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NA  indicates not available at time of printing. 
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Interactive Area 16: Optical Measurement of the Ocean 

On the Peculiarities of SSM/I Brightness Temperature Variations in Kuroshio Region NA 
Cherny, I.V., and V.P. Nakonechny 

Simulation of Satellite Measurements of Radiance over Water for Operational Testing of MODIS Ocean Color NA 
Algorithms 

Fleig, A.J., and K. Yang 

Resolution Enhancement in SAR Images 
Guglielmi, V., F Castanie and P. Piau 

Multi-Wavelength Laser Scattering at the Air-Sea Interface 
Lin, C.S. 

293 

Diffuse Reflectance of the Optically Deep Sea Under Combined Illumination of Its Surface 296 
Haltrin, VI. 

Light Scattering Coefficient of Seawater for Arbitrary Concentrations of Hydrosols 299 
5 Haltrin, V.l. 

302 

The MUBEX Experiment - Validation of Satellite Data and Air-Sea Interaction Studies at Mutsu Bay, Japan NA 
Llewellyn-Jones, D.T., IM. Parkes, D.T., R. Yokoyama, S. Tamba, M. Takagi, C.T Mutlow, 

T. Nightingale, C. Donlan and V. Bennett 

Line Noise Extraction of Thermal Infrared Camera Image in Observing Sea Skin Temperature 305 
Tamba, S., andR. Yokoyama 

Spatial and Temporal Behaviors of Sea Skin Temperature Observed by Thermal Infrared Camera 308 
Tamba, S., S. Oikawa, R. Yokoyama, I. Redley, I. Parkes and D. Llewellyn-Jones 

MUBEX: Japan and U.K. Collaboration for Mutsu Bay Sea Surface Temperature Validation Experiment 311 
Yokoyama, R., S. Tamba, T. Souma, D. Llewellyn-Jones and I. Parkes 

Laser Spark Spectroscopy in Remote Sensing of Sea and Land Surfaces Element Analysis NA 
Tsipenyuk, D.Yu, and MA. Davydov 

Interactive Area 17: Remote Sensing Data Processing Techniques 

Simulation of Split-Window Algorithm Performance 317 
Axelsson, S.R.J., and B. Lunden 

Analysis of Single and Multi-Channel SAR Data Using Fuzzy Logic 322 

Benz, U. 

Processing and Validation of the ERS-1 Radar Altimeter Data at the Italian PAF 325 
Celani, C, A. Bartoloni and F. Nirchio 

A Visual Tool for Capturing the Knowledge of Expert Image Interpreters: A Picture is Worth More than a Thousand 328 
Words 

Crowther, P., J. Hartnett, andR.N. Williams 

Data-Driven Decomposition of Mixed Pixels for Crop Area Esitmation NA 

Gebbinck, M.S.K., and T.E. Schouten 



Radarsat Processing Using the Desk-Top Synthetic Aperture Radar Processor NA 
Goulding, M., PR. Lim, L. Wilke and P. Vachon 

Congestion Data Acquisition Using High Resolution Satellite Imagery and Frequency Analysis Techniques 331 
Kim, K.H., J.H. Lee and B.G. Lee 

Geoinformation Monitoring System - Gims (The Concept, Structure, Examples of Application) NA 
Krapivin, V.F., and AM. Shutko 

The ENVISAT-1 Advanced Synthetic Aperture Radar Generic Processor NA 
Lim, P.R., D.R. Stevens, D. Rae, Y.L. Desnos, H. Law and T. Gach 

A Framework for SAR Image Classification: Comparison of Co-Occurrence Method and a Gabor Based Method 335 
Manian, V, andR. Vasquez 

A Network Distributed Processing System for TRMM Ground Validation NA 
Merritt, J.H., N.T. Nguyen, D.B. WolffandD. Han 

Fuzzy Supervised Classification of JERS-1 SAR Data for Soil Salinity Studies 338 
Metternicht, G.I. 

Land Cover Change Detection Using Radiometrically-Corrected Multi-Sensor Data NA 
Mispan, M.R., and P.M. Mather 

Quality Assurance of Global Vegetation Index Compositing Algorithms Using AVHRR Data 341 
vanLeeuwen, W.J.D., T.W. Laing and AR. Huete 

Interactive Area 18; Remote Sensing of the Ocean 

Investigations of Possibilities of Using SAR Data for Monitoring of Volga Estuary and Kahnykija Shore of Caspian 347 
Sea 

Armand, N.A., A.S. Shmalenyuk, Y.F. Knizhnikov, V.l. Kravtsova andE.N. Baldina 

Laboratory Investigations of Nonlinear Surface Wave Transformation in a Field of Two-Dimensionally 350 
Inhomogeneous Currents 

Bakhanov, V.V., S.D. Bogatyrev, V.l. Kazakov and O.N. Kemarskaya 

Global Optimization Algorithms for Field-Wise Scatterometer Wind Estimation 353 
Brown, CG., andD.G. Long 

Retrieval of Air-Water Interaction by Thermal Radio Emission Dynamics at 60 GHZ NA 
Gaikovich, K.P. 

Ka-Band Ocean Wave-Radar and Wave Envelope-Radar Modulation Transfer Function Measurements and Modeling NA 
Grodsky, S.A., V.N. Kudryavtsev and A.N. Bol'shakov 

Gulf Stream Signatures and Surface Wave Observation Using ALMAZ-1 SAR NA 
Grodsky, S.A., V.N. Kudryavtsev andA.Y. Ivanov 

Ocean Wave Spectrum Reconstruction for ERS-1 Satellite Scatterometer Data 356 
He, Y., andJ. Zhao 

The Fine Grained Sediment Load of the Mississippi Riven A Land Building Commodity NA 
Huh, O.K. 

"NA " indicates not available at time of printing. 



Studies of Ocean Surface Processes Which Influence Climate NA 
Jenkins, AD., H.A. Espedal, H. Drange and O.M. Johannessen 

SICH-1 Real Aperture Radar Imagery of Ocean Temperature Fronts NA 
Malinovsky, V.V., AV. Rodin and V.N. Kudryavtsev 

Validation of Models and Algorithms for Microwave Radiometrie Investigations of Tropical Cyclones 359 
Petrenko, B.Z., AF. Nerushev, LI. Milekhin and G.K. Zagorin 

Bistatic Model of Ocean Scattering NA 
Picardi, G., R. Seu andS. Sorge 

Azimuthai Anisotropy of Sea Surface Polarized Microwave Emission NA 
Pospelov, M. 

Simultaneous Observation of Oceanic and Atmospheric Internal Waves by Air-Borne Dual Polarization Ku-Band Side NA 
Looking Radar 

Pungin, V.G., and M.I. Mityagina 

The Satellite Data "Resource" and NOAA/AVHRR for Black Sea Dynamics Investigation NA 
Stanichy, S.V., and D.M. Solov'ev 

The Surface Active Sea Films: Properties and Dynamics 362 
Talipova, T. 

Aerocosmic Method of Investigations of Short Time Hydrodynamic Processes and Phenomena at the Surface of Seas NA 
and Oceans 

Tomilov, G.M., and V.P. Bobykina 

Interactive Area 19; Remote Sensing Techniques and Instrumentation 

L-Band 300-Watt Solid State Pulse Power Amplifiers for SAR 367 
Deng, Y. 

Development of a PC Based System for Real-Time, Local Reception of High Resolution Satellite Data for 370 
Environmental Monitoring 

Downey, I.D., J.B. Williams, J.R. Stephenson, R. Stephenson and W. Looyen 

A Real Aperture Radar for Low Resolution Mapping at Low Costs 374 
Impagnatiello, R, G. Angino and G. Leggeri 

Effects of Faraday Rotation on Microwave Remote Sensing from Space at L-Band 377 
Le Vine, D.M., andM. Kao 

Using JPEG Data Compression for Remote Moving Window Display 380 
Leung, P.S., M. AdairandJ.H. Lam 

The Universal Multichannel Technique for Enhancing Images Obtained from Different Sensors 383 
Petrenko, B.Z. 

YS AR: A Compact, Low-Cost Synthetic Aperture Radar 386 
Thompson, D.G., D.V.Arnold, D.G. Long, G.F. Miner, T.W. Karlinsey andAE. Robertson 



The China Airborne Radar Altimeter Control System 389 
Xu, K., M. Li, N. Zhou, Y.L. Xue and Y.S.Liu 

Miniature Ocean Radar Altimeter NA 
Xu,K. 

Computer Simulation of Spaceborne Multimodes Microwave Sensors 392 
Zhang, Y., and J. Jiang 

Interactive Area 20; Snow and Glaciers 

Improved Elevation Change Measurements of the Greenland Ice Sheet from Satellite Radar Altimetry 397 
Davis, C.H., and C. Perez 

Multi-year Ice Concentration from RADARSAT 402 
Fetterer, F, C. Bertoia and J.P. Ye 

Analysis of a Microwave Airborne Campaign Over Snow and Ice NA 
Hewison, T., and S. English 

Vector Radiative Transfer for Scattering Signature from Multi-Layer Snow/Vegetation at SSM/I Channels 405 
Jin, Y.Q. 

Deriving Glaciers Variation Integrated Remote and GIS in Tibetan Plateau 408 
Li, Z„ and Q. Zeng 

On the Accuracy of Snow Cover Segmentation in Optical Satellite Images 411 
Luca, D., K. Seidel andM. Datcu 

A Comparison of Antarictic Sea Ice Concentration Derived from SSM/I, SAR, and Ship Observations NA 
Lytle, V.l., andM. Rapley 

Sea Ice Concentration and Flow Size Distribution in the Antarctic Using Video Image Processing 414 
Muramoto, K., T. Endoh, M. Kubo and K. Matsuura 

Spectral RF Reflection from Water and Ice Layers NA 
Noyman, Z. Zlotnick, and A. Ben-Shalom 

Compatability of Sea Ice Edges Detected in ERS-SAR Images and SSM/I Data 417 
Schmidt, R., and T. Hunewinkel 

Snow-Cover Mapping Experiment by EMISAR C Band - Discrimination and Optimum Resolution NA 
Solberg, R., A. Schistad Solberg, E. Volden, H. Koren and A. Teigland 

Characterization of Snow Cover from Multispectral Satellite Remote Sensing and Modelling Runoff Over High NA 
Mountainous River Basins 

Swamy, A.N., and PA. Brivio 

"NA " indicates not available at time of printing. 



Interactive Area 21: Lidars 

Statistical Approach for Lidar Sensing of Turbulence Parameters with a Vi to Atmosphere Pollution NA 
Avramova, R.P. 

Accurate Height Information from Airborne Laser-Altimetry 423 
Lemmens, M.J.P.M. 

Technique Doppler Lidar Measurement of the Atmospheric Wind Field NA 
Li, S.X., B.M. Gentry, and C.L. Korb 

A New Airborne Remote Sensing System Integrating Scanning Altimeter with Infrared Scanner 427 
Liu.Z., and S.Li 

Air Turbulence Measurements Using CCD Camera for Obtaining Laser Spot Fluctuations NA 
Mitev, V. 

Interactive Area 22: SAR Interferometry 

Local, Global and Unconventional Phase Unwrapping Techniques 433 
Collaro, A., G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti andM. Tesauro 

Application of Wavelets to Improve IFS AR DEM Reconstruction NA 
Curlander, J.C., G. Burkhart and C. Johnson 

ERS Tandem INS AR Processing for Exploration of the Svalbard Archipelago NA 
Eldhuset, K., Amlien, J., PH. Andersen, S. Hauge, E. Isaksson, T. Wahl and DJ. Weydahl 

Motion Compensation Effects in Wavelength-Resolution VHF SAR Interferomtry 436 
Frolind, P.O., andLM.H. Ulander 

The Exact Solution of the Imaging Equations for Crosstrack Interferometers 439 
Goblirsch, W. 

SAR Interferometric Analysis of ERS Tandem Data over an Alpine Terrain NA 
Kenyi, L.W., andH. Raggam 

Baseline Estimation Using Ground Points for Interferomteric SAR 442 
Kimura, H., andM. Todo 

Development of an Interferometric SAR Data Processing System NA 
Li, J.F., H. Liu andH.D. Guo 

Phase Noise Filter for Interferometric SAR 445 
Lim, I., T.S. Yeo, C.S. Ng, Y.H. Lu and C.B. Zhang 

Calibration and Classification of SIR-C Polarimetric and Interferometric SAR Data in Areas with Slope Variations 448 
Pasquali, P., F. Holecz, D. Small and T. Michel 

On the Motion Compensation and Geocoding of Airborne Interferometric SAR Data 451 
Sansosti, E., R. Scheiber, G. Fornaro, M. Tesauro, R. Lanari, and A. Moreira 

A Method for Precise Reconstruction of INS AR Imaging Geometry NA 
ShiPing, S. 



Baseline Estimation in Interferometric SAR 454 
Singh, K., N. Stussi, L.K. Kwoh, and H. Lim 

Removal of Residual Errors from S AR-Derived Digital Elevation Models for Improved Topographic Mapping of 457 
Low-Relief Areas 

Slatton, K.C., MM. Crawford, J.C. Gibeaut andR. Gutierrez 

Digital Elevation Models from SIR-C Interferometric and Shuttle Laser Altimetry (SAL) Data 460 
Sun, G, and K.J. Ranson 

Interactive Area 23: SAR Techniques 

A High Precision Workstation - Based Chirp Scaling SAR Processor 465 
Breit, H., B. Schattier and U. Steinbrecher 

Investigations of Coastal Zones in the North West Pacific by Remote Sensing NA 
Bobykina, V.P. 

SAR Image Simulation of Moving Targets with LOCOS AR NA 
Cazaban, F., M. Deschaux-Beaume, J.G Planes andM. Busson 

Automated Acquisition of Ground Control Using SAR Layover and Shadows 468 
Gelautz, M., E. Mitteregger, and F. Leberl 

An Accelerated Chirp Scaling Algorithm for Synthetic Aperture Imaging 471 
Hawkins, D.W., andRT. Gough 

Analysis of Code Error Effect in Spaceborne SAR Imaging Processing 474 
Jiang, Z., and J. Song 

High Quality Spotlight SAR Processing Algorithm 1 477 
Jin, M.Y. 

Interpretation of Brightness Temperature Retrieved by Supersynthesis Radiometer 481 
Komiyama, K., Y. Kato and K. Furuya 

Non-Iterative Spotlight SAR AutofocusingtJsing a Modified Phase-Gradient Approach 484 
Chan, H.L., and T.S. Yeo 

Real Time Synthetic Aperture Radar Preprocessor Design Via Three-Dimensional Modular Filtering Architecture 487 
Chan, H.L., and T.S. Yeo 

High Resolution SAR Processing Using Stepped-Frequencies 490 
Lord, R.T., andM.R. Inggs 

RADARS AT Attitude Estimates Based on Doppler Centroid of SAR Imagery 493 
Marandi, S.R. 

A Research of Moving Targets Detection and Imaging by SAR 498 
Pan, R., G. Li and X. Zhu 

Tree Structured Filter Banks for Speckle Reduction of SAR Images 501 
Sveinsson, J.R., andJA. Benediktsson 

Feasibility of Satellite On-Board SAR Processing NA 
Thompson, A., H. Jiang, S. SpenlerandA. Macikunas 

"NA " indicates not available at time of printing. 



Near Real-Time RADARSAT Data System for NOAA CoastWatch Applications 505 
Tseng, W.Y., W.G. Pichel,AK. Liu, P. Clemente-Colon, G.A. Leshkevich, S.V.Nghiem, 

R. Kwok and R.N. Stone 

Interactive Area 24: Surface Temperatures 

Land Surface Temperature Interpretation of Equatorial South America from AVHRR Data 511 
Li, G, andPJ. Hardin 

Tropical Model for Retrieving Surface Temperature from Satellite Data NA 
Mansor, S.B. 

Sea Surface Temperatures from NOAA Satellites in the Swordfish and Jack Mackerel Fisheries of Chile's Central NA 
Zone 

Yanez, E., M.A. Barbieri, V. Catasti, C. Silva andK. Nieto 

Interactive Area 25; Neural Network and Intelligent Systems 

Pollution Analysis of Hyperdimensional Data Using Neural Networks NA 
Benediktsson, J.A., K. Arnason and S. Jonsson 

A Classification of Multispectral Landsat TM Data Using Principle Component Analysis of Artificial Neural Network 517 
Chae, H.S., SJ. Kim and J.A. Ryu 

Unsupervised Classification for Remotely Sensed Data Using Fuzzy Set Theory 521 
Dinesh, M.S., K.C. Gowda and P. Nagabhushan 

Development of a Intelligent Image Analysis System for the Detailed Analysis of the Land Surface Information 524 
Kim, K.O., Y.L. Ha, I.S. Jung, J.Y. Lee, K.H. Choi andJ.H. Lee 

Study on the Characteristics of the Supervised Classification of Remotely Sensed Data Using Artificial Neural 528 
Networks 

Paek, K.N., Y.S. Song, H.S. Chae andKE. Kim 

Interactive 26: Missions and Programs 

The Advanced Remote Sensing Data from MOMS-2P on PRIRODA 533 
Bodechtel, J., and Q. Lei 

Multi-Frequency and Multi-Polarization SAR System Analysis with Simulation Software Developed at CSA 536 
Huang, Y., G. Seguin, andN. Sultan 

Oceanological Results from the ALMAZ-1 Mission: An Overview 539 
Ivanov, A.Y., andKJ. Litovchenko 

Some Options for RadarSAR-II NA 
Parashar, S., E.J. Langham and S. Ahmed 

A Summary of the Upper Atmosphere Research Satellite (UARS) 542 
Schoeberl, M., A.R. Douglass and C.H. Jackman 



BEAWARE: Budget Effective All Weather Accurate Radar for Earth Observation 545 
Vincent, N., E. Souleres and N. Suinot 

Design of MACSIM Cloud Radar for Earth Observation Radiation Mission 548 
Vincent, N., N. Suinot and C.C. Lin 

Interactive 27; Inverse Techniques 

Ice Concentration Estimation Based on Local Inversion 553 
Arai, K. 

Retrieving of LAI and FAPAR with Aiiborne POLDER Data over Various Biomes 556 
Bicheron, P., M. Leroy and 0. Hautecoeur 

The Uncertainty and Confidence in BRDF Model Inversion NA 
Jindi, W., andL. Xiaowen 

SAIL Model Experiment of the Inversion of Growth Indices from Rice Conopy Reflectance Using the Information on NA 
Variation and Regulation of Leaf Spectral Characteristics 

Kushida, K. 

Algorithms for Estimating Some Optically Active Substances and Apparent Optical Properties from Subsurface NA 
Irradiance Reflectance Measurements in Lakes 

Reinart, A. 

Geometry-Based Deconvolution of Geophysical Data 559 
Simaan, M.A. 

A Priori Information in Inverse Problems of Atmospheric Optics 562 
Timofeyev, Y.M. 

Three-Dimensional DC Resistivity Inversion at a Gasoline Contaminated Site NA 
Xiao, L., andL. Liu 

Retrieval of Electrical Properties of a Stratified Medium with Slightly Rough Surface Using an Inversion Method NA 
Zhuck, N.P., D.O. Batrakov andK. Schuenemann 

Interactive 28; Calibration 

Characterization of Passive NMMW Backgrounds at 140 and 220 GHz NA 
Ben-Shalom, A, Y. Oreg, andM. Engel 

Some Issues on Calibration/Validation Algorithms of SSM/I Data 567 
Jin, Y.Q. 

Calibration and Validation of ADEOS/NSCAT in Japan NA 
Masuko, H., and Japanese ADESO/NSCAT CAL/VAL Team 

Calibration Experiments of the CRL/NASDA X/L-Band Airborne Synthetic Aperture Radar 570 
Satake, M., T. Kobayashi, H. Masuko andM. Shimada 

"NA " indicates not available at time of printing. 



Interactive 29; Education and Information Systems 

Development of Interactive, Graphical, Computer-Based Teaching Tools for Remote Sensing in Tcl/Tk NA 
Barnsley, M., and P. Hobson 

Ocean Expeditions: El Nino — An Interactive Education Tool Based on Remote Sensing Data NA 
Gautier, C. 

Meteorological Satellite Image Service via WWW 575 
Lee, H.G. 

Interactive 30: Wavelet Techniques in Remote Sensing 

Wavelet Techniques Applied to Lidar Temperature Profiles in the Middle Atmosphere to Study Gravity Waves 581 
Chane-Ming, F., F. Molinaro, and J. Leveau 

Robust Terrain Classification Using Wavelet Packets NA 
Keshava, N., andJM.F. Moura 

High Resolution Image Classification with Features from Wavelet Frames 584 
Kim, K. 0., I.S. Jung and Y.K. Yang 

A Hierarchical Stereo Matching Algorithm Using Wavelet Representation Based on Edge and Area Information 588 
Um, G.M., C.S. Ye andK.H. Lee 

Interactive 31: Classification 

The Impact of the Initial Land-Cover Classification on the Retrieval of Land Use Information from Remotely-Sensed NA 
Images Using Structural Pattern Recognition Techniques 

Ban, S., andM. Barnsley 

Snow Covered Area Classification Using Time Series ERS -1 SAR NA 
Li, Z., andJ. Shi 

From the Satellite to the Airborn Platforms Imagery: Behavioral Classification and Segmentation NA 
Orban-Ferauge, F., J.P. Rasson and S. Baudart-Lissoir 

Symbolic ISODATA Clustering Procedure Useful for Land Cover Classification: A Case Study Employing IRS-1B NA 
LISSII Data for Nagarahole Forest, Karnataka State, India) 

Prakash, H.N. S., P. Nagabhushan andK.C. Gowda 

Interactive 32: Coastal Environment 

Retrieval of the Remote Radiance Reflection Coefficient of Coastal Waters from the Inherent Optical Properties 595 
Haltrin, V.l. 

Monitoring Coastal Water Systems: An Integrated Approach 598 
Krishnan, P. 

Near-Bottom Fluxes of Sediment Matter on a Shelf and Their Research by Remote Techniques 601 
Likht, F.R., andLM. Mitnik 

The Analysis and Comparison of Satellite and " In Situ" Temperature Measurements for Coastal Zone Dynamic NA 
Processes Investigation 

Stanichnaya, R.R., A.S. Kuznetsov, S.A. Shurov, D.M. Solov'ev and S.V. Stanichny 



Interactive 33: General Applications 

New Method of the Characterization of the Simiconductor Plate Homogeneity by its Thermal Image NA 
Bolgov, C, and V. Morozhenko 

Ozone Distributions in the Stratosphere-Troposphere System Using the Interdisciplinary Physics Modelling 607 
Caldararu, E, S. Patrascu, M. Caldararu, A. Paraschiv and D. Nicolaescu 

An Improved Description of the MTF of the Moderate Resolution Imaging Spectroradiometer and a Method for NA 
Enhancing Its Cross Track Resolution 

Fleig, A.J., andK. Yang 

Spectral Identification of Coral Biological Vigour 610 
Holden, H., and E. LeDrew 

Variance Fractal Dimension Analysis of Crustal Seismic Refraction Signals NA 
Jiao, L.X., and W.M. Moon 

A Study of the Micro-Scale Disturbances Associated with a Shear Layer in the Lower Atmosphere 613 
Natarajan, M.P., andM. Isaac 

New Architecture for Remote Sensing Image Archives 616 
Seidel, K., R. Mastropietro andM. Datcu 

The Evaluation of Bending Waves and Modified Path Profile NA 
Uz, B., 0. YildrimandHM. El-Khattib 

Combined Resistive and Conductive Three-Part Plane: Oblique Incidence Plane Wave NA 
"Yildrim, 0. 

i 

Constraint Propagation in the Multi-Granularity World NA 
Zequn, G., andL.Deren 

"NA " indicates not available at time of printing. 
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API: Remote Sensing of Snow and Glaciers 

A01.01 Improving the MODIS Global Snow-Mapping Algorithm 619 
Klein, AG., D.K. Hall and G.A. Riggs 

A01.02 The HUT Brightness Temperature Model for Snow-Covered Terrain 622 
Hallikainen, M., J. Pulliainen, L. Kurvonen andJ. Grandell 

A01.03 Snow Crystal Shape and Microwave Scattering 625 
Foster, J.L., D.K Hall, A.T.C. Chang, A Rango, W. Wergin and E. Erbe 

A01.04 Mapping Snow Cover with Repeat Pass Synthetic Aperture Radar 628 
Shi, J., S. Hensley andJ. Dozier 

A01.05 Snow Monitoring Using EMISAR and ERS-1 Data Within the European Multi-Sensor Airborne Campaign 631 
EMAC-95 

Guneriusson, T., H. Johnsen, R. Solberg andE. Volden 

A01.06 Ground Penetration Radar and ERS SAR Data for Glacier Monitoring 634 
Hamran, S.E., T. Guneriusson, J.O. Hagen andR. Odegard 

A01.07 Comparison of Ranging Scatterometer and ERS-1 SAR Microwave Signatures Over Boreal Forest Zone 637 
During Winter Season 

Koskinen, J., J. Pulliainen, M. Makynen andM. Hallikainen 

A01.08 Multi-Source Snow Cover Monitoring in the Swiss Alps 640 
Piesbergen, J., and H. Haefner 

A02: Image Processing Techniques 

A02.01 The Use of Mathematical Morphology for Accurate Detection and Identification of Microwave Images in the 643 
K-Space Domain 

Gader, P., andAJ. Blanchard 

A02.02 New Classification Techniques for Analysis of Remote Sensing Integrated Data 646 
Console, E., andM.C Mouchot 

A02.03 From the Unsupervised Remote Sensing Data Behavioral Classification to the Image Segmentation NA 
Rasson, J.P., E Orban-Ferauge andS. Baudart-Lissoir 

A02.04 Hughes Phenomenon in the Spatial Resolution Enhancement of Low Resolution Images and Derivation 649 
of Selection Rule for High Resolution Images 

Nishii, R., S. Kusanobu andN. Nakaoka 

A02.05 Forming Digital Elevation Models from Single Pass Spot Data: Results on a Generation from Optical Stereo 652 
Data 

Massonnet, D., A Giros, and B. Rouge 



A02.06 A Mixed Fractal/Wavelet Based Approach for Characterization of Textured Remote Sensing Images 655 
Marazzi, A, P. Gamba, A. Mecocci and E. Costamagna 

A02.07 Significance-Weighted Classification by Triplet Tree 658 
Yoshikawa, M., S. Fujimura, S. Tanaka andR. Nishii 

A02.08 On-Line System for Monitoring and Forecasting Earth Surface Changes Using Sequences of Remotely- 661 
Sensed Imagery 

Lee, S. 

A03: Data Fusion I 

A03.01 Effect of Scale on the Information Content in Remote Sensing Imagery 664 
Niemann, K.O., D.G. Goodenough and G.J. Hay 

A03.02 Multisensor Classification of Wetland Environments Using Airborne Multispectral and SAR Data 667 
Ricard, M.R..AL. Neuenschwander, M.M. Crawford and J.C. Gibeaut 

A03.03 Automated Forest Inventory Update with SEIDAM 670 
Goodenough, D., D. Charlebois, A.S. Bhogal, S. Matwin andN. Daley 

A03.04 Modeling Soil Erosion Hazard by Using a Fuzzy Knowledge-Based Approach 674 
Metternicht, G.I. 

A03.05 Comparing Raster and Object Generalization 677 
Daley, N., D.G. Goodenough, AS. Bhogal, Q. Bradley, J. Grant and Z. Yin 

A03.06 Expert Maps: An Alternative for Integrating Expert Knowledge in Satellite Imagery Classification 680 
Campagnolo, M.L., andM. Caetano 

A03.07 Data Fusion in a Context of Data Mining, Identification and Classification N A 
Wu, D., andJ. Linders 

A03.08 Infusion of Altimeter Data to Same Spatial, Temporal Resolution Infrared Images to Improve the Accuracy 683 
of Classification of Images and DEM 

Liu, Z, and S.Li 

A03.09 Data Integration in Support of Research on the Gulf of Mexico NA 
Mason, M., G.L. Rochon, M. Singletary, N. Blackmon, D. Bordell, C. Jernigan andM. Fernandez 

A04: Innovations in Remote Sensing Educational Programs and Information 

A04.01 NASA's Mission to Planet Earth Invests in the Future Through a Broad National Education Program 685 
Khazenie, N., and S. Stockman 

A04.02 What is Earth System Science? 688 
Johnson, D.R., M. Ruzek, andM. Kalb 

A04.03 A Web-Based Earth Systems Science Graduate Course for Middle School Teachers 692 
Myers, R.J., E.L. Shay, H. Shay, KB. Davis, and JA. Botti 

A04.04 Globe: An International Science and Education Collaboration to Obtain Accurate Data for Monitoring Earth NA 
Systems 

Becker, M.L., R.G. Congalton, R.Budd, and A Fried 
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A04.05 Teacher Enhancement Programs in the Atmospheric Sciences: The American Meteorological Society's NA 
Project Atmosphere and DataStreme 

Moore, J.D. 

A04.06 Global Classroom Education Network NA 
Mesarovic, M., andN. Sreenath 

A04.07 System Thinking and System Modeling in the Earth System Science Classroom 695 
Mahootian, F. 

A04.08 Practical Uses of Math and Science (PUMAS) 698 
Kahn, R. 

A04.09 An Earth System Science Education and Training Program for the Inter American Institute for Global 699 
Change Research (IAI) 

Johnson, D.R., M. Ruzek, M. Kalb 

A05; Rough Surface Scattering 

A05.01 An Exact Technique for Calculating the Scattering from Roughness Surfaces NA 
Kasilingam, D. 

A05.02 Application of an Extended IEM to Multiple Surface Scattering and Backscatter Enhancement 702 
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Abstract —The space borne microwave radiometer will 
have a lowest frequency in the C-band. We have to 
prepare the use of this band to estimate the soil 
moisture. This paper consider the case of sparsely 
vegetated areas encountered in semi-arid area. This 
paper is based on the HAPEX-Sahel data set. We show 
that the single scattering albedo could be neglected at 
C-band when the amount of vegetation is low. The 
vegetation transmission coefficient can be estimated 
from the polarization difference at 5.05 GHz and an 
angle of incidence of 45°. However the obtained 
relationship needs to be tested in various wetness 
conditions. 

INTRODUCTION 

It has been shown that the L band allows straight 
forward estimation of soil moisture on sparsely covered 
vegetation as the Sahelian Savannah or semi arid areas 
[1-2]. However, in a near future, spaceborne 
microwave radiometers will be operated with a lowest 
frequency located in the C-band. Therefore, it is 
important to prepare the use of the C band results for 
soil surface moisture assessment. Results obtained 
during the Hapex Sahel [1] experiment have shown 
that the vegetation influence should be accounted for to 
estimate the soil moisture accurately, even when the 
amounts of vegetation are low. The vegetation in the 
HAPEX-Sahel area was very complex to describe and 
the quantification of vegetation parameters as the Leaf 
Area Index or the vegetation water content was almost 
impossible to characterize in situ at the scale of 
microwave radiometer pixels. Therefore we chose to 
derive vegetation information from remotely sensed 
observation using the different configurations of the 
microwave radiometers involved in the experiment and 
the SPOT images collected during the airborne 
campaign. The aim of the presented study was to 
characterize the vegetation transmission coefficient (y) 
ajid the single scattering albedo (co) of the vegetation 
which are related to the brightness temperature (TB) 
[3]: 

TBp= (l+Yrp)(l-Y)(l-co)Tv + (l rp)YTs (1) 

where p denotes the polarization, Tv and Ts are the 
vegetation and the soil temperature and T is the soil 
reflectivity. In order to extent the data set obtained 
during the Hapex Sahel experiment, we also used the 
data collected in the Avignon 93 experiment [4] over a 
sparse sorghum field which was sowed to reproduce a 
"Sahelian field". 

MATERIEL AND METHOD 

The HAPEX-Sahel and the Avignon 93 experiments 
were described in [1] and [4], respectively. It is 
important to note that the radiometric measurement 
were acquired by the French PORTOS CNES 
radiometer for both experiments. PORTOS is a 
multifrequency (1.4, 5.05, 10.65, 23.8, 36.5 and 90 
GHz) and dual-polarized radiometer. The radiometer 
can be operated at different angles of incidence. The 
PORTOS radiometer was installed aboard the ARAT 
aircraft during HAPEX-Sahel experiment whereas it 
was mounted under a crane boom during the Avignon 
93 experiment. As the PORTOS 1.4 GHz channel 
could not be operated with the airborne mode, we used 
the measurements collected by the Push Broom 
Microwave Radiometer (PBMR) which flew together 
with PORTOS at 3 dates. 
To compute y and co at C-band, we estimated the T 
from the soil moisture in the top five millimeters of the 
soil [5]. The soil moisture (6s) is derived from the 
TB=f(08) relationship obtained at L-Band. Such a 
procedure was only applied when the soil footprints of 
the PBMR and PORTOS is located at same place with 
a tolerance of 50 m. A correction was done to account 
for the difference in penetration depth between the C 
and the L bands. We assumed that the soil and 
vegetation temperature were equal to the skin 
temperature measured by a thermal infrared 
thermometer. 

RESULTS 

Since the L-band was used to estimate the soil 
moisture, we have displayed in Figure 1 the T„=f(0s) 
relationship at L band. The symbols corresponds to the 
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Avignon 93 data collected with PORTOS, whereas the 
lines are the regression lines computed with the PBMR 
measurements collected during the HAPEX-Sahel [1] 
and the Walnut Gulch experiments [2]. The Figures 
show that the vegetation does not influence the 
measurements when the amount of vegetation remains 
small (Vegetation water content {Wc} < 0.225 kg/m2). 
Moreover, Figure 1 shows that the data collected in 
three different areas in the world fall within a similar 
relationship. These results demonstrate the usefulness 
of the L-band which allows a straight forward 
estimation of the soil moisture over semi-arid areas. 
The relationships displayed in Figure 1 were then used 
to compute the soil moisture and the soil reflectivity. 
In Table 1, we report the results of the transmission 
coefficient computed from the HAPEX-Sahel Data, y 
was computed by inverting Equation 1 for different 
values of co. co influences significantly the y results, y 
can be related to Wc by the relationship [6-7] : 

Wc=Log(y)*cos(I)/b (2) 

where I is angle of incidence and b an empirical 
parameter which depends on the frequency and the 
vegetation type. From the Avignon 93 data, Haboudane 
et al. [7] have found b=0.4 m2kg"'. The most realistic 
value of Wc obtained from Eq. 2 were those computed 
with co=0. This invite us to neglect the single scattering 
albedo. The y values obtained for day 246 are 
significantly higher than those obtained for the day 239 
which was wetter. Although we were in the middle of 
the rainy season, the vegetation growth can not explain 
the increase rate of y. The instability in y is likely the 
consequences of error propagation (error in TB, error in 
soil moisture) which is more sensitive in dry condition, 
when the soil and the vegetation emissivities are 
similar. 
In Figure 2, we have plotted the relationship between y 
and different radiometric indices for the day 239. The 
Figures 2-abc show clearly that a polarization 
combination at 5.05 GHz offers the best correlation 
with y while results obtained with the NDVI or with the 
microwave radiometer at 36.5 GHz are disappointing. 
The relationship between the polarization difference at 
5.05 GHz and y is however established for one day 
with a soil moisture varying from 0.10 to 0.15 m'7m\ 
We have now to analyze in which proportion this 
relationship varies with the soil wetness conditions. 
In figure 3, we have inverted the Equation 1 to retrieve 
the soil moisture. The inversion was performed with 
co=0 and Y=f(TBv-TBH)5 05 where f is the regression line 
through the Figure 2 scatter plot. The results of the 
inversion is encouraging. 

propagation in case of sparsely vegetated fields. It 
appears that the vegetation is mainly involved in the 
surface emission process at C-band through its 
transmission coefficient. This coefficient is clearly 
related to the polarization difference at 5.05 GHz. 
However this relationship have to be tested under 
various wetness conditions. 
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TABLE 1 : Transmission coefficient at 5.05 GHz, H polarization and a 45° incidence angle. Data were collected 
during the HAPEX Sahel experiment 

DOY CO Ymin Tin ax Wc (7mi„) 

(Kg/m2) 

Wc (7max) 

(Kg/m2) 

239 0 0.76 0.95 0.48 0.08 

239 0.02 0.7 0.93 0.62 0.13 

239 0.05 0.61 0.84 0.87 0.31 

239 0.1 0.41 0.71 1.56 0.61 

246 0 0.57 0.85 0.98 0.28 
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Figure 3 : Comparison of the soil moisture retreived 
from microwave observations at 5.05 GHz, 45° and H 
polarization and soil moisture derived from the L band 
PBMR radiometer. 
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Figure 2 : Vegetation transmission coefficients versus a) (TBV-TBH) at 5.05 GHz; b) NDVI, c) (TBV-TBH) at 36.5 GHz 
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Abstract — Surface soil moisture dynamics was derived using 
microwave remote sensing, and employed to estimate soil 
physical and hydraulic properties. The L-band ESTAR 
radiometer was employed in an airborne campaign over the 
Little Washita watershed, Oklahoma during June 10-18, 
1992. Brightness temperature (TB) data were employed in a 
soil moisture inversion algorithm which corrected for 
vegetation and soil effects. Analyses of spatial TB and soil 
moisture dynamics during the dry-down period revealed a 
direct relationship between changes in TB, soil moisture and 
soil texture. Extensive regression analyses were carried out 
which yielded statistically significant quantitative 
relationships between ratio of percent sand to percent clay 
(RSC, a term derived to quantify soil texture) and saturated 
hydraulic conductivity (Ksat) in terms of change components 
of TB and surface soil moisture. Validation of results 
indicated that both RSC and Ksat can be estimated with 
reasonable accuracy. These findings have potential 
applications for deriving spatial distributions of RSC and 
Ksat over large areas. 

INTRODUCTION 

Surface soil moisture is of great significance to hydrologic 
research for partitioning rainfall into runoff and infiltration. 
Soil properties such as soil texture and saturated hydraulic 
conductivity (Ksat) play a key role in the drainage and 
redistribution of soil moisture, but these properties are 
difficult to obtain in the field and/or laboratory. Therefore, 
methods based on remote sensing will have capabilities of 
deriving spatial distribution of Ksat. Earlier studies have 
employed brightness temperature (TB) data obtained from 
passive remote sensing and soil hydrology models for 
estimation of soil hydraulic parameters [1, 2]. Such 
approaches require information on several hydrologic and 
meteorological parameters, and therefore might not be ideally 
suited for application to large areas. 

Reference [3] established highly significant relationships 
between changes in moisture content of the surface soil, 2 
days after a thorough wetting, and average Ksat of the soil 
profile. The log-log transformations of an effective profile- 
average Ksat and the initial two-day drainage of the soil were 
valuable to obtain estimates of an average Ksat. These 
findings have a potential to obtain quick estimates of the 
spatial distribution of Ksat from the soil moisture contents if 

microwave remote sensing observations are made at two day 
temporal resolution after saturation [4]. The objective of the 
present study was to test the approach of [3] for the field 
conditions of a medium-sized watershed, and to evaluate if 
soil physical properties (viz. soil texture and Ksat) can be 
estimated from the temporal variability of microwave 
remotely sensed TB and soil moisture data. 

MATERIALS AND METHODS 

The Washita'92 research experiment was carried out during 
June 10-18, 1992 in the Little Washita watershed, Oklahoma. 
The climate of Little Washita region is moist and sub-humid 
with an average annual rainfall of about 750 mm [5]. During 
the experiment, land cover in the Little Washita watershed 
was dominated by pasture and senesced or harvested winter 
wheat with some other agricultural crops including corn and 
alfalfa [5]. Forest cover within the watershed is very sparse 
and constitutes a small proportion of the watershed. 

Multitemporal airborne microwave data were collected 
using the L band (21 cm wavelength, or 1.4 GHz frequency) 
synthetic aperture Electronically Steered Thinned Array 
Radiometer (ESTAR) [6]. A large number of ground soil 
moisture measurements were carried out to support and 
validate microwave remotely sensed data. The study area 
experienced heavy rainfall (more than 30 mm) on June 5, 
1992, and the rainfall continued till June 9, 1992. However, 
there was no rainfall in the watershed for the entire duration 
of the Washita'92 experiment [7]. Therefore, the hydrologic 
conditions in the watershed were ideal to follow a drying 
period from very wet (about 30%) to dry (about 10%) over a 
period of nine days. 

Temporal soil moisture information was derived from the 
ESTAR TB images. The soil moisture retrieval algorithm 
corrects thermal emission records for vegetation cover and 
surface roughness, and estimates the real part of the soil 
dielectric constant based on the Fresnel assumptions [7]. Soil 
texture effects were corrected before inverting a dielectric 
mixing model for soil moisture determination. Vegetation 
parameters (i.e., type and water content) and soil texture data 
were derived from land-use data base and soils map, 
respectively. The ESTAR derived soil moisture values were 
validated by comparing them with the field measured soil 
moisture values, and the standard error of estimates were 
within 3.5% for the bare fields and 5.7% for the vegetated 
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fields for all days during the experiment [7]. 
Over a large corn field, which represented the densest 

vegetation cover encountered during the experiment (canopy 
height of 2.1 m; canopy water content of 4.05 kg/m2), a 
match of predicted to measured soil moisture was excellent, 
with an average absolute error of less than 1.5% [8]. 

A change analysis was carried out using multitemporal TB 
and soil moisture data [9]. Georegistered data layers were 
employed in overlay and difference operations to quantify the 
changes. Change analysis was carried out for each soil texture 
class and eight temporal resolutions. To establish 
quantitative relationships between soil texture and temporal 
changes in TB and surface soil moisture, the ratio of percent 
sand to percent clay (RSC) has been computed. RSC was 
chosen because it numerically indicates soil texture such that 
an assumed value of 100 represents sand (although its 
theoretical value reaches °° for sand), and its decreasing 
values indicate higher clay contents. Percent sand and percent 
clay values were obtained from field measurements and data 
assembled in [10]. Validation of the statistical relationships 
was carried out by comparing predicted RSC and Ksat with 
those measured in the laboratory and also extracted from soil 
texture map for sites not incorporated in the development of 
relationships. 

RESULTS 

A comparative study of TB and soil moisture images with 
soil texture map clearly suggested that temporal variation of 
both TB and soil moisture was closely related to soil texture. 
This supports the hypothesis that remotely sensed TB and 
soil moisture and associated temporal changes can be 
employed to identify soil types and can be related to Ksat. 

Relationships with soil texture 
RSC holds a strong negative log-normal relationship with 

multitemporal changes in both TB and surface soil moisture 
(Table 1). Regression relationships are characterized by r2 > 
0.6 for four temporal resolutions in the case of TB and for all 
temporal resolutions in the case of soil moisture (probably 
because soil moisture retrieval algorithm uses soil texture as 
input). Table 3 presents correlation coefficients of predicted 
and measured RSC values for various temporal resolutions. It 
is evident that the relationships yield RSC values close to 
the measured values although some deviations exist in the 
predictions. This suggests that RSC and hence the soil 
texture can be estimated with reasonable accuracy. Selection 
of a particular relationship is subject to the temporal data 
availability. 

Relationships with Ksat 
Regression analysis was carried out to establish 

relationships between Ksat and multitemporal changes in TB 
and surface soil moisture (Table 2). Evidently, Ksat also 
bears a negative log-normal relationship with changes of both 
TB and surface soil moisture. Similar to RSC, relationships 
for Ksat are characterized by r2 > 0.6 in the case of 1-, 4-, 5- 
and 6-days resolution for TB change, and for all temporal 

resolutions in the case of soil moisture change. Values of r2 

consistently greater than 0.8 suggest that temporal changes in 
soil moisture can be employed to estimate Ksat with 
reasonable accuracy. Validation of the relationships suggested 
(Table 3), despite minor errors in some cases, the 
relationships yielded acceptable Ksat values. Regression 
equations presented in Table 2 are invaluable for the quick 
estimation of Ksat using temporal remotely sensed TB and 
soil moisture data. 

SUMMARY 

Microwave remote sensing was employed to obtain spatial 
and multitemporal soil moisture data for the Little Washita 
watershed, OK. As part of the Washita'92 airborne campaign 
during June 10-18, 1992, the ESTAR instrument was flown 
each day to acquire TB data at a spatial resolution of 200 m, 
which were converted into soil moisture information. Data 
sets were georeferenced to monitor spatial and temporal 
variability of both TB and surface soil moisture. 

Analysis of multitemporal TB and soil moisture maps 
with soils map suggested that remotely sensed TB and soil 
moisture and their associated changes could be employed to 
identify soil type and to estimate soil hydraulic properties. It 
was observed that temporal changes of TB and surface soil 
moisture held statistically significant negative log-normal 
relationships with RSC and Ksat, and validations of these 
relationships suggested that both soil properties could be 
estimated with acceptable accuracy. Quantitative regression 
relationships are invaluable to determine spatial distribution 
of Ksat which is typically not measured in the field. Further, 
such relationships can be used to indicate soil properties 
(percent sand and percent clay) from observed changes in 
remotely sensed TB and soil moisture patterns. These 
findings have significant long term potential of employing 
space borne microwave remotely sensed observations for 
identification of soil texture and derivation of soil physical 
properties over large spatial scales. 

REFERENCES 

[1] Camillo, P. J., O'Neill, P. E., and Gurney, R. J. 
(1986). Estimating soil hydraulic parameters using 
passive microwave data. IEEE Transactions on 
Geoscience and Remote Sensing, GE-24, 930-936. 

[2] van de Griend, A. A. & O'Neill, P. E. (1986). 
Discrimination of soil hydraulic properties by 
combining thermal infrared and microwave remote 
sensing. Proc. IGARSS'86 Symp., 839-845. 

[3] Ahuja, L. R., Wendroth, O., and Nielsen, D. R. 
(1993). Relationship between initial drainage of surface 
soil and average profile saturated conductivity. Soil 
Science Society America Journal, 57, 19-25. 

[4] Mattikalli, N. M., Engman, E. T., Ahuja, L. R. & 
Jackson, T. J. (1995a). Estimating soil properties from 
microwave remote sensing of soil moisture. Proc. SPIE 
vol. 2585, 89-101. 

1094 



Table 1: Relationships between RSC and mean temporal changes of TB and soil water content. 

Period of 

Change (days) 
Estimation of RSC 

From TB r2 From soil water content (SM) r2 

1 RSC = 1.3025   x   1041  x   TB"45-81 0.95 RSC = 5.5325  x   105    x   SM"11-36 0.89 
2 RSC = 1.8563   x   1025  x   TB"23-95 0.29 RSC = 2.3374 x   107    x   SM"11-39 0.76 
3 RSC = 2.2083   x   1018  x   TB"16-64 0.45 RSC = 2.1679 x   106    x   SM"9-29 0.87 
4 RSC = 5.6156   x   1017  x   TB"14-67 0.86 RSC = 9.9705  x   106    x   SM"8-84 0.90 
5 RSC = 2.2211   x   1016  x   TB"12-98 0.83 RSC = 1.1650 x   107    x   SM"8-45 0.86 
6 RSC = 1.0450   x   1017  x   TB"12-51 0.70 RSC = 8.1714 x   107    x   SM"8-46 0.86 
7 RSC = 1.0819  x   1018  x   TB"12-46 0.40 RSC = 8.4541  x   108    x   SM"8-76 0.80 
8 RSC = 8.0543   x   1020 x   TB"13-46 0.49 RSC =1.5315  x   1010  x   SM"902 0.83 

Table 2: Relationships between Ksat and mean temporal changes of TB and soil water content. 

Period of 

Change (days) 
Estimation of Ksat 

From TB r2 From soil water content (SM) r2 

1 Ksat =1.1795 x 1035 
X TB-39.45 0.94 Ksat = 3.7860   x   104    x   SM"9-69 0.86 

2 Ksat = 6.9265 x 1023 
X TB-22.98 0.29 Ksat = 3.0690   x   106    x   SM"10-61 0.83 

3 Ksat= 1.9351 x lOW X XB-15.10 0.40 Ksat = 2.6070   x   105    x   SM'8-48 0.91 
4 Ksat =1.5414 X 1015 X TB-12.84 0.84 Ksat = 7.7820   x   105    x   SM"7-9 0.92 
5 Ksat = 9.1992 X lO*3 

X TB-11.36 0.85 Ksat = 9.5030   x   105    x   SM"7-58 0.90 
6 Ksat = 6.7263 X 10'4 

X TB-11.16 0.69 Ksat = 6.2090   x    106    x   SM"7-65 0.88 
7 Ksat= 1.0303 X 1(>16 X TB-11.31 0.41 Ksat = 6.4010   x   107    x   SM"8-02 0.83 
8 Ksat = 4.8968 X H)l» X TB-12.27 0.50 Ksat = 9.3832   x   108    x   SM"8-27 0.85 

Table 3: Comparison between measured and estimated RSC 
and Ksat values from temporal changes of TB and soil water 
content (SM). Measured RSC and Ksat values were derived 
from laboratory experiment, soil texture map, and from data 
compiled in [10]. 

Period of    No. of 
of Change      data 

(days)       points 

r2 between measured and estimated 
RSC from Ksat from 

TB       SM TB     SM 

1 36 0.96 0.98 0.96 0.98 
2 30 0.77 0.90 0.77 0.92 
3 24 0.88 0.98 0.90 0.96 
4 24 0.96 0.98 0.98 0.98 
5 18 0.98 0.98 0.98 0.98 
6 18 0.98 0.96 0.96 0.96 
7 12 0.90 0.98 0.94 0.96 
8 6 0.98 0.98 0.96 0.98 
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ABSTRACT 

We present a retrieval approach that uses satellite 
radiobrightness to infer surface parameters of prairie 
grassland based on a Dynamic Learning Neural Net- 
work (DLNN) trained with a 1-dimensional Hydrol- 
ogy/Radiobrightness (ldH/R) model. The parame- 
ters of interest include the temperatures and mois- 
ture contents of the soil and canopy. To evaluate 
the feasibility of the retrieval approach, we conduct 
two case studies. The first study is based on prod- 
ucts from the ldH/R model that are used for the 
model validation. The second study is based on re- 
sults from a 60-day summer dry-down run of the 
ldH/R model with a vegetation coverage of 100 %. 
In each case, we utilize about 95 % of the ldH/R 
model predictions to train the DLNN and the rest 
of the predictions are used to evaluate the DLNN 
retrievals. The training data include horizontally- 
and vertically-polarized brightnesses at 1.4, 19, and 
37 GHz, and the corresponding temperatures and 
moisture contents of the soil and canopy. In the first 
study, we find that differences between DLNN re- 
trievals and desired quantities (ldH/R model prod- 
ucts) are less than 0.1 Kelvin for the canopy tem- 
perature, 1.2 Kelvins for the soil temperature (up- 
permost 5 mm), 0.0001 kg/m2 for the canopy water 
content, and 1.2 % for the soil moisture content (by 
volume). In the second study, the corresponding dif- 
ferences are smaller as expected. 

INTRODUCTION 

"This work has been supported by NSC grant NSC86-2111- 
M-008-035-T. 

Land-air exchanges of moisture and energy are im- 
portant boundary forcings of the atmospheric cir- 
culation models. These exchanges are governed by 
surface parameters, such as temperatures and wa- 
ter contents of the soil and canopy [1, 2]. Mi- 
crowave emission is sensitive to temperature and 
moisture so that radiometry is useful in monitoring 
these parameters. Since microwave emission is non- 
linear dependent on the temperature and moisture, 
it is extremely difficult to retrieve the parameters 
by biophysically-based models without considerably- 
simplified approximations on the relation between 
measured quantities (e.g., radiobrightness) and de- 
sired variables (e.g., surface parameters) 

In this paper, we examine a scheme that utilizes 
satellite radiobrightness to infer surface parameters 
without losing the nonlinearity between the mea- 
sured quantities and desired variables. Our approach 
is to incorporate products from the ldH/R model 
into the DLNN where the ldH/R model describes 
the nonlinearity and the DLNN manages the nonlin- 
ear mappings. 

THE ldH/R MODEL 

The ldH/R model consists of two modules, a ldH 
module and an R module. It has been developed for 
years ([3]-[6]). A series of Radiobrightness Energy 
Balance Experiments has been conducted to validate 
the model [7]. The ldH module that treats energy 
and moisture exchanges between the land and atmo- 
sphere computes temperature and moisture profiles 
of the soil and canopy. The R module manages ra- 
diative transfer within canopy, and absorption from 
the canopy to estimate microwave emission. 

0-7803-3836-7/97/S10.00 © 1997 IEEE 1096 



Energy and moisture transfer in soil and canopy 
involves solving the 1-dimensional form of the cou- 
pled equations 

dX, 
__    _   _V.Qmil 

dXKk 

at =   -V-Qh,k, 

(1) 

(2) 

where the subscript k represents the soil or canopy, 
Xm is the total water mass per unit volume, kg/m , 
Xh is the total heat content per unit volume, J/m3, 
t is the time, s, Qm is the vector moisture (vapor 
and liquid) flux density, kg/m -s, and Qh is the vec- 
tor heat flux density, J/m -s. The constitutive re- 
lations, the boundary conditions, and the numeri- 
cal solutions of temperature and moisture to Equa- 
tions (1) and (2) are presented by Liou et al [6]. 

The R module follows the approach of England 
and Galantowicz [8]. The combined soil and canopy 
radiobrightness is 

Tb   =   TS)e(l-ßp(M))e~To//'+Tc,e(l-e-7'o/^) 

(1 + ßpMe-V) (3) 

where TSi e is the effective emitting temperature of 
the soil [3, 4], K, Rp is the Fresnel reflectivity of the 
moist soil for polarization p, To is the optical thick- 
ness of the canopy, fj, is the cosine of the SSM/I inci- 
dence angle of 53°, and TC) e is the effective emitting 
temperature of the canopy, K. 

THE DLNN 

The DLNN is utilized to manage a nonlinear map- 
ping relation between the radiobrightnesses and the 
surface parameters. Based on a polynomial basis 
function expansion [10], a multilayer perceptron net- 
work is modified so that at the output layer the 
functional form is linearized while the hidden lay- 
ers remain nonlinear. The weighting functions in 
each layer are cascaded to form a long vector through 
which the outputs and inputs are related [9], i.e., 

y — Wx, (4) 

where the output vector y contains all the output 
nodes of a network, the long input vector x is formed 
by concatenating all the input and hidden nodes 
in the network, and the long output weight ma- 
trix W is formed by concatenating all the weights 

that connected to each output node. This modifi- 
cation allows us to apply the dynamic Kaiman fil- 
tering algorithm [11] to adjust the network weights 
with a recursive minimum least square error, which 
is very suitable for computer implementation [12]. 
The network, i.e, the DLNN, bears features such as 
fast learning and built-in optimization of a weight- 
ing function at little expense of the computer stor- 
age. The fast learning feature stems from the fact 
that the updating of the weights is accomplished in 
a global manner avoiding back-propagation, which 
usually makes the learning process very lengthy. The 
DLNN is presented by Tzeng et al [9]. 

RESULTS AND DISCUSSION 

Fig. 1 shows temperatures and moisture contents 
of the soil and canopy from products of the ldH/R 
model in a run for the model validation, and from the 
DLNN retrievals. In general, differences between the 
retrievals and desired variables are small — less than 
0.1 Kelvin for the canopy temperature, 1.2 Kelvins 
for the soil temperature (uppermost 5 mm), 0.0001 
kg/m for the canopy water content, and 1.2 % for 
the soil moisture content. That is, the retrievals for 
the four parameters of interest are all better than 
96 % accuracy. We do not show comparisons be- 
tween results from the ldH/R model for the dry- 
down case and the DLNN retrievals because the re- 
trievals are all better than 98 % accuracy — less than 
0.1 Kelvin for the canopy temperature, 0.8 Kelvin 
for the soil temperature (uppermost 5 mm), 0.00001 
kg/m for the canopy water content, and 0.3 % for 
the soil moisture content. 

Fig. 1 also shows the inferred canopy temperature 
appears to match the corresponding variable much 
better than the other three parameters. Our inter- 
pretations include three aspects: 1. Emissions at 19 
and 37 GHz are primarily from the canopy — about 
more than 90 % for the former and 95 % for the lat- 
ter [6]; 2. Brightnesses at 19 and 37 GHz are almost 
linearly related to the physical temperature of the 
canopy; and 3. Brightnesses at 1.4, 19, and 37 GHz 
depend on the canopy moisture, and soil tempera- 
ture and moisture content with a higher degree of 
nonlinearity than on the canopy temperature. Total 
effect of 1 to 3 permits the DLNN to infer the canopy 
temperature better than the other three parameters. 
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This study has shown that (1) the DLNN can rela- 
tively well infer the desired variables from the radio- 
brightnesses if the radiobrightnesses are sensitive to 
the variables, and, hence, most of the uncertainities 
or errors produced in the retrieving process might be 
from the training data; and (2) the retrieval scheme 
presented in the paper can be very powerful if one 
were using a reliable ldH/R model. 
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Figure 1: (a) Canopy temperature, (b) soil tempera- 
ture, (c) canopy water content, and (d) soil moisture 
content from the products of the ldH/R model and 
DLNN retrievals. 
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Abstract — Infiltration is a time varying process of water entry 
into soil. Experiments were conducted here using truck based 
microwave radiometers to observe small plots during and 
following sprinkler irrigation. Experiments were conducted on a 
sandy loam soil in 1994 and a silt loam in 1995. Sandy loam 
soils typically have higher infiltration capabilities than clays. For 
the sandy loam the observed brightness temperature (TB) quickly 
reached a nominally constant value during irrigation. When the 
irrigation was stopped the TB began to increase as drainage took 
place. The irrigation rates in 1995 with the silt loam soil exceeded 
the saturated conductivity of the soil. During irrigation the TB 
values exhibited a pattern that suggests the occurrence of coherent 
reflection, a rarely observed phenomena under natural conditions. 
These results suggested the existence of a sharp dielectric 
boundary (wet over dry soil) that was increasing in depth with 
time. 

INTRODUCTION 

In this investigation the role of remote sensing in infiltration 
studies is considered. One reason for our interest is that remote 
sensing provides a spatially integrated measurement. Another is 
the increased availability of sensors which have the potential of 
providing soil water information, i.e. microwave. Previous 
research in this area has been very limited [1 and 2]. Several 
recent investigations have examined new approaches to estimating 
infiltration parameters which depend upon temporal observations 
of soil moisture {3,4 and 5}. 

The work described here focuses on the results obtained in a 
series of experiments using passive microwave radiometers 
installed on a truck based observing platform. Unique aspects of 
these studies include multi frequency microwave measurements, 
high temporal resolution (as compared with typical remote 
sensing field observations) and a spatial resolution on the order of 
1 to 2 m. 

S AND L BAND MICROWAVE RADIOMETER SYSTEM 
(SLMR) 

The S and L Microwave Radiometer (SLMR) is a dual 
frequency passive sensor system operating at S band (2.65 GHz 
or 11.3 cm) and L band (1.413 GHz or 21.2 cm) [6]. For the 
1994 experiments the SLMR system was mounted on a 1966 Ford 
hydraulic boom truck belonging to the Hydrological Sciences 
Branch at NASA's Goddard Space Flight Center. The antennas 
were mounted to observe horizontal polarization. At the nominal 
operating height of 5 m with the specified field of view of the 
radiometers (20°), the footprint size was 1.5 m at a viewing angle 
of 10° off nadir. The centers of the S and L band radiometers are 
offset by approximately 1 m in the installation, therefore, the 
centers of the ground footprints will be offset. The beams do 
overlap but there is the potential for some variation in target 
properties in the area contributing to the two individual 
measurements. In 1995, a different truck system was used. 
This was a 1990 Navstar hydraulic boom with a maximum height 
of 19 m. The observations in 1995 were made at a slightly higher 
elevation of 8 m which results in footprints closer to 2.5 m for the 
sensors. 

EXPERIMENT DESCRIPTIONS 

The experiments were conducted at two sites using sprinkler 
irrigation to apply water. In 1994, plots at the Beltsville 
Agricultural Research Center (BARC) were used. The soil was 
a sandy loam (70% sand, 6% clay) with a smooth surface. Bulk 
density averaged 1.45 g/cm3. Hydraulic conductivity was 
measured using disc permeameters at 4 cm tension as 0.338 
cm/hr. From this the saturated hydraulic conductivity was 
estimated as 22 cm/hr. 

In 1995, the experiments were conducted at facilities of the 
University of California at Davis. Soil conditions were quite 
different from 1994. This was also a smooth bare soil. The 
particular area these measurements were conducted in was a Yolo 
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Silt Loam (20% sand and 20% clay). Bulk density was measured 
after irrigation as 1.4 g/cm3. Soil properties reported in [7] for the 
30 cm layer are saturated water content 44%, saturated 
conductivity 0.44 cm/hr, and bulk density of 1.39 g/cm3. 

RESULTS AND DISCUSSION 

Beltsville 1994 

Two sets of bare soil observations were made September 27 
(bare) and October 3 (bare). Water applications amounts were 
estimated as 4.2 cm on September 27 and 2.5 cm October 3. 
Prior to September 27, there had been a rainfall event the previous 
night (> 2.5 cm) that left the soil wet at the outset of irrigation. A 
rainfall event on October 1 of more than 1 cm resulted in wet 
conditions for the October 3 observations. 

Microwave data were collected every 2 minutes and integrated 
over a 15 second interval. Figure 1 shows the brightness 
temperature versus time plot for September 27 (similar results 
were observed October 3). There was a very rapid decrease in TB 

after the start of water application. Second, in all cases the TB 

then remains at a constant level for the balance of the irrigation. 
This level does vary between the S and L band. Visual 
observations indicated that ponding (water pooling on the surface) 
did not occur. Considering the high saturated conductivity of this 
soil this was to be expected under the relatively low water 
application rates possible with the sprinkler irrigation system. 
The TB values would indicate a soil moisture close to saturation 
for this soil. 

A close examination of the TB curves at the end of irrigation 
shows indications of wavelength specific effects that reflect the 
differences in the contributing depth of the S and L bands. After 
the end of the irrigation, the water in the column should drain to 
the 1/3 bar (sometimes called field capacity) soil moisture. 
Without evaporation the soil moisture should remain at this 
nominal level. The results shown in Figure 1 indicate a more 
rapid increase in TB for S band which would be expected because 
a shallower depth contributes to the measurement. The longer 
term variations involve diurnal (nighttime) temperature changes. 

Davis 1995 

The soil at the Davis site was very dry prior to the irrigation 
performed on June 12. Very limited sampling indicated the 
following soil moisture profile; 0-5 cm 6%, 5-10 cm 11%, and 
10-15 cm 19%. Visual observation within the 0-5 cm layer 
indicated uniform conditions. For a silt loam soil, the 15 bar 
tension moisture content will be on the order of 10% and the 1/3 
bar will be on the order of 35%. 

The irrigation rate was approximately 0.5 cm/hr and was 
initiated in the early evening to minimize losses to evaporation 
and blowing. As opposed to the Beltsville experiment, the 
irrigation rate was on the order of the saturated conductivity for 
this soil (-0.44 cm/hr). Figure 2 shows the TB trace observed for 
S and L band.   At the outset of irrigation we observed large 

decreases in TB as expected. However, as time progressed an 
oscillation began to occur. The pattern of this oscillation was 
similar to that which is predicted using coherent radiative transfer 
models [8] for a layered media having a sharp dielectric boundary. 

This is the first time that coherent reflection has been observed 
in soil moisture studies. Previous soil related investigations 
designed to verify this theory have utilized buried plate 
experiments [9 and 10]. In these studies a metal plate (which has 
a very high reflectivity) is buried at increasing depths in a uniform 
soil. As the soil depth increases, the oscillatory pattern predicted 
from coherent models has been observed. Since no field 
experiments have ever reported this phenomenon, it has been 
assumed that the sharp dielectric boundaries needed to produce 
the effect do not occur in nature with sufficient uniformity over an 
area the size of a radiometer field of view. 

There are several features of the coherent reflectivity that can 
be readily observed in Figure 2. For an individual wavelength, the 
time between peaks is consistent and the magnitude of the 
oscillation decreases with each peak. The theory [8] predicts that 
the reflectivity will oscillate as the depth to the dielectric boundary 
increases and that the peaks will occur at fixed depth intervals 
QJzjyi, where X = wavelength and e = dielectric constant. For 
L band and a wet soil, this oscillation interval would be on the 
order of 2 cm. The decrease in oscillation with time (or depth) is 
attributed to the decreasing impact of this layer interface as it gets 
deeper in the soil column and approaches a depth at which the 
profile can be treated as uniform. 

In addition to the individual wavelength behavior, the L and S 
band results can be compared. It appears that the time period for 
S band is roughly half that of L band and that the oscillations 
appear to stop sooner than for L band. Both of these features 
would be expected from the coherent reflection. 

SUMMARY 

Experiments were conducted using truck based microwave 
radiometer to observe small plots during and following sprinkler 
irrigation. Data were collected using microwave radiometers 
operating at 1.41 (L band) and 2.65 (S band) GHz. horizontal 
polarization mounted on a boom type truck over a sandy loam soil 
in 1994 and a silt loam in 1995. For the soils with infiltration 
capabilities exceeding the water application rate, the observed 
brightness temperature quickly reached a nominally constant value 
during irrigation. When the irrigation was stopped the brightness 
temperature began to increase as drainage took place. The 
irrigation rates in 1995 with the silt loam soil exceeded the 
saturated conductivity of the soil. During irrigation the brightness 
temperature values exhibited a phenomena that had not been 
previously observed and identified. The temporal variation 
exhibited the pattern that is associated with coherent reflection. 
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Abstract - Field experiments designed to support 
climate studies are of limited spatial and temporal 
coverage. Satellite data bridges the gap between 
field experiments and large scale modeling by aid- 
ing in model validation. The Tiros Operational 
Vertical Sounder (TOVS) Pathfinder Path A sur- 
face data of surface skin temperature, surface air 
temperature and the relative humidity will be used 
for the Red River Basin grid box in the GCIP LSA- 
SW region to simulate the surface fluxes, surface 
skin temperature and surface soil moisture. The 
surface skin temperatures simulated and observed 
by the TOVS will be compared. 

BACKGROUND 

Large scale studies of hydrology are greatly aided 
by the use of satellite data. Satellite data have 
repeat temporal and large scale spatial coverage 
and can be used in conjunction with station data 
to infer land surface - atmosphere interactions. 
The TIROS Operational Vertical Sounder (TOVS), 
comprised of the infrared and microwave sounders 
HIRS2 and MSU, have flown on the NOAA op- 
erational sun synchronous polar orbiting satellites 
TIROS N, NOAA 6-12 and NOAA 14 from late 
1978 to the present day. These satellites view 
the earth twice daily at roughly 7:30 am/pm local 
crossing time or 2:30 am/pm local crossing time 
depending on the satellite. Susskind et. al., (1996) 
analyzed TOVS data for the period 1985-1991 to 
produce the Extended Pathfinder Path A data set 
which includes surface skin temperature, air tem- 
perature, specific humidity and microwave emis- 

sivity, atmospheric moisture and temperature pro- 
files, as well as information about clouds, radia- 
tive fluxes and precipitation. The TOVS (Tiros 
Operational Vertical Sounder) Pathfinder Path A 
data of immediate interest are the surface skin and 
air temperatures, surface specific humidity, surface 
microwave emissivity and precipitation. Scientific 
studies using this data has been carried out (Lak- 
shmi et. al. 1997d) and has shown that TOVS 
data is useful for land surface process studies. 

METHODOLOGY AND RESULTS 

The use of satellite data in land surface model- 
ing requires developing a hydrological model with 
a thin upper layer to be compatible with the na- 
ture of the satellite observations and that would 
evaluate the soil moisture and soil temperature of 
a thin layer close to the surface. Such a model 
has been developed and validated using data from 
the Kings Creek catchment in Kansas (Lakshmi et. 
al. 1997a). This hydrological model has been used 
in a coupled model framework in order to simu- 
late Special Sensor Microwave Imager (SSM/I) 19 
and 37 GHz brightness temperatures as well as es- 
timate the soil moisture over the Red River Basin 
grid box using the SSM/I observations (Lakshmi 
et. al. 1997b). The simulation region extends be- 
tween 31°50'iV, 36°A and 94°30'W, 104°30'\V and 
the simulation time period is between August 1, 
1987 and July 31, 1988. The coupled model is 
run on a hourly time step and the simulated values 
correspond to the SSM/I ascending overpass (ap- 
proximately 6:00 am). The surface meteorological 
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data was obtained from 17 Surface Airways sta- 
tions in the region. The rainfall was derived from 
the Manually Digitzed Radar, the vegetation in- 
dex from the Advanced Very High Resolution Ra- 
diometer Global Vegetation Index (AVHRR-GVI) 
and the shortwave radiation was obtained using a 
topographic model of the region. An example of 
the SSM/I estimated soil moistures and the hydro- 
logical model simulated soil moistures as well as 
the simulated and the observed SSM/I average and 
polarization difference brightness temperatures are 
shown in Figure 1. 

location : (33.0N,104.25W) 

0 

^ ***< 

0   simulation 
•    19 GHz SSM/I 

i 

mospheric water budget and compared to that esti- 
mated using the SSM/I estimated surface soil mois- 
tures and the hydrological model estimated stream- 
flows. This is shown in Figure 2. 

o  Atmospheric model 
SSM/I and hydrological model 
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Figure 1: Simulated and 19 GHz SSM/I brightness 
temperature derived soil moisture and average and 
polarization difference brightness temperature at 
the location 33.0°iV and 104.25°W 

The monthly cumulative evapotranspiration has 
been computed using atmospheric data and the at- 

Figure 2: Monthly total evapotranspiration com- 
puted using atmospheric water vapor budgets and 
estimated using SSM/I and hydrological modeling 

The comparisons are quite good considering the 
fact that the soil moisture estimates and the evap- 
transpiration comes from different sources. 

USE OF SURFACE SATELLITE DATA 

Figure 3 shows the comparisons between the TOVS 
derived surface air temperatures and the data mea- 
sured at FIFE (First ISLSCP - International Satel- 
lite Land Surface Climatology Project, Field Ex- 
periment) corresponding to the NOAA 10 satellite. 
The NOAA 10 satellite is at 7:30am/pm only for 
the spots at the nadir. For spots viewed in the off- 
nadir portions of the scan, the local time can differ 
from 7:30am/pm by up to two hours. Accounting 
for this is extremely important when comparing a 
rapidly varying quantity such as surface skin tem- 
perature. In addition, since the HIRS2/MSU spot 
size is 60kmX60km, there may be more than one 
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spot in a 1°X1° box. In such a case, the average 
skin temperature at the mean time of the spots is 
used.   The exact local time of satellite measure- 
ments in the 1°X1° grid box is used in comparing 
the am and the pm values of the derived surface 
skin temperature with the closest (with 15 min- 
utes) AMS air temperatures. Results of daily com- 
parisons are shown in Figure 3 separately for the 
nominal 7:30am and 7:30pm overpass.  There has 
been no tuning or calibration in comparing these 
two sets of data.   Furthermore, these two sets of 
data are derived from completely different sources 
with nothing in common. The comparison between 
the TOVS derived and the FIFE measured surface 
skin temperatures shows good agreement.    This 
study is similar to the one carried out by Sugita 
et. al. (1993) except that this result has been car- 
ried out over more number of days. The dotted line 
is for the best fit regression line. More comparisons 
can be found in Lakshmi et. al. (1997c). 
It is our desire to use the surface air tempera- 
tures and surface relative humidity from the TOVS 
data and perform the above simulations and make 
a three way comparison between the hydrological 
model estimates of soil moisture using station data, 
hydrological model using TOVS data and that de- 
rived using SSM/I brightness temperatures and 
TOVS data.   This should help in future uses of 
TOVS and other satellite data in large scale hy- 
drological modeling. 

REFERENCES 

[1] Lakshmi, V., E.F.Wood and B.J.Choudhury, 
A soil-canopy-atmosphere model for use in satel- 
lite microwave remote sensing, J. Geophys. Res., 
102(D6), 6911-6927, 1997a 
[2] Lakshmi, V., E.F.Wood and B.J.Choudhury, 
Evaluation of SSM/I data for regional soil moisture 
estimation over the Red River basin, To appear in 
J. App. Met, 1997b 
[3] Lakshmi, V. and J. Susskind, Validation of 
TOVS Land Surface Parameters using Ground Ob- 
servations, submitted to J. Geophys. Res., 1997c 
[4]   Lakshmi,   V.   and   J.   Susskind,   Determina- 
tion of Land Surface Skin Temperatures and Sur- 

AM: NOAA 10 
50 

correlation:  0.932 rms:  3.734C 

i intercept:  -0.050C    slope:  0.931 

> 

0 10 20 30 40 
FIFE Surface Air Temperature (C) 

50 

> 

50 
PM: NOAA 10 

: correlation:   0.945 rms:   4.934C 

40 u intercept:   4.268C    slope: 0.956 i 

AA.A 
AA ■&aäSA 

in «3&A                                   - 

& KA 
&i 

20 AAV - 
A ~Jr*3&SP-, : 

A *pajp 
10 ■*/$r \ 

0 ■i 

&AA  * : 
III    i i ,.- 

-10 0 10 20 30 40 
FIFE Surface Air Temperature (C) 

50 

Figure 3: Surface air temperature measured in 
FIFE versus derived from NOAA 10 

face Air Temperature and Humidity from TOVS 
HIRS2/MSU Data, To appear in Adv. Space Res., 
1997d 
[5] Sugita, M. and W.Brutsaert, Comparison of 
Land Surface Temperatures Derived from Satel- 
lite Observations with Ground Truth During FIFE, 
Int. J. Rem. Sen., 14, 1659-1676, 1993 
[6] Susskind, J., P.Piraino, L.Rokke, L.Iredell and 
A.Mehta, Characteristics of the TOVS Pathfinder 
Path A Data Set, To appear in Bull. Am. Met. 
Soc,1997 

1104 



Soil Moisture Profile Determination Using Remote Sensing Techniques 

A.I.Timchenko, Yu.V.Gorishnya 
Institute for Radiophysics and Electronics 
National Academy of Sciences of Ukraine 

Proscura 12, Kharkov, 310085, UKRAINE 
Phone: 7-0572-448429/ Fax: 7-0572-441012/ 

E-mail:Timchenko@ire.kharkov.ua 

Abstract - This paper studies the behavior of the scattered 
intensity from the inhomogeneous medium bounded the 
rough surface. The theoretical analysis is based on an 
extension of the diagram and smoothing methods for the 
semi-transparent boundary. The series of numerical 
calculations for the various dielectric profiles which are 
typical for the different weather conditions have been made 
in the case of backscattering. The comparison between 
calculated intensity and remote sensing data shows a good 
correlation for the moistened soil before and after rainfalls. It 
was shown that the spatial variation experimental data of the 
rainfall zone can be related due to the variation in the soil 
moisture profile. 

INTRODUCTION 

The air- and space-borne radar sensing of the Earth can 
be an efficient source of the data on the soil conditions over 
vast areas. In this connection an adequate interpretation of 
remotely sensed data and estimation of the various 
hydrological parameters, such as soil moisture, is becoming 
increasingly important. In the recently developed models 
(see, for example, [1]) relating to the connection between the 
characteristics of the scattered radar signal and the soil 
moisture parameters the inhomogeneous moisture 
distributions were not usually taken into account. However, 
the natural media have an inhomogeneous profile with a 
depth for the moisture, density, salinity, etc. [2,3] and, as a 
consequancer the corresponding dielectric permittivity 
profile have a direct impact on the characteristics of the 
scattered signals. 

In this paper we investigate the peculiar features of the 
radar signal scattered from depth-inhomogeneous medium as 
compared to the homogeneous one. Initially, we developed 
the theory of rough surface scattering for the semi- 
transparent boundary based on the smoothing and diagram 
methods which extends the range validity beyond the usual 
perturbation solution. The similar method has been proposed 
by Ishimaru for the conducting rough surface [4]. 

Next, we described the inhomogeneous moisture profile as 
an analytical function, whose parameters variation allows to 
describe the natural distribution of the soil moisture content 

and, at the same time, permits to apply the Witteker function 
for the analytical solution to the rough surface scattering 
problem. The calculating results of backscattering was 
compared with the remote sensing data. 

THEORETICAL BACKGROUND 

Consider the one-dimensional rough surface with the semi- 
transparent boundary. Let the incident electromagnetic wave 
have the s-polarization (Ey, Hx, Hz). For the upper half- 
space with the dielectric permittivity s0 = 1 the total 
electromagnetic field E0 is the sum of incident and scattered 
fields. The propagation in the lower half-space with the 
dielectric permittivity Sj is described by the field EL The 
boundary conditions at the surface z = h(x,y) is: 

Eo - E], Hox -Hix, (1) 

where Hox, H]x are the x-components of the magnetic fields; 
k is the wave number. 

Let us convert (1) into the equivalent boundary conditions 
at z = 0. For this purpose expand E0 and E[ about z = 0: 

(2a) 

h" ( dn 

dzn E' 
(2b) 

Substituting (2a) and (2b) into (1) we obtain the boundary 
conditions at z = 0. Note that h is considered to be a small 
quantity (s h) and shown above are the terms up to e2. 

Now we can obtain the Dyson equations set for dyadic 
Green's function G with the source placed in the upper half- 
space and satisfies the same wave equations set and the same 
boundary conditions than the electromagnetic field. We 
make use the Greens' functions G0f ,Gif, which are related 
to the upper and lower half-space correspondingly and 
satisfy the boundary condition at h(x,y) = 0. 

Then apply Green's theorem to obtain 
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Gx = G0x-Idx1h(x1)G0xV Gx, 

■oy-Idx, h(x,)Gox V Gx, Gy  -   G 

(3a) 

(3b) 

where:   GX=G0 + Gi Go - Gi,     G0x - G0f + Gi 
Goy = Got - Gif, the indexes 0,1 are related to the values in 

the upper and lower half-space, respectively, v = , 
dzx dzx 

and V means that it operates on the functions on the left and 
on the right side of V. 

The Dyson's equation can be obtained for the average 

Green's function Gx . Making use the first-order smoothing 

we get the bilocal approximation for Gx, G, 
y 

Gx = Gox -1! dxi dx2 Gox N12(xi ,x2)Gx, 

Gy = G0y -II dxx dx2 Goy N^x,, x2) Gy, 

(4a) 

(4b) 

where N12 is 

N12 = < h(x,) h(x2)> V (z,) Gox(x,, x2) V (z2). 

Next, express G;- , G0l- and N]2 (i = x,y ) in terms of 

Fourier transform and substitute theirs into (4) we obtain the 
reflection and transmission coefficients: 

In order to calculate the incoherent intensity we apply the 
Bethe-Salpeter equation. The first-order intensity / is 
obtained by taking the first-term of iteration. Also, we use 
the Fourier transform representation and evaluate intensity 
in the far field zone where p = (x2 + z2)'/2 is large. Next, we 
obtain the scattering cross section a, which is defined by 
Ishimaru [4] as a = 2np I/xc , where xc is the unit length of 
the rough surface. Finally, we have 

2    , 2    m2   m2 

a = (2K/ A') 
(1-Q,-)2(1-QS)2 

(5) 

where Tar = 1 - Ro, , r = i,s, Ror is the reflection 
coefficient in the case of the flat surface z = 0, the indexes 
;', s are related to the incident and scattered angles 9, , 

respectively; Qr = - k„ (1-Ro,) I dkx kz (1-RQ) Wfe - kxr); 

kzr =Jk   - kX)., kxr = k sin9r, W(Ä') is the Fourier transform 

from the spectral density of the rough boundary. 

CALCULATION RESULTS AND ANALYSIS 

The moisture distribution in the soil between the land 
cover surface and the ground water level is dependent upon 

the soil type, meteorogical conditions, etc. [2,3]. The 
moisture is directly related to the soil dielectric permittivity 
value. 

The experimental data from the study of the moisture 
content in the soil indicates that distribution e, which 
corresponds to the moisture profile, may vary from smoothly 
decaying or rising in depth to the typically curved profile [2]. 
The last type of the vertical distribution has an extremum 
(maximum or minimum) located at a certain depth. The 
extremum value and its location depend on the soil type and 
meteorogical conditions. 

To describe a uniform moisture distribution with depth 
(z-coordinate) an analytical function cp(z) was chosen 

cp(z) = bi + b2 exp(- öz) +b3 exp(- 2az). (6) 

Then the dielectric permittivity can be presented as 
ei(z)=ss (1-cp) + ewq>, where es = ss' + /' ss", ew = ew' +;' ew" 
are the dielectric permittivities for the dry soil and water 
correspondingly. The variation of the parameters bi, b2, b3, 
a gives us a various profiles ei which present a typical 
experimental moisture content distribution with a depth. 

As regards the different profiles the numerical 
calculations were made for the angular and spectral-spatial 
characteristics. The comparison of the angular 
backscattering from the homogeneous and inhomogeneous 
moistened soil has shown that the only small quality 
difference between this cases are observed. More information 
can be obtained from the spatial distribution of the 
backscattering characteristics. Thus, we studied the scattered 
intensity dependence on the extremum profile location at a 
depth. Some typical results are presented in Fig. l(a,b), 
2(a,b) and 3. The backscattering behavior for the wavelength 
X = 3 cm are shown in Fig. 1(a), 2(a), and for X = 3 cm and 
21 cm in Fig. 3; the corresponding profile of the moisture 
content are illustrated in Fig. 1(b), 2(b). Calculation was 
carried out for the incident angle 30°, the correlation length 
is equal / = 0.1/ k, and rms is h = X / 6. The data in 
Fig.l(a),2(a),3 are presented as K, where K is the ratio 
between as for the dry soil and a, for the inhomogeneously 
moistened soil. The calculated K are plotted as a function of 
extremum profile location. The curves (1,2,3) in Fig. 1(a) 
present K for the various values of the moisture content at 
the point of minimum, while the curves (4,6) are typical for 
the exponential profile and the curve (5) is typical for the 
profile with the maximum content. The curve (1) has the 
negative value K in the minimum location, i.e. the 
backscattering from the inhomogeneous soil is a smaller 
than it is from the dry soil. This result indicate that the 
transparency effect can be observed when the minimum 
location are compared with the effective wavelength in the 
medium. The study of the backscattering intensity for the 
various values of the moisture content has shown that for the 
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Fig.2. 

wetter inhomogeneous soil the variation of K against the 
extremum profile is decreased. This fact is given in Fig. 1(a) 
(curve 3). 

Fig. 3 present the comparison between the backscattering 
for the wavelength 1=3 cm(curve 1) and 1=21 cm (curve 2) 
for the profile of moisture content which was illustrated by 
curve 1 in Fig. 1(b). 

■SfHtf 

O.Ol loo 

Fig.3 

The typical situation describing the soil condition before 
and after rainfalls is presented in Fig.2. Since the top layer 
soil has a small moisture content w~2% (before the rainfall) 
and the w increases up to 70% (after the rainfall) the 
considerable difference for K is observed. Note that the curve 
(2) can describe the soil moisture profile directly after the 
rainfall while the only top layer soil becomes wetter. 

The calculations results presented in Fig.2 were compared 
with the measured K values. The experimental data for K 
were obtained from the mapping of the soutern territory of 
Ukraine, which was performed using the SLR aboard the 
satellite "SICH-1" on April 1, 24, and 27 1996. The active 
rainfall zones are clearly seen on the images. The difference 
in K for the soil conditions before and after the rainfalls 
amounts to 5+6 dB. However, the typical ratio K is on the 
order 3+4 dB which is in agreement with the calculated K 
presented in Fig 2. 

To summarize, the comparison of the calculating results 
and remote sensing data has shown that variations of the 
backscattering intensity due to the rainfall zone displacement 
can be determined by the variations in the soil moisture 
profile. 
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INTRODUCTION 

At present, modelling of dielectric properties of bound 
water in soil encounters significant obstacles. There are 
two main reasons: great variety of classifications of water 
in soils existing and controversial data on physical 
properties of water in contact with soil particles [1]. 
Classifying soil water, specialists of different fields 
propose different approaches taking as principal one or 
another feature of water and soil interaction [1]. 
Classification differences lead to different ways of 
estimation of the volume of bound water in soils for 
electrodynamic models of soils [2-4]: from one 
monomolecular layer of water covering soil particles to 
all non-gravity water in soil. As to physical 
characteristics of water, it is known, that the closer it is 
to the surface of a body, the more distorted its structure 
is compared to the structure of free water and ice [1]. 
Such structural distortions induce changes in water 
physical properties. However, available data on those 
characteristics are veiy controversial [1]. 

We believe, that determination of the volume of bound 
water in soils for electrodynamic models should be based 
on soil water dielectric properties and water should be 
considered bound if its permittivity differs from that of 
free water. 

DIELECTRIC MODEL 

To define volumetric content and permittivity of 
bound water in soils, let us first consider the following 
facts. Experiments described in [1] show, that bound 
water molecule relaxation time xbw differs from relaxation 
times of free water molecule TW and of ice molecule T, 
and xw< xbw< Tj. On the other hand, as noted in [1], with 
the increase of water content in clay minerals tbw 

approaches xw. In [1], through the analysis of nuclear 
magnetic resonance of bound water films in clay, upper 
limits of bound water molecule relaxation time at +27°C 
depending on the number of monomolecular layers 
covering water particles were determined. Those 
investigations show, that xbw falls with the increase of the 
number of monomolecular layers covering particles [5] 
and xbw is the same as TW at a film 10 layer thick. 

Based on the facts given and assuming, that bound 
water permittivity, like that of free water, agrees with the 

Debye model, we suggest the following statements: 
l.With soil wetness increase, water in soil remains 

bound till a certain level of wetness. 
2.The change of bound water volume results in 

different bound water dielectric properties induced by 
the change of bound water molecule relaxation time. 

3.At a certain soil wetness, dielectric properties of 
bound water become similar to those of free water. 
Further increase of wetness brings no effect on the 
permittivity of bound water which remains equal to free 
water permittivity. 

Using Tbw obtained in [ 1 ], we defined an approximation 
of xbw depending on thickness h of water film covering 
soil particles. The dependence has the following form: 

Tfav(+27)= exp(-5.95x1013A2-27.93exp(A) 
+152X10^+195X107ä+06)I (1) 

where xbw is expressed in seconds, h - in centimetres. 
The dependence is worked out under the assumption 
that tbw becomes equal to TW at water film density h10 

equal to 10 diameters of a water molecule (2.8 x 10 7
CM 

[1]). I assume xbw= TW at h > h10. 
To define bound water permittivity sbw, the relaxation 

model of free water permittivity (6] was used. 
Given the bound water molecule relaxation tune at 

+27°C from (1), it is easy to determine bound water 
relaxation wave length at the same temperature. 
Assuming that *.bw(+27°C), ^W(+27°C) and ^bw(t), Xv(t) 
are proportionally connected, we get: 

^MvW=^(+27)AwW/Aw(+27). (2) 

Then real and imaginary parts of bound water 
permittivity can be derived from expressions found in 
[6], where Xbw(i) is substituted for Xw(t): 

"   "  W^WM)2' "~   1+M)M)2   ' {) 

here ss and s„ are retrieved from the same formulas as 
for free water [6]. 

Thus, we can calculate ebw in soil depending on the 
thickness of bound water covering soil particles. The film 
thickness can be determined from the soil wetness and 
the soil model applied. 

I used the wet soil model described in detail in [5]. 
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According to it, the soil is an air medium with spherical 
granular inclusions divided in three fractions: sand, silt 
and clay. It is assumed that at volumetric soil wetness Vw 

ranging from 0% to max(Vbw), when bound water 
dielectric properties become similar to those of free 
water, water is distributed in the shape of spherical 
covers only on clay particles and is bound [1,2]. At soil 
wetness max( Vbvl) <VW< VFC, water covers particles of all 
fractions and is free. Soil wetness VFC is called field 
capacity and represents maximum quantity of capillary 
suspended water. According to [2], Vvc can be derived 
from the regression dependency given there. At soil 
wetness Vv > VFC, surplus (gravity) water VV-VFC 

accumulates in the shape of spherical drops in soil pores. 
Effective permittivity sef of wet soil is obtained from the 
equation given in [5]. 
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Model calculations of ecf of wet soils were compared to 

experimental data presented in [7,8]. Actual soil 
structural parameters were used in calculations. 
Comparisons gave good agreement between calculations 
and experimental data. 

Figs.   1   and   2   present   model   calculations   and 

experimental data [8] of real (a) and imaginary (b) parts 
of wet sandy loam depending on emission frequency. In 
agreement with the fractional composition of the soil 
and the model of soil bound water suggested, at low 
wetness (4.3%), all soil water is bound, while at high soil 
wetness (24.3%), it is free. 
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For comparison purpose, the figures also give 

dependencies calculated based on the "refractive" model, 
which does not take into account bound water in soil [9]. 

Analysis of Figs. 1 and 2 leads to the following 
conclusion. At low soil wetness, less than max(l^w), 
bound water has to be taken into account in models for 
eef of wet soil. This is confirmed by the difference of 
calculations made according to the present and 
"refractive" models at low wetness and their practical 
identity at high wetness. 

Theoretical and experimental [7] dependencies of real 
and imaginary pails of eef of silt loam on the soil 
volumetric wetness are presented in Fig. 3. Figures show 
two breaks of theoretical curves. The first one 
corresponds to that soil wetness at which bound water 
becomes free (Vt = max(Kbw) = 17.5%). This break is 
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placed in the so-called region of transitional moisture. 
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water starts to appear. In the light of the models of ecf of 
soil and sbw in soil, this transitional region obtains new 
explanation as being region of wetness at which bound 
water becomes free. The second break of theoretical 
dependencies of soil permittivity on wetness relates to 
wetness where gravity water starts to appear in the soil. 
Experimental data, however, do not show such a break 
which, apparently, evidences that in reality water is 
simultaneously distributed as in film covers around soil 
particles as in drops in soil pores at wetness starting with 
Vt,which is much earlier than the calculated wetness V¥C. 
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It is noteworthy that the model of soil ecf suggested 
assumes that bound water is found in soil only when the 
latter contains clay particles. In reality, bound Water also 
covers other particles (sand's and \silt). However, given 
assumed maxirhunl thickness of bound water of 10 
monomolecular layers, estimations show that water 
covering sand and silt particles amounts to only 0.1% of 
total volume of water and is, hence, negligible. The 
statement is confirmed by Fig. 4 showing experimental 

permittivities of sand [2] and calculated dependencies of 
e,.f on wetness of the soil. Naturally, only sand fraction 
is present in the soil meaning, according to the model of 
scf, that there is now bound water. Calculated and 
experimental dependencies agree well within the whole 
wetness range. 

CONCLUSIONS 

Calculations of sef carried out based on the suggested 
model of sef are in good agreement with experimental 
data for various soils. This agreement was reached due to 
the consideration of structural properties of soil in the 
model of 8cf as well as due to the model of sbw. The 
suggested model of soil bound water permittivity allows 
to explain the region of transitional wetness and to 
describe dielectric properties of soils with low wetness. 
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Abstract—An algorithm for discrimination whether rain 
exists or not in the TRMM PR (Precipitation Radar) data is 
being developed. The rain/no-rain discrimination will 
provide us with useful information for on-line data 
processing, data storage control, and data analysis in post 
processing. A simple rain/no-rain discrimination with a flag 
output representing the possibility of rain is employed. The 
flag expresses the three states of rain as 'rain certain', 'rain 
possible', and 'rain little' at each PR footprint. Rain top 
height is also determined in this algorithm. The algorithm 
described here is implemented as one of TRMM standard 
algorithms. 

1. INTRODUCTION 

TRMM PR (Tropical Rainfall Measuring Mission/ 
Precipitation Radar) is the first spaceborne rain radar which 
objective is to achieve more quantitative rain measurement in 
global scale than ever made in tropical and sub-tropical 
regions. In the PR algorithms for the TRMM data system, an 
algorithm to discriminate whether rain exists or not has been 
developed. One of products of this algorithm is a flag 
representing the rain status for an footprint. This flag is used 
for the algorithms in downstream in the data system, 
reduction of storage data volume by eliminating data judged 
as rain-little, and data analysis in the post-processing. 

The rain/no-rain discrimination is the statistical testing 
problem using thresholds in the radar received signal. The 
probability distribution function (PDF) of received signal 
describes both the detection probability and false alarm 
probability for some particular threshold. The PDF 
particularly with the mean value and standard deviation of 
weather radar signal has been studied by Zrnic [1]. The task 
to be solved here is to choose optimum thresholds to separate 
rain and no-rain condition effectively under the TRMM PR 
performance. The algorithm first compares the radar range 
data in an anglebin with threshold. Then, a flag output for 
the anglebin is generated by examining the result of range 
data comparison. The rain top height at each anglebin is also 
derived.   The   method   in   deriving   these  products   and 

simulation study to find optimum parameters are discussed. 

2. TRMM PR MEASUREMENT 

TRMM PR is an active phased array radar which is 
composed of all solid state components. The electronic 
antenna beam scanning in cross-track direction performs 
contiguous rain mapping over the swath width of about 220 
km on the earth surface. The antenna scan angle ranges ±17 
deg centered at nadir. The footprint size is 4.3 km at nadir. 
The cross-track swath is filled with 49 footprints (anglebins). 
The range resolution (a rangebin size) in each anglebin is 
250 m. 

The signal to noise ratio (SNR) in the TRMM PR is generally 
poorer than typical ground-based radars due mainly to longer 
radar range. The designed and achieved PR sensitivity is 
given as Sn , which is the SNR per one pulse, being unity (0 

dB) for the signal from 0.5 mm/h rainrate. In this case, the 
noise figure of the PR receiver is about 5 dB. Here, the 
following Z-R relation which is considered to be suitable to 
tropical rainfall is assumed, 

Z - 372Ä ,1.54 
(2) 

In the case of rain radar measurements from space or aircraft, 
ground (sea) surface echo is much intense than typical rain 
echo. Therefore, effect from the surface clutter to the rain 
discrimination must be considered. There are two causes for 
the surface clutter: one is caused from the PR antenna 
mainlobe. PR footprint size is 17 times larger than range 
resolution. Therefore, at the scan edge of ±17 deg, the clutter 
echo caused from the antenna mainlobe shoulder appears up 
to 1.6 km above the surface in the radar range. Because 
received level of mainlobe coupled clutter is much intense 
than rain echo, the rain discrimination can not be made 
where the mainlobe clutter appears. Another type of clutter is 
the antenna sidelobe-coupled clutter. After examination of 
the PR antenna radiation pattern, it is concluded that the 
sidelobe-coupled clutter level is low enough in usual surface 
conditions. 
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3. PR SIGNAL STATISTICS AND RAIN 
DISCRIMINATION METHOD 

In the rain discrimination, PR data between the sea surface 
and 20 km above it are used, although the upper portion of 
data are not always available. This algorithm belongs to the 
Level-1 data processing in the TRMM data system. In this 
level, the instantaneous data in the anglebin-basis are 
processed. The rain discrimination is applied to each 
anglebin data and a flag is generated at anglebin by anglebin. 
The height (range) distribution of rain in each angle bin is 
used in this processing. 

After logarithmic detection is applied, incoherent averaging 
of data is applied over 64 data for received power and 256 
data for receiver noise in PR. Standard deviation of rain 
signal obtained in PR after integration is expressed as [1][2] 

a„ 
'41 

±U+l\2
+±(±Y 

N{    sj     M{SJ 
(2) 

N + M 
(3) 

where, N and M are the integration number for received 
power and noise, respectively. Ps and Sn are the averaged 

signal power and SNR per pulse, respectively. A standard 
deviation in the case of no-rain (Ps - 0) is given as, 

°
S0
'7E 

Although above discussion does not specify the PDF shape, 
PDF will be close to the normal distribution due to large 
number of integration. 

To examine the PDF of the PR received signal, PDF is 
generated using random numbers. Fig. 1 shows the PDF of 
PR signal which is generated from 40000 random numbers 
simulating the PR signal processing: abscissa is scaled by 
radar reflectivity factor (Z). Fig. 1 shows two cases for 
different PR receiver noise level, that is, Sn =1 at 0.5 mm/h 

rainrate signal and at 0.7 mm/h rainrate signal. Three curves 
representing no-rain case, and rain cases with rainrate of 0.5 
mm/h and 0.7 mm/h. Dots represent simulation results and 
solid lines show the normal distribution with the standard 
deviation given from (2) and (3). Each simulated PDF is well 
consistent with corresponding normal distribution curve. It is 
noted, however, that the PDF from simulation is slightly 
asymmetric with its center and the probability in the upper 
skirt is a little higher than that of normal distribution. 

