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Abstract

In 1995, the C-17 Factory Simulation Model (FSM) was developed for the C-17
System Program Office at Aeronautical Systems Center (ASC), Wright-Patterson AFB,
Ohio. Designed to enable analysts to address “what-if” questions about the resources
required to build future aircraft, the FSM is based on learning curve models that are used
to both portray and simulate future aircraft production.

In this thesis, we examine and develop alternate learning curve models that also
utilize a small amount of initial production data (about 20 observations) to portray the
relationship between the number of aircraft built and the amount of resources required to
build them. The goal is to identify a model which not only provides a good fit and forecast
based on a small amount of data but is also intuitive and reasonably simple to apply. In
addition to examining variations on the Log-Linear Learning Curve model, we propose
and evaluate the use of Box and Jenkins Autoregressive Moving Average (ARMA)
models for modeling the effects of learning.

These models are exercised in fitting simulated log-linear data, as well as in fitting
and forecasting historical F-102 manufacturing data and notional C-17 manufacturing
data. The results are somewhat inconclusive since they do not identify any one model as
the best for all data sets. They do, however, suggest that ARMA models are a very
promising alternative to the standard log-linear learning curve.

The thesis concludes with an examination of the effects of explicitly accounting for

uncertainty in parameter estimation when simulating future performance based on the

Xiv



traditional log-linear learning curve model. The results show that the approach employed

in the FSM is viable even though it does not directly account for this uncertainty.




AN INVESTIGATION OF LEARNING CURVES
AND
THEIR USE IN SIMULATION

1. Motivation for the Study

1-1. Background

One of the fundamental quantities of interest when estimating the life cycle costs of
weapon systems such as the C-17, is an estimate of the resources required to build a given
number of systems. This estimate provides the basis upon which many other costs and
performance measures can be calculated. Given these, reasonably accurate answers can be given
to questions such as, “How will the utilization of resources such as manpower or tooling be
affected by changes in the ‘buy profile’ for the weapon system?” or “How will delivery dates be
affected by changes in the assembly process?” and other “what if?”” questions proposed by
Congress and senior management regarding the effects of various changes in planning and
production strategies. Models which can help to answer these kinds of questions are invaluable
tools in the estimation of life cycle costs, but their development requires serious scrutiny and
analysis if they are to provide useful information.

In many production, assembly, or maintenance operations, the amount of time required to
complete a task tends to decrease each time the task is undertaken. A common approach in
modeling this phenomenon is to use a learning curve in which the number of hours required to
complete the task is modeled as a function of the number of units completed to date. This long-
term relationship is often estimated on the basis of initial production data using straightforward
regression procedures. The resulting fitted relationship then provides a forecast of the expected

number of hours that will be required for the task to be performed in future operations .
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When simulating such production processes, one needs not only to portray the expected
number of hours required in future production, but also how those hours can be expected to vary
about their mean. For example, in the C-17 Factory Simulation Model (FSM), which is a large-
scale model of the C-17 assembly process recently developed for the C-17 System Program
Office (SPO), this was handled by treating the fitted regression equation (based on data collected
during the assembly of the first 20 aircraft) as if it provided a perfect forecast of the mean time
required to complete a task in the future. Once this relationship was determined, random errors
were generated about the fitted curve to simulate how actual performance might vary in the
future. The validity of this procedure is somewhat in doubt, however.

An important source of doubt centers on how well this strategy can be expected to model
future performance. This is an especially important question because the underlying learning
curves have been estimated on the basis of a limited amount of data. The approach used in the
C-17 FSM does not take into account the uncertainty surrounding the mathematical form of the
learning curve model nor the values of the parameters within that model. For example, might the
relationship be more accurately described with of an equation of a different form? Alternately,
how (if at all) should predictions based on the fitted relationship account for one’s uncertainty
about the values of the parameters which specify that relationship? Should the simulation of the
production of future aircraft account for this uncertainty? Further analysis of the appropriateness
of this strategy and an investigation into possible alternative strategies is clearly warranted.

1-2. Problem Statement

An analysis of the current methods used in the C-17 FSM and, potentially, the

development of improved models and methods for modeling and simulating learning curve

relationships will enable analysts to provide better answers to the kinds of questions which are
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asked in the acquisition process, and allow for better planning. This, in turn, will help to
minimize (or avoid for the most part!) future cost and time overruns and allow for a more
efficient allocation of resources.

1-3. Approach

In this thesis, we provide an analysis and assessment of some of the specific methods
used to model and simulate learning curve relationships as implemented in the C-17 FSM. We
begin with a thorough literature review to discover what is known about learning curves and to
assess what new thinking must be done. The review covers a variety of learning curve models
and the use of learning curves to simulate future performance. We next assess the adequacy of
the approach used in the C-17 FSM and evaluate other possible approaches in an effort to
determine what learning curve models might be most appropriate for this application.

We also propose a new approach to modeling and simulating learning using autoegressive
[AR(p)] models and AutoRegressive Moving Average [ARMA(p,q)] models. Since we generally
do not expect to have much data upon which to fit such models, it is necessary to keep the
number of parameters (p and q) small; hence, we focus on AR(1) and ARMA(1,1) models.

We then attempt to make a formal comparison of the models examined, comparing them
to each other, to data similar to that used in developing the C-17 FSM, and to historical data from
the F-102 manufacturing program. These comparisons enable us to draw some basic conclusions
and to make recommendatic;ns for future studies in this area. We conclude with an examination
of the effects of explicitly accounting for uncertainty in parameter estimation in the traditional

log-linear learning curve model.
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2. Previous Work in Learning Curves

2-1. Definition of Learning Curve

A learning curve, also known as a progress, improvement, or experience curve, is
a graphical or mathematical representation of how the requirement for resources is
reduced as the production of a product or service is repeated. The learning curve concept
may be used to predict production costs from the known costs of producing a product or
service, the future service time from a history of service times, or the time required to
build the n™ aircraft from a history of times spent building previous copies of the aircraft.
The term “learning” is used in this thesis rather than “progress,” “improvement,” or
“experience” because of its common use in the United States Air Force and most of the
literature. “Learning,” as used here, includes worker learning, management innovations,
engineering changes, and work simplification (Orsini, 1970:pgs 2:3).

The aircraft industry was the first to recognize the predictive value of learning
curves. The earliest known work on the learning curve phenomenon was done by T.P.
Wright who stated in his 1936 article, “Factors Affecting the Cost of Airplanes,” that he
“started his studies of the variation of cost with quantity in 1922.” (Wright, 1936:122).
He hypothesized that the cumulative average labor cost for any quantity of airplanes

produced decreases by a constant amount as the quantity of airplanes is doubled. To

calculate the cumulative average cost, we utilize equation (2-1).
1 X
Zy = YZH Yy (2-1)

where,

X is the unit number, and




Yx is the number of hours (cost) for unit X.

As an example of an 80% learning curve, if it takes 100,000 hours of labor to produce
Ship #1, it would take an average of 80,000 hours to produce Ships #1 and #2 (or 60,000
hours for Ship #2 alone), an average of 64,000 hours for the first four ships, 51,200 hours
for the first eight ships, and so on.

In the example above, it is important to stress that the numbers 100,000 and
80,000 and 64,000, etc., are cumulative averages; they are the average costs of producing
the first, first two, ans first four aircraft, respectively. The number describing the cost of
Ship #2 alone (60,000) is known as its marginal or unit cost; it is the cost of producing
the second aircraft alone. Most of the data considered in this thesis is marginal or unit
cost data.

Who or what is doing the learning? In organizations, the learning curve describes
the improvement in either individual productivity or organizational productivity.
Individual learning is improvement that results when people repeat a process and gain
skill or efficiency from their own experience. Organizational learning results from
practice as well, but also comes from changes in administration, equipment, and product
design.

Learning rates in organizations differ in their performance for a number of
reasons. One factor affecting this performance, and hence affecting the learning rate, is
the volume of the output; all other things being equal, the firm that has the higher
cumulative output should have the lower cost. Another factor which weighs heavily is
the rate of output; studies have shown that recent experience has much more effect in

reducing cost than more distant experience. As a result, if we compare two companies



with the same cumulative output, the firm with the higher rate should have a lower cost
curve because its experience is more recent. In organizations, both kinds of learning
occur simultaneously but are most frequently modeled with a single learning curve.
2-2. Terminology

Before starting a discussion of the various forms of learning curves (Section 2-3,
below) it is imperative that the terminology used throughout the remainder of this work
be clearly defined. This is important because the terminology is not consistent between
references. Some of the definitions (those annotated with an asterisk, *), have been taken
directly from a thesis by Orsini (Orsini, 1970:pgs 2:3), the others have been gathered
from other sources.

(1) direct man-hours - These are the hours expended to manufacture a unit of

output. In the airframe industry, these hours consist of fabrication, assembly, production
flight, and other production work associated with the basic aircraft (Orsini, 1970:pgs 2:3).

(2) direct man-hours for Unit One - The total direct labor hours expended to

complete the first operable unit (Orsini, 1970:pgs 2:3).

(3) learning rate - A per cent figure which determines the number of direct man-
hours required for each doubled production quantity in relation to the previous doubled
quantity. For example, if a learning curve has an eighty percent learning rate, the direct
man-hours required to produce unit 2 will be eighty percent the number required to
produce unit one; the direct man-hours required to produce unit four will be eighty
percent the number required to produce unit two; the direct man-hours required to

produce unit eight will be eighty percent the number required to produce unit four; etc.




(4) cost - Refers to the quantity of resource required to perform a given activity.
The cost could be in terms of dollars, direct man-hours, or other resource.

(5) cumulative average cost curve - A curve representing the cumulative average
cost as the total number of units increases.

(6) unit marginal cost curve - A curve representing the average cost of each unit as

the total number of units increases.
2-3. Geometric Versions of the Learning Curve

The Log-Linear (Crawford) Model. The most useful and most widely used

learning curve model, the log-linear or constant percentage model, was first introduced in
1944 (Smith, 1989). This model, which states that the improvement in productivity is
fairly constant as output increases, is depicted in Figure 2-1.

Figure 2-1 Example of a Log-Linear Model
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The equation for this model is

Y =aX" (2-2)
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where
Y is the cumulative average amount of resources, or ‘cost,” of producing the first
X units,
X is the unit number,
a is the ‘cost’ of producing the first unit, and
b is a constant which determines the learning rate.
The learning percentage (learning rate), p, can be determined via
p=2" (2-3)
Equivalently, for a given learning percentage, b can be set by specifying
b =In(p)in(2). (2-4)
In order to estimate the parameters, a and b, of the model given above, a linear
regression using a logarithmic transformation is conducted. The resulting model is
In(Y) = In(a) + b*in(X). (2-5)
According to Forsythe et al, there are some distinct disadvantages which arise
from taking this standard approach. First of all, the large variability associated with the
early observations will skew the estimated parameters which will then be dominated by
the first few observations. Second, the per unit cost predicted by a log-linear learning
curve will converge to zero for sufficiently large volume. If convergence to zero occurs
within a realizable volume, the log-linear model produces unrealistic forecasts.
Both the problem of early observations skewing the estimated parameters, and the
fact that the log-linear learning curve will converge to zero for sufficiently large volume

are important considerations since they are far more pronounced when applied to unit
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costs as opposed to cumulative average costs. This is especially important to us because
the C-17 FSM implicitly applies the log-linear model to unit costs.

Pegel’s Exponential Function. In an effort to develop more realistic forms of

the learning curve, some authors have proposed models which are based on exponential
functions. One of these authors, Pegel, proposed an algebraic exponential function to
complement the power function (log-linear) model (Smith, 1989). Pegel’s model gives
the marginal cost per unit for the X™ unit as
MCX)= o.a® + B (2-6)

where

0, a, and P are empirically based parameters.
Using o = 1000, a = .8, and B = 100, the curve appears as shown in Figure 2-2.

Figure 2-2 Pegel’s Exponential Function

Pegel's Exponential Function
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approaches minimum of 100 as unit numbers increase

Note that, as the number of units increases, the marginal cost approaches a minimum

value of 100 which is given by the value of B. This model may be integrated across X to
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find the total cost up to the X™ unit in terms of the marginal cost per unit. It may also be
algebraically manipulated to give the average cost of the first X units in marginal cost
index terms. The biggest advantaée in Pegel’s model is that where the basic power
function shows both the average and marginal costs decreasing with increasing output,
Pegel’s exponential function shows that the marginal cost becomes constant after a
certain number of units is produced (Belkaoui, 1986:pgs 8:9).

Forsythe Cyin Approach. A similar approach which addresses and includes the
constant nature of marginal cost mentioned above is proposed by Forsythe (Forsythe,
Green, White, and Elmer, 1995: pgs 3:4). He says that it is possible to tailor specific
model parameters to account for characteristics of the manufacturing process. For
example, when the absolute minimum number of hours required to produce a unit is
known or can be estimated, the basic log-linear model can be revised as shown below.

Y(X)=aX’ + Cuin 27
In this equation, Cpyp is the minimum time needed to produce a unit. As the log-linear
part of this equation approaches zero with large values of X, the time required to build
the Xth unit approaches Cpin; this makes intuitive sense. This adjustment, like Pegel’s
Exponential Function, prevents the time to produce a unit from reaching the unrealistic
value of zero as the quantity produced, X, gets large.

Levy’s Adagtati(;n Function. Another twist on the marginal cost theme is given
by Levy’s Adaptation Function (Levy, 1966). Levy’s function is useful for showing how
a firm can adapt itself to the learning process and isolate the variables which influence

learning. His function is given below.
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MC = [1B - (1/B - X/a)*C ] (2-8)
where

MC is the marginal cost,

a —and b are parameters analogous to the power function parameters,

C is analogous to Cmin, and |

B is the production index for the first unit.

The parameter, C, serves to flatten the curve for large values of X. So, just as Pegel and
Forsythe propose, the learning function reaches a plateau and does not continue to
decrease (or increase) the way the log-linear function does (Belkaoui, 1986: pg 10).

The Stanford-B Model. One of the most well-known learning curve models is
the Stanford-B Model. Like the models described above, this model came into existance
because the log-linear model doesn’t always provide the best fit to activity/time data. The
Stanford-B formul.a, also known as the learning formula with the B-factor (Summers and
Welsch, 1970: pgs 45:50), is given by the following equation.

Y = a(X+B)" (2-9)
where

Y is direct man-hours required for cumulative unit number X,

a is a constant which is equivalent to the cost of the first unit when B=0,

n is the exponent which describes the slope of the asymptote (-0.5 is typical),

B is a constant which may be expressed as the number of units theoretically

produced prior to the first unit acceptance. (B is typically between 0 and 10

with 4 being a common value).



Given the ‘typical’ values above, the Stanford-B curve is depicted in Figure 2-3.

Figure 2-3 Stanford-B Curve
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| The main feature of the model is the B factor which measures variations in design
| or other complexities which management cannot control through engineering or retooling.
Another way to think of this model is that it accounts for previous learning by using the B

factor as a scale of displacement.

set equal to -0.5, the Stanford-B model yields a unit learning curve equation as follows:

Y= (2-10a)

If B is set to 0, this becomes
Y=ax™®. (2-10b)
Using the equation
p=2=2% =707 (2-10a)
we can see that this is equivalent to a 70.7 percent log-linear learning curve. Smith notes

To illustrate, Belkaoui (Belkaoui, 1986:pg 11) suggests we note that when n is
that the Stanford-B isn’t used much in the aircraft industry anymore (Smith, 1989).



DeJong’s Learning Formula with an Incompressibility Factor. Another form

of the log-linear model, which is similar to the models proposed by Pegel, Forsythe, and
Levy (in that the value of MC levels out after a large number of builds) is Del éng’s
Learning Formula with an Incompressibility Factor. This model takes into account the
differing nature of manual and machine labor. DeJong refers to manual activity time as
being compressible (subject to learning); he considers machine activity time to be
incompressible. His model has the following form which consists of a variable part

representing manual activity and a fixed part representing machine activity.

MCza(M+1};1t4) (2-11)

/A

Fixed Part Variable Part

where

MC is the marginal time for the xth unit,

a and n are parameters analogous to the power function parameters, and

M is the factor of incompressibility.
The value of M varies between 0 and 1 and would be, approximately, .25 for manually
dominated activities and .50 for machine-dominated activities. Note that for an activity
which is 100% manual, M would be zero and DeJong’s formula reduces to the log-linear
model. For an activity which is 100% machine dominated, M equals 1 and MC is a
constant. Since we really don’t expect machines to be able to improve their performance
this makes intuitive sense. Some learning curve prognosticators (Smith, 1989: pg 7) have
suggested, however, that machines can ’learn’ through the adjustment of machine

parameters or production methods. Smith suggests that, “The DeJong model may not be
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particularly useful in machine intensive industries, especially considering the model
adds so much more complexity to learning curve mathematics and almost eliminates any
intuitive understanding of real-life application to the typical factory worker or cost
estimator.” (Smith, 1989)

The S-Curve. The S-Curve is another curve which has been used to model the
learning process seen in manufacturing. An S-type function can be represented by a

composite function whose shape resembles the flattened horizontal S shown below.

Figure 2-4. The S-Curve
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Note the flatness of the earliest part of the curve. This can be attributed to the fact
that experiments are being made on the production process in an effort to find the best
tooling and methods. The numerous mid-course changes made at this time preclude rapid
improvement in the amount of time to build each unit. Once all the corrections are made

to the toolings and methods, it is possible to obtain very rapid learning; this is shown in
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the center part of the curve. Finally, once most of the learning has been done, the curve
starts leveling out and approaches a minimum time required to build an individual unit.
As mentioned above, the S-Curve can be represented by a composite function.
According to Belkaoui (Belkaoui, 1986:pg 14) we can constuct an S-function by using the
Stanford-B curve to represent the early part of the curve and the DeJong curve to
represent the latter part of the curve. In this case, the S-Curve function would look like:
MC=a[M+(1-M)X +B)"] (2-12)
where (as before):
MC is the marginal time for the Xth unit,
a and n are parameters analogous to the power function parameters,
M is the factor of incompressibility, and
B is a constant which may be expressed as the number of units theoretically
produced prior to the first unit acceptance. (B is between 0 and 10 with 4
being a typical value).
Like all models, S-shaped curves have their advantages and dissadvantages.
These curves can model more complex learning curves which do not follow a simple
exponential form. However, when we have initial production data, only S-shaped curves
may not have sufﬁcient' data to accurately estimate long-term production.

