AL/HR-TP-1997-0013

UNITED STATES AIR FORCE
ARMSTRONG LABORATORY

L -

EFFICIENCY OF CLASSIFICATION : A REVISION
OF THE BROGDEN TABLE

Cheng Cheng

Department of Mathematical Sciences
Johns Hopkins University
Baltimore, MD

Melody Darby

HUMAN RESOURCES DIRECTORATE
MANPOWER AND PERSONNEL RESEARCH DIVISION
7909 Lindbergh Drive
Brooks AFB, TX 78235-5352

July 1997

560 8080.66

AIR FORCE MATERIEL COMMAND
ARMSTRONG LABORATORY
HUMAN RESOURCES DIRECTORATE

7909 Lindbergh Drive
Brooks Air Force Base, TX 78235-5352

Approved for public release; distribution is unlimited.

DTIC QUALTTY DISPROTHD )



NOTICES

Publication of this paper does not constitute approval or disapproval of the ideas
or findings. It is published in the interest of scientific and technical information (STINFO)
exchange.

When Govermnment drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procurement, the
United States Government incurs no responsibility or any obligation whatsoever. The fact
that the Government may have formulated or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented invention that
may in any way be related thereto.

The Office of Public Affairs has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general public,
including foreign nationals.

This paper has been reviewed and is approved for publication.

MELODY M. DARBY PATRICK C. KYLLONEN
Project Scientist Technical Director
Manpower & Personnel Research Division Manpower & Personnel Research Division

MARTIN L. FRACKER, Lt Col, USAF
Acting Chief, Manpower & Personnel Research Division

Please notify this office, AL/HRPP, 7909 Lindbergh Drive, Brooks AFB TX 78235-5352, if your
address changes, or if you no longer want to receive our technical reports. You may write or call
the STINFO office at DSN 240-3853 or commercial (210) 536-3853



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

Pubkcmpommbumonm:hu tection of inf
the

is to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources, gathering and maint the data needed, and leting and reviewi
of i Send lhu burden estimata or any other aspect of this collection of infarmation, including suggestions for raducing this burden, :uWWuhmlonmmdqumu: ;em’ Dum:mﬁn: lnfwmntm
Operations and Reports, 1215 Jofferson Davis Nnhway “Suits 1204, Arfington, VA 222024302, and to the Office of Management and Budget, Paparwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE

July 1997

3. REPORT TYPE AND DATES COVERED
Interim - June 1996 - September 1996

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Efficiency of Classification: A Revision of the Brogden Table PE - 62202F
PR - 1123

6. AUTHOR(S] TA - A5

Cheng Cheng WU - 01

Melody Darby

| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Armstrong Laboratory

Human Resources Directorate

Manpower and Personnel Research Division
7909 Lindbergh Drive

8. PERFORMING ORGANIZATION
REPORT NUMBER

AL/HR-TP-1997-0013

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The first author was at the Armstrong Laboratory under the Air Force Office of Scientific Research's Summer Faculty

Research Program in 1996

Armstrong Laboratory Technical Monitor: Ms Melody Darby (210) 536-3552

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words]

The open problem of establishing an accurate adjustment formula for the Brogden (1959) table used in estimating
assignment benefits is solved by taking a distribution-theoretic approach in the case of equally correlated jobs. This
approach establishes a more sound adjustment formula which provides more accurate results than the formula provided
by Alley & Darby (1994). Implications for the use of the adjusted table in the case of correlated jobs is discussed.

14. SUBJECT TERMS

Benefit Estimation Effectiveness Job Performance

15. NUMBER OF PAGES
Selection 22

Classification Efficiency Mean Predicted Performance 16. PRICE CODE
Personnel
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL _

.Slarmﬂ Form 298 glev 2. 89) {EG)
Dasigned Im!\g P«mm m WHSIDIOR, Oct 84




CONTENTS
L. Introduction 1
II. Method 2
III. Results 4
IV. Conclusion 8
References 9
Appendix: The Distribution Theory of the Brogden Tables .................. 10
TABLES
Table Page
1 Revised Brogden Table 5
2 Comparison of Adjustment Procedures for R=1 7




PREFACE

Special thanks go to Dr. William Alley, Dr. Patrick Kyllonen, Dr. Malcolm Ree,
and Dr. Mary J. Skinner, from whom we received valuable inputs on this summer research
project. Thanks are also due the Human Resources Directorate of the Armstrong
Laboratory at Brooks AFB, TX, where an enjoyable research environment is provided.