It is postulated that the goal of this discrimination is to 
separate rain data at 0.5 mm/h effectively from receiver noise 
fluctuation. To achieve this, we can set a threshold at the 
upper 3a point of no-rain PDF. The false alarm probability in 
this case is 0.4%. In the case (a), this threshold will work 

well with relatively high detection probability (92 %) for 0.5 
mm/h rain. However, in the case of the increased receiver 
noise (b), this threshold gives poor detection probability 
(about 59 %), which means that 41 % of rain data at 0.5 
mm/h is left by oversight. To prevent this, the second (lower) 
threshold is set at upper 10 percentile of no-rain PDF with 
detection probability of 92% in (b). The rain state is 
considered as 'rain certain' for the signal above the higher 
threshold, 'rain possible' for that above the lower threshold, 
and 'rain little' for that below the lower threshold. 
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Fig. 1: PDFs of PR received signal for no-rain case, and rain 
cases with rainrate of 0.5 mm/h and 0.7 mm/h. (a)S„ =1 at 

0.5 mm/h rainrate signal and (b) at 0.7 mm/h rainrate signal. 

4. SIMULATION OF RAIN DISCRIMINATION 

Propriety of thresholds and flag derivation method is tested 
using simulation data. The data used for this simulation were 
originally obtained from airborne rain radar measurement of 
vertical rain distribution along flight track. Fig. 2(a) shows 
an example of original data with coordinate and resolution 
being modified to match those in TRMM PR. The data are 
first spatially averaged to meet the PR resolution with 250 in 
vertical and 4.3 km in horizontal, and then re-arranged to 
form the TRMM scan plane which consists of 49 anglebins 
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and about 80 rangebins. The PR scan plane is plotted in 
rectangular shape for simplicity. Black portion and white 
portion in the bottom are the ground and mainlobe-coupled 
clutter region, respectively. The noise fluctuation in this 
original plot is considered to be small enough because of 
higher SNR in the airborne radar measurement and very 
large number of integration in the averaging process. 

Fig 2(b) shows the plot simulating PR data. Noise fluctuation 
expected in the PR SNR is added to the data in (a). Vertical 
pattern which appears in the plot is caused by the subtraction 
of constant noise level at an anglebin. 

Comparison with threshold values is made over all rangebin 
and anglebin data. The results for (a) and (b) are shown in (c) 
and (d), respectively. The signal level at black and gray 
points are above the higher and lower thresholds, respectively. 
Here, the values of 2 and 1 are assigned to the black and gray 
points, respectively. The final product is the flag output for 
anglebin basis. Here, we introduce a concept of vertical 
correlation distance d to avoid the flag being ON due to noise 
fluctuation. The rule is that the anglebin flag is 2 or 1 only 
for the cases that at least d-consecutive rangebins are judged 
as 2, or larger than or equal to 1. The final anglebin flags 
derived are plotted with d value in (e). The result for d = 0 is 
the result obtained from the plot (c) and is the reference. 
Comparison of results from d=l to 4 with that for d=0 
suggests that the case of d=2 gives the best result among the 
4 cases. 

SUMMARY 

Outline of an algorithm for rain/no-rain discrimination in the 
TRMM PR is described together with an example of 
algorithm performance test using simulation data. 
Preliminary test suggests that vertical correlation distance of 
2-rangebin sizes gives the best discrimination performance. 
Parameter tuning and further algorithm improvement will be 
continued throughout the TRMM mission. 

This study has been conducted under collaboration with 
NASDA based on the TRMM Joint Research Announcement. 
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Abstract - An optimal area method is described which is used 
as a basis for comparing Kdp, (Kdp,Zdr) and Zh based 
estimates of rain rates with gauge measured rain rates. This 
method differs from conventional methods which typically 
use a square LxL area centered on the gauge. The spatial 
structure of the rms error field, which is the difference 
between Kdp-based rain rate and gauge-measured rain rate is 
used in an objective manner to define the optimal area over 
which the radar data is averaged; additionally, an optimum 
time delay is calculated. Three convective rain events (with 
pea-to-marble sized hail) are analyzed using the data from the 
CSU-CHILL Radar and gauge data. In two cases, a young 
capacitance rain gauge installed in a chase van was used to 
record rainfall. The chase van was directed by radar for 
storm cell intercepts. Another radar algorithm using the 
principle of the optimal area was also developed relying on 
radar data only. In this algorithm radar data from different 
elevation angles are used to arrive at an optimal area and time 
delay. These rainfall estimates are then compared with gauge 
reports to provide an independent measure of accuracy and 
assessment of the various rain rate algorithms. 

INTRODUCTION 

Until recently there have been few opportunities to 
measure polarimetric radar parameters including differential 
propagation phase (Odp) from which Kdp is estimated and to 
assess performance of algorithms based on (Kdp) or 
(Kdp,Zdr) [1][10]. Quantitative assessments of algorithms 
based on (Zh,Zdr) against distrometer and gauges have 
shown that fractional standard errors of (30-40%) are typical 
for these algorithms [2][3][5][6]. 

Radar-gauge comparisons are complicated by various error 
sources. The conventional approach is to construct an LxL 
square area centered over the gauge location and then to 
spatially average the radar data within this region [11]. 
Aydin, et al, [2] have suggested a method based on choosing 
an optimal area from a set of pre-determined sub-areas or 
swaths.   Radar Zh and Zdr values are averaged within this 

* VNB & VC acknowledge support from AFOSR via grant 
FA9620-95-1-0133 and NSF via grant ATM-9612519. The 
instrumented chase van was funded by the Center for Geosciences 
Phase II at CSU via DoD grant DAA04-94-G-0420'. SB 
acknowledges support from USAF/Rome Laboratory. 

optimal area before comparing to distrometer values. Swath 
areas are pre-defined and laid out in the path of storm motion 
relative to the distrometer location. Areas are chosen within 
each radar PPI scan that minimize the time-delayed cross- 
correlation between radar Zh and distrometer Zh. Such 
swaths would define an optimal area that likely contributed to 
the distrometer measurements and thus can be used to 
compare radar-distrometer rainfall estimates. 

In this paper we present an approach similar to Aydin, et 
al, except that there are no predefined areas used to select the 
optimal area and no apriori knowledge of the storm motion 
is assumed. An objective procedure for locating an 
elliptically-shaped optimal area is described that minimizes 
the rms error difference between radar rain rate estimates and 
the gauge rain rate over an appropriate time interval. The 
dimensions of the ellipse are obtained from the spatial 
correlation structure of the rms error field. 

DATA SOURCES 

CSU-CHILL Radar 

Radar data such as Zh, Zdr, and Odp were available at 
resolution volumes spaced 150 m apart with a dwell time of 
128 ms (64 horizontal/vertical polarized pulse pairs). Kdp 
was derived by post-processing the raw <t>dp range profiles 
using an adaptive digital range filtering technique described 
in [8]. The resulting Kdp accuracy is estimated to be within 
+0.5degkm"'. 

Rain Gauges 

For the 20 June 1994 storm event a tipping bucket was 
used for Gauge #1 and a weighing gauge was used for Gauge 
#2. Both gauges logged cumulative rainfall measurements at 
5 minute intervals. The storm duration for this event was -45 
minutes over both gauges. The distance of Gauge #1 and #2 
from the radar was 45.6 km and 40.6 km respectively. 

For the 2 June 1995 and 6 July 1996 events, a Young 
capacitance rain gauge was used. The gauge was interfaced 
to a PC; cumulative rainfall was recorded every ~3 seconds. 
The distance of the gauges from the radar was 14.8 km and 
24.1 km for the 2 June 1995 and the 6 July 1996 events 
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respectively.   The duration of the 2 June 1995 event lasted 
-30 minutes and the 6 July 1996 event a -30 minutes. 

OPTIMAL AREA METHOD - RADAR/GAUGE ELLIPSE 

Data from the 2 June 1995 storm will be used as an 
example to describe the optimal area method. A time series 
of radar data is constructed through each resolution cell from 
multiple PPI scans. We use a 3.5 km radius circle centered 
over the gauge location as an observation area to study to 
reduce computation time. 

The temporal and spatial variability of rainfall are 
important considerations in the development of the optimal 
area. Gauge data is used to determine the time interval that 
the optimal area can be matched to the gauge measurements. 
The autocorrelation of the gauge time series is taken and then 
best fit to a smooth exponential function. The time lag (tg) 
where the best fit curve is equal to 1/e is chosen to be the time 
interval of interest. The radar data time series are truncated to 
a window size equal to xg. 

In turn, each radar time series are shifted incrementally in 
time across the gauge data. Increments of 1 second are used. 
At each successive increment the rms difference (RGrms) 
between the radar and gauge measurements is computed. The 
minimum RGrms value is then found frorn all of the time lag 
calculations: 

radar located at coordinate position (0.Q) 

min(RGrms) = min j-t[Rri(t + x)-Rgi(t)]' 
X 

(1) 

Next, the time lag of all the radar time series are set to the 
lag of the R-G time series pair that has the smallest rms value. 
RGrms is then re-computed for all time series once more. The 
result is an rms difference field as shown in fig. 1. The 
physical dimensions of the ellipse are determined from the 
rms difference field.   The center location of the ellipse is 

10        11 12        13        14 15 
east-west distance from radar (km) 

Fig. I. RMS difference field (mm hr'') from the radar/gauge method 
is shown with gauge-point and cross axis lines as indicated. Data is 
from the 2 June 1995 event. 
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Fig. 2. Optimal area from radar/gauge method. Data is from 2 June 
1995 event. 

taken to be at the point location with the smallest rms value. 
A gauge-point axis and orthogonal cross-axis line are 

drawn as shown in fig.l. The rms difference values profiled 
along each line are used to. determine the axis lengths of the 
ellipse. Rather than using an arbitrary cutoff level of the error 
measure, an adaptive procedure is used. The autocorrelation 
of the rms error profile is taken for each line and the 
decorrelation value equal to l/e is used to fix the spatial lag 
corresponding to the axis length. The optimal area for the 2 
June 1995 event is shown in fig. 2. Radar data within the 
optimal area ellipse are averaged to form a composite radar 
value. The optimum time delay (Topt) is taken as the time shift 
where the radar composite time series and gauge 
measurements have a minimum rms difference. 

OPTIMAL AREA METHOD - RADAR/RADAR ELLIPSE 

This method is similar to the previously described 
approach except that radar data alone is used to determine the 
optimal area ellipse. Data from two elevation levels are used 
to develop the ellipse area. Gauge data is substituted for 
radar data (Rref) selected at the center of the observation area 
in one of the elevation planes (the reference plane). The other 
elevation plane represents a test a field to compare with the 
Rref. The time interval, rms difference field, and ellipse axis 
lengths are computed exactly in the same manner as before 
except that the Rref is used instead of the gauge data. 

The point where the R-Rref difference pair has the smallest 
rms value is used to calculate a storm vector. This vector is 
then used to find the displacement from the center location of 
the optimal area with respect to any desired location. Thus, a 
point on the ground can be matched to a point aloft by the 
projection of the storm vector. For comparison purposes, the 
ground point is chosen to be the gauge location. 

Radar data are averaged within the optimal area to form a 
composite radar time series. To find Topt all of the radar time 
series in the reference elevation are shifted ahead in time and 
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series in the reference elevation are shifted ahead in time and 
the rms difference between these time series and the original 
Rref at 0 time shift is computed. Again, the best Rft+TO-R,,,,- 
pair is found. The distance from this point and the time shift 
determine a storm speed. Topt is then computed from storm 
speed and the distance from the center of the optimal area to 
the gauge location. The composite radar value and Topt can 
be used to compare with the gauge reports on the ground. 

RESULTS/CONCLUSIONS 

Table 1 lists the rain rate estimators. Table 2 contains the 
results for the optimal area radar/gauge and radar/radar 
methods compared to the gauge reports. Radar/radar results 
are given only for the 2 June 1995 and 6 July 1996 events. 
The errors shown in Table 2 are in excellent agreement with 
theoretical predictions [10]. Further, our results support the 
conclusions of [1][10] that Kdp-based algorithms offer an 
excellent, physically based radar method for measuring rain 
rate in mixed phase precipitation. 
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Table 1. Radar Algorithms of Rain Rate (mm hrl) and References 

= 40.5(Kdp)«-»3 

= 52.0[(Kdp)0-96][(Zdr)-0.447] 

= 67.152[(Kdp)0.956](io)-0.125(Zdr) 

= 0.017(Zh)0-714 

= 0.017(Zh,55)0-714 

= 0.017(Zh,53)0-714 

R(Zh,51)    =0.017(Zh,51)0-714 

note: Kdp in deg km-1, Zdr in dB, and Zh in units of mm^m"^. 
Zh_55 means truncated at 55 (53,51 dBZ) respectively. 

R(Kdp) 

R(Kdp,Zdr,l) 

R(Kdp,Zdr,2) 

R(Zh) 

R(Zh,55) 

R(Zh,53) 

[4] 

[10] 

[7] 

[9] 
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Table 2. Radar Algorithms of Rain Rate (mm hr !) & Fractional Standard Error (%) 

Algorithm FSE (%) 

20 June 1994 #1 20 June 1994 #2 2 June 1995 2 June 1995 6 July 1996 6 July 1996 
radar/gauge radar/gauge radar/gauge radar/radar radar/gauge radar/radar 

R(Kdp) 10.80 10.72 11.27 13.78 06.13 12.18 

R(Kdp,Zdr,l) 48.42 18.39 10.99 10.91 19.87 25.58 

R(Kdp,Zdr,2) 44.81 25.00 17.61 16.07 33.69 37.34 

R(Zh) 57.64 43.73 33.28 35.58 35.11 35.44 

R(Zh,55) - - - - - 35.41 

R(Zh,53) - - 34.81 36.44 27.36 30.45 

R(Zh,51) - - 39.45                      41.85 
ntry is the same as the above previous va 

30.16 31.83 
note: Algorithms i ire as defined in Table 1. Dash indicates e ue. 
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Abstract — A method to correct spaceborne rain radar mea- 
surement for non-uniform beam filling (NUBF) is studied 
using a shipborne radar data set over tropical Pacific. 
Statistical analyses are made on spatial variabilities of rain 
rate. The result is reflected into estimating the variability 
in a radar IFOV which is then used to obtain a NUBF 
correction factor. Results indicate the usefulness of this 
method for reducing bias error in rain rate estimation. 

INTRODUCTION 
It is well known that the non-uniform beam-filling 

(NUBF) is a major error source in rainfall measurement 
with a spaceborne rain radar the foot-print size of which 
may be comparable to or greater than a typical convective 
cell size. The effect of NUBF depends on the algorithm 
used for a rain-parameter estimation. It has been shown 
that the use of the path-integrated attenuation (PIA) derived 
from the surface reference target (SRT) method suffers from 
stronger effect than the use of a Z-/J relation [1,2]. 
However, the SRT method is also recognized as the most 
important algorithm to stabilize the rain attenuation 
correction in heavy rain. It is crucial to develop a method 
to correct the SRT-derived PIA for the NUBF effect. 

We proposed a method for correcting the SRT-measured 
PIA for NUBF, and studied its feasibility using shipborne 
and ground-based radar data obtained in the TOGA/COARE 
campaign [3]. This method is based on a characteristic of 
spatial variability of rain rate, which has been used for the 
SSM/I rain retrieval algorithm [4]. In this method, the 
key point is to estimate the fine-scale rain rate variability 
(normalized standard deviation, NSD, NSDH; SD divided 
by mean) in an instantaneous field-of-view (IFOV) from 
the large-scale NSD (NSDL) that can be measured by radar. 
The concept of this process is shown in Fig. 1. The 
NSDH in IFOV (i = 5) is estimated from the NSDL 

obtained from the radar data measured at EFOVs (i = 1 - 9). 
This paper presents a follow-up study of this method 

using a more comprehensive data set for statistical 
evaluation of this correction method. 

FORMULATION OF THE PROBLEM 
Referring to Figure 1, let /?,• (i = 1 - 9) be the IFOV- 

averaged path-averaged rain rate which consists of n rain 
rate elements (rjj, j=\,n) within the IFOV: 

Ri = -Zrhiln (1) 
j 

The path-integrated attenuation we should obtain when 
rain is uniform in the IFOV, A; (dB), is: 

Ai = 2LaRß~2LaRi (2) 

Surrounding 8 IFOVs used 
IFOV of 
interest 

1 = 5  /-> 

for fine-scale NSD estimation 

v\XJCJL J       4.4 km 

LXNKJ5*SN() ^^^ Antenna 
^^W ^^" scan 

><S-r>!^<           direstion 

y Flight 
direction 

Fig. 1 Concept of estimating fine-scale 
variability from large-scale one 

where a and ß are coefficient and the exponent of the k-R 
relation, and L is the rain depth. The exponent ß depends 
upon the frequency and dropsize distribution, but fairly 
close to unity for the frequency range of interest (10-35 
GHz). Similar to rjj, PIA element ajj is expressed as 

ajt i = 2La rjt ,-ß = 2La /y_ ,■ (3) 

The SRT-measured PIA (Am) is given by 

Amj = -101og(iexp(-lnlOa rjj L/5)) (4) 

11/2 
IRi (5) 

The NSD Hi is given by 

NSDH,i=UUnMrjti-RiJZy 
j 

As an estimate of NSD of spatially averaged rain rate 
(NSDL), we use samples of Am surrounding the IFOV of 
interest (j. = 5) as shown in Fig. 1. 

NSDL = [(l/n)z(Am,i - <Am»2] I/2/<Am> (6) 
i 

where <Am> is the average of Am, 1 through Am>g. Note 
that Amj and NSDL 

can be obtained from spaceborne radar 
measurement. First we estimate NSDH,5 from NSDL. 

Next, we estimate A5 from Am$ and NSDH,5 using a 
relation between AOT)5 and A5 for a given NSDH,5 
assuming a pdf model within the IFOV. 

RAIN RATE VARIABILITY 
We may expect that, if we see high variability in large- 

scale rain field, fine-scale variability is also high. Such a 
correlation may be related to the statistical properties of 
spatial variability of rain rate. The statistical properties are 
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studied using 42 rain fields that are classified into four 
categories; Type-1 (squall line system), Type-2 (randomly 
spread convective), Type-3 (wide-spread stratiform), and 
Type-4 (mixed stratiform/convective). 

To characterize the spatial variability of rain rate, the 
spatial auto-correlation function (ACF) is calculated. If the 
ACF is stable, it is expected that the magnitudes of fine- 
scale and large-scale rain rate variabilities is also stable. It 
is found that the 1-D normalized auto-correlation function, 
p(x), obtained from the averaging of the values of a 2-D 
auto-correlation function at an equi-distance, x, is well 
approximated by 

p(x) = exp(-aA (7) 

From regression analyses of all rain fields, a and b values 
and the correlation distance, xdec (the distance at which 

9(xdec) is e_1) ^ obtained. Results show that a, b, and 
xdec varv significantly, and xdec somewhat correlates with 
the coefficient c relating NSDH to NSDL (Eq.8). 

For each rain field, pairs of NSDH of rain rate and 
NSDl of Am are calculated, and a regression analysis is 
performed to relate NSDH to NSDL with 

NSDH = C NSDL (8) 

The results for Types 1, 2, and 4 are shown in Fig. 2, in 
which correlation coefficient (r) and the coefficient c are 
shown as histograms. It is found that there is a reasonable 
degree of correlation between NSDH and NSDL, andtnat c 
is fairly stable. As for stratiform rain, r and c are slightly 
lower than convective rain, suggesting the necessity of 
classifying rain type in the NUBF correction. 

It is known that the probability density function (pdf) 
of rain rate is well approximated by a log-normal distribu- 
tion combined with a delta function representing "no rain" 
region, when the area is sufficiently wide. In this case, 
however, the area of interest is as small as several tens of 
square kilometers, and the pdf may not be stable enough to 
apply a single pdf model. To investigate the log-normality 

8 

6 w 
c 
o o   4 
o 

£   2 
3 
Z 

of such area, y} tests are applied for 7km by 7km rainy 
areas in each rain field. Percentage of areas judged non- 
lognormal is a measure of non-lognormality of the rain 
field. The result is summarized in Fig. 3. For convective 
rains, about half the areas appear to be judged non- 
lognormal as anticipated. For the simulation described 
later, however, we assume the log-normal pdf for 
simplicity. More study is needed for the statistical charac- 
terization of rain field within the spatial domain related to 
the problem we consider here. 

SIMULATION OF NUBF CORRECTION 
Using the relationship between NSDL and NSDH 

(Eq.8, with c = 0.73), a simulation is performed. A 
flowchart of the simulation is shown in Fig. 4. we start 
with the conversion of the 1-km spatial resolution Z-factor 
map to the corresponding rain rate and PIA. Next, we 
calculate the rain rate and PIA of 4-km resolution. At the 
same time, we calculate NSDH using Eq. 5 and NSDL 

using Eq. 6. The simulation starts with looking at the 
radar measurement (Am) of each IFOV. For a specific 
IFOV, we obtain Am and NSDL- The NSDL is then 
converted to NSDH 

usin8 E(I-8- Am and the estimated 
NSDH are input to the look-up table to obtain a corrected 
Am (an estimate of A). This result is finally compared 
with the "uniform" PIA (A) directly calculated from the 1- 
km resolution data. 

An example of the simulation result is shown in 
Fig.5, where scattergrams of (a) "Uniform" PIA (A) vs 
"Apparent" PIA (Am), (b) A vs. NUBF-corrected PIA 
using NSDH estimated from NSDL, and (c) A vs. NUBF- 
corrected PIA with "true" NSDH are plotted. It is clear 
that the NUBF correction reduces bias errors; however, 
some "over-correction" appears in some cases. 
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Fig. 2 Results of linear regression analysis of NSDH 
VS

- NSDL relation 
for Type 1, 2 and 4 rains. (Rain rate corresponding to As > 5 mm/h) 
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Percent of rain areas judged 
"non-lognormal" with 5% sig- 
nificance for each rain scene 

Fig. 3 Result of %   test to evaluate 
"non-lognormality" of rain rate pdf. 
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When we use "true" NSDfj, random errors in the corrected 
PIA are reduced; however, there remains some underesti- 
mation. This is probably due to the assumption of log- 
normal pdf. In Fig. 6, errors in estimating rain rate cumu- 
lative distribution (CDF) are compared. In this figure, the 
ordinate is the percent difference between the NUBF- 
corrected (or without correction) CDF versus "Uniform" 
PIA CDF. It is shown that the NUBF correction reduces 
the bias error except for very small PIA range (< 2 dB). 

SUMMARY 

The NUBF correction method presented here appears to 
work reasonably well to reduce the bias error. Care should 
be given, however, to the possible "over-correction" 
caused by the over-estimation of NSDH- This method is 
currently implemented in the TRMM PR standard 
algorithm for range profiling [5]. The usefulness of this 
method in this algorithm needs to be evaluated. 
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Abstract — In this paper, a retrieval method of remote 
sensing of cloud liquid water content by space-borne 
combined radar-radiometer is suggested. A 3-layer vertical 
cloud model is chosen to represent the typical stratified 
precipitating cloud. The retrieval method mainly follow our 
previously suggested scheme[l] with minor modification. 
Numerical comparative study shows that in space-borne 
remote sensing of liquid water content the combined method 
is much better than by radar only; Also the retrieval 
accuracy of liquid water content may increase when using 
the 3-layer cloud model in combined method. 

INTRODUCTION 

Global precipitation distribution at earth surface and 
vertical structure of precipitating cloud are of vital important 
in global energy and water cycle. It is well known that the 
global precipitation measurement can only be made from 
space. Passive microwave techniques such as SSMR and 
SSM/I have been used in global precipitation remote sensing 
with preliminary success. In principle it is very difficult to 
remote sensing the vertical structure of the liquid water 
content (LWC) in precipitating cloud. Combined radar- 
radiometer will be the best arrangement to solve this 
problem. For ground-based situation we have shown that 
remote sensing of precipitation and LWC distribution with a 
combined radar-radiometer system is better than that with 
only a radar[l,2]. In comparison with ground-based remote 
sensing of horizontal rainfall distribution where only the 
lowest part of cloud is concerned, space-borne remote 
sensing of precipitating cloud is necessary to consider the 
vertical structure of whole cloud, surface rainfall and surface 
situation. In this paper, we will discuss the retrieval method 
of space-borne remote sensing of precipitating cloud 
structure with combined radar-radiometer and give some 
preliminary simulation results. 

CLOUD MODEL AND RETRIEVAL METHOD 

Cloud Model 

A three layer ( ice layer, mixed layer and liquid layer) 
stratified cloud model is assumed. Fig 1. is a schematic view 
of the model which is deduced from the field observation of 
stratified precipitating cloud in China. H1,H4,HVH2 

&re 

cloud bottom( for cloud with rainfall Hx = 0), cloud top, 
height of -10 "C and 0.3 km below the freezing level 
respectively, HVH2 

are determined by radio sounding data, 
H4 and Hx may be obtained by radar observation. 

Retrieval Algorithm 

In the retrieval, reflectivity Ze, attenuation coefficient ae 

are related in an empirical exponential manner. Those 
coefficient in the empirical relationship are different for 
different cloud particle size distribution (DSD), it is assumed 
that the fraction of cloud LWC/IWC (ice water content) 
Mq/Mi in mixed layer is known in prior. 

The retrieval method suggested here is similar to the 
method for the situation of ground-based remote sensing 
described in detail in [1,2]. The main procedures are as 
follow: l)We may derive the distribution of attenuation 
coefficient a(r) from radar reflectivity along ray path with 

empirical  regressive  relation  (Ze.= ccrd)  between  radar 
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Fig.l A schematic view of the stratified cloud model. 
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reflectivity and attenuation coefficient for liquid and ice 
droplet respectively; 2)Using MW radiative transfer model to 
calculate the brightness temperature Tb with o(r) from 1) 

and compare with observed Tb; 3) Adjust the derived <j(r) 

by adjusting the empirical coefficient so as the calculated Tb 
approximating to observed Tb with in the required error; 4) 
derived LWC and surface rainfall R with respective 
relationships of a-M and a-R. The details of this 
retrieval method can be found in our paper [ 1,2 ], the only 
difference is the constraint factor, we used total attenuation 
rather than the brightness temperature in that paper. 

NUMERICAL SIMULATION AND RESULTS 

By using radar equation and MW radiative calculation 
code, we may establish the 'observation' Ze(r) and Tb with 
input of different cloud parameters and surface condition. 

In this calculation we choose calm ocean as ground 
surface and 9.364GHz (X-band) for the frequency . 

Variations with Different Drop Size Distribution 

From the field observations we know that in mature stage 
the LWC profile mostly has the pattern indicated in Fig. 2. 
Here we only consider this kind of LWC vertical profile. 
Four kinds of cloud drop size distribution are chosen: Type 
1, M-P DSD in all three layer; Type 2, Y DSD for ice 

droplets and M-P for liquid drop; Type 3, SS DSD for liquid 
drops derived from stratified precipitating clouds of South 
China, Y DSD for ice droplets; Type 4, CS DSD for liquid 
drops derived from convective precipitating clouds of South 
China, Y DSD for ice droplets. 

For comparative study, with the original LWC vertical 
profile which we used in simulation procedure the one- 
layer structure and the single radar( without radiometer 
observation) method are also calculated. All the results show 
that the combined method is much better than single radar 
method; And the 3-layer model is better than the l-layer for 
various drop size distributions, especially when the value of 
LWC is small. 

For investigating the influence of drop size distribution, 
different type of DSD are chosen between the simulation and 
retrieval calculations. One of the results is given in Fig 2. it 
can be seen that 3-layer cloud model is much better than 1- 
layer, especially for mixed layer ( 4.6-6.8 km ) and the ice 
layer (6.8-8.0 km). 

The relative deviations of root-mean-square(rms) are 
given in Table 1. It shows that the accuracy of retrieval 
LWC can be increased when using combined method than 
single radar method , even comparing with the l-layer 
structure, it may increase about 70 %; When we use 3-layer 
instead of l-layer structure in combined method, the 
increased accuracy would be about 20-30 %. 

Variation with the Fraction of Mq and Mi in Mixed Layer 

O 

x 

- 3-ly 
•   1-ly 

SIMULATION 

n   i   i   |   i   i   i   |   i   i   i   |—i—i—i—|—i—i—i—|—i—i—i—| 

0.0    0.2    0.4    0.6    0.8     1.0     1.2 

LWC(g/M**3) 
Fig.2 Vertical profile of LWC obtained with different cloud 
models,     Mq/Mi=l/1, LWC =0.5 g/m3. M-P DSD in 
simulation and CS DSD in retrieval. 

As we know that to obtain the real fraction of Mq and Mi 
in the mixed layer is very difficult and it plays important role 
in measuring LWC with combined method. 

We change the proportion of Mq and Mi in simulation 
and retrieval calculations, it is found that larger deviations 
exist in retrieving LWC vertical profile, especially when 
overestimated Mi is in retrieval calculation. For example, 
when Mi/Mq=l is chosen in the simulation calculation and 
Mi/Mq=2 in retrieval calculation, the results are shown in 
Table 2. It is indicated that the deviations of 3-layer may 
increase, but it still better than l-layer situation. When 

Table 1. The relative rms deviation in LWC vertical profile 
calculation by  l-layer ,  3-layer model with combined 
method and single radar method for different LWC, 
Mq/Mi=l/1, M-P DSD in simulation and Y DSD in 
retrieval. 

LWC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1-ly .491 .451 .443 .440 .438 .437 .437 .436 .436 .436 

3-ly .232 .169 .157 .152 .149 .147 .145 .143 .142 .140 

radar 1.19 1.19 1.19 1.19 1.19 1.20 1.20 1.21 1.21 1.22 
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Table 2. Same as Table 1, but for T DSD, Mq/Mi=l/1 in 
simulation and Mq/Mi=l/2 in retrieval. 

LWC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1-ly .424 .425 .425 .425 .426 .426 .426 .426 .425 .425 

3-ly .386 .383 .379 .374 .370 .370 .369 .367 .365 .363 

radar .425 .428 .433 .438 .445 .454 .464 .476 .490 .504 

Mi/Mq is taken as > 3 in retrieval calculation it is found that 
the rms of 3-layer model mostly larger than 1-layer structure. 
The reason is that, the retrieval method(retrieval calculation) 
is based on both radar return and radiative absorption of 
cloud particles, the contribution of ice particles to radar 
reflectivity is larger than water drops for the same LWC 
while the contribution of ice particles is smaller to radiative 
absorption. When Mi overestimated, through constraining 
the brightness temperature obtained by radiometer and radar 
reflectivity vertical distribution, it would result in larger 
overestimation of the retrieval LWC in the mixed layer, also 
in ice layer. 

Variation with Surface Albedo 

For understanding the influence of surface albedo , 0.01 
difference of surface albedo is chosen between simulation 
and retrieval calculation,  the results is given in Table 3. It 

Table 3. Same as Table 1 but for T DSD , the difference of 
surface albedo is 0.01 between simulation and retrieval 
calculation. 

LWC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

l-iy .685 .442 .413 .410 .410 .412 .413 .415 .416 .417 

3-ly .732 .303 .178 .120 .088 .068 .055 .047 .041 .038 
radar .425 .428 .433 .438 .445 .454 .464 .476 .490 .504 

shows that the rms versus LWC are very changeable by 
using   combined   method.   When   LWC   is   small,   e.g. 
LWC=0.1g/m^, the rms of 3-layer is larger than 1-layer and 
single radar method, but when LWC is getting larger the 
deviation of 3-layer may better than the others, when 

LWC>0.5g/m^, the deviation of rms may decrease to 
< 0.8 %. 
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Abstract: There is an increasing interest for a low cost X- 
band radar systems to be used for urban rainfall 
monitoring, for airport weather surveillance or other short 
range purposes. However at X-band the reflectivity 
measurements are significantly affected by attenuation due 
to the precipitation, an attenuation correction is needed 
and some related techniques are described. 

INTRODUCTION 

In the modern applications of weather radar, the 
absolute and differential reflectivity techniques to improve 
the rainfall rate estimation are of increasing interest. 

It is possible to estimate the rainrate using radar 
polarimetric observables, for example employing 
relationships between the rainrate r and the reflectivity 
factor ZH and the differential reflectivity ZDR, or between 
the rainrate r and the differential phase shift KDP. 

Existing X-band radar are not polarimetric but the low 
cost of RF components in this band makes an 
enhancement to dual polarization (H on transmit, H and V 
on receive) affordable in some cases. Even a 
coherentization can be proposed as a further enhancement. 

However at X-band the reflectivity measurements 
(absolute ZH and differential ZDR) are significantly affected 
by attenuation due to the precipitation [1]. In fact 
experimental measurements have shown that the absolute 
specific attenuation (one way) at horizontal polarization 
aH and differential specific attenuation aD are around 0.37 
dB/Km and 0.06 dB/Km respectively when the rainfall rate 
r is equal to 20 mm/h and increase to 1.2 dB/Km and 0.22 
dB/Km for r = 50 mm/h. 

A computer simulation has been carried on to evaluate 
the sensitivity of attenuation correction algorithms based 
on a cumulative scheme in which the absolute and 
differential attenuation, at nth range cell, are estimated 
using the attenuation-corrected reflectivity at previous the 
cells [2]. 

The quantities aH and aD are estimated using a non 
linear best-fit with (ZH, ZDR), or, if phase measurements 
are available (i.e. the radar is coherent and has adequate 
processing) by linear best-fit relationships with the 
differential specific phase shift KDP. 

The propagation path is supposed equal to 20 Km, and 
a triangular rainfall path model has been considered to 
take account the variability of the rainfall rate along the 
horizontal direction. A comparison between the true 
profile, the attenuated profile and the corrected profile is 
shown. 

METEOROLOGICAL RADAR OBSERVABLES 

The meteorological radar observables are defined as 
follow [1]: 
Rainfall rate (mm/h) 

r=0.6-10~3 -TT-JZ)
5
 -v(D)-N{D)-dD      (1) 

Reflectivity at horizontal and vertical polarization (dBZ) 

Zjjy   =10-lOg 10 y.\K\2 

Differential reflectivity (dB) 

■jaHy{D).N(D)-dD 

**DR -t-H      ^V 

Specific differential phase shift (deg/Km) 
180 

(2) 

(3) 

K DP 
K 

X-Re {j[/H(l))-/r(Z))].tf(D).dD}(4) 

Specific attenuation (dB/Km) 

aHiV = 8.686■ X-Im UfHy{D)-N(D)■ du) (5) 

Specific differential attenuation (dB/Km) 
aD=aH-av (6) 

Where D is the equivolumetric spherical diameter of a 
raindrop. 

In (1), (2), (4) and (5) N(D) is the number of raindrops 
per unit volume per unit size interval (D to D+AD) and 
can be adequately described by a Gamma model given by: 
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N(D) = N0.D".exp\-^^-D (7) 

where the parameter N0, D0 and // of the Drop Size 
Distribution (DSD) are made to vary over a wide range as 
suggested by Ulbrich [3]. 

In (1) v(D) is the fall speed of raindrop. In (2) (JH,v(D) 
represent the radar cross sections at horizontal and vertical 
polarization   respectively,   X   is   the   wavelength   and 

K = ■BjzL where m is the complex refractive index of 

water (for a fixed temperature). In (4) and (5) faviP) are 

the forward scatter amplitudes at H and V polarization, 
respectively. 

ATTENUATION COMPENSATION AND RAINFALL 
RATE ESTIMATION 

The radar signal attenuation in the range direction is a 
cumulative process. Then the measured (m) reflectivity 
factor ZH (dBZ) and the differential reflectivity ZDR (dB) at 
the n'h range cell are related to true (f) values as [4]: 

[zr]n=[^]n-2-f«H,-A,     (8) 
i= 1 

[z£;]„=[z&]B-2-2aV*,- <9> 
i = 1 

where Ax, is the length of the /'* range cell, am and aDi are 
the specific attenuation (one way) at the /'* range cell. 

Using an iterative correction scheme the attenuation- 
corrected (c) values of the horizontal reflectivity and the 
differential reflectivity can be estimated as [4],[5]: 

i= 1 

[z#]„=[z#]„+2-SV*< 

(10) 

(11) 

where  aH   and  aD.  are the estimates of the specific 

attenuation: 

aH =ar10arZ» -10a*Zm (12) 

äD=br10b*z» -ich*1* (13) 

where the reflectivity ZH and ZDR are in (dBZ) and (dB) 
respectively, while aH and aD are expressed in (dB/Km). 

The coefficients of the equations (12) and (13) change 
with the temperature but their variation is not very large. 
In the following we will consider the coefficients at 
T = 20 °C. Scarchilli at X-band has obtained: 

a, = 7.031ff5, a2 = 0.098, a3 = -0.321; 
b, = 8.38Iff6, b2 = 0.1, b3 = -0.278. 
The specific absolute and differential attenuation can 

be  also estimated using the  relations  related  to  the 
differential phase shift KDP as: 

aH=YrKDP (14) 
aD=y2-KDp (15) 

where KDP is in (deg/Km). At X-band we have obtained 
y, = 0.1836 and y2 = 0.0319. 

In the iterative scheme for attenuation compensation 
the absolute attenuation and the differential attenuation at 
i'h range cell are estimated using attenuation-corrected 
values of the reflectivity factor and differential reflectivity 
related to the (i-l)'h range cell. Then the first cell is not 
attenuated through the propagation path. After attenuation 
corrected reflectivity ZH and ZDR, the corrected rainfall 
rate (mm/h) is derived to apply the following relationship: 

r = cr10Cl'z" .10C3'Zm (16) 

where, at X-band: c, = 9.1074KX3, c2 = 0.0984, 
c3 = -0.4833 with Z„ and ZDR are in (dBZ) and (dB) 
respectively. 

The rainfall rate can be also estimated using the best-fit 
relationship at X-band: 

r = y3-KDP (17) 

where y3= 11.57. 
In the latter way the rainfall rate is estimated using a 

non attenuated radar observable. However it should be 
noted here that KDP is composed by two terms related to 
the forward and to the back scattering; in this work the 
back scattering contribution is neglected. Moreover, KDP 

estimates are poor in low Signal-to-Noise conditions. 
In Fig. 1 are shown the Percent Error PE and the 

Fractional Standard Error FSE of (16) and (17). 

RAIN MODEL AND ERROR SOURCES IN 
RAINFALL RATE ESTIMATION" 

The effectiveness of the correction technique for 
improving rainrate estimates is related to the rainfall path 
between measurement cell and radar. In our analysis we 
have considered a triangular rainfall path. In this model 
the rainfall rate along the propagation path has a 
triangular profile, where, along the path, the Drop Size 
Distribution parameters Na and // are varied randomly 
following the Ulbrich's range [3], while D0 is calculated 
from the inversion of the rainfall rate equation. In this 
model the rainrate is decorrelated from cell to cell. 

The correction attenuation scheme above described is 
affected by a set of errors that we can classify as [6]: 
• Random error sources related to the physical variability 

(DSD variation) and statistical variability of the radar 
observables. 

• Systematic error sources, for example bias in the Z# 
measurements related to the calibration system, or bias 
in the ZDR measurements due to the mismatching 
between the radiation pattern at horizontal polarization 
and the one at vertical polarization. 

In our analysis, to evaluate the best-fit relationship 
errors, the statistical signal fluctuations are neglected;, in 
any case these errors can be minimized using suitable 
time-space average. Then the random errors can be 
decomposed in: 
1) best-fit (16) errors related to rainfall rate estimation; 2) 
best-fit (12), (13) or (14), (15) related to attenuation 
estimation; 3) best-fit relation errors related to attenuation 
estimated by attenuation corrected values of ZH and ZDR 

instead than by the true values. 
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We point out that the correction procedure is not a 
linear procedure, then the total error is not the sum of 
errors. 

CONCLUSION 

For X-band dual polarization radar we have analyzed 
by computer simulations an attenuation compensation 
techniques. 

The iterative procedure to correct the radar observables 
ZH, ZDR from the absolute and differential attenuation is 
based on the best-fit relationships between (ZH, ZDR) or 
KDP and the specific absolute and differential attenuation 
(aH, aD). 

A triangular rain path model has been introduced 
varying the drop size distribution parameters (N0, D 0, n) 
from cell to cell. The random errors due to the variation of 
the DSD have been analyzed. Fig. 2 shown the comparison 

between the true profile and the attenuated and corrected 
profiles, the latter obtained using (12), (13) and (14), (15) 
to estimate the absolute and differential attenuation. 

The results have shown that the application of the 
attenuation compensation technique produces a negative 
bias in the rainfall rate estimation. The bias increases 
when the propagation path and the rainfall rate increase, 
while it is little sensitive to the number of cells along the 
propagation path with a fixed range. 

In conclusion the examined attenuation-corrected 
technique based on ZH, ZDR measurements, generally, has 
shown a good behaviour. Operational limits are presented 
when the rainrate is very high, then, in this case, the best- 
fit relationships are affected by high errors. The direct use 
of KDP (observable no affected by attenuation) to estimate 
the rainrate is useful particularly when the rainfall rate is 
very high. 
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Fig. 1 Percent Error (PE) and Fractional Standard Error (FSE) of the rainfall rate estimation (16) and (17). 
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Fig. 2 Triangular rain profile: true; measured (16); estimated (17); corrected (16), (12), (13); corrected (16), (14), (15). 
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Abstract -- Polarisation effects can be observed as well in 
radar as in radiometer data of stratiform and convective rain. 
These polarisation effects are due to different influences, e. g. 
the oblateness of large rain drops and path inhomogeneities. 
The dual polarisation technique is well known in radar 
meteorology. The emphasis in this contribution is therefore on 
the event based and statistical accuracy of the derived rain 
rate and on different sources of errors. In the passive remote 
sensing of rain the use of two polarisations is a new subject. 
By such measurements also drop size distributions can be 
derived, which improve the rain rate determination. 

INTRODUCTION 

Rain rate estimation by ground based weather radar is a 
widely used technique today. Although many operational 
radars still use only one polarisation, dual polarisation 
techniques have    been developed    and    experimentally 
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approved, which allow the determination of the shape, 
distribution and type of the hydrometeors, and finally the rain 
rate with more precision. However, there are a many sources 
of errors, which have to be taken into account carefully. 

In the rain rate estimation by microwave radiometers there 
are two principle ways: absorption (emission) measurements 
using frequencies below 30 GHz and scattering measurements 
using higher frequencies up to 90 GHz. The second approach 
is in particular useful for spaceborne applications, where the 
reduction of the surface emission due to the scattering by rain 
or clouds can be measured. For ground-based applications 
with low background radiation from space the absorption 
technique seems to be preferable. 

A dual polarisation technique for radiometers was 
developed in [1]. Similar to the radar differential reflectivity 
technique, the drop size distribution is determined, which 
allows then a more precise calculation of the rain rate or of 
propagation    parameters    along    the   path.    Drop    size 

37   GHz.   H 

Rain  Rat« In Rain Rat« In 

Fig. 1: Brightness temperature and differential temperature versus rain rate (elevation 27.3°, rain height 2.5km). 
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distributions, derived from such passive measurements, are 
coincident with radar and distrometer measurements [1]. The 
effectiveness of this technique is also demonstrated in this 
paper. 

BRIGHTNESS TEMPERATURE AND DIFFERENTIAL 
TEMPERATURE 

The dependence of brightness temperature (TB) and its 
difference between horizontal and vertical polarisation , the 
differential temperature (TD = TBH-TBY) was investigated by 
numerical solution of the vector radiative transfer equation. 
Fig. 1 shows downwelling TB and TD, which is seen by a 
ground based radiometer under an elevation of 27.3°. A 
plane-parallel rain slab with 2,5 km height and a temperature 
lapse rate of -6.5 K/km above a land surface with temperature 
288 K and emissivity 0.96 was assumed. Absorption by water 
vapour and oxygen is included. The simulations have been 
carried out for oblate rain drops with Pruppacher-Pitter axial 
ratio and different two parameter drop size distributions of the 
form 

N(D) = N0 exp(-3.67D / D0), (1) 

where A^o=0.8*10nm"3mm"1. The parameter n=4, for instance, 
corresponds to the well know Marshall-Palmer distribution 
with No=8000m"3mm"\ The curves show that 
• TD can reach values up to 15-20 K at 13 and 19 GHz, 
• TD decreases with frequency, 
• the relations of TB and TD to the rain rate depend clearly 

on the drop size distribution, 
• TB is saturated for rain rates higher 10 mm/h for 37 and 90 

GHz. 
• At 90 GHz TB decreases for high rain rates due to 

scattering effects, where TD slightly grows but still 
remains small. 

DUAL POLARISATION TECHNIQUE 

In the classical Radar dual polarisation technique, the drop 
size distribution parameter D0 is derived from the differential 
reflectivity ZDR and JV0 then with the aid of the effective 
reflectivity factor Z. For constant N0 the rain rate is directly 
related to the second drop size distribution parameter D0. 

Fig . 1 shows that a similar approach is also possible for 
dual polarisation radiometer measurements. Although, here 
the differential temperature does not depend directly on D0 

but also on N0, both parameters (or equivalently N0 and the 
rain rate) can be determined, if TB and TD are measured 
simultaneously. Practically, this is done by a search and 
interpolation algorithm and .a look-up table. The resolution 
and accuracy of this algorithm is best at 13 and 19 GHz up to 
rain rates of 30 - 40 mm/h, where TD has measurable values 
and a good sensitivity to the drop size distribution and TB is 
not saturated. For 37 and 90 GHz the values of TD are too 
small. 
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Fig. 2: Drop size parameters N0 and D0 for stratiform rain. 

Fig. 2 represents an example of D0 and N0 for stratiform 
rain, which have been derived from radiometer measurements 
at 19 GHz, in comparison with path averaged values obtained 
from 5.5 GHz radar measurements . 

RAIN RATE MEASUREMENTS 

The effectiveness of the dual polarisation technique is 
demonstrated in Fig. 3. The rain rate was determined by the 
dual polarisation technique from 19 and 13 GHz radiometer 
data and are compared with the rain rate measured by a rain 
gauge located near the radiometer antennas. The rain rate was 
also calculated from TB only, assuming a Marshall-Palmer 
distribution with constant N0= 8000 m'W1. 
The figure shows a significant improvement of the rain rate 
estimation by the dual polarisation technique, in particular by 
the 13 GHz radiometer and for the second peak of rain rate. 
Comparing the 13 and 19 GHz results, one have to take into 
account the very different beamwidths of the two radiometers 
of 15° for 13 GHz and 1.2° for 19 GHz. 

ERROR SOURCES 

Calibration Errors 
The calibration of the radiometer can be performed with a 

cold and a hot load or by clear sky measurements. In the first 
case the losses and mismatches of the connections from the 
load to the receiver must be measured exactly. These 
connections can change the effective temperature of a liquid 
nitrogen load by 10 K and more, respectively [2]. In the 
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Fig. 3: Comparison of rain rate estimation by radiometers. 

second case the reference'temperature of the clear sky must be 
calculated with the help of models and meteorological 
information. The error can be reduced by performing clear 
sky measurements at different elevations. By a combination 
of the different methods, accuracies of 1 K for the absolute 
and differential temperature are possible [2]. 
For the calibration of the radar constant and radar 

polarisation states often a metallic sphere is used as a target. 
For the differential reflectivity a calibration accuracy of 0.1 
dB is possible. However, due to uncertainties about the 
antenna gain, transmit power, antenna pattern and internal 
calibration of the amplifiers, the overall accuracy of the radar 
constant and the effective reflectivity factor is only 1-2 dB. 
Therefore, the radar may be additionally (or alternatively) 
calibrated statistically by comparison with rain rate 
measurements. 

Instrument Errors 
Even with a good calibration errors can occur due to 

statistical signal fluctuations, non-perfect linearity of the 
amplifiers and quantisation effects in the signal processing 
chain. A major source of errors are also instrument 
instabilities, e. g. temperature drifts of the amplifier 
coefficients, if there is no good temperature stabilization. 

Path Inhomogeneity and Beam Filling 
Radiometers measure integral values of the emission along 

the total path through the atmosphere. Therefore, when 
comparing point rain rates measured by a rain gauge with 
radiometer measurements, the agreement will be best for 
homogeneous paths. For rain rates above 10 mm/h, normally 
rain cells exist with dimensions smaller than the path length. 
If a rain cell is located near the antenna and fills the total 
antenna beamwidfh, the rest of the path do not contribute 
much and the error will be small. On the other hand the 
radiometer can detect rain cells, which do not pass the rain 
gauge. 

For the radar, the problem of path inhomogeneity exists on a 
first view only, if the rain rate is inhomogeneous within the 
scale size of the radar pulse volume. However, when the 
average rain rate along the radar beam (path) or a radar scan 
volume is compared with a rain gauge, similar problems as 
for the radiometer exist. 

Model Errors 
For the conversion of brightness temperature to rain rate a 

plane-parallel atmosphere was assumed here. Besides the 
problem of the path inhomogeneity the rain height (altitude of 
the rain area above ground) must be estimated, which is 
probably the major error source of the model. Other error 
sources are connected with the modeling of the hydrometeors 
itself, e.g. their shape and orientation. Also the two parameter 
drop size distribution is only an approximation. 

It has been found that the distribution of the drop canting 
angle (even with a zero mean) reduces the measured ZDR 

values and leads to values of No, which are too high. Also the 
existence of hail or other hydrometerors can produce large 
errors in the radar rain rate, if they are not detected and not 
taken into consideration [3]. The radiometric emission 
measurements seem to be less sensitive to these types of 
errors in comparison to the radar backscatter measurements. 

CONCLUSIONS 

The performance of rain rate estimation by radiometers 
shows the same (or even better) accuracy than radar 
measurements. Both active and passive dual polarisations 
measurements allow the determination of the drop size 
distribution. The knowledge of the drop size distribution can 
improve the rain rate estimation significantly. Additionally, it 
opens the door to many other applications, e. g. the complete 
transmission matrix of a path including differential 
propagation parameters like differential attenuation and XPD 
can be calculated for satllite communication links. 
Radar measurements provide a good spatial resolution and 

can cover large areas. In contrast, the advantages of the 
radiometer measurements are high temporal resolution and 
their principal simplicity. By combining dual polarisation and 
multi-frequency measurements the accuracy of the rain rate 
estimation by radiometers may be still improved. 
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Abstract -India Meteorological Department (IMD) is the 
nodal agency for weather service in India.IMD Operates a 
chain of conventional weather radars along the peninsular 
coastline for the Cyclone detection & characterization of 
severe weather.This chain of Cyclone Detection Radar 
(CDR) systems is now being replaced by Pulse Doppler 
Radar systems known as Doppler Weather Radar (DWR) 
systems.As part of this program IMD entered into a 
Memorandum of Understanding with the Indian Space 
Research Organisation (ISRO) for the design, development 
and commissioning of an operational DWR system.The 
overall system level and detailed subsystem level 
specifications for this radar were arrived at by IMD & ISRO 
after detailed deliberations with experts in the fields of radar 
meteorology and radar system design.This paper describes 
the salient features of the Indian Doppler Weather Radar. 

INTRODUCTION 
IMD has a distinguished service spanning two centuries 
providing weather forecasts & severe weather alerts over 
peninsular India.Cyclonic storms especially over the east 
coast of India cause wide spread damage & destruction to life 
& property. Radar systems have played a' major role in 
characterisation   of   cyclones   &   other   severe   weather 
systems.Use  of radar  systems  for  this  purpose  is  well 
established & documentedfl],[2].Advances in Pulse Doppler 
Radar systems made them ideal choice for severe weather 
charecterisation.Development & operationalisation of WSR- 
88   (also   known   as   NEXRAD)   by   National   Weather 
Service(NWS) in USA, has set the trend for the use of 
Doppler Weather Radar for operational weather forecasting. 
An inter agency program between IMD & ISRO was initiated 
to design & develop a Doppler Weather Radar System in S 
band to meet the specific requirements of IMD in the area of 
Cyclone  detection &  characterisation  of severe  weather 
systems.Based     on     the     sytem     level     performance 
specifications.and subsystem requirements projected by IMD, 
the  DWR  Project  team  at  ISRO/ISTRAC   carriedout  ä 
detailed design study. After detailed design review by a 
committee of experts the DWR system is being realised to be 
integrated,tested & commissioned by the first quarter of 

1999,   thus   making   it   a   Weather  Radar   for  the   21st 
century.The following is an overview of this DWR system: 

SYSTEM SPECIFICATIONS & FUNCTIONAL 
REQUIREMENTS 

Table    1    summarises    the    system    level 
specifications. 

Table. 1 

performance 

Reflectivity   Velocity    Sp Width 

500 
300 
2dB 

250 
300 
1 m/s 

250 
300 
1 m/s 

1. Range (Km) 
2. Resolution (m) 
3. Accuracy @23 dBZ 

@2rpm 
Unambiguous maximum velocity +30 m/s for 125 Km 
Ambiguity Resolution techniques to extend velocity to 
_± 60 m/s for 125 Km or ± 30 m/s for 250 Km. 

DOPPLER WEATHER RADAR SYSTEM 
DESCRIPTION 

With the design approach adopted the DWR system was 
configured as shown in Fig.l. DWR employs a low sidelobe 
antenna enclosed in a rigid spherical radome employing 
curved sandwich panels.Radome is designed to withstand 
winds of 200Km/hr gusting to 300Km/hr.The antenna drive 
system employs a position loop servo with digital 
compensator to provide accurate scan functions including a 
programmable volumetric scan.Provision for vertical scan at 
selected Azimuth can generate quick RHI display. A coherent 
transmit / receive system employs a master reference 
oscillator with very low phase noise,to phaselock the COHO 
& STALO synthesisers.Transmitter waveform selected for a 
given observation is modulated on the buffered COHO , 
unconverted & given to the transmitter input. Transmitter 
with a hard tube modulator employs a klystron as power 
amplifier to generate a nominal peak power of lMW,with an 
average power around 2KW.Receiver with LNA (~ldB NF) 
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FIg.1 DWR Block Diagram 

and a mixer preamplifer located along with TR limiter right 
at the antenna hub provides a sytem noise temperature close 
to 300 Kelvin. IF portion of the receiver is split into LOG & 
LINEAR channels.LOG channel is used to cover the entire 
dynamic range of 95 dB and provide a control voltage to set 
the IAGC to the proper level to avoid saturation of the LIN 
channel. I & Q outputs of the LIN channel are digitised with 
14 bit resolution Data & fed to a modular DSP system to 
derive base products,viz the three moments of the time 
series,thus providing signal power,mean Doppler & spectrum 
width. DSP is programmable to provide the moments either 
directly using the popular Pulse Pair algorithm,or in certain 
special situations by obtaining power spectrum using 
FFT.Provision exists to dispaly the base products on the 
graphical workstations or on a simple PC monitor. 

RADAR DATA ACQUISITION AND 
PROCESSING SYSTEM 

The DSP subsystem uses PCI bus compatible boards for the 
ADC and DSP and these boards are pluggable on to a 
general purpose PC. This option is cost-effective and also 
uses the PCI bus which is prefered for I/O applications due 
to its bandwidth and throughput capabilities. The Computer 
System for the Doppler Weather Radar uses the distributed 
computing environment in which a powerful file server is 
connected to three workstations on a high speed Ethernet bus 
along with a Radar Controller and the Radar Data 
Acquisition & Processing System (RADAPS) as in Fig.2. 
The Radar Controller is a PC which provides the graphical 
use interface (GUI) for the operator to operate the radar. The 
data acquired and processed by the RADAPS is sent to the 
server which in turn makes the data available on the ethernet 
to the workstations for displaying higher order data 
products.Server maintains the data archive. Options exist for 
the user to further process the data and display any- of the 

Data Products on a remote workstation. The Data Products 
are classified as follows. 

1. Base Products — Z, V and a 
2. Primary Products 

a) X-Z cross-section 
b) CAPPI (Constant Altitude PPI) 
c) Echotop image display 
d) Rainfall intensity 
e) Rainfall Accumulation 
f) Vertically Integrated Liquid Water Content 
g) Hail Warning 
h) Velocity Volume Products 

3. Derived Products. 
a) Track Forecast 
b) Height of Tidal Waves 

Peripherals /Storage / 
Archival 

RADAPS 
RGB-PAL — 

I 

VCR 

Ethernet (100 Mbps) 

4mm DAT 
Erasable CD-ROM Drive 

—I Color Printer 
Server 

Data 
Communication 
Interface 

RC 

T~T 
PC 

WS1 

UZL" 
SG-02    -I 

WS2 

SG-02 

WS3 

I 
SG-Indy 

Fig.2 Computer System for DWR 
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SYSTEM PERFORMANCE SIMULATION 
Overall system performance was evaluated for different 
precipitation levels using the classical PROBERT JONES 
equation. The resultant signal to noise ratio as a function of 
slant range for different values of reflectivities is plotted in 
Fig 3. Estimation of accuracies for measurement of 
reflectivity , Mean Doppler velocity & Spectrum width for 
antenna rotation at 2 rpm were made for relevant prf values 
using estimators given by Doviak & Zrnic[2]. Results are 
tabulated as Table.2. It can be seen that the accuracies meet 
specifications. 

Table -2. 

PRF Std deviation m/s at SNR of 

250 Hz 
1200 Hz 

OdB 
1.02 
0.93 

20 dB 
0.5 
0.44 

SCAN STRATEGIES 
Scan strategies are worked out for three typical cases and are 
shown in Table.3. Presently a two prt/prf method for 
resolving Range - Doppler ambiguities is effected.Efforts are 
on to include a phase coded waveform which can yield better 
resolution of such ambiguities. 

Table 3 

like Society for Advanced Microwave & Electronic Engg & 
Research, Indian Institute of Technology, Electronics & 
Radar Development Establishment, National Aerospace 
Laboratory and Thumba Equatorial Rocket Launching 
Station, System design & Engg being the responsibility of 
ISRO-ISTRAC. 
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Abstract - A simple model for normal incident angle and close- 
in detection was developed and presented at the SPIE conference 
in 1996. Complex models that include normal and oblique 
incident angles and stand-off detection are included in this 
paper. The   models   and   algorithms   are   based   on 
electromagnetic and radar equations. Electromagnetic equations 
determining transmission and reflection coefficients, attenuation 
factors, and wave numbers, as well as radar equations involving 
power and radar cross-section are used in the simulation. 
Variables included in the models are operating frequencies, three 
and four boundary models, two detection techniques, four mine 
types, different environments, and four incident angles. 

Josfl.gmu.edu 

CONCEPTS 

Simulation techniques for near-field and far-field mine 
detection are modeled mainly by using the concept of pulse 
reflections and transmissions at surface boundaries and pulse 
attenuations in the media through which the signal 
propagates. The main difference between the two techniques 
is the calculation in air medium (i.e., between the antenna 
and ground). 

Assume as illustrated in Fig. 1, a monostatic GPR looks 
directly into multi-layers of different materials such as air, 
snow or ice, soil and a mine. 

INTRODUCTION 

The purpose of this paper is to model the detection of 
buried metallic and non-metallic land mines in snow and ice 
as well as in dry and moist soil, while attempting to simulate 
some of the real conditions that an actual detector, using 
monostatic Ground Penetrating Radar (GPR), might 
encounter. A detection algorithm is designed and 
implemented using the engineering programming software 
MATLAB. 

The mine detection process is simulated by using the 
concept of pulse transmission, reflection and attenuation in 
each medium. Each medium layer, through which the 
transmitting signal pulse propagates, is modeled as a 
characteristic impedance, derived from the electrical 
properties of that medium. Then reflection and transmission 
coefficients are calculated based on these impedances and 
the attenuation constant is calculated using the properties of 
the medium. 

Simulations are presented for a GPR radiating into a 
three- boundary (antenna/air, air/soil, soil/mine) and a four- 
boundary (antenna/air, air/snow, snow/soil, soil/mine) 
environment. Both near-field (close-in) and far-field (stand- 
off) techniques consider four anti-tank mines: two non- 
metallic and two metallic. Operating frequencies in the 
range from 200 MHz to 4 GHz (200 MHz incremental step) 
and four incident angles: 0° (normal), 30°, 60°, and 90° are 
considered. 

Zant       Zair      Zsnow     Zsoil 

4 

1 Zmine 

:-  l~Xrl air .snow soil 

Fig. 1. An analogous transmission line with load 

According to the model, a GPR produces a short pulse 
of magnitude V^ai which propagates along the 
transmission line as indicated in Fig. 1. At each junction, an 
incident pulse splits into reflected and transmitted pulses. 
The magnitude of the pulses after each encounter with each 
junction is indicated by r and p the transmission and 

reflection coefficients. For example, the pulse traveling 
sequentially through each junction from the antenna to the 
mine   and  back  to   the   antenna  has   a  magnitude   of 
(TlT2T3p4TJT2,Tv)Y] This amplitude attenuates by 

(e_2a<*'<* e-
2a«^«»e-2«-«U y       We   assume   that   the 

attenuation of the soil is large enough so that multiple 
reflections   within   a 
backscattered     signal 

material   reduce   to    zero.    The 
reduces     to     the     product     of 

(TlT2T3p4TyT2Ty )(e 
2a^'a'e 2a™J» -2 a,„„I, soil1 soil \\J 

) Vinitial- 
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MODELING AND ALGORITHMS Finally, the signal reflected from the mine is given by 

Technique 1 
The method used to find the backscattered signal returned 

from a mine buried in dry soil or moist soil covered with 
snow (or ice), involves calculating the characteristic 
impedances Z, the transmission coefficients X, the reflection 
coefficients p, and attenuation factors. 

The characteristic impedance Z (£1) of 73+J42.5 is chosen 

for the antenna while Z (Q) of the air, snow, ice, soil, and 

mines are computed using 

')*V, Initial (8) 

H7 a+jcos0£r 
(1) 

where 
CO - 2nf = radian frequency of operation (f= frequency 
of operation) 
H   =ju0 jur = permeability of medium 

£   =£0 £r = permittivity of medium 

Sr   
=£r

,—jsr"= complex relative permittivity of medium 

(7  = conductivity of medium 

The impedances of adjacent media are used to compute 
the reflection coefficient using 

" Final    ( T\ X2 TzP^i< TT TV )* 
—1 r/     1 (p   ''"■air'air p snowsnow p 

Oblique angle 
In the event that the incident wave propagates in a 

direction that is not perpendicular to the boundary, the 
incident wave (from medium 1) makes an angle 9; with the y 
axis (y is orthogonal to the surface of the ground), the 
reflected wave (medium 1) makes an angle of 0r with the y 
axis, and the transmitted wave (medium 2) makes an angle 
of 9t with the negative y axis. In this model, it is assumed 
that the electric field is perpendicular to the plane of 
incidence (the xy plane) and the antenna does not receive the 
reflected wave from the ground . Using Snell's law, the sine 
of the angle of transmission is equal to 

sin#f = —sin#. (9) 

where kj is wave number of medium 1 and k2 is wave 
number of medium 2. 

The  wave  number  in  a  high-loss  medium,   km,,   is 
computed using 

P = 
7 -7 

Z2+Zx 
(2) 

kHL = J-jü)jUr'iio(v + Ja£r'so)      (10) 

whereas the wave number in a low-loss medium, kLL 

is given by 

Using p from equation (2), the transmission coefficient 

at a given junction from left to right is 

T}.=l+p (3) 

whereas the transmission coefficient  at  a  given junction 
from right to left is 

(4) :f=l-p 

The propagation constant of waves in a given medium is 
computed using 

rmed  = V(°"med + JaZ^rmed Mj^^nned ) (5) 

and the attenuation constant is simply corresponding 

amed=reaKYrned) (6) 

kn =G)jpr'p0£r'e0(l-jtmS)      (11) 

If the medium is lossless then 

kNL  = W/V/W^O (12) 

The characteristic impedance Z (D.) of the medium when 
incident angle is oblique is given by 

^■oblique       ^normal' OQayJ) (13) 

Waves attenuate according to 
-2a„,dL 

where lmed is the thickness or depth of the medium. 
(7) 

where Z„ormal   is obtained from equation (1) and 9 can be 
either the incident or transmit angle. 

For a wave incident at an oblique angle, the reflection 
coefficient becomes 

7 -7 _      2_oblique       ^l_oblique 
r oblique ry ry \\^) 

^2_oblique "*" ^loblique 
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then equations (3) through (8) are used to obtain the 
backscattered signal, VFinal. 

For oblique incident angles, the scattered field returned to 
the antenna follows the same path as the incident wave. 

Technique 2 
Technique 2 is used to simulate far-field or stand-off mine 

detection. The modeling and the simulation process are 
similar to technique 1 with a few exceptions. Technique 2 
uses the power equation while technique 1 uses the 
coefficient equations and attenuation constants in the 
boundary between the antenna and air. Also, technique 1 
assumes an infinite boundary of the detection area, while 
technique 2 assumes a finite boundary, which is equal to the 
circular flat surface area of an anti-tank mine, in this case a 
radius of 17 cm. 

A far-field mine detection model can be used because the 
standoff operating ranges (5 to 30 m) qualify as far-field by 
the criterion 

* = — (15, 

where R (m) is the distance to the boundary between the 
radiating near-field and far-field regions, D is the largest 
dimension (0.5 m) of a horn antenna aperture and X is the 
wavelength (0.075 to 1.5 m for the above frequency range). 

The mean received power Pr (W) in air (between antenna 
and ground) is given by 

1S
,
11 = 20*log1o[(T2T3y04T3,T2,   )* 

P: = R 
A   2 
AP   °'res (16) 

' 47TÄ2d4 

where Pt is the transmit power, AP is the physical aperture of 
the horn antenna, crrcs is the radar cross-section as obtained 
from equation (17) below, X is the wavelength, and d is the 
distance from the radar to the ground. In order for equation 
to be valid, several assumptions are made, namely: the gain 
of the receive antenna is the same as the gain of the transmit 
antenna (both equal to 4n AP IX

2), and furthermore, the size 
of the mine is large compared to the wavelength. 

The radar cross-section (m2) of the circular flat mine is 
given by 

A2 
cos2 6{ 

Jx(4nrsm0/A) 

A7V sin 61 Pi 
)2     (17) 

where r is the radius of the ground area, which is equal to 
the surface area of the mine, and 9 is the oblique incident 
angle to the ground. 

The backscattered signal in mediums other than air are 
computed using equation (8) of technique 1; the 
backscattered signal (dB) in all mediums except air is 

(e ~^asnowhmw s>   ^asoirsoiI 
)] 

Total power received (dB) by the antenna: 

Ptotai = Su (dB) + l0log10(-9 
P 

(18) 

(19) 

CONCLUSION 

In the near-field detection, the results from technique 1 
agree with the experimental results when the targets are 
buried in dry soil. However, when the targets are buried in 
moist and wet soil, the simulated results only partially agree 
with the experimental results. For far-field detection, the 
experimental results are not available; hence, no comparison 
is made. However, when they are available, they will be 
presented at the symposium. 

Simulated data for oblique angles shows that the received 
power is strongest when the incident wave propagates 
normally to the boundary. 

Results confirm that non-metallic mines are very hard to 
detect in dry soil. This is so because the dielectric constant of 
the mines is similar to that dry sand (low contrast). 
However, the simulated data shows that when the soil is 
moist or the dry sand is covered with snow or ice, the non- 
metallic mines are less difficult to detect. However, the 
increased moisture content in the dry soil does not help to 
detect the metallic mines. 

Although the models presented here are not completely 
rigorous, they have the advantage of being computationally 
efficient. Under certain condition, results were obtained 
which were in reasonable agreement with measured data. 
The work is presented mainly as a starting point from which 
a more sophisticated analyses may depart. 
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The problem of abandoned landmines and unexploded 
ordnance is particularly acute when these objects are near the 
surface, so that their radar returns cannot easily be separated 
from the ground surface response. To address this, we pur- 
sue simulations here designed to test methods of sensor de- 
ployment and data processing that exploit angular, posi- 
tional, and frequency diversity for detection of metallic tar- 
gets that are on the order of the subsurface wavelength in 
size. Rigorous 2-D computations were performed and 
results processed for the angular correlation function (ACF) 
approach, in which one performs a coherent average of re- 
ceived signals from two incidence and observation angles. 
Simulations pursue the behavior of the ACF under realistic 
ground roughness and moisture content, target geometry, and 
highest practical resolution GPR frequencies. To achieve an 
expanded ensemble of cases, given a single subject ground 
surface, we average both over frequencies and overlapping 
incident beam locations. 

INTRODUCTION 

The investigations discussed here are part of a larger study 
in which measurements and simulations are pursued to test 
innovations in sensing strategy for detection of buried 
objects. A principal motivation is to improve methods for 
detecting abandoned landmines or unexploded ordnance. 
These objects pose an enormously widespread and urgent 
problem worldwide, and also put extraordinary burdens on 
subsurface sensing methods. This is partly because the 
criteria applied must be extremely strict, requiring an 
absolute minimum of both false positive and false negative 
judgments as to the presence of a target sought. This is 
particularly challenging in as much as the targets of interest 
typically reside in randomized environments. Simply 
increasing the sensitivity of sensors tends to inundate the 
record with irrelevant clutter. One must pursue creative 
sensing strategies, by which we mean the totality of sensor 
configuration, combination, deployment, and data processing 
methods. 

The nature of the problem is illustrated in Figure 1, which 
shows bistatic results from 2-D numerical solutions for radar 
reflection from metallic targets embedded in a moist soil 
with randomly rough surface. The two targets are ap- 
proximately the same size, one elliptically shaped and the 
other having a mine-like geometrical cross section (Figure 
2). Radar cross section values are shown, arbitrarily but con- 
sistently scaled, in negative scattering directions, i.e. back 
into the quadrant occupied by the transmitter. For these re- 

sults from a single frequency, incidence angle, and beam po- 
sition, one sees that relative visibility of the subsurface target 
depends very much on which target one considers and which 
observation angle he chooses. 

Bistatic cross sections on arithmetic scale 

for 1600 MHz with 9 =50" 

-70   -65   -60   -55   -50   -45   -40   -35   -30 

6  (deg) 
Figure 1. Bistatic radar cross sections at 1600 MHz for 
rough ground with and without buried target 

We must pool data to ascertain ways in which any of a vari- 
ety of targets will stand out, reliably and over a broad range 
of angular and environmental conditions. Because our tar- 
gets of concern are quite localized, one's options are limited 
for achieving an ensemble of sensor data for processing. We 
proceed by defining a particular scene (Figure 2) and solving 
for the scattered response over a broad frequency band, va- 
riety of incidence and observation angles, and beam position 
combinations. We then investigate the behavior of ACF 
processing schemes when applied to that data. 

SIMULATION AND PROCESSING APPROACH 

The example target (Fig. 2) is 10 cm high, 22 cm wide at 
the base, buried with its top 5 cm below the mean surface. 
We treat only horizontal polarization here (E field into the 
page). The taper of the beam is illustrated by the E field so- 
lution magnitudes shown for total field along the soil sur- 
face. Environmental randomness is expressed through the 
rough soil surface, which is otherwise homogeneous. The 
real part of the soil dielectric constant is 9, typical of a moist 
soil, and its electrical conductivity is 10"3 S/m. 
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Surface field solution at 800 MHz and 1600 MHz 

T 
0.161- j™. 

(m)    0. 

-0.16 
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-1 -05 0 
X (m) 

05 

Figure 2. Example target and surface geometry, with ground 
surface field solution. 

The random surface is generated by selecting a parent dis- 
tribution Fourier transform Z(K) of its height profile, corre- 
sponding to a power spectrum W(K) in the form of a 
Rayleigh distribution. 

W(K)   = 
iti2h2 

\K\ exp 
-nK2l2\ 

(1) 

where h is the root mean square height and I the correlation 
length. This suppresses low frequency surface shape com- 
ponents and produces many relatively small bumps, as 
shown. We choose UK) proportional to ^W(K) for each K, 
but then randomize the phase of the component This pro- 
duces an ensemble in which each member surface is 
different but has the same specified h and I equal here to 1 
cm and 3 cm respectively. The E field is obtained from 
numerical solution of an integral equation in the manner of 
[1], for each electromagnetic frequency, beam position, and 
surface. 

To achieve positional diversity we shift the beam from 
side to side over five positions: centered over the target, and 
centered over points ± 25cm and ±50cm from there. Thus 
the target remains at least generally within the main beam, 
and with each shift of the beam we change the sample of the 
surface by a significant amount Examination of amplitude 
and phase of backscatter suggests that this is the best we can 
do with these surface parameter/ radar wavelength relations. 
Larger shifts would take us away from the target. Scattering 
data are pooled from nine frequencies equally spaced be- 
tween 800 MHz and 1600 MHz. This appears optimal from 

the point of the view of the angular correlation study over 
this band. That is, a coarser frequency division shows 
angular correlation effects poorly; a finer division produces 
samples that are less independent, thus bringing no 
improvement. Altogether, with five shifts and nine 
frequencies, we achieve an ensemble of 45 cases for each 
surface surveyed, over a total ensemble with 25 such 
surfaces. 

Recent work suggests that angular correlation function 
analysis (ACF) may succeed in suppressing scattered signal 
clutter from random surface irregularities, relative to the 
effect of the target [2]. One computes the complex product 
of fields scattered in directions 9si and &s2 produced by 
incident waves from directions Ö,-; and Ö/2, respectively. 

ACF   =   (Ei<dtl,ea)fGa,ea)) (2) 

When the averaging <..> is performed over samples of a sta- 
tistically homogeneous domain, the fields will decorrelate 
except along the "memory line," determined by the angular 
relations sin(0s2) - sin(0,;) = sin(Öj2) - sin(e;;). This 
applies for any statistically appropriate source of random re- 
flection in the medium. The effect of the target represents an 
underlying coherence that will not decorrelate in the same 
way over the sample space. Here we take care to choose a 
relevant target with irregularities on the order of the surface 
perturbations, in part to see whether its effect simply aver- 
ages out as if it were tantamount to another surface variation. 
We will proceed by selecting 6u, Ga, and 9sj, viewing the 
results over 0S2. A major quiestion has been the width of 
the memory line, i.e of the region where surface effects may 
correlate, obscuring the hopefully high ACF value from the 
target. This relates to our preoccupation with reliability: how 
decisively (and when) will the target case ACF be larger than 
that from the surface alone. The ACF/ memory line phe- 
nomenon was originally shown to occur for ensembles of 
spatial samples. Here we must rely more on sampling over 
frequencies. 

Figure 3 shows bistatic ACF bounds computed with fre- 
quency averaging but without space shifting. The ACF 
magnitude is calculated for each surface, with and without 
buried target; the bounds defined as +/- one standard devia- 
tion from ensemble average are determined at each 8s2- 
While peaks appear at the memory line angle of -4.5°, they 
are quite diffuse and ill-defined. In any case, the locus of 
ACF magnitudes with target present is generally higher than 
without a target Next we consider both frequency and spa- 
tial averaging. Figure 4 shows quite distinct peaks directly 
at the memory line angle. Given the range of positions and 
the frequency band at our disposal, this is about as narrow a 
memory line as can be achieved. At observation angles Ss2 
around -60°, the target would usually though not always be 
distinguishable. However for 6S2 between about -20° and 
-55° the distributions overlap badly. Note also that in both 
target and non:target cases there is a prominent secondary 
lobe; detectability of the target is distinctly better over these 
lobes, including the memory line lobe.     Detection 
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performance is not better in && regions that show maximum 
decorrelation behavior (ös2 ~ -30°)- The target seems pri- 
marily to intensify the non-zero correlation at the memory 
line and secondary lobes. 

Upper and lower ACF bounds 
from frequency but not spatial averaging 

ACF 

bounds 

-A  (deg) 
Figure 3. ACF bounds: 8,7 = 25°, Bsi= -25°, ©£= 50°. 

Upper and lower ACF bounds 
with both frequency and spatial averaging 

ACF 

bounds 

Figure-*. ACF bounds: 6n = 25°, 6si = -25°, 0j2= 50°. 

As a second case we reverse the angular selections, with 
results shown in Figure 5. In this diffuse ACF pattern our 
angular selection has pushed the memory line to the left be- 
yond real Gs2. When data from space shifts is included we 
obtain Figure 6 where the lobes do not correspond to theoret- 
ically identifiable memory effects. Again we note primary 
and secondary off-specular lobes, with an undesirable 
amount of overlap between the target and no-target distribu- 
tions over much of the angular range. 

CONCLUSION 

The promising new technique of angular correlation func- 
tion analysis has been applied to simulation cases involving 
realistic soil parameters and roughness relative to high reso- 

lution GPR wavelengths. A fundamental ACF problem lies 
in obtaining a profitable ensemble of averaging samples per- 
taining to a single spot of ground. In general, increasing the 
sample pool by including overlapping space shifts as well as 
frequency diversity has improved definition and isolation of 
the memory line relative to frequency averaging alone. At 
the same time, this has not improved buried target detection 
performance in the cases investigated. Ironically, it provided 
less evidence of the presence of the target in angular zones 
of maximum noise decorrelation. Interestingly, it seems 
more to intensify target case ACF response in memory line 
and secondary lobe regions, relative to the no-target case. 

Upper and lower ACF bounds 
from frequency averaging alone 

ACF 

bounds 

-80   -60   -40   -20     0     20    40     60    80 

e,  (deg) 
Figure 5. ACF bounds: 9U = 50°, 9sj = -50°, &a = 25° 

Upper and lower ACF bounds 
from frequency and spatial averaging 
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Figure 6.  ACF bounds: 9u = 50°, Ssi = -50°, ©a = 25° 
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Abstract — The traditional linear synthetic aperture radar 
(LSAR) flying along a linear flight path is modified to 
circular synthetic aperture radar (CSAR) flying along a 
circular flight path. When operating in down-looking 
spotlight mode for imaging purposes, CSAR, in comparison 
with LSAR, can provide higher pixel resolutions on any 
confocally focused plane within the volume illuminated by 
the antenna beams. By combining this 3D imaging technique 
with the circular angular memory effect, it is possible to 
reconstruct volume radar images in localized subsurface 
imaging applications where poor signal-to-noise ratio (SNR) 
is a critical issue. Laboratory experiments at X-band (7-13 
GHz) and W-band (75-100 GHz) frequencies were 
conducted to illustrate the capability of CSAR to perform 3D 
imaging, and the analytical basis of circular angular memory 
effect due to random surface scattering based on the first- 
order Kirchhoff approximation. 

INTRODUCTION 

Since its emergence in the late 1950's, synthetic aperture 
radar (SAR) has been popular for imaging applications among 
civilian and military users [1]. In a manner similar to the 
beam-forming process of phased array antennas, SAR 
operates on the principle of synthesizing a large antenna 
aperture by proper coherent summation of the pulses 
produced by the transmitting and receiving antennas 
temporally located along a sequence of known positions. The 
sharp beam resulting from this synthesis process allows one to 
use it as a 'flashlight probe' to obtain a 2D mapping (image) 
of the received echoes with moderately fine pixel resolution. 

Traditionally, most SAR-based systems for geophysical 
remote sensing operate by launching an airborne SAR sensor 
along a straight flight path [1], with the synthesized beam 
scanning in stripmap mode or spotlight mode, depending on 
the tradeoff between pixel resolution and the size of the 
region under surveillance that a SAR user has to make. For 
brevity, these traditional SAR-based systems will be referred 
to as linear SARs (LSARs) in the following discussion, 
signifying the fact that the SAR sensors move along a linear 
path. 

Although useful for many applications, the images 
produced by a LSAR system are projection images which are 
2D in nature. Therefore, for a given illuminated structure, the 

portion of its scattering which takes place along a common 
wavefront but at different altitudes will all be mapped as one 
projection image pixel only, with no resolution in vertical 
dimension. 

Among other alternatives such as interferometric SARs that 
aim at extracting the altitude information of the illuminated 
structures, SAR systems that move along a circular orbit, 
referred to in Fig. 1 as circular SARs (CSARs), can perform 
altitude-mapping imaging together with a number of unique 
features not found in LSARs. First, CSAR, which moves 
along a circular path circumferential to the illuminated spot, 
provides a full-rotation 2D view of the illuminated structure. 
Second, the spotlight nature of its operation makes CSAR 
capable of achieving pixel resolution on the order of A 
(principally lower-bounded by diffraction limit as in optics 
research), where X is the center wavelength of the wideband 
radiation produced by the pulse-sending SAR system. Third, 
the path differences between scattering points lying along a 
common wavefront but different altitudes can be resolved 
using SAR measurements made in front-looking, back- 
looking and/or side-looking directions, thus making it 
possible for 3D image reconstruction of the object at 
microwave frequencies in a way similar to confocal imaging 
in medical applications at optical and ultrasound frequencies. 
Last but not least, the circular geometry of operating CSAR 
also makes it a practical means for hardware implementation 
using airborne wideband radar systems. 

Before proceeding to the details of performing 3D imaging 
using CSAR, it is perhaps a suitable point of digression to 
understand a correlation phenomenon with which CSAR can 
combine: circular angular memory effect. 

CIRCULAR ANGULAR MEMORY EFFECT 

Recently, it was shown analytically, experimentally, and 
numerically that under a phase matching condition for the 
transverse wave components, there exists a novel correlation 
phenomenon known as the angular memory effect for waves 
multiply scattered by random media [2]. Simply stated, this 
effect predicts that there is non-zero angular correlation 
between waves observed at different scattering angles in 
response to a change in incident angles under the phase 
matching condition mentioned above, but close-to-zero 
angular correlation otherwise. For scattering (2D scattering) 
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Figure 1: Geometry of CS AR 

Figure 2: Circular angular memory signature due to scattering 
by 2D random rough surface, (a) Kirchhoff approximation, 
(b) Millimeter-wave experiments 

which takes place at variable scattering angles 0 but a fixed 
azimuth angle 0, this phase matching condition [2] can be 
expressed as 

sin(0,) - sin(0() = sin(0') - sin(0'() (1) 

where the unprimed quantities represent the reference 
incidence and scattering angles and the primed quantities 
represent the variable incidence and scattering angles. 
Equation (1) represents a straight line of slope +1 for a given 
reference antenna configuration represented by (0„ 0,). 

In contrast, for scattering (3D scattering) which takes place 
at variable azimuth angles 0 but a fixed scattering angle 0, 
however, the phase matching condition can be shown, using 
the classical first-order Kirchhoff approximation, to be 

{ [COS(0,) - COS(0,)] - [COS(0'() - COS(0')] f 
+ {[sin(0,) - sin(0,)] - [sin(0;) - sin(^)] }2 = 0        (2) 

Unlike (1), (2) can represent anything from straight line to 
spread spots, depending on the choice of the reference 
antenna configuration represented by (0„ 0,). Since locus for 
the variable antenna positions describes a circular path, the 
resulting memory effect is appropriately known as the circular 
angular memory effect. For transmitting and receiving 
antennas located in the backscattering direction [(0„ 0S) = 
(0°,180o)], the corresponding circular angular memory 
signature, predicted using Kirchhoff approximation and 
confirmed by experiments on scattering by 2D perfectly 
conducting Gaussian random rough surfaces (correlation 
lengths = 2A, rms height = U) at W-band (75-100 GHz) 
frequencies, are shown in Fig. 2. The significance of circular 
angular memory effect for this experiment is this: it exhibits 
strong angular correlation between multiply scattered waves 
under the phase matching condition, but very low correlation 
otherwise. The rate of decorrelation is inversely proportional 

to the size of the illumination footprint and is independent of 
the surface roughness [2]. Since the traditional cross-section 
(intensity) measurement forces the reference antenna 
configuration to be equal to the variable antenna 
configuration (i.e. 0,- = 0'- and 0, = 0'.), the phase matching 
condition, as in (2), is satisfied. Therefore, the traditional 
detection/imaging techniques, which rely on cross-section 
measurement, will automatically contain a strong contribution 
(in the form of undesirable radar clutter) from multiple- 
scattering components produced by the scattering media, 
resulting in poor SNR. 

With this viewpoint on clutter existence based on the 
concept of angular correlation, it is relatively easy to devise a 
measurement scheme that could suppress the clutter in CSAR 
application: perform field measurements at a specific set of 
angular positions around the circular scanning path and 
correlate them in such a manner that the azimuth angles 
represented by individual measurements are located at the far 
end of the decorrelation tail of the memory signature in Fig. 
2. The clutter-rejection capability of this correlation 
technique in buried object detection at X-band frequencies 
has been reported in the literature [3]. 

CONFOCAL IMAGING USING CSAR 

To illustrate the principle of CSAR in performing confocal 
imaging, and hence extracting the altitude information of the 
illuminated structure, laboratory experiments were performed 
at X-band frequencies in an anechoic chamber. The 
transmitting and receiving antennas were positioned in the 
backscattering direction and oriented at 45° below the 
horizon. 

At a slant reference range of 140 cm the dimension of the 
illuminated volume is about 37.4 cm. Within the illuminated 
volume, spheres were supported by two thick styrofoam 
sheets. The lower sheet supported three uniformly spaced 
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metal spheres of different diameters (one of 2" and two of 1", 
with a 4" separation) and the upper sheet supported one metal 
sphere with a diameter of 2.5". The lower sheet was 
separated from the upper sheet by a vertical distance of 7.5". 
A frequency-domain SAR measurement was made at every 5° 
along the circular path over a frequency band of 7-13 GHz. 
The experimental setup is shown in Fig. 3. 

CSAR PROCESSING AND RESULTS 

antenna 

2.5"   ■-■-.,.. 

/f 
 -7.5"  1"       2"      1" 

'" "'    styrofoam sheets 
®  : metal spheres 

ess»' 

To process the SAR measurement, the illuminated volume 
was first discretized into 77 x 77 x 9 cubes (pixel resolution: 
6 points/wavelength). To each of these cubes, a unique set of 
time-domain, Kaiser-based tracking filter functions was 
computed and applied to each of the measurements made 
along the circular path. The resulting gated measurements 
were then magnitude-phase adjusted and coherently added for 
beamforming. Since this spotlight-mode focusing process can 
be done on any plane within the illumination volume, the 3D 
images can be obtained by focusing one slice at a time. With 
the help of software that can perform surface or volume 
rendering, it is possible to stack up all the image slices for 3D 
image reconstruction. 

The processed data are presented as contour plots in Fig. 4. 
As evident from the contour plots, CSAR has the capability of 
focusing at a given plane with all other planes within the 
illumination volume being defocused. This confocal imaging 
feature should make CSAR a suitable candidate in practical 
subsurface 3D imaging applications. 

CONCLUSION 

In this paper, the confocal imaging capability of CSAR is 
experimentally demonstrated at X-band frequencies. Although 
we did not make a quantitative effort to link the uses of CSAR 
and circular angular memory effect in this research work, we 
expect that, with previous successful demonstration of the 
clutter-rejection feature of angular memory effect in target 
detection applications, similar ideas of enhancing SNR could 
be extended to imaging applications. For further studies on 
the combination of CSAR and circular angular memory effect 
in practical settings, efforts are being made to construct an 
indoor wideband bistatic X-band radar system capable of 
performing SAR measurement for a natural soil surface at any 
azimuth angle along a circular path. It is expected that 
successful combination of these techniques could result in a 
3D imaging system particularly useful in low-SNR 
applications. 

Figure 3: Experimental setup for confocal imaging using 
CSAR 
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Figure 4: Confocal contour plots for image slices located at 
different altitudes, (a) below the lower styrofoam layer (no 
sphere), (b) lower styrofoam layer (3 spheres), (c) upper 
styrofoam layer (1 sphere), (d) above upper styrofoam layer 
(no sphere) 
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Abstract 

In this paper, we study the angular correlation 
function (ACF) of a rough surface and volume scat- 
tering and apply it to the detection of a target em- 
bedded in the clutter. Both the 2-D and 3-D ACF 
are studied by using numerical simulations with fre- 
quency averaging and circular azimuthal angle av- 
eraging techniques. The 3-D case has an increase of 
degree of freedom over the 2-D case. This increase 
of freedom makes the circular azimuthal angle av- 
eraging more successful in suppressing the clutter, 
making the technique attractive in real life imple- 
mentation. 

1.     Introduction 

Wave scattering by random rough surfaces and ran- 
dom scatterers has been studied extensively using 
analytic techniques, laboratory experimental mea- 
surements, and numerical simulations[l,2]. Most 
of the studies have utilized the bistatic scattering 
intensities to characterize the scattering results. 

In 1988, a paper by Feng et al. demonstrated the 
existence of memory effects by taking the angular 
correlation of wave scattering [3]. The angular cor- 
relation function (ACF) is the correlation function 
of two scattered fields in directions 0S2 and 6S\ cor- 
responding to two incident waves in directions da 
and 9n, respectively (Fig. 1). A strong correlation, 
called the angular memory effect, is exhibited on 
the memory line. The values of the ACF are very 
small for the angle pairs away from the memory 
line. This has been verified by theoretical models 
and experiments.For volume scattering, the same 
phase matching condition holds for the horizontal 
direction, sin9n—sin6si = sin6i2 — sin6S2- For the 

case of a thick layer, an additional phase matching 
condition is cosOn + cos9si = cosQa + cos8S2. The 
existence of the second condition makes the mem- 
ory line shorter. 

Recently, the ACF has been applied to the detec- 
tion of a buried object [4,5,6]. For the detection 
of a target embedded in random scatterers under a 
rough surface, the scattering of waves by the target 
is often obscured by clutter such as rough surface 
scattering and random medium scattering. This 
makes the detection of a target difficult based on 
scattering intensity. However, by making use of the 
ACF, one can show that the contribution of clutter 
to the angular correlation function is minimal away 
from the memory line making the contribution of 
the buried object more conspicuous by many dB. 

In this paper, we study the ACF of wave scatter- 
ing by a random rough surface and random discrete 
scatterers for 2-D and 3-D scattering problems. In 
the ACF for detection of buried object, the target is 
associated with one realization of the random rough 
surface and random medium, therefore realization 
averaging is meaningless. In the 2-D ACF, we have 
been using averaging over frequency and angular 
averaging over zenithal angle 6. These averaging 
techniques are moderatally successful because the 
scattering properties are strongly dependent on fre- 
quency and the zenithal angle 6. However, in the 
3-D case, there is an increase in the degree of free- 
dom. 

2.    Formulation 

2.1.    General Definition 

The general definition of the ACF is the correlation 
between two scattered waves corresponding to the 
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two incident waves, given by 

T(ksl,kn;kS2,ki2) =< F(ksi,ka)F*(ks2,ki2) > 

where F(ks,ki) is the total scattering amplitude 
(or normalized scattered field), k {6,<f>) is the di- 
rection of wave propagation. The ensemble aver- 
age is usually calculated over many realizations in 
experiments and numerical simulations, written as 

1   N' 
rr(ksi,kii;ks2,ki2) = —y^F(ksl,kn,n) 

'    71=1 

F*(ks2,ki2,n)     (2) 

There are eight variables in the ACF defined by (1) 
and (2). The ACF only exists on the angular pairs 
which are controlled by the three phase match con- 
ditions, which is called memory effect. The study of 
the ACF can be simplified for the specific problem. 

2.2.    2-D ACF Based on Frequency Averag- 
ing 

Consider a problem of a target embedded in dis- 
crete random scatterers below a rough surface as 
shown in figure 1. The target and the scatterers 
are all cylinders for the 2-D scattering problem. We 
formulate the problem by using the integral.equa- 
tion method. The equations are solved numerically 
using the method of moments, giving an exact solu- 
tion of Maxwell's equations. Then, the normalized 
far field scattered field in direction 6S is obtained. 

Consider incident waves at two incident directions 
On and 0j2 with corresponding scattered waves at 
6si and 6s2 respectively. Since the target is under a 
single realization of rough surface and random scat- 
terers, we use frequency averaging with the angular 
correlation function (ACF) defined by 

1   N' 
^f(0si,0ii;9s2,6i2) = — y ;F(6si,6ji,fn) 

f 71=1 

F*(6s2,ei2,fn)     (3) 

where /„ is the frequency. The averaging is taken 
over the frequency range with center frequency f0. 

2.3.    3-D ACF Based on Circular Averaging 

To calculate the 3-D ACF, we consider the wave 
scattering by a volume consisting of many scatter- 
ers (small spheres). The total scattering amplitude 
is calculated by using coherent addition approxi- 
mation.  The 3-D ACF can be studied in various 

ways depending on different applications. For the 
target detection purpose, we illustrate our studies 
on the back-scattering configuration which reduces 
the eight variables into four. The 3-D ACF can 
be defined in ways similar to the 2-D ACF. After 
studying the 3-D scattering problem, a way of cal- 
culating the 3-D ACF is by circular averaging, 

rc(0i,&; e2,cj>2) = —^2F(e1, fa + <i>n) 
71=1 

F*(62,cf>2 + <t>n)      (4) 

The circular averaging defined in Eq. (4) is to take 
an average by changing the azimuth angles. There- 
fore, the circular SAR data can be used for ACF 
processing. 

3.    Numerical Results 

In the 2-D scattering problem, we use 300 circular 
cylinders with radius of a = 0.05Ao to model the 
random scatterers and an elliptical cylinder with 
size of b = 0.7Ao and c = 1.0Ao as the target. We 
use a single random rough surface with the height 
profile plotted in figure 1, and a rough surface of 
length L = 40Ao with rms height h = 0.25Ao and 
correlation length I = 0.5Ao. The target elliptical 
cylinder is placed at a depth d = 2A0. The 2-d ACF 
with fixed On = 20° and 6sl = -20° is calculated 
by frequency averaging over a frequency band 0.5/o 

to 1.5/o as defined in Eq. (3). The ACF is plot- 
ted as a function of sinBa and sin6s2, as shown in 
figure 2. We see a strong correlation on the angle 
pairs of memory. 

To show the effectiveness of using ACF in the 3-D 
case which has real life applications, we calculate 
the 3-D ACF of wave scattering by a target sphere 
embedded in 500 small spheres by using the cir- 
cular averaging. The results are shown in figure 3. 
The 3-d ACF is plotted as a function of the incident 
angle 62 with fixed 0i = 20° and fa = fa = 0°. We 
can see a peak at 82 = 20°, which we call "mem- 
ory dot". At the memory dot, the values of the 
ACF with and without the target are almost the 
same. This means that the random scatterers dom- 
inate the back-scattered intensity (self-correlation). 
Away from the memory dot, however, the ACF 
with the target is 10 to 20dB larger than that with- 
out the target. Therefore, the ACF is useful in the 
detection of target embedded in clutter. The tech- 
nique works much better in 3-D real life situations. 
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Figure 1: Configuration of ACF of wave scatter- 
ing by a target embedded in small scatterers under 
a rough surface . 

Figure 3: 3-D ACF by circular averaging for 
wave scattering by a target sphere embedded in ran- 
domly distributed 500 scatterers. Parameters are 
01 = 20°, 4>i = <h = 0°, er = 3.23 + 0.36*. 
at = 0.SXo,a, = 0.15Ao, R = 10Ao and H = 20Ao. 
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Abstract - A numerical modeling algorithm is developed 
and used to compute the scattering from objects buried under 
an irregular ground surface. The algorithm integrates object 
scattering with scattering from a rough surface above these 
objects.The algorithm will support two modes of operation: 
(a) return signal strength as a function of system, geometry, 
ground and object parameters and (b) angle and frequency 
diverse image as a function of system, geometry, ground and 
object parameters. The technique to be used for this effort will 
be a combination of the standard finite difference time domain 
(FD-TD) method, a randomly rough surface generation rou- 
tine and an image generation routine developed at the Univer- 
sity of Texas At Arlington (UTA). Such an algorithm should 
be useful for predicting the return signal as a function of the 
radar system parameters and the ground condition. It also 
offers the potential to find an optimum choice of system and 
geometric parameters for detecting buried objects under a 
given situation. 

INTRODUCTION 

Many sensors have been utilized (or proposed for use) in 
the detection of buried objects such as land mines. They 
include metal detector, ground penetrating radar (GPR), pola- 
rimetric microwave imaging, forward looking infrared (ther- 
mal) sensor (FLIR), video, and ultraviolet (UV) sensor. 
Accurate detection of land mine in a cost effective manner 
requires the right mix of sensors and the associated processing 
algorithms. An understanding of land mine signature charac- 
teristics and detectability is needed in order to determine the 
optimum sensor combination, sensor parameters, and the 
associated processing algorithms. In this study we investigate 
the scattering characteristics of buried objects in the micro- 
wave region using a numerical modeling approach. 

For a medium with buried object as shown in Fig. 1 there 
are discontinuities at the object-medium boundary and the air- 
medium boundary. An impinging wave will experience multi- 
ple scattering between the object and the medium boundary as 
well as within the object. We expect complex wave, object and 
medium boundary interactions to occur. Except for special, 
idealized cases, analytical methods are ineffective for such 
problems. Numerical methods designed to solve frequency 
domain problems such as moment methods are also not suit- 

able because of the wide band nature of the problem. On the 
other hand, the finite difference time domain method (FD-TD) 
offers many advantages as an electromagnetic modeling, sim- 
ulation, and analysis tool with capabilities including [1,2] 
broadband response predictions; arbitrary 3-D model geome- 
tries; and interaction with an object of any conductivity. 

