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Abstract 

In 1995, the C-17 Factory Simulation Model (FSM) was developed for the C-17 

System Program Office at Aeronautical Systems Center (ASC), Wright-Patterson AFB, 

Ohio. Designed to enable analysts to address "what-if' questions about the resources 

required to build future aircraft, the FSM is based on learning curve models that are used 

to both portray and simulate future aircraft production. 

In this thesis, we examine and develop alternate learning curve models that also 

utilize a small amount of initial production data (about 20 observations) to portray the 

relationship between the number of aircraft built and the amount of resources required to 

build them The goal is to identify a model which not only provides a good fit and forecast 

based on a small amount of data but is also intuitive and reasonably simple to apply. In 

addition to examining variations on the Log-Linear Learning Curve model, we propose 

and evaluate the use of Box and Jenkins Autoregressive Moving Average (ARMA) 

models for modeling the effects of learning. 

These models are exercised in fitting simulated log-linear data, as well as in fitting 

and forecasting historical F-102 manufacturing data and notional C-17 manufacturing 

data. The results are somewhat inconclusive since they do not identify any one model as 

the best for all data sets. They do, however, suggest that ARMA models are a very 

promising alternative to the standard log-linear learning curve. 

The thesis concludes with an examination of the effects of explicitly accounting for 

uncertainty in parameter estimation when simulating future performance based on the 
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traditional log-linear learning curve model. The results show that the approach employed 

in the FSM is viable even though it does not directly account for this uncertainty. 
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AN INVESTIGATION OF LEARNING CURVES 
AND 

THEIR USE IN SIMULATION 

1. Motivation for the Study 

1-1. Background 

One of the fundamental quantities of interest when estimating the life cycle costs of 

weapon systems such as the C-17, is an estimate of the resources required to build a given 

number of systems. This estimate provides the basis upon which many other costs and 

performance measures can be calculated. Given these, reasonably accurate answers can be given 

to questions such as, "How will the utilization of resources such as manpower or tooling be 

affected by changes in the 'buy profile' for the weapon system?" or "How will delivery dates be 

affected by changes in the assembly process?" and other "what if?" questions proposed by 

Congress and senior management regarding the effects of various changes in planning and 

production strategies. Models which can help to answer these kinds of questions are invaluable 

tools in the estimation of life cycle costs, but their development requires serious scrutiny and 

analysis if they are to provide useful information. 

In many production, assembly, or maintenance operations, the amount of time required to 

complete a task tends to decrease each time the task is undertaken. A common approach in 

modeling this phenomenon is to use a learning curve in which the number of hours required to 

complete the task is modeled as a function of the number of units completed to date. This long- 

term relationship is often estimated on the basis of initial production data using straightforward 

regression procedures. The resulting fitted relationship then provides a forecast of the expected 

number of hours that will be required for the task to be performed in future operations . 
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When simulating such production processes, one needs not only to portray the expected 

number of hours required in future production, but also how those hours can be expected to vary 

about their mean. For example, in the C-17 Factory Simulation Model (FSM), which is a large- 

scale model of the C-17 assembly process recently developed for the C-17 System Program 

Office (SPO), this was handled by treating the fitted regression equation (based on data collected 

during the assembly of the first 20 aircraft) as if it provided a perfect forecast of the mean time 

required to complete a task in the future. Once this relationship was determined, random errors 

were generated about the fitted curve to simulate how actual performance might vary in the 

future.   The validity of this procedure is somewhat in doubt, however. 

An important source of doubt centers on how well this strategy can be expected to model 

future performance. This is an especially important question because the underlying learning 

curves have been estimated on the basis of a limited amount of data. The approach used in the 

C-17 FSM does not take into account the uncertainty surrounding the mathematical form of the 

learning curve model nor the values of the parameters within that model. For example, might the 

relationship be more accurately described with of an equation of a different form? Alternately, 

how (if at all) should predictions based on the fitted relationship account for one's uncertainty 

about the values of the parameters which specify that relationship?   Should the simulation of the 

production of future aircraft account for this uncertainty? Further analysis of the appropriateness 

of this strategy and an investigation into possible alternative strategies is clearly warranted. 

1-2. Problem Statement 

An analysis of the current methods used in the C-17 FSM and, potentially, the 

development of improved models and methods for modeling and simulating learning curve 

relationships will enable analysts to provide better answers to the kinds of questions which are 
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asked in the acquisition process, and allow for better planning. This, in turn, will help to 

minimize (or avoid for the most part!) future cost and time overruns and allow for a more 

efficient allocation of resources. 

1-3. Approach 

In this thesis, we provide an analysis and assessment of some of the specific methods 

used to model and simulate learning curve relationships as implemented in the C-17 FSM. We 

begin with a thorough literature review to discover what is known about learning curves and to 

assess what new thinking must be done. The review covers a variety of learning curve models 

and the use of learning curves to simulate future performance. We next assess the adequacy of 

the approach used in the C-17 FSM and evaluate other possible approaches in an effort to 

determine what learning curve models might be most appropriate for this application. 

We also propose a new approach to modeling and simulating learning using autoegressive 

[AR(p)] models and AutoRegressive Moving Average [ARMA(p,q)] models. Since we generally 

do not expect to have much data upon which to fit such models, it is necessary to keep the 

number of parameters (p and q) small; hence, we focus on AR(1) and ARMA(1,1) models. 

We then attempt to make a formal comparison of the models examined, comparing them 

to each other, to data similar to that used in developing the C-17 FSM, and to historical data from 

the F-102 manufacturing program. These comparisons enable us to draw some basic conclusions 

and to make recommendations for future studies in this area. We conclude with an examination 

of the effects of explicitly accounting for uncertainty in parameter estimation in the traditional 

log-linear learning curve model. 
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2. Previous Work in Learning Curves 

2-1. Definition of Learning Curve 

A learning curve, also known as a progress, improvement, or experience curve, is 

a graphical or mathematical representation of how the requirement for resources is 

reduced as the production of a product or service is repeated.  The learning curve concept 

may be used to predict production costs from the known costs of producing a product or 

service, the future service time from a history of service times, or the time required to 

build the n01 aircraft from a history of times spent building previous copies of the aircraft. 

The term "learning" is used in this thesis rather than "progress," "improvement," or 

"experience" because of its common use in the United States Air Force and most of the 

literature. "Learning," as used here, includes worker learning, management innovations, 

engineering changes, and work simplification (Orsini, 1970:pgs 2:3). 

The aircraft industry was the first to recognize the predictive value of learning 

curves. The earliest known work on the learning curve phenomenon was done by T.P. 

Wright who stated in his 1936 article, "Factors Affecting the Cost of Airplanes," that he 

"started his studies of the variation of cost with quantity in 1922." (Wright, 1936:122). 

He hypothesized that the cumulative average labor cost for any quantity of airplanes 

produced decreases by a constant amount as the quantity of airplanes is doubled. To 

calculate the cumulative average cost, we utilize equation (2-1). 

where, 

X is the unit number, and 
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Yx is the number of hours (cost) for unit X. 

As an example of an 80% learning curve, if it takes 100,000 hours of labor to produce 

Ship #1, it would take an average of 80,000 hours to produce Ships #1 and #2 (or 60,000 

hours for Ship #2 alone), an average of 64,000 hours for the first four ships, 51,200 hours 

for the first eight ships, and so on. 

In the example above, it is important to stress that the numbers 100,000 and 

80,000 and 64,000, etc., are cumulative averages; they are the average costs of producing 

the first, first two, ans first four aircraft, respectively. The number describing the cost of 

Ship #2 alone (60,000) is known as its marginal or unit cost; it is the cost of producing 

the second aircraft alone. Most of the data considered in this thesis is marginal or unit 

cost data. 

Who or what is doing the learning? In organizations, the learning curve describes 

the improvement in either individual productivity or organizational productivity. 

Individual learning is improvement that results when people repeat a process and gain 

skill or efficiency from their own experience. Organizational learning results from 

practice as well, but also comes from changes in administration, equipment, and product 

design. 

Learning rates in organizations differ in their performance for a number of 

reasons. One factor affecting this performance, and hence affecting the learning rate, is 

the volume of the output; all other things being equal, the firm that has the higher 

cumulative output should have the lower cost. Another factor which weighs heavily is 

the rate of output; studies have shown that recent experience has much more effect in 

reducing cost than more distant experience. As a result, if we compare two companies 
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with the same cumulative output, the firm with the higher rate should have a lower cost 

curve because its experience is more recent. In organizations, both kinds of learning 

occur simultaneously but are most frequently modeled with a single learning curve. 

2-2. Terminology 

Before starting a discussion of the various forms of learning curves (Section 2-3, 

below) it is imperative that the terminology used throughout the remainder of this work 

be clearly defined. This is important because the terminology is not consistent between 

references. Some of the definitions (those annotated with an asterisk, *), have been taken 

directly from a thesis by Orsini (Orsini, 1970:pgs 2:3), the others have been gathered 

from other sources. 

(1) direct man-hours - These are the hours expended to manufacture a unit of 

output. In the airframe industry, these hours consist of fabrication, assembly, production 

flight, and other production work associated with the basic aircraft (Orsini, 1970:pgs 2:3). 

(2) direct man-hours for Unit One - The total direct labor hours expended to 

complete the first operable unit (Orsini, 1970:pgs 2:3). 

(3) learning rate - A per cent figure which determines the number of direct man- 

hours required for each doubled production quantity in relation to the previous doubled 

quantity. For example, if a learning curve has an eighty percent learning rate, the direct 

man-hours required to produce unit 2 will be eighty percent the number required to 

produce unit one; the direct man-hours required to produce unit four will be eighty 

percent the number required to produce unit two; the direct man-hours required to 

produce unit eight will be eighty percent the number required to produce unit four; etc. 
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(4) cost - Refers to the quantity of resource required to perform a given activity. 

The cost could be in terms of dollars, direct man-hours, or other resource. 

(5) cumulative average cost curve - A curve representing the cumulative average 

cost as the total number of units increases. 

(6) unit marginal cost curve - A curve representing the average cost of each unit as 

the total number of units increases. 

2-3. Geometric Versions of the Learning Curve 

The Log-Linear (Crawford) Model. The most useful and most widely used 

learning curve model, the log-linear or constant percentage model, was first introduced in 

1944 (Smith, 1989). This model, which states that the improvement in productivity is 

fairly constant as output increases, is depicted in Figure 2-1. 

Figure 2-1 Example of a Log-Linear Model 
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The equation for this model is 

Y^aX" (2-2) 
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where 

Y is the cumulative average amount of resources, or 'cost,' of producing the first 

X units, 

X is the unit number, 

a is the 'cost' of producing the first unit, and 

b is a constant which determines the learning rate. 

The learning percentage (learning rate), p, can be determined via 

p = 2b. (2-3) 

Equivalently, for a given learning percentage, b can be set by specifying 

b = ln(p)/ln(2). (2-4) 

In order to estimate the parameters, a and b, of the model given above, a linear 

regression using a logarithmic transformation is conducted.   The resulting model is 

ln(Y) = ln(a) + b*ln(X). (2-5) 

According to Forsythe et al, there are some distinct disadvantages which arise 

from taking this standard approach.    First of all, the large variability associated with the 

early observations will skew the estimated parameters which will then be dominated by 

the first few observations.   Second, the per unit cost predicted by a log-linear learning 

curve will converge to zero for sufficiently large volume. If convergence to zero occurs 

within a realizable volume, the log-linear model produces unrealistic forecasts. 

Both the problem of early observations skewing the estimated parameters, and the 

fact that the log-linear learning curve will converge to zero for sufficiently large volume 

are important considerations since they are far more pronounced when applied to unit 
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costs as opposed to cumulative average costs. This is especially important to us because 

the C-17 FSM implicitly applies the log-linear model to unit costs. 

Pegel's Exponential Function. In an effort to develop more realistic forms of 

the learning curve, some authors have proposed models which are based on exponential 

functions.   One of these authors, Pegel, proposed an algebraic exponential function to 

complement the power function (log-linear) model (Smith, 1989).   Pegel's model gives 

the marginal cost per unit for the Xth unit as 

MC(X) = a ax-' + ß (2-6) 

where 

a, a, and ß are empirically based parameters. 

Using a = 1000, a = .8, and ß = 100, the curve appears as shown in Figure 2-2. 

Figure 2-2 Pegel's Exponential Function 

Pegel's Exponential Function 

CO 
o u 
n 
c 

CO 
E 

1200 

1000 

800 

600 

400 -- 

200 - 

-+- -+- -+- 
10   12   14 

Unit Number 

20   22   24 

approaches minimum of 100 as unit numbers increase 

Note that, as the number of units increases, the marginal cost approaches a minimum 

value of 100 which is given by the value of ß. This model may be integrated across X to 
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find the total cost up to the Xth unit in terms of the marginal cost per unit. It may also be 

algebraically manipulated to give the average cost of the first X units in marginal cost 

index terms.   The biggest advantage in Pegel's model is that where the basic power 

function shows both the average and marginal costs decreasing with increasing output, 

Pegel's exponential function shows that the marginal cost becomes constant after a 

certain number of units is produced (Belkaoui, 1986:pgs 8:9). 

Forsvthe Cmin Approach. A similar approach which addresses and includes the 

constant nature of marginal cost mentioned above is proposed by Forsythe (Forsythe, 

Green, White, and Elmer, 1995: pgs 3:4). He says that it is possible to tailor specific 

model parameters to account for characteristics of the manufacturing process. For 

example, when the absolute minimum number of hours required to produce a unit is 

known or can be estimated, the basic log-linear model can be revised as shown below. 

Y(X) = aXb +Cmin (2-7) 

In this equation, Cmi„ is the minimum time needed to produce a unit. As the log-linear 

part of this equation approaches zero with large values of X, the time required to build 

the Xth unit approaches Cmin; this makes intuitive sense. This adjustment, like Pegel's 

Exponential Function, prevents the time to produce a unit from reaching the unrealistic 

value of zero as the quantity produced, X, gets large. 

Lew's Adaptation Function. Another twist on the marginal cost theme is given 

by Levy's Adaptation Function (Levy, 1966). Levy's function is useful for showing how 

a firm can adapt itself to the learning process and isolate the variables which influence 

learning.   His function is given below. 
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MC = /7/ß - (7/ß - X*/a j *ccx7"7 (2-8) 

where 

MC is the marginal cost, 

a and b are parameters analogous to the power function parameters, 

C is analogous to Cmin, and 

ß is the production index for the first unit. 

The parameter, C, serves to flatten the curve for large values of X.   So, just as Pegel and 

Forsythe propose, the learning function reaches a plateau and does not continue to 

decrease (or increase) the way the log-linear function does (Belkaoui, 1986: pg 10). 

The Stanford-B Model. One of the most well-known learning curve models is 

the Stanford-B Model. Like the models described above, this model came into existance 

because the log-linear model doesn't always provide the best fit to activity/time data. The 

Stanford-B formula, also known as the learning formula with the B-factor (Summers and 

Welsch, 1970: pgs 45:50), is given by the following equation. 

Y = a(X+B)n (2-9) 

where 

Y  is direct man-hours required for cumulative unit number X, 

a   is a constant which is equivalent to the cost of the first unit when B=0, 

n   is the exponent which describes the slope of the asymptote (-0.5 is typical), 

B   is a constant which may be expressed as the number of units theoretically 

produced prior to the first unit acceptance. (B is typically between 0 and 10 

with 4 being a common value). 
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Given the 'typical' values above, the Stanford-B curve is depicted in Figure 2-3. 

Figure 2-3 Stanford-B Curve 
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The main feature of the model is the B factor which measures variations in design 

or other complexities which management cannot control through engineering or retooling. 

Another way to think of this model is that it accounts for previous learning by using the B 

factor as a scale of displacement. 

To illustrate, Belkaoui (Belkaoui, 1986:pg 11) suggests we note that when n is 

set equal to -0.5, the Stanford-B model yields a unit learning curve equation as follows: 

y« 
ylx+B 

(2-10a) 

If B is set to 0, this becomes 

Using the equation 

Y«ax^5. 

0.5 p = 2°=2-u> = .707, 

(2-10b) 

(2-10a) 

we can see that this is equivalent to a 70.7 percent log-linear learning curve. Smith notes 

that the Stanford-B isn't used much in the aircraft industry anymore (Smith, 1989). 
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Dejong's Learning Formula with an Incompressibility Factor. Another form 

of the log-linear model, which is similar to the models proposed by Pegel, Forsythe, and 

Levy (in that the value of MC levels out after a large number of builds) is De Jong's 

Learning Formula with an Incompressibility Factor.  This model takes into account the 

differing nature of manual and machine labor.  DeJong refers to manual activity time as 

being compressible (subject to learning); he considers machine activity time to be 

incompressible. His model has the following form which consists of a variable part 

representing manual activity and a fixed part representing machine activity. 

MC~a(M + ^.) (2-11) 

/       \ 
Fixed Part      Variable Part 

where 

MC is the marginal time for the xth unit, 

a and n are parameters analogous to the power function parameters, and 

M is the factor of incompressibility. 

The value of M varies between 0 and 1 and would be, approximately, .25 for manually 

dominated activities and .50 for machine-dominated activities.   Note that for an activity 

which is 100% manual, M would be zero and DeJong's formula reduces to the log-linear 

model.   For an activity which is 100% machine dominated, M equals 1 and MC is a 

constant.   Since we really don't expect machines to be able to improve their performance 

this makes intuitive sense. Some learning curve prognosticators (Smith, 1989: pg 7) have 

suggested, however, that machines can 'learn' through the adjustment of machine 

parameters or production methods. Smith suggests that, "The DeJong model may not be 
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particularly useful in machine intensive industries, especially considering the model 

adds so much more complexity to learning curve mathematics and almost eliminates any 

intuitive understanding of real-life application to the typical factory worker or cost 

estimator." (Smith, 1989) 

The S-Curve. The S-Curve is another curve which has been used to model the 

learning process seen in manufacturing. An S-type function can be represented by a 

composite function whose shape resembles the flattened horizontal S shown below. 

Figure 2-4. The S-Curve 
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Note the flatness of the earliest part of the curve. This can be attributed to the fact 

that experiments are being made on the production process in an effort to find the best 

tooling and methods. The numerous mid-course changes made at this time preclude rapid 

improvement in the amount of time to build each unit. Once all the corrections are made 

to the toolings and methods, it is possible to obtain very rapid learning; this is shown in 
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the center part of the curve. Finally, once most of the learning has been done, the curve 

starts leveling out and approaches a minimum time required to build an individual unit. 

As mentioned above, the S-Curve can be represented by a composite function. 

According to Belkaoui (Belkaoui, 1986:pg 14) we can constuct an S-function by using the 

Stanford-B curve to represent the early part of the curve and the DeJong curve to 

represent the latter part of the curve. In this case, the S-Curve function would look like: 

MC = a[M + (l-M)(X + B)n] (2-12) 

where (as before): 

MC is the marginal time for the Xth unit, 

a and n are parameters analogous to the power function parameters, 

M is the factor of incompressibility, and 

B is a constant which may be expressed as the number of units theoretically 

produced prior to the first unit acceptance. (B is between 0 and 10 with 4 

being a typical value). 

Like all models, S-shaped curves have their advantages and dissadvantages. 

These curves can model more complex learning curves which do not follow a simple 

exponential form. However, when we have initial production data, only S-shaped curves 

may not have sufficient data to accurately estimate long-term production. 

Non-Linear Estimation. Thomas (Thomas, 1975) compared log-linear and 

nonlinear estimation techniques for the standard learning curve model. Each model 

assumes that the error is distributed normally under the logarithmic transformation and 

that it tends to be proportional to the value of the dependent variable and multiplicative in 

nature. The nonlinear estimation techniques, on the other hand, generally assume a 
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constant error term which is additive. Thomas found that the nonlinear estimation 

techniques were robust and performed well in estimating the parameters of the model 

with either error distribution; the log-linear model did not perform as well when the error 

was additive and constant in nature. 

2-4. Summary 

Over the course of the last eighty years, the learning curve has been used 

extensively as a management accounting tool; this type of curve can provide important 

information for decision making. In this chapter, we have presented the concept of the 

learning phenomenon and have gone on to briefly outline not only the theory behind the 

basic log-linear learning curve but some 'new' geometric versions as well. 

The Crawford Model (or the basic log-linear learning curve model) states that the 

improvement in productivity is fairly constant as output increases. The main shortcoming 

of this model lies in the fact that as the number of units produced increases, the time/cost 

to produce them approaches the unrealistic value of zero.   The Forsythe and Pegel 

models are more realistic than the Crawford since they include a minimum cost per unit 

which does not allow the unrealistic approach towards zero. The Stanford-B model 

attempts to account for prior learning by including a displacement or B factor. 

The models mentioned in the preceding paragraph, seem to be worth further 

investigation since they are fairly simple and are intuitive for the most part. On the other 

hand, due to their complex nature, we will not devote further study to of DeJong's 

Learning Formula, and Levy's Adaptation Function within this thesis.   Although the S- 

Curve has the ability to model more complex learning functions which do not follow the 
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simple exponential form, it may also be unsuitable due to its complexity. Further, the S- 

Curve model may require more than just initial production data if they are to accurately 

estimate long term production; initial production data is frequently the only data we have. 