iv




EFFICIENCY OF CLASSIFICATION:
A REVISION OF THE BROGDEN TABLE

I. INTRODUCTION

Classification, and associated measures of effectiveness, are of especial interest to
the Military Services because of the nature of large military personnel systems (Johnson
& Ziedner, 1990; Campbell & Russell, 1994; Alley & Darby, 1994; and Rosse, Whetzel,
& Peterson, 1994). Large numbers of applicants and available military jobs motivate the
need to investigate the properties of the assignment of groups of applicants to sets of jobs.
Classification efficiency as defined by Brogden (1959) refers to the average level of
productivity when a group of applicants are assigned to a set of jobs using full least
squares predicted performance scores as the basis for making the assignments. Brogden
proposed the mean predicted performance (MPP) as the index of classification efficiency.
MPP is the mean of the performance scores of a group of applicants assigned to a set of
jobs when that assignment has been made with a methodology which accomplishes an
optimal match of people to jobs. Brogden’s optimal assignment strategy consisted of
computing each applicant’s predicted performance scores for each of the jobs in a set and
then assigning an individual to the job for which he had the highest performance score.
Brogden’s work with the largest predicted performance score was based on earlier results
from Tippett (1925). Tippett was concerned with the statistical issue of the sampling
distribution of extreme values of scores for random samples of varying size and the
implications for the properties of range statistics. In order to apply Tippett’s findings to
the problem of assessing classification efficiency, Brogden made the following
simplifying assumptions: 1) all assignments of people to jdbs are made according to the
highest performance score, 2) there is an infinite supply of applicants, and 3) all jobs have
equal quotas and are equally important. Under these three reasonable simplification
assumptions enabling theoretical derivation, MPP values vary with the applicant rejection

rate and the validity and intercorrelation of the performance scores. Brogden calculated a



table (referred to as the Brogden table hereafter) showing the theoretical MPP values in
the multiple job system of one to ten jobs for perfectly valid performance estimates and
zero correlation of estimates across jobs. For the more general case of non-zero but
equally correlated job performance scores, Brogden proposed an adjustment formula.
Using Monte Carlo simulation to extend the Brogden table to 500 jobs, Alley and Darby
discovered that Brogden’s adjustment greatly under estimates the actual MPP in the cases
of non-zero rejection rates and provided a remedy. It has been an open problem to
establish a sound and more accurate adjustment formula for the Brogden table. Taking a
distribution-theoretic approach, this study establishes an adjustment formula that gives
more accurate results than the Alley-Darby formula. Mathematical details of the

development of the new adjustment formula are relegated to the Appendix.T
II. METHODS

The MPP calculation problem studied by Brogden admits a natural formulation in
terms of certain probability distributions. Brogden’s assumptions enabling the theoretical
calculation are equivalent to the following probabilistic model. Mathematical details are
in the appendix.

Suppose there are m jobs. The applicant population represented by the predicted
performancé scores can be treated as an m-component random vector [Cl,Cz,---,Cm],
where C; is the performance score of a (randomly selected) applicant on the jth job.

In the basic situation of unit validity (R=1) and zero correlation between the
performance scores (r=0), each C; is assumed to follow the standard normal distribution,

and all C,’s are independent. Because each applicant is assigned to the job corresponding

to the highest score, the classification efficiency for the assignment is calculated from the

maximum component in the vector, i.e.

' With numerous typographical errors, Rosse, Whetzel, and Peterson (1994) discuss the calculation of the
theoretical MPP in general terms. Details of a sound development under the Brogden assumptions are
given in the Appendix. A correction of the fundamental equation (4) in Rosse, Whetzel, and Peterson is
available from the current authors.



C*= ma.x(C1 .Cyy,C)

In statistical terminology, C * is the largest order statistic out of the m random variables.

The mean predicted performance (MPP) after assignment, when the rejection rate p=0, is

simply the expected value (or mean) of the largest order statistic C*. By a known fact of
the largest order statistic (See e.g. Larson, 1982, pp. 318-319) and the mathematical

definition of mean, the theoretical MPP is given by the following integral.

a3

(1) MPPy = [xm[®(x)]"" ¢ (x)x ,

-0

where¢(x) = (2r) ™" exp(x_%) is the standard normal probability density function

(pdf), and D(x) = I(t) (#)dt is the standard normal cumulative distribution function (cdf).

