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Abstract 

Nowadays, compilers are looking for more optimizing opportunities by performing aggres- 
sive code transformations which introduce high register pressure. High register pressure 
potentially increases register overhead operations. Register allocation must deal with high 
register pressure well so that the performance gain of the code transformations is not thrown 
away by the increased overhead operations. 

Register allocation must deal with three issues: spilling, live-range splitting, and register 
assignment. These issues are closely related to each other. Focusing on one issue and 
ignoring the others may deteriorate the quality of register allocation. This dissertation 
proposes a novel register-allocation approach that is fusion-based. Fusion-style register 
allocation starts off with constructing regions and applies graph fusion along control-flow 
edges to combine the interference graphs of regions into the interference graph for the whole 
function. Graph fusion integrates spilling, splitting, and register assignment in a seamless 
fashion. Fusion-based register allocation is sensitive to the ordering of control-flow edges 
that connect regions. Splitting is unlikely to happen at high priority edges (frequently 
executed) and likely to happen at low priority edges (infrequently executed). 

This dissertation presents a register allocation framework that allows us to model various 
register allocation approaches, e.g., Chaitin-style, optimistic, priority-based, and fusion- 
style coloring. Fusion-style coloring also provides a nice framework to model various 
live-range splitting approaches such as the Tera, SSA, PDG, and Multiflow approaches. 

This dissertation evaluates the effectiveness of fusion-style coloring under the register 
pressure caused by scope expanding transformations such as unrolling and inlining, whereas 
the traditional Chaitin-style coloring breaks down. The experimental results show that the 
number of register overhead operations using fusion-style coloring increases slowly. In 
other words, fusion-style coloring provides a solution to region-based compilation so that 
register allocation is no longer an obstacle to region-based compilation. 

This dissertation presents and evaluats several enhancements to register allocation. These 
enhancements combine the strengths of both Chaitin-style and priority-based coloring into 
one. The integration of these enhancements provides a model of dealing with call cost 
(register saves/restores). The experimental results show that the model actually outperforms 
some existing approaches that have been adopted by researchers. 
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Chapter 1 

Introduction 

With the advanced VLSI technologies, performance of processors is approximately doubled 

every 18 months, and the density of memory is doubled every 24 months. However, the 

gap between the access time of memory and the processor speed enlarges. Based on 

the principle of locality, a memory hierarchy is introduced to keep values that processors 

operate as close to processors as possible [35]. The memory hierarchy usually consists of 

registers, caches (first-level, second-level, and third-level), and memory. Registers are the 

storage locations that are closest to the CPU and can be read and written at the clock speed 

of the CPU. Accessing data items that are not in registers incurs penalties because the data 

must be brought in from the next level of the memory hierarchy. The access time of data 

items between two levels may differ in order of magnitude. Because a superscalar machine 

can issue multiple instructions in each cycle[39], the penalties for the superscalar machine 

are more severe than for a non-superscalar machine. One task of the compiler is managing 

register storage locations to keep values that processors are most likely to access in registers 

so as to reduce the traffic of going up and down the memory hierarchy. 

1.1    Compiler structure 

A compiler is a piece of sophisticated and complicated software that translates one source 

language to a target machine's object code. To achieve modularity and reusability, a typical 

compiler is composed of three major phases: front end, global optimization, and back 

end (code generation). The front end usually parses the source code, performs syntax and 

11 



12 CHAPTER 1. INTRODUCTION 

semantic checks, and finally generates an internal representation (IR). Global optimization 

performs code improving transformations on IR. The back end translates IR into target 

machine code. The main purpose of IR is to cut loose the dependence among the three 

phases. For instance, adding a new language to the compiler requires only a new front 

end. Ideally, the global optimization and back end do not require any change. Likewise, 

translating a source language to a new machine code requires to rewrite only the back end. 

There are some phases in the compiler that make the assumption that the target machine 

has an infinite number of registers. For instance, global optimization usually performs code 

improving transformations based on IR without any knowledge about the source language 

and the target machine. Global optimization, therefore, ignores the possibilities that the 

temporaries generated during code transformations may not reside in registers. Furthermore, 

parts of the back end may also make the same assumption. One implementation of the back 

end consists of code selection, code scheduling, register allocation, and code emission. The 

code selection maps the IR into an internal instruction representation that is very similar 

to the target machine code. The code selection phase uses virtual registers to hold values 

of expressions, variables, and constants. The code scheduling phase reorders instructions 

to exploit ILP. Register allocation then maps virtual registers to physical registers. The 

final phase, code emission, emits machine code. The assumption of an infinite number 

of registers simplifies the tasks of those phases because they don't need to apply machine 

dependent heuristics to constrain their tasks. 

1.2   Register allocation 

The task of register allocation is to map virtual registers to a limited number of physical 

registers. A common approach is to model the register allocation problem as a graph 

coloring problem. The graph comprises nodes and edges. Nodes represent live ranges of 

virtual registers; two conflicting (simultaneously live) live ranges are connected by an edge. 

The graph is called the interference graph. The interference graph is colored in such a 

manner that two conflicting live ranges are assigned different colors (physical registers). 

Liveness analysis and reaching analysis determine the live range for each virtual register. 

Live ranges that are constructed in this manner, however, may comprise disjoint segments, 
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resulting in an unnecessarily high number of conflicts for a live range. Renumbering [13] 

and web analysis [38] are two techniques to construct concise live ranges, which result in 

interference graphs of potentially lower degree. 

Because finding the minimal number of colors for an arbitrary graph is NP-complete 

[27], most register allocation approaches assign colors to live ranges in some heuristic order. 

The coloring blocks when an approach fails to find a legal color for a live range. We say that 

the degree (or register pressure) of the interference graph exceeds Ar (the number of colors). 

When coloring blocks, the compiler must somehow lower the degree of the interference 

graph to allow coloring to proceed. Two major techniques have been developed to lower 

the degree of the interference graph. 

Spilling: A live range Ir is assigned a location in memory, and all references to Ir are done 

by memory accesses (loads/stores), which are referred to as spill code. A spilled 

live range is removed from the interference graph since it is no longer a register 

assignment candidate, thus lowering the register pressure. 

Splitting: Live-range splitting segments a long live range lr(x) into smaller live ranges 

lri(x). Shuffle code is then needed to move the data value x when control passes 

from a segment lr\ to another segment lr2. Splitting may reduce the degree of the 

interference graph because the smaller a live range, the more likely it is that the live 

range interferes with fewer live ranges. The expectation is that each Ir^x) has a 

lower degree than lr(x) and that the new graph can then be colored. 

Simplification [13] is a common technique that people use to determine the coloring 

order in which live ranges are assigned colors. Simplification is based on the observation 

that if a node Ir has degree < N, then Ir can be trivially colored no matter what colors are 

assigned to the residual graph. Namely, there is always a legal color for Ir even if each of 

Ir's neighbors is assigned a different color because at most N - 1 colors are assigned to Ir's 

neighbors. Such a node with degree less than Ar is called unconstrained. Simplification 

proceeds by successively removing unconstrained nodes from the graph. Each time a node 

Ir is removed from the graph, the edges that are incident upon Ir are also removed, and 

the degrees of Ir's neighbors are decremented. Once all nodes have been removed from 

the graph, colors are assigned to nodes in the reverse order in which they were removed. 
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Simplification blocks when all remaining nodes have degrees > N, and at this time a live 

range is picked to be spilled based on a heuristic cost function. Once the spilled live range 

is removed from the graph, simplification then may proceed where it blocked because the 

degrees of the neighbors of the spilled live range are lowered. 

Figure 1.1(a) illustrates a sequence of simplifying an interference graph with Ar = 3. 

The graph has 6 live ranges. Shaded live ranges are unconstrained. Initially, only lrt 

is unconstrained (degree = 2). The first step removes lr\ from the graph. Irt becomes 

unconstrained after removing lr\ and then is removed from the graph. At this point of 

time, there are two unconstrained live ranges, /r3 and lrs. Removing either one of them is 

legitimate (let's say In). After removing Zr3, all remaining nodes become unconstrained 

and can be removed in any order. Assume that lrt, lr$, and lr6 is the sequence of simplifying 

the remaining graph. Figure 1.1(b) shows the sequence of assigning colors to live ranges 

in the reverse order in which they were removed. Each hatch pattern indicates a color. 

1.2.1    Overview 

There are 9 chapters in this thesis. The thesis starts off with a review of prior approaches 

and addresses the challenges of register allocation (Chapter 2). We then look at the 

infrastructure used to implement and evaluate the thesis ideas (Chapter 3). This thesis 

introduces a new approach to register allocation that is based on graph fusion. Details and 

some important techniques of graph fusion are presented (Chapter 4). Nowadays, compilers 

performs aggressive code transformations to improve the code quality. It is very important to 

evaluate how register allocation (the fusion-based approach) and other code transformations 

interact (Chapter 5). The thesis also describes and evaluates some enhancements of register 

allocation (Chapter 6). Chaitin-style register allocation with the enhancements serves as 

the base line of our comparison in the thesis. We evaluate the improved Chaitin-style 

register allocation with some prior approaches (Chapter 7). Ultimately, the thesis discusses 

how the fusion-based approach can be incorporated with other existing register-allocation 

techniques (Chapter 8) and then presents the conclusions (Chapter 9). 
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0-0 IP 

(a) (b) 

Figure 1.1: Simplification (N=3). 
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Chapter 2 

Background 

In this chapter, I present the cost model for register allocation (Section 2.1), review prior 

approaches to register allocation (Section 2.2), address shortcomings of the prior approaches 

(Section 2.3), and describe the challenges that a register allocator must deal with so as to 

obtain good quality register allocation. 

2.1    Cost model for register allocation 

Our basic machine model is a RISC processor that requires the operands of all operations 

to reside in registers. All our data are based on the code generator for the MIPS R3000 ar- 

chitecture. The register allocation cost includes all overhead operations that move operands 

in and out of a register; this cost includes, e.g., also overhead operations that move values 

from one register to another. That is, we compare the results of a register allocator against 

a perfect allocation with unbounded registers. The higher the cost (for a fixed number of 

registers), the worse the register allocator has performed. 

The register allocation cost is the sum of three components: (i) spill cost (to move values 

to and from memory), (ii) call cost (to free up/restore registers upon procedure entry/exit), 

and (iii) shuffle cost (moving values from one live range to another). 

Register allocation cost must include the call cost. If the register allocator focuses on 

the spill cost alone, the evaluation of the register allocator may be overly optimistic. The 

call cost, however, is influenced by the compiler's calling convention. Many compilers 

divide the registers into two sets, callee-save and caller-save registers, respectively. The 

17 



18 CHAPTER 2. BACKGROUND 

distinction between these registers provides the register allocator with more choices when 

minimizing the call overhead [16]. There is a distinct cost associated with each kind of 

register assigned to a live range. Assume that there is a program that includes 3 functions, 

car, bar, and f oo. Function car calls bar, and function bar calls f oo. When a live 

range Ir in bar ends up in a caller-save register and contains the function call f oo (), 

we must pay the cost of saving and restoring Ir's value around f oo (). For instance, x 

in Figure 2.1 (a) resides in caller-save register $sr. The function call f oo () divides lrx, 

because the register allocator, without inter-procedural analysis, assumes that f oo uses all 

caller-save registers. If lr ends up in a callee-save register, then this register must be saved 

(restored) at the entry to (exit from) bar (Figure 2.1 (b)), because the register allocator 

assumes that car demands all callee-save registers after the exit of bar. In Chapter 6,1 

present some heuristics that improve the quality of register allocation by reducing call cost. 

B2 

Func. entry 

Bl 

f st $sr 

V7 
st $sr 
foo() 

id $sr 
B3 

B4 

Func exit 
(a) x resides in caller-save register $sr 

B2 

Func. entry 

Bl st Spr 
x = 

*—[        foo() 

V7 
B3 

B4 usex 
id $pt 

P*   , Func exit 
(b) x resides in callee-save register $pr 

Figure 2.1: Caller-save and callee-save costs. 

A live-range splitting approach may partition a live range into smaller segments (smaller 

live ranges). Shuffle code is required at the splitting point to move value between two live 

ranges. Shuffle code can be of three types: 

• shuffle-move (register-to-register): A move instruction shuffles the value between the 

two live ranges that are assigned to different registers. 
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• shuffle-load (memory-to-register): A load instruction moves the value from one 

spilled live range to the other live range. 

• shuffle-store (register-to-memory): A store instruction moves the value from one 

live range to the other spilled live range. 

There is no need for memory-to-memory shuffle code because the two live ranges of 

the same virtual register are always spilled to the same memory location. 

2.2   Prior work 

A number of improvements over Chaitin-style register allocation have been suggested. 

There are two perspectives to discuss prior approaches. We can focus on which kind of 

register overhead they attempt to reduce or address their shortcomings. We discuss the two 

perspectives separately. In this section, I investigate the major known register-allocation 

strategies, with a focus on which kind of register overhead they attempt to reduce. In 

Section 2.3, I address shortcomings of some approaches that are relevant to our register 

allocator. 

2.2.1 Optimal 

Goodwin and Wilken take the most aggressive approach [29] that formulates the regis- 

ter allocation problem as a 0-1 integer programming problem. The approach takes the 

spill, shuffle, and call costs into consideration and yields an optimal result under some 

assumptions (e.g., the register allocator does not reorder/reschedule instructions or perform 

inter-procedural register allocation). 

2.2.2 Reducing spill cost 

In essence, there exist two ways to reduce spill cost (i) finding better nodes to spill (i.e., 

better spilling heuristics) and (ii) splitting live ranges (in the expectation that the smaller 

live ranges interfere with fewer other live ranges). 
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Spilling heuristic 

One of the main goals of register allocation is finding a way to assign registers to all live 

ranges of the interference graph. The register allocator must spill live range(s) to memory if 

the register pressure exceeds Ar. The register pressure is the minimum number of registers 

that the register allocator needs for assigning registers to all live ranges. Because the 

register allocation problem is NP hard [27], the minimum number of registers that the 

register allocator needs depends on the register allocation approach—this number may not 

be the same as the theoretical minimum number of colors for the interference graph. The 

heuristic that chooses which live ranges to spill has a direct effect on the quality of register 

allocation, so various heuristics have been investigated. 

• Optimistic coloring [9] is based on simplification. Recall that simplification is a 

way to guarantee that there must be registers for the live ranges that are removed 

from the interference graph. Simplification is a heuristic approach to coloring which 

removes only live ranges whose degrees are less than N, and as such may miss legal 

coloring opportunities (too pessimistic). Optimistic coloring improves simplification 

by attempting to assign colors to live ranges that would have been spilled by the basic 

algorithm. Optimistic coloring delays spilling decisions until the color assignment 

phase. Spilling decisions are made during the color assignment phase: when no legal 

color exists for a live range to be colored (instead of when simplification blocks), this 

live range is spilled. 

• Priority-based coloring [16] assigns registers to live ranges based on a priority func- 

tion. The priority function captures the savings in memory accesses from assigning 

a register to a live range rather than keeping the live range in memory. The approach 

makes sure to assign registers to the most important live ranges and to spill the least 

important ones if necessary. 

• Probabilistic register allocation [54], like priority-based coloring, also assigns regis- 

ters to live ranges in a priority manner. Variables initially reside in memory instead 

of virtual registers (with load/store for every use/definition). The priority function is 

the probability that a variable x will reside in a register at a given use (load) multi- 

plied by the benefit (savings) that this use accesses x's value from a register rather 
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than memory. The inverse of the probability roughly indicates the distance between 

definitions of the value and its use. The longer the distance, the more likely it is that 

the register allocator assigns registers to other live ranges between the definitions and 

the use—therefore the lower the probability that the value resides in a register. 

• The register allocation algorithm used in the RS/6000 compiler [5] improves on 

Chaitin's basic algorithm in two ways. First, the interference graph is colored three 

times, each time using a variation of the spilling heuristic (i.e., a different cost 

function), and the coloring resulting in the least total spill cost is selected. Second, 

when a live range Ir is selected for spilling, instead of inserting a load before each 

use and a store after each definition of Ir, the register allocator uses the cleaning 

technique that attempts to insert at most a single load and store inside each basic 

block. In effect, Ir is split into segments that span at most one basic block. 

• Rematerialization [10] spills live ranges that are cheaper to recompute than to 

store/load them back/from memory, e.g., loading constant values or computing ad- 

dresses. 

Live-range splitting 

Several approaches have tried to split live ranges. The expense of splitting is that shuffle 

code must be inserted when a live range is broken into independent parts, since each part can 

be either in a different register or even in memory. The motivation is to reduce the degree 

of the interference graph and to allow the spilling of only those live range segments that 

span program regions of high register pressure. Several more recent approaches to register 

allocation attempt to make graph coloring sensitive to program structure by dividing a 

program into regions and prioritizing the regions according to execution probabilities. The 

register allocator then colors regions in order of their priorities, and shuffle code is inserted 

at the boundaries of these regions. 

• Priority-based coloring [16] assigns colors to live ranges in a heuristic order deter- 

mined by the priority function. Before colors are assigned, unconstrained (degree 

< JY) live ranges are removed from the interference graph, since unconstrained live 
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ranges can always be assigned legal colors after colors have been assigned to other 

live ranges. Color assignment blocks when no legal color exists for a live range lr 

to be colored, i.e., when all N colors have been taken up by Ir's neighbors. At this 

point, lr is split. 

Larus and Hilfinger implement the priority-based approach in the SPUR Lisp com- 

piler [46]. 

• Briggs [7] uses the Static Single Assignment (SSA) representation of a program to 

determine splitting points. Splitting live ranges is taking place prior to coloring. A 

live range is split at a <f> node when the incoming values to the 6 node result from 

distinct assignments. The approach also splits all live ranges that span a loop by 

splitting these live ranges immediately before and after the loop. 

• The Tera compiler (as described in [12]) constructs a tile tree for a program; this 

tree corresponds to the control-flow hierarchy of the program. Register allocation 

colors the tiles in two phases. The first phase traverses the tile tree from the bottom 

up and allocates pseudo registers to the live ranges in each tile using graph coloring. 

The second phase walks through the tile tree top-down and binds pseudo registers to 

physical registers. As coloring is performed hierarchically, shuffle code tends to be 

outside of the tiles at the bottom of the tree. 

• The RAP compiler [53] colors the region nodes in a function's Program Dependence 

Graph (PDG), proceeding in a hierarchical manner from the leaves to the root. 

Chaitin's algorithm is used at each region node. This approach splits live ranges 

on region boundaries. A region is a collection of predicates and statements that are 

executed under the same control conditions. 

• The Multiflow compiler employs trace scheduling as a framework for both register 

allocation and scheduling [25]. The trace scheduler picks a trace and then passes 

it to the code scheduler; the code scheduler then performs register allocation and 

scheduling together. The code scheduler records register usage preferences for the 

scheduled trace; this information is maintained for each exit from or entry into a 

trace. This information is subsequently used when translating traces that connect 

to these exit or entry points, and shuffle code between two traces is not needed if 
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the value can be kept in the same register. Traces that are compiled first have more 

freedom in using registers, and shuffle code ends up on boundaries to traces that are 

compiled later. As long as the trace picker presents the traces in an order that reflects 

the execution frequency, this scheme favors the most frequently executed parts of a 

program. 

• The IMPACT compiler takes a similar approach as the Multiflow compiler [34]. 

The compiler selects a region and performs classical global optimizations, ILP op- 

timization, code scheduling, and register allocation. Like the Multiflow approach, 

regions that are compiled first have more freedom in using registers; a similar binding 

technique is used to eliminate the shuffle code on region boundaries. 

• Probabilistic register allocation [54] is a hybrid of the priority-based and program 

structure based approaches. The approach consists of three steps, local register 

allocation, global register allocation, and register assignment. The global register 

allocation step partitions a program into regions based on the loop hierarchy and 

proceeds from the innermost loops to the outermost loops. When a variable is 

assigned to a register, shuffle code is placed in the pre-header and post-exit of a loop 

to load the value of the variable into the register and restore it back to memory (if the 

value is updated). 

• Coagulation code generation [50] integrates code generation and register allocation 

based on the ordering of prioritized control flow edges. The most important (fre- 

quently executed) regions have the maximum freedom in using registers, like in the 

Mulitflow compiler [25]. 

• Kurlander and Fischer [45] perform live-range splitting after register allocation to 

free up registers that can be used to improve code scheduling. Empty delay slots in 

the final schedule are filled with shuffle code to split and spill live ranges. Spilling 

frees up registers and these additional registers are used to remove false dependencies 

induced by the reuse of registers. 

• Kolte and Harrold construct live ranges at a very fine granularity, essentially at every 

reference of live ranges [44]. 
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2.2.3 Reducing shuffle code 

Most live-range splitting approaches [12,53, 25, 50,54] reduce shuffle cost by prioritizing 

a function into regions and thereby performing register allocation in a hierarchical manner 

so as to place shuffle code in less important regions. Some approaches [7, 12, 53, 25] 

rely on some similar techniques such as biased coloring [7] to eliminate a shuffle move by 

assigning the same color to the two live ranges that the move connects. 

2.2.4 Reducing call cost 

A register may not be free at procedural boundaries, at call sites (caller-save) or at the 

entries/exits of procedures (callee-save). The cost of saving/restoring registers dominates 

the register overhead as the number of available registers increases. The register allocator 

can reduce the call cost intra-procedurally or inter-procedurally. 

Intra-procedural allocation 

The register allocator analyzes only the current function without any knowledge about 

calling or called functions. Selecting caller-save or callee-save registers for live ranges and 

optimizing placement of caller-save and callee-save code are two common approaches to 

reduce the call cost. 

• The priority function used in the priority-based approach [16] considers both caller- 

save and callee-save cost. Register allocation assigns the kind of register to a live 

range which yields the maximum savings. If no register of the best type is available, 

the register allocator assigns the other kind of register to the live range. The approach 

spills live ranges whose savings for the assigned registers are negative. 

• The generic callee-save convention saves/restores the values of callee-save registers 

at the exit/entry of the function. The code to save and restore is executed inevitably 

every time the function is invoked, so there may be redundant saves and restores if 

some callee-save registers are never used during the execution of the function. Chow 

uses shrink-wrapping [17] to move the callee-save savings andrestorings close to the 
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places where the callee-save registers are used. Hence save and restore operations 

are performed only when it is absolutely necessary. 

• The "Chez Scheme" compiler optimizes the placement of caller-save code [55]. 

Measurements show that over two thirds of procedural activations actually make no 

calls [55]. The compiler, hence, favors using caller-save registers along the paths that 

contain no calls; it uses callee-save registers along the paths where function calls are 

inevitable. In other words, live ranges are split at the edge <P,S> where one (P/S) can 

reach the exit without making a call and all paths from the other one (S/P) to the exit 

contain calls. Shuffle code (a register move) is needed to move a value between two 

different classes of register at these splitting points. 

Inter-procedural allocation 

Inter-procedural register allocation usually assigns registers in a hierarchical manner over 

the call graph such that register allocation for a function / can take the register-usage 

information of functions g, h that are called by / into account. 

• Wall defers register allocation until link time [61]. Variables that are not simultane- 

ously live (inter-procedurally) are grouped together to use the same physical register. 

Variables of a procedure are never assigned to the same group as the variables of 

descendants on the call graph, so that the variables of / get different registers from 

g and h (/'s descendants). Save/restore operations of registers across procedures, 

therefore, are unnecessary. The code generated by the code generation phase is an- 

notated so that the linker knows what instructions must be deleted and can perform 

relocation once the register allocator assigns a register to a variable. 

• Chow extends priority-based coloring to inter-procedural register allocation that con- 

structs a call graph and compiles functions from leaves to the root [17]. The usage 

information of callee-save registers is propagated to the upper regions of the call 

graph. Function / tries to avoid using the same callee-save registers used by g and h 

such that save/restore operations of the registers become redundant and can therefore 

be eliminated. 
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• Steenkiste develops an inter-procedural register allocator in the context of a LISP 

compiler[58]. Because LISP programs tend to spend most of time in the bottom of 

the call graph, register allocation is performed from the leaves to the root over the call 

graph, like Chow's approach [17]. Different registers (not used by the descendants 

of the current function in the call graph) are assigned to live ranges of the current 

function. 

• The HP compiler [56] performs inter-procedural register allocation using global- 

variable promotion and spill-code motion. Global-variable promotion transforms 

memory accesses to global variables into register references inside clusters of func- 

tions in the call graph. Spill-code motion elevates save/restore code for callee-save 

registers to infrequently executed functions. 

2.3    Shortcomings of prior work 

In the previous section, we study how prior approaches tackle each kind of register over- 

head. In this section, we look at prior approaches from the other perspective, i.e., how well 

they perform in terms of reducing overall register overhead. Because inter-procedural allo- 

cation is not implemented in our register allocation framework, I drop the inter-procedural 

approaches out of the discussion here. I classify some prior approaches that attempt to 

reduce the spill and shuffle costs into 5 categories: Chaitin-style coloring, optimal register 

allocation, splitting prior to coloring, splitting during coloring, and program structure based. 

2.3.1    Chaitin-style coloring 

The RS/6000 compiler [5] and optimistic coloring [9] improve Chaitin's basic algorithm. 

The former tunes the spilling heuristic, and the latter delays spilling decisions so as to 

assign registers to more live ranges than without delaying. The main problem with these 

two approaches is that the spilling decisions are all-or-nothing: all definitions and uses of a 

spilled live range go through memory even though some parts of the live range could have 

been allocated a register. It is more beneficial to spill only the troublesome segments of a 

live range (i.e., segments that contain few or no references and span regions of high register 
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pressure), while keeping in registers those segments that have references in regions of high 

execution frequency. 

2.3.2 Optimal register allocation 

Optimal register allocation [29] is an attractive approach which produces an optimal result. 

The major problem of the approach is the complexity of the algorithm compilation time 

and the resulting memory usage. Modern compilers perform aggressive scope enhancing 

transformations such as loop unrolling and function inlining so as to increase ILP and 

exploit more optimization opportunities. Optimal register allocation does not scale well 

in the presence of scope enhancing transformations. However, as the performance of 

processors keeps being doubled every 18 months, and faster integer programming solvers 

appear, the approach may become practical in the future. 

2.3.3 Splitting prior to coloring 

Briggs [7] determines splitting points using the SSA representation of a program. The 

approach also splits live ranges that span a loop at the loop boundary. Kolte and Harrold 

[44] partition a live range at a finer granularity by considering the ranges of instructions 

between loads and stores of a virtual register. These approaches make splitting decisions 

prior to coloring. 

There are a couple of drawbacks in regard to making splitting decisions too early (prior 

to coloring). First, decisions regarding which live ranges to be split and where to split 

them are made prematurely. Thus, live ranges may be split unnecessarily, resulting in a 

performance degradation due to unnecessary shuffle code. Various heuristics have been 

developed to eliminate shuffle code by increasing the chance that the same color is given 

to partner live ranges, e.g., biased-coloring or conservative coalescing [7], Rather than 

determining the critical regions where splitting and spilling are beneficial, these approaches 

split live ranges arbitrarily and greedily, with the hope that later heuristic steps will clean 

up unnecessary splits. Second, the places where live ranges are split by these approaches 

are not necessarily the places of low execution probability. Although these approaches may 

use execution probabilities to splitting points, there is no guarantee that the resulting live 
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ranges will fit into registers without spilling. That is, the register allocator runs the risk 

of either splitting too much (leading to unnecessary shuffle code), or not enough (with the 

consequence that high-frequency live ranges are spilled). 

Even though Kolte and Harrold attempt to construct live ranges at the granularity of 

instructions between loads and stores, live ranges may be long under some circumstances. 

Consider a code for x that contains only one definition and use. Only one live range is 

constructed for x. The definition and use may be far apart, and the live range contains a lot 

of blocks with high register pressure. Splitting the live range is not possible even though 

splitting the parts of the live range that have high register pressure is desirable. Furthermore, 

it is unclear how they deal with the issue of eliminating shuffle code. 

2.3.4   Splitting during coloring 

The priority-based coloring [16] approach is an alternative framework that allows splitting 

decisions to be delayed until coloring blocks. Colors are assigned to live ranges in a priority 

fashion. When there is no legal color for a live range lr (coloring blocks), the approach 

splits lr. To facilitate splitting, the live range for a candidate x is defined as a collection 

of live units, where each live unit is a basic block within which x is live. Splitting forms a 

new live range lr'(x) by starting from a seed live unit and incrementally adding live units 

to the new live range until adding one more live unit renders lr'(x) uncolorable. Live units 

are added in a breadth-first traversal of the control flow graph, preferably starting from a 

live unit where the first reference to x is a definition. A live range is spilled (i.e., remains 

in its home location) when no live units that comprise the live range can be given a register. 

An important consideration in live-range splitting is selecting splitting points. To 

reduce shuffle cost, shuffle code should be placed at points of low execution probability. 

The priority based approach neither takes execution frequency nor program structure into 

account when splitting live ranges, and there is no guarantee that splitting points do not end 

up along frequently executed edges. Shuffle code induced by a split may end up, e.g., on 

a loop back arc. Code motion techniques are used after color assignment to optimize the 

placement of the shuffle code. 



2.3. SHORTCOMINGS OF PRIOR WORK 29 

2.3.5   Program structure based 

Program structure based approaches [12,53,25,34,50,54] attempt to make graph coloring 

sensitive to program structure by dividing a program into regions and prioritizing the regions 

according to execution probabilities. The register allocator then colors regions in the order 

of their priorities, and shuffle code is inserted at the boundaries of these regions. As coloring 

is performed hierarchically, the higher priority regions have more freedom in using registers, 

and shuffle code tends to be outside the higher priority regions. As long as the regions 

reflect the execution frequency, they favor the most frequently executed parts of a program. 

Those approaches all make early binding decisions when coloring is performed to a 

region—either assign real physical registers to live ranges or determine which live ranges 

should share the same registers. Early binding decisions impose unnecessary constraints 

to lower priority regions because the lower priority regions must bind to the already-made 

coloring decisions. 