Variations on the basic learning curve have proliferated mainly because the log- 

linear model does not always provide a good fit or forecast for the data at hand. The next 

chapter explores a completely different class of models as an alternative method of 

predicting future aircraft build times; enter the ARIMA models. 
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3. Proposed ARM A Learning Curve Models 

3-1. Introduction to ARMA Models 

With the advent of widespread computer availability in organizations, the general 

and statistically based methods of time-series analysis know as Box-Jenkins or ARIMA 

processes have been developed and applied to forecasting (Makridakis, Wheelwright, and 

McGee, 1983). ARIMA, which is an abbreviation for autoregressive (AR) integrated (I) 

moving average (MA), describes a broad class of time-series models. Before we present a 

detailed discussion of the two basic ARIMA processes which are of interest in this study, 

we briefly define some of the terms used in the rest of this chapter and discuss why these 

processes are being explored. 

The following definitions are based on discussions found in Makridakis, 

Wheelwright, and McGee (1988), Box and Jenkins (1976), and Mongomery, Johnson, and 

Gardiner (1990). A process is stationary if its statistical properties are independent of the 

particular time during which it is observed. Specifically, if the process underlying a time 

series is based on a constant mean and variance, then the time series is said to have a 

stationary mean and variance. If a process is stationary, the Box and Jenkins model used 

is generally an ARMA(p,q). As discussed in subsequent sections of this chapter. 

A process is nonstationary if its statistical properties (especially its mean and 

variance) depend on the time during which it is observed. In other words, if the process 

underlying the time series does not have a constant mean and/or a constant variance, it is 

nonstationary. If a processes is non-stationary, the Box and Jenkins model generally used 

3-1 



is an ARIMA(p,d,q) with the differencing terra, d, not equal to zero.   In this thesis, 

attention will be focused on stationary models. 

An ARIMA model is parsimonious if it uses as few parameters as possible in the 

model/data fitting process. For example, if we assume that an AR(1) process, which has 

one parameter, and an AR(2) process, which has two parameters, both provide reasonable 

fits to a particular data series, the concept of parsimony would have us choose the AR(1) 

model over the AR(2). 

An autoregressive process is a form of regression where, instead of the dependent 

variable (the item to be forecast) being related to independent variables, it is related to 

past values of itself at varying time lags. Thus, an autoregressive model would express the 

observation at time t as a function of previous values of that time series. This matches up 

well with the logic behind learning curves since, if learning is indeed occurring, one would 

expect that the amount of resources required to produce a given unit would depend, or be 

related to, the amount of resources required to produce previous units. 

A moving average process is a process in which the value of the time series at time 

t is influenced by a current error term and (possibly) weighted error terms from the past. 

The error terms of which we speak, are independent and identically distributed random 

noises or shocks that are generally uncontrollable or unpredictable. 

Autoregressive/moving average (ARMA) schemes can be autoregressive (AR) in 

form, moving average (MA) in form, or a combination of the two (ARMA). In an ARMA 

model, the series to be forecast is expressed as a function of both previous values of the 

series (autoregressive terms) and previous random errors (the moving average terms). 
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In the next three sections I will discuss, in somewhat more detail, the nature and 

structure of three ARIMA processes, AR(p), MA(q), and ARMA(p,q), (more formally 

known as ARIMA(p,0,0), ARIMA(0,0,q), and ARIMA(p,0,q) processes respectively) 

which are of interest in this study. We'll also consider, the suitability of each model to 

simulate learning. 

3-2. Autoregressive Processes 

As stated above, autoregressive (AR) processes are a form of regression where the 

dependent variable is related to past values of itself at varying time lags. This might seem 

contrary to regression methods which attempt to forecast variations in some variable of 

interest, the dependent variable, on the basis of variations in a number of other factors, the 

independent variables. The general form of AR processes may be developed by starting 

with the basic causal or explanatory regression equation which has the form 

Y = bo + bjXj + b2X2... + bkXk + e (3-1) 

where 

Fis the dependent variable, 

Xi, X2>..., Xk, are the independent variables, 

bo, bj, b2, ... ,bk are the linear regression coefficients, and 

e is an error term which is assumed to have 

E[e] = 0 and  Var [e] = G2
. 

The independent variables, Xi, X2,..., Xk, can represent any factors such as the number of 

parts to be installed, the quality of parts, the type of aircraft to be built, while the 

dependent variable, Y, could represent the time it took to build an aircraft. 
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Some principles of regression can be applied to time series methods. We could, 

for example, allow the independent variable to represent previous values of Y, the time 

required to build the aircraft at previous times in the past, and suggest that the time it 

takes to build the t"1 aircraft depends not on the number of parts to be installed or on the 

quality of the parts, but on the time it took to build the t-l81, and even t-2nd and t-3rd, etc., 

aircraft in the past.  We could define the dependent variable as 

Y, = \i' + <t>7y,-7 + faY,.2 + W-3 + ^Yt-4 + .... + §kYuk + et (3-2) 

where 

Y, is the value of the dependent variable at time t, 

Yt-i, Yt-2, Y,.3, Yt-4,..., Y,.k, are the 'independent' variables, which represent the 

prior values of the dependent variable, 

M-', §j, §2,.» , §k are the linear regression coefficients, and 

et   is an error term which is assumed to have 

E[e,] = 0 and   Var [et] = a2. 

This is called the basic autoregressive (AR) form since the independent factors are simply 

time-lagged values of the dependent variable. 

One of the AR(p) models which I explore as part of this thesis is the AR(1) model. 

The model takes the following form 

Y, = \L' + 07 Yt.j + e, (3-3) 

where the the variables are the same as defined in equation (3-2). Before plotting the 

AR(1) model given in equation (3-3), we'll define the difference between unconditional 

and conditional means. 
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If (J); is chosen between -1 and +1, the AR(1) process is stationary with mean 

E(Y) = »=-£-. (3-4) 

Since we make no assumption about previous values observed, this is referred to as the 

unconditional mean. The unconditional mean differs from the conditional mean in that the 

conditional mean takes previous values of the time series into account. For example, 

suppose for an AR(1) process, the value observed at time t-1 is yt-i. Then the expected 

value at time t given this information is given by: 

= E(ii,+<blYl_l+Et\Yt_1=yt_1) 

= v-'+$iyt-i (3-5) 

where we assume that E(et) = 0. The quantity in equation (3-5) is not necessarily equal to 

|i. In particular, 

E(Y2\Y1 = yl) = [i'+^y 

and similarly 

= \i'+$1E(y2\Yl = yl) + E(e2) 

: M-'+J^'^I +<t>?yi 

:u
,(l+<j>1)+<|>J71 

In general, for t > 2, 

E(Yt\Y{ =y{) = ^a+<h+<t>f+...+fi   )+<i>i Ji (3-6) 
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This illustrates the fact that the initial conditions (the value observed at time 1) has 

decreasing effect on the long run provided that  -1 < (J)i < +1.   In fact, in the long run, 

\imE(Yt\Yl=y) = ii 

:   lim 

H' 

1-2 

v:^\+$x\ 
;=i 

(3-7) 
1—<J>i 

provided -1 < <|)1 < +1. The quantity given in equation (3-7) is the unconditional mean. 

To see why the the unconditional mean is useful in simulating the effects of 

learning, suppose \i' = 25, <|h = 0.75 so that \i = -^- = 100. We can then generate 
l-<h 

simulated values of Y, for t = 2,..., 50 assuming that Yt =1000 and the e/s are uniformly 

distributed with E(eO = 0 and Var(et) = 25. The plot which results from using the above 

assumed values in equation (3-3) (the equation forAR(l)) is given in Figure (3-1) 
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Figure 3-1 Illustration of the AR(1) Model 
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Figure 3-2 Illustration of the Log-Linear Learning Curve Model 

Log-Linear Learning Curve with N(0,25) Error 
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In Figure 3-2, we have a plot of a typical learning curve for comparison. Note the 

similarity between the AR(1) curve and the typical learning curve. The main difference 

between the two curves is that in the long run, the AR(1) model approaches 
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E(Y) = ii=-^-=100 
1—4»i 

while the learning curve continues to approach zero. As a result,the AR(p) model may 

acmally prove to be more useful for predicting learning types of data. 

3-3. Moving Average Processes 

In a manner analogous to writing the basic regression equation (3-1) in terms of 

past values of the dependent variable to define the AR process given by equation (3-2), 

we define an MA process by writing the basic regression equation in terms of past error 

terms; in other words, we let the past error terms be the independent variables. The 

general equation for an MA model is 

Y, = [i + 6ie,.i + §2et-2 + O^/j + ... + 8*e« + e, (3-8) 

where 

Yt is the value of the dependent variable at time t, 

et, et-i, et-2, et.3,..., et-k, are the 'independent' variables, which represent the 

time-lagged error terms. These error terms are defined as et = Xt - Yt, 

et-i = Xt-i - Yt_i, et-2 = Xt_2 - Yt_2, and so on. X is the actual value while Y 

is the forecasted value. 

\i, 6;, 02, ..., 0* are the linear regression coefficients. 

One of the MA(q) models which we explore as part of this thesis is the MA(1) 

model. The model takes the following form 

Y, = n + * - 0iet.!. (3-9) 

To assess the usefulness of the MA(1) models for forecasting learning data we fix Yi = 

1000, 0i = - 0.75, and assume the errors are ~ N(0,25); specifically, 
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E[ei\ = 0 and  Var [e<] = cr = 25. 

Since we wish to fix Yi = 1000, this implies 

1000 = 100 + ei- 6ie0. 

If we assume e0 = 0, then we should have ei = 900. After time 1, we go on to compute ten 

more values of Yt using equation (3-10). 

Yt=100 + e,-9ie,.i (3-10) 

The plot of the resulting data is given in Figure (3-3). 

Figure 3-3 Illustration of MA(1) Model 
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Observe that Yi, the cost of unit 1, is 1000 (by design). The value of Y2 is affected by the 

large error at unit 1. By unit 3, the effect of unit one on the cost seems to be almost 

completely gone. Since the effect of unit one dissipates so quickly, we feel that MA 

models will not be useful for forecasting learning type data. 

3-4. AutoRegressive/Moving Average Processes 

As stated in Section 1, ARMA schemes can be autoregressive (AR) in form, 

moving average (MA) in form, or the two can be effectively coupled to form a very 

general and useful class of time-series models called autoregressive/moving average 

(ARMA) processes. In the ARMA model, the series to be forecast is expressed as a 
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function of both the previous values of the series (the autoregressive terms) and the 

previous random errors (the moving average terms). The basic elements of AR and MA 

processes can be combined to produce a large variety of models. As part of this study we 

explore the ARMA(1,1) model which has the following form 

rf = 4>;r,-7   +   \i' - Bye,./. + e, (3-11) 

AR(l)part Constant MA(1) part 

Here, the dependent variable, Yt ,depends on one previous value of the dependent 

variable, Yt.i, one previous error term, et-i, and a constant which adjusts the mean of the 

process. Under specific conditions on the 0 's, ARMA models are considered stationary in 

both the mean and the variance. A plot of a simulated ARMA( 1,1) process is shown 

below. 

Figure 3-4 Illustration of the ARMA(1,0,1) Model 

ARMA(1,1) Model 

10 20 30 

Unit Number 

40 50 

This particular model is calculated using (Jh and 6i equal to .75, \i' equal to 25, and Yi 

equal to 1000. The initial value for error, £i, was taken as zero since the first unit cost 

was given with certainty. The remaining errors have an N(0,25) distribution. Note how 

the curve levels out after about twenty units to a mean of approximately 100; this is similar 
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to the curve calculated for the AR(1) model in Section 3-2.   ARMA models appear to be 

well suited to forecasting learning type data. 

3-5. ARIMA Models for Learning 

As discussed earlier, a major criticism of the basic log-linear learning curve is that 

it does not completely level out in the long run; it continues to approach zero through 

successive unit builds. We find this pleasing, 'though unrealistic, because it implies that if 

we build enough aircraft, it eventually will take no time at all to build them!!   In Chapter 

2, this problem was addressed through the use of modified learning curve models such as 

the Stanford B Model and Pegel's Exponential Function which both provided curves that 

level out in the long run. In this chapter, however, we have presented examples of ARMA 

models that exhibit a similar pattern of a dramatic initial decline followed by a leveling out 

to a long-run mean. This suggests that stationary ARMA models might be useful for 

modeling the build history of an aircraft manufacturing process. 

In the next chapter, we attempt to fit ARMA models to real and simulated sets of 

learning data, and compare the results with those of fitting standard learning curve models 

to the same data. In the next section, however, we first exploit a commercial forecasting 

software package, FORECAST PRO, to fit various ARMA models to the first 50 

observations from a simulated log-linear learning curve. The purpose of this exercise is 

simply to assess how well stationary ARMA models can represent traditional log-linear 

learning curves, especially in the short-run. (In the long-run, we know that a stationary 

ARMA model converges to its unconditional mean while the log-linear learning curve 

converges to zero.) 
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3-6. Fitting ARMA Models to a Log-Linear Learning Curve 

To represent a log-linear learning curve, we simulate the first 50 values from a 

model of the form 

Y=aXh +e (3-12) 

where (as presented in Chapter 2) 

Y is the number of hours, or 'cost,' of producing the X  unit, 

X is the unit number, 

a is the 'cost' of producing the first unit, 

b is a constant which determines the learning rate, and 

e is error uniformly distributed (1% above and 1% below the expected value of Y 

for each X. 

Arbitrarily, and for purposes of illustration, we let the parameter, a, the cost of producing 

the first unit, be equal to 1000. We additionally assume the learning rate, p, to equal 

eighty percent (0.8), and then calculate the value of b using equation (2-3) as follows: 

b = ln(p)/ln(2) =ln(0.8)/ln(2) = -.322. (2-3) 

For our value of p, b turns out to equal - 0.322.   The final model which we use to 

generate data for units 1 through 50, takes on the following form: 

Y=1000X0322 +e (3-13) 

To generate the data, we start by using the spreadsheet software package, EXCEL 

5.0, by Microsoft Corporation, to generate the values of 7 for units 1 through 50 by using 

equation (3-13). Since the equation used to calculate the data has a random component to 

it (error is uniformly distributed about the mean) the simulated data does also. For this 

reason, we can't just take one sample data set, analyze it and draw conclusions; we need 

3-12 



additional data sets to analyze. For our purposes, we generate eight sets of simulated 

data. A sample of this data is given in Table 3-1. 

On the other hand, in hindsight, the variance of the random error terms that we 

have simulated is so small that we essentially are fitting models to the first 50 values 

expected from the log-linear model. Thus, our results provide a measure of how well the 

fitted models reproduce the expected behavior of a log-linear learning curve. 

Table 3-1 Fifty Unit EXCEL-Simulated Log-Linear Data Set 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 

106995 11 
12 

13 

14 

15 

16 

17 

18 

19 
§§§ 

47501 21 

22 

23 

24 

25 

27 

28 

29 

30 

37221 31 

32 

33 

31 

35 

3 

37 

38 

39 

40 

3Ü78 41 

42 

43 
M 

45 

46 

4/ 

48 

49 
50 

32260 

80Q81 461.81 31671 337.70 306m 

78602 47605 38667 337.56 27S35 

62279 387.08 34010 321.59 27Q31 

577.21 37643 33Q89 31211 27897 

58641 421.72 32596 30323 23807 

53QT7 377.53 31374 30831 26663 

4$k78 357.46 33661 231.67 28657 

521.68 38215 321.91 31Q45 277.83 

51301 41699 355C4 33218 23390 

As a preliminary investigation into the potential of candidate models to fit and 

forecast log-linear types of data, we use FORECAST-PRO to fit selected ARMA(p,q) 

models to each of the eight data sets. The models we fit are AR(1), AR(2), AR(3), 

AR(4), MA(1), MA(2), MA(3), MA(4), ARMA(1,1), ARMA(1,2), ARMA(2,1), and 

ARMA(2,2). Since we are assuming that the process underlying the actual aircraft build 

time-series is stationary (which, however, is not strictly true for the log-linear data), we 

choose not to fit any ARIMA(p,d,qld * 0) to the simulated data. While using Forecast- 
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Pro, curiosity also dictates that we run its Expert Data Exploration routine, and also fit 

various Exponential Smoothing models to the data. 

Using Forecast-Pro, we fit the selected models to the simulated log-linear data. 

The output standard diagnostics (including R2, Adjusted R\ Durbin-Watson and Ljung- 

Box test statistcis, MAPE1, MAD2, BIC3, RMSE4, and the Forecast Errors) from 

Forecast-Pro are given in Appendix A.   In addition to the standard diagnostics, Appendix 

A contains plots of the data (the models for only one of the eight repetitions is shown), 

including the fitted curves, forecasts with confidence intervals, and model parameter 

estimations along with their associated Standard Errors, t-Statistics, and Significance 

levels. This data is consolidated into one table, Table A-l. The data is reduced to essential 

measures of model appropriateness (averaged across all eight repetitions) which is 

included, below, in Table 3-2. Tables similar to Table 3-2 are also given in Appendix A 

for each of the eight repetitions; they are given as Tables A-2 through A-9. 

MAPE - Mean Absolute Percent Error 
2 MAD - Mean Absolute Deviation 
3 BIC - Bayesian Information Criterion 
4 RMSE - Root Mean Square Error 
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Table 3-2 Model Measures of Appropriateness Summary 

Key 
Four Best Results in Category 

Better Than Average; 
Worse Tnan Average 
Overall best in Category 

Simulation Model RSQR ADJRSQ MAPE MAD RMSE 
.:v:::ö«j.vV:C,   .... '  - v  

Simple Exp. Smoothing 
SMA(1) 
AR(1) 
AR(2) 
AR(3) 
AR(4) 
MA(1) 
MA(2) 
MA(3) 
MA(4) 

ARMA(1,1) 
ARMA(2,1) 
ARMA(1,2) 
ARMA(2,2) 

0 8005 

0834* 

0R°Ö8 00639 27.4850 

27.9463 

27.3638 

26.2300 

&45.4950 

'.. .4&9Q0O 0.830-1 0.1519 

0 8976 

09126 

08Q88 

0.9105 

00639 

0.0621 39.8150 

0.9243 0.9211 0.0619 25.4559 37.3200 

0.9350 0.9308 0.0607 24.8680 34.7200 

0 7077 

0 8019 

0 7077 

08590 

01377 

01019 

54.4200 

39.9700 

32 4688 

:•-. 76.3150 

:::-:'51.9988 

0.0027 

0.9223 

09066 

0.9161 

0.8986 

0 9173 

0.9047 

0.9125 

0.0821 42.4975 

37.5200 

42.1275 

38.7388 

01860 29.8850 

27.1563 

26.0114 

0.0641 

0.0626 

0.9381 0.9224 0.0615 25.2964 36.6213 

0.9261 0.9217 0.0610 24.9766 36.1988 
•yj^yyyyyy-yy^ 

AR Average 
MA Average 

ARMA Average 

0.9174 0.9153 0.0621 :■ 25.9794;. 39.2050 

0 8487 03450 012G0 39.1872 •:: 52.0828 

0.9217 0.9153 0.0623 25.8602 38.4216 
*S2*:*:*:*:tt*tt:*:*>^^ yyyyyyy^yyZyyyyy^yyy :M:::wffiWÄ>»:v:w: <^yyy:^yyy/:yy;y:yy^ 

sum 
average 

12.4763 
0.8912 

12.4352 
0.8882 

1.2213 
0.0872 

419.5383 
29.9670 

610.2325 
43.5880 

Observing the data contained in Table 3-2, we note the following: 

(1)       Starting at the top of Table 3-2, we see that Simple Exponential Smoothing, and 

SMA(l)5, turn in a relatively poor performance. The statistics for simple exponential 

smoothing are below average6 in the categories of RSQR, and RMSE, but are above 

5 SMA - Single Moving Average, in which the forecast for time t+1 is simply the observation at time t 
6 The statistics which are calculated (and which are displayed in Table 3-2) for the various models under 
study in this section cannot all be compared directlly. For example, the RSQR and ADJRSQ statistics are 
considered better if their magnitude is larger. The MAPE, MAD, and RMSE, being measures of error are 
considered to be better if their magnitudes are smaller. So, for purposes of clarity, we refer to statistics as 
being better or worse than average.   A better than average RSQR statistic is a statistic which is larger 
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average in the categoiies of MAPE, ADJRSQ, and MAD. Four out of five of the 

statistics for SMA(l) are below average; the only above average statistic is in the category 

of MAD. 

(2)      The AR models seem to do quite well. AR(1) and AR(2) have above average 

statistics in all but one category; AR(1) is below average in RMSE. AR(3) and AR(4) do 

remarkably well in that their statistics are among the best four statistics in every single 

category. 

(3)     As expected, the MA models have generally the poorest results in the 

investigation. MA(1) and MA(2) have below average scores in every single category. 