Non-Linear Estimation. Thomas (Thomas, 1975) compared log-linear and

nonlinear estimation techniques for the standard learning curve model. Each model
assumes that the error is distributed normally under the logarithmic transformation and
that it tends to be proportional to the value of the dependent variable and multiplicative in

nature. The nonlinear estimation techniques, on the other hand, generally assume a
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constant error term which is additive. Thomas found that the nonlinear estimation
techniques were robust and performed well in estimating the parameters of the model
with either error distribution; the log-linear model did not perform as well when the error

was additive and constant in nature.

2-4. Summary

Over the course of the last eighty years, the learning curve has been used
extensively as a management accounting tool; this type of curve can provide important
information for decision making. In this chapter, we have presented the concept of the
learning phenomenon and have gone on to briefly outline not only the theory behind the
basic log-linear learning curve but some ‘new’ geometric versions as well.

The Crawford Model (or the basic log-linear learning curve model) states that the
improvement in productivity is fairly constant as output increases. The main shortcoming
of this model lies in the fact that as the number of units produced increases, the time/cost
to produce them approaches the unrealistic value of zero. The Forsythe and Pegel
models are more realistic than the Crawford since they include a minimum cost per unit
which does not allow the unrealistic approach towards zero. The Stanford-B model
attempts to account for prior learning by including a displacement or B factor.

The models mentioned in the preceding paragraph, seem to be worth further
investigation since they are fairly simple and are intuitive for the most part. On the other
hand, due to their complex nature, we will not devote further study to of DeJong’s
Learning Formula, and Levy’s Adaptation Function within this thesis. Although the S-

Curve has the ability to model more complex learning functions which do not follow the
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simple exponential form, it may also be unsuitable due to its complexity. Further, the S-
Curve model may require more than just initial production data if they are to accurately
estimate long term production; initial production data is frequently the only data we have.
Variations on the basic learning curve have proliferated mainly because the log-
linear model does not always provide a good fit or forecast for the data at hand. The next
chapter explores a completely different class of models as an alternative method of

predicting future aircraft build times; enter the ARIMA models.
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3. Proposed ARMA Learning Curve Models

3-1. Introduction to ARMA Models

With the advent of widespread computer availability in organizations, the general
and statistically based methods of time-series analysis know as Box-Jenkins or ARIMA
processes have been developed and applied to forecasting (Makridakis, Wheelwright, and
McGee, 1983). ARIMA, which is an abbreviation for autoregressive (AR) integrated (I)
moving average (MA), describes a broad class of time-series models. Before we present a
detailed discussion of the two basic ARIMA processes which are of interest in this study,
we briefly define some of the terms used in the rest of this chapter and discuss why these
processes are being explored.

The following definitions are based on discussions found in Makridakis,
Wheelwright, and McGee (1988), Box and Jenkins (1976), and Mongomery, Johnson, and
Gardiner (1990). A process is stationary if its statistical properties are independent of the
particular time during which it is observed. Specifically, if the process underlying a time
series is based on a constant mean and variance, then the time series is said to have a
stationary mean and variance. If a process is stationary, the Box and Jenkins model used
is generally an ARMA(p,q). As discussed in subsequent sections of this chapter.

A process is nonstationary if its statistical properties (especially its mean and
variance) depend on the time during which it is observed. In other words, if the process
underlying the time series does not have a constant mean and/or a constant variance, it is

nonstationary. If a processes is non-stationary, the Box and Jenkins model generally used
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is an ARIMA(p,d,q) with the differencing term, d, not equal to zero. In this thesis,
attention will be focused on stationary models.

An ARIMA model is parsimonious if it uses as few parameters as possible in the
model/data fitting process. For example, if we assume that an AR(1) process, which has
one parameter, and an AR(2) process, which has two parameters, both provide reasonable
fits to a particular data series, the concept of parsimony would have us choose the AR(1)

“model over the AR(2).

An autoregressive process is a form of regression where, instead of the dependent
variable (the item to be forecast) being related to independent variables, it is related to
past values of itself at varying time lags. Thus, an autoregressive model would express the
observation at time t as a fﬁnction of previous values of that time series. This matches up
well with the logic behind learning curves since, if learning is indeed occurring, one would
expect that the amount of resources required to produce a given unit would depend, or be
related to, the amount of resources required to produce previous units.

A moving average process is a process in which the value of the time series at time

t is influenced by a current error term and (possibly) weighted error terms from the past.
The error terms of which we speak, are independent and identically distributed random
noises or shocks that are generally uncontrollable or unpredictable.

Autoregressive/moving average (ARMA) schemes can be autoregressive (AR) in

form, moving average (MA) in form, or a combination of the two (ARMA). In an ARMA
model, the series to be forecast is expressed as a function of both previous values of the

series (autoregressive terms) and previous random errors (the moving average terms).

3-2




In the next three sections I will discuss, in somewhat more detail, the nature and
structure of three ARIMA processes, AR(p), MA(q), and ARMA(p,q), (more formally
known as ARIMA(p,0,0), ARIMA(0,0,q), and ARIMA(p,0,q) processes respectively)
which are of interest in this study. We’ll also consider, the suitability of each model to
simulate learning.

3-2. Autoregressive Processes

As stated above, autoregressive (AR) processes are a form of regression where the
dependent variable is related to past values of itself at varying time lags. This might seem
contrary to regression methods which attempt to forecast variations in some variable of
interest, the dependent variable, on the basis of variations in a number of other factors, the
independent variables. The general form of AR processes may be developed by starting
with the basic causal or explanatory regression equation which has the form

Y=bo+ b X; + b:Xs... + ilXp + € (3-1)
where

Y is the dependent variable,

X;, X5,..., X, are the independent variables,

bo, by, by, ..., by are the linear regression coefficients, and

e is an error term which is assumed to have

E[e]=0 and Var[e] =&~
The independent variables, X;, X,... , Xk, can represent any factors such as the number of
parts to be installed, the quality of parts, the type of aircraft to be built, while the

dependent variable, Y, could represent the time it took to build an aircraft.




Some principles of regression can be applied to time series methods. We could,
for example, allow the independent variable to represent previous values of Y, the time
required to build the aircraft at previous times in the past, and suggest that the time it
takes to build the t™ aircraft depends not on the number of parts to be installed or on the
quality of the parts, but on the time it took to build the t-1%, and even -2 and -3", etc.,
aircraft in the past. We could define the dependent variable as

=W+ 0¥+ 02Yo+ 0¥z + 0l + oo + Ok + & (3-2)
where

Y, is the value of the dependent variable at time t,

Yir, Yo, Yi3, Yig ..., Yia, are the ‘independent’ variables, which represent the

prior values of the dependent variable,

W, ¢s, ¢, ..., Ok are the linear regression coefficients, and

e, 1is an error term which is assumed to have

E[e]=0 and Var[e]=0"
This is called the basic autoregressive (AR) form since the independent factors are simply
time-lagged values of the dependent variable.

One of the AR(p) models which I explore as part of this thesis is the AR(1) model.
The model takes the following form

Yi=W+¢; Yor + & ' (3-3)
where the the variables are the same as defined in equation (3-2). Before plotting the
AR(1) model given in equation (3-3), we’ll define the difference between unconditional

and conditional means.




If ¢; is chosen between -1 and +1, the AR(1) process is stationary with mean

Ewn=p =t (3-4)
: -0,

Since we make no assumption about previous values observed, this is referred to as the
unconditional mean. The unconditional mean differs from the conditional mean in that the
conditional mean takes previous values of the time series into account. For example,
suppose for an AR(1) process, the value observed at time t-1 is y.;. Then the expected
value at time t given this information is given by:
E[Y:|Y:-1 = )’z—l] =
= E(p+0 Y +elY = y,)
=40y, +EE,)
=140y (3-5)
where we assume that E(g) = 0. The quantity in equation (3-5) is not necessarily equal to
y. In particular,
EIY = y) =pn'+o,y
and similarly
EWIY, = y) = E(W+0,1, +&,)
=p+0, E@IL = y)+ EE,)
= WO, + 7y
=W (L+0) +1y
In general, fort = 2,

E@, =y) =W 1+0; +¢7+.401)+¢{y (3-6)
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This illustrates the fact that the initial conditions (the value observed at time 1) has

decreasing effect on the long run provided that -1 < ¢; <+1. Infact, in the long run,

limE(YlY, =y)=p

=300

-2
= lim {u‘Z(bi' +¢i"y1]

[ — o0 i=1

S (3-7)

provided -1< ¢1 <+1. The quantity given in equation (3-7) is the unconditional mean.

To see why the the unconditional mean is useful in simulating the effects of

learning, suppose | =25, ¢; = 0.75 so that p =1L = 100. We can then generate
—VYi

simulated values of Y, fort=2, ..., 50 assuming that Y; =1000 and the e,’s are uniformly
distributed with E(e,) = 0 and Var(e,) = 25. The plot which results from using the above

assumed values in equation (3-3) (the equation forAR(1)) is given in Figure (3-1)
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Figure 3-1 Illustration of the AR(1) Model
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Figure 3-2 Illustration of the Log-Linear Learning Curve Model
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In Figure 3-2, we have a plot of a typical learning curve for comparison. Note the

similarity between the AR(1) curve and the typical learning curve. The main difference

between the two curves is that in the long run, the AR(1) model approaches
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E(Y)=u=%=100

1
while the learning curve continues to approach zero. As a result,the AR(p) model may
actually prove to be more useful for predicting learning types of data.
3-3. Moving Average Processes
In a manner analogous to writing the basic regression equation (3-1) in terms of
past values of the dependent variable to define the AR process given by equation (3-2),
we define an MA process by writing the basic regression equation in terms of past error
terms; in other words, we let the past error terms be the independent variables. The
general equation for an MA model is
Y=+ 0re; + 02e.2 + Bse03 + ... + Orecr + & (3-8)
where
Y, is the value of the dependent variable at time t,
e, €1, €12, €rs... , €1, are the ‘independent’ variables, which represent the
time-lagged error terms. These error terms are defined as e, = X,- Y,,
€1 = Xe1 - Yeu, €2 = Xea2 - Yo, and so on. X is the actual value while Y
is the forecasted value.
W, 65, 6., ..., B¢ are the linear regression coefficients.
One of the MA(q) models which we explore as part of this thesis is the MA(1)
model. The model takes the following form
Y=L +e - 6ieu. (3-9)
To assess the usefulness of the MA(1) models for forecasting learning data we fix Y; =

1000, 6, = - 0.75, and assume the errors are ~ N(0,25); specifically,
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E[e]=0 and Var[e]=0¢"=25.

Since we wish to fix Y; = 1000, this implies
1000 = 100 +e; - 6;e0. .
If we assume ey = 0, then we should have e; = 900. After time 1, we go on to compute ten

more values of Y, using equation (3-10).

Y. =100 +¢ - 0ien (3-10)

The plot of the resulting data is given in Figure (3-3).

Figure 3-3 Tlustration of MA(1) Model

el MA(1) Model
1000
800 + Y2
+ 600 |
S 400 |
Y3
200 +
0 . . . , . ; . .
1 2 3 4 5 & 7 8 9 10
Unit Number

Observe that Y7, the cost of unit 1, is 1000 (by design). The value of Y, is affected by the
large error at unit 1. By unit 3, the effect of unit one on the cost seems to be almost
completely gone. Since the effect of unit one dissipates so quickly, we feel that MA
models will not be useful for forecasting learning type data.
3-4. AutoRegressive/Moving Average Processes

As stated in Section 1, ARMA schemes can be autoregressive (AR) in form,
moving average (MA) in form, or the two can be effectively coupled to form a very
general and useful class of time-series models called autoregressive/moving average

(ARMA) processes. In the ARMA model, the series to be forecast is expressed as a

39



function of both the previous values of the series (the autoregressive terms) and the
previous random errors (the moving average terms). The basic elements of AR and MA
processes can be combined to produce a large variety of models. As part of this study we
explore the ARMA(1,1) model which has the following form

Yi=0; Yy + W -6 +e (3-11)

AR( M Confvtant 1\%( 1) part
Here, the dependent variable, Y, ,depends on one previous value of the dependent
variable, Y..;, one previous error term, €..1, and a constant which adjusts the mean of the
process. Under specific conditions on the 8 ‘s, ARMA models are considered stationary in
both the mean and the variance. A plot of a simulated ARMA(1,1) process is shown

below.

Figure 3-4 Tllustration of the ARIMA(1,0,1) Model
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This particular model is calculated using ¢; and 6, equal to .75, i’ equal to 25, and Y,
equal to 1000. The initial value for error, €;, was taken as zero since the first unit cost
was given with certainty. The remaining errors have an N(0,25) distribution. Note how

the curve levels out after about twenty units to a mean of approximately 100; this is similar




to the curve calculated for the AR(1) model in Section 3-2. ARMA models appear to be
well suited to forecasting learning type data.

3-5. ARIMA Models for Learning

As discussed earlier, a major criticism of the basic log-linear learning curve is that
it does not completely level out in the long run; it continues to approach zero through
successive unit builds. We find this pleasing, ‘though unrealistic, because it implies that if
we build enough aircraft, it eventually will take no time at all to build them!! In Chapter
2, this problem was addressed through the use of modified learning curve models such as
the Stanford B Model and Pegel’s Exponential Function which both provided curves that
level out in the long run. In this chapter, however, we have presented examples of ARMA
models that exhibit a similar pattern of a dramatic initial decline followed by a leveling out
to a long-run mean. This suggests that stationary ARMA models might be useful for
modeling the build history of an aircraft manufacturing process.

In the next chapter, we attempt to fit ARMA models to real and simulated sets of
learning data, and compare the results with those of fitting standard learning curve models
to the same data. In the next section, however, we first exploit a commercial forecasting
software package, FORECAST PRO, to fit various ARMA models to the first 50
observations from a simulated log-linear learning curve. The purpose of this exercise is
simply to assess how well stationary ARMA models can represent traditional log-linear
leaming curves, especially in the short-run. (In the long-run, we know that a stationary
ARMA model converges to its unconditional mean while the log-linear learning curve

converges to zero.)
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3-6. Fitting ARMA Models to a Log-Linear Learning Curve
To represent a log-linear learning curve, we simulate the first 50 values from a
model of the form
Y=aX’ +e (3-12)
where (as presented in Chapter 2)
Y is the number of hours, or ‘cost,’ of producing the X™ unit,
X is the unit number,
a is the ‘cost’ of producing the first unit,
b is a constant which determines the learning rate, and
e is error uniformly distributed (1% above and 1% below the expected value of Y
for each X.
Arbitrarily, and for purposes of illustration, we let the parameter, a, the cost of producing
the first unit, be equal to 1000. We additionally assume the learning rate, p, to equal
eighty percent (0.8), and then calculate the value of b using equation (2-3) as follows:
b = In(p)/In(2) =In(0.8)/In(2) = -.322. (2-3)
For our value of p, b turns out to equal - 0.322. The final model which we use to
generate data for units 1 through 50, takes on the following form:
Y=1000X"% +e (3-13)
To generate the data, we start by using the spreadsheet software package, EXCEL
5.0, by Microsoft Corporation, to generate the values of ¥ for units 1 through 50 by using
equation (3-13). Since the equation used to calculate the data has a random component to
it (error is uniformly distributed about the mean) the simulated data does also. For this

reason, we can’t just take one sample data set, analyze it and draw conclusions; we need
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additional data sets to analyze. For our purposes, we generate eight sets of simulated
data. A sample of this data is given in Table 3-1.

On the other hand, in hindsight, the variance of the random error terms that we
have simulated is so small that we essentially are fitting models to the first 50 values
expected from the log-linear model. Thus, our results provide a measure of how well the

fitted models reproduce the expected behavior of a log-linear learning curve.

Table 3-1 Fifty Unit EXCEL-Simulated Log-Linear Data Set

As a preliminary investigation into the potential of candidate models to fit and
forecast log-linear types of data, we use FORECAST-PRO to fit selected ARMA(p,q)
models to each of the eight data sets. The models we fit are AR(1), AR(2), AR(3),
AR(4), MA(]), MA(2), MA(3), MA(4), ARMA(1,1), ARMA(1,2), ARMA(2,1), and
ARMA(2,2). Since we are assuming that the process underlying the actual aircraft build
time-series is stationary (which, however, is not strictly true for the log-linear data), we

choose not to fit any ARIMA(p,d,qld # 0) to the simulated data. While using Forecast-
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Pro, curiosity also dictates that we run its Expert Data Exploration routine, and also fit
various Exponential Smoothing models to the data.

Using Forecast-Pro, we fit the selected models to the simulated log-linear data.
The output standard diagnostics (including R?, Adjusted R?, Durbin-Watson and Ljung-
Box test statistcis, MAPE!, MAD? BIC®, RMSE*, and the Forecast Errors) from
Forecast-Pro are given in Appendix A. In addition to the standard diagnostics, Appendix
A contains plots of the data (the models for only one of the eight repetitions is shown),
including the fitted curves, forecasts with confidence intervals, and model parameter
estimations along with their associated Standard Errors, t-Statistics, and Significance
levels. This data is consolidated into one table, Table A-1. The data is reduced to essential
measures of model appropriateness (averaged across all eight repetitions) which is
included, below, in Table 3-2. Tables similar to Table 3-2 are also given in Appendix A

for each of the eight repetitions; they are given as Tables A-2 through A-9.

