation with Conditional Branches.

ACM Transactions on Programming Languages and Systems, 13:181-210, April.

1991.