The entries on the second column of Table 1 in Brogden and Table Al in Alley and
Darby are the approximated values of the integral (1) for different numbers of jobs. When

the rejection rate p>0, the theoretical MPP is the following integral:

1

2 MPP, =
@ =155

Jrem @] 6 (x)a

where L is the ( p" ) -th percentile (quantile) of the standard normal distribution.

In the more general situation where the validity 0 < R <1, and the performance

scores C,,C,,---,C

m

are equally correlated with pairwise correlation 0 <7 <1, Brogden
proposed a model in which all the m scores are related to a common variable K, plus an
independent random perturbation following the normal distribution. Symbolically,

C,=K+C',, j=12,..m,

where K follows the normal distribution with mean zero and variance R’r, and

c,,C,,--,C", are independent and identically distributed by the normal distribution

with mean zero and variance R’(1-r), and are independent of K. This model does

provide the desired theoretical distribution of the performance scores, but in this

situation, a simple integral representation of the theoretical MPP like equation (1) or (2)



no longer exists. For practice, a manageable adjustment for the table entries is desirable.

The adjustment formula given by Brogden is correct only when the rejection rate is zero.

Much improvement is obtained by Alley and Darby based on ‘empirical studies using
Monte Carlo simulation. With the known distributional properties of the performance
scores and the properties of the quantile function (the inverse function of the~ cdf), an
approximation formula can be established for adjusting the table values to a much better
accuracy. This formula is given in the following section together with a revised Brogden
table.

With present-day computing power, the integrals (1) and (2), together with the
quantity L in (2), can be easily calculated with numerical routines. The integrals can be
calculated to a satisfactory accuracy with a trapezoidal rule. Functions for calculating L

are readily available in statistical packages such as SAS and S-plus.
III. RESULTS

Table 1 is a revised Brogden table of theoretical MPP values computed using S-
plus. The revised Brogden table expresses MPP in standard score metric, mean of zero
and standard deviation of one, as does the original table. Note that a new column V is
added. In the revised table m denotes the number of jobs and table entries are the mean
performance values for different numbers of jobs and rejection rates when the validity
R =1 and the between-job correlation r =0. The quantity V is used for adjustment

when R # 1 and/or r # 0. The adjustment formula is
R
RV1-r M, +?/V-(1—r)+r(Mp - Mo),

where M, is the first column table entry for the given number of jobs and the rejection
rate p =0 (pure classification), M, is the table entry for the given number of jobs and

the rejection rate p (selection and classification). For example, for R=1, r =085, 16

jobs, and rejection rate p = 0.6, the adjusted mean performance is



J1-085(1.766) + @\/(05432)2(1 —085) +085(2295 - 1.766) = 1604,

The table values, other than ¥, are as in the original Brogden table and the Alley

and Darby extension. Inspection of the table indicates that an increase in jobs produces

Table 1
Revised Brogden Table

Rejection Rate (percentage)

# Jobs vV 0 10 20 30 40 50 60 70 80 90
1 1.0000 0.000 0.195 0.350 0497 0.644 0.798  0.966 1.159 1.400 1.755
2 0.8257 0.564  0.721 0.847  0.969 1.092 1.221 1.365 1.531 1.741 2.057
3 0.7480 0.846  0.986 1.100 1.210 1.322 1.441 1.573 1.727 1.923  2.220
4 0.7012  1.029 1.159 1.265 1.368 1.473 1.586 L.711 1.858  2.045 2330
5 0.6690 1.163 1.285 1.386 1.485 . 1.586 1.693 1.813 1.955 2136 2413
6 0.6449  1.267 1.384 1.481 1.576 1.674 1.778 1.894 2032 2208 2479
7 0.6260 1.352 1.465 1.559 1.651 1.746 1.848 1.961 2.096 2268 2534
8 0.6107 1.424 1.533 1.625 1.715 1.807 1.907 2018 2.149 2319  2.580
9 0.5978 1485 1.592 1.682 1.769 1.860 1.957  2.067 2.196 2363 2.621
10 0.5868 1.539 1.643 1.731 1.817 1.906  2.002 2110 2237 2402  2.657
11 0.5773  1.586 1.689 1.775 1.860 1.948  2.042  2.148 2274 2437  2.689
12 0.5690 1.629 1.730 1.815 1.899 1.985  2.078  2.183 2307 2469 2718
13 0.5614 1.668 1.767 1.851 1.933 2019 2111 2214 2338 2497 2745
14 0.5547 1.703 1.801 1.884 1.965  2.050  2.141 2243 2365 2.524 2.769
15 0.5487 1.736 1.832 1.914 1.995 2078 2,168 2270  2.39] 2,548 2.792
16 0.5432  1.766 1.861 1.942 2,022  2.105 2.194 2295 2.415 2,570 2.813
17 0.5381 1.794 1.888 1968  2.047 2129 2218 2318 2437 2592 2832
18 0.5334 1.820 1.913 1.993 2.071 2152 2240 2339 2458 2611 2.850
19 0.5291 1.844 1.937  2.015 2.093 2174 2261 2360 2477 2630  2.868
20 05251  1.867 1.959 2,037 2114 2194 . 2.281 2379 2495 2647 2.884
100 0.4294 2508 2580 2642 2705 2771 2.843 2925  3.024 3154  3.360
200 0.4009 2746 2813 2.871 2929 2991 3.058 3.136 3229 3352  3.547
300 0.3865 2.878  2.941 2998  3.054 3.113 3.179  3.253 3.344 3463  3.653
400 0.3772 2,968  3.030  3.085 3140 3.198  3.261 3.334 3423 3540 3.727
500 0.3704 3.037 3.097 3.151 3205 3262 3324 3396  3.483 3.599  3.783

