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Abstract

In the binomial tree model, we provide efficient algorithms for computing an accurate lower bound
for the value of a European-style Asian option with either a fixed or a floating strike. These algo-
rithms are inspired by the continuous-timeanalysis of Rogers and Shi [10]. Specifically we consider
lower bounds on the option value that are given by the expectation of the conditional expectation of
the payoff conditioned on some random variable Z. For a specific Z, Rogers and Shi estimate this
conditional expectation numerically in continuous time, and show experimentally that their lower
bound is very accurate. We consider a modified random variable Z that gives a strictly better lower
bound. In addition, we show that this lower bound can be computed exactly in the n-step binomial
tree model in time proportional to nW. We show that computing the approximation is equivalent to
counting paths of various types, and that this can be done efficiently by a dynamic programming
technique. We present other choices of Z that yield accurate and efficiently-computable lower
bounds. We also show algorithms to compute a bound on the error of these approximations, so that
we can compute an upper bound on the option value as well.
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1 Introduction

The binomial tree model of Cox, Ross and Rubinstein [3] is commonly used as a discrete-time
approximation to a continuous-time geometric Brownian motion. The pricing of simple calls and
puts in this model can be done efficiently. However, path-dependent options such as Asian options
are notoriously hard to price in this model. The Black-Scholes differential equation for the price of
such options has no known closed form solution.

The payoff of an Asian option is based on the arithmetic average of the stock price. In particular,
suppose the option expires at time T and let A,. denote the arithmetic average of the stock prices
up to time T. Then the payoff of a European style Asian call with strike L is (AT - L)+ where x+
denotes max{fr, 0}. Similarly the payoff of a European-styleAsian put with strike L is (L - Aj)+.
For the so-called "floating-strike" versions of these options, the L is replaced by S&, the stock price
at time T. Such options are of obvious appeal to a company which must buy a commodity at a fixed
time each year, yet has to sell it regularly throughout the year [13]. These options allow investors to
eliminate losses from movements in an underlying asset without the need for continuous rehedging.
Asian options are commonly used for currencies [13], interest-rates and commodities such as crude
oil [5].

Several researchers have devised approximation algorithms for Asian options. This work has
been of three general types. Monte Carlo methods and Fourier transform techniques have been
explored by Kemna and Vorst [6], and Carverhill and Clewlow [2] respectively. The second category
of approaches consists of attempts to approximate the distribution of the arithmetic average (for
which no simple specification is known) by a more tractable one. Examples of such work include
those by Ruttiens [11], Levy [7], [8], Levy and Turnbull [9], and Tumbull and Wakeman [12]. The
third approach, considered by Yor [14] and Geman and Yor [4], is to derive formulas for the Laplace
transform of an Asian option. However, there have been no numerical studies of the inversion of this
Laplace transform, and no simple analytical inversion has been found. None of the above methods
offers an approximation for the Asian option price that is both fast and very accurate.

The work in the present paper is most closely related to that of Rogers and Shi [10]. They
provide a method for computing lower bounds on the price of an Asian option in the continuous-
time geometric Brownian motion model. Their main idea is the following. Let W+ be the final
payoff of a European style Asian (call or put) option. For instance, for a European style Asian call
option, W1I = A, - L. Then for any random variable Z, we can lower-bound the option value
using Jensen's inequality:

E(WI) = E (E(W7IZ))
_> E (E(W•7 I Z)+) (1)

The lower-bound on the right in (1) can be used as an approximation for E(W+). The quality of
the approximation clearly depends on the choice of the random variable Z. This approximation is
an integral in continuous time, and Rogers and Shi estimate this integral numerically for various
choices of Z. In the present paper, we show that for several choices of the random variable Z we
can efficiently compute the approximation (1) exactly in the binomial tree model. We show this for
random variables Z that are related to, but not exactly the same as, the ones considered by Rogers
and Shi.
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One way to think of the above approximation in the n-step Binomial tree model is the following.
We let WT, and A,, denote the random-variables corresponding to the continuous-time random-
variable W', and Al respectively. The difficulty in computing the exact option value E(W,+)
comes from the fact that nearly every stock price path has a different (arithmetic) average stock
price (and therefore a different W,), and there are 2'" paths. The approximation (1) can be thought
of as the value of an option with WT, replaced by W;,, defined as follows. Let Ci be the collection
of all paths with the same value of the random variable Z = zi. Now let the WT, on every path
in Ci be equal to the average value of W,, over the collection Ci. In other words, in using (1) to
estimate the option value, we are making the approximation that all paths with Z = zi have the
same average stock price, equal to the average of the average stock price over these paths. This
view will be useful to understand intuitively why some choices of Z yield better lower bounds than
others.