The MA(3) and MA(4) models do better; each of them are above average in four of the 

five categories; MA(3) is below average in the MAD category while MA(4) is below 

average in the MAPE category. 

(4)       Like the AR models, all of the ARMA models are above average in all categories; 

ARMA(1,2) and ARMA(2,2) have statistics which are among the best four in every single 

categoiy. 

The overall results seem to suggest that the Simple Exponential Smoothing model 

and the Simple Moving Average model do a mediocre job of fitting the simulated log- 

linear learning curve data.   Consider the AR, MA, and ARMA averages given at the 

bottom of the table; they summarize the over-all findings quite well. The AR models, 

overall, are better than average in all categories, are best in the category of MAPE, and 

are tied for best with the ARMA models in the categoiy of ADJRSQ. Overall, the MA 

models turn in a below average statistic in eveiy single categoiy. Finally, overall, the 

than the average RSQR, while a better than average MAPE statistic is lower than the average MAPE 
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ARMA models do very well in fitting the data. They had the best average statistic in all 

categories but one; they were simply above average in the category of MAPE. 

What we've established is that the AR and ARMA models generally seem well 

suited to fitting the log-linear data despite the fact that the true log-linear model has a 

nonstationary mean. Observation of the statistics reveals, however, that the statistics 

differ veiy little from one model to another within each category. The fact that one is 

better than another is just a puff of air. The only serious difference between statistics from 

one model to another occurs in the MA(1) and MA(2) models which seem to have much 

worse statistics than the other models. 

Now that this analysis is complete, we move on to a forum which provides equal 

treatment to all potential models7 including the modified learning curve models discussed 

in Chapter 2. This is the topic on which we concentrate our energy in Chapter 4. 

statistic. 
7 Forecast-Pro's repertoire of models does not include models based on the learning-curve. 
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4. A Comprehensive Model Comparison 

4-1. Introduction 

To be useful in program management, a model must be accurate. This raises a 

very important question, "How do we pick a model from among the models we've been 

considering thus far, that will provide reasonably accurate predictions of future build 

times?" 

To help focus our sights, our next effort is organized into three main stages which 

are discussed in detail in Sections 4-2,4-3, and 4-4, respectively.   In each stage we fit the 

candidate models to a particular set of data, using the spreadsheet program EXCEL to 

estimate the various model parameters. The purpose of using EXCEL is to put each 

model into an environment where it may be compared with the other potential models on 

an equal basis. (Forecast Pro is good for helping choose some promising ARIMA models 

but since it doesn't have a facility to fit learning curve models, it really can't be used to 

complete the analysis; there's just no common footing.) 

The first stage, discussed in Section 4-2, uses a simulated log-linear data base to 

test the potential models' ability to fit a log-linear curve.   The second stage, discussed in 

Section 4-3, uses data obtained from the F-102 production program to 

1. test the potential models' ability iofit the complete data set, and to 

2. test, using a hold-out set1, the potential models' ability to forecast future build 

times. 

1 'Hold out set,' is a reference to the method of using a portion (x out of n observations) of a given set of 
data to develop a model. The resulting model is then used to forecast the next n-x values in the series; the 
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Finally, the third phase, discussed in Section 4-4, sets out to forecast future build times in 

the C-17 program. 

4-2. Fitting Simulated Log-Linear Data 

In this part of the investigation, we take a closer look at each of the most 

promising Log-Linear and ARM A models identified in Chapters 2 and 3. Each of the 

models is used to fit a data base consisting of a 50-unit sequence of simulated log-linear 

data. 

First, EXCEL is used to generate fifty observations of log linear data. The 

equation used is 

Y = aXh+ error (4-1) 

where as in Chapter 3, 

a is the first unit cost and is taken to be 1000, 

X, is the unit number, and ranges from 1 to 50, 

b is the learning rate, and is taken to be -0.3219 (80% curve), and 

the error is uniformly distributed (one percent above and one percent below) about 

the expected value of Y for each unit X. 

Once the data is generated, and the initial individual models are constructed, 

EXCEL's Solver Function is used to find the parameter values that minimize the Sum of 

Squared Errors (SSE). Each error is the residual computed by calculating the difference 

forecasted values can then be compared to the hold out set (the remaining observations from the given data 
set) to determine the fidelity of the fitted model. 
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between the fitted values and the actual values2. We deem the model with the smallest 

SSE to be the one which provides the best fit to the data. 

The models and their respective equations are given in Table B-l in Appendix B. 

Also included in this table are the parameter estimates which result from minimizing 

SSE. Note that asterisked parameters are the parameters which are adjustable during the 

optimization process.   This table also includes the minimized values obtained for SSE. 

The results are summarized below in Table 4-1 (This table is the same as Table B- 

2 in Appendix B.). This table is broken into two groups of model data. The first group 

summarizes the learning-curve models and the second group summarizes the ARIMA 

models. Note, also, that this table displays the rank of each model's SSE across the two 

groups. On the basis of SSE alone, the best overall model for curve fitting seems to be 

the basic Log-Linear Learning Curve model which comes in with a low SSE total of 

763.7; this seems like an intuitive result since this is the same model which was used to 

produce the simulated data in the first place. The best ARIMA model for fitting this curve 

seems to be the AR(4) Model which comes in with an SSE of 1438.8. From this table, 

we also see that, based once again on the magnitude of SSE, the worst models for fitting 

seem to be the S-Curve, Pegel, and MA(1) models. 

The SSE of the MA(1) and Pegel models turn out to be one and two orders of 

magnitude larger than the average SSE, which suggests they might be inferior to the other 

models. The poor performance of these models in fitting the Log-Linear Data base lead us 

to believe that they may also do poorly at forecasting this type of data. The Pegel model 

2  In this thesis, the term 'fitted value' refers to the per-unit value produced by the model which is fitted to 
the simulated data. The term 'actual value' refers to the (simulated) data to which the model is being fit. 
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is similar to the Forsythe model in that it contains a minimum cost term. Since the 

Forsythe model performed so much better than the Pegel in this fit test, we chose to keep 

it and to discard the Pegel model from futher consideration in this chapter. The results 

also confirm our suspicions from Chapter 3 regarding the MA(1) model; we recall that 

the MA(1) model did not appear to be well suited to modeling learning curves since 

rather than showing an extended downward trend similar to learning, the curve had 

reached its mean within just two time periods. Retaining the S-Curve for further study is 

questionable also since it not only performed poorly in the fit test, but also suffers from 

high complexity. For the reasons cited above, we drop these three models (MA(1), Pegel, 

and S-Curve) from further consideration in this thesis. 

Table 4-1 Summary of Log-Linear Fitting 

Model SSE Rank 
Log-Linear 763.7 1 

Forsythe 2256.4 4 
Stanford-B 11576.1 11 

Pegel 242678.9 13 
S-Curve 43241.7 12 
MA(1) 2665105.0 14 
AR(1) 9685.7 10 
AR(2) 4851.1 7 
AR(3) 1756.4 3 
AR(4) 1438.8 2 

ARM Al 1,11 5856.5 8 
ARMA(1,2) 6274.5 9 
ARMA(2,1) 3714.9 5 
ARM A( 2,2) 4468.4 6 

Plots which include the original data as well as the fitted curve for each model, are 

contained in Appendix B. 
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4-3. Fitting Historical F-102 Data 

The data set for this section was obtained from the document entitled Cost 

Functions for Airframe Production Programs (Womer, 1982) which draws its data from 

the F-102 Program Cost History (1965). This report says very little about the data. It 

tells us that the F102 program was comprised of 1000 aircraft which were constructed 

during the years 1953 through 1958.   Further, it tells us that of these 1000 aircraft, 889 

are F102A interceptors and 111 are TF102 trainers. Unfortunately, we are not told which 

aircraft are which within the data base, and can therefore not adjust for any irregularities 

this might produce in the data. 

The variable of primary interest in the data base is the direct labor hours for each 

airframe; this is the column in Table E-l (Appendix E) entitled TOTHRS. A portion of 

this table is shown in Table 4-2 for the reader's convenience. 

Table 4-2 A Sample of the Historical F-102 Data Base 

;  .  . . F-102DatnB asc 

OBS PLN DelaySeq TOTHRS Lot Contract* DM 

1 1 1 402475 1 5942 1 

2 2 2 375849 1 5942 3 

3 3 3 278963 2 5942 7 

4 4 4 271223 2 5942 7 

5 5 5 262498 2 5942 8 

6 6 6 258078 2 5942 9 

7 7 7 243726 2 5942 10 

8 8 8 232766 2 5942 10 

9 9 9 220833 2 5942 11 

10 10 10 218827 2 5942 12 

11 11 11 322447 3 5942 15 
12 12 12 306736 3 5942 16 
13 13 13 290470 3 5942 17 
14 14 14 282951 3 5942 18 
15 15 15 233125 4 5942 21 

3   The full data set is given in Appendix E .   See the Epilogue at the end of this thesis for a short 
description of the search for this data. 
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The first question which arises is, "Against what should TOTHRS be plotted?" This is an 

important question because we note that there are two columns in the data base with 

headings that suggest they would be good candidates for the abscissa or unit number. The 

first possible column is labeled OBS; the second possible column is labeled PLN. Since 

we have no written description of the data in these columns, we make the following 

assumptions. We assume OBS is an indication of the relative position of an aircraft with 

respect to the end of the manufacturing process. For example, the first aircraft off the 

assembly line would be OBS 1, the second would be OBS 2, etc. We assume that the 

OBS number has nothing whatsoever to do with the position, in the manufacturing line, 

in which the plane started. We next assume PLN is an indication of the relative position 

of an aircraft with respect to the start of the manufacturing process. For example, the first 

aircraft started on the manufacturing line would be PLN 1, the second would be PLN 2, 

etc. We assume that the PLN number has nothing to do with the position in which the 

aircraft finishes the manufacturing process. For example, PLN 1 might, actually, not be 

completed until after PLN 2. So we could have a situation where PLN 1 could be the 

same aircraft as OBS 2! How do we decide which column of data to use? 

To help us decide, we use EXCEL to sort the data first by OBS number and then 

by PLN number. We generate plots for each of these reordered data sets and present 

these in Figures 4-1 and 4-2. The most obvious problem seen in the figures is the large 

jump and then decline in the TOTHRS data at about PLN (and OBS) 11-15. Since it 

occurs in the both the plots of TOTHRS vs PLN and TOTHRS vs OBS, we can not 

choose which column to use based on this characteristic. Looking again, we also see 
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some small perturbations (spikes) in the dataplots. From these we choose to use 

TOTHRS vs PLN since the perturbations are much smaller in this reordered series. 

Figure 4-1 Plot of Data -- TOTHRS vs OBS 

TOTHRS Vs. OBS 
500000 

400000 

Observation Number 

Figure 4-2 Plot of Data - TOTHRS vs PLN 

TOTHRS vs PLN 

500000 

400000 

g   300000 3 

ffi   200000 

100000 

0 

Plane Number 

Adjusting for the 'jump' in the data which appears in both figures is just a little 

difficult since we have no documentation and can't be sure of the cause for this jump; it 

could be a major modification in aircraft design which required new learning. We could 

either ignore the jump or we could make some kind of adjustment for it so the models 
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might deal better with it.  We seem to have two options for adjustment: we could either 

start at PLN number one and skip4 Lot 3 (see column 5 in Table 4-2) Appendix D or 

column or we could just skip the first 10 observations (PLNs) and start the data at PLN 

11. We arbitrarily decide to use the data starting at PLN 11. The resulting plot is shown 

in Figure 4-3. 

Figure 4-3 F-102 Data (PLN vs TOTHRS) Starting at PLN 11 

F-102 Data TOTHRS vs PLN Starting at PLN 11 

300000 

250000 
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PLN Number 

Once the data is adjusted, as described above, we are ready to start exercising the 

models. First thing we do is use EXCEL the same way we did in Section 2, to see how 

well each of the potential models can fit the F-102 data. As before, EXCEL's Solver 

Function is used to find the model parameters that minimize the Sum of Squared Errors 

(SSE). The models and their respective equations are given in Appendix C in Table C-l. 

Also included in this table are the parameter estimates that result from the use of the 

solver. Asterisked parameters are the parameters which are adjustable during the 

Lot 3 contains all four of the points which make up the 'jump.' 
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optimization process. The table also includes the minimum values for SSE.   We again 

use SSE as the measure of performance to compare the models against one another. 

The results of using the models to fit the F-102 data are summarized in Table 4-3 

(This table is the same as Table C-2 in Appendix C). Like Table 4-1, Table 4-3 is 

broken into two groups of model data. The first group summarizes the learning-curve 

models and the second group summarizes the AREVIA models. Note, also, that the table 

contains the ranks for each model with respect to SSE across the two groups. Plots which 

include the original data as well as the fitted curve for each model, are contained in 

Appendix C. 

Table 4-3 Summary of F-102 Curve Fitting Investigation 

Model SSE Rank 
Log-Linear 5.503E+10 10 

Forsythe 5.503E+10 10 
Stanford-B 4.540E+10 9 

AR(1) 2.722E+10 8 
AR(2) 4.930E+09 2 
AR(3) 2.637E+10 7 
AR(4) 4.877E+09 1 

ARMAfM) 2.089E+10 6 
ARM A( 1,2) 2.079E+10 4 
ARMAf2.11 2.087E+10 5 
ARMA(2,2) 2.079E+10 3 

The best over-all model for curve-fitting appears to be the AR(4) model which comes in 

with a low SSE total of 4.877e9. The best learning curve model for fitting this curve is 

the Stanford-B Model which comes in with an SSE of 4.54el0.   Note that the SSE 

values, and hence the ranks, for the Standard Log-Linear and the Forsythe models are the 

same. This occurs because in this case, the solver estimated the parameter Cmin to be zero 

in the Forsythe model (Y = aXb + Cmin); when this occurs, the Forsythe model is the same 
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as the Standard Log-Linear model (Y = aXb).   For purposes of comparison, plots of both 

fitted models as well as the F-102 data are shown in Figure 4-4. Note that although the 

plots below show the data and fitted model up through the 200th observation, the fit was 

actually performed using the observations up through 500. 

Figure 4-4 Forsythe Model vs. Log-Linear Model in F-102 Fit 
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What have we done here? All we've done is use our potential models to see 

which can most closely follow the input data. In Section 4-2, we checked the models 

against a simulated log-linear data set. In Section 4-3, we checked the models against the 

F-102 data set. These experiments are good for giving us an idea which models might 

give a reasonable/if to this type of data but the only way to really find out which ones 

work and which ones don't work in forecasting, is to actually forecast with them!! 

4-4. Fit/Forecasting Historical F-102 Data 

In this section, we use the F-102 data to test the ability of the potential models to 

forecast future build times. To accomplish this we use each of the models to fit the first 

twenty observations in the data set5. This is done in a manner similar to that used in 

Sections 4-2 and 4-3; we use EXCEL's solver to minimize the SSE by adjusting the 

5   Recall that the data set starts at PLN Number 11; the first twenty observations, therefore, consist of PLN 
Number 11 through PLN Number 30. The forecast starts with PLN Number 31. 
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parameter values. The output of the solver includes not only the minimized SSE, but the 

parameter estimates for each of the models. We use these parameters to build the forecast 

models. Once the forecast models are built, we use each of them to forecast out to unit 

500. Then two more SSE's are calculated based on the hold out set of 480 and the full 

series of 500, as measures of each model's forecasting fidelity. 

An example plot which includes the original data as well as the fitted AR(2) 

model (best forecast) is shown in Figure 4-5. Although the AR(2) provided the best 

forecast, we can see that the fit still isn't very good. The plots for the remainder of the 

models' forecasts are contained in Figures D-l through D-l 1 in Appendix D. 

Figure 4-5 AR(2) Forecast of F-102 Data 

/fl(2) Forecast of F-102 (using 20 nit history) 

-F102 

- Forecast (starts at irt 26) 
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The rank results of the forecasting are summarized in Table 4-4 (This table is the 

same as Table D-2.). 
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Table 4-4 Summary of the F-102 Fit/Forecast Investigation 

Model SSI; (1st 3» SSTK last 480) Rank (1st 20) Rank (last 480) 

Log-Linear 2.965E+09 6.175E+11 10 4 
Forsvthc 2.965E+09 6.175E+11 10 4 

Stiinfoni-B 2.814E+09 1.278E+10 9 2 

ARfl) 2.452E409 1.073E+12 8 6 
AR(2) 2.350E+O9 7.06ffi+09 6 1 
AR(3) 2.257E+09 2.158E+12 5 9 
AR(4) 1.707E+09 3.892E+10 4 3 

\R\l\(I.n 2.414E+09 1.034E+12 7 5 
\RMA(1J!) 1.153E+09 1.293E+12 3 7 

AKMXfll) 8.848E-+08 3.319E+12 2 10 

ARMAOZ) 8.793E+08 1.457E+12 1 8 

If we examine the table, we see that it not only includes the SSE for the first 20 

observations (the 'fitting' set) and for the last 480 observations (the 'hold-out' set), it 

includes ranking data which gives first place to the model with the lowest SSE. We can 

think of the SSE for the 'First 20' as a measure the goodness of the model's fit and the 

SSE for the 'Last 480' as a measure of the goodness of the model's forecast. Note that 

the ARMA(2,2) has the lowest SSE for the first twenty observations but ended up with 

only the eighth lowest SSE for the last 480 observations. This indicates that although this 

model provided the closest fit on the first twenty, it did not provide the best forecast for 

the entire sequence. The best forecast is provided by AR(2) which came in as the sixth 

best fit for the first 20. A model which provides the best forecast doesn't necessarily 

provide the best fit. Once again, the SSE values, as well as the ranks for the Standard 

Log-Linear and Forsythe models are the same because Cmin in the Forsythe model was 

estimated to be zero by EXCEL's solver. 
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4-5. Fit/Forecasting Notional C-17 Data 

In this section we use notional C-17 data to further test the ability of the models to 

fit/forecast future aircraft build times. Since the actual C-17 data is proprietary, we 

rescaled it so it would not show the actual production capability of the contractor. The 

data we use in this section, therefore, is not actual C-17 data but notional data. 

Since the number of hours seems to increase between units 1 and 3.5, we start our 

test data set at observation 3.5. We are not sure why the hours increase within this range, 

but we can speculate that perhaps the early production units were used for some kind of 

testing which resulted in their completion taking longer than it normally might have. In 

order to give the models a slightly less confusing data set on which to work, we left out 

these observations and started, simply, at observation 3.5. 

To test the ability of our potential models to forecast we proceed in a manner 

similar to that used in the previous section. We use each of the models to fit the first 

fifteen observations (observations 3.5 through 18) in the data set6. We then use EXCEL's 

solver to minimize the SSE by adjusting the parameter values. Once again, the output of 

the solver includes not only the minimized SSE, but the parameter estimates for each of 

the models. We use these parameters to build the forecast models. Once the forecast 

models are built, we use each of them to forecast build times for units 19 through 23. 

Finally, as before, two more SSE's are calculated based on the 'fitting set' of 15 and the 

'hold-out set' of 8; these are utilized as measures of each model's forecasting fidelity. 

The results of the forecasting are summarized in Table 4-5 (This table is the same as 

6  Recall that the data set starts at PLN Number 3.5; the first fifteen observations, therefore, consist of 
Observation Number 3.5 through Observation Number 18. The forecast starts with Observation Number 
19. 
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Table F-2 in Appendix F.).     Plots which include the original data as well as the fitted 

curve for each model, are contained in Appendix F. 

Table 4-5 Summary of the Notional C-17 Fit/Forecast Investigation 

Model SSKtlM 15) SSE fall 231 SSF.da.xt8) Rank (1st 15) Rank (att 23) Rank (8) 

I xig-Linear 870.7 1040 1 169.4 6 6                3 
Forsythe 291.1 386.5 95.4 2 2                2 

Stanfnrd-B 359.2 364.7 5.5 5 1                 1 

AR<1) 1266.9 1727.7 460.8 7 8                10 
AR(2) 1340.4 1753.9 413.6 9 9                 9 
AR(3) 1405.5 1754.0 348.4 10 10                8 
AR(4) 1302.1 1503.5 201.4 8 7                4 

ARMA(U) 89.9 398.1 308.2 1 3                 7 
ARMAU.2) 3699.0 10270.0 6571.0 11 11                11 
ARMA(ll) 329.9 572.3 242.3 4 5                 6 
ARMAI2.2) 302.9 524.1 221.2 3 4                5 

Note that the table not only has the actual SSE's for the fit set, the hold-out set, 

and the entire set, it has corresponding columns of ranks for each model. From table 4-5, 

we see that based on the SSE values of the hold-out set, the first and second best forecasts 

were turned in by the Stanford-B and the Forsythe Models with SSEs of 5.5 and 95.4 

respectively. 

4-6. Summary 

The results of this chapter's investigations is summarized in Table 4-6. 