Example of early binding 

Let us consider the Tera approach [12] as an example. Figure 2.2 illustrates unnecessary 

constraints imposed on register allocation by premature coloring decisions. The approach 

constructs a tile tree for a program. The code in Figure 2.2(a) consists of two tiles, one for 

the loop (the shaded region) and one for blocks Dx and D6. Recall that the Tera compiler 

performs register allocation for the tiles in two phases. The first phase colors each tile in a 

bottom up fashion (from the bottom of the tile tree up to the root tile). Pseudo registers are 

assigned to live ranges in the first phase. Once two variables in a tile are assigned to the 

same pseudo register, the parents of the tile must adhere to this decision. 

The loop tile is colored first. The interference graph of the loop tile is depicted in Figure 

2.2(b). Inside the loop tile, the live range lr(y) is live in D2 and D5. There are two live 

ranges for x, lr(x) and lr'(x), in the loop. The live range lr(x) is live in D2 and D5, and 

lr'(x) is live in ß4. Coloring the graph with two registers, lr'(x) is placed into the same 

pseudo register as either lr(x) or lr(y). Based on the information inside the loop region, 

both choices are reasonable. However, if lr'(x) and lr{y) use the same pseudo register, a 

shuffle move is inevitable on either (Äj, B6) or (B5, B6), since lr(x) and lr'(x) merge in 
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Figure 2.2: Premature coloring decision with Ar = 2. 

D6. The notation (#m, D„) represents a control-flow edge that goes from block Dm to Dn. 

If /r'(a;) and /r(2.-) use the same pseudo register, no shuffle code is required, but that this 

mapping is beneficial can only be determined when dealing with B$. 

2.4    Challenges 

There are several challenges to register allocation. The compiler's decisions to those 

challenges influence the quality of register allocation. 

• coloring order. In which order are live ranges assigned colors. 

• spilling versus splitting: When the register allocator perceives that register pressure 

is high and ought to take some actions to lower the register pressure. Both spilling 

and splitting live ranges reduce the pressure. The register allocator has to choose 

which technique to use to lower the register pressure. Which live ranges are spilled 

or split? 

• splitting points: In the case of splitting live ranges, how does the register allocator 

determine splitting points for the live ranges? 



2.5. PREVIEW OF FUSION-BASED REGISTER ALLOCATION 31 

• reconciliation: How to reconcile register allocation of two regions is a fundamental 

challenge to the program structure based approaches. If the register allocator performs 

register allocation for a region and doesn't reconcile the region with other regions, 

excessive shuffle code may arise at region boundaries. 

• call cost: What is the heuristic of assigning a callee-save or caller-save register to a 

live range? 

2.5    Preview of fusion-based register allocation 

In this chapter, I briefly review prior approaches on register allocation, and address their 

shortcomings. None of the heuristic (non-optimal) approaches taken so far considers the 

program structure during both splitting and coloring. However, splitting and coloring are 

closely related to each other. The decision to allow some live ranges to reside in the same 

register (at different times) affects subsequent splitting and coloring decisions. The ideal 

model is to postpone the splitting and register binding decisions as late as possible so that 

more information can be considered. 

Fusion-based register allocation is a bottom-up approach that builds up the interference 

graph, starting off with live ranges that extend at most a single region. Each region initially 

has its own interference graph. A region can be as small as a single basic block, or as 

large as a whole function (in which case the algorithm is identical to Chaitin-style register 

allocation). Regions are connected via control-flow edges, which are prioritized. These 

edges are then considered in priority order, and the interference graphs of two regions 

connected by an edge are merged by fusing the interference graphs. The fusion operator 

coalesces live ranges that span the control flow edge and maintains the invariant that the 

resulting merged interference graph is colorable, if necessary by splitting (suppressing the 

coalescing) of a live range. Thus the fusion operator makes spilling and splitting decisions 

when it becomes clear that it is impossible or unprofitable to keep all live ranges in registers. 

After all control flow edges have been considered, a single colorable interference graph 

remains. 
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Chapter 3 

Experimental Framework 

In this chapter, I describe cmcc, the Carnegie Mellon C Compiler, which provides the 

context for my implementation of register allocation. I also describe the register allocation 

framework that provides the infrastructure for various register allocation approaches. 

3.1    The cmcc compiler 

The cmcc compiler is an optimizing, retargetable compiler for a complete programming 

language (ANSI C). cmcc consists of three major phases, front end, global optimization, 

and code generation. The front-end phase uses the lcc ANSI C front end [24] (written in 

C). The code generation of lcc is modified to generate cmcc Intermediate Representation 

(IR) operations. The global optimization and code generation phases are coded in C++. The 

global optimization phase accepts cmcc's internal IR generated by the front-end phase and 

performs global optimizations. Table 3.1 lists the global optimizations performed by cmcc. 

The code generation phase performs code selection, local code scheduling (list scheduling), 

and register allocation, cmcc produces assembly language for a variety of target machine 

architectures: MIPS [40], SPARC [51], and iWarp [6], The results (register overhead 

operations and execution time) in this dissertation are based on the MIPS architecture. 

Table 3.2 contrasts the optimized code generated by cmcc with the optimized code 

produced by gec and the native MIPS cc compiler for the MIPS architecture, and with 

the code produced by the native SUN cc compiler for the SPARC architecture. (This table 

presents the performance relative to these compilers; a number of less than one means that 

33 
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Loop unrolling and peeling 
Linear function test replacement 
Induction variable expansion 
Induction variable simplification 
Constant propagation and folding 
Induction variable elimination 
Assignment propagation 
Partial dead code elimination 
Dead assignment elimination 
Partial redundancy elimination 
Strength reduction 
Branch optimizations 
Instruction scheduling 
Global register allocation (using graph coloring) 
Register coalescing  

Table 3.1: Optimizations performed by cmcc 

MIPS SUN 
program gcc  -02 cc  -O cc   -O 

alvinn 1.07 0.94 0.79 
compress 0.84 0.95 1.04 

ear 1.08 0.95 0.99 
eqntott 1.14 1.09 0.59 

espresso 1.06 1.05 1.02 
li 0.98 1.05 1.16 

sc 1.07 1.03 1.00 

Table 3.2: Performance of optimized code generated by cmcc, relative to optimized code 
generated by gcc (version 2.3.2) and MIPS cc on a DECstation 5000/200, and SUN cc 
on a SPARC. 

cmc c produces better code.) The sample programs are the C programs of the SPEC92 suite. 

Overall, even without serious performance tuning, cmcc produces code that is roughly of 

the same quality as the code produced by the other compilers. 

3.2   The register-allocation framework 

In the cmcc compiler, register allocation is performed after code scheduling. The cmcc 

register allocator takes a scheduled code sequence in which instructions use virtual registers 

and assigns physical registers based on graph coloring. 
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The cmcc compiler implements a register allocation framework [1] for experimentation 

of various register-allocation approaches. A framework partitions the task of the framework 

into abstract classes and defines their responsibilities and collaboration [26]. A framework 

fosters code reuse by capturing the common structure to its application domain. Various 

applications that share the same framework are easy to maintain because the code is concise 

and any change or extension to the framework benefits to all applications. Furthermore, a 

framework facilitates a/air comparison which is very important forresearches. For example, 

if an improvement is added to some parts of register allocation (e.g., the construction of 

the interference graph, or color assignment) then all register-allocation approaches can 

benefit from the improvement. Using a framework avoids a bias in favor of a one particular 

approach. 

Graph 
Reconstruction 

Graph 
Construction 

} ' 
Coalescing -> Color 

Ordering 
Color 
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Insertion 

Shuffle-code 
Insertion 

Figure 3.1: Structure of the register allocator. 

I identify seven phases in the register allocator: graph construction, live-range coa- 

lescing, color ordering, color assignment, graph reconstruction, spill-code insertion, and 

shuffle-code insertion (as illustrated by Figure 3.1). This register-allocation structure allows 

us to model a wide range of register allocation approaches. A register-allocation approach 

customizes the register-allocation framework by providing specific implementations of the 

abstract classes (subclassing). 

Graph construction 

The graph-construction phase builds the interference graph for the input instruction se- 

quence. This phase utilizes the data-flow analysis framework [1] to compute the reaching 

and live properties of virtual registers for building live ranges, reaching determines if a 

definition of a virtual register reaches the entry/exit of a basic block, live decides if the 

value of a virtual register is used/referenced after the entry/exit of a basic block. Various ap- 
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proaches may split live ranges to lower register pressure while constructing the interference 

graph. Details are presented in Chapter 4. 

Coalescing 

The coalescing phase eliminates copy instructions that move data values between two non- 

conflicting live ranges by coalescing the two live ranges into one. If a copy instruction 

moves a value from a live range to a physical register, or from a physical register to a live 

range (such as calling convention), the coalescing phase sets the partner information. A 

live range may have several partners. The partner relationship indicates that a live range 

would like to receive the same color as one of its partners. The later color-assignment phase 

can thereby take the partner information into consideration and assign colors to live ranges 

(biased coloring [7]). 

Color ordering 

There are two data structures that are used as the interface between the color-ordering and 

color-assignment phases: (1) the color stack (C), and (2) the spill pool (5). The color- 

ordering phase heuristically determines the order in which live ranges are to be assigned 

colors and pushes live ranges onto C based on the ordering — the higher the position within 

C, the higher the priority. S keeps all spilled live ranges. While deciding the color ordering, 

this phase may make spilling decisions due to lack of colors and may add the spilled live 

range to S. The spill-code insertion phase allocates spaces on the local heap for spilled live 

ranges in S, and inserts actual spill code. 

Color assignment 

The color-assignment phase pops live ranges from C and finds legal colors (non-conflicting 

colors) for them, i.e. this phase assigns colors based on the ordering computed by the 

previous phase and uses the interference graph to make sure that conflicting live ranges are 

assigned different colors. Biased coloring, which considers the partner information, is used 

to find legal colors so as to eliminate copy instructions. That is, a non-conflicting partner's 
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color of a live range may be assigned to the live range to eliminate the copy instruction 

that move the value between the partner and the live range. Details of biased coloring are 

presented in Section 4.5. If this phase is unsuccessful to find a legitimate color for a live 

range because all colors are already taken by its neighbors, the live range is then spilled and 

added to S. 

The spilling that we have discussed so far is called out-of-color spilling because live 

ranges are spilled with the goal of reducing register pressure. Register allocation may also 

make spilling decisions to reduce the overall overhead operations even though there are still 

enough colors for live ranges. This kind of spilling is called call-cost spilling (details are 

discussed in Chapter 6). 

Graph reconstruction 

For simplicity, the color-ordering and color-assignment phases make spilling decisions 

under the assumption that a spilled live range does not need any register resource. However, 

for load/store machines, memory accesses must be done by load/store instructions, which 

require to use a register as one operand (destination/source) [35]. In other words, at every 

occurrence of spilled live ranges, there is an instant requirement of a register. Hence, spill 

code needs to acquire registers. Reserving registers for spill code is one way of making sure 

that there are registers for spill code. A register allocator reserving registers for spill code, 

nevertheless, works with fewer colors than one without reserving registers. Our register 

allocator reserves no registers for spill code; that is, the register space is not divided into 

"local" and "global" registers. To ensure that there are registers for spill code, the register 

allocator rebuilds the interference graph (constructs live ranges for spill code) after spilling 

live ranges and restarts from the coalescing phase. 

There are two ways to reconstruct the interference graph: (1) spill code (a load/store) 

is inserted into the schedule immediately before/after a use/definition, the interference 

graph is thrown away, and the whole coloring process restarts from the first phase; (2) 

the existing interference graph is modified by producing a new small live range for each 

occurrence of a spilled live range (no spill code is inserted; the newly produced live ranges 

span only one instruction), and the coloring process can then skip the graph construction 
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phase and proceed from the coalescing phase with the modified graph. Those newly 

produced live ranges are called spill-code live ranges. The first approach reuses the code 

for constructing the interference graph. The second approach favors compilation speed, 

because the interference graph is not rebuilt from scratch, cmcc takes the second approach 

(i.e., it reuses the graph, to save compilation time). 
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Figure 3.2: Spill-code live ranges. 

Figure 3.2 illustrates an example of spill code. Enclosed in dotted lines are sequences 

of code. What we are interested in is the live range lrx. The add instruction defines x, 

and the sub instruction is the last instruction that uses x. The shaded area in Figure 3.2(a) 

is the range in which x is live before lrx is spilled. Any reference of x within the area 

accesses the value of lrx. When lrx is spilled, the first approach of reconstructing the 

interference graph first inserts the two spill code operations (one store and one load as 

shown in Figure 3.2(b)). The graph construction phase then rebuilds the interference graph 

for the new code sequence. As a result, the x defined in the add instruction and the a; 

accessed by the sub instruction belong to two different live ranges, lr'x and lrx", because 

the Id instruction re-defines x (start of lrx"). The second approach of reconstructing 

graph constructs the new interference graph by modifying the original interference graph 

of Figure 3.2(a). The st and Id instructions are not inserted into the code sequence until 

the later spill-code insertion phase. 

The next pass of register allocation (restart from the coalescing phase) attempts to assign 

registers to all the live ranges including spill-code live ranges. Other live ranges may be 

spilled during this iteration, the register allocator repeats register allocation until no more 

live range is spilled. Because spill-code live ranges span only one instruction, spilling them 



3.2.  THE REGISTER-ALLOCATION FRAMEWORK 39 

does not help to lower register pressure but increases spill code instead. Therefore, they are 

marked non-spillable so that the register allocator won't spill them in subsequent iterations 

of register allocation. 

Figure 3.3 illustrates an example such that the register allocator needs to perform 

multiple iterations of register allocation. A white circle in the figure indicates a definition, 

and a black circle indicates a use. Solid vertical lines indicate live ranges of virtual registers. 

The example has two colors and three live ranges, x, y, and z. The three live ranges overlap 

(as shown in Figure 3.3(a)) so they interfere with each other and must reside in distinct 

registers. Hence, the register allocator must spill one live range (assume that x is spilled). 

The live range x is broken into two spill-code live ranges (depicted in Figure 3.3(b)). 

The dotted line between the two spill-code live ranges indicates the value of x residing in 

memory instead of a register. Even though the live range x is spilled already, we see that 

the maximum number of register requirement is still three at the use of x (shaded range). 

Thus the register allocator must spill another live range (assume that z is spilled) during the 

second iteration of register allocation and re-start register allocation over again. After z is 

spilled, the maximum number of register requirement is two at any point of the program 

(shown in Figure 3.3(c)). 

x 
O 

Qdef 

■ use 
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% 
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Figure 3.3: Spill code with Ar = 2. 

Spill-code insertion 

The spill-code insertion phase allocates spaces for spilled live ranges on S. We classify 

virtual registers into global and local virtual registers. Global virtual registers are those who 
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appear in multiple blocks. Local virtual registers are those that appear within one single 

basic block. The spilled live ranges that correspond to the same virtual register are always 

spilled to the same location. In other words, spaces are allocated to virtual registers. No 

space is allocated to a virtual register if no live range of the virtual register is spilled. Global 

virtual registers have their own locations. Nonetheless, spaces for local virtual registers 

are squeezed/compacted using the same graph coloring technique. That is, the locations 

already allocated to the neighbors of a spilled live range are not allocated to the live range. 

After spaces for spilled live ranges are allocated, the spill-code insertion phase traverses 

each instruction and inserts spill code for each reference of spilled live ranges. Each 

reference of a spilled live range has its own spill-code live range, which acquires a register 

for loading from or storing to memory. If there exists a source operand (use) of an instruction 

and the corresponding live range is a spill-code live range, then a load instruction is inserted 

before the instruction to load the value of the operand from memory. If there is a destination 

operand (definition) of an instruction which is a spill-code live range, then a store is appended 

after the instruction to spill the value of the live range to memory. 

Shuffle-code insertion 

Register allocation may include one or more live-range splitting approaches to split live 

ranges into smaller segments to reduce register pressure. In this register allocation frame- 

work, splitting can occur only on control-flow edges (not within a basic block). The 

shuffle-code insertion phase goes through control-flow edges and inserts shuffle code for 

those live ranges that should span across the edges but reside in different storage locations 

instead (details are discussed in Section 4.6). 

3.2.1   Modeling existing register-allocation approaches 

This section elucidates how various register allocation approaches fit into this register 

allocation framework. Table 3.3 shows how the register allocation framework can model 

various register-allocation approaches. 

Chaitin-style coloring [13, 5] uses a simplification process to determine the coloring 

order. Simplification moves all unconstrained live ranges (degree < Ar) to the C stack; when 
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Phases 
Register allocation 

Chaitin-style Priority-based Optimistic Fusion-style 

Graph construction function function function region 
out-of-color spill 
split 

Graph reconstruction X X X X 
Coalescing X X X X 
Color ordering simplification 

out-of-color spill 
priority simplification simplification 

Color assignment ' 
call-cost spill 

out-of-color spill 
call-cost spill 

out-of-color spill 
call-cost spill call-cost spill 

Spill-code insertion X X X X 
Shuffle-code insertion X 

Table 3.3: Model different register-allocation approaches. 

a node is removed, all edges incident upon the node are also removed, opening up further 

opportunities for simplification. If simplification blocks (all nodes have degree > Ar), a 

least-cost live range is spilled (added to S) so that the simplification process can proceed. 

The Chaitin-style approach makes out-of-color spilling decisions in the color-ordering 

phase. 

Optimistic coloring [9] also uses simplification to determine the coloring order. When 

simplification blocks, however, rather than spilling, optimistic coloring pushes a least-cost 

live range onto C, removing the live range from the residual graph. In this manner, a live 

range that would have been spilled by the Chaitin-style approach is given another chance 

at receiving a register in the color-assignment phase. Optimistic coloring defers out-of- 

color spilling decisions until the color-assignment phase, which spills those live ranges that 

cannot be assigned legal colors (all colors are taken up by neighbors). 

The priority-based coloring that I implement is Chow's priority-based coloring [16] 

without live range splitting. Priority-based coloring determines the coloring order according 

to apriority function. This approach first separates out unconstrained live ranges and pushes 

them onto C, since unconstrained live ranges can always be assigned legal colors. The 

priority function determines the order in which constrained live ranges are pushed onto 

C (from the smallest to the biggest). During the color-assignment phase, if a live range 

cannot be assigned a legal color (because of conflicts with the neighbors' colors), then 

priority-based coloring spills this live range. 

This framework can also model other approaches to live-range splitting that take the 
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program structure into account, such as the approaches taken by Tera [12], Multiflow [25], 

and RAP [53], as well as splitting based on the SSA representation [7], and the integrated 

approach to splitting and spilling provided by fusion-style coloring[48]. Fusion-style 

coloring makes splitting and spilling decisions in the graph construction phase. A more 

detailed discussion of how fusion-style coloring models other approaches is presented in 

Chapter 4. 

This framework emphasizes what priority-based coloring [16] and the Chaitin-based 

approaches have in common: they all try to determine the color ordering in which live 

ranges are assigned colors (registers). Priority-based coloring uses cost analysis as the 

priority to determine the ordering and guarantees that the register assignment phase assigns 

registers to the most important (high savings of memory accesses) live ranges. Chaitin- 

style, optimistic, and fusion-style simplify the interference graph to decide the ordering. 

Optimistic coloring is similar to priority-based coloring in the sense that both approaches 

delay out-of-color spilling decisions until the color-assignment phase. 

Fusion-style register allocation requires the shuffle-code insertion phase to insert code 

to move values at splitting points. Shuffle-code insertion is just a nop for the Chaitin-style, 

optimistic, and priority-based approaches because these approaches do not split live ranges. 



Chapter 4 

Fusion-Based Register Allocation 

In chapter, I explain the structure of fusion-based register allocation, the fusion operation 

that fuses two interference graphs, and some techniques used during graph fusion. In 

Section 4.1, I present an overview of fusion-based register allocation. In Section 4.2, I 

present the fusion operator that fuses two graphs. In Section 4.3, I discuss how fusion- 

based register allocation models different splitting approaches. In Section 4.4,1 describe 

delayed spilling that avoids making premature spilling decisions while two graphs are being 

fused. In Section 4.5, I describe the biased coloring technique that is used to eliminate 

unnecessary move operations. In Section 4.6,1 present the ordering of shuffle code and the 

optimization of placing shuffle code. In Section 4.7,1 measure the influence of fusion-based 

register allocation for various SPEC92 programs. 

4.1    Overview 

Fusion-based register allocation identifies regions, builds the interference graph for each 

region, and then merges all regions' interference graphs along control-flow edges. In 

this section, I concentrate on two essential phases of fusion-based register allocation, 

graph construction and color assignment, that make spilling, splitting, and register binding 

decisions. Graph fusion takes place during the graph construction phase which is further 

divided into three steps (shown in Figure 4.1): region formation, graph simplification, and 

graphfusion. 

Here we define some notations that are used in this chapter. 

43 
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Figure 4.1: Structure of the fusion-based register allocator. 

• (Dm, Dn) indicates a control-flow edge that goes from block Dm to Dn. 

• GR represents the interference graph of region R. 

• Iri (x) denotes the segment of a virtual register x's live range lr(x) that extends block 

Di, and there is one or more segment for every region Ft where x is live and reaching. 

• [lrx , lry] is the interference edge that connects live ranges lrx and lry. 

• Irij is the combined live range of /r,- and /r,. 

• ncighbor(lr) is the set of all live ranges that Ir interferes with. 

• '-p{lr) is the set of all interference edges of Ir. 

• GRIUR2 refers to the resulting graph of fusing (or merging) G«, and GR2. 

• GRIUR2 represents the resulting graph of fusing GR, and GR2 along the control-flow 

edge E. 

4.1.1   Region formation 

In this phase, regions are formed using any number of possible techniques. A region consists 

of multiple blocks (or one single block) and the edges that connect the blocks within the 

region. For example, a region can be a single basic block, a trace [47], a superblock [37], a 

region as defined in [33], the blocks at a particular static loop nesting level [ 12], or the blocks 

within a PDG region node [53]. Control flow edges that lie outside of regions are then 
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ordered according to some priority functions consistent with the region formation approach, 

e.g., edges entering innermost loop regions are placed before those entering outermost loop 

regions. One particularly attractive priority function is the use of execution probabilities. 

These can be derived either from profile information [23,60], from static estimates such as 

loop nesting depth [16], or from static branch estimates [47]. The choice of edge ordering 

is orthogonal to register allocation but of course influences the quality of the code, as our 

register allocation framework is edge order sensitive: shuffle code is less likely to end 

up on edges that are ordered first, and spilling decisions are delayed until later edges are 

processed. During region formation, an interference graph GR is built for each region R. 

There are two issues related to choosing the size of the base region: spill and shuffle 

costs. The smaller the size of the base region, the more likely the register allocator generates 

shuffle code and reduces the spill cost because live ranges are allowed to be split at finer 

granularity (at the cost of shuffle code) to reduce the spill cost. On the other hand, the 

bigger the size of the base region, the more likely the register allocator generates spill code 

to reduce the shuffle cost. It is impossible to state that one strategy is better than the other 

because the actual outcome depends on characteristics of the programs. Chapter 5 discusses 

those two issues in detail. 

4.1.2   Graph simplification 

The objective of the graph simplification phase is to determine how many live ranges must 

be spilled within each region. If an interference graph GR can be simplified, then no 

spill code is necessary within region It. But if GR cannot be simplified, then from R's 

perspective the cheapest live ranges to spill within R are those that are transparent, i.e., a 

live range lr(y) that spans R with no definition or use of y in R. From a global perspective, 

the choice of which live ranges are the best ones to spill cannot be determined at this point 

in the algorithm. Thus the decision on which live ranges to spill is delayed until more 

global knowledge about the reference patterns is available; this phase determines only how 

many transparent live ranges need to be spilled within each region. The next phase, graph 

fusion, determines which live ranges are the best ones to spill. This technique is referred to 

as delayed spilling and is discussed in more detail in Section 4.4. There, we also describe 

what to do if the compiler must spill more live ranges than there are transparent ones. 
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4.1.3 Graph fusion 

The graph fusion phase takes the sequence of control flow edges determined by the region 

formation phase and fuses interference graphs along each edge. Graph fusion is based on a 

powerful/iwfo« operator that maintains the invariant that the resulting interference graph is 

simplifiable (i.e., can be simplified). Live-range splitting decisions are made by the fusion 

operator: if fusing two graphs GHl and GH2 along an edge E results in an interference 

graph that cannot be simplified, then one or more live ranges that span E are split. Only 

the live ranges that span E need to be considered, because in the worst case, splitting all 

such live ranges partitions the graph G%lUtl2 back to the two original graphs, GRl and GHl, 

both of which are simplifiable. At the end of the graph merging phase, we are left with one 

simplifiable interference graph; we know how many live ranges to spill for each region and 

where to place the shuffle code, but no physical registers are committed to any live range. 

The simplifiability invariant allows us to avoid making any coloring decisions prematurely 

during the graph merging phase. For the example of Figure 2.2, assume that we choose 

loops as regions. There is no coloring assignment decision for any live range while graphs 

of the loop region are fused. All we know is that the interference graph of the loop region 

is colorable. The actual coloring decision is deferred till the color-assignment phase. 

As more graphs are fused, the delayed spilling mechanism gradually spills live ranges. 

The net effect of combining splitting with delayed spilling is that the register allocator may 

spill only those segments of a virtual register's live range that do not contain references but 

span regions of high register pressure. 

4.1.4 Color assignment 

In this phase, physical registers are assigned to live ranges. The simplifiability invariant 

guarantees that once all interference graphs have been fused, the resulting interference 

graph is colorable and out-of-color spilling or splitting decisions have already been made. 

Maintaining the simplifiability invariant is necessary, otherwise we are back to the original 

problem of making splitting and spilling decisions based on a whole interference graph. 

There exist further opportunities for improving the code in this phase: biased coloring 

[7] may eliminate shuffle code, optimistic coloring [9] may assign registers to live ranges 
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that have been spilled by simplification, and the enhancements discussed in Chapter 6 may 

decide to spill live ranges to reduce call cost (call-cost spilling). 

4.1.5 Properties of graph fusion 

Initially, each interference graph is sparser (i.e. less constrained) than the function-wide 

interference graph Gjunction because each graph is only a portion of Gfunction. As graph 

fusion proceeds further, more interference graphs are fused, resulting in denser interference 

graphs (i.e. more constrained) than the ones that are fused earlier. Thus, the earlier an edge 

is considered by the fusion process, the less likely it is that live ranges are split along that 

edge. Fusing graphs based on an edge ordering provides a nice property: if we don't want 

shuffle code on a particular edge, we can fuse the interference graphs along that edge first. 

Consequently, the decision of where to split is prioritized according to the edge ordering, and 

shuffle code ends up on less frequently executed edges. Register allocation now becomes 

an problem of edge ordering and forming regions. Compiler writers can determine the 

size of regions and the edge ordering to tune the quality of register allocation. Moreover, 

maintaining the simplifiability invariant allows register allocation to avoid committing any 

register binding decision during graph fusion. As a result, no early binding is made. 

4.1.6 Example 

We illustrate the above steps with an example. Consider assigning registers to the program 

fragment shown in Figure 4.2(a). Assume we have only two physical registers (N = 2) and 

that regions are basic blocks. There are three virtual registers (x, y, and z) in this program 

with initial live ranges indicated by the vertical bars. The interference graph of each basic 

block prior to fusion is depicted in Figure 4.2 (b). Suppose edges 1 and 3 form the most 

frequently executed path and edges are fused in the order 1, 3, 2,4. After we fuse graphs 

along edges 1, 3, and 2, we obtain the interference graph of Figure 4.2 (c) (interference 

graph nodes list live ranges that have been fused). If we now fuse the interference graphs 

along edge 4, lr3(y) and Ir^y) are combined, since the only live range spanning edge 4 is 

lr(y). However, graph fusion along edge 4 makes the graph unsimplifiable (clique of size 

3), so the algorithm undoes combining lr3(y) and Ir^y). lr(y) is effectively split at the 
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Figure 4.2: Simple code fragment for a world with Ar = 2. 

less frequently executed point in this control flow graph. The result is that all values can be 

kept in registers with an additional register move instruction at the end of block Z?3. 

4.2   Fusion operation 

This section describes the essential core of the fusion-based approach,/ksron operation. The 

fusion operation fuses two interference graphs into one and maintains the simplifiability 

invariant. Figure 4.3 depicts several important steps of the fusion operation: finding 

live ranges that span the edge E, unioning non-splitable live ranges, merging cliques, 

taking a snapshot of the interference graph, unioning splitable live ranges, and maintaining 

simplifiability. 
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Figure 4.3: Fusion operation. 
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4.2.1   Finding spanning-E live ranges 

For each basic block B, two sets oflive ranges are maintained: Rcachln(B) andLivcOut(B). 

Given a live range lr(x), lr(x) e Rcachln(B) if lrx is not defined in B (definitions of lrx 

reach the entry of B), and lr(x) e LivcOut(B) if lr(x) is live at the exit of B. Consider 

two basic blocks B\ and B2 that are in two regions R\ and R2, and connected by an edge 

E = (Z?i, Z?2) in the control flow graph. The Rcachln and LivcOut sets indicate which 

live ranges span edge E. That is, if lri(x) £ LivcOut{B\) and /r2(:») £ RcachIn(B2), 

one definition of /^(z) comes from /ri(a;) (there may be other definitions reaching lr2(x) 

from other paths to B2). To facilitate applying the fusion operation along edge E, we define 

an internal structure called span-c that is composed of two live-range pointers, from and 

to; "from" points to lri(x) and "to" points to lr2(x). 

The first step of the fusion operation traverses LivcOut(B{) and RcachIn(B2) to find 

out which live ranges span edge E. The fusion operation attempts to coalesce the live 

range segments lri(x) and lr2(x) in the interference graph G%lUH2 so that no shuffle code 

is needed for x along E. This step returns a working list, w, of spanne. 

The example of Figure 4.4 shows the relationship among the structures of span-c, 

Rcachln, and LivcOut. LivcOut(Bi) has three live ranges, lri(x), lr\{y), and lr\{z) 

because the virtual registers, x, y, and z are defined in B2 and their values are live at the 

exit of B\. RcachIn(B2) contains lr2(x) and lr2(y) because a: and y are defined in B\. 

The working list u for edge E records that live ranges of a: and y span E. 

... x... 