Rogers and Shi find that a particularly good lower bound is obtained by taking

Z =jB1 d,.

which is T times the average value of the Brownian from time 0 to time T. In the n-step binomial
tree model, the Brownian average corresponds to the average of the underlying random walk. The
steps of this random walk are given by the random variables Xi = ±1, i = 1, 2,... , n. The
position of this random walk at time k is given by Yo = 0, and

A5, = -EXi, k =1,2,... ,n.
i=1

The average position from time 0 to time n is Z1,/n where

A.,

Z Z=EY, k=0,2,...,n.
i=O

The problem with choosing Z = Z,,/n. is that one cannot compute the expression (1) efficiently
in the binomial model. However, if we take Z = (Z,1 , S,,) where S,, is the stock price at time n,
then (1) is a strictly better approximation, and it can be computed exactly in time proportional to n 7

(Section 5). We also show by means of numerical experiments (Section 7) that the approximation
(1) for this choice of Z agrees excellently with the exact option value in the binomial model.

Note that the geometric stock price average is a simple function of Z,,. This helps explain intu-
itively why conditioning on (Z,,, S,,) yields a good approximation: paths with the same geometric
stock-price average that end at the same stock price will likely have arithmetic stock-price averages
that do not differ too much. The reason why this approximation can be computed in time propor-
tional to only n7 (rather than 2'") is that the number of possible values of Z,, is only proportional
to n2. By contrast the number of possible values of the stock price average A,, is 2". As we show
in Section 5, this allows use to use dynamic programming to compute the approximation in time
proportional to n7 .

In this paper we also consider Z = S,S 1,,, S,d, S,., where 0 < n1 < n-2 < ... < nd <
n are fixed integers. We are thus conditioning on the stock prices at certain fixed times. We show
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(Section 4) that for a fixed d, the expression (1) can be computed exactly in the binomial tree model
in time proportional to dnd+ 4. Thus as we increase d we get increasingly better approximations, if
we are willing to spend more computation time. In Section 6 we describe a hybrid approximation
where we condition on Z., in addition to these stock prices. We show that for all our choices of Z,
our algorithms require time proportional to some constant power of n. Thus our running times are
polynomial in n rather than exponential.

Rogers and Shi show that the error in the above approximation is bounded above by

'E[,,r(WjZ)2']. (2)

We show that this bound can also be computed efficiently for our choices of Z. Thus we can
efficiently compute both a lower-bound and an upper bound on the option price. Rogers and Shi do
not show how to compute their approximations or errors efficiently in the binomial tree model.

The paper is organized as follows. In Section 2 we describe the binomial model and related
notation. In Sections 3, 4, 5 and 6 we describe polynomial-time algorithms to compute the lower
and upper bounds on the price of an Asian option. Throughout we illustrate our ideas for a fixed
strike Asian call, and it should be clear how to extend these to Asian puts, and floating-strike Asian
options. In Section 7 we show numerical results.

2 The binomial model for stock prices

In this paper we consider an Asian option written on an underlying risky asset, which we refer to as
the "stock". Following Black and Scholes [1], we make the standard assumption that the price of
the stock at time t satisfies the stochastic differential equation for geometric Brownian motion:

dS(t) = piS(t) dt + aS(t) dB(t),

where the drift rate p and volatility a are constant. B(t) is a Brownian motion process. We will
also assume that the risk-free interest rate is r, a constant. The derivative security expires at time T.

The continuous-time function S (t) can be approximated in the form of a Cox-Ross-Rubinstein
[3] binomial tree, as follows. The life of the option is divided into n time steps of length At = Tin.
In time At the stock price moves up by a factor v with probability p, or down by a factor d = I/u
with probability q = 1 - p, where

-OAt - d
P= u-d

"Time k in this discrete model corresponds to continuous-time kAt. Also we assume that a unit of
currency lent or borrowed at time k will be worth I + r units at time k + 1. For brevity we write R
to denote 1 + r. This binomial tree model will be assumed throughout the paper.