an increase in expected performance with R and » held constant at 1 and 0 respectively.

As noted in Alley and Darby, R and r typically change as the number of jobs increase.

This change is primarily attributable to three separate effects: (a) the increase in

opportunity for alternative job assignments, (b) a potential increase in validity due to

additional performance prediction composites, and (c) a potential decrease in the average

among-job intercorrelation, if the additional jobs are sufficiently dissimilar from those

already defined.




The performance estimates computed with the revised adjustment procedure are
compared with empirical estimates of performance generated from simulation results
using SAS (1985) reported in Alley and Darby. In addition to the empirical comparison,
a comparison of the revised adjustment estimates with those of Brogden and Alley and
Darby yields the results in Table 2. First note that for multiple jobs, m > 0, and the pure

classification case, p = 0, the second term of the revised adjustment formula is zero

Table 2

Comparison of Adjustment Procedures for R=1.

Condition Estimated M »

# Jobs Rejection r Empirical M, Brogden (%)  Alley-Darby (%)  Revised (%)

Rate

2 04 45 1.00 81 (81%) .97 (97%) .999 (100%)
2 0.4 .85 .85 42 (49%) .81 (95%) .842 (99%)

2 0.6 45 1.28 1.02 (80%) 1.27 (99%) 1.299 (101%)
2 0.6 .85 1.16 .53 (46%) 1.12 (97%) 1.165 (100%)
4 04 45 1.30 1.10 (84%) 1.25 (97%) 1.301 (100%)
4 0.4 .85 1.02 .57 (56%) .97 (95%) 1.001 (98%)
4 0.6 45 1.58 1.27 (80%) 1.52 (96%) 1.588 (100%)
4 0.6 .85 1.32 .66 (50%) 1.26 (95%) 1.333 (101%)
8 0.4 45 1.57 1.34 (85%) 1.51 (96%) 1.564 (100%)
8 04 85 1.17 .70 (60%) 1.09 (93%) 1.149 (98%)
8 0.6 45 1.84 1.50 (82%) 1.76 (96%) 1.843 (100%)
8 0.6 85 1.48 .79 (53%) 1.38 (93%) 1.478 (100%)
16 04 45 1.82 1.56 (86%) 1.73 (95%) 1.798 (99%)
16 04 85 1.29 .82 (63%) 1.21 (93%) 1.274 (99%)
16 0.6 45 2.06 1.71 (83%) 1.96 (95%) 2.071 (100%)
16 0.6 .85 1.59 .89 (56%) 1.49 (94%) 1.604 (101%)

Note. In the Empirical Column are estimates of the actual MPP obtained by simulation in Alley & Darby. Adjustment formulas

should produce values close to these estimates

because M, = M,; the first term, Rv1-r M, is simply Brogden’s formula. Moreover,

this expression coincides with the Alley and Darby adjustment given in different notation.