...y... 
B2    B3 

Figure 4.4: Example of finding spanning-E live ranges. 
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ln(x) 
lr2(x) 

Spilled            Transparent                  Non-transparent 
Spilled Spilled             Spill (Section 4.4)          Split (Section 4.4) 

Non-splitable   Non-splitable                Splitable 
Transparent Coalesced, transparent   Coalesced, non-transparent 

Non-splitable                Splitable 
Non-transparent Coalesced, non-transparent 

Splitable 

Figure 4.5: Different possibilities when coalescing lr\(x) and lr2{x). 

4.2.2   Unioning non-splitable live ranges 

There are two places (unioning non-splitable and splitable live ranges as shown in Figure 

4.3) where the fusion operation combines live ranges that span edge E. Basically, both 

steps combine "from" and "to" live ranges of span.e into one. A live range segment /r, can 

be in one of these three states: it has been spilled, it is represented in G^ and transparent, 

or it is represented in GHi and non-transparent (i.e., there is areference). If both segments, 

"from" and "to", are spilled, no shuffle code is needed. If ln(x) is spilled and lr2(x) is 

transparent, we always spill the combined live range lrn(x) in G^lUHl to eliminate the 

shuffle code that is needed otherwise. If ln(x) is spilled and lr2(y) is non-transparent, we 

have a split point. Otherwise the segments are coalesced, although if the new interference 

graph is not simplifiable, coalescing may be suppressed (i.e., a split). If both lr\(x) and 

lr2(x) are transparent, then lrn(x) in G%luRi is non-splitable because spilling those live 

ranges do not introduce spill cost. Figure 4.5 enumerates all possible cases of combining 

two live ranges. Empty entries in this table are symmetric cases. 

This step traverses the u list and coalesces the live ranges whose combined live ranges 

are not splitable. Live ranges that are coalesced in this step are removed from w. Combining 

two live ranges "from" and "to" consists of three major steps, unioning two live ranges, 

merging interference edges, and propagating attributes as shown in Figure 4.6. The small 

diamonds in the figure are condition checkers. For instance, the checker on the left-hand 

side checks if the combined live range of the current span_e is splitable or not. 
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Figure 4.6: Structure of unioning 2 non-splitable live ranges. 

Unioning two live ranges 

How we union two live ranges depends entirely on the data structures of live range and 

instruction. A typical machine instruction is composed of three parts: opcode, source, 

and destination operands. Prior to register allocation, operands may access virtual registers 

because the code-selection phase of cmcc selects code using virtual registers. Two essential 

aspects are kept inside the operand accessing a virtual register, (1) a pointer pointing to 

the virtual register, and (2) a pointer pointing to the corresponding live range of the virtual 

register at the instruction. At the time of code emission, the code emitter then gets the 

physical register of the operand via the live-range pointer. During region formation of the 

graph construction phase, an interference graph is built for each region and the live-range 

pointers of operands are set properly. 

When two live ranges are unioned into one, the operands having pointers pointing to the 

two live ranges must be able to acknowledge the change. That is, the operands must access 

the combined live range as opposed to the two old live ranges. One solution is changing the 

live-range pointers of the operands to point to the combined one. However, updating the 

live-range pointers is not elegant because it is very inefficient to update pointers every time 

when two live ranges are unioned. Another way to acknowledge that two live ranges are 

unioned is through manipulating the data structure of live ranges. The algorithm, disjoint- 

set forests [19], with union-by-rank and path-compression heuristics is used for unioning 

two live ranges. Each disjoint set represents one live range. Each live range contains one 

parent pointer and rank for the disjoint set. The live range whose parent pointer points to 
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itself (root) is the representative of all live ranges that are in the same set. Namely, the root 

live range keeps all information regarding color assignment, interference,..., etc. All other 

live ranges of the same set need to follow their parent pointers to get to the root live range to 

retrieve all information. As a result, the live-range pointers of operands are never required 

to be updated using the disjoint-set algorithm. 

Figure 4.7(a) illustrates an example of unioning two live ranges of x using the disjoint- 

set algorithm. Each shaded region represents one live range. One live range comprises 

Iri and h2, and the other consists of /r3, /r4, and lr5. Arrows indicate the parent pointers. 

The node whose parent points to itself is the root that represents the live range, e.g. hi 

and Ir-s. Unioning the two live ranges is done by simply changing lr{% parent pointer to 

point to lr\. \T\ is now the one who represents the union of the two live ranges as shown in 

Figure 4.7(b). Finding the root live range for ht, traverses the parent pointers to get to the 

root. The traversing path from /r4 to the root is compressed by changing the parent pointer 

of each node on the path to point directly to the root (the dotted line illustrated in Figure 

4.7(c)). Changing the parent pointer of each node on the traversing path is known as path 

compression (the path from /r4 to hi is now shorter than the one of Figure 4.7(b)). 

(a) (b) 

Figure 4.7: Unioning two live ranges using disjoint-set. 

There is one price to be paid for using the disjoint-set algorithm— superfluous memory. 

The size of the data structure for a live range is large. The cmcc compiler is developed 

on DEC Alpha machines on which each pointer requires 64 bits (8 bytes). Using virtual 

functions in C++ costs each object whose class declares virtual functions a pointer that 

points to the virtual function table for that class [59,49]. The size of our data structure for 
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a live range is 184 bytes. What a non-root live range needs is the parent pointer to proceed 

to the root to retrieve live-range information. The other fields of the structure are never 

used and therefore wasted. To alleviate the problem, another structure, live-range union, 

is created. This structure sits between operands and live ranges. Now, an operand that 

accesses a virtual register has a live-range union pointer rather than a live-range pointer. 

A live-range union contains a parent pointer, rank as well as a live-range pointer. Only 

root live-range unions retain live ranges. As two live ranges are unioned, the combined 

live range, lrn, of lr\ and lr2 is either lr\ or lr2. The other one can later be destroyed and 

recycled. Live-range union allows the internal representation of register allocation to use 

memory not more than necessary. 

Figure 4.8 sketches the structures for an instruction, a live-range union, and a live range. 

Only the root live-range union, which is shaded, retains the live-range information. The 

live ranges of the other two live-range unions have been freed up in the process of unioning 

live ranges. To access the physical register that the srcl operand uses, we need to go 

through lr.ptr to get to its corresponding live-range union, follow the parent pointer of 

the live-range union up to the root, and then query the live range to return the physical 

register (see Figure 4.8). 

Operand 
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vreg_ptr. 

opcode dst 

live-range 
union 

8KJ1 src2 

virtual 
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live range 
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Figure 4.8: Live-range union. 
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Merging interference edges 

The two live ranges have their own interference edges, v>('r0 and 'f C^)- Pri°r to uniting. 

In this step, y(lr\) and <p(lr2) are merged. If lrn is lr\, then each interference edge, 

[lr2, X], of lr2 is updated by substituting lr2 with lrx2 ([Irn, X}) where X £ ncighbor(lr2). 

Likewise, each edge of v>('r0 *s also updated in a similar fashion if /r12 is lr2. Duplicate 

edges occur when lr\ and lr2 interfere with the same live range prior to uniting. In such a 

case, duplicate edges are not added to the interference graph and therefore freed up. 

The example in Figure 4.9 illustrates merging interference graphs. The interference 

graph prior to unioning lr\ and lr2 is given in Figure 4.9(a). '-p(lri) has two edges: [lr\,lrx\ 

and [lri,lry]. y{lr2) has also two edges: [lr2,lry] and [lr2,lrz]. Both lr\ and lr2 interfere 

with lry. After we combine lrx and lr2 into lru, we update <p(lri) and '-p(lr2). The two edges 

of '-p(lri) now become [lrn,lrx] and [lr\2,lry]\ the two edges of '${1^) become [lr\2,lry] 

and [lrn,lr3]. Merging --pilri) and y{lr2) eliminates one duplicate edge, [lr\2,lry]. The 

resulting interference graph is depicted in Figure 4.9(b). 

lrl )       ( lr2 , 

(a) (b) 

Figure 4.9: Example of merging interference edges. 

Propagating attributes 

Each live range has several attributes that are propagated during graph fusion: callerxost, 

spilLcost, hasAef, and area. The caller xost attribute is the estimated cost of assigning 

a caller-saved register to the live range—the number of saves and restores that must be 

executed around function calls if the live range is assigned a caller-saved register. The spill- 

cost attribute is the estimated spill cost of a live range. The caller-save cost and spill-cost 

properties are used during color assignment to decide whether a live range is assigned a 

callee-save register, a caller-save register, or whether it is more profitable to spill the live 
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range. The to.de/property is true for a live range lr(x) if there is a definition of x within 

lr(x). The has.def attribute indicates whether x's value needs to be stored to memory at 

exits from Ir (x); if a live range does not modify the value of a virtual register, then no stores 

are required at exits from the live range. The area attribute indicates the size of the live 

range and is used for making out-of-color spilling decisions [5], 

These attributes are propagated as follows: 

• has.dcf(lri2) = has-dcf(lr\) V has-dcf{lri) 

• caller.cost(lri2) = caller j:ost(lr\) + caller-C.ost(lr2) 

• spill -Cost(lr\2} = spill-cost(lr\) + spill-cost {lr 2) 

• arca(lrn) = area{lr\) + arca(lr%) 

4.2.3 Merging cliques 

The clique summary nodes (Section 4.4) are used to delay spilling decisions. Multiple 

cliques may exist on both ends of the edge E as more graphs are fused. The cliques- 

merging step deals with how to combine cliques. Details are described in Section 4.4. 

4.2.4 Taking a snapshot of the interference graph 

As mentioned earlier, combined live ranges may be split to maintain the simplifiability 

invariant. As two live ranges, lr\ and lr2, are combined into lrn, their interference edges, 

'■p(lri) and ^(/r2), are merged. Duplicate edges may arise and are thrown away. To undo 

combining, the register allocator must retain the original interference graph. Otherwise, it 

is hard and very inefficient to recompute interference information. This step takes a partial 

snapshot of the current interference graph before combining any splitable live ranges. 

Because only splitable live ranges need their original interference information, the origial 

interference edges of these live ranges are stored. Non-splitable live ranges were already 

removed from ui in the step of unioning non-splitable live ranges. Now all live ranges of u> 

are splitable. This step, therefore, stores the interference edges of the live ranges of u. 
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4.2.5   Unioning splitable live ranges 

This step traverses w and combines each pair of live ranges (all resulting live ranges are 

splitable). Unioning two splitable live ranges, lrx and lr2 requires two operations that are 

similar but not identical to unioning non-splitable live ranges. First, the two live ranges are 

combined into one live range, lrn, as described in Section 4.2.2. Nevertheless, the slight 

distinction is that there is no path compression between this step and the step that commits 

live-range unioning decisions in Figure 4.10. The second operation merges interference 

edges without freeing up duplicate edges. There is another noteworthy point—attributes 

of live ranges are not propagated at this point of time. All differences of unioning non- 

splitable and splitable live ranges originate from the fact that the latter wants to retain the old 

interference information so as to split combined live ranges easily, and the former doesn't. 

The task of deleting duplicate edges and propagating attributes of splitable live ranges is 

deferred till the simpliflability invariant is satisfied. 

We avoid compressing paths because updating the parent pointer causes a serious 

problem when we want to split a combined live range. Consider the example of Figure 4.7. 

Presume that path compression happens prior to splitting combined live ranges. The parent 

pointer of /r4 may have been changed to In (Figure 4.7(c)). It is now very hard to split the 

combined live range because we have no idea if lr4 belongs to In or lr3 initially, unless 

there is some extra bookkeeping. On the contrary, if we don't allow path compression to 

happen, then splitting the combined live range can be done by simply changing lr3's parent 

to point to itself. 

4.2.6   Maintaining the simpliflability (colorability) invariant 

The step that maintains simpliflability ensures that the invariant holds by performing sim- 

plification on GH!UH2- The algorithm described in [52] is used to deal with register pairs. 

This step consists of four major components as depicted in Figure 4.10: computing degree, 

removing a LS-N node (degree less than N), lowering register pressure, and committing 

the live-range unioning decision. The shaded region simplifies the interference graph until 

an empty graph is obtained. 
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Figure 4.10: Maintaining simplifiability. 

Computing degree 

There are two working lists, LS-N and GE.N, used by the simplification. The LS.N list 

keeps live ranges whose degrees are less than Ar (Max colors). The GE-N list contains live 

ranges whose degrees are greater than or equal to Ar. The computing degree step computes 

the degree of each live range of the interference graph and initializes the two lists. 

Removing a LS_N node 

Again the small diamonds of Figure 4.10 are condition checkers. The checker between the 

computing-degree and removing-LS-N steps checks if there are live ranges on the LS-N 

list. If LS-N is not empty, then the removing-LS-N step removes one live range from the 

beginning of the LS-N list and then removes the live range from the graph. The degrees of 

the live range's neighbors are decremented. If any neighbor that was constrained becomes 

unconstrained, the neighbor is removed from the GE-N list and inserted into the LS.N 

list. 

Lowering register pressure 

If all remaining live ranges are on the GE-N list (and LS-N list is empty), then simpli- 

fication of G^lU^2 blocks. In other words, fusing the interference graphs of GH{ and GR2 
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along edge E induces high register pressure. Some actions are required to lower the register 

pressure. In a first attempt, we find a transparent live range to spill, instead of splitting 

live ranges. Spilling a transparent live range incurs no spill cost (but implies shuffle cost), 

and the delayed spilling technique may lower the incurred shuffle cost, i.e. push shuffle 

code onto low frequently executed edges. After spilling a transparent live range, degrees 

of its neighbors are decreased correspondingly. If there is no transparent live range, then 

a coalesced (splitable) live range W\2 is chosen from the remaining constrained nodes to 

split. lrn will be split along E back into lr\ and lr2. The choice of which live range to 

split is solely based on a node's degree, because the shuffle costs (move) at edge E for all 

splitable live ranges are the same. After splitting lru, if lr\ (lr2) becomes unconstrained, 

lr\ (lr2) is inserted into the LS-N list. The degree of the interference graph may be lowered 

because of splitting, allowing simplification to proceed from the point where it blocked. 

If simplification blocks again, additional live ranges are split. Experimental results show 

that choosing the splitable live range that has the smallest degree incurs fewer splittings 

than choosing the highest degree. The reason is that lr\ and lr2 are more likely to become 

unconstrained using the heuristic of choosing the smallest degree. Since the original graphs 

GKI and GR2 are simplifiable, then at worst all live ranges that span E are split. Figure 

4.11 depicts the flow of the steps to lower register pressure. The splitting step may generate 

critical nodes while splitting a combined live range. Section 4.2.7 elucidates how splitting 

live ranges generates critical nodes. If a critical node arises, then simplification is reiterated 

from the computing-degree step as illustrated in Figure 4.10. 

Splitting a splitable live range lr\2 consists of three steps (in the shaded region). Union- 

ing the two live ranges, lr\ and lr2, causes one of them to become a child of the other using 

the disjoint-set algorithm. The first step removes h\2 from the GE.N list and makes the 

child to be a root by changing the child's parent pointer to point to itself. The second step 

removes all edges of '-p(lrn), retrieves the two sets of original interference edges, y{lrx) 

and v?( lr2), that were recorded in the taking-snapshot step. If the child is lr\ then each edge 

of '-p(lri) is updated by changing [lrn, X] to [lru X] where X G ncighbor(lri) (reversing 

what had been done in the merging-edges step of Section 4.2.5). Each edge of ¥>(£r2) is 

updated similarly if the child is lr2. <p(ln) and ^(£r2) are hereby added back to the graph 

again (duplicate edges may still exist and are not put back to the graph). The third step 
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Figure 4.11: Lower register pressure. 

recomputes the degrees of In and lr2. If In (lr2) is unconstrained, In On) is inserted into 

the LS-N list. Otherwise, they are inserted into the GE-N list. 

If none of the live ranges of the GE.N list is splitable, then simplification must have 

produced at least one critical node. Otherwise, simplification should proceed without 

blocking. Hence, all nodes are simply removed from the graph, and simplification is 

repeated from the computing-degree step. 

Committing live-range unioning decision 

By the time we get to the "committing unioning decision" step, the simplifiability constraint 

is satisfied and all necessary spilling (transparent live ranges) and splitting (coalesced live 

ranges) decisions are made. Some live ranges are coalesced and some live-range unions are 

suppressed. The step now commits all coalesced live ranges. Namely, those coalesced live 

ranges will never be split at edge E. Thus, the attributes of the coalesced live ranges are 

then propagated. Duplicate interference edges can now be eliminated. Furthermore, parent 

pointers of live ranges are allowed to be updated freely from now on. 
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4.2.7   Critical node 

When two live ranges lr\ and lr2 are combined into lru, the degrees of their neighbors 

can only decrease monotonously (the degree will never increase). If one live range lrx 

interferes with lrx and lr2, coalescing lrx and lr2 produces one duplicate edge. The 

duplicate edge is then removed from the graph, as a result, the degree of lrx is decreased 

by 1. Conversely, splitting a coalesced live range, lrn, increases its neighbors' degrees 

monotonously because the removed duplicate edge is added back to the interference graph 

(the degree of lrx is increased by 1). One problem arises, due to this property, when splitting 

is taking place during simplification (Figure 4.11). One live range is removed (simplified) 

from the interference graph only under the condition that the degree of the live range is 

less than N. Again, the main observation is that the register allocator is able to find a 

legal color for the live range regardless how colors are assigned to the residual graph. The 

observation, nonetheless, may no longer hold once coalesced live ranges are split because 

the degree of an already-simplifiedlive range may increase and become constrained. Those 

already-simplified live ranges that become constrained are called critical nodes. A critical 

node can happen only when live ranges are split. 

Detecting critical nodes is done by keeping track of the degrees of already-simplified 

live ranges. The notation a(lr) denotes the degree of Ir at the time when Ir is removed 

from the graph during simplification. After Ir is removed from the graph, a(lr) (cr(lr) < N 

at this point of time) is then frozen and not decreased when subsequent live ranges are 

removed from the graph. At the time of splitting lrn back to lrx and lr2, a(lr) is increased 

by 1 if both lr\ and lr2 interfere with Ir. Whenever cr(lr) is equal to Ar, then Ir becomes a 

critical node (the condition <r(lr) < N is violated). 

The simplification step of Figure 4.10 never tries to backtrack when critical nodes arise 

(because it is hard). Instead, simplification continues until an empty graph is obtained. If 

critical nodes arise, then simplification is reiterated from the computing degree step to make 

sure that the resulting graph can still be simplified without blocking. The next pass simplifies 

the interference graph on which some live range are already split at E. Simplification will 

terminate within a fixed number of iterations because a critical node can happen only when 

live ranges are split, and there is only a fixed number of splitable live ranges. In reality, 

critical nodes happen rarely. As I have observed so far, one more iteration of simplification 
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is sufficient to preserve the simplifiability invariant. One implementation could curtail the 

chance of generating critical nodes. Always simplifying an unconstrained live range that 

has the smallest degree lowers, in general, the degrees of live ranges at the time when they 

are simplified. Because critical nodes occur rarely, the technique is not implemented. 

4.2.8   Example of critical node 

The example of Figure 4.12 shows how splitting live ranges produces a critical node and why 

re-performing simplification is essential. Figure 4.12 (a) is the interference graph before 

graph fusion. With N=3, the interference graph can be simplified. One legitimate sequence 

of removing nodes from the graph during simplification is lr\(x), lr2(x), lri(y), lr2(y), 

lr(w), lr{z), and lr(t). Assume that the fusion operation combines ln(x) with lr2(x) first 

and Ir-i(y) with lr2(y) next. Figure 4.12(b) portrays the resulting graph after lri(x) and 

lr2(x) are combined into lrn{x). As lr\(y) and lr2(y) are combined, two duplicate edges, 

Uri2(y),lrn(x)] and [lri2(y),lr(z)], are taken out from the graph as depicted in Figure 

4.12(c). 

There are five live ranges in the final graph (Figure 4.12(c)). lr\2{y), lr(w), lr(z), 

and lr(t) form a clique of size 4. Light shaded live ranges and dotted interference edges 

indicate that the live ranges and edges are simplified and removed from the graph. With 

N - 3, lrn{x) can be simplified because the degree of lr\2{x) is 2. Then simplification of 

the remaining graph blocks because every node has degree = 3 (shown in Figure 4.12(d)). 

Splitting lrn(y) back to lr\(y) and lr2(y) adds the two duplicate back to the interference 

graph (shown in Figure 4.12 (e)). Consequently, the degree of lrX2{x) is increased by 1; 

lrn(x) becomes a critical node. The degrees of lr\(y) and/r2(y) are 2 after splitting/rn(y) 

(recall that lr\2(x) is removed from the graph already). Simplification can proceed from 

where it blocked by simplifying lrx(y) and lr2(y), and an empty graph is obtained. 

Even though an empty graph is obtained, the simplifiability invariant doesn't hold due 

to the critical node lrn(x). If we perform simplification on the interference graph of 

Figure 4.12(e), we discover that simplification blocks and cannot remove any node from 

the graph because all nodes are constrained nodes (degree > 3). When critical nodes arise, 

re-iterating simplification splits live ranges as necessary so as to maintain the simplifiability 

constraint. That is, if simplification blocks, splitable live ranges are chosen to split. lrl2(x) 
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Figure 4.12: Critical node (N=3). 

is split in the second pass of simplification on the graph of Figure 4.12(e). As a result, the 

maintaining-simplifiability step splits the interference graph of Figure 4.12(c) back to the 

original graph (Figure 4.12(a)). 

4.3   Modeling different splitting approaches 

Before we describe how the fusion-style approach models various splitting approaches, we 

need to know how GH for a region R is constructed because different approaches can be 

distinguished based on the strategy used to select regions. 
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4.3.1   Constructing GH 

63 

Constructing GR, like graph fusion, also relies on the fusion operation to glue small 

interference graphs into one. Namely, both constructing GH and graph fusion use the same 

framework of the fusion operation. The fusion operation that fuses the interference graphs 

of two regions is called weak fusion (presented in Section 4.2) because splitting live ranges 

is allowed during graph fusion. The fusion operation fusing two graphs that belong to 

one region is called strong fusion because splitting live ranges is forbidden. A region is 

composed of a collection of basic blocks and set of control-flow edges, Reige„ that connect 

blocks within the region. GH is constructed in two steps. First, the interference graph is 

built for each block in the region. Second, the strong fusion operation is applied to every 

edge of Redges ■ The two steps are similar to the region formation and graph fusion of Figure 

4.1. Blocks are regions, and graphs of regions are fused using the strong, rather than weak, 

fusion operation. Because we don't maintain the simplifiability invariant when we build 

Gu, the graph simplification step of Figure 4.1 is not necessary. No spilling decisions are 

made during constructing Gn- 
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Figure 4.13: Strong fusion operation. 

Figure 4.13 depicts the structure of the strong fusion operation. The three steps high- 

lighted by dotted rectangle that deal with splitting live ranges are just nop: taking a snapshot 

of the interference graph, unioning splitable live ranges, and maintaining the simplifiability 

invariant. All live ranges that span E € Redges are non-splitable. 
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4.3.2 Tera 

The Tera approach can be modeled by using loops as regions. The edge ordering for 

the control-flow edges that connect regions are ordered based on the estimated execution 

frequency using loop depth—the edges in the inner loops appear in front of the edges in 

the outer loops. We thereby perform graph fusion based on the edge ordering. The way 

that we model the Tera approach is not identical to what was described in [12] because 

fusion-style coloring does not construct the tile tree and perform register allocation tile by 

tile. However, both approaches have the same perspective to register allocation. That is, the 

inner loops have more freedom in terms of assigning registers. The fusion-based approach 

should outperform the Tera approach for two reasons. First, no premature binding decisions 

have been made in the fusion-based approach. Second, the Tera approach does not take into 

account the edges that connect a parent and a child tile to prevent live ranges from being 

split on one of the edges that is executed more often than the others. The fusion-based 

approach can prioritize those edges based on profile information so as to avoid splitting live 

ranges at frequently executed edges. 

4.3.3 PDG 

The RAP compiler performs register allocation in a hierarchical fashion based on the PDG. 

A region node in the PDG is a collection of predicates and statements that are executed under 

the same control conditions. A region node R may consist of subregion nodes. To model 

the PDG approach, we can exclude the subregion nodes from R and consider R as a region 

in fusion-style coloring. We then traverse the PDG from leaves to the root like the way 

that the RAP compiler performs register allocation. During traversing the PDG, we order 

control-flow edges by assigning higher priorities to the control-flow edges that connect the 

current region to its subregions than to the rest of the control-flow edges that are not yet 

assigned priorities. The PDG approach modeledby fusion-style coloring should outperform 

the conventional PDG approach for the same two reasons as described in modeling the Tera 

approach. First, no premature binding decisions have been made in fusion-style coloring. 

Second, the conventionalPDG approach does not take into account the execution frequencies 

of the edges that connect a parent region and a subregion whereas the fusion-style approach 
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can prioritize the edges based on their estimated execution frequencies. 

4.3.4 Multiflow 

The Multiflow compiler integrates scheduling and register allocation. Scheduling and 

register allocation are done on a trace basis. That is, the compiler picks a trace and passes 

the trace to the code scheduler; the code scheduler then schedules the code of the trace 

and performs register allocation. Because the cmcc compiler does not have the framework 

that integrates scheduling and register allocation like the Multiflow compiler, fusion-style 

coloring can model only the register allocation part of the Multiflow approach. One key idea 

of the Multiflow approach is that traces chosen first have more freedom in using registers— 

are not constrained by other traces because other traces are not yet compiled. Fusion-style 

color has the flexibility to choose traces as regions, maintains the simplifiability invariant to 

delay color-assignment decisions, and uses the delayed spilling technique to defer spilling 

decisions. Therefore, unlike the Multiflow approach, traces are never constrained by the 

color binding decisions of other traces. 

There are two counteractive aspects when register allocation chooses traces as regions. 

The code scheduler requires instructions to exploit ILP. The bigger the trace, the more 

instructions the code scheduler can exploit. However, the bigger the trace, the more register 

pressure the trace imposes on register allocation. Once a trace is picked, no live-range 

splitting could happen using the Multiflow approach. As a result, the spilling decisions 

made by the register allocator are all-or-nothing spilling. The fusion-based approach, on 

the other hand, has the flexibility to further divide a trace into smaller regions and applies 

graph fusion to combine the graphs of the smaller regions into the interference graph of the 

trace. Live-range splitting is therefore possible within the trace. 

4.3.5 SSA 

With slight modification, the fusion-based framework can model the approach that uses 

the SSA representation to determine splitting points. Constructing GSSA is similar to 

constructing GR where R is the region that covers the whole function. Splitting a live range 

at a 6 node is the same as splitting the live range at the entry edges of the block that contains 
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the d> node because 6 nodes are inserted into the entry of blocks [20]. We apply the strong 

fusion operation on every control-flow edge. During the step of unioning non-splitable 

live ranges (Figure 4.13), coalescing two live ranges is suppressed if the current edge is a 

d>-node splitting point for the two live ranges. The later color assignment eliminates shuffle 

moves using biased coloring. 

4.4   Delayed spilling 

When a region It needs M physical registers to be colored, and M > N, then some live 

ranges must be spilled. Considering only local spill costs inside R, the best spill choice is 

a transparent live range Lt, since Lt has a high degree in the interference graph, and the 

cost of spilling Lt is zero inside R. If we assume that there are T transparent live ranges 

in region R, and K live ranges must be spilled, then there are three cases that must be 

considered: 

K <T: In this case, the number of transparent live ranges is more than the number of 

live ranges that must be spilled. However, choosing the transparent live ranges 

for spilling should be delayed until the compiler obtains more global information 

about the reference patterns of the transparent live ranges. Searching the region's 

immediate neighbors does not solve the problem because transparent live ranges may 

be transparent across many basic blocks. Delayed spilling deals nicely with this case, 

as explained below. A large number of transparent live ranges is common while 

processing the high-priority edges. 

K = T: In this case, the spill needs are satisfied by spilling all transparent live ranges. 

K >T: In this case, all transparent live ranges, as well as K - T live ranges with a 

reference inside R, are spilled. The spilling decisions are selected by a heuristic 

based on spill cost, area, and the degrees in the interference graph. 

Although spilling a transparent live range is very attractive (because it has no spill 

cost), it may not be globally optimal. Figure 4.14 shows a flow graph for which spilling 

transparent live ranges is not optimal. In Figure 4.14(a), each of Z?i and D2 has three live 
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Figure 4.14: Non-optimal spilling (N=2). 

ranges simultaneously live. Regions are basic blocks. The vertical lines on the right of the 

blocks represent the live ranges of the virtual registers x, y, and z (a lightly shaded line 

indicates that the live range is transparent). The number next to each control-flow edge 

is the execution frequency of the edge. B\ and D3 have the same execution frequency, 

100. Three colors are needed to color the interference graph of Dx and D2. Since there are 

only two registers, we must spill one live range from each block. Figures 4.14(b) depicts 

the case of spilling transparent live ranges (spilled live ranges are drawn with a hatched 

pattern). lr\(x) and/r2(^) are transparent live ranges and spilled to reduce register pressure. 

Although the two live ranges do not have spill cost, they need shuffle code to move values 

between registers and memory. The shuffle cost is 370 load/store operations. The optimal 

result (least overhead operations) in this example is spilling y's live ranges (Ir^y) and 

lr2{y)) as depicted in Figure 4.14(c) (only 190 operations of spill code). 

I now describe in more detail the delayed spilling technique used to handle the case 

where K < T. Since all transparent live ranges conflict with each other, these live ranges 

form a clique in the interference graph. The transparent live ranges are therefore collected 

into a single clique summary node C in the interference graph, as depicted in Figure 

4.15. The node C contains an edge to all other nodes in the graph, since the transparent live 

ranges interfere with all other live ranges in a region. The clique summary node is annotated 

with the number of transparent live ranges that it represents, i.e., T(C). We record that 
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Figure 4.15: Clique summary node. 

rl'(C) = K of the T transparent live ranges must be spilled, without specifying which ones. 

The actual size of the clique is thus T(C)- il>(C). The clique is dealt with as a single unit; 

eventually rl>{C) live ranges will be spilled. By keeping a summary node in the graph, we 

can keep more live ranges in the interference graph than there are registers, and we delay 

the decision on which live range(s) to spill until more information is available. The clique 

representation affects the graph coloring in two aspects: computing the degree and fusing 

graphs. 