Table 4-6 Investigation Summary — Ranks Based on SSE's 

Investigations:    ^ 

Models/Ranks:   ▼ 

(Section 4-2) 
Fitting 

Log-Linear 
Data 

(Section 4-3) 
Fitting 
F-102 
Data 

(Section 4-3) 
Fit/Forecast 

F-102 
Data 

(Section 4-4) 
Fit/Forecast 

Notional C-17 
Data 

First Best 

Second Best 

Third Best 

Fourth Best 

Log-Linear AR(4) AR(2) Stanford-B 

AR(4) AR(2) Stanford-B Forsythe 

AR(3) ARMA(2,2) AR(4) Log-Linear 

Forsythe ARMA(1,2) 

Log/Lin 
and 

Forsythe AR(4) 
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In Section 4-2, we investigated the ability of the candidate models to fit a 

simulated log-linear data set. The standard Log-Linear Learning Curve model provided 

the best fit to the data; this makes perfect sense since it was the standard Log-Linear 

Learning curve which produced the data in the first place! The second and third best fits 

were provided by the AR(4) and AR(3) models respectively; their SSE statistics were 

very nearly the same (1438.8 vs 1756.4) so if we had to chose a model to fit log-linear 

data based on this investigation, the concept of parsimony would probably have us choose 

AR(3). 

In section 4-3, we investigated the ability of the candidate models to fit historical 

F-102 data. In the fit test, the models which provided the first and second best fits to the 

500 observation data set were the AR(4) and AR(2) models respectively. Their SSE 

statistics were very close (4.977E+09 vs 4.930E+09), so if we had to choose a model to 

fit the F-102 the concept of parsimony would have us choose the AR(2) model. 

Also in section 4-3, we developed forecast models for the F-102 data by using 

hold-out sets; we used the first 20 observations to fit the forecast model and went on to 

test it against the 480 observation hold-out data set. Based on SSE values alone, the first 

and second best forecast models appear to be the AR(2) and Stanford-B models 

respectively. The SSE for the AR(2) was only about half as large as the SSE for the 

Stanford-B. In third place was the AR(4) model with an SSE about twice the value of the 

Stanford-B value. One interesting thing to note is that the model which provided the best 

fit to the first 20 observations did not provide the best forecast. The ARMA(2,2) model 

provided the best fit to the first 20 observations but came in with the 8th best forecast. 
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In section 4-4, we developed forecast models for the notional C-17 data by using 

hold-out sets. The fit set consisted of the first 15 observations while the hold out set 

consisted of the last 8 observations. The first, second, and third best forecasts seem to be 

given by the Stanford-B, the Forsythe, and the Log-Linear Learning Curve models 

respectively. Once again, the models which provide the best forecasts did not necessarily 

provide the best fits. The Stanford-B, the Forsythe, and the Log-Linear Learning Curve 

models provided the 5th, 2nd, and 6th best fits, respectively. 

The results are somewhat inconclusive in that the study does not identify any one 

model as always being the best fitting or forecasting tool for all data sets. It does, 

however, provide an important general observation that ARMA models are a promising 

alternative to the standard log-linear learning curve approach which is widely in use 

today; they are comparatively simple to use, intuitive in nature and seem to provide a 

good forecast based on a small amount of data. 
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5. Simulating Future Performance 

5-1.  Problem Statement 

The purpose of this thesis up to this point has been to investigate existing learning curve 

models and to examine alternative models which, based on initial production data, might better 

predict the amount of time future aircraft builds will take. One of the things we have addressed 

only briefly, if at all, has been the uncertainty in fit of the models under study. In the C-17 

Factory Simulation Model, predictions of future performance were made by treating the fitted 

regression as if it provided a perfect forecast of the mean time required to complete a task in the 

future. Once this relationship was determined, random errors were generated about the fitted 

curve to simulate how actual performance might vary in the future. In this case, the simulation 

team felt they could adequately predict future performance by ignoring the uncertainty of the 

fitted regression. 

The goal of this chapter is to explore various methods for addressing the following 

questions. Given a learning curve model, how can we best account for the uncertainty in fit? 

Should we just ignore it as has been done in previous aircraft manufacturing simulations? Is this 

a sound procedure?  Alternately, should we adjust the variance of future observations to account 

for uncertainty? Or should we sample from a distribution of parameter estimates in each 

replication? We explore this through the use of basic meta-modeling concepts applied to the 

learning curve model. 

5-1 



5-2. Simulation Based on a Fitted Linear Metamodel 

What is a metamodel? The following definition, lifted from the dictionary (Meriam- 

Webster, 1977), gives a small amount of insight into the meaning of the meta (or met) prefix and 

starts us on our way to understanding what a metamodel is! 

meta- or met- prefix [from Latin, change, or Greek, among, with, after] la: 
occuring later than or in successsion to : after lb: situated behind or beyond lc: later or 
more highly organized or specialized form of 2: change : transformation 3: more 
comprehensive : transcending <metopsychology> — used with the name of a discipline to 
designate a new but related discipline designed to deal critically with the original one 
<mefamathematics> 

To put it more succinctly, Russell R. Barton (Barton, 1992) says, "a metamodel is a model of a 

model." 

Let's look at an example of a metamodel. We first use an equation, say the learning 

curve equation ( Y = aXb + error), to generate a data base; we did this in Chapter 3 when we 

generated the first fifty observations of a specific learning curve. We next use the technique of 

Ordinary Least Squares (OLS regression), to 'fit' a predictive model to that data. What we end 

up with are parameter estimates defining a fitted model which characterizes the data base we 

have generated (a model of a model!). When we make a (regression) model of the simulation 

model, we speak of a (regression) metamodel. (Kleijnen, 1992) 

In this section, we examine strategies for generating simulated values from a fitted linear 

model. We, in particular, want to simulate future performance; in other words, we want to 

extrapolate outside of the design region of the fitted model. The case in which we are interested, 

and with which we start, is the case where the independent variable, X, represents time, or some 

function of time.   We assume we have observed the dependent variable, Y, for values of the 

independent variable ranging from X = 1 to X = n. What we wish to do is to repeatedly simulate 
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future sequences of the dependent variable, Y, for values of the independent variable ranging 

from X = n+1 to X = n + k for some specified k. 

For simplicity, let's assume that the relationship between a dependent variable, Y, and an 

independent variable, X, can be described via a simple linear model of the form 

Y = a+ßX + e, (5-1) 

where e ~ N(0, a2). If we know the values of the parameters a, ß, and o2, we can say that 

Y-NCoc+ßX,^) (5-2a) 

or, equivalently, 

(Y - ot - ßX) ~ N(0, 1). (5-2b) 
a 

Better yet, and still equivalently, we could denote this as 

Y = a + ßX + a[N(0,1)] (5-2c) 

Where the last term in (5-2c) indicates that we have added to the mean (a + ßX) a standard 

deviation term which is normally distributed with a mean of zero and a standard deviation of one. 

We can use this to generate simulated values of Y for given values of X. If we wish to generate 

a value of the dependent variable for, say, X = Xh, we can use the following simple algorithm: 

1. Generate Z ~ N(0, 1). 

2. SetY = cc + ßXh + aZ. 

For our purposes we assume, for simplicity, that Xh = h. This allows the simulated sequences 

(Yn+i, Yn+2,..., Yn+k) to be generated in a relatively straightforward manner. So, when we 

know the values of the parameters a, ß, and a2, there is no uncertainty in the fit since the mean 

and standard deviation are known. 
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The uncertainty problem arises when we DONT know the values of these parameters. 

This leads us to the first of three methods of dealing with uncertainty in fit. 

Method 1 

If we do not know the values of the parameters a, ß, and o2, which is most often the case, 

they must be estimated from sample data. Let's assume we observe the data points (X[,Y0, 

(X2,Y2),..., (Xn,Yn); from these, we can estimate a, ß, and a2 via ordinary least squares. The 

least squares estimates of these parameters turn out to be, 

a = Y-bX, (5-3) 

(5-4) h — n 

x*?- (I*,)2    ' 

and, 

n-2 (5-5) 

(Neter, Wasserman, and Kutner: 1990, pgs 50, 145). We know from basic statistics that, in this 

case, 

E(a)= a, (5-6a) 

E(b) = ß, (5-6b) 

and E(MSE) = a2. (5-6c) 

Furthermore, in most statistics texts, the predicted value of Y at X = Xt, is generally denoted as 

Yh = a + bXh.   Under the assumptions we have made, we can say that 
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E(Yh) = E(a + bXh). (5-7) 

and, since we know (as stated above in equations 5-6) that a, b, and MSE are unbiased estimators 

of a, ß, and a2, respectively, we can go a step further to say 

E(Yh) = E(a + &Xh). (5-8) 

All of this having been said, we might be tempted, for simplicity, to generate simulated values of 

Y at X = Xh, via the algorithm: 

1. Generate Z ~ N(0, 1). 

2. SetY= Yh +(MSE)1/2Z (5-9a) 

or, equivalently, 

Y = a + bXh + (MSE)1/2 Z. (5-9b) 

This method yields a distribution of Y's which has a constant variance, as we would expect, and 

is very similar to the strategy implemented in the recent Factory Simulation Model of the C-17 

assembly process. The factory simulation model is consistent with the model we postulate above 

in that it has the property that the variance of the simulated Y's is constant and not dependent on 

Xh. Unfortunately, because it is implicitly based on the assumption that 

Y~N(fh,MSE} (5-10a) 

or, equivalently, 

^~N(0,1). <MCb> 

we find that our postulated model cannot be strictly correct. We say this because according to 

Neter, Wasserman & Kutner (1990), for example, that 
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Var(Yh)=G' i, (xh-xy 
n    £(X,.-X)2 (5-11) 

and thus that the quantity 

Y-Y 

UMSE 
,   i    (xh-xy 
1+-+-v h 

n    £(X,-X)2 

(5-12) 

(which is proportional to the quantity on the left hand side of equation 5-10b) does not have a 

N(0,1) distribution as stated above. Instead of an N(0,1) distribution, it has a Student's -t 

distribution with n-2 degrees of freedom.   Based on this realization, we can propose another 

strategy which might be more accurate. 

Method 2 

The next possible strategy is given by the following algorithm. 

1. Generate T ~ t(n-2). 

2. Set Y=Y„+\MSE l + I + .(^-X) 

n    £(X,.-X)2 (5-13) 

A potential weakness of this strategy is that the variance of the simulated Y's is not 

constant but, as can be seen from inspection of equation (5-13), depends on Xh. In fact, the 

variance of the simulated Y's increases as the distance between  Xh and X increases. 

Although this strategy correctly accounts for the uncertainty within our estimates of the 

parameters a and ß, it is somewhat undesirable since the behavior is not consistent with that 

which would be expected from the real system1. This would be especially unappealing in the 

1 In a real system, we would expect the variance to remain constant. 
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time-dependent case where we successively generate values of Y corresponding to values of X 

ranging from X = n+1 to n+k. Finally, we are led to a third method which attempts to deal with 

this shortcoming. 

Method 3 

The third method takes into consideration the fact that, since a and b are normally 

distributed, the standardized statistics (b-ß)/s(b) and (a-oc)/s(a), where s(a) and s(b) are estimates 

of the standard deviation of a and b respectively, are distributed as t with n-2 degrees of freedom. 

Since the estimates of the standard deviations, s(a) and s(b), are given by 

MSE 
1 

—+ 
X' 

n    £(X,.-X)2 (5-14) 

(Neter, Wasserman & Kutner: 1990, pg 71), the standardized statistics (b-ß)/s(b) and (a-oc)/s(a) 

become 

a-a 

MSE 
1 
- + - 

X' 

n    £(X,-X)2 

(5-15a) 

*-ß 
MSE 

(5-15b) 

£(* -xy 

and are distributed as t(n-2). 

This in mind, a possible strategy for generating simulated values of Y for X=Xh is as 

follows: 

1. Generate Ti and T2 ~ t(n-2) 
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2. SetA= a + JMSE 
1 X2 

■+ 
n    2(X,-X)2 *T. (5-16a) 

MSE 
3. SetB=fr + J^,_.    - 2 *T2 (5-16b) 

4. Generate Z~N(0,1) 

5. SetY = A + BXh + (MSE)1/2Z. (5-16c) 

If a sequence of values starting at X = n+1 is desired, one could repeat steps 3 and 4 for each 

successive sequence of variables. Although the resulting values of Y will, in the aggregate, have 

a variance that increases as the distance between Xh and X increases, if we apply steps 3 and 4 

iteratively for given values of A and B, the individual sequences generated will behave like 

observations from a linear model with a constant variance. 

With all of this theory behind us, we next demonstrate each of the three methods using, 

first, a linear model, and second, a log-linear model. 

5-3. Linear Case Studies 

To simplify the development process, we start with modeling and simulating a simple 

linear relationship. Once the methods outlined above are demonstrated using this example, we 

go on, in the next section, to apply them to the Log-Linear Learning Curve equation. 

Generating 20 Simulated Observations:    Here we assume we know the values of the parameters 

a (intercept), ß (slope), and a2 (fixed variance).   Using EXCEL, we start out by simulating a set 

20 observations calculated from the following equation. 

Y = cc + ßX+ a[N(0,l)] (5-17) 

We've added the cN(0,l) term to stochasticize the simulated observations! 
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Once the data is simulated, we use the method of ordinary least squares to fit a linear 

regression model to the 20 simulated observations; this, of course, yields estimated values for a, 

ß, and o2 (a, b, and MSE, respectively).   So, we've made a model of a model. These fitted 

values are used throughout the following three methods as the basis in simulating future values 

of the dependent variable. 

Method 1: 

Once the theoretical line and confidence interval are plotted, we simulate and plot five 

future sequences of values Yh for X = Xh for n = 21 through n = 120 on the same set of axes. To 

calculate these sequences, we use equation (5-9b). This done, we repeat starting with three more 

sets of 20 initial observations and recalculate the plot three times to show the random nature of 

the simulated data and the uncertainty in fit of the predicted line. These plots are shown below, 

in Figure 5-1 for illustration. 

Note, in the plots, how the random nature of the simulated data has a significant effect on 

the the fitted regression line. The fitted line does not always accurately model the true 

relationship; a small error in the estimate of slope can seriously skew the fit away from the 

simulated data in the long run. As might possibly have been uttered before, perhaps we 

shouldn 't treat the fitted regression as if it provided a perfect forecast of the expected value in the 

future. 

We also note that the variance of each individual simulated sequence is, by construction, 

constant over time. This is as we would expect from a real life system. 
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Figure 5-1 Method 1 for Equation of Line - Four Simulations 
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We must keep in mind that the calculations done to generate the preceding simulated 

sequences were not entirely correct since they were built upon the assumption, as given in 

equation (5-10b), that 

SY-Y»\- ~N(0,1) 
(MSE) 1/2 

when in actuality, it is proportional to the student's-t distribution. Method 2 will work the 
student's-t distribution into the calculation of the Yh's. 

Method 2 

In a manner analogous to the techniques used in Method 1, we again generate 20 

simulated observations, use them to fit a curve, and then predict five series of Yh for X = 21 to 
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X = 120. To calculate these new sequences, we use equation (5-13).  The only difference here is, 

as outlined in Section 2, Y is estimated as (Yhat)h plus a standard deviation times a student's t 

distribution. The standard deviation term is dependent on Xh and grows in magnitude as we go 

forward in time; see Figure 5-2. Once again we can observe the uncertainty in fit of the 

regression line and the five simulated sequences; their slopes vary from plot to plot. This could 

be the case in subsequent experiments since the simulated sequences are built upon the fitted 

regression line. 

Figure 5-2 Method 2 for Equation of Line — Four Simulations 
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The variance, unfortunately, is not constant as we expect to find in the real life system. To 

compensate for this disparity between the simulated sequences and what we expect in reality, we 

go on to Method 3 which provides us with simulated sequences which each appear to have 

relatively constant variance through the range of Xh's. 
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Method 3 

Following the same technique used for Methods 1 and 2, above, we can, once again, 

generate 20 simulated observations, use OLS regression to fit a line, and then predict five series 

of Yh for X = 21 to X=120 for comparison to the theoretical line. To calculate these sequences, 

we use equations (5-16a and 5-16b). The resulting plots are shown in Figure 5-3. 

Figure 5-3  Method 3 for Equation of Line ~ Four Simulations 
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Note how each of the five simulated series of Yh's, for Xh = 21 through Xh = 120, unlike the 

series produced in Methods 1 and 2 above, all go off in slightly different directions while at the 

same time maintaining a constant variance within each individual series. What this helps us to 

see is that we can take into account the uncertainty of the fit of the regression line by simulating 

not just one but multiple series of future values for Yh. In this way, we build a confidence 

interval of sorts (made up of the plots of the individual sequences) which helps us to keep in 

5-12 



mind the fact that the regression line and its confidence intervals do not necessarily provide a 

perfect fit for what the actual data might be expected to do!   In the C-17 Factory Simulation, 

little or no effort was made to account for this uncertainty. 

In the next section (Section 4), we simulate the first twenty observations of the learning 

curve the same way we simulate them for the equation of the line above. As before, we also go 

on to fit this simulated data (building a model of a model) using a log transformation and OLS 

regression.   The goal of the next section is to investigate the nature of the uncertainty in the Log- 

Linear Learning curve forecasts and to determine if we even need to account for it in the 

construction of our simulated sequences of Yh's. Because of the rescaling produced by the log 

transformations, the discrepancy in fit which we see in the linear case may not be apparent in the 

case of the log-linear learning curve. 

5-4. Log-Linear Learning Curve Case Studies 

Although we discovered with the linear cases above that the uncertainty in fit could 

produce significant inaccuracy, we may not discover that the uncertainty for the log-linear case 

is worth accounting for.   Since this is difficult to know without investigation, we shall now go 

on to see what effect Methods 1, 2, and 3 have on the associated plots for the learning curve. 

Method 1 

In a manner analogous to the techniques used in Method 1 (Section 5-3), we again 

generate 20 simulated observations; this time we use the log-linear learning curve equation 

Y = aXAb + error. We then fit a curve to these observations, and predict five series of Yh for X = 

21 to X = 120. To calculate these new sequences, we use equation (5-9b).  Again, we 

recalculate the simulated observations, the regression curve, and the simulated sequences of Yh's. 
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These are all shown in Figure 5-4. We note, from the four simulations in Figure 5-4, that the fit 

of the regression line varies almost indiscernably from plot to plot. 

Figure 5-4 Method 1 for Log-Linear Equation In Log Space - Four Simulations 
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In addition to the plots in log space shown in Figure 5-4, we also generated plots in linear 

space by plotting hours vs.unit number instead of plotting the natural log of hours versus the 

natural log of the unit number as we did for the plots in log space; the plots in linear space are 

shown in Figure 5-5. We can make the same observations about these plots that we made 

regarding those in Figure 5-4; the fit of the regression curve varies almost indiscernably from plot 

to plot.   Since Method 1 is very similar to the method used in the C-17 FSM, we start to think, 

based on these plots, that ignoring the uncertainty in fit might not have the high price-tag which 

we originally expected.   Despite these early indications that we might not need to account for 
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uncertainty (at least not in the case of the log-linear learning curve), we'll look at the effects that 

Methods 2 and 3 have on the fitted regression curves. 

Figure 5-5 Method 1 for Log-Linear Equation In Linear Space — Four Simulations 
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Method 2 

Once again, we generate four sets of simulated observations, four fitted regression lines, 

and four sets of five sequences of simulated future observations (Yh's). This time, as in Method 

2, Section 5-3, we use equation (5-13) which corrects the incorrect assumption regarding the 

distribution of the error which is actually distributed as t(n-2) not N(0,1).   We plot the resulting 

data both in log space and in linear space; these plots are shown in Figures 5-6 and 5-7 

respectively. In Figure 5-6, we see the same increasing variance evident in Method 2, Section 5- 

3. Once again, however, the fitted regression curve seems not to vary noticiably from simulation 

to simulation. 
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Figure 5-6 Method 2 for Log-Linear Equation In Log Space — Four Simulations 
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Figure 5-7 Method 2 for Log-Linear Equation In Linear Space— Four Simulations 
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Method 3 

One last time, we generate the 20 simulated observations, the fitted regressions, and the 

simulated sequences of future observations. This time when we generate the simulated 

sequences, we use equations (5-16a through 5-16c). The result is a series of simulated sequences 

each of which seem to have a constant variance. Once again, we've gone on to plot the resulting 

data in both log and linear space; these plots are shown below in Figures 5-8 and 5-9. 

Figure 5-8 Method 3 for Log-Linear Equation In Log Space — Four Simulations 
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Figure 5-9 Method 3 for Log-Linear Equation In Linear Space -- Four Simulations 
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5-5. Conclusions 

From the plots in Figures 5-4, through 5-9, we can say that perhaps the C-17 FSM was 

not seriously injured by the fact that during its development, uncertainty in fit was ignored. 

Method 1, which is similar to the methods used in the C-17 FSM, produced reasonable fits, not 

only in Log-Space, but in linear space as well. Method 2 and Method 3 seemed to make no 

appreciable amount of inprovement in the fits. 
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6. Conclusions 

The results of this thesis are somewhat inconclusive since the study does not 

identify any one model as always being the best fitting or forecasting tool for all sets of 

data. It does, however, provide an important general indication that ARMA models, 

particularly the AR models, are a promising alternative to the standard log-linear learning 

curve approach which is widely in use today; they are comparatively simple to use, 

intuitive in nature and seem to provide a good forecast based on a small amount of data. 