All three adjustment formulas agree in the pure classification case. For multiple jobs,



m> 0, and the selection and classification case, p> 0, the appropriate adjustment is not

simply RvV1-rM, as proposed by Brogden. Alley and Darby suggest, for a given

rejection rate, taking the difference between the m job performance estimate (selection
and classification) and the single job performance estimate (pure selection), applying the
Brogden adjustment to that difference, and then adding the resulting quantity to the single
performance estimate. The revised adjustment formula states that the theoretically proper
adjustment to the multiple job estimate is the Brogden adjustment in the pure
classification case, p=0, plus the properly scaled difference between the m job
performance estimate (selection and classification) and the pure classification

performance estimate.

Performance estimates in Table 2 for the three adjustment formulas are in the

three columns under the label ‘Estimated M ) ’. In these three columns the numbers in

parenthesis are the percentage of the empirical value accounted for by the difference
between the empirical value and the revised value. Empirical estimates were calculated
for combinations of the following conditions, two rejection rates, .4 and .6; four different
multiple job systems, 2, 4, 8, and 10 jobs; and two values of average between job
correlation, .45 and .85. Inspection of Table 2 reveals, as shown in Alley and Darby, that
Brogden’s adjustment underestimates mean performance by varying degrees for the
multiple job system. Estimates computed with the Alley and Darby adjustment formula
are much closer to, but slightly underestimate, the empirical values. The revised
estimates are very close to the empirical estimates with only slight variation due to

sampling error.

IV. CONCLUSION

The distributional approach to revising the Brogden table reveals some insights
into the theoretical MPP calculation, and consequently a much more accurate adjustment

formula is established. It is possible to extend this approach to other theoretical




measurement calculations in personnel and education psychology, such as extending the
Taylor-Russell tables (Taylor & Russell, 1939; Alley, Darby, & Cheng, 1996) to the
situation of multiple equally correlated jobs. Work along this line constitutes further

research efforts.

Caution should be exercised when applying the values in Table 1. Real world
personnel systems seldom exhibit ideal characteristics such as perfect or even near perfect
validities and zero or near zero between job intercorrelations. Table 2 gives an indication
of the reduction in performance that can occur with non-zero between job
intercorrelations. Applications of Table 1 should be made with a conservative eye toward

overstating possible gains in performance.
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Preliminary

Some concepts and properties of probability distributions on the real line, especially the quantile
functions, are given here for future references. Let X be a continuous random variable on the real line
(-0, ) . The probability distribution of X is determined by its probability density function (pdf)

S (x), which is non-negative and I S(#)dt =1. The cumulative distribution function (cdf) is

F(x)= I f(@dt = Pr(X Sx) = {the area under the pdf graph left to x }.

Note that the cdf F'(x) always has values between 0 and 1, and is non-decreasing. For the current
purpose it will be technically simple to assume that F'(x) is strictly increasing. The quantile function (gf)
of X, denoted by (, is the inverse function of the cdf F . That s, forany O<u <1,

Q(u) = F™'(u) = {the value x such that F(x) = u} = {the value X such that the area under the pdf
graph left to x is u}. Q(u)is called the u-th quantile of the random variable X . Some special quantiles
are: the Ist quartile (J(0.25), the median (2nd quartile) Q(0.5), the 3rd quartile (0.75), the 40th
percentile 0(0.4), etc.

Example A.1 Suppose that X follows the exponential distribution with pdf f(x)=e™, 0<x <.
. 4 X
Then the cdf is F(x) = [ f(f)dt = [e™'dt =1-¢™*. The quantile function Q(u) is obtained by
0 0

setting F(x)'= # and solving for x. We have F(x)=1-e¢ " =u, thus e* = 1—u; taking the
natural logarithm on both side gives x = —log(1— u). Hence the gf Q(¥) = —log(1-u),0 <u <1.
Example A.2 Suppose that X follows the standard normal distribution N(0,1) with mean 0 and

exp.(‘t%)dt.

variance 1, and pdf ¢(x) = ﬁexp.(‘x_%). Then the cdf is P(x) = _]:‘/;_”
The gf is

Q(u) = @' (u) . The cdf (and consequently the gf) does not have closed-form expression in this case.
They can be calculated numerically in many statistical software packages. In SAS, the cdf @ is the

PROBNORM function, and the gf @ is the PROBIT function.
The quantile function has many useful properties, some of which are given below.
Proposition A.1 The cdf and the qf are related by Q(F(x)) =X for anyX inside the range of the

random variable X , and F(Q(u)) =u forany O <u <1.

13



Proposition A.2 As u approaches to 0, the gf Q(u) approaches to the smallest possible value of the
random variable X ; as u approaches to 1, Q(u) approaches to the largest possible value of X .