4.4.1 Computing degree 

The degree of an interference graph node is usually computed by summing the number 

of interference graph edges that are incident upon the node. With clique summary nodes, 

however, additional care must be taken. Consider a clique node C and a regular node lr, 

connected by an interference edge E. The degree that edge E contributes to node lr is 

T(C) - i>{C) because lr interferes with every nodes inside clique C. The degree that edge 

E contributes to clique C is one. In addition to the interference edges of C, the degree of 

a clique node must add T(C) - rp(C) - 1 because within the clique, each node interferes 

with T(C) - i>{C) - 1 other nodes. 

4.4.2 Fusing graphs 

As the interference graphs of larger and larger regions are fused, the compiler acquires a 

more global understanding of the reference patterns. This knowledge is especially useful 

if the order of fusing graphs reflects either program structure or execution frequency. 

Contiguous spilled and non-spilled live range segments do not incur shuffle cost within the 
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segments because no shuffle code is required. Therefore, the tendency of progressively 

growing live ranges during fusing determines which transparent live ranges need to be 

spilled eventually. And the expansion of live ranges is based on the edge ordering, which 

makes the spilling decisions sensitive to the edge priority function, e.g., program structure 

or execution frequency. 

Given an edge E = (BX,B2), the live ranges that span across E are merged. When a 

live range lr\ is merged with lr2, and one of the two is transparent, there are three cases to 

consider: 

1. If lr\ is a spilled live range, lr2 is in a clique C (transparent): lr2 is removed from 

C and spilled. Both T(C) and ib(C) are decremented by one because one spilling 

decision is made. The decision grows a spilled live range, thereby allowing the 

compiler to avoid shuffle code on the edge E (a contiguous spilled live range crosses 

the edge E). 

2. If Iri is a non-transparent live range, lr2 is in a clique C: The fusion operation makes 

a non-spilling decision for lr2 and removes lr2 from C. Only T(C) is decremented. 

The decision enlarges a non-spilled live range; since the live range is in a register in 

an adjacent region, keeping lr2 in the register (not spilled) eliminates the otherwise 

needed shuffle code on the edge E. Hence the compiler favors it over the other live 

ranges in the clique. 

3. If lr\ is in clique C\ and lr2 is in clique C2 : lr\ and lr2 are coalesced and added 

to a new clique, C = C\ n C2. After processing all live ranges across E, there are 

three cliques C, C[ and C2, where C[ = C\-C and C2 = C2 - C. 4>{C) establishes 

how many ranges of C must be spilled and is computed as a function of rl?(C\) and 

i'{C2). There exists several options to determine how many live ranges to spill from 

C; once ti{C) is known, ip(C[) and ti(C2) are computed, ip{C[) = i>(C\) - 0(C) 

andtfr(C£) = i&(C2)-0((7): 

(a) rl>(C) = min(r(C),max(!/.'(6'1),0(C2))) 

(b) ti(C) = min(T(C),min(l/.'(Ci),!/KC2))) 

(c) *(C) = min(r(C),max([|g!/..(C1)l, \^(C2)])) 
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(d) *{C) = min(r(C),min(r^g0(C,)l, \^(C2)])) 

min(T(C),) in the equations is required to make sure that the condition, ip(C) < 

T(C), of the clique C holds. The first option tends to lower xp functions of C[ and C2 

because xl'(C) takes the maximum of il>{C\) and ip{Ct). The third and fourth options 

attempt to divide the number of spilled live ranges among cliques proportional to 

their sizes. 

If T{C) = i>{C) for a clique C at any time during this phase, then all live ranges of 

C must be spilled. At that point, C is an empty clique and removed from the interference 

graph. When a live range IT is removed from clique C, acopy of p(C) and a new conflicting 

edge [lr,C] (because Ir interferes with every live range in C) are generated for L. The 

example of Figure 4.16 has 3 live ranges in the clique C. We want to remove lrx from the 

clique. A copy of the interference edges (edge 1 and 2) of C is generated (dashed lines). 

The new generated interference edge [lrx,C] is added as well. 

Clique C 

Figure 4.16: Removing a live range from a clique. 

4.4.3   Example of delayed spilling 

In Figure 4.17(a), each basic block has three live ranges, and they all conflict with each 

other. Again, the vertical lines on the right of the blocks represent the live ranges of the 

virtual registers x, y, and z (alightly shaded line indicates that the live range is transparent). 

Three colors are needed to color the interference graph of each block. Since we have only 

two registers, we must spill one live range from each block. Assume that basic blocks are 

regions. The graph simplification phase (Section 4.1.2) needs to spill one live range from 

each interference graph of basic blocks so as to maintain the simplifiability constraint. 
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Figure 4.17: Example of delayed spilling (N=2). 

Without delayed spilling, spilling decisions need to be made locally. The decisions may 

not be globally optimal. If lr\(y), lr2(z), and lr3(x) are spilled (no spill cost), six load/store 

operations (shuffle code) are required to move values between registers and memory, one 

store and one load operations for each live range as shown in Figure 4.17(b). The delayed 

spilling technique is able to delay spilling decisions by constructing a clique for each block 

to collect the two transparent live ranges of the block. The il> function for each clique is 

one (one out of two will eventually be spilled). Consider that the interference graphs of Dx 

and D2 are fused. The unioning rules described in Figure 4.5 decide that lr2(x) and lr\(y) 

shouldn't be spilled because lr\{x) and lr2(y) are non-transparent live ranges. Therefore, 

we spill lri(z) and lr2(z) (depicted in Figure 4.17(c)). This spilling decision results in only 

four load/store operations. 

4.5    Biased coloring 

lri(x) and lr2(x) are called adjacent partners if their values are connected by a splitting 

point. Two live ranges are remote partners if there is no splitting point between them but 

they are parts of the same live range if we construct the interference graph for Chaitin-style 

coloring (no live-range splitting). For instance, Figure 4.18(a) depicts an case where the live 



72 CHAPTER 4. FUSION-BASED REGISTER ALLOCATION 

range lr(x) spans across 3 blocks and is split into 3 smaller live ranges, lri(x), lr2(x), and 

lr3(x). lri(x) and lr2(x) are adjacent partners, and lr2(x) and lr3(x) are adjacent partners 

also. lri(x) and/r3(a;) are remote partners. 

A shuffle move is required if Ir^x) and lr2(x) end up in different registers. Biased 

coloring [7] is a common technique to eliminate a shuffle move between lri(x) and lr2{x) 

by assigning them the same register. We define some notations that are used in describing 

biased coloring. 

adjaccnt(lr) all adjacent partners of Ir 
partncr(lr) all adjacent and remote partners of Ir 
color(lr) the assigned color of Ir 
avoid(lr) the set of colors that Ir wouldlike to avoid using 
avail(lr) {c | c ^ |J        color(n)} 

n£neiglibor(tr) 

Selecting a color for a live range Ir using biased coloring consists of the following steps: 

1. choose a color c € avail(lr) A c €        (J        color(n). 
nEadj acent(lr) 

2. if not found, choose a color c € avail(lr) Ace (~) avail(n). 
nCwicolored adjacent(lr) 

3. if not found, choose a color c € avail(lr). 

% 
i 
i 

;       » 

ft©A 
( -- ! 

(b) (c) 

Figure 4.18: Biased coloring 
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The color ordering phase determines the order in which live ranges are assigned colors. 

The first step finds an available color matching a colored adjacent partner. The second step 

tries to avoid using a color that uncolored partners cannot use. The third step of biased 

coloring picks a color freely for lr if none of the previous two attempts succeeds. Hence, 

the biased coloring mechanism in [7] has 3 defects. 

First, a long live range may be split into several smaller segments. Those smaller 

segments may be colored in an arbitrary order. Without considering remote partners, biased 

coloring may easily fail to find a color for all the segments. Assume that the color ordering 

of the example in Figure 4.18(b) is lr^(x), lr3(x), and lr2(x). Two live ranges circled by 

a dotted line are adjacent partners. Green color is assigned to lri(x). When selecting a 

color for /r3(x), the register allocator chooses a color that is still available for lr2(x) to 

increase the likelihood of assigning lr2(x) and lr^{x) the same color. Because lr2(x) is not 

yet colored, and the register allocator doesn't take into account remote partners, it is likely 

to assign a color to lr3(x), which is different from lr\(x). As a result, a shuffle code is 

inevitable regardless what color is assigned to lr2(x). 

Second, the biased coloring approach does not consider the assigned colors of neighbors' 

partners (      |J |J       color(p)) while selecting colors. In other words, when 
n€neighbor(lr) p£adjacent(n) 

choosing a color for lr, the register allocator may assign the color that Ir's uncolored 

neighbors are eager to get even though there are other available colors for lr. In Figure 

4.18(c), lrt(x) interferes with lr(y), and the color ordering is lr2(x), lr(y), and lri(x). 

Assume that the red color is assigned to lr2(x). As biased coloring picks a color for lr(y), 

it has no idea about the assigned color of /ri(oi)'s partner. Consequently, the red color may 

possibly be assigned to lr(y) as well. Now it is impossible for lr\(x) to have the same 

color as lr2(x) because the red color is a conflicting color for lrx{x). Thus, shuffle code is 

required. 

Third, biased coloring does not prioritize the shuffle moves so as to attempt to eliminate 

frequently executed shuffle moves. 

The biased coloring approach implemented in our register allocator deals with the 3 

drawbacks of the classical biased coloring approach adopted by prior reseachers. Partners of 

a live range in our biased coloring approach consist of adjacent as well as remote partners. 
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Partners are prioritized in such a way that adjacent partners have higher priorities than 

remote partners and are prioritized based on their estimated execution frequencies because 

frequently executed shuffle moves should be eliminated first. The steps are described as 

follows: 

1. c =  color(p), where p =  maxjpriority({x  \  x  € partner(lr) A color(x)  £ 

avail(lr))) 

2. if not found, choose a color c € avail(lr) A c g avoid(lr). 

3. if not found, choose a color c € avail(lr). 

4. if eis found, avoid(n) + — c,Vn € ncighbor(p),\fp € partncr(lr) 

The first step chooses one of the assigned colors of Ir's partners based on their priorities. 

The chosen color must be a non-conflicting color. The second step tries to find a non- 

conflicting color that is not used by the partners of Ir's neighbors. The third step chooses a 

non-conflicting color freely. The fourth step propagates the chosen color to the neighbors 

of Ir's partners. 

4.6   Placement of shuffle code 

After the color-assignment phase, shuffle code is inserted as necessary along edges. At an 

edge E = (Di, D2), shuffle code is inserted for a virtual register x that has been split at E, 

i.e., if lri(x) and lr2(x) have not been assigned the same storage location. Shuffle code can 

be of three types: shuffle move, shuffle store, and shuffle load. 

One simple rule of inserting a shuffle store on E is that storing the value of x back 

to memory when lr\(x) is in a register, and lr2(x) is spilled. The rule, however, is too 

conservative because a;'s memory location may already contain the up-to-date value. When 

fusing graphs, the fusion operation propagates the has-def attribute indicating if the value 

of a live range is defined within the live range. If the has_def attribute of a live range lr(x) 

is set, then shuffle stores are needed at the edges that exit to a spilled live range lr'(x). 

For example, in Figure 4.19(a), ln(x) is assigned to a register, rlx, and lr2{x) is spilled. 
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lri(x) 

(a) (b) (c) 

Figure 4.19: Example of inserting shuffle store. 

Because x is defined in lrx(x) (has_def is set), the value of in (a;) is stored back to memory 

by inserting a shuffle store on edge E\. 

When the has.def attribute of a live range is not set (no definition in the live range), 

shuffle stores may not needed. For instance, in Figure 4.19(b), lrx(x) is also assigned to 

register rla.., and lr2(x) is spilled. However, the value of lr\(x) is not defined in ln(x) 

(has_def is not set) and comes from a spilled live range, Ir-j(x). Because the value of x in 

its memory location is still up to date, no shuffle store is needed on edge E\. 

We have to pay attention if the value of in (x) comes from another live range that is not 

spilled and whose has_def is set as shown in Figure 4.19(c). At the exit edge E\ of lr\(x), 

the value of x in its memory location is not up to date so a shuffle store is required to update 

the memory location of x. 

A simple flow-analysis technique is used to compute if the value of a live range lr(x) 

in its memory location is up to date or not. The flow analysis operates on shuffle moves 

unlike typical flow analyses in the global optimization phase that operate on control-flow 

edges. The has-def attribute flows through shuffle moves (forward direction from sources 

to destinations). Therefore, in the presence of the flow analysis, we know if a shuffle move 

brings a value that is not yet stored back to its memory location. If the value of lr(x) comes 
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from a shuffle move and the value in memory is not up to date, shuffle stores are required 

at the edges that exit to spilled live ranges regardless of the has_def attribute of lr(x). 

4.6.1   Ordering of shuffle code 

Shuffle code on edge E =< BUB2> may be placed in Bu B2, or a newly created block 

inserted between B\ and B2. If #i has only one successor, which is B2, the shuffle code is 

appended to the end of the schedule of Bx. If Bx has multiple successors, and B2 has only 

one predecessor, the shuffle code is inserted into the beginning of the schedule of B2. In 

these two situations, the shuffle code is executed only when the control flow goes through 

E. If B\ has more than one successor and B2 has more than one predecessor, edge E is a 

critical edge [42]. The shuffle code inserted in B\ and B2 may be executed when the control 

flow does not go through E. Therefore, we perform edge splitting on E [42]; a new block 

is created and inserted between B\ and B2. The shuffle code is then put in the new block. 

There is an ordering in which shuffle code is inserted. Shuffle stores are inserted first. 

Shuffle moves are appended after shuffle stores. Finally shuffle loads are inserted after 

shuffle moves. A shuffle store for a virtual register x at edge E means that the live range 

lri(x) ends at the exit of Bx and lr2(x) is spilled to memory in B2. In other words, ln(x) 

does not interfere with any live range that starts at the entry of B2. Likewise, a shuffle load 

for a virtual register x at edge E indicates that live range lr2(x) starts at the entry of B2 

and does not interfere with any live range terminating at the exit of B\. The two conditions 

imply that shuffle stores should be ahead of shuffle loads. A shuffle move for a virtual 

register x indicates that lr\(x) terminates at the end of B\ and lr2(x) begins at the entry of 

B2. Therefore, a shuffle move has both the conditions of shuffle store and load. A shuffle 

store (lri(y) to memory) should be ahead of a shuffle move (lr\(x) to lr2{x)). Otherwise, 

lri(y) conflicts with lr2(x). The value of lri(y) is mangled by the shuffle move if the same 

register is assigned to lr\(y) and lr2(x). Similarly, a shuffle move should be in front of a 

shuffle load. 

Multiple shuffle moves may exist on edge E. Special attention must be given to the 

ordering among the shuffle moves to prevent the source value of a move being targeted 

by another move. For instance, consider two shuffle moves for x and y {rx3 <- vx2 and 

ryA «- ry3). If the ordering for the two moves is rx3 f- rx2 and then r„4 <- ry3, the 
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value of y in ry3 is destroyed by the first move of x. If we swap, however, the two moves 

so that ryA <- ry3 comes first, the two shuffle moves are able to exchange values safely. 

The approach of finding the ordering for shuffle moves is done by constructing a directed 

graph whose nodes are shuffle moves. An arc from a move mv\ to mv2 represents that 

the destination of mvx and the source of mv2 share the same register. Traversing from 

leaves to roots determines the ordering for shuffle moves. If there is a cycle in the graph, 

saving/restoring a register to/from a temporary memory location is necessary to replace 

a move in the cycle so as to break the cycle. To cite an instance, consider two moves, 

rx2 <- rx3 and ry3 «- ry2. There is a cycle between the two moves. The code sequence 

forthe two shuffle moves is st ry2, (temp); rx2 «- rx3; Id ry3, (temp) ;. The 

number of overhead operations is counted as 3 (1 load, 1 store, and 1 move), not 2. 

4.6.2   Optimization of placement 

The insertion of shuffle code is simple and straight forward, but this step may result in 

partial redundancies in the code. For instance, the has.def property of a live range lr(x) 

determines whether shuffle stores of x are needed on the exit edges of lr(x). When the 

definitions of a; are in less frequently executed blocks, and the exit edges (splitting points) 

are more frequently executed than the definitions, the shuffle stores are executed more often 

than necessary. The code hoisting [41], code sinking [43], and pratial redundancy [15] 

techniques can be used to optimize the placement of shuffle loads/stores. 

However, based on the estimated costs of def-cost and the estimated costs of the shuf- 

fle move (register-to-register), store (register-to-memory), and load (memory-to-register) 

operations, a simple effective technique is used to optimize the placement of the shuffle 

stores. For each live range, the costs of the shuffle move, store, and load can easily be 

obtained since each edge is annotated with the estimated execution frequency (either static 

or profile). The def-cost of a live range is the estimated (weighted) number of definitions 

within the live range. If the def-cost is less than the cost of shuffle stores, then all shuffle 

stores are eliminated by inserting a new shuffle store right after each definition and the 

shuffle moves. In other words, for each definition (which includes the shuffle moves), there 

is a store writing the new value back to the memory location of the live range so as to keep 

the value in memory up-to-date. 
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Figure 4.20: Placement of shuffle store. 

The technique is quite effective in practice. The reason is that the code motion step of 

the global optimization phase moves loop-invariant common subexpressions out of loops. 

The definitions of those common subexpressions are less frequently executed than the 

references inside the loops, and they may be spilled inside part of the loops due to the high 

register pressure. In the absence of the shuffle-code placement optimization, shuffle stores 

are inserted inside the loops. These shuffle stores are likely to be executed more often than 

the definitions. 

Figure 4.20 depicts the optimized placement of the shuffle code. The live range x is 

defined in B0 and live through out the whole program, x is spilled within the loop, as 

indicated by the shaded region. The shuffle code is highlighted in bold face. The straight 

forward shuffle code insertion requires two shuffle code operations, depicted in Figure 

4.20(a), one shuffle store on Edge 1 (from Bx to the spilled region) and one shuffle load on 

Edge 2 (from the spilled region to B2). The shuffle store is executed on every loop iteration 

in despite of the fact that x is never modified in B\ and B2. Since x is defined in Z?0, which 

is less frequently executed than Edge 1 is traversed, the placement of the shuffle store can 

be optimized by eliminating the shuffle store on Edge 1 and inserting a new shuffle store 

immediately after the definition of x (depicted in Figure 4.20(b)). 
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4.6.3   A more detailed example 

In this section, I provide an example to show the interaction between edge ordering and 

shuffle code placement. The code fragment of Figure 4.21, is taken from the function 

update_weights of alvinn. Presumably there are three registers. 

Consider an edge ordering based on loop hierarchy: 

(B3,B3),(B,,B2),(B3,B4),(B2,B3),(Bs,Bs),(B1,B2),(B,,B5). 

B3 requires all 3 registers for tmp74, tmp7 6, and tmp77, which are all referenced 

within the block. In addition, there are two transparent live ranges induced by tmp73 and 

tmp75. These two live ranges are spilled when the interference graph G3 is simplified 

before graph fusion takes place. B2 also needs all 3 registers, therefore, the only transparent 

live range (tmp74) for B2 is spilled. 

As we fuse G3 along the first edge (B3, B3), the resulting graph doesn't require any 

other splitting or spilling decisions since the simplifiability invariant still holds. While 

fusing G2 and G4 along edge (B^,B2), the spilled live range of tmp7 4 grows (to cover 2?4 

and B2). After fusing along the remaining edges, the final resulting graph requires shuffle 

code to move values among different locations. The shuffle code is highlighted in bold face 

in Figure 4.21 (b). For tmp7 5, because there is no definition within the loop, the shuffle 

store doesn't have to be on edge (B2, B3) and is placed right after its definition, which is 

outside the loops. 

If we change the edge ordering so that (Z?4, B2) and (B3, B4) are switched, then the 

register allocator ends up with a different spilling decision, as seen in Figure 4.21 (c). The 

shuffle load of tmp7 4 on (Z?4, B5) in Figure 4.21 (b) is not needed because B4 is no longer 

in tmp74's spill region. Furthermore, the shuffle load of tmp7 5 is placed on (Z?4, B2) 

instead of (B3, Z?4), because the spill region for tmp7 5, indicated by a dotted line, contains 

Z?4. (So instead of being in the loop, it is now on the loop back edge.) 

4.7   Evaluation 

I measured the impact of the register allocation strategy for various SPEC92 programs 

(alvinn, compress, ear, eqntott, espresso, gcc, li, sc, doduc, fpppp, 
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Figure 4.21: Code fragment from alvinn with N = 3. 



4.7. EVALUATION 81 

matrix3 00,nasa7, spice, andtomcatv). I contrast the fusion-based approach with 

the results using an improved Chaitin-style approach (with the enhancements of Chapter 6). 

I use all registers on the MIPS, adhering to the standard calling convention. We start with 

the smallest region size, one basic block, and grow these until we have the interference 

graph for the function. All functions within the main loop of alvinn   are inlined. 

For both approaches, I run two experiments. First, I use only static information to 

guide register allocation. That is, we use loop depth to estimate the execution frequency 

of a block. In the fusion-based approach, when considering the basic blocks inside a loop, 

I use breadth-first order to select edges for fusing. In a second experiment, I use profile 

information from a prior execution. 

As expected, for programs with many small functions, Chaitin's algorithm works fairly 

well, and the fusion-based approach produces identical results. For most of these programs, 

use of profile information improves the result, independent of the register allocation strategy. 

Let us, therefore, turn our attention to programs with significant register pressure. 

alvinn, nasa7, tomcatv, doduc, and f pppp are the programs with high register 

pressure, and here we see the limitations of the all-or-nothing approach to spilling that is the 

foundation of Chaitin-style register allocation. Figure 4.22 shows that register allocation 

based on graph fusion is able to split live ranges properly and thereby cuts for alvinn 

nearly 52 % of the overhead required by Chaitin-style allocation using profile information. 

Chaitin-style allocation finds the "best" complete live ranges to put into registers, therefore, 

the result is not improved by using profile information. Our approach breaks live ranges, as 

can be seen by the lower number of spill loads. And profile information provides a better 

cost function for the color-assignment phase (when deciding if a caller-save or a callee-save 

register should be assigned to a live range, or the live range should be spilled), resulting 

in a further improvement. Looking at the results for f pppp using static information, we 

see the same story. The overhead of f pppp is reduced by 28 %; the large contribution of 

shuffle code indicates that live ranges have been split. If we use profile information, then 

both approaches find the "right" live ranges and give the same result. For tomcatv, our 

approach removes 40 % of the overhead operations. Because the estimated static execution 

frequency provides a good estimation, the profile information does not reduce overhead 

operations relative to the static case. 
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There are 3 big functions in doduc: subb, supp, and ddef lu. These three account 

for the majority of data movement operations, subb and supp consist of only one big 

block. For those types of functions, our register allocator produces the same amount of data 

movement operations as a Chaitin-style allocator, since the sole basic block is the complete 

compilation unit. One simple way to deal with such blocks is to partition the big block 

into smaller blocks so that our approach can be applied to make better spilling and splitting 

decisions. We show in Figure 4.22 the result for ddef lu, where large portions of the spill 

loads and stores are replaced by shuffle code. 

4.8    Summary 

In this chapter I present a new approach to register allocation which is fusion-based. 

The approach deals with spilling, splitting, and color assignment in an integrated fash- 

ion. Fusion-based register allocation produces good results in those situations where a 

conventional Chaitin-style allocator breaks down. Of course, there are programs without 

significant register pressure. However, as aggressive compiler transformations become 

more common, even those simple programs are turned into challenges for a global register 

allocator. In the next chapter, I investigate how the fusion-based approach behaves under 

the register pressure caused by aggressive code transformations. 
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Chapter 5 

Reconciliation 

Nowadays, modern processors have multiple function units as well as the ability to dy- 

namically detect data dependences and to issue multiple independent instructions per cycle 

[57, 21, 4, 32, 31]. To extract as much instruction-level parallelism (ILP) as possible, 

modern compilers are looking at increasingly larger regions of a program. Many global 

optimizations have also been extended to concentrate on frequently executed regions at 

the potential expense of less optimal code in infrequently executed regions. For exam- 

ple, superblock optimizations [14] extend code motion, dead code elimination, and other 

optimizations to work on regions comprising extended basic blocks. Regions have also 

been used to guide predication and if-conversion [22], This general compilation strategy 

— wherein the compiler prioritizes frequently executed program regions by concentrat- 

ing the scope of an optimization phase on such regions — has been termed region-based 

compilation [33]. To exploit the full power of region-based techniques, scope enhancing 

transformations, such as loop unrolling and function inlining, are necessary to enable the 

formation of large regions that comprise the most frequently executed blocks of a pro- 

gram. For example, selective unrolling of innermost loops is an attractive scope-expanding 

optimization for region-based compilers [47]. 

5.1    Challenges 

Region-based compilation is at odds with register allocation: standard register allocation 

algorithms operate at the scope of an entire function and do not focus their efforts on high 

85 
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priority regions. Moreover, scope enhancing transformations, when coupled with aggressive 

region-based optimizations (e.g., global instruction scheduling and speculative code motion) 

severely increase register pressure, creating serious problems for standard function-wide 

graph-coloring register allocators. For example, loop unrolling may increase the register 

pressure considerably. After common subexpression elimination, strength reduction, and 

code scheduling, the live ranges of the different instances of the (former) loop body now 

overlap, and the register allocator faces a more difficult situation than without unrolling. 

If the register allocator is unable to handle the unrolled loop, then the benefits of using 

aggressive region-based optimizations can be negated by the register allocation strategy. 

Furthermore, how to reconcile register-allocation decisions among regions is another 

challenge to register allocation. The IMPACT compiler generates code on a region basis. 

Reconciliation binding decisions among regions is one big problem for the compiler. To 

cite from Hank's thesis [34] that implements register allocation in the IMPACT compiler: 

If the register binding information is not taken into account during the 

allocation of the current region, separate allocation can quickly produce an 

explosion of copy operations at region boundaries. 

Consider that lr(x) and lr'(x) are in two adjacent regions, It and R' respectively, and the 

two live ranges span across an edge E that connects the two regions. Shuffle code is required 

if register allocation assigns lr(x) and lr'(x) different registers. Assume that R is a higher 

priority region than R' and is compiled already. The IMPACT region-based register allocator 

uses an ad hoc approach to reconcile binding decisions between two regions. To avoid an 

excessive number of copy operations (shuffle moves), the IMPACT compiler attempts to 

assign lr'(x) the same register as lr(x). If the compiler fails to assign the register of lr(x) 

to lr'(x), then lr'(x) is spilled. Copy operations are completely eliminated at the expense 

of shuffle loads/stores. In other words, expensive (usually more than one cycle) load/store 

operations are used to trade off cheap (one cycle) copy operations. Because the IMPACT 

region-based register allocator is incapable to reconcile binding decisions among regions, 

we see that this region-based register allocator produces more overhead operations than a 

function-based register allocation for 8 of 11 benchmark programs. Moreover, when we see 

the measurement of the execution time, we notice that 5 of the 11 benchmarkprograms using 

region-based register allocation run slower than using function-based register allocation. 
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In this chapter, I investigate the effectiveness of fusion-based register allocation. There 

are three topics to gauge the impact of register allocation by graph fusion on region-based 

compilation: 

• What is the impact of the choice of the base region (Section 5.2); 

• How sensitive is register allocation to profile information, which determines the 

various heuristics employed in a register allocator (Section 5.3); 

• How sensitive are these approaches to register pressure (Section 5.4). 

• How sensitive are these approaches to different region sizes (Section 5.5). 

• How sensitive are these approaches to two code transformations, loop unrolling 

(Section 5.6) and function inlining (Section 5.7). 

5.2   Choice of base region 

One of the parameters of fusion-style register allocation is the shape of the base regions 

(for which we compute the initial interference graphs). If we choose a complete function 

as the base region, then fusion-style register allocation is identical to the (function-wide) 

Chaitin-style register allocation. The size of the base region affects spill and shuffle costs. 

In this section, we investigate how the size of the base region has an effect on the quality 

of register allocation. Section 5.2.1 shows an example that favors a small size of the base 

region. Section 5.2.2 depicts an example that favors a big size of the base region. 

5.2.1   Favor small size of the base region 

The example of Figure 5.1 (a) is taken from Figure 4.2(a). This case prefers a small size 

of the base region. We list the execution frequency beside each edge. The most frequently 

executed path is Bx -» B2 ->■ Ä». The edge ordering that the register allocator considers 

for graph fusion is <BUB2>, <B2,Bti>, <BUB3>, and <B3,B4>. Let us first consider the 

case that the size of the base region is one single block. Each interference graph for each 

block is shown in Figure 5.1 (b). After graphs are fused along the first three edges, <BX,B2>, 
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<B2,B^>, wd<Di ,B3>, the resulting graph can still be simplified with N=2 (shown in Figure 

5.1(c)). As the graph is fused along <B3,B4> by combining lr3{y) and ln(y), the final 

graph (shown in Figure 5.1(d)) becomes too constrained; the maintaining-simplifiability 

step then splits the live range of y on edge <B3,B4> (we obtain the interference graph in 

Figure 5.1(c) by splitting the live range of y). As a result, there are 10 incurred shuffle 

move operations using one single block as the size of the base region. 

Consider that the size of the base region is increased up to 3 blocks. Namely, the size of 

the base region cannot exceed 3 blocks. Region Rx contains the most frequently executed 

path Bi -4 B2 ->■ At, and region R2 contains only one single block, B3 (shown in Figure 

5.1 (e)). The interference graph of each region is depicted in Figure 5.1 (f). The fusion-based 

register allocator performs graph fusion along two edges, <B\,B3> and<Z?3,ß4>. After GHl 

and GR2 sie. fused along edge <BUB3>, we get the resulting graph that is the same as the 

interference graph in Figure 5.1(c). Like in the previous example using blocks as regions, 

fusing this graph along edge <Z?3,Z?4> generates the same graph as the interference graph in 

Figure 5.1(d). Again splitting the live range of y takes place to maintain the simplifiability 

invariant. There are also 10 incurred shuffle move operations. 