The formulation of the FD-TD method is summarized in 
the following section. The implementation of a window func- 
tion to obtain the scattering coefficient of a randomly rough 
surface with buried object are given in the subsequent section. 
Numerical results and summary are presented in the last two 
sections. 

FD-TD: A SCATTERED HELD APPROACH 

The FD-TD approach has many formulations: scattered 
field, total field, potential, implicit etc. [1]. For scattering cal- 
culations where the amplitude of the scattered field is signifi- 
cantly smaller than the incident, it is particularly 
advantageous to use the scattered field formulation. This sec- 
tion summarizes the scattered field FD-TD formulation start- 
ing with the Maxwell's equations and then a conversion of 
them to finite difference forms. The conditions for acceptable 
time and spatial increments are also given. 

A set of governing equations for the scattered fields in the 
medium defined by \i and e are 

Vx^ = udHs 
.#- Oi- ■*4? 

VxH  = z^-E +csE +a£' + (e-e0)^-£' 
dt ° dt 

(1) 

(2) 

where the superscript i and ^ denote the incident and scattered 
fields, respectively. Applying the central difference approxi- 
mation to the differential operations in (2), we obtain three 
scalar difference equations for H , and one of them is given 
by 

„n+l/2,.   .   ,,      /2jX —CTm5t^i    „_ 1/2        . 
H"      {l'J'k}=[2^^Jt)H-      {l'J'k} 

-28t/6z 
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2ji + Omdt 

[-En
sMJ,k+l} + E"{iJ,k}] 
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-2cm8t 

2|A + CTm8t. 
H"x{i, j + 1/2, k+1/2} 

Po;    ^H"x{i, j + 1/2, *+ 1/2} 
2^ + am8t (3) 

where a sampled scalar function of time and space is denoted 
as Fn{i, j, k} = F{i5x, jdy, &8z, n8t}, and 8t, 8x, 8y, 
and 8z are the time and spatial sampling periods respectively. 
The three scalar difference equations for E are also obtained 
using a similar procedure. Note that in this formulation, the 
transmitted field below the rough interface is the sum of the 
incident and scattered fields. 

To ensure an algorithm which is stable and accurate, the 
conditions on the spatial increment and the time increment 8t 
are given in [2]. The spatial sampling periods, 8x, 8y, and 
8z are chosen to be X/16. 8t is chosen to satisfy the ine- 
quality 

8t<- 1 
.(Sx)2    (8v)2    (5z)2 

-1/2 
(4) 

Truncation Condition 

A radiation boundary condition or truncation boundary 
condition is needed at the boundary of the FD-TD computa- 
tion domain (grid). The first order Mur's radiation boundary 
conditions [3] is used in this study. 

THE RADAR CROSS SECTION, SCATTERING 
COEFFICIENT, AND ISAR IMAGING 

The Radar Cross Section (RCS) 

To utilize the existing frequency-domain near-to-far field 
transformation method, a discrete Fourier transform is first 
applied to the time domain near fields, i.e., the FD-TD solu- 
tions, giving the frequency domain near fields. The equivalent 
surface currents are determined using the frequency domain 
near fields by applying the equivalence theorem. The equiva- 
lent currents on the virtual surface above the rough boundary 
are given by 

JSeq = rtXH (CO) and Mseq = -hxE (CO) (6) 

where h is the outward unit normal vector of the surface. The 
scattered far fields (in frequency domain) are obtained by 
transforming the equivalent currents over free space Green's 
function [5]. The radar cross section is computed using 

RCS = lim47ir2 ^ far + £6 far 
tP-       a. F2 
Pit inc + ß8 inc. 

(7) 

where E^ inc and Ee inc are the components of the incident 
(excitation) plane wave. 

Window Function And Scattering Coefficient 

To reduce the error due to boundary reflection and finite 

surface size, a window (or weighting) function is applied to 
the truncated surface such that field near the surface edges are 
weighted down in the scattered far-field calculations. A Gaus- 
sian window function [4] with 60 dB attenuation at the edges 
of truncated surface is used in this study. 

The window is applied to the fields (in frequency domain) 
prior to the near-to-far field transformation. Following the 
transformation, the radar cross section (RCS) is calculated 
using the scattered far fields. The scattering coefficient is 
obtained by normalizing the RCS to the effective area of the 
truncated surface. 

Bistatic Inverse Synthetic Aperture Radar (ISAR-) Imaging 

The scattered far-fields from FD-TD simulation are used as 
inputs to the bistatic ISAR imaging algorithm developed at 
UTA. The 2-D complex reflectivity image can be written as 

Kx, y) « j J F?(kx, ky)exp(jkxx + jkyy)dkxdky (8) 

where kx and ky are the x- and y-component of free-space 
propagation vector. 

NUMERICAL RESULTS 

Case 1: bistatic scattering coefficients 
Fig. 2 shows the bistatic scattering coefficients of the 

medium with rough boundary for VV polarization. The rough 
boundary has Gaussian correlation function and height distri- 
bution with ka = 0.35 and kL = 5.5, where k is the free 
space wave number. The medium parameters are er = 2.1 
and G = 10-6 [S/m]. An incident wave with an incident 
angle of 30° and wavelength, A,, of 10 cm are used in the cal- 
culations. 

A perfect conducting object (a rectangular box) with 
dimensions lx = ly = 60 cm and lz = 10 cm is introduced 
into the lower medium. The object is 3 cm below the mean, 
height of the boundary. Fig. 3 shows the bistatic scattering 
coefficients of the medium with buried object for VV polar- 
ization. Note that the difference between Fig. 2 and Fig. 3 is 
caused by the presence of the buried object only. 
Case 2: 2-D ISAR Imaging 

Fig. 4 and Fig. 5 show the 2-D ISAR images for the flat sur- 
face without and with a buried object, respectively. The 
images are constructed using the V-polarized scattered far- 
fields generated by the FD-TD simulation. The medium 
parameters are er = 2.5 and o = 10~5 [S/m]. Dimensions 
of the perfect conducting object are lx = ly = 24 cm and 
lz = 16 cm. The object is 8 cm below the surface. An inci- 
dent wave with an incident angle of 0° and wavelength, X, of 
16 cm are used in the calculations. Note that the Gaussian 
window used in the FD-TD calculations is clearly observed in 
both figures. The presence of rectangular shaped buried object 
is also discernible in Fig. 5. 
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SUMMARY 

FD-TD simulation of scattering from object embedded in a 
medium with either plane or rough boundary has been carried 
out in this study. Simulation results which show the effects of 
buried object on the scattering pattern of medium with rough 
boundary are presented in this paper. 
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Figure 1. Geometry of the scattering from rough surface 
with buried object. 

Figure 2. Bistatic scattering coefficients from the ran- 
domly rough surface (VV). 
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■ 
Figure 3. Bistatic scattering coefficients from the randomly 
rough surface with buried object (VV). 
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Figure 4. 2-DISAR image of the flat surface; Gaussian 
windowed illumination and V-polarized fields. 
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Figure 5. 2-D ISAR image of the flat surface with a buried 
object; Gaussian windowed illumination and V-polarized 
fields. 
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ABSTRACT 

Using ground-penetrating radar (GPR) and seismic 
reflection measurements simultaneously can give a 
much better characterization of buried objects than a 
stand-alone measurement since electromagnetic and 
seismic measurements provide complementary infor- 
mation of the buried objects and the surrounding 
environment. However, successful interpretation and 
processing of these measurements in large-scale prob- 
lems rely on fast simulations. In this work we 
use the pseudospectral time-domain (PSTD) method 
newly developed by the author together with the fi- 
nite-difference time-domain (FDTD) method to per- 
form large-scale simulations of ground penetrating 
radar (GPR) and seismic reflection measurements. 
The PSTD method uses the fast Fourier transform 
(FFT) together with the perfectly matched layer 
(PML) to solve the partial-differential equations. It 
requires only two cells per wavelength regardless of 
the problem size.   For multidimensional problems, 
the PSTD method is 4D-32D times more efficient 
than the conventional FDTD method. Hence, the 
PSTD algorithm is ideal for large-scale problems. 
The FDTD method, on the other hand, is used to 
model structures with fine details below 1/8 wave- 
length. Both the FDTD and PSTD algorithms are 
developed for conductive and viscous media, and 
thus can be used to model realistic losses in the sub- 
surface media. 

1.    INTRODUCTION 
Electromagnetic and acoustic measurements are 
widely used for detection and characterization of 
buried objects and voids, for examples in land-mine 
detection and identification and in nuclear waste-site 
characterization and monitoring. These measure- 
ments provide complementary information, namely 
the electromagnetic and mechanical properties, of 
the buried objects and the surrounding environment. 

'This work was supported by a Presidential Early Career Award 
for Scientists and Engineers (PECASE) through EPA and by Sandia 
National Laboratories under the SURP program. 

The electromagnetic field is more sensitive to the 
fluid contents in the pore space, while acoustic waves 
are more sensitive to the rock matrix. Therefore, we 
combine both measurements in this work for better 
detection and characterization of buried objects. 

The emphasis of this work is to perform large- 
scale simulations of ground penetrating radar (GPR) 
and seismic reflection measurements using both the 
finite-difference time-domain (FDTD) method and 
the pseudospectral time-domain (PSTD) method re- 
cently developed by the author. The PSTD method 
uses the Fourier transform through an FFT fast 
Fourier transform) algorithm, instead of finite differ- 
ences in the FDTD method, to represent the spatial 
derivatives in the partial differential equations. The 
wraparound effect due to the use of FFT is elim- 
inated by using a perfectly matched layer (PML) 
as an absorbing boundary condition. The PSTD 
method requires only two cells per wavelength to ob- 
tain a comparable accuracy as the FDTD method 
with 8-16 cells per wavelength for a moderate size 
problem. For larger problems, the FDTD method 
requires much smaller cells, and hence the advantage 
of the PSTD method becomes even more profound. 

Thus, the PSTD method is ideal for large-scale 
problems where the minimum structure of inhomo- 
geneities is at least in the order of half wavelength. 
For other problems where the structure has fine de- 
tails below 1/8 wavelength, we still use the FDTD 
method, since in order to resolve such small details 
in the geometrical representation, the PSTD method 
also needs a fine discretization and a smaller time 
step. In this sense the FDTD method is complemen- 
tary to the new PSTD method for problems with 
very fine details. Both the FDTD and PSTD al- 
gorithms are developed for conductive and viscous 
media, and thus can be used to model realistic losses 
in the subsurface media. We will show various re- 
sults using both algorithms for large-scale multi- 
dimensional problems. The development of the new 
PSTD method provides an important simulation tool 
for many large-scale electromagnetic and acoustic 
problems which are currently unsolvable with con- 
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ventional methods. 

2.    THE PSTD AND FDTD 
ALGORITHMS 

For simulations of GPR and seismic measurements, 
Maxwell's equations and scalar acoustic equation are 
solved numerically using both the new PSTD and 
the conventional FDTD algorithms. The absorbing 
boundary condition used at the computational edge 
is the new perfectly matched layer (PML) [1]. In 
order to formulate the problem with PML, let us 
consider the acoustic equation using a coordinate- 
stretching variable ev = av + i^. Following [2], we 
can derive the split acoustic equations as 

■ dvv 
avP~dt     UT]PVri 

dpW 

dp 

"drj' (1) 

+u>vlc
2 I pM(r,t')dt' ^ -pc2^L + f^(r,t).   (2) 

It is worthwhile to note the following important dif- 
ference between an acoustic PML and an elastic 
PML: In the acoustic PML, there is no need to split 
the particle velocity v into v^ as in the elastic PML. 
This is simply because that the second-rank stress 
tensor in the elastic case collapses into a zero-rank 
tensor (i.e., a scalar pressure field) in the acoustic 
case. Equations (1) and (2) consist of a total of 6 
scalar equations. Similarly, split Maxwell's equations 
can be derived for conductive media [3-5]. 

These partial differential equations can be solved 
by using the conventional FDTD methods where 
both the spatial and temporal derivatives are ap- 
proximated by finite differences. In contrast, in the 
newly developed PSTD method , the FFT algorithm 
is used to represent the spatial derivative in (1) and 
(2). For example, from (1) we have 

SP-gjT + uvpvv T^ x{* Vijb]}> (3) 

where T^ and Tv 
l denote forward and inverse FFT 

in the rj direction which are calculated by FFT's. A 
similar result can be obtained for (2) as well as the 
split Maxwell's equations [5]. FDTD methods have 
also been developed for elastic wave propagation in 
multidimensional problems [6, 7]. 

The important difference between the PSTD 
method and the FDTD method is the approxima- 
tion of spatial derivatives.   The spatial derivatives 

have an infinite order of accuracy in the PSTD al- 
gorithm, while a second-order accuracy in the con- 
ventional FDTD method. In addition, in contrast 
to the standard Yee's algorithm, the PSTD method 
uses a spatially centered grid where all field com- 
ponents are located at the same points. This pro- 
vides an important advantage over the Yee's algo- 
rithm since the material properties are not altered 
by the presence of the staggered grid. The temporal 
grid, however, is staggered in the same way as in the 
FDTD method. In the PSTD algorithm, perfectly 
matched layers are implemented at the outer edge as 
the absorbing boundary condition to eliminate the 
wraparound effect. The dispersion relations and the 
stability condition in the PSTD algorithm are ana- 
lyzed in [5]. 

3.    NUMERICAL RESULTS 

Theoretical analysis and numerical experiments con- 
firm that the PSTD algorithm requires only two cells 
per minimum wavelength, i.e., the minimum Nyquist 
sampling rate, regardless of the problem size [5]. In 
contrast, the conventional FDTD method requires 
10-20 cells per wavelength for a problem of mod- 
erate size. As the problem size grows, the FDTD 
requires increasingly finer discretization to maintain 
the accuracy. 

As an example of the applications of the PSTD 
algorithm, we simulate subsurface radar and seis- 
mic reflection measurements of two buried objects as 
shown in Fig. 1(a) at the cross section of y = 4.875 m. 
The two rectangular objects extend from y = 3.675 
to y = 6.075 m. The half-space is truncated to 
0 < y < 9.6 m by the PML absorbing boundary con- 
dition. The electromagnetic source and the seismic 
source are location at the center of the earth surface, 
and they operate at a center frequency of fc = 100 
MHz and fc = 2.667 kHz respectively. With respect 
to the background medium in the earth, the object 
on the left has a large contrast in its electromagnetic 
properties, and a small contrast in its acoustic prop- 
erties, and vise versa for the object on the right. At 
the highest frequency (fh - 2.5/c) beyond which the 
energy is negligible, this 3-D problem has a size of 
32A x 32A x 32A (where A is the wavelength in the 
earth). Using the PSTD method, we need a grid with 
only 64 x 64 x 64 cells. Figs. 1(b) and 1(c) display the 
electromagnetic and acoustic waveforms measured at 
an array of receivers on the ground. Clearly, the two 
sets of measurements provide complementary infor- 
mation about the buried objects. If the conventional 
FDTD method had been used, this problem would 
have to be discretized by a grid with roughly 256-512 
cells in each dimension in order to achieve a com- 
parable accuracy.   Therefore, for this problem, the 
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PSTD algorithm is about two orders of magnitude 
more efficient than the FDTD method. More nu- 
merical examples will be shown in the presentation. 

4.    CONCLUSIONS 
The ground-penetrating radar and seismic reflec- 
tion measurements can be used together to enhance 
the ability to characterize buried objects. We have 
developed pseudospectral time-domain and finite- 
difference time-domain algorithms to simulate large- 
scale problems encountered in GPR and seismic mea- 
surements for lossy media. The PSTD algorithm 
has an infinite-order of accuracy in the spatial rep- 
resentation, and hence requires only two cells per 
wavelength (Nyquist rate) to obtain accurate results. 
Itis a factor of 4D-32D times more efficient than 
J^DTD methods (where D is the dimensionality of 
the problem) for a problem of size 32A to 512A in 
each dimension. In terms of the spatial sampling 
rate, the PSTD algorithm is an optimal solution to 
time-domain Maxwell's equations and acoustic equa- 
tions. The FDTD method, on the other hand, can 
be used for simulations of structures with fine details 
much smaller than half a wavelength. 
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Fig. 1. A 3-D problem of size 32A x 32A x 32A. 
(a) Geometry of two buried objects having different 
sensitivities to electromagnetic and acoustic waves. 
Scattered electromagnetic field (b) and scattered 
acoustic field (c) at an array of receivers. 
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ABSTRACT 

CLIMACS (Climate studies of Land surfaces and Ice using 
Microwave ACtive Sensing) is a synthetic aperture radar and 
is intended to be an element of a mission dedicated to global 
observation of land surfaces and ice. CLIMACS will provide 
relevant information for the studies related to climate change. 
In addition further expected applications are in the areas of 
disaster monitoring, ice reconnaissance and forest monitoring. 
In order to obtain valuable geophysical products for these 
applications, SAR images with modest spatial resolution but 
very high radiometric accuracy and high temporal sampling 
are desirable. 

INTRODUCTION 

In the context of the Earth Observation Preparatory 
Program, ESA is looking for a modest spatial resolution wide 
fixed swath SAR instrument for global monitoring of the 
Earth. This is the CLIMACS instrument which is intended to 
be an element of a global land and sea ice monitoring mission 
[1]. 

ESA has awarded two parallel prephase A studies at 
industrial level in order to design a SAR for CLIMACS 
purpose. This paper is related to the feasibility study leaded 
by ALCATEL ESPACE with CASA, SAAB ERICSSON 
SPACE, Oerlikon Contraves and Ylinen Electronics as 
subcontractors. We first recall the main mission objectives 
and the origin of the main instrument requirements. Then the 
remarkable features of the instrument and the main 
performance are reported with special emphasis on coverage, 
radiometric performances and needed resources. The final 
budgets show the compliance with small satellite mission and 
low cost program. 

MISSION OBJECTIVES 

The land surfaces act as a part of the coupled boundary to 
the global heat exchanges, to the general atmospheric 
circulation and to the global hydrological cycle. Their role is 
complex due to their heterogeneous nature and to their short 
time scale response. Although, the part played by the land is 
smaller than the one played by the ocean, it is over the land 
that many of the apparently irreversible changes occur. Hence 
it is a good indicator of any climatic changes which are taking 
place over the lifetime of the Earth. 

Furthermore the radar measurements are independent of 
cloud coverage, illumination by the sun and atmospheric 
disturbances, hence provide uninterrupted observations with 
high temporal sampling rate. 

CLIMACS will provide relevant information for the studies 
of: 

-Climate change in terms of global carbon cycle and 
global energy cycle, 

-Processes monitoring, 
-Interactions between human activities and ecological 

systems. 

In addition, further expected applications are in the areas 
of: 

-Operational ice reconnaissance, 
-Operational large scale hydrology, 
-Large scale disaster monitoring, 
-Large scale crop monitoring, 
-Forest monitoring. 

INSTRUMENT REQUIREMENTS 

In order to obtain valuable geophysical products for the 
above applications, SAR images with modest spatial 
resolution, but high radiometric accuracy are desirable. 
Furthermore, the objective of global Earth monitoring with 
high temporal resolution leads to an ambitious coverage 
requirement (more than 95% of earth surface within 5 days) 
which in turn implies a very large swath instrument. In 
addition, since the land surfaces and polar regions are rather 
of heterogeneous nature, a multiple frequency ( 2 among P, 
L, C, X band) and multiple polarization system is desirable. 
This is the basis of the instrument requirements [2]. 

We have to notice that the absolute radiometric accuracy 
includes the radiometric resolution (speckle contribution) but 
also all the errors (calibration, mispointing, radar drift, 
ambiguities...). Finally we have to point out that the 
requirements are given in terms of final image quality (multi 
look spatial resolution, absolute radiometric accuracy) thus 
leading to a more open definition of the instrument. 

The first challenge of such a radar is to design a very large 
swath instrument in order to be compliant with the coverage 
requirement. The second challenge is on one hand to be able 
to generate a great number of looks and on the other hand to 
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have a good calibration scheme in order to be compliant with 
the absolute radiometric accuracy requirement. The third 
challenge, which is not negligible, is to design a low mass 
and low power consumption dual frequency and dual 
polarization concept. 

INSTRUMENT DESIGN 

In order to reach the challenging design objective a coupled 
parametric orbital mission and radar system study was first 
performed. This phase was followed by a trade-off among the 
main promising concepts [3]. Finally the selected design is 
based on a ScanSAR mode (Fig 1) with 4 sub-swaths 
ensuring a total swath width of 430 km. Each sub-swath is 
illuminated twice during the SAR integration time in order to 
reduce the radiometric variation. 

Spacecraft 

4 sub-swaths 

Nadir 

Figure 1: ScanSar Concept for CLIMACS 

The instrument synoptic is given Fig 2. It includes 
separated antennas and HPA (High Power Amplifier) 
subsystems, but common RF (RadioFrequency) and digital 
subsystems. In order to limit the antenna size and the mass, C 
and X-band are selected. An absolute radiometric accuracy of 
0.65 dB is obtained by averaging of a great number of looks 
(430) and by using a stable calibration scheme. In turn the 
multi-look spatial resolution is modest (2 km) in order to limit 
the needed resources. A complete cold redundancy scheme is 
included in order to ensure continuous operation during 5 
years. 
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2\4 
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A low risk and low cost approach is followed for the design 
by selecting as far as possible mature technologies and 
techniques. 

The remarkable features of the CLIMACS instrument are: 

•Digital chirp generator ensuring versatility, 

•Demodulator using sub-harmonic sampling scheme, 

•Centralized distribution using one 1800 W RF peak 
power TWT in C-band, and one 400 W RF peak 
power TWT in X-band, 

•Blass matrices in order to ensure beam steering 
capability (4 sub-swaths), 

•X-band single polarization antenna using waveguide 
technology, 

•C-band dual polarization antenna using waveguide 
distribution and triplate radiating elements, 

•Raw data reduction using BAQ algorithm, 

•Solid state mass memory with 90 Gbits capacity. 

The fully passive multi-beam antenna design (Fig 3), 
ensures low losses, low mass and high stability. The Blass 
matrices are of particular importance in order to ensure the 
beam steering capability necessary for the ScanSar mode. 

X-band panel 

X-band 
Blass matrix 

C-band 
Blass matrw 

C-band panel 

Figure 3: Antenna panel (with Blass matrices) 
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Figure 2: Instrument synoptic (redundancy not shown) 
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INSTRUMENT PERFORMANCES 

COVERAGE ■ 3 DAYS 

■ 5 DAYS 

■I     I 

S \     \ 

Figure 4: Coverage performance 

The main performance and budget characteristics are given 
in Table 1 and Table 2. In addition the coverage obtained 
within 3 days and 5 days is shown Fig 4. These rather good 
figures are obtained mainly due to the orbit choice and radar 
swath width. We have to notice that the frequency choice (X 
and C band) is of importance in the coverage performance. In 
fact for a given antenna height requirement, the high 
frequency choice allows a larger swath and thus a better 
coverage performance. For example the L band choice could 
not lead to such a swath width. 

Table 1: Performances summary 

Orbit Polar sun-synchronous 
Altitude 510 km 
Coverage 80 % within 3 days 

98% within 5 days 
Global within 6 days 

Swath width 430 km 
Incidence range 12 to 50 deg 
Frequency C and X band 
Polarization C band: HH and VV 

X band: VV 
Spatial resolution 2km*2km 
Radiometrie accuracy < 0.65 dB for 2*2 km2 spatial 

resolution 
Radiometrie 
resolution 

< 0.40 dB for 2*2 km2 

< 0.76 dB for 1*1 km2 

< 1.40 dB for 0.5*0.5 km2 

Ambiguity ratio 20 dB 
ISLR 19 dB 
PSLR 25 dB 

instrument errors. We can notice that, depending on the user 
needs, we can simply trade the radiometric resolution with the 
spatial resolution. This allows a very flexible final product. 

The needed resources are rather low for a multiple 
frequency and multiple polarization instrument. In addition 
the stowed size of the antenna (5 panels) is compatible with 
various types of launchers and platforms. These figures are 
compatible with a small satellite mission. On the other hand 
the design being based on mature technology, the technical 
risks are very limited. This leads to a low cost mission. 

Table 2: Budget summary 

Antenna size 12m* 1.6 m 
Mass 230 kg 
Power consumption 350 W 
In flight operation 5 years continuous 
Reliability 0.9 
Data rate 15 Mbit/s 
Mass memory unit 90 Gbits 
Launcher 
compatibility 

ARIANE 4 
DELTA III 
PROTON ID 
ATLAS MPF 

The absolute radiometric accuracy is better than 0.65 dB 
for a spatial resolution of 2 km by 2 km. This figure includes 
the radiometric resolution contribution (0.4 dB) and all the 

CONCLUSION 

The proposed CLIMACS instrument offers: 

•Good coverage performance (global within 6 days and 
better than 95% within 5 days), 

•Good radiometric accuracy thanks to the number of 
looks (430) and the calibration, 

•Rather low budget figures (mass, power consumption, 
and antenna size), 

•Compatibility with various types of launchers, 
•Uncriticallity of necessary technology, 
•Continuous operation. 

This instrument will ensure continuity of C band data 
availability (ERS, ASAR) enhanced by a X band channel. 

In addition the design is compatible with small satellite 
mission and low cost program. 
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ABSTRACT 
A unique series of ERS-1/2 C-band SAR images was 
obtained off the southern coast of Norway during the COAST 
WATCH'95 experiment in September 1995. In this paper we 
carry out a systematic analysis of the mesoscale coastal wind 
field conditions expressed in the SAR images. Four different 
categories of phenomena including wind rows, fetch limited 
seas, wind fronts and oceanographic fronts are examined and 
discussed. The quantitative retrievals of the wind field are 
based on examination of the backscatter characteristics and 
the spectral properties of the SAR image. Results are 
compared and validated against coincident ship and buoy 
data providing independent observations of the 
oceanographic and meteorological conditions. 

INTRODUCTION 
In order to better quantify SAR imaging of upper ocean and 
atmospheric boundary layer processes, an experiment, 
COAST WATCH'95 [1], was carried out off the southwest 
coast of Norway during September 1995 as a ERS-1 and 
ERS-2 tandem announcement of opportunity experiment. 
The tandem operation provided a unique SAR coverage of 
the experiment area consisting of 148 SAR images (frames). 
Meteorological and oceanographical in situ observations 
were provided from the research vessel R/V Häkon Mosby of 
University of Bergen, and an advanced metocean buoy from 
the Naval Postgraduate School, Monterey. 

The main study objective reported in this paper is to 
demonstrate the optimum wind retrieval from SAR images. 
We will use the procedure outlined in [2] and [3]. 

WIND RETRIEVAL ALGORITHMS 
The two SAR wind retrieval algorithms used are based on the 
extraction of the wind field from different parts of the ocean 
surface wave spectrum, in particular the medium wind wave 
regime and the small centimeter scale regime. Fig. 1 shows a 

conceptual overview of the wind field estimation as further 
described below. 

SAR Wind Algorithm (SWA) 

In case of a fully developed sea (no fetch limitation) the 
empirical SWA relation, based on evaluation of 1200 SAR 
wave-mode imagettes with a central incidence angle of 20.2° 
is given by [4] as 

Ul0= 4.7 ^ms-1) 
^A,-30Y^ 

v 110 J \mj 

where Ui0 is the wind speed at 10 m above the surface and 
Xc is the azimuth cut-off wave length. Assuming a Gaussian 
shaped low pass filter for the azimuth cut-off the cut-off 
wavelength can be estimated from the auto covariance 
function (ACF) derived from an inverse Fourier transform of 
the SAR image power spectrum. 

The CMOD4 model 

The CMOD4 wind retrieval model [5] is developed for the 
ERS-1 C-band scatterometer but it is also shown to give 
good estimates of wind speed when applied to ERS-1 SAR 
images 

The CMOD4 model provides a0 values as a function of 
relative wind direction (§=0 for a wind blowing toward the 
radar), wind speed and incidence angle, expressed as 

<70 = B0[\ + Blcos(<j>) + B2cos(2<j))] 

The coefficients BO, Bl and B2 depend on the local 
incidence angle of the radar beam and wind speed. 

In this paper we also emphasize that the wind direction can 
be estimated from the CMOD4 model for different incidence 
angles provided the wind speed, derived from the SWA 
method, can be associated with the corresponding measured 
backscatter (CT0). In such cases we will show that four 
solutions, i.e. two pairs, each with a 180° ambiguity can be 
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Figure 1 Conceptual overview of wind retrieval models. The 
external wind direction may be obtained from wind rows in 
the SAR image. 

found, except in the cases when the direction is close to 
upwind (the wind blowing towards the radar) or downwind, 
for which only one pair is found. 

COAST WATCH'95 Analysis 
Two case studies from the Coast Watch'95 data base are 
presented including: a) wind rows under fetch limited 
conditions and b) oceanic front (jet) together with a local 
wind front: 

a) The ERS-1 SAR images are from 17 September 1995 
shows a characteristic pattern of wind rows aligned in the 
wind direction of about 110°. In particular, the northernmost 
area, west of the coast, lacks of expressions features, while 
the southern areas are recognized with wind rows with an 
west-northwestward orientation of 110°. There is also a 
gradual increase in the backscatter towards south.. The wind 

CM0D4 wind speed (m/s) 

Figure 2 SAR image scatter plot and wind vector map from 
17 September 1995 

speed obtained in vicinity of the ship is about 13 m/s, and 
reveals a clear north west gradient as expected. The obtained 
wind direction is in good agreement with the isobars from 
the hindcast model. Wind retrievals from a total of 238 sub- 
images were compared for the 17 September images. The 
CMOD4 - SWA wind speed difference was less than 2 m/s 
for about 90 % of the sub images. The scatter plot in Fig. 2 
(right) shows good agreement between the SWA and the 
CMOD4 derived wind speeds in the range of 3 to 15 m/s for 
all three images. 

b) The final case study is based on the SAR images from 27 
September 1995 which shows a westward flowing coastal jet 
bounded by two distinct, some places parallel fronts. A local, 
5-10 km wide wind feature is also running diagonally across 
the image, in the second image. A total of 144 sub images 
were analyzed for the 27 September image of which only 8 
% have a wind speed difference of less than 2 m/s in the 
range from 3 to 15 m/s. From the SAR image power 
spectrum (SIPS) analysis a strong peak in the energy occurs 
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between 150 and 300 m wavelength, 30° to 50° to the range 
axis, in the SIPS. This peak in the SIPS is most likely caused 
by a corresponding peak in the real ocean wave spectrum 
suggesting the presence of incoming swell. The swell seems 
to affect the wind field results, in particular the SWA wind 
speed and the directional estimates. A shift of about 1.5 m/s 
to 2 m/s in the CMOD4 wind speed is observed across the jet. 
In contrast to CMOD4 wind speeds there is a large spread in 
the SWA derived wind speed for the areas. However, no 
evidence of wind shifts are found across the fronts. 

Fig. 3 (right) shows that the SWA wind speed is up to 10 m/s 
higher than the CMOD4. Particularly no correlation is 
therefore present. In comparison to the previous results, in 
particular from Case a, the results are poor. The SWA is 
consistently larger than CMOD4 by at least 4 m/s and 
completely without any correlation for the conditions 
encountered in Case b. 

since the first method uses radar backscatter values while 
the latter uses spectral characteristics. But as mentioned in 
the analysis of the 17 September image, the SWA method is 
limited to SAR images containing clear wave modulation 
from which the azimuth cut-off can be derived. In the case 
of very low wind conditions (lower than approximately 3 
m/s) or in presence of slicks the SWA method will therefore 
breakdown. But these conditions will also effect the CMOD4 
since the threshold wind speed for C-band waves is around 3 
m/s [6]. 

Hence, by combining the SWA and CMOD4 methods, the 
limitations encountered by each individually, can be 
suppressed. Moreover, this combination allows the wind 
direction to be retrieved independently thus offering a 
system for quantitative estimation of wind speed and 
direction at a resolution of about 10 km. 

SUMMARY 
In this paper we have shown that the radar backscatter and 
spectral signatures of the ocean surface obtained from ERS- 
1,2 SAR images can provide valuable and quantitative 
information on near surface wind speed and wind direction. 
5 ERS SAR images, from 17 and 27 September 1995 have 
been examined by studying their CT0 and spectral properties. 
Two different wind retrieval models, SWA and CMOD4, 
have been applied to the data. We have found by comparing 
the SWA and CMOD4 wind speed retrievals that about 90 % 
of the sub images gives a wind speed difference less than 2 
m/s for case a) and about 8 % for case b). 

It is demonstrated that the surface conditions impact on the 
performances of the different wind field retrieval methods 
and their corresponding results. The presence of homogenous 
wind rows are clearly favored. For fetch limited seas and in 
vicinity of wind fronts, on the other hand, the SWA method 
underestimates the wind speed. For fetch limited seas the 
waves are not in equilibrium with the near surface wind 
speed. Hence, the distribution of the velocity field of surface 
scatters, as introduced by the orbital velocity of the waves 
will be narrower than for fully developed seas leading to 
underestimation. Moreover the relatively large relaxation 
rate for the longer wind waves allows these waves to 
propagate across a wind front. Hence they will maintain their 
original equilibrium state over some distance away from the 
front. In turn, the wind front will not be resolved properly by 
the SWA method. For the same reason, the presence of swell 
may cause an increase in the derived wind speed. In contrast 
the CMOD4 method is not limited by these conditions. 

While absolute image calibration is necessary for the 
CMOD4 method, it is not required for the SWA method 
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Abstract - Based on comparisons with buoy data, the wind 
speed and wave height measured by satellite altimeters are in 
excellent agreement with in-situ measurements. In regions of 
low swell effects, the combination of wind speed and wave 
height further yields the information of wave period. The 
long-term monitoring of these wave parameters from satellite 
altimeters can be used to study the wave climate of the world 
oceans. Examples from application to the Gulf of Mexico and 
the Yellow and East China Seas are presented. Using three 
years of TOPEX/POSEIDON continuous data, the annual and 
seasonal maps of the wind and wave climatology of the two 
regions can be constructed. Many mesoscale features can be 
clearly identified, and the geometric effects on the wave 
pattern can be seen from the wind and wave distributions. 

INTRODUCTION 

Satellite remote sensing provides an efficient way for 
monitoring global and regional oceanographic parameters. 
Spaceborne altimeters following their many generations of 
development have provided high-quality data on the sea state 
with an unusually high spatial density. For example, 
TOPEX/POSEIDON (hereafter referred, to as TOPEX) 
provides wind and wave information every second, 
corresponding to approximately a 7-km resolution along the 
satellite tracks. The spacing of the tracks is nominally 316 
km (127 revolutions per repeat cycle) at the equator and 
much smaller at higher latitudes. The revisiting period of 
each track is 9.9156 days [1]. With such high density 
coverage, we can study the regional wave climatology using 
the TOPEX altimeter data output of wind and wave 
parameters. In this paper, the measurement accuracy of the 
wind and wave parameters from the TOPEX altimeter is 
validated with in-situ ocean buoy data 

COMPARISON OF WIND AND WAVE PARAMETERS 
FROM ALTIMETERS WITH IN-SITU BUOY DATA 

Comparisons of TOPEX significant wave heights (H) and 
wind speed (U) with in-situ measurements from surface 
buoys have shown very positive agreement [2-3]. In 
particular, Ref. [3] presents a comprehensive comparison of 
wind speed and wave height between the TOPEX altimeters 
and 14 moored buoys along the west coast of Canada, of 
which 3 are in the deep ocean, approximately 400 km west of 
the British Columbia coast; 6 are in the exposed positions 
within 100 km from the coast, and 5 are in sheltered coastal 
waters. Detailed statistical comparisons of these three groups 
of buoys with all three altimeters (NASA Ku- and C-band 
altimeters and CNES Ku-band solid state altimeter) are 
performed. Excellent agreement between the altimeter and 
buoy measurements of the significant wave height is found 
for the nine buoys in exposed positions. For coastal regions, 
the agreement is clearly not as good. The large variation in 
the coastal comparison is attributed to the local variation of 
the wave conditions due to the close proximity to the 
shoreline. Ref. [3] further shows that in the exposed 
locations, the rms data scatter is greatly reduced when the 
spatial distance between TOPEX and buoy observations is 

reduced to 10 km. For the three outer buoys and 6 inner 
buoys, the rms differences in wave height reduce to 0.14 and 
0.15 m, respectively. 

The excellent agreement on the wave height measurement 
is also confirmed in the Gulf of Mexico stations. A detailed 
statistical comparison of 6 data sets in the Gulf of Mexico is 
presented in [4]. The results pertaining to the three key 
properties of a wave field, the significant wave height, 
significant wave period and wind speed, are shown in Figs, 
la-c, which display the comparisons of the significant wave 
height, wind speed and characteristic (average) wave period 
derived from the TOPEX Ku-band altimeter and NDBC 
buoy. Only data points within 10 km spatial lags are used. 
The measurements from the two systems are essentially 
equivalent. The average ratio and one standard deviation of 
the wave heights, wind speeds, and characteristic wave 
periods are 1.01+0.14, 0.95±0.11, 1.06±0.13, respectively. 
The distributions of these ratios are displayed in Figures ld-f, 
showing very narrow spreading. 

WIND AND WAVE CLIMATOLOGY 

Gulf of Mexico (GoM) 
There are fourteen ground tracks from TOPEX in the 

GoM. The wind speed and wave height derived from the 
altimeters can be used to construct synoptic views of the 
regions. In addition, wave period and large scale surface 
steepness due to wave motion can be calculated from the 
wind speed and wave height parameters. In forming the 
climatological maps, the TOPEX data are averaged over one- 
degree squares. TOPEX data from one or more tracks that 
fall within any part of a square are used in the average for 
that square. The TOPEX data have high spatial resolution of 
about 7 km along track. The across-tracks (approximately 
300 km) and temporal (10 days repeat cycle) resolutions are 
relatively coarse, so the shortest averaging period used at this 
stage is 90 days. The results reveal the seasonal and annual 
variations of the wind and wave climate in the regions [5]. 
Fig. 2 shows an example of the three-month (January to 
March, 1994) average of the wind speed, wave height, wave 
period and wave steepness in the GoM. Other seasons, and 
annual as well as three-year averages are also processed but 
not shown here. A few common features of the wind and 
wave climate in the GoM include: (1) The long-term average 
of the mean wave height increases from east to west. For 
example, the wave height range of the three-year average is 
from 0.5 m off the coast of Florida to 1.5 m off the coast of 
Texas. Similarly, mean wind speed, wave period and wave 
steepness show a trend of increasing from east to west. (2) 
Superimposed on the westward increasing trend, there is an 
oscillatory components, such that there are one to two local 
maximum values of the wind and wave parameters in the 
longitudinal direction. The length scale of the oscillatory 
component is on the order of 300 to 600 km. 

The GoM is a deep (more than 4000 m in the deepest 
region) semi-enclosed sea with the opening in the SE corner. 
Although the entrance to the GoM is partially blocked by the 
islands of Cuba and the Yucatan Peninsula, the Equatorial 
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Current enters the GoM through the Caribbean Sea and 
Yucatan Channel, forming the Loop Current with a transport 
of approximately 30xl0°m3/s. The Loop Current traces an 
anticyclonic path and exits the GoM through the Florida 
Straits and eventually becomes a principal component of the 
Gulf Stream [7]. Frequently, eddies are shedded from the 
Loop Current and propagate westward. The Loop Current in 
the gulf forms a very dynamic and active region. From 
examining the seasonal, annual and three-year average of the 
climatology maps, it is found that one of the dominant 
locations of the local highs is near the center of the eastern 
gulf in the area of Loop Current instabilities [6]. This local 
high is relatively stationary (compare the three-month 
average in Fig. 2 and the three-year average in Fig. 3) and 
may be an indication of active air-sea interactions in the 
region of the Loop Current instabilities. 

Yellow and East China Seas (YES) 
In the YES, there are seven TOPEX tracks passing through 

the region. The same procedure to construct the climatology 
maps of the GoM is applied to the YES. Fig. 4 shows an 
example of the three-month average (January to March, 
1994) wind and wave climatology, which is distinctively 
different from that in the Gulf of Mexico. The distribution of 
the wind speed or wave parameters is almost stratified and 
follow closely the local bathymetry. For the long-term 
average, a north-south stratification of the distribution is 
evident (Fig. 5 shows an example of the 1994 averages). The 
oscillatory component is much weaker. 

The YES are on a large and shallow continental shelf, with 
depths less than 100 m on the shelf. The major current system 
in the region is the Kuroshio, which enters YES just southeast 
of Taiwan and exits from southwest of Japan. The main axis 
of the Kuroshio is usually just outside of the 200 m contour 
line. The Kuroshio may intrude onto the shelf through two 
major regions. The first is through the Taiwan Strait during 
the winter months when the Taiwan Warm Current is weak 
[8]. The second source is the branching of the Tsushima 
Current from the Kuroshio [9] and the subsequent intrusion 
of the Yellow Sea Warm Current northward into the Yellow 
Sea [10]. One of the driving forces of the Yellow Sea Warm 
Current and the flux of open ocean properties onto the 
continental shelf is the northerly wind bursts during the 
winter season. Due to the shallow water depth, the wind 
events are capable of creating large sea level changes, which 
produce horizontal pressure gradients that drive the 
subsurface currents [11]. 

Interestingly, the ranges of wind speeds, wave heights, 
waver periods and wave steepnesses in the GoM and YES are 
quite similar (compare Figs. 2-3 with Figs. 4-5). The dynamic 
processes and the circulation patterns in the two regions are 
obviously different. These may contribute to the very 
different climatology of wind and waves in the two regions. 

SUMMARY AND CONCLUSIONS 

Using the TOPEX altimeter output of wind speed and 
wave height, the regional distributions of the wind and wave 
characteristics in the Gulf of Mexico and in the Yellow and 
East China Seas are investigated. The distributions of wind 
and wave parameters in the Gulf of Mexico is characterized 
by an oscillatory mode in the longitudinal direction. The 
Loop Current appears to have a strong influence on the 
dynamics of the region; this effect shows up in the presence 
of a stationary local high in the distributions of wind speeds, 

wave heights, wave periods and wave steepnesses. In the 
Yellow and East China Sea, although the ranges of wind and 
wave parameters are very similar to those observed in the 
Gulf of Mexico, the climatology of the region is 
predominately a stratified distribution in the north-south 
orientation, and closely follows the local bathymetry. 

ACKNOWLEDGMENT 

This work is sponsored by the Office of Naval Research 
(NRL JO 73-6800-07, 73-7046-07, 73-7075-07) and National 
Data Buoy Center (Contract XA23105011) (NRL-SSC 
contribution NRL/PP/7332—97-0013). 

REFERENCES 

[1 ]  Fu, L.-L, E.J. Christensen, and C.A. Yamarone, TOPEX 
/POSEIDON mission overview, J. Geophys. Res., 99, 
24369-24381, 1994. 

[2]   Ebuchi, N, and H. Kawamura, Validation of wind 
speeds and significant wave heights observed by the 
TOPEX altimeter around Japan, J. Oceanography, 50, 
479-487, 1994. 

[3]   Gower, J.F.R., Intercomparison of wave and wind data 
from TOPEX/POSEIDON, J. Geophys. Res., 101, 3817- 
3829, 1996. 

[4]   Hwang, P. A., W. J. Teague, G. A. Jacobs, and D. W. 
Wang, A statistical comparison of wind speed, wave 
height and wave period derived from satellite altimeters 
and ocean buoys, subm. J. Geophys. Res., 1997. 

[5]   Teague, W. J., P. A. Hwang, D. W. Wang, G. A. Jacobs, 
A three-year climatology of waves and winds in the 
Gulf of Mexico, subm. J. Atm. and Oceanic Tech., 
1997. 

[6]   Leben, R., G. H. Born, J. D. Thompson, and C. A. fox, 
Mean sea surface and variability of the Gulf of Mexico 
using Geosat altimetry data, J. Geophys. Res., 95, 3025- 
3032, 1990. 

[7]   Thompson, J. D., G. H. Born, G. A. Maul, Collinear- 
track altimetry in the Gulf of Mexico from SEASAT: 
Measurements, models, and surface truth, J. Geophys. 
Res., 88, 1625-1636, 1983. 

[8]   Chuang, W. S., and W. D. Liang, Seasonal variability of 
intrusion of the Kuroshio water across the continental 
shelf northeast of Taiwan, J. Oceanogr., 50, 531-542, 
1994. 

[9]   Lie, H. J., and C. H. Cho, On the origin of the Tsushima 
Warm Current, J.  Geophys.  Res., 99, 25081-25091, 
1994. 

[10] Hu, D. X., Some striking features of circulation in the 
Huanghai Sea and East China Sea, Oceanology of China 
Sea, 1, 27-28, 1994. 

[11] Hsueh,  Y., Recent current observations in the Eastern 
Yellow Sea, J. Geophys. Res., 93, 6875-6884, 1988. 

1157 



WAVE PERIOD 

mean:1.01;sH:0.14 

60 

340 

20 J L . 
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of the significant wave height (a), wind speed (b), and 
average wave period (c). The ratios (TOPEX divided by 
buoy) of these three wave parameters are shown in (d), 
(e) and (f), respectively [4]. 
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Abstract - Tower- and aircraft-based research over the 
last three decades has shown that the spatial or temporal 
averages of radar backscatter from the ocean surface at 
radar wavelengths that sample the gravity-capillary part of 
the ocean's surface-wave spectrum are proportional to 
nearly the square of the mean wind speed. During the last 
15 years, analyses of satellite-based scatterometer images 
of the ocean surface (that is, radar images whose pixels 
measure 25 km to a side) show atmospheric frontal features 
and other, synoptic atmospheric structures. With these 
images, researchers have created images of the spatial 
distribution of wind (with extra work, they get both speed 
and direction) associated with those synoptic structures. 
Going down in scale, recent research has shown that 
synthetic aperture radar (SAR) images of the oceans 
(snapshots of the radar-backscatter patterns of the ocean 
surface with pixels measuring 100 m or 12.5 m to a side) 
manifest signatures of atmospheric turbulence - scales of 
motion on the order of hundreds of meters to tens of 
kilometers. These facts raise the following question: 
"(How) can one use SAR images of the ocean surface to 
infer fine-scale winds, that is wind patterns on scales of 
atmospheric turbulence?" The present work represents a 
step towards answering that question, by asking a related 
question, namely: "How much spatial averaging of 
backscatter is required to define a stable, convergent 
backscatter value for a given area, so that that value can 
then be translated into a wind speed?" The answer is based 
on the hypothesis that the statistics of radar backscatter 
patterns created by atmospheric turbulence .should be 
related to the statistics of the atmospheric turbulence that 
generated the roughness patterns on the ocean surface. 

BACKGROUND 

As an example, [1] describes the multiscale structure of 
SAR backscatter seen in an image made by the ERS-1 SAR 
system and interprets this structure as the impression on the 
surface of the ocean of three scales of interacting 
atmospheric turbulence: quasi-two-dimensional roll 
vortices, boundary-layer scale thermals, and gust 
microfronts. Figure 1 is a repeat of their Figure 5 showing 
a binary image of the radar-backscatter patterns exhibited 
within the Bering Sea adjacent to its ice pack at the time of 
a cold air outbreak. (In this image, backscatter greater than 
a given value is colored gray, while backscatter less than 
that value is whited out. See Plate 1 from [1] for more 
detailed images.   Also, a linear trend has been removed 

from the original image, so the average backscatter value 
of the entire image is zero.) This low resolution (100~m 
pixel diameter) SAR image shows linear trends of 
enhanced radar backscatter or SAR-streaks , aligned with 
the mean surface-layer wind (10 m/s here). They have a 
dominant cross-wind scale of about 5 km (five times the 
boundary layer depth), and down-wind lengths of many 
tens of kilometers. These are argued [1] to be due to quasi- 
two-dimensional atmospheric roll vortices. Note that the 
linear features are actually created by linear arrangements 
of two-dimensional backscatter regions. These are argued 
[1] to be the footprints of boundary-layer scale thermals. 
A higher resolution image (12.5 m pixel diameter) of the 
same area shows even smaller-scale, two-dimensional 
structure in the radar backscatter image. The average and 
range of intensity of these features are significantly greater 
within than outside of the kilometer-scale enhanced 
backscatter regions. These backscatter patterns compare 
favorably [1] in both scale and effect to observations of the 
modulation of microfronts in the atmospheric surface 
layer by boundary-layer scale thermals, themselves 
modulated by roll vortices. 

RESULTS 

The hypothesis of this work is that if backscatter patterns 
are created by spatially and temporally-evolving 
atmospheric turbulence, then the amount of spatial 
averaging of a SAR image required to define a stable and 
convergent backscatter value for a given area should be 
related to if not identical to the amount of averaging 
required to define well the mean stress (hence, via 
modeling, a mean wind) associated with that atmospheric 
turbulence. When atmospheric rolls are present, the rule of 
thumb is that one must average an in-situ time series for 
20-60 minutes (or 1200 to 3600 s) to get a convergent 
stress, while for aircraft data flown across the wind (and 
therefore across the axes of the rolls), one must capture 
about five to ten realizations of the roll vortices. In terms 
of the present image and the hypothesis of this work, one 
should therefore spatially average that image for (10 
m/s)*(1200 to 3600 s) = 12 to 36 km in a direction along 
the SAR-streak axes, and 25—50 km in the cross-roll 
direction. The next figures demonstrate those calculations. 

Figure 2 shows three panels that contain the results of 
averaging the backscatter values in the 520 columns 
centered within Fig. 1 and leaning slightly so that they are 
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aligned with the roll-vortex signatures. The averages start 
from the bottom and stop at an ever-increasing distance 
from the bottom. With 100 m pixels, this is equivalent to 
collecting "time series" of radar backscatter from 520 
adjacent stations within the roll field across the centered 52 
km of the SAR image, and assuming that the backscatter 
pattern of Fig. 1 advects by each of those stations for a 
given amount of time. (For example, the center panel 
shows the column averages of the bottom 240 pixels - 
equivalent to the bottom 24 km of the imaged region.) 
Along the left-hand side of each sub-figure is the range of 
relative backscatter averaged along the roll axes. The 
right-hand side of each sub-figure gives the percentage 
change of those backscatter, values from the cumulative, 
across-roll average. The rate of convergence of the column 
averages is qualitatively similar to that of in-situ time series 
of atmospheric turbulence, consistent with the hypothesis 
of this paper. 

Note the across-roll variability in the along-roll average 
backscatter. This shows that a series of adjacent in-situ 
measurements of average backscatter, equivalent here to 
adjacent, in-situ measurements of averaged, turbulence- 
induced stress or wind, will differ from each other because 
of the intrinsic anisotropy of the atmospheric turbulence 
field. Thus, those differences in average quantities would 
not represent relative errors, but instead reflect the real 
effects of structured atmospheric turbulence. Also, not 
shown here is the fact that if one did these same 
calculations with rows rather than columns one would 
produce row-averages (across the rolls) that would 
converge when one included the backscatter associated 
with five to ten roll-vortex signatures. Such averages 
exhibit the same intrinsic variability shown in the column 
averages of Fig. 2, due again to the anisotropic backscatter 
field caused, in turn, by the anisotropic atmospheric- 
turbulence field. 

together into scatterometer images. In particular, Fig. 3 
shows the average backscatter found within coincident 
ever-increasing square areas taken from the same region of 
the SAR image used to create the line averages of Fig. 2. 
The lengths of the sides of these areas marks the horizontal 
axis. (The average backscatter value for this part of the 
entire image is slightly greater than zero, which balances 
off the blank, low-backscatter region in the upper right- 
hand corner of Fig. 1 which is caused by ice in the original 
imaged area.) One needs to average over squares of at 
least about 30 km to a side in order to get close to a 
convergent backscatter value associated with this segment 
of the SAR image. It is of interest that the pixels in 
scatterometer images measure 25 km to a side: the kind of 
analysis here shows that the structured sub-grid scale 
variability in surface roughness is a source of intrinsic 
variability in scatterometer pixels. 

CONCLUSIONS 

Averaging lengths required to generate convergent 
backscatter coefficients from SAR images whose 
backscatter variability is caused by atmospheric turbulence 
parallel the averaging lengths required to get convergent 
mean stress values associated with atmospheric turbulence. 
Thus, in order to extract well-defined wind fields within 
SAR images, one must carefully spatially average subsets 
of the image with attention to the source of the backscatter 
variability in those images. 
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Fig. 1, from [1], showing a binary form 
of a SAR image which contains linearly- 
aggregated features in radar backscatter created 
by the impression on the ocean surface of three- 
dimensional, boundary-layer thermals herded by 
quasi-two-dimensional atmospheric roll vortices. 
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Fig. 3 shows the average backscatter 
from ever-increasing squares of the SAR image 
centered near the bottom of the SAR image. The 
length of those squares mark the horizontal axis of 
the plot. When one averages enough SAR pixels 
to form a square on the order of the size of pixels 
in scatterometer images (25 km to a side), the 
average backscatter converges to its final value. 

Across-roll distance (km) 

Fig. 2. Shows column averages of the 
bottom portion of the original SAR image 
corresponding to Fig. 1. Each panel shows the 
result of averaging over adjacent columns starting 
from the bottom of the  image,  for different 
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Abstract - An ERS 1 SAR image of the Greenland Sea 
showing sea surface manifestations of atmospheric boundary 
layer rolls is used to determine the orientation and spacing of 
the rolls as well as the variation of the sea surface wind speed 
associated with the secondary flow. Furthermore, the sea sur- 
face wind field associated with these rolls is simulated by us- 
ing a 3-dimensional atmospheric model. It is shown that the 
model reproduces well the roll spacing and the sea surface 
wind speed derived from the ERS 1 SAR image intensity. 

INTRODUCTION 

Atmospheric boundary layer rolls are helical circulation 
patterns in the atmospheric boundary layer which are super- 
imposed on the mean wind field. The flow pattern associated 

with atmospheric boundary layer rolls is depicted schemati- 
cally in Fig. 1 [1]. These rolls can be generated either by 
thermal instability (Rayleigh-Benard instability) when the 
layer is heated from below or cooled from above, or by dy- 
namic instability (inflection point instability) when the wind 
velocity changes with height in such a way that an inflection 
point occurs in the wind component normal to the roll axis. 
The axes of the boundary layer rolls are oriented between the 
directions of the mean surface wind and the geostrophic wind 
above the boundary layer. In the case of a thermal instability, 
the aspect ratio, i.e., the horizontal wavelength of the roll 
pattern (roll spacing), X, divided by the roll height, h, is 2.8 
according to the linear Rayleigh-Benard convection. How- 
ever, the most frequently observed values range 

cloud street 

geostrophic 

B 

Vertical wind component of secondary flow 
"z 

Horizontal wind components of secondary flow 

1     \   '   '"   '   •     I     \   '   /'      ' -*>u„ 
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Fig. 1: Schematic plots of secondary flow pattern associated with atmospheric boundary layer rolls. Panel A: Perspective 
view of the three-dimensional flow; Panel B: Variation of the vertical component uz of the wind velocity along the y direction; 

Panel C: Variation of the horizontal components ux and uy (in the x-y plane). 
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between 2 and 6, but also values of 15 have been reported 
[2]. 

If the moisture conditions are favorable, cloud streets may 
be formed in the upward rising branches of the roll circula- 
tion. 

In this paper we analyze a radar image which was acquired 
by the synthetic aperture radar (SAR) aboard the First Euro- 
pean Remote Sensing satellite over the Greenland Sea during 
a cold air outbreak on which sea surface manifestations of 
atmospheric boundary layer rolls are visible. At the time of 
the SAR data acquisition a meteorological experiment took 
place in this area in which data were collected which are 
needed as input for model calculations. 

ERS 1 SAR IMAGE OF ATMOSPHERIC BOUNDARY 
LAYER ROLLS 

Figure 2 shows an ERS 1 SAR image that was acquired 
over the Greenland Sea near Spitsbergen on March 24, 1993, 
at 19:54 UTC (orbit 8833, frames 1611 and 1629). In the up- 
per part of the image, the fissured ice edge can be delineated. 
Areas covered with sea ice have a low normalized radar cross 
section (NRCS) and thus appear dark on the SAR image. The 
area exhibiting a streaky pattern is open-water area. The 
streaky pattern is caused by variations of the short-scale sea 
surface roughness induced by the atmospheric boundary layer 
rolls. 

Figure 3 shows the variation of the NRCS along the scan- 
line A-B marked in Figure 2. From this scan we see that the 
wavelength of the roughness pattern varies between 2.7 km 
and 4.6 km and that the average wavelength is 3.5 km. We 
have also made scans in several other areas of the SAR image 
and found that the average wavelength increases continuously 
with distance from the ice edge: from 1.3 km near the ice edge 
to 3.5 km at a distance of 140 km downwind. 

If the wind direction at the sea surface is known, then the 
NRCS values can be converted into wind speed by using a 
wind scatterometer model. Here we assume that the mean 
wind direction as well as the main component of the wind 
speed fluctuation associated with the boundary layer rolls are 
parallel to the direction of the wind streaks visible on the SAR 
image. For the conversion of NRCS values into sea surface 
wind speeds we use the CMOD4 model [4]. Exactly speaking, 
this wind scatterometer model converts NRCS values into 
wind speeds at a reference height of 10 m above the sea sur- 
face for a neutrally stable air-sea interface. In the present case, 
the air-sea interface was highly unstable since at the ice edge 
the air-sea temperature difference was around -30 K and de- 
creased to about -20 K at a distance 140 km downwind from 
the ice edge. However, the CMOD4 model can also be ap- 
plied in this case because, the NRCS does not change 

Fig. 2: ERS 1 SAR image acquired over the Greenland Sea 
near Spitsbergen (Corner coordinates: 79.93° N, 0.88° E / 

80.47° N, 5.07° E / 78.47° N, 6.88° E / 78.95° N, 10.55° E) 
on 24 March, 1993, at 19:54 UTC showing sea surface mani- 

festations of atmospheric boundary layer rolls. 

significantly when the air-sea interface changes from neu- 
trally stable to unstable. 

The wind speed calculated in this way is depicted on the 
right-hand vertical coordinate axis in Figure 3. Note that the 
curve in Figure 3 is tilted because, at constant wind speed, the 
NRCS increases with decreasing incidence angle. We see 
from Figure 3 that the average wind speed decreases slightly 
from 17 m/s at point A to 16 m/s at point B. The maximum 
(minimum) wind speed in direction of the streaks is approxi- 
mately 19 m/s (15.5 m/s). 
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Fig. 3: Variation of the mean NRCS obtained from a scan 
from A to B in the area marked in Figure 2. The right-hand 

vertical axis shows the associated sea-surface wind speed cal- 
culated from the CMOD4 wind scatterometer model. The 
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Fig. 4: Variation of the mean horizontal wind velocity 
component parallel to the direction of the wind streaks at a 
height of 16 m along the scan line A-B marked in Fig. 5. 

SIMULATIONS OF ATMOSPHERIC BOUNDARY 
LAYER ROLLS 

The atmospheric boundary layer rolls visible on the S * 1 
image have been simulated by using a modified version of a 
3-dimensional, time dependent, non-hydrostatic model de- 
scribed in [5]. The equations governing the resolved-scale 
motions are the three-dimensional, spatially averaged, incom- 
pressible Boussinesq equations conserving mass, momentum, 
liquid water potential temperature, and total moisture content. 

On March 24, 1993, during the ARKTIS 1993 experiment 
[3], meteorological measurements were carried out in the 
Greenland Sea from a research aircraft. Thus the meteorologi- 
cal parameters needed for the model calculations are known. 
On that day, cold and stably stratified air blew off the Arctic 
ice pack over the warm West-Spitsbergen current. Due to an 
air-sea temperature difference of about -30 K, the initially 
very shallow boundary layer rapidly changed with respect to 
depth, temperature and moisture with increasing distance from 
the ice edge. The wind direction was about 10° and the wind 
speed within the boundary layer increased from about 10 m/s 
at the ice edge to 17 m/s in the area marked A-B in Figure 2. 
Near the top of the boundary layer, the wind decreased and 
exhibited a vertical shear which increased downstream. 

Inserting the measured meteorological parameters in the 
3-dimensional atmospheric model we have calculated the 
horizontal wind speed at the lowest grid level (16 m) in the 
direction parallel to the direction of the wind streaks at the 
location A-B marked in Figure 2. The variation of this wind 
velocity component along a line perpendicular to the wind 
streaks at a distance of 140 km downstream from the ice edge 
is plotted in Fig. 4. Comparing the plots of Figure 3 and Fig- 
ure 4 we see that the SAR derived and simulated wind speeds 
agree quite well [13]. 

CONCLUSIONS 

The present investigation shows that SAR imagery acquired 
over the sea can yield valuable information on atmospheric 
boundary layer rolls over the ocean. The orientation and 
spacing (wavelength) of the rolls can be extracted from SAR 
images. By using a wind scatterometer model also the varia- 
tion of the sea surface wind velocity associated with the at- 
mospheric rolls can be extracted from SAR images. ERS SAR 
images acquired over the ocean are also well suited for vali- 
dating atmospheric models of atmospheric boundary layer 
rolls. 
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ABSTRACT 
In order to quantity the mesoscale upper ocean and 
atmospheric boundary layer processes, a tandem ERS-1/2 
ESA AO experiment was carried out off the south-western 
coast of Norway during September 1995. A unique integrated 
data set was collected, including SAR coverage (148 scenes) 
in the ERS-1/2 tandem mode, an extensive set of 
oceanographic and meteorological variables from the R/V 
Häkon Mosby of the University of Bergen, met-ocean 
parameters from state-of-the-art metocean buoys, and natural 
slick sampling with two radio-controlled "mini research 
vessels". Also ATSR and NOAHH AVHRR data was 
obtained during the experiment. 

Analysis from this comprehensive integrated experiment is 
reported (in this paper and references), in particular a brief 
examination of a) coastal jet and currents, b) surface slicks 
and c) wind front. Features in the SAR images are discussed 
in terms of ABL stratification, coastal wind field retrieval, 
surface slick detection and in situ measurements of 
oceanographical and meteorological parameters. We have 
also focused on advantages of ERS-1 and ERS-2 tandem 
operation, and synergetic use of different spaceborne sensors 
in coastal applications. 

INTRODUCTION 
In order to advance in the understanding of, and to quantify 
the mesoscale upper ocean and atmospheric boundary layer 
processes, a tandem ERS-1/2 ESA AO experiment [1] was 
carried out in the Skagerak, off the south-west coast of 
Norway, during September 1995.The data collected 
represents a unique integrated data set, with SAR coverage in 
the ERS-1/2 tandem mode, ship-borne active/passive 
microwave observations, meteorological and oceanographic 
observations from a ship and moored instruments and in situ 
sampling of natural surface slicks. Fig. 1 shows the 
experimental area. The ERS SAR coverage (Fig.l) shows 
that ample use was made of the tandem ERS-1/2 SAR 

Figure 1 The experimental area, showing SAR coverage in 
gray (including both descending and ascending orbits), the 
location of moorings (M = metocean buoy, C1/C2 = current 
meter moorings), and ship track. The field experiment took 
place from 11 September to 1 October 1995. 

imagery at 24-hour separation, and also 
ascending/descending ERS passes at 11-13-hour separation. 
There was also substantial cloud-free coverage by ERS 
ATSR and NOAA AVHRR infra-red sensors, giving good 
information on the ocean surface thermal structure. 
The University of Bergen research vessel R/V Häkon Mosby 
was employed in the field program, to make in situ 
meteorological and oceanographic measurements. 
The Norwegian Meteorological Institute also provided a 
special operational forecast service, for meteorology, sea 
state and currents and also diagnostic weather data from 
hindcast model. 
An Aanderaa weather station provided wind, pressure, air 
temperature and humidity observations from the Häkon 
Mosby. The Naval Postgraduate School (NPS) weather 
station duplicated these observations, with additional 
observations of turbulent wind components using an 
ultrasonic anemometer and turbulent humidity fluctuations 
using an Ophir hygrometer. Surface-layer aerosol particle 
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size distribution in the range 0.3-200 um was measured 
continuously, and regular rawindsonde launches were 
performed. 
In situ measurements were made by the Environmental 
Research Institute of Michigan/University of Michigan team, 
using a rail-mounted system consisting of a C-band dual- 
polarized Doppler radar, C-band radiometer and video 
camera. 
Temperature and salinity measurements down to seabed or 
maximum 200 m depth were made using a SeaSoar towed 
CTD (Conductivity Temperature Depth instrument). The 
current profile was measured from the bottom of the ship to 
the seabed or maximum 500 m depth with an Acoustic 
Doppler Current Profiler (ADCP). 
The NPS metocean buoy measured two-dimensional wave 
spectra using a Hippy Datawell sensor. It also measured 
pressure, vector wind, air and sea temperature, humidity, 
turbulent fluctuations in wind, temperature and humidity, 
and aerosol particle size distribution. Two sub-surface 
current meter moorings were deployed, with Aanderaa 
current meters at 25 m, 50 m and 100 m depth and at 25 m 
above the sea bottom. Two remotely-controlled platforms 
"INTERFACE I and II" were deployed on September 13, 15, 
17 and 18. Both were equipped with a rotating Teflon drum 
to take direct samples of the surface microlayer. 
INTERFACE II was also equipped with air and sea 
temperature sensors and a K-band radar. 

COAST WATCH'95 DATA ANALYSIS 
In the following sections we will give a brief analysis of a 
coastal current, for analysis of surface slicks and coastal wind 
fields se respectively [2] and [3] 

COASTAL CURRENTS 
Several of the SAR images from the COAST WATCH'95 
show oceanic fronts which can be explained as the effect of 
current gradients. In Figure 2, A-D, taking advantage of the 
ERS-1, ERS-2 tandem operation, a series of four collocated 
SAR images from 27, 28 ,29 and 30 September are shown. 
However, these images show a very clear example of 
signature persistence and demonstrate the SAR capabilities 
due to a higher temporal sampling frequency of an area. A 
comparison of the strong front or jet in the four images 
reveals a westward movement for the jet structure within 
four days. The wind as obtained from R/V Häkon Mosby 
varies from 9 m/s SW (27.09) to 1.0 m/s NE (28.09); 8 m/s 
NW (29.09) and 3 m/s SE on the 30.09. An AVHRR image 
(Figure 2, F) from 30 September also clearly reveals the SST 
gradients in the same area as the prior SAR images, 
demonstrating the possibility of a synergetic use of different 
remote sensors to improve the spatial and temporal coverage 
and provide quantitative information about the ocean 
feature. 
The west boundary of the jet like feature in the image from 
27 September is crossed by R/V Häkon Mosby 
simultaneously with satellite overpass resulting in a unique 
record of meteorological and oceanographical parameters 
and corresponding backscatter coefficient over the jet, 
Figure 2 A (ship track inserted as white line) and Fig. 3. 
The SST measured by the thermistor (Fig. 3, bottom) 
established the surface layer to be 9°C in the jet (dark 
signature in the SAR image) and 13°C outside (west of) the 
strong gradient at the boundary. The salinity and density 
sections from the SeaSoar (not shown) also clearly 

Figure 2 A-D is the mosaic of SAR images on 27 to 30 September 1995 Panel E shows a NOAA AVHRR thermal image from 
30 September. 
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Figure 3 The upper panel shows the averaged backscatter 
coefficient profile (the peak co value at the shear for each line is 
indicated with an asterisk) and the corresponding sub-image along 
the ship track. The remaining four plots shows respectively air and 
sea temperature, air-sea temperature difference and finally the wind 
speed from R/V Häkon Mosby. 

show the west boundary of the jet well collocated with the 
temperature structure. The cold water moves westwards in 
the jet at typical current speeds, measured by the ship-borne 
ADCP, to 60 cm/s. Sharp changes in the current were 
measured when the ship moved across the jet boundaries. 
The SAR backscatter and the surface met/ocean parameters 
shows clearly the western boundary of the jet, moreover the 
eastern boundary is somewhat interfered with a wind front. 
The dark signature of the jet is associated with a stable 
atmospheric condition. This suggest that the visibility of the 
jet is likely to be a result of the increased atmospheric 
stability as the air flows over the colder water, reducing the 
wind  stress  and thus the  growth  of short  wind-waves. 

However the backscatter peak (Fig. 3, top, plotted as 
asterisks) on the western side of the jet (the boundary zone) 
is probably caused by strong horizontal shear interacting 
with the short wind waves [4]. 

SUMMARY 

During COAST WATCH'95 a unique integrated data set 
was collected, including extensive SAR coverage (148 
scenes) in the ERS-1/2 tandem mode, an extensive set of 
oceanographic and meteorological variables from the R/V 
Häkon Mosby of the University of Bergen, met-ocean 
parameters from state-of-the-art met-ocean buoys, and 
natural slick sampling with two radio-controlled 'mini- 
research vessels'. Also ATSR and NOAA AVHRR data was 
obtained during the experiment. 
Analysis from this comprehensive integrated experiment is 
reported, in particular a brief examination of; coastal jet, 
currents, surface slicks and coastal wind field. 
In addition we have addressed the ERS-1 and ERS-2 tandem 
operation, and synergetic use of different spaceborne sensors 
in coastal applications. We anticipate that further studies 
will lead to improved algorithms and validation for retrieval 
of quantitative estimates of dominating geophysical 
parameters in the upper ocean and lower atmospheric 
boundary layer such as strength of current shear and 
convergence, and sub-synoptic wind field. Better 
quantitative interpretation of SAR images will furthermore 
lead to improved classification capabilities of natural film 
and oil spill. 
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ABSTRACT 

Ocean mesoscale phenomena such as eddies and cur- 
rent convergence zones can often be seen in SAR im- 
ages due to characteristic patterns caused by natural 
film induced damping of the waves. Such films have 
also been found to exert a significant effect on air-sea 
gas exchange, which may be important for the global 
scale climate system. Satellite synthetic aperture radar 
(SAR) may prove very useful to quantify the extent of 
natural film. To investigate the composition of these 
films and their effect on radar return, samples of the 
sea surface were taken simultaneously with ERS-1/2 
SAR coverage of a fjord (the Korsfjord experiment), 
and later in coastal ocean areas (COASTWATCH'95). 
During COASTWATCH'95, simultaneous observations 
were made with a shipmounted C-band dual-polarized 
Doppler radar, and surface drifters were deployed to 
investigate the surface current variations in vicinity of 
the slicks. The dependence of the existence of slicks 
on wind speed is also investigated, and an estimate of 
natural film distribution during the experiment period 
given. 

INTRODUCTION 

Natural film on the ocean surface is formed from ma- 
rine organisms or terrestial material delivered by runoff 
or atmospheric transport. The composition of natural 
films varies, but substances such as proteins, lipids, sac- 
charides, organic acids, and metals associated with the 
organic matter, are usually present at higher concen- 
trations than in the corresponding bulk water [1]. Sea 
surface films have been seen to influence energy dissipa- 
tion in capillary waves [2;3], gas exchange rates [4] and 
marine aerosol formation [5].  Asher [6] has estimated 

*Also at Geophysical Institute, University of Bergen, Norway. 
* Also at the University of Michigan, Ann Arbor, USA. 

that the impact of various hypothetical slick coverages 
on global air-sea CO2 exchange is important. How- 
ever, global spatial film quantification has so far not 
been done, and it is therefore difficult to know whether 
natural films really are extensive enough to be of im- 
portance in global change studies. 

The spaceborne SAR, with its high spatial resolution 
(25m), may contribute significantly in global mapping 
of natural films at the ocean surface during moderate 
wind conditions. Damping of the capillary and short 
gravity waves by the film, which are sensed by radars 
via the Bragg backscatter, produce dark slick signa- 
tures in the ERS SAR imagery. So far, oil slicks [7] and 
artificial monomolecular films [8] are well documented 
in satellite and airborne SAR experiments respectively. 
In contrast, only one previous study exists in which 
the chemical components of natural films were sampled 
simultaneously with satellite SAR acquisition. This ex- 
periment was conducted under calm wind conditions 
in a Norwegian fjord [9] and showed that there exists 
a chemical difference between slicked and non-slicked 
areas in an ERS-1 SAR image. 

The primary objective of the work reported here, was 
to extend the documentation of the composition of nat- 
ural films and their effect on radar return, to include 
different coastal oceanographic and atmospheric condi- 
tions. This may in turn give new valuable insight into 
the geophysical processes responsible for accumulation 
of different natural films in coastal areas. Eventually 
this may also help develop satellite SAR as a tool in 
mapping the global extent, distribution and variabil- 
ity of natural films, to be used in e.g. climate studies. 
Knowledge of natural films are also important for SAR 
oil-spill detection systems, since these films are difficult 
to distinguish from oil in the SAR imagery. 
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THE COASTWATCH'95 EXPERIMENT 

A tandem ERS-1/2 ESA AO experiment was carried 
out off the south-western coast of Norway during the 
month of September 1995 [10]. The main objectives of 
this experiment were to investigate and quantify natu- 
ral films, coastal jets, ocean fronts, wind velocity, wind 
fronts and rain showers from ERS-1/2 SAR. Informa- 
tion from the C-band (5.3GHz) VV-polarized SAR im- 
ages in near real time were used to navigate the research 
vessel R/V Häkon Mosby to different SAR features of 
interest. 

Extensive temporal and complete spatial satellite 
SAR coverage of the experiment region was possible due 
to the ERS-1/2 tandem mission. A total of 53 SAR 
scenes (each covering 100 x 100km) from the experi- 
ment region were analyzed during the field campaign 
from 11 September to 1 October 1995. In addition, 18 
scenes covering the same region in the months before 
and after the experiment, were analyzed in this work. 

A C-band (4.92GHz) continuous wave (CW) Doppler 
scatterometer with VV and HH polarization, was in- 
stalled to acquire shipborne radar backscatter measure- 
ments during COASTWATCH'95. The radar cross sec- 
tion (RCS) and spectral statistics plots in this work 
were based upon a 35sec running average (equal to a 
distance of ~100m). 

During the first part of the COASTWATCH'95 ex- 
periment surface slick material was collected using two 
remotely controlled surface slick samplers, INTER- 
FACE I (length 1.2m) and II (length 2m) [11]. They 
were both equipped with a rotating hydrophilic teflon 
drum [9]. The INTERFACE II was also fitted with 
a GPS receiver, temperature probes, an anemometer 
and a data logger. Bulk water samples were obtained 
at 20cm depth for comparison. The samples were an- 
alyzed for salinity, anions, fatty acids, alcanes, total 
organic carbon, cations and trace metals. Ultra violet 
(UV) and visual light (VIS) scans were made on all sam- 
ples, and pH, specific conductivity and turbidity were 
determined. 

QUANTIFICATION OF FILM COVERAGE 

To investigate the dependence of observed slicks on 
wind speed and give an estimate of natural film dis- 
tribution, 71 ERS-1/2 SAR images collected over the 
COASTWATCH'95 experiment region (in the period 
August-October 1995) were analyzed for slick signa- 
tures. It is by now a well documented fact that also oil 
spills, grease ice, convergent current zones, rain cells, 
internal waves, threshold wind speed (<2-3m/s), wind 
sheltering by land or large platforms and current wakes 
(created when ocean currents meet an obstacle such as 
a large platform) may cause dark areas in SAR imagery 
[12]. To discriminate between natural films and these 
similarly appearing features requires a direct analysis 

of the SAR image (shape, size, texture, gradients and 
backscatter reduction of the slick), and a contextual 
analysis (meteorological data, currents, bathymetry, 
platform and ship lane locations). In some cases, run- 
ning SAR models such as the ERIM Ocean Model [13] 
or oil drift models, may give important additional in- 
formation. In this work, the decision of whether a slick 
was caused by natural film was based on simple flow 
chart algorithms and experience in slick classification 
using SAR. 

The results indicates that for increasing wind speeds, 
the percentage of film coverage in the SAR scenes ex- 
pectedly decreases. Many of the 71 investigated SAR 
scenes have the approximate same % film coverage. The 
largest film coverages (up to 40%) are found for the low- 
est wind speeds, 2.5m/s (in these cases large homoge- 
neous areas are classified as caused by low winds, while 
the surrounding inhomogeneous slick features includ- 
ing eddies are classified as caused by natural film). For 
5 to 10m/s wind speed, the natural film coverage has 
sunken below 5% in all cases. For 12.5m/s and 15m/s, 
the coverage is below 1%. The backscatter values for 
slicks classified as natural film varied between -6dB and 
-26dB (noise floor). 

DISCUSSION 

For the Doppler radar, the average drop in vertically 
polarized radar cross section (RCS) when entering the 
slicks is 9.4dB (includes cases where no SAR or slick 
sampling were available). Low backscatter levels were 
observed to persist over time intervals ranging from tens 
of seconds to several minutes, depending on the width 
of the slick. The overall RCS varied with wind speed 
and other environmental parameters, but stayed in the 
range between -20 and -40dB (includes both slicked and 
non-slicked regions). 

The chemical analysis of the samples showed that 
trace metals were generally enriched in the surface mi- 
crolayer, especially in the slicked areas. Trace metal en- 
richment is related to particulate matter present in the 
films, and possibly associated with humic substances 
(measured as UV absorbance). Humic substances were 
also enriched in the surface microlayer. Concentrations 
of free fatty acids indicate that these are raised in- 
side slicks, but also in one of the outside slick sam- 
ples. In this outside slick case, the high wind speed 
(9-10m/s) predicts that much lower values should have 
been found. The sample is therefore believed to be 
contaminated (probably by biological fats/fish oil from 
fishing vessels). Most fatty acids originated from ma- 
rine organisms (plankton and macro-algae), since there 
are very few high molecular weight fatty acids available. 
The latter might have indicated higher plant material 
from terrestial sources, that could have been introduced 
from land via fjords into coastal waters. 

The typical drop in backscatter caused by the natu- 
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ral films varied between 2dB and lldB. Increasing wind 
speeds expectedly lead to decreasing damping by natu- 
ral film. The wide range of damping values, especially 
for low wind speeds, is probably due to varying film 
composition and thickness. Moreover, 27 SAR scenes 
were classified as showing no natural film (no damping). 
They all had a wind speed of 5m/s or more. 

When comparing COAST WATCH'95 results with 
the slick sampling experiment carried out in Korsfjord 
south-west of Bergen, Norway [10], none of the surface 
microlayer samples seemed heavily impacted by mineral 
oil products, even though the fjord carried considerable 
ship traffic. Less, and smaller molecules of fatty acids 
were found during COASTWATCH'95 compared to the 
fjord case. The small fatty acid molecules are associated 
with marine organisms, while the larger come from ter- 
restial sources. Moreover, the investigated slicks from 
COASTWATCH'95 were generally thinner than those 
studied in Korsfjord. This is most likely related to fetch 
lengths which are shorter in fjords than in coastal areas 
[14]. However, both experiments showed an approxi- 
mate one order of magnitude increase of the concen- 
tration of fatty acids inside compared to outside slicks. 
For the Korsfjord case, the backscatter damping was 
slightly higher than found in COASTWATCH'95 cases. 
This is probably due to film thickness. 

CONCLUSIONS 

Generally, a correspondence was found between damp- 
ing in ERS SAR images, C-band Doppler radar val- 
ues and sea surface chemistry. Compared to an ear- 
lier fjord experiment, the investigated slicks were thin- 
ner and contained smaller fatty acid molecules, which 
indicated marine organisms. In the fjord, terrestial 
sources dominated the slicks. The thinner slicks in 
COASTWATCH'95 gave slightly lower damping (dB) 
in the SAR imagery compared to the fjord cases. More- 
over, the damping caused by the slicks investigated in 
COASTWATCH'95 were higher for the Doppler radar, 
than in the ERS SAR imagery. This is probably due 
to the lower resolution of the ERS SAR, causing some 
resolution cells to contain returns from both slick and 
surrounding slick-free sea, thus reducing contrast. Us- 
ing the Doppler radar data and surface drifters, we were 
also able to show that one geophysical process respon- 
sible for verified natural film accumulation, was conver- 
gence. Also a natural film discrimination algorithm was 
used to obtain estimates of natural film coverage under 
different wind conditions. 
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Abstract - The tilting effect (caused by water waves that are 
much longer than the radar waves) modifies the local radar 
incidence angle and introduces a strong attenuation of the 
radar backscattering return. It is shown that when this tilting 
effect is accounted for, the agreement of the wind speed 
derived from the altimeter with the buoy measurement of 
wind speed is significantly improved. 

INTRODUCTION 

Feasibility of deriving the wind speed at the sea surface 
from satellite altimeter data has been convincingly 
demonstrated during the past two decades with output from 
GEOS, SEASAT, GEOSAT and most recently 
TOPEX/POSEIDON missions. The basis for relating radar 
measurements to wind speed is that the radar backscattering 
intensity is dependent on the surface roughness and that in 
the ocean, the surface roughness is mainly caused by wind- 
generated surface waves. The measured radar intensity (the 
normalized radar cross section), an, however, was found to 
differ significantly from theoretical calculations using 
equations derived from scattering processes (e.g., [1]) and 
measured physical properties of the surface roughness (e.g., 
[2]). Most puzzling of all, calculations consistently indicated 
that the sea surface detected by radars, with wavelengths on 
the order of a few centimeters, was "rougher" than those 
detected by optical instruments that depend on light with 
wavelengths in the sub-micrometer wavelength range (Fig. 
1). 
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Fig. 1. Ku-band altimeter-derived mean square slopes, x: 
GEOS-3 [3], o: TOPEX data reported in this article, the solid 
curve representing the average of the optical measurements. 

This perplexing result was not resolved in the past two 
decades since the advent of altimeter data. Up to this stage, 
the majority of wind speed algorithms are based on empirical 

or statistical analyses, most of them rely on the correlation of 
coincident and collocated databases of the satellite radar 
cross section and in-situ wind speed (e.g., [4-6]). One 
algorithm [7] relies completely on the independently derived 
statistical properties of the altimeter backscattering cross 
section and sea surface wind speed. The difference among 
these algorithms are relatively minor. It is shown that the 
tilting effect (caused by water waves that are much longer 
than the radar waves) modifies the local radar incidence 
angle. The change of local incident angle results in an 
exponential attenuation of the radar return. When this tilting 
effect is accounted for, the agreement of the wind speed 
derived from the altimeter with the buoy measurement is 
significantly improved. 

TILTING EFFECT 

A conceptual sketch to illustrate the tilting effect is shown 
in Fig.2 [8]. The sketch illustrates a train of plane waves 
(indicated by the parallel wave front) impinging on the water 
surface, corresponding to the scattering of the far-field radar 
waves from satellite altimeters. The scattered wave patterns 
from the water surface will vary according to the surface 
roughness conditions, been more directional and narrowly 
distributed from a smooth surface, as in patch 1. The primary 
direction of the scattering pattern is along the direction of 
specular reflection. Therefore, for surfaces of equivalent 
roughness, such as patches 2, 3 and 4, the scattering patterns 
are similar in the directional distribution (the beam width, 
determined by the surface roughness), but the primary 
direction of the scattering will vary depending on the 
orientation of the roughness patch. The backscattering 
intensities, that is, the scattering in the direction opposite to 
the incoming waves, for the three patches shown will be 
different. The modification of the local incident angle results 
in a reduced, or attenuated, radar return compared to the 
condition when the scattering is assumed to be on a flat 
surface such as depicted in patch 5. The concept illustrated in 
Fig. 2 forms the basis of this paper regarding the tilting effect 
on the altimeter scattering from the ocean surface. 
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Fig. 2. A conceptual sketch illustrating the scattering of radar 
waves by surface roughness. 
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For monostatic radar applications, that is, projecting and 
receiving radar waves with the same antenna, backscattering 
properties are of most interest. The backscattering intensity is 
generally expressed as the normalized radar cross section 
(NRCS), OQ. Many expressions of OQ have been presented in 
the literature. The major differences of their results are the 
assumptions of the surface roughness and the dielectric 
constant of sea water, which determines the refractive index 
of the sea surface. For radar altimeter applications, the 
expression given in [1] is frequently employed (assuming a 
Gaussian distribution of the scattering surface roughness) 

*(«)-!# sec &i exp 

V 

•tan2 ft 

sf 
(1) 

where #,• is the radar incidence angle, denoting the angle 
between the propagation direction of radar waves and the 
surface normal; |Ä(0)|2 is the Fresnel reflection coefficient, 
characterizing the surface reflectivity; and sfi is the filtered 
mean square slope, representing the portion of surface 
roughness elements with length scales greater than the 
diffraction limit. Eq. (1) corresponds to the zero-th order 
solution of the scattering of electromagnetic waves from a 
rough surface. With a normal incidence, 9(=0, (1) can be 
expressed as 

sf 
Introducing the concept of local incident angle (e.g., [9- 

10]), (1) can be expressed as 

£0(3) = f^^sec4(3+ö)exP 
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- tan2 (6>+<9)N 
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where 6 is the slope of the long wave roughness (the tilting 
waves) that contributes to the modification of the local 
incidence angle, p(&) is the probability density distribution 
(pdf) of the tilting waves, and 2j) is the expected radar cross 
section measured by the altimeter. For normal incidence, 
6f=0, and (4) becomes 
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Comparing (2) and (4), the analytical form of the attenuation 
factor, Aon, due to the tilting effect can be assessed by the 
ratio of 2Q and OQ 

0b(O) 
Acr0 = 

tan2<9 
= Jsec4 0exp ZJ^Ll p(6)d8 . 

*f 

(5) 

Fig. 2 shows a comparison of computational results using 
(2), shown as dashed curve, and (5), shown as solid curve, 
with the TOPEX Ku-band altimeter data, shown as circles. 
The agreement with the altimeter data with the consideration 
of the tilting effect is significantly improved. 

U10 (m/s) 

Fig. 3. Tilting effect on the altimeter cross section. 

COMPARISON WITH BUOY MEASUREMENTS 

Two different wind speed algorithms are developed in [8, 
11] to account for the tilting effect. The first (Tilt-ALT) is an 
operational algorithm that calculate the wind speed directly 
from the altimeter cross section, and the second is a research 
algorithm (Tilt-Surface) that assumes a prior knowledge of 
the tilting slopes in order to correct the altimeter cross section 
(5). Comparison in term of the distributions of the wind 
speed difference between in-situ buoy data and altimeter 
measurements based on five different algorithms are 
presented in [11]: the two mentioned above plus the 
empirical algorithms of Brown et al. (B81) [4]; Modified 
Chelton and Wentz (MCW) [6]; and the statistical algorithm 
of Freilich and Challenor (F&C) [7]. Typically, the 
distributions of the first three empirical algorithms are quite 
similar. For example, one case study (Fig. 4) shows the 
following statistics: the rms difference and the correlation 
coefficient are (1.41 m/s, 0.81), (1.39 m/s, 0.81) and (1.51 
m/s, 0.81), respectively for B81, MCW and F&C. The 
statistical properties of the wind speed difference based on 
the operational algorithm (Tilt-ALT) are very similar to the 
other three algorithms just discussed, the rms difference and 
the correlation coefficient are (1.49 m/s, 0.80). However, if 
the tilting slope can be accurately calculated, and the 
correction to the measured cross section applied properly, the 
distribution of wind speed difference is noticeably narrowed. 
The rms difference and the correlation coefficient improve 
significantly to (0.84 m/s, 0.96). Similar improvements are 
found with other data sets we have compiled in the Gulf of 
Mexico. Table 1 lists the rms differences and the correlation 
coefficients of the surface wind speed comparisons using the 
5 algorithms just described. We may conclude from this 
comparison that the accuracy of the satellite altimeter is 
considerably better than we have previously accepted. If 
independent measurement of the tilting slope is available, the 
rms difference between the altimeter output and in-situ 
measurements will be reduced from the currently accepted 
magnitudes established by empirical algorithms. The 
improvement is approximately 40 percent based on the 
results shown in Table 1. And most significant of all, this 
conclusion is based on sound physical ground relating the 
altimeter backscattering and the surface slope properties, 
unlike the earlier operational algorithms that depend on 
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empirical formulae established from co-located buoy and 
nltimpfpr rtatflhncpc 

B81:(rms,corr,slope) 1.41, 0.81, 0.98 
-fa) 

MCW. 1.39, 0.81, 0.97 

-2        0        2 
U- Difference (m/s) 

-2        0       2 
U - Difference (m/s) 

■2        0       2 
U-Difference (m/s) 

Fig. 4. The distributions of wind velocity differences (ALT - 
Buoy) for the five algorithms discussed in this article, (a) 
B81 [4]; (b) MCW [6]; (c) F&C [7]; (d) TiltALT [8], and (e) 
TiltSurface [8]. 

Table 1. Comparison of the rms difference and correlation 
coefficient of buoy winds and altimeter winds [11]. 

(a) RMS (m/s) 
B81 MCW F&C Tilt- 

ALT 
Tilt- 
Surf 

A115B220 1.41 1.39 1.51 1.49 0.84 
A21B22Ü 1.28 1.35 1.62 1.58 0.97 
A46B203 1.75 1.74 1.79 1.83 1.07 
A59B2Ü2 1.3Ü 1.14 1.33 1.56 0.86 
A46B236 1.3Ü 1.36 1.46 1.41 0.80 
A26B2Ü2 2.73 1.45 1.52 1.65 1.21 

(b) Correlation Coefficient 
B81 MCW F&C Tilt- 

ALT 
Tilt- 
Surf 

A115B220 0.81 Ü.81 0.81 0.80 0.96 
A21B220 0.90 Ü.9Ü 0.9Ü 0.89 0.97 
A46B2Ü3 Ü.82 0.83 0.83 0.81 0.95 
A59B202 0.92 0.93 0.93 0.91 0.98 
A46B236 0.90 0.91 0.91 Ü.90 0.98 
A26B2Ü2 Ü.65 Ü.88 0.87 0.8Ü 0.91 

CONCLUSIONS 

In the course of studying the wind speed derivation from 
satellite altimeters, it is found that the surface tilting effect is 
a significant factor of consideration. The effect is especially 
noticeable at lower wind velocities where differences of more 
than 6 dB are found between the altimeter measurements and 
the computations using the classical equation relating the 
backscattering cross section and the surface roughness (2). 
With the correction of the tilting effect in the cross section 
measurement, the calculated wind speed is found to be in 

much better agreement with the surface buoy measurement. 
The improvement is on the order of 40 percent when 
compared to the results derived from other statistical or 
empirical algorithms including B81, MCW and F&C. This 
result suggests that the theoretical frame work relating the 
backscattering cross section and the surface roughness is 
fundamentally sound when the tilting effect that modifies the 
local incident angle is taken into account. It also indicates 
that the accuracy of deriving wind speeds from altimeter 
cross sections is potentially much better than we have 
perceived, however, in order to achieve the full potential of 
the altimeter wind sensing, independent measurement of the 
sea surface slope component contributing to the tilting may 
be needed. 
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Abstract - This paper faces the problem of achieving a 
satisfactory classification of SAR data, based on 
statistical methods as Maximum Likelihood. The 
proposed method performs a hierarchical classification, 
making an automatic feature selection, simulating the 
behaviour of a real exhaustive selection in the features 
space. The method, whose accuracies outperforms those 
obtainable with a classical ML one shot, uses a new 
statistical characterisation of classical features as sample 
mean and sample variance that exploits the spatial 
correlation between data. 

INTRODUCTION 
The supervised, statistical classification of Synthetic 
Aperture Radar (SAR) images has to deal with the 
difficulties involved in processing this kind of data, and 
often results in poor accuracies. 

There are two important issues that relate to this 
problem. The first issue regards the low flexibility of the 
mathematical models which are used to describe the data 
to be classified. For instance, the statistical properties of 
the second order are often overlooked, and so the 
resulting models may be heavily simplified. 

The second issue is of a more specific kind and 
regards one of the major problems in all supervised 
classification algorithms: the limited availability of 
training samples [1],[2]. Conventional classification 
technologies, as the classical ML one shot or KNN, often 
do not respond effectively to the rapid development in 
SAR technology: resolution increases, as does the 
amount of data, with the possibility to distinguish 
between an always growing number of particulars, while 
often the training areas remain small. 

This paper offers a solution to these problems in the 
framework of an automated hierarchical classification 
methods. 

METHOD 
The proposed method follows a hierarchical approach 
[3], and provides decisional trees which are searched in 
the graph space using a branch function based on the 
Battacharyya distance [4]. The search of the decisional 

tree follows a top-down approach and is carried out by 
simulating the search strategy of the exhaustive 
classification algorithm in the feature space. 

The simulation of the exhaustive search is done by 
observing the extraction strategy of the features and of 
the classes, which set the nodes of the tree, followed by 
the real exhaustive classification method. Two sets, the 
first empty and the second containing all the natural 
classes, are initialised at the first step. Then, the natural 
class which has the best separability measure as 
compared to the set formed by the remaining natural 
classes, is extracted from the second set. The chosen 
class is put in the set initially empty and the state of the 
two set is stored together with the feature selected to 
separate the class. The extraction and storing process 
continues until the set, initially full, is composed by only 
one class and all the others are put in the set initially 
empty. Finally, the configuration of the two sets is 
chosen which has the best separability compared to those 
of all the stored configurations. The winning 
configuration will form the state of two new nodes of the 
hierarchical tree. The method continues until each state 
of each node of the tree is formed by only one natural 
class. 

The method provides a locally optimal classification 
result, reducing the computational complexity from the 
exponential level (real exhaustive search) to the 
quadratic level (proposed simulated exhaustive search). 
Moreover it performs an automatic selection in the 
features space. In the following, an estimate of the 
computational complexities, expressed as a function of 
the number of Battacharyya distances that have to be 
computed by the different algorithms, is presented. 
We define the following quantities: C complexity, 
K total number of considered images, P total number of 
considered features, N total number of considered 
classes. The total number of features used is: K*P. 
Real hierarchical exhaustive classification complexity 

In this case we have that: C = KI P( 2   ) j 

The behaviour of the function is exponential. 
Simulated algorithm for hierarchical classification 
The complexity of the algorithm is the following: 

This work was supported by the European Community 
program Training and Mobility for Researchers (Marie Curie 
Fellowship) under contract ERBF MBICT 95257. 

N-2 
C = KP I 

/=0 
.1    [(N-t-i)-l]+(N-l-2) 
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The double sum exploits the almost square behaviour of 
the complexity of algorithm. 
Simulated algorithm for hierarchical classification with 
variable branch function 
This is the computational complexity for a variation of 
the simulated algorithm. In this case, instead of 
computing the Battacharyya distance for all the natural 
classes contained in the set initially full a simplifying 
hypothesis is done. The mean and the standard deviation 
of the feature under examination are used to compute a 
distance measure based only on the difference between 
these quantities. The accuracy achievabile by this 
algorithm is lower than those of the simulated algorithm. 
This happens because the introduced simplification is 
equivalent to consider classes as characterised by 
rectangular probabilities densities. The computational 
complexity allowed by this variation is almost linear. 

N-2 
C = K  I  [{N-t-l)(P + 2)-l] 

In Fig. 1 a graph of the behaviour of the complexities of 
the different algorithms, considering one only image and 
one only feature, is shown. The complexity of the real 
exhaustive algorithm makes the problem intractable 
while, thanks to their reduced complexity, the two 
proposed algorithms are suitable to make tractable the 
hierarchical classification with automated feature 
selection. 
c Exhaustive/ 

6000 

/ 

4000 / 

2000 2^ Simulated, 

-SUfiülated simplified 

0 S 10 15 

Fig.1. Behaviour of the complexities for the proposed algorithms. 

20 
«Classes 

An important issue of the statistical classification is that 
classical statistical feature estimators do not exploit the 
dependence among the samples of an acquired image. 
The textural information of an object is lost because of 
the simplified approach to classification. 
We have developed estimators of the first and second 
statistical properties of features like sample mean and 
sample variance that exploit the correlation property. We 
have made the simplifying hypothesis of data with 
gaussian distribution. 
In the following, the parametric estimators of the 
statistical properties of the first and the second order of 
the two features are shown. 

