
UNIVERSITY OF MARYLAND AT COLLEGE PARK
DEPARTMENT OF COMPUTER SCIENCE

July 17, 1997

Scientific Officer Code: 333
Gary M. Koob
Office of Naval Research
Ballston Tower One
800 North Quincy Street
Arlington, Virginia 22217-5660

Re: N00014-94-1-0661

Dear Dr. Koob:

Enclosed please find the annual technical report for the above-referenced grant. The report
has been distributed as listed below. If you have any questions or concerns, please contact
me at (301) 405-2729.

Sincerely,

QAMMM^^-
^Mb&WL-^

Andrea V. Busada
Research Coordinator
High Performance Systems Software Laboratory

Administrative Grants Officer
Office of Naval Research
Resident Representative
101 Marietta Street, Suite 2805
Atlanta, Georgia 30323-0008
1 copy

Director, Naval Research Laboratory
Attn.: Code 2627
Washington, DC 20375
1 copy

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22304-6145
2 copies

WIG QUALITY INSPECTED

A.V. WILLIAMS BUILDING ♦ COLLEGE PARK, MARYLAND 20742 ♦ (301) 405-2661

GRANT NUMBER: N00014-94-1-06«!

FORM A2-2
ATTgMmrraTtoM AWARD* TO» aeinct t immtitnta RggracK raxiimio /xaafnyri

MWOTI1W FQBM

The Department of Defense (DOD) requires certain information to avaluata the
effectiveness of the AASERT program. By accepting this Grant Modification,
which bestows the AASERT funds, the Grantee agrees to provide the information
requested below to the Government's technical point of contact by each annual
anniversary of the AASERT award date.

1. Grantatt identification data: (R B T and Groat numbers found on 9mgm 1 of Or ant)

a. University of Maryland
university Name

b. «00014-94-1-0661 c> 333n013--01
Grant Number R a T Number

d. Joel H. Saltz #. Prom? 01 Jul To; 30 J»n
P.I. Name AASERT Reporting Period

2. Total funding of the Parent Agreement and the number of full-time
equivalent graduate students (FTEGS) supported by the Parent Agreement during
the 12-month period nrlor to the AASERT award date.

a. Funding; s66,854.40

b. Number FTEGS: 1

3. Total funding of the Parent Agreement and the number of FTEGS supported
by the Parent Agreement during the current 12-month reporting period.

a. Funding: $ Q

b. Number FTEGS: 9

4. Total AASERT funding and the number of FTEGS and undergraduate students
(UGS) supported by AASERT funds during the current 12-month reporting period.

a. Funding: S 38»322

b. Number FTEGS: 2

c. Number UGS: 0.

vniPlcxgTom uvvrwaamt I hereby verify that all students supported by the
AASERT award are D.S. citizens.

17 July 97

incipa'l investigator Data

19970804 067

REPORT DOCUMENTATION PAGE firm 4pf*%»*il

OHM Mb CO« Of Af

«... i«^. ■^.«j.i.w.^.-.Hj,, .+.. >^^J..~,,.. ..J.-^J,^:,^-«;^.;.....^.:t*5c.

1. AfifNCV UsTÖ*?V0«w?*CrÄTTl. «KMT OAT*
01 Jul 97 I

A TITLI «NO SUlTITlf

Scalable I/O for Irregular Loosely Synchronous
Problems

Anurag Acharya, compiler

II AIAOHT TVFI AND OATIS covtiuo
[Annual Technical.01 Jul96- 30 TU,^

S MMMN» »UMWNi

G N00014-94-1-0661

7. rwonMNl WdAW*Tid«t «AMIü) AND AODUSSJH)

University of Maryland
Department of Computer Science
College Park, Maryland 20742-3255

f. »ONSOfiiMC.MONrtOttNG «GFWCV NAMl(S) AND AOOMSSKS)

Office of Naval Research, ONR 252 DG
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

it kUuHinhki „5IU

I. KM0«MtM0 4«CANaAT{Ö«r
•fKMTNUMMR

10 SyOMOAiMC'MONfTOAiMC1

AWNCV ACPOAT NtMMlt

«* OtSTAHUttON CO(K 12«. mSTmiuTiOK. AVAH.AtU.lTY STATltWtNT

1J. AtSTAACl (MM.w.umlBeliwiJtSJ™™™"'-"""" —«■•■——■

To achieve good I/O performance on irregular, loosely synchronous problems
it is necessary to work both at the application and the system support
level. The first section describes our effor at developing an efficient
out-of-core parallel sparse cholesky solver as an example of an irregular,
loosely synchronous application and the second section describes the
Jovian parallel 1/0 library which provides support for collective I/O
operations.