As soon as the size of the base region goes up to 4 blocks, all four blocks are in one 

region R. All four control-flow edges are in R, no graph fusion is needed. GH is the same 

as the interference graph in Figure 5.1(d). Simplification of the interference graph blocks 

during the graph simplification phase (Section 4.1.2). Spilling one live range is needed. 

The live range of x has the smallest spill cost (190 spill code operations). The spill cost of 

the other two live ranges, x and y, are 200. Spilling the live range of x, therefore, incurs 190 

spill code operations. The big size of the base region introduces more overhead operations 

than the small size of the base region. 

5.2.2   Favor big size of the base region 

Figure 5.2 (a) is the code depicted in Figure 4.14. The interference graph of each block 

is shown in Figure 5.2(b). The lightly shaded live ranges are transparent live ranges. The 

register pressure of B\ and B2 is 3. Regardless the size of the base region, the register 

allocator has to make out-of-color spilling decisions for the base regions that consist of 

Bx or B2. If the size of the base region is small, the quality of register allocation may be 
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Figure 5.2: Size of base regions (N=2). 

hurt by making spilling decisions locally. If we use blocks as the base regions, the graph 

simplification step spills lr\(x) and lr2(z) because the register allocator favors spilling 

transparent live ranges. Although the register allocator does not produce spill code using 

the spilling decision (spill transparent live ranges), it pays 370 shuffle load/store operations 

(100 shuffle stores of x on the edge entering B\, 90 shuffle loads of x on <BX,B2>, 90 

shuffle stores of z on <B\,B2>, and 90 shuffle loads of z on <B2,Bi>). 

However, if we put all three blocks into one region, the register allocation has a more 

global view so as to make wise spilling decisions. The interference graph of the region 

is shown in Figure 5.2(c). The graph simplification step then spills lr(x) which has the 

smallest spill cost (90) and is composed of lr^(x) and/r2(a:)- The spilling decision generates 

90 spill code operations and 100 shuffle store operations on the edge that enters B\. The 

big size of the base region introduces fewer overhead operations than the small size of the 

base region. 

5.2.3   Evaluation 

To test the hypothesis that fusion-style register allocation handles scope-enlargement grace- 

fully, I increase the scope of the base region by using loop bodies as base regions. In Figure 

5.3, I report the performance using basic blocks and loop bodies as the choice of base 

regions, both with and without loop unrolling. Without loop unrolling, the performance 
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of the basic block regions is identical to the performance of the loop body regions. When 

loops are unrolled, however, using single basic blocks as the base regions produces fewer 

overhead operations — using the larger regions formed by loop bodies after loop unrolling 

incurs a slight penalty. Nevertheless, even the worst case for fusion-style register allocation 

(i.e., the case where the base regions are the unrolled loop bodies) produces only 50% of 

the overhead operations generated by a Chaitin-style register allocator. In the best case, 

using fusion-style register allocation results in only 12% of the transfer operations required 

by Chaitin-style register allocation. 
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Figure 5.3: Transfer operations in alvinn, using all registers, for two different region 
definitions. 

Figure 5.4 depicts the result of compiling for a smaller number of registers (11 integer, 

9 floating point registers). Notice the big difference in the number of overhead operations 

(with unrolling) between the base Chaitin-style register allocator and the fusion-style register 

allocator (almost a factor of 4). The choice of regions, however, has no noticeable impact 

on fusion-style register allocation; there just are not enough registers to keep all values in 

registers. We notice a large number of shuffle operations for loop unrolling code, indicating 

that the register allocator tries hard to keep values in registers, even if this means that a 

live range must be broken into smaller segments. From Figures 5.3 and 5.4 we see how 

poorly the function-wide approach (Chaitin-style) performs compared to a region-based 

framework: 

• without unrolling, the fusion-style approach executes 50% of the operations executed 

by the Chaitin-style approach; 

• with unrolling, using the fusion-style approach results in 25% of the operations 

required by the Chaitin-style allocator. 
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Furthermore, when the scope is expanded via loop unrolling, the fusion-style approach, in 

the small-number-of-registers scenario, executes only 60% of the data movement operations 

executed by the Chaitin-style approach when given all available registers. 
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Figure 5.4: Transfer operations in alvinn, small number of registers, for two different 
region definitions. 

5.3   Profiling 

The figures presented so far in this section were obtained using static information for edge 

ordering and heuristics. Information obtained from program execution can sometimes 

improve a register allocator's heuristics, thereby leading to a better register allocation. 

Figure 5.5 contrasts the performance of a Chaitin-style register allocator for alvinn with 

two variants of the fusion-style register allocator when using profile information. 

For all approaches, the results for the unrolled versions of the program are improved 

noticeably by using profile information. Compare the results for Chaitin-style allocation 

of Figure 5.3 and 5.5 (the two left-most columns). We see that in the unrolling case, 

the number of overhead operations is cut in half for Chaitin-style register allocation using 

profile information as compared to Chaitin-style register allocation using static information. 

Without unrolling, the improvement is minor. This is not surprising. With unrolling, there 

are more values that can be put into registers. But without profile information, the heuristics 

to choose spilling candidates misguides the register allocator. When the compiler uses 

profile information, better heuristic choices are possible, and we see a clear improvement 

since there exists many candidates to pick from in the unrolled code. 

Fusion-style allocator is able to exploit the same effect (better heuristics). Since fusion- 
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style register allocation is edge-order sensitive, we can expect additional effects from the 

improved edge ordering that is obtained from the use of profile information. Comparing 

Figure 5.3 with Figure 5.5, we see that the use of profile information reduces the number of 

overhead operations by 50% (for the unrolled loops). The number of load operations due 

to spilling is significantly reduced, and we see also a reduction in the number of operations 

to save or restore caller-save registers. This reduction of spill overhead indicates that the 

profile information improved the heuristics that allow the register allocator to make better 

spilling decisions. The change in caller-save register induced overhead implies that the 

profile information allowed the register allocator to control the growth of live ranges. If 

there are sufficient registers, without any checks and balances, fusion grows live ranges 

until a live range conflicts with other live ranges. As the live range grows, it is more 

likely to include function calls. These, however, incur a cost if the value is in a caller-save 

register. If there are only a few references to the value, then it might be better to leave the 

live range in memory. Access to accurate profile information allows the register allocator 

to better analyze the tradeoff among caller-save registers, callee-save registers, and spilling 

(See Chapter 6). This improved decision making accounts for the better results depicted 

in Figure 5.5. We also see in Figure 5.5 that profile information results only in minor 

improvements if we use blocks as base regions. 
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Figure 5.5: Transfer operations in alvinn, using all registers and profile information. 

For another view, I present in Figure 5.6 the results from compiling espresso, using 

the high-register-pressure scenario. We notice that the Chaitin-style register allocator 

requires significant spill loads, whereas the fusion-style allocator causes significant shuffle 

activity (some of these operations are stores). Furthermore, looking at the influence of the 

choice of the base region, we notice that basic blocks as base regions provide only slightly 
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better, but vastly different results. The number of spill loads is reduced dramatically, which 

indicates that the fine-grain base allows the register allocator to keep values in a register that 

end up in memory using the slightly coarser-grain base of a loop nest. In other words, the 

register allocator is able to split live ranges, but moving values from one storage location to 

another implies shuffle code. About half of the shuffle code are load operations, the other 

half stores. Register moves play almost no role for this program. The discussion of the 

differences between basic blocks and loop nests as a base region extends to using complete 

functions as abase region, as is done in a standard Chaitin-style allocator. We see again that 

a finer-grain choice of base region (loops vs. functions) reduces the number of overhead 

operations. 
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Figure 5.6: Transfer operations in espresso, no unrolling. 

Figure 5.7 depicts the result when compiling the programs with loop unrolling. Clearly, 

expanding the scope implies a penalty for register allocation. The fusion-style approach, 

however, requires only half of the overhead operations that are inserted by a Chaitin-style 

allocator. Again, profile information helps although not as much as in the absence of 

unrolling. 
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5.4   Sensitivity to number of registers 

The transformations of region-based compilers increase register pressure, and another way 

to assess how a register allocator deals with register pressure is to investigate how sensitive 

the allocator is to the number of registers that are available. Clearly, as we increase the 

number of registers, there comes the point of diminishing return. The next figures depict the 

number of overhead operations as we allow the register allocator to use more registers (the 

number of additional registers is shown on the X axis). Recall that the MIPS architecture has 

separate register banks for integer and floating-point values. The notation (Rj,Rf,Ei,Ef) 

of the next figures shows the combination of caller-save and callee-save registers for the 

two register banks. IU and Rf are the number of caller-save registers for integer and 

floating-point values, respectively. £, and Ef are the number of callee-save registers for 

integer and floating-point values. The standard calling convention of the MIPS machine 

uses 4 registers of the integer bank to pass arguments and 2 registers to pass function-return 

values; in addition, 2 floating-point registers pass arguments and 2 floating-point registers 

can hold a function-return value. All these registers are caller-save registers. Hence, the 

register allocator uses at least (6,4,0,0). 

Looking at the SPEC92 programs, we can classify them roughly into 5 classes: 

1. Fusion-style > Chaitin-style: Fusion-style register allocation produces consistently 

better results than Chaitin-style allocation. Examples are alvinn, espresso, 

nasa7, and tomcatv (Figure 5.8). 

2. Fusion-style « Chaitin-style (profile sensitive): Programs sensitive to getting accurate 

frequency information (i.e., given the same frequency information, both fusion-style 

and Chaitin-style register allocation perform about the same), compress, sc, li, 

and gcc are four examples (Figure 5.9). 

3. Fusion-style > Chaitin-style (static case): The heuristics that determine which live 

range to spill are sometimes helped by profile information, and in this case, a Chaitin- 

style allocator may obtain the same results as fusion-style allocation; see Figure 5.10 

for an example (f pppp). The results for the Chaitin-style allocator are marginally 

better than the result for fusion-style allocation. Even with profile information, the 
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register allocator must make many guesses, and results like those depicted in Figure 

5.10 indicate that the spilling decision still depends on some heuristics. 

4. Fusion-style > Chaitin-style (small number of registers): Fusion-style register al- 

location produces fewer overhead operations than Chaitin-style allocation when the 

register allocator uses a small number of registers. As the number of register in- 

creases, the difference of register overhead diminishes, ear and matrix300 are 

two examples (Figure 5.11). 

5. Fusion-style « Chaitin-style: Finally, there are programs where neither the choice 

of register allocation strategy nor the use of profile information seems to make a 

difference. Examples of this class of programs are eqntott, doduc, and spice 

shown in Figure 5.12. 

5.5    Different region sizes 

In this section, we evaluate the influence of different region sizes to fusion-based coloring. 

Three kinds of region are investigated, blocks, loops, and traces. The region-formation 

phase determines a trace by selecting a seed block and growing the trace along desirable 

paths. A trace T is expanded in the forward as well as the backward direction: 

• forward: T is expanded forward by adding block Bk to T if the condition is satisfied. 

^     frcq(E)  ^  0      frcq(Bk)   . 
3E =< Bj,Bk > Aß,- € TA J    7   ' > ßh  J

f     7   *'   > 7 3 J frcq{Bj) frcq(sccd) 

• backward: T is expanded backward by adding block ß; to T if the condition is 

satisfied. 

_.     frcq(E) ^ n      frcq{Bi)   ^ 
3E =< Bi,Dj > hB, €TA;    

H)   ' > ß A /    )K    '   > 7 3 J frcq(Bi) frcq(sced) 

frcq(Bj) and freq(E) are the estimated execution frequencies of block Bj and edge 

E respectively. The two constants, 3 and 7, are set to 0.5. These two conditions are the 

conditions used in the IMPACT compiler to form regions [34]. 
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Figure 5.15: Different region size (cont.). 

Figures5.13,5.14, and5.15 depict the experimental results of fusion-style coloring with 

three different region sizes. There are several noticeable aspects. None of the region sizes 

always outperforms the others because the results highly depend on program characteristics 

and combination of registers. The influence diminishes as the number of registers increases 

because the number of registers is then sufficient for all different region sizes. In general, 

alvinn, espresso, gcc, and doduc prefer a small size of the base region. For gcc 

and doduc, the results of using traces as regions are as good as using blocks, f pppp, 

nasa7, and tomcatv prefer a big size of the base region (loops or traces). 

5.6   Loop unrolling 

Loop unrolling is the code transformation that exposes multiple loop iterations to the 

compiler. Classical global optimizations such as constant folding, common subexpression 

elimination, and strength reduction can be applied across different loop iterations. Loop 

branches and exits inside unrolled loop bodies may be eliminated. Code scheduling can take 

advantage of the bigger scope of loop bodies and extract ILP among multiple loop iterations. 

However, the beneficial opportunities to global optimizations and code scheduling do 

not come for free because of increased register pressure. More common subexpression 

elimination opportunities imply that more live ranges are needed for the temporaries to 

hold the increased number of common subexpressions. Strength reduction replaces a more 

expensive (more cycles) expression by a cheaper (fewer cycles) expression. A temporary 
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that is live throughout the loop is required to hold the value of the expression. Hence, the 

more expensive expressions are replaced by cheaper expressions, the more temporaries (live 

ranges) are introduced. All in all, the larger scope of unrolled loop bodies implies that more 

live ranges are required because there exist more values, variables, and expressions. More 

aggressive code scheduling implies that the number of live ranges that are simultaneously 

live increases because more otherwise disjoint live ranges now overlap. 

I run experiments with different combinations of register for alvinn, espresso, 

nasa7, and tomcatv with unrolling to see how graciously Chaitin-style and fusion-style 

coloring behave in the presence of unrolling. To allow an easy comparison, the results of 

Figure 5.8 are repeated in Figures 5.16 and 5.17. There are two interesting aspects. First, 

unrolling does not impose serious register pressure for some SPEC92 programs. For nas a7 

and tomcatv in both the static and dynamic cases, Chaitin-style and fusion-based register 

allocation with unrolling produce a similar number of overhead operations as without 

unrolling. Second, unrolling generates register pressure for alvinn and espresso. 

We see that the curves of Chaitin-style and fusion-style register allocation with unrolling 

diverge further apart than without unrolling. For alvinn, fusion-style coloring with 

unrolling generates twice as many overhead operations as without unrolling (25 % less than 

Chaitin-style with unrolling) when the number of registers is small. Nonetheless, as the 

number of registers increases, fusion-style coloring is able to deal with the high pressure 

caused by unrolling and produces roughly the same number of overhead operations as 

without unrolling. When analyzing the increase of overhead operations for Chaitin-style 

with unrolling relative to without unrolling, we see that Chaitin-style coloring is not able 

to handle the increased register pressure benignly for alvinn. The number of overhead 

operations for unrolling using profile information grows only 50 % at (7,5,0,0) but is tripled 

for the other combinations of registers. The number of overhead operations in the static 

case increases less than 80 % when the number of registers is small (prior to (8,6,2,2)) but 

is quadrupled when the number of registers exceeds (8,6,2,2). For espresso, the gap 

between Chaitin-style and fusion-style enlarges and the merge points of the curves shift to 

the right. Here we see that fusion-style handles high register pressure graciously. 
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Figure 5.16: Overhead operations of register allocation for loop unrolling. 
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Figure 5.17: Overhead operations of register allocation for loop unrolling (cont.). 

5.7   Function inlining 

Function inlining is a code transformation that expands the compilation scope beyond 

function boundaries. Functions are artificial boundaries induced by programmers. Those 

boundaries may not be the best partitioning borders as far as compilers are concerned. 

Function inlining affects the compiler in several aspects: 

• global optimization: Compilers can improve the quality of a program once they 

know that certain values are constants in the program. Constant folding can calculate 

the value of an expression at compile time instead of run time [2], Branch folding 

eliminates a conditional branch if the result of the comparison of the branch is 

known at compile time. Loop unrolling prefers constant loop bounds. When a 

constant is passing to a function call as an argument, without inter-procedural constant 

propagation [11,30], the compiler must be conservative and assume that the argument 

is not a constant. Consequently, some optimization opportunities are lost. 

Function inlining also exposes more opportunities to the global optimizer to find 

common subexpression between the caller and callee. Moreover, functions are no 

longer barriers for code motion [36], e.g. a loop invariant of the callee can be moved 

outside a loop of the caller. 

• memory aliasing: Without inter-procedural analysis, it is impossible for compilers to 

get the information regarding incoming arguments. In such a case, compilers usually 
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make conservative assumptions on memory aliasing; that is, two memory accesses 

always alias if both use incoming arguments as base addresses. Conservative memory 

aliasing constrains code scheduling to move instructions— two memory accesses 

must be issued in order. Function inlining replaces formal parameters by their 

actual parameters. The memory aliasing information is improved (more precise) as a 

result [3]. 

• ILP: Without function inlining, the compiler is limited by the traditional scope of the 

compilation unit (function). The bigger the compilation scope, the more likely code 

scheduling is able to exploit ILP (more likely to find independent instructions). [33] 

shows that some C programs spend 80 % of their execution time in functions with 

fewer than 250 operations prior to inlining. After inlining, those C programs spend 

50 % of their execution time in functions with more than 1000 operations. 

• calling convention: Passing parameters to the callee and returning a value to the caller 

are usually done via argument registers and stack. For example, the caller moves 

outgoing arguments, if there are any, to argument registers or pushes the arguments 

onto the local stack if all argument registers are used up by prior arguments. The 

callee then follows the same convention to get actual parameters and moves them 

to their corresponding formal parameters. Function inlining eliminates the overhead 

for moving arguments, returning function values, adjusting the stack frame, and 

saving/restoring the return address. 

• register allocation: Two counteractive factors are happening to register allocation 

when functions are Mined: increment of spill cost and decrement of call cost. When 

a function call, bar (), is replaced by the function body of bar, the number of 

live ranges in the current function increases and all live ranges that contain the call 

originally interfere with all new live ranges introduced by bar. In other words, 

function inlining increases register pressure and hereby potentially introduces more 

spill code operations. Nevertheless, if the compiler divides the register file into callee- 

save and caller-save registers, the call cost may be reduced because the function call 

boundaries no longer exist. As long as the reduction of the call cost exceeds the 

increase of the spill cost, register allocation benefits by inlining. 
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Figure 5.18 sketches an example in which register allocation benefits by inlining. In 

Figure 5.18 (a), function f oo contains a loop body that is executed many times and 

has a call to a leaf function bar. The shaded regions are the most frequently executed 

paths of the two functions. Hence, there is high cost to save/restore a callee-save 

register at the entry/exit of bar; there is high cost to save/restore a caller-save register 

around the call site bar (). That is, assigning a callee-save register to a live range 

in bar needs to pay high callee-save cost; assigning a caller-save register to a live 

range containing the call bar () needs to pay high caller-save cost. After function 

bar is inlined, the necessity of saving/restoring registers at bar's function boundary 

disappears (shown in Figure 5.18(b)). f oo is now a leaf function (no caller-save 

cost) and the only function boundary for the code. Therefore, assigning callee-save 

registers to the live ranges that were in bar pay the callee-save cost at f oo's function 

boundary which is less frequently executed than bar's; assigning caller-save registers 

to the live ranges that contained the call bar () pays no caller-save cost. 

foo () { 
prologue 

foo(){ 
prologue 

1 
bar() ^m 

epilogue 

Y^Z 

epilogue 

"" -.. _1 

(a) epilogue 
} 

(b) 

Figure 5.18: Function inlining. 

compilation:  As functions are inlined, the code size grows.   Consequently, the 

complexity of the compilation time and memory requirement increase as well [33]. 
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The compiler has to control the complexity so that the compilation time and memory 

requirement are acceptable and practical. 

In this Section, I evaluate the influence of inlining on register allocation. Only data 

of alvinn, ear, espresso, compress, and sc are presented because the cmcc 

compiler, presently, does not have the infrastructure for doing function inlining. It would 

be very tedious and inefficient to analyze and inline functions manually, espresso has 

one compilation flag "-DNO JNLINE". By default, some frequently executed functions are 

inlined. To increase register pressure, some functions of alvinn, ear, compress, and 

sc are inlined manually. All functions (6 functions) of alvinn are inlined into the main 

function. All performance data of alvinn, ear, and espresso in this thesis are the 

inlined versions unless it is explicitly stated that the non-inlined versions are used. 

Register overhead with and without inlining are given in Figure 5.19 and Figure 5.20. 

For easy comparison, the register overhead figures of the inlined versions of alvinn, 

ear, and espresso, and the non-inlined versions of compress and sc are taken from 

Section 5.4. There are several observable aspects. The curves of Chaitin-style and fusion- 

style without inlining either merge quickly (espresso) or are tightenly together (alvinn, 

ear, compress, and sc). Second, ear and espresso with inlining produce fewer 

overhead operations than without inlining for both Chaitin-style and fusion-style coloring 

because the reduction of the call cost exceeds the increase of the spill cost. The overhead 

operations of alvinn, compress, and sc with inlining for both Chaitin-style and fusion- 

style coloring increase because the increment of the spill cost is bigger than the decrement 

of the call cost. Third, fusion-style not only benefits from the reduction of call cost, but 

also handles big compilation scopes well and splits live ranges at low frequently executed 

paths to reduce spill cost (live-range splitting is very effective in the presence of inlining). 

For these reasons, the gap between the curves of Chaitin-style and fusion-style register 

allocation enlarges. Examples are alvinn, espresso, and compress. 

5.8   Execution time and compilation time 

There are two other dimensions of interest to compiler designers: execution time related to 

register overhead and compilation time. Table 5.1 shows the speedup due to fusion-style 
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Figure 5.19: Function inlining vs. Without inlining. 
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Figure 5.20: Function inlining vs. Without inlining (cont.). 
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program All registers 14   int,   14   float 

espresso 0.0 7.5 
nasa7 2.4 5.6 

tomcatv 8.4 7.0 

Table 5.1: Speed-up of execution time over Chaitin-style coloring (percentage). 

register allocation (compared to a Chaitin-style register allocator with various enhance- 

ments). These data are for the MIPS architecture; the execution time has been measured 

on a DECstation 5000. The table shows that fusion-style coloring can speed-up execution 

time by up to 8.4 % over Chaitin-style coloring. 

Table 5.2 shows the cost of fusion-style register allocation; this table lists the contribution 

of register allocation to overall compilation time (seconds) for the cmcc compiler, cmcc is a 

research compiler and not fine-tuned for compilation speed; overall cmcc takes about twice 

as long as the native compiler. The data are collected on a DEC AlphaStation (333MHz). 

We compile the SPEC92 programs and measure the compilation time for Chaitin-style and 

fusion-style register allocation, using loops as well as single basic blocks as base regions. 

We also stress register allocation by performing the unrolling transformation (unroll 3 times) 

to enlarge the code size for some of the programs. 

The complexity of simplification isO(V + £) where V is the number of live ranges and £ 

is the number of interference edges. After fusing graphs along an edge, fusion-based register 

allocation performs simplification to maintain the simplifiability invariant. Hence, at first 

sight, we expect to see that the fusion-based approach has a big increase of compilation 

time because the complexity of maintaining the simplifiability constraint is Ö(T * (V + £)) 

where T is the number of fusion operations. From the table, however, we see that—except 

for gcc—register allocation time increases only by a small constant factor (< 2), even 

when the base regions are basic blocks and the compiler applies a fusion operation on every 

control-flow edge. For gcc (c-parse.tab.c), the size of the control-flow graph of the yylex 

routine is tripled by loop unrolling ( unroll 3 times). The size grows from (415 blocks, 

660 edges) to (1426 blocks, 2246 edges). Even in such a big control-flow graph, the cost 

of the fusion operations increases only about by a factor of 3 if the base regions are loops. 

To put this data into perspective, the complete code generator including register allocation 

is responsible for less than 20% of the total compilation time. So although fusion-style 
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program Chaitin 
Region 

LOOP BB 

alvinn inline 1.3 1.6 1.6 
alvinn inline unroll 4.8 5.2 5.7 
compress 1.7 2.0 4.4 
compress unroll 3.9 5.2 11.9 
ear 4.2 5.5 8.2 
ear unroll 15.7 26.6 49.5 
eqntott 4.7 6.1 10.7 
eqntott unroll 18.3 29.3 74.4 
espresso 29.3 39.6 71.6 
espresso unroll 104.0 175.6 417.2 
li 5.0 5.9 9.4 
li unroll 11.7 16.5 32.8 
sc 15.1 25.5 62.8 
sc unroll 33.2 71.2 160.1 
gcc 148.7 211.7 669.7 
gcc (c-parse.tab.c) 7.0 14.7 61.2 
gcc (c-parse.tab.c) unroll 22.1 55.0 166.7 
doduc 51.4 78.1 128.8 
fpppp 60.6 70.8 83.6 
matrix300 1.1 1.7 2.5 
matrix300 unroll 4.1 7.5 11.0 
nasa7 7.4 10.9 13.8 
nasa7 unroll 55.2 80.1 100.9 
spice 118.2 311.0 392.4 
tomcatv 3.4 3.7 3.7 
tomcatv unroll 12.7 17.2 30.7 

Table 5.2: Compilation time of register allocation (seconds). 

allocation incurs a price in compilation time, the increase is acceptable. 

There are two major factors that keep the compilation time spent on register allocation 

low: partial graphs and cliques. When graphs are fused along edge E that connects two 

regions, R\ and Ri, the fusion operation needs to deal with only Gnt and GR2 and not all the 

graphs in the program. Clique summary nodes also help to speed up the compilation time 

spent on simplification because simplifying a clique removes all transparent live ranges in 

the clique from the graph. Consider that a clique C contains T transparent live ranges. 

Each transparent live range in C interferes with T - 1 transparent live ranges in C and 
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ncighbor(C). Therefore C represents T live ranges and 7 *('J
2~

1)} + T* | ncighbor(C) |, 

where | ncighbor(C) | is the number of neighbors of C. Removing C and ip(C) from the 

interferencegraphisequivalenttoremovingriiverangesand^Y^+T* | neighbor(C) \ 

interference edges. These two reasons keep the price of compilation time within a reasonable 

and acceptable range. 

Fusion-based coloring provides a nice framework to tackle the compilation time problem 

if the compilation time ever becomes unacceptable or is a big concern to the compiler. The 

fusion operation takes longer and longer as more and more graphs have been fused because 

the fusion operation gradually deals with bigger graphs, which cover larger regions, and 

makes all delayed spilling decisions (live ranges are removed from cliques). Graph fusion 

is based on the edge ordering, so fusing graphs on the edges that are less important (less 

frequently executed) is more expensive in term of compilation time, yet has less influence 

on the overall register allocation overhead. To curtail the time spent on graph fusion, we 

can set a threshold to control the number of control-flow edges along which graphs are 

fused. The threshold can be based on the time that has already been spent on register 

allocation or the number of the total control-flow edges that connect regions. As soon as 

register allocation passes the threshold, the graphs of the regions that are not yet fused with 

any other graphs are all lumped into one big region Rremaining (splitting live ranges is not 

allowed within the region). Building the graph GHremaining is as fast as building the graph 

for Chaitin-style coloring. We then apply the fusion operation to the edges that connect 

Rremaining and other regions. 

The example in Figure 5.21 is a code fragment of compress. The shaded region 

is the most frequent path. We can apply graph fusion to the region. The fusion-style 

coloring is able to further divide the region into smaller sub-regions so that finer granularity 

live-range splitting is thereby possible within the region. The remaining blocks belong to 

one region, Rremaining- The register allocator treats Rremaimng as a typical region. The 

interference graph, GHrcmaining, is constructed, the graph is simplified so as to make sure 

that the simplifiability invariant is satisfied. The register allocator can either apply the 

fusion operation on edges, Eu E2, E3, £4, E5, and E6, to reconcile the two regions, or does 

nothing and let the color-assignment phase eliminate shuffle code using biased coloring. 

Tables 5.3 and 5.4 show experimental results of the compilation time versus register 
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Figure 5.21: Reducing compilation time. 
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Fusion% 

Time 

Fusion      1} ^ 100 

Chaitin 

Overhead 

Chaitin _l)^m 

Fusion 

(14i,14f) (lli,8f) (14i,14f) (lli,8i) 

100 128.0 120.6 62.6 59.5 

90 122.0 114.9 58.4 16.6 

80 116.3 112.0 44.2 14.2 

70 106.6 100.9 31.9 4.7 

60 93.1 87.4 27.3 7.8 

50 78.9 72.2 6.3 -4.1 

40 66.0 60.7 7.4 -5.8 

30 51.2 47.9 6.9 3.8 

20 36.4 33.8 12.0 7.7 

10 21.4 20.3 2.8 7.8 

Table 5.3: Percentage increase of compilation time and improvement of overhead operations 

(espresso). 

Fusion% 

Time 

Fusion             m 

Chaitin 

Overhead 

Chaitin            m 

Fusion 

(14i,14f) (lli,8f) (14i,14f) (lli,8f) 

100 128.0 120.6 62.6 59.5 

90 126.8 118.0 62.6 56.6 

80 117.2 110.6 59.2 42.5 

70 107.5 100.9 45.1 36.0 

60 97.0 91.7 31.5 25.4 

50 85.2 77.7 26.9 24.3 

40 72.0 65.6 24.8 18.4 

30 57.2 51.3 16.6 14.9 

20 41.9 38.7 16.6 12.7 

10 25.6 23.8 11.6 13.0 

Table 5.4: Percentage increase of compilation time and improvement of overhead operations 

(espresso). 
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overhead operations for espresso. For the experiment, fusion-style coloring uses blocks 

as the base regions and profile information to guide register allocation. Data for two 

register combinations, 14 integer and 14 floating-point, and 8 integer and 11 floating-point 

registers, are collected. The left-most column is the percentage of total control-flow edges 

along which fusion-style coloring applies fusion operations. The "Time" columns indicate 

the percentage increase of compilation time of fusion-style coloring relative to Chatin-style 

coloring. The "Overhead" columns are the percentage reduction of overhead operation over 

Chaitin-style coloring when we use fusion-style coloring. 