Those features have been used by the hierarchical 
classifier developed both to compute the Battacharyya 
distance   and   to   make   the   maximum   likelihood 
classification. 
This  increase of information captured by the proposed 
method of features estimation makes an improvement of 
the classification accuracy. 
Mean of the sample mean 
The mean of the above sample mean is the same of the 
one    estimated    with   the    hypothesis    of   sample 
independence: 

(A)      i JV-1    ,    i 

Variance of the sample mean: The estimate of the 
variance of the sample mean is quite difficult because we 
don't use the hypothesis of data independence. The 
parametric expression of the variance of the sample 
mean is the following: 

(A)        i   N-\ 1 N-i-l 

N  „=0    " M+'J   N k=0 

1 N-] 

where Xt are the samples of the signal with the 
estimated mean value subtracted, and: i= 1... .N. 
As can be observed from (1), the number of calculations 
necessary for the estimate of the variance of the sample 
mean is onerous, but it can be reduced investigating the 
nature of the data. In fact, we have experimentally seen 
on our set of SAR images that after seven, at most ten 
samples, the spatial autocorrelation value is about zero. 
In (1), we have limited, the term which express the 
spatial autocorrelation to the meaningful values that we 
have estimated on our images. 

^Classes: 1,2,3,4,5^ 
Feature: Me-L-HV 

I Battacharyya: 14,95/ 

Class: 4 

/Classes: 1.2,3,5     ^ 
Feature: Me-L-HH 
Battacharyya: 3,56 

Classes: 2,3 
Feature: Me-L-VV 
Battacharyya: 1,09 

Classes: 1,5 
Feature: Me-C-W 
Battacharyya: 1,16 

Fig. 2. Classification tree generated by the simulated hierarchical 
algorithm (Legend: ME-LHV=sample mean on L band with 
HVpolarization). 
Mean of the sample variance 
The mean of the sample variance made without the 
independence hypothesis has a difficult demonstration, 
similar to those found for the variance of the sample 
mean 
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The new estimate of the mean of the sample variance is 
the following: 

The reasoning made about possible simplifications 
related to the nature of the spatial correlation keeps the 
computation of the estimator effective. 
Variance of the sample variance: The analytic estimate 
of the variance of the sample variance is very complex, 
because the demonstration requires the computation of 
4th order moments. This estimator is still to develope. We 
suggest, for the moment, to use, when computing this 
quantity, the simplifying hypothesis of independent 
samples. 

RESULTS AND CONCLUSIONS 
The method for the hierarchical classification with 
automated features selection has been tested on different 
agricultural sites (Flevoland and Feltwell). 
The classification results for the Feltwell sites are shown 
in Fig.3, while in Fig.2 the generated classification tree 
can be seen. In Fig 3, five different classes are present: 
sugar beets, stubble, bare soil, carrots and potatoes. We 
have contemporary used, for the classification six, one 
look, SAR data acquisitions of this site: HH, HV and HV 
polarised, in the L and C bands. For every image we 
have computed the intensity and the sample mean and 
sample variance features with the new 

Table I. Classification accuracy obtained on the Feltwell site. A: ML 
one shot; B. Simulated hierarchical; C; Simulated simplified 
hierarchical 

Fig. 3 Classification map of the Feltwell site. 

estimators of their statistical properties of the first and 
the second order. 
The space of the features, in which the algorithm made 
the feature selection, was set to 18 elements. 
In Table 1 the classification accuracy achieved with 
these features is compared with that obtained with other 
classical methods. 

7ÖJB3 18,7 5 
83,63 83,63 
'87,79 "9Ö7i 8 
96,73 96,72 
73,81 
82,56 

69,34 
71,7 

It can be seen that the difference in quality is high. In 
fact the average accuracy improves of more than 20% if 
compared with the classical Maximum Likelihood one 
shot. The classification accuracy percentage is based on 
the training areas. We have always found, in our tests, 
the accuracy of the simulated algorithm to be the same of 
the really exhaustive algorithm, while that of the 
simulated simplified degrades of something, which is 
due to the hypothesis done. The discrimination power of 
the features with the new estimators is good. The sample 
mean, thanks to our statistical characterisation, obtains 
classification accuracies that exceed those obtained by 
work developed in the same field [5]. 
In conclusion, both from the theoretical and the practical 
point of view, the method represents a good solution to 
efficiently achieve accurate classification maps. The 
automated feature selection allows to find that 
configuration which performs better and thus which 
better reduces the confusion between classes. The 
proposed method prooved to be extremely suitable to be 
employed as an initial classification for higher level 
systems like, for instance, Markov Random Field based 
approaches. 
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Abstract ~ This paper presents a new technique in 
identifying classes in Synthetic Aperture Radar (SAR) sea 
ice imagery using correlated texture. First, we employ 
dynamic local thresholding to generate a histogram of 
thresholds. Then, we use a multi-resolution peak-detection 
method, a strategy used in digital image quantization 
field, to extract significant intensity thresholds from the 
histogram and provide an initial segmentation. Next, we 
compute correlated texture of the result and create a 
matrix of spatial, probabilistic relationships among the 
classes. Given the texture, we cluster the classes into 
different groups. The clustering concept is based on an 
innovative 'solidification' model that strives to obtain 
similar auto-correlated textural values for all groups. This 
process produces a second segmentation with the correct 
number of classes. We have tested our technique in more 
than 200 SAR sea ice imagery successfully. The entire 
process is fully automated and fast. 

each group made up of several classes. This unsupervised 
discovery is the key to the automation of our design. The 
final segmentation of sea ice imagery is then achieved by 
thresholding the image using the maximum threshold 
value of each group. 

Note that we propose a segmentation technique that 
identifies classes in SAR sea ice imagery as a pre- 
processor to classification. We believe a SAR image 
processing task be incremental and modular. To be 
incremental, a good segmentation process preempts a 
good classification result. To be modular, it allows us to 
incorporate expert geophysical knowledge and ancillary 
data into classification and not overburden the task of 
image segmentation. This two-tier strategy has been 
utilized in sea ice classification[3], land use mapping[6], 
drainage channel networks detection[5], integration of 
ancillary data[l][4], and other image processing tasks. 

INTRODUCTION METHODOLOGY 

In SAR sea ice research, the improvement in the image 
resolution and the increase in the number of satellites 
have rendered manual image analysis impractical. In 
addition, the analysis of natural scenes such as sea ice 
presents many unique problems. Sea ice features are not 
structured and cannot be represented consistently by 
structural rules or grammars. Also, in contrast to artificial 
objects, sea ice features do not obey strict positioning 
rules. Finally, the backscatter of sea ice types can vary 
greatly based on the geographic area, the season, the 
weather conditions[2][7][10]. Thus, approaches using pre- 
determined number of classes are not viable in performing 
segmentation of such imagery. This leads to the need of a 
data-driven method that automatically derives the number 
of segmentation classes from the image (or data) itself. 

In this paper we present a methodology that integrates 
traditional image processing algorithms with a clustering 
process that employs correlated texture of the classes in 
the image. First, we analyze a sea ice image using multi- 
level dynamic local thresholding to generate a histogram 
of thresholds. Next, we apply a multi-resolution peak 
detection strategy to extract significant thresholds from the 
histogram. Given these significant thresholds, an initial 
segmentation is achieved. Further, we compute for each 
class a correlated texture, a vector that specifies the 
probability of another class being a neighbor to the class. 
Our clustering then uses an innovative solidification model 
to partition the threshold set into a number of groups, with 

Our underlying methodology is to use image processing 
to provide clues to describe a preliminary segmentation of 
the image and perform numerical clustering to refine and 
produce the final segmentation. This approach allows 
clustering to analyze only on selected information of the 
image, reducing die amount of computational work, and 
preventing irrelevant information from influencing its 
outcome. Moreover, the clustering module relieves the 
burden of determining the number of classes from the 
segmentation process. Hence the segmentation process 
can focus on low-level, syntactic image manipulation, 
leaving higher order tasks such as semantic interpretation 
to clustering. 

Multi-Level Dynamic Local Thresholding 
We have adapted the dynamic local thresholding 
technique from [3]. We assume an Af-class image, instead 
of three, with N determined by our multi-resolution peak 
detection algorithm. First, we divide the image into 
overlapping regions and compute the histogram and its 
variance for each region. Only histograms with their 
variance values greater than an image dependent threshold 
are selected for further processing. The threshold is set to 
admit at least 25% of all histograms. This implicitly helps 
preserve global information. Second, given each qualified 
histogram, we approximate its binormal Gaussian mixture 
by computing its means and standard deviations using 
stochastic estimation in [11]. Third, given the parameters 
of the approximation process, we compute peak-to-valley 
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ratios to filter out mixtures that are not significantly 
bimodal. Further, we derive from these parameters the 
optimal threshold via the maximum likelihood method. As 
a result, we obtain a histogram of computed threshold 
values, from which significant thresholds are extracted. 

Multi-Resolution Peak Detection 
This feature extraction process assumes that each class of 
areas could have a range of intensities such that the 
representative thresholds found from these areas could be 
far apart from each other. Occupying the interval between 
each pair of these thresholds are other (residual) threshold 
values compromising the intensity difference. We have 
designed a multi-resolution peak detection technique that 
extracts significant jumps in the cumulative distribution 
function (CDF) of the histogram. Utilizing the cumulative 
distribution function to look for peaks has two advantages: 
1) a peak's significance can be based on its surrounding 
values, and 2) noisy peaks can be ignored due to the use 
of windowing [9]. First, we generate, from the histogram, 
the cumulative distributed function. Second, we search for 
the starting windowing size, K, based on the range of the 
histogram. Second, we develop a resolution plane of 
peaks detected from the CDF when it is averaged using 
size K, K-2, ..., and 3. Note that peaks found at low 
resolutions (when the window size is large) are substantial 
since, for them to survive the averaging, they must have 
been significant in the original histogram. This is the 
detection objective. On the other hand, peaks found at 
higher resolutions are for the localization purpose. They 
define the exact location of a peak. This detction- 
localization approach has been used in most multi- 
resolution tasks[8]. Third, we track peaks through the 
resolution plane and obtain a set of significant thresholds. 
A preliminary segmentation is then generated by applying 
these thresholds to the image. 

Numerical Clustering 
From the preliminary segmentation, we obtain correlated 
texture for each class. A correlated textural value of a 
class i for a class ;', C(i,j), is the probability of a pixel 
labeled as class i having a neighboring pixel of class ;'. 
Thus, we have a vector of probabilities describing the 
relationship between each class and every other class. In 
our solidification model, a compact class i will have a 
high auto-correlated textural value, C(i,i). On the other 
hand, a scattered class /', usually occupying the fringes of 
another class, j, will have a high C(i,j). Given these two 
assumptions, we use a over-commitment clustering 
strategy that allows us to overshoot a target score—the 
strongest C(i,i)—by admitting the partial borderline class 
into a group and speeds up the process of clustering. First, 
we identify the strongest class, i.e., the class with the 
highest C(i,i). Second, we scan the list, from top to 
bottom, of classes and combine them to form an aggregate 
of C(i,i)s to match the strongest class. Third, we scan 
from bottom to top. As a result, we obtain two clustering 
configurations.  Fourth, we combine the two by resolving 

conflicts, if any, between them. This produces a cluster of 
groups of classes with which we threshold the image for 
the final segmentation. 

RESULTS 

Fig. 1 shows one part of an ERS-1 SAR sea ice image, 
taken on December 1, at 73.IN, 130.7W. The lower 
portion of the figure depicts the classification result. Our 
technique found three classes: dark, gray, and bright. To 
reiterate, we do not attempt to label these classes but 
simply label them as segmentation classes useful for 
further classification. The technique is fast. The average 
computational time required to process a 1024x1024 
image is less than 30 seconds on an SGI-IRIX 5.3 
operating system. We have applied our technique to more 
than 200 SAR images and achieved satisfactory visual 
evaluation for more than 75% of them. 

CONCLUSION 

In conclusion, we have designed a fully automated and 
fast technique that identifies classes in SAR sea ice 
imagery. It integrates image segmentation and numerical 
clustering techniques as a two-tier process: the former to 
derive selected information; the later to perform numerical 
taxonomy on the information to discover classes. This 
data-driven methodology suits the image processing tasks 
of SAR sea ice imagery with dynamic characteristics. 
The technique is also fast and fully automated. 
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Figure 1 The original ERS-1 SAR sea ice image and the result of our segmentation. Our technique 
has identified three segmentation classes in the image automatically. 

1179 



Use of SAR Image Texture in Terrain Classification 

M. Craig Dobson, Leland Pierce, Josef Kellndorfer, Fawwaz Ulaby 
The University of Michigan, Radiation Laboratory 

Ann Arbor, MI 48109-2122 USA 
Tel.: +1-313-647-1799, Fax: +1-313-647-2106, email: dobson@eecs.umich.edu 

Abstract - Classification is a common first step in the use 
of SAR data. Intensity of a pixel is generally used as a 
feature vector. This is complicated by coherent fading that 
yields multiplicative noise. Consequently, the first 
statistical moment of intensity (over some local window) is 
often used as a feature vector instead. In some cases this 
leads to unacceptably high rates of misclassification. The 2nd 
statistical moment also can be used to distinguish categories 
but is dependent on the composite effects of the sensor (N of 
looks), the mean backscatter (via multiplicative noise) and 
the true spatial variance in average backscatter relative to 
SAR resolution. Thus, using variance measures as feature 
vectors can lead to increased classification accuracy. 
However, such measures ignore the observation that the 
variance for many terrain categories is not stationary and 
indeed may not be isotropic. Further improvement in 
classification can be realized by quantifying the translational 
variance in backscatter using scale-dependent geostatistical 
measures such as semi-variance and lacunarity that 
characterize the spatial structure of image intensity. 
Simulated SAR data are used to understand the effects of 
system parameters (such as number of looks and spatial 
resolution) and target conditions (such as probability of 
occurance and stationarity) on geostatistical measures of 
texture. ERS-1 andJERS-1 SAR data demonstrate the use 
of these techniques in terrain characterization. These 
statistics also give measures of heterogeneity of interest to 
ecologists. 

INTRODUCTION 

In general, there are four types of intensity 
variations within a radar image that must be considered in 
terrain classification from SAR data: (1) variations in average 
intensity from one terrain type to another (i.e., such as 
between bare soil and forest), (2) variations within a given 
terrain category related to the spatial variance in geometrical 
attributes of the surface or overlying vegetation (i.e., such as 
between tree plantations of differing ages), (3) variations 
within a given terrain type due to temporal variance (such as 
those resulting from changes in dielectric properties of the 
scene i.e., soil moisture or snow cover), and (4) random 
variation due to fading at the pixel level. For purposes of 
terrain classification, single-date classifications are typically 

based upon the pixel means and variations (2-4) become 
noise. Multi-temporal approaches extend this to explicit 
treatment of variation (3). Both commonly use spatial 
filtering to mitigate the noise contributed by fading. In this 
study we examine geostatistical techniques to quantify true 
spatial variance in scene properties in the presence of fading. 

Local variance in backscatter arises from (1) coherent 
fading which is a multiplicative noise dependent upon the n- 
of-looks and (2) fine scale spatial variance in scene attributes, 
primarily vegetation structure and is dependent upon spatial 
resolution of the SAR relative to the patch size of vegetation. 
Two general methods can be used to define the joint PDF due 
to texture and fading: (1) a purely statistical approach and (2) 
an image-based spatial approach. In the statistical approach, 
the measured single-look scattering PDF is compared to the 
expected distributions for common clutter models such as the 
Rayleigh fading model, the log-normal distribution, the 
Weibull distribution, the Rice distribution and the k- 
distribution [1-3]. The Rayleigh model works well for many 
combinations of sensor parameters (frequency and 
polarization) and terrain category. However, some categories, 
such as forest and savanna woodlands, characterized by strong 
scattering elements are better characterized by models such as 
the Rice or log-normal distributions. Multiple forward 
scattering between the ground and the trunks (double-bounce) 
can dominate backscatter from forests particularly for hh- 
polarization at long wavelengths. 

Statistical approaches assume random distributions 
of scattering elements within a given region. This 
assumption is valid in many situations particularly when the 
scattering elements are numerous and small relative to 
resolution and vegetation cover is actively managed to 
maintain uniformity (i.e., agriculture, rangeland and forest 
plantations), but natural vegetative covers often exhibit 
'dumpiness' and gaps. Studies of SAR image texture [4] 
have largely ignored the spatial structure of texture. 

GEOSTATISTICAL METHODS 

Geostatistical techniques can be used to 
quantitatively characterize 'texture' with respect to both the 
variance and the spatial dependence of this variability. 
These measures test the assumption that the underlying 
attributes (scatterers in this case) are randomly distributed and 
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therefore characterized by a stationary PDF (i.e., 
translationally invariant). Importantly, these measures 
explicitly incorporate the scale dependence of the phenomenon 
and hence have the potential to describe the dependence of 
texture on image resolution. Two common being those (1) 
based upon the spatial autocorrelation function and (2) related 
to the fractal dimension. 

The autocorrelation function can be calculated from 
the measured distributions and summarized in terms of the 
correlation length and the form of decay (i.e., exponential or 
Gaussian). A related approach is the semi-variogram [5] 
which describes the mean squared pair differences (semi- 
variance) as a function of spatial offset or lag, h. The semi- 
variogram function is defined as 

Y(h) = (l/2Nh)S(Zi-zi+h)
2 (1) 

where there are N pairs of observations, z, at distance h from 
the ith location. When z is translationally invariant, y(h) will 
be a constant (for h>0) related to the variance. For SAR data, 
the variance is a function of both sensor parameters (N of 
looks) and average target properties (mean backscatter) plus 
the true spatial variance in target properties. Spatially variant 
distributions asymptotically approach this value, or sill, at a 
log distance called the range. y(h) will oscillate for periodic 
patterns. Thus, it is not surprising that Miranda and Carr [6] 
found consistent differences in the values of, the sill between 
terrain categories in SIR-B, ERS and JERS SAR data. They 
found consistent differences in the range which provides 
information on the spatial structure. The behavior of y(h) 
shows the degree of translational invariance in the 
fading/textural statistics. Miranda's analyses show a spatial 
periodicity of radar backscatter from open tropical vegetation 
and flooded vegetation, in particular, while dense tropical 
vegetation decorrelates quickly with distance. 

This approach has been modified by Cressie and 
Hawkins [7] to be less sensitive to the skewing effect induced 
by large outliers in the distribution of zn through the use of 
mean square-root pair difference (SRPD). 

SRPD(h) = (l/Nh)IIZi - zi+hl05 (2) 
This is significant for SAR data because the underlying 
statistics are exponentially distributed (assuming Rayleigh 
fading and square-law detection); and furthermore, the sample 
may contain one or more point targets of high return. SRPD 
has been applied to imagery [8], but not SAR data. 

Another geostatistic to test stationarity is lacunarity, 
the term Mandelbrot [9] applied to describe the spatial 
distribution of gap sizes in self similar geometric structures. 
Lacunarity is a scale dependent measure of translational 
invariance that can operate using a windowing approach on 2- 
D images [10]. The lacunarity index has been developed for 
binary data and is calculated as a function of window size 
(scale). This index has been used for quantized orbital SAR 
data of the Pantanal region of Brazil [11] and the results were 

compared to measures based upon the gray level co-occurrence 
matrix, GCLM [12]. They found the GCLM measures to be 
relatively insensitive to dramatic temporal changes in the 
texture of ERS-1 SAR imagery related to seasonal flooding, 
while the lacunarity index provided good textural 
discrimination . 

This technique can be easily extended to scalar data 
A(r) = (cz(r)/|Liz(r))

2+l (3) 
where A(r) is the lacunarity index for a window of dimension 
r, CT2 is the standard deviation of the £z within the sliding 
window and (iz is the mean £z within the window over some 
region. A(r) is maximum for r=l and is proportional to the 
number of looks of the source data. As r becomes very 
large, A(r) approaches unity. The rate of decay in A(r) 
describes the 'granularity' in the texture. A constant rate of 
decay indicates a self-similar, fractal structure. 

A textural variance index (TVI) has been defined for 
SAR data [4] that explicitly incorporates n-of-looks 

TVI(r) = ((oJ^2<(4/n)-mry(lH(4/n)-l)/Nt))  (4) 
where all terms are as previously defined and N is the number 
of independent looks.   Assuming linear detection with N=l, 
TVl=((oMz)2-W. 

SAR RESULTS 

Simulated SAR data (linear detection) was generated 
for various spatial patterns of two classes: 'A' is a tree-like 
class with a mean backscatter o°=-5dB and 'B' is an 
agricultural class with o°=-20dB. The following patterns 
where generated: (1) random location with P(A)=(0, 0.1, 0.5, 
0.9 and 1.0), (2) regular 'checkerboard' patterns with squares 
of side lengths 1, 2, 3, 4, 5 and 9 and (3) randomly located 
squares with P(A)=0.5 of side lengths 2, 3 and (4) a fractal 
'Y' pattern. For each pattern, class names are assigned using 
the stated probabilities. Backscatter values are generated 
using the mean backscatter and assuming Rayleigy fading. 
The simulations are iterated for N=l, 2, 3, 4, 5 and 1,000. 

The two measures based on the autocorrelation 
function are very similar in behavior and are highly 
dependent on N while lacunarity and TVI(r) quickly 
aopproach a limit for N>2 (see Fig. 1). The dependencies of 
the geostatistical measures on spatial pattern and probability 
of class occurrence are shown in Fig.2 for N=l with linear 
detection. All are found to be sensitive to pattern type, 
spatial scale and probability. 

Orthorectified and coregistered composites of 6-look 
ERS and JERS SAR data from southwestern and northern 
Michigan are subsampled for various general land-cover 
classes. The average results are shown in Fig.3 for 
operations over windows with a spatial dimension of 675-m. 
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Abstract - Texture is an important feature to improve image 
segmentation. This paper describes a wavelet-based fuzzy 
clustering procedure which receives as input both the original 
image and a texture map based on a fractal model, derived 
from the wavelet transform of the image itself. This 
preliminary evaluation has shown the potential usefulness of 
the fractal signature for improving texture discrimination and 
enhancing segmentation results, and suggests this multi-scale 
approach for Remote Sensing image texture analysis. 

INTRODUCTION 

Clustering is a segmentation technique commonly used for 
Remote Sensing image interpretation. When ground truth is 
not available to provide samples to train a supervised 
classifier, segmentation is often accomplished by clustering, 
which requires little "a priori" information about the imaged 
scene. In particular, multi-resolution clustering methods 
generally provide better performance in discriminating 
different cover classes, when compared to global algorithms: 
the wavelet transform is a scale-space representation which 
yields uncorrelated data at different resolutions [1]. 

Segmentation success strongly relies on the dimensionality 
of the data set: in the case of mono-band, non-polarimetric 
SAR images, the local variation coefficient is the most useful 
feature, besides the signal itself. Due to the lack of features 
reflecting spatial correlation, however, a number of pixels may 
result to be mislabeled. In this case, additional features can be 
provided by textural measurements, based on the relation 
between signals backscattered from neighboring pixels [2]. 

A useful mathematical tool for describing many complex 
shapes found in natural scenes is provided by fractal 
geometry. The essential feature of fractals is their statistical 
self-similarity, i.e., invariance under changes of magnification. 
Many natural surfaces exhibit a fractal behavior within a 
certain range of scales. Such a behavior is well represented by 
the concept of fractal dimension [3], which can be related to 
an intuitive concept of surface "roughness". Since the 
effectiveness of the fractal model increases with resolution, it 
is particularly useful in the case of SAR images [4]. 

The most suited approach to computation of fractal 
dimension comes from power spectra: the ratio between 

powers at different scales is straightforwardly related to fractal 
dimension. In this work, we propose a method to obtain a 
fractal signature, based on the multi-scale image 
decomposition provided by the wavelet transform. 

Fuzzy clustering is widely used for image segmentation [5], 
In fact, fuzzy set theory provides a better representation for 
information in the cases in which clusters boundaries are 
vague. This often happens in Remote Sensing images, where 
situations such as cover class mixture are often found [6]. 

The Fuzzy C-Means algorithm, which is an iterative 
technique based on the minimization of generalized objective 
functions, was employed. Instead of performing clustering on 
the whole data set, the multi-resolution framework was used 
to reduce computation while preserving segmentation results. 

This paper describes a complete wavelet-based fuzzy 
clustering procedure which receives as input both a SAR 
image and a texture map, built starting from a fractal model 
derived from the wavelet transform of the image itself. Trials 
were carried out on samples of true textures derived from 
SAR images coming from the X-SAR experiment. 

FRACTAL ANALYSIS 

The common feature used in most segmentation techniques 
is image tone, i.e., grey level throughout the entire scene. The 
other complementary aspect that characterizes a digital image 
is texture, which represents intrinsic spatial variability of grey 
level in the neighborhood of each pixel. 

A fractal approach [6,7] started being used with promising 
results, since many natural surfaces exhibit a fractal behavior 
within a certain range of scales. Such behavior is summarized 
by the concept of fractal dimension, which can be related to 
our intuitive concept of surface "roughness" [3]. 

The most suitable mathematical model for random fractals 
found in nature is the fractional Brownian motion (FBM). 
Basically, a FBM surface function VJx.y) is described by a 
random field having zero-mean Gaussian increments satisfying 

E^VH(x,y)-VH(x+Ax,y+Ay)(l = l(Ax,Ayf W 

where 11.11 is the Euclidean norm, and 0 < H < 1 is the Hurst, 
or persistence parameter, controlling the roughness of the 
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surface, with H = 1 corresponding to a smooth surface and H 
= 0 to a very rough texture. The fractal dimension D and the 
persistence parameter are related by: D = 3 - H. 

Different approaches exist to compute D [4]. FBM can be 
characterized by a random-phase Fourier description obeying 
a generalized power density of the form: 

P(co.,co2) = _ 

./ CO1+CO2 

(2) 

in which ß = 2H +2. Thus, D can be computed through a 
linear regression on log[P((alt(ü2)] versus log[(&1

2,(ü2
2)m]. 

The above methods have already been used in remote 
sensing texture analysis [2,4], although, given the variability 
of fractal dimension with the computation algorithm, other 
methods have often been preferred. As it has been shown in 
[4], however, the power spectrum technique seems to yield 
very accurate estimates, and for this reason it has been chosen 
here, by exploiting the characteristics of the wavelet 
representation, which is well suited to evaluate self similarity. 
In fact, wavelets can be seen as a new analysis technique in 
time-frequency domain (space-frequency, in the 2D case) [1]. 

The wavelet representation allows to easily obtain fractal 
dimension D from power spectrum: since the detail signals 
are obtained by filtering and downsampling the original signal, 
the power spectrum of the output at resolution 2j is given by: 

P2J(coi;co2) = P(co1,(o2)-|4'(2%1,2%2)| (3) 

After sampling at a rate 2J, and integrating at two different 
scales, the following relationship is obtained from (2): 

P2, 
= 22' (4) 

where P is the energy of the detail signals. The above result 
is independent of the specific scale 2', with -1 <j < /; a linear 
least square fit performed on (4) yields: 

H 1 
(/+l)log4 

•log^i_ (5) 

which is used to obtain H, and thus fractal dimension D. 

FUZZY CLUSTERING ALGORITHM 

In a fuzzy clustering framework, each cluster is a fuzzy set, 
and each pixel in the image has a membership value 
associated to each cluster, ranging between 0 and 7, measuring 
"how much" the pixel belongs to that particular cluster [5]. 

There have been many different families of fuzzy clustering 
algorithms proposed in the last decade: the one used in this 
work is the Fuzzy C-Means algorithm (FCM), which is an 
iterative technique based on minimization of a generalized 
within-group sum of squares (WGSS) objective function [5]. 

Instead of performing clustering on the whole data set, a 
multiresolution framework can be exploited to reduce the 
computational burden while retaining segmentation results. 
First, an image pyramid is obtained by using the wavelet 
transform; the fuzzy clustering procedure is then implemented 
on the pyramid using a region growing method: given J < 0, 
FCM algorithm is first run on the coarsest image version; for 
each pixel, a test is carried out on the final membership values 

maxKA>-><U * T (6) 

where c is the number of clusters and T a prescribed 
threshold. If this condition is not met, the pixel is labelled as 
uncertain. Clustering is then repeated on all uncertain pixels 
at the lower level, higher resolution, approximation. This 
procedure is iterated downward until the bottom of the 
pyramid is reached, where all pixels remaining uncertain are 
labeled. Thus, cluster membership values can be used to split 
mixed regions into smaller regions at higher resolution levels. 
The clustering algorithm is described in Figure 1. Median 
post-filtering is used to obtain more homogeneous regions. 

FCM ON LOW ASSIGN PIXEL TO CLUSTER 
RESOLUTION 

IMAGE 1—> 
WITH MAX MEMBERSHIP 

i' 

UNCERTAIN PIXEL 
(MEMBERSHIP <T) ^-^UNCEF »TAIN\. 

L?       ^> RE-CLUS" 
AHIGHE 

rERE 
RLE 

DAT 
VEL 

YES X        PIXE 

NO 

PARTITION  + MEDIAN 
FILTER 

Figure 1. FCM algorithm implemented on the wavelet pyramid of 
the input image. 

The method is very similar to the one proposed in [6], but 
implemented on a different pyramid structure, in which each 
layer represents a more precise approximation of the original 
image, thus providing better results than in [6]. 

The same algorithm that builds the pyramid also gives the 
fractal measure to be input to the clustering chain, together 
with the original data. There is no need for a separate 
processing, as it always happens for the commonly used 
methods for computing D. 
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RESULTS 

X-SAR spaceborne system operates with vertical 
polarization, and incidence angles from 15° to 55°. From the 
images provided by such experiments, some texture patches, 
shown in Figure 2, have been extracted to test the 
performance of the clustering algorithm. These are mainly 
natural cover types, coming from different places around the 
world, with the exception of one showing an urban district. 

The level J of wavelet decomposition was set equal to -5. In 
the FCM algorithm parameter T was empirically set to 0.985. 
The maps resulting from directly clustering the original mono- 
band images are shown in Figure 3. As it can be seen a large 
number of pixels were misclassified: the only tone intensity 
value is insufficient to discriminate among the different cover 
types. Thus, parameter H has been obtained for each of the 
four different textures in the two test images and assigned as 
an additional feature to each pixel of every subregion. Figure 
4 shows the maps resulting from clustering the images with 
both features. By comparing such maps with those in Fig. 3, 
it can be seen that addition of the fractal signature has 
considerably improved segmentation accuracy. Correct 
classification rates of the maps in Fig. 4, relative to the texture 
patches of Fig. 2, are shown in Table 1. 

Table 1 - Correct classification rates for the textures in Fig. 2. 
Correct Classification rates 

Equatorial Forest 100% 
Mountainous Area 89.7 % 

Urban District 99\8 % 
Sandy Desert 99.9 % 
Water Surface 100% 
Boreal Forest 98.1 % 
Rocky Desert 98.8 % 

Tundra 99.2 % 

m 
(a) (b) 

Figure 2. Test images: clockwise from upper left: (a): equatorial 
forest (Amazonas, Brazil); mountainous area (Alps, Austria); urban 
district (Moscow, Russia); hot sandy desert (Sahara, Algeria), (b): 
water surface (Tropical Pacific Ocean); boreal forest (Black Forest, 
Germany); mid-latitude rocky desert (Gobi, Mongolia); tundra 
(Kamchatka). 
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Figure 3. - Clustering maps obtained from images of Fig. 3, by using 
FCM based on image tone only. 

Figure 4. - Clustering maps obtained from images of Fig. 3, by using 
FCM based on tone and local fractal dimension. 
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Abstract - This paper proposes new techniques of mul- 
tiresolution analysis and processing of synthetic aperture 
radar (SAR) images using wavelets. Here, two works are 
presented; one is speckle reduction by reducing the am- 
plitude of the detail images in wavelet subspaces, while 
preserving edges by releasing the amplitude reduction 
around edges, and the other is estimation of fractal di- 
mension which is featuring 'roughness' of the 2-D surface, 
by wavelet-based multiresolution analysis combined with 
the fractal Brownian motion (fBm). Both methods have 
been satisfactorily applied to real SAR images, and are 
expected to be useful for SAR remote sensing. 

INTRODUCTION 

This paper presents new techniques of multiresolution 
analysis and processing of synthetic aperture radar (SAR) 
images using wavelets, and has two aims; one is speckle 
reduction, the other is estimation of fractal dimension. 

For the last several years, the wavelet analysis has been 
applied to various fields, where the theoretical bases are 
given by the multiresolution analysis by Mallat [1] and the 
composition of compactly supported orthonormal wavelet 
bases by Daubechies [2]. The multiresolution analysis de- 
composes an input signal into low frequency sub-bands it- 
eratively, and as a result, the pyramidal representation of 
the signal is constructed. The multiresolution analysis can 
be easily applied to 2-dimensional images by transforming 
in row and column directions separately. A wavelet trans- 
form of an image generates four sub-images with a quarter 
area; one "approximated image" and three "detail images" 
(see Fig.l). In this paper, we aim at speckle reduction and 
estimation of fractal dimension by processing or analysing 
detail images in each wavelet subspace. 

SPECKLE REDUCTION 

Algorithm 

First, we propose a new method of reducing speckle in 
SAR images by reducing the range of the pixel power (the 
"wavelet coefficient" in [1]) of detail images in each wavelet 
subspace [3,4]. In detail images, information on edges of 
the original image appears with the following properties: 

• The LH image: information on the edges in vertical 
and 45° directions, 

• The HL image: information on the edges in horizontal 
and 45° directions, 

» 

LL LH 

HL HH 2D wavelet 
transform 

Fig.l. A wavelet transform of an image; "approximated image" 
is the sub-image composed of the low frequency parts in both 
row and column derections (LL), and "detail images" are the 
remaining three images, containing high frequency components 
(LH, HL, and HH). 

high level pixel 

high area IHK: 
in LH image   in HL image   in HH image 

Fig.2. Windows for judgement of edge information. 

• The HH image: information on the edges in 45° di- 
rections. 

If we reduce the power range of entire detail images, we 
will smooth not only speckle but also edges, and conse- 
quently, unacceptable square ghosts will appear around 
edges. Then, we propose the following algorithm: 

I. Classify each pixel of detail images as high level or 
low level using the threshold T. 

II. Reduce the power of the low level pixels to a%. 

III. Consider a 3 x 3 window around the high level pix- 
els, and define high area in the window for each detail 
image as Fig.2. If the high area in the window con- 
tains at least one high level pixel, let the power of the 
central pixel of the window to keep its original value, 
judging that it has edge information. 

IV. Regard the pixel, which is not judged in III to be with 
edge information, as speckle component, and reduce 
the power of it to /?%. 

An output image is reconstructed from the processed de- 
tail images in each wavelet subspace. Identification of the 
pixels with edge information in III is following the appear- 
ance property of edge information. 

Simulations and Application to SAR Images 

We have evaluated performance characteristics of the 
method through simulations and application to a SAR 
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TABLE I. Comparison of smoothing capability. 

ENL 
Original 4.06 
Proposed level 1 2 3 4 5 

method Haar(D2) 10.78 18.71 22.96 24.35 24.75 
D4 10.80 18.84 22.92 24.32 24.72 

Local statistics (3 X 3) 25.41 

Image. Concerning the parameters in the algorithm, we 
have set T = 128, a = 40, ß = 50. We have employed the 
Daubechies wavelet [2]; D2 and D4. D2 is known to be 
equivalent to the Haar basis. 

TABLE I shows the comparison of the smoothing capa- 
bility between the proposed method and the local statis- 
tics method by Lee [5]. The value in the table is equivalent 
number of looks (ENL) given by 

ENL = ^7^, (1) 

where fi and a are the average value and the standard 
deviation, respectively, of the power. The original im- 
age is 4 look one simulated a homogeneous area; size 
256 x 256, grayscale levels 256, average power 50. We 
see from TABLE I that the smoothing capability of the 
proposed method, when the wavelet subspace level is 5 
or so, is almost comparable to that of the local statistics 
method. We also see that smoothing characteristics seem 
to be insensible to the difference of the basis, Haar or D4. 

Fig.3 shows 3-dimensional representation of the pixel 
power by which we have tried to evaluate the edge preser- 
vation characteristics of the proposed method. The edge 
in the output of the proposed method using the Haar basis 
when the wavelet subspace level is 5, seems to be preserved 
more sharply than that in the output of the local statis- 
tics method. This indicates that the algorithm described 
above, works efficiently. The edge in the D4 basis case is a 
little degraded compared with that in the Haar basis case. 
From this result, it is deduced that a wavelet basis with a 
shorter tap is useful in preserving edges. 

Fig.4 shows an example of a real SAR image processed 
by the proposed method. The original SAR image is 4 
look one, obtained by NASA/JPL AIRSAR. The scene is 
an agricultural field in Flevoland, the Netherlands. The 
frequency band is L, and the polarization is HH. Examing 
the figure, we see that the proposed method succeeds both 
in smoothing speckle and in preserving edges, and also 
succeeds in attaining visually-natural appearance. The 
performance of the proposed method for this scene seems 
superior to that of the local statistics method. 

ESTIMATION OF FRACTAL DIMENSION 

Method 

Some natural scenes can be considered to be statistically 
self-similar, while they are not self-similar in the strict 

Fig.3. Comparison of the performance at an edge; upper left 
- original speckle pattern (4look), upper right - local statis- 
tics (3 x 3), lower left - proposed (Haar, 51evel), lower right - 
proposed (D4, 51evel). 

Fig.4. Filtering of a SAR image; upper left - original (41ook), 
upper right-local statistics (3x3), lower left - proposed (Haar, 
5level), lower right - proposed (D4, 51evel). 

mathematical sense. When such a 3-D surface regarded as 
'statistically fractal' is imaged by SAR, fractal dimension 
of the image is featuring roughness of the surface. Here, 
we present that fractal dimension of a SAR image can be 
estimated by wavelet-based multiresolution analysis. 

Fractional Brownian motion (fBm) is known to be a 
typical model of statistically fractal. It is a nonstationary 
zero-mean Gaussian random process, and defined as [6] 

BH(t) = 

'lL(\t - *\H-* - \»\H-i)dB(s) +fi \t - s\»-UB(s) 
T(H + 1/2) 

(2) 

where B(t) is an ordinary Brownian motion and H is the 
self-similar parameter (0 < H < 1). The parameter H is 
directly related to the fractal dimension D by 

D = E+1-H, 

where E is the topological dimension. 

(3) 
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Flandrin showed that the self-similar parameter H of a 
1-dimensional signal can be estimated by wavelet analysis 
[7]. In [7], the variance of the detail signal at the j'-th 
wavelet subspace level is given by 

TABLE II. Relation between observation parameter and fractal 
dimension 

log2 (var (dj [n])) = (2H + l)j + const. (4) 

Hence, we can easily acquire the parameter H (and the 
related fractal dimension D) from the slope of this vari- 
ance plotted as a function of wavelet subspace level j in a 
log plot. 

For wavelet-based estimation of fractal dimension of 
SAR images, we have to extend (4) to the 2-dimensional 
case. Now we asuume that 2-dimensional fBm has char- 
acteristics of fBm in both x- and y- directions. As the de- 
tail signal of 2-dimensional wavelet transform, we consider 
dj [n,m], the detail image containing high frequency 
components of an input image in both x- and y- direc- 
tions (i.e., the HH image in Fig.l).   Then, we have [8] 

log2 (var (dfH[n, m])) = 2(H + l)j + const.      (5) 

Using (5), we can obtain the self-similar parameter H of a 
2-dimensional image in the same way as the 1-dimensional 
case, while the slope of the log plot varies from 2H + 1 to 
2(H+1). 

Application to Multi-Parameter SAR Images 

We have estimated the fractal dimension of multifre- 
quency, multipolarization, 41ook AIRSAR images using 
(5). The scene is Raco area in U.S.A. The frequency band 
is C, L, P, and the polarization is HH, HV, VV. We have 
also estimated the fractal dimension of speckle reduced 
images by the above-mensioned method, to examine the 
relation between fractal dimension and speckle. 

Since the SAR image using here is a discrete data, we 
should estimate the fractal dimension from the slope of 
the log plot at coarse wavelet subspace levels [7]. So we 
have obtained the fractal dimension by linear regression 
at 3 points; j = 6,7,8. 

TABLE II shows the estimated fractal dimension of each 
SAR image. We see from this table that the fractal dimen- 
sion of the SAR images depends upon observation param- 
eters; the fractal dimension seems to be large in order L, 
P, C band concerning the frequency, and in order HV, HH, 
VV concerning the polarization. From this result, we can 
infer that the manner of describing roughness of the sur- 
face differs with frequency and polarization, though the 
order may be restricted to images used here. Another no- 
ticeable result is that the fractal demension of the speckle 
reduced images is almost equal to that of the original im- 
ages; fractal dimension of SAR images seems to be inde- 
pendent of speckle. Consequently, we may regard fractal 
dimension of speckle reduced images as that of original 
images straightforwardly. 

Frequency C Band 
Polarization HH          HV VV 
Original Image 2.3513     2.5323 2.2863 
Speckle reduced. 2.3519     2.5338 2.2868 

L Band P Band 

HH          HV          VV HH HV VV 
2.9214     2.9817     2.8968 2.6388 2.7078 2.5740 
2.9215     2.9862     2.8983 2.6387 2.7066 2.5749 

From the results, we think that fractal dimension could 
be used as an efficient quantity for segmentation of mul- 
tifrequency, multipolarization SAR images. 

SUMMARY 

We have introduced new wavelet-based multiresolution 
methods for speckle reduction and estimation of fractal 
dimension. The methods have been satisfactorily applied 
to SAR images. We will treat classification/segmentation 
of multifrequency, multipolarization SAR images using es- 
timated fractal dimension in a future study. 
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Abstract - There has been greatly increased 
activity in the last twelve years on the use of 
information processing techniques on remote 
sensing problems including signal/image 
processing, compression, segmentation, feature 
extraction, pattern recognition, neural networks, 
etc. The past progress is reviewed from which 
a trend is developed. The trend shows a further 
emphasis on using neural networks and wavelet 
transforms for remote sensing. 

REVIEW OF PAST PROGRESS 

This review is based mainly on a small set of 
selected publications on the IEEE Trans, on 
Geoscience and Remote Sensing from 1986 to 
1997. A major progress has been made on the 
use of statistical and contextual pattern 
recognition [15,16,18,23,28], feature extraction 
[1,3,7,25,36], principal component analysis [19, 
22], SAR image filtering & edge detection [20, 
21,32, 33], image/signal compression [4,6,17, 
30,40], image registration [31,37], fuzzy method 
[38], AI & knowledge based systems [24,26,27, 
39]. The interest in using neural network since 
early 90s has not been decreased [2,5,8,9,10,13, 
14,29,34,35,41] because of the many capabilities 
offered by the neural nets. However neural nets 
have not been able to replace existing techniques 
and much more study or exploration of neural 
nets in remote sensing is needed. 

THE TRENDS 

It is always risky to predict future from limited 
past. However remote sensing encompasses 
many different problem areas with a variety of 
data involved. Neural nets offer some universal 
properties suitable for many such problems. 
Also the nerual net potential has not been fully 
known. So a continued and strong interest is 
expected. We have noted another trend in the 
use of wavelet transforms which also have mnay 
different capabilities [11,12,40]. As an 

example, Fig. 1 shows a popular SAR image 
studied by many researchers. Fig. 2 shows the 
wavelet representation reesult. Figs. 3 and 4 are 
wavelet transform segmentation results without 
feature selection [11] and with channel selection 
[12] respectively.. The result in [12] making 
use of the physical properties of the SAR image 
data is better than that in [11]. An important 
advanatge of the wavelet domain analysis is that 
the procedure is again universal and it can be 
computationally very efficient. We believe that 
wavelet analysis is another emerging approach 
in information processing for remote sensing. 
It should be emphasized that the opinion given 
in this paper is strictly that of the author. 
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Figure 1. Polarimetric SAR HH Channel image of San 
Francisco Bay area (512 by 512) 

Figure 2. Wavelet representation of the polarimetric 
SAR HH Channel image of San Francisco Bay 
area in the 1st level (512 by 512) 

Figure 3. Segmentation of the polarimetric SAR imagery 
using non-feature extraction representation in the 
wavelet domain. (256 by 256) 

Figure 4. Segmentation of the polarimetric SAR 
imagery using the combination representation 
of approximation and detail channels in the 
wavelet domain. (256 by 256) 
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Abstract: An artificial neural network (ANN) based nonlinear 
technique for inverting the SAR image spectrum of ocean 
surface waves is developed. In this technique, a multi-layer 
perceptron (MLP) is used to perform the inversion process. 
The MLP is trained using simulated SAR and wave spectra. 
The training process utilizes the standard error- 
backpropagation technique. The results indicate that the 
method works well over a large range of wind and wave 
conditions. The error in the inversion process was found to 
increase in the higher sea states. The technique works best if 
the network is used within the range over which it was 
trained. It is noted that this technique may be used 
independent of SAR imaging models, by training the network 
with coincident and co-located measurements of SAR and 
wave spectra. 

INTRODUCTION 

Satellite-borne synthetic aperture radar (SAR) imaging 
systems have the potential for synoptically measuring the 
ocean surface wave spectra on a global scale. The capability 
to quantitatively monitor ocean surfaces wave spectra from 
SAR images would serve a critical need in oceanography. 
The SAR image is a map of the complex radar reflectivity 
from the ocean surface [1]. The amplitude and phase of the 
radar reflectivity are modulated by the surface waves. 
Information about the surface waves is imparted onto the 
backscattered signal through complex interaction processes. 
In SAR systems, there are additional motion effects that also 
influence the image information content. The mapping of the 
ocean surface waves onto the SAR image is inherently 
nonlinear. Thus, extracting useful quantitative information 
about surface waves requires accurate and efficient nonlinear 
inversion techniques. 

ANN are ideally suited for applications where the input to 
output relationship is either unknown or too complex to 
describe analytically. They simply require a sufficiently large 
and variable data set consisting of measurements of the input 
parameters and the corresponding measurements of the 
output parameters. The ANN can then be trained to learn the 
mapping process between the input and the output. This type 
of inversion has been used in other applications in remote 
sensing [2]. 

In this paper, an ANN-based technique is developed for the 
extraction of ocean surface wave spectra from SAR image 
spectra. Simulated wave and SAR spectra are used as the 
input and the output, respectively, to train the ANN. It has to 
be noted that the inversion process is specific to the SAR 
imaging model used to simulate the training data. However, 
the technique may also be used independent of imaging 
models, by training the network with coincident and co- 
located measurements of SAR and wave spectra. 

METHODOLOGY 

The forward process that describes the nonlinear relationship 
between the SAR image spectrum and the wave spectrum is 
well understood. Since the nonlinear models that relate the 
SAR image spectrum to the wave spectrum are known, 
simulations of these models may be used to train an ANN to 
perform the nonlinear inversion process. During the training 
phase, the SAR image spectrum will be used as the input and 
the wave spectrum (orbital velocity or slope) will be used as 
the output. 

In the simulations, the SAR image is generated using the 
Kasilingam and Shemdin model [1]. This model uses the 
modulated normalized radar cross-section (NRCS) and the 
orbital velocities of the surface waves as inputs. The NRCS is 
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described by the composite surface model [3]. In the 
composite surface model, the backscatter is shown to be due 
to the resonant interaction between the electromagnetic wave 
and short scale surface waves of comparable wavelength 
which is known as the Bragg wavelength. The NRCS of a 
small scale facet is proportional to the short scale roughness 
determined at the Bragg wavelength. The longer waves 
influence the scattering process by tilting and 
hydrodynamically modulating the short scale waves. A 
modified form of the Pierson Moskowitz model [4] is used to 
generate random realizations of ocean surface waves. 

An artificial neural network is a highly parallel distributed 
information processing array of elementary processing 
elements connected to each other [5]. A multi-layered 
perceptron (MLP) is such an array consisting of several 
cascaded layers of elements. The layers consist of input and 
output layers and one or many hidden layers. Each layer 
consists of one or more elements. The signals flow from the 
input layer and pass through the hidden layers and terminate 
at the output layer. 

The network is trained to produce the proper nonlinear 
mapping process sequentially using samples of input/output 
conditions. After each training set is presented to the network 
the strengths of the interconnections are modified so as to 
produce the desirable input/output relationship. The 
modifications are driven by the error between the output of 
the network and the desired output. The back-propagation 
method is the most widely used training scheme for training a 
layered perceptron. 

100000       200000       300000 

Number of Training Cycles 

Figure 1 - The normalized training error as a function of the 
training cycle for three different networks. 

Fig. 2 shows the results when network 2 is used to invert a 
SAR image at a wind speed of 5 m/s in the range direction 

(<f>0=90°). Figures 2(b) and 2(c) show the actual and the 
inverted two-dimensional wave spectra. Figure 2(a) is the 
two-dimensional SAR image spectrum which was used as the 
input to the network. In this case, velocity bunching is 
negligible, since most of the waves are travelling in the range 
direction. Even though velocity bunching is small, the 
imaging process is still nonlinear because of the 
nonlinearities in the tilt modulation. The output of the 
network appears to be in good agreement with the actual 
wave spectrum used to generate the SAR image. 

SAR Imago Spectrum - Wnd Speed »5 m/a 

RESULTS AND DISCUSSION 

Fig. 1 shows the normalized error for three different 
networks. 1500 SAR images were simulated for wind seas, 
over the wind speed region 5-15 m/s. The wind direction was 
varied uniformly. The (R/V) ratio is 20 s. The wave and 
image spectra used for the training consisted of 64x64 
spectral values. The input and output layers, each had that 
many units. All three networks had two hidden layers. Each 
layer in networks 1, 2 and 3 had 50, 30 and 20 units each, 
respectively. Each network was trained for 1 million cycles. 
Network 1 learns the fastest and has the smallest final error. 
This is because it has more weights and hence can describe 
the mapping process more accurately. However, the final 
error between the three networks does not vary significantly. 

A2lmuth Vtovenumber 

(a) 
Actual Wave Spectrum 

k 
Azimuth Wavenumber 

(b) 

ANN Wave Spectrum 

Azimuth Wavenumber 

(c) 

Figure 2 - Inversion of range travelling waves at a wind 
speed of 5 m/s - (a) SAR image spectrum, (b) wave orbital 
velocity spectrum and (c) ANN output. 
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Figure 3 shows the results for the inversion of a SAR image 

at a wind speed of 5 m/s for <j>0 = 45°. In this case, the image 
content is determined by both velocity bunching and tilt 
modulation. There is coupling between the different 
modulation processes because of the nonlinearities in both 
mechanisms. Tilt modulation is dependent on the wave 
slopes and velocity bunching is dependent on the wave 
orbital velocities. Even though in linear wave theory, these 
quantities are related, the nonlinear coupling of the two 
modulation mechanisms results in a rather convoluted 
mapping process. Estimating the wave spectrum requires the 
de-coupling of these two processes. Again, the outputs of the 
network appears to be in good agreement with the actual 
wave spectra used to generate the SAR images. It appears 
that the inversion technique is able to de-couple the different 
modulation mechanisms to produce accurate estimates of the 
wave spectrum. 

SAR Image Spectrum - Wind Speed »5 m/s 

Azimuth Wavenumber 

(a) 

Actual Wave Spectrum ANN Wave Soectrum 

* 

Azimuth Wavenumber Azimuth wavenumber 

(b) (c) 

Figure 3 - Inversion of waves travelling at 45° to range at a 
wind speed of 5 m/s - (a) SAR image spectrum, (b) wave 
orbital velocity spectrum and (c) ANN output. 

Figure 4 shows the normalized testing error when network 2 
was tested with independent SAR image spectra at various 
wind speeds. The normalized error is largest at the extremes 
of the wind speed range. Note this network was trained with 
data samples in the 5-15 m/s wind speed range. Yet it appears 
to have acceptable error levels at wind speeds around 17 m/s. 
It is important to train the network with training samples that 
cover the wind speed range over which it is to be used. 

5 10 15 

Wind Speed, m/s 

Figure 4 - The normalized testing error plotted as a function 
of wind speed. The network was trained with samples in the 
wind speed range 5-15 m/s. 

CONCLUSION 

The ANN-based inversion technique is able to accurately 
invert the SAR image spectrum to generate estimates of the 
wave orbital velocity spectrum. It is able to de-couple the 
different competing modulating processes. It is also shown 
that the inversion process is least accurate at the extremes of 
the wind speed range over which the network is trained. It is 
recommended that the network be trained with training 
samples that cover the wind speed range over which it is to 
be used. 
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Neural Computing for Seismic Principal Components Analysis 

Kou-Yuan Huang 
Department of Computer and Information Science 
National Chiao Tung University, Hsinchu, Taiwan 

Abstract — The neural network of the unsupervised 
generalized Hebbian algorithm (GHA) is adopted to find the 
principal eigenvectors of a covariance matrix in different kinds 
of seismograms. The theorem about the effect of adding one 
extra point along the direction of the eigenvector is proposed 
to help the interpretations that more uniform data vectors 
along one principal eigenvector direction can enhance the 
eigenvalue. Diffraction pattern, fault pattern, bright spot 
pattern and real seismogram are in the experiments. From 
analyses the principal components can show the high 
amplitude, polarity reversal, and low frequency wavelet in the 
detection of seismic änamalies and can improve seismic 
interpretations. 

INTRODUCTION 

Given a set of random data X with dimension N and 

E[X]=0, we can compute the correlation matrix (covariance 

matrix) Q=E[XX ] and find the eigenvalues and the 
corresponding eigenvectors. This is the Karhunen-Loeve 
transformation [1] or the principal components analysis 
(PCA). The principal components analysis had been applied 
to seismic data set by Hagen (1981) [2] and Jones (1985) [3]. 
But they did not use the method of neural network. Here the 
neural network of the Sanger's unsupervised generalized 
Hebbian algorithm (GHA) [4, 5] is adopted to find the 
principal eigenvectors of a covariance matrix in different kinds 
of seismograms, the input data vectors are from horizontal 
and vertical directions respectively. 

GENERALIZED HEBBIAN LEARNING RULE 

The neural network of Sanger's learning rule is 
shown in Fig. 1.   The network has a single weighting layer. 

The input N-dimensional column vector is X, E[X]=0, the 
weight matrix W is MxN, and the output M-dimensional 

column vector is Y=wX with M<N. The input data are fed 
into the net iteratively to find the principal eigenvectors of the 

correlation (covariance) matrix Q=E[XX ]. The weight 
matrix W needs to be updated for each step. 

Sänger (1989) had proved that the network 
converged from any initially random set of weights to find the 
principal eigenvectors of the input covariance matrix in 
decreasing eigenvalue order. And the algorithm was called 
the "Generalized Hebbian Algorithm" (GHA). The learning 
rule from Sänger (1989) is given by: 

W^(t + l) = W..(t) + ^(t)Y. 
' i ^ 
X.-   Z  YW. . 

'v J   k = l k   kj^ 
where j is the index of input, i is the index of output, 
or in matrix form as: 

AW(t) = 77(t)(YXT - LT[YYT]W(t)), 

where ^„Xj XN]T, Y=[Y„Y2 YM]T, and 

LT[.] is the lower triangular matrix, i.e., all elements above 
the diagonal of its matrix argument are zeros.  Iim77(/) = 0 

/-MO 
r=oo 

and 2-1^1(0 = °°    The procedure is guaranteed to find the 
1=0 

eigenvectors which we seek.    The i-th eigenvector Q.   is 

Wij J=l, ..., N. 

EFFECT OF ADDING ONE EXTRA POINT ALONG 
THE DIRECTION OF EIGENVECTOR 

Because the Sanger's learning net updates the 
eigenvectors sequentially one sample by one sample, the 
theorem about the effect of adding one extra point along the 
direction of the eigenvector is proposed to help the 
interpretation that more data points along one principal 
eigenvector direction can enhance the eigenvalue. The 
theorem can help interpretations in the input data vectors of 
uniform wavelets and uniform neighboring traces. 
Theorem 1 (Effect of adding one extra point along the 
direction of eigenvector of a covariance matrix): 
Given a covariance matrix Q computed from N data and its 

eigenvalues Ax and eigenvectors Q. , if adding one extra data 

vector (mean vector is removed) along the direction of 

eigenvector g., then (a) the new eigenvalue A;   is enhanced 
i 

more than new eigenvalues A-t   (j ^ i), (b) the new eigenvalue 

A{   is larger than the original eigenvalue A{ if the square 

length of the extra data vector is larger than At, otherwise 

Ät   is less than A{. 

Proof: The extra data vector (the mean vector is removed) is 

represented as c Q. , c is the length of the vector, c # 0.  The 

set of the new eigenvalues and eigenvectors computed from 
the N+l data is as follows. 
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1 T New covariance matrix is —— [N Q + (eg. ) (eg. )   ].  For 

Q, its eigenvalues X{ and eigenvectors g.  are given.   For 

g g T,    because    g g. T g. =g.,    g. T g. -1,    the 

eigenvector is g . So the eigenvectors of the new covariance 

matrix are the same as those of Q. 

1 T ' For eigenvector g., — [NQ+(cg. )(cg )   ]Q-=Ä-   g. . 

^Qei
+sTTc2ei(ei

Te1)
=^ e;- 

m^^m* er^. &' a  ei=1 

(JL A.+_Lc
2)e.=A.'e.• -^-A.+J-c2^.' o) VN+1       »     N+l        'C> '    Ci ■    N+l      '     N+l '      V  ' 

V^(c2-W' (2) 
2 ' 

From (2), if c   >A;, then A{ > X{ . This proves (b). 

For eigenvector g.  (j*i),  ^   [N Q + (eg) (eg )T] 

QrÄ> er i^er^ er eiTer0- 

m xrh (3) 
From (1) and (3), the new Ai   is enhanced more than the 

i 

new k-   (j ^ i). This proves (a). 

EXPERIMENTAL RESULTS 

(I) Analysis of a fault 
The seismogram in Fig. 2(a) shows a fault. The left 

hand side has 24 uniform traces and the right hand side has 8 
uniform traces. The seismic trace has the 20 Hz zero-phase 
Ricker wavelet with reflection coefficient -0.2, 4 ms sampling 
interval, and 10 - 56 Hz Gaussian white band noise (mean=0, 
standard deviation=0.1). Fig. 2(b) shows the projection of 
each horizontal data vector on the 1st eigenvector. And Fig. 
2(c) shows the projection of each horizontal data vector on 
the 2nd eigenvector. 

(II) Filtering of diffraction pattern 
The simulated horizontal geological layer with 

termination is shown in Fig. 3(a). The depth of the layer is 
500 meters, the seismic P-wave velocity is 2,500 meter/sec, 
and the receiving station interval is 50 meters. The generated 
seismogram after normal moveout correction (NMO) has 
reflection and diffraction patterns in Fig. 3(b). The source 
signal is a 20 Hz zero-phase Ricker wavelet with reflection 
coefficient 0.2. The Gaussian white band noise are added to 
the seismogram. Fig. 3(c) shows that the diffraction seismic 

pattern is filtered from horizontal reflection layer in the 
projection of each horizontal input data vector on the first 
eigenvector. 

(III) Analysis of bright spots 
For the input data vector in the horizontal and 

vertical directions, the central part of bright spots can show 
the uniform property. 

(IV) Application to real seismogram at Mississippi Canyon 
(A) We use the input data vector in the horizontal 

direction to compute the principal eigenvectors of the 
covariance matrix in real seismogram at Mississippi Canyon in 
Fig. 4(a). Fig. 4(b) shows the 3 projection values. The 
central part of Fig. 4(c) reflects strong to the projection on the 
1st eigenvector. The left part of Fig. 4(d) reflects strong to 
the projection on the 2nd eigenvector. A structure can be 
decomposed into several principal components. 

(B) We use the input data vector in the vertical 
direction in Fig. 4(a). Fig. 5(a) shows the 3 projection 
components, the 1st projection component can show the high 
amplitude and polarity reversal. Fig. 5(b) shows the 
projection vector of each trace on the 1st eigenvector. The 
seismic traces at the central part of the seismogram show the 
uniform property. 
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Abstract 

Feature extraction from SAR images is usually impeded by 
the presence of speckle noise. This becomes more serious in 
the case of polarimetric SAR system. A polarimetric filter 
recently proposed by Lee et al.[l] emphasizes not introducing 
additional cross-talk and statistical correlation between chan- 
nels, preserving polarimetric information and not degrading 
the image quality. This paper exams its effects on the image 
classification by a supervised fuzzy dynamic learning neural 
network trained by a Kaiman filter technique. Based on the 
available ground truth, the classification performance were 
evaluated using the original and filtered SAR images. Two 
independent test sites are selected for this purpose. The first 
case is a P-band JPL polarimetric SAR data over Les Landes 
for tree age classification. A total of 12 classes between 5 to 
44 years of age were to be classified, along with a bare soil 
type. The second test site is over Flevoland of the Nethelands. 
This agricultural site consists of 11 landcover types. Again, 
the polarimetric SAR data were acquired with JPL P, L, C 
bands airsar system. For the first case, it was found that the 
overall classification accuracy was able to improve from 69% 
to about 86% with kappa coefficient up from 0.46 to 0.76. 
Substantial improvement was also confirmed for the second 
case. In particular, when classification was performed using 
only single frequency. This shows that the polarimetric infor- 
mation are well preserved. By visual inspection from classi- 
fied map, the land cover boundaries were also delineated 
more clearly. As for fuzzy neural network performance, 
among the tested cases, the fuzzy index equal to 2 gets the 
best results. 

1.0 Introduction 

Polarimetric SAR is a powerful tool for terrain mapping and 
classification^]. It stores target complete polarimetric 
responses from which the targets are discernible. Although 
polarimetric SAR needs a more complicated calibration pro- 
cedure to maintain the polarization information and channel 
balance, and subsequently obtain absolute radar coefficients 
of target, when properly applied, identification and classifica- 
tion can be achieved to a highly acceptable degree. For 
parameter retrieval, care about absolute calibration should be 
taken. 

Speckle reduction of polarimetric SAR imagery has been 
studied using several different approaches. Novak and 
Burl[4] derived the polarimetric whitening filter by optimally 
combining all elements of the polarimetric covariance 
matrix, and produced a single speckle reduced image. Lee et 
al. proposed two algorithms that produced speckle reduced 
HH, VV and HV images by using a multiplicative noise 
model and minimizing the mean square error. The off-diago- 
nal terms were not filtered. Goze and Lopes generalized 
Lee's approach to include all element of the covariance 
matrix for one-look imagery. All these approaches exploited 
the degree of independence between HH, HV and VV chan- 
nels. The statistical characteristics, such as correlation 
between channels, and polarimetric signature preservation, 
were not addressed[4]. This paper examines the impact of 
using this polarimetric speckle filtering on terrain classifica- 
tion. NASA/JPL polarimetric P-L-C-band SAR data is used 
for illustration. 

2.0 A Fuzzy Neural Classifier 

A new fuzzy classifier, FDL [3] was used to perform super- 
vised classification to evaluate the filtering impacts. This 
classifier is based on the framework of dynamic learning 
NN[2] and makes use of c-means algorithm to determine the 
desired outputs, or class centers in such a way that the inputs 
may belong to several classes in a fuzzy fashion according to 
their membership values. The algorithm is simple, easily 
implemented, and yet, naturally integrates the features of 
neural net and fuzzy logic into one classifier. It has been 
shown that a fuzzy neural classifier is more robust in classifi- 
cation and indeed has pixel unmixing capability[3]. A neural 
network can be modelled as Y=WX, where X is input vectors, 
Y is output vectors, and W is network weights matrix. The 
determination and update of W in FDL network are summa- 
rized below. The more detail algorithm of FDL was referred 
in [3]. 

Step 1:   for£=l,2,....,C, initialize network weights wk 

Step 2:   forj=l^,..^V 

forfc=l,2,...,C 

assign |ik = dk 
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Step 3:   for/=l,2,...,tf 

forfc=l,2,...,C 

calculate Kaiman gain g, 

update network weights wj^   = w^ + gj^u^-w^x1) 

Step 4:   for k=lJ,,...,C 

calculate class center V, 
-k 

Step 5:   forj=l,2,...^V 

for fc=l,2,...,C 

calculate membership values (I, 

N     C 

Step 6:   if e = X X ^H"wk + V| <E and|AU|<8 

then stop  J = lk = 1 

else go to Step 3. 

In above, C is number of class, N is total number of patterns 
for training and AU is the difference of matrix U whose 
dimension is C x N with elements [i^, between two itera- 
tions. The calculations of class center and membership val- 
ues are according to the c-means algorithm. 

3.0 Test Sites and Data Processing 

Two independent test data sets were used in this paper. Both 
were acquired by JPL multifrequency polarimetric AIRSA 
system. One site was over Landes, France, a forest area with 
tree age from 5 to 44 years old. Since the tree age classifica- 
tion is of interest, only P-band data were used. Another data 
set was acquired over Flevoland, The Nethelands, an agricul- 
ture area with total 13 classes to be classified. A combination 
of P, L, C band multipolarization data were used for this 
case. First, the data were filtered by the polarimetric SAR 
speckle filter[l]. The steps are as follows: 

1) convert the stokes' matrix into covariance matrix for filter- 
ing: 

S = |HH|2 + 2|HV|2 + 1|VV||2 

The the filtered pixel value with local statistics filter are 

S = S + k(S -S) 

Z = 

|HH| HH HV*HHVV* 

HH* HV |HV82 HV-VV* 

HH* • VV HV* • VV    ||VV||2 

(1) 

The diagonal terms can be characterized by multiplicative 
noise model. The off-diagonal complex terms are difficult to 
characterize, but their real and imagery parts can be approxi- 
mated by an additive and multiplicative noise model. 
2) To filter the whole covariance matrix, we use the span 
image to obtain filtering weight by applying the refined Lee 
filter with multiplicative noise model. 

and k = 
var(Sz)-sfq2 

var(S Wl+o2) 

(2) 

(3) 

(4) 

where the Sz is the pixel to be filtered, S is the local mean 
and var(Sz) is the local variance. They are computed in an 
edge directed window. 

Note that the gradient is determined by using four 3x3 edge 
masks. The window is selected based on the location of the 
center pixel on the side of similar pixel value. 

3) For each pixel, the k value and the window number 
obtained from step 2) are used to filter the whole covariance 
matrix including the off-diagonal terms. The filtered covari- 
ance matrix is 

Z = Z + k(Z-Z) (5) 

where each element of Z is the local mean computed using 
the same sub-window. 

4) The covariance matrix can be converted easily into the 
stokes' matrix in either uncompressed or JPL compressed for- 
mat. 

Now that, synthesizing the SAR image from Stokes* matrix 
of polarimetric SAR data into HH, HV, and VV polarized 
images is in order. Then, it is a common practice[2] to select 
the suitable training data and to test the classifier, with the 
available ground truth map. It is of interesting at this point to 
investigate the statistical properties of pre- and post-filtered 
data, in particular, the phase-difference and amplitude ratio 
between channels. Fig.l shows the comparison of phase-dif- 
ference(C-band HH-VV) distribution of pre- and post-fil- 
tered. The reduction of speckle noise is obviously shown. 
The amplitude ratio distributions were plotted in Fig.2. 
Again, the variance was greatly reduced making the ratio val- 
ues concentrated around the mean. The correlation coeffi- 
cient and phase angle were nearly unchanged stating the fact 
of preservation of polarimetric information using the polari- 
metric filter. 

4.0 Results and Discussions 

For the first case we illustrated the tree age classification 
from P-band data. Although optimum polarized channels 
may be extracted, only linear polarizations were used here. 
The tree ages were divided into 6 groups, 5-8, 8-11, 11-14, 
15-19, 20-25, 33-44 years. A bare soil class was also identi- 
fied although it was clearly distinguished from tree covers. 
After the filtering, the overall classification accuracy was up 
from 69% to 86.5% while Kappa coefficient was up from 
0.46 to 0.766. The most distinct improvement is the 8-11 
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years class. For each class, the respective accuracy of each  high performance in SAR image classification in terms of 
class was also observed. At this point, we have shown the  learning speed and classification accuracy. 
effectiveness of our classifier and filter. It should be useful to 
illustrate the polarimetric filtering effects using the second Table 1: Multipolarization classification 
test case, when compared to non-polarimetric filters, as 
shown below. 

4\ 
HH-VV Phase Dlllerence 

RHO = 0.7227,RHO(=0.7203 
The tail .572,Thelal=1.258 

1 M * C(dala) 

1  i © CF(dala) 

CF(lheorv) 

1    * 

Phase Difference (degree) 

Fig.lPhase difference (HH-VV) distributions of pre- and 
post-filtered data 

x© 
HH-VV Amplitude Ratio 

RHO = 0.7227,RHOf=0.7203 

JK C(dala) 

     C(theory) 

© CF(data) 

- -   -       CF(lheorv) 

2.00 
Amplitude Ratio 

Lee Gam map New filter 

c 0.58(0.54) 0.58(0.54) 0.63(0.60) 

L 0.81(0.79) 0.81(0.79) 0.82(0.80) 

P 0.95(0.95) 0.94(0.94) 0.97(0.96) 

HH,HV, VV-polarizations were used 

Table 2: Multifrequency classification 

Lee Gam map New filter 

HH 0.78(0.76) 0.78(0.76) 0.79(0.77) 

HV 0.89(0.88) 0.90(0.89) 0.92(0.91) 

VV 0.79(0.77) 0.79(0.77) 0.80(0.78) 

P,L,C-band were used 

5.0 Conclusions 

Using a fuzzy neural network as image classifier, the effects 
of polarimetric filter on SAR image classification was evalu- 
ated using two independent data sets both acquired by JPL 
ABRSAR system. The new filter was developed by Lee based 
on his earlier adaptive version. When compared to regular fil- 
ters, it is clearly demonstrated that the new filter removes 
effectively the speckle noise while perseveres polarimetric 
information more effectively. This definitely improves the 
image classification accuracy. 

Fig.2Amplitude ratio distribution of pre-and post-filtered data. 

The Flevoland site was surveyed with total of 13 classes 
identified. Again only linear polarizations were extracted. 
For single frequency-multipolarization configuration, P- 
band(HH,HV,VV) gives best classification results with accu- 
racy of 96%. If multifrequency-single polarization is chosen, 
HV-polarized (P-L-C) has accuracy of 92%. VV- and HH- 
polarized gave comparable results. For comparisons, the 
adaptive Lee filter, Gamma MAp filter were selected. No 
efforts was yet made to compare other polarimetric filters 
but should be of interests to do so in the future work. Table 1 
and 2 gave the final compared results of multipolarization 
and multifrequency, respectively. Of all the comparisons, we 
find that the new polarimetric filtering give best classifica- 
tion results. It should be emphasized that the FDL indeed is a 
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Abstract ~ The multilayer perceptron is currently one of 
the most widely used neural models for the classification of 
remote-sensing images. Unfortunately, training of multilayer 
perceptron using data with very different a-priori class 
probabilities (imbalanced data) is very slow. This paper 
describes a three-phase learning technique aimed at speeding 
up the training of multilayer perceptrons when applied to 
imbalanced data. The results, obtained on remote-sensing 
data acquired with a passive multispectral scanner, confirm 
the validity of the proposed technique. 

INTRODUCTION 

The multilayer perceptron (MLP), trained by the 
backpropagation algorithm [1], is one of the most widely 
used neural models for the classification of remote-sensing 
data [2]. If properly trained, it provides approximations to the 
posterior class probabilities, given the feature vectors of the 
samples to be classified [3], which can be used to apply the 
optimal Bayes decision rule [4]. The major problems related 
to this classifier are the duration and the reliability of the 
training process, in particular, when the process is performed 
in "batch mode" on imbalanced data (i.e., when the a-priori 
probabilities of the various classes considered are very 
different from one another). Such problems are encountered in 
many remote-sensing applications. 

In literature, several techniques aimed at speeding up the 
training of MLPs have been proposed [1,5]. However, only 
few authors have addressed the problem of training an MLP 
in presence of imbalanced data sets [6,7]. Anand et al. [6] 
proposed a technique suited to two-class cases aimed at 
reducing the training time for MLPs. The same authors 
extended the use of this technique to multiclass cases [7]. 
However, these techniques do not allow the output of the 
networks to be considered an approximation of the posterior 
class probabilities optimized in accordance to a given 
criterion. 

This paper describes a three-phase learning technique for 
speeding up the training process of an MLP when it is 
applied to imbalanced data. Such a technique allows to train 
MLPs so to obtain an estimate of the a-posteriori class 
probabilities by minimization of the mean squared error 
(MSE). Experiments are carried out on remote-sensing data 
acquired by a passive multispectral scanner on an agricultural 
area. 

TRAINING MLPS WITH IMBALANCED DATA 

Let us assume to use a neural network with one hidden 

layer and sigmoidal non-linearities; let us consider a problem 
with M classes and assume that the number of samples from 
each class is in proportion of the a-priori probability of class 
membership. The class (Od is the dominant one, i.e., the 
number nd of samples of this class is larger than the number 
np of samples of the other classes (nd »np,Vp*d). In 

order to make the network output provide an approximation 
to the a-posteriori probability /"(co,/*) of the class co,, 
given the feature vector x of a sample, optimized with respect 
to the MSE, we use the error back-propagation (EBP) 
training algorithm and the MSE as a cost function [3]: 

M M     i     M   n, 9 

s=X*, = X-^XX^-M^)        a) 
;=i        ,=inMk=u=l\ >> 

where n, is the number of samples of class co,; tft is the 
target for the k-th output of the network for the samples of 

the l-th class; oJjt/'M is the k-th output of the network 

when the l-th sample of the l-th class has been presented to 
the input; E, is the contribution of the class co, to the MSE. 
In order to obtain approximations to the posterior class 
probabilities, the sum of the outputs of the network should 
be normalized to 1 [3]. 

Let us recall the reasons why training with imbalanced data 
sets is slow. As shown in [6] in a similar situation, at the 
beginning of the training phase, the gradient of the mean 
squared error (V£) calculated with respect to the network 
weights is dominated by the contribution related to the 

dominant class cod (flv^l«|V£d||, Vp * d). Since, at the 

beginning of the training phase, the contribution of minority 
classes to the direction of the gradient E of the error is 
negligible, the mean squared error of some of such classes 
may increase and approach its upper limit. Consequently, 
training may become slow. 

THE THREE-PHASE TECHNIQUE PROPOSED 

The proposed technique divides the training process into 
three phases so that convergence can be reached while 
avoiding a sharp increase in Ep related to minority classes. 
In the first phase, it exploits a modified cost function that 
"simulates" the training in presence of classes with the same 
a-priori probabilities. Then, in the second phase, this cost 
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function is gradually modified from that of the first phase to 
the standard MSE criterion. Finally, in the third phase, the 
training is completed according to the standard MSE criterion. 

In the following we report a detailed description of each of 
the three phases. 

Phase 1: The EBP algorithm is applied to the following 
modified cost: 

MM 

£' = I^' = S^/.   *, = -*■ (2) 
/=i        1=1 ni 

Thanks to the modification to the cost function, the mean 

values JV£/| of all the contributions E, to  E   are about 

equal, so that the contribution of minority classes to |V£ I 
is not negligible any more (a similar proof as that of 
Theorem 3 in [6] can be provided). This balance among 
contributions (which is natural for training with data evenly 
distributed among all different classes) helps to avoid slow 
convergence. This phase is stopped when the following 
condition is satisfied: 

£,<■ ■T   (1 = 1 M;T«\). (3) 

This ensures that both the overall MSE (see (1)) and the 
following class-related MSEs will be smaller than or equal to 
T: 

MSE,=±±(P-oM'>))  =±E,ZT. (4) 
n, £{V v ' »      n, 

Phase 2: Unfortunately, the output of the network obtained 
in this way does not represent an approximation to the a- 
posteriori probability P(<ö,/X), due to the cost modification 
introduced into Phase 1 (see (2)). We can then use the 
network weights obtained at the end of the first phase as the 
initial weights of the second training phase. This phase is 
aimed at gradually modify the cost from E' to the standard 
MSE criterion in order to avoid a discontinuous change in the 
cost function that could generate oscillatory phenomena. This 
is carried out in S steps by gradually modifying the qt 

coefficients of (2) according to the algorithm that is described 
below. 

Initialization: The initial values of the coefficients (i.e., qf) 
are assumed equal to the values of q, in the first phase: 

qf=q,    0 = 1 M). (5) 
Step j:   at step;   (j=l, ,S-7) the values of the 

coefficients qj are updated as follows: 

<ti 
j _, 

«r-^f^-v 
1 if 

It 
i-\. {ndlnm-\) 

<H 
y-i    (nd/nm ~ 1) 

>1 

<1 
(6) 

where n„, is the number of samples of the most minoritary 
class com. Each step is carried out by training the network 
with the EBP algorithm until the convergence criterion, that 
evaluates the stability of the cost, is verified. 

Phase 3: It corresponds to the S-th step of the algorithm 
defined for Phase 2. The training is performed with the 
standard MSE as cost function since all the coefficients qf 
are equal to 1. Consequently, the network output may be used 
directly as an approximation to P(G>I/X). 

EXPERIMENTAL RESULTS 

In our experiments, we considered a data set referred to an 
agricultural area near the village of Feltwell (U.K.). We 
selected a section (250 x 350 pixels) of a scene acquired by a 
multispectral optical sensor (a Daedalus 1278 Airborne 
Thematic Mapper (ATM) with eleven spectral bands). We 
considered only the six spectral bands of the ATM that 
correspond to the bands provided by the Thematic Mapper 
sensor installed on Landsat satellites (with exception for the 
thermal band). Each pixel of the multispectral image was 
considered as an input pattern. The six bands utilized were 
associated with each pixel to form the "feature vector" that 
was used as input to the neural classifier. 

For our experiments, we considered the following 
agricultural classes: wheat, sugar beets, potatoes, carrots, and 
stubble. The training-set pixels were obtained by sampling 
the related fields. In order to assess the advantages of the 
proposed technique in presence of classes with low a-priori 
probabilities, we reduced the probabilities of occurrence for 
the wheat and the potatoes classes. This was accomplished by 
further subsampling the fields of such classes. Table 1 shows 
the numbers of samples obtained in the resulting training set. 

For each experiment, we defined a fully-connected MLP 
(with 6, 10, and 5 units in the input, hidden and output 
layers, respectively) and compared the numbers of iterations 
required by the standard EBP algorithm with the MSE 
criterion and the proposed three-phase technique. The same 
learning rate (T|=0.01) was used for both training techniques 
(and for all phases of the proposed technique). The final 
convergence criterion was also the same for both training 
techniques, and was given by fixing the number of 
misclassified samples below which training can be stopped 
(i.e., 4.5% of the training samples). The convergence 
criterion to stop the first phase of the proposed technique was 
given by fixing the value of the threshold T to 0.3. 
Concerning the second phase, S was chosen equal to 15. 

Five experiments were carried out on the above data set, 
starting from the same five randomly generated sets of 
weights for both the standard and the proposed techniques. 
Results are given in Table 2. As can be noticed, the proposed 
method allowed notable speed-ups (an average of about 49 
times). An alternative evaluation of speed-ups can be 
computed by neglecting the experiments which provided the 
best and the worst speeding-ups, and by averaging the speed- 
ups obtained in the other three experiments. Also according 
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to this evaluation, the speed-up provided by the proposed 
three-phase technique (i.e., about 15 times) can be considered 
significant. 

DISCUSSIONS AND CONCLUSIONS 

In this paper, a technique to speed up the training of MLPs 
with imbalanced remote-sensing data sets has been presented, 
and compared with the standard EBP algorithm. For the 
remote-sensing data sets considered, several experiments were 
carried out, starting from the same randomly generated set of 
weights for both the standard and the proposed techniques. 
Results pointed out that the proposed method allowed notable 
speed-ups for all randomly-generated weights considered. 

The problem of the training of MLPs in presence of 
imbalanced data was also faced in [6], for two-class cases, 
and in [7] for multiclass cases. For a comparison, we may 
note that the extension from two-class to multiclass cases 
required the definition of as many networks as the number of 
classes. In addition, the outputs of MLPs trained by the 
techniques described in such papers cannot be used directly to 
implement the Bayes decision rule for a minimum error 
classification. 
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Table 1. Classes and related number of pixels in the considered training set. 

Class Number of pixels A-priori   probability 
Wheat 90 0.06 

Sugar Beets 728 0.51 
Potatoes 90 0.06 
Carrots 319 0.23 
Stubble 191 0.14 

Table 2. Numbers of iterations required to reach an overall classification error less or equal to 4.5% (i.e., 64 misclassified 
samples) for the five experiments carried out. The speed-ups provided by the proposed technique are reported. 

Experiment Standard EBP Proposed technique Speed-up provided by the 
proposed technique 

1 5851 552 10.6 
2 129258 676 191.2 
3 7246 587 12.3 
4 4581 578 7.9 
5 12637 541 23.4 

Average 31915 587 49.1 
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Abstract - The neural network approach by the 
back-propagation method (BPM) to land-use has 
been discussed in recent years. Using such a 
method, the accuracy depends on a training data 
set which has been selected manually. It takes 
much time to select a suitable training data set. In 
this paper, as a preprocessing of classifications we 
use the Kohonen feature map (KFM) and the 
competitive learning (CL) to get the better training 
data set. As a first step, the KFM that takes the 
Landsat TM data as input is adopted to form a 
rough classification of the wide area based on the 
observed data. In the next step, the CL whose 
inputs are the weights of the KFM node data is 
carried out to determine the category of each node 
of the KFM. The first weight set of the CL is a set 
on weights at four corners of the KFM. The 
combination of the two neural network techniques 
enables us to determine the rough land-use of an 
object region automatically. After that, the 
classification results by the KFM and the CL are 
further classified into more fine items by using the 
BPM. Finally, the classification results have been 
compared with other methods. 

INTRODUCTION 

Remotely sensed multi-spectral data have been 
used for many kinds of applications, for example, 
land-use analysis, the estimated crop, the water 
pollution, etc. It is important to analyze the data 
sampled form a satellite since we can observe the 
artificial and natural changes of the phenomenon in 
cycles, and investigate the wide range data of the 
earth surface at the same time. These could not be 
certainly obtained by the ground truth. We have 
classified the multi-spectral TM data observed from 
Landsat-5 by neural network approaches. The 
neural network trained by the BPM is also applied 
to non-Gaussian distributed data so long as we can 
choose a fine training data set. But the choice of the 
training data set is difficult even if well-organized 
ground truth were performed. Since a pixel does not 
consist of only typical class. The remotely sensed 
data are separated in many clusters even if they 

belong to the same class, since, shadow of the 
neighboring buddings or cloud may cause the 
different spatial phenomena for the same object. 
Therefore, it is difficult to choose a good training 
data set from the target image data. To overcome 
the problem, some researchers have employed the 
preprocessor before performing the classification. 
The preprocessor by the KFM was used to perform 
rough classification of the input data. A training 
data set from classification result by the KFM is 
chosen, and improved the classification accuracy. 

However, how the remotely sensed data has been 
influenced by the KFM has not been demonstrated 
quantitatively. The KFM does not need a training 
data set and can automatically make a topology 
preserved map of the input data on its competitive 
plane. Therefore, we consider that the competitive 
units represent the small cluster of the input data. 
In this paper, we propose a new approach using the 
competitive weight vectors as the training data set. 
Using the weight vectors enables us to find the good 
training data set more easily than the random 
sampling. It is illustrated that the approach to the 
real remotely sensed data produces an excellent 
computational result. 

PROPOSED METHOD 

The proposal method has two stages. As a first 
step, the KFM that inputs the Landsat TM data is 
adopted to form a rough classification of the wide 
area based on the observed data. In the next step, 
the CL that inputs the weight of the KFM node data 
is carried out to determine the category of each 
node of the KFM. The first weight set of the CL is a 
corner weight set of the KFM nodes. We can select 
easily and more accurate supervisor data from 
classified data by the KFM and the CL for BPM. 

Landsat TM Data 
In this paper, we use TM band data observed 

from LANDSAT-5. The TM image is composed of 
seven bands, i.e., six of them, namely, band-1, 2, 3, 4, 
5, and 7, are in the visible and near infrared 
portions   of  the   spectrum,   and   band-6   senses 
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infracted data. The special resolution of the TM 
band is about 30 square meters per pixel, except for 
of band-6 of 120 square meters. We use three bands, 
namely, band-3, 4, and 5. 

The target area of this work is located around 
Sakai City in Osaka, Japan, sampled on August 
20th, 1995. The size of the images is 512 x 512 
pixels and contains four classes, namely, W (water 
area), C (city, road area), T (town, suburb area), and 
G (wood, lawn area). 

Kohonen Feature Map (KFM) 
As shown in Fig. 1, the KFM preprocessor is a 

two-layered network, one is an input layer and 
another is a competitive layer. The number of input 
unit is specified by the dimension of the input 
patterns likewise that of the BPM classifier. The 
competitive layer is organized as a two-dimensional 
grid. The two layers are fully interconnected via u-, 

as each input unit is connected to all of the 
competitive units where u- denotes the connection 

weight vector between the j-th element of the input 
pattern and the competitive unit i. 

We also call the  Uy   as a competitive weight 

vector. For example, when an input pattern   xip = 

[xlp ,x2p ,x3p] is presented to the input layer, the 

winner unit c is chosen by using a competitive 
learning rule: 

uc>uj   AVj (1) 

where 
ui=yLxi?-wV' (2) 

i 

Next, the weight vector in the nearest neighbor of 
the winner unit c is updated to chose on the input 

Category A 

Category B 

pattern   p . The weight updating is given by the 
following algorithm: 

Second step (CL) 

First step (KFM) 

Kohonen Feature Map 

u"ew 
ij 

u^+AuyAjeNc, (3) 

Auy=ri!(xip-uf), (4) 

m=i0^-^), (5) 
where t and T denote a current training epoch and 

its total number, respectively. 
The neighbor Nc  is the square grid around the 

winner unit c. 
Nc={2dt+l)x(2dt+l), (6) 

d,=d0[-^], (7) 
After training, we can get the topology preserved 

map, from the space of input patterns to the 
competitive plane. When an input pattern is 
presented, we can make sure that the topographic 
map uniformly covers the distribution of input 
patterns by checking the response from the closest 
competitive unit. 

Competitive Learning (CL) 
The competitive learning is an unsupervised 

neural network. The structure of the network is 
consists of two layers; one is an input layer and 
another is a competitive layer. In general the initial 
weights of network are set randomly. But in this 
study, the first weight set of the CL is a corner 
weight set of the KFM nodes, shown A B C D nodes 
in Fig. 1, to converge the network. Since the KFM is 
learned by using the neighbor N c, the feature map 

is made up so that the similar weight vectors gather 
in the neighborhood. As the result the weight 
vectors of Feature map unit are distinct each other. 

The CL needs a precision classification. Each of 
the KFM weight vectors is close. The inputs of a 
KFM node vector into the CL are very severe to 
classify. As the weight vector of the KFM nodes does 
not input directly into the CL input node, we code 
the input data by using coarse coding as 
preprocessing. Coarse coding can be considered as a 
kind of interpolation. One uses n units which are 
distributed (usually, but not necessary) uniformly in 
an  interval.   This  means  that  every  node   /   is 
assigned as a fixed location  zm • When coding the 

numerical value   Wy, the output of node   m   at 

location   zm   is   given  by   a   Gaussian   response 

function (other forms are also possible): 

Fig. 1 The structure of network W;;, ■W= (8) 
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A A C  C C  C  C  C 
A C  C  C C  C  C  C 
B C  C C C  C  C  C 
B   B C C C  D D D 
B   B B D D D D D 
B   B   B D D D D  D 
B   B   B D D D D  D 

Fig. 2 The category of Feature map units after CL 

where <7 is a parameter characterizing the 
width of the curve. 

During learning, an input pattern is presented to 
the input layer and using a competitive learning 
rule we choose the winner unit c: 

uc>Uj   AVj, (9) 

where 
(10) 

(11) 

(12) 

M;=X *VV;* 

'jk 

old   ,    A 

&vjk=rit(wijm-v°ld), 

SIMULATION RESULTS 

We show the structure of this method in Fig. 1. 
The lower network is the KFM. The upper network 
is the CL. The KFM has two layers. We look a 
suitable parameter of these networks in learning 
speed and from accuracy point of view, the Feature 
map has two-dimensional 8x8 nodes, the learning 
late  77  is 0.2, the number of learning times T is 
80,000 and the initial size of neighbor d0 is 5. The 

CL has 4-competitve nodes, the learning late r\ is 
0.02 and the number of learning times is 12,000. 

At the second stage, the CL is carried out. The 
conclusion of the CL is shown in Fig. 2. This figure 
shows which the category of the KFM units belong 
to. These units in same category are close each 
other. 

Fig. 3 shows the 4-classification result by the 
unsupervised learning using the KFM and the CL. 
We can select easier and more accurately the same 
supervisor data from this figure than from the 
original data. The accuracy of this method shows in 
Table. 1. This table shows that proposed method is 
effective to give us finer supervised data set. 

CONCLUSIONS 

The KFM and the CL method indicates that it is 
difficult to select the supervisor data set from 
original data, but it is easier and finer to select 
supervisor data set from roughly preclassified data 

w 

G 

C 

Fig.3 The classification results 

Table. 1 Comparison of classification accuracy 
Method C W B DG LG T 

Only BPM 
(%) 90 94 100 96 94 90 

KFM+CL 
+BPM(%) 96 96 100 100 98 94 

set. The second advantage of this method is the 
ability to classify roughly even unknown data. 

A problem of this method is that this method 
cannot classify into 4-categories. But if we need to 
more detail classification, we can use it again for 
more divided category. Now I am considering the 
method to classify into more than 5-category 
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Abstract - A dynamic learning neural network is adopted to 
relate the normalized radar backscattering coefficient a° to 
the wind vector. By given the average wind speed and wind 
direction and their standard deviations, a set of test wind 
vector fields are simulated. The corresponding o° values are 
calculated according to the well known empirical model 
named CMOD-4. To improve the accuracy of the estimated 
wind direction, spatial information is considered in the 
reconstruction process. Thereafter, the neural network is 
iteratively trained by the input-output pairs generated from 
the test wind fields. Finally, the wind parameters are 
reconstructed upon applying a° values to the well trained 
neural network. Experimental results indicate that neural 
network is an effective tool for wind reconstruction. 

INTRODUCTION 

In the 1990s, several satellite scatterometers are dedicated 
to Earth and ocean observation such as the ERS-1 advanced 
micromave imager (AMI) [1] and the NASA scatterometer 
(NSCAT) [2]. As shown in Fig. 1, the ERS-1 scatterometers 
are microwave radar capable of measuring ocean surface wind 
speed and direction. It provides three radar images of the 
ocean surface with a spatial resolution of 50km and a swath 
width of 500km. The three images are acquired by the three 

Scatterometers 

Aft beam 

Fore beam 

beam 

Subsatellite Track 

Swath 

different antennas: the mid-beam, looking to the right side of 
the satellite, perpendicular to the ERS-1 ground track, the 
fore-beam, looking forward at 45° azimuth projection angle, 
with respect to the mid-beam, and the aft-beam, looking 
backwards at 45° azimuth projection angle, with respect to 
the mid-beam. The relationship between the normalized radar 
cross section a° measured by the scatterometers and the wind 
vector can be established by using a geophysical model 
function. It is known that the wind field estimate is not unique 
but is identifiable from scatterometer measurements. 
Conventional approach to wind estimate involves formulating 
a cost function from the scatterometer measurements and then 
minimizing it to obtain estimates of wind field. Local minima 
are usually appear due to the nature of geophysical model 
function. This leads to the so called aliasing or ambiguity. 
Since dealiasing or ambiguity removal relies on the 
information not contained in measurements, it is not pursed 
here. In this paper, we are primarily concern with the 
inversion of the geophysical model function. Because it is 
nonlinear and the exact character of the nonlinear behavior 
may not be known a priori, this paper suggests a highly 
flexible, yet accurate, alternative approach to retrieve the 
wind vector by making use of the neural network techniques. 
In the next section, the detail experimental procedures are 
listed. The experimental results are shown in the following 
section. Finally, some conclusions are drawn. 

EXPERIMENTAL PROCEDURES 

Wind Field Generation 

According to the simulation model [3], the wind vector 
field is assumed to be an expression of the form 

n      m       . 
u{x>y)= X   Z U(kx,ky)exp 

kx=0ky=0 

i      \       "      m      I \ 

kx=0ky=0 

2/r , 2K , 
— kYx + — kvy 
1 J     y 

x    x ^y 

r \ 
2n , 2n , 
— kYx + —kvy 

\^x y      . 

(1) 

(2) 

where the coefficients U(kx,ky) and V(kx,ky) should satisfy the 
following conditions 

Fig. 1 ERS-1 scatterometer Geometry 
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^u(kx,ky) + ^v(kx,ky) = 0 

i~v(kx,ky)-i-^v(kx,ky) = c(kx,ky) 

(3) 

(4) 

The coefficients C(kx,ky) that can be chosen arbitrarily are 
complex numbers of absolute value 

|cMrf-   ,     "   ,,„ (5) 
i /Cv     +    Ky    I 

1/2 

for some a > 0 and phase exp[i<^,^,)] where zO^/fc,,) is a 
random variable uniformly distributed in [0, 2n]. By given the 
average wind speed and wind direction and their standard 
deviations, a set of test wind vector fields are generated For 
the case of ERS-1, we set m=\9 and «=19, having a grid of 
size  of £^(=25*^)  x  Z)y(=25Km)  with  patch  size  of 

ix(=475Km) x Iy(=475Km). Fig. 2a shows an example of the 

simulated wind vector field whose mean wind speed is 10 
(m/s), mean wind direction is 22.5 (deg), and standard 
deviations is 2 (m/s). 

Wind Field Reconstruction 

The corresponding a° values which simulate the aft-beam, 
the mid-beam, and the fore-beam of the ERS-1 scatterometer 
returns are calculated according to the well known empirical 
model named CMOD-4. The relationship between a° and 
wind vector are given by 

a°=b0[l + b1 cos^ + b3 tanh(b2)cos2^| ' (6) 

where <p is the wind direction and the coefficients b0, bu b2, 
and b3 are functions of the wind speed and incident angle. A 
dynamic learning neural network [4] is adopted to relate a° 
and wind vector. To improve the accuracy of the estimated 
wind direction, spatial information is considered in the 
reconstruction process. Therefore, the neural network is 
constructed to have twenty eight input nodes, the three a° 
returns at each cell of a 3 X 3 window and the incident angle 
of the mid-beam, and two output nodes, the wind speed and 
wind direction. Thereafter, the neural network is iteratively 
trained by the input-output pairs generated from the test wind 
fields. Finally, the wind parameters are reconstructed upon 
applying the a° values to the well trained neural network. A 
very satisfactory result is obtained. Fig. 2b shows an example 
of the reconstructed wind vector field with mean wind speed 
of 10.17 (m/s), mean wind direction of 23.68 (deg), and 
standard deviations of 2.01 (m/s). In the following section, we 
shall apply the measured o° values acquired by the ERS-1 
scatterometers to the well trained neural network to retrieve 
the wind speeds and wind directions. 
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b. reconstructed wind vector field 
Fig. 2 An example of a wind vector field whose mean wind 
speed is 10 (m/s), mean wind direction is 22.5 (deg), and 
standard deviations is 2 (m/s) 

EXPERIMENTAL RESULTS 

Due to the absence of ground truth, we compare our results 
with the wind field reported by ECMWF. First, from the wind 
speeds and wind directions reconstructed by the neural 
network and some related parameters, we can gain three o° 
values of ERS-1 scatterometers using the model CMOD-4. 
Similarly, from the wind fields reconstructed by ECMWF, we 
can acquire three a° values using CMOD-4. Finally, the 
differences between these two sets of a° and measured a° 
are calculated. In addition, since we take spatial context into 
account, the grid mesh of a wind field becomes 17 x 17. An 
example of the results for a data set labeled IF 14292-38 are 
shown in Fig. 3. The axis represents 289 cells ( 17 x 17 ) and 
the y axis represents the a ° in real values. 
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Fig. 3 The difference between a° reconstructed by DLNN 
and measured a° is plotted in solid line; and the difference 
between a° reconstructed by ECMWF and measured a° is 
plotted in dot line. 

CONCLUSIONS 

From, the above experimental results, a very satisfactory 
result is obtained. Results indicate that neural network is an 
effective tool for wind reconstruction. It is also seen that the 
use of neural network to remove the ambiguity is also 
applicable and reliable. 
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Abstract - In order to fully utilise SAR techniques, it is 
important to employ classification schemes which can 
discriminate between surface cover types having closely 
related statistics. A hybrid method, consisting of statistical 
textural measures and radial basis function (RBF) neural 
networks, is proposed for this problem. Imagery obtained for 
areas of South American rain forest are employed for this 
study and standard statistical techniques are used as a 
benchmark for comparison. 

A supervised method for training the RBF neural network 
hidden layer and parameters (e.g. centres, width, etc.) is 
proposed, based on a minimum-classification-error criterion. 
This modified RBF network has been applied to the forest 
data and has been found to outperform standard statistical 
techniques and the conventional RBF with k-means (or other 
similar) training method for hidden layer parameters in 
these classification tasks. 