The investigation of metamodels and the question of accounting for the uncertainty 

in fit within the C-17 Factory Simulation Model yielded some encouraging, as well as 

potentially useful, results. In the case of the simple linear model, we found that the 

application of our proposed Methods 2, and especially, 3 did a good job of accounting for 

uncertainty within the fit of the regression line; the resulting simulated sequences seemed 

to cluster well around the theoretical confidence interval. In the case of the log-linear 

learning curve, however, the results were not as striking. In particular, we found that our 

Method 1, which is very similar to the methods used in the C-17 FSM, did a reasonable 

job of simulating sequences of (future) observations which, for the most part, fell within 

the theoretical prediction interval. Application of Methods 2 and 3 did not noticeably 

improve the fidelity of the simulated sequences. The bottom line, here, is that ignoring the 

uncertainty in fit (as the C-17 FSM does) doesn't seem to carry the high cost we 

expected! 

There are a few things which, based on hindsight, I might have done differently. 

First of all, in Sections 3-6 and 4-2,1 would have used a log-linear learning curve data set 
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which had no error in it. (The model we used had a uniformly distributed error term with 

a very small variance.) Using data which had no error term may have provided a more 

useful initial analysis since the models would have had a 'clean' data set for the initial test 

instead of having to deal with the random component injected by the error term. Of 

course, the error we used in the model was quite small and may have had a negligible 

effect anyway. 

Another thing I might have done differently was to use all of the models to 

fit/forecast the log-linear learning curve data the same way we used them to fit/forecast 

the F-102 data and the Notional C-17 data; this would have provided a more complete 

picture of the abilities of the candidate models. As it was, in Section 4-2, we used the 

models only to fit the log-linear data; in Section 4-3, we used the models to fit the F-102 

data and then went on and used them to fit/forecast the F-102 data; in Section 4-4, we 

used the models only to fit/forecast the Notional C-17 data. Each section should have 

used precisely the same set of investigations. 

Yet another modification I might make to my investigations would be to have 

picked a sample size for the fit/forecasting investigations which was common to all data 

sets. For example, since the Notional C-17 data fit/forecasting investigations used a 

sample of 15 observations on which to base the fitting of the models, we should have used 

this same number in the fit/forecasting of the F-102 data; furthermore, if our investigations 

had included fit/forecasting for the log-linear data, this number should also have been the 

same for them. Using different numbers of observations in the fit part of the 
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fit/forecasting, put the candidate models on uneven ground and make it difficult to 

evaluate the results of the study. 

One more thing I would do if there was more time, would be to take a closer look 

at the SSE's (used as measures of performance in Chapter 4). It would be interesting to 

see how close in magnitude each of the resulting SSE's are. Perhaps we'd find that there 

is virtually no difference between the fidelity of the top four models; we might find that 

any one of them will do an equally good job at forecasting so we could choose the lowest 

order or simplest model from among them in pursuit of parsimony or simplicity. On the 

other hand, we might find that the model ranked number one had a statistic which was six 

orders of magnitude better than the next best model's statistic; this might keep us from 

choosing a lower order model. I feel that the relative magnitudes of the SSE's is quite an 

important consideration in the analysis of the results. 

The point of this thesis was not to show that log-linear learning curve models are 

no not good at forecasting learning type data, that ARMA models were the best models 

for this type of forecasting, or that the C-17 FSM should be scrapped because it failed to 

account for uncertainty in fit. Instead, the objective was to show that there are other 

models which provide a viable alternative to the standard learning curve. The secondary 

emphasis was to investigate the merit/cost of ignoring, within the C-17 FSM, the 

uncertainty in fit. I believe I've accomplished both of these things! Hopefully, model 

developers can utilize some of the information in this thesis to assist them in developing 

the best forecasting models possible. 

6-3 



Bibliography 

Alchian, Armen, An Airframe Production Function. The Rand Corporation, 1949. 

Author, An. Predicting Startup Progress: Learning Curves 

Barton, Russell R. Metamodels for Simulation Input-Output Relations. Proceedings of 
the 1992 Winter Simulation Conference, pg 289. 

Belkaoui, Ahmed. The Learning Curve -- A Management Accounting tool. Westport, 
Connecticut:   Quorum Books, 1986. 

Box, George.E.P. and Gwilym.M. Jenkins. Time Series Analysis: Forecasting and 
Control (Revised Edition). San Francisco: Holden-Day, 1976. 

Book, Stephen A. and Erik L. Burgess. The Learning Rate's Overpowering Impact on 
Cost Estimates and How to Diminish It. The Aerospace Corporation. 63rd 
MORS Symposium. (6 June 1995) 

Brewer, Glenn M. The Learning Curve in the Airframe Industry. MS thesis, AFIT. 
School of Systems and Logistics. Air Force Institute of Technology (AU), 
Wright-Patterson AFB OH, August 1965 (SLSR-18-65) 

Colasuonno, Vincent. An Analysis of Progress Curve Conceptual Advances and Progress 
Curve Uses, Since 1956. MS thesis, AFIT/GSM/SM/67-5. School of 
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 
September 1967 (AD-664952). 

F-102 Program Cost History. CRA-1-7.1, a report prepared by the Cost Research 
Department, Fort Worth Division, General Dynamics Corproation, June, 1965. 

Forsythe, Steven, Dan Green, Tom White, and Mike Elmer. Forecasting and Modeling 
Learning Curves: A Study of Certain Important Considerations. AFIT Term 
paper. March 1995. 

Forecast-Pro for Windows, Standard Edition, Version 2.00, Business Forecast Systems, 
Inc., Copyright [C] BFS 1992-93. 

Kleijnen, Jack P.C., and Willem van Groenendaal. Simulation - A Statistical 
Perspective. John Wiley & Sons, Inc., 1992. 

Levy, F. K. "Adaptation in the Production Process," Management Science (Vol. 11, No. 
6, April 1965), pp. B136-B154. 

BIB-1 



Makridakis, Spyros, Steven C. Wheelwright, and Victor E. McGee. Forecasting: 
Methods and Applications. John Wiley & Sons, Inc., 1983. 

Merriam-Webster, Webster's New Collegiate Dictionary. G. C. Merriam Company 
Springfield, Massachucetts, 1977 

Montgonery, Douglas C, Lynwood A. Johnson, and John S. Gardiner. Forecasting & 
Time Series Analysis. McGraw-Hill, Inc., 1990. 

Neter, John, William Wasserman, and Michael H. Kutner. Applied Linear Statistical 
Models:Regression, Analysis of Variance, and Experimental Designs. Third 
Edition, Richard D. Irwin, Inc., 1990 

Orsini, Joseph A.   An Analysis of Theoretical and Empirical Advances in Learning 
Curve Concepts. Since 1966. MS thesis, AFIT/GSA/SM/70-12. School of 
Engineering,   Air Force Institute of Technology (AU), Wright-Patterson AFB 
OH, March 1970 

Smith, Jason. Learning Curves for Cost Control. Industrial Engineering and 
Management Press, 1989 

Summers, E.L. and G.A. Welsch, How Learning Curve Models Can Be Applied to Profit 
Planning, Management Sciences (March-April 1970), pp.45-50. 

Thomas, Charles A.   A Monte Carlo Study of Least Squares Parameter Estimation for 
the Learning Curve Equation. MS Thesis, AFIT/GOR/MA/75-3. School of 
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 
December 1975 (AAI-4107) 

Womer, N. Keith, Cost Functions for Airframe Production Programs. Occasional Paper 
Series. Department of Management, Clemson University. 1982. 

Wright, T. P. "Factors Affecting the Cost of Airplanes." Journal of the Aeronautical 
Sciences: 122-128 (February 1936). 

BIB-2 



Appendix A 

Forecast-Pro Summary and Worksheets 
(Work done in Forecast-Pro.) 



Table A-l Forecast-Pro, Summary of Statistics and Parameters 
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- - 
- - 
- - - 
- - - 
1 - 
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ARMA(1,t) 
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ARMA{1.2) 
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- - 402.22 

-0.8981 1 402.22 
-1.6646 1 -0.8566 1 402.22 

- - 1.8609 
- - 2.9941 
- - 0.3623 
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Forecast Pro for Windows Standard Edition Version 2.00 
MonJan29 19:55:18 1996 

Expert data exploration of dependent variable PWRMEANS 

Length 50 Minimum 283.069 Maximum 1002.019 
Mean 402.219 Standard deviation 141.123 

Series too short to determine seasonality. Treating as nonseasonal. 
Classical decomposition (nonseasonal) 

Trend-cycle: 97.11% Irregular: 2.89% 

Log transform recommended for Box-Jenkins. 

There are no strongly significant regressors, so I will choose 
a univariate method. 

Exponential smoothing outperforms Box-Jenkins by 2.588 to 3.628 
out-of-sample (MAD). I tried 21 forecasts up to a maximum horizon 6. 
For Box-Jenkins, I used a log transform. 

Series is trended and nonseasonal. 

Recommended model: Exponential Smoothing 

Figure A-l Forecast-Pro, Exponential Smoothing 
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Simple exponential smoothing 

Forecast Model for PWRMEANS 
Simple exponential smoothing: No trend, No seasonality 
Confidence limits proportional to level 

Smoothing    Final 
Component Weight      Value 

Level 1.00000     286.22 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square .9954 
Durbin-Watson 0.9442 
Forecast error 35.43 
MAPE 0.02687 
MAD 14.53 

Number of parameters 1 
Standard deviation 142.6 
Adjusted R-square 0.9382 

** Ljung-Box(18)=42.45 P=0.999 
BIC 36.47 
RMSE 35.07 

Figure A-2 Forecast-Pro, Simple Exponential Smoothing 
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Naive (SMA(l), Random walk) 

Forecast Model for PWRMEANS 
Automatic model selection 
Naive (SMA(l), Random walk) 

Standard Diagnostics 

Sample size 49 
Mean 390 
R-square 0.9022 
Durbin-Watson 0.2607 
Forecast error 35.43 
MAPE 0.02742 
MAD 14.83 

Number of parameters 0 
Standard deviation 114.4 

Adjusted R-square 0.9042 
** Ljung-Box(18)=41.51 P=0.9987 

BIC 35.43 
RMSE 35.43 

Figure A-3 Forecast-Pro, Simple Moving Average (SMA(l)) 
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Holt exponential smoothing 

Forecast Model for PWRMEANS 
Automatic model selection 
Holt exponential smoothing: Linear trend, No seasonality 
Confidence limits proportional to level 

Smoothing    Final 
Component Weight      Value 

Level 0.99973     286.22 
Trend 0.23092    -1.3716 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9611 
Durbin-Watson 1.938 
Forecast error 28.39 
MAPE 0.02575 
MAD 13.83 

Number of parameters 2 
Standard deviation 142.6 

Adjusted R-square 0.9603 
Ljung-Box( 18)=6.991 P=0.009796 

BIC 30.08 (Best so far) 
RMSE 27.82 

Figure A-4 Forecast-Pro, Holt Exponential Smoothing 
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Forecast Model for PWRMEANS 
ARIMA(1,0,0) 

Term Coefficient Std. Error t-Statistic Significance 

a[l] 0.9953      0.0056     178.7528       1.0000 
_CONST 1.9008 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9401 
Durbin-Watson 0.9888 
Forecast error 34.89 
MAPE 0.02714 
MAD 14.58 

Number of parameters 1 
Standard deviation 142.6 

Adjusted R-square 0.9401 
** Ljung-Box(18)=40.21 P=0.998 

BIC 35.91 
RMSE 34.54 

Figure A-5 Forecast-Pro, AR(1) 
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Forecast Model for PWRMEANS 
ARIMA(2,0,0) 

Term Coefficient Std. Error t-Statistic Significance 

a[l]            1.7947      0.0479 37.4544 1.0000 
a[2]           -0.8018      0.0494 -16.2365 1.0000 
_CONST          2.8753 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9841 
Durbin-Watson 2.04 
Forecast error 18.16 
MAPE 0.01623 
MAD 8.227 

Number of parameters 2 
Standard deviation 142.6 

Adjusted R-square 0.9838 
Ljung-Box(18)=5.466 P=0.002073 

BIC 19.24 (Best so far) 
RMSE 17.79 

Figure A-6 Forecast-Pro, AR(2) 
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Forecast Model for PWRMEANS 
ARIMA(3,0,0) 

Term Coefficient Std. Error t-Statistic Significance 

a[l]             1.5845       0.0448 35.3651 1.0000 
a[2]           -0.2266      0.0986 -2.2984 0.9740 
a[3]           -0.3632      0.0556 -6.5293 1.0000 
„CONST          2.1476 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9833 
Durbin-Watson 1.686 
Forecast error 18.83 
MAPE 0.01657 
MAD 8.382 

Number of parameters 3 
Standard deviation 142.6 

Adjusted R-square 0.9826 
Ljung-Box(18)=3.235 P=4.927e-005 

BIC 20.53 
RMSE 18.25 

Figure A-7 Forecast-Pro, AR(3) 
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Forecast Model for PWRMEANS 
ARIMA(4,0,0) 

Term Coefficient Std. Error t-Statistic Significance 

a[l] 1.6203 0.0414 39.1669 1.0000 
a[2] -0.2361 0.1250 -1.8883 0.9347 
a[3] -0.4572 0.1958 -2.3350 0.9760 
a[4] 0.0676 0.0995 0.6791 0.4995 
CONST 2.1717 

Try alternative model ARrMA(3,0,0) 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9844 
Durbin-Watson 1.733 
Forecast error 18.4 
MAPE 0.01603 
MAD 8.023 

Number of parameters 4 
Standard deviation 142.6 

Adjusted R-square 0.9833 
Ljung-Box(18)=3.237 P=4.951e-005 

BIC 20.64 
RMSE 17.65 

Figure A-8 Forecast-Pro, AR(4) 
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Forecast Model for PWRMEANS 
ARIMA(0,0,1) 

Term Coefficient Std. Error t-Statistic Significance 

b[l] -0.9675      0.0200    -48.4850      1.0000 
CONST        402.2187 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.8037 
Durbin-Watson 0.05782 
Forecast error 63.16 
MAPE 0.1155 
MAD 47.34 

Number of parameters 1 
Standard deviation 142.6 

Adjusted R-square 0.8037 
**Ljung-Box(18)=158.7P=l 

BIC 65.02 
RMSE 62.52 

Figure A-9 Forecast-Pro, MA(1) 
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Forecast Model for PWRMEANS 
ARIMA(0,0,2) 

Term Coefficient Std. Error t-Statistic Significance 

b[l]           -1.3321      0.0563 -23.6572 1.0000 
b[2]           -0.9397      0.0413 -22.7603 1.0000 
„CONST        402.2187 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9254 
Durbin-Watson 0.5625 
Forecast error 39.33 
MAPE 0.07117 
MAD 28.74 

Number of parameters 2 
Standard deviation 142.6 

Adjusted R-square 0.9239 
** Ljung-Box(18)=121.6 P=l 

BIC 41.67 
RMSE 38.53 

Figure A-10 Forecast-Pro, MA(2) 
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Forecast Model for PWRMEANS 
ARIMA(0,0,3) 

Term Coefficient Std. Error t-Statistic Significance 

b[l] -1.5788      0.0562    -28.0915       1.0000 
b[2] -1.5280      0.0661     -23.1201       1.0000 
b[3] -0.8981      0.0410    -21.8820      1.0000 

CONST        402.2187 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9723 
Durbin-Watson 0.8157 
Forecast error 24.23 
MAPE 0.04995 
MAD 19.54 

Number of parameters 3 
Standard deviation 142.6 

Adjusted R-square 0.9711 
** Ljung-Box(18)=128.3 P=l 

BIC 26.42 
RMSE 23.49 

Figure A-l 1 Forecast-Pro, MA(3) 
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Forecast Model for PWRMEANS 
ARIMA(0,0,4) 

Term Coefficient Std. Error t-Statistic Significance 

b[l]           -1.7923 0.0546 -32.7994 1.0000 
b[2]           -2.2399 0.0883 -25.3794 1.0000 
b[3]           -1.6646 0.0802 -20.7439 1.0000 
b[4]           -0.8566 0.0452 -18.9600 1.0000 
_CONST        402.2187 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9872 
Durbin-Watson 1.09 
Forecast error 16.66 
MAPE 0.03225 
MAD 12.63 

Number of parameters 4 
Standard deviation 142.6 

Adjusted R-square 0.9863 
** Ljung-Box(18)=107.4 P=l 

BIC 18.69 (Best so far) 
RMSE 15.98 

Figure A-12 Forecast-Pro, MA(4) 
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Forecast Model for PWRMEANS 
ARIMA(1,0,1) 

Term Coefficient Std. Error t-Statistic Significance 

a[l] 0.9954      0.0061 
b[l] -0.8783      0.0604 
_CONST 1.8609 

Standard Diagnostics 

163.9297 
-14.5466 

1.0000 
1.0000 

Sample size 50 
Mean 402.2 
R-square 0.9646 
Durbin-Watson 0.8359 
Forecast error 27.09 
MAPE 0.02662 
MAD 13.28 

Number of parameters 2 
Standard deviation 142.6 

Adjusted R-square 0.9639 
Ljung-Box(18)=20.31 P=0.6841 

BIC 28.7 
RMSE 26.54 

Figure A-13 Forecast-Pro, ARMA(1,1) 
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Forecast Model for PWRMEANS 
ARIMA(2,0,1) 

Term Coefficient Std. Error t-Statistic Significance 

a[l]            1.8974      0.0387 49.0106 1.0000 
a[2]           -0.9048      0.0403 -22.4327 1.0000 
b[l]           -0.2490      0.1061 -2.3476 0.9768 
_CONST          2.9941 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9865 
Durbin-Watson 2.348 
Forecast error 16.92 
MAPE 0.0181 
MAD 8.177 

Number of parameters 3 
Standard deviation 142.6 

Adjusted R-square 0.9859 
Ljung-Box(18)=6.226 P=0.004808 

BIC 18.45 (Best so far) 
RMSE 16.4 

Figure A-14 Forecast-Pro, ARMA(2,1) 
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Forecast Model for PWRMEANS 
ARIMA(1,0,2) 

Term Coefficient Std. Error t-Statistic Significance 

a[l]            0.9991      0.0041 241.5930 1.0000 
b[l]           -1.1743      0.0591 -19.8619 1.0000 
b[2]           -0.9597      0.0334 -28.7005 1.0000 
_CONST          0.3623 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9908 
Durbin-Watson 1.73 
Forecast error 13.97 
MAPE 0.01687 
MAD 8.051 

Number of parameters 3 
Standard deviation 142.6 

Adjusted R-square 0.9904 
Ljung-Box(18)=28.68 P=0.9476 

BIC 15.23 (Best so far) 
RMSE 13.54 

Figure A-15 Forecast-Pro, ARMA( 1,2) 
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Forecast Model for PWRMEANS 
ARIMA(2,0,2) 

Term Coefficient Std. Error t-Statistic Significance 

a[l] 1.8956 0.0462 41.0309 1.0000 
a[2] -0.9072 0.0468 -19.3879 1.0000 
b[l] -0.4297 0.1050 -4.0940 0.9998 
b[2] -0.5006 0.1039 -4.8165 1.0000 
.CONST 4.6625 

Standard Diagnostics 

Sample size 50 
Mean 402.2 
R-square 0.9893 
Durbin-Watson 2.207 
Forecast error 15.23 
MAPE 0.01859 
MAD 8.357 

Number of parameters 4 
Standard deviation 142.6 

Adjusted R-square 0.9886 
Ljung-Box(18)=14.53 P=0.3059 

BIC 17.08 (Best so far) 
RMSE 14.61 

Figure A-16 Forecast-Pro, ARMA(2,2) 
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Appendix B 

Fitting the Simulated Log-Linear Learning Curve Data Using 50 
Observations 

(Work done in EXCEL) 



Table B-l Detailed Summary of Log-Linear Fitting 

Fitting the Log-Lii 

odd 

tear Data 
*'I$£V" **?/•."'  / IBiilMlii^lJ^^MMBii 

Log-Linear W 
Parameters: a 

1004.333179 
b* 

-0.323752095 
SSE: 763.686       | 

Equation: Y(x)=a*xAb 

Forsythe 
Parameters: a* 

929.17375 
b* 

-0.402443468 
cmin 
100 

SSE: 2.256E+03     | 0 0 
Equation: Y(x)=a*xAb+cmin 

Stanford-B 
Parameters: a* 

1217.51483 
beta* 

1 
n* 

-0.38003 
SSE: 1.158K+04     | 
Equation: Y(x)=a*(x+beta)An 

Pegel 
Parameters: alpha 

665.37197 
a 

0.977241524 
beta 

0.022758477 
SSE: 2.427E+05 1 
Equation: MC(x)=aIpha*aA(x •l)+beta 

S-Curve 
Parameters: a 

5036.25768 
L* 

4718.94251 
b* 

0.150662349 
k* 

0.149861837 
SSE: 4.324E+04 o 
Equation: Y(x)=L*exp(-b*exp(-k*t)) 

AR(1) 
Parameters: phi* const* 

0.78917 70.55227 
o ^üfcVj.n^     1 7.000JC,+V.J          | 

Equation: AR(1)= phi*(ARl-l)+const+noise 

AR(2) 
Parameters: phi_l* 

0.74968 
phi„2* 
0.07484 

const* 
56.68531 

SSE: 4.851E+03     | 
Equation: AR(2)= phil*(AR2-l)+phi2*(AR2-2 i+const+noise 
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(more) Table B-l EXCEL, Detailed Summary of Log-Linear Fitting 