! MAPE - Mean Absolute Percent Error
2 MAD - Mean Absolute Deviation

? BIC - Bayesian Information Criterion
* RMSE - Root Mean Square Error
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Table 3-2 Model Measures of Appropriateness Summary

Four Best Results in Category

Simple Exp. Smoothing
SMA(1)
AR(1)
AR(2)
AR(3) 09243 | 09211 00619 | 254559 | 37.3200
AR(4) 0.9350 | 0.9308 0.0607 | 248680 | 34.7200
MA(1)
MA(2)
MA(3)
MA(4)
ARMA(1,1)
ARMA(2,1)
ARMA(1,2) 09381 | 09224 00615 | 252964 | 366213

ARMA(2,2) 09261 | 09217 0.0610 249766 | 36.1983

AR Average
MA Average

38.4216

25.8602

...................

sum 1124763 124352 12213 4195383  610.2325
average 08012 08882 00872 299670 435880

Observing the data contained in Table 3-2, we note the following:
(1) Starting at the top of Table 3-2, we see that Simple Exponential Smoothing, and
SMA(1)’, turn in a relatively poor performance. The statistics for simple exponential

smoothing are below average® in the categories of RSQR, and RMSE, but are above

SSMA - Single Moving Average, in which the forecast for time t+1 is simply the observation at time t

% The statistics which are calculated (and which are displayed in Table 3-2) for the various models under
study in this section cannot all be compared directlly. For example, the RSQR and ADJRSQ statistics are
considered better if their magnitude is larger. The MAPE, MAD, and RMSE, being measures of error are
considered to be better if their magnitudes are smaller. So, for purposes of clarity, we refer 1o statistics as
being better or worse than average. A better than average RSQR statistic is a statistic which is larger
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average in the categories of MAPE, ADJRSQ, and MAD. Four out of five of the

statistics for SMA(1) are below average; the only above average statistic is in the category
of MAD.

2) The AR models seem to do quite well. AR(1) and AR(2) have above average
statistics in all but one category; AR(1) is below average in RMSE. AR(3) and AR(4) do

remarkably well in that their statistics are among the best four statistics in every single

category.

(3) Asexpected, the MA models have generally the poorest results in the
investigation. MA(1) and MA(2) have below average scores in every single category.
The MA(3) and MA(4) models do better; each of them are above average in four of the
five categories; MA(3) is Below average in the MAD category while MA(4) is below
average in the MAPE category.

4 Like the AR models, all of the ARMA models are above average in all categories;
ARMA(1,2) and ARMA(2,2) have statistics which are among the best four in every single
category.

The overall results seem to suggest that the Simple Exponential Smoothing model
and the Simple Moving Average model do a mediocre job of fitting the simulated log- |
linear learning curve data. Consider the' AR, MA, and ARMA averages given at the
bottom of the table; they summarize the over-all findings quite well. The AR models,
overall, are better than average in all categories, are best in the category of MAPE, and
are tied for best with the ARMA models in the category of ADJRSQ. Overall, the MA

models turn in a below average statistic in every single category. Finally, overall, the

than the average RSQR, while a better than average MAPE statistic is lower than the average MAPE
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ARMA models do very well in fitting the data. They had the best average statistic in all
categories but one; they were simply above average in the category of MAPE.

What we’ve established is that the AR and ARMA models generally seem well
suited to fitting the log-linear data despite the fact that the true log-linear model has a
nonstationary mean. Observation of the statistics reveals, however, that the statistics
differ very little from one model to another within each category. The fact that one is
better than another is just a puff of air. The only serious difference between statistics from

one model to another occurs in the MA(1) and MA(2) models which seem to have much

worse statistics than the other models.
Now that this analysis is complete, we move on to a forum which provides equal
treatment to all potential models’ including the modified learning curve models discussed

in Chapter 2. This is the topic on which we concentrate our energy in Chapter 4.

statistic.
7 Forecast-Pro’s repertoire of models does not include models based on the learning-curve.
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4. A Comprehensive Model Comparison

4-1. Introduction

To be useful in program management, a model must be accurate. This raises a
very important question, “How do we pick a model from among the models we’ve been
considering thus far, that will provide reasonably accurate predictions of future build
times?”

To help focus our sights, our next effort is organized into three main stages which
are discussed in detail in Sections 4-2, 4-3, and 4-4, respectively. In each stage we fit the
candidate models to a particular set of data, using the spreadsheet program EXCEL to
estimate the various model parameters. The purpose of using EXCEL is to put each
model into an environment where it may be compared with the other potential models on
an equal basis. (Fbrecast Pro is good for helping choose some promising ARIMA models
but since it doesn’t have a facility to fit learning curve models, it really can’t be used to
complete the analysis; there’s just no common footing.)

The first stage, discussed in Section 4-2, uses a simulated log-linear data base to
test the potential models’ ability to fit a log-linear curve. The second stage, discussed in
Section 4-3, uses data obtained from the F-102 production program to

1. test the potential models’ ability to fit the complete data set, and to

2. test, using a hold-out set', the potential models’ ability to forecast future build

times.

! “Hold out set, is a reference to the method of using a portion (x out of n observations) of a given set of
data to develop a model. The resulting model is then used to forecast the next n-x values in the series; the
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Finally, the third phase, discussed in Section 4-4, sets out to forecast future build times in
the C-17 program.
4-2. Fitting Simulated Log-Linear Data

In this part of the investigation, we take a closer look at each of the most
promising Log-Linear and ARMA models identified in Chapters 2 and 3. Each of the
models is used to fit a data base consisting of a 50-unit sequence of simulated log-linear
data.

First, EXCEL is used to generate fifty observations of log linear data. The
equation used is

Y =aX" +error (4-1)

where as in Chapter 3,

a is the first unit cost and is taken to be 1000,

X, is the unit number, and ranges from 1 to 50,

b is the learning rate. and is taken to be -0.3219 (80% curve), and

the error is uniformly distributed (one percent above and one percent below) about
the expected value of Y for each unit X.

Once the data is generated, and the initial individual models are constructed,
EXCEL’s Solver Function is used to find the parameter values that minimize the Sum of

Squared Errors (SSE). Each error is the residual computed by calculating the difference

forecasted values can then be compared to the hold out set (the remaining observations from the given data
set) to determine the fidelity of the fitted model.
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between the fitted values and the actual values’. We deem the model with the smallest
SSE to be the one which provides the best fit to the data.

The models and their respective equations are given in Table B-1 in Appendix B.
Also included in this table are the parameter estimates which result from minimizing
SSE. Note that asterisked parameters are the parameters which are adjustable during the
optimization process. This table also includes the minimized values obtained for SSE.

The results are summarized below in Table 4-1 (This table is the same as Table B-
2 in Appendix B.). This table is broken into two groups of model data. The first group
summarizes the learning-curve models and the second group summarizes the ARIMA
models. Note, also, that this table displays the rank of each model’s SSE across the two
groups. On the basis of SSE alone, the best overall model for curve fitting seems to be
the basic Log-Linear Learning Curve model which comes in with a low SSE total of
763.7; this seems like an intuitive result since this is the same model which was used to
produce the simulated data in the first place. The best ARIMA model for fitting this curve
seems to be the AR(4) Model which comes in with an SSE of 1438.8. From this table,
we also see that, based once again on the magnitude of SSE, the worst models for fitting
seem to be the S-Curve, Pegel, and MA(1) models.

The SSE of the MA(1) and Pegel models turn out to be one and two orders of
magnitude larger than the average SSE, which suggests they might be inferior to the other
models. The poor performance of these models in fitting the Log-Linear Data base levad us

to believe that they may also do poorly at forecasting this type of data. The Pegel model

2 In this thesis, the term “fitted value’ refers to the per-unit value produced by the model which is fitted to
the simulated data. The term ‘actual value’ refers to the (simulated) data to which the model is being fit.
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is similar to the Forsythe model in that it contains a minimum cost term. Since the
Forsythe model performed so much better than the Pegel in this fit test, we chose to keep
it and to discard the Pegel model from futher consideration in this chapter. The results
also confirm our suspicions from Chapter 3 regarding the MA(1) model; we recall that
the MA(1) model did not appear to be well suited to modeling learning curves since

rather than showing an extended downward trend similar to learning, the curve had

‘reached its mean within just two time periods. Retaining the S-Curve for further study is

questionable also since it not only performed poorly in the fit test, but also suffers from
high complexity. For the reasons cited above, we drop these three models (MA(1), Pegel,
and S-Curve) from further consideration in this thesis.

Table 4-1 Summary of Log-Linear Fitting

763.7 1
2256.4 4
11576.1 11
242678.9 13
43241.7 12
2665105.0 14
9685.7 10
4851.1 7
1756.4 3
1438.8 2
5856.5 8
6274.5 9
3714.9 5
4468.4 6

Plots which include the original data as well as the fitted curve for each model. are

contained in Appendix B.
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4-3. Fitting Historical F-102 Data
The data set for this section® was obtained from the document entitled Cost

Functions for Airframe Production Programs (Womer, 1982) which draws its data from

the F-102 Program Cost History (1965). This report says very little about the data. It
tells us that the F102 program was comprised of 1000 aircraft which were constructed
during the years 1953 through 1958. Further, it tells us that of these 1000 aircraft, 889
are F102A interceptors and 111 are TF102 trainers. Unfortunately, we are not told which
aircraft are which within the data base, and can therefore not adjust for any irregularities
this might produce in the data.

The variable of primary interest in the data base is the direct labor hours for each
airframe; this is the column in Table E-1 (Appendix E) entitled TOTHRS. A portion of

this table is shown in Table 4-2 for the reader’s convenience.

Table 4-2 A Sample of the Historical F-102 Data Base

OBS PLN DelaySeq TOTHRS Lot Contract# DM
1 1 1 402475 1 5942 1
2 2 2 375849 1 5942 3
3 3 3 278963 2 5942 7
4 4 4 271223 2 5942 7
5 5 5 262498 2 5942 8
6 6 6 258078 2 5942 9
7 7 7 243726 2 5942 10
8 8 8 232766 2 5942 10
9 9 9 220833 2 5942 11
10 10 10 218827 2 5942 12
11 11 11 322447 3 5942 15
12 12 12 306736 3 5942 16
13 13 13 290470 3 5942 17
14 14 14 282951 3 5942 18
15 15 15 233125 4 5942 21

3 The full data set is given in Appendix E . See the Epilogue at the end of this thesis for a short
description of the search for this data.
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The first question which arises is, “Against what should TOTHRS be plotted?” This is an
important question because we note that there are two columns in the data base with
headings that suggest they would be good candidates for the abscissa or unit number. The
first possible column is labeled OBS; the second possible column is labeled PLN. Since
we have no written description of the data in these columns, we make the following
assumptions. We assume OBS is an indication of the relative position of an aircraft with
respect to the end of the manufacturing process. For example, the first aircraft off the
assembly line would be OBS 1, the second would be OBS 2, etc. We assume that the
OBS number has nothing whatsoever to do with the position, in the manufacturing line,
in which the plane started. We next assume PLN is an indication of the relative position
of an aircraft with respect to the start of the manufacturing process. For example, the first
aircraft started on the manufacturing line would be PLN 1, the second would be PLN 2,
etc. We assume that the PLN number has nothing to do with the position in which the
aircraft finishes the manufacturing process. For example, PLN 1 might, actually, not be
completed until after PLN 2. So we could have a situation where PLN 1 could be the
same aircraft as OBS 2! How do we decide which column of data to use?

To help us decide, we use EXCEL to sort the data first by OBS number and then
by PLN number. We generate plots for each of these reordered data sets and present
these in Figures 4-1 and 4-2. The most obvious problem seen in the figures is the large
jump and then decline in the TOTHRS data at about PLN (and OBS) 11 - 15. Since it
occurs in the both the plots of TOTHRS vs PLN and TOTHRS vs OBS, we can not

choose which column to use based on this characteristic. Looking again, we also see
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some small perturbations (spikes) in the dataplots. From these we choose to use
TOTHRS vs PLN since the perturbations are much smaller in this reordered series.

Figure 4-1 Plot of Data -- TOTHRS vs OBS
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Figure 4-2 Plot of Data -- TOTHRS vs PLN
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Adjusting for the ‘jump’ in the data which appears in both figures is just a little
difficult since we have no documentation and can’t be sure of the cause for this jump; it
could be a major modification in aircraft design which required new learning. We could

either ignore the jump or we could make some kind of adjustment for it so the models

4-7




might deal better with it. We seem to have two options for adjustment: we could either
start at PLN number one and skip* Lot 3 (see column 5 in Table 4-2) Appendix D or
column or we could just skip the first 10 observations (PLNs) and start the data at PLN
11. We arbitrarily decide to use the data starting at PLN 11. The resulting plot is shown
in Figure 4-3.

Figure 4-3 F-102 Data (PLN vs TOTHRS) Starting at PLN 11
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Once the data is adjusted, as described above, we are ready to start exercising the
models. First thing we do is use EXCEL the same way we did in Section 2, to see how
well each of the potential models can fit the F-102 data. As before, EXCEL’s Solver
Function is used to find the model parameters that minimize the Sum of Squared Errors
(SSE). The models and their respective equations are given in Appendix C in Table C-1.
Also included in this table are the parameter estimates that result from the use of the

solver. Asterisked parameters are the parameters which are adjustable during the

* Lot 3 contains all four of the points which make up the ‘jump.’

4-8




optimization process. The table also includes the minimum values for SSE. We again
use SSE as the measure of performance to compare the models against one another.

The results of using the models to fit the F-102 data are summarized in Table 4-3
(This table is the same as Table C-2 in Appendix C.). Like Table 4-1, Table 4-3 is
broken into two groups of model data. The first group summarizes the learning-curve
models and the second group summarizes the ARIMA models. Note, also, that the table
contains the ranks for each model with respect to SSE across the two groups. Plots which
include the original data as well as the fitted curve for each model. are contained in
Appendix C.

Table 4-3 Summary of F-102 Curve Fitting Investigation

5.503E+10 10
5.503E+10 10
4.540E+10 9
2.722E+10 8
4.930E+09 2
2.637E+10 7
4.877E+09 1
2.089E+10 6
2.079E+10 4
2.087E+10 5
2.079E+10 3

The best over-all model for curve-fitting appears to be the AR(4) model which comes in
with a low SSE total of 4.877¢9. The best learning curve model for fitting this curve is
the Stanford-B Model which comes in with an SSE of 4.54e10. Note that the SSE
values, and hence the ranks, for the Standard Log-Linear and the Forsythe models are the
same. This occurs because in this case, the solver estimated the parameter Cpj, to be zero

in the Forsythe model (Y = aX® + Chmin); When this occurs, the Forsythe model is the same




as the Standard Log-Linear model (Y = aX"). For purposes of comparison, plots of both
fitted models as well as the F-102 data are shown in Figure 4-4. Note that although the
plots below show the data and fitted model up through the 200th observation, the fit was
actually performed using the observations up through 500.

Figure 4-4 Forsythe Model vs. Log-Linear Model in F-102 Fit
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Hours

EEERE

What have we done here? All we’ve done is use our potential models to see
which can most closely follow the input data. In Section 4-2, we checked the models
against a simulated log-linear data set. In Section 4-3, we checked the models against the
F-102 data set. These experiments are good for giving us an idea which models might
give a reasonable fit to this type of data but the only way to really find out which ones
work and which ones don’t work in forecasting, is to actually forecast with them!!

4-4. Fit/Forecasting Historical F-102 Data

In this section, we use the F-102 data to test the ability of the potential models to
forecast future build times. To accomplish this we use each of the models to fit the first
twenty observations in the data set>. This is done in a manner similar to that used in

Sections 4-2 and 4-3; we use EXCEL’s solver to minimize the SSE by adjusting the

5 Recall that the data set starts at PLN Number 11; the first twenty observations, therefore, consist of PLN
Number 11 through PLN Number 30. The forecast starts with PLN Number 31.
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parameter values. The output of the solver includes not only the minimized SSE, but the
parameter estimates for each of the models. We use these parameters to build the forecast
models. Once the forecast models are built, we use each of them to forecast out to unit
500. Then two more SSE’s are calculated based on the hold out set of 480 and the full
series of 500, as measures of each model’s forecasting fidelity.

An example plot which includes the original data as well as the fitted AR(2)
model (best forecast) is shown in Figure 4-5. Although the AR(2) provided the best
forecast, we can see that the fit still isn’t very good. The plots for the remainder of the
models’ forecasts are contained in Figures D-1 through D-11 in Appendix D.

Figure 4-5 AR(2) Forecast of F-102 Data

AR Forecast of 102 (using 20 urit history)
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The rank results of the forecasting are summarized in Table 4-4 (This table is the

same as Table D-2.).
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Table 4-4 Summary of the F-102 Fit/Forecast Investigation

2.965E+09 6.175E+11 10 4
2.965E+09 6.175E+11 10 4
2.814EH9 1.278E+10 9 2
2452E+09 1.073E+12 8 6
2.350E+09 7.064E+09 6 1
225TEHO 2.158E+12 5 9
1.707E+09 3.892E+10 4 3
2414E+09 1.O34E+12 7 5
1.153E+09 1.293E+12 3 7
8.848E+08 3319E+12 2 10
8.793E+08 1.457E+12 1 8

If we examine the table, we see that it not only includes the SSE for the first 20
observations (the ‘fitting’ set) and for the last 480 observations (the ‘hold-out’ set), it
includes ranking data which gives first place to the model with the lowest SSE. We can
think of the SSE for the ‘First 20’ as a measure the goodness of the model’s fit and the
SSE for the ‘Last 480’ as a measure of the goodness of the model’s forecast. Note that
the ARMA(2,2) has the lowest SSE for the first twenty observations but ended up with
only the eighth lowest SSE for the last 480 observations. This indicates that although this
model provided the closest fit on the first twenty, it did not provide the best forecast for
the entire sequence. The best forecast is provided by AR(2) which came in as the sixth
best fit for the first 20. A model which provides the best forecast doesn’t necessarily
provide the best fit. Once again, the SSE values, as well as the ranks for the Standard
Log-Linear and Forsythe models are the same because Cp;n in the Forsythe model was

estimated to be zero by EXCEL’s solver.