INTRODUCTION 

Satellite-borne synthetic aperture radar now provides 
regular, quantitative, all weather images of the Earth and 
microwave remote sensing is proving an essential tool for 
Earth Observation. So far, the majority of approaches have 
been limited to distinguishing between image classes with 
quite different statistics. It is therefore important to address 
the problem of classifying surface cover types having closely- 
related statistics. 

Recent years have seen an increase in the application of 
artificial neural networks (ANNs) to radar imaging and 
encouraging results have been reported [1,2,3]. ANNs are 
able to process a large amount of input information in 
parallel and generate categorical or generalised output. They 
can adaptively learn to build non-linear input-output 
mapping structures specific to a particular problem. Radial 
basis functions are non-linear layered feedforward neural 
networks which are capable of implementing arbitrary non- 
linear transformations of the input space with consistent 
computational efficiency and learning speed. This paper 
proposes a new implementation of RBF networks which 
differs from conventional approaches [4-5]. It adopts a 
minimum-classification-error criterion to train the hidden 
layer parameters of the network in a supervised manner. The 
technique is applied to a series of SAREX images obtained 
from the banks of the River Tapajos in the Tapajos National 

Park. The Grey-Level Co-occurrence Matrix [6-7] is used to 
reduce the data by extracting 12 textural features from 3 
different data sets, each of 300 image sections selected from 
the original SAREX data. The probability density functions 
of the resulting features are computed for each set of images 
and the complexity of the data is assessed by means of the 
probability of error between each corresponding feature. The 
same data is used as input to a logistic regression classifier 
[8] which provides a benchmark comparison for the ANN. 
Finally, the radial basis function neural networks, with both 
conventional and newly implemented training procedures, 
are applied to the two sets of images whose statistical 
features are highly overlapping and the performances of the 
various methods are compared. 

EXTRACTION OF TEXTURAL FEATURES 

Grey-level Co-occurrence matrices (GLCMs) describe 
texture by means of computational processing for various 
angular relationships and distances between neighbouring 
resolution cell pairs of a given image. Haralick et al. [6] 
assumed that texture-context information is specified by the 
matrix of relative frequencies P^ with which two 
neighbouring resolution cells separated by distance d, 
positioned at an angle a, occur on the image, one with grey 
tone /' and the other one with grey toney. 

The GLCM technique was implemented in Fortran 
software, which was fully tested and applied to 3 sets of 300 
128x128 images selected from the original SAREX data of 
the Tapajos National Park. Each set represented a different 
surface cover: the lower level forest near the river Tapajos 
[Fig. 1(a)], the Terra Firme forest [Fig. 1(b)] and non forest 
data [Fig. 1(c)] (for convenience, hereafter described 
respectively as set 1, set2 and set3). 

For each image, twelve textural features were generated 
according to the equations defined by Haralick. For 
subsequent processing, the correlation between features was 
calculated, together with the pdf of each feature. These 
distributions were plotted and compared for each 
corresponding feature of the 3 image sets.The 
misclassification percentage of each pair of pdfs was 
calculated as the probability of error between the two 
distributions. This gave an approximate measure of the 
classification accuracy that could be achieved by standard 
statistical techniques. 

0-7803-3836-7/97/S10.00 © 1997 IEEE 1211 



W (») (c) 
Fig.l. - Typical images respectively representing the three 
data sets: (a) the lower level forest; (b) the Terra Firme forest 
and (c) the non-forest data. 

It was observed that the pdfs of setl and set2 were highly 
overlapping, but each differed significantly from the pdfs of 
set 3. As an example, the probabilities of error between the 
SA distributions of setl/set2 , setl/set3 and set2/set3 are 
respectively: 51.8%, 21.8% and 23.9%. 

LOGISTIC REGRESSION ANALYSIS 

Logistic regression (LR) is a multivariate technique for 
directly estimating the probability of an event occurring and 
in this application, the 12 sets of features of each image class 
were used as the independent variables of the LR model of 
the SPSS Windows package. As expected, in accordance 
with the probability of error results, setl/set3, and set2/set3 
could be perfectly distinguished, unlike setl/set2 that only 
provided 79.3% and 80.7% classification accuracy on 
training and test data respectively. 

The Wald statistics option was selected from the SPSS LR 
command window, in order to assess the contribution of each 
feature to the correct classification percentage of the data. 
The resulting values were very close to those already 
calculated with the probability of error, for example the SA 
feature gave 49%, 78% and 76% accuracy on the training 
data for setl/set2, setl/set3, and set2/set3 respectively, thus 
demonstrating the reliability of the LR method. The Wald 
statistic had also been used to select the most meaningful 
features for the classification of the two sets of forest data, 
since some of the 12 features could mislead the classification 
performance if not relevant with this investigation. 

RADIAL BASIS FUNCTION NEURAL NETWORKS 

Radial basis functions are feedforward neural networks 
with an input layer, a single hidden layer and an output 
layer. The input layer is made up of source nodes (sensory 
units). The hidden layer consists of a number of RBF nodes, 
with simple kernel functions. Each layer is fully connected to 
the following one. The input data does not go through 
complex and time consuming multi-hidden layer expansions, 
therefore RBF networks result in great training speed and 
application flexibility. Each hidden node evaluates a radial 

basis function on the incoming input and the classifier 
output is simply a weighted linear summation of these 
functions. 

The network can be configured with one radial basis 
function centre at each training data point. However, to 
minimise the complexity of the network it is convenient to 
reduce the number of centres. For this purpose, a variety of 
approaches have being developed [4,5], The K-means 
clustering algorithm was applied to the two data sets of the 
South American rain forest, in order to select the centres of 
the radial basis functions, and their width was fixed. The 
output layer used a single perceptron and its weights were 
calculated using the iterative least mean square algorithm 

The network was trained for 50 cycles with 70 hidden 
nodes and the width was set to be 60% of the minimum 
distance between the basis function centres. This network 
classified the training data with 81.7% accuracy, but only 
gave 66.4% classification accuracy for test data. 

A NEW SUPERVISED RBF NEURAL NETWORK 

The accuracy of RBF networks can be improved if 
supervised learning of the function centres is used. A new 
supervised algorithm was developed. This uses a minimum- 
classification-error criterion to select the best centres directly 
from the input data and determines the optimum weights of 
the output layer by means of Wiener-Hopf simultaneous 
equations. 
The algorithm starts with only one hidden unit. The training 
sample that gives the minimum classification error is 
selected as the first centre of the RBF network. Then, at each 
subsequent cycle an unpicked sample, cu, is selected as a 
new centre, c(n+l), and added to the network, if it, together 
with the previously selected centres, cp, gives the best 
performance. When overlearning occurs, the performance of 
the network stops improving, as shown in Fig. 2. In this way 
the algorithm also finds the optimal number of centres that 
the RBF network should contain. This algorithm can be 
mathematically expressed as in (1), when applied to N data 
samples, xp, whose desired output, d„, can be either 1 or 0. 

selected centres 

Fig.2 - The curve of classification error vs number of 
selected centres during training. 
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At step n+ l,for w = 0,l,...,N and K = n+l: 

c(n +1) - argmin ^T dj - <p 

+wn+l(n + l)*0n+l(xj,cu,a)-AJ 

YJWp(n+l)*Op(xj,cp,a) + 

(1) 

where, w0 (n +1) is the bias weight, <t>0(-) = 1, w (n +1), for 

/? = 1,2,...,(« + !), is thepth output weight, using c„ and cM 

and finally q>[-] is a unit function, so that: 

*H = 
if  [.]>0 

otherwise 

improved by means of a newly developed RBF network. This 
new RBF algorithm trains the network in a supervised 
manner by means of a minimum-classification error criteria. 
Also, it was found that image textural information is an 
appropriate classification measure in this application. In 
particular, the GLCM technique extracted meaningful 
textural features used as inputs to the network classifier, 
reducing in this way the dimensionality of the problem. 

Future work will involve the use of this classification 
system to sets of high resolution imagery acquired by means 
of the ground based polarimetric SAR , developed in the 
Communications and Radar Group at Sheffield University. 
These imagery will represent a crop in three different stages 
of growth and the ability of the network classifier to 
distinguish between the three different conditions will be 
assessed. 

The initial width, a; and threshold, A, used in the above 
method, are both set to 0.5. Once the RBF centres have been 
selected, the width and threshold can be varied in order to 
find their optimal values. 

The newly developed RBF software was applied to the two 
sets of forest data of the Tapajos Park. The resulting optimal 
RBF network consisted of 39 hidden units and a width fixed 
at 0.5. It consistently outperformed both common RBF 
networks and traditional statistical techniques, achieving 
90.7% and 87.4% classification accuracy on training and test 
data respectively. Furthermore, the similarity of these two 
values shows a very good generalisation ability, which 
makes this network very reliable. 

The classification performances of the above described 
statistical and neural network techniques are summarised in 
Table 1. 

Table   1   -   Comparison   of the   results   for   the   three 
classification techniques employed 
Classification 

Method 
Training Data 
Classification 

Accuracy 

Test Data 
Classification 

Accuracy 
LR 79.3% 80.7% 

K-means RBF 81.7% 66.4% 
New RBF 90.7% 87.4% 

CONCLUSIONS 

This paper has introduced a new approach to the 
classification of imagery with closely related statistics. Both 
standard statistical techniques and neural networks have 
been applied to two sets of forest data and one set of non- 
forest data. Logistic regression, the statistical technique, 
gave a high accuracy on the classification of forest data and 
non-forest data, but it only gave average results for the two 
sets of forest data. However, this result could be consistently 
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Abstract — The first airborne experiment with a new upgraded 
VHF SAR system was carried out in October 1996. A very 
flat island was selected as the test area to minimize the 
influence from the topography and facilitate the calibration 
and system analyses. Data acquired over the area with this 
new sensor, CARABAS II, have successfully been processed. 
The major problem encountered concerns large paired-echo 
sidelobes. To improve the image quality, a careful system 
analysis has been carried out to obtain correction coefficients 
for the signal processing to compensate the overall amplitude 
and phase ripple. The results presently available indicate 
resolution figures somewhat lower compared to the 
theoretical values. It is believed that the main explanation for 
the found performance degradation is insufficient information 
of the antenna characteristics and the measures currently taken 
for the radio frequency interference filtering. 

optical imaging instrument for classification of detected 
potential targets, is thus an attractive reconnaissance concept. 

Realization of a new upgraded VHF SAR sensor, 
CARABAS II, was approved based on the promising results 
obtained with the first airborne testbed. The used frequency 
interval is the same for the CARABAS II sensor, i.e. 20-90 
MHz. These figures are still about ten times lower than 
comparable airborne experimental systems in operation or 
under development in USA, Russia, Germany, Ukraine and 
South Africa. 

The upgraded sensor has been developed as a joint project 
between FOA and Ericsson Microwave Systems AB (EMW). 
The hardware was fully assembled in 1996. A final approval 
of the airworthiness for the redesigned antenna arrangement 
was given, and the first airborne radar imaging test took place 
in October 1996. This initial test will here be summarized 
and some processed CARABAS II images presented. 

INTRODUCTION CARABAS II 

A unique airborne SAR system, CARABAS (Coherent All 
RAdio BAnd Sensing), has been developed at FOA. It is 
designed for operation in the lowest part of the VHF-band 
(20-90 MHz), using horizontal polarisation, and provides a 
spatial resolution of wavelength. The longer wavelengths 
adopted give the system a potential to penetrate the surface 
top layers and hence retrieve information in foliage and below 
ground. This opens new applications for imaging radar. 

The first generation of the system, CARABAS I, has been 
available since 1992. Radar data have been gathered for 
environments ranging from rain forests to deserts, most often 
simultaneously with other airborne SAR sensors. The results 
indicate that a VHF SAR sensor combines a low two-way 
attenuation value with a low foliage backscatter coefficient, 
also for very dense forests [1,2]. This is favourable in many 
applications, e.g. highlighting concealed targets or increasing 
the non-saturated interval in biomass estimation. 

The reduced clutter levels are obtained at moderate 
resolutions (or ultimately in the order of the wavelength), 
which implies that the surveillance capability is higher for a 
VHF system. Man-made targets are detected by resonant 
reflectors, or equivalently by their reflectivity strength, rather 
than detection by shape against a severe clutter background as 
for high resolution UHF and microwave SAR systems. The 
resonance effects means also that VHF is a countermeasure 
against stealth-designed objects. The handling and 
dissemination of data are in general a bottleneck 
independently of the sensor system. A VHF SAR to screen 
large areas, combined with some high resolution SAR or 

The main modifications in CARABAS II include a new 
antenna design with improved gain pattern and a delay line for 
beam pointing, dual 14-bit 2 MHz receivers to double the 
instantaneous bandwidth with an increased dynamic range, and 
finally a new digital waveform generation [3]. Large time- 
bandwidth transmit signals will increase the duty factor for 
high altitude operations and the long signal duration enables 
narrow transmit notches for frequency cohabitation. Linear 
FM and uniform/non-uniform stepped frequency waveforms 
are examples that can be defined and downloaded into the 
signal memory in a flexible manner. In parallel to the 
hardware development, a new processing scheme, local 
backprojection, has been derived and is currently being 
implemented on a multi-processor system to improve the 
overall computation performance [3]. 

The design goals for the new antenna concept developed 
were to maintain a dipole character of the radiation pattern and 
the VSWR below 3:1 over the frequency range 20-90 MHz. 
The realization found and optimized is a loaded wire conical 
antenna [4]. The conical structure was chosen since it has a 
natural broadband behaviour. Furthermore, the antenna should 
not exceed the dimensions of a 4.9 m long and 0.2 diameter 
tube. The size limits stem from aerodynamic restrictions 
found from simulations with the antenna carried in the nose 
of a small business jet aircraft, a Sabreliner. 
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THE TEST SITE 

The test area used for the initial imaging trials was the 
northern part of an island, Visingsö, located in a fairly large 
fresh water lake in southern Sweden. The island is 
approximately 14 km long, oriented south-west to north-east, 
and between 600 m to 3 km wide. The site was selected since 
it exhibits environments appropriate for calibration and 
system analyses. Visingsö is very flat, i.e. effects from the 
topography are negligible. The area consists mainly of 
agricultural land with houses, farming buildings and some 
isolated clumps of trees. One major forested part is found in 
the middle section of the island. Thus an area predominantly 
very smooth for CARABAS wavelengths. Furthermore, a 
calm water surface on the opposite side of the aircraft reduces 
any remaining influence from the right/left separation 
ambiguity. Four 5 m trihedrals were deployed within the test 
area at different distances in range, on open fields and on a 
local airfield. See also Fig. 1. 

Fig. 1. A 5 m trihedral corner reflector set up in the open on 
the island Visingsö. The agricultural landscape is very flat 
with many small houses and farming buildings. Two large 
white poles, giving support to wind-power stations, can 
barely be seen in the distant to the far left. 

Four SAR registrations were carried out from an altitude of 
about 2 100 m. The aircraft heading specified was along an 
east-west line, with the broadside illumination of the island 
pointing from the north. Restrictions on altitude and 
synthetic aperture length were imposed during this first flight 
mission due to severe interference on the aircraft radio caused 
by the radar transmission, and this also limited the tests with 
different signal waveforms. The interference problem has later 
on been solved by introducing a filter in the transmitter unit. 

The base station for the differential GPS system, used to 
collect data for the motion compensation processing, was 
deployed at a dedicated position on the island also found in 
the Swedish Land Survey reference system. Close to the 
experiment, the island was imaged by aerial photography to 
facilitate the interpretation and analysis of the CARABAS II 
radar images. Moreover, the northern part has  also  been 

mapped by the SAR sensors available during the second SIR- 
C/X-SAR mission in October 1994. For SIR-C, the 
polarizations HH and VV were co-registered for both C-band 
and L-band. Fig. 2 shows SIR-C images of Visingsö. 

Fig. 2. Northern part of the Visingsö island from the SIR-C 
instrument, L-band to the left and C-band to the right. The 
illumination is opposite to the CARABAS II registrations, 
i.e. from the bottom or south (courtesy: NASA/JPL). 

EXAMPLES OF IMAGERY 

It has been possible to process SAR images based on this 
first acquired set of radar raw data. Preliminary analyses have 
shown that the system provides SAR data with uniform 
quality across the full 70 MHz bandwidth, which was not the 
case with CARABAS I. The antenna gain pattern is smoother 
and no Doppler aliazing occurs. Leakage problems in the 
switching network has been noticed and initially a slightly 
higher system noise than expected was measured. Degradation 
from paired-echo sidelobes due to periodic amplitude/phase 
ripple was also found, cf. Fig. 3. The full transmitted 
bandwidth is realized by a stepped frequency waveform and the 
ripple is introduced when the individual sub-bands are 
resampled and aligned to reconstruct the full spectrum in the 
pulse compression. The measured resolution figures are 
somewhat lower compared to the theoretical values and will 
require a refined characterization of the amplitude and phase 
behaviour in the system over the full frequency band. 

Fig. 3. Example of an early output from the SAR processing 
of the Visingsö data set. The paired-echo effect is clearly 
visible for major scatterers and generates false bright spots in 
range centred around the true response. The three very bright 
pixel locations correspond to wind-power stations. 
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The impact and sensitivity from the ripple have recently 
been studied in detail, including dedicated measurements on 
the radar units in the laboratory, to find appropriate correction 
procedures in the signal processing where applicable, and 
hence improve the image quality [5]. 

Fig. 4 shows the result when a correction scheme has been 
included in the processing, giving a considerable 
improvement in the image quality. In comparison with the 
microwave images in Fig. 2, the cultivated fields are almost 
invisible for the long CARABAS wavelengths, except for 
ditches or fences with an orientation not too far from the 
azimuth direction. Typical man-made targets give a strong 
return, e.g. houses, farming buildings, wind-power stations 
but also power cables with an appropriate orientation. Large- 
scaled natural objects, like trees, are also visible in the 
images. The shoreline is depicted depending on its steepness 
and the integrated aperture angle. 

SUMMARY 

The first field campaign with CARABAS II has been 
carried out and the gathered raw data had a quality good 
enough to generate radar images. The preliminary results 
indicate resolution figures somewhat lower compared to the 
theoretical values. It is believed that the main explanation for 
the found performance degradation is insufficient information 
of the antenna characteristics and the measures currently taken 
for the radio frequency interference filtering. 

The large amount of data that now easily can be collected 

with the system emphasizes the need of developing models 
for VHF radar backscattering. Some of this work have started, 
focusing on forest backscatter mechanisms. 
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Fig. 4. CARABAS II images of the northern half of Visingsö, each covering about 16 sqkm. The northernmost part (left) has 
been processed using the frequencies 29-45 MHz. The incidence angle varies between 54°-73° and the aperture angle is 77° at 
the centre. The adjacent image to the south (right) has also been processed between 29-45 MHz and the corresponding angles 
are 73°-79° and 48°, respectively. On the southernmost image the major forested area on the island can be identified as the large 
grey area in the lower part. The numbered arrows show the location of the trihedrals, where 3 corresponds to Fig. 1 with the 
small house to the left. The label A pinpoints the wind-power stations. The measured resolution figures from the trihedral 
responses are approximately 10 m in range and 4 m in azimuth, respectively. 
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Abstract ~ RADARSAT-1 Background Mission is the first 
attempt ever to acquire uniform global synthetic aperture radar 
(SAR) data in various seasons and imaging modes. A multi- 
mode global coverage is made possible by making use of the 
flexible imaging parameters of the satellite and its real-time as 
well as on-board recording capabilities. Synoptic, continental 
scale coverages alongwith local time-sensitive and application- 
specific data collections are planned. All data acquired under 
Background Mission are archived and, like the archives of any 
other RADARSAT-1 data, are accessible to the user community 
for its scientific and operational needs. RADARSAT-1 
Background Mission started with the commencement of normal 
satellite operations in April 1996. This article reports on the 
progress made so far in the first two coverages of the world, one 
with the ScanSAR Wide and the other with the Standard 7 
imaging beams of RADARSAT-1 SAR. 

INTRODUCTION 

Canada's RADARSAT-1 is the first synthetic aperture radar 
(SAR)-bearing remote sensing satellite with variable imaging 
parameters that result in ground resolution from less than 10 
metres to about 100 metres and imaging swath width range of 50 
km to 500 km. These parameters are therefore ideal for broad 
regional studies of the Earth's features as well as for localized 
viewing of ground targets. The satellite's orbital characteristics, 
operational modes, on-board tape recorder and ground data 
receiving stations, described in detail elsewhere [1] and [2], make 
it possible to image most of the globe. A global coverage 
mission, called Background Mission [3], was therefore started to 
make use of the multiple advantages associated with 
RADARSAT-1 imager. The mission has several objectives. 

One of the objectives is to accomplish a rapid overview of the 
Earth using wide coverage ScanSAR beams. The data sets can 
be used to demonstrate the value of RADARSAT mission for 
remote sensing applications. The other objective is to provide a 
global stereo data base. Over the past several years, 
radargrammetry has emerged as a rigorous science and has been 
used to produce maps, digital map products and digital elevation 
models with satellite SAR data. The global stereo acquisitions 
ensure that data are available to cartographers and value-added 
companies that may wish to supply these products. 

A final rationale for Background Mission is to create a data 
bank of time-sensitive, application-specific acquisitions of the 
regions of the world where RADARSAT-1 has a high potential 
of use in view of its orbit pattern and multi-mode imaging 
capabilities. Examples of time-sensitivity are ocean phenomena, 

flooding, volcanism, seisrnicity, etc., where a time series analysis 
of data is considered valuable for studies like prediction modelling 
and weather changes. These data are primarily for research 
purposes. 

The final phase of RADARSAT-1 Background Mission 
coverage will emphasize monitoring of global dynamic phenomena 
and will cover special geophysical elements. The areas of interest 
are world's major flood plains for seasonal mapping of flooding, 
changes in river courses and other fluvio-morphological processes; 
converging plate margins characterized by young mountain chains 
and strong seismic and volcanic activity causing geohazards; island 
arc system coastal zones; and rain forests where the all-weather 
imaging capabilities of RADARSAT-1 are particularly well suited 
to support science objectives of environmental monitoring and 
verification of international protocols regarding sustainable 
development and biodiversity. This coverage will also result into 
special data sets for agriculture, forestry and mapping applications. 

Contrary to other spaceborne radars, the variable incidence 
angle and ground resolution obtained with RADARSAT-1 permit 
the user to select the imaging parameters adapted to the local 
topography and the purpose for which data are collected. 
Therefore, the selective data bank will also include those regions 
of the world which may be missed during the earlier, more general 
ScanSAR and Standard beam coverages due to shadowing, 
layovers, low ground resolutions and untimeliness of the 
acquisition. 

COVERAGE 

Several Background Mission coverages are planned for the 
entire operational life of RADARSAT-1. The following is a brief 
definition and acquisition status of the coverages undertaken so 
far. 

Continental and Polar ScanSAR Coverage 
The first is a wide area, four-season ScanSAR Wide B coverage 

of world's continents, continental shelves and polecaps, which is 
expected to result in sufficient contingency data sets early in the 
RADARSAT missioa The synoptic view of the-Earth in different 
seasons should provide the maximum contrast of terrestrial 
vegetation over most of the world. It should furnish the separation 
of the small vegetation signal from the large landform background. 

Initially, the coverage was carried out with real-time 
acquisitions over North America within the reception masks of the 
two Canadian receiving stations at Gatineau (Quebec) and Prince 
Albert (Saskatchewan), but as the on-board tape recorder and, 
later, the international network of receiving stations at West Freugh 
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(UK), Tromso (Norway) and Singapore became operational, a 
worldwide ScanSAR coverage was made possible. Fig. 1 
represents the total coverage reached so far. This includes 
complete summer coverages of North America and Australia and 
autumn coverage of Europe (see table 1). Globally, the world 
coverage is 51% complete. This ScanSAR coverage can serve in 
future to create regional or continental mosaics, and with this in 
mind a minimum of 15% to 20% overlap between adjacent 
swaths was maintained wherever possible. 

Continental Stereo Coverage 
This coverage is undertaken in fulfilment of RADARSAT 

mission requirement for providing a global stereo data set of the 
world's landmass by means of two different Standard beams. The 
first coverage in the stereo pair is carried out with Standard 7 
beam of RADARSAT-1. Coverage with Standard 7 beam is 
undertaken first in order to secure quickly the advantages 
associated with this beam. Because of its shallow incidence 
angle, Standard 7 causes least geometric distortion of image data. 
Generally speaking, there is better thematic information to be 
obtained at shallower incidence angles. The choice of other beam 
in the stereo pair will fall on the RADARSAT Standard 2 in view 
of parallax requirements in the pair as well as the lower 
susceptibility of this beam to shadowing in areas of high relief. 

After completing the ScanSAR Wide B coverage of North 
America and Europe, the real-time Standard 7 coverage of these 
continents started in late summer and has continued since then. 
Globally this coverage is 21% complete (Fig. 2 and table 1) . 
Certain areas in these continents have been already fully covered. 
These are Greenland, western Europe, and Canada excluding the 
High Arctic regions. 

Table 1           Summary of Background Mission coverage 

Region ScanSAR Wide B 
(% completion) 

Standard 7 
(%completion) 

North America 
Europe 
Africa 
Australia 
Indochina and 
Indonesia 

Total world 

100 
100 
37 
100 

67 

51 

80 
63 

1 
2 

20 

21 

CONCLUDING REMARKS 

As RADARSAT-1 starts the second year of its operations, the 
priority for Background Mission is to acquire rapidly one complete 
ScanSAR coverage of the world by means of the on-board tape 
recorder. Following the completion of the first global ScanSAR 
coverage, regional coverages in different seasons will start. 

The Standard 7 coverage will continue in the real-time data 
receiving station masks. As more and more international receiving 
stations are brought on line to provide real-time imaging 
opportunities, Background Mission acquisitions will be 
accelerated. Until such time, the mission will have to rely on the 
on-board tape recorder, which is a limited resource shared among 
all the different RADARSAT-1 data users. 

Background Mission is a major undertaking which is likely to 
last the entire operational life of the RADARSAT-1 satellite and 
is expected to generate a data wealth which can be exploited in 
future for various scientific, economic and operational purposes. 
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Abstract*— Directional data acquired by both the MODerate 
resolution Imaging Spectroradiometer (MODIS) and the Mul- 
tiangle Imaging Spectroradiometer (MISR) on NASA's Earth 
Observing System (EOS) will be used to produce a global 
bidirectional reflectance distribution function (BRDF) and 
albedo product once every 16 days. The product will be de- 
rived using the kemel-driven semiempirical Ambrals BRDF 
model, utilizing five variants of kernel functions characteriz- 
ing isotropic, volume and surface scattering. The BRDF and 
the albedos of each land surface pixel will be modeled at a one 
kilometer spatial resolution in seven spectral bands spanning 
the visible and the near-infrared. 

As a prototyping activity, we assembled a 16-day sequence 
of AVHRR GAC 1-km data in red and near-infrared bands and 
GOES 1-km data in the visible band and applied the Ambrals 
model to fit BRDFs and calculate albedos for the New Eng- 
land region of the USA. The resulting fine-resolution albedo 
map shows strong spatial detail primarily related to the land 
covers of the region. Urban and suburban regions show 
BRDFs dominated by geometric-optical scattering, while 
multiple scattering is more important in BRDFs fitted to 
forested areas. 

INTRODUCTION 

The earth's surface scatters radiation anisotropically in 
many wavelength regimes. The Bidirectional Reflectance Dis- 
tribution Function (BRDF) specifies the behavior of surface 
scattering as a function of illumination and view angles at a 
particular wavelength. The albedo of a surface describes the 
ratio of radiant energy scattered upward and away from the 
surface in all directions to the downwelling irradiance incident 
upon the surface. Like the BRDF, albedo is spectrally depend- 
ent. If the BRDF is known, the albedo can be derived given 
knowledge of the atmospheric state. 

As a part of the Earth Observing System, we will provide a 
global BRDF/Albedo product using the MODIS and MISR 
instruments on the EOS AM-1 platform, scheduled for launch 

"Supported in part by NASA contract NAS5-31369. 

in mid-1998. The purpose of the MODIS/MISR BRDF/Al- 
bedo product is (1) to describe the anisotropic reflectance of 
the earth's surface at a fine spatial and temporal scale by fit- 
ting models of the bidirectional reflectance distribution func- 
tion to angular observations; and (2) to provide two surface 
albedo measures, "black-sky" albedo, or directional- 
hemispherical reflectance, and "white-sky" albedo, or bihemi- 
spherical reflectance, that allow quantification of the balance 
in upwelling and downwelling surface energy fluxes also at 
fine spatial and temporal scales. 

Albedo is a fundamental parameter for global climate mod- 
eling, since it is a function that drives much of the energy 
flux at the land boundary layer. Black- and white-sky albedos, 
as pure surface properties, can be used with any atmospheric 
specification to provide true surface albedo as an input to re- 
gional and global climate models. Fine-grained global maps 
of land surface albedo will be extremely useful to regional 
climate modelers, and, given the way that our algorithm 
specifies BRDF and albedo, such maps can be easily collapsed 
to the coarser resolutions that global climate models can in- 
gest directly. 

This paper presents some brief results of a recent study [1] 
to retrieve surface BRDF and albedo measures using existing 
sources of satellite data in the pre-MODIS/MISR era. These 
include the Advanced Very High Resolution Radiometer 
(AVHRR) in visible and near-infrared bands (0.565-0.695 
pm, 0.75-0.97 urn) and the GOES (Geostationary Opera- 
tional Environmental Satellite) Imager visible band (0.52- 
0.72 (xm). Here we present results for AVHRR red and GOES 
visible bands only. 

RESEARCH DESCRIPTION 

The remotely sensed database for this study consisted of 
AVHRR (NOAA-14) HRPT and GOES-8 observations for 
the New England region of the northeastern United States 
(40.6° N to 44.2° N lat., 74.6° W to 69.7° W long.) during 
late August to mid-September, 1995. AVHRR data, consist- 
ing of 15 usable scenes during the 17-day period September 
2-18, were (1) radiometrically calibrated using data of Rao 
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and Chen [2]; (2) initially mapped to a 0.75 km (east-west) 
by 1.1 km (north-south) grid using orbital ephemeris infor- 
mation; then (3) reregistered using first-order polynomials 
with a residual error of about 0.4 km. To assure cloud-free 
data, eight tests were performed using the full range of 
AVHRR channels to remove cloud-contaminated pixels [3]. 
These included an adjacency test to remove pixels adjacent to 
clouds and shadows. 

GOES Imager data from the visible band were acquired 
hourly for 1315-2015 UTC from August 25 through Septem- 
ber 6. Calibration was based on an estimate of 16 percent loss 
in responsivity from May 1994 to September 1995 (M. We- 
inreb, personal communication to R. d'Entremont). Data were 
cloud-cleared using the temporal differencing technique of 
d'Entremont et al. [4] and registered to the New England grid. 
Fig. 1* maps the number of looks available in the dataset for 
combined AVHRR red and GOES visible bands. Nearly all 
pixels have at least seven cloud-free looks, a number deemed 
sufficient for inversion and fitting of a BRDF model. 

Both AVHRR and GOES data were atmospherically cor- 
rected using MODTRAN [5] and 6S [6] radiative transfer 
codes driven by surface visibility observations from within 
the region. 

The MODIS-MISR BRDF/Albedo product fits BRDFs to 
each pixel using the Ambrals model [7]. Here, the BRDF is 
modeled as a weighted sum of a constant and two trigonomet- 
ric functions of view zenith, illumination zenith, and relative 
azimuth angles. The functions are referred to as "kernels." 
One kernel is derived from approximations to volume- 
scattering radiative transfer models, while the other is derived 
from surface-scattering theory. For the current work, we em- 
ploy two choices of volume-scattering kernels (Ross-thin and 
Ross-thick) and two choices of surface-scattering kernels (Li- 
sparse and Li-dense) [7]. From the four possible combina- 
tions, the algorithm uses the combination associated with the 
lowest root mean squared (RMS) error as fitted to the avail- 
able observations. Outputs include the kernel pair selected and 
three weights—a constant, representing the weight of iso- 
tropic scattering, and two values that describe the weights 
assigned to each kernel for the least squares solution. Thus, it 
is the weights of the physically-based kernels that are re- 
trieved, not a set of physical parameters governing the scatter- 
ing of the surface. 

An important consideration in fitting a BRDF model is the 
angular sampling presented by the observations at hand in 
both viewing and illumination hemispheres. MISR and 
MODIS are along-track and across-track sensors, respectively, 
and so draw on different angular information sources in fitting 
the BRDF model. Together they can provide a good sample of 
the viewing hemisphere [8]. With its across-track scanning, 
the AVHRR instrument is a good analogue for MODIS. Like 

MISR, the GOES Imager provides an additional angular di- 
mension, but it is a very different one from MISR. In con- 
trast to the sensors aboard platforms with sun-synchronous 
orbits, which view the earth with the sun in about the same 
position each day, the GOES Imager's geostationary orbit 
images every location from a constant viewing position in 
the hemisphere, but at many different sun positions. Thus the 
combination is likely to provide an information content simi- 
lar to that anticipated for MISR and MODIS. 

To explore the relative importance of surface and volume 
scattering in fitting the directional observations of each pixel, 
it is possible to calculate and plot a normalized difference 
between volume and surface scattering weights, termed the 
NDFI [1]: 

NDFI = 
^vol     ''surf 

"Figures are presented in black and white in camera-ready copy, 
but are shown in color on CD-ROM. 

ryol + ''surf 

Fig. 2 presents a map of this parameter for the New England 
scene, hi this case, the kernel choice is forced as Ross-thick/- 
Li-sparse. 

The map shows definite geographic patterns that appear to 
be related to the nature of the surface covers within subre- 
gions. The metropolitan areas of Boston, Providence and New 
York show strongly negative values, indicating the domi- 
nance of surface scattering in these regions. These landscapes 
include many structures that are better modeled by the princi- 
ples of geometric optics used to derive the Li-sparse kernel 
than by the principles of volume scattering used to derive the 
Ross-thick kernel. The dominance of the geometric-optical 
kernel also extends along major rivers and coastal lowland 
regions where development is intensive. Positive NDFI val- 
ues indicate volume scattering, and dominate in areas where 
forest covers are more or less continuous. These are largely 
hilly and highland areas where farmlands abandoned early in 
the century have reverted to a mix of deciduous and conifer 
forests. 

Fig. 3 presents an image of white-sky albedo (bihemi- 
spherical reflectance). These values are derived by double nu- 
merical integration of each BRDF over all view and illumina- 
tion angles, and represent the spectral albedo for the case of 
isotropic illumination (white sky). Urban and suburban re- 
gions show albedos that are consistently higher than other 
regions. The abundance of manmade materials, many of 
which are brighter in the red band than vegetation, probably 
accounts for this difference. Hilly and highland areas again 
contrast with the lowland regions, but with lower albedos. 
The Adirondack Mountain region, with its many areas of ma- 
ture forest, is particularly noticeable for its low albedo. 

hi preparation for the release of our BRDF/Albedo product, 
we have carried out extensive studies on the accuracies of re- 
trievals of BRDF and albedo given the limitations of (1) an- 
gular sampling from earth orbit; (2) the presence of noise in 
the data; and (3) errors in atmospheric correction of radiances 
[8]. Although these studies cannot be summarized here, they 
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lead us to conclude that the albedo retrievals shown in Fig. 3 
are probably accurate to within 10 percent of their true values. 
Similarly, we conclude that the errors in parameter retrievals 
on which Fig. 2 is based are probably somewhat higher, pro- 
ducing an uncertainly on the order of about 15 percent. 

CONCLUSION 

The merging of AVHRR and GOES data has provided the 
opportunity to test the MODIS/MISR BRDF/Albedo product 
algorithm on a real dataset with many of the same characteris- 
tics that will be encountered with MODIS and MISR data. 
The result has been the accurate retrieval of both kernel 
weights, which provide an index to the dominant physical 
scattering mechanism of the surface, and white-sky albedo, 
which is a surface property of keen interest in global and re- 
gional climate modeling and studies of surface energy balance. 
These results confirm the appropriateness and utility of the 
Ambrals algorithm for application to data from the coming 
EOS era. 
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Fig. 1.   Map of number of cloud-free looks, New England, 
combined AVHRR and GOES data. 

Fig. 2. Map of NDFI values. 
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Fig. 3. Red-visible white-sky albedo (bihemispherical reflectance) for New England from AVHRR and GOES data. 
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Abstract - - Optical images provide a useful reference 
for passive microwave radiometer data. The images need not 
have state-of the-art spatial resolution, but they should include 
positioning data and be producted and manipulated with ease. 
The paper introduces the HUT pushbroom video imager con- 
sisting of a video camera, frame grabber, controlling PC and 
optional attitude-DGPS. System calibration and pixel geopo- 
sitioning are discussed, and an example image is presented. 

INTRODUCTION 

This paper focuses on finding a sound method to provide 
optical reference images for microwave radiometer data. Op- 
tical images are traditionally used as a reference for the local- 
ization and interpretation of airborne microwave radiometer 
data. This is because of their superior spatial resolution and 
natural-look output, which is very familiar to a human ob- 
server. As a consequence of the spread of relatively cheap and 
accurate DGPS receivers during the 90's, the localization task 
is no longer relevant. Furthermore, the scene properties can 
nowadays often be retrieved more efficiently from GIS- 
databases, hence reducing the need for optical reference im- 
ages for interpretating scene properties. However, there are a 
lot of scene types whose properties vary continuously, for 
example, sea ice, snow cover and river flood areas, and there- 
fore need simultaneously measured reference data to properly 
support the microwave measurements. In addition to ground 
truth measurements, the optical reference images still have an 
important role in these applications. 

Due to the coarse spatial resolution of passive microwave 
instruments, the optical reference images need not possess 
state-of the-art spatial resolution. In a snow application, for 
example, the discrimination of snow-covered and snow-free 
areas may suffice, while in a typical sea ice application, ice 
types, cracks and ridges should be distinguished. Our rough 
estimation is that, depending on the application, the optical 
image pixel size should be 1/2-1/20 of the radiometer foot- 
print width. This means that the spatial resolution of a VHS 
video format, 240 horizontal pixels, is typically good enough, 
while some applications may require S-VHS (420 h. pixels) or 
DV (Digital Video, 550 h. pixels) resolution. It should be 
noted that oversized spatial resolution requirements lead not 
only to higher apparatus cost but also to more expensive and 
much slower image processing and data storage. Hence, the 
system requirements should be considered carefully. 

IMAGE PRODUCTION METHODS 

The highest quality optical images are still produced with 
the conventional aerial photogrammetry technology that is 
based on high-end optics, metric cameras and film. The single 
images are shot with =60% overlap to be able to determine the 
exterior orientation of all of these images employing the bun- 
dle block adjustment method. If the scene were flat, the single 
images could be composed into a mosaic right after the bun- 
dle block adjustment. Since it is not, an orthorectification 
process should be executed with the help of an external ele- 
vation model or by detecting more congruent points in con- 
secutive images, preferably prior to the bundle block adjust- 
ment [1]. Even if no orthorectification is made, these image 
mosaics usually become too expensive for microwave radi- 
ometer reference purposes, unless the organization already 
happens to possess aerial photogrammetry capabilities. 

For remote sensing purposes, alternative, cheaper methods 
have been developed. Typically, the very expensive metric 
cameras have been replaced with relatively cheap video cam- 
eras, whose output can be digitized in real time, and the or- 
thorectification is omitted. A good example is the PC- 
controlled video camera system of the Technical Research 
Centre of Finland. It has been successfully used by a Finnish 
forest company, Enso, to inventory the forest resources of 
Malaysia. In their system [2], frames are digitized with 60% 
along-track and 20% across track overlap from a flight alti- 
tude of 2000 m. For the bundle block adjustment, a few com- 
mon points are manually detected from consecutive images 
and the camera position is estimated with GPS data. No or- 
thorectification is performed. The video camera is a 2/3" 3- 
CCD S-VHS camera with 16 mm focal length optics, and the 
system yields Im x lm spatial resolution on ground. 

Another typical possibility is not to use the bundle block 
adjustment at all, but to rectify the single images employing 
congruent points with a map or other orthorectified reference, 
and compose the rectified single images into a mosaic. 

The pushbroom video method 

The pushbroom concept is familiar from satellite imagers, 
e.g. Spot HRV, but to the knowledge of the authors, the proto- 
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type version of DLR MERES system [3], was the only optical 
airborne implementation, until we adopted their idea for fur- 
ther development. 

Generally, a pushbroom imager covers the image area with 
the progressive motion of the platform, and an array of n de- 
tectors that simultaneously measure the radiation of an entire 
cross-track line. In our pushbroom video system, we employ a 
regular surveillance CCD color video camera, but exploit only 
a few horizontal lines (a line block) from the very center of 
the image for image production, see Fig.l. 

Video frame 
(FOV) 

Line block 
Fig. 1 HUT pushbroom imaging geometry 

The major benefit of the pushbroom method is that the im- 
age becomes inherently orthorectified in the along-track di- 
rection, as all the lines are (almost) orthogonally measured. 
Moreover, no (manual) search for congruent points in con- 
secutive frames is needed due to the automatic imaging proc- 
ess, hence dramatically reducing the post-processing time, 
effort and cost. The major drawback is that no image content 
based method—like bundle block adjustment—is used to de- 
termine the exterior orientation of the consecutive line blocks. 
Due to the platform perturbation motion, this leads to some- 
what warped and inconsistent orientation of consecutive line 
blocks, even if the platform position and orientation were 
measured and the line orientations computationally compen- 
sated for (passive stabilization). However, since the platform 
perturbation motion is typically smooth and slow compared to 
the line acquisition rate, the image quality remains good 
enough for microwave radiometer data interpretation, even if 
no computational stabilization is performed at all. 

THE HUT PUSHBROOM VIDEO SYSTEM 

Fig. 2 presents a block diagram of the HUT (Helsinki 
University of Technology) pushroom video system. The ac- 
tual hardware configuration is more complicated, because it is 
a subsystem of our 93 GHz imaging radiometer [4]. 

Hard 
disk 

Floppy 
disk Attitude    |_ 

GPS receiver | 
...  V 

Pentium 
CPU card LCD 

j   monitor  | P0WCR 
Frame 
grabber #—1 

\L ■ 
Video recorder SVGA 

adapter  O 1 1 f I'lUl't »'I ^1 1 I'H'I—-* 

Ethernet 

Video camera 
aaapter 

Fig. 2 HUT pushbroom imager block diagram. 

The scene is observed by a regular 1/2" CCD surveillance 
video camera, which has a "pirate" C-mount lens with 4.8 mm 
focal length and 66.8° across-track view. For redundancy, the 
PAL video signal is fed through a VHS video recorder before 
entering the frame grabber card. The frame grabber continu- 
ously and independently digitizes the video signal and dis- 
plays a live video image on the LCD color monitor. When the 
platform has flown forward the length of one line block, the 
CPU freezes the digitization, and the pixels of the line block 
are read from the frame grabber buffer and saved on the hard 
disk. Each line consists of 284 pixels. The line block contains 
a preset number of extra lines, which are also saved to provide 
an appropriate marginal for the passive stabilization. The 
passive stabilization requires the platform position and orien- 
tation data, which are recorded in the header of each line 
block in real time, but not used until the passive stabilization 
execution in the post-processing phase. Unfortunately, the 
attitude-DGPS subsystem of the HUT pushbroom imager is 
not yet operational. In non-turbulent weather and weak trans- 
verse wind, however, good results can be obtained without 
any stabilization, see Fig. 3 recorded at Oulu, Finland on 
March 1997 on 300m altitude, resulting in 396m image width. 

Geometrical calibration of the system 

Since a camera lens, CCD cell alignment, signal process- 
ing and frame digitizing are never geometrically perfect, the 
whole system must be calibrated. This is especially true with 
our cost-effective apparatus set. We performed the calibration 
by attaching the camera housing to an optical bench, and care- 
fully aligning a lm wide calibration scale (see Fig.4) in the 
middle of the mechanical center axis of the camera assembly. 
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Fig. 3 HUT pushbroom image of an agricultural area (above), and the respective map (below). 

After grabbing and saving a video frame, the correspondence 
of the pixel ordinal and the metric scale was detected from the 
frame, and expressed mathematically employing first and third 
degree polynomial fit. The calibration revealed a consider- 
able, decreasing offset towards the right (max. 10 pixels) and 
a slight constant offset downwards (2 pixels). The nonlinearity 
introduced by the relatively wide-angle lens was surprisingly 
small, the maximum deviation from the linear relation being 
1.5 pixels. Hence, the simpler linear correction relation was 
chosen. The lens projection center was detected by the virtual 
cross-section of two steel beam edges, whose start and end 
were adjusted to coincide on the video monitor, and the dis- 
tance from the center to the target was measured. 
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Fig. 4 Pushbroom camera calibration target. 

Image geopositioning and rectification 

Reference 151 introduces a Cartesian Local Coordinate 
System (LCS), in which the HUT pushbroom images will be 
expressed after the attitude-DGPS subsystem becomes opera- 
tional. The LCS is spanned by a target line start point A (LCS 
origin) and end point B, which lies on the LCS y-axis. Both A 
and B are given in the WGS-84 coordinate system, but 151 
presents the transformation formulas to express the platform 
position (read in WGS-84), pixel locations, camera calibration 
and the passive stabilization maneuvers in the LCS. Once the 
final pixel locations are computed in the LCS, they can be 
easily transformed to WGS-84 employing the formulas of [51. 
The use of the two coordinate systems makes the operation 
and pixel coordinate computing clear and easy, and ensures 

result compatibility with GIP (Geographic Image Processing) 
systems. Moreover, it offers a straightforward method for 
large area mapping: if a large area is covered by multiple 
overflights over parallel lines AiBj A2B2, ..., AnBn with, say, 
10% overlap, all the pixels can be expressed in WGS-84 with 
a good accuracy, and merged easily in a GIP system to auto- 
matically produce an accurate optical image of a large area. 

CONCLUSION 

The current version of the HUT pushbroom imager is ca- 
pable of qualitative images in non-turbulent weather. An atti- 
tude-DGPS system is to be installed to geolocate each pixel to 
an accuracy of a few meters, and to computationally compen- 
sate for the platform perturbation motion. Large area mapping 
will also be tested. After completing these tests, a stand-alone 
system is to be built to achieve higher image quality and up to 
768 pixels/line instead of the current 284 pixels/line. 
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Abstract ~ The land remote sensing communities require a 
database of global training, testing and validation sites to 
generate reliable maps of land cover based on the new 
generation of Earth Observing System (EOS) sensors. The 
MOD1S (Moderate Resolution Imaging Spectroradiometer) 
land cover products to be produced by Boston University 
include global maps produced on a quarterly basis using the 
International Geosphere Biosphere Programme (IGBP) land 
cover classification system, and quarterly change detection 
products, all at 1km resolution. Given the large data volume, 
area and high temporal frequency, it is critical that we 
develop a database of global sites that can be used to train 
classifiers, test algorithms and validate products. Global site 
selection is driven by data and analytical costs, the need to 
use sites where there is a wealth of existing data, and the 
diverse needs of global research. Thus, the site network must 
be representative of a number of meteorological, 
climatological, ecological, geographical and biological 
criteria. A primary objective of the research presented here is 
to evaluate the effectiveness and representativeness of the 
existing site network based on physical and biological 
gradients. 

GLOBAL SAMPLING OBJECTIVES 

A number of programs have produced global maps of land 
cover and surface parameters. ISLSCP, the International 
Satellite Land Surface Climatology Project, has produced a 
global set of surface parameters to support global climate 
modeling [1],[2]), while the IGBP is producing a global map 
of land cover [3],[4]. These efforts are based primarily on 
NOAA Advanced Very High Resolution Radiometer 
(AVHRR) data. With the launch of EOS-AM in 1997, 
Boston University will begin producing global land cover 
and land cover change products based on a complex suite of 
MODIS-derived data including nadir-adjusted reflectance, 
vegetation index (VI), and a characterization of the surface 
bidirectional reflectance distribution function (BRDF)[5]. 

MODIS land cover in turn, will be used to assign surface 
parameters for global models. With the current and projected 
capabilities to map land cover globally there is a requirement 
for a network of global sites to provide data for testing 
algorithms, training classifiers and validating map products. 

The objectives of developing a global site network for 
MODIS land cover and other MODIS land products 
including snow/ice, fire, leaf area index (LAI), fraction of 
photosynthetically active radiation (FPAR), surface 
temperature and vegetation index (VI) are the testing of 
algorithms in terms of efficiency, feature selection and 
robustness, and accuracy assessment and validation of 
products. Land cover has the additional requirement of 
training supervised neural network and/or decision tree 
classifiers[5], [6]. Sampling specifications include that the 
sampling be spatially independent. A critical criterion is that 
the scheme must capture the intrinsic variability of the 
global landscape. That is, we need to ensure that the suite of 
training site represents well the range of biogeophysical, 
climatological and physical parameters, as well as inter-class 
variability that will be encountered in such global 
applications. 

Constraints to global sampling are imposed by limitations 
in remotely sensed and ancillary data, both for developing 
sampling schemes and extracting training and validation 
data. Remotely sensed data may not be of appropriate 
spectral, spatial and radiomerric resolutions. Data 
acquisition and processing costs may be prohibitive and data 
temporality may impact the utility of existing data. From an 
operational standpoint, site accessibility, information 
management and classification, and information 
standardization are problematic. Data availability, type, 
temporality, and problems in certainty of feature extraction 
mean that training may be less than optimal, and may 
potentially introduce error into training and validation. 
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GLOBAL SAMPLING APPROACHES 

Sampling criteria include that global sampling approaches 
must not be unique nor optimized for specific classification 
systems, remotely sensed data nor analytical approaches. 
There are several approaches that are possible for developing 
a global site network that meet our criteria. Systematic, non- 
aligned sampling frames have the benefit of being 
classification-free, unbiased and independent of prior 
knowledge. They are non-optimal, however, and do not take 
advantage of knowledge about the population to be sampled. 

Remote sensing classification-based sampling is 
dependent on a previous classification system and its 
mapping based on remote sensing. Sampling can be 
stratified by class, with n samples allocated per class and/or 
stratified based on proportional allocation by area. While this 
type of sampling can be optimized for the particular 
classification system, remote sensing data or analytical 
approach, it will be biased for other systems and data. Since 
land cover is generally a manifestation of a complex suite of 
biogeophysical and climatological parameters coupled with 
anthropogenic factors, a gradient approach can be used to 
ensure that the complete range of biogeophysical variables 
are being globally sampled. This is a stratification based on 
environmental gradients. 

Our approach is to use a coarse-filter design for 
representativeness sampling using gradient section 
(gradsect) analysis, a tool which has been applied to 
sampling representativeness based on ecological criteria [7]. 
Datasets selected for analysis comprise soil, precipitation and 
atmosphere, surface energy and surface reflectance data. 

ANALYSIS 

We used ISLSCP [1],[2], Legates and Wilcox, and 
Lemans and Cramer [8] data based on one-degree (360 x 
180), half-degree (360 x 720) and tenth-degree (2160 by 
1080) grids to estimate the percent of each gradient category 
captured by area by the site network. 221 site locations were 
compiled from a number of sources as candidate sites for 
MODIS Land Team. While the site list is incomplete and 
preliminary, it provides a reasonable estimate of the 
distribution and representativeness of existing sites. 

Comparative data on life zones and land cover are monthly 
composited FASIR AVHRR normalized difference 
vegetation index (NDVI) -based land cover [6], Holdridge 
Life Zones and aggregated Holdridge Life Zones 
classifications [8] and SiB ISLSCP vegetation cover [1],[2], 
Soil date are soil texture and depth derived for ISLSCP from 
global FAO soils. Precipitation and atmospheric data 
included percent cloudiness and mean monthly corrected 

precipitation. Temperature data are mean monthly 
temperature [8]. Surface energy data used are the monthly 
mean net shortwave radiation for 1988 from ISLSCP. 
Surface reflectance data are monthly composited FASIR 
NDVI for 1988, ISLSCP 1988 FPAR LAI and surface 
albedo [1],[2]. 

Our approach was to partition each gradient into a 
reasonable number of classes using thresholds and 
clustering. The purpose of clustering was data reduction, 
pattern analysis and generation of a comparable number of 
gradient categories. Clustering rather than intersection 
allows for a natural organization of gradient classes and 
reduces the number of potential categories that would result 
from intersecting such a large number of datasets, each with 
a large number of internal categories. 

Data were clustered into 25 clusters using an isoclass 
clustering algorithm. The percent of the 25 gradient 
categories that were captured by the sample sites was 
calculated to give an indication of how well the overall 
sampling plan captured each of the gradients. We then 
calculated the ratio of site area to gradient category unit area 
as an indicator the sampling ratio by gradient category 
(stratum). Summary statistics of mean, variance, minimum 
and maximum values for areal coverage within the various 
partitions of each gradient provide an overall estimate of 
how well the site network captures the variation on the 
gradient. 

RESULTS AND CONCLUSIONS 

Table 1 provides the summary statistics of the ratio of sites 
per unit gradient category area for a subset of the gradients 
that we analyzed. By comparing the number of sites in each 
gradient category with the area per gradient category, we get 
an understanding of how well overall gradients, as well as 
gradient elements, are represented by the test site network. 
Results indicate that while some classes are well represented, 
others are not. For example, six of ten gradients had one or 
more partitions that went unsampled. 

Since some datasets were derived from identical and/or 
similar data, coupled with general spatial autocorrelation 
and correlation of related biophysical parameters (eg. LAI, 
FPAR and NDVI), the analysis does not represent the full 
benefit of stratifying sampling based on biogeophysical and 
climatological data. Other data are not yet available or may 
be over-generalized at one-degree, half-degree and tenth- 
degree grid cell representation. The site selection itself is 
preliminary and sites were also generalized to grid cells. 
This may both under and over-represent how well the site 
network is represents global gradients. 
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Table 1. Statistics for percent sampled area within gradient categories. 

statistic\gradient LAI FPAR MM SiB precip swnet Mdridge soil texture soildepth elevation 
gradient partitions 25 25 25 14 25 25 14 7 25 25 
mean 2.85 2.54 2.17 3.03 2.58 3.12 1.65 2.10 2.00 1.80 
variance 1.54 1.86 1.56 3.42 1.62 3.09 3.51 0.97 1.88 1.14 
minimum 0.03 0.00 0.00 0.03 0.16 0.00 0.00 0.03 0.00 0.00 
maximum 6.49 5.73 5.96 5.41 6.94 10.80 2.70 3.45 7.11 4.35 

Although this analysis was based on coarse spatial 
resolution data, it provides a template for developing a 
more effective set of sites for characterizing and 
monitoring global land cover given the present limits to 
more comprehensive systems. While the use of 
biogeophysical and climatological data can improve 
sample design, sampling must also include current data 
on landscape processes and anthropogenic impacts which 
are the core of the MODIS land cover characterization 
and change detection activities. Representativeness 
criteria provide a means of sampling that is not tied to 
specific classification systems, remotely sensed data and 
analytical procedures, yet emphasizes the primary 
independent variables that determine land cover. 
Problems of gradient correlation should be minimized by 
future data products, both of ancillary and MODIS- 
derived data. 

This work was supported by NASA under Contract 
NAS5-31369. 
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Abstract - This paper presents the objectives of the 
POLDER program for land surface monitoring and provides 
a description of the first products acquired over terrestrial 
surfaces - top of atmosphere and surface reflectances on 
various targets, and composites of surface reflectances over 
large areas. 

INTRODUCTION 

POLDER (POLarization and Directionality of the Earth's 
Reflectances) is a new spatial instrument devoted to the 
global observation of the polarization and directionality of 
solar radiation reflected by the Earth surface-atmosphere 
system (Deschamps et al., 1994). It allows a near-daily 
coverage of the Earth in several spectal bands from 443 nm 
up to 910 nm at a resolution of about 7 km. It was launched 
on the Japanese ADEOS platform in August 1996. The 
original capabilities of POLDER, compared to other current 
and planned spaceborne instruments are (i) its polarized 
reflectance measurements in the visible and near-infrared part 
of the solar spectrum, and (ii) its capability to measure a 
surface target reflectance from up to 14 viewing directions 
during a single satellite pass. The scientific objectives of this 
instrument concern the fields of aerosol cycling, cloud- 
radiation interactions, Earth radiation budget, ocean primary 
productivity and continental biosphere dynamics. 

OBJECTIVES OF POLDER FOR LAND SURFACE 
MONITORING 

For land surfaces, the objectives are to identify precisely 
the major biomes on the surface of the planet, and to be able 
to detect changes in their composition or mapping, due either 
to anthropogenic or climatic causes. They are also to permit 
the understanding and modeling of the general functioning of 
the terrestrial biosphere system, i.e., vegetation growth, 
maturity, and decay, at regional or global scales. The 
description of the continental phases of the carbon and 
hydrological cycles is intimately related to the description of 
the general functioning of the biosphere. Finally, land 
monitoring provides boundary conditions in General 
Circulation Models (GCM) to describe accurately the 
exchanges of mass, momentum and energy at the biosphere- 
atmosphere interface. 

Monitoring of terrestrial vegetation at global or regional 
scales requires accurate and frequent measurements of surface 
reflectance. The key improvement brought by POLDER in 
this context is to provide, at high temporal repetitiveness, 

measurements of surface reflectance brought to the same 
directional standard and corrected for atmospheric effects 
(Leroy et al., 1997). 

Another important aspect is that, after compositing of 
satellite measurements, POLDER provides the land surface 
BRDF at regional and global scales. Several science products 
take advantage of this new signature. 

Albedo. 
The BRDF measurements permit an estimate of spectral 

hemispherical reflectances. This is an important step forward 
for the estimation of daily surface albedo, which plays a key 
role in water and energy exchanges between surface and 
atmosphere. 

Classifications. 
The directional signature may be thought of as additional 

channels, which add to the more conventional spectral and 
temporal information. Demonstrations that species 
discrimination is enhanced with directional signatures have 
been made at local scale, in particular on boreal forest covers 
(Bicheron et al., 1997). 

Biophysical parameters. 
An alternative way of using a directional signature is to 

invert it in terms of biophysical parameters, such as LAI 
(Leaf Area Index), fAPAR (fraction of absorbed PAR), or 
vegetation cover, using a BRDF model. The accumulation of 
directional data in short periods of time permitted by the 
POLDER concept can be used for that purpose (Bicheron et 
al., this issue). In the context of model inversion, the hot spot 
effect, - the signal enhancement when the sun and view 
directions coincide, is of particular interest, and can easily be 
seen with POLDER (Breon et al„ 1997). 

Wetland mapping. 
Another interesting particular geometry is the specular 

direction, for which the signal is a function of the surface 
wetness. This is particularly interesting for the monitoring of 
large wetland areas (Vanderbilt et al, 1997). 

FIRST IN-FLIGHT RESULTS 

Although the validation plan of the land surface products is 
still in an early phase, some preliminary results are available. 

1) A quite clear (cloud-free) orbit segment acquired on the 
Europe-North Africa area was acquired on September 16, 
1996. The results show that very clean BRDF signatures are 
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acquired over the 7 km resolution pixels. Several single orbit 
Top of Atmosphere BRDF signatures were analysed over 
specific test areas in Europe-Africa : agricultural sites (Orthez 
and Chartres test areas of the MARS project), forest sites 
(Fontainebeau, Landes), mountainous sites (Observatoire 
Midi-Pyrenees), urban sites (Paris), and a desert site 
(Algerian Sahara). Directional signatures have a very smooth 
aspect, with little noise like high frequency components 
(Figure 1); they differ distincly with species. A strong signal 
enhancement is seen in the neighborhood of the hot spot 
direction over most vegetated areas (not on desert areas). In 
the case of the Chartres area, seen exactly under the hot spot 
viewing direction, there is a factor 1.5-2 between forward 
scattering and hot spot reflectances (Figure 1). Strong 
directional effects, species dependent, are also apparent when 
mapping the Europe-Africa segment with a selection of 
different given viewing directions, for example the first and 
the last viewing directions seen by any pixel. Moreover we 
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Figure 1. Top : location in directional space of viewing 
directions for the agricultural site of Chartres, on September 
16, 1996. Bottom : Top of atmosphere reflectance in several 
spectral bands, as a function of 0V cos<|> (0V viewing zenith 

angle, $ azimuth between view and sun directions). 

have shown that estimating the NDVI with the first or last 
available directions result in errors of 10-20 % compared to 
the NDVI estimated with the most nadir available direction. 

2) BRDF signatures were examined at level 2 (after cloud 
screening and correction of Rayleigh scattering and gas 
absorption) over several test sites in the USA : Maricopa 
(agricultural crops), the FIFE site in Kansas (grasslands), and 
the Jornada site in New-Mexico (steppes). A collection of 
such signatures, covering various parts of directional space, 
were obtained during the period Oct. 30 - Nov. 11. The 
results show that the signatures acquired at different days are 
consistent with each other and show a good level of symetry 
relative to the principal plane (Figure 2). A strong 
enhancement in the backscattering direction is a prominent 
characteristic seen in all BRDF signatures. In addition, a 
hole-type feature is seen in the forward scattering space for 
the FIFE site. 

3) A composite product (level 3) was created on the USA 
area. It contains, per pixel, at 4 spectral bands (443 nm, 670 
nm, 765 nm, 865 nm), the 3 directional parameters of a linear 

670 nm 
90 

865 nm 
90 

Figure 2. Surface BRDF acquired on the agricultural site of 
Maricopa farm, using data from Oct. 30 to Nov. 11, 1996, at 
670 nm and 865 nm. 

1231 



Directional parameters - 865 nm 
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Figure 3. Mapping of the 3 parameters of the BRDF model 
adjusted against data from Oct. 30 to Nov. 11, 1996, over the 
USA area. White areas are detected as cloudy during the 
whole period. 

network. Detailed analysis of the compositing process 
operated at level 3 is under way on the South Africa area. In 
particular, a comparison is carried out between POLDER 
level 3 data and Global Vegetation Index data from AVHRR 
on this area. Preliminary results show that the temporal 
evolution of reflectances in the visible and near infrared is 
significantly smoother in the case of POLDER data, in 
agreement with expectations. 
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BRDF model (Roujean et al, 1992) adjusted on the level 2 
BRDF data acquired during the period Nov. 30 - Dec. 11. 
According to the model, the first parameter represents the 
reflectance seen at nadir with a sun at zenith, the second the 
backscattering effects due to shadows, and the third the 
volume scattering effects. The mapping of each of these 3 
directional parameters show that consistent signatures are 
found (it is not just noise), with an information apparently 
uncorrelated between the 3 directions (Figure 3). From the 
directional parameters, we derived at each wavelength a 
mapping of the hemispherical reflectance, and from the 
hemispherical reflectances at 670 and 865 nm, a mapping of 
the NDVI, thus in principle nicely corrected for sun and view 
directional effects. 

CONCLUSION 

The first results appear promising. Current work consists in 
analyzing the efficiency of cloud detection algorithms using 
synoptic meteorological network data, and the efficiency of 
atmospheric correction using sunphotometer    AERONET 
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ABSTRACT -In 1992 Thermal Infrared Multispectral Scanner 
(TIMS) data were acquired from the NASA C-130 aircraft over 
the Sahel, Africa as part of the Hydrological and Atmospheric 
Pilot Experiment in the Sahel (HAPEX). The TIMS instrument 
measures the radiation from the surface modified by the 
atmosphere in 6 channels located between 8 and 12.5 urn. These 
airborne TTMS data provide a surrogate for data that will be 
available globally with the launch of the Advanced Spaceborne 
Thermal emission Reflectance Radiometer (ASTER) in 1998 on 
the first AM Earth Observation System platform and were used to 
test the Temperature Emissivity Separation (TES) Algorithm 
being developed for ASTER. This method relies on an empirical 
relationship observed between the range of emissivities and the 
minimum value for the 6 TIMS channels. HAPEX is an 
international land-surface-atmosphere observation program that 
was undertaken in western Niger, in the west African Sahel 
region. The TES algorithm was applied to scenes of about 1000 
scans for both the east and west central sites with the interesting 
results on 2 and 4 September. The spectral behaviors of Tiger 
Bush, bare soil and millet sites were studied. There was up to a 
10 K difference in the brightness temperature over the 6 channels 
for the bare soil site. Channels 1 to 3 (8.2 to 9.4 urn) were 10 K 
cooler than the longer wavelength channels (9.6 to 12.5 um) 
which is characteristic of soils rich in quartz. While for tiger 
bush site there was less than 0.5 K difference observed. In terms 
of emissivity, channel 5 showed very little spatial variation in 
emissivity and the short wavelength channels observed substantial 
regions with emissivities of less than 0.8. As expected there was 
little spectral difference in emissivity observed for vegetated 
pixels,, less than 0.01, and the average amplitude was 0.97. The 
extracted vegetation temperature was close to the air temperature. 
Our results indicated a large sensitivity to the values used for the 
atmospheric corrections, which in our case was done using 
MODTRAN 3.5 and nearby radiosoundings of the atmosphere. 

INTRODUCTION 

HAPEX-Sahel (Hydrological and Atmospheric Pilot 
Experiment in the Sahel)[l] is an international 
land-surface-atmosphere observation program that was 
undertaken in western Niger, in the west African Sahel region. 
The overall aims were to improve our understanding of the role of 
the Sahel on the general circulation, in particular the effects of the 

large interannual fluctuations of land surface conditions in this 
region and, in turn, to seek relationships between the general 
circulation and the persistent droughts that have affected the Sahel 
during the last 25 years. The field program obtained 
measurements of atmospheric, surface and certain sub-surface 
processes in a ldeg xldeg area that incorporates many of the 
major land surface types found throughout the Sahel. 

In order to obtain data for this large area, an extensive 
measurement program was undertaken including field, aircraft, 
and satellite remote sensing measurements, mainly between mid 
1990 and late 1992. An intensive operations period was 
undertaken for 8 weeks from mid to late growing season of 1992. 
The aim of HAPEX-Sahel was to make simultaneous 
measurements of relevant variables at the micro and meso scales. 
HAPEX-Sahel faced several particular challenges. The 
heterogeneity of surface types and seasonal variation in the region 
are much greater than in the areas studied in any previous 
measurement campaign of this type. To address this aspect of the 
problem an extensive remote sensing program was used to extend 
the field measurements to the entire region, i.e to the meso-scale.. 
This was performed by a suite of sensors on the C-130 aircraft. 
These included a microwave radiometer for soil moisture 
observations, a visible and near IR scanner for vegetation and 
albedo data and a thermal infrared scanner (TIMS) for surface 
temperature and emissivity. 

TIMS 

The data we present here were obtained with the TIMS sensor 
on board the NASA C-130 during the 1992 HAPEX aircraft 
campaign. TIMS has six channels in the thermal infrared (8 - 
12 urn) region of the electromagnetic spectrum. The 
instantaneous field of view is 2.5 mrad[2]. Thus from an altitude 
of 600 m the pixel size is 1.5 m. At this altitude with a ground 
speed of about 75m/sec the separation between scans is 3 m at the 
fastest scan rate.  Thus the instrument is under scanning. 

The radiance at the aircraft is given by 

Lj(surf) = (Ljta/c) - L^atml)) / i; (1) 

where the values of Tj and Lj (atmt) can be   calculated from 
MODTRAN [3] using the radiosonde data [4] taken within one 
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hour of the overflight. The atmospheric corrections for the cooler 
surfaces, e.g. vegetated, are, typically, <1 C while for the bare soil 
the corrections are 2 to 4 C even at this low altitude. The 
remaining problem is to relate these radiances to the surface 
emissivity in the 6 channels without direct knowledge of the 
temperature, T^ using the relation: 

where: 
Lj(surf) = 6j BBj( Tgrf) + (1 - ep-L/atml)        (2) 

laboratory/field measurements of natural materials. In the TES 
method the maximum-minimum difference (MMD=max(ßp- 
min(ßj)) or contrast is related to the minimum emissivity. From 
laboratory measurements of emissivities [8] the relationship 
between e^ and MMD was found to be [6]: 

e^ = 0.994-0.687*MMD0-737 . (4) 

and can be used to calculate the emissivities from the ß spectrum: 

55/7)=- 
l5 

(   „  \ 
exp 

v V, 
-1 

is the Planck equation for the radiation from a black body. 

TEMPERATURE/EMISSrVTTY RECOVERY 

Equation 2 indicates that if the radiance is measured in n 
spectral channels, there will be n+1 unknowns: n emissivities (one 
per channel) and a single unknown surface temperature. The set 
of equations described by a set of radiance measurements in n 
spectral channels is thus under determined, and additional 
information is needed in order to extract either the temperature or 
emissivity information. This has led to the development of a 
variety of techniques which differ according to the assumptions 
that they make. Several techniques have been developed which 
work better in areas where there is a wide variation in surface 
emissivity. These include normalized emissivity and alpha 
emissivity techniques [5]. Recently, a new technique was 
proposed by Gillespie et al. [6] which incorporate the advantages 
of these techniques and is termed Temperature Emissivity 
Separation (TES). This algorithm is planned for use with data 
from the Advanced Spaceborne Thermal Emission Reflectance 
Radiometer (ASTER) scheduled for launch on the first AM-1 
Earth Observing Platform in 1998 [7]. The following description 
of the TES algorithm is summarized from Gillespie et al. [6]. The 
estimated kinetic temperature, T, is taken to be the maximum T 
estimated from the radiances for the n spectral channels calculated 
from (2). The emissivity value (e) used in (2) is set to 0.97 so that 
typical surface types, vegetation, snow, water, soil and rock, will 
all be within ± 0.03 of the chosen value. The relative emissivities, 
ß:, are found by ratioing the acquired radiance data, corrected for 
atmospheric effects to the average of all channels: 

;  L BB(T)i 
(3) 

e.=ß 
[ min(ß.)J (5) 

The ß: are determined from the measured surface radiances L. 
From these €= a new temperature can be obtained and the process 
repeated until the results. Convergence usually occurs after 2 or 
3 iterations. 

RESULTS 

The radiances for 3 selected targets in the scene for the east 
central site were obtained from the images. The sites were: a fully 
vegetated section of the tiger bush, a bare soil and highly 
vegetated section of a milled field. The brightness temperatures 
(Tg)before and after atmospheric correction are presented in Fig. 
1. These results are from line 2 on September 4, 1992. They 
show about a 10 K range of TB for the bare soil field after 

TB@A/C 

TB@grd 

BS@A/C 

Mil@A/C 

Mil@grd 

2 3 4 5 
TIMS Channel 

In principle ß: may range widely. However, since the emissivities 
are generally restricted to 0.7-1.0 the ratioed values are restricted 
to 0.7-1.4. The ß: values provide a temperature independent 
index which can be matched against ßj values calculated from 

Figure 1. TB values for 3 targets at the east central site. The solid 
symbols are the values at the aircraft and the open symbols are the 
values at the ground. 
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TB-3, T=32.8 

BS-2, T=43.1 

BS-3, T=45.8 

Mil-2, T=34.6 

Mil-3, T=35.7 
 i $■■ 

2 3 4 
TIMS Channel 

Figure 2. Comparison of derived emissivities for lines 2 and 3 
on September 4. The values of the derived temperature are 
given in the legend. The solid symbols are for line 2 and the 
open are for line 3. 

correction and less 0.5 K range for the tiger bush. The millet 
shows a little more spectral variation because of the possibility of 
some bare soil showing. Note, that even for a 600 m flight 
altitude the atmospheric correction was up to 2 K for the bare soil 
and about 0.5 K for the tiger bush. The same area was over flown 
on line 3 about 20 minutes later with similar results except that 
the temperatures were about 1 or 2 degrees warmer. 

The TES derived emissivities for these 3 sites are presented in 
Fig. 2 for both the passes. The solid symbols are the results from 
line 2 and the open symbols with the dashed lines are for line 3. 
There is excellent agreement between the two lines. Especially 
for the bare soil case, where the emissivities for channels 1,2, and 
3 are about 0.75 in both lines. There is a little more difference for 
the two vegetation targets especially for the millet field and for the 
shorter wavelength channels. Note that there are observation 
differences for the 2 lines; for line 2 the targets were in the 
northern half of the swath while for line 3 they were in the 
southern half of the swath. Recall that at the 600 m altitude the 
scene in under scanned so that only about half of the area is 
actually seen. So that even if cover the same areas on both lines, 
slightly different pieces of the terrain may be seen. Thus for the 
millet field we may be responding to slightly different amounts of 
bare soil for the millet target on the two flight lines. 

of 600 m. There is excellent reproducibility when the same area 
is seen in different lines on the same day. However there are 
differences when the same area is seen on the two days especially 
for the low emissivity values. Some of these differences may be 
due to soil moisture differences which were observed on the two 
days. There was very little emissivity variation observed for 
TIMS channel 5 over the scenes, this was partially due to the 
noise in the MMD values. This limits the high values of 
emissivity obtained with the TES algorithm, e.g. over vegetation. 
Since channels 1 and 6 of TIMS were seen to have the largest 
noise, we implemented the TES algorithm using only center 4 
channels of TIMS with some what better results. The resulting 
temperatures for the vegetated areas are in good agreement with 
the air temperature at the time of the flight. 

REFERENCES 

[1] 

[2] 

[3] 

[4] 

Prince, S.D. et al., 1995. Geographical, Biological, and 
Remote Sensing Aspects of the Hydrologie Atmospheric 
Pilot Experiment in the Sahel (HAPEX-Sahel). Rem. Sens 
Environm, vol. 51, pp. 215-234. 
Palluconi, F,& Meeks, GR (1985) Thermal infrared 
multispectral scanner (TIMS): an investigator's guide to 
TIMS data; NASA. JPL Publ 85-32, Pasadena, June 1985. 
Kniezys, FX, Shettle, EP, Abreu, LW, Chetwynd, JH, 
Anderson, GP, Gallery, WO, Selby, JEA, & Clough SA 
(1988) User Guide to Lowtran 7, Air Force Geophysics 
Laboratory Report No AFGL-TR-88-0177, Hanscom AFB, 
Massachusetts 01731. 
Bessemoulin, P. And Trauille, O., 1994. Documentation for 
Radio-sounding data collected by CNRM in Hamdallay, 
Niger. HAPEX-Sahel Information System CD-ROM. 

[5] Kealy, P.S. and Hook, S.J., 1993. Separating Temperature 
and Emissivity in Thermal Infrared Multispectral Scanner 
Data:    Implications    for    Recovering    Land    Surface 
Temperatures. IEEE Trans GRS, vol. 31, pp. 1155-1164. 
Gillespie, A. R., Rokugawa, S., Hook, S. J. Matsunaga, T. 
and A. B. Kahle, 1996. Temperature/Emissivity Separation 
Algorithm Theoretical Basis Document, vers. 2.1. 
Fujisada,H., 1994. Overview of the ASTER instrument on 
the EOS-AMI platform Proc. SPIE, Vol. 2268, pp 14-36. 
Salisbury, J.W. and D. M. D'Aria, 1992. Emissivity of 
Terrestrial Materials in the 8 - 14 um Atmospheric Window. 
Remote Sens. Environ., vol. 42, pp. 83-106, 1992. 

[6] 

[7] 

[8] 

DISCUSSION and CONCLUSIONS 

A version of the TES algorithm was implemented and tested on 
several 1000-scan TIMS scenes for the East and West Central 
sites in the HAPEX Sahel experiment. The scenes were from 5 
different flight lines on 2 and 4 September 1992 from an altitude 

1235 



ASTER OBSERVATIONS FOR THE MONITORING OF 
LAND SURFACE FLUXES 

Thomas Schmugge 
USD A Hydrology Laboratory, Beltsville MD 20705, USA 

Tel: 301-504-8554, FAX: 301-504-8932, email: schmugge@hydrolab.arsusda.gov 

ABSTRACT — This paper presents a review of how data from 
the Advanced Spaceborne Thermal Emission radiometer 
(ASTER) can be used to estimate the energy fluxes from the land 
surface. The basic concepts of the energy balance at the land 
surface are presented along with an example of how remotely 
sensed surface brightness temperatures can be used to estimate the 
sensible heat. The example is from the Monsoon 90 experiment 
conducted over an arid watershed in the state of Arizona in the 
United States. 

INTRODUCTION 

The monitoring of the land surface fluxes at regional spatial 
scales is recognized as important for applications such as the 
modeling of atmospheric behavior and the monitoring of water 
resources. When one looks at a thermal infrared image, it is clear 
that the large variations in surface brightness temperatures, TB, 
which are seen arise from differences in the surface energy 
balance for the land surfaces. Recall that TB is a measure of the 
emitted radiation from the surface is directly related to the 
temperature of the surface and its emissivity. The temperature 
contrasts seen between fields with different vegetation conditions 
imply a different partition of the incoming solar energy into latent 
and sensible heat components. Cooler temperatures usually 
indicate that there is sufficient moisture available so that most of 
the incoming energy goes into latent heat or evaporation, while 
hotter temperatures indicate that most of the incoming energy goes 
into the sensible or convective heating of the atmosphere. 
However there is another aspect of the problem of determining the 
surface fluxes which arises due to the differences in the heat 
transfer coefficients arising from the various types of vegetation 
and their heights. Thus a 20 m tall pine forests can be just as cool 
as a well-watered field but transpiring much less becaue of its 
greater heat transfer capability. The problem is to quantify these 
fluxes in terms of the remotely sensed TB and other observables 
from the Advanced Spaceborne Jhermal Emission Radiometer, 
ASTER, to be flown on NASA's Earth Observing System (EOS) 
first spacecraft to be launched in 1998.. There is a long history on 
the use of TB to monitor these surface fluxes [1,2,3] and in this 
paper we will describe the contributions remotely sensed data 
from ASTER can make towards quantifying these fluxes. 

SURFACE ENERGY BALANCE 

To estimate the land surface fluxes it is necessary to determine: 
1) The energy driving forces, i.e. the incident solar energy 

(insolation), surface albedo and resulting net radiation; 
2) The moisture availability or status in the soil and the 

vegetation/soil interaction; and 
3) The capacity of the atmosphere to absorb the flux, which 

depends on surface air temperature, vapor pressure gradients, and 
surface winds. 

There has been considerable work recently on methods for 
estimating factors relating to the first two items from remotely 
sensed data. It is possible to estimate from remotely sensed data 
the surface parameters related to the soil/vegetation system (leaf 
area indices and surface soil moisture), radiation forcing 
components (essentially incident solar radiation and albedo) and 
indicators of the surface response to them (surface temperature). 
However there is no remote sensing method for estimating the 
surface atmospheric parameters. Therefore conventional surface 
measurements will be required for this factor. 

To understand better how ASTER observations can contribute 
to the determination of the surface fluxes, let us consider the basic 
energy and moisture balance equations. In the absence of 
advection or precipitation the energy balance at the land surface 
is given by: 

Rj^ + G + H + LEirO (1) 

where R,j is the net radiation, G the soil heat flux, H the sensible 
heat flux and LE the latent heat or moisture flux into the 
atmosphere. The net radiation is the sum of the incoming and 
outgoing short and long wave radiation fluxes: 

Rn = (l-a)-Rs + (l-€)-RL1-eoT4 
(2) 

where a is the surface albedo, Rs is the incoming solar radiation, 
RLI is the incoming long-wave radiation, e the surface emissivity 
and T the surface temperature in Kelvins. 

There has been considerable progress in estimating Rs and a 
from geostationary satellite data. The basis of the method is that 
the major modulator of surface insolation is cloudiness. The 
information contained in the satellite radiances is interpreted in 
terms of scattering, reflection and absorption parameters which 
are subsequently used in radiative transfer model calculations for 
the atmosphere [4]. The albedo a, can also be estimated from 
these data. RLI can be estimated from the atmospheric sounders 
or empirically from surface conditions. The surface temperature 
T can be estimated from the thermal channels of ASTER. The 
surface albedo can also be estimated from multi-spectral data such 
as that which will be available form the VNIR channels of 
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ASTER. So it would appear that the components of the radiation 
flux in (2) can be estimated reasonably well using remotely sensed 
data and a review of the procedures is given in [5]. 

The difficulty arises then in determining the surface fluxes in 
(1), both the sensible and ground heat flux involve temperature 
gradients; one in the soil and the other in the atmosphere. The 
latent heat flux involves the vapor pressure gradient. Thus for the 
ground heat flux we have: 

G=  MTsoil/dz (3) 

where X is thermal conductivity of the soil. While the soil 
temperature gradient can not be determined from remotely sensed 
data the temperature profile can be modeled with sufficient 
accuracy to estimate G. There is a reasonable empirical 
relationship between the ratio G/^ and vegetation indices such as 
andNDVI. 

The sensible heat flux into the atmosphere is: 

H=pc-(Taero-Ta)/ra (4) 

where p is the air density, c is the specific heat of air at constant 
pressure, Taero is the aerodynamic temperature in the canopy, Ta 

is the air temperature just above the canopy, and ra is the 
aerodynamic resistance. The latter, ra, is a rather complex 
function of various geometrical factors such as roughness lengths, 
displacement heights, etc., and the wind speed and is usually 
empirically determined. Taer0 is the temperature of the source for 
the convective heat transfer and can be determined from the 
profiles of temperature and windspeed in the boundary layer. For 
an aerodynamically smooth surface, Taero and TB are equivalent 
since such a surface is the source for both the radiative and 
convective or sensible heat fluxes. However for most natural 
surfaces, T^ and TB are not equivalent as demonstrated by Hall 
et al.,[6] working with data from FIFE. This difference between 
Taero and TB is thoroughly discussed in the recent paper by 
Normanetal. [7]. 

The latent heat flux into the atmosphere is given by. 

LE = pc-(ea-es)/Y-(ra + rs) (5) 

where y is the psychrometric constant, ea is the atmospheric vapor 
pressure in the boundary layer, es is the saturation vapor pressure 
at the temperature T, and rs is the stomatal resistance to water 
vapor transport. To get around the absence of these temperature 
and vapor pressure gradients in the soil and lower atmosphere 
1-D models have been developed of the heat transfer in the soil 
and from the land surface into the atmosphere [8]. These models 
use the remotely sensed surface temperature as a boundary 
condition and model parameters are varied to obtain the best fit 
between the predicted and observed surface temperatures. 

From (1) to (5), we see that the available energy (Rn - G) is 
partitioned into latent and sensible heat components. The 
approach that is frequently used is to estimate the H using the 
remotely sensed surface brightness temperature (TB) in (4) and to 

determine IE as a remainder term. This is the approach we will 
consider here. 

Equation (4) implicitly assumes that the canopy is a thin layer 
with a single temperature, which is clearly not the case for a 
vertically developed canopy exhibiting variations in temperature. 
While both Taero and TB result from contributions of the surface 
temperatures of the canopy elements, they do so in different ways 
and as a result are not equivalent. The problem is that Taero in (4) 
being the effective temperature for the canopy heat transfer 
process is not a measurable quantity and is not equal to TB. The 
thermal radiation observed by a radiometer originates from the 
soil and the vegetation elements having various temperatures and 
orientations which leads to variations in TB with viewing angle. 
If the classical value of ra is used in (4) with TB, it is found to give 
poor agreement with observed fluxes [6]. However Stewart et al. 
[9] have shown that if an additional resistance, rr, is added the 
agreement improves substantially. This additional resistance is 
necessary because TB is larger than Taer0 and is needed to account 
for the increased resistance to heat flow compare to that for the 
momentum flux. 

RESULTS 

In view of these difficulties in determining the appropriate 
surface resistance for heat transfer, it is clear that at the present 
time it may not be possible to estimate H from remotely sensed 
observations alone. However if we have a reference point where 
flux measurements are made it is possible to determine the spatial 
variation of H from TIR data. One example this approach is 
available from the Monsoon'90 experiment [10] conducted over 
the arid Walnut Gulch watershed in Arizona during the summer 
(Monsoon season) of 1990. A summary of the conditions from 
that experiment is given in Fig. 1, which presents box plots of the 
surface air temperature and surface radiation temperature for 8 
sites over the watershed. The data are for 3 days which represent 
a range of conditions. The TTR radiation temperatures (T^) 
are from the NS001 sensor on board the NASA C-130 aircraft. 
The bandpass for the TTR channel is approximately 10 to 12 urn. 
The data are from 2 flight lines at an altitude of 2400m above the 
ground, yielding a pixel size of 6.3 m. The data were acquired 
between 10:00 and 10:30 local standard time, i.e., close to the 
time of the ASTER overflights. The temperatures were corrected 
for atmospheric effects using radiosoundings launched at the site., 
and the results were found to agree with ground radiometer 
measurements to within 1 K . The boxes show the median and 
range of Tsm{ and Tair values for each day. The air temperatures 
were relatively consistent for the 3 days about 25 C while the 
surface temperatures show considerable variation resulting form 
differences in the soil moisture status for the 3 days. Conditions 
were very dry on day 213 (Aug 1, 1990, «cT^ > = 37 C) and 
quite wet on day 216 (Aug 4,1990, <Tsat{ > = 31 C) following up 
to 50 mm of rain on the previous 3 days. Note the narrow range 
ofT^on this day. There were intermediate, and more variable, 
moisture conditions on day 221 (Aug 9,1990, <Tsar{ > = 33 C). 
The average sensible heat flux (H) for the 8 sites is given at the 
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Day 213 Day 216 

Figure 1. Boxplot of flux and temperature data from Monsoon 
90 experiment. The vertical axis is in degrees C. 

top for each day. It is clear that the magnitude of H is proportional 
to the difference between the average TsaT( and the average T^ 
values. Maps of these surface temperatures were used with an 
average value of rh derived from measured values of H, TB, and 
Tair at the 8 ground flux stations. The spatial variations ofgT 
were used to derive the spatial variation of H over the watershed. 
The reader is referred to [ 10] for the details of the procedures and 
the maps of the sensible heat flux. 

CONCLUSIONS 

In this paper we have reviewed the physics of the energy 
balance at the land surface and the factors that can be accessed 
through remote sensing. These include the incoming solar 
radiation, P^., and the surface albedo, a, from the VNIR channels 
of ASTER. The longwave radiation components, RL1 and eoT4, 
can be estimated from temperature sounding instruments. The 
primary contribution that ASTER can make to surface flux 
determinations will be through the thermal infrared channels. The 
problems with estimating the sensible heat flux were discussed 
and an example from the Monsoon 90 experiment was presented. 
By making use of a reference flux site a map of the spatial 
variation of H was generated from the TB map and the range of 
values is in agreement with ground observations. These results 
indicate that at the present it may not be possible to determine the 
surface energy fluxes from remotely sensed data alone but that the 
spatial variation can be determined from TB maps. 
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Abstract ~ We employed side-looking airborne MSS data 
with high resolution to investigate the actual conditions of 
surface temperature distributions in urban area with the complex 
ground surface form. In addition, airborne MSS and GIS data 
were used to calculate the HIP of various types of residential 
regions, and results verified its effectiveness for monitoring 
urban land use change and thermal environment. 

INTRODUCTION 

Urban climates have recently been characterized by the heat 

island phenomenon which considers various changes in land 

cover conditions and also the increase of artificial heat sources. 
Such information is vital for urban development planning 

because it can be used to obtain an accurate prediction method 
for estimating an urban thermal environment. 

We proposed a new index based on sensible heat flux, called 
the "heat island potential (HIP)," which is defined to express 

the thermal characteristics of each type of region contained in 
an urban area, i.e., spatial forms and materials". The actual 
conditions to be considered by the HIP were determined using 

downward-looking and side-looking airborne multi-spectral 
scanner (MSS) data with high resolution. 

SIDE-LOOKING AIRBORNE MSS IMAGE 

Methodology for observations 

Airborne MSS observations provide useful data for measuring 
the surface temperature distribution of an urban area with the 
complex ground surface form, and in general, only downward- 
looking airborne MSS observations have been considered. Here, 
however, we employ downward-looking and side-looking 
observations to measure the all surface temperature distribution 
of various types of residential regions located in a suburban area 
which was under development. 

The conditions used for obtaining airborne MSS observations 
are as follows: 

1) The angle of the MSS sensor could be adjusted to view the 
horizontal and vertical surfaces of buildings (Fig. 1). 
2) To investigate the influence of building walls on the HIP, we 
used time-series airborne MSS images that were obtained on a 
winter day with a clear sky. 
3) Kawasaki, Japan, was selected for representing various land 
cover conditions. MSS observation conditions are summarized 
in Table 1. 

Observation results 

Figure 2 presents typical data showing infrared (IR) thermal 
images obtained by side-looking airborne MSS observations of 
two types of residential regions containing wooden buildings 
or reinforced concrete (RC) buildings. Aspects of these images 
with about 2m resolution which show complex form on ground 

Downward-looking 

Observation course 

Fig. 1  Flight course and look angles of airborne MSS 
observation. 

Table 1 MSS observation conditions 

Date February 26, 1992 
Time 8:31-8:51,  12:28-12:46,  17:10-17:41 
Location Kawasaki, Japan 
Sensor Multi-spectral scanner 
IFOV 2.5 mrad 
Bands used Visible 0.61-0.69 inn 
for analysis Near infrared       0.80-1.0 ß m 
 Thermal infrared 8-11 ß m 

0-7803-3836-7/97/S10.00 © 1997 IEEE 1239 



surface, depend on the look angle of the observation. In case of 
Daytime, the north side-looking images are obviously darker 
(lower temperature) than the south side-looking images. Sunset 
side-looking images show that surface temperature of building 
walls is the highest because of heating loss. 

HIP IN RESIDENTIAL AREAS 

Methodology for HIP calculation 

The observed downward- and side-looking IR thermal images 
were used to determine the HIP of each type of considered 
residential region. The following assumptions were used: 
1) It is assumed that the emissivity of all surfaces is 1.0, i.e., the 
radiant and surface temperatures are considered to be equal. 
2) It is assumed that the surface temperature of trees, which 
could not be measured by the MSS sensor, is equal to the air 
temperature, and that the area of a group of trees is equal to the 
area it projects onto the ground. 

The HIP index was subsequently determined using 

HIP = 
(Tsh-Ta)Sh+(Tsv-TJSv (2) 

HIP = - 
/nil urban surfaces 

(r.-rjds 
(1) 

and calculated by following equation using remote sensing data 

and GIS data. 

ooden buildings region 

-5 ]/:'  O RC buildings region 
x Tree region (forest) 

-10 
sunset Morning      noon 

Fig. 3  Durnal change of HIP on winter day 
with a clear skv. 

where HIP is the heat island potential (°C), T h is the average 
temperature of a horizontal plate (°C), Tsv the average 
temperature of a vertical plate (°C), Ta the air temperature (°C), 
Sh the total area of horizontal plate (m2), and Sv the total area of 

vertical plate (m2). 
Because the sensible heat flux and HIP correlate well, the 

HIP functions as an index for expressing an urban region's 
characteristics using the difference between the temperature of 
the atmosphere and that of all urban surfaces within it, with 
such characteristics being determined by the land use and land 

cover conditions of each region. 

Diurnal change of the HIP for various land cover regions 

The HIP index of various land cover regions was calculated 
using MSS thermal images obtained on a clear day in winter at 
morning, noon, and sunset. As shown in Figure 3, the daytime 
HIP of the tree regions only ranges from -3 to PC, with this 
range in temperature being almost equal to that of air 
temperature. 

On the other hand, the HIP of various regions containing 
wooden and RC buildings significantly varies with observation 
time, i.e., at morning it ranges from -7 to 2°C, and also many 
regions have a HIP less than 0°C due to the increase in the air 
temperature. These values naturally increase from morning to 
noon, reaching a maximum of 24°C, then decrease from noon to 
sunset. Note that at sunset the wooden building regions have 
similar HIP values as the tree regions, although in comparison, 
those for the RC building regions are much higher. One RC 
building region showed a constant HIP value of 12"C from noon 
to sunset. This result is thought to have been caused by these 
buildings storing solar radiation during the day and emitting 
building heat from their walls and windows. 

Effect of land cover conditions on diurnal changes of the HIP 

The development status of a region was described using two 
indices: "the vegetation cover ratio," which indicates the degree 
of tree destruction due to urban development, and "the floor 
area ratio" (ratio of total floor area to a region's area) of a region's 
wooden buildings (including steel structure buildings) or RC 
buildings, which indicates heat capacity of each type of building. 
We calculated the vegetation cover ratio using a map of 
vegetation cover which was made by analyzing downward- 
looking MSS data via the maximum likelihood method, while 
the floor area ratio was calculated using l:2500-scale GIS data 
which provided the shape and area of each building. 
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Fig.4 Relationship between the HIP and the vegetation cover/building area ratio for various land cover conditions at indicated 
times of the dav. 

Figure 4 shows resultant HIP values calculated at indicated 
times of the day versus the vegetation cover and floor area ratios 
of wooden. RC, and tree regions. At noon, the HIP of the tree 
regions is about 1°C. whereas that of other regions is greater 
than 1()"C. In general as a region's vegetation cover ratio 
decreases, its HIP increases. Also, the HIP values of wooden 
building regions arc larger compared to those of RC building 
regions. 

Note the sunset HIP values of wooden building regions are 
less than 0"C, while those of RC building regions are greater 
than 0°C. Moreover, increasing the floor area ratio of RC building 
regions causes the largest increase in HIP, with the HIP value 
for a floor area ratio of 300% being over 10°C. Since the diurnal 
change in HIP was found to appropriately vary with respect to 
the considered land cover conditions, this verifies that the HIP 
is an efficient index for indicating the thermal characteristics of 
each region. 

CONCLUSIONS 

A new index based on sensible heat flux was proposed, named 
the "heat island potential (HIP)," which can be employed in urban 
development planning to evaluate the urban thermal 
environment. The HIP of various residential regions was 
calculated using side-looking airborne MSS data, after which 

the HIP was verified to be an effective index representing the 
thermal characteristics of each type of region. 
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Abstract ~ A derivative algorithm was adapted to deal with 
spectral data acquired in narrow, continuous bands as truly 
spectrally continuous data. An investigation on intelligently 
detecting spectral features from a synthetic spectrum and a 
laboratory vegetation spectrum demonstrated the use of 
derivative algorithm in extraction of subtle information at 
different spectral scales of interest. 

INTRODUCTION 

Methods for traditional multispectral analysis in remote 
sensing are usually derived from established methods in 
multivariate statistics [5] [15]. When higher resolution, 
spectrally continuous remote sensing data become available, 
researchers in remote sensing tended to select suitable bands 
to optimize the existing algorithms of multispectral data 
analysis [6], or to generate new algorithms based on 
traditional multispectral concepts [2][J 1][12]. In typical 
multispectral analysis, each spectral band is considered as an 
independent variable—a reasonable assumption for 
multispectral data but not really appropriate for hyperspectral 
data. Only a few researchers have manipulated data as truly 
spectrally continuous data [3], although there are methods that 
are commonly used in spectroscopy for dealing with 
continuous data. 

Not all methods used in spectroscopy can be directly 
adapted to remote sensing analysis because there are inherent 
differences between these two types of data [18]. Among the 
techniques developed in spectroscopy, derivative analysis is 
particularly promising for use with remote sensing data. 
Derivatives not only emphasize subtle spectral details, they 
also minimize illumination and atmospheric effects [4] [13]. 
Thus, derivatives are well-suited to extracting spectral features 
relating to specified target properties. 

The purpose of this study was to develop a "finite divided 
difference approximation" derivative procedure that treats 
hyperspectral data as truly continuous data and to use the 
derivative algorithm to extract subtle spectral features. 

METHODS 

Derivatives are very sensitive to noise. Therefore, before 
computing derivatives, smoothing or otherwise minimizing 
random noise might be necessary. Savitzky and Golay 
provided a simplified least-square-fitting procedure for 

simultaneously smoothing and differentiating a spectrum in 
[16]. Corrections and modifications to the Savitzky-Golay 
convolution procedure were provided by other researchers in 
[10] and [17]. The Savitzky-Golay procedure implicitly 
assumes that random noise has similar characteristics through 
the spectrum and can be handled by an invariant procedure 
over the spectrum. Kawata and Minami [8] argued that, since 
random noise usually varies over the spectrum, polynomial 
curve-fitting might alter the signal waveform instead of 
eliminating the noise. They presented an alternative based on 
minimizing the mean-squared errors. Another commonly used 
smoothing algorithm is the mean-filter algorithm, which 
simply computes the mean value of samples within a local 
smoothing window and use it as the new value of the 
midpoint of the window. When spectral features are broad and 
the noise is relatively high frequency comparing to the real 
spectral features, there should be little significant difference 
among the three methods. In such a case, mean-filter is 
preferred because it is straight forward and requires the least 
time of computation. 