These two properties follow directly from the definitional fact that the qf () is the inverse
function of the cdf F .

. .
Proposition A.3 The expected value of X, E X, isequal to the integral E X =IQ(u)du.
0
Proof: By definition of expected value [Larson 1982, p.118, Definition 3.3.1 (b)],
EX = [xf (x)dx = [xdF (x)

Now change variable by setting F'(x) = . Then by Proposition A.1, x = Q(u), and by Proposition
A.2, the range of u is the unit interval (0, 1). Hence the integral becomes

EX= TxdF(x) = j'Q(u)du,

completing the proof.
Example A.3 Consider the exponential random variable in Example A.1. The expected value is

© @0 1 1
EX = [xf (x)dx = [xe"dx = 1. Altematively, EX - [ Q(u)du = [ ~log(1-u)du =1
0 0 0 0
Proposition A.4 Let 0 < p < 1. The conditional expected value of X given that X 2Q(p) (i.e. given

1
that X is no less than its p-th quantile), is given by 1—I Q(u)du.

The proof is similar to that of Proposition A.3; it is omitted to keep the technicality at a reasonable level.
Note that the crucial differences here from the unconditional case in Proposition A.3 are the
1/(1- p)factor and the lower limit of integral being p, not 0.
Example A.4 Consider again the exponential random variable in Example A.1. Let p = 04 . The 40th
percentile is then (J(0.4) = —log(1-04) = —10g(0.6) . The conditional expected value of X given
that X is greater than or equal to its 40th percentile is then

1 1
=y I-—log(l —u)du =~ 1511.

04

I—_I—I;igw)du -

For the standard normal variable in Example A.1, the conditional expected value is

1
L [ (w)du ~ 0644,
1-04,,

14



Proposition A.S Let X be a random variable with quantile function Q, (u), and let Y = A+ BX,

with A and B real numbers. Then the quantile function of Y is Q, (u) = A+ BQ, (u).

The Brogden Table

Brogden’s (1959) assumptions are equivalent to treating the applicants’ predicted performance
scores as certain random variables and the applicant population being represented by the joint probability
distribution of the performance scores. In tune with Brogden’s notation, let m be the number of jobs, and

let C,,C,,A,C, denote the predicted performance scores. It is assumed that the m scores are
standardized to have a common mean 0 and a common variance R’ , which is the validity. It is further
assumed that the performance scores C, ,C,,A ,C,, jointly follow an m-variate normal distribution.

Since every applicant is assigned to the job corresponding to the highest score, the allocation
efficiency is simply the largest of C, ,C,,A ,C,,-: C*= max(Cl,C2 A ,C,,,) , i.e. the largest order

statistic of the m random variables.
Brodgen (1959) considered calculating the mean allocation efficiency in 4 cases: (1) uncorrelated

performance scores and zero rejection rate, (2) uncorrelated performance scores and non-zero rejection
rate, (3) equally correlated performance scores (i.e. all (C,.,C j) pairs have common correlation

0 <r <1) and zero rejection rate, and (4) equally correlated performance scores and non-zero rejection
rate. Each of cases is discussed below.
Case 1: uncorrelated performance scores and zero rejection rate (» = 0, p = 0). In this case the

scores C,,C,,A ,C,, are independent and identically distributed (i.i.d.) as normal with mean 0 and

variance R? ~ N (0, Rz). For convenience first let R =1. Then the C; ’s have the common standard

_ -2
normal probability density function (pdf) ¢(x) = (27[) vz exp(x A ) and the cumulative distribution

x
function (cdf) P(x) = J'¢(t)dt. The mean allocation efficiency (or MPP) is nothing but the expected

value of the maximum score C* = max(C1 ,CoLA ,Cm) . Because C * is the largest order statistic out

of the m scores, by a known fact of the largest order statistic (Larson 1982, pp. 318-319) and the normal
distribution assumption of the performance scores, C * has cdf

) - F(=[om)]", —0<X <0,
and pdf
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Application of the definition of expected value [Larson 1982, p.118, Definition 3.3.1 (b)] yields
s m-1
®  MPP = [xf(x)= [xn{ @)™ g(e)de ,

which is exactly equation (1). Expected values and standard deviation of C * for several values of m are
calculated in Table I, Tippett (1925).