4-5. Fit/Forecasting Notional C-17 Data

In this section we use notional C-17 data to further test the ability of the models to
fit/forecast future aircraft build times. Since the actual C-17 data is proprietary, we
rescaled it so it would not show the actual production capability of the contractor. The
data we use in this section, therefore, is not actual C-17 data but notional data.

Since the number of hours seems to increase between units 1 and 3.5, we start our
test data set at observation 3.5. We are not sure why the hours increase within this range,
but we can speculate that perhaps the early production units were used for some kind of
testing which resulted in their completion taking lénger than it normally might have. In
order to give the models a slightly less confusing data set on which to work, we left out
these observations and started, simply, at observation 3.5.

To test the ability of our potential models to forecast we proceed in a manner
similar to that used in the previous section. We use each of the models to fit the first
fifteen observations (observations 3.5 through 18) in the data set®. We then use EXCEL’s
solver to minimize the SSE by adjusting the parameter values. Once again, the output of
the solver includes not only the minimized SSE, but the parameter estimates for each of
the models. We use these parameters to build the forecast models. Once the forecast
models are built, we use each of them to forecast build times for units 19 through 23.
Finally, as before, two more SSE’s are calculated based on the ‘fitting set’ of 15 and the
‘hold-out set’ of 8; these are utilized as measures of each model’s forecasting fidelity.

The results of the forecasting are summarized in Table 4-5 (This table is the same as

6 Recall that the data set starts at PLN Number 3.5; the first fifteen observations, therefore, consist of
Observation Number 3.5 through Observation Number 18. The forecast starts with Observation Number
19.
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Table F-2 in Appendix F.).  Plots which include the original data as well as the fitted
curve for each model. are contained in Appendix F.

Table 4-5 Summary of the Notional C-17 Fit/Forecast Investigation

A E(all 23)  SSE (last
870.7 1040.1 169.4 6 6 3
291.1 386.5 954 2 2 2
359.2 364.7 5.5 5 1 1
1266.9 1727.7 460.8 7 8 10
1340.4 1753.9 413.6 9 9 9
1405.5 1754.0 3484 10 10 8
1302.1 1503.5 201.4 8 7 4
89.9 398.1 308.2 1 3 7
3699.0 10270.0 6571.0 11 11 11
3299 572.3 2423 4 5 6
302.9 524.1 221.2 3 4 5

Note that the table not only has the actual SSE’s for the fit set, the hold-out set,
and the entire set, it has corresponding columns of ranks for each model. From table 4-5,
we see that based on the SSE values of the hold-out set, the first and second best forecas£s
were turned in by the Stanford-B and the Forsythe Models with SSEs of 5.5 and 95.4
respectively.
4-6. Summary

The results of this chapter’s investigations is summarized in Table 4-6.

Table 4-6 Investigation Summary -- Ranks Based on SSE’s

Log-Linear AR(2) Stanford-B
AR(4) AR(2) Stanford-B Forsythe
AR(3) ARMA(2,2) AR(4) Log-Linear

Log/Lin
and
Forsythe ARMA(1,2) Forsythe AR(4)
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In Section 4-2, we investigated the ability of the candidate models to fit a
simulated log-linear data set. The standard Log-Linear Learning Curve model provided
the best fit to the data; this makes perfect sense since it was the standard Log-Linear
Learning curve which produced the data in the first place! The second and third best fits
were provided by the AR(4) and AR(3) models respectively; their SSE statistics were
very nearly the same (1438.8 vs 1756.4) so if we had to chose a model to fit log-linear
data based on this investigation, the concept of parsimony would probably have us choose
AR(3).

In section 4-3, we investigated the ability of the candidate models to fit historical
F-102 data. In the fit test, the models which provided the first and second best fits to the
500 observation data set were the AR(4) and AR(2) models respectively. Their SSE
statistics were very close (4.977E+09 vs 4.930E+09), so if we had to choose a model to
fit the F-102 the cdncept of parsimony would have us choose the AR(2) model.

Also in section 4-3, we developed forecast models for the F-102 data by using
hold-out sets; we used the first 20 observations to fit the forecast model and went on to
test it against the 480 observation hold-out data set. Based on SSE values alone, the first
and second best forecast models appear to be the AR(2) and Stanford-B models
respectively. The SSE for the AR(2) was only about half as large as the SSE for the
Stanford-B. In third place was the AR(4) model with an SSE about twice the value of the
Stanford-B value. One interesting thing to note is that the model which provided the best
fit to the first 20 observations did not provide the best forecast. The ARMA(2,2) model

provided the best fit to the first 20 observations but came in with the 8th best forecast.
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In section 4-4, we developed forecast models for the notional C-17 data by using
hold-out sets. The fit set consisted of the first 15 observations while the hold out set
consisted of the last 8 observations. The first, second, and third best forecasts seem to be
given by the Stanford-B, the Forsythe, and the Log-Linear Learning Curve models
respectively. Once again, the models which provide the best forecasts did not necessarily
provide the best fits. The Stanford-B, the Forsythe, and the Log-Linear Learning Curve
models provided the 5th, 2nd, and 6th best fits, respectively.

The results are somewhat inconclusive in that the study does not identify any one
model as always being the best fitting or forecasting tool for all data sets. It does,
however, provide an important general observation that ARMA models are a promising
alternative to the standard log-linear learning curve approach which is widely in use
today; they are comparatively simple to use, intuitive in nature and seem to provide a

good forecast based on a small amount of data.



5. Simulating Future Performance

5-1. Problem Statement

The purpose of this thesis up to this point has been to investigate existing learning curve
models and to examine alternative models which, based on initial production data, might better
predict the amount of time future aircraft builds will take. One of the things we have addressed
only briefly, if at all, has been the uncertainty in fit of the models under study. In the C-17
Factory Simulation Model, predictions of future performance were made by treating the fitted
regression as if it provided a perfect forecast of the mean time required to complete a task in the
future. Once this relationship was determined, random errors were generated about the fitted
curve to simulate how actual performance might vary in the future. In this case, the simulation
team felt they could adequately predict future performance by ignoring the uncertainty of the
fitted regression.

The goal of this chapter is to explore various methods for addressing the following
questions. Given a learning curve model, how can we best account for the uncertainty in fit?
Should we just ignore it as has been done in previous aircraft inanufacturing simulations? Is this
a sound procedure? Alternately, should we adjust the variance of future observations to account
for uncertainty? Or should we sample from a distribution of parameter estimates in each
replication? We explore this through the use of basic meta-modeling concepts applied to the

learning curve model.



5-2. Simulation Based on a Fitted Linear Metamodel
What is a metamodel? The following definition, lifted from the dictionary (Meriam-
Webster, 1977), gives a small amount of insight into the meaning of the meta (or met) prefix and

starts us on our way to understanding what a metamodel is!

meta- or met- prefix [from Latin, change, or Greek, among, with, after] la:
occuring later than or in successsion to : after 1b: situated behind or beyond 1e: later or
more highly organized or specialized form of 2: change : transformation 3: more
comprehensive : transcending <metapsychology> -- used with the name of a discipline to
designate a new but related discipline designed to deal critically with the original one
<metamathematics>

To put it more succinctly, Russell R. Barton (Barton, 1992) says, “a metamodel is a model of a
model.”

Let’s look at an example of a metamodel. We first use an equation, say the learning
curve equation (Y = aX® + error), to generate a data base; we did this in Chapter 3 when we
generated the first fifty observations of a specific learning curve. We next use the technique of
Ordinary Least Squares (OLS regression), to ‘fit’ a predictive model to that data. What we end
up with are parameter estimates defining a fitted model which characterizes the data base we
have generated (a model of a model!). When we make a (regression) model of the simulation
model, we speak of a (regression) metamodel. (Kleijnen, 1992)

In this section, we examine strategies for generating simulated values from a fitted linear
model. We, in particular, want to simulate future performance; in other words, we want to
extrapolate outside of the de;ign region of the fitted model. The case in which we are interested,
and with which we start, is the case where the independent variable, X, represents time, or some
function of time. We assume we have observed the dependent variable, Y, for values of the

independent variable ranging from X = 1 to X = n. What we wish to do is to repeatedly simulate




future sequences of the dependent variable, Y, for values of the independent variable ranging
from X = n+1 to X = n + k for some specified k.
For simplicity, let’s assume that the relationship between a dependent variable, Y, and an
independent variable, X, can be described via a simple linear model of the form
Y=a+pX+e, -1

where € ~ N(0, 6°). If we know the values of the parameters «, B, and o>, we can say that

Y ~ N(o + BX, 6°) (5-2a)
or, equivalently,
(Y - a- BX) ~ N(O, 1). (5-2b)
o

Better yet, and still equivalently, we could denote this as
Y=o+ BX + o[N(0,1)] (5-2¢)

Where the last term in (5-2c) indicates that we have added to the mean (o + BX) a standard
deviation term which is normally distributed with a mean of zero and a standard deviation of one.
We can use this to generate simulated values of Y for given values of X. If we wish to generate
a value of the dependent variable for, say, X =X}, we can use the following simple algorithm:

1. Generate Z ~ N(0, 1).

2. SetY = o+ BX; + 6Z.
For our purposes we assume, for simplicity, that X;, = h. This allows the simulated sequences
(Yn+1, Yos2, - - ., Yok to be generated in a relatively straightforward manner. So, when we
know the values of the parameters o, 3, and o7, there is no uncertainty in the fit since the mean

and standard deviation are known.




The uncertainty problem arises when we DON’T know the values of these parameters.
This leads us to the first of three methods of dealing with uncertainty in fit.
Method 1

If we do not know the values of the parameters o, , and 62, which is most often the case,
they must be estimated from sample data. Let’s assume we observe the data points (X;,Y)),
(X2,Y2), ..., (Xp,Yy); from these, we can estimate o, 8, and o’ via ordinary least squares. The

least squares estimates of these parameters turn out to be,

a=Y-bX, (5-3)

XYY,

ZX Y, __Z—
w1 <zx>

; (5-4)

and,

Y (Y, —a-bX,)’

52 = MSE =
n-2 (5-5)

(Neter, Wasserman, and Kutner: 1990, pgs 50, 145). We know from basic statistics that, in this

case,
E(a) = 0, (5-6a)

E®b) =8, (5-6b)

and E(MSE) = ¢°. (5-6¢)

Furthermore, in most statistics texts, the predicted value of Y at X = X}, is generally denoted as

f’k =a+ bX,. Under the assumptions we have made, we can say that



E(Y,)=E(a+bX,). (5-7)
and, since we know (as stated above in equations 5-6) that a, b, and MSE are unbiased estimators
of o, B, and 07, respectively, we can go a step further to say

E(Y,)=E(0.+BX,). (5-8)

All of this having been said, we might be tempted, for simplicity, to generate simulated values of
Y at X = X, via the algorithm:

1. Generate Z ~ N(O, 1).

2. SetY =¥, + (MSE)"?Z (5-9a)
or, equivalently,

Y = a+bXy + (MSE)'*Z. (5-9b)
This method yields a distribution of Y’s which has a constant variance, as we would expect, andA
is very similar to the strategy implemented in the recent Factory Simulation Model of the C-17
assembly process. The factory simulation model is consistent with the model we postulate above
in that it has the property that the variance of the simulated Y’s is constant and not dependent on

Xp. Unfortunately, because it is implicitly based on the assumption that

Y ~ N(¥,, MSE) (5-10a)
or, equivalently,
(Y-%,)
=k _N(,1). 5-10b
(MSE)™ ©.1 (5-100)

we find that our postulated model cannot be strictly correct. We say this because according to
Neter, Wasserman & Kutner (1990), for example, that
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5ol (X, -X) ]
Var(Y,)=0 [’l-‘-Z(X,-—?)Z] (5-11)

and thus that the quantity

Y-y,
1 (X,-X) ]

\/(MSE{H;+———-~——Z(Xi__}?)2

(which is proportional to the quantity on the left hand side of equation 5-10b) does not have a

(5-12)

N(0,1) distribution as stated above. Instead of an N(0,1) distribution, it has a Student’s -t
distribution with n-2 degrees of freedom. Based on this realization, we can propose another
strategy which might be more accurate.
Method 2

The next possible strategy is given by the following algorithm.

1. Generate T ~ t(n-2).

) 1 (X, -X)?
2. Set Y=Yh+‘/MSE[1+;+—z—('§'(I—'_—-)=(‘)—Zj|T (5-13)

A potential weakness of this strategy is that the variance of the simulated Y’s is not
constant but, as can be seen from inspection of equation (5-13), depends on Xj. In fact, the
variance of the simulated Y’s increases as the distance between X, and X increases.
Although this strategy correctly accounts for the uncertainty within our estimates of the
parameters o and J, it is somewhaf undesirable since the behavior is not consistent with that

which would be expected from the real system'. This would be especially unappealing in the

Y

! In areal system, we would expect the variance to remain constant.
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time-dependent case where we successively generate values of Y corresponding to values of X
ranging from X = n+1 to n+k. Finally, we are led to a third method which attempts to deal with
this shortcoming.
Method 3

The third method takes into consideration the fact that, since a and b are normally
distributed, the standardized statistics (b-B)/s(b) and (a-ct)/s(a), where s(a) and s(b) are estimates
of the standard deviation of a and b respectively, .are distributed as t with n-2 degrees of freedom.

Since the estimates of the standard deviations, s(a) and s(b), are given by

1 x?
MSE| —+ —————— 5-14
\/ [n+2(Xi—X)2:| ( )

(Neter, Wasserman & Kutner: 1990, pg 71), the standardized statistics (b-B)/s(b) and (a-ot)/s(a)

become

a—o

1 X’
MSE| —+ —————
L Z(X,.—X)Zl

(5-15a)

b-B (5-15b)

MSE
Y (X -X)?

This in mind, a possible strategy for generating simulated values of Y for X=X is as

and are distributed as t(n-2).

follows:

1. Generate T and T, ~ t(n-2)
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s
2. SetA= a+\/MSE[—1—+-i—(XX—Y)2]*7] (5-16a)
n L —
3. SetB= b+ z—("}f%)—;*n (5-16b)
4. Generate Z ~ N(0,1)
5. Set Y = A + BX;, + (MSE)"*Z. (5-16¢)

If a sequence of values starting at X = n+1 is desired, one could repeat steps 3 and 4 for each
successive sequence of variables. Although the resulting values of Y will, in the aggregate, have

a variance that increases as the distance between X, and X increases, if we apply steps 3 and 4
iteratively for given values of A and B, the individual sequences generated will behave like
observations from a linear model with a constant variance.

With all of this theory behind us, we next demonstrate each of the three methods using,
first, a linear model, and second, a log-linear model.
5-3. Linear Case Studies

To simplify the development process, we start with modeling and simulating a simple
linear relationship. Once the methods outlined above are demonstrated using this example, we
go on, in the next section, to apply them to the Log-Linear Learning Curve equation.

Generating 20 Simulated Observations: Here we assume we know the values of the parameters

o (intercept), B (slope), and o” (fixed variance). Using EXCEL, we start out by simulating a set
20 observations calculated from the following equation.
Y=o+ PX + o[N(0,1)] (5-17)

We’ve added the oN(0,1) term to stochasticize the simulated observations!
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Once the data is simulated, we use the method of ordinary least squares to fit a linear
regression model to the 20 simulated observations; this, of course, yields estimated values for o,

B, and 6’ (a, b, and MSE, respectively). So, we’ve made a model of a model. These fitted
values are used throughout the following three methods as the basis in simulating future values
of the dependent variable.

Method 1:

Once the theoretical line and confidence interval are plotted, we simulate and plot five
future sequences of values Y, for X = X, for n = 21 through n = 120 on the same set of axes. To
calculate these sequences, we use equation (5-9b). This done, we repeat starting with three more
sets of 20 initial observations and recalculate the plot three times to show the random nature of
the simulated data and the uncertainty in fit of the predicted line. These plots are shown below,
in Figure 5-1 for illustration.

Note, in the plots, how the random nature of the simulated data has a significant effect on
the the fitted regression line. The fitted line does not always accurately model the true
relationship; a small error in the estimate of slope can seriously skew the fit away from the
simulated data in the long run. As might possibly have been uttered before, perhaps we
shouldn’t treat the fitted regression as if it provided a perfect forecast of the expected value in the
future.

We also note that the 'variance of each individual simulated sequence is, by construction,

constant over time. This is as we would expect from a real life system.



Figure 5-1 Method 1 for Equation of Line -- Four Simulations
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We must keep in mind that the calculations done to generate the preceding simulated
sequences were not entirely correct since they were built upon the assumption, as given in

equation (5-10b), that

(Y-1,)

MSE)"® ~N(0,1)

when in actuality, it is proportional to the student’s-t distribution. Method 2 will work the
student’s-t distribution into the calculation of the Yy’s.

Method 2

In a manner analogous to the techniques used in Method 1, we again generate 20

simulated observations, use them to fit a curve, and then predict five series of Yy for X =21 to




X =120. To calculate these new sequences, we use equation (5-13). The only difference here is,
as outlined in Section 2, Y is estimated as (Yhat), plus a standard deviation times a student’s t
distribution. The standard deviation term is dependent on X}, and grows in magnitude as we go

forward in time; see Figure 5-2. Once again we can observe the uncertainty in fit of the

be the case in subsequent experiments since the simulated sequences are built upon the fitted
regression line.