More formally, we have a sample space Q of all possible sequences of n coin-tosses (i.e. H's
and T's), where an H corresponds to an up-tick of the stock and a T corresponds to a down-tick. A
typical sequence (or "path") in Q is written w = w1W2 ... w,•, where wi represents the ith coin-toss
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and wi E {H, T}. A k-prefix of a path w is the subsequence Cd1W2 .... W•k constisting of the first k
coin-tosses. For k = 1, 2,..., n, define the random variable Xk on Q1 as follows:

1_ W= I ifwkk=H,X•,w)= if wk. = T.

We will need the following random variables:

Y0 = 0,
k

k

Zk = Z11, k > 0, (4)

Also let Hiz (w) denote the number of heads in the k-prefix of W, i.e., the number of heads up to
and including time k. We define Ho(w) = 0 for all w. In this paper it will be useful to consider the
binomial lattice where a point with coordinates (k, h) represents all paths w with H,, (w) = h. We
say that the value of a random variable (e.g., stock price Sk,) at the point (k, h) is x if the value of
the random variable at time k is x on a path w such that Hk (w) = h, i.e., the value of the random
variable at time k is x when there have been h heads up to and including time k.

The stock price at time k is denoted Sk,, k = 0, 1,. , n, and is given by

S_ = SOU So, - -k.

Thus the stock price at point (k, h) is SoU21
h-A. The average stock price at time k is defined as

AA, = (SO + S1 "+ • • • + Sk)/I(k +• 1).

The payoff of an Asian call with strike L at time n is (A,, - L)+ and the payoff of an Asian put is
(L - A,,)+. The payoff of a floating-strike Asian call at time n is (A, - S,,)+, and for a floating-
strike Asian put, the payoff is (S,, - A,,)+. In general we write W,+ to denote the payoff of any
of the above options at time n. The value of such an option (at time 0) is defined as

V = E(Wý)/R`_

In this paper we are concerned with estimating E(W,+), and we will ignore the discounting factor
R".

Let T denote the a-algebra consisting of all subsets of Q, and F,, denote the a-algebra gener-
ated by the first k coin-tosses, i.e., by X1 , •• ,. We will always assume the probability measure
P on (Q,.T) given by:

P[X,,= 1=p, k =,2,..., s.

Thus for any random variable Z, E(ZlF,,) denotes the conditional expectation of Z given the fist
k coin tosses. A random variable X is T1, -measurable if it depends only on the first k coin tosses.
An T0 -measurable random variable is non-random. A sequence of random variables {Z,,}` 0 is
called a process, and we will often refer to it simply as "the process {Z,,}". A process {Zj,-} is said
to be adapted if each ZA, is F,,-measurable. For instance the stock price process {Sj,} is adapted.
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3 Approximations based on conditional expectations

In this and the remaining sections we describe algorithms for approximating the value of a European-
style Asian call option in the binomial tree model. As mentioned in the introduction, all the algo-
rithms are inspired by the continuous-time analysis of Rogers and Shi [10]. In this section we
describe a general scheme for computing the approximation (1) and the error bound (2). In the next
three sections we show how to apply this scheme to specific random variables Z.

In all of our approximations, the random variable we condition on will be a combination of H,,
and one or more other random variables, which we collectively denote by Z. Our approximations
(i.e., lower bounds) are therefore of the form

E (E(W,ý IZ, H,.)+), (5)

where the random variable Z could be multi-dimensional. The reason we always condition on H,,
is that all paths with the same value of H,, have the same probability; this allows us to reduce the
computation of the expectation (5) to a path-counting problem.

To describe how to compute (5), we introduce some useful notation. Let N(k, z) denote the
number of paths with H,, = k and Z = z. Equivalently, N(k, z) is the number of paths with
Z = z that go through the lattice point (n, k). Let -,M1 (k, z; t, h) denote the number of paths with
Z = z that go through (n, k) and (t, h). Let MV2(k, z; tl, h1; t 2, h2) be the number of paths with
Z = z that go through (n, k), (t1, hi) and (t2, h 2). Let C(k) denote the set of possible values of
the random variable Z on paths with H,, = k. Then for an Asian call our approximation can be
written

E(E(W,, I Z, H,ý)+)

= E(E(A,, - L I Z, H,,)+)

= E(E(A,, I Z, H,,)-L)+

= P(Z = z H, = k) E(A,, I H,, = k, Z = z) - L
k=0 -EG(k)

= i pkqj- N(k, z) E(A1, I H,, = k, Z = z) - L (

k=O zE0(k)