Table 5.3 is the result of applying fusion operations on the first k percentage of total 

control-flow edges. During the region formation phase in Figure 4.1, the register allocator 

collects blocks that are connected by the last 100 - k percentage of control-flow edges in 

the edge ordering into one region R. That is, those edges are in the region R. When looking 

at the overhead columns, we can observe one noticeable aspect that for a cutoff point of 

50% in the (14i,14f) case, the improvement due to fusion drops to a few percentage over 

Chaitin-style coloring. There is a big overhead improvement drop for the (1 li,8f) case even 

though we apply fusion operations on 90% of edges. We also see cases where fusion-style 

coloring produces more overhead operations than Chaitin-style coloring. The reason is that 

the region R contains frequently executed blocks. Consider the example of Figure 5.21. If 

E6 is R, then R contains B3. The register pressure of infrequently parts of R, therefore, 

may cause shuffle code on frequently executed edges, <D2,D3> and <D3,D1>. Furthermore, 

collecting infrequently executed edges into R deprives the opportunities of placing shuffle 

code on those edges. Here we see the case that a bad choice of regions impacts the quality 

of register allocation badly. Hence, we take another approach that collects the blocks 

connected by the first k percentage of edges into one region. In other words, the region is 

frequently executed. The result is shown in Table 5.4. This table indicates that the approach 

is able to maintain good overhead improvement while reducing compilation time. 

5.9    Summary 

In this chapter, I have discussed four aspects of register allocation: the size of base region, 

profile information, sensitivity to register pressure, and sensitivity to unrolling and Mining 
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code transformations. The results confirm that fusion-style register allocation keeps the 

overhead operations under control. Even in the presence of scope expanding transforma- 

tions, loop unrolling and function inlining, the number of overhead operations generated 

by the fusion-based approach either grows slowly or is reduced by splitting live ranges at 

infrequently executed edges. These results indicate that register allocation is no longer an 

obstacle to region-based compilation. Compilers that use some form of region for other 

optimization phases now have a path to reconcile register allocation with region-based 

optimization. 

Furthermore, our results indicate that profile information improves the performance 

of the register allocator. As gathering profile information becomes more common in 

optimizing compilers, fusion-style register allocation becomes increasingly attractive, since 

fusion-style allocation is well-prepared to directly take advantage of profile information. 

As the implementations of high-performance processors include more and more hardware 

support for dynamic instruction reordering, optimizers and schedulers in the compiler have 

to analyze larger and larger regions of a program. Region-based compilation provides an 

attractive framework to organize these compilations. With fusion-style register allocation, 

the compiler can now include register allocation in a region-based framework. 



Chapter 6 

Call-Cost Directed Register Allocation 

The register allocation cost is the sum of three components: spill, call, and shuffle cost. 

The register allocation cost must include the call cost. If the register allocator focuses on 

the spill cost alone, the register allocator may have an overly optimistic image of the task. 

The call cost, however, is influenced by the compiler's calling convention. Many compilers 

divide the registers into two sets, callee-save and caller-save registers, respectively. 

Choosing the right kind of register for live ranges plays a major role in eliminating the 

register-allocation overhead when the compiled function is frequently executed or function 

calls are on the most frequently executed paths. Picking the wrong kind of register for a 

live range incurs a high penalty that may dominate the total overhead of register allocation. 

In this chapter, I present three improvements, storage-class analysis, benefit-driven 

simplification, and preference decision that are effective in selecting the right kind of 

register for a live range. Also I describe one enhancement to fusion-style coloring that 

takes call and shuffle cost into account to make splitting decisions. In Section 6.1, I 

present an allocator based on Chaitin-style coloring with a simple cost model. This register 

allocator is used as the base for performance comparison. In Section 6.2,1 describe the 

first enhancement, storage-class analysis, that decides the storage class for live ranges. In 

Section 6.3,1 present benefit-driven simplification that determines the color ordering in a 

novel manner. In Section 6.4, I present the third enhancement, preference decision, that 

determines the preferable kind of register for live ranges. In Section 6.5, I describe the 

fourth enhancement, call-cost splitting, which splits live ranges to reduce call cost. In 

Section 6.6,1 evaluate the effectiveness of the first three enhancements. In Section 6.7,1 

119 
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evaluate the influence of the call-cost splitting enhancement. 

Figure 6.1 sketches the framework of the register allocator. The shaded regions are 

the places where the four improvements are implemented. Storage-class analysis and 

preference decision are implemented in the color-assignment phase; benefit-driven sim- 

plification is done in the color-ordering phase; call-cost splitting is implemented in the 

graph-construction phase. The improvements by no means can only be used by our register 

allocator. Indeed, because various register allocation approaches have been implemented 

in this same framework, these approaches may all benefit from the improvements. For 

instance, fusion-style, Chaitin-style, and optimistic coloring all profit by storage-class 

analysis, benefit-driven simplification, and preference decision. Priority-based coloring, 

however, cannot use benefit-driven simplification because it does not use simplification to 

determine the coloring order. 

Graph 
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Figure 6.1: Call-cost directed register allocation. 

6.1    Chaitin-style base model 

Chaitin-style coloring simplifies an interference graph to determine the coloring order and 

spills live ranges based on spill cost (either static estimated or dynamic spill cost) when 

simplification blocks. A live range that contains calls prefers using a callee-save register so 

the color-assignment phase attempts to find a callee-save register. If there is no callee-save 

register left (taken by all the live range's neighbors), a legal caller-save register is assigned 

to the live range. A live range containing no calls prefers using a caller-save register so 

the color-assignment phase attempts to find a caller-save register. If there is no caller-save 

register left, a legal callee-save register is assigned to the live range. 

This simple model is used as the base for comparison. It allows us to access the signifi- 

cance of each improvement in terms of reducing overall overhead operations. Although the 
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base model is simple, it is not unreasonable. In Chapter 7, we compare this base model to a 

more sophisticated approach to handle call cost which is implemented in various compilers. 

However, for a significant number experiments, the simple base model outperforms the 

other approach. 

6.1.1   Limitations of the base model 

Figure 6.2 depicts the register allocation cost for two programs from the SPEC92 suite, 

eqntott and ear, for various combinations of caller-save and callee-save registers. 

Again, the MIPS architecture has separate register banks for integer and floating-point 

values. The notation (,Ri,Rf,Ei,Ef) of the x-axis of Figure 6.2 shows the combination of 

caller-save and callee-save registers for the two register banks. IU and Rs are the number 

of caller-save registers for integer and floating-point values, respectively. E{ and Ef are the 

number of callee-save registers for integer and floating-point values. 
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Figure 6.2: Register allocation cost. 

From Figure 6.2, we see that giving the register allocator more registers can reduce the 

spill cost dramatically. The spill cost is cut down to 0.8 % with (10,8,4,4) registers for 

eqntott and to 0.5 % with (9,7,3,3) registers for ear. However, simply focusing on the 

spill cost is misleading; the figure shows that spill cost is no longer an issue once a certain 

number of registers is available. As the figure illustrates, we must take the call cost (caller- 
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save and callee-save cost) into consideration. There are two noteworthy aspects: first, the 

contribution of the call cost to total register allocation cost is significant. Second, giving the 

register allocator more registers may actually worsen the register allocation cost because 

some live ranges may now reside in the registers whose call overheads introduce more 

memory accesses than the spill cost of the live ranges. Cohn and Lowney [18] measured the 

dynamic call cost for various Windows/NT applications and SPEC95 programs. For more 

than half of the programs, the call cost is 10% - 25% of their execution time. If the register 

allocation does not take the call cost into consideration, the call overhead introduced by the 

register allocation may end up on the hot part of the program [18]. 

6.2   Storage-class analysis 

A live range can reside in one of these storage classes (assuming that registers are divided 

into caller-save and callee-save registers): 

• memory, 

• a caller-save register, or 

• a callee-save register. 

Each storage class has an associated cost. Storage-class analysis decides where live ranges 

reside, based on two functions, benefit.caller and benefit malice.  The two functions 

model the benefits provided by these two storage classes over the default location (memory). 

These functions are defined for each live range Ir.   For each Ir, bcnefit.callcr{lr) is 

defined as the weighted reference counts of the spill code minus the weighted caller-save 

cost.   bencfit.callcc(lr) is defined as the weighted reference counts of the spill code 

minus the weighted callee-save cost.   The weighted reference counts and call cost are 

derived using either estimated execution frequency (static) or profiling information of some 

prior execution (dynamic). That is, these two functions indicate the estimated number of 

load/store operations that are eliminated if a caller-save (or callee-save) register is assigned 

to Ir. The two functions are similar to the priority function of [16], except the benefits are 

not normalized by the size of the live ranges. 
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During the color-assignment phase, the selection of the kind of register to use is based 

on these two functions. If bcnefitjcallec(lr) > bcncfit.caller(lr), finding an available 

callee-save register for Ir is attempted prior to finding an available caller-save register. If 

benefit-callcc(lr) < bcncfit-callcr(lr),il is preferable to put Ir into a caller-save register 

over using a callee-save register. The accuracy of the two benefit functions depends on the 

accuracy of the estimated execution frequency. 

The simplification phase guarantees that the color-assignment phase finds registers for 

live ranges that are on the color stack (C). However, sometimes not using a register (i.e., 

spilling a live range) is better than using the wrong kind of register because the cost of 

using the register (callee-save or caller-save cost) could be greater than the spill cost of 

the live range. Figure 6.3 illustrates the effect of assigning the wrong kind of register to 

live range x. The shaded regions indicate the most frequently executed paths. Using a 

caller-save register for live range x in Figure 6.3 (a) incurs a high cost; keeping x in a 

caller-save register can only make the result of register allocation worse because x must be 

saved and restored once for each use of x in the loop. The two memory accesses required to 

save/restore the caller-save register are more than the single restore operation, which would 

be required if x had been spilled. 

Likewise, in Figure 6.3 (b), keeping x in a callee-save register results in a higher register- 

allocation overhead than spilling because saving and restoring the value of the callee-save 

register happens on the most frequently executed path. 

Our algorithm models register assignment as a possible improvement. That is, we 

start out with the assumption that a live range resides in memory (is spilled) and then try 

to determine if allocating a register reduces the overhead operations. This model allows 

us to spill live ranges to reduce the overall number of load/store operations even though 

there are available registers. The two benefit functions give us a good indication if a 

live range Ir is a worthwhile candidate for register residence. If Ir gets a caller-save 

register and bcncfit-callcr(lr) < 0, then spilling Ir reduces the load/store counts by 

| bcncfit-callcr(lr) |. 

While assigning registers to live ranges, the color-assignment phase makes spilling 

decisions right away for the live ranges that are supposed to get caller-save registers (i.e., 

spill when benefit .caller (Ir) < 0). There are two ways to make spilling decisions for 
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Entry 

Exit 

(a) High caller-save cost 

Exit 

(b) High callee-save cost 

Figure 6.3: Storage-class analysis. 

live ranges that receive callee-save registers. The first approach models callee-save costs as 

occuring only once for each callee-save register. For the first live range Ir that uses a given 

callee-save register, making the spilling decision then is similar to making the decision to 

use a caller-save register. That is, if bcncfit-callcc(lr) < 0, then Ir is spilled to memory. 

For a live range that is not the first user of a callee-save register, the live range can use 

the callee-save register for free (since there in no need to spill the register). The second 

approach views callee-save costs as shared by all live ranges that share a callee-save register. 

That is, the first live range to use the register does not pay all the costs; the cost is spread over 

all users. The spilling decisions for live ranges that (potentially) get callee-save registers 

are not finalized until the color-assignment phase finishes. At that time, it is known which 

live ranges may use a specific callee-save register. For a callee-save register r, and S(r) 

the set of live ranges that share r, if Eire*» spill.cost{lr) < callc.cj;ost(r), then all live 

ranges of 8(r) are spilled. 

Our experimental data indicate that the second approach performs better than the first 

one for some SPEC92 programs, for others it makes no difference. To illustrate why this 

is the case, consider two live ranges with spill cost 4000 that share the same callee-save 

register, and the callee-save cost is 5000. The first approach does not assign any of the two 

live ranges to the callee-save register because of the high first-use cost. At the end, spilling 
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the two live ranges introduces 8000 load/store operations (assume that they also have high 

caller-save cost, or all caller-save registers are taken by their neighbors). However, the 

second approach assigns the two live ranges to the register — a decision that saves 3000 

load/store operations over spilling. 

The flow of the color-assignment phase using storage-class analysis is depicted in 

Figure 6.4. This phase pops live ranges out of C and assigns a register to each of them. If a 

live range Ir prefers a callee-save register (benefitxallcc(lr) > bcncfit-callcr(lr)), the 

register allocator first attempts to find a legal callee-save register. If a callee-save register 

is found, then the next step, choosing a caller-save register, does nothing because Ir is 

already assigned a register that Ir desires. A live range that prefers a caller-save register is 

also assigned a register in a similar fashion. For simplicity, bcncfit.callcc(lr) < 0 is the 

heuristic to spill a live range that receives a callee-save register. The condition benefit > 0 

means bcncfitjcallcc(lr) > 0 for callee-save registers , and bcncfit.caller(lr) > 0 for 

caller-save registers. The spill step merely adds a live range with benefit < 0 to the spill 

pool (S). 
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Figure 6.4: Structure of the color assignment using storage-class analysis. 
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6.3   Benefit-driven simplification 

Simplification removes live ranges one by one from the interference graph and pushes them 

onto C. The reverse ordering in which live ranges are pushed onto C is the ordering in 

which they are assigned colors. Simplification is a nice and easy way of packing live ranges 

into registers but there is no cost model, and therefore, decisions during simplification 

may turn out to handicap the color-assignment phase. If the target machine has only one 

kind of register, the order of removing already-unconstrained live ranges does not have any 

influence on the final register overhead, because using each register incurs the same cost. 

But for a machine with a mixture of registers of different costs, the position of a live range 

on C plays an important role in reducing the register overhead. 

Each live range has two benefit functions, benefit jcallcr and bcncfit-callcc, which 

determine the preferred kind of register. Live ranges on top of C have a higher chance 

to obtain the preferred kind of register, because fewer registers are already taken by other 

live ranges. For example, Figure 6.5 (a) depicts an interference graph consisting of 3 live 

ranges. All prefer using a callee-save register. There are only two callee-save registers 

available. One live range must use a caller-save register. With Ar = 3, all three live ranges 

are unconstrained. A legal color stack is shown in Figure 6.5 (b) (obtained by removing 

lry, lr3, and then lrx). The top two live ranges, lrx and lrs, are assigned callee-save 

registers during the color-assignment phase and lry ends up in the caller-save register. 

This assignment then saves 3200 load/store operations over spilling. However, the best 

ordering during simplification is lr;s, lry, and then lrx, so that lrx and lry can obtain the two 

callee-save registers; this assignment actually saves 4100 load/store operations. 

During simplification, if there is more than one unconstrained live range, then the live 

range that has the smallest priority is removed. Now we can view C as a priority-based 

color stack; the higher position a live range on C, the more likely the live range has more 

freedom with regard to picking registers. Hence register allocation based on this color stack 

is now similar to priority-based coloring [16]. In other words, benefit-driven simplification 

unifies the priority-based approach with simplification-based register allocation. 

The flow of simplification used by Chaitin-style, optimistic, and fusion-style coloring 

to determine the color ordering is depicted in Figure 6.6. Moreover, Figure 4.10 and Figure 
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Figure 6.5:  Effect of simplification order, with N = 3 registers (2 callee-save and 1 
caller-save). 
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Figure 6.6: Structure of benefit-driven simplification. 

6.6 demonstrate that the same simplification framework has been shared by various register 

allocation approaches. In the color-assignment phase, cliques no longer exist, and no live- 

range splitting is allowed because fusing graphs is already completed. Hence, the task of 

the "lowering pressure" step in the color-assignment phase is quite different for and much 

simpler than that in Figure 4.10. Here the lowering-pressure step simply chooses one live 

range based on a heuristic to spill and relaxes the degrees of the live range's neighbors. The 

removing-LSJST step in Figure 6.6 is composed of choosing one unconstrained live range 

with the smallest key to simplify and relaxing the degrees of the live range's neighbors. 

One implementation of keeping track of the unconstrained live range with the smallest key 
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in LS-N is implementing LS.N using a heap structure [19]. In the "relaxing degree" step, 

as constrained live ranges become unconstrained, the live ranges are inserted into the LS-N 

heap based on a key function, bcncfit.ca.llcr and bcncfit.ca.llcc form the foundation of 

our experiments to investigate different strategies to order unconstrained live ranges during 

simplification. Specifically, we investigate two keys to order live ranges: 

• msx(bcnc fit .caller, bcncfitjzallce) 

• or 
(| benefit.caller — bcncfit.callcc |     if benefit, caller > 0 and 

benefitjcallcc > 0 
max.(bcncfit.callcr, bcncfitjzallcc)   otherwise 

Priority-based coloring uses this strategy to prioritize so as to make sure that the live 

range with maximum savings has the highest priority to occupy a register. However, 

this strategy, when implemented as part of benefit-driven simplification, increases the 

register overhead for some SPEC92 programs, compared to register allocation without 

using benefit-driven simplification. This strategy is not suitable for Chaitin-style register 

allocation because simplification guarantees that all live ranges on C can find registers; 

in other words, making sure that live ranges with bigger savings own registers is not a 

concern for Chaitin-style coloring. What Chaitin-style coloring cares about is the incurred 

penalty of using the wrong kind of register — it cares more about the delta between the 

two benefit functions rather than the maximum of the two. Therefore the second strategy 

is used. The delta is the incurred penalty of assigning the wrong kind of register to a live 

range. If benefit .caller (Ir) and bcncfitjcallcc(lr) are greater than or equal to zero, the 

key function is the difference of the two benefit functions. Otherwise, the maximum of the 

two benefit functions is used as the key function. 

The example in Figure 6.7 illustrates how the key functions make a difference in register 

allocation overhead. The interference graph in Figure 6.7 (a) comprises three live ranges, 

lrx, lry, and lrz. Using the first definition, lrx and lry have higher priorities (2000) than 

lrs (1500). The order in which live ranges are removed from the graph is lr3, lry, and lrx. 

Because all three live ranges prefer a callee-save register, lrx and lry are assigned the two 

callee-save registers. The total savings amounts to 4500 load/store operations. With the 

second definition, lr,, has a higher priority than lrx and lry, because for lrz the penalty of 
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using the wrong kind of register is higher than for the other two. Thus lr,. ends up on top 

of C. The second definition yields a better allocation than the first one (andresults in a total 

savings of 5300 load/store operations). 

6.4   Preference decision 

One shortcoming of Chaitin-style register allocation is that low-priority (small-savings) 

live ranges with high degree may take away the kind of register that high-priority (big- 

savings) live ranges crave for. Benefit-driven simplification tries to prevent this situation 

from happening. Nevertheless, there is still no guarantee that live ranges with high priority 

get the registers they prefer, because simplification is sensitive to the degree of live ranges 

(a live range can be removed from the interference graph only if the live range's degree 

is less than Ar). The color-assignment phase, however, examines only the two benefit 

functions, benefit malice and bcncfit-callcr, to determine what kind of register a live 

range should get without caring about the needs of other live ranges. This restricted view 

of the color-assignment phase is the cause of unnecessary overhead operations. 

Therefore, prior to the color-assignment phase, we provide a separate phase that pre- 

determines the preferable kind of register for some live ranges. The purpose of this phase is 

to minimize the caller-save overhead. This phase goes through each function call in order of 

weighted execution frequency and makes the preference decision for live ranges across the 

function call. For a function call, if the number (L) of the live ranges that contain the call 

and prefer callee-save registers is less than or equal to the number of available callee-save 

benefit_caller - 1,800 
bei:sfu_cai.lee - 2,000 

y .  benefit_callcr = 1,800 
benefa.saUee - 2,000 

benefit..patter = 500 
benefit callee ■■■■■■ J ,500 

lr, 

(a) (b) 

Figure 6.7: Priority with Ar = 3 registers (2 callee-save and 1 caller-save). 
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It; K lry lv. K 

benefit_caller 100 100 100 .100 100 

benefit_callee ./yy 400 200 200 4000 

(b) 

Figure 6.8: Preference decision example with Ar = 3 registers (1 callee-save and 2 caller- 
save). 

registers (M), then there is no preference decision that needs to he made. If L is greater 

than M, then regardless of how registers are assigned, at least L - M live ranges must use 

caller-save registers rather than callee-save registers. 

We sort those live ranges using a key function.   The least L - M live ranges are 

annotated so that their preferable kind of register is caller-save regardless of the fact that 

benefit.callcc > bcncfitjcallcr. After registers are assigned to those live ranges, just 

like for regular live ranges, register allocation uses bcncfit.callcc and bcncfitjcallcr to 

analyze if they should reside in registers or memory. The key is defined as: 

caller .cost   if bcncfitjcallcr > 0 
spilLcost     otherwise. 

caller.cost(lr) is the overhead incurred for Ir using caller-save registers which is equal to 

spilLcost - bcncfitjcallcr. For those live ranges with bcncfitjcallcr > 0, caller.cost is 

used as the key (caller.cost is the overhead). For the live ranges whose bcncfitjcallcr < 0, 

the key is spilLcost because storage-class analysis spills them if they do not get callee-save 

registers.   In other words, spilLcost is the incurred penalty for not using a callee-save 

register. 

Figure 6.8 (a) depicts an interference graph with five live ranges. The two benefit 

functions of each live range are listed in the table of Figure 6.8 (b). Callee-save registers 

are the precious resources in this example (all live ranges are competing for callee-save 

registers). The key values of live ranges which are used in benefit-driven simplification are 

lrt (100), lry (100), lrs (100), lrx (300), and lrw (3900). Only lrw can be removed at first 

given N = 3, because the degrees of the other live ranges are greater than or equal to 3. Let 

the subsequent order in which live ranges are removed from the graph be lr.,, lru lry, and 
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lrx. The ordering in which live ranges are assigned colors is lrx, lry, lrt, lr.,, and lrw. lrx 

then takes away the callee-save register and leaves no callee-save register but the caller-save 

registers for lrt, lry and lrw to use (lr, gets the same register as lrx). This assignment 

saves 900 load/store operations (300 and 600 for using caller-save and callee-save registers, 

respectively). If live ranges lrx and lrw contain the same (high-frequency) function call, 

then lrx is forced to reside in a caller-save register instead of the callee-save register. This 

color assignment then saves 4500 load/store operations (lrx, lr, and lrt get the caller-save 

registers, and lrw and lry reside in the callee-save register). 

6.5    Splitting to reduce call cost 

Fusing two interference graphs tends to grow live ranges aggressively to reduce the shuffle 

cost as long as the colorability invariant is maintained. Storage-class analysis, benefit-driven 

simplification, and preference decision are the techniques that adjust spill, caller-save, and 

callee-save costs. Caller-save cost may be reduced at the expense of spill cost. Growing 

a live range aggressively could potentially include more call sites into the live range. 

Consequently, the caller-save cost of the live range increases. High caller-save cost of a live 

range, lr, means two things when a caller-save register is assigned to lr. lr either is spilled 

or pays high caller-save cost. 

One improvement to fusion-based coloring is to limit the growth of live ranges that 

cross function calls by suppressing coalescing. That is, the technique can be applied only to 

live-range splitting approaches. The improvement is called "call-cost splitting" that splits 

live ranges to reduce call cost. By suppressing the growth of a live range containing calls, 

the (smaller) live range has a chance to get the best kind of register or be spilled (at lower 

spill-cost), thus reducing the overall load/store counts. Even though the graph is colorable, 

it may be better if the live range is split at infrequently executed edges; then we pay the 

lower shuffle cost (along these edges) instead of the higher caller-save cost at all call sites. 

The unioning-splitable step (Section 4.2.5) is the place where the call-cost splitting takes 

place. Prior to unioning two splitable live ranges, In and lr2, along edge E, the call-cost 

splitting determines if suppressing combining In and lr2 on edge E could likely reduce 

overhead operations. There is no guarantee that splitting on edge E is effective because the 
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final result is unknown till the color-assignment phase. 

A register allocation heuristic should take every aspect of the cost model into account, 

and avoid making any decision based on part of the cost model. Hence we discuss call-cost 

splitting from the viewpoints of shuffle, spill, and call costs. 

. shuffle and spill costs: Splitting lrx and lr2 on edge E = (DUD2) induces shuffle 

code on E.   The shuffle cost on E should be cheap relative to either In or lr2. 

In other words, one of the live ranges can afford the induced shuffle cost.   The 

condition we check is frcq(E) > sPilLcost(ln)/aV freq(E) > spilLcost(lr2)/a, 

where frcq(E) is the estimated execution frequency of E and a is a constant that 

is controlled by the user or the register allocator,  "a = 100" means that one live 

range's spill cost is at least 100 times more than the potentially incurred shuffle cost. 

A big a indicates that live ranges are allowed to grow larger than a small a—split less 

frequently. The bigger the number of registers, the more likely the color-assignment 

phase assigns the preferable kind of register to a live range.  Therefore, call-cost 

splitting should happen less frequently (use a big a). If the number of registers is 

small, live ranges are competing for their preferred kind of registers. Thus, call-cost 

splitting should be applied more frequently (use a small a). 

• call cost: The previous condition decides if E is a good splitting point. We want to 

determine if coalescing In and lr2 into lrn may introduce more overhead operations 

than suppressing In and lr2 provided that lr12 ends up in a caller-save register. Here 

we look for the case that one live range (say In) has benefit waller > 0 and the other 

live range (say lr2) has benefit.caller < 0, because we get benefit.callcr(ln2) < 

bcncfit.callcr(ln) if coalescing of the two live ranges is not suppressed. In addition, 

we check the condition caller.cost(lr2) > 2*frcq(E). Splitting In and lr2 prevents 

caller.cost{lr2) from being added to caller,cost{ln) at the expense of shuffle cost. 

Once coalescing of In and lr2 is suppressed, not only is shuffle code generated at the 

entry to lr2, but also is shuffle code potentially introduced at the exit of lr2 because 

lr2 is a stand alone live range. We use 2 * freq(E) to estimate the possible incurred 

shuffle code operations. 
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h      lri (xl 

shuffle code 

Figure 6.9: Eliminating caller-save cost by splitting. 

Figure 6.9 depicts an example of how caller-save cost is reduced by splitting. In this 

example, the live range x is live through out the whole program. Assume lr(x) is not split, 

i.e. x occupies one register in Figure 6.9 (a). If the register is a caller-save register, lr{x) 

pays a high caller cost (saving and restoring x around function f oo). It is much cheaper 

to split the live range of x into ln(x) and lr3(x) along the edge (D2, £3), as illustrated by 

Figure 6.9 (b). Now Ir^x) can reside in either memory or a callee-save register (if the 

callee-save cost is low). 

6.6   Evaluation of SC, BS, and PR enhancements 

In this section we report on an empirical evaluation. We measure the influence of differ- 

ent combinations of the improving techniques for various SPEC92 programs: (alvinn, 

compress, ear, eqntott, espresso, gcc, li, sc, doduc, fpppp, matrix300, 

nasa7, spice, and tomcatv). We pay special attention to the issue of deciding between 

a caller-save and a callee-save register for a live range. The y-axis of the figures in this 

section shows the register overhead produced by a base Chaitin-style coloring (with the 

simple cost model) divided by the overhead of an improved-version Chaitin-style register 

allocator using various combinations of the enhancements (storage-class analysis, benefit- 

driven simplification, and preference decision). The bigger this number, the less overhead 

is there in the improved version. SC, BS, and PR stand for Storage-Class analysis, Benefit- 
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driven Simplification, and PReference, respectively. We can classify the SPEC92 programs 

(compiled using profile information) into 4 classes. 

• Each optimization contributes a significant fraction of improvement. Examples are 

nasa7 and ear shown in Figure 6.10. For nasa7 and ear, there is not much room 

for optimizations to reduce overhead operations if only a smaller number of registers 

is available. With more registers, the optimizations have more freedom to choose the 

right kinds of storage class (caller-save registers, callee-save registers, or memory) 

for live ranges. 
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nasa7 

Figure 6.10: SC, BS and PR are effective. 

• Only storage-class analysis has a dramatic improvement; spilling live ranges that have 

the wrong kind of registers helps reducing the overall overhead operations. Examples 

are li, sc, andmatrix300. See Figure 6.11. 

• Pre-determining the preferred kind of registers for live ranges does not affect the 

overall number of overhead operations. Examples of this class are compress, 

eqntott, espresso, gcc, fpppp, doduc, and spice (shown in Figure 6.12 

and Figure 6.13). 

• For programs that have low callee-save and caller-save costs, such as tomcatv, 

which consists of only one big function and no calls, none of the three techniques 
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Figure 6.11: Only SC is effective. 
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SC and BS are effective. 
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Figure 6.13: SC and BS are effective (cont.). 

makes any difference. All the ratios of Base-Chaitin/Improved-version for the three 

improvements are 1.0 (Figure 6.14). 
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Figure 6.14: No improvement for tomcatv. 

Figure 6.15 shows the effect of these improvements on the programs from Figure 

6.2. This figure depicts the register overhead for ear and eqntott with the three 

improvements. For the ear and eqntott programs, the improved Chaitin-style coloring 

reduces the register overhead by a factor of 45 and 66 (i.e, with the base register allocator, 

there are 45 (66) times as many overhead operations as required by the improved Chaitin- 

style coloring). 

I also evaluate how storage-class analysis, benefit-driven simplification, and preference 

decision reduce register overhead operations using static information. Again static informa- 
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Figure 6.15: Register overhead for improved register allocation. 

tion uses the loop hierarchy (nesting levels) as an approximation of the execution frequency 

of a basic block. The results are shown in Figures 6.16, 6.17, and 6.18. Figures 6.17 and 

6.18 show those programs that exhibit the same trend of improvement as using dynamic 

information. The three improvements, rather than ameliorate, deteriorate the quality of 

register allocation (generate more operations than the base Chaitin) for the programs in 

Figure 6.16. 

The three improvements are based on the analysis of spill cost, benefit-caller and 

bcncfitjcallcc which solely depend on the accuracy of the estimated execution frequency. 

Using the loop hierarchy to estimate the execution frequency treats every block within the 

same loop as having the same execution frequency. In practice, this assumption is not 

always true. When the static information does not capture the actual execution pattern of 

a program, the techniques may worsen the register-allocation result. For example, the live 

range lrx in Figure 6.19 crosses the function call of f oo (), which is in the loop (DA). 