Derivatives were estimated using finite divided difference 
approximation algorithm with a finite band separation, AX. 
The first order derivative is calculated by: 

ds 

dX 

sjXp-sjX,) 

AX 
(1) 

where AX is the separation between adjacent bands—i.e., 
AX=Xj-X[. In general, the n-th order derivative can be 

represented as: 

d"s 

dXn 

_ d (cf"-l)s \ 
(Axy 

lCks(Xk) 
k=i  

(AXy 
(2) 

where j=(2i+n)/2, if 2i+n is even, or j=(2i+n+l)/2, if (2i+n) 
is odd; this indicates that if the resultant derivative falls 
between sampling points, it is assigned to the next larger 
wavelength or wave number. The coefficients, Cjj, are 

calculated using an iteration scheme. 

Applying derivatives to spectra may cause some side 
effects. For example, as the band separation, AX, increases, 
the magnitude of derivatives will be depressed because the 
derivatives are normalized by a power of AX as shown in (2). 
However, this effect may not be necessarily disadvantageous. 
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It is possible to mimic different spectral scales by selecting 
suitable band separations for filtering spectral features smaller 
than AX and enhancing features at the scale of AX. This 
quasi-smoothing effect overcomes the imperfection of inverted 
Gaussian procedures provided in [1], which neglected the scale 
effect and implied the detection of spectral positions is 
independent to bandwidth and sampling intervals. The 
application of this effect is demonstrated in the following 
example. 

DERIVATIVES IN DETECTING SPECTRAL FEATURES 

According to Huguenin and Johns in [7], derivatives can be 
used to detect absorption band positions from reflectance 
spectra. The criteria for determining the occurrence of an 
absorption band position is that the fifth derivative is zero, 
the fourth derivative is positive and the second derivative is 
negative. If applying the finite approximation derivative 
algorithm, the finite band separation can be a potential source 
of error. Spectral features smaller than AA, will be lost. On 
the other hand, spectral features larger than AX, should remain 
detectable for the derivative algorithm. To test this 
hypothesis, a synthetic spectrum was created to evaluate the 
performance of the developed derivative algorithm in detecting 
the original peak positions of sub-spectra that compose the 
synthetic spectrum. The spectrum consists of five 
overlapping Gaussian features, each with a different mean, 
peak strength and half-width (full width at half maximum, 
FWHM) values described in Tb.l and shown in Fig.l. Each 
Gaussian band can be represented as: 

f(k)=h*exp[-0.5*(k-ko)2/a2] (3) 

where h is the peak strength, ko is the position of mean 

center and a is the standard deviation of the distribution 
function. In this case, the value of a can be determined by the 
pre-determined half-width,W=2*(2*ln2) l'Va. 

Two of the five constituent bands (the second and the 
fourth) are much smaller in amplitude and width than the 
other three. They can be considered as artifacts and assume 
that the central peak is the primary feature of interest. Further 
assume that the critical factor for detecting the occurrence of 
an peak position is the zero-crossing of the fifth derivative. It 
is hoped that the developed algorithm can successfully detect 

Tb. 1 Parameters of Gaussian features to construct a spectrum 

Feature  Peak Position      PeakValue(%)        Half Width 
1 1,250 30 230 
2 1,600 5 50 
3 1,750 60 650 
4 1,900 5 50 
5 2,350 50 210 

f/    \i 
L    \ 

-A   A 

Fig.l The synthetic spectrum composed of five Gaussian 
features whose characteristics are described in Tb.l. 

the three major peak positions from the composite spectrum. 
Fig.2 shows the results of fifth derivatives at band separation 
of 1, 5, 10, 15, 20, and 30 sampling intervals (1 sampling 
interval equals 10 nm). As shown in Tb.l, the two artifacts 
are 150 nm less and greater the feature centered at 1750 nm. 
In Fig.2, when band separations are smaller than or equal to 
the distance between the noise peak and its neighboring 
features (AX=10, 50, 100 and 150 nm), the zero-crossings 
occur almost exactly at the three central peak positions. 
However, as AX approaches and exceeds the distance between 
artifact centers and its neighbors, the derivative results 
gradually change to a simpler smoother curve. This indicates 
that the effects of artifacts on the derivative first diminishes 
and then disappears.As a result, in Fig.2, the derivative at 20 
sampling intervals (200 nm) loses both "noise" positions, 
but the major peak position is still identified. 

In real application, this band decomposition algorithm can 
be very helpful in extracting spectral features from complex 
laboratory or remote sensing data. Fig.3 shows a portion of a 
soybean leaf fluorescence spectrum at excitation wavelength 
of 337 nm [14] and its 2nd, 4th and 5th derivatives. The 
derivatives were computed at AA,=16 nm (8 sampling 
intervals) after smoothing with mean-filter. Applying the 
criteria of band decomposition, the peak at 600 nm was 
identified with ease. A second feature, one which was arguable 
in the original spectrum, was located around 530 nm. This 
could be the shoulder of blue-green fluorescence emission 
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Fig.2 Fifth derivatives of the synthetic spectrum at different AX. 
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Fig. 3 Fluorescence spectrum of a soybean leaf at excitation of 
337 nm and its derivatives. 

occurs at 525 nm as stated in [9]. There is ambiguity in 
detecting the band position at 450nm. There are three zero- 
crossings near 450 nm. All of them fulfill the criteria of the 
occurrence of an band position. However, if the criteria are 
modified such that 5th derivative is zero, the 4th is positive 
and at or near a local maximum (i.e., within the range defined 
by FWHM), and the 2nd is negative and at or near a local 
minimum, the interpretation changes. Applying these 
expanded criteria to the result in Fig.3, the possibility of a 
band peak at 490 nm is now excluded because its 2nd 
derivative is beyond the FWHM of the local minimum. The 
occurrence of band position at 450 nm is no longer sustained 
either, because the 4th derivative is in a local minimum. 
Instead, both 440 nm and 460 nm would be considered as 
potential positions, although there is no evidence in the 
fluorescence literature supporting the presence of more than 
one peak around 450 nm. The ambiguity probably results 
from an improper selection of band separation or bandwidth. 
According to Fig.3, if the band separation is increased, the 
local minimum at 450 nm in the 4th derivative is expected to 
disappear and the two local peak peaks are expected to 
incorporate into one. Thus, 450 nm would be identified as a 
peak band position even according to the expanded criteria. 
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ABSTRACT 
All recent scientific SAR data is formatted in compliance, 

more or less, with the CEOS standard developed recently. If 
this standard were followed meticulously by each organization 
that produces SAR data, a single program could read all of the 
data. However, there are small but significant differences in 
how each sensor's data is formatted and this has led to the need 
for a different program to read the data for each sensor, and even 
for each format from the same sensor. This makes using the 
data difficult for most users, as the first step is to read it in to 
some kind of image processing system, such as ERDAS, PCI, 
GRASS, KHOROS, etc. 

The solution to this problem has been for data providers and 
commercial vendors to write tape readers for their customers. 
Unfortunately, many of these readers do not read all the ancil- 
lary data and do not allow easy porting for use with other image 
processing systems. A new general reader has been developed 
that solves all these problems. It uses simple text "format" files 
to define the data that is to be read in: variable name and type, 
location in file, and format. The reader writes a new file in a 
new format, as described later. A standard reader now reads 
from this new file, allowing the user to write interface code to 
read the data (ancillary and image) into the user's image pro- 
cessing system. 

The new proposed format addresses the following issues: (1) 
a single file per image, with a single record-length per file; (2) 
Ancillary data in ASCII: KEYWORD = value ; comment; (3) 
Self-documenting via comments and strict syntax; (4) Self- 
reading, so that a program can inspect input file and generate 
code that can read in all data in input file; (5) Addition of new 
parameters is simple, and users can generate readers for the new 
format with the program in #4. 

This code is written and works now. 

1. INTRODUCTION 

The previous version of this paper presented the design strat- 
egy, but the programs were not yet written. Now, the programs 
are written and they work well together. The design strategy is 
presented here as it has evolved since last year. 

This paper presents a working solution to the problem of con- 
stantly writing new software to read in, and otherwise process, 
a SAR image every time a new format must be supported. The 
basic problem is that the CEOS standard for SAR data is not be- 
ing meticulously followed, hence there is a new format to deal 
with whenever receiving data from a different sensor or differ- 
ent processing facility. Section 2 details the problems with the 
present standard, and section 3 presents a computer program 
that solves these problems in a way that requires no program- 
ming from the user. Section 4 gives a detailed example of a 
format-file that is used for that solution. Section 5 then goes 
on to propose a new standard that would be better for both data 
provider and data user. A detailed example of this new standard 
is given in section 6, followed by the conclusions in section 7. 

2. PRESENT TROUBLES 

To any SAR data user who uses data from different sensors or 
different processing facilities the problems with the present stan- 
dard for this data is obvious: the formats are nearly identical, 
but not exactly. When they aren't exactly identical in areas that 
matter to the user, the solution involves writing a custom com- 
puter program for each format type. In our lab this has quickly 
become a prohibitive time sink with 2 or 3 new formats every 
year. The solution presented here is a code-generator: a pro- 
gram that writes the source code for another program. 

But back to the problems: how serious are they? It all de- 
pends on the kind of processing required: which parameters you 
need. Some example problems include: (1) one needs the res- 
olution of a pixel, not spacing, to estimate the number of looks 
applied, and it's not there; (2) one needs a calibration constant 
for calculating an absolutely-calibrated image, for comparison 
with other images, and that constant is zero or missing. The 
kinds of problems encountered so far are summarized below: 

1. missing data (zero or not supplied at all) 
2. wrong data (the value is wrong or inconsistent) 
3. data with different meanings (eg.: one facility uses sen- 

sor resolution, while another uses image resolution) 
4. data in different places and/or different formats (eg.: date 

formats) 
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5. data is not in the same form as in another format. Re- 
quires writing a program to calculate required parame- 
ter(s). 

6. poorly-defined parameters (eg.: polynomial coefficients 
for doppler centroid do not give a clue as to the polyno- 
mial equation they go with.) 

3. SOLUTION 

The proposed solution to most of these problems involves the 
user writing a simple ASCII "format-file" for each file-type, de- 
scribing what to read, where to read it, and the format. This 
can take care of problem #4 above. The format file also allows 
one to assign default values and to do arbitrary processing of 
the values to produce new ones. This will solve problems #3 
and #5, and can solve # 1, #2, and #6 under most circumstances. 
To solve problem #6 and sometimes # 1, one must resort to ask- 
ing the data provider for more information. This is usually very 
difficult since the question usually involves something rather 
detailed or esoteric. Often, things that are missing or wrong 
are predictable for a particular format (from a particular sensor 
and processing facility) and so default values can be used in- 
stead. The data with different meanings is also a constant for a 
particular file-type and so can usually be transformed so that it 
has a standard meaning as desired by the user. However, there 
still may be unresolvable problems that the "format-file" ap- 
proach cannnot solve, eg.: no calibration constant. But since 
this "format-file" scheme solves most problems it saves lots of 
time and is still worth using in most cases. 

Each format file that a user writes specifies how to read in 
ancillary and image data as provided by a particular process- 
ing facility in one among several formats that are specific to 
the sensor involved. For example, four format files would be 
written in order to read data from: (1) ERS-1 as provided by 
Gatineau (Canada) in MLD format, (2) ERS-1 as provided by 
DLR (Germany) in PRI format, (3) SIR-C as provided by JPL 
(USA) in SLC format, (4) X-SAR as provided by DLR (Ger- 
many) in SSC format. Each is different, each has its own quirks, 
but these quirks are predictable for each and can be encoded in 
the format files that the user must write. 

These format files are detailed enough so that a computer pro- 
gram is generated from them. The new program is capable of 
reading the data as specified in the format file. There are two 
main reasons for this method: 

1. The generated code can easily be customized to work with 
different image processing packages. This is through the 
use of a few standardized calls to subroutines/functions 
that are package-specific. When compiling the program 
one merely links using the library appropriate for the im- 
age processing package of choice, 

2. The resultant data sets, from disparate sensors and pro- 
cessors, can all have the exact same set of ancillary data. 
This is due to the translation and calculation abilities built 

in to the format file specification. For instance: All the 
dates can be MM-DD-Y Y Y Y, all the distances can be me- 
ters, all the calibration constants can be multiplicative as 
applied, etc. 

Both of these are major advantages when one must write code 
to perform further processing. For example, our lab uses six 
different orthorectification programs for six different SAR for- 
mats. This is a nightmare of wasted effort in writing and main- 
taining them. One orthorectifier is all that should be needed 
with this new data reader and re-formatter. 

The file produced using this data reader is in a new format 
which is described below. It is felt that this format is more flex- 
ible than the present one and that it is flexible enough to repre- 
sent all SAR data in the forseeable future. 

4. EXCERPT FROM EXAMPLE FORMAT-FILE 

%   format   file  for:   Gatineau ERS-1/MLD 
file_type:   DEFAULT="format",LOCAL 
int_format:  DEFAULT="2s-complement",LOCAL 
int_byte_order:  DEFAULT=[4,3,2,1],LOCAL 
O. 
o 

voldesc:   RECORD-ID=5:5,"BIU8",192;6:6, 
"BIU8",192;7:7,"B1U8",18;8:8,"BIU8",18 

% 
tapelD:  READ="voldesc",45:60,"A32" 
sensor:  READ="voldesc",61:76, "A16" 
%CCODE=if(strncmp(sensor,"ERS",3) !=0 ) { 
%CCODE=  printf("Error: Expecting ERS 

sensor, got: %s\n",sensor); 
%CCODE=   return(error); } 
totpix:  READ="imop_fdesc",249:256,"18" 
totlin:  READ="imop_fdesc",237:244,"l8" 
% 
% Now the image data: 
imgbfr:  DATA="image",193:$,"BIU2" 

5. PROPOSED NEW FORMAT 

The new standard for SAR format files is described here. What 
are the requirements of this new standard? The most basic re- 
quirement is that it be used by the data providers. I formulated 
the following list with that in mind, as well as ease of use by the 
data users: 

1. One file per image (can be multi-channel). 

2. All records in file same length. 

3. All ancillary data in ASCII at start of file: 
KEYWORD = value; comment 

4. Self-Documenting: 
• parameters clearly defined with comments 
• parameter types unambiguous via syntax rules 
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5. Self-Reading: Developed code that can examine any file 
and output the source code for a program that will read 
in the file. As in the general reader for present CEOS- 
SAR data, the same customization to a user's own image 
processing system is available. 

6. Must have a set of parameters (and definitions) that all 
data providers agree to that would be mandatory for all 
data sets. Optional parameters for different types of sen- 
sors can be defined as well. 

7. Addition of new parameters by the data providers is as 
simple as adding the parameter name, value and comment. 
Users can then read the "new format" after creating a reader 
for it by running the program in #5. 

Each of these is easy to accomplish by the data providers, and 
will allow for increased ease-of-use by the end-users. Becasue 
SAR is still in rapid development there are constantly new re- 
quirements in the ancillary data that no standardizing commit- 
tee could hope to keep up with. That is why the present stan- 
dard (CEOS-2) has a special record that is to be used for any- 
thing extra that the data provider thinks is important. The new 
standard proposed here makes the entire header area like this 
special record so that there is nothing special about new ancil- 
lary data: making it special just makes it more work to write a 
program to read it in. So all ancillary data is in the top of the 
file, in the same format, as given in point #3 above. Adding 
new keywords is easy for the data provider, since the ordering 
of the keywords and thier positions is completely arbitrary. Old 
programs that don't read these new keywords still work, since 
they effectively ignore any data that they weren't told to read. 
All common scalar, vector, and matrix data types are supported 
and have a unique syntax so that their data-types are unambigu- 
ous. Various required keywords specify important details con- 
cerning the image data such as data-type and byte-ordering. All 
capabilities in the old format are preserved in this new format, 
such as geocoding line-by-line, since vectors of arbitrary length 
are a supported ancillary data type. The ASCII header can be 
displayed at the terminal very simply, since all that is needed 
is a translation from the end-of-key word character used in the 
data file to the end-of-line character used by the computer. The 
image itself no longer has any header or trailer in each line so 
that it is very simple to read it in with standard programs. Also, 
a record of image data on the tape is one line in the image, al- 
lowing the user to easily extract a subset while reading the tape, 
if necessary. 

Lastly, because it is strongly typed, the data file can be used 
as a template by a code-generator to produce a new tape-reading 
program that will read in all of the ancillary data, thus allevi- 
ating the end-user of the task of writing a new tape reader for 
each new format. On the processing facility side, there is an- 
other program which can read a data file, but generate code to 
write a data file of that kind. With all this in hand, the user 
will never again need a hard-copy of the tape format describ- 
ing fields byte-by-byte. 

6. EXCERPT FROM EXAMPLE NEW FORMAT 

Note that many of the comments have been deleted in an effort 
to save space for this article. 

%START-OF-HEADER 
RECORD_LENGTH= 512 
FILE_FORMAT="CEOS-3 SAR" 
NHEADER_RECORDS= 30 
% Example fmt for CEOS-3 SAR Image Data. 

NUMBER_OF_IMAGE_LINES=512 h 
% (y-dir) in the image for 
% (NOT #records) 
NUMBER_OF_IMAGE_PIXELS=512 
% (x-dir) in the image for 

No. of lines 
a single band. 

%No. of pixels 
a single band. 

DATA_TYPE="signed integer" 
DATA__NUMBERS_PER_P IXEL=1 
DATA_BYTES_PER_NUMBER=1 
DATA_INTEGER_FORMAT="2s-complement" 
DATA_BAND_INTERLEAVING="pixel" 
Q. 
O 

SENSOR_NAME="SRL-l, SIR-C" 
DATA_FORMAT_CODE="MLD" 
DATA_FORMAT_NAME="Multi-Look Detected" 
ACQUISITION_DATE="01-13-1960" %dd-mm-yyyy 
ACQUSITION_TIME="13:45:23.023" 

% hh:mm:ss.xxx 
RESOLUTION_AZIMUTH=30.  % Resolution in 
% azimuth direction, meters. 
RESOLUTION_SLANT_RANGE=30.  % Resolution 
%      in slant range direction, meters. 

7. CONCLUSIONS 

Two new programs have been written that can help both SAR 
data users and providers to save time and do their work better. 
The first program can read several format-files, describing dif- 
ferent formats of CEOS-SAR data files, and create a program 
that will distinguish between the different formats and will read 
them in, so that both the ancillary data and the image data are 
in a uniform format for use by other processing programs. The 
second program is really a set of programs that allows a user 
and data provider to read and write a new format that is flexi- 
ble and powerful enough to satisfy all data formatting needs for 
SAR data in the forseeable future. This set of programs allevi- 
ates the need for users or providers to ever write a format-reader 
or format-writer ever again. These programs are available to 
any non-commercial user. Just email the author for more infor- 
mation. 
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INTRODUCTION 

The Moderate Resolution Imaging Spectroradiometer 
(MODIS) instrument will view the Earth in 36 spectral bands 
ranging from 0.4 to 1.4 micrometers with spatial resolution 
from 250 to 1,000 meters. Its first flight will be onboard the 
EOS-AMI spacecraft scheduled for launch in mid '98 into a 
near-polar 10:30 AM descending sun-synchronous orbit. In 
this orbit MODIS will provide global coverage every two 
days. Science instrument data will be brought to Goddard 
Space Flight Center for conversion from raw counts to TOA 
radiances supplemented with geolocation, view angle, and sun 
angle information. 

The MODIS Science Team consists of more than thirty 
members, divided into four discipline groups: Atmosphere, 
Land, Ocean, and Calibration. The MODIS Science Team is 
developing algorithms to routinely produce the following 
Standard Data Products: Cloud Mask, Aerosol Concentration 
and Optical Properties, Cloud Properties, Vegetation and 
Land-Surface Cover (including Surface Reflectance, 
Vegetation Indices, Land Cover Type, FPAR/LAI, and Net 
Productivity), Snow and Sea-ice Cover and Reflectance, Land 
and Ocean Surface Temperature, Ocean Color, Chlorophyll-a 
Concentration and Chlorophyll Florescence. 

This paper identifies information resources associated with the 
MODIS Standard Data Products. It is drawn from the version 
of a WWW Page, (http://ltpwww.gsfc.nasa.gov/ MODIS/ 
IGARSS_97/MODIS_SDP.html), and related WWW Pages 
that were current at the time for submission for this 
conference; this WWW Page ("MODIS_SDP") will be 
updated with new information as the MODIS data products 
and their file formats are finalized. An attempt will be made 
to update "MODIS_SDP" with references to the most useful 
WWW Pages created by other related EOS organizations. 

THE MODIS INSTRUMENT 

MODIS is a key instrument on the EOS AM-1 spacecraft. 
The MODIS Team has a WWW Page (http://ltpwww.gsfc. 
nasa.gov/MODIS/MODIS.html) that provides an overview of 
the MODIS organization and provides links to a wealth of 
MODIS related information. 

The MODIS instrument technical specifications are 
summarized in Table 1, and in the "Technical Specifications" 
WWW Page linked to the "MODIS" page. The AM-1 
Spacecraft Project has a WWW Page (http://fpd-b8-0001. 
gsfc.nasa.gOv/421/421proj.htm#EOS AM-1 MISSION) that 
provides information related to the AM-1 spacecraft. 

THE MODIS SCIENCE TEAM'S PRODUCTS 

The MODIS Science Team is composed of more than thirty 
lead scientists specializing in four disciplines: instrument 
calibration and characterization, land, ocean, and atmosphere. 
Each of these scientists is responsible for developing 
algorithms that are used in the production of the MODIS 
Standard Data Products. These Standard Data Products are 
listed in Table 2, and in the "SDP Catalog" WWW Page 
linked to the "MODIS_SDP" WWW Page (http://ltpwww. 
gsfc.nasa.gov/MODIS/IGARSS_97/SDP_Catalog.html). For 
the calibrated radiances, the geolocation, and each of the 
geophysical parameters that comprise these products, the 
MODIS Science team has developed an Algorithm Theoretical 
Basis Document; these are available for distribution via the 
"ATBD" WWW Page (http://eospso.gsfc.nasa.gov/atbd/ 
modistables.html). The ATBD provides the science rationale 
and heritage for the computation of the related parameters; it 
is the best place to start for an "in depth" understanding. 

The  following  WWW Page  references   provide   summary 
information    for    the    Calibration,    Land,    Ocean,    and 
Atmosphere disciplines; additional information can be found 
in the "SDP Catalog" WWW Page. Each MODIS Discipline 
Group's WWW Page identifies its science team members (and 
provide links to their WWW Pages), and provides discipline 
related information. 
MODIS Calibration Discipline: 
http://modarch.gsfc.nasa.gov/MODIS/modcal.html 
MODIS Land Discipline: 
http://modarch.gsfc.nasa.gov/MODIS/modland.html 
MODIS Ocean Discipline: 
http://modarch.gsfc.nasa.gov/MODIS/modocean.html 
MODIS Atmosphere Discipline: 
http://modarch.gsfc.nasa.gov/MODIS/modatm.html 
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TABLE 1 

Scan Rate: 
Swath Dimensions: 

Telescope: 

Quantization: 
Spatial Resolution: 

20.3 rpm, cross track 
2330 km (cross track) by 10 km (along track at nadir) 
17.78 cm diam. off-axis, afocal (collimated), 
with intermediate field stop 
12 bits 
250 m (bands 1-2), 500 m (bands 3-7), 1000m (bands 8-36) 

Primary Use 

Land/Cloud 
Boundaries 

Land/Cloud 
Properties 

Ocean Color 
Phytoplankton 
Biogeochemistry 

Atmospheric 
Water Vapor 

Atmospheric 
Temperature 
Cirrus Clouds 
Water Vapor 

Ozone 
Surface/Cloud 
Temperature 
Cloud Top 
Altitude 

and Bandwidth Spectral Radiance Required SNR 

1 620- 670 21.8 128 
2 841 - 876 24.7 201 

3 459- 479 35.3 243 
4 545- 565 29.0 228 
5 1230 - 1250 5.4 74 
6 1628 - 1652 7.3 275 
7 2105-2155 1.0 110 

8 405- 420 44.9 880 
9 438- 448 41.9 838 

10 483- 493 32.1 802 
11 526- 536 27.9 754 
12 546- 556 21.0 750 
13 662- 672 9.5 910 
14 673- 683 8.7 1087 
15 743- 753 10.2 586 
16 862- 877 6.2 516 
17 890- 920 10.0 167 
18 931 - 941 3.6 57 
19 915- 965 15.0 250 

Required NE(Delta-T) 
20 3.660- 3.840 0.45 0.05 
21 3.929- 3.989 2.38 2.00 
22 3.929- 3.989 0.67 0.07 
23 4.020- 4.080 0.79 0.07 
24 4.433 - 4.498 0.17 0.25 
25 4.482- 4.549 0.59 0.25 
26 1.360-  1.390 6.00 SNR: 150 
27 6.535- 6.895 1.16 0.25 
28 7.175- 7.475 2.18 0.25 
29 8.400- 8.700 9.58 0.05 
30 9.580- 9.880 3.69 0.25 
31 10.780- 11.280 9.55 0.05 
32 11.770- 12.270 8.94 0.05 
33 13.185- 13.485 4.52 0.25 
34 13.485 - 13.785 3.76 0.25 
35 13.785 - 14.085 3.11 0.25 
36 14.085 - 14.385 2.08 0.35 

Bands 1 to 19 are in nm Bands 20 to 36 are in um Spectral Radiance values are in W/mA2-um-sr 
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MODOl Level-1 A: Instrument Counts 

TABLE 2 

MOD10 
MOD02 Level-IB Calibrated Radiance MOD33 
MOD03 Geolocation Fields MOD29 
MOD04 Aerosol Product (ocean/land) MOD42 
MOD05 Near IR Precipitable Water MOD 18 
MOD06 Cloud Properties MOD19 
MOD07 Ozone: Total Burden MOD20 
MOD08 Atmos. Stability (Lifted Indx) MOD21 
MOD30 Temp, and Moisture Profiles MOD22 
MOD35 Cloud/Surface Classific Mask MOD23 
MOD38 Water Vapor (Thermal IR) MOD24 

MOD25 
MOD09 Land Surface Reflectance MOD26 
MOD11 Land Surface Temperature MOD27 
MOD12 Land Cover MOD28 
MOD 13 Vegetation Indices MOD31 
MOD 14 Thermal Anomalies (Fire) MOD32 
MOD15 Leaf Area Index & FPAR MOD36 
MOD17 Photosynthetic Activity/NPP MOD37 
MOD43 BRDF and Albedo MOD39 

Snow Cover 
Gridded Snow Cover 
Sea Ice Extent 
Gridded Sea Ice 
Water-leaving Radiance 
Pigment Cone, CZCS 
Chlorophyll Fluorescence 
Chlorophyll_a Concentration 
Photosynthetic. Avail. Rad. 
Ocean Suspended-solids Cone 
Organic Matter Concentration 
Coccolith Concentration 
Ocean Attenuation Coef. 
Ocean Productivity 
Sea Surface Temperature 
Phycoerythrin Concentration 
Ocean Calibration (Match-up) 
Absorption Coefficient Total 
Ocean Aerosol Radiance 
Clear Water Epsilon 

THE MODIS SWATH AND GRID 

EOSDIS has defined a "data level" scheme for data products 
from its spaceborne instruments. Levels 1 and 2 relate 
directly to the "pixel" data values generated by the MODIS 
instrument. Level 3 data have been composited (spatially and 
temporally) onto a geographically defined grid. Each of the 
disciplines is developing grids (both equal area and equal 
angle) scaled appropriately for their geophysical parameters; 
see their WWW Pages for more information as it is available. 

DATA PRODUCT DISTRIBUTION 

facilitates the interoperability of data over many computing 
systems. In addition, the EOSDIS has defined classes of 
HDF files, "HDF-EOS," for which EOSDIS-specific services 
will be provided. The best way to learn about HDF-EOS is 
to start with the EOSDIS Information Architecture WWW 
Page (http://spsosun.gsfc.nasa.gOv//InfoArch.html), and 
follow the links to the HDF-EOS WWW Pages. MODIS 
will be compatible with HDF-EOS Swath and Grid. Specific 
formats for the MODIS Products will be available through 
the "SDP Catalog" WWW Page when they are finalized. 

CONCLUDING REMARK 

The MODIS Standard Data Products will be distributed by the 
EOSDIS Distributed Active Archive Centers, DAACs. The 
MODIS Snow and Ice Data Products will be distributed by 
the National Snow and Ice Data Center (see: http://www- 
nsidc.colorado.edu/NASA/GUTDE/). The MODIS Land Data 
Products will be distributed by the Land Processes DAAC 
(see: http://edcwww.cr.usgs.gov/landdaac/landdaac.html). The 
MODIS Oceans and Atmospheres Data Products will be 
distributed by the Goddard Space Flight Center's DAAC (see: 
http://daac.gsfc.nasa.gov/DAAC_DOCS/gdaac_home.html). 

MODIS DATA FORMATS 

All of the MODIS Standard Data Products will be distributed 
(via the EOSDIS) in the HDF data format. HDF is developed 
and maintained by the National Center for Supercomputing 
Applications (see http://hdf.ncsa.uiuc.edu).   This data format 

Because the development of the MODIS Standard Data 
Products is an ongoing effort, the best way to get current 
information is to monitor the WWW Pages indicated above. 
Other sites that may be of interest include the EOSDIS Home 
Page (http://eospso.gsfc.nasa.gov/eos_homepage/eosdis. 
html), the EOSDIS Project Home Page (http://spsosun.gsfc. 
nasa.gov/EOSDIS_main.html), and the EOS Project Science 
Office Home Page (http://spsosun.gsfc.nasa.gov/eosdata. 
html), and the pages linked to them. 

ACKNOWLEDGMENTS 

The author of this paper did little more than compile the 
information in the WWW Pages produced by the MODIS 
Science Team, their co-investigators, and their technical 
support staffs. Any errors should be presumed to have been 
made in the compilation process. 

1251 



Towards a Common Language in Satellite Data Management: 
A New Processing Level Nomenclature: 

Garik Gutman and Alexander Ignatov 
Office of Research and Applications 
NOAA/NESDIS/ERA12,WWB 712, 

Washington, DC 20233, USA, 
Tel. (301) 7638042, Fax (301) 7638108, ggutman@nesdis.noaa.gov 

Abstract ~ This paper represents an attempt to standardize the 
terminology used in satellite data processing and utilization 
from raw sensor counts to end products. The proposed 
processing level nomenclature (PLN) and the flow structure are 
based on our experience with the Advanced Very High 
Resolution Radiometer (AVHRR) data production and are 
intended to complement and enhance the PLN currently used 
for the Earth Observing System (EOS) datasets. The proposed 
four-level structure is designed considering two major groups: 
1) data producers and 2) data users. The A and B levels of the 
structure are primarily oriented to serve the first group, 
consisting mostly of remote sensing specialists, whereas the C 
and D levels fit better the purposes of scientists in the second 
group (e.g. weather-climate numerical modelers) that are 
interested in end products but not in remote sensing 
methodology. A simple PLN is proposed to facilitate 
communication between producers and users of satellite data. 

INTRODUCTION 

Scientists working with satellite data can be roughly 
subdivided into two major categories: 1) data producers, 
consisting of remote sensing specialists who develop methods 
to retrieve geophysical variables from reflected and emitted 
radiances received by satellite sensor and 2) data users, 
working on environmental applications, such as agriculture, 
weather-climate modeling, ecology, etc. The requirements of 
these two groups differ because of the nature of their research. 

Data production is a complex multi-level task, which 
usually includes navigation, mapping, radiometric calibration, 
pixel classification, and retrieving geophysical variables. For 
volume compression, data are sampled and composited, and the 
residual noise is supressed by interpolation and smoothing. 
Thus, remote sensing researchers, working on improving 
procedures to retrieve geophysical variables, are either data 
producers or contribute to this category. They require data at 
a particular processing stage (raw counts or calibrated 
radiances, before or after cloud detection, composited or at the 
original temporal resolution, etc.) so that they can test 
applications of new techniques. Auxiliary information, that is 
mandatory for technique development, e.g. sun elevation, 
satellite ephemeri and viewing geometry, cloud detection flags, 
etc., should be included as part of data. Which of the procedures 
are applied, how rigorously, and in what order depends on the 

scientific and technical capabilities within each particular data 
processing group, and is also dictated by users' needs. 

The data producers should be distinguished from the "end 
product users" who are interested in complete fields of 
geophysical variables after all necessary remote sensing 
procedures have been applied. They usually want interpolated 
and/or smoothed fields, or even just the statistical structure of 
these fields. Much of the information from satellite processing 
(original radiances, satellite geometry, etc.) is not required and 
can be omitted. Yet, sometimes data users have no choice but 
to start over from a certain processing stage, maybe even from 
raw data, and go through several procedures to obtain what they 
need, which could be prohibitively expensive. Our experience 
is that numerical modelers would prefer not to spend time and 
resources on processing satellite data. 

A generic PLN exists for EOS data products, presenting a 
sequence of levels moving in one direction, so that some of the 
existing products/procedures are not readily identified in this 
PLN. The current paper proposes a modification to account for 
procedures that are currently in practice and do not readily 
comply with the sequential structure of the EOS PLN. We 
propose its enhancement in three ways: 1) subdivide the levels 
into remote sensing processing to retrieve geophysical variables 
and preparation of complete fields of these variables, 2) identify 
the processing steps applied and the path through the steps 
taken to the final product, and 3) make data products 
self-explanatory in terms of space/time scale. Our goal is to 
move towards a potential unification (standardization) of the 
existing schemes and nomenclatures in order to facilitate the 
interaction between data producers and users. 

EXISTING CLASSIFICATIONS 

The levels of data defined by EOS [1] are: level 0 - 
reconstructed unprocessed instrument data at full space-time 
resolution: level 1A - reconstructed unprocessed instrument 
data at full resolution, time-referenced, and annotated with 
ancillary information, including radiometric and geometric 
calibration coefficients and georeferencing parameters (i.e. 
platform ephemeri) computed and appended, but not applied to 
the level 0 data: level IB - level 1A data processed to sensor 
units; level 2 - derived geophysical variables at the same 
resolution and location as the level 1 source data: level 3 - 
variables mapped on unform space-time grid scales    (i.e. 
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spatially and/or temporally resampled from levels 1 and 2 
products, which may have included averaging and 
compositing); level 4 - model output or results from analysis of 
lower level data, i.e. variables derived from multiple 
measurements. 

The World Climate Research Program (WCRP) follows the 
Global Atmospheric Research Program (GARP) data-level 
categories [2], which are subdivided into three general levels: 
1) primary instruments readings expressed in appropriate 
physical units and referred to earth coordinates, but requiring 
conversion to geophysical parameters; 2) retrieved geophysical 
parameters after appropriate quality assurance and reformatting; 
3) analysis or fields prepared from level 2 data. This 
categorization has been used by WCRP elements, such as 
Tropical Ocean and Global Atmosphere (TOGA), Global 
Energy and Water Cycle Experiment (GEWEX), International 
Satellite Cloud Climatology Project (ISCCP), and others, either 
as is or with slightly modified definitions. For example, TOGA 
PLN for level 3 lists "homogeneous data fields derived from 
level 2 by an analysis technique" [3]. 

ISCCP uses a three-level PLN, denoting them, as A, B, and 
C [4]. Level A are raw satellite image data. Bl is data sampled 
in time and spatially averaged, B2 is further spatial sampling, 
B3 is the primary global radiance dataset, with normalization 
and calibration results appended. Cl is reduced space and time 
resolution data after application of cloud flags, and C2 is 
monthly statistics of Cl. 

Committee on Earth Observations Satellites (CEOS) 
classifies data products "by the sort of processing used in their 
generation and, to a lesser extent, the sort of uses to which these 
products might be put" [5]. CEOS PLN has a five-level 
structure similar to the EOS PLN. The VEGETATION and 
POLDER programs' data productions conform with CEOS 
PLN, but do not list the fifth CEOS-defined level, probably 
leaving the production of complete (interpolated/smoothed) 
geophysical fields to data users [6,7]. 

The European Space Research Institute (ESRTN) of the 
European Space Agency (ESA) uses a two-level PLN, but splits 
the level 2 products into three sublevels 2A, 2B, 2S [8]. Further 
processing is being developed on experimental basis, such as 
objective analysis of sea surface temperature data, which is 
analogous to level 4 in CEOS PLN. 

The above brief review suggests that there are commonalities 
as well as minor differences in the existing PLNs, varying in the 
number of levels and their content. Level 4 in the above PLNs 
reflects the use of the data products by numerical modelers. 
However, often the users request datasets even if the remote 
sensing processing was not fully accomplished, e.g. without 
atmospheric or surface anisotropy corrections. Therefore, 
indication of the processing steps used to produce a dataset is 
needed. Also, a space-time resolution notifier would be useful 
addition. 

PROPOSED PLN 

The proposed PLN is based on the major common features 
described above, taking into consideration data use for 
developing processing methods and for numerical modeling, 
and is enhanced twofold: 1) to identify the processing path in 
addition to the final step, and 2) to indicate dataset's space-time 
resolution. A more complete description of the PLN with flow 
charts is given in [9]. To identify the time and space resolution, 
we propose a flexible mnemonics: TS where T can be H, D, P, 
W, Dk, M, Y for hourly, daily, pentadly, weekly, dekadal, 
monthly, and yearly, respectively, and S can be 1, 8, 15, 100, 
250 representing 1-, 8-, 15-, 100- and 250-km resolutions (there 
is, however, some room for removing the ambiguity between 
scales given in km or degrees). 

A-level: the original readings received from satellite sensor. 
The output from the A-level processing is the raw data with 
calibration and navigation appended. Details of this level pre- 
processing are described by Users Guides. 

B-level: calibration, cloud and quality flags generation, 
atmospheric and surface anisotropy correction, derivation of 
geophysical variables. The B-level data are mostly remote 
sensing oriented, hence they should include auxiliary 
information, such as observation-illumination geometry, 
calibration coefficients, cloud and quality control flags, etc., 
that would allow tests and development of alternative methods 
to improve the quality of data products. Bl - the input from the 
A-level, i.e. raw data with navigation/calibration information 
appended but not applied (commonly known at NOAA as the 
IB-level). B2 - data mapped into a regular space/time grid (i.e. 
sampled from the original resolution). B3 - data sampled 
further (space and/or time), such as composites. Thus, the 
three stages at their "zero" step provide users with BX.O data 
(X=l,2,3): B1.0 (orbits), B2.0 (maps), B3.0 (composite maps). 
Any of them may be used as a starting point for further 
processing. BX.O data product is, in effect, the A-level output, 
which is either retained as is (B1.0), or spatially/temporally 
sampled and mapped (B2.0), or presented as composite maps 
(B3.0). The processing steps that can be done at all BX stages 
(X=l,2,3) are discussed below. 

The steps that comprise the B-level processing are denoted 
as BX.Y (Y=l,..., 5) and consists of calibration (BX.l), cloud 
identification (BX.2), atmospheric corrections (BX.3), surface 
anisotropy corrections (BX.4) and transformaton to geophysical 
variables (BX.5). Note that the "cloud flags" generated at 
BX.2 are not applied but appended to BX.l. The BX.3-5, on 
the other hand, can be made by means of look-up tables so that 
the whole image, independently of the cloud flags, is 
transformed with efficient use of computer time. The flags are, 
thus, carried over through BX.3-5 steps. 

Thus, the B-level product is proposed to be presented as 
BX.Y/TS, where X= 1,2,3 and Y=l,2,3,4,5, denoting the stage 

1253 



and the step, respectively, and TS denoting the time/space 
resolution as described above. 

C-level: complete fields of the variables produced by 
spatial/temporal averaging, interpolation, and smoothing, using 
the B-data as input. This data level is intended for numerical 
modelers, who need satellite-derived products for initialization 
and validation of models and who usually prefer to bypass the 
remote sensing processing. For those modelers, who desire to 
work with the original point measurements at full time-space 
resolution without any C-level processing, the B-level data 
products are readily available. 

At this level, all auxiliary information is omitted, cloud and 
other quality flags have been applied and complete fields of the 
variables are produced by spatial/temporal averaging, 
interpolation, and smoothing, to fill in the data gaps and to filter 
out residual noise caused by the imperfections in the original 
data and the B-level processing. Some of the signal, however, 
may be lost as a result of these procedures, but this is the cost 
of having complete fields ready for use in models. 

The C-level data has the same X.Y/TS structure as the B- 
level: CX.Y/TS. Note that TS values may vary from those in the 
B-level due to the procedures used. 

D-level: integral and statistical characteristics of C-level data, 
e.g. climatology.The D-level is intented for use by researchers 
that are interested only in the descriptive statistics of a 
particular dataset to complement some other statistics. They 
would not need the whole time series or the full maps but 
require some integral and statistical characteristics. Such D- 
level products are of immediate use in climate analysis with 
practically no additional data processing involved. Combining 
the C- and D-level data can be utilized for monitoring purposes 
[10]. The X.Y/TS structure applies to the D-product as well. 

It is important to notice that the above scheme identifies the 
final processing step only. The result, however, does depend on 
the path that lead to the final product. For instance, compositing 
with further atmospheric correction yields different results from 
compositing of atmospherically corrected data. Therefore, the 
path should be an integral part of the nomenclature. For brevity, 
one can operate with the final product index/notifier. We 
propose that a path index be appended to the dataset header. 

Summarizing, note that the A-level in the proposed PLN is 
similar to EOS level 1, the B-level encompasses EOS levels 2- 
and 3, and the C-level has much in common with EOS level 4. 
EOS' and other existing PLNs, however, do not account for a 
possibility of moving first from stage to stage within a step 
(e.g., composites of the original counts are not readily 
classified) and do not clearly distinguish the remote sensing 
processing from applications to numerical modeling. The 
proposed PLN can potentially serve as an enhancement to the 
current EOS' PLN and lead to unification of all the available 
data production schemes and nomenclatures. 

CONCLUSIONS 

The proposed PLN is based on our experience with AVHRR 
data processing. It can be further developed, elaborated and 
adjusted to the existing EOS PLN notations (A,B,C,D could be 
replaced with 1,2,3,4 with possible adjustments). Our goal was 
to make a first step in unifying many existing systems, while 
enhancing the current EOS PLN. It would be beneficial for 
both the remote sensing and numerical modeling communities 
to develop a consensus on this matter. The proposed system 
facilitates understanding of the data product, pointing to the 
missing parts in developing the final product. As an exercise, 
the reader may want to use the proposed PLN to find proper 
notations for the products that are being generated or are under 
investigation in their group. 
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ABSTRACT -The good news is that the Earth Science 
community will not be data-starved in the Earth Observing 
System (EOS) era. The bad news is that techniques to cope 
with enormous volumes of Earth Science data have not yet 
met the challenge. Coping with data involves processes such 
as becoming familiar with a data center's inventory, searching 
for appropriate data, and retrieving only the data that are 
needed. The Center for Earth Observations and Space 
Research (CEOSR) of George Mason University, in 
partnership with the NASA Goddard Distributed Active 
Archive Center (DAAC), have developed some innovations to 
reduce barriers that users may experience in accessing Earth 
Science data. The techniques are extensions of two 
fundamental concepts: Data distribution must become 
responsive to data users' needs, and statistical summaries of 
data stored as metadata can provide a basis for content-based 
data selection. 

INTRODUCTION 

Science is a competitive process. There are systematic 
rewards (including funding) to researchers who published 
unique analysis of data. An undesirable consequence of this 
competition is that it provided an advantage to researches who 
had access to data over those who did not. Because data 
producers lacked an incentive to widely distribute data to their 
competitors, attempts to standardize data distribution have not 
been fully supported. 

We are now entering an era in which researchers are 
encouraged to publish both their analysis and the data 
themselves. For example, EOS instrument teams are funded 
to create hundreds of data products [1]. Most aspects of the 
EOS data stream, from the "raw" level 0 data through to 
highly processed assimilated data products are intended to be 
publicly available. This includes the algorithms themselves 
and even the experimental test data products. This re- 
alignment of resources toward data production and distribution 
should generate an unprecedented amount of data. Users 
should easily be able to find the data they need (or discover 
their existence). And the distribution of the data from the 
EOS system to the researcher's system should be efficient. 

Unfortunately this success story will not be achievable using 
present paradigms of data management. Why not? There is 
too much data and too many users. There is too much data 
for users to select from, so meaningful choices will be 
difficult. Today's user asks "Are there any observations of 
Z?". In contrast, the user of EOS data will ask "Should I be 
using observations of Z produced by instrument X or 
instrument Y?". And there will be users from such diverse 
perspectives, levels of expertise, and technical capability that 
the distribution of a "one-size-fits-all" product will fail. 

An artifact of the system's enormous scale is that it is being 
optimized for ease of data production. Unless significant 
attention is paid to post-production customization, the 
quantity and diversity of users will over-tax the distribution 
process. The system will be at risk if it is being scaled to 
support relatively few users to customize (i.e. reformat, 
subset, resample, etc.) their data during distribution. The risk 
is due to the cost of processing a custom order as a "special 
case". Too many special cases would shut down such a 
system. The system which protects itself by not catering to 
the user (i.e. no customization) would have few users. Since, 
the target audience of the system will demand customization, 
the emphasis must shift to accommodate it. The flexibility 
to customize the data must be built into the distribution 
system. The Center for Earth Observations and Space 
Research (CEOSR) of George Mason University, in 
partnership with the Goddard DAAC, are developing some 
innovations to reduce barriers that users may experience in 
accessing Earth Science data. The innovations stem from 
asking two fundamental questions: "Who is the user?" and 
"What are the data?". 

WHO IS THE USER? 

The task of distributing data is simplified if either the user 
community is well-defined or the data are so valuable that 
users will surmount any barrier to their use. In the EOS era, 
neither of these criteria will be satisfied. A consequence of 
NASA's ambitious Mission to Planet Earth (which EOS is 
part of) is the stimulation of use of Earth science data beyond 
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its conventional users. It will be a challenge to respond to 
such a diverse user community and impossible to anticipate 
the novel ways Earth Science data will be utilized in the 
future. 

A proposed solution to this obstacle is to further de-centralize 
the distribution of EOS data [2]. The de-centralization should 
be accomplished within a "federated" framework, where each 
node of data distribution serves its users and maintains a 
commitment to inter-operability with the other members of 
the federation. Furthermore, care should be taken in 
establishing the members of this federation, so that each of 
the various communities of data users are identified and 
served. This would remove the burden of trying to serve all 
users from the centralized system, and simultaneous give the 
federated data centers a clear conception of its customers. 

WHAT ARE THE DATA? 

The data volumes are expanding from several distinct trickles 
into a flood. If we rely on current methods of providing 
access, the vast majority of the information inherent in the 
data will go under-utilized. Because of the overwhelming 
volume, users themselves will invent methods to limit the 
amount of data they need to analyze. Such techniques might 
include limiting the temporal or geographic scope of their 
research or using degraded resolution data. These scenarios 
constitute under-utilization since the science has potentially 
been compromised by the constraints of data management. 

A more science-enabling approach would be to provide access 
to summaries of the available data. This is the concept 
behind traditional browse images. However, without 
sophisticated automated searches (i.e. artificial intelligence) 
and enhanced network connections, paging through image 
after image may frustrate the user before enough data have 
been sorted through. A more efficient summary could be 
provided statistically. To summarize the content would distill 
much of the scientific value out of the data, and may be an 
adequate way to search through massive volumes. If users 
can search the summary statistics of the data, they can 
potentially order a smaller volume of the actual data archived. 
CEOSR is developing an interface demonstrating this 
principle which appears promising [3]. 

CONCLUSION 

The centralized data center which attempts to satisfy all users 
with non-customized data products will fail to serve users in 
the EOS era. There will be too much data and the user 
community will be too diverse. Data centers can succeed if 
they recognize that they should be targeting specific 
communities. These data centers should then support each 
community it expects to serve either by integrating itself into 

the user network (perhaps through partnerships with 
universities). To each supported community, the data center 
must act as if it existed to support that particular flavor of 
research. Emphasis should be placed on effective searching 
through "floods of data" and customized data delivery. 

REFERENCES 

[1]SW Wharton and MF Myers, Eds., 1997 MTPE EOS Data 
Product Handbook,Vol 1, Goddard Space Flight Center, 
National Aeronautics and Space Administration, Washington, 
DC. 

[2]M Kafatos, et al,The GMU ECS Federated Client-Server 
Architecture, Contract ECS-00010, 1994. 
http://www.ceosr.gmu.edu/indy-study/indy-study.html. 

[3]M Kafatos, Z Li, R Yang, P Hertz, D King, XS Wang, H 
Weir, H Wolf, D Ziskin, 1997, The Virtual Domain 
Application Data Center: Serving Interdisciplinary Earth 
Scientists, Ninth Annual Conference on Scientific and 
Statistical Database Management, Evergreen State College, 
Olympia, Washington. 

1256 



A Catalog-Browse System with Quick-Look Images 
for SPOT, ERS and RADARSAT Data Archives 

Leong Keong KWOH 
Centre for Remote Imaging, Sensing and Processing 

National University of Singapore, Lower Kent Ridge Road 
Singapore 119260, Republic of Singapore 
Tel: (65) 772 3220, Fax : (65) 775 7717 

e-mail: crsklk@leonis.nus.edu.sg 

Abstract - To allow for easy access to CRISP's data archive 
of SPOT, ERS and RADARSAT, a WWW catalog browse 
system has been developed. Besides descriptive (meta) data, 
quicklook images are also available for viewing. The 
database for the catalog browse system is updated daily and 
automatically by the system. The system is implemented 
with: (1) standard HTML fill-out forms for communication 
between users' browsers and CRISP's Web server, and (2) 
Common Gateway Interface (CGI) and 'C programs for 
communication between CRISP's Web server and CRISP's 
database. 

INTRODUCTION 

The Centre for Remote Imaging, Sensing and Processing 
(CRISP), Singapore, operates a ground station which has 
been actively acquiring data from SPOT and ERS satellites 
since September 1995, and RADARSAT satellite since 
November 1996. To date, there are about 50,000 scenes of 
SPOT images, 9000 scenes of ERS images and 350 scenes of 
RADARSAT images in the archive. A common problem of 
ground stations is how to disseminate information on data 
availability to potential users, both locally and 
internationally. Recent advances and popularity of Internet 
World Wide Web (WWW) has made it possible to effectively 
and economically provide a solution to this problem. In 
CRISP, a WWW Catalog Browse System has been put in 
operation since October 1995. This system can be accessed at 
http://www.crisp.nus.edu.sg. 

WWW CATALOG BROWSE SYSTEM 

The WWW catalog browse system was developed in-house 
and has evolved from a very simple system initially to a 
highly friendly system today. 

To keep the design simple and flexible, we choose to have 
a separate suite of software modules for each of the satellites. 
This approach allowes us to adapt to the peculiar 
requirements of each satellite, e.g., RADARSAT does not 

have standard predefined frames like SPOT and ERS but 
have many beam modes. 

When a user first accesses the system, he will be asked to 
choose from a list of the three satellites. By clicking on any 
one of them, the system will load a Java Applet, shown in 
Fig. 1, with a map of South East Asia and CRISP's coverage. 
The user can zoom in and out of the map and when he is 
satisfied with his area of interest, he will click the submit 
button which will load up a page with standard HTML fill- 
out forms. For user who do not have a Java enabled browser, 
we have an alternative page where the area of interest is 
keyed-in from the keyboard. 

From the HTML fill-out forms, the user will be able to 
enter other search criteria such as start and end dates, 
satellite numbers, cloud covers etc. A click on the submit 
button will send these search criteria to CRISP's Web server. 
These criteria will be passed using the common gateway 
interface (CGI) to the search software which are implement 

SDJanfcf   Soas-lnl   Jfoil Sggwgf  I 74 76. 30. 29        1   132.79,-27.71    } 

Fig. 1 - Java Applet for Selection of Area of Interest 
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in 'C. The search software then interacts with CRISP's 
database and returns a list of scenes that satisfy the user's 
criteria. 

The scenes returned by CRISP's database are then plotted 
onto a raster map according to their geographic coverages 
and presented to the user for his selection (Fig. 2). Usually 
there are many overlapping scenes over any location, so 
when the user click on any point on the map, a list of sceries 
will be returned. When one of these scenes is clicked, the 
system will present a quicklook image of the scene, a small 
location map and descriptive data for the scene. The 
quicklook image is kept small to speed up user's browse 
session. The user may click on the small quicklook to 
obtain an enlarged version of the quicklook (Fig. 3). 

There are two additional convenient features to help 
searching. The first is a link to the preceding and 
succeeding scenes of the satellite pass. The second is the 
'shift along track' (SAT) feature. The SAT feature was 
implemented because in many cases, the area of interest will 
not coincide conveniently with the standard scenes of SPOT 
orERS. 

USER FRIENDLINESS 

We have taken great care to make the system user 
friendly. With a Java enabled browser, a user will be able to 
perform the whole catalog search by only clicking the mouse 
button. He will not need to reach-out for his keyboard. The 
size of data files and image files that need to be passed over 

the internet are also kept relatively small so that the waiting 
time for data downloading will not be too long. 

CATALOG DATABASE 

The catalog database consists of the descriptive database 
and the quicklook image database. For the descriptive 
database of SPOT, we followed SPOT Image's Standard 
Catalog Information Exchange (SCIE) record structure 
where each record of 218 bytes will contain all the useful 
information about a given SPOT scene. The quicklook 
images are stored in standard JPEG format. For 
convenience, we store each SPOT pass in separate directory 
and name the quicklook images according to the 21- 
character SPOT scene ID. The link between the descriptive 
record and the quicklook filename is maintained with a 
separate file. This file has two fields, a field containing the 
scene ID and another field containing the full filename of the 
quicklook image, including its absolute path. With this 
implementation, we can move the quicklook imagery to any 
directory or filesystem and also name the quicklook images 
in any manner. The database scene records are pre-sorted in 
reverse chronological order of scene acquisition time so that 
the most recent scene will be the first record presented. 

For ERS data, there is no standard catalog format, so we 
have to define one ourselves. Following SPOT'S scene ID 
concept, we defined a 24 character ID for each ERS scene. 
The ID basically is a concatenation of the satellite number, 
the orbit number, the frame number, the date and time of 
imagery. The orbit and frame numbers are actually 
redundant but was kept for convenience. The scene ID will 
uniquely define the ERS scene. The quicklook images are 
stored in similar manner as that for SPOT, in standard JPEG 
format and named according to the 24 character ID, and a 
separate file to link the descriptive data records to the 
quicklook images. 

For RADARSAT, we had to adapt a different approach 
because RADARSAT data does not have standard framing 
convention. RADARSAT scenes are defined by satellite 
number, date and time of acquisition. We still maintain a 
descriptive database and a quicklook database. For the 
descriptive database, each record now defines a segment 
which can contain many scenes. For the quicklook images, 
we break the segments up into many scenes. The link file 
now is more complicated as it has to link many quicklook 
images to one descriptive record. Each time a scene is 
requested, two quicklook images will usually be read, then 
joined and trimmed to the required scene length before being 
presented to the user. 

Fig.2 - Scenes Satisfying Search Criteria 
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CATALOG UPDATING 

We have also put in place an operator friendly system for 
updating the catalog. Every time a satellite pass has been 
acquired and processed (quicklook generated and cloud 
cover assessment done), the required descriptive records and 
quicklook images will be generated and moved to its 
destination directory. Another program, which is activated 
by the system twice daily, will automatically updates the 
descriptive database and the link file. Should the descriptive 
database or the link file be corrupted, the same program can 
also be used to rebuilt the database from scratch easily. 

quicklook image from the original directory to a temporary 
directory which is visible by WWW browsers. This 
temporary directory is automatically cleaned up daily. 

CONCLUSIONS 

The simplicity and flexibility of WWW has allowed us to 
developed a low cost, but effective and user friendly catalog 
browse system accessible via the internet. The system is also 
used by CRISP's production operators as a quality control 
tool. It will be continually upgraded to improve its user 
friendliness and functionality. 

SECURITY REFERENCES 

We allow all users access to our system. We are however     [1] 
concerned about data corruption and misuse. To protect our 
catalog, we keep the actual filesystems and directories of our     [2] 
descriptive and quicklook image database separate from the 
working directories which is visible by WWW browsers.     [3] 
The CGI based searching programs, which are complied 
executables,   will   make   a  copy  of the  user  requested 

"The Common Gateway Interface Specification", 
http://hoohoo.ncsa.uiuc.edu/cgi. 
"HTML       Forms",       http://www.w3.org/pub/WWW 
/MarkUp/html3/forms.html. 
"Record Structure for the Standard Catalog Information 
Exchange",  SPOT Document:  S4-CI-C/E-1625-SI,  5 
Aug 1993. 

© CNES 1997 

K-J    : 266339 Date : 970101 Time : 040247 
SPOT No: 2  HRV  : 1  Mode : X  SAT : 3 

Lat itude/long itude 
Upper Left 
Upper Right 
Scene Centre 
Lower Left 
Lower Right 

5.6654/ 100.0625 
5.5664/ 100.6957 
5.3520/ 100.3125 
5.1354/ 99.9407 
5.0368/ 100.5735 

Cloud Cover : AAAAAAAA Max : A Avg 

Scene Orient 
Sun Azimuth 

009.1 Incident Angle 
146.6 Sun Elevation 

+24.4 
+55.5 

Revolution Num : 067 

Fig. 3 - Quicklook Imae, Location Map and Descriptive Data 
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Abstract -- This paper presents an overview of the results 
obtained on Montespertoli area from the different SAR 
missions. An analysis of the sensitivity of radar backscattering 
to some parameters which are of primary importance in 
modelling the geophysical processes of the hydrological cycle 
has been carried out. In particular the effects of surface 
roughness and soil moisture on microwave backscattering have 
been investigated. 

INTRODUCTION 

The operational capability of remote sensing for monitoring 
hydrological parameters in large watersheds is not yet fully 
explored and extensive research is being carried out to evaluate 
the potential of microwave sensors and to assess the achievable 
accuracies of measurements. 

The test site of Montespertoli, located south of Florence, 
Italy, was imaged several times between 1991 and 1994, at 
different incidence angles by different SAR systems: the C- 
band ERS-1, the L-band JERS-1, and the multifrequency 
polarimetric AIRSAR and SIR-C/X-SAR (Table I). Since 
SAR images were collected in different seasons: spring, 
summer and fall, a wide range of soil moisture conditions has 
been investigated. Weather was in fact dry in summer when 
vegetation was well developed; on the contrary the average soil 
moisture was rather high both in April (15-18%) and October 
(generally higher than 20%) when most agricultural fields were 
bare or covered with small vegetation. The area was equipped 
with two trihedral corner reflectors of 180 cm and one of 240 
cm, deployed parallel to flight line. In addition few 'extended 
homogeneous targets' had been specifically prepared, to be used 
as cross reference between flights. Ground truth measurements 
included: soil moisture, roughness, and dielectric 
characteristics, soil erosion features, crop maps, and vegetation 
parameters [1]. 

The measured quantities taken into consideration are the full 
polarimetric features at L- and C-bands and the backscattering 
coefficient o° at VV polarization at X band. 

The effects of surface roughness and soil moisture on 
microwave backscattering have been analysed using SAR data 
collected on various surface types. A fairly good correlation 
with soil moisture of bare or scarcely vegetaed fields has been 
found both at L- and C-bands and 0 = 23°-26°, where the 
influence of    surface roughness and vegetation cover is 

minimized. However, the quality of SAR images at 6 close to 
the nadir is affected by a relatively poor spatial resolution 
which makes it difficult the exact identification of field borders. 
The correlation appreciably increases up to 90% if soil 
moisture is estimated, in different times, on the same area 
including many fields. In the range of observed roughness the 
highest correlation to the height standard deviation of the 
surface was found at L-band 8- 35° [2]. Experimental data 
have been compared with the Integral Equation Model [3] 
implemented for single scattering. 

Tab I: Processed SAR data on Montespertoli area 

Sensors Frequency 
Pol. 

Theta Ground 
Rcsol (m) 

Dates 

MAC'91 C,L,P 
Quad-pol 

20° 
35° 

50° 

12.2x6.6 22/6/91 
29/6/91 

14/7/91 

ERS-1 CVV 23° 30x26.3 29/5/92 
07/8/92 
24/4/94 

JERS-1 LHH 35° 18x24.6 24/6/92 
14/4/94 

SIR-C 

X-SAR 

C,L 
Quad-pol 

XVV 

20° 
60° 

25x20 April 
Oct. 
1994 

EXPERIMENTAL RESULTS 

Sensitivity to soil moisture 
Fairly good empirical correlations between the co-polar 

backscattering coefficient at L-band and the gravimetric soil 
moisture of the first 5 cm layer have been obtained both at 35° 
and 25° incidence angles using the whole SAR data set, 
including AIRSAR data collected in 1991 and SIR-C data 
collected in April and October 1994. As an example, in figure 
1 a°HH measured at L-band, 0= 26° is represented as a 
function of the gravimetric SMC (0-5 cm) of a certain number 
of bare or scarcely vegetated (leaf area index, LAI <1 and plant 
water content, PWC ^0.5 kg/m2) fields. Although at this so 
steep incidence angle the effect of soil roughness is minimized, 
by separating two classes of roughness with height standard 
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Figure 1 - a°HH at L-band, 0 = 25° (AIRSAR + SIR-C) 
as a function of SMC of bare and scarcely vegetated 
(plant water content < 1 Kg/m2) fields. 

Figure 3a - o°HH at L-band, 6=26° (continuous line) and 
SMC (dashed line) of an area of about 20 bare fields as 
a function of time. 

deviation s <, 2 cm and s >2 cm respectively, the spread of data 
decreases and the correlation improves. The correlation 
coefficient r2, which is equal to 0.62 when the soils are 
considered all together, goes up to r2 = 0.71 if only the smooth 
soils are taken into account and decreases to 0.45 for rough 
soils. At 6=35° the correlation is obviously worse and the 
correlation coefficient for the same dat set becomes r2=0.44. At 
C-band a direct comparison between ERS-1 and SIR-C data 
(VV pol, 0=23 °-25 °) showed a poor sensitivity to soil moisture 
content of bare fields (Fig.2) with a correlation coefficient 

rather low (r2=0.4). 
One of the problems in measuring the soil moisture field by 

field is represented by the spatial variations of roughness, 
texture, vegetation characteristics which strongly affect the 
backscatter and determine a heavy scatter of data. For this 
reason the correlation between the backscatter coefficient and 
the soil moisture can be sensibly increased if variations in time 
of the same area are considered rather than variations in space 
of different fields. Subsequently an average value both of o° 
and SMC was computed for a rather flat and homogeneous 

C-band    (VV,    2b) C-band  (W,  25) 

5 10 15 20 25 

SMCgSS Apr       Ju n9        Aug Oc t 

Figure 2 - a°vv at C-band, 0= 23° (ERS-1 + SIR-C), 
as a function of SMC of bare and scarcely vegetated 
(plant water content < 1 Kg/m2) fields. 

Figure 3b - o°vv at C- band, 0 = 23° (ERS-1 + SIR- 
C) (continuous line) and SMC (dashed line) of an area 
comprising 20 bare or scarcely vegetated fields. 
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zone along the Pesa river, inside the larger agricultural area, at 
different dates corresponding to AIRSAR (June and July), SIR- 
C and ERS-1 flights [4]. In the diagram of figure 3 the average 
values of a°mi and SMC are represented as a function of time 
(months) at 6« 25° for L-band (a) and C-band (b). It can be 
noticed that the agreement between the rj° and SMC appears 
very good at both frequencies. If these two quantities are 
directly related to each other, the correlation becomes 
surprisingly good and the correlation coefficients increase up to 
0.9. 

Sensitivity to surface roughness 
From the analysis of our experimental database which 

includes data from P to X band, at various polarization and 
incidence angles, the highest sensitivity to soil roughness, at 
least in the investigated range of height standard deviations, has 
been noticed at L-band, copol, and Ö = 35° - 50° [2]. 

A comparison of experimental data with theory has been 
carried out considering direct relations between the 
backscattering coefficient and the surface roughness and soil 
moisture content. Since the degree of roughness of a surface is 
defined in terms of electromagnetic wavelength, a typical 
parameter used to investigate the variations of the 
backscattering coefficient with roughness is the product (ks) of 
the height standard deviation s with the wave number k (k = 
27I/A., X = electromagnetic wavelength). 

Experimental data have been compared with the Integral 
Equation Model [3] implemented for single scattering. In the 
model the dielectric constant of soil was simulated by using a 
polynomial fit [5], we assumed a soil with a mean value of 
texture (70% sand and 30% silt+clay), moisture SMC=15% 
and an exponential autocorrelation function with correlation 
length lc ranging between 4 and 10 cm. Fig. 4 shows that the 
model (continuous lines) reproduces quite well the data up to ks 
= 2 where multiple scattering effects can be neglected. It should 
be noted that, whereas at L-band a° gradually increases with ks, 
at C-band the saturation confirms that the same surface may 
appear rougher at C- than at L-band. 

FINAL REMARKS 

The analysis carried out on Montespertoli site using multi- 
frequency, multitemporal SAR data indicates that in the scale 
of surface roughness typical of agricultural areas, a co-polar L- 
band sensor observing at two incidence angles (close to 20° and 
35°/50°) gives the highest information content for estimating 
soil moisture and surface roughness. At the observation 
parameters of ERS-1 the sensitivity to soil parameters on a 
spatial scale is rather low. However, considering data collected 
at different dates on the same area, the correlation and 
sensitivity to soil moisture is significant. Finally, a good 
agreement has been found between experimental data and 
simulations with the Integral Equation Model. 

L   S.  C-bond,    Lhot.o=35,   SMC=12 

Figure 4 - Experimental data of o°HH at C (crosses) and 
L (points) bands as a function of ks. Lines refer to the 
IEM implemented for four different values of lc (4, 6, 8 
and 10 cm). 
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Abstract - A variable transition rate factor is proposed for 
the modified IEM, such that it uses a variable dielectric 
profile down to the radar observation depth. A theoretical 
observation depth model is also proposed. It is shown that 
radar observation depth calculated by this model agrees with 
values noted in literature, and that backscattering simulations 
using the variable transition rate factor compare well with 
data collected in the European Microwave Signature 
Laboratory (EMSL) experiments. 

INTRODUCTION 

Soil moisture in the root zone is a key parameter in 
meteorology, hydrology and agriculture. The significance of 
soil moisture is its role in the partitioning of energy at the 
ground surface into sensible and latent heat exchange with the 
atmosphere, and the partitioning of precipitation into 
infiltration and runoff [1,2]. As remote sensing observations 
only respond to the soil moisture in a thin surface layer, 
observations of surface soil moisture must be related to the 
complete soil moisture profile in the unsaturated zone, to be 
of use for climatic, hydrologic and agricultural studies [3]. 

The problem of relating surface soil moisture to that of 
the profile has been studied for the past two decades. Four 
approaches have been adopted: regression, knowledge-based, 
inversion, and combinations of remotely sensed data with soil 
water balance models [4]. 

A recent attempt to relate passive microwave observations 
of surface soil moisture to that of the profile has been made, 
where a radio-brightness temperature model and coupled soil 
heat and moisture transfer model have been combined in the 
context of a Kaiman filter [1]. In order to extend this approach 
to radar observations, the backscattering equations must be 
related to the complete soil moisture profile. Using a series of 
separate regression relationships between soil moisture and 
backscattering coefficient for different depths of soil, an 
empirical method of relating a single backscattering 
observation to the soil moisture profile in the top 10 cm 
layer has been presented [5]. Apart from this, all empirical 
and semi-empirical backscattering models have been related to 
a single soil moisture value in the top 2-5 cm. Furthermore, 
until recently all theoretical backscattering models have been 
formulated as a function of the dielectric constant of the soil 

at the air-soil interface, and have not accounted for the effects 
of volume scattering in the soil. 

A modification to the theoretical backscattering IEM 
(Integral Equation Model) was proposed by [6], to account for 
volume scattering from a drying profile. This modification 
was made by replacing the Fresnel reflection coefficients with 
a modified set of reflection coefficients, which incorporate a 
dielectric profile. In so doing, an exponential dielectric profile 
model was used, in which the relative dielectric constant (er) 
as a function of depth (z) is given by: 

£r(z) = l + (er.-l)T^ 
exp(mz) 

exp(mz) 
(1). 

The inputs to this dielectric model are the transition rate 
factor m (which controls the rate of change of er with depth) 
and the dielectric constant at depth z-°° (£r). By (1), the 

relative dielectric constant starts from 1 in air and gradually 
changes to er at the rate m. It has been suggested that a 

value for m equal to about 12 cm"1 is appropriate, and this 
was shown to be an improvement in the simulation of 
backscattering when compared to the IEM [6]. 

However, a value of m=12 era"1 suggests that the modified 
IEM may only be used to relate backscattering observations 
over a profile depth of around 3 mm. This limits application 
of the model, as a variable dielectric profile over a depth of 3 
mm does not provide any additional information on the soil 
moisture profile than the surface scattering models. 
Furthermore, various authors have noted that radar 
observation depth is of the order of a few tenths of a 
wavelength [2], and varies as a function of soil conditions and 
radar configuration. 

This paper presents a variation on the modified IEM, such 
that it uses a variable dielectric profile down to the radar 
observation depth, by using a variable transition rate factor. 
In order to estimate the radar observation depth, an 
observation depth model is required. 

A radar penetration depth relationship has been proposed 
by [7]. This relationship defines penetration depth, as the 
depth at which the transmitted power in the soil has 
diminished to the proportion Me (ie. 37%). However, if the 
transmitted wave has lost 63% of its power to penetrate to 
this depth, it is unlikely to provide a detectable contribution 
to backscattering upon return to the surface from this depth. 
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Hence, this relationship does not correspond with the 
observation depth of the radar. Therefore a theoretical radar 
observation depth model which accounts for soil moisture, 
observation frequency, incidence angle and wave polarisation 
is proposed. 

VARIABLE TRANSITION RATE FACTOR 

As m governs the depth over which a varying dielectric 
profile is imposed on the theoretical backscattering model, 
through the modified reflection coefficients, it is proposed 
that m should be a function of the observation depth. The 
proposed method for specifying m  and  er_in the modified 

IEM is as follows, (i) Estimate the observation depth d for 
the given observation conditions; (ii) Evaluate from (1) an 
appropriate value of m such that e/z) = er at z = d; (iii) As 

the radar can only "see" as deep as the observation depth, the 
value given to er in the model should be the value at depth d. 

OBSERVATION  DEPTH   RELATIONSHIP 

As no quantitative relationships for radar observation 
depth which account for soil moisture could be found in 
literature, we propose a theoretical amplitude attenuation 
model. This model compares the amplitude of the volume 
scattered wave with that of the surface scattered wave, as 
illustrated in Fig 1. The theoretical basis for this model is 
that when the amplitude of the volume scattered wave {Eml) 
falls below some proportion of the surface scattered wave 
amplitude (Eslir), it is no longer making a detectable 
contribution to the total backscattering from the dielectric 
medium. Hence, the maximum depth from which a volume 
scattered wave is returned to the surface such that it just 
satisfies an imposed limit of Eml /Eslir, may be considered as 
the observation depth (d). 

The model treats the soil as consisting of two dielectric 
layers, with the intermediate boundary representing a dielectric 
discontinuity in the soil. Using the Fresnel reflection (R) and 
transmission (T) coefficients (functions of soil dielectric 
constant, incidence angle and wave polarisation) and the 
incident wave amplitude (£,), the reflected (Esur). and 
transmitted (£,) wave amplitudes are evaluated at the soil 
surface. The amplitude of the transmitted wave is then 
attenuated by an amplitude attenuation factor (a) [8], as it 
passes through the surface layer to the dielectric discontinuity. 
Upon reaching this discontinuity, the attenuated wave {E,') is 
reflected. The reflected wave (Er) arrives back at the surface 
with further attenuated amplitude (£/), where it again 
undergoes transmission and reflection. The amplitude of this 
transmitted wave (Eml) is then compared with that for the 
surface reflected wave (E,ur), and the layer thickness altered 

E 

Air Layer 

E,= \T\E\ 7E/=aEr 

Surface Soil Layer \        /      * 

E,'=aE\/Er=\R\E,' 

Esur— | R\ Ei 

Evol= | T\ Er 

T 

„       „ .,, A, Dielectric Discontinuity Deep Soil Layer ^ 

Fig. 1: Diagrammatic illustration of observation depth model. 

until the imposed ratio between the surface scattered and 
volume scattered waves is achieved. 

A major weakness of the above model is the assumption 
of a homogeneous specular reflecting surface at the layer 
interfaces. However, the volume scattered waves may be 
expected equally in all directions, as volume scattering is 
caused by dielectric discontinuities whose spatial locations are 
random [7]. Therefore, if the soil surface is lambertian, 
evaluation of the observation depth using the specular model 
will yield the same results. 

A difficulty associated with evaluating this observation 
depth model is the specification of an appropriate limit on the 
ratio of volume scattered wave amplitude to surface scattered 
wave amplitude. This problem is addressed through an error 
analysis of the backscattering equation [9] 

:3a' 
In 10 

20 
(2), 

by considering the sensitivity of the backscattering coefficient 
(3c°) to soil moisture and calibration accuracy of the sensor. 
In the first case, for a 2% change in soil moisture, there can 
be between 0.15 to 1 dB change in backscattering coefficient 
[10]. For the latter case, the literature suggests an absolute 
radiometric calibration accuracy between 1 and 2 dB [11]. 
Therefore, calibration accuracy appears to govern the 
observable influence of volume scattering at the present time. 
Hence a backscattering sensitivity of about 1.5 dB is 
appropriate, yielding a ratio of volume to surface scattering of 
0.17. 

APPLICATION OF THE MODELS 

Both the observation depth model and variable transition 
rate factor have been tested using data collected in the 
European Microwave Signature Laboratory (EMSL) 
experiments [3]. Simulations for the modified IEM with 
variable transition factor are also compared with the IEM and 
modified IEM for m=12 cm"1. 

Fig. 2 indicates that the proposed observation depth model 
gives values which correspond with those suggested in 
literature, while Fig. 3 indicates that the modified IEM with a 
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Fig. 2: Observation depth for vv and hh polarisation at an incidence angle 
of 23° and average volumetric soil moisture of 9%. 

variable transition rate factor yields good results when 
compared to EMSL data. Furthermore, the simulations of 
backscattering coefficient at low frequencies are an 
improvement on those from the IEM and the modified EM 
with m=12 cm'1, for this particular data set. 

CONCLUSIONS 

The comparisons of backscattering simulations using the 
modified IEM with a variable transition rate factor show good 
agreement with the EMSL data. We conclude that by using 
the modified IEM with a variable transition rate factor, soil 
moisture profiles to a depth of 3.5 cm may be determined at 
low frequencies. Furthermore, the theoretical model presented 
for estimating radar observation depth gives comparable 
results to those suggested in literature. 

■ b) 

Frequency (GHz) 

1   I   '   '   '   ■   I   ■ 

-IEM simulation 
- modified IEM, transition rate factor*12 
- modified IEM, variable transition rate factor 

0 12 3 4 5 
Frequency (GHz) 

Fig. 3: Comparison of backscattering simulations with EMSL data for 
correlation length of 60 mm, rms roughness height of 25 mm, incidence 
angle of 23° and; a) hh polarisation, b) vv polarisation. 
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INTRODUCTION 

A major objective of soil moisture-related hydrological 
research during NASA's SIR-C/X-SAR mission was to 
determine and compare soil moisture patterns within humid 
watersheds using SAR data, ground-based measurements, 
and hydrologic modeling. Currently available soil moisture 
inversion methods using active microwave data are only 
accurate when applied to bare and slightly vegetated 
surfaces [1]. Moreover, as the surface dries down, the 
number of pixels that can provide estimated soil moisture by 
these radar inversion methods decreases, leading to less 
accuracy and confidence in the retrieved soil moisture fields 
at the watershed scale. The impact of these errors in 
microwave-derived soil moisture on hydrological modeling 
of vegetated watersheds has yet to be addressed. 

In this study a coupled water and energy balance model 
operating within a topographic framework is used to predict 
surface soil moisture for both bare and vegetated areas. In 
the first model run, the hydrological model is initialized 
using a standard baseflow approach, while in the second 
model run, soil moisture values derived from SIR-C radar 
data are used for initialization. The results, which compare 
favorably with ground measurements, demonstrate the 
utility of combining radar-derived surface soil moisture 
information with basin-scale hydrological modeling. 

SIR-C WASHITA '94 EXPERIMENT 

The Little Washita River watershed is situated in 
southwest Oklahoma in the Great Plains region of the United 
States and covers an area of approximately 600 km2. Two 
intensive field measurement campaigns were conducted in 
the watershed in 1994 coincident with the two Shuttle Radar 
Laboratory (SRL) missions in April and October. During 
the SRL-1 experiment (April 5-18, 1994), field conditions 
were initially dry, became wet as a result of a heavy 

rainstorm on the afternoon of 4/10/94 and morning of 
4/11/94, and then gradually dried down throughout the 
remainder of the experimental period (a change in 
volumetric soil moisture of 15%). In contrast, during the 
SRL-2 experiment, most of the watershed remained dry 
except for localized rainfall in the northwest and north 
central part of the watershed. Thus, this study has focused 
on data collected during SRL-1 because of the favorable 
hydrologic conditions in the watershed at that time. 

HYDROLOGICAL MODELING 

The model used in this study is known as TOPLATS for 
TOPMODEL-based Land surface-Atmosphere Transfer 
Scheme [2]. It assumes that subsurface moisture flows are 
driven by topographic gradients as described by the soil- 
topographic index with diffusion formulation for vertical 
moisture movement, and uses Brooks-Corey equations to 
relate soil moisture, matrix potential, and unsaturated 
hydraulic conductivity [3]. The unsaturated soil column is 
divided into two layers: a 5-cm thin upper layer and a deeper 
transmission zone; vegetation roots can be distributed 
between both layers. Canopy interception storage is included 
in the flux calculations for vegetated pixels. Meteorological 
forcings used in the model include available energy (net 
radiation minus ground heat flux), air temperature, relative 
humidity, wind, and precipitation. Previous work with a 
statistical version of the Princeton TOPLATS model using 
data from the Washita '92 experiment with the passive 
microwave ESTAR aircraft sensor demonstrated that 
initializing the hydrological model with surface soil moisture 
estimated from microwave remote sensing produced more 
accurate surface soil moisture fields compared to a more 
traditional initialization via baseflow analysis [4]. 

ANALYSES AND CONCLUSIONS 

During  the  Washita  '94 experiment,  radiation  and 
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meteorological data were measured at 43 Micronet sites 
across the Little Washita River watershed, and rainfall data 
were interpolated from NEXRAD radar measurements. To 
demonstrate the usefulness of satellite radar data in 
characterizing the spatial and temporal variability of soil 
moisture, the '92 analysis was repeated using the SIR-C data 
from SRL-1 in April, 1994 and a fully distributed version of 
the TOPLATS model. In the first set of model runs, the 
hydrological model is initialized using standard 
streamflow/water table methodology on April 5 and allowed 
to run for the next thirteen days based on the meteorological 
forcings. In the second set of model runs, the model is 
started on April 5 as before but then is re-initialized on April 
12 using surface soil moisture fields retrieved from the SIR- 
C radar data following the Shi modified IEM inversion 
approach [1]. The first SIR-C data take over the Little 
Washita on April 11 occurred during an active rain event 
and was therefore discarded for soil moisture intialization 
purposes in favor of the next data take on April 12. The 
model is then allowed to run through April 18 as before 
based on the meteorological inputs. In watershed areas not 
covered by the SIR-C data take on April 12, the surface soil 
moisture fields as calculated by the baseflow model are used 
(i.e., only those pixels with a SIR-C response and an IEM- 
derivable soil moisture are re-initialized). Those pixels 
without a Shi-IEM solution are primarily moderate 
vegetation and trees. 

In both model runs, soil moisture values for the 0-5 cm 
surface layer were generated on an hourly basis and could be 
used for comparison with the ground measurements of soil 
moisture collected in 10-15 test fields distributed throughout 
the watershed. Fig. 1 shows surface soil moisture images for 
six days during the SRL-1 mission produced by the model 
after the SIR-C initialization on April 12. The drydown of 
the watershed after the rainfall event is very obvious. The 
top central part of the watershed is covered by every multi- 
polarization data take during SRL-1 mission. The moisture 
patterns of this area simulated by TOPLATS resemble those 
derived from SIR-C data using Shi's approach (see Fig. 10 of 
[5]), but without pixels of no estimation due to vegetation. 

Fig. 2 is a plot comparing the two different model 
initialization schemes with the ground measurements of 
surface soil moisture superimposed; all values are watershed 
averages of the 0-5 cm surface layer. The model run using 
the standard baseflow initialization produces estimates of 
soil moisture which are consistently wetter than the model 
output with the SIR-C initialization, and only match the 
ground measurements on the day immediately after the 
rainfall. The model using the Shi SIR-C soil moisture from 
April 12 initially underestimates soil moisture, but then 
matches the ground measurements quite well during the 
subsequent drydown. 

The underestimation of soil moisture by the Shi approach 
has been documented before [1] and is likely due to the 
absence of vegetation effects in the modeling. Thus, an area 
of ongoing work is the improvement of radar soil moisture 
retrieval methods for vegetated areas, in particular the 
incorporation of vegetation effects in the IEM modeling 
approach, and documentation of the subsequent improve- 
ment in hydrological model performance at the basin scale. 
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Fig. 2. Comparison of Hydrological Model Initialization 
Schemes. Daily measured watershed average soil 
moisture is represented by the x's. 
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Abstract - This paper demonstrates the technique to 
estimate ground surface and vegetation scattering 
components, based on the backscattering model and the 
radar decomposition theory, under configuration of 
multi-temporal L-band polarimetric SAR measurement. 
This technique can be used to estimate soil moisture of 
vegetated surface. 

INTRODUCTION 

Soil moisture is a key parameter in numerous 
environmental studies, including hydrology, 
meteorology, and agriculture. It plays an important role 
in interactions between the land surface and the 
atmosphere, as well as in the partitioning of 
precipitation into runoff and ground water storage. In 
spite of its importance, soil moisture has not found a 
widespread application in the modeling of hydrological 
and biogeochemical processes and related ecosystem 
dynamics, in part because soil moisture is a difficult 
parameter to measure on a large area, cost-effective, 
and routine basis. 

In attempting to use active microwave remote 
sensors to estimate soil moisture, we are facing two 
major problems: effects of surface roughness and 
vegetation cover. Recently, several algorithms Have 
been developed for measuring bare surface soil 
moisture quantitatively using dual-polarization L-band 
SAR image data [1,2] or three-polarization SAR 
measurements [3]. All of these algorithms use 
weighted combinations of different polarization 
signatures to minimize the effect of surface roughness 
so that soil moisture can be directly inferred from SAR 
image data. However, the effect of vegetation cover has 
not been included in the currently available algorithms. 
It is clear that the presence of vegetation will cause an 
under-estimation   of   soil   moisture   and   an   over- 

estimation of surface roughness when we apply the 
algorithm for bare surface soil moisture to vegetated 
regions. 

In this study, we take one step further to estimate 
soil moisture accurately for vegetated surfaces using a 
multi-temporal L-band polarimetric SAR approach. An 
algorithm has been developed to reduce the vegetation 
effect on the estimation of soil moisture based on a 
radar backscattering model and decomposition theory. 
We will demonstrate the physical principles and 
development of this algorithm. 

BASIC PRINCIPLE OF THE ALGORITHM 

A backscattering model [4] for a vegetated surface 
can be written as 

a," (0) = <rf (0) + o% (6) + (Tf (d)L2
pp     (1) 

where I?pp = e.xpl-2k[pdsec(d)) is the double pass 

attenuation factor. Ke is the volume extinction 
coefficient which depends on the polarization 
configuration pp (for HH or VV). d is the thickness of 
the vegetation layer and 9 is the radar incidence angle. 
The subscripts t, v, s, and sv are for total, volume, 
surface, and surface-volume interaction terms. The 
direct volume scattering and the surface-volume 
interaction scattering terms in (1) can be written as 

rPP 
sv (d) = 0.5llpp(l-L

2
pp)/KePP (2) 

and 

opP{d) = 2T]ppdRppIfpp (3) 

where r\ is the volume scattering coefficient depending 
also on the polarization. R is the surface reflectivity. 
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Both the volume extinction and scattering 
coefficients are strongly dependent on density, shape, 
size, and orientation of scatterers, as well as canopy 
thickness. It is extremely difficult to estimate the 
surface scattering components or soil moisture from a 
limited set of SAR measurements. 

Recently, a technique called "Decomposition 
Theory" has been developed based on the covariance 
matrix of the scattering terms for polarimetric data 
[5,6]. A polarimetric SAR backscatter measurement, by 
using eigenvalues and eigenvectors of the covariance 
matrix, can be decomposed into three components 
based on the scattering types: (1) odd number of 
reflections, (2) even number of reflections, and (3) 
cross-polarized (diffuse) scattering power. For 
azimuthally symmetric and reciprocal targets, it can be 
written as [6] 

SAR measurements we can write 

T = A1K1K;r + A2K2K*2
r+A3K3K;7 (4) 

where A. and K are eigenvalues and eigenvectors. * is a 
conjugate operator for a complex number, and T is a 
transpose operator for a vector. The subscripts 1, 2, 
and 3 represent the decomposed odd, even, and diffuse 
components,    respectively. This    decomposition 
technique allows us to estimate the single and double 
reflection components of the backscattering coefficients 
for VV and HH polarization. By comparison with 
backscattering components in (1) and (4), we can 
approximately write 

opp(9)~(jpp(d) + (Js
pp (d)L 

opp{d)~opp{e) 

pp (5) 

(6) 

where subscript numbers 1 and 2 represent the single 
and double reflection components. 

ALGORITHM DEVELOPMENT FOR MULTI- 
TEMPORAL L-BAND SAR CONFIGURATION 

Since the temporal variability of surface 
roughness and vegetation cover are much smaller than 
that of soil moisture, we can reasonably assume that 
both surface roughness and vegetation cover remain 
approximately constant at time intervals from a few 
days to a week unless there is human activity. A 
change in SAR measurements between repeat passes at 
this temporal scale will most likely result from a change 
in ground dielectric properties or soil moisture. Under 
this  assumption,  from two  repeat-pass  polarimetric 

.pp\ -ppi _ 
&, 

Pp\ ■ppi )L: PP 

= appl u
 s (1- rPPl /°ppl)L- PP 

and 

u2    /u2 i\pp2/i\ pp\ 

(7) 

(8) 

where the number after pp in both superscript and 
subscript represents the first or second SAR 
measurement. At L-band the surface roughness 
parameter RMS height is small in comparison to the 
incident wavelength, so we can approximate the 
polarization amplitude as that in the small perturbation 
model   app   ,  which depends  only on the  surface 

dielectric constant es and incidence angle 6.    (X     is 

given by: 

\<*J 

l0L.f = 

(9) 

(10) 
-sin20)2 

As we can see from (9), the polarization amplitude is 
exactly same as the surface reflectivity for HH 
polarization. Under the assumption that surface 
roughness does not change between the two SAR 
measurements, we have 

-AA2 erl(J?x=\ahJI\am\2 = Rhh2lRm 

Furthermore, using (7), (8) and (11), we obtain 

(11) 

.AA1 7-2 I'hh\       ^hh2\/(-i       —hh2l-.hh\\ /ns. 

and 

_AA        (—hh2        _AA1 _AA2   / _AA1 W/i        _AA2 / _AM \ /, ^ 
CTv     =(CT1        -<*1     CT2       /<T2     )l\}-a2      /°2     j(13) 

Therefore, we can decompose or directly estimate the 
volume and surface scattering components by (12) and 
(13) for HH polarization measurements. 

Furthermore, because both /?vvand l0fvv I are only a 

function of the surface dielectric constant and incidence 
angle, it is easy to carry out the relationship 

KJ/\^J=^iRn2/RvJ
w        (14) 
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at a given incidence angle as shown in Figure 1. a and 
b are coefficients depending only on the incidence 
angle. 

It  follows   that   we   can   also   decompose   VV 
polarization: 

ofLl =« -o?)l(\-am<IO™)QS) 
and 

av
v
v = (<x,vv2 -or'a(d)(of lof)bm) 

l{\-a{e){GflalvX)bW) (16) 

Similarly, we can derive the surface backscattering 
components for the second SAR measurements, that is, 

.hhl T2 vv2 rl 
<7';"~Lrhh and <ys

wlUvv.  
m this way> we can directly 

decompose or estimate both the volume and surface 
backscattering contributions in VV and HH polarization 
without knowing any vegetation information. 

From the above technique, we can now obtain an 
estimation of the surface backscattering components for 
both VV and HH polarization and for both temporal 
SAR measurements. However, we still need to estimate 
the attenuation effect at different polarizations. Using 
the IEM model [7], we simulated a wide range of 
surface dielectric and roughness conditions. We found 
that the surface backscattering coefficients are highly 
correlated and the relationship can be written as 

log lOcVöf + V^T = «(0) lQg 10(^" + <C) 

+W log 10(o?)+c(G) log 10(o? /a?)       (17) 

The a, b, and c again are coefficients determined from 
regression analyses and only depending on the 
incidence angle. The maximum standard error for this 
relation is only 0.1 dB. Using the estimated surface and 
volume scattering components and (17), we can further 
estimate the attenuation factor and the surface 
backscattering coefficients which can be applied to the 
bare surface soil moisture algorithm. 
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Figure 1. The calculated Rvv2/Rvvi 
as x"axis and 

\avv212 /\0Cvv212 as y-axis at 40° incidence for a soil 
moisture range of 2% to 50% by volume and all 
possible soil moisture changes from positive to 
negative. 
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Abstract - The purpose of this paper is to investigate the 
possibility of estimating soil moisture content from single 
angle and single frequency SAR data. To reach this objective, 
a priori information such as profile height std is assumed. An 
inversion technique based on a neural approach trained with 
the IEM model is presented and its performances are 
discussed. Two sources of errors in the final estimates are 
analyzed. Errors due to the limited input information and 
errors due to possible failures of IEM in predicting scattering 
from natural surfaces. 

INTRODUCTION 

Over the last few years, the potential of SAR data for 
estimating soil moisture has been extensively investigated. 
Previous works have demonstrated that soil roughness plays 
a major role in the surface scattering, even though the 
understanding of the roughness effect is still uncomplete. 
The main problem is related to the statistical properties of 
natural surfaces. The roughness state is traditionally 
assumed to be a bidimensional stationary Gaussian processes 
with an associated autocorrelation function (ACF). However, 
the analysis of a large number of surface profiles acquired 
over several European test sites have shown a wide spread in 
the estimated classical roughness parameters (i.e. profile 
height std and correlation length), as well as non stationary 
effects such as the dependence of the correlation length 
estimate on the measured profile length. 
The purpose of the paper is to assess the feasibility of 
retrieving soil moisture content over bare fields by using 
SAR data currently or in the near future available on a 
continuous basis, i.e. ERS2 (VV, 23°, 5.3 GHz), JERS1 (HH, 
35°, 1.275 GHz) and the forthcoming ASAR on board of 
ENVISAT (HH, VV, HV, 15°-45°, 5.3 GHz). In fact, the 
physical quantity taken into account is the relative dielectric 
constant (er) which may be easily related to the soil moisture 
content by means of well assessed semiempirical 
expressions. 

The retrieval technique under use is based on a neural 
approach. Neural networks (NN) are candidate in 
applications that need to approximate an unknown function/ 
starting from the knowledge of a set of input output couples 
(x„ f(Xj)). Although previous works (see for example [1]) 
aimed at finding the best network configuration to invert a 
given e.m. model exist, little work was done to assess 
inversion performances using realistic data set characterized 
by a wide variability of the geophysical parameters. 
In this paper, we train a neural network with backscattering 
coefficients simulated by means of the Integral Equation 
Method (IEM) model [2] which requires as input surface 
parameters: the profile height std (s), the appropriate 
roughness ACF along with its correlation length (I) and the 
relative dielectric constant (er). 
Ranges of input parameters are derived from ground 
measurement campaigns. The simulated configurations are: 
1) single frequency (either 5.3 GHz or 1.3 GHz), single 
polarization (VV or HH, respectively) and single incident 
angle (23°); 2) single frequency (5.3 GHz), double 
polarization (Wand HH) and single incident angle (23°). In 
order to reduce the problem complexity we assume the 
knowledge of profile height std (s). To prepare for the use of 
ASAR data, a further configuration has been considered: 3) 
single frequency (5.3 GHz), double polarization (VV and 
HH) and double incident angle (23°,45°). 
The analysis focuses on two different aspects. In a first step, 
the inversion performances are tested on data sets generated 
by IEM. In this way, we can quantitatively assess the 
achievable accuracy in ä estimation as a function of the 
different SAR configurations, under the hypothesis that IEM 
describes the e.m. forward problem without any error. In a 
second step, we assess the robustness of the inversion with 
respect to possible IEM failures. More precisely, an 
independent data set obtained by means of a Monte Carlo 
(MC) simulation of backscattering from surfaces showing 
self similar properties [3] fed the NN and the impact on d 
estimation is assessed. 
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The next section describes the inversion technique. 
Subsequently, the results concerning the inversion of IEM as 
well as of MC simulated data are presented and discussed. 
Finally, conclusive remarks are given. 

INVERSION METHOD 

The algorithmic complexity for retrieving geophysical 
quantities is proportional to the number of parameters to be 
estimated, to the number of input physical variables and to 
the complexity of the model used for describing the direct 
forward problem. 
Y; being the measured values, the inversion task can be 
regarded as an optimization problem such as the 
minimization of the difference between the measured values 
and the data T predicted by the direct forward model M. In 
other words, the set of parameters to be estimated p-„ can be 
obtained by minimizing the cost function: 

C\P:    = Y. -T.\M,p. 
i       i\        i 

1) single incident angle (23°), single polarization (VV), 
single frequency (5.3 GHz), and roughness s. It has been 
denominated: C lp+s; 

2) single incident angle (23°), single polarization (HH), 
single frequency (1.3 GHz), and roughness s 
(denominated: L lp+s); 

3) single incident angle (23°), double polarization (HH, 
VV), single frequency (5.3 GHz) (denominated C 2p); 

4) single incident angle (23°), double polarization (HH, 
VV), single frequency (5.3 GHz) and roughness 5 
(denominated C 2p+s); 

5) double incidence angle (23°, 45°), double polarization 
(HH, VV), single frequency (5.3 GHz) (denominated C 
2p+29); 

The ranges considered in the training phase are: 
s (cm) = [0.6,2.4]; / (cm) = [10.0,24.0]; 
er = [3.0 + i 0.1, 20.0 + i 5.0]. The previous ranges being 
fixed, two different ACF have been considered: exponential 
ACF and hybrid ACF (intermediate case between 
exponential and Gaussian ACF). In summary, a set of 10 
different NN (5 different input configurations and 2 different 
ACFs) have been realized. 