If the size of the sets C(k) is bounded by a constant times f(n), then the number of iterations of
the two summations above is proportional to n f(n). Note that

W(k, z) = N(k, z)E (A,, H,, = k,Z = z)

is the sum of A,, over all paths with H,, = k and Z = z. When we write down the expression for
this sum, we notice that the stock price at the lattice point (t, h) (which is So 2h- t) appears in this
sum with a coefficient

.Vli(k,z; th)
(n + 1)



so we can write W(k, z) as

W€k, z) =toU2,
W(k,(z) - +1, ' (k, z; t, h)u2/•-. (7)

S t=0 h=0

Thus the approximation for the Asian call is given by the expressions (6) and (7). To complete the
description of the approximations, we only need to show how to compute the quantities N(k, z),
J 1,(k, z; t, h) and the sets C(k). In the following sections we do this for three specific random
variables Z. Suppose the computation of each M1 (k, z: t, h) takes time proportional to T1 (n).
Then since the time to compute each J1,1 (k, z; t, h) dominates that required to compute N (k, z), it
is easy to see that the overall approximation takes time proportional to

n3 f( n ) Tl (n). (8)

We now consider the computation of the error bound (2). Again in the case of an Asian call we
can write the expectation in the error bound as

E[var(TV,, I H,,, Z)]2 E[v-ar(A, - L IH,. Z)2]

Z Z P(H,, = k,Z = z) [var(A,, - L I H,,, Z) ]
k=0 •CE(k)

Z Y • pkqq"-JV(k, z)[var(A,, - L H,1, Z)2]
k=O -EC(k)

where

var(A,, - L I H,,. Z) = E[(A,, - L) 2 
1 H,,, Z] - [E(A,, - L I H,,, Z)]2 . (9)

We already know how to compute the second term in (9) above, and the first term is

E[(A,, - L) 2 1 H,,, Z] = E[A,2 - 2AJL + L2' H,,, Z]

= E(A, I gH,,, Z) + L2 - 2LE(A,, I H,,, Z),

where we already know how to compute the last term, so we only need to show how to compute
N(k, z)E(A,2 1 H,,, Z). This is the sum of A,2 over all paths with H,, = k and Z = z. When we
write down this sum, we notice that there are two kinds of terms. The first kind are those involving
the square of a stock price. The square of the stock price at lattice point (t, h) (which is S02u2(2h-t))

appears in this sum with a coefficient

!V1i(k,z; th)

(n, + ) 2

The remaining terms involve cross products of stock prices at different points on the lattice. The
product of the stock price at (tj, 1h) and (t 2 , h2), tl 0 t2 (which is S 2/t1h-t V21u2-t2) appears
with a coefficient

2!V2(k,z; tl,hl; t 2,h 2 )
(n. + 1)2
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Thus we may write

N(k, z)E(A', I H,) =
Qo2 -
S+ E J,11 (k, z; t, h)U2(2/1-'t

t=- h=0

*,2 n tl t 2

+2 So J 1 1 M 2(k,z; tIh1 ; t 2 , h 2)V
2

,-1tu
2
/12-t2. (10)

+)ti=O hi=0 t2 =tl+l h2 =hj

It is straightforward to check that the time required to compute the error bound is proportional
to

n' f(-) T2 (n) , (11)

where the computation of '112 () takes time proportional to T2 (n).
In the following sections we show how the quantities N0, M1 () and M20 can be computed

efficiently, for various choices of Z.

4 Conditioning on the stock price at selected points.

For the purpose of illustration we consider first an approximation based on conditioning only on H,,
the number of heads (i.e., up-ticks) up to time n. In other words we consider the approximation (5)
without the random variable Z. Accordingly we suppress the argument z in N O, 1 1 () and !,12 0.
It is easy to see that

N(k) (,)

MiV(k; t,h)= ( -) G '),

"J1,2 (k; tj ýhj; t2l h2) -- ti 2 -- hi n - t2'

where, as in the rest of the paper, we interpret the binomial coefficient (t) to be 0 if t < 0 or
h < 0 or t < h. Each of these expressions can be computed in time proportional to n.. Thus from
expression (8) we see that the time required to compute this approximation is proportional to n 4 .