Alternatively, the quantile function (qf) O(%) of C * can be obtained by setting the cdf (3) to
u and solving for x: F(x) = [(I)(x)]m =u, so O(x)=u"", and x = P (u”"'). Hence the gf of
C*is

) Qw=0"'(u"™), Oo<u<l

Then by Proposition A.3, the alternative expression of the expected value of C* (the MPP) is
1
() MPP, = I O~ (1" ).
0

If the validity R # 1, the MPP is simply R(MPPF,) because C* is just scaled by R .

Case 2: uncorrelated performance scores and non-zero rejection rate (* = 0, p > 0). The
distributions of the performance scores and the maximum score C * remain the same as in Case 1. But if
the rejection rate p>0, i.e. only the upper (1 - p) portion of the applicant population is selected, then the
allocation efficiency is the conditional expected value of C * given that C * is greater than or equal to
its pth percentile (quantile). It is enough to only recall at this point that under the given distributional
assumptions, the pth quantile of C* is the number L such that the probability of C*< L is p, i.c.
F(L)= pwith F the cdf of C* given in equation (3) (i.e. the cumulative area under the pdf graph left
to L is p.) Equivalently, the probability of C*> L is (1- p) (i.e. the cumulative area under the pdf
graph right to L is1— p.) For convenience, again first let R =1. Following the definition of a
conditional probability law, (Larson, 1982, pp. 61-65, 241-243), the conditional cdf of C * given
C*>L is (restricting x > L)

Pr(C*<xand C*2L) Pr(L<C*<x) _F®-FL) _ [CD(x)]"'—p

= L< )
Pr(C*> L) Pr(C*> L) I-p 1-p 0 0F%

F(x|p) =

and F(x|p)=0 if x < L. The conditional pdf of C * given it is greater than or equal to its pth

percentile is then
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The MPP corresponding to rejection rate p is the conditional expected value
(7)) MPP, = [xf (x|p)dx = (1- p)™ [ xm{ ®(x)]"™" §(x)dke,
L L

which is exactly equation (2). Note that in the integral the conditional pdf f(x|p), not the
unconditional one in (4), is used.

By Proposition A.4 and the qf expression of C* in (5a), the alternative expression of the
conditional expected value (the MPP) is

() MPP, = 1p jQ(u)du = lTlp-j'(D" (u”"')du.
¥ 4 14

1-p

IfR # 1 then the MPP is simply R(MPP, ), for the same reason as before.

The same as establishing (5a), because F'(L) = p, L can be obtained by setting the cdf (3) to p
and solving for x, giving L = x = ®™'(p"™), with @' the inverse function of the standard normal
cdf (the PROBIT function in SAS). It’s interesting to note that the pth quantile of C*, L, is the
(p"™) -th quantile of the normal distribution.

Case 3: equally correlated performance scores (i.e. all (C,. ,C j) pairs have common correlation

0 <7 <1) and zero rejection rate. For this more general case Brogden proposed the model that the job

performance scores are related to a common latent variable K, plus independent normal random

perturbation: C, =K +C';, j=12,...,m. In order that all C,’s follow the N(O,Rz) distribution
and are equally correlated, it is assumed that X follows the N (O,Rzr) ,and C',,C", A (', arei.id

N| (O,R2 (1 - r)) and are independent of K. This model then provide the desired theoretical distribution
of the performance scores. Now the allocation efficiency

®) C*=max(C,,C,,A ,C, )= K+max(C'l ,CALC)=K+C*,
where C*' = max(C'l ,C', A ,C',,,). Recall that, as in Case 1, when the rejection rate p = 0, the MPP
is the expected value (or mean) of C * . Because the mean of K is zero and mean is additive, (8) gives
that the mean of C * (the MPP) is simply the mean of K plus the mean of C*', which is equal to the

expected value (or mean) of C*'. Furthermore, because of the distributional assumption on the C,’s,
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C* differs from the C * in Case 1 only by a scaling factor R/1—r . Therefore the MPP in this case is

R+v1-rMPP,, the Brogden adjustment.

Case 4: equally correlated performance scores and non-zero rejection rate. Brogden attempts to

completely reduce the correlated job score cases to the above independent job score cases by observing that
the common variable X has zero mean, so that C * has the same expected value as C*'. However, this
reduction is correct only when the rejection rate p=0. The reason Brogden’s adjustment fails in the >0
case lies in the fact that in the non-zero rejection cases the MPP is the conditional expected value of C *
conditioned on its being greater than or equal to its pth percentile L , and unfortunately for correlated job
scores, L is no longer simply @' (p''™).