Neural networks are candidate as a tool in applications 
which need to approximate a function/ only known by a set 
of values (xh f(Xj)j. In fact a network W, finds a root mean 

square approximation (/    = /   (w)) of / that minimizes: 

\\f-f\\=l\f(x)-f\x,W)\2dx 
R" 

In general, neural network utilization requires two phases: 
the training phase and the test phase performed on 
independent data sets. 
In this paper, the inversion is performed by using a Multi 
Layer Perceptron (MLP) trained by BackPropagation (BP) 
algorithm. After the appropriate training phase, for each 
input configuration, the network computes the real part of 
the relative dielectric constant (Re(g)) as output. In this way, 
the inverted ä has been approximated only by its real part 
assuming the imaginary part negligible. Fit between MLP 
outputs and targets is evaluated by the root mean square 
(mis) of the error. To get good function approximations in 
the root mean square sense, it is necessary to have a 
representative training data set. In our case, the IEM model 
has been used to generate the required training data set. A 
preliminary phase aimed at assessing the model sensitivity to 
physical inputs is useful to adapt the training set density to 
the direct model sensitivity. The input NN configurations 
under consideration are: 

RESULTS AND DISCUSSION 

As a first step, the achievable accuracy in the dielectric 
constant estimates as a function of different SAR 
configuration has been investigated. IEM has been used to 
generate a set of test data which have been fed to the NN. 
Table 1 shows the obtained results. The NN performances 
are summarized by the obtained rms error between estimated 
and actual values. Inversion performances are almost the 
same for the configurations C lp+s and C 2p. In addition, 
there is no clear improvement using the L lp+s 
configuration. However, other results (here not included)- 
show that using both HH and VV polarization at L band 
clearly improves the accuracy figure with respect to the same 
configuration at C band. Moreover, as can be seen from 
table 1, there is an improvement going from C 2p to C 2p+s. 
Same trend is obtained for L band. However, the smallest 
error is achieved with the C 2p+29 configuration. This 
means that the multi angle information is valuable for 
inversion purposes. Moreover, the NN is not sensitive to the 
changes of the ACF. This is due to the fact that the IEM 
sensitivity on e1 is almost constant whatever the shape of the 
ACF (i.e. the roughness spectrum). To summarize, the 
maximum estimate percentage error on Re(e') is in the order 
of 12% when using either a C/L lp+s or C 2p configuration. 
Considering the case of C 2p+s the maximum estimated 
percentage error may reduce to 6% whereas in the case of C 
2p+20h may reduce to 1%. 
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Table 1: Inversion of IEM data 

Configuration ACF rms on Re(er) 
C Ip + s exp. 2.4 
Lip + s exp. 2.1 
C2p exp. 2.5 
C 2p + s exp. 1.2 
C2p + 20 exp. 0.31 
C lp + s hyb. (1G=0.3 1) 2.4 
C2p hyb. (1G=0.3 1) 2.0 

Table 2: Inversion of backscattering data obtained 
by means of MC simulation 

It should be stressed that such figures refer to the ideal case 
where the IEM predicts a0 without errors. 
As a second step, in order to assess the inversion sensitivity 
on forward error models, an independent data set obtained 
by means of a MC simulation of backscattering [3] from 
surfaces with multiscale roughness has been fed to the NN. 
Surfaces were generated using bidimensional fractional 
Brownian motion processes with Hurst exponent H=0.4 and 
different height profile std. According to experimental 
ground measurements, such surface statistics may be 
considered as more realistic for natural roughness. For this 
reason, it is expected that the MC simulated data set may 
represent a meaningful test for assessing the NN 
performances when attempting the inversion of real data. In 
[3], a comparison between IEM and MC simulated data is 
carried out. As a general result, a poor agreement was found. 
When using a hybrid ACF, a better agreement at 23° was 
obtained setting lG=0.6 I. Here, the input configuration is the 
C lp+s. The 5 values have been measured over 1.7 m long 
profiles extracted from the self similar simulated surfaces. 
Table 2 shows the obtained results. In this case, to better 
understand the trend, the actual and estimated values are 
compared for each value of 5 in input. In the case of 
exponential ACF, the NN, no matter what the profile std is, 
gives a reliable g estimate only for its lowest values. An 
opposite situation is found when using the hybrid ACF. The 
NN gives an almost constant estimate for e' which is closer 
to its highest values. Although in this case the IEM model 
was in better agreement with MC simulated data, the 
inversion results are worse. This is due to the fact that when 
using an hybrid ACF with 1G= 0.6 1, the model sensitivity \.o 
correlation length increases producing a worse estimate of e1. 

CONCLUSION 

In this work, the feasibility of estimating relative dielectric 
constants by using single angle (23°) and single frequency 
data has been investigated. Providing a priori information in 
terms of profile height std, a MLP network trained by BP 
algorithm has been found able to invert the IEM model with 
an accuracy on the er estimate of 12%. It has been shown 

MLP input 

s(cm) 

MLP output 
exp. ACF 

Re(er) 

MLP output 
hyb. ACF 

Re(e'). 

Expected 

Re(er) 

2.5 6.38 16. 6.5 
2. 6.09 15.9 6.5 
1.5 6.17 15.8 6.5 
1. 6.48 15.5 6.5 

2.5 7.56 16. 12.5 
2. 7.32 16.2 12.5 
1.5 7.27 16.2 12.5 
1. 9.8 16.1 12.5 

2.5 8.09 15.8 18.5 
2. 7.88 16.33 18.5 
1.5 7.86 16.52 18.5 
1. 10.42 16.52 18.5 

2.5 8.44 16.7 24.5 
2. 8.25 16.4 24.5 
1.5 8.27 16.7 24.5 
1. 10.84 16.8 24.5 

that some improvements may be obtained by adding a 
second polarization although the most valuable information 
to improve the accuracy on e' estimate is the multi angle 
capability. Furthermore, an attempt to assess the expected 
accuracy in the er estimates when dealing with real data has 
been carried out. In this case, the sensitivity of the inversion 
performances with respect to errors made in modeling the 
e.m. forward problem has been investigated. To achieve this 
goal, an independent data set obtained by means of a Monte 
Carlo simulation of backscattering from self similar surfaces 
has been fed to the NN and the output results have been 
analyzed. As a general conclusion, the inversion procedure 
has been found very sensitive to forward model errors which 
need to be improved by adapting realistic description of 
natural soil surfaces. 
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Abstract — A study was carried out in order to estimate the 
effect of melting particles on brightness temperatures at 
microwave frequencies between 10.7 and 85.5 GHz. A mete- 
orological model framework was set up to determine the 
melting stage of various frozen particles below the freezing 
layer. Different approaches for calculating the effective 
permittivity of mixed particles were compared. The resulting 
extinction coefficients, single scattering albedos, and asym- 
metry parameters indicate a maximum effect when a water 
matrix with air/ice inclusions is assumed. Extreme local 
differences of 20-25% between the optical parameters em- 
ploying either a Marshall-Palmer or a Gamma-type dropsize 
distribution occur. When radiative transfer calculations are 
carried out, maximum deviations of >20 K at low frequen- 
cies are observed. Neglecting the melting effect may lead to 
severe overestimations of surface rainrates by up to 100% in 
stratiform conditions. 

METEOROLOGICAL MODEL 

The meteorological part is based on the work of [1] with 
the major model assumptions: (1) mass conservation of in- 
dividual particles and (2) stationary conditions, i.e. a con- 
stant in- and outflow of mass. Particle interaction processes, 
for example, aggregation and breakup as well as the conden- 
sation of water vapor on particles are neglected. As an input 
for the meteorological model the density of the snow parti- 
cles above the freezing level (FL) as well as the rainrate and 
the number density of the rain below the melting region have 
to be defined. A more detailed model description in this 
context is given in [2]. 

PARTICLE DIELECTRIC PROPERTIES 

In the most common approach, a dielectric mixing formu- 
lation has to be applied once for mixing air and ice and then 
for mixing air/ice with water [3]. Here, the generalized 
Maxwell-Garnet [4] formula for ellipsoidal inclusions with 
equally probable shapes was used for either the mixture of 
air/ice with water or vice versa. [5] derived a new approach 

to combine both configurations of water-in-air/ice and 
air/ice-in-water matrices as a function of the volume ice 
fraction to obtain the effective permittivity of the matrix- 
inclusion combination based on the Fourier transform nu- 
merical method. In contrast to the air/ice-in-water approach 
a smooth transition between those stages dominated by either 
frozen or melted particle components is provided. For this 
purpose, an error function is employed to describe the weight 
of the contribution of either ice/air inclusions in a water 
matrix or vice versa. 

PARTICLE OPTICAL PROPERTIES 

Calculations were carried out for profiles of three different 
rainrates, i.e. 1, 5, 10 mm/h (only results for 5 mm/h are 
shown here), employing a Marshall-Palmer dropsize distri- 
bution. The environmental temperature was set to 273 K. 
The spectra were integrated between radii of r = 0.1 mm and 
r = 10 mm with a stepwidth of Ar = 0.1 mm. The volume 
extinction coefficient, aext, the single scattering albedo, co0> 

and the asymmetry parameter, g, were then calculated in 1 m 
steps between 100 m above and 1000 m below FL. 

When the air/ice-in-water mixture is analyzed, a very dis- 
tinct increase of extinction is observed with the onset of 
melting at all frequencies (Fig. la). The extinction maxi- 
mum is located at 100 m below FL at 10.7 GHz and is 
shifted toward lower altitudes as a function of frequency. 
This maximum is easily explained by the strong increase of 
the refractive index once water has formed on the particle's 
surface. The relative increase is stronger at lower frequencies 
because the refractive index gradient increases with decreas- 
ing frequency due to melting. 

The single scattering albedo shows the opposite behavior 
(Fig. lb). Since ice particles are effective scatterers at mi- 
crowave wavelengths, co0 shows values between 0.6 at 10.7 
GHz and 0.98 at 85.5 GHz which are almost independent on 
rainrate above the 0°-isotherm. Below FL the water matrix 
causes a very strong and abrupt drop of co0. The locations of 
minimum values are at those altitudes where the maximum 
values of volume extinction occur. 
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When the effective permittivity is calculated using the 
weighted approach, the optical parameters behave quite 
differently (Fig. 2a). The weighted mixing causes a rather 
smooth transition between the two phases. The distinct in- 
crease of extinction with a maximum between 100-200 m 
below FL is only observed at lower frequencies. The 
weigthing produces scattering efficiencies which approach- 
the properties of water drops at lower altitudes which causes 
a downward shift of the relative minimum values of co0 (Fig. 
2b). Although the principal shape of the curves is similar, 
the difference of magnitudes indicate a considerable effect of 
the chosen mixing formula on the integrated optical proper- 
ties. 

SENSITIVITY TO DROPLET SPECTRUM 

The simulations of crext, co0, and g, were carried out using 
the same constraints as described above but comparing dif- 
ferent droplet spectra. Here, we used the exponential form of 
the Marshall - Palmer dropsize distribution (MPDSD) and 
the Gamma dropsize distribution (GDSD). The most obvious 
features are large negative differences (-25%) of extinction 
coefficients associated with large positive differences (12%) 
of single scattering albedos right below the FL. These are 
caused by the lower number of small particles of the GDSD. 
Using the GDSD less small particles are completely melted 
so that total extinction is smaller. Total scattering is larger 
than given by the MPDSD because the effective radius of 
scattering particles is generally bigger. This effect is equal- 
ized when all small particles are melted in both cases. Then 
the differences remain within ± 5%. 

RADIATIVE TRANSFER CALCULATIONS 

Plane-parallel simulations of radiances emitted by strati- 
form clouds at the frequencies of the Special Sensor Micro- 
wave / Imager (SSM/I) and Tropical Rainfall Measuring 
Mission (TRMM) Microwave Imager (TMI) and a zenith 
angle of 52.8° were carried out. In order to estimate the 
relative effect of melting particles on the emission, the 
simulations were compared to profiles assuming all frozen 
particles to be completely melted at all altitudes below FL. A 
set of 565 model atmospheres obtained from radiosonde 
measurements were used and realistic random variations of 
the relevant background parameters were introduced, i.e. 
vertical cloud extent, rainrates, and liquid water content of 
non-precipitating drops coexisting with precipitating parti- 
cles. 

At 10.7 GHz there is clear evidence of the effect of melt- 
ing particles on the emission when an ice-in-water mixture 
is assumed. Then, for large particles such as melting snow 
with dielectric properties close to water the relative effect of 
the melting layer may exceeds 60 K at horizontal polariza- 

tion. However, the assumption of a constant ice-in-water 
configuration may not hold for snow because the high 
amount of air inclusions and the large surface area of snow 
crystals will cause the water to be rather well mixed with air 
and ice right after the onset of melting [6]. Then, the imple- 
mentation the weighted average of the air/ice-in-water and 
water-in-air/ice mixtures leads to much lesser but still re- 
markable relative brightness temperature increases at lower 
frequencies. 

RAIN RETRIEVALS 

Fig. 3 shows results of rain retrievals when applied to the 
above described data sets excluding or including a melting 
layer (using the air/ice-in-water mixture). Two algorithms 
submitted to the Algorithm Intercomparison Project No.3 
were selected, i.e. the technique of Ferraro (FE-3) and Ferri- 
day (FR-1) (compiled by [7]). The general performance 
shows that at those rainrates where the clouds have moderate 
optical depths, i.e. R e [1, 10 mm/h], an overestimation is 
observed when a melting layer is present compared to the 
two-layer structure. Then, maximum deviations of 10 mm/h 
may occur which decrease with increasing rainrate due to the 
obscuration by cloud layers on top of the melting layer. 
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Abstract - Most commercially available ground probing radars 
operate in the time domain while the design of a proportion of 
such radars is based on frequency modulation techniques. This 
paper briefly considers the two approaches and some of the aspects 
that define their respective performance. The paper includes a 
selection of applications to illustrate current capability: detection 
of explosive mines, detection of the victims of avalanches and 
archaeological artefacts. 

INTRODUCTION 

As a result of the development of ultra-wideband radar 
technology over the last twenty years, practical ultra-wideband 
radar systems have been demonstrated for numerous applications, 
most notably surface penetrating radar. During this time, the 
capabilities of ultra-wideband radar have been the subject of 
considerable research that has resulted in an improved 
understanding of the special characteristics of ultra-wideband radar 
signals and their interaction with targets and target 
environments[l,2,3,4]. This paper considers some, but not all, of 
the characteristics that are important to radar system design. Ultra- 
wideband radars use a variety of modulation methods such as 
impulse, FMCW, step frequency, phase coded, etc., but all share 
the common feature of operation at very high percentage 
bandwidths, that is, greater than 25% and often 100%. 

Although on first consideration frequency domain radars 
should offer a superior sensitivity to time domain radars, because 
of their lower receiver bandwidth and hence thermal noise, the 
range sidelobes of the radiated spectrum may result in an 
equivalent or worse sensitivity. 

The output from most ultra-wideband radar systems can be 
compared as a time domain representation of the waveform. 
Almost all types of radar can be assessed not just by their signal to 
noise and signal to clutter ratio but also by comparing their 
comparative inherent sensitivity. One approach is to compare the 
range sidelobes of the signal transmitted by candidate radar 
designs. Such a process reveals the characteristics that define 
radar performance. An example is given in Figure 1 in which the 
range sidelobes of three radiated waveforms are compared. The 
standard for comparison is a single monocycle (lower), the two 
other types of waveform are a typical impulse radar wavelet 
(middle) and the time domain equivalent of a stepped frequency 
radar signal (upper). As would be expected, the frequency content 
of the radiated signal and the way in which the spectral shaping of 
the stepped frequency output is carried out, is critical to maintain a 
low level of range sidelobes. 

Range mtewd 

Fig 1 Comparison of range sidelobe level for three cases 

It is quite clear that for the stepped frequency radar to achieve a 
comparable performance to the impulse radar it must transmit an 
equivalent spectral content. Where the envelope of the spectrum 
of the signal radiated by the stepped frequency radar is 
characterised by sudden transitions in the frequency domain, then 
the amplitude of the time domain range sidelobes of the latter are 
increased and system performance is degraded. This effect is 
shown in Fig. 2 where the ratio of the first range sidelobe to the 
main signal is plotted as a function of the ratio of the lowest 
frequency cut-off to the centre frequency. 

It should be noted that the spectral characteristics of the 
radiated signal are not only a function of the radar transmitter and 
receiver but also the transmission characteristics of the antenna 
and the latter need to be included in any assessment. 

Ratio of first sidelobe to mainlobe 

cutoff frequency 

Fig 2 First sidelobe level as a function of relative LF cut-off 
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ANTENNAS 

In the wideband case the radar antennas are considered in 
terms of their transfer function rather than their gains or effective 
apertures. In many cases a separate transmit and receive antenna is 
used hence their transfer functions may not be identical. The type 
of antenna that is used with an ultra-wideband radar has an 
important role in denning the performance of the radar. 

The types of antenna that are useful to the designer of ultra- 
wideband radar fall into two groups, dispersive antennas and non- 
dispersive antennas. However, in principle, all antennas are 
dispersive to some extent. Examples of dispersive antennas that 
have been used in ultra-wideband radar are the exponential spiral, 
the Archimedean spiral, the logarithmic planar antenna, the 
Vivaldi antenna, slot antennas and the exponential hom. The 
impulse response of this class of antennas is extended and 
generally results in a 'chirp' waveform if the input is an impulse. 
Examples of non-dispersive antennas are the TEM horn, the 
bicone, the bow-tie, the resistive, lumped element loaded antenna 
and the continuously resistively loaded antenna. Element antennas 
are characterised by linear polarisation, low directivity and 
relatively limited bandwidth unless either end loading or 
distributed loading techniques are employed, in which case 
bandwidth is increased at the expense of radiation efficiency. 

Horn antennas have found most use with FMCW ultra- 
wideband radars where the generally higher frequency of operation 
and relaxation of the requirement for a linear phase response 
permit the consideration of this class of antenna. FMCW ultra- 
wideband radars have used an offset paraboloid fed by a ridged 
hom. This arrangement was designed to focus the radiation into 
the ground at a slant angle to reduce the level of the reflection from 
the ground. Care needs to be taken in such arrangements to 
minimise the effect of back and side lobes from the feed antenna 
which can easily generate reflections from the ground surface. 

Future developments in ultra wideband radar may be based on 
the use of arrays of antennas. There is the possibility of beam 
steering in a time domain radar by means of time control, although 
the inter-element time delay is limited to a maximum equivalent to 
the distance between each element. The use of timed transmitter 
arrays and inverse synthetic aperture processing of the signals from 
a receiver array offers the possibility of achieving considerably 
improved directionality over all the previous types of antennas 
discussed in this chapter. A 10 by 10 element array will have a 
two way peak sidelobe amplitude of -26 dB relative of the main 
lobe and beam steering up to 50 degrees is feasible. The ability to 
carry out beam forming by means of inverse synthetic aperture 
processing could be potentially valuable in many applications. 

TIME DOMAIN RADARS 

The most frequently used system design is that of the impulse 
radar and the majority of commercially available radar systems use 
short pulses or impulses. Considerable bandwidth is required to 
achieve adequate levels of resolution for an ultra-wideband radar 
and the resolution equivalent to a monocycle dictates a bandwidth 

of at least a decade. The majority of ultra-wideband radar systems 
have used impulses of radio frequency energy variously described 
as baseband, video, carrierless, impulse, monocycle or polycycle. 
A sequence of pulses typically of amplitude within the range 
between 20 V to 200 V and a pulse width within the range 200 ps 
to 15 ns is applied to the transmit antenna at intervals up to a few 
microseconds. The output from the receive antenna is applied to a 
sequential sampling receiver in the form of an ultra high speed 
sample and hold circuit. It is vital that the entire radar system 
exhibits a very high level of relative timing stability and a value of 
10-20 ps is appropriate. 

The high-speed sequential sampling approach used to acquire 
RF waveforms produces a low S/N ratio because the spectrum of 
the sampling pulse is a poor match for that of the received pulse. 
Alternative methods of data acquisition are based on high speed 
analogue to digital converters or the cross correlator receiver. The 
wideband cross-correlator receiver can use coherent processing 
and if required time dithered decoding. The cross-correlator is 
equivalent to a matched filter, but has more flexibility. The 
reference waveform can be matched to the transmitted waveform, 
or in the case of radar, to the complex signature of a particular 
target and can be changed in real time if needed. 

FREQUENCY MODULATED CONTINUOUS WAVE 

The main advantages of the FMCW radar are the wider 
dynamic range, lower noise figure and higher mean powers that 
can be radiated. In addition a much wider class of antenna is 
available for use by the designer. An FMCW radar transmits a 
continuously changing carrier frequency by means of a voltage 
controlled oscillator (VCO) over a chosen, frequency range on a 
repetitive basis. The received signal is mixed with a sample of the 
transmitted waveform and results in a difference frequency which 
is related to the phase of the received signal, hence its time delay 
and hence range of the target. The difference frequency or 
intermediate frequency (TF) must be derived from an I/Q mixer 
pair if the information equivalent to a time domain representation 
is required, as a single ended mixer only provides the modulus of 
the time domain waveform. The FMCW radar system is 
particularly sensitive to certain parameters. In particular it requires 
a high degree of linearity of frequency sweep with time to avoid 
spectral widening of the IF and hence degradation of system 
resolution. 

STEPPED FREQUENCY RADAR 

Any repetitive pulsed signal can be transformed to a frequency 
domain representation which will consist of a line spectra whose 
frequency spacing is related to the pulse repetition whose 
frequency spacing is related to the pulse repetition rate and 
envelope is related to the pulse shape. Hence a repetitive impulsive 
waveform can be synthesised by transmitting a sequential series or 
individual frequencies whose amplitude and phase are accurately 
known. 

Two forms of the synthesised radar can be considered. The 
first and simplest system is a stepped frequency continuous wave 
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radar. The second form is more complex in that each individual 
frequency is appropriately weighted in amplitude and phase prior 
to transmission. Normally the radar is calibrated both to establish a 
reference plane for measurement as well as to reduce the effect of 
variations in the frequency characteristics of components and 
antennas. 

The radar system will introduce additional phase shifts on 
the transmitted and received system. These will be caused by 
the electrical lengths of the signal paths to the antennas and 
the effective radiation phase centre of the antennas. This 
means that the phases of the transmitted and received signals 
will be different at each integer frequency and will require 
compensation. Evidently it is important that the recorded 
values of amplitude and phase at each frequency are 
accurately related. Any temporal variation in the system 
characteristics that degrades the system calibration will of 
course reduce the resolution and accuracy of measurement. In 
addition the repeatability of the frequency is important and 
must be such that the calibration remains valid. The main 
advantages of a stepped frequency continuous wave radar are 
its ability to adjust the range of frequencies of operation to 
suit the material and targets under investigation, a higher 
mean radiated power level per spectral line and the ability to 
integrate the received signal level hence improving the 
system sensitivity. The calibration of the radar does, of 
course, depend on stable system characteristics and antenna 
parameters that are invariant with front surface-antenna 
spacing. The synthesized pulse radar is a variant of the 
stepped frequency continuous wave radar in that the relative 
amplitudes and phases of the transmitted frequencies are 
adjusted on transmission in order to synthesize the desired 
pulse waveform. A significant advantage for this approach is 
that it is possible, within limits, to take account of the 
frequency characteristics of the antennas. For example, the 
low frequency cut-off point of an antenna can be 
compensated by weighting the amplitude of the low 
frequency spectral lines. However, the requirement to 
maintain an accurate phase relation between each of the 
spectral lines is difficult to achieve in real time. It is 
generally easier to carry out computation on down-converted 
and recorded data. 

MINE DETECTION 

Mines are weapons which are used in the military role to 
frustrate and slow down the manoeuvrability of enemy forces. 
Where mines have been used or scattered indiscriminately, 
the civilian population suffers the consequences of such 
irresponsibility. 

Fig 3 Radar plan image of plastic anti-tank mine. Scale 1.8m by 
1.8m, depth 250 mm. 

It is estimated that there are some 100 million uncleared mines 
in the world. Mines are still being laid at the rate of 2 million per 
annum and the rate of clearance is painfully slow. In Afghanistan 
it has been estimated that it would take 4300 years to clear mines 
manually from just 20% of the country. Starting from the 
Falklands War and over the last decade we have researched the 
capability of impulse radar to detect buried mines, particularly the 
non-metallic type and the radar image generated by the latest 
generation radar, from a typical plastic anti-tank mine, is shown in 
fig 3. 

AVALANCHE VICTIMS 

The difficulty of recovering skiers buried alive in avalanches has 
resulted in investigations as to the capability of ground probing. In 
March 1997 we carried out a series of measurements on volunteers 
buried in snow in ski stations in France. With the appropriate 
radar system it is possible to detect humans buried up to two 
metres in snow. 

Fig 4_ Test conditions for radar detection of victims of 
avalanches 
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Fig 5 Radar image of volunteer buried metre deep in snow, 
horizontal scale 2m 

The test situation is shown in fig 4 and a radar image is shown in 
fig 5. 

ARCHAEOLOGY 

Fountains Abbey in North Yorkshire, founded in 1134 by the 
Cistercians, is an outstanding example of a mediaeval monastery. 
It stands in the valley of the River Skell and the existing ruins give 
a clear impression of life in one of England's greatest and best 
preserved abbeys. A photograph of the Abbey is shown in fig 6. 
Recently, and in collaboration with the University of York, 
Department of Electronics, ERA Technology carried out a survey 
of parts of the grounds of the Abbey. The radar image of the 
culverts under the Cellarium is shown in fig.7. The radar image in 
this particular case is unfocussed and therefore most of the 
reflections give rise to hyperbolic traces. This is particularly 
noticeable when caused by the comer reflectors formed by the 
river water surface and the masonry side wall of the culvert. Other 
hyperbolic reflectors can also be seen and these are caused by the 
masonry side supports of the culvert. 

:x 
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Fig 7 Radar image of culverts under the Cellarium at Fountains 
Abbey. Yorkshire. UK. horizontal scale 4m 

SUMMARY 

The growing interest in ultra-wideband ground probing radar 
demonstrates the potential which is perceived for its application 
for non destructive testing, geophysical surveying, security, 
forensic and military applications. Continued technical 
improvements in antenna performance, receiver sensitivity and 
processing capability have resulted in compact, lightweight and 
portable equipment which provide higher quality images of the 
objects buried underground. The future challenges for the design 
engineers are to improve the signal to clutter performance, the true 
receiver dynamic range and the image quality and man-machine 
interface 
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ABSTRACT - We present the results from preliminary field 
trials using a newly developed ultra-wideband, stepped- 
frequency ground penetrating radar system. This system has 
been developed to improve the maximum penetration depth 
capability in ground penetrating radar (GPR) applications 
without degradation of resolving power. To achieve this, we 
have based our system on the stepped-frequency radar 
technique operating across the 10-620 MHz frequency band. 

The stepped-frequency technique offers substantial benefits 
over existing time-domain (impulse) GPR systems. The main 
advantage of the technique is that it is relatively easy with 
current technologies to efficiently sample ultra-wideband 
signals with low speed analog-to-digital converters. Also, 
due to transmission of long duration waveforms, a high 
average transmitted power is much easier to obtain than for 
short-pulse and impulse waveforms. The stepped-frequency 
technique offers other potential advantages for GPR such as a 
variable dwell time on each frequency, and more flexibility in 
signal processing such as the ability to correct for system 
errors. 

Our system can operate over multi-octave bands within the 
10-620 MHz frequency range. The radar has the capability to 
employ a short range gate (~10ns duration) at each frequency 
step which can suppress unwanted strong signals (eg. direct 
wave between antennas) relative to weak reflections from 
deep targets. Field trials of the radar have demonstrated the 
effectiveness of gating and of the system as a whole. 

INTRODUCTION 

The stepped-frequency technique is an accepted technique 
amongst the radar community and has recently been looked to 
as a means of improving the penetration performance of 
ground penetrating radar (GPR) without sacrificing 
penetration. Currently available commercial GPRs almost 
exclusively use impulse transmitters with sampling head 
receivers.   Such receivers are inherently inefficient as many 

Some of the work reported in this paper was part of the Stepped-Frequency 
Ground Penetrating Radar Project, funded under the Generic Technology 
Grant Agreement No. 16040 between the Industry Research and 
Development Board, The University of Queensland, MITEC AustraliaLtd, 
CRA Ltd, Georadar Research Pty Ltd, and the Cooperative Research Centre 
for Sensor Signal and Information Processing. 

pulses must be transmitted to record a single range profile. In 
addition, the mean power available from the impulse 
transmitter is also limited by the low duty cycle. 

The main disadvantage of stepped-frequency and other 
continuous wave techniques, is that strong signals either from 
leakage between the transmit and receive antennas or from 
shallow reflectors can mask weaker signals from deep 
reflectors. 

A gated stepped-frequency GPR [1] attempts to combine 
the high average power and efficient sampling of stepped- 
frequency radar with the ability of impulse GPR to image 
deep (weak) targets despite the presence of shallow (strong) 
reflectors. As GPR deals with targets at very close ranges 
often only a few cycles of the carrier is contained in the gate. 

Gating is applied at each frequency step and involves 
turning both the transmitter and receiver on and off at the 
same repetition rate but offset in time. Typical gating 
functions are shown in Fig.l. 

Gate Repetition Interval 

J~L Transmitter Gating 

Transmitter Gate Width 

Receiver Gate Delay 
Receiver Gate Width n I      I Receiver Gating 

/     \ /     \ 
Leakage      Weak Leakage      Weak 
Signal        Reflectors Signal        Reflectors 

Figure 1- Typical gating functions applied to the transmit and 
receive gates. The receive gate is delayed relative to the 
transmit gate. The delay between the gates should be varied 
to match the return travel time to reflectors of interest. 

SYSTEM 

Our system is a stepped-frequency radar operating from 10 
to 620MHz. The main body of the radar includes a 
synthesiser, quadrature receiver, digital signal processor and 
real-time display. To this various antenna subsystems 
incorporating   transmit   and   receive   amplifiers   can   be 
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connected. An earlier version of our system and laboratory 
testing of it have been described in [2]. 

Field results with this earlier version were limited by the 
antenna subsystem [2]. This paper reports results obtained 
with a redesigned antenna subsystem. The new antenna 
subsytem is linked to the main body of the radar only by fibre 
optic links (Fig.2). This innovation was tried as it was 
conjectured that the coaxial cables and power cables 
previously used to link to the antenna subsystem had become 
part of the radiating structure; and that it was this undesired 
radiation from the cables that was limiting field performance 
of the system. The new antenna subsystem is a prototype and 
does not include the high power transmit amplifier or as low 
noise a receiver as the previous antenna subsystem. 

© Synthesiser fibre-optic link   ^JT* 

Gate 
Driver 

Real-time 
Display 

Digital 
Signal 

Processing 

l,Q 

fibre-optic link 
|ÄPi| 

fibre-optic link 

Quadrature 
Receiver 

fibre-optic; 
link 

PiiiiPiiii^ 
8x 

| Storage | 18:!!! 

Figure 2- Simplified block diagram of radar. The antenna 
subsystem, shaded region, is physically separate from the 
bulk of the radar. All interconnections between the antenna 
subsystem and the rest of the radar are by fibre-optics links. 

FIELD RESULTS 

dme1140x.ra  UNGATED 
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CROSS-RANGE (number of profiles) 

Figure 3- Ungated image of shallow water table. 

reflection from the water table which recedes in depth from 
left to right in the image, and an above ground reflector. The 
water table is estimated (assuming that the water table is level 
with the surface of the lake) to be about 2.5m deep at the start 
of the survey and about 4m deep at the end. The water 
reflector at its deepest is about 20dB weaker than the direct 
wave. 

Fig.4 shows the data taken in gated mode. The direct wave 
has been completely eliminated. The air reflector overlaps 
the receive gap slightly and hence is still present though much 
weak in the image. 

Fig. 5 show data taken with the radar alternately between 
gated and ungated mode.   This image clearly demonstrates 

The radar was trialed around a perched freshwater lake on 
a sand island. The position of the water table was fairly well 
known around the lake edge and the sand is relatively uniform 
with low attenuation. The submerged water table should 
provide a strong though sometimes broken interface reflector. 

To demonstrate the gating three surveys were taken along 
one survey path. The surveys started near the lake edge and 
moving directly away from the lake up a gently sloping bank. 
One survey was taken in ungated mode, the second in gated 
mode and the third with the system alternating between gated 
and ungated modes. In the display of all images a range gain 
curve has been applied. The gated and ungated data have 
been scaled so that a reflector centred in the range gate would 
have the same strength in both. The images are created using 
the synthesised real bipolar waveform. Hot colors indicate 
positive swings of the waveform and cool colors indicate 
negative swings. 

Fig.3 shows the data taken in ungated mode. There are 
three strong signals, the direct wave between antennas, the 

dmf2208x.ra    GATED 

20 30 40 50 
CROSS-RANGE (number of profiles) 

Figure 4- Gated image of shallow water table 
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Figure 5-    Image of the shallow water table with radar 
alternatively in gated and ungated mode.   The gated and 
ungated data have been scaled so that a reflector centred in 
the range gate would have the same power in both. 

the effectiveness of gating. 
An important criteria for gated stepped-frequency GPR is 

how much rejection of the strong targets gating can achieve. 
In the survey shown in Fig. 5 data was also taken while the 
antennas were stationary on the ground. This showed that the 
direct wave was rejected >60dB relative to a target 
approximately centred in the gate. In this data set that level 
of rejection is sufficient to render the direct wave below the 
noise. Laboratory measurements with similar gating 
electronics have shown rejection of >80dB [2]. 

Fig.6 shows a long survey (approximately 120m) 
conducted over a much deeper section of water table. The 
image of the water table mirrors the surface topography over 
which the survey was conducted. This survey was conducted 
exclusively in gated mode. In ungated mode the water table 
reflection was below the sidelobes of the direct wave. 

Although they were not used in the trials reported here we 
have also been able to significantly reduce the power of the 
direct arrival by using shields around the transmit and receive 
antennas. This is usually done with standard GPR antennas 
with centre frequencies of 100MHz or more. 

CONCLUSIONS 

The use of optical fibre connections to the antenna 
subsystem and redesign of the antennas has allowed excellent 
field results to be obtained. This supports the conjecture that 
the field performance of the system had previously been 
limited by radiation from the cables joining the antenna 
subsystem and the main body of the radar. 

100        150       200       250       300       350 
CROSS-RANGE (number of profiles) 

Figure 6-..The above image is the result of a 120m survey 
conducted above a much deeper water table. The variation in 
depth seen above is consistent the surface topography.   The 
underlying water table is believed to be flat. 

Gating has been shown to reject strong reflectors in favour 
of returns from weak reflectors. A rejection of at least 60dB 
was obtained in the field. 

A new antenna subsytem is being constructed to 
incorporate the advances made in the optical fibre linked 
antenna subsystem with the high transmit power and the low 
noise receiver reported in [2]. 
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Abstract— This paper deals with the problem of de- 
tecting and classifying buried objects. The application 
in mind when addressing this problem is the detection of 
buried landmines. Modern landmines are to a large extent 
made out of plastic and ceramic materials. This makes 
detection with traditional sensors such as metal detectors 
and magnetometers almost impossible. Another problem 
with these sensors is the high false alarm rate induced by 
metallic debris from exploded bomb shells. A sensor type 
that seems to have capability to overcome these problems 
is the impulse radar. The impulse radar can detect non- 
metallic objects buried in the ground. The large band- 
width of the radar also gives additional information that 
can be used for classification purposes. The classification 
abilities enable discrimination between mines and stones 
and metallic debris, thus reducing the false alarm rate. 
An important step towards good classification results is to 
extract a set of features from measured data. The present 
paper elaborates on properties that an admissible feature 
type must possess and shows that the choice of features 
should be related both to the type of measurements and 
the type of classifier used. A number of different feature 
types are finally evaluated using measured data from an 
impulse radar system. 

1    INTRODUCTION 

The problem of clearing minefields in post-war zones 
has received much attention lately. According to thfe In- 
ternational Committee of the Red Cross about 100 million 
landmines are buried in 62 countries around the world. 
The clearing has traditionally been done using metal de- 
tectors, magnetometers or simply by probing the ground 
using a long stick. The probing is obviously a dangerous 
method, while the problem with the two above mentioned 
sensors is that they rely on a metal content of the mine. 
However, modern landmines are to a large extent made 

of non-metallic materials such as ceramics and plastics. 
Another problem is that the ground in a post-war zone 
is most likely contaminated with metallic debris from ex- 
ploded bomb shells. This will give rise to a lot of false 
alarms using the metal detecting sensors. A way to over- 
come these problems seems to be to use an impulse radar 
as sensor. The impulse radar can not only detect non- 
metallic objects, but its large bandwidth also gives infor- 
mation that can be used for target discrimination (classi- 
fication). If the system can discriminate a metal fragment 
from a mine, then the false alarm rate can be reduced. To 
enable a reliable classification, the essential information 
must be extracted from the measured signals. This es- 
sential information is condensed into a vector of so called 
features. The features should be "close" for measurements 
made on one object, while they at the same time should 
differ as much as possible from features extracted from 
measurements on other objects. It is also desirable that 
the features have certain invariance properties, such as 
time-shift invariance. This is due to that an unknown 
burial depth of an object will give rise to an unknown 
time delay, this time delay should not affect the feature 
set. Further feature properties are stated in Section 2, to- 
gether with a list of possible feature types. These feature 
types are evaluated in Section 3 using real data from an 
impulse radar system. Finally, the results and conclusions 
of the evaluation are found in Section 4. 

2    FEATURE EXTRACTION 

Feature extraction is the process of mapping measure- 
ments to a number of figures, features, that in some sense 
represents the measurements. In the present paper the 
goal is to classify measurements to one class, out of a num- 
ber of possible classes. The features should thus extract 
the information in the measurements that is essential for 
determining the class belonging. The feature extraction 
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can be divided into two steps. The first step is a mapping 
(often non-linear) into a number of admissible features. 
The type of mapping is to a large extent determined by 
the type of measurements, and what type of corruption of 
the measurements that can be expected. The present pa- 
per introduces a number of different mappings, or feature 
types, that for different reasons were expected to work 
for the type of signals considered here. The second step 
of the feature extraction process is to reduce the number 
of features as much as possible. In this step only linear 
transformations will be considered. The choice of trans- 
formation in this step should be related to the classifica- 
tion rule used. The ideal is of course if the transformation 
is selected such that the classification error is minimized. 
The exact classification error, however, is very difficult to 
use as an optimality criterion. In [1], a method that uses 
an estimate of the upper bound of the classification error 
as optimality criterion was presented and found to per- 
form well. The present paper will focus on the first step 
though, i.e., how to find suitable feature types for a spe- 
cific type of signals. The particular application considered 
here will impose a number of conditions that any feature 
extraction method must fulfill. The most important con- 
ditions are formulated below. Assume that a signal f(t) 

is mapped to a feature vector y as f(t) —> y. 

fP fP 

(a) f(t - T) —> y. Invariance to time-shifts. Time shifts 
occur due to different burial depths and varying an- 
tenna height. 

JPfP 
(b) f(at) —> y. Invariance to time-scalings. Occur due 

to different propagation speeds in different soils. 

y. Insensitive to multiple reflec- (c) f(t)+7f(t-r)^ 
tions. 

fp fP 
(d) f(t) + n(t) —> y. Insensitive to additive noise, e.g., 

measurement noise. 

3    PRESENTATION OF DIFFERENT 
FEATURE TYPES 

This section will briefly describe a number of feature 
extraction methods that satisfy some of the conditions 
above. For a more complete description see [1]. 
Fourier spectrum — An estimate of the spectrum of 
the measurements is used as feature. Smoothing is em- 
ployed to reduce the variance of the estimate. Satisfies 
property (a) and partly (c). 
Fourier-Mellin transform — The Mellin transform 
is invariant to time-scaling. By combining it with the 
Fourier transform we can also obtain invariance to time- 
shifts, [2]. The Fourier-Mellin transform thus satisfies (a), 

(b) and partly (c). Unfortunately, it is very sensitive to 
noise (condition (d)). 
Cepstrum — Defined as the inverse Fourier transform 
of the logarithmed spectrum. Satisfies (a) and partly (c). 
Bispectrum — Also called third order spectrum. Is a 
function of two variables. In [3] it was proposed to use 
line integrals of the bispectrum as features. Features ob- 
tained this way satisfy (a), (b) and partly (c) and (d). 
Discrete wavelet transform — Expands the function 
in an ON-basis, where the basis functions are translated 
and scaled versions of a single function called the "mother 
wavelet". Extremely sensitive to time-shifts. To overcome 
this problem, the measurements are aligned in time before 
the transformation. 
Pole estimation using ESPRIT — Models the signal 
as a sum of damped exponential and estimates the param- 
eters of that model, i.e., pole-frequencies and dampings, 
[4]- 
Histogram — Estimate of the amplitude distribution of 
a signal. Satisfies (a) and (b), but does probably not pro- 
vide enough discriminant information. 
Time samples — Signals are time aligned to satisfy (a). 
Does not satisfy (b) thru (d). Included in this list mostly 
for reference. 

4    RESULTS AND CONCLUSIONS 

The data for the evaluation of the different feature types 
presented above are collected using an impulse radar sys- 
tem at Sweden's Defence Research Establishment (FOA) 
in Linköping, Sweden. The impulse radar antenna con- 
sists of two crossed dipole elements, one for transmit and 
one for receive. The radar transmits pulses of 0.3 ns length 
and samples the received return at a sampling frequency 
of 20 GHz with 14 bits amplitude resolution. The an- 
tenna is mounted on a positioning system above a sand 
container. Five different object are buried in the sand con- 
tainer at 10 cm depth. The objects are a metal sphere, 
a metal cylinder, a plastic mine dummy, a concrete filled 
plastic shell and a stone. For each object, 72 measure- 
ments are made with the antenna in different positions 
within a radius of 20 cm from the object. The mea- 
surements are mapped to features using the methods pre- 
sented above and then the feature dimension is reduced 
to 10 using the method of [1]. An exception to this is 
made for the bispectrum features where the feature di- 
mension is 20, and for the poles estimated using ESPRIT, 
where 5 poles are estimated. The features are classified 
using a Bayes classifier, with the assumption of normal 
distributed features. The classification error is estimated 
in two ways. A lower bound, §i, is estimated using the 
same data set both for training and classification. An 
upper bound, iu, is also estimated using a method called 
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leave-one-out, [5]. The upper bound is more relevant since 
this is the error one can expect when using independent 
data sets for training and classification (cross validation). 
The results from the evaluation are presented in Table 1. 

Feature Type ii Oil 

Fourier Spectrum 1.39 12.22 
Fourier-Mellin 35.00 47.78 
Cepstrum 3.61 18.33 
Bispectrum 3.06 16.67 
Wavelet Transform 0.83 18.06 
ESPRIT 51.94 55.00 
Histogram 42.78 61.67 
Time Samples 1.39 31.94 

Table 1: Estimates of upper and lower bounds of classifi- 
cation errors for different feature types (in %) 

The feature type giving the lowest error rate is the 
Fourier spectrum, with an upper bound of 12.22%. Three 
other methods also perform well, namely the cepstrum, 
bispectrum and wavelet features with error rates around 
17-18%. The poor performance of the Fourier-Mellin 
transform is probably due to its high noise sensitivity. The 
ESPRIT method is also quite sensitive to noise, but the 
main problem is how to compare poles estimated from two 
different signals. As an example, consider the case when 
we have a signal with, say, 5 poles. If we now estimate the 
three most dominant poles of that signal, measured with 
different noise realizations, we will not always select the 
three same poles as being dominant. This causes prob- 
lems for the classifier, and the figures obtained in Table 1 
can probably be improved by assessing this problem. The 
high error rate of the histogram features is most likely 
due to that they simply not contain enough discriminant 
information. Time samples, finally, give an error rate of 
almost 32%. It is interesting to note that an adequate 
feature extraction method can reduce the error rate by 
more than a factor 2, compared to using the time samples 
directly. One should, of course, not forget that a poor 
feature extraction method can actually increase the error 
rate. The final conclusion is that it is of utmost impor- 
tance to select the feature extraction method with great 
care. For the application considered in the present paper, 
four different methods were found to perform well (Fourier 
spectrum, Cepstrum, Bispectrum and Wavelets). These 
methods will be further investigated in future work, and 
attempts to reduce the effect of their shortcomings will 
be made. 
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For ground penetrating radar (GPR) sensing, with 
antennas positioned safely or conveniently above the surface, 
one must contend with the ground surface reflection as well 
as reflections from targets sought below it. Employing low 
enough frequencies to penetrate moist soil means resolution 
that will often not allow one to distinguish the surface from 
target return. New measurements at CRREL were analyzed 
using innovative methods to sucessfully reveal buried mine 
and mine-like targets in wet, rocky soil. With broad band 
short pulse illumination, one method used a simple model 
that predicted the expected waveforms when surface and 
target echoes interacted. The other method treated the same 
cases but proceeds from the observation that the total 
overlapping surface plus target return is distended in time 
relative to a reflection from the surface alone. By processing 
to define and isolate cumulative energy return over time, one 
could distinguish cases in which targets lay just below the 
surface. Both methods were successful with moist loamy 
soil. Performance of the second approach was also good in 
an extreme case, when seasonal effects were exploited. 

INTRODUCTION 

A fundamental problem in GPR sensing resides in the 
conflict between the need for good ground penetration and 
the desire for tolerable resolution. This translates into a 
question of frequency content. Lower frequencies penetrate 
wet ground more effectively with fewer scattering losses. At 
the same time, we desire higher frequencies for sufficient 
resolution. In this study, we assume that the sensing platform 
must have some ( ~ 2m or more) standoff from the ground 
surface, either for safety, to avoid disturbing the surface, or 
for ease of coverage. Thus the measured return will 
inevitably contain a ground surface reflection, particularly if, 
as in this study, we consider normal incidence. A reflector 
about one subsurface wavelength below the surface will 
generally produce a reflection that is difficult to separate from 
the ground surface return. The two returns will overlap in the 
time domain, with equivalent loss of discrimination in the 
frequency domain ([1],[2]). Viewing the scene from off- 
normal incidence does not entirely do away with the problem 
[3]. 

The problem is illustrated in Figure 1 which shows a 
ground surface reflection, above two depictions of returns 
from ground with a subsurface reflector. In each of these 
figures the trailing content is amplified by a factor, of four 
with a ramp weighted transition zone between early and late 
time [2]. The reflector in this case is simply an assumed 
imperfectly reflecting interface below the surface layer with 

reflection coefficient of about -0.4. As shown below, this 
provided a reasonable rough approximation of the relative 
magnitude of response from some buried metallic reflectors.. 
The top waveform is a measured signal, taken to correspond 
to the source wavelet used for computation of the lower two 
waveforms (center frequency 500 MHz ~ 600 MHz). We 
note that 1) over the three cases the signal is relatively 
unchanged in early time, which contains essentially only the 
ground surface reflection. Even with the late time 
amplification, early time contains the "brightest" part of the 
signal. Further amplification to detect trailing signal would 
likely bring up noise and false alarms. Thus in general one 
cannot search for near surface targets merely by looking for 
bright spots in radar records obtained over a surface area. 2) 
Even with a reflector at 20 cm depth it is not possible to 
distinguish separate reflections from surface and reflector, as 
needed for typical deconvolution operations. 3) The 
waveforms corresponding to different depths of reflector are 
distinct, being essentially interference patterns between 
surface and subsurface reflections. 4) When a reflector is 
just below the surface, the returned signal is distended in 
time relative to the source wavelet. 

TWO METHODS FOR TARGET DISCRIMINATION 

Waveform Recognition 
As a first line of attack, we take inspiration from our 

modeling studies which suggest that, however obscured by 
other reflections, the returns contributed by our targets 
resemble the waveforms from a simple interface. As 
illustrated below, fine geometrical detail in the target tends to 
have only a higher order effect on the results. Using either 
the simple layer model or any more sophisticated treatment, 
one can compute a theoretical reference set of waveforms 
corresponding to reflectors at different possible depths, as in 
the lower two figures above. To evaluate the source of a 
measured signal, one determines which reference waveform 
correlates best with it. We use the simple interface model 
here, measuring soil moisture at about 16% by volume, 
corresponding to a dielectric constant of about 8, with 
frequency dependent lossiness corresponding to the volume 
fraction of water. An effective target reflection coefficient of 
about -0.4 was again assumed for top of the target. 

Figure 2 shows the results of applying this system to 
three measurements: The top applies to reflections from a 
moist soil with no subsurface target other than natural rock 
clutter. 

U.S. Government work not protected by 
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The middle and bottom (respectively) are from a IS cm 
diamter metallic mine and a 30 cm diameter model of an anti- 
tank mine, both buried at 10 cm depth. 

Reflection from ground with 
 .taaet.at.l0.sri).d?E!h  

 , ,  
Reflection from ground with 

target at 20 cm depth 

-1 10" ?r -5 10^ 5101 

t (s) 
1 10" 1.5 10"* 

Figure 1. Wavelet reflected from ground surface without 
subsurface reflector (top) and with subsurface reflectors 
(middle and bottom), t denotes time. 

The signal reflected from ground alone correlates 
approximately 100% for depth d ~ 0. That is, it virtually 
perfectly matches a theoretical return based on the 
assumption that reflection comes from the surface only. For 
the 15 cm mine one sees a significantly lower correlation for 
d ~ 0, and a peak correlation corresponding to a 10 cm deep 
target. For the anti-tank mine model the correlation with 
surface return alone is quite low, and the peak correlation 
matches the correct depth quite closely. In effect, the 
modeling/ signal processing allows us to recover some of the 

resolution that is lost when we must resort to relatively low 
frequencies. 

Energy Distention 
Another approach depends less on any particular 

scattering model, but works simply from the realization that a 
the surface return will be distended by a shallow buried 
scatterer. 

No mine - peak likelihood of echo from zero depth 
(from ground surface only) 
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Figure 2. Computed correlation of measured with reference 
waveforms (a) as a function of depth (d). 

By squaring and smoothing signals like those in Figure 1, 
each normalized to have unit energy, one obtains a record of 
"energy" accumulation through time. Figure 3 shows the 
results of such procedures, applied to reflections from the 
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moist soil without a buried target, and from the same soil 
containing alternative metallic targets of comparable size. 
The same radar system was used as produced the pulse at the 
top of Figure 1. When there is no subsurface target die 
returned energy accumulates relatively quickly. Otherwise 
we note a characteristic delay in the approach to 100% 
arrival. That delay is not significanüy dependent on target 
details. While both are axisymmetric, the mine is relatively 
smooth with a simple central cylindrical rise. The alternator 
contains a drive wheel with protruding rod, and other features 
reminiscent of various more complex mine morphologies. In 
either case the presence of the target is clear, by virtue of the 
trajectory of energy arrival. Similar experiments with other 
shapes and sizes of target at other depths proved likewise 
successful. 

Measured arrival of reflected energy vs time 
for 10 cm burial of 15 cm mine (solid line) 

and car alternator (dashed) 

clay, but shows very clearly in the pattern of Nß5 when the 
soil is frozen. 

100% 

cumulative 
energy 
arrival 

50% 

 1 r——T r 
Epergy arriving from    • 

ground surface reflection only 

 1 v£"Tt-=r:: 

20       30 

Point in time, 

Figure 3. Time trajectories of cumulative energy arrival 

It has been noted that GPR techniques fared quite poorly 
in locating buried unexploded ordnance in recent advanced 
technology demonstrations. This has been ascribed in part to 
wet clay soil at the survey site [4]. Clays can have 
electrically active particles, and can retain much more water 
than other soils, with commensurately greater reflectivity and 
lossiness. To investigate this together with seasonal effects, 
test plots were constructed with an extremely wet clayey soil 
(moisture content in excess of 40% by volume), at the US 
Army Cold Regions Research and Engineering Laboratory, in 
Hanover, NH, USA. Metallic targets of the general size and 
shape of anti-tank mines (30 to 35 cm across) were buried at 
d ~ 13 cm, and radar reflections were measured under both 
frozen and unfrozen conditions. Figure 4 shows results along 
survey transects in which the radar was above the target on 
the left side of the figure, then was moved away producing 
the scans on the right. Nß5 represents the time point within 
the trailing signal content at which the cumulative energy 
return of the signal segment reaches 85% of its ultimate value 
(cf Figure 3). The target is essentially invisible in the wet 

N 85 

16  24  32  40  48  56 
scan number 

Figure 4. Point of 85% cumulative energy arrival (N85) as a 

function of scan number for buried anti-tank mine models, 
when clayey soil is frozen or unfrozen. 

CONCLUSION 

In seeking to discriminate near-surface metallic targets on 
the order of the subsurface incident wavelength in size, the 
methods pursued here were successful in applications in 
moist soil of mixed type. Signal processing with or without 
modeling was required to interpret radar returns; one could 
not simply look for bright spots in the record. In the extreme 
case of very wet clay, it appears that returns from mine-like 
targets can still be distinguished from overlapping surface 
reflections, under frozen conditions. We anticipate 
improvement against some of the near false alarms (eg 
secondary peaks in Figure 2) by improvement of the 
reference signal set, either through more sophisticated 
modeling or incorporation of field data. 
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INTRODUCTION 

Global climate studies have shown that sea ice is a 
critical component in the global climate system 
through its effect on the ocean and atmosphere, and on 
the earth's radiation balance. Polar energy studies 
have further shown that the distribution of thin ice and 
open water largely controls the distribution of surface 
heat exchange between the ocean and atmosphere 
within the winter Arctic ice pack. The thickness of the 
ice, the depth of snow on the ice, and the temperature 
profile of the snow/ice composite are all important 
parameters in calculating surface heat fluxes. In 
recent years, researchers have used various 
combinations of DMSP SSMI channels to 
independently estimate the thin ice type (which is 
related to ice thickness), the thin ice temperature, and 
the depth of snow on the ice. In each case validation 
efforts provided encouraging results, but taken 
individually each algorithm gives only one piece of the 
information necessary to compute the energy fluxes 
through the ice and snow. In this paper we present a 
comparison of the results from each of these 
algorithms to provide a more comprehensive picture of 
the seasonal ice zone using passive microwave 
observations. 

THE ALGORITHMS 

The three algorithms used in this study were 
developed to operate on the brightness temperatures 
available from the DMSP SSM/I sensor. In addition, 
we make use of surface temperature estimates 
generated by Massom and Comiso from AVHRR 
radiances [1]. 

The thin ice algorithm [2] uses the 19.4 GHz vertical 
and horizontal, and the 37.0 GHz vertical channels of 
the SSMI to obtain an improved measure of ice 
concentration and to determine the distribution of new, 
young, and first-year ice types in seasonal sea ice 
zones. This algorithm was validated by high 
resolution AVHRR imagery and aircraft observations. 
The ice temperature algorithm [3], makes use of the 
radiances at 19.4 GHz vertical polarization as well as 
the ice type and corrected concentration output from 
the thin ice algorithm to determine the physical 
temperature of the surface. By assuming that the 
physical temperature of any open water within the 
satellite footprint is at the freezing point, the physical 
temperature of the ice can be calculated. The 
temperature algorithm was validated with surface 
temperature estimates from AVHRR and air 
temperature observations from Point Barrow and 
Gambell Stations. The snow thickness algorithm uses 
the ice concentration information and the 37 and 19.4 
GHz horizontal polarization radiance data to estimate 
snow depth [4]. The validation for this algorithm was 
provided by in situ observations over similar ice in the 
sea ice around Antarctica. 

COMPARISON OF ALGORITHM PRODUCTS 

The initial comparison of products was made for April 
4, 1988 in the Bering Sea. Ice type retrievals for the 
area of interest are shown in Figure 1. 

To focus our comparisons in this initial study, we 
limited ourselves to a small area around St. Lawrence 
Island. Ice type, ice temperature, and snow depth are 
shown in Figures 2, 3, and 4 respectively. 

U.S. Government work not protected by 
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Figure 1. Ice type, in the Bering Sea, on a linear gray 
scale. The brighter areas contain thicker first year ice 
while darker areas contain thinner ice. Black areas 
are open water, and solid gray areas indicate either 
land or missing data. The gray area at the bottom left 
in the image is western Alaska. The white area in the 
bottom right is the thick first year ice in the Chukchi 
Sea. A large refrozen polynya is visible to the west 
and south of St. Lawrence island. 

Figure 2. Ice type for the study area in the immediate 
vicinity of St. Lawrence Island, shown in black. The 
gray scale is the same as the scale in Figure 1. 

Figure 3.   Ice temperature derived from the SSMI 
radiances for the study region. The scale ranges from 
240K (black) to 275K (white), where the darkest gray 
in the image corresponds to 260K. Again, St. 
Lawrence Island is masked in black. 

Figure 4. Snow depth derived from the SSMI 
radiances. The scale ranges from 0 (black) to 7 cm 
(white). To differentiate it from regions with no snow, 
St. Lawrence Island is shown in solid gray, at the same 
position as in the previous two figures. 

DISCUSSION 

The data presented in image format in the figures 
above are represented in scatter plot form below. 
Figure 5 reveals that there is relationship between the 
snow depth and the ice type, as expected. The thicker 
first year ice, which has been transported through the 
Bering Strait from the Chukchi Sea, has significantly 
thicker snow cover than the thinner first year ice types 
grown in the Bering Sea. 
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Figure 5. Snow Depth versus Ice type for the focus 
region around St. Lawrence Island. 

The relationship between snow thickness and SSMI 
retrieved temperature is shown in Figure 6. For thin 
to thick first-year ice types, corresponding to ice types 
between 60 and 100, there is an inverse relationship 
between snow depth and temperature. Because the 
greater snow depth occurs on the thicker ice, we 
expect that the retrieved temperature should be colder 
where the thicker snow exists. 
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Figure 6. SSMI derived temperature vs. SSMI derived 
snow depth. 

A similar plot for the AVHRR derived skin 
temperature is shown in Figure 7. We note that 
although the cluster shape is similar to Figure 6, the 
dynamic range of temperatures is larger for the SSMI 
than for the AVHRR. This is consistent with our 
expectation that the AVHRR retrieved temperature 
should be very close to the air temperature for snow 
covered ice. 

Again, in these scatter plots we consider only the thin 
to thick first year ice, corresponding to ice types 
between 60 and 100. We do this because the AVHRR 
derived temperatures appear to be quite a bit colder 

than expected over the new ice reasons. This may be 
due to vapor plumes rising from these areas that have 
gone undetected. Accordingly, we have deferred 
discussion of the thinner ice regions until we have a 
better understanding of the potential errors in both the 
microwave and infrared derived temperatures. 
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Figure 7. AVHRR derived temperature vs. SSMI 
derived snow depth. 

CONCLUSION 

The authors have initiated an effort to examine the 
relationship between the parameters derived from the 
SSMI radiances. At the present time, the algorithms 
examined appear to generate products that are 
consistent with physical expectations. In the absence 
of additional ground truth observations, this is an 
important error check. 
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Abstract - Coordinated satellite, in situ monitoring, and 
theoretical modeling studies of Arctic Sea Ice have been 
supported by both the Office of Naval Research and the 
National Aeronautic and Space Administration over the last 
2 decades. Application of the results from these efforts is 
being applied to the monitoring of changes in the global 
climate. Two geophysical parameters are now retrieved on 
an operational basis: the extent of ice covered waters, and 
the fraction of multiyear ice, first year ice and open water. 
Efforts are on-going to increase the number of ice type 
categories and to invert signal statistics (e.g., emission and 
backscatter) to ice thickness. Knowledge of the distribution 
of ice thickness is critical to improving the ability to directly 
measure a geophysical response in the polar regions due to 
small changes in the global climate. 

INTRODUCTION 

Snow, ice, ocean, and clouds are key variables in the global 
climate system. They influence the global heat budget 
through feedback mechanisms which influence the exchange 
of heat, moisture, and momentum between the surface and 
atmosphere [1]. Sea ice covers the surface of the polar 
oceans and insulates the warm ocean below from a cold 
atmosphere. Sea ice is observed in thickness of less than a 
millimeter to that greater than 40 m. Because it lies at the 
boundary between the two large systems (atmosphere and 
ocean) its impact is considerable. Satellite remote sensing 
has the important role of providing time sequential 
observation of the polar pack and its margins which are 
necessary in describing key ice behavior and properties. This 
information may be used immediately to update predictive 
forecasting models [2], or archived and studied in support of 
climate change assessments. 

There is considerable interest in the temporal 
variability of global sea ice in both the Antarctic and Arctic. 
The heat flux from the oceans into the atmosphere depends 
on sea ice thickness. Climate change model experiments 
have been conducted for a doubling of CO,. Important 
changes in the distribution of sea ice thickness are noted. 
Based on the model results it is shown that sea ice properties 
are very sensitive to a changing environment, hence are an 

important indicator of climate change. Trends in ice 
thickness over the Arctic Ocean as a whole have been 
suggested to be an especially sensitive indicator of global 
change. 

In general, it is believed that estimates of the ice thickness 
distribution, fraction of the various ice types, total mass of 
sea ice, mean ice thickness, production of new ice in the 
polar regions, and flux of ice out of the polar regions are 
needed to fully describe important sea ice processes [3]. 

In this paper, various aspects of the ability to perform the 
inversion of SAR backscatter to ice thickness is presented. 
What will be described is the information that may be 
retrieved based on a single image, from a temporal sequence 
of image data where feature tracking is possible, and when 
supplemented by ancillary data. The robustness of the 
signal inversion is demonstrated by examining the variance 
in the microwave response of the various ice forms based on 
example satellite SAR data, in-situ microwave scattering 
measurement results, forward model predictions, and the 
classified image products. 

APPROACH 

The Office of Naval Research and the National Aeronautics 
and Space Administration have sponsored a number of 
activities to improve our ability to retrieve geophysical 
properties of sea ice that are of interest. These include 
field, laboratory, and modeling investigations. In situ 
physical and electromagnetic property information have been 
obtained in tandem, often in conjunction with aircraft or 
satellite observations. A select set of results from these 
studies are presented here. 

DISCUSSION 

To improve the ability to retrieve ice property information it 
is important to document the transformation from open 
water to ice, and then the aging process. During the first 
year, level ice may attain a maximum thickness of about 2 
meters.   Ice which has survived the summer melt season, 
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called multiyear ice, may attain thicknesses greater than 3 
m. Pressure in the pack ice may cause buckling of the pack 
ice sheets and result in deformed ice. A transfer function 
which relates ice form and radar scattering coefficient was 
assembled using in situ microwave observations. A similar 
transfer function has been shown to be true for the European 
Space Agency synthetic aperture radar and is shown in Fig. 
1. Important characteristics are that (1) open water is 
separable, in most cases, from ice, (2) that new ice 
produces a backscatter that is considerably weaker than 
young and old ice, (3) that a peak in the first year ice 
behavior occurs at the transition of grey to grey-white ice, 
(4) that as the first year ice continues to age its backscatter 
cross-section decays, (5) that the backscatter intensity 
increases with increasing degree of deformation, and (6) that 
multiyear ice produces the strongest backscatter for level 
ice, but less than that produced by wind roughened water 
(e.g. speeds greater than about 8 m/s). 

0-C   0-R    o!l     5*3    ÖÜ      5        4      7Ä       §       V\     13.5   14.5 
Ice Thickness (cm) 

Figure 2. Backscatter response with increasing ice thickness 
based on laboratory study results at 5.3 GHz, 

The detection of open water and thin ice areas is important 
because of the transfer of heat from a warm ocean to a cold 
atmosphere. The majority of heat transfer is associated with 
these two cases. It is therefore important to understand how 
the backscattering coefficient changes with increasing ice 
thickness during the evolution process. Laboratory 
investigations conducted in outdoor and indoor tanks have 
allowed detailed studies to be conducted of this 
transformation process. Perturbations considered include 
variations in ambient temperature, solar conditions, and 
wave action. An example response is shown in Fig.2 for a 
frequency of 5.3 GHz, and three incidence angles. An 
important attribute of this response is that for quiescent 
conditions and an electromagnetic wavelength of 6 cm, that 
the backscatter slowly decays to a minimum at about 9 cm, 
if the ice remains free of snow. 
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Figure 1.  Relationship between RSC and ice form based on 
ERS SAR in Beaufort Sea during spring. 

As shown in Fig. 1 the relationship between ice form and a 
backscatter intensity is not purely monotonic. Difficulty 
may arise when attempting to discriminate between newly 
formed ice and the older first year ice. A study was 
conducted to demonstrate how temporal observations may be 
used to assist with this problem. In this study case, a 
Beaufort Sea lead is observed for over a one month period 
during spring. In Fig. 3, a set of image chips show that the 
lead area in which new ice is produced is the most 
electromagnetically dynamic part of the scene. 

Figure 3. ERS-1 SAR observations of a lead was 
conducted of a lead in the Beaufort Sea during spring. 
Day of Year are indicated on each figure. 
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The change in scattering coefficient for the lead, multiyear 
ice, and first year ice is also shown as a function of Day of 
Year in Fig. 4. During the study period, three areas opened 
in which new ice was produced. The time history for each 
of these area is included. The signatures of the newly 
formed ice is at an intensity below that of the surrounding 
first year ice. During the aging process, the signature of the 
lead and first year ice become similar in intensity level. 
The time during which this is true is short, however, 
because the lead signature is in transition to a level between 
that of typical first year ice and multiyear ice [4]. This 
transition takes about a week, during which the ice has 
grown to about 35 cm. 

As first year ice ages, two processes are found to contribute 
to the change in properties which are able to be sensed 
remotely: the snow-ice interface, and the upper ice sheet 
dielectric properties. When first year ice transitions from 
1.3 m ice to 1.8 meter ice, it is found that the ice sheet has 
experience further desalination and the ice-snow interface 
has become more smooth due to continuous metamorphism 
at the snow-ice interface. This is sufficient to account for a 
2-3 dB difference in backscatter for these two ice thickness 
categories for level ice as shown in Fig. 5. 

The ability to invert multiyear ice backscatter intensity to 
information associated with its thickness and physical 
properties has been examined. A relationship is found to 
exist between the properties of the low density portion of an 
ice sheet and the total ice thickness. This association is 
shown in Fig. 6. 
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Figure  5.     Thick  and  medium  first year ice 
during spring. 
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Abstract — SeaSat I Scatterometer data collected over the 
Beaufort Sea are analyzed and compared with a simple theoretical 
model that includes surface roughness and volume scattering. The 
values of the root-mean-square surface slope of roughness and the 
volume scattering albedo are adjusted to fit the data. With 
qualifications imposed on the theoretical assumptions, the data are 
well-modeled by the two parameters, and the sensor offers a 
means to monitor the statistical properties of sea ice in existing 
satellite scatterometers experiments, such as the European Remote 
Sensing Satellite and the NSCAT on the Japanese ADEOS I 
Spacecraft. 

I  INTRODUCTION 

The SeaSat A was launched in 1978, and carried the first 
civilian wide-swath radar which collected back scattering data 
over the polar regions. This radar was named the SeaSat A 
Satellite Scatterometer (SASS). Reporting of SASS sea-ice 
results has been rather sparse for several reasons. First of all, 
SeaSat was an oceanographic satellite, and most of the resources 
of the experiment team were driven toward assessing the 
performance of the instrument to measure ocean windspeed and 
direction. Second, the satellite failed before Arctic field 
verification experiments could be undertaken. Third, the variable 
angle of incidence of the SASS complicates the interpretation of 
data over sea ice. The latter problem causes serious difficulties in 
data interpretation because the normalized radar cross-section 
naturally decreases with viewing angle and varies with surface 
roughness, distribution of volume scatterers, surface melt water 
and free-water content, to name a few parameters. On the other 
hand, the backscatter from the ocean depends only on surface 
windspeed and direction, and empirical curves were developed for 
each angle of incidence using aircraft data prior to the launch of 
the satellite. In this paper, the SASS data are presented for each 
incidence angle and is interpreted in terms of a simple theory of 
surface and volume scattering which contains only two 
parameters. 

H  THEORETICAL CONSIDERATIONS 

It has been shown [1], [2] that the effective normalized radar 
cross-section (NRCS) of a medium that contributes both surface 
and volume scatter is given by the formula 

°M  =  °, 
naD 

cos8. 
(1) 

ap + av 

a M 

t 

n 

OB 

a. 

a 
o,, 

= the measured effective NRCS (nondimensional); 

= the angle incidence; 

= power transmission coefficient at 8 = 0p; 

= the number density of subsurface scatterers (cm'3); 

= backscatter cross-section per particle (cm2); 

= the bulk volume attenuation coefficient (cm-1); 

= the NRCS of the rough surface (dimensionless); 

= the NRCS of the volume scatterer (dimensionless); 

The volume scatterers will either consist of brine pockets or voids 
in sea ice. Furthermore, the volume scattering from multi-year sea 
ice will be much greater than that from first-year sea ice because 
the attenuation coefficient a, of first-year sea ice is large. Indeed, 
it is so large that we will assume that there is negligible volume 
scattering from first sea ice. If there is only surface scattering, and 
if we can model the sea-ice surface as an ensemble of reflecting 
facets having a Gaussian distribution of slopes, then the process 
can be described in terms of a geometric optics solution. The 
problem has been studied in depth by Barrick [3] and others. 
They derive the following formula for a$: 

,_.    -tan2e/2S2 

r(0)e       ' 

2S2cos46_ 
(2) 

where r(0) is the power reflection coefficient and S is the rms 
surface slope. 

Although there are several quantities that contribute to the 
volume scattering process, this problem, like the surface scatter 
problem, reduces to only one parameter, 
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which we can identify as the scattering albedo. 

m  ANALYSIS OF DATA 

The general area that was selected for the analysis is bounded 
by Banks island, Canada, and Point Barrow, Alaska, and was 
selected in order to provide land reference points to accurately 
locate ice features for kinematics, using the Synthetic Aperture 
Radar (SAR). A total of five orbits were selected during initial 
freeze up during the month of October 1978, just prior to the 
failure of the satellite. Orbit 1409 corresponds to the data 
collected on 3 October, 1978, and orbit 1452 passed over the 
same area on 6 October, 1978, in accordance with the three-day 
repeat cycles of the satellite. In addition, three other orbits -1395 
(2 October), 1438 (5 October) and 1481 (8 October) - were also 
analyzed to observe temporal changes in the ice growth. 

The SASS was a dual-polarized precision radar, operating at 
14.6 GHz center frequency. A data swath was developed by 
projecting four fan beams boresighted 45 ° to the subsatellite track 
and using Doppler filters to discriminate resolution cells in the 
long dimension of the fan beam, resulting in 500 km swaths on 
either side of the spacecraft. The swaths were formed by twelve 
cells (or channels) with the angle of incidence nominally varying 
between 23° and 65° 

Figure 1 shows the normalized measured backscattering 
coefficient 0°M vs. longitude for orbits 1395, 1438, and 1481 at 
the rather steep incidence angle of 65°. The signatures of the 
multi year pack ice, the ice edge and wind roughened open water 
are clearly evident in the figure. 
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Figure 1: Measured values of the SASS normalized radar 
cross-section as a function of longitude for orbits 
1395, 1438 and 1481. The incidence angle is 65°. 
The polarization was vertical for orbits 1395 and 
1481, and horizontal for orbit 1438. 

The most striking similarity between the data taken six days 
apart is the temporal stability of the multi-year ice signature. 
After six days, the overall change in the backscatter can be 
measured in tenths of decibels, even though the polarization 
alternates between vertical and horizontal. It is of further interest 
to note that the backscatter from the multi-year ice is relatively 
high, even at incidence angles of 65°, and that there are small but 
highly correlated spatial oscillations in the backscatter signature. 
We note that there are observed differences near the ice edge 
which may be associated with changing ice-ocean dynamics. 

The average radar backscatter from first-year sea ice is plotted 
as a function of viewing angle in Figure 2. Also shown are plots 
of the theoretical values of the NRCS for slopes 2S2 = 0.10 and 
2S2 = 0.20 andOy = 0. Since the instrument errors are of the 
order of a few tenths of a decibel, the error bars shown represent 
the geophysical variability of the average, which is more of a 
systematic variation than a random one. It therefore seems 
reasonable to conclude that there is a highly variable scale of 
roughness changes associated with the formation of first-year ice, 
which is consistent with known observations. Since the variability 
exceeds the instrument error, we may also conclude that 
spaceborne scatterometers with near nadir viewing capability will 
be able to monitor changes in the surface roughness of first-year 
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Figure 2: Experimental averages of the normalized radar 
cross-section of first-year sea ice versus angle. Two 
theoretical curves are shown to bracket the 
observations. 
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sea ice. It is of interest to discuss the experimental point at 8p = 
23°, which exceeds the theoretical value of radar backscattering 
from a rough surface. Although this could be attributed to 
increased roughness or errors in the assumptions in the theory, 
such as the validity of geometric optics and a Gaussian slope 
distribution, we should point out that the numerical value of r(0) 
was based upon an assumed dielectric constant of 3.2 with no 
loss. This gives a value of r(0) = -11.0 dB. On the other hand, if 
we assume that the dielectric constant is 3.8, the calculated values 
of the reflection coefficient become r(0) = -10 dB, and the theory 
begins to agree with the mean experimental observation. Thus, 
the spaceborne radar instrument technology has advanced to the 
point where the dielectric properties of the sea ice must be better 
defined to take full advantage of the capability of the sensor. 

Figure 3 shows the average NRCS plotted as a function of 
incidence angle for multi-year sea ice for orbit 1409. Here, the 
data represents the average of many more values than were 
available for display of the results for first-year sea ice. We also 
note a generally smaller measurement variability, which in some 
cases begins to approach the noise levels of the instrument. Also 

-15 

-20 

-25 

  SUM OF SURFACE AND VOLUME SCATTERING 

 VOLUME SCATTERING COMPONENT, T) =0.45 

 SURFACE SCATTERING COMPONENT, 2S2=0.20 

10      20 30 40       50 

0p (deq) 

60      70 90 

Figure 3. Experimental averages of the normalized 
backscatter coefficient versus viewing angle for 
orbit 1409 over multi-year ice. Shown are the 
theoretical surface and volume scattering curves that 
give good fit to the data. 

shown in the figure are theoretical values of scattering from a 
rough surface assuming a surface slope of 2S2 = 0.20 and that for 
volume scattering only with an assumed albedo of x\ = 0.45. The 
solid line through the data points represents the incoherent sum of 
the two theoretical values. We caution that there is good 
agreement between theory and experiment only because we are 
forcing the agreement to be good. That is, the values of the slope 
and albedo were chosen to achieve a good fit. Said another way, 
the scatterometer is being used as a sensor to derive two 
measurable sea-ice parameters. The confidence level can only be 
established by weaving a surface-truth expedition into future 
satellite programs. However, it is of value to note that the 
problem contains only two unknown parameters, which limits the 
validation requirements. 

IV  CONCLUDING REMARKS 

SeaSat scatterometer data collected over sea ice was presented 
and interpreted in terms of a first-order theory that describes 
effects of backscattering from a rough surface and an ensemble of 
volume scatterers. Under the reasonable assumption that the 
backscatter from first-year sea ice is dominated by surface 
roughness, the theory indicates that the rms tilt angle varies from 
approximately 15° to 25°. Consistent with the geometric optics 
model, the backscatter from first-year sea ice significantly 
decreases with increasing angle of incidence. On the other hand, 
the data collected over multi-year ice is very strong as a function 
of incidence angle, which supports the first-order theory of 
volume scattering. Furthermore, the multi-year return remains 
relatively constant with time except near the ice edge and is 
independent of polarization. 

Consistent with operational aircraft data, the scatterometer can 
detect the multi-year pack, thin smooth ice, and the ice edge. In 
addition, the instrument has the potential of monitoring surface 
roughness and the distribution of volume scatterers. With 
additional tuning of the S ASS calibration, it may be possible to 
actually produce maps of the scattering albedo and other 
properties of the volume scatterers as more scatterometer 
frequencies become available. In this connection, it may be of 
interest to compare C-band backscattering measurements from 
ERS-1 with the Ku-band results of the ADEOS INSCAT. 

V  REFERENCES 

[1] Ulaby, F.T., R.K. Moore and A.K. Fung, "Microwave 
Remote Sensing," Vol. ffl, Ch. 20, Artech House, 1986. 

[2] Swift, CT., P.E. Hayes, J.S. Herd, Wl. Jones and V£. 
Delnore, "Airborne Microwave Measurements of the 
Southern Greenland Ice Sheet,"/. Geophys. Res., 90, B2, 
1983-1994, 1985. 

[3] Barrick, D.E., "Rough Surfaces," Chapter 9, Radar Cross- 
Section Handbook (G.T. Ruck, Ed.), 1970. 

1299 



Antarctic Surface Temperatures using Satellite 
Infrared Data from 1979 Through 1995 

Josefino C. Comiso and Larry Stock 
Laboratory for Hydrospheric Processes, Code 971, 

NASA/Goddard Space Flight Center, Greenbelt, MD, U.S.A. 20771 
Telephone: 301-286-9135; FAX: 301-286-1761; E-mail: comiso@joey.gsfc.nasa.gov 

ABSTRACT ~ The large scale spatial and temporal 
variations of surface ice temperature over the Antarctic 
region are studied using infrared data derived from the 
Nimbus-7 Temperature Humidity Infrared Radiometer 
(THIR) from 1979 through 1985 and from the NOAA 
Advanced Very High Resolution Radiometer (AVHRR) from 
1984 through 1995. Enhanced techniques suitable for the 
polar regions for cloud masking and atmospheric correction 
were used before converting radiances to surface 
temperatures. The observed spatial distribution of surface 
temperature is highly correlated with surface ice sheet 
topography and agrees well with ice station temperatures 
with 2K to 4K standard deviations. The average surface ice 
temperature over the entire continent fluctuates by about 30K 
from summer to winter while that over the Antarctic Plateau 
varies by about 45K. Interannual fluctuations of the coldest 
temperatures are observed to be as large as 15K. Also, the 
interannual variations in surface temperatures are highest at 
the Antarctic Plateau and the ice shelves (e.g., Ross and 
Ronne) with a periodic cycle of about 5 years and standard 
deviations of about UK and 9K, respectively. Despite large 
temporal variability, however, especially in some regions, a 
regression analysis that includes removal of the seasonal 
cycle shows no apparent trend in temperature during the 
period 1979 through 1995. 

INTRODUCTION 

Surface air temperatures from ice stations in the 
Antarctic region have been observed to be highly variable 
[1,2,3]. Also, in many areas, significant positive trends are 
observed whereas in some other areas negative trends are 
apparent. The effect of a rising temperature can be 
alarming, especially since the West Antarctic Ice Sheet is on 
the average about -5K in the summer. It is also known that 
an early signal of a potential increase in global temperatures 
induced by greenhouse effects may be observed in the polar 
regions [4,5]. Station data may be separated into manned 
data and unmanned (stand alone) data. The quality control 
of the manned data is usually very good since the necessary 
maintenance and attention are provided to assure that the 
thermistors used for temperature measurements are working 
properly. For unmanned stations, however, the data sets are 
less consistent and gaps in the data record usually occur due 

to constant malfunction of the sensor. Unmanned stations 
have been used to supplement the small number of manned 
stations to obtain a better general overview of the continent. 
But considering the large extent of the ice sheet and it's 
varying topography, the available number of ice stations, 
some of which are clustered together in the same general 
areas do not provide good spatial coverage of the entire 
continent. Surface temperature information over sea ice 
around the continent is even more limited since most of the 
information is derived from buoy and/or ship data. 

In this study, satellite infrared data are used to produce 
surface temperature maps and to study large scale spatial and 
temporal variability of surface temperatures in the polar open 
ocean, sea ice, and continental ice sheet. Thermal infrared 
systems operate during both day and night thereby providing 
continuous coverage except that clouds are persistent in the 
region. Since clouds are usually difficult to discriminate 
from snow covered surfaces, non-conventional means of 
masking them has to be implemented but errors due to 
masking limitations are sometimes not negligible. However, 
the technique may be the only way to obtain spatially 
coherent and synoptic measurements of surface temperatures 
in the region. 

INFRARED DATA, CLOUD MASKING 
AND RETRIEVAL TECHNIQUES 

The Advanced Very High Resolution Radiometer 
(AVHRR) aboard NOAA satellites is a cross track scanner 
operating at the following wavelengths: 0.58-0.68 um 
(channel 1), 0.73-1.1 um (channel 2), 3.5-3.9 urn (channel 
3), 10.3-11.3 um (channel 4) and 11.5-12.5 um. At nadir, 
the resolution of the Local Area Coverage (LAC) data is 
about 1 km2, but since the LAC data record is not complete, 
we use global area coverage (GAC) data in this study. GAC 
data have an effective resolution of 5 by 3 km2 and are 
constructed as follows. Along the 2048-pixel scan line, the 
radiances from 4 successive spots are averaged while the 
next spot is skipped. Also, only every third scan line is 
recorded while skipping two scan lines. We also use data 
from the 11.5 um channel of THIR data which has a 
resolution of 6.7 by 6.7 km. Some techniques for retrieving 
surface temperatures from AVHRR and THIR have been 
reported [5,7,8,9]. 

U.S. Government work not protected by 
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The accuracy in the retrieval of surface skin temperatures 
from satellite infrared data depends strongly on success in 
cloud masking. Clouds over open ocean are usually 
identifiable because of the large contrast in the albedo or 
emissivity of clouds and ocean. Clouds over sea ice and the 
ice sheets in the polar regions are more difficult to mask 
because of the presence of cold snow cover that substantially 
reduce the contrast in the albedo and emissivity of clouds 
and the surface. 

With AVHRR data, cloud masking is usually done by 
thresholding techniques utilizing the visible channels or 
differences between channels 3 and 4 and/or channels 4 and 
5. In the polar regions, the use of visible channels is limited 
because of long winter nights. Also, channels 3 and 4 are 
most effective only during day while channels 4 and 5 do not 
provide good consistency. Another technique, which we call 
daily differencing method and previously used for THIR [6], 
takes the difference of daily data and uses a threshold, based 
on enhancements due to movements of clouds over a one day 
period, to separate cloud covered areas from cloud free areas. 
The best method we have come up with is a combination of 
the use of channels 3 and 4 data and the daily differencing 
method using channel 4 data. Our masking technique is also 
applied separately to open ocean, sea ice, and ice sheet 
surfaces, each of which requires different thresholds. 

Fig. la and lb show an AVHRR orbital data over the 
Antarctic region at channel 1 and channel 4, respectively, 
and indicates where the cloud patterns are located. Fig. lc 
shows the result of applying our technique with areas in 
black identified as cloud covered areas. The technique is 
reasonably effective in masking much of the cloud cover 
identified by inspection from channels 1 and 2 but some 
residuals remain. Because of large data gaps after masking, 
weekly averages are used as the basic product. The results 
presented in this study are from monthly average maps 
which show less effect of residual clouds, better spatial 
coherence and more consistency than the weekly average 
maps. 

To correct for atmospheric attenuation, a slightly 
modified split window algorithm [10, 11] was used taking 
into consideration the zenith artgle dependency of the air 
masses. Comparison of results with surface air temperatures 
in the Antarctic is shown in Figure 2 using data collected in 
stations monitored by the British Antarctic Survey (BAS). 
The correlation is high at 0.93 but the standard deviation is 
around 3K. Comparisons of AVHRR data with other 
Antarctic stations yielded similar results. The relatively 
high standard deviations may be partly due to mismatches in 
measurement sampling time and sizes of the sampling area. 
Also, the accuracy requirements for sea ice and ice sheet 
surface temperatures are not as high as over the ocean 
because of much larger natural fluctuations in temperature 
over the former. 

278 K 
272 K 
266 K 
260 K 
254 K 
248 K 
242 Kit 
236 K 
230 K 
224 K 
218 K 

b) Channel 4 

278 K 
272 K 
266 K 
260 K 
254 K 
248 K 
242 K 
236 K 
230 K 
224 K 
218 K 

c) Cloud Mask 

Figure 1. Orbital GAC AVHRR data showing (a) channel 1; 
(b) channel 4; and (c ) channel 4 but with cloud mask (in 
black). 
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Figure 2. Comparison of surface ice temperatures derived 
from AVHRR with those from the British Antarctic Survey 
stations. 

The night (ascending) data were analyzed separately from 
day (descending) data in order to optimize accuracy. The 
separation of day from night data offers the flexibility of 
making refinements associated with diurnal changes in the 
albedo and emissivity of cloud covered and cloud free 
surfaces. Also, it allows for studies of polar processes 
occurring during the day and be able to contrast them with 
those occurring during night. For example, large differences 
in spatial distribution of surface temperatures are apparent in 
the night and day data shown in Figs. 3a and 3b, 
respectively. In the Antarctic plateau, the temperature 
difference between night and day can be as high as 15K 
during the summer. Also, the high correlation of 
temperature with topography is better understood by having 
night data separated from day data. 

SURFACE   TEMPERATURES   OF   THE   ANTARCTIC 
REGION 

Fig. 4 shows a sequence of monthly maps in the Antarctic 
region during a winter month (i.e, July) from 1984 to 1994. 
The sequence illustrates in detail the interannual variability 
of surface temperatures in parts of the Antarctic region. 
Some years appear considerably colder than other years, 
especially in the Antarctic plateau. Yearly shifts in the 
general location of cold spots are also apparent but a general 
pattern* is not evident. Some other details are missing 
because of the 6K interval in the coded black and white 

images. When coded at 2K interval and using color coded 
images, the maps show temperature distributions that follow 
closely the contours along the Transantarctic mountains and 
major Antarctic glaciers. The Ronne and the Ross ice shelf 
regions are also sites of considerable interannual variability. 

The THIR and AVHRR data sets were combined to study 
long term effects. In this study, the THIR data set presented 
in Comiso (1984) was slightly altered over open ocean 
region to incorporate an improved cloud masking used for 
AVHRR data over the ocean. Data from open ocean 
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Figure 3. Weekly averages of surface ice temperature using 
(a) night data and (b) day data. 
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Figure 4. July monthly averages of surface ice temperatures 
from 1984 through 1994. 

(>55°S), sea ice, and the ice sheet were processed separately 
and the average temperatures over these three surfaces are 
presented in Fig. 5. The interannual variations over the 
ocean is not apparent from the graph because of the scaling 
which makes it difficult to identify expected changes of less 
than IK. The relatively constant values, however, is 
encouraging since it indicates that cloud masking is effective 
and consistently made. Variations over sea ice is more 
apparent and is as high as 5K during some years. Spatial 
variations of temperatures from the continent to the ice edge 
are however much higher. Interannual variations over the 
continent is substantially larger (than sea ice and ocean) 
during both summer and winter.   The largest fluctuations 

occur in the Antarctic plateau where temperatures in one 
year can be 15 K lower than average. ■ 

CONCLUSIONS 

Satellite infrared data provides detailed spatial distribution 
of surface temperatures in the polar regions. While the error 
in the determination may be higher than desired (about 3K 
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Figure 5. Average temperatures in the open ocean (>55oS), 
sea ice, and continental ice sheet in (a) summer (January) 
from 1979 through 1994 and (b) winter (July) from 1979 
through 1994. 
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on the average), the data provides a means to map many 
distinct features in the continent and within the sea ice 
margins. The historical data set also show interannual 
fluctuations that are small over the ocean, significant over 
the sea ice, and large over the ice sheets. Some cyclic dips in 
temperatures are apparent in the data and appears to have a 
period of about 5 years. Accuracies may be improved with 
better cloud masking techniques and perhaps better 
resolution. 
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Abstract - An ultra-wideband radar and a plane-wave antenna 
operating over a frequency range from 500 MHz to 18 GHz 
were used to measure the scattering response of bare saline 
ice, snow-covered ice and pancake ice at the US Army Cold 
Regions Research and Engineering Laboratory (CRREL) 
during the 1994 and 1995 winter seasons. Measurements were 
made at incidence angles between 0° and 50° with W 
polarization. To estimate the scattering coefficient as a 
function of frequency, we had to extract the wideband 
response of the target. We used the Thomson's Multiple 
Windows technique to estimate the high-resolution spectrum 
and to extract the wideband response of the signal. 

At 0°, the scattering from bare ice stayed fairly constant 
with about 1- to 2-dB variation across the 2- to 18-GHz 
frequency range. This indicates that the coherent component 
dominates over this frequency range. For pancake ice, the 
scattering increased from 21 to 29 dB with increasing 
frequency, which indicates an increasing contribution from the 
incoherent component with increasing frequency. In contrast, 
the scattering from snow-covered ice decreased from 25 to 19 
dB with increasing frequency, which indicates a decreasing 
contribution from the coherent component at the higher 
frequencies. At 30° incidence angle, the scattering increased as 
a function of frequency, which is an indication of dominant 
incoherent scattering. The angular response of the scattering 
coefficients obtained using the plane-wave system show that 
surface scattering dominates at least until 30° for all the ice 
types. The results were compared with some simple models. 

INTRODUCTION 

An ultra-wideband radar and a plane-wave antenna [1] 
have been used to measure the high-resolution scattering 
response of bare saline ice, snow-covered ice and pancake ice 
during the winter seasons of 1994 and 1995 at the US Army 
Cold Regions Research and Engineering Laboratory 
(CRREL) during the 1994 and 1995 winter seasons. The 
objectives of these experiments were to study various 
mechanisms for simulating roughness and to understand 
scattering mechanisms better. 

These backscatter measurements were made at 2 to 18 
GHz and  0.5  to  16.5  GHz during the   1994  and   1995 

experiments, respectively, and were made for incidence angles 
ranging from 0° to 55°. These broadband measurements 
provide a vigorous test for models at many frequencies using a 
single system instead of many single-frequency systems. 

In this paper, we will present the signal processing 
techniques, the experimental results and model predictions of 
the backscatter measurements. 

SIGNAL PROCESSING AND RESULTS 

The primary parameter to be extracted from our 
measurements is the backscattering coefficient of the simulated 
sea ice as a function of the incidence angle and frequency. The 
radar equation for the plane-wave system is 

Pa 
a" = cal 

'cal All 
where o° is the backscattering coefficient of the ice, 

Pr is the power returned from the ice, 
Pcai is the return power from calibration target, 
ocal is the radar cross section of the calibration target, and 

Am is the area illuminated by the antenna. 

The equation above does not include the range term since 
the fields do not decay as a function of range for plane waves. 

To extract the scattering coefficient of the ice, we need to 
determine first the return power as a function of frequency. To 
do this, we windowed and inverse Fourier transformed the 
frequency-domain data to obtain the impulse response. The 
signal is then range gated to isolate the target return from the 
spurious reflections. A Fourier transform is then performed to 
obtain the return power as a function of frequency. 

To determine the location of our target, we need first to 
obtain the high-resolution spectrum of our data. In the 
estimation of a spectrum, there are a variety of windows that we 
can choose to minimize leakage. Unfortunately most 
conventional windows that have good leakage resistance 
usually suffer from poor resolution. David J. Thomson [2] 
introduced a technique of estimating high-resolution spectra 
using multiple windows. These windows are optimum in the 
sense of maximizing the concentration of signal energy within a 
specified bandwidth, IV.   The windows are discrete prolate 
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spheroidal sequences (DPSS, also known as Slepian sequences) 
that satisfy a Toeplitz matrix eigenvalue equation given by 

»rin2^(n-m) =K(NiW)v^N,w) 
»>=o     n{n-m) 

where N is the number of data points, 
Wis the bandwidth, which is in the order of \IN, 
k is the column number, 
v(k> are the eigenvectors that correspond to the windows 

to be used to maximize the energy concentration 
within the specified bandwidth, W, and 

Xk are the eigenvalues that give us an estimate of the 
leakage that the data set incurs for the window, v<k>. 

Only the first A=2AW-1 terms with the largest eigenvalues 
are used to minimize leakage due to the higher order windows. 

The complex spectrum, S(t) (t is the travel time), can be 
estimated as follows 

Xk(t) = IFFT{x(f)xvik)} 

1 ^' 1 

where x(f) is the raw data, and Xrft) is the individual spectrum 
estimate corresponding to the data window, v<k\ 

The Fourier transform of the Thomson windows were used 
to range gate the signal, thus providing us with an accurate 
representation of the return power as a function of frequency. 
The ringing due to the filter transient response was reduced by 
using the correction technique described in [3]. The correction 
factor was obtained by simulating an impulse function with a 
flat frequency response within the passband of our filter. The 
Fourier transform of this filtered impulse function gave us an 
estimate of the error due to the transient response. The target 
response was then divided by this correction factor to give us a 
more accurate representation of its frequency response. 

As a first cut, the scattering response for bare ice and 
snow-covered ice were compared with some simple models. 
For bare ice, we used Fung and Eom's model [4] to determine 
the coherent contribution and the small perturbation model [5] 
for the incoherent components. The Rayleigh model [5] has 
been used to determine the backscatter due to snow volume. 

Fig. la and lb shows the angular response of bare and 
snow-covered saline ice and pancake ice at C band and Ku 
bands, respectively. From the plots, we can see that scattering 
for pancake ice is higher than bare ice for angles greater than 
zero. The results indicate there is more incoherent scattering 
from pancake ice because of its rougher surface. The volume 
contribution due to the 2-cm-deep snow cover is almost 
negligible. The slightly higher contribution from snow cover 
could be due to surface scattering. We can also see for the 
three ice types that surface scattering may dominate, at least 
until 30°, because of scattering coefficient falloff with angle. 

Fig. 2a and 2b shows the frequency response of bare and 
snow-covered saline ice and pancake ice at 0° and 30°. At 0°, 
we  see  that  scattering  from  pancake  ice  increased   with 

frequency. The scattering level increased from 21 to 29 dB as 
the frequency was increased from 2 to 15 GHz. From Fig. 2a, 
we can infer that, at the initial frequency of 2 GHz, the 
incoherent components dominated for pancake ice and, as the 
frequency was increased, we got an increase in scattering from 
the incoherent components. As for snow-covered ice, we 
observed that the scattering decreased from 25 to 19 dB as the 
frequency was increased from 3.5 to 16.5 GHz. From the 
model prediction, we see there is little contribution from snow 
volume. The higher scattering at the initial frequencies could be 
due to wet snow at the snow-ice interface. As the frequency 
increased, we got a decrease in scattering from the coherent 
component and an increase in scattering from the incoherent 
components. For the bare ice, there was no significant change 
in the scattering level across the frequency range. The model 
prediction for bare ice is dominated by the coherent 
contribution with negligible contribution from the incoherent 
components. 

At 30°, the scattering level for bare ice and snow-covered 
ice increased by about 12 dB with increasing frequency. The 
model indicates that this increase corresponds to an increase in 
incoherent scattering. The scattering from pancake ice also 
exhibits similar behavior but with a higher scattering level due 
to its rougher surface. 

CONCLUSIONS 

An ultra-wideband radar and a plane-wave antenna were 
used to measure the high-resolution scattering response of bare 
saline ice, snow-covered ice and pancake ice. We developed 
signal processing techniques using Thomson's Multiple 
Windows to estimate the high-resolution spectrum and to 
extract the wideband response of the signal. The results of our 
experiment and the first-cut model prediction indicate that the 
backscattered signal from saline ice is dominated by 
contributions from the ice surface across the measured 
frequency range at angles less than 30°. 
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Abstract-- A combined surface-volume scattering model 
based on the radiative transfer formulation for an inhomoge- 
neous layer above an inhomogeneous half space is developed 
using a dense medium phase function. This phase function 
gives the scattering properties of coherent scattering from a 
group of randomly positioned scatterers within a unit volume. 
For a bare saline ice or a snow-covered saline ice at C and X 
bands, backscattering at small angles of incidence is domi- 
nated by the air-ice or snow-ice interface. At large angles of 
incidence, volume scattering by ice, or snow and ice, is 
noticeable especially at higher frequencies.When the model is 
applied to passive measurements emission is found to be dom- 
inated by ice in the low frequency region. The presence of a 
snow cover enhances emission in the low frequency region 
and gradually turns into a darkening effect when frequency 
exceeds 35 GHz. At 94 and 140 GHz emission is dominated 
by snow. As frequency increases, the effect of group scatter- 
ing lowers the rate of increase in albedo and permits a larger 
difference between like and cross polarized backscattering in 
active sensing and slows down the rate of decrease in emissiv- 
ity in passive sensing. 

INTRODUCTION 

Snow and sea ice media are known to be dense because 
there may be more than one scatterer within the distance of a 
wavelength and because the volume fraction of scatterers may 
be more than half of a percent. When the wavelength is much 
larger than the size of the scatterer, the effect of a dense 
medium is usually not very significant in active scattering 
because the change in the level of scattering is close to or 
within experimental error. The optical depth of snow is small 
at long wavelength and generally it is the snow-ice boundary 
that is dominating backscattering from a snow-covered saline 
ice. However, at large angles of incidence (0>40°) volume 
scattering contributions from snow will be appreciable and the 
effect of a dense medium is to decrease the albedo value rela- 
tive to the prediction based on a sparse medium theory. 

In emission from a dense medium the effect of a decrease in 
albedo is most noticeable especially beyond 35 GHz. The 
darkening effect by snow in the 35-140 GHz range is much 
less than what is predicted by the classical radiative transfer 
model. Without including this dense medium effect, it will be 
impossible to account for the frequency behavior at these fre- 
quencies. 

Acknowledgements:This work is supported by the Office of Naval 
Research under ONR Grant N00014-90-J-1329. 

SCATTERING AND EMISSION MODELS 

The model geometry is shown in Fig. 1 where the lower 
half space is saline ice. Note that the snow layer is an electri- 
cally dense inhomogeneous medium. The radiative transfer 
equation is solved within the inhomogeneous layers subject to 
the boundary conditions at the upper, and lower randomly 
rough boundaries. Unlike the conventional far field phase 
matrix, the dense medium phase matrix which accounts for 
close spacing between scatterers and first-order coherent 
interaction is utilized in the transfer equation. The formulation 
of the dense medium phase matrix is given in the following 
subsection. To account for the rough interface scattering 
effects, the IEM surface scattering model [1] is integrated into 
the snow layer scattering and emission models via the gener- 
alized boundary relation. In addition to the effects of bound- 
ary roughness, the generalized boundary relation also 
accounts for the coupling effects between an inhomogeneous 
layer and its rough boundaries. Detailed formulation of the 
generalized boundary relation is given in [1]. Thus, the snow 
layer scattering and emission models account for volume scat- 
tering, surface scattering by the interfaces, and surface-vol- 
ume interactions simultaneously. 