Also, from (11), the error bound can be computed in time proportional to nv.
We now present a more general approximation, where we choose Z to be the combination of d

random variables
H,, H,,,2 ., H, I,

for some chosen values of ni < n 2 < ... < n,1 < n.. Thus the approximation for an Asian call is
the right hand side of:

E(A,, - L)+ > E[(E(A,, I H,', H 2 .... ,H,', H,ý) - L)+]. (12)
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It should be clear that we get increasingly good approximations as we use larger values of d. Of
course this comes at the expense of an increased computation time, as we see below. The size
of the sets C(k), in expression (6), is proportional to f(n) = nd. As mentioned before we only
need to show how to compute the quantities N0 and M1 () efficiently. Since the Z in this case is
multi-dimensional, we write N(k, hi1,... , hj) to denote the number of paths with H,, = k and

H,i1 = hi1 , H,, = h2,... , H,ld = hd.

The notation Jv11 (k, h, i h2 ,..., lhi; t, h) is defined similarly. It is straightforward that

N(k, h!,... , ha) = hi n2 (U i h l ) " d'" hn - n (13)

(Recall that we are interpreting the value of a binomial coefficient (h*) to be 0 if h < 0, k < 0 or
k < h.) Also,

11,i (k, hi, h2. hd; t, h) =

{N(k,. hih2.....i, h,,hi+,.. lhd) if n < t < n. for someI < e < d
N(k, h, hj, ... , hj) if t < ni (14)
NV(k, hj,h2, ... Ihj, h)ifn<_t

which represents the number of paths through (n.1, hi), (n2, h2),... , (n,, hld), (n, k) and (t, h).
The computation of this expression takes time proportional to Ti (n) = din. From expression (8),
the total time required to compute this approximation is proportional to

n3f (n)Ti (n) = dn-+4.

The quantity M2(k, hi, ... , hj; tl, hi: t 2, h2) can be computed by an expression similar
to the one above, in time proportional to dn. Thus from (11), the error bound can be computed in
time proportional to dnd+6 . We omit the tedious details.

5 Conditioning on the average of the underlying random walk.

We now consider the approximation (1) where we take Z to be the random variable Z,,, which is
sum of the random-walk positions from time 0 to time n. Thus for an Asian call, our approximation
is given by the right hand side of

E(A,, - L)+ > E[E(A, I HHI,Z,,) - L].

Note that the value of Z,, determines the average position of the underlying random walk (not the
stock price) between time 0 and time n. This in turn determines the geometric average of the stock
prices, which is simply G,, = Sou4Z/1. As mentioned in the introduction, an intuitive reason why
conditioning on (H,,, Z,,) might yield a good approximation is this: paths with the same geometric
stock-price average that end at the same stock price will likely have arithmetic stock-price averages
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n H,, Z,, Paths G,, Min. A,, E(A,,IZ,, H,,) Max. A,, var(A,,IZ,, H,)
8 6 18 4 115.191 115.575 115.832 116.346 0.09895

4 0 8 100.000 100.111 100.167 100.334 0.00929
10 8 33 5 120.893 121.554 121.907 122.614 0.16226

5 1 20 100.577 100.666 100.725 100.812 0.00404
12 10 52 6 125.978 126.983 127.416 128.283 0.22334

6 0 58 100.000 100.077 100.150 100.488 0.00683

Figure 1: Illustrating the small variance of the arithmetic stock-price average A,, over the set of
paths that have the same (a) geometric stock-price average G,, and (b) up-ticks H,1 . The parameters
assumed are So = 100, L = 90, a = .2, and [t = .05. "Paths" indicates the number of paths
with the indicated value of H,, and Z,. "Min. A,:' "Max. A,," and E(A,,IZ,,, H,,) respectively
indicate the smallest, largest and average value of A, over this set of paths; all these paths have the
same value of G,1 . var(A,,IZ,H,, H,) is the variance of A,, over this set of paths. For each n, the first
line corresponds to the values of Z,, and H,, that give rise to the maximum variance of A,,; in the
second line we choose H., = n/2, and Z,, so that the number of paths in the set is maximized.

that do not differ too much. Figure 1 illustrates this point. In [10], Rogers and Shi consider an
approximation based on conditioning on Z,, alone rather than both Z,, and H,,. As we show below,
conditioning on both random variables has the advantage that it allows efficient computation in the
binomial tree model. Moreover, the resulting approximation is strictly better than the one obtained
by conditioning on Z,, alone.

