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To achieve good I/O performance on irregular, loosely synchronous problems 
it is necessary to work both at the application and the system support 
level. The first section describes our effor at developing an efficient 
out-of-core parallel sparse cholesky solver as an example of an irregular, 
loosely synchronous application and the second section describes the 
Jovian parallel 1/0 library which provides support for collective I/O 
operations. 
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Report on Scalable I/O for Irregular Loosely Synchronous 
Problems 

Joel Saltz, Anurag Acharya 
Department of Computer Science 

University of Maryland, College Park MD 20742 

July 1997 

In the first part of this project, we focused on performance of individual applications. We 
developed an out-of-core parallel sparse cholesky solver which achieved a maximum application- 
level I/O rate of 430 MB/s on our 16-processor IBM SP-2. This year, we have broadened our focus 
to cover a wider variety of applications. Our goal was to determine the requirements and techniques 
for a large class of applications. 

To this end, we have analyzed a diverse suite of I/O-intensive parallel applications to determine 
their I/O requirements and the implications of these requirements for the design of I/O systems 
for parallel machines. We attempted to answer the following questions. First, what are the steady- 
state and peak I/O rates required by the application? These rates indicate how aggressive the I/O 
system needs to be. Second, what spatial patterns, if any, exist in the sequence of I/O requests? 
In particular, what are the common request sizes and whether I/O requests are sequential. Third, 
what is the degree of intra-processor and inter-processor locality in I/O accesses? These measures 
indicate whether caching previously accessed data is likely to improve performance and if so, where 
should the cache(s) be placed and what caching policies should be used. This information is also 
useful to understand the impact of alternative disk placements on application performance. For 
example, if all processors in an application access only their own partition of the data, the use 
of private disks instead of shared disks can reduce communication requirements and can increase 
aggregate I/O bandwidth. On the other hand, if the data in a partition is written by the owning 
processor but read by all processors, there may be no significant performance penalty to using 
shared disks. Fourth, does the application structure allow programmers to disclose future I/O 
requests to the I/O system? If this is indeed the case, it would provide an opportunity for the 
I/O system to improve the utilization of the storage devices as well as reduce the latency of I/O 
requests [?, ?]. Finally, what patterns, if any, exist in the sequence of inter-arrival times for I/O 
requests? This information would allow the I/O system to estimate when I/O requests that have 
been previously disclosed will actually be made. This can allow it to better schedule prefetches for 
the sequence of I/O requests disclosed by individual applications as well as those disclosed by a 
group of applications. 

To address these questions, we have analyzed I/O request traces for a diverse set of I/O-intensive 
parallel applications. This set includes four non-scientific applications (IBM's DB2 Parallel Edi- 
tion, datamining, a parallel web server and parallel textual search) and three parallel scientific 
applications. These applications have been tuned, to various degrees, to achieve good I/O perfor- 
mance. We believe that this is important as studying applications which have not been tuned for 
I/O performance can lead to misleading conclusions [?]. We ran these applications on an IBM SP-2 
and captured the I/O requests using the trace facility provided by AIX 4.1. In addition, we have 
acquired the I/O request traces made available by the Pablo group at the University of Illinois, 
Urbana-Champaign [?]. These traces correspond to four parallel scientific applications from several 
domains. 



v. 

Some of our conclusions were: 

• 

• 

Given the high steady-state and peak demands for read requests, I/O systems should be 
aggressive on optimizing data retrieval; we expect that simple write-behind policies would be 
effective given the low demand for writing data. 

For the current hardware, an I/O system that delivers a read bandwidth of about 19 MB/s 
per-processor should meet the requirements of even the most demanding applications and 
that a read bandwidth of 10 MB/s per-processor should be adequate for most applications. 

For the variety of applications examined in this study, request were usually large and the 
access patterns were both simpler and more complex than nested strides. 

• There is little or no write-sharing between processors. 

• Local disks are an important component of I/O systems for parallel machines. 

• Different application require different caching policies - in particular, they need different cache 
replacement policies and different cache placement (server/client/both) decisions. Ideally, I/O 
systems for parallel machines should allow the application to control or specify the caching 
policy. 

• For many applications, the sequence of inter-arrival times between read requests can be 
described by relatively simple patterns. We have seen three patterns: constant, piece-wise 
constant and piece-wise quadratic. The repetitve nature of the patterns suggests that it might 
be possible for the I/O system to determine the pattern during the first few repetitions and 
to use that information to estimate the inter-arrival times for the subsequent repetitions. We 
are planning to explore this further. 