The exact probability distribution of C * in this case is rather complex. Consequently, simple
integral expressions for the theoretical MPP like those in equations (1) and (2) no longer exist. In order to
establish an adjustment formula in the same spirit as those of Brogden and Alley & Darby (1994), a
distributional approximation method is employed. Equation (8) shows thatC*is C*' plus an
independent normal random variable X with mean zero and standard deviation Rs/; <l. And as
mentioned before, C*' differs from the C * in Case 1 only by a scaling factor R\/l_: , S0 its exact
probability distribution can be readily established. The basic idea then, is to approximate the probability

distribution of C* by properly adjusting the distribution of C*', so that the expected value and the

variance of the adjusted probability distribution matches with those of C* . The approximation is

accomplished by the following steps.
(/) Mean and variance of C*': Note that C*' differs from the C * in Case 1 only by a scaling

factor Ry/1—r , more precisely, let C, * be the C* in Case 1, then C*'= (RV1-r)C,*. SoThe
expected value of C* is u'= RV1-rMPP, (as in Case 3), and The variance of C*'is
o'?=R*(1-r)V'?, where

V= T(x-we,)zm[qxx)]*‘ d(x)dx,

and 1\4PPO is given in equation (5) or (5b). The values of ¥ are given in the first column of the revised
Brogden Table in Section III.

(i) Mean and variance of C * : From (8), by additivity of expected values, the expected value
of C* is

) ,u=EC*=EK+EC*'=EC*'=p'=RJ1—rMDR,
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because the expected value of K is 0. By independence of K and C*', the variance of C * is

(10) o*=VvarK+VarC*¥*=R*r + R*(1-r)V'* .
= 1
(iii) Standardize C*': The random variable C'= —(C*'- ') has mean 0 and variance 1. So
o3
the random variable C* = 1+ o'C' has mean 4 and varianceo® , the same as those of C * . Hence

C* has the probability distribution approximately the same that of C *, in the sense of matching mean
and variance. Approximate the distribution of C * by the distribution of C *. We accomplish this by
approximating the quantile function of C * with the quantile function of C *.
(iv) Quantile function of C *: From step (), C*'= (RV1-r )C, * and from step (iii)
C*=p+0C= p+o[(C*-u)/ o']= p+ a[(RJl—_rCI Y o"]

an
= (u—g,u') +(£,R«/1—r)Cl* = 4+BC,*,
o o

where A = y— oy lo" and B=0RV1-r /o' By Proposition A.S5, the quantile function of C * is
O(u) = A+ BQ, (u), where Q, (u) is the quantile function of C, * . Recall form step (i) that C, * is

the C* in Case 1, whose quantile function is given in equation (5a) ~ Q, (%) = ®™' (u""'). Therefor

substituting the values of 4, B, O, (u) gives the quantile function of C* as

O(u) = A+ BQ,(u) = (#—%,u’) +(%R\/l—_r)®" (u”"'), O<u<l

(v) Approximate the quantile function Q(%) of C * by that of C*:
12 Q= (,u —ng') +(1'R\/1 —r)(b“‘ (u”"'), O<u<l
g g

(vi) The adjustment formula: The MPP is the conditional expected value of C* given it is
greater than or equal to its p th percentile (i.e. given C*2 Q(p)). So by Proposition A.4,

__ L
MPP = i { O(u)du.

Replacing (J(u) by its approximation given in equation (12). we have
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MPP = ITIP—iQ(u)du ~ lp i[(ﬂ - % ,4') +(%R\/1—:7)<D"(u”’")}du

(-2 g ]

1-p

By equation (7b), the integral in the brackets is the MPP, in Case 2, so
MPP =~ (,u—g'p') +(1‘RJl—r)WPp .
o o

Plugging in the values of u,0, 4',0" obtained in steps (§) and (i) gives

MPP ~ (RJl—rMPPO VR R r)V? RJl—rMPPOJ + [‘le’”;zz(l")V2 JRJl-rMJP,
JR*(1-r)V? JRE(A-r)V?

Ryr+(1-ry? Ryr+Q1-ry?
=RN-rMPP, - R1-rMPP,+ """  RJ/1-rMPP
0 RI1-1V 0 RJTI-1V ?

2 [ N2
— RyT=rapp, - RAr A=V ”(; W mpp, + Rdr+A=rV" ”(; v MPP,

= RVJ1-rMPP, +—§\/r +(1-ry? (Aﬂ’PP - WPO).

The last expression is exactly the adjustment formula given in Section III.
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