Figure 5-2 Method 2 for Equation of Line -- Four Simulations
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The variance, unfortunately, is not constant as we expect to find in the real life system. To

compensate for this disparity between the simulated sequences and what we expect in reality, we

go on to Method 3 which provides us with simulated sequences which each appear to have

relatively constant variance through the range of Xy’s.




Method 3

Following the same technique used for Methods 1 and 2, above, we can, once again,
generate 20 simulated observations, use OLS regression to fit a line, and then predict five series
of Yy, for X = 21 to X=120 for comparison to the theoretical line. To calculate these sequences,
we use equations (5-16a and 5-16b). The resulting plots are shown in Figure 5-3.

Figure 5-3 Method 3 for Equation of Line -- Four Simulations
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Note how each of the five simulated series of Yy’s, for Xh = 21 through Xh = 120, unlike the
series produced in Methods 1 and 2 above, all go off in slightly different directions while at the
same time maintaining a constant variance within each individual series. What this helps us to
see is that we can take into account the uncertainty of the fit of the regression line by simulating
not just one but multiple series of future values for Yy. In this way, we build a confidence

interval of sorts (made up of the plots of the individual sequences) which helps us to keep in




mind the fact that the regression line and its confidence intervals do not necessarily provide a
perfect fit for what the actual data might be expected to do! In the C-17 Factory Simulation,
little or no effort was made to account for this uncertainty.

In the next section (Section 4), we simulate the first twenty observations of the learning
curve the same way we simulate them for the equation of the line above. As before, we also go
on to fit this simulated data (building a model of a model) using a log transformation and OLS
regi‘ession. The goal of the next section is to investigate the nature of the uncertainty in the Log-
Linear Learning curve forecasts and to determine if we even need to account for it in the
construction of our simulated sequences of Yy’s. Because of the rescaling produced by the log
transformations, the discrepancy in fit which we see in the linear case may not be apparent in the
case of the log-linear learning éurve.

5-4. Log-Linear Learning Curve Case Studies

Although we discovered with the linear cases above that the uncertainty in fit could
produce significant inaccuracy, we may not discover that the uncertainty for the log-linear case
is worth accounting for. Since this is difficult to know without investigation, we shall now go
on to see what effect Methods 1, 2, and 3 have on the associated plots for the learning curve.
Method 1 |

In a manner analogous to the techniques used in Method 1 (Section 5-3), we again
generate 20 simulated observations; this time we use the log-linear learning curve equation
Y = aX”"b + error. We then fit a curve to these observations, and predict five series of Y}, for X =
21to X =120. To calculate these new sequences, we use equation (5-9b). Again, we

recalculate the simulated observations, the regression curve, and the simulated sequences of Yy’s.




These are all shown in Figure 5-4. We note, from the four simulations in Figure 5-4, that the fit

of the regression line varies almost indiscernably from plot to plot.

Figure 5-4 Method 1 for Log-Linear Equation In Log Space -- Four Simulations
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In addition to the plots in log space shown in Figure 5-4, we also generated plots in linear

space by plotting hours vs.unit number instead of plotting the natural log of hours versus the

natural log of the unit number as we did for the plots in log space; the plots in linear space are

shown in Figure 5-5. We can make the same observations about these plots that we made

regarding those in Figure 5-4; the fit of the regression curve varies almost indiscernably from plot
to plot. Since Method 1 is very similar to the method used in the C-17 FSM, we start to think,
based on these plots, that ignoring the uncertainty in fit might not have the high price-tag which

we originally expected. Despite these early indications that we might not need to account for




uncertainty (at least not in the case of the log-linear learning curve), we’ll look at the effects that
Methods 2 and 3 have on the fitted regression curves.

Figure 5-5 Method 1 for Log-Linear Equation In Linear Space -- Four Simulations
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Method 2
Once again, we generate four sets of simulated observations, four fitted regression lines,
and four sets of five sequences of simulated future observations (Yy,’s). This time, as in Method
2, Section 5-3, we use equation (5-13) which corrects the incorrect assumption regarding the
distribution of the error which is actually distributed as t(n-2) not N(0,1). We plot the resulting
data both in log space and in linear space; these plots are shown in Figures 5-6 and 5-7
respectively. In Figure 5-6, we see the same increasing variance evident in Method 2, Section 5-
3. Once again, however, the fitted regression curve seems not to vary noticiably from simulation

to simulation.



Figure 5-6 Method 2 for Log-Linear Equation In Log Space -- Four Simulations
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Figure 5-7 Method 2 for Log-Linear Equation In Linear Space-- Four Simulations
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Method 3

One last time, we generate the 20 simulated observations, the fitted regressions, and the
simulated sequences of future observations. This time when we generate the simulated
sequences, we use equations (5-16a through 5-16¢). The result is a series of simulated sequences
each of which seem to have a constant variance. Once again, we’ve gone on to plot the resulting
data in both log and linear space; these plots are shown below in Figures 5-8 and 5-9.

Figure 5-8 Method 3 for Log-Linear Equation In Log Space -- Four Simulations
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Figure 5-9 Method 3 for Log-Linear Equation In Linear Space -- Four Simulations
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5-5. Conclusions

From the plots in Figures 5-4, through 5-9, we can say that perhaps the C-17 FSM was

not seriously injured by the fact that during its development, uncertainty in fit was ignored.

Method 1, which is similar to the methods used in the C-17 FSM, produced reasonable fits, not

only in Log-Space, but in linear space as well. Method 2 and Method 3 seemed to make no

appreciable amount of inprovement in the fits.




6. Conclusions

The results of this thesis are somewhat inconclusive since the study does not
identify any one model as always being the best fitting or forecasting tool for all sets of
data. Tt does, however, provide an important general indication that ARMA models,
particularly the AR models, are a promising alternative to the standard log-linear learning
curve approach which is widely in use today; they are comparatively simple to use,
intuitive in nature and seem to provide a good forecast based on a small amount of data.

The investigation of metamodels and the question of accounting for the uncertainty
in fit within the C-17 Factory Simulation Model yielded some encouraging, as well as
potentially useful, results. In the case of the simple linear model, we found that the
application of our proposed Methods 2, and especially, 3 did a good job of accounting for
uncertainty within the fit of the regression line; the resulting simulated sequences seemed
to cluster well around the theoretical confidence interval. In the case of the log-linear
learning curve, however, the results were not as striking. In particular, we found that our
Method 1, which is very similar to the methods used in the C-17 FSM, did a reasonable
job of simulating sequences of (future) observations which, for the most part, fell within
the theoretical prediction interval. Application of Methods 2 and 3 did not noticeably
improve the fidelity of the simulated sequences. The bottom line, here, is that ignoring the
uncertainty in fit (as the C-17 FSM does) doesn’t seem to carry the high cost we
expected!

There are a few things which, based on hindsight, I might have done differently.

First of all, in Sections 3-6 and 4-2, I would have used a log-linear learning curve data set




which had no error in it. (The model we used had a uniformly distributed error term with
a very small variance.) Using data which had no error term may have provided a more
useful initial analysis since the models would have had a ‘clean’ data set for the initial test
instead of having to deal with the random component injected by the error term. Of

course, the error we used in the model was quite small and may have had a negligible

effect anyway.

Another thing I might have done differently was to use all of the models to
fit/forecast the log-linear learning curve data the same way we used them to fit/forecast
the F-102 data and the Notional C-17 data; this would have provided a more complete
picture of the abilities of the candidate models. As it was, in Section 4-2, we used the
models only to fit the log-linear data; in Section 4-3, we used the models to fit the F-102
data and then went on and used them to fit/forecast the F-102 data; in Section 4-4, we
used the models only to fit/forecast the Notional C-17 data. Each section should have
used precisely the same set of investigations.

Yet another modification I might make to my investigations would be to have
picked a sample size for the fit/forecasting investigations which was common to all data
sets. For example, since the Notional C-17 data fit/forecasting investigations used a
sample of 15 observations on which to base the fitting of the models, we should have used
this same number in the fit/forecasting of the F-102 data; furthermore, if our investigations
had included fit/forecasting for the log-linear data, this number should also have been the

same for them. Using different numbers of observations in the fit part of the




fit/forecasting, put the candidate models on uneven ground and make it difficult to
evaluate the results of the study.

One more thing I would do if there was more time, would be to take a closer look
at the SSE’s (used as measures of performance in Chapter 4). It would be interesting to
see how close in magnitude each of the resulting SSE’s are. Perhaps we’d find that there
is virtually no difference between the fidelity of the top four models; we might find that
any one of them will do an equally good job at forecasting so we could choose the lowest
order or simplest model from among them in pursuit of parsimony or simplicity. On the
other hand, we might find that the model ranked number one had a statistic which was six
orders of magnitude better than the next best model’s statistic; this might keep us from
choosing a lower order model. I feel that the relative magnitudes of the SSE’s is quite an
important consideration in the analysis of the results.

The point of this thesis was not to show that log-linear learning curve models are
1o not good at forecasting learning type data, that ARMA models were the best models
for this type of forecasting, or that the C-17 FSM should be scrapped because it failed to
account for uncertainty in fit. Instead, the objective was to show that there are other
models which provide a viable alternative to the standard learning curve. The secondary
emphasis was to investigate the merit/cost of ignoring, within the C-17 FSM, the
uncertainty in fit. I believe I’'ve accomplished both of these things! Hopefully, model
developers can utilize some of the information in this thesis to assist them in developing

the best forecasting models possible.
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Appendix A

Forecast-Pro Summary and Worksheets
(Work done in Forecast-Pro.)




Table A-1 Forecast-Pro, Summary of Statistics and Parameters

0.9442

0.02687

1286.22

0.9022 0.9042 0.2607 0.02742 14.83 35.43 35.43
0.9401 0.9401 0.9888 0.02714 14.58 35.91 34.54
0.9841 0.9838 2.04 0.01623 8.227 19.24 17.79
0.9833 0.9826 1.686 0.01657 8.382 20.53 18.25
0.9844 0.9833 1.733 0.01603 8.023 20.64 17.65
0.8037 0.8037 0.05782 0.1155 47.34 65.02 62.52
0.9254 0.9239 0.5625 0.07117 28.74 41.67 38.53
0.9723 0.9711 0.8157 0.04995 19.54 26.42 23.49
0.9872 0.9863 1.09 0.03225 12.63 18.69 15.98
0.9646 0.9639 0.8359 0.02662 13.28 28.7 26.54
0.9865 0.9859 2.348 0.0181 8.177 18.45 16.4
0.9908 0.9904 1.73 0.01687 8.051 15.23 13.54
0.9893 2207 0.01859 8357 17.08 14,61

.99973, 286.22




Forecast Pro for Windows Standard Edition Version 2.00
Mon Jan 29 19:55:18 1996

Expert data exploration of dependent variable PWRMEANS

Length 50 Minimum 283.069 Maximum 1002.019
Mean 402.219 Standard deviation 141.123

Series too short to determine seasonality. Treating as nonseasonal.
Classical decomposition (nonseasonal)
Trend-cycle: 97.11% Irregular: 2.89%

Log transform recommended for Box-Jenkins.

There are no strongly significant regressors, so I will choose
a univariate method.

Exponential smoothing outperforms Box-Jenkins by 2.588 to 3.628
out-of-sample (MAD). I tried 21 forecasts up to a maximum horizon 6.
For Box-Jenkins, I used a log transform.

Series 1s trended and nonseasonal.

Recommended model: Exponential Smoothing

Figure A-1 Forecast-Pro, Exponential Smoothing
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Simple exponential smoothing

Forecast Model for PWRMEANS
Simple exponential smoothing: No trend, No seasonality
Confidence limits proportional to level

Smoothing  Final
Component Weight  Value

Level 1.00000  286.22

Standard Diagnostics

Sample size 50 Number of parameters 1

Mean 402.2 Standard deviation 142.6

R-square .9954 Adjusted R-square 0.9382
Durbin-Watson 0.9442 ** [ jung-Box(18)=42.45 P=0.999
Forecast error 35.43 BIC 36.47

MAPE 0.02687 RMSE 35.07

MAD 14.53

Figure A-2 Forecast-Pro, Simple Exponential Smoothing
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Naive (SMA(1), Random walk)

Forecast Model for PWRMEANS
Automatic model selection
Naive (SMA(1), Random walk)

Standard Diagnostics

Sample size 49 Number of parameters 0

Mean 390 Standard deviation 114.4

R-square 0.9022 Adjusted R-square 0.9042
Durbin-Watson 0.2607 ** | jung-Box(18)=41.51 P=0.9987
Forecast error 35.43 BIC 3543

MAPE 0.02742 RMSE 35.43

MAD 14.83

Figure A-3 Forecast-Pro, Simple Moving Average (SMA(1))
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Holt exponential smoothing

Forecast Model for PWRMEANS

Automatic model selection

Holt exponential smoothing: Linear trend, No seasonality
Confidence limits proportional to level

Smoothing Final

Component Weight  Value

Level 099973  286.22

Trend 023092 -1.3716

Standard Diagnostics

Sample size 50 Number of parameters 2
Mean 402.2 Standard deviation 142.6
R-square 0.9611 Adjusted R-square 0.9603
Durbin-Watson 1.938 Ljung-Box(18)=6.991 P=0.009796
Forecast error 28.39 BIC 30.08 (Best so far)
MAPE 0.02575 RMSE 27.82

MAD 13.83

Figure A-4 Forecast-Pro, Holt Exponential Smoothing
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Forecast Model for PWRMEANS

ARIMA(1,0,0)
Term Coefficient Std. Error t-Statistic Significance
af1] 09953  0.0056 178.7528  1.0000
_CONST 1.9008
Standard Diagnostics
Sample size 50 Number of parameters 1
Mean 402.2 Standard deviation 142.6
R-square 0.9401 Adjusted R-square 0.9401
Durbin-Watson 0.9888 ** [_jung-Box(18)=40.21 P=0.998
Forecast error 34.89 BIC 3591
MAPE 0.02714 RMSE 34.54
MAD 14.58

Figure A-5 Forecast-Pro, AR(1)
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Forecast Model for PWRMEANS

ARIMA(2,0,0)
Term Coefficient Std. Error t-Statistic Significance
a[l] 1.7947  0.0479 37.4544  1.0000
a[2] -0.8018  0.0494 -16.2365  1.0000
_CONST 2.8753
Standard Diagnostics
Sample size 50 Number of parameters 2
Mean 402.2 Standard deviation 142.6
R-square 0.9841 Adjusted R-square 0.9838
Durbin-Watson 2.04 Ljung-Box(18)=5.466 P=0.002073
Forecast error 18.16 BIC 19.24 (Best so far)
MAPE 0.01623 RMSE 17.79
MAD 8.227

Figure A-6 Forecast-Pro, AR(2)
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Forecast Model for PWRMEANS

ARIMA(3,0,0)
Term Coefficient Std. Error t-Statistic Significance
a[1] 1.5845  0.0448 35.3651 1.0000
a[2] -0.2266  0.0986 -2.2984  0.9740
a[3] -0.3632  0.0556 -6.5293  1.0000
_CONST 2.1476
Standard Diagnostics
Sample size 50 Number of parameters 3
Mean 402.2 Standard deviation 142.6
R-square 0.9833 Adjusted R-square 0.9826
Durbin-Watson 1.686 Ljung-Box(18)=3.235 P=4.927e-005
Forecast error 18.83 BIC 20.53
MAPE 0.01657 RMSE 18.25
MAD 8.382

Figure A-7 Forecast-Pro, AR(3)
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Forecast Model for PWRMEANS

ARIMA (4,0,0)
Term Coefficient Std. Error t-Statistic Significance
a[1} 1.6203  0.0414 39.1669  1.0000
a[2] -0.2361  0.1250  -1.8883  0.9347
a[3] -04572  0.1958 -2.3350  0.9760
a[4] 0.0676  0.0995 0.6791  0.4995
_CONST 2.1717
Try alternative model ARIMA(3,0,0)
Standard Diagnostics
Sample size 50 Number of parameters 4
Mean 402.2 Standard deviation 142.6
R-square 0.9844 Adjusted R-square 0.9833
Durbin-Watson 1.733 Ljung-Box(18)=3.237 P=4.951e-005
Forecast error 18.4 BIC 20.64
MAPE 0.01603 RMSE 17.65
MAD 8.023

Figure A-8 Forecast-Pro, AR(4)
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Forecast Model for PWRMEANS

ARIMA(0,0,1)
Term Coefficient Std. Error t-Statistic Significance
b[1] -0.9675  0.0200 -48.4850  1.0000
_CONST 402.2187

Standard Diagnostics

Number of parameters 1
Standard deviation 142.6
Adjusted R-square 0.8037
** Ljung-Box(18)=158.7 P=1

Sample size 50
Mean 402.2
R-square 0.8037
- Durbin-Watson 0.05782

Forecast error 63.16 BIC 65.02
MAPE 0.1155 RMSE 62.52
MAD 47.34
Figure A-9 Forecast-Pro, MA(1)
1000f = = = = = = = = = = e e e e e e e e e e e e e e e m - - e - -

900

800

700

600

500

400t

300

NN IR NN AR NN NN EREERREREAS

T

1995

A-10

1996



Forecast Model for PWRMEANS

ARIMA(0,0,2)
Term Coefficient Std. Error t-Statistic Significance
b[1] -1.3321  0.0563 -23.6572  1.0000
b[2] -0.9397  0.0413 -22.7603  1.0000
_CONST 402.2187
Standard Diagnostics
Sample size 50 Number of parameters 2
Mean 402.2 Standard deviation 142.6
R-square 0.9254 Adjusted R-square 0.9239
Durbin-Watson 0.5625 ** jung-Box(18)=121.6 P=1
Forecast error 39.33 BIC 41.67
MAPE 0.07117 RMSE 38.53
MAD 28.74

Figure A-10 Forecast-Pro, MA(2)

900
800}
700Q\!
600}
500f

400}

300

NN AR A NN RN E RN NN NN ERNNAENNRANE I||IIIII|III.