AR(3) 
Parameters: phi_l*                  phi.2*                phi_3*       const* 

0.75637                 0.03694               0.05926              45.79889 
SSE: 1.756E+03     | 
Equation: AR(3)=phil*(AR3-l)+phi2*(AR3-2)+phi3*(AR3-3)+ 

const+noise 
AR(4) 
Parameters: phi_l*                  phi_2*                phi_3*       phi_4*                   const* 

0.75873                0.03707              0.04687              0.01883              42.37111 
SSE: 1.439E+03    | 
Equation: AR(4)=phil*(AR4-l)+phi2*(AR4-2)+phi3*(AR4-3)+ 

phi4*(AR4-4)+const+noise 
MA(1) 
Parameters: myou*                  theta* 

455.64949            0.471978144 
SSE: 2MSE+U    J 
Equation: MA(l)=myou-theta*errorminusl+noise 

ARMA(14> 
Parameters: muprime*                theta*          phi* 

88.77869               -0.77280              0.74083 
SSE: 5.856E+03     | 
Equation: ARMA(l,l)=phi*(ARMA(l,l)-l)+muprime-theta*errorlast+noise 

IKMMIJi 
Parameters: muprime*                phil*                thetal*      theta2* 

88.95685                0.74379               -0.61966               0.03737 
SSE: 6.274E+03    | 
Equation: ARMA(l,2)=phil*(ARMA(l,2)-l)+muprime- 

thetal*errorlast-theta2*errorlastlast+noise 
|RMA(2.1) 
Parameters: muprime*                phil*                 phi2*        theta* 

63.79179                H.7M52               0.04179               -0.70546 
SSE: 3.715E+03     | 
Equation: ARMA(2,1) = phil*(ARMA(2,l)-l)+phi2*(ARMA(2,l)-2)+ 

muprime-theta*errorlast+noise 
AK\1.\i2.2i 
Parameters: muprime*                phil*                 phi2*        thetal*                  theta2* 

62.50700               0.73840              0.07045              0.03757              -0.31920 
SSE: ^üüifiiMi 
Equation: ARMA(2,2)=phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+muprime- 

thetal*errorlast- theta2*errorlas 
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Table B-2 Brief Summary of Log-Linear Fitting 

Model SSE Rank 
Log-Linear 763.7 1 

Forsythe 2256.4 4 
Stanfnrd-B 11576.1 11 

Pcgcl 242678.9 13 
S-Curve 43241.7 12 
MA(1) 2665105.0 14 
AR(1) 9685.7 10 
AR(2) 4851.1 7 
AR(3) 1756.4 3 
AR(4) 1438.8 2 

ARMA(1,D 5856.5 8 
ARMA(I,2) 6274.5 9 
ARMA(2,1) 3714.9 5 
ARMA(2,2) 4468.4 6 
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Parameters: a b* 
1004.333179      -0.323752095 

SSE:                   100.000 
Equation:      Y(x)=a*xAb  

Figure B-l EXCEL, Log-Linear Fit to Log-Linear Data 
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Log-Linear Model Fit to Log-Linear Data 
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Parameters: a* b* cmin 

929.1737539 -0.402443468 100 

SSE: 2256.352 

Equation: Y(x)=a*xAb+cmin 

Figure B-2 EXCEL, Forsythe Fit to Log-Linear Data 

Forsythe Fit to Log-Linear Data 
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Parameters: a* beta* n* 

1217.514829 Il^lSlllil -0.380034289 

SSE: 11576.076 

Equation: Y(x)=a*(x+beta)An 

Figure B-3 EXCEL, Stanford-B Fit to Log-Linear Data 

Stanford-B Fit to Log-Linear Data 
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Figure B-4 EXCEL, Pegel's Fit to Log-Liner Data 

Pegel Fit to Log-Linear Data 
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Parameters: a*                            L* b* k* 

5036.257676               4718.942513 0.150662349 0.149861837 

SSE: 43241.67424                    0 

Equation: '(x)=L*exp(-b*exp(-k*t)) 

Figure B-5 EXCEL, S-Curve Fit to Log-Linear Data 
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S-Curve Fit to Log-Linear Data 
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Parameters: phi*                    const* 

0.7892                  70.5523 

SSE: 9.686E+03 

Equation: AR(1)= phi*(AR1-1)+const+noise 

Figure B-6 EXCEL, AR(1) Fit to Log-Linear Data 

AR(1) Fit to Log-Linear Data 
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Parameters: phi 1* phi._2* const* 

0.7497 0 074835731 56.6853 

SSE: 4.851 E+03 
Equation:        AR(2)= phi1 *(AR2-1 )+phi2*(AR2-2)+const+noise 

Figure B-7 EXCEL, AR(2) Fit to Log-Linear Data 

AR(2) Fit to Log-Linear Data 

10 15 20 25 30 

Unit Number 

Parameters: phi_2* phi_3* const* 

0.036941845 0.059262984 45.7989 
phM* 
0.7564 

SSE: 1.756E+03 
Equation:        AR(3)= phil '(AR3-1 )+phi2*(AR3-2)+phi3*(AR3-3)+const+noise 

Figure B-8 EXCEL, AR(3) Fit to Log-Linear Data 
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Parameters: 

SSE: 

Equation: 

phM* phi_2* phi_3* phi_4* 
0.7587 0.037070476 0.046871928 0.01883124 

1.439E+03 

AR(4)= phM *(AR4-1 )+phi2*(AR4-2)+phi3*(AR4-3)+phi4*(AR4-4)+const+noise 

const* 

42.3711 

Figure B-9 EXCEL, AR(4) Fit to Log-Linear Data 
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Parameters: myou*                  theta* 

455.6495                 0.4720 

SSE: 2.665E+06 
Equation: MA(1 )=myou-theta*errorminus1 +noise 

Figure B-10 EXCEL, MA(1) Fit to Log-Liner Data 

MA(1) Fit to Log-Linear Data 
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Parameters: muprime*                theta*                     phi* 
88,7787                  -0.7728                   0.7408 

SSE: 5.856E+03 
Equation: ARMA(1,1 )i=phi*(ARMA(1,1 )-1 )+muprime-theta*errorlast+noise 

Figure B-ll EXCEL, ARMA(1,1) Fit to Log-Linear Data 

ARMA(1,1) Fit to Log-Linear Data 
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Figure B-12 EXCEL, ARMA(1,2) Fit to Log-Linear Data 
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Parameters: 

SSE: 

Equation: 

muprime*                 phil*                    phi2" theta* 

63.7918                    0.7645                0.041791709 -0.7055 

3.715E+03 

ARMA(2,1 )=phi1 *(ARMA(2,1 )-1 )+phi2*(ARMA(2,1 )-2)+ 
muprime-theta*errorlast+noise 

Figure B-13 EXCEL, ARMA(2,1) Fit to Log-Linear Data 
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Figure B-14 EXCEL, ÄRMA(2,2) Fit to Log-Linear Data 
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Table B-3 EXCEL, Simulated Log-Linear Data Base 

 The Simulated Log-Linear Data Base 
Unit Number Log-Lin(stoch) Unit Number Log-Lin(stoch) 

1 1010.832269 26 347.6588376 

2 808.3325458 27 346.8230994 

3 691.2839896 28 340.5004826 

4 641.1901161 29 336.3884482 

5 595.4460444 30 335.0655174 

6 557.2059351 31 329.6040636 

7 527.0011364 32 332.1842007 

8 508.4621019 33 325.4725805 

9 496.9922034 34 320.8691874 

10 469.848955 35 316.8387424 

11 462.2715407 36 315.0144544 

12 454.8076222 37 316.1912111 

13 442.1848743 38 311.1881426 

14 432.8762252 39 311.0490991 

15 414.1127291 40 304.7384949 

16 403.5124097 41 304.5376237 

17 396.6960025 42 300.691177 

18 391.530033 43 297.5358953 

19 383.1869894 44 296.2756757 

20 379.2670047 45 292.0449126 

21 377.8492397 46 289.0213147 

22 372.9927929 47 286.4419215 

23 366.6170179 48 285.358444 

24 364.765332 49 284.2516737 

25 352.3002239 50 287.7423919 
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Appendix C 

Fitting the Historical F-102 Data Using 500 Observations 
(Work done in EXCEL) 



Table C-l Detailed Summary of Fitting the Historical F-102 Data Base 
  Fil ting the F-102 Data 

Fursvthe 
Parameters: a*         |           b*           |           cmin 

838249.88            -0.5144                      0 
SSE: 5.503E+10   | 

Equation: Y(x)=a*xAb+cmin 

Stanford-B 
Parameters: a*         |        beta*        |             n* 

45456836.6          29.5607                 -1.4187 
SSE: 4.540E+10   | 

Equation: Y(x)=a*(x+beta) An 

AR(J) 
Parameters: phi*        |        const* 

0.91522            4629.393 
SSE: 2.722E+10   | 

Equation: AR(1)= phi*(ARl-l)+const+noise 

AR(2) 
Parameters: phi_l*      |        phi_2*       |          const* 

0.9017230           -0.0214               11982.597 
SSE: 4.930E+09   | 

Equation: AR(2)= phil*(AR2-l)+phi2*(AR2-2)+const+noise 

AR(3) 
Parameters: phi_l*      |        phi_2*       |          phi_3*          |    const* 

0.84346              0.08390                 -0.00332           4094.4724 
SSE: 2.637E+10   | 

Equation: AR(3)=phil*(AR3-l)+phi2*(AR3-2)+phi3*(AR3-3)+const+noise 

AR(4) 
Parameters: phi_l*      |        phi_2*       |          phi_3*          |    phi_4*   |     const* 

0.89845             -0.00194                -0.02330           -0.28369     12934.3652 
SSE: 4.877E+09   | 

Equation: AR(4)=phil*(AR4-l)+phi2*(AR4-2)+phi3*(AR4-3)+phi4*(AR4-4)+const+noise 

ARM A( 1,1) 
Parameters: muprime* theta*        |            phi* 

3426.4751 0.52344                 0.93489 
SSE: 2.089E+10 

Equation: ARMA(l,l)=phi*(ARMA(l,l)-l)+muprime-theta*errorlast+noise 
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(more) Table C-l Detailed Summary of Fitting the Historical F-102 Data Base 

A KM A (1,2) 
Parameters: muprime*   |        phil*        |         thetal*         |   theta2* 

3468.5690           0.93417                 0.56678            -0.06678 
SSE: 2.079E+10   | 

Equation: ARMA(l,2)=phil*(ARMA(l,2)-l)+muprime-thetal*errorlast- 
theta2*erroriastlast+noise 

ARMA<2,1) 
Parameters: muprime*   |        phil*        |          phi2*          |    theta* 

3400.5396           0.92509                 0.01020             0.52183 
SSE: 2.087E+10   | 

Equation: ARMA(2,l)=phil*(ARMA(2,l)-l)+phi2*(ARMA(2,l)-2)+ 
muprime-theta*errorlast+noise 

ARMA(2,2) 
Parameters: muprime*   J        phil*        |           phi2*           |   thetal*   |     theta2* 

3477.1898           0.93663                -0.00260            0.56949       -0.07003 
SSE: 2.079E+10   | 

Equation: ARMA(2^)=phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+muprime-thetal* 
errorlast-theta2*errorlastlast+noise 

Table C-2 Brief Summary of Fitting the Historical F-102 Data Base 

Model ssn Rank 
Kofi-Lini-ar 5.503E+10 10 

Forsythe 5.503E+10 10 
Stanford-B 4.540E+10 9 

AR(1) 2.722E+10 8 
AR(2) 4.930E+09 2 
AR(3) 2.637E+10 7 
AR(4) 4.877E+09 1 

ARM A( 1,1) 2.089E+10 6 
ARMAU.2) 2.079E+10 4 
ARMA(2.1j 2.087E+10 5 
ARMA(2.2) 2.079E+10 3 
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Parameters: a* b* 

838249.883 -0.514392071 

SSE: 5.503E+10 

Equation: Y(x)=a*xAb 

Figure C-l EXCEL, Log-Linear Fit to F-102 Historical Data 

Log-Linear/F-102 Fit 
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Equation: Y(x)=a*xAb+cmin 

Figure C-2 EXCEL, Forsythe Fit to F-102 Historical Data 

Forsythe/F-102 Fit 

-F-102 Data 

- Forsythe Fitted 

~cV=a=-,v""*7-—c-*-va---v-~Yv*:V 

0 liiniiiHiiiiiiiiiiiiiiiiiiiiiiiiiiiiHiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiHHiiiiiiiiiiiiiiiiiiiHiiiiiiiiiniiiiiiiiiiiHiiiiiiiiiiiiniiiiiiniiiiiiiiiiiiiiiiiiM 
i-r*coo5mT-KcocnmT-r^coo>mT-r^cocnwT-Ncoa)ini-r*coc»mT-l^ T-T-CMcycO't^-LomcD^KoococnoOT-t-cycoco^fsfiocDcor^l^cocDcn 

PLN Number 

C-3 



Parameters: a*                    beta* n* 

45456836.63         29.56069417 -1.418710319 

SSE: 4.540E+10 

Equation: Y(x)=a*(x+beta)An 

Figure C-3 EXCEL, Stanford-B Fit to F-102 Historical Data 

Stanford-B/F-102 Fit 
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Parameters: phi*                      const* 

aoirciiW              4629 .V»2S0o 

SSE: 2.722E4-10 

Equation: ARl(x)= phi*(Ysubx-l)+const+error 

Figure C-4 EXCEL, AR(1) Fit to F-102 Historical Data 

AR(1)/F-102 Fit 

350000 - 

 F-102 

300000-  AR(1) 

250000- 

H
ou

rs
 

To
ta

 
Ü1

 

100000- 

0 

r 
17   33   49   65   81    97  113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497 

Unit Number 

C-4 



Parameters: phi_l*                   phi_2*                        const* 

Ö.87589                   -0.00905                     17315.32351 

SSE: 2.7S7E+I0 

Equation: AR2 = phi_l*(Ysubx-l)+ phi_2*(Ysubx-2)+const+error 

Figure C-5 EXCEL, AR(2) Fit to F-102 Historical Data 

AR(2)/F-102 Fit 
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Parameters: phi_l*                   phi_2*                        phi_3*                   const* 

0.877114341            -Ö.095597136                O.160885068             3096.15527 

SSE: 4.035E+10 

Equation: AR3 = phLl*(Ysubx-l)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error 

Figure C-6 EXCEL, AR(3) Fit to F-102 Historical Data 

AR(3)/F-102 Fit 
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Parameters: phi_l*                   phi_2*                       phi_3*                   phi_4* const* 

(IWMMUnb              -0 13W10MR                  0.1595113S4               -Ü28WMJ 9123.75263 

SSE: 2.349E+10 

Equation: AR4 = phi_l*(Ysubx-l)+ phL2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error 

Figure C-7 EXCEL, AR(4) Fit to F-102 Historical Data 

AR(4)/F-102 Fit 
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Parameters: muprime*                 theta*                          phi* 

3426.4751                0.5234                      0.9349 

SSE: 2.Ö89E+10 

Equation: ARMA(l,l)=phi*(ARMA(l,l)-l)+muprime-theta*error!ast+noise 

Figure C-8 EXCEL, ARMA(1,1) Fit to F-102 Historical Data 
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Parameters: muprime*                  phil*                        thetal* theta2* 

34fJ8.56<J0                 0 9342                        0 5fihS -0.06678403 

SSE: 2.079E+10 

Equation: ARMA(l^)=phil*(ARMA(l,2)-l)+muprime-thetal*errorlast- 

theta2*errorlastlast+noise 

Figure C-9 EXCEL, ARMA(1,2) Fit to F-102 Historical Data 
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Parameters: muprime*                 phil*                        phi2* theta* 

3100 .'5396                 0 <)25 1                   0 01020()?5 3 0.5218 

SSE: 2.087E+IO 
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Figure C-10 EXCEL, ARMA(2,1) Fit to F-102 Historical Data 
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Parameters: muprime*                  phil*                         phi2* thetal* theta2* 

3477.1 S<*8                  0.9366                         -OOtiM 0.569487058 -0,070032389 

SSE: 2.079E+10 

Equation: ARMA(2Ä=phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+ 
muprime-thetal*errorlast-theta2*errorlastlast+noise 

Figure C-ll EXCEL, ARMA(2,2) Fit to F-102 Historical Data 
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Appendix D 

Forecasting the Historical F-102 Data Using 20 Observations and a 
Hold-out Sample of 480 Observations 

(Work done in EXCEL) 



Table D-l Detailed Summary of Forecasting the Historical F-102 Data Base 
|                               Forecasting the F-1 02 Data Based o n a 20 Unit History                                               | 

Forsythe 
Parameters: a*           | b* cmin 

3772289.66 -1.0169 0 
SSE(lst20): 2.965E+09 
SSE (all 500): 6.204E+11 

Equation: Y(x)=a*xAb+cmin 

Stanford-B 
Parameters: «* beta* n* 

1753527.5 -3.3272 -0.8136 
SSE (1st 20): 2.814E+09 
SSE (all 500): 1.560E+10 

Equation: Y(x)=a*(x+beta)A n 

AR(1) 
Parameters: phi* const* 

0.88739 11333.898 
SSE (1st 20): 2.452E+09 
SSE (all 500): 1.075E+12 

Equation: AR(1)= phi*(ARl -l)+const+noise 

AR(2) 
Parameters: phi_l* phi_2* const* 

0.9032423 -0.0341 14658.230 
SSE (1st 20): 2.350E+09 
SSE (all 500): 9.413E+09 

Equation: AR(2)= phil*(AR 2-l)+phi2*(AR2 ■2)+const+noise 

\RU) 
Parameters: phi_l* phi 2* phi_3*       |       const* 

0.89068 -0.00943 -0.03295          18459.07235 
SSE (1st 20): 2.257E+09 
SSE (all 500): 2.160E+12 

Equation: AR(3)= phil*(AR 3-l)+phi2*(AR3 
const+noise 

-2)+phi3*(AR3-3)+ 

AR(4) 
Parameters: phi_l* |       phi_2* |       phi_3*       |       phi_4*      |         const* 

0.85381 -0.01134 0.02524             -0.08194           29783.44523 

SSE (1st 20): 1.707E+09 
SSE (all 500): 4.063E+10 

Equation: AR(4)= phil*(AR 4-l)+phi2*(AR4 
phi4*(AR4-4)+c 

-2)+phi3*(AR4-3)+ 
onst+noise 
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(more) Table D-l Detailed Summary of Forecasting the Historical F-102 Data Base 
ARMA(l.l) 

Parameters: muprime* theta*       |         phi* 
11141.4558 0.17746              0.88825 

SSE(lst20): 2.414E+09 
SSE (all 500): 1.036E+12 

Equation: ARMA(l,l)=phi*(ARMA(l,l)-l)+muprime-theta*errorlast+noise 
ARMA(1,2) 

Parameters: muprime*      |        phil*        j       thetal*       |      theta2* 
10202.6021             0.90340              1.04307             0.67739 

SSE (1st 20): 1.153E+09 
SSE (all 500): 1.294E+12 

Equation: ARMA(l£)=phil*(ARMA(l,2)-l)+muprime-thetal*errorlast- 
theta2*errorlastlast+noise 

ARMA(2.1) 
Parameters: muprime*      |        phil*        |        phi2*        |       theta* 

26833.4934             0.91517              -0.10895              1.72503 
SSE (1st 20): 8.848E+08 
SSE (all 500): 3.320E+12 

Equation: ARMA(2,l)=phil*(ARMA(2,l)-l)+phi2*(ARMA(2,l)-2)+muprime 
theta*errorlast+noise 

" 

ARMA(2,2) 
Parameters: muprime*     |        phil*        |        phi2*        |      thetal* theta2* 

15389.0325            0.93634             -0.07749             1.29884 0.46942 

SSE (1st 20): 8.793E+08 
SSE (all 500): 1.458E+12 

Equation: ARMA(2,2)=phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+muprime 
thetal*errorlast-theta2*errorlastlast+noise 

" 

Table D-2 Brief Summary of Forecasting the Historical F-102 Data Base 
Model SSE (1st 20)        SSE (last 480)      SSE lull 500) Rank (l«t 20) Rank (last 480) 

Log-Linear 2.965E+09           6.175E+11 6.204E+11 10 4 
Forsythe 2.965E+09           6.175E+11 6.204E+11 10 4 

Stanford-B 2.814E+09           1.278E+10 1.560E+10 9 2 

AR(1) 2.452E+09            1.073E+12 1.075E+12 8 6 

AR(2) 2.350E+09           7.064E+09 9.413E+09 6 1 

AR(3) 2.257E+09           2.158E+12 2.160E+12 5 9 

AR(4) 1.707E+09           3.892E+10 4.063E+10 4 3 

ARMA(I.I) 2.414E+09            1.034E+12 1.036E+12 7 5 
ARM Ad,2) 1.153E+09            1.293E+12 1.294E+12 3 7 
ARMA(2,1) 8.848E+08           3.319E+12 3.320E+12 2 10 

\RMA<2.2) 8.793E+08            1.457E+12 1.458E+12 1 8 
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Parameters: a* b* 
3772289 657 -1.016921814 

SSE(lst 20): 2.%5E-KW 
SSE(all 500): fi.204E+ll 

Equation: Y(x)=a*xAb 

Figure D-l EXCEL, Log-Linear Forecast of F-102 Historical Data 
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Parameters: a* b* cmin* 
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Equation: Y(x)=a*xAb+cmin 

Figure D-2 EXCEL, Forsythe Forecast of F-102 Historical Data 
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Parameters: a* beta* n* 
1753527.473 ■.' 3272W -0.813566665 

SSE(lst 20): 2.814E+W 
SSE(all 500): 1.560E+10 

Equation: Y(x)=a*(x+beta)An 

Figure D-3 EXCEL, Stanford-B Forecast of F-102 Historical Data 

Stanford-B Forecast of F-102 (using 20 unit history) 
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Parameters: phi*                       const* 
0.887387686                 11333.89809 

SSE (1st 20): 2.452E+09 
SSE (all 500): 1.075E+12 

Equation: AR1 = phi*(Ysubx-l)+const terror 

Figure D-4 EXCEL, AR(1) Forecast of F-102 Historical Data 

AR(1) Forecast of F-102 (using 20 unit history) 
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Parameters: phij* phi_2* const* 
0.yu32422?2                  -n.u M05KS6                M6M.2.WI.1 

SSE (1st 20):                        2.350E+Ü9 

SSE (all 500):                      9.413E+09 
Equation: AR(2) = phi_l«(Ysubx-l)+ phi_2*(Ysubx-2)+const+error  

Figure D-5 EXCEL, AR(2) Forecast of F-102 Historical Data 

AR(2) Forecast of F-102 (using 20 unit history) 
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Parameters: phi_l*                      phi_2*                    phi_3*                    const* 
0.890677547              -0.009425592            »0.032951483             1Ä459.07235 

SSE(lst20): :.257K+U>» 
SSE (all 500): 2.160E+12 

Equation: AR(3) = phi_l*(Ysubx-l)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error 

Figure D-6 EXCEL, AR(3) Forecast of F-102 Historical Data 
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Parameters: Phi-1* P1"-2* phi_3* 
OSSISOSWä -0.011-U43K1 0.02514:81? 