Based on the static information, the loop is considered to be more frequently executed than 

the rest of the blocks. bcncfit.callcc{lrx), therefore, is greater than bene fit .caller {lrx). 

The color-assignment phase, therefore, attempts to put lrx into a callee-save register at first. 

There are two outcomes for lrx of the color-assignment phase: {\)lrx obtains a callee-save 

register or, (2) lrx gets a caller-save register and then is spilled to memory by the storage- 

class analysis due to the high caller-save cost. If, in fact, the shaded region depicts the most 
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Figure 6.16: Degradation of improvement using static information. 
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Figure 6.17: Similar trend of improvement as the dynamic case. 
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Figure 6.18: Similar trend of improvement as the dynamic case (cont.). 
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frequently executed path instead, then case (1) pays high callee-save costs, and case (2) 

incurs high spill costs. The register overheads of compress, sc, gcc, li, and spice 

(Figure 6.16) are hurt due to this reason. There is one noticeable aspect. When the number 

of registers is small, the more improvements are added into register allocation, the worse the 

register allocation result. As the number of registers increases, we see that the integration 

of all three improvements can make up the inaccuracy of the static estimated execution 

frequency. That is, the result of SC+BS+PR is better than SC. If the static information 

gives us a good indication about the actual execution pattern of a program, we see a similar 

improvement trend as using dynamic information (as shown in Figures 6.17 and 6.18). 
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Figure 6.19: Dynamic versus static. 

6.7   Evaluation of call-cost splitting 

Given the importance of getting the rightkind of register in the previous experiment, we take 

a positive action to limit the growth of live ranges, as describedin Section 6.5. Because call- 

cost splitting can only be applied in fusion-style coloring, the base with which we compare 

this optimization is fusion-style coloring without call-cost splitting instead of Chaitin-style 

coloring. Fusion-style coloring with and without call-cost splitting all perform storage-class 

analysis, benefit-driven simplification, and preference decision. Figure 6.20 presents the 

results for alvinn, nasa7 and eqntott for call-cost splitting. We run the experiment 

using static and dynamic information, alvinn and nasa7 use all registers; eqntott 
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Figure 6.20: Impact of call-cost splitting (CCS). 

uses 14 integer and 14 floating-point registers. 

Recall that a live range that is assigned a caller-save register but has high caller-save 

cost and low spill cost is spilled to memory during the color-assignment phase, even though 

there are enough registers to hold the live range. Once a live range is picked to be spilled at 

this stage, no splitting is attempted. In other words, all references go through memory. The 

effect of such a decision is to increase the amount of spill code to reduce loads and stores 

of the caller-saved registers. The spill code that we see in Figure 6.20 (i.e., for alvinn 

and eqntott) is due to such live ranges that we spilled during color assignment. The 

call-cost splitting suppresses coalescing of two live range segments lr\ and lr2 if one of 

them (say lr2) has high caller-save cost. As a result, the spill cost of those live ranges stays 

low. If those live ranges get caller-save registers, they would probably be spilled to memory 

during color assignment because of a high caller-save cost and a low spill cost. Without 

coalescing, lrx (with low caller-save cost) gets the desired caller-save register; lr2 ends 
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up in a memory or in a callee-saved register. If lr2 is in memory, extra shuffle loads and 

stores are required. If lr2 is in a callee-save register instead, no shuffle loads and stores are 

needed, but shuffle moves must be inserted. However, on most modern machines, moves 

are cheaper than loads/stores. 

The results shown in Figure 6.20 illustrate the benefits nicely. The call-cost splitting 

succeeds in isolating high caller-save cost regions at less frequently executed edges. Con- 

sequently, the color-assignment phase spills fewer live ranges to memory. In the case of 

alvinn, about half of all overhead operations are shuffle moves. For eqntott, there are 

more shuffle moves than shuffle loads or stores. 

Overall, in the case of alvinn, the fusion-based approach of dealing with spilling and 

splitting, including call cost optimization, reduces total data movement overhead by 80 % 

compared to a Chaitin-style allocator. 

6.8    Summary 

In this Chapter, I have presented and evaluated the four enhancements, storage-class anal- 

ysis, benefit-driven simplification, preference decision, and call-cost splitting. The ex- 

perimental results show that the call cost dominates the register overhead as the number 

of register increases, because the register allocator is able to assign registers to most live 

ranges. Ignoring the call cost may lead the register allocator to choose the wrong kind of 

register for live ranges and introduce, as a result, more overhead operations. 

Chaitin-style coloring with all the enhancements (of Sections 6.2 - 6.4) combines 

the benefits of Chaitin-style allocation (pack more live ranges into registers) with the 

advantages of priority-based coloring (high priority live ranges have more freedom in 

choosing registers). The experimental data show that the improvement over ordinary 

Chaitin-style coloring can be up to a factor of about 50 in the number of overhead operations 

(55 for ear and 66 for eqntott). 

Moreover, I have presented and evaluated a new technique, call-cost splitting, which 

constrains the growth of live ranges during graph fusion to reduce caller-save cost. 



Chapter 7 

Comparison of Various Approaches 

Chapter 6 describes three enhancements, storage-class analysis, benefit-driven simplifica- 

tion, and preference decision. Experimental results have shown that the integration of the 

three enhancements provides an effective call-cost model to reduce call cost relative to 

the base Chaitin-style allocator. It is important to evaluate the enhanced model with other 

existing model that is adopted by prior researchers to see if the enhanced model is practical 

or not. Various register allocation approaches share the same register allocation framework, 

e.g., Chaitin-style, optimistic, priority-based, and fusion-based coloring. The framework 

allows us to compare as well as integrate the enhancements with those approaches. It is 

interesting to see if the enhancements are effective in approaches other than Chaitin-style. 

In this chapter, I compare various different register allocation approaches and discuss 

their strengths and weaknesses. In Section 7.1,1 contrast optimistic coloring with Chaitin- 

style coloring. In Section 7.2,1 discuss the similarity between priority-based and Chaitin- 

style using the three improvements of Chapter 6. In Section 7.3, I evaluate a register 

allocator using another call-cost model that has been adopted by prior researchers. 

7.1    Optimistic versus non-optimistic 

Optimistic coloring [9] delays spilling decisions of live ranges until the live ranges actually 

fail to find legal colors. Optimistic coloring aggressively tries to find colors for those oth- 

erwise spilled live ranges. If we exclude call cost from the overhead operations, optimistic 

coloring guarantees to deliver a result at least as good as Chaitin-style coloring. If none 

145 
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K K lry K 

benefit_caller 100 200 100 -2SG 

benefit_callee 200 100 200 50 

Figure 7.1: Optimistic coloring with N=2 (1 callee-save and 1 caller-save). 

of the live ranges spilled by Chaitin-style coloring gets a color, then the register overhead 

is the same as that of using Chaitin-style coloring. If some otherwise spilled live ranges 

are assigned colors, then optimistic coloring produces a superior result. However, if we 

use the actual cost model from Section 2.1, which includes the call cost, trying to squeeze 

more live ranges into registers may not be a good idea because the call cost of keeping 

live ranges in registers may be higher than the live ranges' spill cost. Figure 7.1 presents a 

situation where optimistic coloring generates more register overhead operations. Given two 

registers, one callee-save and one caller-save, simplification blocks because the degree of 

all live ranges is equal to 2. Optimistic coloring pushes all live ranges onto C and is able to 

assign legitimate colors for them. What may happen is that lrx and Ir, use the callee-save 

register, and lrw and lry use the caller-save register. In this case, the high caller-save cost 

of lrz causes an inferior result. 

Table 7.1 compares the overhead of optimistic and base Chaitin-style coloring using 

static and dynamic information to estimate execution frequencies. The value in each entry 

is the quotient Base-Chaitin/Optimistic. The darkly shaded regions (< 1.00) highlight the 

cases where optimistic coloring results in more overhead operations than base Chaitin-style 

coloring. The lightly shaded regions (> 1.00) indicate that optimistic coloring outperforms 

base Chaitin-style coloring. The (blank) rest (= 1.00) indicates that optimistic coloring has 

no influence. Surprisingly, optimistic coloring does not improve overhead operations for 

most of the cases and, in addition, deteriorates the result of register allocation more often than 

ameliorates it. There are a couple of reasons for that: (1) if the register allocator assigns 

registers to the live ranges that have high spill cost, assigning registers to the otherwise 

spilled live ranges that have low spill cost makes only a small difference. Therefore we 

notice only a small improvement. (2) If the live ranges spilled by the base register allocator 
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end up in the wrong kind of registers, the overall effect is negative. Optimistic coloring 

is sometimes effective for a small number of registers because the smaller the number of 

registers is, the more live ranges are spilled. Yet even in the best cases, the influence of 

optimistic coloring is small (within ± 6 %) except for f pppp when using static information 

(up to 36 % improvement in the number of overhead operations with a small number of 

registers). 

0.8 

Improved Chaitin 

Optimistic 

Optimistic + Improved Chaitin 

I     I     I     I     I     I     I     I     I     III       ^ 

$ rZ r^ c*  r*  <n  tri-<f>£ v\ v\ ti *or-_ t-^ooccoo 
*o»or~r~w"ooo£cr>_oooooooo 

tt! 

Figure 7.2: Optimistic versus non-optimistic for f pppp (using static information). 

I incorporate optimistic coloring into improved Chaitin-style coloring (i.e., includ- 

ing storage-class analysis, benefit-driven simplification, and preference decision enhance- 

ments). Except for f pppp when using static information, the results are almost identical to 

those obtained by improved Chaitin-style coloring alone. This result is no surprise because 

the improvement of optimistic coloring is small, and the storage-class analysis spills the live 

ranges that are not worthwhile residing in registers; this optimization may actually undo the 

color assignment done by optimistic coloring. For instance, consider the example of Figure 

7.1 again. The storage-class analysis checks the estimated saving (benefit) of keeping alive 

range in a register and spills the live range to memory if the saving is negative. lr:, is then 

spilled to memory in the color assignment phase. The result is the same as Chaitin-style 

coloring that spills lr-, when simplification blocks. Figure 7.2 shows in more detail the 

improvements due to optimistic coloring, improved Chaitin-style coloring, and improved 

Chaitin-style with optimistic coloring for f pppp using static information. Optimistic col- 



148 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES 

STATIC 
o 
o* 

r£ 
*o 

CO 

r-. 

CO 

CO 

CO 

© 

00 
© 

in 
o 

<o 

© o* 
CO* 

<5 
o 

to* 

r- 
o 

oo* 
o 

00 
o* 

oo" 
o 

alvinn 
compress UOS 

MM ffi$s 

ear 0,ä8 SiSSS :?J83S 

eojitott OS&K ' Ä* 0,<« . 
espresso 10! iglisg; ®$$ gl§ 

w& ft1*!* ■#$$M W*i*S :&%:>. wm :tefe 
gcc 

li 

:(;#(;:; 

sc 
doduc 

fpppp 
matrix300 

nasa7 

spice 
tomcatv 

& 

.\.m 

:1.3B 

ma 
i.ot 
■I.Q1 

1.36 

:i»2; 

Ä; 
DJW. 

i;.ofi 
1,01 

l.Ql 

:l,0i 

■•A 
1.19 

):.0t 

i;ce 
1W: 

to? 
M0> 

i.«4: 

1.07 

: 1,05 

m 
m 

102 
Ä: $>£&!: 

Ä 

WM isi 
9£* 

DYNAMIC 

alvirm 

compress 

eqntott 

fpppp 

355(13 
« 

Ä 
;Ei$; 

;«:■?«; 

äti«: 
Ä 

®m 
mm 
iOSSS 

®§9* 

matrix300 

spice 

*M 

KSS 

151 

*$$ 
W& 
wm 
wm 

w$ 

W: 

v\- 

$m 
m$ 

wm 

$££ :B$ 

8SI 

« 
fie* 

3¥§S 

ma 

ffl£ 

®?« 

IP 

:s»5 
®M « 

• 
IffiSg; 

K$» 
«$& 

li«i 

fiöli 

Iffiä* 

;iK9ä:: 

WS:- 

ssas 
»®fi 

1 /.7 

sm 

i§91; II iggfjT:; 

iffss; 

\am 

WM 

Ä 

Ä 

®SS 
■Xl.f* 

Ä $s?;:- 

«»I; 

Table 7.1: Optimistic coloring versus Chaitin-style. 
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oring performs well with a small number of registers, but the enhancement drops as the 

number of registers increases. Improved Chaitin-style coloring, on the other hand, performs 

well as the number of registers increases, because the more registers are available, the more 

freedom the register allocator has to choose between caller-save and callee-save registers. 

We see the improvements of optimistic coloring plus improved Chaitin-style coloring as the 

two are integrated. When the number of registers is small, improved Chaitin-style coloring 

is not very effective, so we see only the contribution of optimistic coloring. As the number 

of registers increases, optimistic coloring has less influence and improved Chaitin-style 

coloring picks up, so we see the enhancement due to improved Chaitin-style coloring. 

7.2   Priority-based vs. Chaitin-style 

The use of a benefit function to sort live ranges invites a comparison with priority-based 

coloring [16]. At first sight, Chaitin-style coloring and priority-based coloring appear to 

have little in common. Priority-based coloring assigns registers to live ranges based on a 

priority function and splits a live range Ir when no legal register exists for Ir. 

Chaitin-style and priority-based coloring share a major core if priority-based coloring 

simply spills rather than splits live ranges when it runs out of colors.   That is, both 

approaches try to determine the color ordering in which live ranges are assigned colors 

(registers). Chaitin-style coloring simplifies the interference graph to decide the ordering 

in which live ranges are assigned colors. The color-assignment phase then guarantees to 

assign registers for all non-spilled live ranges based on the ordering. Priority-based coloring 

uses cost analysis as the priority to determine the ordering and guarantees that the color- 

assignment phase assigns registers to the most important (high savings of memory accesses) 

live ranges. The two approaches aim at two different directions: (1) Chaitin-style coloring 

finds an ordering that packs live ranges into registers—potentially it uses fewer colors 

than priority-based coloring, and (2) priority-based coloring wants to make sure that the 

most important live ranges are in registers even though it may require more colors (or spill 

more unimportant live ranges). Both approaches have their own strengths and weaknesses. 

Chaitin-style coloring with all three enhancements is a hybrid of the two approaches that 

uses Chaitin-style coloring as the framework for packing live ranges and uses storage-class 
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analysis and benefit-driven simplification to achieve the same effect as the priority-based 

approach. 

7.2.1   Priority functions 

Reducing register overhead operations is the primary goal of the priority function. Hence, 

the more memory accesses saved by assigning a register to a live range, the higher the 

priority of the live ranges is. The bigger a live range, the more conflicting live ranges 

cannot use the same register as the live range. That is, higher register pressure is introduced 

if bigger live ranges reside in registers. Higher register pressure is more likely to cause 

overhead operations. Therefore, the bigger a live range, the lower the priority of the live 

range is.  Based on the two conditions, we use —s—- ,;,,.(£)—       & tne 

priority function for priority-based coloring, sizc(lr) is the number of basic blocks that Ir 

contains. This priority function is the same as the one used in [16]. The spilling heuristic 

of Chaitin-style coloring and optimistic coloring is 'j^ff • The neuristic tends t0 sPin 

live ranges that have low spill cost and high degree. The priority function and the spilling 

heuristic are alike. The numerator of the priority function reflects the spill cost because the 

bigger the spill cost, the bigger the two benefit functions are. The denominator reflects the 

degree of live ranges because the bigger the live ranges, the more likely the live ranges have 

higher degree. 

There are a few ways to determine the color ordering for priority-based coloring: 

• removing unconstrained: Unconstrained live ranges are removed from the interfer- 

ence graph and pushed onto C. The remaining live ranges are pushed onto C from the 

least priority to the highest priority. Chow uses the same approach in [16]. 

• sorting unconstrained: Unconstrained live ranges are not pushed onto C in a priority 

fashion if we simply remove unconstrained live ranges. That is, the kind of regis- 

ter that a higher-priority live range wants is possibly taken away by lower-priority 

live ranges. Sorting unconstrained live ranges alleviates the problem by pushing 

unconstrained live ranges onto C also in a priority manner. 

• sorting: All live ranges are purely sorted in terms of their priorities. The sorting 
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approach guarantees that the higher the priority, the more likely that live ranges are 

assigned their preferred kind of register. 

All three heuristics produce nearly identical register overhead (± 10%) for most cases. 

A detailed comparison is given in Tables 7.2 and 7.3. RU, SU, and S indicate Removing 

Unconstrained, Sorting Unconstrained, and Sorting, respectively. There are two rows for 

each SPEC92 program, RU/SU and RU/S. The entry is the ratio of the register overhead of 

the two heuristics, e.g., 1.04 for RU/SU means that the RU heuristic introduces 4% more 

overhead operations than the SU heuristic. The empty entries in the tables indicate the 

two heuristics generate the same register overhead (ratio is 1.00). The experimental results 

show that the RU and SU heuristics give identical results except in a few cases. S(orting 

approach) yields much better results (less overhead) for ear (both static and dynamic) and 

espresso (dynamic). 

Figure 7.3 shows an example where S yields a better result than RU and SU. Given N=2 

(1 callee-save and 1 caller-save), lrv is the only unconstrained live range (degree = 1). RU 

and SU then remove lrv and assign colors to the rest live ranges in the priority order, lrx, 

lr,, lr.w and lry. The callee-save register is assigned to lrx because lrx is considered the 

highest priority live range. As a result, lrv can reside only in the caller-save register. The 

RU and SU approaches save 5900 load/store operations. S treats lru as the highest priority 

live range and assigns the caller-save register to lrv. This assignment saves 8500 load/store 

operations. 

lrw ^ lry «>. lrv 

benefit_caHer 1500 2000 1000 1500 4000 

beneflt_callee 1000 1000 400 1000 1000 

size 4 3 4 
'■' 

2 

degree 2 3 2 1> 1 

priority 350 667 250 50() 2LH.H.J 

(a) (b) 

Figure 7.3: Priority functions with N=2 (1 callee-save and 1 caller-save). 
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7.2.2   Evaluation 

We compare improved Chaitin-style coloring with priority-based coloring using the sorting 

heuristic. We can classify the SPEC92 programs based on the results into 3 classes. Figures 

7.4,7.5,7.6, and 7.7 show the results. 

• Both priority-based and improved Chaitin-style coloring are doing equally well. 

Examples are alvinn, eqntott, gcc, and li (Figure7.4). For alvinn, packing 

live ranges is important for small numbers of registers. When the number of registers 

increases, packing live ranges becomes less important (because high spill-cost live 

ranges are most likely to find registers) so we see that the two approaches yield similar 

results. 

• Improved Chaitin-style coloring is superior to priority-based coloring, compress, 

ear, sc, doduc, nasa7, spice, and tomcatv fall into this category (Figures 

7.5 and 7.6). For nasa7, improved Chaitin-style coloring produces slightly fewer 

overhead operations than priority-based coloring when the number of registers is 

small. When the two approaches have more registers, the results start to diverge. 

Chaitin-style coloring produces a similar improvement trend in both the dynamic 

and static cases. Priority-based coloring, nevertheless, does not improve overhead 

operations a lot over the base in the static case. In this case, priority-based coloring 

introduces 4 times more overhead operations than improved Chaitin-style coloring. 

The same scenario happens to ear as well. For tomcatv, the priority-based 

approach spills more live ranges than the improved Chaitin-style approach, both in 

the static and dynamic cases, due to the inability of packing live ranges densely. 

For sc, improved Chaitin-style coloring yields bigger improvement than priority- 

based coloring in the dynamic case. We, therefore, classify it into this class although 

priority-based coloring using static information has slightly fewer overhead operations 

than improved Chaitin-style coloring. 

• There is no clear winner between the two approaches. Examples of this class are 

espresso, fpppp andmatrix300 (Figure7.7). For espresso,priority-based 

coloring is clearly superior to improved Chaitin-style coloring in the dynamic case 

but not in the static case. If we compare the results for fpppp (static) (Figure 7.7) 



7.2. PRIORITY-BASED VS. CHAITIN-STYLE 153 

STATIC 
o 
o* 
vi" 

6 00 

en 

oo" 
o" 

00 
d" 

ON 

vT 

3 
O O 

on" 

<o" 

o" 
C-" 

*0 
0O~ 
o" 
it" 

oo" 
o" 

00 
O 

alvinn RU/SU I-.Ö1 1:J11: 

RU/S t:02 iws: 1,03! xm ),W 

compress RU/SU 

RU/S titti; 

ear RU/SU 
ill RU/S 1*4 «; $Hj| 2^5 569 3,S9;: m 3iS5: :U*Z 1>H Ä 9K??Ä 

eqntott RU/SU 
VfW 10? 

1*2 

1 ov l.Wv 

11»: 

1.05 («if li02 
  

espresso RU/SU 

RU/S &ste $*> 1« ;$$ .&g|:; I«! t.or ;Ä ),01 1.0* ;«*J; [$M Wi 1,1« J.U4 ),<W 

gcc RU/SU «i»:: 

RU/S ;«««;; Ä ;$?i Äii iÄ Ä; i#m Ä; ;;$*: M$i :^:i 'MM :;?*?;:: 

li RU/SU 

RU/S $?£; ij$i :0»£ *;«»; :i>m-- 

sc RU/SU 

RU/S **$» 1,01 102 102: l.Ofr 1.1)6 IM- ij>y- 

doduc RU/SU 

RU/S mm »s»; ;&ss; Sä» 101: 1:01: IS?;; M* ;&(»; i*8fe :.«:!»: ;???#; ®Mi $$M 
fpppp RU/SU 

RU/S tu &Sfc « Ä w& Al Ä iü;: $m Ä ;«fi; 1:01.: 1.0) 1,01: Mi: MS'; 

matrix30C RU/SU 

RU/S Ä $!$ 
nasa7 RU/SU 

RU/S $$! •$M $$* 
spice RU/SU 

RU/S $& 4% &?$ W& ■S-& •pK-^* ;ü ®$! M :p£: $$$■ IS??* :$*?■ Si«: ;S>« ;&$>; W& jOJjfe 

tomcatv RU/SU 

RU/S ;&& . i&ss m && si« S'S* 1.04 ;>** 1.04 1.05 t»% 

RU: reir iovin eun< :onst raine d s U:so rting uncc astrs ined S:s( jrtinj 

Table 7.2: Comparison of priority-based heuristics (using static information). 



154 CHAPTER 7. COMPARISON OF VARIOUS APPROACHES 

DYNAMIC 
o 
cT 
vn vC vo; 

es 
vo 

to CO 

o" 

*t" 
""L 

o* 

vo 
vo* 
o" 

VO 

vo" 
o" 

VO 

c-" 
o" 

c" 

VO 

r-" 
o" 

•<t" 

VO. 

oo" 
o" 

•*" 

vo_ 
oo" 
o" 

vn 

oo" 
o" 

VO" 

aivinn RU/SU 
RU/S W2: 1,02 1.08: 

>•«■ 
1.«: 1.02:; 

compress RU/SU li«! tflt i:03 

RU/S 0»3* <«: 8S&;;: VM 108 WO 

ear RU/SU 
RU/S Ä *S>s X54; 3.17: *>*»: 45.04 4i.S4: 52. W 34,00; 1034 20.34: 2034 

eqntott RU/SU 1.18 1.01:: l-W:: 

RU/S Mi: 1.01: ita :l:0i::: 1.05:: 102 4.02:: 

espresso RU/SU 1.Ü5 104. «:«E* M*8 **K* *?s:s MM l.ot 

RU/S Ä 1ÖH:': im W- W :ö&' *<*' '(.W: 144: \ii lia i'ütf" l?6 *:?*:;: 1.1? 142   : Hi*?S' ;iiS?::::: 

gcc RU/SU 
RU/S » ite Ml JU«: i-te: l&n :»i: 4:0?: 1.01 :«M 1.01 ;i;&s j:»::: :}:«:: :):«:: J:«  . ;)#:;:: :>#:: 

li RU/SU 
RU/S 8M Ä 

sc RU/SU 
RU/S SBS» *9K )M 

doduc RU/SU 
RU/S I8SSS 838!; w& 8S& I««!* Wf WM :8*s; jg;§5;::j; Ä* :Ä: AS ftüffÄ $§£;? iSSfti 

rpppp RU/SU 
RU/S m$i Ä Ä *0lW :ii|?g 

matrMOO RU/SU 
RU/S 

nasa7 RU/SU 
RU/S Wk $$: Ä 

spice RU/SU 
RU/S w& m m% $i! m Ü :&?Jä Wfi Ä; $;§•?*: SÄ 83$$; Mag $:Ü§*: 

tomcatv RU/SU 
RU/S ;a^K 'im :Et?; $$£ 88$ S3$ 4$5 I!36 IDS 

] RU: rem ovin nine onsti ainei J SI J: so -ting unco nstra ined S sortir lg 

Table 7.3: Comparison of priority-based heuristics (using dynamic information). 



1.2. PRIORITY-BASED VS. CHAITIN-STYLE 155 

70- 

60- 

50- 

I 
a 
i 30- 
3 

20- 

10- 

o4J!¥*T#TlV^^r,ii • i i i i i i i i i 

tnin\o*oc~r-^ooooo^o^oooc>o©©© 

— Improved 
(static) 

Chaitin »*. Priority-based 
(static) 

*•*■- 
Improved 
(dynamic] 

Chaitin -ft- Priority-based 
(dynamic) 

4-, 

-Ä 3.5- 
*/$* 

3- -Xf 
Iw- & 

e 2- 
0> 

3 1.5- « 
1- («-*-*■ 

W&3r. 

0.5- \--ft~o 

■ 1     1 1   I 
S" Cf Ä fTcTfÖ1 ft ^ =? 6? <X <S <S <£<$<$ £;<? 
O    H   H"  (M   C^   f>f*i,T',f1'tl''i'4*4r£t"{c40^00. / m" >o" *o K K » M ^| o>_ o o © © © © 22 
K h  »' oo" ov »'. o  o H* •■ H- H>    _»    -*_£■. _? ..r 

1.8-, 

eqntott 

1.6- . ...»< * * * » * ■& 

1.4- S«««*"« 

1.2- 

1- 

0.8- 

0.6- I   I   I   I   I   I   I   I   1   I   I   I   1   I   I   I   i 

alvinn 

r d c{ «*? e? •* rf «n vT v© yf K r-f oS oo_ oo; 
"vot~-t-^oJoooTc>roo 222222 
" oo* of of o* © ■ *    - —' —■ —■ i  M N  M  n t  ' 

I     I     I     I     I     I     1     I     I     \     I     I     I     I 

°" H' -* H ^ n' n' ' "f "" "1 *. ^ h. ift  w io vo  i-.|>oo"oo;ofofo©  22 
^r£oo"copfof©©'-',,H.--» 

I     I     I 
© & <S- £• 
K  W   M   00 

li gec 

Figure 7.4: Priority-based « Chaitin-style. 
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Figure 7.5: Priority-based< Chaitin-style. 
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Figure 7.6: Priority-based < Chaitin-style (cont.). 

with the results shown in Figure 7.2, we notice a similarity between priority-based 

coloring and the integration of improved Chaitin-style and optimistic coloring. When 

the number of registers is small, we see the trend of optimistic coloring. As the 

number of registers increases, we see the trend of improved Chaitin-style coloring. 

From the experimental results, improved Chaitin-style coloring is superior to priority- 

based coloring in two ways: (1) Chaitin-style coloring is able to pack more live ranges into 

a set of registers, which potentially introduces fewer spill code operations, (2) the priority 

function used in priority-based coloring may cause low spill-cost live ranges to take away 

the preferable registers of high spill-cost live ranges. 

The example in Figure 7.8 illustrates how the second case happens with N=3 (1 callee- 

save and 2 caller-save). The two benefit functions, benefit.caller and benefit.callcc, of 

each live range are shown in the table. Priority-based coloring considers lrv to have the 

highest priority because of high spill cost. Subsequently, the callee-save register is assigned 

to lry, which leaves the two caller-save registers for lrm lrx and lrz. This color assignment 

results in a bad register assignment because the penalty of picking the wrong kind of register 

for lrw is high. The assignment ends up with saving 8300 memory accesses. Benefit-driven 

simplification, on the other hand, can first simplifies either lrx or lr,. Consequently, all 

remaining nodes are unconstrained (degree = 2). Benefit-driven simplification using the 

second strategy (Section 6.3) puts lrw on the top of the color stack because lrw has the 

highest penalty of picking the wrong kind of register. As a result, improved Chaitin-style 
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Figure 7.7: Priority-based >< Chaitin-style. 
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coloring saves 11000 memory accesses.  This is the reason why priority-based coloring 

yields much more overhead operations for nasa7 and ear in the static case. 

K K lry -'.'. 

benefit_caller 300 2000 4000 200o 

benefit_callee 3000 2400 4500 240<"> 

size 4 jt 4 '.; 

degree 3 2 3 ■2 

priority 750 800 1125 800 

(a) (b) 

Figure 7.8: Priority-based coloring with N=3 (1 callee-save and 2 caller-save). 

7.3    Chaitin-style versus CBH 

In this section, we compare improved Chaitin-style coloring with another base model that is 

implemented in various compilers. This model extends Chaitin-style coloring to explicitly 

model the calling convention. According to Briggs [8], this model also extends hierarchical 

coloring(as described for the Tera compiler [12]). Based on the main components, we name 

this cost model "CBH" (forChaitin/Briggs-Hierarchical coloring). Although the CBH cost 

model has been adopted by prior researchers, there is no published report of the model's 

effectiveness. 

The comparison of this section serves three purposes. First, it allows us to know if 

our base Chaitin-style coloring is a reasonable base or not, relative to a model adopted by 

other compilers. Second, the comparison presents the effectiveness of the CBH cost model. 

Third, the comparison also shows if the call-cost directed Chaitin-style model outperforms 

CBH. 

In the CBH approach, live ranges that cross calls interfere with all caller-save registers. 

In other words, none of the caller-save registers can be assigned to live ranges that contain 

calls. A live range is introduced for each callee-save register extending from the entrance 
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of a routine to the exit of the routine. The live range is called a callee-save-register live 

range. Each callee-save-register live range has two references, one at the entry and the 

other at the exit (these represent save/restore of the callee-save register at the entry/exit). 