1995 1996

A-11




Forecast Model for PWRMEANS

ARIMA(0,0,3)
Term Coefficient Std. Error t-Statistic Significance
b[1] -1.5788  0.0562 -28.0915  1.0000

b[2] -1.5280  0.0661 -23.1201 1.0000

b[3] -0.8981  0.0410 -21.8820  1.0000
_CONST 402.2187

Standard Diagnostics

Sample size 50 Number of parameters 3

Mean 402.2 Standard deviation 142.6
R-square 0.9723 Adjusted R-square 0.9711
Durbin-Watson 0.8157 ** Ljung-Box(18)=128.3 P=1
Forecast error 24.23 BIC 26.42

MAPE 0.04995 RMSE 23.49

MAD 19.54

Figure A-11 Forecast-Pro, MA(3)
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Forecast Model for PWRMEANS

ARIMA(0,0,4)
Term Coefficient Std. Error t-Statistic Significance
b[1] -1.7923  0.0546 -32.7994  1.0000
b[2] -2.2399  0.0883 -25.3794  1.0000
b[3] -1.6646  0.0802 -20.7439  1.0000
b[4] -0.8566  0.0452 -18.9600  1.0000
_CONST 402.2187
Standard Diagnostics
Sample size 50 Number of parameters 4
Mean 402.2 Standard deviation 142.6
R-square 0.9872 Adjusted R-square 0.9863
Durbin-Watson 1.09 ** L jung-Box(18)=107.4 P=1
Forecast error 16.66 BIC 18.69 (Best so far)
MAPE 0.03225 RMSE 15.98
MAD 12.63
Figure A-12 Forecast-Pro, MA(4)
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Forecast Model for PWRMEANS

ARIMA(1,0,1)
Term Coefficient Std. Error t-Statistic Significance
a[l] 09954  0.0061 163.9297  1.0000
b[1] -0.8783  0.0604 -14.5466  1.0000
_CONST 1.8609
Standard Diagnostics
Sample size 50 Number of parameters 2
Mean 402.2 Standard deviation 142.6
R-square 0.9646 Adjusted R-square 0.9639
Durbin-Watson 0.8359 Ljung-Box(18)=20.31 P=0.6841
Forecast error 27.09 BIC 28.7
MAPE 0.02662 RMSE 26.54
MAD 13.28

Figure A-13 Forecast-Pro, ARMA(1,1)
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Forecast Model for PWRMEANS

ARIMA(2,0,1)
Term Coefficient Std. Error t-Statistic Significance
afl] 1.8974  0.0387 49.0106  1.0000
af2] -0.9048  0.0403 -22.4327  1.0000
b[1] -0.2490  0.1061 -2.3476  0.9768
_CONST 2.9941
Standard Diagnostics
Sample size 50 Number of parameters 3
Mean 402.2 Standard deviation 142.6
R-square 0.9865 Adjusted R-square 0.9859
Durbin-Watson 2.348 Ljung-Box(18)=6.226 P=0.004808
Forecast error 16.92 BIC 18.45 (Best so far)
MAPE 0.0181 RMSE 16.4
MAD 8.177

Figure A-14 Forecast-Pro, ARMA(2,1)
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Forecast Model for PWRMEANS

ARIMA(1,0,2)
Term Coefficient Std. Error t-Statistic Significance
a[1] 09991  0.0041 241.5930  1.0000
b[1] -1.1743  0.0591 -19.8619  1.0000
b[2] -0.9597  0.0334 -28.7005  1.0000
_CONST 0.3623
Standard Diagnostics
Sample size 50 Number of parameters 3
Mean 402.2 Standard deviation 142.6

R-square 0.9908
Durbin-Watson 1.73
Forecast error 13.97
MAPE 0.01687 RMSE 13.54
MAD 8.051

Adjusted R-square 0.9904
Ljung-Box(18)=28.68 P=0.9476
BIC 15.23 (Best so far)

Figure A-15 Forecast-Pro, ARMA(1,2)
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Forecast Model for PWRMEANS

ARIMA(2,0,2)

Term Coefficient Std. Error t-Statistic Significance
a[1] 1.8956  0.0462 41.0309  1.0000

a[2] -0.9072  0.0468 -19.3879  1.0000

b[1] -0.4297  0.1050 -4.0940  0.9998

b[2] -0.5006  0.1039 -4.8165  1.0000
_CONST 4.6625

Standard Diagnostics
“Sample size 50 Number of parameters 4

Mean 402.2 Standard deviation 142.6

R-square 0.9893 Adjusted R-square 0.9886
Durbin-Watson 2.207 Ljung-Box(18)=14.53 P=0.3059
Forecast error 15.23 BIC 17.08 (Best so far)

MAPE 0.01859 RMSE 14.61

MAD 8.357

Figure A-16 Forecast-Pro, ARMA(2,2)
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Appendix B

Fitting the Simulated Log-Linear Learning Curve Data Using 50
Observations
(Work done in EXCEL)



Table B-1 Detailed Summary of Log-Linear Fitting

Parameters:

Equation:

Parameters:

Equation:  Y(x)=a*x"b+cmin

Parameters:

Equation: Y(x)=a*(x+beta)*n

Parameters:

427
(x)=alpha*a”(x-1)+beta

Equation: MC

Parameters:

SSE: ). t
Equation:  Y(x)=L*exp(-b*exp(-k*t))

Parameters:

Equation: = AR(1)= phi*(AR1-1)+const+noise

Parameters:

Equation:




(more) Table B-1 EXCEL, Detailed Summary of Log-Linear Fitting

Parameters:

Equation:  AR(3)= phil*(AR3-1)+phi2*(AR3-2)+phi3*(AR3-3)+
const+noise

Parameters: phi_1* phi_3* phi_4*

Equation:  AR(4)= phil*(AR4-1)+phi2*(AR4-2)+phi3*(AR4-3)+
phid*(AR4-4)+const+noise

Parameters:

Equation: = MA(1)=myou-theta*errorminusl+noise

Equation: ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise

Equation: ARMA(1,2)=phil*(ARMA(1,2)-1)+muprime-
thetal*errorlast-theta2*errorlastlast+noise

muprime* phi2* theta*

‘Equation: ARMA(Z,i) = phil*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+
muprime-theta*errorlast+noise

Equation: ARMA(2;2)=ph11*(ARMA(2,2)-1)+phi2*(ARMA(Z,Z)-2)+muprime-
thetal*errorlast- theta2*errorlas

B-2




Table B-2 Brief Summary of Log-Linear Fitting

763.7 1

2256.4
11576.1 11
242678.9 13
43241.7 12
2665105.0 14
9685.7 10
4851.1 7
1756.4 3
1438.8 2
5856.5 8
6274.5 9
3714.9 5
4468.4 6




Parameters: a b*

SSE:
Equation:  Y(x)=a*x"b

Figure B-1 EXCEL, Log-Linear Fit to Log-Linear Data

Log-Linear Model Fit to Log-Linear Data
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Parameters: a* b* cmin

SSE:
Equation: Y(x)=a*x"b+cmin

Figure B-2 EXCEL, Forsythe Fit to Log-Linear Data
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Parameters: a* beta* n*

SSE:
Equation: Y(x)=a*(x+beta)*n

Figure B-3 EXCEL, Stanford-B Fit to Log-Linear Data

Stanford-B Fit to Log-Linear Data
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Parameters:
SSE:
Equation: MC(x)=alpha*a”(x-1)+beta
Figure B-4 EXCEL, Pegel's Fit to Log-Liner Data
Pegel Fit to Log-Linear Data
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Parameters: a* L* b* k*

SSE:
Equation:

‘(x)=L"exp(-b*exp(-k*t))

Figure B-5 EXCEL, S-Curve Fit to Log-Linear Data

S-Curve Fit to Log-Linear Data
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Parameters: const*
SSE:
Equation: AR(1)= phi*(AR1-1)+const+noise
Figure B-6 EXCEL, AR(1) Fit to Log-Linear Data
AR(1) Fit to Log-Linear Data
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Parameters:

SSE:
Equation: AR(2)= phi1*(AR2-1)+phi2*(AR2-2)+const+noise

Figure B-7 EXCEL, AR(2) Fit to Log-Linear Data
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Parameters: i phi_2*

SSE:
Equation: AR(3)= phi1

*(AR3-1)+phi2*(AR3-2)+phi3*(AR3-3)+const+noise

Figure B-8 EXCEL, AR(3) Fit to Log-Linear Data
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Parameters: phi_1* const*

Equation: |AR(4)= phi1*(AR4-1)+phi2*(AR4-2)+phi3*(AR4-3)+phid*(AR4-d)+const+noise

Figure B-9 EXCEL, AR(4) Fit to Log-Linear Data

AR(4) Fit to Log-Linear Data
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Parameters: myou* theta*
SSE: }
Equation: MA(1)=myou-theta*errorminus1+noise
Figure B-10 EXCEL, MA(1) Fit to Log-Liner Data
MA(1) Fit to Log-Linear Data
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Parameters:

SSE:
Equation:

ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise

Figure B-11 EXCEL, ARMA(1,1) Fit to Log-Linear Data

ARMA(1,1) Fit to Log-Linear Data
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Parameters: muprime* phit* thetat* theta2*
SSE:
Equation: ARMA(1,2)=phi1*(ARMA(1,2)-1)+muprime-thetal*errorlast-
- theta2*errorlastlast+noise
Figure B-12 EXCEL, ARMA(1,2) Fit to Log-Linear Data
ARMA(1,2) Fit to Log-Linear Data
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Parameters:

SSE:

Equation: (2,1)=phit1*( ﬁMA(2,1)-1)+phi2'(ARMA(2,1)-2)+

muprime-theta*errorlast+noise

Figure B-13 EXCEL, ARMA(2,1) Fit to Log-Linear Data

ARMA(2,1) Fit to Log-Linear Data
1200
1000 +
| 800 +
‘ e
3 600 1
I
400 + 0004000900000 eae
| w0 | 00—
0 } : . } ' ' } '
| 0 5 10 15 20 25 30 35 40 45 50
; Unit Number
Parameters:
SSE:
Equation: ARMA(2,2)=phi1*(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2)+muprime-
thetat*errorlast-theta2*erroriastlast+noise
Figure B-14 EXCEL, ARMA(2,2) Fit to Log-Linear Data
ARMA(2,2) Fit to Log-Linear Data
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Table B-3 EXCEL, Simulated Log-Linear Data Base

The Simulated Log-Linear Data Base

| unit Number Log-Lin(stoch) | Unit Number Log-Lin(stoch) |
1 1010.832269 26 347.6588376
2 808.3325458 27 346.8230994
3 691.2839896 28 340.5004826
4 641.1901161 29 336.3884482
5 595.4460444 30 335.0655174
6 557.2059351 31 329.6040636
7 527.0011364 32 332.1842007
8 508.4621019 33 325.4725805
9 496.9922034 34 320.8691874
10 469.848955 35 316.8387424
11 462.2715407 36 315.0144544
12 454.8076222 37 316.1912111
13 442.1848743 38 311.1881426
14 432.8762252 39 311.0490991
15 4141127291 40 304.7384949
16 403.5124097 a1 304.5376237
17 396.6960025 42 300.691177
18 391.530033 43 297.5358953
19 383.1869894 44 296.2756757
20 379.2670047 45 292.0449126
21 377.8492397 46 289.0213147
22 372.9927929 47 286.4419215
23 366.6170179 48 285.358444
24 364.765332 49 284.2516737
25 352.3002239 50 287.7423919




Appendix C

Fitting the Historical F-102 Data Using 500 Observations
(Work done in EXCEL)




Table C-1 Detailed Summary of Fitting the Historical F-102 Data Base

a b
838249.88 -0.5144 0
SSE: 5.503E+10 |
Equation: Y(x)=a*xAb+cmin

Parameters:

n*

a beta
45456836.6 29.5607 -1.4187
SSE: 4.540E+10 |
Equation: Y(x)=a*(x+beta)*n

0.91522 4629.393
SSE: 2.722E+10 |
Equation: AR(1)= phi*(AR1-1)+const+noise

Parameters:

phi_2* const*

-0.0214

0.9017230 11982.597
SSE: 4.930E+09 |
Equation: AR(2)= phil*(AR2-1)+phi2*(AR2-2)+const+noise

Parameters: phi_1* phi_2* phi_3* const*
0.84346 0.08390 -0.00332 4094.4724
SSE: 2.637E+10 |
Equation: AR(3)= phi1*(AR3-1)+phi2*(AR3-2)+phi3*(AR3-3)+const+noise

phi_1* phi_2* phi_3* phi_4* const*
0.89845 -0.00194 -0.02330 -0.28369  12934.3652
SSE: 4.877E+09 |
Equation:  |AR(4)= phil*(AR4-1)+phi2*(AR4-2)+phi3*(AR4-3)+phi4*(AR4-4)+const+noise

muprime* theta* phi*
3426.4751 0.52344 0.93489
SSE: 2.089E+10
Equation: ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise




(more) Table C-1 Detailed Summary of Fitting the Historical F-102 Data Base

Parameters: muprime* phil* thetal* theta2*
3468.5690 0.93417 0.56678 -0.06678

SSE: 2.079E+10 |
Equation: ARMA(1,2)=phil*(ARMA(1,2)-1)+muprime-thetal*errorlast-

theta2*errorlastlast+noise

Parameters: muprime* phil* phi2* theta*
3400.5396 0.92509 0.01020 0.52183
SSE: 2.087E+10 |
Equation: ARMA(2,1)=phil*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+

Parameters:

muprime-theta*errorlast+noise

phi2

muprime phil thetal theta2
3477.1898 0.93663 -0.00260 0.56949 -0.07003
SSE: 2.079E+10 |
Equation: ARMA(2,2)=phil*(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2)+muprime-thetal *

errorlast-theta2*errorlastlast+noise

Table C-2 Brief Summary of Fitting the Historical F-102 Data Base

5.503E+10
5.503E+10
4.540E+10
2.722E+10
4.930E+09
2.637E+10
4 87TE+09
2.089E+10
2.079E+10
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Parameters:

SSE:
Equation:  Y(x)=a*x"b

Figure C-1 EXCEL, Log-Linear Fit to F-102 Historical Data
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Parameters: a* b* cmin*

SSE:
Equation:

Y(x)=a*x"b+cmin

Figure C-2 EXCEL, Forsythe Fit to F-102 Historical Data
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Parameters: a* beta* n*
SSE: v
Equation: (x)=a*(x+beta)*n

Figure C-3 EXCEL, Stanford-B Fit to F-102 Historical Data

Stanford-B/F-102 Fit
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3
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Parameters: phi* const*
SSE:
Equation: ARI1(x)= phi*(Ysubx-1)+const+error
Figure C-4 EXCEL, AR(1) Fit to F-102 Historical Data

AR(1)/F-102 Fit
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Parameters:

SSE: ,
Equation: AR2 = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+const+error
Figure C-5 EXCEL, AR(2) Fit to F-102 Historical Data
AR(2)/F-102 Fit
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Unit Number
Parameters: © phi_1* phi_2* phi_3* const*
SSE:
Equation: AR3 = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error
Figure C-6 EXCEL, AR(3) Fit to F-102 Historical Data
AR(3)/F-102 Fit
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Parameters:

SSE:
Equation:

AR4 = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error

Figure C-7 EXCEL, AR(4) Fit to F-102 Historical Data
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Parameters:

SSE:
Equation:

muprime* theta* phi*

ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise

Figure C-8 EXCEL, ARMAC(1,1) Fit to F-102 Historical Data
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Parameters:

SSE:
Equation: RMA(1,2)=phil*(ARMA(1,2)-1)+muprime-thetal *errorlast-
theta2*errorlastlast+noise
Figure C-9 EXCEL, ARMAC(1,2) Fit to F-102 Historical Data
ARMA(1,2)/F-102 Fit
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Parameters: muprime* phil* phi2* theta*
SSE:
Equation: ARMA(2,1)=phil*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+
muprime-theta*errorlast+noise
Figure C-10 EXCEL, ARMA(2,1) Fit to F-102 Historical Data
ARMA(2,1)/F-102 Fit
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Hours

250000 A

Parameters: muprime* phil* phi2* thetal* theta2*
SSE:
Equation: ARMA(2,2)=phi1*(ARMA (2,2)-1)+phi2*(ARMA(2,2)-2)+
muprime-thetal *errorlast-theta2*errorlastlast+noise
Figure C-11 EXCEL, ARMA(2,2) Fit to F-102 Historical Data
ARMA(2,2)/F-102 Fit
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Appendix D

Forecasting the Historical F-102 Data Using 20 Observations and a
Hold-out Sample of 480 Observations
(Work done in EXCEL)




Table D-1 Detailed Summary of Forecasting the Historical F-102 Data Base

Parameters: a* b*
3772289.66 -1.0169 0
SSE (1st 20): 2.965E+09
SSE (all 500): 6.204E+11
Equation: Y(x)=a*x"b+cmin

Parameters: a* beta* n*
1753527.5 -3.3272 -0.8136
SSE (1st 20): 2.814E+09
SSE (all 500): 1.560E+10
Equation: Y(x)=a*(x+beta) n

Parameters: phi* const*
0.88739 11333.898
SSE (1st 20): 2.452E+09
SSE (all 500): 1.075E+12
Equation: AR(1)= phi*(AR1-1)+const+noise

Parameters: phi_1* phi_2* const*
0.9032423 -0.0341 14658.230
SSE (1st 20): 2.350E+09 :
SSE (all 500): 9.413E+09
Equation: AR(2)= phil*(AR2-1)+phi2*(AR2-2)+const+noise