14. SUAJKT TIMM*

I/O performance, parallel sparse cholesky solver,
parallel library

it uomtt aAssmcAimSr i» sicuam OAJ««CATKI«
0» WfO*f

t« StCV*Tr ClASS» KATION
Of im »A« OtAMTAACT

1$. NUAJtlR or MOf«

20. IMTTATlOIIOfAtfTRAO

IH\ tt«0<0'-2frMV>>J Vt*»<4»o »!>•»" MA ••*» i to:

■ I 11—. n —-———1 mt

s.

Report on Scalable I/O for Irregular Loosely Synchronous
Problems

Joel Saltz, Anurag Acharya
Department of Computer Science

University of Maryland, College Park MD 20742

July 1997

In the first part of this project, we focused on performance of individual applications. We
developed an out-of-core parallel sparse cholesky solver which achieved a maximum application-
level I/O rate of 430 MB/s on our 16-processor IBM SP-2. This year, we have broadened our focus
to cover a wider variety of applications. Our goal was to determine the requirements and techniques
for a large class of applications.

To this end, we have analyzed a diverse suite of I/O-intensive parallel applications to determine
their I/O requirements and the implications of these requirements for the design of I/O systems
for parallel machines. We attempted to answer the following questions. First, what are the steady-
state and peak I/O rates required by the application? These rates indicate how aggressive the I/O
system needs to be. Second, what spatial patterns, if any, exist in the sequence of I/O requests?
In particular, what are the common request sizes and whether I/O requests are sequential. Third,
what is the degree of intra-processor and inter-processor locality in I/O accesses? These measures
indicate whether caching previously accessed data is likely to improve performance and if so, where
should the cache(s) be placed and what caching policies should be used. This information is also
useful to understand the impact of alternative disk placements on application performance. For
example, if all processors in an application access only their own partition of the data, the use
of private disks instead of shared disks can reduce communication requirements and can increase
aggregate I/O bandwidth. On the other hand, if the data in a partition is written by the owning
processor but read by all processors, there may be no significant performance penalty to using
shared disks. Fourth, does the application structure allow programmers to disclose future I/O
requests to the I/O system? If this is indeed the case, it would provide an opportunity for the
I/O system to improve the utilization of the storage devices as well as reduce the latency of I/O
requests [?, ?]. Finally, what patterns, if any, exist in the sequence of inter-arrival times for I/O
requests? This information would allow the I/O system to estimate when I/O requests that have
been previously disclosed will actually be made. This can allow it to better schedule prefetches for
the sequence of I/O requests disclosed by individual applications as well as those disclosed by a
group of applications.

To address these questions, we have analyzed I/O request traces for a diverse set of I/O-intensive
parallel applications. This set includes four non-scientific applications (IBM's DB2 Parallel Edi-
tion, datamining, a parallel web server and parallel textual search) and three parallel scientific
applications. These applications have been tuned, to various degrees, to achieve good I/O perfor-
mance. We believe that this is important as studying applications which have not been tuned for
I/O performance can lead to misleading conclusions [?]. We ran these applications on an IBM SP-2
and captured the I/O requests using the trace facility provided by AIX 4.1. In addition, we have
acquired the I/O request traces made available by the Pablo group at the University of Illinois,
Urbana-Champaign [?]. These traces correspond to four parallel scientific applications from several
domains.

v.

Some of our conclusions were:

•

•

Given the high steady-state and peak demands for read requests, I/O systems should be
aggressive on optimizing data retrieval; we expect that simple write-behind policies would be
effective given the low demand for writing data.

For the current hardware, an I/O system that delivers a read bandwidth of about 19 MB/s
per-processor should meet the requirements of even the most demanding applications and
that a read bandwidth of 10 MB/s per-processor should be adequate for most applications.

For the variety of applications examined in this study, request were usually large and the
access patterns were both simpler and more complex than nested strides.

• There is little or no write-sharing between processors.

• Local disks are an important component of I/O systems for parallel machines.

• Different application require different caching policies - in particular, they need different cache
replacement policies and different cache placement (server/client/both) decisions. Ideally, I/O
systems for parallel machines should allow the application to control or specify the caching
policy.

• For many applications, the sequence of inter-arrival times between read requests can be
described by relatively simple patterns. We have seen three patterns: constant, piece-wise
constant and piece-wise quadratic. The repetitve nature of the patterns suggests that it might
be possible for the I/O system to determine the pattern during the first few repetitions and
to use that information to estimate the inter-arrival times for the subsequent repetitions. We
are planning to explore this further.