With the execution frequency of the routine, we can get the spill cost for the live range. 

The call cost is then modeled by CBH just like regular spill cost. Register allocation 

performs simplification to determine if it is worthwhile using a callee-save register. When 

simplification blocks, one live range with the least spill cost is chosen from the remaining 

live ranges, including the callee-save-register live ranges. Choosing a callee-save-register 

live range as opposed to a regular live range to spill means spilling each remaining ordinary 

live range is more expensive than saving/restoring the callee-save register at the entry/exit. 

Once a callee-save register is spilled, the callee-save register can then be assigned to live 

ranges. This is similar to the way Chow handles callee-save registers [16]. That is, the first 

live range that uses a callee-save register pays the callee-save cost. 

I compare CBH with improved Chaitin-style coloring. To allow an easy comparison 

of the new figures with the figures in Section 6.6,1 use the same base line. The data for 

improved Chaitin-style coloring in Figures 7.9, 7.10, and 7.11 are the data (SC+BS+PR) 

from Section 6.6. Again the y-axis of all figures shows the ratio of register overhead 

operations relative to the register overhead produced by the base Chaitin-style. The bigger 

the number on the y-axis, the more overhead operations are removed. 

We can analyze the data from several different perspectives. CBH represents a model 

of call cost that is conceptually simple (always a good property). CBH does not allow live 

ranges that cross calls to use caller-save registers because they interfere with all caller-save 

registers. Those extra interference edges, however, may overly constrain register allocation, 

especially when there is not a sufficient number of callee-save registers because all live 

ranges crossing calls are competing for callee-save registers. Examples of programs that 

exhibit this behavior are alvinn, compress, ear, espresso, gcc, li, sc, doduc, 

matrix300, and spice. For those SPEC92 programs, high spill-cost live ranges that 

cross calls are spilled because there are only a small number of callee-save registers. As the 

number of callee-save registers increases, the constraints become less critical, and CBH is 

able to assign registers effectively for alvinn, ear, andmatrix300. 

Then there are cases where improved Chaitin coloring and the CBH approach pro- 



7.3. CHAITIN-STYLE VERSUS CBH 161 

duce almost identical results, i.e. the same number of overhead operations, f PPPP and 

tomcatv fall into this category. 

Sometimes the CBH approach does not improve the quality of register allocation using 

profile information. Examples are compress, li, sc, gcc, doduc, nasa7 and spice. 

For those programs, we see that CBH cannot catch up with improved Chaitin-style coloring. 

The main reason for this situation is that many live ranges on the most frequently executed 

paths also cross call sites that are on less frequently executed paths. All those live ranges 

are competing for callee-save registers regardless the fact that the call sites contained in the 

live range are not frequently executed. Consequently, those live ranges are either assigned 

callee-save registers or spilled. As aresult, CBH spills more than necessary and incurs high 

register overhead (spill code) for such programs. On the other hand, improved Chaitin- 

style coloring pays caller-save cost at occasionally executed paths and assigns caller-save 

registers to live ranges that do not cross calls on frequently executed paths. 

Another noteworthy aspect is that CBH requires a fair number of registers to make up 

the deficiency of its call cost model for matrix300 and nasa7. The data for improved 

Chaitin-style coloring and CBH of matrix300 (dynamic) show that improved Chaitin- 

style coloring continues improve beyond using (9,7,3,3) registers, whereas CBH still suffers 

from the lack of callee-save registers until it has 4 additional integer and 3 additional floating- 

point callee-save registers. nasa7 follows a similar pattern. For ear and eqntott, we 

see a similar trend although it is less pronounced. However, the situation is not as severe as 

for matrix300 or nasa7, and CBH needs only a few more registers to compensate the 

limitation of its call cost model. 

For ear and nasa7, improved Chaitin-style coloring achieves a big improvement for 

both the static and dynamic cases. CBH, however, produces roughly identical overhead 

operations as the base Chaitin-style coloring in the static case. From those figures, we can 

derive the conclusion that improved Chaitin-style coloring is superior to CBH and the "base 

model" is actually reasonable after all. For a lot of register ranges, the base Chaitin-style 

allocator is actually superior to the CBH-style allocator. 
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Figure 7.9: Improved Chaitin-style versus CBH. 
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Figure 7.10: Improved Chaitin-style versus CBH (Cont.). 
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Figure 7.11: Improved Chaitin-style versus CBH (Cont.). 

7.4   Summary 

In this chapter, I evaluate the effectiveness of optimistic coloring. The results indicate that 

the influence of optimistic coloring is small in general. In addition, optimistic coloring 

needs to take call cost into account. Otherwise, the overall effect may be negative. 

From the experimental results, improved Chaitin-style coloring is superior to priority- 

based coloring. Chaitin-style coloring is able to pack more liveranges into a set of registers. 

The enhancements described here allow Chaitin-style allocation to order live ranges, thereby 

achieving similar benefits as can be obtained from the priority function of priority-based 

coloring. As a result, low spill-cost live ranges do not take away the registers preferred by 

high spill-cost live ranges. 

Coloring based on the CBH cost model imposes the constraint of not assigning caller- 

save registers to live ranges containing calls. Due to this constraint, callee-save registers 

then become the most critical resources in a lot of cases. As a result, the caller-save 

registers may be underutilized; live ranges containing calls are spilled although the calls 

may be executed only infrequently. 

One interesting aspect of register allocation is that each model hits some aspects of 

dealing with call cost. There are some programs (or some register ranges for some programs) 

where the priority-based and/or CBH-style approaches perform reasonably well, as there 

are situations where optimistic allocation performs well. One of the challenges is to devise 
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an approach that combines the benefits of all models, and I demonstrated that storage- 

class analysis, benefit-driven simplification, and preference decision can be integrated into 

Chaitin-style coloring. This improved Chaitin-style register allocator provides an effective 

way to deal with modern calling conventions for a wide range of programs. 
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Chapter 8 

Extensions 

There are two important techniques of register allocation that have not yet been covered 

so far: coalescing and rematerialization. Both techniques improves the quality of register 

allocation. Coalescing tries to eliminate unnecessary copy instructions. Rematerialization 

replaces spill code by instructions that recompute the values. It is important to see how 

coalescing and rematerialization interact with fusion-based register allocation. There are a 

couple of interesting questions that we would like to be able to answer. Can fusion-based 

register allocation implement rematerialization (Section 8.1)? Can fusion-based register 

allocation improve coalescing quality (Section 8.2)? In this chapter, we discuss each of 

these aspects in detail. 

8.1    Rematerialization 

Most modern processors require multiple cycles to access the cache, i.e., a memory access 

needs more than one cycle; on the other hand, several values can often be recomputed using 

a single instruction. Rematerialization recognizes that some values are cheaper (require 

fewer cycles) to recompute than to spill to memory and uses the instructions that recompute 

the values to replace the spill code. Because the register allocator knows the value of a 

rematerializable live range, to spill a live range, it is not necessary to insert a store after 

each definition of the live range. Then instead of inserting a load before each use of the live 

range, register allocation places there the instruction that recomputes the value. [10] lists 

opportunities for rematerialization: 

167 
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• immediate loads of constants: For a machine that has the immediate addressing mode, 

immediate loads of integer constants can be accomplished, e.g., using li on MIPS, 

set on SPARC, or ldil on Alpha processors. 

• computing effective address: The constant offset of the stack frame can be computed 

using add   with immediate addressing mode, e.g. "add srl,   fp,   64". 

• loads: The value of a load from a known constant location in either the stack 

frame or the static data area can be reloaded using one load instruction, e.g., "load 

srl, 64 (f p)". Although the load instruction is as expensive as the spill load, we 

save/eliminate spill stores that write the value to the spill location. 

• loading non-local frame pointer from a display. 

The cost of spilling a rematerializable live range ought to be modeled differently from a 

live range whose value can not be «materialized. For instance, fusion-based coloring uses 

one of the three heuristics in [5] to choose one live range from the set of constrained live 

ranges. The heuristic is degre^^lea(lry where cost(lr) is a function of spilLcost(lr) (the 

weighted reference count). Assume that a memory access takes two cycles. The cost(lr) 

is redefined as follow: 

_ / rcmatcrializati<mjcost(lr))   if Ir is rematerializable 
cost{lr) - | spm_cost(lr)*2 otherwise 

rcmatcrializationjcost(lr) is the weighted cycle count of recomputing the value of Ir. 
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Figure 8.1: Spilling a rematerializable live range. 
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Consider the two live ranges, lrx and lry, in Figure 8.1(a). Both x and y are defined in 

D\ and referenced once in D2. lrx and lry have the same spilLcost. The numbers next to 

control-flow edges are execution frequencies. Spilling x or y to memory incurs 220 cycles. 

Figure 8.1(b) shows the code after we spill y. lry can not be «materialized because the 

cost of recomputing "y=m/3" is expensive. lrx can be «materialized because recomputing 

address a can be done using one instruction. The rematerialization_cost of lrx is 100 cycles. 

Assume that the register allocator requires to spill either lrx or lry. The register allocator 

recognizes that «materializing lrx is cheaper than spilling lry using the redefined spilling 

heuristic (depicted in Figure 8.1(c)). 

8.1.1   Prior approaches 

Chaitin et al. proposed and implemented the «materialization technique in the IBM PL.8 

compiler [13]. Briggs et al. [10] show that there are cases where the value of a live range 

is rematerializable in some parts of the live range, but not the whole live range. The 

«materialization technique in the IBM PL.8 compiler was not integrated with live-range 

splitting. Hence, once the rematerializable value of a live range is killed within the live 

range, they give up potential opportunities of «materializing some parts of the live range 

and spilling the rest. 

Briggs et al. [10] extend Chaitin's approach by splitting each live range into its com- 

ponent values using the SSA representation [20] so that each live range has exactly one 

definition. The goal is to isolate rematerializable values so as to expose all possible oppor- 

tunities of «materialization. Wegman and Zadeck's sparse simple constant algorithm [62] 

is modified to propagate «materialization tags to each value. Because splitting each live 

range into its component values may cause excessive shuffle code (moves), conserva- 

tive coalescing and biased coloring techniques are used to eliminate unproductive moves. 

Again the shortcoming of their approach is that splitting decisions are made prematurely. 

Conservative coalescing and biased coloring techniques do not guarantee to remove all 

unproductive moves. In addition, splitting points may be on frequently executed paths. 

Failing to eliminate those splitting points causes a lot of excessive shuffle code. 
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8.1.2   Rematerialization in fusion-style coloring 

This section presents how rematerialization can be implemented in fusion-style register 

allocation. There are 3 phases in which fusion-style coloring deals with rematerization: 

propagating rematerialization tags, graph construction, and shuffle code insertion. A new 

phase is inserted before the graph construction phase to propagate rematerialization tags. 

Therefore, when constructing a live range, we know if the live range is rematerializable or 

not. 

Propagating rematerialization tags 

The modified Wegman and Zadeck's algorithm used in [10] does not fit into our model 

because the actual splitting decisions are not yet made and live ranges are not yet built. We 

can use data-flow analysis to propagate rematerialization tags. The data-flow equations are 

defined as follows: 

Remln(D) =      [j      RcmOut(J) 
Jefred(B) 

RcmOut(B) = (Rc.mIn(D) ■ -^RcmKill(B)) + RcmGcn(B) 
RcmGcn(B) = [instx \ instx g B A the value of instx is never killed in B) 
RcmKill(B) = \instx \ dcfx e B) 

The notation instx represents an instruction whose target is virtual register x and 

the value is rematerializable, e.g. "add i, fp, 64". instx € B indicates that the 

instruction instx shows up in the schedule of block B. dcfx e B denotes that there 

is an instruction in B whose target is virtual register x. Hence, RcmGcn(B) is the set 

of all instructions that appear in block B and whose values are rematerializable and not 

killed/modified. RemKill(B) is the set of all instructions whose values are rematerializable 

and targets are defined in B. 

Graph construction 

Once we have computed the data-flow analysis for rematerialization, we can set the rema- 

terialization attribute for each live ranges. The attribute for a live range that does not span 

across blocks (local) can simply be determined by checking if the value of the live range is 
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rematerializable or not. If a live range ln(x) is Uve at the entry of a block Bu and there 

is only one definition instx in RcmIn{Bx), the «materialization attribute of /r,(x) is set. 

Likewise, for a live range lrx{x) that is defined in a block B, and live at the exit of a block 

Bu *e «materialization attribute of ln{x) is set if instx is in RcmOut{Bx) (there can 

only be at most one instx from ßi in RemOut{B\)). 

The rematerialization attribute is propagated, like has.def, during the graph fusion 

phase. When two live ranges, In and lr2 are combined, the rematerialization attribute of 

the combined live range lrn is non-rematerializable if one of them is non-rematerializable. 

rcmatcrialization(lr12) = rcmatcrialization{ln) A rcmatcrialization(lr2) 

Shuffle code insertion 

On an edge E = (BUB2), shuffle code is inserted for a virtual register x that has been split 

on E, i.e., if ln(x) and lr2(x) have not been assigned the same storage location. Again 

we use the notations r\x and rlx to indicate the two registers that are assigned to ln(x) 

and lr2(x) respectively. There are three cases to consider when register allocation inserts 

shuffle code for rematerializable live ranges. 

• shuffle store (lr2(x) is spilled): A shuffle store was supposed to be inserted on edge E 

to store the value of In (x) as shown in Figure 8.2(a). If lr2(x) is «materialized, then 

the shuffle store is not necessary and removed (as depicted in Figure 8.2(d)) because 

lr2(x) does not access memory. 

• shuffle load (ln(x) is spilled): A shuffle load was supposed to be inserted on edge E 

to load the value of ln(x) as shown in Figure 8.2(b). If ln(x) is «materialized, the 

shuffle load is then replaced with the instruction that recomputes the value of ln{x) 

as depicted in Figure 8.2(e). 

• shuffle move: A shuffle move was supposed to be inserted on edge E to copy the 

value of ln{x) to lr2{x) as shown in Figure 8.2(c). If ln{x) is rematerializable and 

the definitions of ln{x) can be eliminated, the shuffle move is then replaced with the 

instruction that «computes the value of ln(x) (as depicted in Figure 8.2(f)). Section 

8.1.3 lists the conditions for eliminating definitions of a rematerializable live range. 
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lr2(x) 

(e) (f) 

Figure 8.2: Shuffle code for rematerialization. 
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8.1.3 Optimization of rematerialization 

There is one optimization that we can do to improve the result of rematerialization by 

eliminating the instruction instx of a live range lrx. Removing instx of lrx must meet three 

conditions: 

• lrx is rematerializable. 

• lrx contains no use (only the definitions). 

• Every spilled adjacent live range of lrx that uses lrx's value is «materialized (no 

shuffle store is inserted). 

8.1.4 Examples of rematerialization 

The example of Figure 8.3(a) is taken from [10]. Assume that we use loops (or blocks) as 

regions. Register allocation first performs the data-flow analysis of propagating rematerial- 

ization tags; then it identifies that ln(p) and lr2(p) are rematerializable, but not lr3(p) (two 

distinct definitions reach B3). Consider the case where B2 has a lot of register pressure, but 

Bi and B3 don't. The register allocator chooses lr2(p) to spill and «materializes it during 

the graph simplification phase. After fusing graphs, we obtain the result in Figure 8.3(b). 

Live ranges of p are split on <BUB2> and <B2,B3>. The shuffle store on <BUB2> is elim- 

inated; the shuffle load on <B2,B3> is replaced with "p=Label" (in B') which recomputes 

the value of p. The instruction "p=Label" in B\ satisfies all three conditions and is removed. 

Consequently, fusion-based register allocation with the rematerialization analysis is able to 

obtain the result in Figure 8.3(c) which is the "ideal" result described in [10]. 

Moreover, if the register allocator keeps track of the three conditions, the register 

allocator can perform the optimization and removes lrx while fusing graphs rather than 

after fusing all graphs. Removing lrx during the graph fusion phase alleviates register 

pressure because lrx does not occupy one register resource. As a result, subsequent graph 

fusion could benefit from the optimization (the resulting graph contains one live range fewer 

than otherwise). 

The example in Figure 8.4(a) shows a case where the fusion-style approach provides a 

better framework than Briggs et al. The code consists of two loops. The number next to 
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Figure 8.3: Example of rematerialization. 

a control-flow edge is execution frequency. We notice that the code is not loop intensive. 

On average, the trip count of the first loop is 2; the trip count of the second loop is 4. The 

shaded region is the most frequently executed path. Assume that the code in Z?3 causes high 

register pressure, and register allocation needs to spill one live range. Briggs et al. split the 

live range of p on <B5,B6> and spill p to memory in Du D2, B3, Z?4, and B5. The splitting 

and spilling decisions result in 110 overhead cycles (100 cycles of shuffle cost on <B5,B6> 

and 10 cycles for "p=Label" of B3) as shown in Figure 8.4(b). 

If fusion-style coloring chooses loops as regions, shuffle code on <Bs,B6> is inevitable 

because register pressure of B3 causes the live range of p to be spilled to memory in the 

first loop, like the result of Figure 8.4(b). Hence, there are 100 overhead cycles (100 for 

shuffle code, 10 for "p=Label" of B3, and -10 for eliminating "p=Label" of #i). However, 

if fusion-style coloring chooses blocks as regions, the graph-fusion framework is able to 

identify and isolate the troublesome block B3, and therefore fusion-style coloring spills p 

only in B3. Consequently, there are only 20 overhead cycles (10 for "p=Label" of B3 and 

10 for shuffle cost on <B3,B5> as shown in Figure 8.4(c)). 
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8.2    Coalescing 
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(b) 

Figure 8.4: Example of shuffle code. 

(c) 

During compilation, a compiler may generate unnecessary copy/move instructions. The 

compiler can eliminate a copy instruction that moves a data value between two non- 

conflicting live ranges by coalescing the two live ranges into one. In general, copy/move 

instructions originate from 4 different sources: 

• users' code: Users may write an assignment "x = y" which copies y's value to x. 

Global optimization eliminates the copy assignment by performing copy propagation 

and dead code elimination. Copy propagation first propagates y to every use of x if 

possible. Then dead code elimination eliminates the assignment if all uses of x are 

replaced by y. The assignment remains if not all uses of x are replaced by y. 

• global optimization: Global optimization may produce copy assignments. For in- 

stance, the "a+b" expression of statement "x = a+b" may be a common subexpres- 

sion. The statement is then replaced by a copy assignment "x = trap" where imp 

is a compiler generated temporary to hold the value a+b. 

• calling convention: The protocol of passing parameters and function return values 

between a caller and callee is called calling convention. That is, with a given calling 
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convention, a caller knows where to save outgoing parameters and retrieve function 

return values. A callee knows where to retrieve incoming parameters and save its 

return value. Most modern processors have a few registers reserved for the calling 

convention (argument and function return registers). If an outgoing or incoming 

parameter resides in aregister, moving the outgoing parameter to an argument register 

or moving an argument register to the incoming parameter is a copy instruction. 

Likewise, passing function return values may also require copy instructions. 

• live-range splitting: If register allocation splits live ranges, shuffle moves may be 

needed to move values at splitting points. 

When two live ranges, Zn and lr2, are coalesced into one, the two sets of interference 

edges, p(Zr-i) and -?{lr2), are combined as well. Apparently, the interference graph after 

coalescing may have different register pressure. Coalescing may reduce register pressure 

as well as increase register pressure. 

coalesce 
lri and If2 

Figure 8.5: Coalescing increases register pressure (N=3). 

Figure 8.5 shows a case where coalescing two live ranges increases register pressure. 

With N=3, we can simplify the interference graph on the left hand side by first removing 

Zri and lr2. Then the remaining three live ranges become unconstrained and are removed 

from the graph. The graph can be colored using 3 colors. Coalescing In and lr2 produces 

a clique of size 4, which cannot be colored using 3 colors. 

Figure 8.6 shows a case where coalescing two live ranges decreases register pressure. 

There is a 3-color solution for the interference graph (red color for lrx and lr„, green color 

for lry, and blue color for Zn, lr2, lrt, and lrw). Before coalescing, the graph can not 

be simplified because simplification blocks as soon as lrt is removed from the graph (all 

remaining nodes' degrees > 3). Thus, register allocators that rely on simplification to 

determine the color ordering fail to color the graph with N=3. Optimistic coloring does 
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coalesce 
Ir-] and Irg 

Figure 8.6: Coalescing decreases register pressure (N=3). 

not guarantee to find a 3-color solution. For example, simplification of the graph before 

coalescing blocks as soon as lrt is removed from the graph. Optimistic coloring may decide 

to defer spilling lrx and remove it from the graph and tries to find an available color for 

lrx later. One legitimate ordering of simplifying the remaining graph is In, lr2, lrw, lry, 

and lrz. When assigning colors to live ranges in the reverse order, optimistic coloring may 

assign the red color to lrs and lry, the green color to lr%, and the blue color to lrt, lr.w, 

and In. As a result, there is no available color for lrx. After coalescing In and lr2, 3 

duplicate edges, [lrn,lrx], [lrn,lry], and [lrn,lrx] are eliminated, and a graph G which is 

less constrained than the original graph is obtained. The graph G can be simplified with 

N=3 by removing nodes in the order of lrt, lrz, lrn, lrw, lrx, and lry. 

8.2.1   Prior approaches 

Chaitin et al. eliminate a move instruction when the live ranges of the source and destination 

do not conflict [13]. After all possible desirable copy instructions are eliminated, the entire 

interference graph is rebuilt from scratch. Then Chaitin et al. rerun the coalescing module 

because some copy instructions that at first were impossible to be eliminated may now be 

redundant. The coalescing module is reiterated until no more copy instruction is eliminated. 

The problem with the approach is that coalescing live ranges may increase register pressure 

as shown in Figure 8.5. Therefore, coalescing may render the final resulting graph more 

constrained, and register allocation results in more spill code than without coalescing. 

Briggs uses coalescing, conservative coalescing, and biased coloring to eliminate copy 

instructions [7]. All possible copy instructions except shuffle moves are coalesced using 
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the approach of Chaitin et al. The main goal of splitting live ranges is reducing register 

pressure. Shuffle moves are coalesced conservatively so as to prevent introducing extra spill 

code. The conservative coalescing approach coalesces two live ranges under the constraint 

that the resulting live range has less than N neighbors whose degree > N. The constraint 

makes sure that the resulting live range is not spilled. Biased coloring is a final attempt to 

clean up unproductive shuffle moves by assigning the same colors to live ranges that the 

moves connect. Conservative coalescing may suppress coalescing two live ranges under 

the condition that the resulting live range may be spilled. In fact, the resulting live range 

is not spilled. Namely, conservative coalescing is too conservative. Consider the example 

of Figure 8.6. After we coalesce In and lr2 into lrn, we can simplify the resulting without 

blocking. Conservative coalescing, on the other hand, believes that lru will be spilled 

because there are 3 neighbors, lrx, lry, and Zr„ whose degrees > 3. 

George and Appel take an iterated coalescing approach that integrates coalescing into 

simplification [28]. Live ranges are categorized as either move-related or non-move-related. 

A move-related live range copies a value to/from other live ranges. Simplification removes 

only non-move-related live ranges. Simplification blocks when the residual graph consists 

of only move-related live ranges or non-move-related ones whose degrees > N. George and 

Appel then perform conservative coalescing on the residual graph. The iterated coalescing 

approach is likely to coalesce more live ranges than the conservative approach because the 

residual graph is less constrained than the entire graph. A move-related live range may 

become non-move-related after coalescing.  The iterated coalescing approach reiterates 

from simplification to remove non-move-related live ranges.   If no live ranges can be 

coalesced, and all non-move-related live ranges have degrees > N, then a move-related live 

range of low degree is chosen to be considered as non-move-related. That is, the iterated 

approach gives up the hope of coalescing the live range with others and then reiterates from 

simplification again. 

8.2.2   Coalescing in fusion-style coloring 

Presently, our register allocator uses different approaches to eliminate copy instructions for 

Chaitin-style and fusion-style coloring. For Chaitin-style coloring, we coalesce two live 

ranges connected by a move if they don't interfere. Fusion-style coloring splits live ranges 
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only when necessary to reduce spill code. Hence, coalescing live ranges at splitting points 

is unnecessary because coalescing them increases spill code (undoes splitting decisions). 

Therefore, fusion-style coloring uses biased coloring to eliminate copy instructions. 

Copy instructions originating from users' code and global optimization are actually 

artificial splitting points and may be on frequently executed paths. Using biased coloring to 

eliminate these two kinds of copy instructions may not be ideal because biased coloring may 

fail to eliminate a frequently executed copy instruction. Fusion-style coloring is sensitive 

to edge ordering and therefore able to handle high register pressure well by splitting live 

range at infrequently executed edges. These nice properties allow us to have a different 

viewpoint on coalescing the two kinds of copy instructions. We can aggressively coalesce 

live ranges without worrying much about the incurred register pressure because fusion-style 

coloring is able to alleviate the pressure by spilling transparent or splitting live ranges. One 

feasible implementation of this aggressive coalescing approach is performing Chaitin-style 

coalescing prior to fusion-style coloring as shown in Figure 8.7. Chaitin-style coalescing 

contains two steps, graph construction and aggressive coalescing. The graph construction 

step builds the function-wide graph Gjuncnon. If live ranges are coalesced in the second 

step, then Gjunction is thrown away, and the two steps are repeated until no more live ranges 

can be coalesced. 

Graph 

Graph 
Construction 

L Coalescing Color 
Ordering 

Color 
Assignment 

Spill-code 
Insertion 

Shuffle-code 
Insertion 

!£ \L 
Figure 8.7: Structure of coalescing. 

8.3    Summary 

In this chapter, I present how to integrate rematerialization and coalescing with fusion- 

style coloring.   Rematerialization and fusion-style coloring cooperate with each other 
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seamlessly. Fusion-style coloring is able to isolate high register-pressure regions so as 

to avoid rematerialization happening on frequent executed paths. Rematerization helps 

fusion-style coloring by pruning useless rematerializable live ranges out of the interference 

graph (alleviates register pressure). Because of the ability of handling high register pressure 

in fusion-style coloring, it is feasible to eliminate frequently executed copy instructions by 

spilling transparent live ranges or splitting live ranges at infrequently executed places. 



Chapter 9 

Conclusions 

9.1    Summary 

This dissertation has proposed a novel register-allocation approach which is fusion-based. 

Fusion-style register allocation starts off with constructing regions and applies graph fusion 

along control-flow edges to combine the interference graphs of regions into the interference 

graph for the whole function. Graph fusion integrates spilling, splitting, and color binding 

in a seamless fashion. The delayed spilling technique avoids making premature spilling 

decisions. Maintaining the colorability invariant splits live ranges only when necessary. No 

color binding decisions are ever made during graph fusion. More importantly, fusion-style 

coloring is sensitive to the ordering of control-flow edges that connect regions. Splitting 

is unlikely to happen at high priority edges (frequently executed) and likely to happen 

at low priority edges (infrequently executed). As to fusion-style coloring, the register- 

allocation problem becomes a problem of determining the edge ordering and selecting 

regions. Fusion-style coloring provides a nice framework for register allocation which 

models various live-range splitting approaches such as the Tera, SSA, PDG, andMultiflow 

approaches. 

This dissertation has presented how rematerialization and coalescing can be integrated 

with fusion-style coloring. Fusion-style coloring is able to leverage rematerialization by 

isolating the high register pressure region and avoiding inserting rematerialization code into 

frequently executed paths. Rematerialization is also able to leverage fusion-style coloring 

by pruning unnecessary rematerializable live ranges during graph fusion to alleviate register 
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pressure so as to benefit subsequent graph fusion by lowering register pressure. Fusion-style 

coloring allows register allocation to split live ranges at infrequently executed edges or spill 

low-cost live ranges to trade off against frequently executed copy instructions. 

It is very important to look at register allocation from the compiler's perspective because 

the compiler is more interested in how the register allocator interacts with the rest of 

the compiler. This dissertation has shown that fusion-style register allocation provides a 

framework that is well-prepared for region-based compilation. Fusion-style coloring is 

able to deal with the register pressure caused by scope expanding transformations such as 

unrolling and inlining, whereas the traditional Chaitin-style coloring breaks down. In other 

words, fusion-style coloring provides a solution to region-based compilation so that register 

allocation is no longer an obstacle to region-based compilation. 

This dissertation has presented and evaluated several enhancements to register alloca- 

tion. Chaitin-style register allocation with these enhancements integrates both Chaitin-style 

and priority-based coloring into one so that one's strengths compensates the other's weak- 

nesses. The experimental results have shown that Chaitin-style register allocation with the 

enhancements actually outperforms some existing approaches that have been adopted by 

researchers. 

9.2   Future work 

Even though this dissertation has demonstrated that fusion-style coloring is superior to 

other register-allocation approaches, there still remain some future work to be done. Two 

important areas require investigations and evaluations: 

First, integrating fusion-style coloring into interprocedural register allocation is possible 

and may provide pleasing results. Consider a call graph with 3 functions, /, g, and h. f 

calls g\ g calls h. Assume that h is compiled and requires 2 callee-save registers, pn and 

pr2. Interprocedural register allocation can treat pn and pr2 as caller-save register instead 

of callee-save. If g uses the two registers, then save/restore code are have to be inserted 

around the call site h(). However, the call site h() may be frequently executed. Because 

fusion-style coloring is edge-ordering sensitive, it provides a nice framework to deploy 

register save/restore code on less frequently executed paths. The places of saving/restoring 
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pri and pr2 can be moved further away from the call site h() as graphs are fused. 

Second, another important areais to integrate fusion-style coloring with code scheduling. 

If there are more than N non-transparent live ranges simultaneous live at one point, we 

know that the register allocator must spill some live ranges to lower the register pressure. If 

the code scheduler is sensitive to register allocation in the first place, then register allocation 

can avoid spill and shuffle code. For instance, when scheduling code, the scheduler makes 

sure that there are no more than Ar simultaneously live non-transparent live ranges at any 

given point. Whole or partial live ranges are allowed to be spilled to satisfy the condition 

during code scheduling. Because spill code is produced during code scheduling, the spill 

code can be scheduled right away instead of after register allocation. 
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