SSE (1st 20): I.707E+W 
SSE (all 500): 4.063E+10 

Equation: AR(4) = phi_l*(Ysubx-l)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error 

phi_4* 
■O.08l««58-1 

const* 
29783.44523 

Figure D-7 EXCEL, AR(4) Forecast of F-102 Historical Data 

AR(4) Forecast of F-102 (from 20 unit history) 
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PLN Number 

Parameters: 

SSE(lst25): 
SSE (all 500): 
Equation: 

muprime*                   theta*                       phi* 
11141.4558                 0.1775                   0.8883 
2.4MR+09 

1.036E+12 
ARMA(1,1) = phi*(ARMA(l,l)-l)+muprime-theta*errorlast+noise 

Figure D-8 EXCEL, AR(1,1) Forecast of F-102 Historical Data 
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Parameters: muprime*                    phil*                     thetal*                   theta2* 
10202.6021                   0.9034                     1.0431                0.677387668 

SSE (1st 25): !.I?3E+W 
SSE (all 500): 1.294E+12 
Equation: ARMA(1,2) = phil*(ARMA(l,2)-l)+muprime-thetal*errorlast- 

theta2*errorlastlast+noise 

Figure D-9 EXCEL, AR(1,2) Forecast of F-102 Historical Data 
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PLN Number 

Parameters: 

SSE(lst25): 
SSE (all 500): 
Equation: 

muprime'1'                    phil*                      phi2* 
26833.4 W                   DM152                 -0.10KOM066 
8.848E+0X 
3.320E+12 

ARMA(2,1) = phil*(ARMA(2,l)-l)+phi2*(ARMA(2,l)-2)+ 
muprime-theta*errorlast+noise 

theta* 
1.7250 

Figure D-10 EXCEL, AR(2,1) Forecast of F-102 Historical Data 
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Parameters: muprime*                    phil*                      phi2*                    thetal* (hi-ta2* 
15389.0125                  O.'JIM                    -0.0775               1.2l)8S42272 0.469419732 

SSE (1st 20): 8.7¥1E-H>.\ 
SSE (all 500): 1.458E+12 
Equation: ARMA(2,2) = phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+ 

muprime- thetal*errorlast-theta2*errorlastlast+noise 

Figure D-ll EXCEL, AR(2,2) Forecast of F-102 Historical Data 
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Appendix E 

The Historical F-102 Data Base - 500 Observations 



Table E-l The Historical F-102 Data 

F-102 Data Base 

OBS PLN       DelaySeq     TOTHRS Lot Contract* DM 
1 1 1 402475 1 5942 1 
2 2 2 375849 1 5942 3 
3 3 3 278963 2 5942 7 
4 4 4 271223 2 5942 7 
5 5 5 262498 2 5942 8 
6 6 6 258078 2 5942 9 
7 7 7 243726 2 5942 10 
8 8 8 232766 2 5942 10 
9 9 9 220833 2 5942 11 
10 10 10 218827 2 5942 12 
11 11 11 322447 3 5942 15 
12 12 12 306736 3 5942 16 
13 13 13 290470 3 5942 17 
14 14 14 282951 3 5942 18 
15 15 15 233125 4 5942 21 
16 16 16 215379 4 5942 22 
17 17 17 203122 4 5942 22 
18 18 21 189770 4 5942 24 
19 19 18 164120 4 5942 23 
20 20 19 169080 4 5942 23 
21 22 20 150387 4 5942 23 
22 23 22 154606 4 5942 24 
23 24 23 168896 4 5942 27 
24 25 27 159485 4 5942 27 
25 26 25 149109 4 5942 27 
26 27 32 129792 5 5942 28 
27 28 24 128958 5 5942 27 
28 29 31 130389 5 5942 28 
29 31 26 114872 4 239Q3 26 
30 32 36 128470 5 5942 28 
31 33 35 121932 5 5942 28 
32 34 29 117969 5 5942 28 
33 35 33 117364 5 5942 28 
34 36 37 116895 5 5942 29 
35 37 30 94174 5 23903 27 
36 38 40 115466 5 5942 29 
37 39 28 111137 5 5942 27 
38 40 47 108890 5 5942 30 
39 41 49 113487 5 5942 30 
40 43 55 115846 5 5942 30 
41 44 39 111029 5 5942 29 
42 45 44 107397 5 5942 29 
43 21 38 164751 4 5942 29 
44 30 46 119597 5 5942 29 
45 47 52 100520 6 23903 31 
46 48 50 100504 6 23903 '31 
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Table E-l The Historical F-102 Data 
tt£»i^i&i*HKkt&ä&&K^^ H^^^H^B 

F-102 Data Base 

OBS PLN DelaySeq TOTHRS Lot Contract* DM 
47 49 34 98316 6 23903 30 
48 51 57 99317 6 23903 32 
49 52 41 98162 6 23903 30 
50 53 42 94614 6 23903 30 
51 55 43 91628 6 23903 30 
52 56 45 88098 6 23903 30 
53 58 48 90164 6 23903 30 
54 60 51 86840 6 23903 31 
55 61 53 87197 6 23903 31 
56 63 54 93812 6 23903 32 
57 65 56 97725 6 23903 32 
58 66 59 92401 7 23903 33 
59 67 58 86481 7 23903 33 
60 69 60 86830 7 23903 33 
61 70 61 84477 7 23903 33 
62 72 70 88589 7 23903 34 
63 62 75 73200 9 23903 34 
64 73 62 81738 7 23903 33 
65 74 109 90762 7 23903 35 
66 75 64 81865 7 23903 34 
67 77 65 79839 7 23903 34 
68 78 66 79358 7 23903 34 
69 79 67 79651 7 23903 34 
70 80 68 77606 7 23903 34 
71 82 69 75097 7 23903 34 
72 46 86 103137 6 23903 35 
73 64 81 77297 9 23903 34 
74 83 71 75510 7 23903 34 
75 84 145 83796 7 23903 35 
76 85 72 82662 7 23903 35 
77 86 73 85787 7 23903 35 
78 88 146 87891 7 23903 35 
79 89 74 78264 7 23903 35 
80 90 76 76967 7 23903 35 
81 91 77 74963 7 23903 35 
82 92 78 74628 7 23903 35 
83 93 79 76608 7 23903 35 
84 94 80 73689 7 23903 35 
85 96 82 79580 8 29264 35 
86 97 84 77425 8 29264 36 
87 42 63 137990 6 23903 33 
88 98 83 77409 8 29264 35 
89 99 88 75854 8 29264 36 
90 100 85 78187 8 29264 36 
91 101 87 76044 8 29264 36 
92 102 89 75017 8 29264 36 
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Table E-l The Historical F-102 Data 

F-102 Data Base 

OBS PLN       DelaySeg     TOTHRS Lot Contract# DM 
93 103 91 73337 8 29264 36 
94 104 94 72091 8 29264 36 
95 105 92 72916 8 29264 36 
96 107 93 69718 8 29264 36 
97 108 106 71085 8 29264 37 
98 109 95 68818 8 29264 36 
99 110 96 72137 8 29264 37 
100 111 97 72101 8 29264 37 
101 112 99 70917 8 29264 37 
102 113 98 71333 8 29264 37 
103 115 100 72966 8 29264 37 
104 116 101 69869 8 29264 37 
105 117 103 69895 8 29264 37 
106 118 104 70448 8 29264 37 
107 119 105 71490 8 29264 37 
108 120 108 69560 8 29264 37 
109 132 120 65290 9 29264 37 
110 133 121 64415 9 29264 37 
111 134 122 64269 9 29264 37 
112 135 123 65396 9 29264 37 
113 136 124 65398 9 29264 37 
114 137 123 65747 9 29264 37 
115 138 127 63262 9 29264 38 
116 140 126 65332 9 29264 38 
117 141 128 61274 9 29264 38 
118 142 129 64319 9 29264 38 
119 143 130 64793 9 29264 38 
120 144 131 61270 9 29264 38 
121 145 134 63046 9 29264 38 
122 146 132 65928 9 29264 38 
123 147 135 60844 9 29264 39 
124 148 137 64753 9 29264 38 
125 59 133 77679 9 23903 38 
126 68 102 86933 9 23903 37 
127 71 90 78669 9 23903 36 
128 121 111 72530 9 29264 37 
129 122 112 70642 9 29264 37 
130 123 110 69385 9 29264 37 
131 124 113 64465 9 29264 37 
132 125 114 66052 9 29264 37 
133 126 115 66023 9 29264 37 
134 128 116 65284 9 29264 37 
135 129 117 64232 9 29264 37 
136 130 118 64695 9 29264 37 
137 131 119 65503 9 29264 37 
138 150 136 63054 9 29264 • 38 
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Table E-l The Historical F-102 Data 

F-102 Data Base 

OBS PLN       DelaySeq     TOTHRS Lot Contract# DM 
139 151 138 63048 9 29264 38 
140 152 139 64929 9 29264 38 
141 153 740 62522 9 29264 38 
142 154 142 60538 9 29264 38 
143 155 141 62861 9 29264 38 
144 156 147 61370 9 29264 38 
145 157 148 60747 9 29264 39 
146 158 143 60665 9 29264 38 
147 159 149 62824 9 29264 38 
148 161 150 58087 9 29264 38 
149 162 152 59473 9 29264 38 
150 163 157 63951 9 29264 38 
151 164 153 59320 9 29264 38 
152 165 156 60055 9 29264 38 
153 166 154 61220 9 29264 38 
154 167 155 62458 9 29264 38 
155 168 157 62412 9 29264 38 
156 170 158 61843 9 29264 38 
157 171 159 63077 9 29264 38 
158 172 160 62071 9 29264 38 
159 173 161 61858 10 29264 38 
160 174 162 60979 10 29264 38 
161 175 163 58349 10 29264 38 
162 176 164 60204 10 29264 38 
163 177 167 56691 10 29264 38 
164 178 165 60527 10 29264 38 
165 180 166 57210 10 29264 38 
166 181 168 59645 10 29264 38 
167 182 170 59433 10 29264 38 
168 50 171 102354 6 23903 38 
169 54 107 94057 8 23903 37 
170 57 144 84495 8 23903 38 
171 183 169 57653 10 29264 39 
172 184 172 57566 10 29264 39 
173 185 173 56691 10 29264 39 
174 186 174 56621 10 29264 39 
175 187 176 59791 10 29266 39 
176 188 177 56079 10 29264 39 
177 76 181 58506 10 23903 39 
178 190 178 59994 10 29264 39 
179 191 179 60757 10 29264 39 
180 192 180 54645 10 29264 39 
181 193 182 59312 10 29264 39 
182 194 183 59483 10 29264 39 
183 195 184 55581 10 29264 39 
184 196 185 57455 10 29264 39 
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Table E-l The Historical F-102 Data 
!JBK^iiSiiifB^";Ü;j;'V""i^i^^^'*MJtr;iritV riiiriiii ••iitiV*t~,i» 

llliill§llfip F-102 Data Base 

OBS PLN DelaySeq TOTHRS Lot Contract* DM 
185 198 175 54241 10 29264 39 
186 199 186 59042 10 29264 39 
187 200 187 56001 10 29264 39 
188 201 188 53381 10 29264 39 
189 202 189 57139 10 29264 39 
190 203 190 55403 10 29264 39 
191 201 191 54271 10 29264 39 
192 81 192 54031 10 23903 39 
193 206 193 57332 10 29264 39 
194 207 194 53560 10 29264 39 
195 208 193 56839 10 29264 39 
196 209 196 55439 10 29264 39 
197 210 197 53354 10 29264 39 
198 211 198 57169 10 29264 39 
199 212 199 56625 10 29264 39 
200 214 200 53698 10 29264 39 
201 215 201 55117 10 29264 39 
202 216 202 64410 11 31174 40 
203 217 203 63457 11 31174 40 
204 218 204 64855 11 31174 40 
205 219 203 64709 11 31174 40 
206 220 206 61493 11 31174 40 
207 87 207 61633 11 23903 40 
208 222 208 64154 11 31174 40 
209 223 209 60020 11 31174 40 
210 224 210 61057 11 31174 40 
211 226 211 64077 11 31174 40 
212 227 212 62750 11 31174 40 
213 228 213 63673 11 31174 40 
214 229 214 61986 11 31174 40 
215 231 215 65932 11 31174 40 
216 232 216 64059 11 31174 40 
217 233 217 61146 11 31174 40 
218 234 218 63329 11 31174 40 
219 236 219 54223 12 31174 40 
220 237 220 57406 12 31174 40 
221 95 221 52714 11 23903 40 
222 238 222 57999 12 23903 40 
223 239 223 58051 12 31174 40 
224 241 224 47604 12 31174 40 
225 242 225 55653 12 31174 40 
226 243 226 53132 12 31174 40 
227 244 227 55019 12 31174 40 
228 246 228 51793 12 31174 40 
229 247 229 54301 12 31174 40 
230 248 230 51429 12 31174 40 
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Table E-l The Historical F-102 Data 

F-102 Data Base 

OBS PLN       DelaySeq     TOTHRS Lot Contract* DM 
231 249 231 59606 12 31174 46 
232 251 232 51161 12 31174 40 
233 252 233 53072 12 31174 40 
234 253 234 56653 12 31174 40 
235 106 235 53057 11 23903 41 
236 254 236 55143 12 31171 40 
237 256 237 50899 12 31174 40 
238 257 238 52395 12 31174 40 
239 258 239 50183 12 31174 40 
240 259 240 52217 12 31174 40 
241 261 241 52656 12 31174 40 
242 262 245 52818 12 31174 41 
243 263 242 49485 12 31174 40 
244 265 246 52517 12 31174 41 
245 266 251 49671 12 31174 41 
246 267 247 54124 12 31174 41 
247 269 248 50204 12 31174 41 
248 270 243 52963 12 31174 41 
249 271 249 51224 12 31174 41 
250 114 244 50005 11 23903 41 
251 273 250 52793 12 31174 41 
252 274 252 49813 12 31174 41 
253 275 253 51312 12 31174 41 
254 277 254 49304 12 31174 41 
255 278 257 50879 12 31174 41 
256 279 255 48798 12 31174 41 
257 281 256 51624 12 31174 41 
258 282 258 47738 12 31174 41 
259 283 259 52435 12 31174 41 
260 285 262 48038 12 31174 41 
261 127 263 50935 12 23903 42 
262 286 260 49978 12 31174 41 
263 287 261 49255 12 31174 41 
264 289 264 49755 12 31174 41 
265 290 271 46508 12 31174 41 
266 291 277 49555 12 31174 41 
267 293 265 47469 12 31174 41 
268 294 272 50337 12 31174 41 
269 295 266 48865 12 31174 41 
270 139 273 51644 12 23903 42 
271 297 267 49463 12 31174 41 
272 298 268 47582 12 31174 41 
273 299 269 49975 12 31774 41 
274 301 274 46285 12 31174 41 
275 302 275 50195 12 31174 41 
276 303 283 47662 12 31174 42 
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Table E-l The Historical F-102 Data 
^^^.^^^■■■i^^A^F^y^^^"^^'^'- *■•?— '-SV"'-/ '-.:..      ■':■''" •■ '■' ''.."":<i/Vi" 

F-102 Data Base 
'!$t&&X&4wt?iiVl-i'. SIS-"- ■ 

OBS PLN DelaySeq TOTHRS Lot Contract# DM 
277 149 270 53218 13 29264 43 
278 305 278 51616 12 31174 42 
279 306 279 46355 12 31174 42 
280 307 285 50820 12 31174 42 
281 308 276 48181 12 31174 41 
282 309 280 48972 12 31174 42 
283 310 284 47284 12 31174 42 
284 311 286 51997 12 31174 42 
285 312 289 47163 12 31174 42 
286 313 281 49759 12 31174 42 
287 314 282 46257 72 31174 42 
288 160 287 54706 13 29264 43 
289 315 290 49545 12 37174 42 
290 316 291 47045 72 31174 42 
291 317 292 49222 12 31174 42 
292 318 288 47705 12 31174 42 
293 319 293 49419 12 31174 42 
294 320 297 46921 12 31174 42 
295 321 295 50453 12 31174 42 
296 322 296 47644 12 31174 42 
297 169 298 51951 13 29264 43 
298 323 294 49567 12 31174 42 
299 324 311 46926 13 31174 42 
300 325 299 48883 13 31174 42 
301 326 308 48317 13 31174 42 
302 327 309 20921 13 31174 42 
303 328 300 46097 13 31174 42 
304 329 301 51757 13 31174 42 
305 330 302 46997 13 31174 42 
306 179 324 46463 14 29264 44 
307 331 303 48965 13 31174 42 
308 332 312 46431 13 31174 42 
309 333 310 49284 13 31174 42 
310 334 304 48369 13 31174 42 
311 335 - 305 48940 13 31174 42 
312 336 313 45578 13 31174 42 
313 337 319 50382 13 37174 43 
314 338 306 45772 13 31174 42 
315 339 307 47439 13 31174 42 
316 189 377 43656 14 29264 44 
317 340 467 43759 13 31174 46 
318 341 314 49828 13 31174 42 
319 342 315 46317 13 31174 42 
320 343 316 48883 13 31174 42 
321 344 320 46107 13 31174 43 
322 345 317 47944 13 31174 43 
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Table E-l The Historical F-102 Data 