To describe the computation of the quantities N( , M1 () and M2 () we introduce some useful
notation. Let Ci(k) denote the set of possible values of Zi on paths such that Hi = h. In other
words, Ci (k) is the set of possible values of the random-walk sum Zi on paths that go through the
lattice point (i, k). Note that C,,(k) = C(k). Also, let NJ(k, z) denote the number of paths with
H, = k and Zi = z. Note that V,, (k, z) = N(k, z). Since the maximum possible absolute value of
Zi is

I + 2-+ 3-+... + i = i(i + 1)/2,

and Zi is always an integer, there cannot be more than i (i + 1) possible values of Zi. Therefore the
sum of the sizes of thesets C (h) for h = 0, 1,...., i cannot exceed i(i + 1). In particular, the size
of C,, (k) = C(k) is at most a constant times f (n) - n2.

We now show that the quantities N , M1 0 and M2 0 can be computed efficiently.
First we consider the quantities Ni(h, z). We assume that we maintain a three-dimensional

n x n x n(n + 1) array to store the values N1 (h, z): the first two dimensions correspond to i and
h and the third dimension corresponds to the z. Note that for i > 0 all paths with Hi = h have
Yi = 2h - i, and Hi- 1 is either h - 1 or h. In either case,

Zi-1 = Zi - Yi = Z, - 2h + i.

Thus N, (h, z) satisfies the recurrence

N 1(hz) = Ni-l(h-1,z-2h+1)+Nii (h,z-2h+1).

Starting with No(0, 0) = 0, all the Ni(h, z) can be computed inductively (or equivalently, by dy-
namic programming) using this recurrence. Since there are n(n + 1)/2 points (i, h) in the binomial
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lattice, and each such point has number of possible Zi values proportional to n2, the computation of
all the Ni (h, z) takes time porportional to n4 . In the implementation, we first compute all _,¥ (h, z)
values, which are used in the computation of the M1 quantities, as we now describe.

We now turn to the computation of the !1V, (k, z; t, h), the number of paths through (t, h), (n., k)
that have Z,, = z. We can partition these paths according to their Zt value. The number of such
paths with Zt = s is equal to -;t (h, s) times X where X is the number of paths between (t, h) and
(n., k) such that Yt+l +Yt+ 2 +..+Y, = z- s. Note that all paths through (t, h) have Yt = 2h-t,
so X is the same as the number of paths between (0, 0) and (n - t, k - h) such that

Z =,-t z-s-(n-t)Yt = z-s-(n -t)(2h-t).

Thus
11l(k,z; th)= J Nt(h,s)NV,_t(k-hz-s- (n-t)(2h-t)),

sEGt(h)

which can be computed in time proportional to T1 (n) = n2
, since the size of Ct(h) is no more than

some constant times t2. Thus the total time required to compute this approximation is porportional
to n 4 (for pre-computing the N-¥1 (h, z) values) plus expression (8), which is

n3f(n)Tl(n) = n7 .

Since n7 dominates n4, the time required is proportional to n7.
We mention also that the quantity A'!2 (k, z; tl, hi; t 2 , h2) can be computed using similar ideas,

in time T2 (n) = n4. Thus the error bound can be computed in time proportional to n f (n)T2 (n) =
ni

1 1
.

6 A hybrid algorithm

We now briefly describe an approximation based on conditioning on a random variable Z that is a
combination of the two random variables described in the previous two sections. That is, we take
Z to be the (d + 1)-dimensional random variable

H, , H,,,, . .. , H,,,, Z.

This gives an approximation that is strictly better than either of the previous two approximations.
While the details of the computation of the quantities N0 ,M1 () and JA1!2 () are rather tedious, we
illustrate the basic idea by means of the case d = 1. That is, we condition on the random variables

H,, Ht,ý Z,,

where t is a fixed integer lying strictly between 0 and n. Our approximation for an Asian call is the
right hand side of

E(A,, - L)+ > E[E(A,, I H,,H, Z,)- L.

We write N(k, h, z) to denote the number of paths with Z,, = z that go through (n, k) and (t, h).
Also we write J-,11 (k, h, z; tj, hi) to denote the number of paths with Z,, = z that go through (t, h),
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(n, k) and (tl, hI). Recall that N(k, h, z) is exactly the quantity 1 1 (k, z; t, h) that we computed
in Section 5 where the random variable Z was simply Z,.