* phi_2* phi_3

Parameters: phi_1 » . const
0.89068 -0.00943 -0.03295 18459.07235
SSE (1st 20): 2.257E+09
SSE (all 500): 2.160E+12
Equation: AR(3)= phil*(AR3-1)+phi2*(AR3-2)+phi3*(AR3-3)+
const+noise
Parameters: phi_1* phi_2* phi_3* phi_4* const*
0.85381 -0.01134 0.02524 -0.08194 29783.44523
SSE (1st 20): 1.707E+09
SSE (all 500): 4.063E+10
Equation: AR(4)= phil*(AR4-1)+phi2*(AR4-2)+phi3*(AR4-3)+

phid*(AR4-4)+const+noise




(more) Table D-1 Detailed Summary of Forecasting the Historical F-102 Data Base

Parameters: muprime* |- theta* phi*
11141.4558 0.17746 0.88825
SSE (1st 20): 2.414E+09
SSE (all 500): 1.036E+12
Equation: ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise

Parameters:

muprime* phil* thetal* theta2*
10202.6021 0.90340 1.04307 0.67739
SSE (1st 20): 1.153E+09
SSE (all 500): 1.294E+12
Equation: ARMA(1,2)=phil*(ARMA(1,2)-1)+muprime-thetal *errorlast-

theta2*errorlastlast+noise

b4

Parameters: muprime* phil* phi2* theta*
26833.4934 0.91517 -0.10895 1.72503
SSE (1st 20): 8.848E+08
SSE (all 500): 3.320E+12
Equation: ARMA(2,1)=phil*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+muprime-
theta*errorlast+noise

Parameters: muprime* thetai* theta2

15389.0325 0.93634 -0.07749 1.29884 0.46942
SSE (1st 20): 8.793E+08
SSE (all 500): 1.458E+12
Equation: ARMA(2,2)=phil*(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2)+muprime-

thetal*errorlast- theta2*errorlastlast+noise

Table D-2 Brief Summary of Forecasting the Historical F-102 Data Base

SE (last 480 (all 500) | Ranl
2.965E+09 6.175E+11 6.204E+11 10 4
2.965E+09 6.175E+11 6.204E+11 10 4
2.814E+09 1.278E+10 1.560E+10 9 2
2.452E+09 1.073E+12 1.075E+12 8 6
2.350E+09 7.064E+09 9.413E+09 6 1
2.257TE+09 2.158E+12 2.160E+12 5 9
1.707E+09 3.892E+10 4.063E+10 4 3
2.414E+09 1.034E+12 1.036E+12 7 5
1.153E+09 1.293E+12 1.294E+12 3 7
8.848E+08 3.319E+12 3.320E+12 2 10
8.793E+08 1.457E+12 1.458E+12 1 8




Parameters:

SSE(1st 20):
SSE(all 500):
Equation:

(x)=a*x

Figure D-1 EXCEL, Log-Linear Forecast of F-102 Historical Data

Log-Linear Model Forecast of F-102 (from 20 unit history)
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Equation: Y(x)=a*x"b+cmin
Figure D-2 EXCEL, Forsythe Forecast of F-102 Historical Data
Forsythe Forecast of F-102 (from 20 unit history)
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Parameters:

SSE(1st

SSE(all 500):
Equation:

20):

ta)An

Figure D-3 EXCEL, Stanford-B Forecast of F-102 Historical Data
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Figure D-4 EXCEL, AR(1) Forecast of F-102 Historical Data
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Parameters: phi_1* i const*
SSE (1st 20):
SSE (all 500):

Equation: AR(2) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+const+error

Figure D-5 EXCEL, AR(2) Forecast of F-102 Historical Data

AR(2) Forecast of F-102 (using 20 unit history)
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Figure D-6 EXCEL, AR(3) Forecast of F-102 Historical Data

AR(3) Forecast of F-102 (from 20 unit history)
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Parameters:

SSE (1st 20):
SSE (al} 500):

Equation:

i)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error

Figure D-7 EXCEL, AR(4) Forecast of F-102 Historical Data

AR(4) Forecast of F-102 (from 20 unit history)
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Figure D-8 EXCEL, AR(1,1) Forecast of F-102 Historical Data
ARMA(1,1) Forecast of F-102 (using 20 unit history)
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SSE (1st 25):
SSE (all 500):
Equation: ARMA(1,2) = phil*(ARMA(1,2)-1)+muprime-thetal *errorlast-
theta2*errorlastlast+noise
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Figure D-9 EXCEL, AR(1,2) Forecast of F-102 Historical Data

ARMA(1,2) Forecast of F-102 (from 20 unit history)
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Figure D-10 EXCEL, AR(2,1) Forecast of F-102 Historical Data
ARMA(2,1) Forecast of F-102 (from 20 unit history)
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SSE (1st 20):
SSE (all 500):
Equation:

phil*

phi2*

(ARMA(2,2)-1)+phi2*(ARMA (2,2)-2)+

thetal*

muprime-thetal *errorlast-theta2*errorlastlast+noise
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Figure D-11 EXCEL, AR(2,2) Forecast of F-102 Historical Data
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Appendix E

The Historical F-102 Data Base - 500 Observations




Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
1 1 1 402475 1 5942 1
2 2 2 375849 1 5942 3
3 3 3 278963 2 5942 7
4 4 4 271223 2 5942 7
5 5 5 262498 2 5942 8
6 6 6 258078 2 5942 9
7 7 7 243726 2 5942 10
8 8 8 232766 2 5942 10
9 9 9 220833 2 5942 11
10 10 10 218827 2 5942 12
11 11 11 322447 3 5942 15
12 12 12 306736 3 5942 16
13 13 13 290470 3 5942 17
14 14 14 282951 3 5942 18
15 15 15 233125 4 5942 21
16 16 16 215379 4 5942 22
17 17 17 203122 4 5942 22
18 18 21 189770 4 5942 24
19 19 18 164120 4 5942 23

20 20 19 169080 4 5942 23
21 22 20 150387 4 5942 23
22 23 22 154606 4 5942 24
23 24 23 168896 4 5942 27
24 25 27 159485 4 5942 27
25 26 25 149109 4 5942 27
26 27 32 129792 5 5942 28
27 28 24 128958 5 5942 27
28 29 31 130389 5 5942 28
29 31 26 114872 4 23903 26
30 32 36 128470 5 5942 28
31 33 35 121932 5 5942 28
32 34 29 117969 5 5942 28
33 35 33 117364 5 5942 28
34 36 37 116895 5 5942 29
35 37 30 94174 5 23903 27
36 38 40 115466 5 5942 29
37 39 28 111137 5 5942 27
38 40 47 108890 5 5942 30
39 41 49 113487 5 5942 30
40 43 55 115846 5 5942 30
41 44 39 111029 5 5942 29
42 45 44 107397 5 5942 29
43 21 38 164751 4 5942 29
44 30 46 119597 5 5942 29
45 47 52 100520 6 23903 31
46 48 50 100504 6 23903 31
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Table E-1 The Historical F-102 Data

. OBS PLN DelaySeq TOTHRS Lot Contracti# DM
47 49 34 98316 6 23903 30
48 51 57 99317 6 23903 32
49 52 41 98162 6 23903 30
50 53 42 94614 6 23903 30
51 55 43 91628 6 23903 30
52 56 45 88098 6 23903 30
53 58 48 90164 6 23903 30
54 60 51 86840 6 23903 31
55 61 53 87197 6 23903 31
56 63 54 93812 6 23903 32
57 65 56 97725 6 23903 32
58 66 59 92401 7 23903 33
59 67 58 86481 7 23903 33
60 69 60 86830 7 23903 33
61 70 61 84477 7 23903 33
62 72 70 88589 7 23903 34
63 62 75 73200 9 23903 34
64 73 62 81738 7 23903 33
65 74 109 90762 7 23903 35
66 75 64 81865 7 23903 34
67 77 65 79839 7 23903 34
68 78 66 79358 7 23903 34
69 79 67 79651 7 23903 34
70 80 68 77606 7 23903 34
71 82 69 75097 7 23903 34
72 46 86 103137 6 23903 35
73 64 81 77297 9 23903 34
74 83 71 75510 7 23903 34
75 84 145 83796 7 23903 35
76 85 72 82662 7 23903 35
71 86 73 85787 7 23903 35
78 88 146 87891 7 23903 35
79 89 74 78264 7 23903 35
80 90 76 76967 7 23903 35
81 91 77 74963 7 23903 35
82 92 78 74628 7 23903 35
83 93 79 76608 7 23903 35
84 94 80 73689 7 23903 35
85 96 82 79580 8 29264 35
86 97 84 77425 8 29264 36
87 42 63 137990 6 23903 33
88 98 83 77409 8 29264 35
89 99 88 75854 8 29264 36
90 100 85 78187 8 29264 36
91 101 87 76044 8 29264 36
92 102 89 75017 8 29264 36
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
93 103 91 73337 8 29264 36
94 104 94 72091 8 29264 36
95 105 92 72916 8 29264 36
96 107 93 69718 8 29264 36
97 108 106 71085 8 29264 37
98 109 95 68818 8 29264 36
99 110 96 72137 8 29264 37
100 111 97 72101 8 29264 37
101 112 99 70917 8 29264 37
102 113 98 71333 8 29264 37
103 115 100 72966 8 29264 37
104 116 101 69869 8 29264 37
105 117 103 69895 8 29264 37
106 118 104 70448 8 29264 37
107 119 105 71490 8 29264 37
108 120 108 69560 8 29264 37
109 132 120 65290 9 29264 37
110 133 121 64415 9 29264 37
111 134 122 64269 9 29264 37
112 135 123 65396 9 29264 37
113 136 124 65398 9 29264 37
114 137 123 65747 9 29264 37
115 138 127 63262 9 29264 38
116 140 126 65332 9 29264 38
117 141 128 61274 9 29264 38
118 142 129 64319 9 29264 38
119 143 130 64793 9 29264 38
120 144 131 61270 9 29264 38
121 145 134 63046 9 29264 38
122 146 132 65928 9 29264 38
123 147 135 60844 9 29264 39
124 148 137 64753 9 29264 38
125 59 133 77679 9 23903 38
126 68 102 86933 9 23903 37
127 71 90 78669 9 23903 36
128 121 111 72530 9 29264 37
129 122 112 70642 9 29264 37
130 123 110 69385 9 29264 37
131 124 113 64465 9 29264 37
132 125 114 66052 9 29264 37
133 126 115 66023 9 29264 37
134 128 116 65284 9 29264 37
135 129 117 64232 9 29264 37
136 130 118 64695 9 29264 37
137 131 119 65503 9 29264 37
138 150 136 63054 9 29264 - 38
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
139 151 138 63048 9 29264 38
140 152 139 64929 9 29264 38
141 153 740 62522 9 29264 38
142 154 142 60538 9 29264 38
143 155 141 62861 9 29264 38
144 156 147 61370 9 29264 38
145 157 148 60747 9 29264 39
146 158 143 60665 9 29264 38
147 159 149 62824 9 29264 38
148 161 150 58087 9 29264 38
149 162 152 59473 9 29264 38
150 163 157 63951 9 29264 38
151 164 153 59320 9 29264 38
152 165 156 60055 9 29264 38
153 166 154 61220 9 29264 38
154 167 155 62458 9 29264 38
155 168 157 62412 9 29264 38
156 170 158 61843 9 29264 38
157 171 159 63077 9 29264 38
158 172 160 62071 9 29264 38
159 173 161 61858 10 29264 38
160 174 162 60979 10 29264 38
161 175 163 58349 10 29264 38
162 176 164 60204 10 29264 38
163 177 167 56691 10 29264 38
164 178 165 60527 10 29264 38
165 180 166 57210 10 29264 38
166 181 168 59645 10 29264 38
167 182 170 59433 10 29264 38
168 50 171 102354 6 23903 38
169 54 107 94057 8 23903 37
170 57 144 84495 8 23903 38
171 183 169 57653 10 29264 39
172 184 172 57566 10 29264 39
173 185 173 56691 10 29264 39
174 186 174 56621 10 29264 39
175 187 176 59791 10 29266 39
176 188 177 56079 10 29264 39
177 76 181 58506 10 23903 39
178 190 178 59994 10 29264 39
179 191 179 60757 10 29264 39
180 192 180 54645 10 29264 39
181 193 182 59312 10 29264 39
182 194 183 59483 10 29264 39
183 195 184 55581 10 29264 39
184 196 185 57455 10 29264 39
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
185 198 175 54241 10 29264 39
186 199 186 59042 10 29264 39
187 200 187 56001 10 29264 39
188 201 188 53381 10 29264 39
189 202 189 57139 10 29264 39
190 203 190 55403 10 29264 39
191 201 191 54271 10 29264 39
192 81 192 54031 10 23903 39
193 206 193 57332 10 29264 39
194 207 194 53560 10 29264 39
195 208 193 56839 10 29264 39
196 209 196 55439 10 29264 39
197 210 197 53354 10 29264 39
198 211 198 57169 10 29264 39
199 212 199 56625 10 29264 39
200 214 200 53698 10 29264 39
201 215 201 55117 10 29264 39
202 216 202 64410 11 31174 40
203 217 203 63457 11 31174 40
204 218 204 64855 11 31174 40
205 219 203 64709 11 31174 40
206 220 206 61493 11 31174 40
207 87 207 61633 11 23903 40
208 222 208 64154 11 31174 40
209 223 209 60020 11 31174 40
210 224 210 61057 11 31174 40
211 226 211 64077 11 31174 40
212 227 212 62750 11 31174 40
213 228 213 63673 11 31174 40
214 229 214 61986 11 31174 40
215 231 215 65932 11 31174 40
216 232 216 64059 11 31174 40
217 233 217 61146 11 31174 40
218 234 218 63329 11 31174 40
219 236 219 54223 12 31174 40
220 237 220 57406 12 31174 40
221 95 221 52714 11 23903 40
222 238 222 57999 12 23903 40
223 239 223 58051 12 31174 40
224 241 224 47604 12 31174 40
225 242 225 55653 12 31174 40
226 243 226 53132 12 31174 40
227 244 227 55019 12 31174 40
228 246 228 51793 12 31174 40
229 247 229 54301 12 31174 40
230 248 230 51429 12 31174 40

E-5




Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
231 249 231 59606 12 31174 46
232 251 232 51161 12 31174 40
233 252 233 53072 12 31174 40
234 253 234 56653 12 31174 40
235 106 235 53057 11 23903 41
236 254 236 55143 12 31171 40
237 256 237 50899 12 31174 40
238 257 238 52395 12 31174 40
239 258 239 50183 12 31174 40
240 259 240 52217 12 31174 40
241 261 241 52656 12 31174 40
242 262 245 52818 12 31174 41
243 263 242 49485 12 31174 40
244 265 246 52517 12 31174 41
245 266 251 49671 12 31174 41
246 267 247 54124 12 31174 41
247 269 248 50204 12 31174 41
248 270 243 52963 12 31174 41
249 271 249 51224 12 31174 41
250 114 244 50005 11 23903 41
251 273 250 52793 12 31174 41
252 274 252 49813 12 31174 41
253 275 253 51312 12 31174 41
254 277 254 49304 12 31174 41
255 278 257 50879 12 31174 41
256 279 255 48798 12 31174 41
257 281 256 51624 12 31174 41
258 282 258 47738 12 31174 41
259 283 259 52435 12 31174 41
260 285 262 48038 12 31174 41
261 127 263 50935 12 23903 42
262 286 260 49978 12 31174 41
263 287 261 49255 12 31174 41
264 289 264 49755 12 31174 41
265 290 271 46508 12 31174 41
266 291 277 49555 12 31174 41
267 293 265 47469 12 31174 41
268 294 272 50337 12 31174 41
269 295 266 48865 12 31174 41
270 139 273 51644 12 23903 42
271 297 267 49463 12 31174 41
272 298 268 47582 12 31174 41
273 299 269 49975 12 31774 41
274 301 274 46285 12 31174 41
275 302 275 50195 12 31174 41
276 303 283 47662 12 31174 42
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
277 149 270 53218 13 29264 43
278 305 278 51616 12 31174 42
279 306 279 46355 12 31174 42
280 307 285 50820 12 31174 42
281 308 276 48181 12 31174 41
282 309 280 48972 12 31174 42
283 310 284 47284 12 31174 42
284 311 286 51997 12 31174 42
285 312 289 47163 12 31174 42
286 313 281 49759 12 31174 42
287 314 282 46257 72 31174 42
288 160 287 54706 13 29264 43
289 315 290 49545 12 37174 42
290 316 291 47045 72 31174 42
291 317 292 49222 12 31174 42
292 318 288 47705 12 31174 42
293 319 293 49419 12 31174 42
294 320 297 46921 12 31174 42
295 321 295 50453 12 31174 42
296 322 296 47644 12 31174 42
297 169 298 51951 13 29264 43
298 323 294 49567 12 31174 42
299 324 311 46926 13 31174 42
300 325 299 48883 13 31174 42
301 326 308 48317 13 31174 42
302 327 309 20921 13 31174 42
303 328 300 46097 13 31174 42
304 329 301 51757 13 31174 42
305 330 302 46997 13 31174 42
306 179 324 46463 14 29264 44
307 331 303 48965 13 31174 42
308 332 312 46431 13 31174 42
309 333 310 49284 13 31174 42
310 334 304 48369 13 31174 42
311 335 - 305 48940 13 31174 42
312 336 313 45578 13 31174 42
313 337 319 50382 13 37174 43
314 338 306 45772 13 31174 42
315 339 307 47439 13 31174 42
316 189 377 43656 14 29264 44
, 317 340 467 43759 13 31174 46
318 341 314 49828 13 31174 42
319 342 315 46317 13 31174 42
320 343 316 48883 13 31174 42
321 344 320 46107 13 31174 43
322 345 317 47944 13 31174 43
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
323 346 321 46362 13 31174 43
324 347 378 49038 13 31174 43
325 348 325 48512 13 31174 43
326 349 322 48172 13 31174 43
327 350 323 45123 13 31174 43
328 197 365 44669 14 29264 44
329 351 326 46952 13 31174 43
330 352 327 45029 13 31174 43
331 353 331 47745 13 31174 43
332 354 328 43882 13 31174 43
333 355 329 46630 13 31174 43
334 356 330 46004 13 31174 43
335 357 332 48265 13 31174 43
336 358 333 45810 13 31174 43
337 359 336 47808 13 31174 43
338 360 348 45384 13 31174 43
339 205 384 41615 14 29264 45
340 361 334 47072 13 31174 3