F-102 Data Base 

OBS PLN       DelaySeq     TOTHRS Lot Contract* DM 
323 346 321 46362 13 31174 43 
324 347 378 49038 13 31174 43 
325 348 325 48512 13 31174 43 
326 349 322 48172 13 31174 43 
327 350 323 45123 13 31174 43 
328 197 365 44669 14 29264 44 
329 351 326 46952 13 31174 43 
330 352 327 45029 13 31174 43 
331 353 331 47745 13 31174 43 
332 354 328 43882 13 31174 43 
333 355 329 46630 13 31174 43 
334 356 330 46004 13 31174 43 
335 357 332 48265 13 31174 43 
336 358 333 45810 13 31174 43 
337 359 336 47808 13 31174 43 
338 360 348 45384 13 31174 43 
339 205 384 41615 14 29264 45 
340 361 334 47072 13 31174 3 
341 362 337 46680 13 31174 43 
342 363 335 45825 13 31174 43 
343 364 338 46737 13 31174 43 
344 365 349 44783 13 31174 43 
345 366 339 46061 13 31174 43 
346 367 340 46326 13 37174 43 
347 368 347 44932 13 31174 43 
348 369 341 46868 13 31174 43 
349 370 342 45799 13 31774 43 
350 213 385 40989 14 29264 45 
351 371 343 45658 13 31174 43 
352 372 353 44921 13 31174 43 
353 373 350 45909 13 31174 43 
354 374 344 45890 13 31174 43 
355 375 345 45209 13 31174 43 
356 376 346 46284 13 31174 43 
357 377 351 44480 13 31174 43 
358 378 354 46528 13 31174 43 
359 379 355 45290 13 31174 43 
360 380 352 46779 13 31174 43 
361 220 366 43022 14 29264 44 
362 381 356 45011 13 31174 43 
363 382 357 46331 13 31174 43 
364 383 358 45536 13 31174 43 
365 384 397 45241 13 31174 44 
366 385 359 44991 13 31174 43 
367 386 360 46435 13 31174 43 
368 387 361 44128 13 31174 '43 
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Table E-l The Historical F-102 Data 

F-102 Data Base~ 
|'?S!S*»!t":V:'i*«':i'"'^   : 

!»*»>■ Wi* A* 

OBS PLN       DelaySeq     TOTHRS Lot Contract* DM 
369 388 367 47348 13 31174 44 
370 389 362 43402 13 31174 43 
371 390 368 47047 13 31174 44 
372 391 369 44173 13 31174 44 
373 225 410 40271 14 29264 46 
374 392 363 46565 13 37174 44 
375 393 370 44759 13 31174 44 
376 394 364 45930 13 31174 44 
377 395 378 46869 13 37174 44 
378 396 373 46292 13 31174 44 
379 397 380 44844 13 31174 44 
380 398 371 44195 13 31174 44 
381 399 372 45243 13 31174 44 
382 400 386 45916 13 31174 44 
383 401 375 44838 13 31174 44 
384 402 381 44763 13 31174 44 
385 230 421 41948 14 29264 45 
386 403 374 44645 13 31174 44 
387 404 376 43948 13 31174 44 
388 405 389 43744 13 31174 44 
389 406 382 44580 13 31174 44 
390 407 391 46038 13 37174 44 
391 408 387 43652 13 31174 44 
392 409 379 42371 13 31174 44 
393 410 383 45607 13 31174 44 
394 411 388 44552 13 31174 44 
395 412 392 47014 13 31174 44 
396 413 393 44289 13 31174 44 
397 414 394 45401 13 31174 44 
398 235 428 39196 14 29264 46 
399 415 390 43368 13 31174 44 
400 416 403 46979 14 31174 44 
401 417 398 44974 14 31174 44 
402 418 404 46598 14 31174 44 
403 419 395 43842 14 31174 44 
404 420 399 46131 14 31174 44 
405 421 396 43247 14 31174 44 
406 422 400 44734 14 31174 44 
407 423 401 43501 14 31174 44 
408 424 402 46129 14 31174 44 
409 425 405 42443 14 31174 44 
410 240 454 34031 14 29264 46 
411 426 417 44328 14 31174 45 
412 427 406 44473 14 31174 44 
413 428 407 43418 14 31174 44 
414 429 408 43775 14 31174 44 

E-9 



Table E-l The Historical F-102 Data 
HaMESBgjgiwaajggg 
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F-102 Data Base 

OBS PLN DelaySeq TOTHRS Lot Contract* DM 

415 430 409 42007 14 31174 44 

416 431 411 42537 14 31174 44 

417 432 422 43270 14 31174 45 

418 433 418 42650 14 31174 45 

419 434 412 43261 14 31174 45 

420 435 413 42486 14 31174 45 

421 436 414 42083 14 31174 45 

422 437 419 42678 14 31174 45 

423 245 440 34969 14 29264 46 

424 438 425 41673 14 31174 45 

425 439 415 41431 14 31174 45 

426 440 420 41347 14 31174 45 

427 441 416 43084 14 31174 45 

428 442 429 42843 14 31174 45 

429 443 462 44814 14 31174 45 

430 444 441 41706 14 31174 45 

431 445 423 41108 14 31174 45 

432 496 426 41091 14 31174 45 

433 447 424 42091 14 31174 45 

434 448 430 40599 14 31174 45 

435 250 470 33149 14 29261 46 

436 449 437 43760 14 31174 45 

437 450 427 42527 14 31174 45 

438 451 438 41942 14 31174 45 

439 452 431 41095 14 31174 45 

440 453 432 42314 14 31174 43 

441 454 466 40751 14 31174 43 

442 455 434 40744 14 31174 45 

443 456 439 39510 14 31174 45 

444 457 433 41948 14 31174 45 

445 458 442 39649 14 31174 45 

446 459 435 41034 14 31174 45 

447 460 436 38751 14 31174 45 

448 255 475 32806 14 29264 46 

449 461 443 41160 14 31174 45 

450 462 444 39329 14 31174 45 

451 463 445 40440 14 31174 15 

452 464 446 38930 14 31174 45 

453 465 447 39816 14 31174 45 

454 466 455 40240 74 31174 45 

455 467 448 39527 14 31174 45 

456 468 449 38800 14 31174 45 

457 469 450 40127 14 31174 45 

458 470 456 38137 14 31174 45 

459 471 451 40364 14 31174 45 

460 472 559 35847 14 31174 48 
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Table E-l The Historical F-102 Data 

ase 
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F-102 Data B 

OBS PLN DelaySeq TOTHRS Lot Contract# DM 
461 265 499 34639 11 29264 47 
462 473 452 36716 14 31174 45 
463 474 457 38847 14 31174 45 
464 475 458 37680 14 31170 45 
465 476 459 39414 14 31174 45 
466 477 453 36786 14 31174 45 
467 478 476 41041 14 31174 46 
468 479 471 38556 14 31174 46 
469 480 460 38464 14 31174 45 
470 481 477 38209 14 31174 46 
471 482 463 39360 14 31174 45 
472 483 461 39663 14 31174 45 
473 484 464 39031 14 31174 45 
474 485 465 36913 14 31171 45 
475 486 472 39743 14 31174 46 
476 487 468 38969 14 31174 46 
477 264 480 32783 15 29264 46 
478 488 469 37974 14 31174 46 
479 489 481 37991 14 31174 46 
480 490 482 37959 14 31174 46 
481 491 473 38523 14 31174 46 
482 492 478 37149 14 31174 46 
483 493 474 38780 14 31174 46 
484 494 479 38127 14 31174 46 
485 495 490 38422 14 31171 46 
486 496 483 37055 14 31174 46 
487 497 491 38173 14 31174 46 
488 498 492 36687 14 31174 46 
489 499 484 38894 14 31174 46 
490 500 485 37772 14 31174 46 
491 258 537 33992 15 29264 47 
492 501 486 39701 14 31174 46 
493 502 487 36984 14 31174 46 
494 503 488 37937 14 31174 46 
495 504 493 39253 14 31171 46 
496 505 494 39241 14 31174 46 
497 506 495 39234 14 31174 46 
498 507 504 34978 14 31174 47 
499 508 489 39354 14 31174 46 
500 509 496 38089 14 31174 46 
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Appendix F 

Fit/Forecasting the Notional C-17 Data Using 15 Observations 
and a 

Hold-out Sample of 8 Observations 
(Work done in EXCEL) 



Table F-l Detailed Summary of Fit/Forecasting the Notional C-17 Data 
[                    Fore casting the Notional C-17 Based on a 15 Unit History 

Log-Linear 
Parameters: a*         |          b* 

277.2899795     -0.907621213 
SSE(lst 15): 870.72 
SSE(all 23): 1040.10 
Equation: Y(x)=a*xAb 

Forsythe 
Parameters: a*         |          b* cmin* 

1698.48              -2.5006 26.70880797 
SSE(lst 15): 291.11 
SSE(alI 23): 386.54 
Equation: Y(x)=a*xAb+cmin 

Stanford-R 
Parameters: a*         |        beta* n* 

68.2                 -3.1519 -0.3658 
SSE(lst 15): 359.22 
SSE(aIl 23): 364.74 
Equation: Y(x)=a*(x+beta)An 

AR(1) 
Parameters: phi*        |        const* 

0.88464              -0.882 
SSE (1st 15): 1266.93 
SSE (all 23): 1727.75 

Equation: AR(1) = phi*(ARl-l)+const+err or 

AR(2) 
Parameters: phi_l*      |       phi_2* const* 

0.9010377            -0.0341 -0.253 
SSE (lstl5): 1340.36 
SSE (all 23): 1753.94 

Equation: AR(2) = phi_l*(AR2-l)+ phi_2*(AR2-2)+const+error 

AR(3) 
Parameters: phi_l*      |       phi_2* phi_3*     |      const* 

0.88898             -0.00943 -0.03295       0.481052734 
SSE (1st 15): 1405.53 
SSE (all 23): 1753.98 

Equation: AR(3) = phi_l*(AR3-l)+ phi_2*(AR3-2)+phi_3*(AR3-2)+ 
const+noise 
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(more) Table F-l Detailed Summary of Fit/Forecasting the Notional C-17 Data 
AR(4) 

Parameters: phi_l*      I       phi_2*       |     phi_3*     |      phi_4* const* 
0.85284             -0.01134            0.02524          -0.08194 2.673475955 

SSE (1st 15): 1302.12 
SSE (all 23): 1503.48 

Equation: AR(4) = phi_l*(AR4-l)+ phi_2*(AR4-2)+phi_3*(AR4-3)+ 
phi_4*(AR4-4)+const+noise 

ARMA(l.I) 
Parameters: muprime* theta*       |       phi* 

16.9352 1.74432             0.44741 
SSE (1st 15): 89.91 
SSE (all 23): 398.09 

Equation: ARMA(l,l)=phi*(ARMA(l,l)-l)+muprime-theta*errorlast+noise 
ARMA(1.2) 

Parameters: muprime*   |        phil*        |     thetal*    |     theta2* 
15.9419             0.89942            -0.49149          0.13381 

SSE (1st 15): 3698.99 
SSE (all 23): 10270.02 

Equation: ARMA(l£)=phil*(ARMA(l,2)-l)+muprime-thetal*errorlasl 
theta2*errorlastlast+noise 

ARMA(2,n 
Parameters: muprime*   |        phil*        |      phi2*      |      theta* 

21.6784             0.40971            -0.10521          -0.42491 
SSE (1st 15): 329.95 
SSE (all 23): 572.27 

Equation: ARMA(2,l)=phil*(ARMA(2,l)-l)+pni2*(ARMA(2,l)-2)+ 
muprime- theta*errorlast+noise 

ARMA(2,2) 
Parameters: muprime*   |        phil*        |      phi2*      |      thetal* theta2* 

20.4647              0.41473            -0.07662          -0.20164 -0.13734 
SSE (1st 15): 302.85 
SSE (all 23): 524.07 

Equation: ARMA(2,2)=phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+ 
muprime-thetal*errorlast-theta2*errorlastIast+noise 

Table F-2 Brief Summary of Fit/Forecasting the Notional C-17 Data 
Model SSE (1st 15)       SSE (all 23)      SSE (last 8) Rank (1st 15)   Rank (all 23) Rank (8) 

Log-Linear 870.7                1040.1                169.4 6                     6 3 
Forsvthe 291.1                 386.5                 95.4 2                     2 2 

Stanford-B 359.2                  364.7                   5.5 5                      1 1 

ARM) 1266.9               1727.7               460.8 7                      8 10 
AR<2) 1340.4                1753.9                413.6 9                       9 9 
AR(3) 1405.5                1754.0                348.4 10                     10 8 
AR(4) 1302.1                1503.5               201.4 8                       7 4 

ARMA(l.l) 89.9                  398.1                308.2 1                       3 7 
ARMA(1,2) 3699.0               10270.0              6571.0 11                     11 11 
ARMA(2,1) 329.9                 572.3                242.3 4                       5 6 
ARMA(2,2) 302.9                 524.1                221.2 3                       4 5 
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Parameters: 

SSE(lst 15): 
SSE(all 23): 
Equation: 

277.2899795 
8.707E+02 
1.040E+03 

Y(x)=a*xAb 

b* 
-0.907621213 

Figure F-l EXCEL, Log-Linear Model Fit/Forecast of Notional C-17 Data 

10  - 

3.5 

Log-Linear/C-17 Forecast (from 15 unit history) 

10 12       13       14       15 

Observation Number 

16 19       20 22       23 

Parameters: a* b* cmin* 

lf)0S.47WK)S -2.50(K)372S1 26.70880797 

SSE(lst 15): 2.9IIF.+IU 

SSE(all 23): 3.SME+D2 

Equation: Y(x)=a*xAb+cmin 

Figure F-2 EXCEL, Forsythe Fit/Forecast of Notional C-17 Data 

Forsythe/C-17 Forecast (from 15 unit history) 
120 

100 

e 
9 
O 
X 

O T- 

Observation Number 
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Parameters: a*                 beta* n* 
68.192195       -3.15186838 -0.365773163 

SSE(lst 15): 3.592E+02 
SSE(all 23): 364.7427137 

Equation: Y(x)=a*(x+beta)An 

Figure F-3 EXCEL, Stanford-B Fit/Forecast of Notional C-17 Data 

Stanford-B/C-17 Forecast (from 15 unit history) 

v- CM 

Observation Number 

Parameters: phi*                const* 
0.884635386    -0.882021084 

SSE (1st 15): 1.267E+03 
SSE (all 23): 1.728E+03 
Equation: AR(1) = phi*(Ysubx-l)+const+error 

Figure F-4 EXCEL, AR(1) Fit/Forecast of Notional C-17 Data 

AR(1)/C-17 Forecast (from 15 unit history) 

Observation Number 
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Parameters: phi_l*             phi_2*            const* 
0.90103771     -0.034061831  -0.252825401 

SSE (lstl5): 1.340E+03 
SSE (all 23): 1.754E+03 

Equation: AR(2) = phi_l*(Ysubx-l)+ phi_2*(Ysubx-2)+const+error 

Figure F-5 EXCEL, AR(2) Fit/Forecast of Notional C-17 Data 

AR(2)/C-17 Forecast (from 15 unit history) 

100 

in       10       co to a> O y- CM CO m        co CO O) 
CM CM CM CM 

Observation Number 

Parameters: phi_l*               phi_2*              phi_3*             const* 
0.888975471      -0.009425773    -0.032953591   0.481052734 

SSE (1st 15): 1.406E+03 
SSE (all 23): 1.754E+03 

Equation: AR(3) = phi_l*(Ysubx-l)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error 

Figure F-6 EXCEL, AR(3) Fit/Forecast of Notional C-17 Data 

AR(3)/C-17 Forecast (from 15 unit history) 

Observation Number 
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Parameters: phi_1* phi_2* phi 3* phi_4* const* 
(l.KS2K3'>fi(17      -O.OII344546     0.025242066   -0.081943217    2.67347.^5? 

SSE (1st 15): 1.302E+OJ 
SSE (all 23):        1.503E+03 

Equation:       AR(4) = phi_l*(Ysubx-l)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error 

Figure F-7 EXCEL, AR(4) Fit/Forecast of Notional C-17 Data 

AR(4)/C-17 Forecast (from 15 unit history) 

100 

e s o 
X 

Observation Number 

Parameters: muprime*            theta*                phi* 
16.9352              1.7443              0.4474 

SSE(lst25): 8.991E+01 
SSE (all 500): 3.981E+02 
Equation: ARMA(l,l)=phi*(ARMA(l,l)-l)+muprime-theta*errorlast+noise 

Figure F-8 EXCEL, ARMA(1,1) Fit/Forecast of Notional C-17 Data 

ARMA(1,1)/C-17 Forecast (from 15 unit history) 

S2 
9 
O 
X 

O T- 

Observation Number 
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Parameters: muprime*            phil*              thetal*           theta2* 
15.9419             0.8994             -0.4915        0.13380841 

SSE (1st 15): 3.699E+03 
SSE (all23): 1.027E+04 
Equation: ARMA(l£)=phil*(ARMA(l,2)-l)+muprime-thetal*errorlast- 

theta2*errorlastlast+noise 

Figure F-9 EXCEL, ARMA(1,2) Fit/Forecast of Notional C-17 Data 

ARMA(1,2)/C-17 Forecast (from 15 unit history) 

120 

Observation Number 

Parameters: muprime*             phil*                phi2*              theta* 
21.6784             0.4097        -0.105210976      -0.4249 

SSE (1st 15): 3.299E+02 
SSE (all 23): 5.723E+02 
Equation: ARMA(2,l)=phil*(ARMA(2,l)-l)+phi2*(ARMA(2,l)-2)+ 

muprime-theta*errorlast+noise 

Figure F-10 EXCEL, ARMA(2,1) Fit/Forecast of Notional C-17 Data 

ARMA(2,1)/C-17 Forecast (from 15 unit history) 

Observation Number 
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Parameters: 

SSE (1st 15): 
SSE (all 23): 
Equation: 

muprime* Pn'l* Pn^* thetal* theta2* 
20.4647 0.-1147 -0.0766       -0.201639264   -0.137342779 

3.029E+02 
5.241E+02 

ARMA(2,2)=phil*(ARMA(2,2)-l)+phi2*(ARMA(2,2)-2)+ 
^v,,,^^-. muprime-thetal*errorlast-theta2*errorlastlast+noise 

Figure F-ll EXCEL, ARMA(2,2) Fit/Forecast of Notional C-17 Data 

ARMA(2,2)/C-17 Forecast (from 15 unit history) 
100 

 Adj. Hours 

 Forecast (starts at 19) 

t 
a o 
X 

Observation Number 

Table F-3 The Notional C-17 Data Base 

|  Unit Number     Adj. Hours| 
3.5 100 
5 63.04729214 

6 40.06102212 

7 39.63005339 

8 33.24942792 

9 35.25934401 

10 32.31121281 

11 25.27841342 

12 31.03928299 

13 34.94279176 

14 39.33638444 

15 27.60869565 

16 23.78718535 

17 28.80244088 

18 23.69946606 

19 23.85964912 

20 23.07398932 

21 24.00839054 

22 21.73150267 

23 23.67276888 
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Epilogue 

The Data - A Humorous Aside 

As an entertaining aside which may actually not survive the editorial shears of my 

advisor, I've got to say that searching for a data base on which to test the aforedeveloped 

models turned out to be quite the formidable and frustrating task! In the final frantic 

throws of my thesis process (and under penalty of not graduating....), I searched high and 

low for this data. My advisor searched high and low too and even went so far as to call in 

some personal debts - all to no avail (???). 

My search led me to an old friend in the Defensive Avionics System Program 

Office (SPO) here on base. He pointed me towards, what he termed, the 'manufacturing 

pukes' (MPs) in the aircraft SPOs. One after another, the MPs suggested, "Sony, we 

can't help you. You'll need to go directly to the manufacturer to get that kind of data! 

Be forewarned, however, they might consider it proprietary and opt not to give it to you." 

So, that suggestion fresh in my mind, I went to the Aeronautical Systems Center 

(ASC) Technical Library to see what they had before attempting an assault on the 

manufacturers. When the people at the Tech Library heard what I wanted, they did the 

proverbial, "You want it WHEN????!!!" Then they told me, "Sorry, we can't help you. 

You'll need to go directly to the manufacturers to get that kind of data. Be forewarned, 

however, they might consider it proprietary and opt not to give it to you." (Sound 

familiar?) 

Okay, manufacturers, here I come! Upon questioning, the one fellow I did 

manage to get in contact with at an un-named aircraft manufacturing company (my 
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middle name is chicken or I'd name the company as well as the individual) said, "I can't 

help you; that data is proprietary. You'd do best to talk to the people at the SPOs." 

Geee Wizzz!   I think F m on my own. 

This tale of woe does have a good as well as an entertaining ending. In my final 

search for a lead and one last attempt to secure my graduation, I spoke to the Operations 

Research Department Head, Lieutenant Colonel Paul Auclair. He promptly pointed me 

towards the Logistic School (another school at AFIT) to a man named Dr. Vaughn (AFIT 

Department of Research), who promptly pointed me towards Professor Roland Kankey 

(AFIT Department of Acquisition) who promptly pointed me (and quite accurately so!) to 

the ASC Cost Library where I found the data for which I'd been so fervently searching. 

I left the library with a plethora of publications with dates ranging from 1949 to 

1982. The study dated 1982 and entitled The Learning Curve in the Airframe Industry 

(Brewer, 1982) is the source of my actual aircraft build history data - the 1000 unit 

history of the F-102.    Before I discovered my wonderful data base, and while leafing 

through the stack of documents, I found an interesting comment in the work entitled An 

Airframe Production Function (Alchian, 1949): 

"Within individual airframe manufacturing facilities, estimates of costs of producing 
airplanes are frequently based on the learning curve. Unfortunately, no data on the 
estimates made by aircraft manufacturing facilities themselves have been available, so 
tests of their reliability could not be made. Naturally enough, individual business units 
are not willing to publicly reveal their cost estimating records." 

I guess maybe he didn't graduate on time. 
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