Now we describe the computation of M1 (k, h, z; t1, hl). We assume that t < t1 . The other
cases can be handled similarly. By arguments similar to those used to compute Jl 1 () in the previous
section, we see that

II(kh,z; t,1 h 1)=

E~ ~ ~~~~~~~ E [t(hs)xJtt(1-hSl - s - (t, - t)(2h -t)) x

sEGt(h) 1 EcGt (hl)

-"V•,t, (k - hi , z - si - (n - ti) (2h, - tl))],ý (15)

which can be computed in time proportional to n0 since each of the sets Ct(h) and Ctl (hi) has
size at most some constant times n2 . For general d, the computation of M1 () takes time at most a
constant times T1 (n) = n2(d+1). Also, the size of the sets C(k) in expression (6) is at most a con-
stant times f(n) = nd+2. So from expression (8), the time required to compute the approximation
is proportional to

n3f (n)T1 (n) = dn3

The computation of the quantity M12 () can be carried out using similar ideas.

7 Numerical experiments

Throughout we assume that the option expires in time T = 1, the number of steps n = 10, and
the initial stock price So = 100. We vary the strike L, the volatility a, and the drift t. The results
are displayed in Figures 2 and 3. In both tables, each parameter value is displayed only when it is
different from the one in the previous line. For ease of comparison we use parameter values similar
to those in Rogers and Shi [10].

Figure 2 shows a comparison of some of our approximations with the exact value of an Asian
call in the binomial tree model. 170 denotes the approximation of section 4 with d = 0, i.e., with con-
ditioning on just H,,. V3 denotes the approximation of that section with d = 3. More specifically,
we condition on

( H, I, H,,,, H,,,, H,• ,

where we choose ni = i[n/4J, i = 1, 2, 3. V., denotes the approximation of Section 5, i.e., we
condition on the pair (Z,, H.,). Finally, V denotes the exact value of the option in the binomial
model given by E(A, - L) +. In all cases we see that the agreement between V and V,. is excellent.

In Figure 3 we show some comparisons of our approximations with the Monte Carlo results of
Levy and Tumbull [9]. Again we see that the agreement with V.,. is very good.
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StrikeL Vol a Drift p u p Apx VO ApxV 3 ApxV., ExactV
95 0.05 0.05 1.0159 0.6546 7.1769 7.1781 7.1783 7.1783

100 2.5941 2.6860 2.6939 2.6939
105 0.1637 0.2440 0.2515 0.2515
95 0.09 0.7819 8.8150 8.8151 8.8151 8.8151

100 4.2617 4.2859 4.2881 4.2881
105 0.6158 0.7365 0.7452 0.7452
95 0.15 0.9739 11.1115 11.1115 11.1115 11.1115

100 6.8080 6.8080 6.8080 6.8080
105 2.5091 2.5179 2.5184 2.5184
90 0.10 0.05 1.0321 0.5713 11.9375 11.9445 11.9451 11.9451

100 3.3319 3.5937 3.6159 3.6159
110 0.1485 0.2462 0.2552 0.2552
90 0.09 0.6350 13.3859 13.3883 13.3885 13.3885

100 4.6674 4.8616 4.8783 4.8783
110 0.3227 0.4726 0.4853 0.4853
90 0.15 0.7310 15.4151 15.4154 15.4154 15.4154

100 6.8971 6.9825 6.9901 6.9901
110 0.8727 1.0934 1.1098 1.1098
90 0.50 0.05 1.1713 0.4763 16.1753 17.2525 17.3243 17.3252

100 10.8140 12.1138 12.2208 12.2232
110 7.2794 8.3115 8.4067 8.4082
90 0.09 0.4890 17.0228 18.0257 18.0934 18.0943

100 11.5780 12.8308 12.9343 12.9365
110 7.9038 8.9217 9.0159 9.0173
90 0.15 0.5081 18.2776 19.1687 19.2301 19.2308

100 12.7439 13.9163 14.0138 14.0158
110 8.8794 9.8660 9.9577 9.9591

Figure 2: Comparison of approximations with the exact value of an Asian call in the binomial tree
model

Strike L Vol o, Drift tt 1", I/T3 V,, Monte Carlo
95 0.10 0.09 8.86 8.90 8.91 8.91

100 4.66 4.86 4.89 4.91
105 1.75 1.94 1.96 2.06
90 0.30 14.45 14.90 14.93 14.96

100 7.93 8.70 8.77 8.81
110 3.77 4.54 4.60 4.68
90 0.50 17.02 18.03 18.09 18.14

100 11.58 12.83 12.93 12.98
110 7.90 8.92 9.02 9.10

Figure 3: Comparison with Monte Carlo results.
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