341 362 337 46680 13 31174 43
342 363 335 45825 13 31174 43
343 364 338 46737 13 31174 43
344 " 365 349 44783 13 31174 43
345 366 339 46061 13 31174 43
346 367 340 46326 13 37174 43
347 368 347 44932 13 31174 43
348 369 341 46868 13 31174 43
349 370 342 45799 13 31774 43
350 213 385 40989 14 29264 45
351 371 343 45658 13 31174 43
352 372 353 44921 13 31174 43
353 373 350 45909 13 31174 43
354 374 344 45890 13 31174 43
355 375 345 45209 13 31174 43
356 376 346 46284 13 31174 43
357 377 351 44480 13 31174 43
358 378 354 46528 13 31174 43
359 379 355 45290 13 31174 43
360 380 352 46779 13 31174 43
361 220 366 43022 14 29264 44
362 381 356 45011 13 31174 43
363 382 357 46331 13 31174 43
364 383 358 45536 13 31174 43
365 384 397 45241 13 31174 44
366 385 359 44991 13 31174 43
367 386 360 46435 13 31174 43
368 387 361 44128 13 31174 43
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Table E-1 The Historical F-102 Data

0OBS PLN DelaySeq TOTHRS Lot Contract# DM
369 388 367 47348 13 31174 44
370 389 362 43402 13 31174 43
371 390 368 47047 13 31174 44
372 391 369 44173 13 31174 44
373 225 410 40271 14 29264 46
374 392 363 46565 13 37174 44
375 393 370 44759 13 31174 44
376 394 364 45930 13 31174 44
377 395 378 46869 13 37174 44
378 396 373 46292 13 31174 44
379 397 380 44844 13 31174 44
380 398 371 44195 13 31174 44
381 399 372 45243 13 31174 44
382 400 386 45916 13 31174 44
383 401 375 44838 13 31174 44
384 402 381 44763 13 31174 44
385 230 421 41948 14 29264 45
386 403 374 44645 13 31174 44
387 404 376 43948 13 31174 44
388 405 389 43744 13 31174 44
389 406 382 44580 13 31174 44
390 407 391 46038 13 37174 44
391 408 387 43652 13 31174 44
392 409 379 42371 13 31174 44
393 410 383 45607 13 31174 44
394 411 388 44552 13 31174 44
395 412 392 47014 13 31174 44
396 413 393 44289 13 31174 44
397 414 394 45401 13 31174 44
398 235 428 39196 14 29264 46
399 415 390 43368 13 31174 44
400 416 403 46979 14 31174 44
401 417 398 44974 14 31174 44
402 418 404 46598 14 31174 44
403 419 395 43842 14 31174 44
404 420 399 46131 14 31174 44
405 421 396 43247 14 31174 44
406 422 400 44734 14 31174 44
407 423 401 43501 14 31174 44
408 424 402 46129 14 31174 44
409 425 405 42443 14 31174 44
410 240 454 34031 14 29264 46
411 426 417 44328 14 31174 45
412 427 406 44473 14 31174 44
413 428 407 43418 14 31174 44
414 429 408 43775 14 31174 44
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
) 415 430 409 42007 14 31174 44
416 431 411 42537 14 31174 44
417 432 422 43270 14 31174 45
418 433 418 42650 14 31174 45
419 434 412 43261 14 31174 45
420 435 413 42486 14 31174 45
421 436 414 42083 14 31174 45
422 437 419 42678 14 31174 45
423 245 440 34969 14 29264 46
424 438 425 41673 14 31174 45
425 439 415 41431 14 31174 45
426 440 420 41347 14 31174 45
427 441 416 43084 14 31174 45
428 442 429 42843 14 31174 45
429 443 462 44814 14 31174 45
430 444 441 41706 14 31174 45
431 445 423 41108 14 31174 45
432 496 426 41091 14 31174 45
433 447 424 42091 14 31174 45
434 448 430 40599 14 31174 45
435 250 470 33149 14 29261 46
436 449 437 43760 14 31174 45
437 450 427 42527 14 31174 45
438 451 438 41942 14 31174 45
439 452 431 41095 14 31174 45
440 453 432 42314 14 31174 43
441 454 466 40751 14 31174 43
442 455 434 40744 14 31174 45
443 456 439 39510 14 31174 45
444 457 433 41948 14 31174 45
445 458 442 39649 14 31174 45
446 459 435 41034 14 31174 45
447 460 436 38751 14 31174 45
448 255 475 32806 14 29264 46
449 461 443 41160 14 31174 45
450 462 444 39329 14 31174 45
451 463 445 40440 14 31174 15
452 464 446 38930 14 31174 45
453 465 447 39816 14 31174 45
454 466 455 40240 74 31174 45
455 467 448 39527 14 31174 45
456 468 449 38800 14 31174 45
457 469 450 40127 14 31174 45
458 470 456 38137 14 31174 45
459 471 451 40364 14 31174 45
460 472 559 35847 14 31174 48
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Table E-1 The Historical F-102 Data

OBS PLN DelaySeq TOTHRS Lot Contract# DM
461 265 499 34639 11 29264 47
462 473 452 36716 14 31174 45
463 474 457 38847 14 31174 45
464 475 458 37680 14 31170 45
465 476 459 39414 14 31174 45
466 471 453 36786 14 31174 45
467 478 476 41041 14 31174 46
468 479 471 38556 14 31174 46
469 480 460 38464 14 31174 45
470 481 471 38209 14 31174 46
471 482 463 39360 14 31174 45
472 483 461 39663 14 31174 45
473 484 464 39031 14 31174 45
474 485 465 36913 14 31171 45
475 486 472 39743 14 31174 46
476 487 468 38969 14 31174 46
477 264 480 32783 15 29264 46
478 488 469 37974 14 31174 46
479 489 481 37991 14 31174 46
480 490 482 37959 14 31174 46
481 491 473 38523 14 31174 46
482 492 478 37149 14 31174 46
483 493 474 38780 14 31174 46
484 494 479 38127 14 31174 46
485 495 490 38422 14 31171 46
486 496 483 37055 14 31174 46
487 497 491 38173 14 31174 46
488 498 492 36687 14 31174 46
489 499 484 33894 14 31174 46
490 500 485 37772 14 31174 46
491 258 537 33992 15 29264 47
492 501 486 39701 14 31174 46
493 502 487 36984 14 31174 46
494 503 488 37937 14 31174 46
495 504 493 39253 14 31171 46
496 505 494 39241 14 31174 46
497 506 495 39234 14 31174 46
498 507 504 34978 14 31174 47
499 508 489 39354 14 31174 46
500 509 496 38089 14 31174 46




Appendix F

Fit/Forecasting the Notional C-17 Data Using 15 Observations
and a
Hold-out Sample of 8 Observations
(Work done in EXCEL)




Parameters

Table F-1 Detailed Summary of Fit/Forecasting the Notional C-17 Data

a* b*
277.2899795 -0.907621213 |
SSE(1st 15): 870.72
SSE(all 23): 1040.10
Equation: Y(x)=a*x"b

Parameters: a* - b* cmin*
1698.48 -2.5006 26.70880797
SSE(1st 15): 291.11
SSE(all 23): 386.54
Equation: Y(x)=a*x*b+cmin

Parameters:

a beta*

68.2 -3.1519 -0.3658
SSE(1st 15): 359.22
SSE(all 23): 364.74
Equation: Y(x)=a*(x+beta)*n

Parameters: phi*
0.88464 -0.882
SSE (1st 15): 1266.93
SSE (all 23): 1727.75
Equation: AR(1) = phi*(AR1-1)+const+error

Parameters: phi_1* phi_2* const*
0.9010377 -0.0341 -0.253
SSE (1st15): 1340.36
SSE (all 23): 1753.94
Equation: AR(2) = phi_1*(AR2-1)+ phi_2*(AR2-2)+const+error

Parameters phi_1* phi_2* phi_3* const*
0.88898 -0.00943 -0.03295 0.481052734
SSE (1st 15): 1405.53
SSE (all 23): 1753.98
Equation: AR(3) = phi_1*(AR3-1)+ phi_2*(AR3-2)+phi_3*(AR3-2)+

const+noise




(more) Table F-1 Detailed Summary of Fit/Forecasting the Notional C-17 Data

‘ phi_3

const

phi_4*(AR4-4)+const+noise

Parameters: muprime* theta* phi*
16.9352 1.74432 0.44741

SSE (1st 15): 89.91

SSE (all 23): 398.09

Parameters: phi_1 phi_2 » phi_4
0.85284 -0.01134 0.02524 -0.08194 2.673475955
SSE (1st 15): 1302.12
SSE (all 23): 1503.48
Equation:  AR(4) = phi_1*(AR4-1)+ phi_2*(AR4-2)+phi_3*(AR4-3)+

Equation:

Parameters:

Parameters:

muprime

heta2* la;

1S€

15.9419 0.89942 -0.49149 0.13381
SSE (1st 15): 3698.99
SSE (all 23): 10270.02
Equation: ARMA(1,2)=phil*(ARMA(1,2)-1)+muprime-thetal*errorlast-

Parameters:

uprime-theta*errorlast+noise

thet:
21.6784 0.40971 -0.10521 -0.42491
SSE (1st 15): 329.95
SSE (all 23): 572.27 .
Equation: ARMA(2,1)=phil*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+

etal

] thhetaZ*‘

muprime-thetal*errorlast-theta2*errorlastlast+noise

20.4647 0.41473 -0.07662 -0.20164 -0.13734
SSE (1st 15): 302.85
SSE (all 23): 524.07
Equation: ARMA(2,2)=phil*(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2)+

Table F-2 Brief Summa

ry of Fit/Forecasting the Notional C-17 Data

870.7 1040.1 169.4 6 6 3
291.1 386.5 95.4 2 2 2
359.2 364.7 5.5 5 1 1
1266.9 1727.7 460.8 7 8 10
1340.4 1753.9 413.6 9 9 9
1405.5 1754.0 3484 10 10 8
1302.1 1503.5 2014 8 7 4
89.9 398.1 308.2 1 3 7
3699.0 10270.0 6571.0 11 11 11
329.9 572.3 242.3 4 5 6
302.9 524.1 221.2 3 4 5
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Parameters:

SSE(1st 15):
SSE(all 23):
Equation:

Y(x)=a*x"b

Figure F-1 EXCEL, Log-Linear Model Fit/Forecast of Notional C-17 Data

Hours

Log-Linear/C-17 Forecast (from 15 unit history)
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Observation Number

Parameters:

SSE(1st 15):
SSE(all 23):
Equation: Y(x)=a*x"b+cmin

Figure F-2 EXCEL, Forsythe Fit/Forecast of Notional C-17 Data
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Forsythe/C-17 Forecast (from 15 unit history)
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SSE(all 23): 364.7427137
Equation: Y(x)=a*(x+beta)*n

Figure F-3 EXCEL, Stanford-B Fit/Forecast of Notional C-17 Data

Stanford-B/C-17 Forecast (from 15 unit history)
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Observation Number
Parameters
SSE (1st 15):
SSE (all 23):
Equation: AR(1) = phi*(Ysubx-1)+const+error
Figure F-4 EXCEL, AR(1) Fit/Forecast of Notional C-17 Data
AR(1)/C-17 Forecast (from 15 unit history)
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Parameters:

SSE (1st15)
SSE (all 23):
Equation:

Ysubx-1)+ phi_2#*(Ysubx-2)+const+error

Figure F-5 EXCEL, AR(2) Fit/Forecast of Notional C-17 Data

AR(2)/C-17 Forecast (from 15 unit history)
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|
i
| Parameters: phi_1* phi_2* phi_3* const*
| :
| SSE (1st 15):
SSE (all 23): ,
j Equation: (3) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error
1 Figure F-6 EXCEL, AR(3) Fit/Forecast of Notional C-17 Data
i AR(3)/C-17 Forecast (from 15 unit history)
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Parameters:

SSE (1st 15):
SSE all 23): . 15
Equation: AR(4) = phi_1*(Ysubx-1)+ phi_2*(Ysubx-2)+phi_3*(Ysubx-2)+const+error

Figure F-7 EXCEL, AR(4) Fit/Forecast of Notional C-17 Data

AR(4)/C-17 Forecast (from 15 unit history)
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Parameters:
SSE (1st 25):
SSE (all 500):
Equation: ARMA(1,1)=phi*(ARMA(1,1)-1)+muprime-theta*errorlast+noise
Figure F-8 EXCEL, ARMAC(1,1) Fit/Forecast of Notional C-17 Data
ARMA(1,1)/C-17 Forecast (from 15 unit history)
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Parameters: i i theta2*

SSE (1st 15):

SSE (all23):

Equation: ARMA(1,2)=phi1*(ARMA(1,2)-1)+muprime-thetal *errorlast-
theta2*errorlastlast+noise

Figure F-9 EXCEL, ARMA(1,2) Fit/Forecast of Notional C-17 Data

ARMAC(1,2)/C-17 Forecast (from 15 unit history)
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Parameters:
SSE (1st 15):
SSE (all 23):
Equation: ARMA(2,1)=phil*(ARMA(2,1)-1)+phi2*(ARMA(2,1)-2)+

muprime-theta*errorlast+noise

Figure F-10 EXCEL, ARMA(2,1) Fit/Forecast of Notional C-17 Data

ARMA(2,1)/C-17 Forecast (from 15 unit history)
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Parameters:

SSE (1st 15):
SSE (all 23):
Equation: ARMA(2 2)=phil *(ARMA(2,2)-1)+phi2*(ARMA(2,2)-2)+

g muprime-thetal *errorlast-theta2*errorlastlast+noise

Figure F-11 EXCEL, ARMA(2,2) Fit/Forecast of Notional C-17 Data

ARMA(2,2)/C-17 Forecast (from 15 unit history)
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Table F-3 The Notional C-17 Data Base

| Unit Number Adj. Hours |

3.5 100
5 63.04729214
6 40.06102212
7 39.63005339
8 33.24942792
9 35.25934401
10 32.31121281
11 25.27841342
12 31.03928299
13 34.94279176
14 39.33638444
15 27.60869565
16 23.78718535
17 28.80244088
18 23.69946606
19 23.85964912
20 23.07398932
21 24.00839054
22 21.73150267
23 23.67276888
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Epilogue

The Data -- A Humorous Aside

As an entertaining aside which may actually not survive the editorial shears of my
advisor, I've got to say that searching for a data base on which to test the aforedeveloped
models turned out to be quite the formidable and frustrating task! In the final frantic
throws of my thesis process (and under penalty of not graduating....), I searched high and
low for this data. My advisor searched high and low too and even went so far as to call in
some personal debts -- all to no avail (77?).

My search led me to an old friend in the Defensive Avionics System Program
Office (SPO) here on base. He pointed me towards, what he termed, the ‘manufacturing
pukes’ (MPs) in the aircraft SPOs. One after another, the MPs suggested, “Sorry, we
can’t help you. You’ll need to go directly to the manufacturer to get that kind of data!
Be forewarned, however, they might consider it proprietary and opt not to give it to you.”

So, that suggestion fresh in my mind, I went to the Aeronautical Systems Center
(ASC) Technical Library to see what they had before attempting an assault on the
manufacturers. When the people at the Tech Library heard what I wanted, they did the
proverbial, “You want it WHEN????!!!” Then they told me, “Sorry, we can’t help you.
You’ll need to go directly to the manufacturers to get that kind of data. Be forewarned,
however, they might consider it proprietary and opt not to give it to you.” (Sound
familiar?)

Okay, manufacturers, here I come! Upon questioning, the one fellow I did

manage to get in contact with at an un-named aircraft manufacturing company (my

Epilogue-1



middle name is chicken or I’d name the company as well as the individual) said, “I can’t
help you; that data is proprietary. You’d do best to talk to the people at the SPOs.”
Geee Wizzz! 1 think I'm on my own.

This tale of woe does have a good as well as an entertaining ending. In my final
search for a lead and one last attempt to secure my graduation, I spoke to the Operations
Research Department Head, Lieutenant Colonel Paul Auclair. He promptly pointed me
towards the Logistic School (another school at AFIT) to a man named Dr. Vaughn (AFIT
Department of Research), who promptly pointed me towards Professor Roland Kankey
(AFIT Department of Acquisition) who promptly pointed me (and quite accurately so!) to
the ASC Cost Library where I found the data for which I'd been so fervently searching.

I left the library with a plethora of publications with dates ranging from 1949 to
1982. The study dated 1982 and entitled The Learning Curve in the Airframe Industry
(Brewer, 1982) is the source of my actual aircraft build history data -- the 1000 unit
history of the F-102. Before I discovered my wonderful data base, and while leafing
through the stack of documents, I found an interesting comment in the work entitled An

Airframe Production Function (Alchian, 1949):

“Within individual airframe manufacturing facilities, estimates of costs of producing
airplanes are frequently based on the learning curve. Unfortunately, no data on the
estimates made by aircraft manufacturing facilities themselves have been available, so
tests of their reliability could not be made. Naturally enough, individual business units
are not willing to publicly reveal their cost estimating records.”

I guess maybe he didn’t graduate on time.
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