Dense Medium Phase Matrix 

The phase matrix for dense medium is given by [2] 

p = <TOBS = <TO„ 

r 1-                       -. 

svv SVH Pw  PvH 
SHV SHH ?HV PflH 

(1) 

where <[xf|2>„ is the dense medium coherent phase correction 
factor needed to account for the first order coherent interac- 
tion between scatterers. This phase factor (|XP|2)„ is given by 

<M2>„ = 

Wl 

1 <*i*V 
J3 & 

q\d 
exp 

Aq 

(2) 

■a(kx)a(kja(k,) 

where ksi = \ks-k\ = \xkx + yk, + zkz\; ks and ik) are the 
propagation vectors in the scattered and the incident direc- 
tions respectively; a is the standard deviation of the scatterer 
position from its central position in a uniform three-dimen- 
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sional array which defines the central locations of all scatter- 
ers; d is the mean distance between adjacent central 
locations; and / is the correlation length of the position devia- 
tion of one scatterer from its central position to that of the 
other scatterer; and 

a{kr) I(4'exp -it 4*7 Re{^qd/2fq
ikrl (3) 

a, /, and d are determined by the physical properties of 
the inhomogeneous medium, such as scatterer size and vol- 
ume fraction. The average distance between scatterers is 
related to the scatterer volume fraction v, and scatterer radius 
a by 

' ■ °mm (4) 

In (1), S is the phase matrix of a single scatterer which 
includes amplitude correction due to close spacing of scatter- 
ers in a dense medium. Detailed derivation of S is provided in 
[1]. 

COMPARISONS WITH DATA 

Backscattering From a Snow-Covered Ice 

Comparisons between model calculations and laboratory 
measurements over bare and cold, snow-covered saline ice are 
carried out. Ice surface roughness parameters are determined 
from model comparisons with data from bare ice and then 
used in model for predicting scattering from snow-covered ice 
at the same frequency for both VV and HH polarizations at 
5.3 and 10 GHz. For this case coherent phase effect is not seen 
because many randomly located scatterers are within a wave- 
length thus destroying coherent phase effect. At 95 GHz and 
140 GHz [3] only snow is seen by the radar. Fig. 2 and Fig. 3 
give the comparisons of like and cross polarizations. Here the 
coherent phase effect is strong allowing a wider spacing 
between like and cross polarizations than predicted by con- 
ventional transfer theory [3]. Since natural ice particles in the 
snow layer are irregular in shape and different in size, and are 
randomly oriented as well, a, the standard deviation of the 
variations from mean position, should be larger at 95 GHz 
than 140 GHz. In this case, we select a = 0.55d at 95 and 
0.50d at 140 GHz. The correlation length / of snow samples 
has been reported in the literature [4] and is found to be within 
0.05 mm (for fine snow grain sample) and 0.3 mm (for coarse 
snow grain sample). In the model predictions, / is chosen to be 
0.12 mm for ice particles of radius 0.24 mm, and 0.11 mm for 
particles of radius 0.22 mm. 

Emission From Snow Covered Sea Ice 

Reference physical model parameters used in the emission 
calculations are listed in Table 1. The electrical parameters for 
snow and sea ice were determined using the formulas and 

tables provided in [5]. The model predictions at 6.7, 10, 18.7, 
37, and 90 GHz using the physical parameters listed in Table 1 
and reported in [6] agree well with the data provided in [6] at 
all frequencies. Note that model predictions show a higher 
emissivity (brightness temperature) of the snow-covered sea 
ice at 37 GHz than at 6.7 GHz. This increase is due to emis- 
sion from snow with albedo lowered by the dense medium 
phase factor. The emissivity decreases at a rate much lower 
than predicted by conventioal radiative transfer theory as fre- 
quency increases further from 37 GHz to 90 GHz. This fre- 
quency behavior is consistent with the effect of the coherent 
phase factor (Fig. 4). 

In the analysis of snow cover effects on sea ice emission, 
we assumed that the sea ice parameters are fixed. Fig. 4 shows 
the emissivity of sea ice with dry snow cover at 10, 37, and 90 
GHz. As snow volumetric water content decreases, the total 
emissivity decreases due to an increase in snow albedo. Also, 
The separation between V and H polarizations decreases as 
snow volumetric water content decreases. Fig 5 shows a com- 
parison between model and data at 90 GHz. The emission 
level remains quite high relative to 37 GHz for this particular 
data set because the snow is wet which further reduces albedo. 

Table 1: Reference Parameters For Snow Covered Sea Ice 

Physical Parameters 

Snow Layer: 
Layer thickness 8 cm 
Scatterer radius (ice particle) 0.5 mm 
Scatterer volume fraction 30% 
Volumetric water content 1% 
First Year Sea Ice: 
Layer thickness 60 cm 
Scatterer radius (brine pocket) 0.1 mm 
Scatterer volume fraction 1% 

SUMMARY 

A snow-covered sea ice model which partially accounts for 
dense medium effects was applied to data interpretation. 
Model predictions agree well with field measurements 
reported in [6]. Model predictions show a higher sea ice emis- 
sivity at 37 GHz than at 6.7 GHz. The emissivity decreases as 
frequency increases from 37 GHz to 90 GHz. A decrease in 
the snow cover volumetric water content causes a decrease in 
the emissivity of the snow-covered sea ice. As the snow grain 
size increases from 0.5 mm to 1.0 mm, the snow layer albedo 
increases resulting a decrease in total emissivity. In active 
sensing the separation between like and cross polarization is 
most sensitive to the coherent phase effect which leads to a 
wider separation between the two polarizations. 

REFERENCES 

[1]  A.K.Fung, Microwave Scattering And Emission Models 

1309 



[2] 

[3] 

[4] 

And Their Applications, Artech House, MA, 1994. 
H.T.Chuah, S.Tjuatja, A.K.Fung, and J.W.Bredow, "A 
phase matrix for a dense discrete random medium: evalu- 
ation of volume scattering coefficient," IEEE Trans. GRS 
Vol. 34., No. 5, pp. 1137-1143, 1996. 
Ulaby, F.T.,Haddock, T.F.,Austin, R.T., and Kuga, Y., 
"Millimeter-wave radar scattering from snow: Compari- 
son of theory with experimental observation," Radio Sci- 
ence, vol. 26, pp. 343-351, 1991. 
Vallese, F., and Kong, J.A. "Correlation function studies 
for snow and ice," /. Appl. Phys., vol. 52, pp. 4921-4925, 
1981.F.T.Ulaby, R.K.Moore, and A.K.Fung, Microwave 
Remote Sensing, Vol. 3, Appendix E, pp. 2017-2019, 
Artech House, Norwood, MA, 1986. 

[5] F.T.Ulaby,   R.K.Moore,   and   A.K.Fung,   Microwave 
Remote Sensing, Vol. 3, Appendix E, pp. 2017-2019, 
Artech House, Norwood, MA, 1986. 
T.C.Grenfell,     J.C.Comiso,     M.A.Lange,     H.Eicken, 
M.R.Wensnahan, "Passive microwave observations of the 
Weddell Sea during austral winter and early spring," J. 
Geophy. Res.,Vol. 99, No. C5, pp. 9995-10010, May 15 
1994. 

[6] 

Snow 

Figure 1. Geometry of the snow layer model. 
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Abstract - The effects of weather systems on sea-ice con- 
centration retrievals using passive microwaves are investi- 
gated because significant errors in estimating short-time 
variations and climatological concentration trends occur 
due to clouds and water vapor. For the assessment of 
these weather effects, the atmospheric parameters inte- 
grated water vapor content (W) and cloud liquid water 
path (LWP) are derived from radiosonde ascents mea- 
sured in the pack-ice area of the Weddell Sea/Antarctica 
in 1992. Using a microwave radiative transfer model and 
typical surface emissivities, brightness temperatures are 
calculated from the radiosonde ascents. The first-year, 
multiyear and total sea-ice concentrations are calculated 
using the NASA team sea-ice algorithm for the SSM/I ra- 
diometer (Special Sensor Microwave/Imager). Thus the 
ice concentration changes depending on surface compo- 
sition (open ocean, first-year ice, multiyear ice) and the 
values of LWP and W are modelled. Modelled atmosphe- 
ric effects and measured sea-ice concentration changes, the 
latter being derived from SSM/I radiometer data, are in 
good agreement both geographically and quantitatively in 
areas with large frontal cloud structures, as identified us- 
ing infrared satellite data. A method is presented for a 
large-scale estimation of the necessary parameters LWP 
and W over sea ice. Using these results the derived sea- 
ice concentrations can be corrected for the modelled at- 
mospheric effects. 

INTRODUCTION 

Since the launch of the ESMR (Electrically Scanning 
Microwave Radiometer) in 1972 it has been possible to 
derive the approximate coverage of the polar oceans with 
sea ice from the measured radiance. The use of data from 
multichannel instruments - SMMR (Scanning Multichan- 
nel Microwave Radiometer) and SSM/I (Special Sensor 
Microwave/Imager), launched in 1978 and 1987- also al- 
lowed the determination of different sea-ice types. But 
more precise identification of even small concentration 
changes is important in order to detect long-term climatic 
variability of sea-ice extent, concentration or type. Com- 
parison with surface field measurements indicates that 
current algorithms which determine sea-ice concentration 
from passive microwave observations need to be improved, 
especially for Southern Ocean sea ice. Here the effects of 
weather systems on the derivation of sea-ice concentration 
are investigated for the most widely used NASA-Team al- 
gorithm [1]. Through the use of brightness temperature 
(TB) ratios calculating its parameters polarization ratio 

PR (1) and gradient ratio GR (2) the algorithm is almost 
insensitive to surface temperature variations. 

PR = [TB(IW) - TB(19H)}/[TB(19V) + TB(19H)] (1) 

GR = [TB(S7V) - TB(IW)]/[TB(Z7V) + TB(1W)\   (2) 

However, due to the presence of atmospheric cloud liquid 
water, TB(37V) is stronger increased than TB(IW) while 
water vapor affects TB at 19 GHz (closer to the absorption 
line at 22.3 GHz) stronger than at 37 GHz. Thus PR and 
GR are modified for conditions different from average, for 
which specific algorithm tie-point TB were selected. 

MODEL INPUT DATA 

For the comparison with satellite data, brightness tem- 
peratures at the top of the atmosphere and at radiometer 
frequencies and polarizations are simulated using a micro- 
wave radiative transfer model [2,7]. Surface emissivities 
were chosen for the Weddell Sea [6] and were kept fixed 
for the whole variety of atmospheric conditions allowing an 
assessment of the atmospheric effects. Typical atmosphe- 
ric conditions and their variability over sea ice are taken 
into account using 155 radiosonde ascents, launched from 
the icebreaker R, V. Polarstern in winter 1992 over sea ice 
in the Weddell Sea/Antarctica. Since radiosonde obser- 
vations do not contain direct information on cloud liquid 
water content, the profile of cloud liquid water is parame- 
terized from the measured profiles of temperature and hu- 
midity using a modified adiabatic approach [2]. Profiles 
of liquid water content (LWC) and their integral value, 
the liquid water path (LWP), were verified with synop- 
tic observations from R. V. Polarstern. Water vapor den- 
sity (pw) and its integral value, the integrated water vapor 
content (W) is calculated directly from the ascent mea- 
surements (Fig. 1). By using measured polar atmospheric 
conditions, especially a realistic cloud position, height and 
liquid water distribution, more realistic effects on derived 
sea-ice concentration are expected compared with previ- 
ous approaches, e.g. [3]. 

MODEL RESULTS 

The modelled effects of atmospheric cloud liquid wa- 
ter and water vapor are directly obvious in PR-GR space 
(Fig. 2). The radiosonde values (dots) depart characteris- 
tically from the sides of the sea-ice retrieval triangle which 
represent the pure surface types (first-year ice (A), older 
ice (B), open water (OW), and fractions thereof) with- 
out atmospheric influence. Water vapor and cloud liquid 
water decrease PR while the latter strongly increases GR. 
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Figure 1: Average and standard deviation (for N > 10) of 
temperature (i?), water vapor density (pw) and cloud liq- 
uid water content (LWC) profiles for the used radiosonde 
ascents from the Weddell Sea. The right part shows the 
distribution of parameterized layers with water clouds. 

These two different behaviors are most obvious at low con- 
centrations (near the OW-point). The scatter within the 
clusters of points (each representing the atmospheric data 
set) is caused by varying cloud parameters and water va- 
por profiles (see [5] for details). Using the NASA-Team 
algorithm, curves of sea-ice concentration changes (dC) 
with LWP (Fig. 3a, c) and with W (Fig. 3b, d) are calcu- 
lated by regression. The first-year ice concentrations (CF) 
on the abscissas contain weather errors and thus can even 
be calculated as more than 100% or less than 0%. The 
abscissas of Fig. 3 can be identified as the line OW-A in 
Fig. 2, with CF ranging from 0% to 100%. While LWP 
and W increase CT by the same order of magnitude (Fig. 
3c, d), the LWP effect on Cp can be up to six times as 
large (Fig. 3a, b). 

Detailed comparison with previously published weather 
effects for the SMMR radiometer sea-ice algorithm, and 
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Figure 2: Modelled atmospheric effects of W and LWP in 
PR-GR space for different compositions of sea-ice types 
(A, B) and open water (OW). Lines of total concentration 
are drawn in intervals of 10% for scale. 
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Figure 3: Modelled weather effects on first-year concen- 
tration, dCF (a, b), and total concentration, dCx (c, d) 
due to LWP (a, c) and W (b, d); units are kg m~2. 

for different sea-ice emissivities in other polar regions can 
be found in [6]. Changes of CT predicted by the SSM/I 
radiometer algorithm are twice as large as those obtained 
from the older SMMR radiometer algorithm, resulting 
mainly from the larger water vapor effect at SSM/I fre- 
quencies. The weather effects for future MIMR (Multifre- 
quency Imaging Microwave Radiometer) radiometer data 
will be in between those from SMMR and SSM/I. 

SATELLITE DATA 

The modelled atmospheric effects on sea-ice concentra- 
tion retrieval are now used to correct satellite derived con- 
centrations in the Weddell Sea where the radiosondes were 
launched and where ground-based observations exist. As 
an estimate of the atmospheric parameters, W and LWP 
(3) are computed over ice using open-water algorithms [7]. 

LWP = 00 + 0! ln(280-TB(22y)) + 62 \TI(280-TB(37V)) 

(3) 
The hi are regression coefficients. A large change in satel- 
lite-derived ice concentration within a short period of time 
(less than one day) is supposed to be mainly the result of 

1312 



SSM/I 

24.07.92 p.m. 
-24.07.92 a.m 

dLWP [kg/m2 

-0.5 -0.4 -0.3 -0.2 -0.1     0    0.1   0.2   0.3   0.4   0.5 

-60 -40 

SSM/I 
24.07.92 p.m 
- 24.07.92 a.m corrected 

dCF [%] 

10    20    30    40    50 

Figure 4: Difference plots (p.m.-a.m.) of SSM/I-derived 
LWP over ocean and sea ice (a), CF (b) and corrected CF 

(b') in the Weddell Sea/Antarctica for 24 July 1992. 

fast-moving atmospheric disturbances and not the effect 
of real concentration changes, which can vary typically up 
to 3% per day [4]. Therefore, the change of LWP (Fig. 
4a) and W within 12 hours is computed as the difference 
between the values of evening (p.m.) and morning (a.m.) 
satellite overflights. The strongest LWP increase occurs in 
a region where a frontal cloud band passes the northwest- 

ern Weddell ice pack, as detected using Advanced Very 
High Resolution Radiometer (AVHRR) infrared images. 
By applying the very similar modelled effects of LWP and 
W (Fig. 3) to satellite derived concentrations (here CF) 
it is possible to reduce the concentration change between 
p.m. and a.m. values (formerly up to 50%) significantly, 
as seen in the example of 24 July 1992 (Fig. 4b, b'). 

CONCLUSIONS 

The model study for first-year sea ice areas indicates 
an increase of total sea-ice concentration of 10-15% and 
an increase of first-year concentration of up to 60 % for 
high values of atmospheric cloud liquid water and water 
vapor, while a decrease of multiyear concentration of up 
to -50% is calculated. Very similar effects have been ob- 
served for satellite derived sea-ice concentrations. If these 
concentrations, affected by disturbances on time scales 
of less than one day, remain uncorrected, a positive bias 
would result for CF and CT, and a negative bias for CM- 
The correction of weather effects is important in order to 
identify climate-induced sea-ice concentration trends, es- 
pecially if data from more than one radiometer are used. 
On the other hand, a climatological increase of LWP or 
W would incorrectly imply a higher total ice concentration 
with higher first-year and lower old-ice fraction. Further 
work must be done in order to separate weather and sur- 
face emissivity effects for cyclones passing the ice pack. 
Important parameters for the emissivity are crystal struc- 
ture, salinity and free water content of an accumulating 
snow layer on the ice. 
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Abstract - Sea ice is one of the most important compo- 
nents of the Earth's cryosphere. It modifies the sea-air heat 
and momentum exchanges, Earth's radiation budget and af- 
fects the global heat and freshwater circulation. None of the 
existing satellite instruments can provide detailed measure- 
ments of the sea ice topography and elevation, that is neces- 
sary for the study of the sea ice mass balance. 

This paper presents the results of an analysis that was made 
for the European Space Agency concerning the feasibility of a 
spaceborne laser altimeter for sea ice measurement. The 
analysis indicates that a laser altimeter with a spatial resolu- 
tion of 50 m - 100 m can be used to globally measure sea ice 
thickness and estimate sea ice mass with an accuracy exceed- 
ing the accuracy of the present spaceborne measurement tech- 
niques. 

INTRODUCTION 

Sea ice is one of the most important components of the 
Earth's cryosphere as it continuously modifies the sea-air heat 
and momentum exchanges in the high latitude areas. The high 
albedo of sea ice plays a significant role in the Earth's radia- 
tion budget by reflecting the solar radiation and thus provid- 
ing a positive feedback on the global temperature change. In a 
case of a global temperature decreasing the increasing area of 
the sea ice coverage would amplify the phenomena. Sea ice 
advection combined with ocean currents is an important factor 
in the global heat and fresh water circulation. 

The mass budget of sea ice is not well known in spite of the 
fact that the areas covered by sea ice are well mapped. The 
main reason for this is that the present spaceborne remote 
sensing instruments do not provide adequate spatial resolution 
for the detailed mapping of sea ice topography. 

Satellite altimetry has become one of the most important 
techniques to observe the ocean circulation. Radar altimetry 
from satellites has been used for more than a decade and is 
now one of the main data sources for studies of ice sheet to- 
pography and ocean currents. Radar altimetry has been tested 
for sea ice, but the technique is not yet mature for the obser- 
vation of the sea ice topography and thickness. One of the 
problems of a spaceborne radar altimeter is the large footprint 
that averages out almost all deformations of the sea ice topog- 
raphy. 

A spaceborne laser altimeter, with sufficient accuracy and 
resolution, has potentially the capability to provide topo- 
graphic data which are needed for the ice thickness and mass 
balance studies. 

SEA ICE THICKNESS MEASUREMENT 

The ice thickness can be estimated from altimeter data by 
measuring the freeboard, which is the mean height of the ice 
floes above the sea level. For example, for 2 m thick sea ice 
the freeboard is typically 20 - 30 cm, depending on the density 
of the ice, the snow cover on the ice and the water content of 
the ice. 

A factor R relating the sea ice draft and the freeboard can 
be calculated from the freeboard height by applying the Ar- 
chimedes' law, the mean ice and snow density and the near- 
surface water density, 

R- (1) 

where pm is the mean density of sea ice and snow and pw is the 
density of near-surface water [1]. 

The accuracy with which R can be determined is crucial for 
the determination of ice thickness. From field experiments in 
the Arctic, where both freeboard and draft were observed di- 
rectly, good correlation between freeboard distribution and 
draft distribution were found using a value of 7.8 for R [2]. 
However, the value for R can vary considerably depending of 
the thickness of the snow cover on the ice and ice type [2,3]. 

The sea ice thickness H can be calculated from R and free- 
board height estimates by 

H = A + B = (R + 1)B, (2) 

where A is the draft of the sea ice and B is the measured free- 
board height. 

This method is very sensitive to the freeboard height meas- 
urement error, because the factor R can be rather large. For 
example, the range accuracy of a state of the art spaceborne 
laser altimeter system is estimated to be about 6 cm [4]. This 
results in about 54 cm error in the sea ice thickness measure- 
ment. Thus the performance of a spaceborne laser altimeter is 
not sufficient to resolve sea ice thickness variability in areas 
of thin first year ice. 
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SIMULATION OF SPACEBORNE MEASURE- 
MENT 

The main difference between a spaceborne laser altimeter 
and an airborne one from the data user point of view is the 
size of the footprint. The diameter of an airborne laser al- 
timeter footprint is small (diameter < 1 m) compared to sea 
ice topography features. Based on the general sampling theory 
this means that the target is oversampled. When a spaceborne 
laser altimeter measures surface topography, only the average 
heights of the 50 - 100 m footprints (diameter between half- 
power points) are obtained. This can considered as subsam- 
pling of the measured target and a severe loss of target fea- 
tures. 

In this study airborne laser altimeter data has been used to 
simulate the performance of a spaceborne instrument. Simula- 
tion has been performed by averaging airborne laser altimeter 
data from the Bay of Bothnia and the Arctic Sea regions near 
Greenland to create footprints of 50 m and 100 m of diameter. 
A Gaussian shape for the footprint energy distribution func- 
tion has been used. These averaged profiles provide similar 
topographic information from the sea ice surface than a 
spaceborne laser altimeter would. 

To study the statistical data produced by a spaceborne laser 
altimeter we have combined the averaged profiles to create 
50x50 km target areas for the Bay of Bothnia and for the Arc- 
tic Sea region. The measurement of a satellite laser altimeter 
has been simulated by taking short random topography sam- 
ples from the target areas. This simulates the operations of a 
laser altimeter with varying cloud coverage over the target 
areas. The percentage of successful laser measurements has 
been assumed to be normally distributed. The number of hits 
for a target area has been selected to equal the number of sat- 
ellite passes over target areas at different latitudes and during 
different cloud conditions. 

PROBABILITY DENSITY FUNCTION 

Probability density function (PDF) is calculated by classi- 
fying each laser altimeter measurement to a height bin and 
dividing the number of hits in each bin by the total number of 
measurements. The height of the bin is defined to be the mid- 
point of the bin. This procedure is visualized in Fig. 1. 

The advantage of the PDF is that the height measurement 
error related to a single altimeter range measurement can be 
reduced by averaging several samples within one height bin as 

M 
1 

■Pdf ■ 

Iribin 
:Ar™ (3) 

where AhPd/ is the error of the averaged result (also repre- 

senting the confidence of that bin), A?w is the error of sin- 
gle range measurement, and Ww» is the number of averaged 
measurements. 

40 
30 
20 
10 

0 
Fig. 1. Procedure used to calculate ice height PDF. 

ICE VOLUME AND MASS ESTIMATION USING 
PDF 

A very good mach between the PDFs of the sea ice free- 
board and draft has been shown in [1]. This means that the sea 
ice volume distribution can be estimated from the PDF of the 
freeboard over the target area as 

v=Xv*oxo, (4) 
;=i 

where    V= freeboard volume 
AT = area of the measurement target 
H(i) = average height of bin i 
p(i) = probability of bin i 
k = total number of bins. 

The error in the sea ice volume estimate AV based on the 
PDF can be analyzed by using the total differentiating 
method. If the target area error is assumed to be 0 and all 
height measurement errors are included into a single error 
term AHbin, the freeboard volume error can be calculated from 
the equation 

AV = AT Afl^X/>(*')+S#(OAP(O 
I=I i=i 

(5) 

where J^ p(i) (sum of all probabilities) must be 1. Thus 
;=i 

AF = ArAH,,,, + ATX H(i)Ap(i) . (6) 
1=1 

Ap(i), the probability of the erroneous samples in bin i, can 
be calculated from the measurement error, bin height and 
number of measurements in the bin as 

Ap(i) = p(i)(area fraction of erroneous samples 
in that bin). 

(7) 

Fig. 2 presents the freeboard volume estimation error as a 
function of the bin height for a simulated 50x50 km target 
area of multiyear sea ice at the latitude of 80° N. The four 

1315 



curves represent percentages of the measurements prevented 
by the cloud coverage when the satellite has passed over the 
target area. The total data collection time for the target area 
has been selected to be one month, and the number of satellite 
passes over the target area has been calculated accordingly. 
The satellite has been assumed to be on a 650 km dawn-dusk 
sun-synchronous orbit. The RMS freeboard height measure- 
ment error of the laser altimeter system has been assumed to 
be 16 cm (sum of the laser altimeter range resolution and the 
sea level determination error). 

The results in the Fig. 2 indicate that the error in the free- 
board volume estimate can be kept small with a proper selec- 
tion of the PDF bin height even when cloud coverage prevents 
90 % of the measurements from the target area. This indicates 
that the performance of a laser altimeter is not affected by the 
cloud coverage as severely as generally is considered. 

£, 100 

a> 
Q) 

E 
3 
o > 

n 
o 
.o 
a> 
a> 

H 1 1 1 1 1 1 1 h- 
0.01     0.03    0.05    0.07    0.09    0.11     0.13    0.15    0.17    0.19 

Bin height (m) 

Fig. 2. The error of the freeboard volume estimate in 
50x50 km area as a function of the PDF bin height and for 
different cloud coverage probabilities for a multiyear sea ice 
in the Arctic region. A 50 m laser altimeter footprint diameter 
and 140 Hz measurement rate has been used in the simula- 
tion. 

If the freeboard to draft ratio R and the sea ice mean density 
p in the target area are known, the total ice mass M can be 
calculated from V with the equation 

M=V(R + l)p. (8) 

The errors in the sea ice mean density and in the ratio R in- 
troduce errors to the mass estimate. Most observed values for 
first-year sea ice density are in the range of 910-920 kg/m3. 
For multiyear sea ice the density is usually between 910-915 
kg/m [2]. The value for R can vary between 4 and 9 depend- 
ing on the ice thickness, ice density, and thickness and density 

of the snow cover on top of the ice. The density of sea water 
also has an effect on the value of R. 

Due to the additional error sources, the error in the ice mass 
estimate is larger than in the freeboard volume estimate. The 
analysis of the mass estimation error has not been completed 
yet, as some additional data on the seasonal and regional 
variation of the R is required. 

CONCLUSIONS 

This simulation indicates that a spaceborne laser altimeter 
can produce fairly accurate sea ice freeboard volume esti- 
mates even in very cloudy conditions. By PDF conversion and 
suitable selection of the PDF bin height a good accuracy of 
the freeboard volume estimate can be maintained even when 
the number of samples from the target area is severely re- 
duced. 

The accuracy of the ice mass estimate depends on the 
knowledge of the freeboard-draft ratio and sea ice mean den- 
sity for the area and the season. Errors in these parameters 
may reduce the usefulness of the freeboard height measure- 
ment based sea ice mass estimation. However, a quantitative 
analysis of the sea ice mass estimation error requires better 
knowledge of the regional and seasonal behavior of the sea 
ice, than that presently available. 
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Abstract - Full-spectral modelling of a two-dimensional 
current structure is used to understand the role of wave-current 
interaction and wave-breaking (WB) effects in the Radar 
Signatures of the Rip-like sub-mesoscale feature that were 
observed during the First High Resolution Remote Sensing 
(HI-RES-1) experiment. It is found that the large variations 
in radar cross-section (RCS) in the neighborhood of the cusp- 
like features within the Rip can be reproduced with or without 
incorporation of wave-breaking (WB) effects. However, when 
WB effects are not included, consistent with previous models 
that have used 1-dimensional current structures, in regions 
away from these cusp-like structures, the composite scattering 
(CB) model significantly underpredicts the magnitude of the 
signature. As a consequence, somewhat surprisingly, within 
the Rip , the CB model over-predicts the magnitude of the 
cusp signature relative to the signature from the Rip in non- 
cusp-like regions. By including WB effects, this deficiency is 
overcome, and good agreement is obtained. The resulting 
agreement occurs when the WB effect is based on an estimate 
of the local critical crest acceleration Qc=0.4 g (g=9.8 m/s2) 
that accompanies the onset of wave-breaking. This value for 
Q.c is in good agreement with independently measured values 
obtained in wave-tank and field experiments. Incorporation 
of WB effects also eliminates a non-physical dependence on 
look-angle that occurs when the CB model alone is used. 

INTRODUCTION 

From full spectral modelling of surface waves, considerable 
progressf 1,2,3] has been made in simulating radar signatures 
of the Rip-like sub-mesoscale feature that was observed 
during the First High Resolution Remote Sensing[4] (HI- 
RES-1) experiment. During this experiment, a meandering, 
sinusoidally-shaped region of large radar return, ranging 
between 10 and 15 dB in relative variation, was observed at a 
current convergence front[4,6], located at the boundary 
between Shelf water and the Gulf Stream near Cape Hatteras, 
NC. Quantitative agreement was obtained for the magnitude 
of this signature, based on two, independent models of the 
surface currents[l,2,3], and application of full-spectrum wave- 
current interaction calculations of surface wave spectra and the 
composite backscatter (CB) model, but only after additional 
effects from wave-breaking (WB) were included in an 
approximate manner through an improved version of the radar 
backscatter model. These earlier studies involved one- 
dimensional models of the surface currents, which were 
represented either as a simple current convergence[l] or as a 

current convergence in the presence of a shear[2,3]. As a 
consequence, the resulting estimates are applicable to regions 
where the effects of changes in the direction of the Rip are not 
pronounced. In the calculations presented in this paper, a 
more sophisticated, sinusoidally-varying, 2-dimensional 
model of the surface current structure is used that provides a 
more reliable representation of the underlying structure in 
regions where the direction of the Rip changes. Very good 
agreement with experiment is obtained for the magnitude of 
the signature (-11-17 dB) across and within the Rip, but only 
when the effects of wave breaking are included. In particular, 
it is found that when the CB model is used alone, within the 
Rip, the cross-section varies over a considerably larger range ( 
6-16 dB) than is observed experimentally and also exhibits a 
non-physical dependence on look-angle that was not observed. 
When WB effects are included, these deficiencies are 
eliminated, and it is found that the location of maximal and 
minimal cross- section, and the manner in which cross- 
section varies within the meander all agree well with the 
experimentally derived imagery. 

METHOD 

Previous simulations[l-3] of RCS of the HI-RES-1 Rip 
feature have been based on wave-current interaction 
calculations of wave height spectra F, as a function of two- 
dimensional wave-vector k, at locations r on the ocean 
surface. In these calculations, F is derived from the intrinsic 
angular wave fequency co0(&) {= (gk+T/pk) , fe |k|, 
p=density of sea water, 7fesurface tension) and wave action 
density iV(r,k,t)= oo0(k)/Ä: F, using either one (y-dependent) 
component[l] V, or both (£/, and V) components[2,3] of the 
current, with the important simplifying assumption that the 
only spatial dependence in the currents occur in one direction: 
V=V(y), and[2,3] U=U{y). From these calculations of F, 
simulations of RCS were derived from the CB model, and 
two extensions of the CB model that incorporate WB effects. 

Because these currents only included a dependence on y, it 
was not possible from these calculations to infer information 
about the behavior of the RCS in regions where strong spatial 
variation in the Rip occurs in both the x- and y-directions. 
To investigate this point, we have employed a different 
model, in which V=0, and U= U(\,y) is modelled from 

2ny 
-,. x-x   sin( ) 
oU o j 

U(x, y) = tanh[ *—]. 
2 ox 
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Here, the values for 6U=.6 m/s and 8x=30 m are used to 
mimic the convergence , observed [4] during HI-RES-1, that 
was used previously[l-3], while the values xo=300 m, and 
A^1500 m were inferred radar imagery[4,5,6]. Using this 
current model, N is derived from 

Vkco • VrN-kx[7-77- + —:—I = -ß—(N-NJ, 
dx 3kx     dy 3k. N 

where co=co0 + kx£/ , and ß and N0 , respectively, are the 
Plant wind growth rate and Bjerkaas-Riedel equilbrium wave 
action that were used previously [1-3]. 

As before[2,3], RCS values were determined from F, 
using the CB model, avoiding the small slope 
approximation[3] that was used in [1]. WB effects were 
investigated, using the LWBC approach[2,3], in which the 
RCS is derived probabilistically, by combining the CB 
model RCS (suitably weighted so that it applies in locations 
where breaking does not occur) with an approximate Feature 
model of a breaking wave, using the probabilities P(r) and 
(l-P(r)) for wave-breaking to occur and not occur at r. 
Specifically, the RCS is derived from 

sp sp sp 
a     =(J-P(r))a     +P(r)a     , 2 

tot CS WB 

where P(r) and cf"^ , respectively, are inferred from crest 
acceleration Q. and wave-height variance values that are 
derived from F. To determine P(r ), it is necessary to 
establish a critical value Q=Q.C of the crest acceleration, 
beyond which breaking is assumed to occur with 100% 
certainty. As in [2,3], this was accomplished by performing 
a number of calculations involving different values of Qc and 
finding a particular value that maximizes the variation in 
RCS across the Rip. The resulting value Qc = 0.4 g is very 
close to the value (f2c = 0.38 g) that was obtained previously 
[2,3] and agrees with independently measured values that 
have been obtained in wave-tank and field measuremnets. 
Additional details of the LWBC procedure are presented in 
[3]. 

RESULTS 

Fig. 1 shows plots of the RCS with (Fig. IB) and without 
(Fig. 1A) WB when the radar is pointed across the Rip. The 
signature (S) of the Rip appears as the meandering 
sinusoidally-varying region of large RCS-variation found in 
the center of each plot. The largest RCS-variations (-15-18 
dB) are found in the locally vertical regions of large variation 
located in the "cusp-like" positions ( marked by arrows) 
within the S in both plots. The smallest variations in RCS 
within the S in each case are found in the "non-cusp-like" 
regions (also marked by arrows). In the non-WB case (Fig. 
1A), this minimal RCS-variation (within the non-cusp-like 

(A)       Radar Looking Across Rip 

Cusp-like 
18 dB- 

OdB 
Non-Cusp-like 

Without Wave-Breaking 

(B)       Radar Looking Across Rip 

18dB_    r— Cusp-like 

OdB 

Non-Cusp-like 

With Wave-Breaking 

Fig. 1: Simulated RCS values, looking across Rip, without (A) 
and with (B) Wave-Breaking, in dB (as marked) relative to 
the minimum value associated with each plot. The schematic 
of the airplane is used to indicate the flight path in each plot. 
"Cusp-like" ("non-cusp-like") regions (marked by arrows) 
refer to regions where the signature is strongly (weakly) 
dependent on 2-dimensional variations in position within the 
Rip. 

portion of the S), relative to the minimal RCS value (found 
far from S) is -6 dB; while in the cusp-like region, the 
comparable RCS-variation is 16 dB. Although 
experimentally[6], in comparable "cusp-like" regions, large 
-15 dB variations in RCS were observed, variations in RCS 
of-10 dB were observed in the "non-cusp-like" regions. As 
a result, when the CB model is used alone, a considerably 
larger range of variation (-10 dB) in RCS is obtained within 
the Rip than was observed. Considerable improvement (as 
can be seen in Fig. IB) is obtained when the WB effect is 
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included. For this case, we find that in the "cusp-like" and 

(A)       Radar Looking Along Rip 

Without Wave-Breaking 

(B)       Radar Looking Along Rip 

lSdlt- 

With Wave-Breaking 

Fig. 2: Simulated RCS values, looking along Rip, without (A) 
and with (B) Wave-Breaking, in dB (as marked) relative to the 
minimum value of the RCS obtained in each plot. The schematic 
of the airplane is used to indicate the flight path in each plot. 

"non-cusp-like" regions, respectively, the RCS varies by 
-17 and -12 dB. Thus, by including 2-dimensionally- 
varying currents, it is found that when the radar is pointed 
across the rip, significant (-15-18 dB) variations in RCS are 
obtained in the "cusp-like" regions of the Rip, regardless of 
whether or not WB effects are included, and this variation in 
RCS is significantly larger than the comparable variation that 
is obtained in "non-cusp-like" regions. Both of these trends 
agree with experimental observation. However, without 
WB, the range (-6-16 dB) of variation in RCS-values within 
the S is considerably larger than is observed experimentally. 
By incorporating WB, it is found that this deficiency is 
eliminated and quantitative agreement is obtained. 

The presence of WB effects does not significantly increase 
the magnitude of the simulated signatures in the cusp-like 
regions. This is somewhat surprising since in the earlier 1- 
dimensional calculations, when WB is not included, the 
signature is underpredicted by 5 dB. In fact, in the non-cusp 
regions, the signature is underpredicted by 5 dB in the CB 
case, suggesting that the signature in these regions more 
closely approximates the comparable 1-dimensional results. 
A possible reason for the enhanced return in the cusp region 
is that the shear (defined by the gradient of U in the y- 
direction) behaves differently there than in the non-cusp 
region. 

WB effects are also found to be important in our ability to 
simulate the look angle dependence. In particular, it is 
found that without WB effects, the RCS exhibits a sensitivity 
with respect to changes in look-angle that was not found 
experimentally, while when WB effects are included, this 
deficiency is eliminated. This effect is illustrated in Figs. 2 
(A,B), where simulated plots of RCS are shown when the 
radar is pointed along the Rip (i.e., perpendicularly to the 
dominant current convergence). From this plot, it is seen 
that the signature effectively disappears in simulations that do 
not incorporate the WB effect, while for cases in which WB 
is included, the signature closely resembles the comparable 
signature that is obtained when the radar is pointed across the 
Rip. 

ACKNOWLEDGMENT 

We acknowledge useful discussions with G. R. Valenzuela 
during the initial stages of this work, as well as Farid 
Askari's disclosure of a number of important, unpublished 
experimental observations, which provided impetus for 
conducting the associated research. 

REFERENCES 

[1]R. W. Jansen,   T. L. Ainsworth, R. A. Fusina, S. R. 
Chubb, and G. R. Valenzuela, IGARSS'94 Digest, vol  1, 
460 (1994). 
[2]R. W. Jansen, C. Y. Shen,   S. R. Chubb, A. L. Cooper, 
and T. E. Evans, "Subsurface, Surface, and Radar Modeling 
of a Gulf-Stream Current Convergence," J.   Geophys. Res., 
in press (1997). 
[3]S. R. Chubb, A. L. Cooper, R. W. Jansen, and C. Y. 
Shen, IGARSS'96 Digest, vol 2, 902 (1996). 
[4]G. O. Marmorino and C. L. Trump, J. Geophys. Res.,99, 
C4, 7627 (1994).Mied, R.P., et al., 1992 NRL Review, 181- 
183, (1992). 
[5]R.A. Fusina, A.L. Cooper, and S.R. Chubb, J    Comp 
Phys, in press (1997). 
[6] F. Askari, EOS, 73, #A3/supplement, 247 (1992).   F. 
Askari, unpublished. 

1319 



Intercomparison and Validation of Bathymetry Radar Imaging Models 

H. Greidanus, C. Calkoen2,1. Hennings3, R. Romeiser4, J. Vogelzang5, GJ. Wensink2 

TNO Physics and Electronics Laboratory 
P.O. Box 96864, 2509 JG Den Haag, The Netherlands 

tel: +31-70-3740441, fax +31-70-3280961, e-mail greidanus@fel.tno.nl 
2: ARGOSS; 3: GEOMAR; 4: UHSO; 5: RWS-RIKZ 

Abstract - Multi-frequency airborne SAR data over a 
submerged reef, with very large associated surface current 
variations, are compared with model calculations, using a wide 
variety in models and parametrizations. It is concluded that all 
models still underestimate the measured contrasts, that detailed 
differences in models cannot be validated due to speckle and 
non-bathymetric features, and that L-band is more suited for 
bathymetry applications than C- or X-band. 

INTRODUCTION 

In the presence of a current, submerged topographic features 
of the sea bed produce contrasts in radar images. These 
contrasts can be quantitatively understood and modeled, based 
on hydrodynamics and electromagnetic scattering theory. The, 
at present, generally accepted modeling includes the three 
steps of (1) surface current modulation by the bathymetry, (2) 
modulation of the (small) wave spectrum by wave-current 
interaction, and (3) radar backscattering by the sea surface 
which is characterized by the (modulated) wave spectrum. The 
ability to perform such a quantitative modeling makes it 
possible to extract quantitative bathymetric information from 
radar images; techniques for this purpose are presently being 
developed and put to use, based on inversion of the forward 
modeling. 

Nevertheless, as the physics are too complex for a full 
description, the modeling contains numerous assumptions, 
approximations and parametrizations. In the past, the validity 
of the modeling has been explored and partly established; 
mostly, however, in relatively simple situations. As a 
consequence, the models have a limited accuracy and a limited 
range of validity, which are actually not very well known or 
described. When radar data are being used for practical 
purposes such as bathymetry extraction, the models applied 
need to be correct, or at least their limitations need to be well 
known. 

This article reviews a test case for the models which is more 
extreme than previous cases. It concerns a submerged reef near 
the island of Heligoland, Germany. The bottom topography is 
dominated by a series of parallel reefs with very steep slopes, 
with depths ranging from 4 to 20 m, resulting in very large 
surface current variations. On the basis of the measured 
bathymetry and hydrometeo conditions, radar contrasts are 
computed by several different models; these are compared 

with airborne SAR imagery. 

DATA 

The data used for this study were originally collected in the 
framework of the SAXON-FPN experiment. Three data 
categories were used: radar data, bathymetry, and hydrometeo 
data. The radar data were taken on November 14, 1990, by the 
L-, C-, X-band SAR on board a P-3 aircraft operated by the 
Naval Air Development Center (Warminster, PA). The aircraft 
flew a northbound track looking west at 2.4 km altitude. The 
data were processed by ERIM (Ann Arbor, MI) to 6 x 6 km2 

scenes at a multi-look ground resolution of 4.8 m. The image 
was georeferenced by using prominent features on the 
Heligoland coast. A 2 x 2 km2 depth map of the test site was 
constructed at 30 m resolution and 5 m sampling, by 
combining a digitized chart measured in 1970 with depth 
measurements from two surveys, in 1989 and 1991. (The stony 
nature of the reefs makes them not very dynamic.) The locally 
measured hydrometeo conditions indicated a wind (at 10 m 
height) of 9 m/s, direction 200° and waves of 1.1 m significant 
height, direction 260°. Both the SAR image and the depth map 
were rotated by 45° in order to have the reef direction coincide 
with one of the sampling axes. 

MODELS 

A regional tidal model was run on a 400 m grid size, with 
10 m/s wind. Based on this coarse-grid flow field and the 
detailed depth map, a depth averaged flow field was calculated 
using the shallow water equations. The resulting flow field is, 
as expected, nearly one-dimensional, with the variations 
occurring in the direction perpendicular to the reefs. The depth 
averaged flow field was then converted to a surface flow field 
with a parametric model designed for flow over trenches. 

This surface flow field was input to the various radar 
imaging models. All these models are based on weak 
hydrodynamic interaction theory (e.g. [1,2] and references 
therein), but differ in dimension, equilibrium wave spectrum, 
relaxation rate, source function, backscatter model, and 
algorithmic and numerical implementation. With the models, 
the radar contrasts along three cross-cuts perpendicular to the 
reefs were calculated, in L-HH, L-VV, C-VV and X-VV, 
corresponding to the available SAR data. 

This work was partly funded by the EC MAST program, 
contracts MAS2-CT94-0104 and MAS3-CT95-0035. 
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Figure 1. Cross-cuts perpendicular to the reef. Top: 
bathymetry. Second plot: surface flow along-track (drawn) and 
depth-averaged flow, along track (dash) and across-track (dot- 
dash). Next four: L-VV, L-HH, C-VV and X-VV with error 
bars based on estimated speckle level. 

RESULTS AND DISCUSSION 

The SAR images clearly show the bathymetry, in the form 
of bright/dark lines parallel to the submerged reefs. On all 
images the presence of surface waves is clearly visible; on the 
C- and X-band images also wind rows can be seen. Before 
extracting backscatter cross-cuts, the surface waves were 
suppressed by applying filtering in the Fourier domain. In 
order to reduce the speckle, the cross-cuts taken from the 
images were laterally averaged over 20 pixels. 

One cross-cut is presented in this paper. The bathymetry, 
current, and radar contrasts are presented in Fig. 1. Some 
model results for L- and X-band are shown in Figs. 2 and 3. 
An overview of the features of the models used to produce 
these figures is given in Table 1. 

It can be seen that all models give rather similar results, the 

main difference being the magnitude of the contrasts. The 
models with two-scale backscatter and the one with fitted 
relaxation rate have larger contrasts than the ones with Bragg 
backscatter. The low contrasts in model 'R' are a consequence 
of the relaxation rate used. However, even the models that 
show the highest contrasts still fall short of the observed 
contrasts, the effect being stronger in X-band than in L-band. 
This is in accordance with existing literature. Most of the 
features in the models correspond well with observed features, 
however, not always with similar relative magnitude; indeed, 
the models correspond more closely to each other than with 
the observations. Only model 'TB' at X-band behaves 
differently; here, the use of a Bragg model in combination with 
an equilibrium spectrum of which the Bragg wave intensity is a 
function of friction velocity, leads to a model cross-cut that is 
dominated by the dependency of the Bragg backscatter on the 
local wind speed. This is not realistic; the use of a two-scale 
model in this case (model TC) does not show this effect and 
gives better results. For L-band, contrasts in HH are observed 
to be larger than in VV, though the effect is small; this is also 
reflected by the two models that have a polarization 
dependence. A number of observed features is not reflected in 
the models, and this effect is more pronounced in X-band; 
these features are attributed to waves, wind rows, etc., also 
upon inspection of the images. In spite of the Fourier filtering 
to suppress the waves, these features are obviously still present 
at a level comparable to the bathymetric signatures, even over 
these steep reefs. 

CONCLUSIONS 

Based on the full study, which contained the two other 
cross-cuts and model runs covering a much broader range in 
modeling alternatives than shown here, the following 
conclusions were drawn (in addition to the points discussed 
before): 
• The similarity in the results of the various, partly 
independent, models points to a basic robustness of the 
modeling principles; 
• The use of a linear source function leads to much too high 
positive modulations; 
• Velocity bunching and shoaling are not important effects 
(even in this case); 
• Bragg backscatter leads to much too low contrasts. 
However, in case the radar look direction is more or less 
aligned with the current gradient, the use of an adjustable 
relaxation rate can compensate for this; 
• Detailed differences between models cannot be judged 
due to the presence of speckle and features of non-bathymetric 
origin, even after spending considerable effort in reducing 
these; 
• L-band imagery is more suited for bathymetry 
applications than C- or X-band, as the latter are more 
influenced by the atmosphere and can be less well modeled. 
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Figure 2. L-band VV intercomparison. Top: measurements.     Figure 3. X-band VV intercomparison (as for Fig. 2). 
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Table 1. Overview of the different models as included in Figs. 
2 and 3. "Dim" refers to the model dimension. Model 'G' is 
analytical and includes velocity bunching. Model 'R' includes 
shoaling. Model 'TC has two-scale plus specular backscatter. 
All these models use a quadratic source function. 

\ Model ; Dim i Eql. spec 1 Relax, rate i Backscatt.    ; 
\ ARGOSS i 1 i Phillips ! fitted I Bragg           i 
! GEOMAR j 1 i Phillips j Hughes [6] i Bragg          j 
i RWS i 2 ! Apel [3] j H&S [7] j HSW [9]      j 
; TNO-C I 1.5 j VIERS [4] j Plant [8] I Composite   j 
! TNO-B I 1.5 ! VIERS 1 Plant ! Bragg           ! 
j UHSO i 2 ! RAW [5] i Plant j RAW 
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Abstract — The modulation of the momentum flux 
from turbulent wind flow to ocean surface caused by 
current gradient is considered. Simple estimation 
shows that the magnitude of such modulation can be 
up to 100-200% for strong internal waves (IW). 
Numerical technique is proposed to calculate stress 
modulation and simulations are made for periodical 
IW and solitons. Variable stress is used in the source 
function of the wave action balance equation and 
the modulation of X-band Bragg spectral density is 
calculate for typical IW soliton. Momentum flux 
modulation due to nonuniform current is to be 
incorporated in the theoretical models used for 
analysis and interpretation of ocean remote sensing 
from space. 

BACKGROUND 

Experimental results obtained in ground-, aircraft- 
and spacebased radar experiments indicate, that 
models for sea surface backscatter demand, as one of 
the elements, the account of the modulation of 
surface stress by gradients of surface currents. As was 
shown by Hara and Plant [1] the hydrodynamic 
modulation of short wind-wave spectra by long waves 
measured by microwave scatterometers is extremely 
large and we have to attribute this unexplained value 
to the variable wind shear stress. The same 
conclusion was done in the theoretical analysis by 
Smith [2]. It can be expected, that surface currents 
(including orbital motion of long gravity waves, 
internal waves in the coastal regions, fronts and 
streams in the ocean) modulate wind stress, and 
simple estimation shows that relative small amplitude 
of surface velocities can result to large modulation of 
momentum flux from the air flow to the sea surface. 

The modeling of stress modulation due to current 
gradients is extremely difficult problem. There is no 
technique for simple and adequate account for the 
wind stress modulation by surface nonuniform 
currents. For example Monin-Obukhov theory for 
surface layer considers only horizontally uniform 
wind flow and doesn't predict anything about 
relaxation rates of the air turbulence to the 
equilibrium state and for that reason can not be 
applied     to     nonuniform     conditions.     Additional 

difficulty is connected with the fact, that one has to 
explain the modulation of momentum flux of large 
amplitude (100% or more) and the consideration 
based on small perturbation expansion (for example 
in Reynolds equation) is out of order. The lack of 
adequate theory for momentum flux in nonuniform 
marine boundary layer prohibits the quantitative 
analysis of aircraft or satellite radar images. 

The results presented in this paper were obtained 
using new numerical model for turbulent momentum 
flux. This model can be referred to as "Random box 
model for turbulent momentum transfer". This 
model is in some sense a development of the 
"Transilient turbulence theory" by R. Stull [3]. 

SIMPLE ESTIMATION 

First of all let us estimate the value of the stress 
modulation, that can be expected as the result from 
non-uniform current on sea surface. We suppose that 
both  current  and  wind   u  are   along  x-axis.   The 
magnitude of the current is equal to U0  in the region 
0 < x < L and is taken as 0 otherwise. 

The   thickness   of new   boundary  layer,   which 
develops over the region with nonzero current, can 

u*x 
be estimated as:       where  <u> is the mean 

< u > 
wind velocity in the surface layer, u* is the friction 
velocity. Additional momentum in the new boundary 
layer is: AM « 0.5 ■ paU0L

2u*/ < u >. Assuming that 
this increase of momentum is resulted from 
additional stress on sea surface  AT  we can estimate 

the same value AM as:  AM «AT I? / <u>. Taking 
2 into account that stress is defined as T = pfl w*  , it is 

easy to estimate relative stress modulation: 
AT / T « 0.5 • UQ I M*   . 

Hence, we have to compare the magnitude of surface 
current with friction velocity! For strong internal 
waves current amplitude U0 is of about 0.5-0.7 m/s, 
friction velocity is of about 0.2-0.3 m/s and relative 
stress modulation might be up to 100-200%. The 
above estimation will be correct provided distance L 
is not to large. 
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RANDOM BOX MODEL FOR TURBULENT 
MOMENTUM TRANSFER 

The model is a numerical model, which consider 
horizontal velocity as passive tracer similar to 
transilient turbulence theory by R. Stull [3]. In our 
model turbulent mixing is simulated by a rotation of 
boxes with different scales. The same rule is used for 
probability of rotation at all scales, for that reason 
the model obeys self-similar features. The probability 
of rotation is taken to be proportional to velocity 
gradient at the corresponding scale. 

An assumption is made, that on the top and bottom 
boundaries the exchange of momentum is rapid. The 
minimum scale is taken as 0.2 m, the maximum scale 
is taken as 500 m. The model predicts logarithmic 
profile of mean wind velocity under uniform 
stationary conditions and the low -5/3 for wind 
speed fluctuations. Model predictions were checked 
for turbulent flows in channels and a good agreement 
was noted. 
Nonuniform current on sea surface is accounted for 
as : 1) nonzeoro velocity is taken on the bottom 
boundaiy; 2) each horizontal layer is shifted in the 
horizontal direction with the mean velocity of air 
flow. The limitation of the model is small horizontal 
gradient of horizontal velocity, what is true for 
orbital velocity of long surface waves and for surface 
current induced by internal waves. There are no 
restrictions associated with large value of stress 
modulation, large amplitude of vertical gradient and 
rapid changes in horizontal velocity with time. 

NUMERICAL RESULTS 

Stress modulation. We have estimated stress 
modulation for relatively strong internal waves. Fig.l 
shows results for cosine wave with current amplitude 
0.2 m/s and period 600 m. Only one period is shown 
in the figure. Wind direction is from right to left in 
the figure. It was obtained stress modulation of about 
100%. It is interesting to note, that model predicts 
nonlinear response to variable current on sea surface. 
Asymmetry of the modulated stress profile is obvious. 

Fig .2 demonstrate results for internal wave soliton. 
The calculations were made in case when wind 
direction is from right to left and the internal wave 
propagates in the positive x-direction (from left to 
right). The stress modulation in case, when wind and 
IW are in the same direction, is a little smaller in the 
amplitude and has negative sign. 

The contrast maximum is located between current 
velocity and strain rate maximum. 
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Radar Brag's wave modulation. Large magnitude of 
stress modulation demands to be accounted in 
models for radar images of internal waves. It seems 
reasonable to put variable friction velocity in the 
source function of the wave action balance equation. 
There are different forms of the source function; in 
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this report we show only results based on the 
function proposed by Hughes [4]. 

Fig. 3 shows the modulation of X-band Bragg 
spectral density for the same parameters of IW 
soliton as is given in fig.2. Two results are given: 
dashed line - traditional wave action balance 
equation with source function by Hughes, solid line 
- the same equation with variable friction velocity in 
the source function. The difference is dramatically 
large. 
Results, obtained for wind in the same direction as 
IW, are given in Fig.4. In this case we observe only 
negative contrast. This fact is well known from 
numerous radar observation. 

Both examples indicate, that the account of 
variable stress results to significant increase in the 
contrast predicted by theory. 
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CONCLUSION 

Momentum flux modulation due to nonuniform 
currents on sea surface is an important phenomena, 
which is to be incorporated in the theoretical model 
used for analysis and interpretation of ocean remote 
sensing from space. Simple estimation and numerical 
modeling demonstrate, that stress modulation for 
strong internal waves is of about 50-200%. Numerical 
model is developed and tested for periodical IW and 
solitons. The same model can be applied to the 
broad range of phenomenon: surface and internal 
waves, fronts, streams, surface manifestation of 
bottom topography. 
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Abstract -- Multi-polarization radar images of the ocean sur- 
face from various experimental campaigns suggest that the 
backscattered signal is more sensitive to wind field variations 
at vertical (VV) than at horizontal (HH) polarization. On the 
other hand, radar signatures of oceanic features like internal 
waves or underwater bottom topography are often better visi- 
ble at HH. In this paper, a possible theoretical explanation for 
these phenomena is discussed. It is shown that polarization- 
dependent radar signatures are qualitatively consistent with 
predictions of a composite surface scattering model, where the 
ratio between modulation depths at HH and VV is determined 
by the intensity variations of ocean waves in different wave- 
number ranges. Using a simple scenario of wind and current 
variations, it is demonstrated that a pair of radar images with 
dominant oceanic and atmospheric signatures at HH and VV, 
respectively, can be basically obtained from the model. 

INTRODUCTION 

Aside from the well-known fact that the normalized radar 
backscattering cross section (NRCS) of the ocean is usually 
larger at vertical (VV) than at horizontal (HH) polarization, 
several experiments have shown that the backscattered signal 
appears to be also more strongly affected by spatial wind 
speed variations at VV than at HH, while signatures of oce- 
anic features are often better visible at HH polarization. 

Astonishing examples of this behavior have been obtained 
from a Russian airborne real aperture radar within the frame- 
work of the Joint US / Russia Internal Wave Remote Sensing 
Experiment (JUSREX-92) in the New York Bight [1,2]: Un- 
der stable atmospheric conditions, signatures of internal 
waves were clearly visible at both HH and VV polarization. 
However, under unstable atmospheric conditions, some pairs 
of images acquired simultaneously at HH and VV show 
dominant signatures of internal waves at HH but dominant 
signatures of wind variations at VV - the two images can look 
completely different. An example is shown in Fig. 1. The 
radar frequency was 13.3 GHz (Ku band), and the incidence 
angle was between 72° and 84° from nadir. 

Common radar imaging models are not designed for such 
large incidence angles, thus they are not necessarily expected 
to be capable of reproducing the JUSREX images. However, 

This work has been supported by the European Commis- 
sion, DG XII, as a part of the Marine Science and Technology 
(MAST) program, contract MAS3-CT95-0035 (C-STAR). 

Fig. 1: Example of a pair of radar images acquired simultane- 
ously at HH (left) and VV polarization (right) under unstable 
atmospheric conditions during JUSREX-92 (from [2]); radar 

look direction: from bottom to top, downwind. 

as pointed out in [1], a similar dependence of radar signatures 
of oceanic and atmospheric features on polarization has also 
been observed at other radar frequencies and incidence an- 
gles, for which well-established and trustworthy backscatter- 
ing models exist. It will be shown in this paper that the ob- 
served effects can be at least qualitatively explained within the 
framework of a two-dimensional composite surface scattering 
model based on Bragg scattering theory. 

THEORY 

It is generally accepted that the radar return from the ocean 
results - if no rain or other major atmospheric scatterers are 
present - from an interaction between the electromagnetic 
waves and the water surface. Thus both wind- and current- 
induced radar signatures must be associated with a modulation 
of the surface roughness, i.e., of the ocean wave spectrum. At 
moderate incidence angles between approx. 20° and 70°, the 
dominant backscattering mechanism is Bragg scattering, i.e., 
the backscattered power is proportional to the intensity of 
ocean waves of wavelength comparable to the electromagnetic 
wavelength [3]. Since these "Bragg" waves must be the same 
for all polarizations, it is not obvious why different radar 
signatures should be observed at HH and VV. 

In addition to "ideal" Bragg scattering, a composite surface 
model accounts for the effect of tilt modulation of the Bragg 
scattering facets and hydrodynamic modulation of the Bragg 
wave intensity by all ocean waves which are long compared to 
the Bragg waves. The fact that the variation of the NRCS with 
the incidence angle - and thus with the surface slope - de- 
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pends on the polarization results in different contributions of 
the long waves to the NRCS at HH and VV. 

In the composite surface model developed at the University 
of Hamburg [4], these contributions are represented by a 
number of second-order terms of the NRCS which depend on 
the mean square slopes of the ocean surface parallel and nor- 
mal to the radar look direction. It is shown in [4] that, after 
some minor optimization, this model can reproduce the ob- 
served dependence of mean NRCS values on radar frequency, 
polarization, incidence angle, wind speed, and azimuthal radar 
look direction with respect to the wind direction quite well for 
wide ranges of these parameters. 

Details of the composition of the NRCS according to the 
proposed model as well as the characteristics of theoretical 
radar signatures of underwater bottom topography in tidal 
waters are discussed in another paper [5]. For this analysis, 
modulated wave spectra are calculated by integrating the 
equations of weak hydrodynamic interaction theory (see, for 
example, [6]). It is shown that 

• the relative contribution of the second-order terms of the 
NRCS increases with radar frequency and can, at higher 
frequencies like 10 GHz (X band), be comparable to the 
contribution of the zeroth-order Bragg scattering term; 

• this contribution is, furthermore, larger at HH than at VV, 
particularly at large incidence angles; 

• the inclusion of the second-order terms can lead to an in- 
crease of the modulation of the NRCS by surface current 
gradients by an order of magnitude, since waves at wave- 
lengths in the decimeter to meter range are much more 
strongly modulated than the short ripples which act as 
Bragg waves at high frequencies; 

• at high radar frequencies, large incidence angles, and low 
wind speeds, the theoretical modulation of the NRCS can 
be more than twice as strong at HH than at VV; 

• finally, even current gradients normal to the radar look 
direction can modulate the NRCS significantly via its sec- 
ond-order terms, although no direct modulation of the 
Bragg waves takes place. 

In contrast to current gradients over scales of several deca- 
meters or more, which modulate mainly waves of wavelengths 
in the decimeter to meter range, variations in the wind field 
over comparable scales will mainly affect the high-wavenum- 
ber range of the ocean wave spectrum, i.e. the Bragg wave 
range. Since all terms of the NRCS are proportional to the 
Bragg wave intensity, the theoretical effect of wind speed 
variations will exhibit a much less pronounced polarization 
dependence than the effect of current. This will be shown in 
the following section. 

MODEL PREDICTIONS 

Fig. 2a shows a typical surface current pattern as encoun- 
tered over internal waves during JUSREX-92, where a typical 
phase speed of the internal wave is 0.7 m/s. Fig. 2b shows a 

200 300 400 500 600 700 800 
x[m] 

Fig. 2: Surface current (a) and wind speed (b) in x direction as 
function of x, as assumed for our model calculations. 

wind pattern which has been chosen for the following com- 
parison of current- and wind-induced effects. Both the current 
field (in combination with a constant 5 m/s wind blowing in 
various directions with respect to the current) and the wind 
field (in absence of any current) were fed separately into a 
numerical model for the computation of modulated wave 
spectra as described in [5]. The resulting two-dimensional 
spectra were converted into NRCS values for a frequency of 
15 GHz, a large (but reasonable) incidence angle of 65°, and 
various azimuthal look directions, using the composite surface 
model described in [4]. The resulting "modulation ratio" for 
each scenario, i.e. the ratio between maximum and minimum 
NRCS values in each radar signature, is shown in Fig. 3. 

Fig. 3a shows that the modulation associated with the cur- 
rent feature is always clearly larger at HH than at VV - par- 
ticularly if the radar look direction is normal to the current 
gradient (90°, 270°), where practically no VV signatures are 
present (modulation ratio = 1). The dependence of the radar 
signatures on the wind direction is found to be significant but 
only, of minor importance for the problem considered here. 

Fig. 3b shows the modulation of the Bragg waves (and, 
thus, of the zeroth-order term of the NRCS) by the current 
feature, which is practically negligible compared to the 
modulation of the total NRCS at HH polarization. In contrast 
to this, the modulation caused by the wind feature is almost 
the same for the total NRCS at HH and VV and for the Bragg 
waves, as shown in Fig. 3c. 

DISCUSSION 

The fact that radar signatures of oceanic features are better 
visible at HH than at VV polarization is consistent with model 
predictions. In contrast to this, the proposed composite sur- 
face model predicts polarization-independent signatures of 
atmospheric features, but it cannot explain stronger signatures 
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Fig. 3: Theoretical modulation ratios vs. azimuthal look di- 
rection; a) NRCS modulation at HH and VV for the current 
feature of Fig. 2a, b) corresponding Bragg wave modulation, 
c) NRCS and Bragg wave modulation for the wind feature of 
Fig. 2b; wind direction: solid - 0°, dashed - 45°, 90°, 135°, 

dotted - 180°, where 0° means "towards positive x". 

at VV than at HH and may thus be not completely convincing 
in view of observations as encountered during JUSREX-92. 

It is common practice, however, to set the greyscales of ra- 
dar images such that the darkest and brightest pixels are 
mapped to black and to white, respectively. Images at HH and 
W which look completely different after such procedures 
may have completely different dynamical ranges. Choosing 
appropriate current and wind conditions and radar parameters, 
it is in fact possible to obtain images from the proposed model 
which exhibit the observed phenomenon if they are displayed 
this way. In particular, the scenario of the images shown in 
Fig. 1, where the radar look direction is downwind and along 
an internal wave crest, is well suited for such model results. 

Fig. 4 shows a pair of simulated images for a combination 
of the current of Fig. 2a and the wind of Fig. 2b blowing nor- 
mal to the current. These conditions are close to the condi- 
tions corresponding to Fig. 1. Displayed in the aforemen- 
tioned way, the images show a dominant internal wave signa- 
ture at HH and dominant atmospheric signatures at VV. 

It is not clear at the present stage of research whether this 
can really be considered a satisfactory explanation for the 
observed phenomena. However, the model results discussed 
in this work may give some valuable contribution to a better 
understanding of the involved physical and technical effects. 

Fig. 4: Simulated radar images at HH (left) and VV polariza- 
tion (right) of an oceanic current variation in x direction and a 

wind speed variation in y direction; radar look direction = y 
direction (i.e. from bottom to top); cf. Fig. 1. 
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Abstract 

Nonlinear effects are essential to internal waves because of to 
small speed of propagation, and nonlinear internal waves are 
recorded by remote sensing from space and direct measuring 
very often. In particular, the evolution of the semi-diurnal 
internal tide as it propagates across the Australian North 
West Shelf (NWS) leads to the formation of groups of 
solitons and hydraulic jumps. A numerical solution to the 
generalised Korteweg-de Vries (K-dV) equation, including 
quadratic and cubic nonlinearities, horizontal variability and 
dissipation, is used to model the evolution of an initially 
sinusoidal long internal wave, representing an internal tide. 
The model shows the development of shocks and solitons as 
it propagates shorewards over the continental slope and 
shelf. The inclusion of quadratic bottom friction in the model 
is investigated along with the dependence on initial wave 
amplitude and temporal and spatial variability in the 
coefficients of nonlineariry and dispersion. Friction is found 
to be important in limiting the amplitudes of the evolving 
waves. The model is run using observed hydrographic 
conditions from the NWS. Model results are compared to 
current meter and thermistor observations from the shelf- 
break region and demonstrate good agreement with wave 
amplitude and waveform. Measurements of current 
fluctuations due to internal waves obtained on the NWS 
have been analysed with the aim of calculating the 
probability of short-scale, large-amplitude internal waves. 
The exceedance probability has been calculated using 
Poisson statistics. 

Extended Korteweg - de Vries Equation for an 
Internal Wave Field 

The K-dV equation is well known as an appropriate physical 
model for the description of the nonlinear and dispersive 
properties of an internal wave field (Pelinovsky et al.,1994; 
Holloway et al, 1997). It is derived as a perturbation 
expansion and is valid to first order in wave amplitude and 
for long waves, i.e. it is assumed that H/A«l and a/H«l, 
where H is the local water depth, A is a representative 

wavelength and a is a representative wave amplitude. For 
arbitrary vertical stratification of ocean density and 
background shear flow, the K-dV equation is written as 

0V 7x^*7        d*V 
(1) 

where h(x, t) is the vertical displacement of the pycnocline, x 
is the horizontal co-ordinate, and t is tyme. The parameters 
a, ß and c are coefficients of nonlinearity, dispersion and 
phase speed of long internal waves, respectively. They are 
determined by the background density and horizontal 
velocity profiles and are defined as (in the Boussinesq 
approximation) 

3 J(c- U)2(d<t> I dz)3dz 
a = 

ß 

2  J(c- U)(d® I dzfdz 

1 j(c-U)2®2dz 

2 j(c-U)(d® I dzfdz ' 
(2) 

where z is a vertical co-ordinate, positive upwards. The 
formula for aj is too complicated and omitted here. The 
phase speed of a linear long wave c and the Vertical 
structure of vertical-displacement amplitude of a wave mode 
0(z) are determined by the solution of the eigenvalue 
problem 

d_ 
di 

, dQ> 
+ Ar2(z)$» 0,0(0) = «(//) = <>    (3) 

where N(z) and U(z) are the Brunt-Vaisala frequency and the 
background shear current and the value of 0(z) is 
normalized by its maximal value. Then r\(x, t) is the 
isopycnal surface with maximum displacement. 

Usually, for calculations of the coefficients of the K- 
dV equation only a single vertical profile of stratification is 
used assuming the density to be horizontally uniform. 
Analysis of Ivanov et al. (1992), made without shear flow for 
the deep water region of the Mediterranean, has shown that 
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the variability of the parameters c and ß is related mainly to 
variability in water depth, but the nonlinear parameter is 
very sensitive to variations of the vertical stratification. The 
shelf/slope zone is generally characterized by large bottom 
slope and large variations in stratification and shear flow, 
and using mean stratification, can be inaccurate in the 
calculation of a, ß and c. The analysis shows strong spatial 
variability in all coefficients which influence the variability 
of the internal wave field. Account must be taken of the 
horizontal variability of the ocean medium and accordingly 
the K-dV equation must be modified in the following way. If 
the horizontal variability is smooth the reflection of the wave 
energy from the shelf can be ignored and a solution can be 
sought for the vertical displacement of the pycnocline in the 
form r\(x, t), @(z, ex), where <Z> is again the vertical structure 
of the pycnocline displacement, found from (3), and the 
small parameter e characterizes the smoothness of the 
horizontal inhomogeneity of the ocean medium. Again using 
the asymptotic procedure the following equation (a 
generalized form of (1)) can be obtained, 

dx V2Vß 4+ 
a 

c2Q * } #s + c4 dsi + 

(4) 
kc 

ßy[Q 
m- v d2E, 

c3 ds2 0 

■where 

Q 

c2 $ (c - U )(dQ> I dz)2 

 zji  
0 

Co   J(c0 - U ,)(</<& „ / dz) 

(5) 

and values with index "o" are the values at any fixed point 
x0.. The substitutions s and x are: 

dx 

o cO) 

4 = 1<jQ(x) 

-J -   t (6a) 

(6b) 

The propagation of an internal wave in the coastal zone is 
accompanied by energy losses due to the bottom friction and 
vertical and horizontal diffusion. In this paper, two forms of 
damping of the internal wave are considered. The first is 
related to the boundary-layer viscosity, where the turbulent 
boundary layer is parametrized by the empirical expression 
for the bottom friction stress in the Chezy form and the 
second is related to the viscosity of the fluid as a whole., 

The generalized K-dV equation (4) is the basic 
model used for the internal tide transformation on the NWS. 
Physically, the boundary problem of the spatial 
transformation of the internal wave which is periodical in 

time is studied. Mathematically this is an initial value 
problem for equation (4), where the evolution coordinate is 
the spatial coordinate. 

The example of the internal tide transformation on 
the North West Australian shelf is shown on the Figures 1-3. 
The initial form of internal wave is chosen as sinusoidal 
wave with amplitude 10 m on the depth 1300m on the 
continental slope. The effects of only quadratic nonlinearity 
and both of quadratic and cubic nonlinearity are shown on 
the Fig. 1. It is important for this shelf that as quadratic so as 
cubic nonlinear terms change their sign cross the break zone 
and the cubic effects are very significant where quadratic 
nonlinear coefficient is close to zero. Dashed line presents 
the wave form after internal tidal wave propagating 
shorewards over slope and shelf (the wave way is about 90 
km) without cubic effects, only the quadratic nonlinearity is 
taken into account here. The solid line is corresponding the 
case when the cubic nonlinearity is included to the numerical 
scheme too. The great difference between lines allows us to 
speak about the great significance of the cubic nonlinear 
term effects for the internal wave transformation shorewards 
over the shelf. 

40 -i 
H=130m, cubic 

_ H=130m, quadratic 

4 8 
Time (h) 

Fig. 1. The internal tidal wave form on the break zone with 
depth H=130m for the case when only quadratic nonlinearity 
is valid in the numerical scheme (dashed line) and for case 
when both of nonlinear terms are valid (solid line). 

Figures 2 and 3 show the difference in the wave form in the 
shelf zone (the wave way is 113 km) between the case when 
we take into account only the quadratic nonlinear term (Fig. 
2) and the case when we take both of terms (Fig. 3). The 
initial sinusoidal wave is transformed into soliton like wave 
group for the both cases. The small number of solitons on the 
Fig. 2 is due to the small quadratic nonlinear term in this 
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Fig. 3 is connected with the strong nonlinear effects 
(significant cubic nonlinear term) for internal waves in the 
shelf zone. The initial sinusoidal wave is shown on the all of 
figures. 

80-1 

a 

i ' 1 ■ 1 
0 4 8 12 

Time(h) 
Fig.2 The internal tidal wave form on the shelf zone with 
depth H=90m for the case when only quadratic nonlinearity 
is valid in the numerical scheme. 

H= 1300 m 

Time(h) 

Fig. 3 The internal tidal wave form on the shelf zone with 
depth H=90m for the case when both of quadratic and cubic 
nonlinearities are valid in the numerical scheme. 

The results of the analysis of extreme characteristics of the 
internal wave field for NSW are summarised by Pelinovsky 
et al, 1995, and for other areas of the World Ocean (the 
Tropical part of Atlantic Ocean, the Levant (Mediterranean) 
sea), in the papers by Ivanov et al, 1993, 1994; Pelinovsky et 
al, 1995. 
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Abstract - To investigate the effect of the nonlinear wave- 
wave interactions, on the gravity-capillary spectral form, and 
to draw conclusions for the geophysical interpretation of sea 
surface SAR imagery, a numerical study has been carried 
out. Spectral anomalies, strongly susceptible to influences by 
oceanographic features (e.g. slicks or currents) are shown. 
These are narrow bands, of wind dependent energy 
depressions, related to the excitation of capillary waves. The 
more enhanced of them appear at the early stages of the 
spectrum development, in the neighborhood of 100 rad/m 
wave numbers. An opposite surface current or a slick 
accentuate them, while they become weaker at mature 
spectral stages, and by the induced wind drift current. 

INTRODUCTION 

In reducing the geophysical ambiguity, of the sea surface 
SAR imagery interpretation, the apprehension of the 
hydrodynamics dominating the still unclear gravity-capillary 
wave spectral region is important. For die currently in orbit 
SAR sensors, this region provides the constructive 
reinforcement of the backscattered electromagnetic field, due 
to the Bragg scatterering mechanism. Nevertheless a 
practical description of the gravity-capillary spectral form 
dynamics, is a prerequisite for optimum use and operational 
products, of coincident multiband SAR data, that will be the 
near-future of the spaceborne SAR surveillance. 
Central of this description is the radiation equation (1), 
which yields in deep water the evolution in time t and space 
x, of the energy budget F, at each wave number k. 

SF(k)/$t + (Cg+U)VxF(k)= Sin + Snl-Sb - Sv  (1) 

Here Cg stands for the wave group velocity and U for the 
velocity of the underlying current. Sin, Snl, Sb and Sv are 
source functions representing the wind forcing, the 
transferred energy among the waves by nonlinear resonant 
interactions, and the dissipation by breaking and viscosity 
respectively. In the gravity-capillary region, the spectral 
modification by nonlinear interactions is dominantly of 
second order (three-wave) [1]. This very short scale in time 
and fetch process, compared to that of four-wave 
interactions, is responsible for the excitation of capillary 
ripples, consuming energy from the short gravity waves. 
Therefore it bears a considerable effect on the gravity- 
capillary spectral form. Nevertheless in the open sea i.e.  at 

large fetch and time scales, experimental data indicate [2], 
that the third order nonlinear interactions among four pure 
gravity waves, may also have a minor but measurable effect 
on the spectral form. In order to investigate the spectral 
shaping effect of these nonlinear mechanisms, a sequence of 
experimental computations have been attempted. Here 
numerical results, concerning the wind dependent 
development, of the gravity-capillary spectral region at its 
equilibrium state, are presented. The nonlinear features of 
the spectral form are discussed, as well as the influence of a 
surface current and of a monomolecular slick on them. 

BRIEF DESCRIPTION OF THE NUMERICAL MODEL 

Background in describing the source terms Sin, Sb and Sv 
was the theory of [3]. It assumes already initialized wave 
field, and employs the local balance between wind forcing 
and dissipation. Its key feature is the parameterization of Sb 
to account for the breaking dissipation, of both the gravity 
and capillary wave modes. In the present work the 
parameters of Sb were slightly adjusted to approximate the 
spectral slope derived by the empirical model of [4]. 
Following the consideration of [5], on the dynamic excitation 
of the capillary spectral tail, the second order nonlinear 
energy transfer Snl, has been numerically incorporated in 
(1), using the description given by [1]. The explosive type of 
short waves, that come almost instantaneously to the 
equilibrium level, permits for practical purposes to consider 
initially fetch limited waves. Thus starting with an initial 
spectral form, derived by the empirical model of [4], and 
assuming at the first run only three-wave interactions, (1) 
has been numerically integrated over the ID wave number 
space up to 864 rad/m. The integration has been repeated, to 
cover a range of wind speeds from 3 to 15 m/sec. Stabilized 
spectral forms were reached after about 20 m of fetch. 
Consequently assuming unbounded sea and time limited 
waves, the resulted forms was used as initial conditions to 
study its modification, in time by the effect of four-wave 
nonlinear interaction. For the computation of the third order 
Snl the procedure given by [6], reduced in ID was used, and 
the integration took place over the wave number space up to 
157 rad/m. As minimum grid interval for both runs, the nil 
rad/m was selected. For the slick-covered sea surface, the 
theory given in [2] of wave damping due to monomolecular 
films was applied. In the case presented here, the 
Theological parameters of a SPAN film (sorbitane - mono - 
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Z-9 - octadecen - 1 - oic acid ester) given in [7], were used 
in order to test the numerical results, against the open sea 
experimental radar backscattering data published by [7]. 

NUMERICAL RESULTS AND DISCUSSION 

Fig.l, shows as a surface presentation, the development 
with the wind of a 20m-fetch gravity-capillary energy 
spectrum, derived by the first run. The spectral shapes are in 
closed approximation, to the spectra derived by 
measurements in tanks of large fetches, as those presented in 
[4]. In greater detail the spectra show, the high-frequency 
"roll-off' starting near 100 rad/m, the secondary high wave 
number maximum between 600 to 800 rad/m, that grows 
upwards from the "roll-off", and the wind-dependent growth 
of this secondary maximum, that rises rapidly at low wind 
speeds, but reaches saturation at higher ones (Fig. 2). 
One also feature is turned out here. This concerns the 
spectral disturbance at the beginning of the "roll-off', near 
100 rad/m. It appears as a sequence of narrow-band energy 
depressions, implying that some wave numbers lose 
selectively higher amounts of energy, for the excitation of the 
capillary waves. The relatively high energy drop in these 
bands, and their constant spectral location in the region of 
the "Bragg scatterers" probed by the currently in orbit SAR 
sensors (e.g. 76-97 rad/m for ERS-C-Band SAR), give them 
a particular significance. It turns out, as shown on fig.2, 
that the strength of the energy drop in these bands is wind 
dependent. It is weaker at low, stronger at moderate, and 
weak again at higher wind speeds. This is attributed to the 
fact that at low wind speeds the capillary ripples are not well 
developed, and consume via (Snl) lower amounts of energy 
from the short gravity waves. When the capillary waves 
approach saturation, at moderate wind speeds, the amount of 
energy consumption increase drastically, and the spectral 
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Fig.2. Overshoot effects at a) k=100 rad/m b) k=138 rad/m. 
c) Saturation of capillary maximum at k=740 rad/m. 

energy drops at these bands, resulting to a kind of overshoot 
effect (Fig.2). At higher wind speeds, the consumed energy 
is balanced again by the wind input Sin. 

Fig.3 and 4, show spectral forms at 5m/sec wind speed, for 
current free (early state), and wind induced current 
conditions (mature state). Note that at current conditions, the 
energy drop near 100 rad/m is reduced. Numerically it is 
due to the factor U in (1), that intensifies or reduces the 
shaping effect of the integration, depending on its sign with 
respect to Cg. The geophysical implication is that a C-Band 
SAR will "see" a wind-excited sea surface, brighter when 
the wind drift current is established, than when the wind 
starts to blow. On the contrary, an opposite U enhances the 
energy drop in this spectral region, thus it will make the 
influenced sea surface to show darker. Superimposed also on 
fig. 3 and 4 are the resulted spectral forms, of the second 

-6 

-8 

1 

- 

P  BandL Bam   s_Hnnd                
\                                             C-flnnd   x_Band 

1                 \ 
■ E        X. 

10 

■3                             HLrv° 

- 

12 
Wind speed                  \ 

5 m/sec                     X-^/^ 
 1—i—i—i—i—i i ■ i >     i 

- 

14 

10 100   k in rad/m      1000 

Fig.l.  Modeled  gravity-capillary  energy  spectrum 
development with the wind. 

Fig.3. a) Gravity-capillary spectral form derived from the 
first run (three-wave interactions only), assuming 
current free conditions (early state), b) Effect of 
four-wave interactions after min. The Bragg wave 
spans for the several radar bands appear at the top. 
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Fig.4.   Same as in fig.3, but incorporating the effect of a 0.1 
m/sec wind drift current (mature state). 

integration run, for the effect of four-wave interactions. As it 
appears, this mechanism smoothes out gradually in time the 
sharp energy dispersions near 100 rad/m, refilling them with 
energy, from the neighboring spectral regions. Thus as the 
waves develop with time this spectral anomaly is modified to 
a broad shallow spectral trough, expanded slowly towards 
lower wave numbers, since the wind forcing bounds to some 
extent its expansion at high wave numbers. Geophysicaly it 
implies, that at large angles of incidence, an excited sea 
under moderate winds, may show brighter at extreme SAR 
bands (e.g. P and C-X), and darker at intermediate (e.g. S 
and/or L). However when a drift current is established, this 
effect will be reduced. The severe impact of a slick on the 
spectrum is shown on fig. 5. Here aside to the spectrally 
broad wave damping, at high wave numbers (Marangoni 
effect), the energy drop at the nonlinear singularity near 100 
rad/m is considerably increased. Thus since the amount of 
energy for the refilling process, via four-wave interactions is 
greater, it results to a faster expansion of the spectral trough 
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Fig.5. Effect of a SPAN slick on the spectrum, a) First run 
for clean sea. b) First run for slick-covered sea. c) 
Effect of four-wave interactions (second run). 
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Fig.6.   Contrast curve of spectral forms a and c of fig.5. The 
radar backscattering data (triangles) are from [7]. 

towards lower wave numbers. The contrast curve, of this 
slick-modified spectrum to the clean-sea one, is presented in 
dB on fig.6, and it is in sound agreement with the published 
by [7], radar backscattering data over a SPAN slick. 
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Abstract1 — Damping of short centimetre-millimetre (cm- 
mm)-scale wind waves was studied during experiments 
conducted from a platform in the Black Sea. During the 
experiments artificial organic slicks were observed using 
Ka-band and X-band radars and using Optical Spectrum 
Analysers. Film sampling from the artificial slicks with 
small nylon nets was also performed and the film 
elasticity was later estimated from laboratory measurements 
of wave damping. One of the experiments was conducted 
during an ERS-2 satellite overpasss and the slick was imaged 
by the C-band ERS-2 SAR. It is shown that damping of mm- 
scale waves exceeds the damping of cm-dm-waves and 
exhibits a maximum at surface wavelengths about 5-7 mm. 
The maximum is assumed to be a manifestation of a new 
nonlinear mechanism of damping of "parasitic" capillary 
ripples generated on the slopes of decimetre (dm)-scale wind 
waves. 

INTRODUCTION 

It is well-known that organic films effectively damp 
short surface waves forming slicks on the sea surface. The 
problem of wave damping has a very long history and has 
been studied in a great number of papers (see, e.g. [1,2]). 
Nowadays the problem of wave damping is important, since 
marine slicks are often clearly discernible in radar satellite 
images of the sea surface and can therefore be used to detect 
and to characterize sea surface areas covered by films due to 
biological productivity or pollution. 

Previous radar and optical measurements of damping of 
wind waves in slicks were carried out for dm-cm-scale 
waves larger than 2-3 cm (see, [3,4] and cited literature). For 
very short millimetre-scale surface waves the hydrodynamic 
theory of damping of freely propagating gravity-capillary 
waves (see, e.g. [5]) predicts that the damping effect 
should be weak even for highly elastic films. However, some 
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of Basic Research (projects 96-05-65087, 96-65-79080, 96- 
05-64697) and the Defence Research Agency, Winfrith 
Technology Centre, UK (Project SSWD1/113). 

previous observations with Ka-band radars (see, [6]) indicate 
that wave damping is expected to be strong at wavelengths of 
about 10 mm and shorter. 

Here optical and radar observations of damping of cm- 
mm-scale waves in organic slicks are presented. It is shown 
that the damping in the wavelength range of interest is 
very strong, and exceeds the damping for longer waves with 
maximum damping occurring at wavelengths of around 5-7 
mm. 

EXPERIMENT 

Experiments with artificial slicks were carried out on the 
Black Sea from the Oceanographic Platform of the Marine 
Hydrophysical Institute in May-June, 1996. The Platform is 
located about 0.5 km to the south of the Crimean coast, the 
Platform coordinates are 34°1' E; 44 24' N. The water depth 
near the Platform is 30 metres. The following measuring 
apparatus was used in the experiments. 
- Two Optical Spectrum Analysers (OSA) which measure 

the wavenumber spectrum of surface waves. The OSA 
instruments can be used to measure the surface wavenumber 
slope spectrum along an arbitrary surface wavevector 
direction. The wavelength range of the measured wind-wave 
spectrum at incidence angle of 60 was from 5.5 cm to about 
50 cm for one of the OSA, and from 3.5 cm to 3.5mm for the 
other. 
- A coherent Ka-band scatterometer (the radar wavelength is 
0.8 cm, the incidence angle was 60 ) 
- A coherent X-band scatterometer (the radar wavelength  is 
2.56cm, the incidence angle was varied from 18 to 23 ). 
Both the scatterometers permit us to measure the power and 
the Doppler shift of backscattered signals. 

Artificial slicks were created from a small rubber boat 
or from the Platform. The following surface-active substances 
were used: ol.eyl alcohol (OLA), oleic acid (OLE), sunflower 
oil (SO) and polymer Emkarox. The substances (except SO) 
before spreading on the sea surface were dissolved in pure 
alcohol (ethanol), the typical substance concentrations were 
about 10- 100 g/1. 
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Sampling of surfactants from the slicks after spreading 
was carried out from the boat with small nylon nets. 
The surfactants were washed out from the nets with pure 
alcohol and were kept in small containers. Then the 
dissolved surfactants were spread on water in the laboratory 
and the damping coefficient of standing surface waves at 
given frequencies was measured directly. The film elasticity 
parameter was estimated when comparing the measured 
relative damping coefficient with the theory [5]. Some 
estimates for the film elasticities obtained are given in the 
following Table together with environmental and instrument 
information. During 2nd June 1996 when ERS-2 imaged the 
Black Sea and the oceanographic platform about 3.5 litre of 
sunflower oil was poured on the sea surface around half an 
hour before the ERS-2 overpass. At the time of the ERS-2 
image the slick dimensions were roughly 100-200 m. 
During the experiment the OSA operated at a fixed surface 
wavelength of 6.5 mm only. 

RESULTS 

Wave damping in slicks can be characterized by the 
contrast K defined as a ratio of the wave spectrum F(k), 
where k is the surface wave wavenumber (or radar 
backscattered power assuming Bragg scattering) outside and 
inside a slick, i.e. 

K(k) = F(non-slick)/F(slick) (1) 

The contrasts observed on 2nd June by the OSA, Ka- 
band and X-band radars are shown in Fig. 1. The contrasts 
measured by the Ka-band and X-band radars are related to 
the surface wave energy at corresponding Bragg wavelengths 
( 5mm and 3.3cm, respectively). For ERS-2 SAR (the Bragg 
wavelength is 7 cm) the contrast estimated from the image is 
about 2 which is comparable with that observed by the X- 
band radar. 

Contrasts observed on 3rd June for the OLA I,II, OLE 
and Emkarox slicks are presented in Fig. 2.   Due to some 
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Fig. 1. Contrast in the artificial slick experiment of 02.06.96 

technical reasons the look directions of the OSA and radars 
in the experiments were different and their footprints were 
not well colocated. Therefore, since the artificial slicks 
on 3rd June were quite small (dimensions of order 10m-30m) 
some of them passed outside or only partly through the 
footprints of some of the devices. Consequently, radar 
contrasts could be estimated reliably only for the OLE slick. 
The obtained optical contrasts are in good agreement with 
radar contrasts at the corresponding Bragg wavelengths. For 
highly elastic films of OLA, OLE and SO the contrasts 
observed for mm-scale waves are very strong, and from 
Fig.2, can be seen to exhibit maxima in the millimetre 
wavelength range. 

DISCUSSION 

The most remarkable peculiarity of the results shown in 
Fig. 2 is the occurrence of a strong maximum of wave 
damping at wavelengths of about 5-7mm for OLA and OLE 
slicks. The observed maximum cannot be explained in the 
terms of the hydrodynamic theory of damping of freely 
propagating surface waves, i.e. by the   so-called Marangoni 

TABLE. Experiments with artificial slicks 

Date Wind Surfactant Wind 
speed, diraction 

Film elasticity 
(mN/m) 

Device 
look direction 

02.06.96 

03.06.96 

6m/s, 
270° 

4.7m/s, 
70° 

SO 

OLA I, OLA II 
OLE 

Emkarox 

50-60 

20-30 
25 

C-band SAR 
OSA (90°) 
Ka-band radar (45 ) 
X-band radar (90 , inc.angle 
OSA (110°) 
Ka-band radar (135 ) 
X-band radar (90 , inc.angle 18 ) 

23°) 
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Fig.2. Contrasts in the artificial slick experiment of 03.06.96 

mechanism, since maximum damping would be expected to 
occur at longer, centimetre-scale wavelengths (see, [2]).The 
observation that maximum damping occurs at millimetre- 
scale wavelengths suggests that nonlinear mechanisms must 
be important. This could explain why maximum damping is 
observed for millimetre-scale ripples. It is well known that 
large amplitude, short-gravity waves can produce on their 
leading slopes so-called   "parasitic" ripples   (see,   e.g. [7]). 

It has been shown earlier in laboratory experiments [8] that 
the ripples are generated by dm-cm-waves (wavelengths 
from about 3-5cm to 25-30cm. The wavelengths of these 
"parasiric" ripples range from about 5-6mm and shorter, 
and the ripple steepness depends strongly on the steepness 
of the short gravity waves. We thus hypothesize that the 
observed strong damping of mm-scale waves results from the 
damping of the short gravity (cm-dm) waves by the film. For 
the Emkarox slick the contrasts observed for mm-waves are 
smaller than for the OLA/OLE slicks. This is probably due 
to the fact that the elasticity of the Emkarox film was smaller 
and damping of cm-dm-waves in the Emkarox slick was 
therefore weak. 

REFERENCES 

[1] J.C. Scott, "Surface films in oceanography, in ONRL 
Workshop Proceedings- Role of surfactant films on the 
interfacial properties of the sea surface", ed. F.L.Herr, 
and J.Williams, ONR Rep.C-11-86, pp. 187-213, 
U.S.Office of Naval Research, Arlington, Va, 1986. 

[2] W. Alpers, and H.Huehnerfuss, "The damping of ocean 
waves by surface films: A new look at an old problem", J 
J.Geophys. Res., vol.94 (C5), pp.6251-6266, 1989. 

[3] H. Huehnerfuss, A.Gerike, W. Alpers, R.Theis, and 
V.Wismann, Classification of sea slicks by 
multifrequency radar technique: New shemical insight 
and their geophysical implications, J Geophys. Res., 
vol.99, pp.9835-9845, 1994. 

[4] S.A. Ermakov, S.G. Salashin, and A.R.Panchenko, "Film 
slicks on the sea surface and some mechanisms of their 
formation", Dyn. Atmos. Oceans, vol.16 (3-4), pp.279- 
304, 1992. 

[5] E.N. Lucassen-Reynders, and J. Lucassen, "Properties of 
capillary waves", Adv.Colloid Interface Sei., vol.2, 
pp.347-395, 1969. 

[6] S.A.Ermakov,   L.V.Lubjako,   and    S.G. Salashin, 
Observations of film slicks and internal waves with Ka- 
band scatterometer, Proc.PORSEC-'92 (Conference for 
Pasific Ocean Environment & Probing), vol.2, pp.1151- 
1154, 1992. 

[7] M.S. Longuet Higgins, "The generation of capillary waves 
by steep gravity waves", J.Fluid Mech., vol. 16, pp.138- 
159,1963. 

[8] S.A.Ermakov, K.D.Ruvinsky, S.G.Salashin, and G.I. 
Freidman,   "Experimental    investigation   of   the 
generation of  capillary-gravity   ripples by   strongly 
nonlinear   waves   on   the   surface   of a deep   fluid", 
Izv.Atmos.Ocean Phys., vol. 22, pp.    835-842, 1986. 

1337 



Producing ground deformation maps automatically: the DIAPASON concept 

DIDIER MASSONNET 
Centre National dEtudes Spatiales 

18 Avenue E. Belin, 31401 Toulouse cedex 04, France 
Phone: (33) 5 61-27-34-18   Fax: (33) 5 61-27-31-67 

Didier.Massonnet@cnes.fr 

The use of radar interferometry has now been amply 
demonstrated. The limits of the technique are well 
understood, if not always predictable. In addition, the basic 
signal processing procedure seems to have reached a plateau. 

Further improvements can only be achieved if the number 
of processed scenes and the variety of experiences in the 
people using the technique are greatly increased. This can be 
done only if the access to the interferometric technique is 
given to a large group of users who are not necessarily radar 
specialists and who use standard computers or workstations. 

The architecture used at CNES for interferometric 
processing, called DIAPASON, has been designed to be user 
friendly and to require minimal work through the use of 
standard interfaces. 

Initially designed for optimal signal processing and 
throughput, DIAPASON proved it could run automatically 
in the vast majority of cases. A first course session 
organized in 1996 for twelve geophysicists indicated that, in 
one week, they could learn to use the software and to 
perform trouble shooting when necessary. The software has 
been already distributed in several laboratories and countries 
for industrial as well as scientific use. 

Here we describe the main features of the software and its 
conditions of use. 

BACKGROUND 

Initial attempts to perform interferometric processing 
began in 1985, using a single sample of SIR-B data typical 
of an orbit-crossing (a very specific situation), the results of 
a specially designed airborne experiment (FOCUS), or 
simulated data. At that time, the complexity of the 
processing schemes was not a problem within a very small 
team of experienced people. The computing time was not a 
problem given the scarcity of the data available. 

The situation changed completely with the availability of 
ERS-1 data. In our view, radar interferometry was not 
"predictable" in such fields as scene coherence or phenomena 
observability. We were convinced that most of the answers 
had to be obtained experimentally by taking a high level of 

risk. On the other hand, radar processing with satellite data, 
whether form ERS-1/2, J-ERS1, SIR-C or RADARSAT, 
proved to be very homogenous, or at least much more 
homogenous than the samples of data mentioned above. 
Having decided to process tens or hundreds of scenes, we had 
to design a efficient procedure from the point of view of 
throughput (we have no exceptionally powerful computers) 
and from the point of view of labor load (there were never 
more than three people simultaneously involved in 
interferometry in our team). 

DIAPASON is the result of these constraints, and came 
from "theoretical" thoughts (optimal signal processing 
scheme, best computer architecture for throughput) as well 
as empirical facts (analysis and reduction of task repetition in 
actual processing, filter optimization). The final software can 
process any satellite source indifferently and can be used by 
any user familiar with data processing, most of the time 
automatically. 

DIAPASON ARCHITECTURAL CHOICES 

The key idea is to remove everything which is already 
known from the fringes in order to keep them as a small 
signal, thus minimizing the need for unwrapping and 
enhancing details representing new information. 
Atmospheric artifacts were observed for the first time in this 
way. We pushed this idea up to the point of removing 
geophysical models which mimic ground displacements as 
well as we can. However, the main choice of DIAPASON is 
to assume the availability of DEM of the area being studied. 
An extremely useful assumption at five steps of 
DIAPASON, even if no DEM of the area exist! 

1) The two radar images must be co-registered with a 
precision of a fraction of a pixel. The DEM and the orbits 
predict a deformation grid, which is compared to a sparse grid 
obtained from local correlation on actual images, which may 
fail at places but reveal actual datum. The comparison of the 
two grids allows to transfer exact datum to the predicted 
distortion grid, which becomes accurate down to a few 
hundredths of a pixel, both locally and globally. 

2) One of the radar images must be registered in absolute 
geographic coordinates. We simulate a radar image whose 
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amplitude depends on the local topographic slope, which is 
then correlated with the observed image. The resulting 
precision is about half the size of a resolution cell in the 
topographic model used. This precision deteriorates over very 
flat terrain, but then the usefulness of the registration with 
the topography decreases. 

3) DIAPASON applies a filter based on the local 
topographic slope during the interferometric fusion of the 
two images. This filter improves the results especially for 
the cases of steep relief and/or layover. 

4) DIAPASON eliminates the topographic contribution 
by subtracting the fringe pattern calculated from the 
elevation model, removing any "predictable" fringes and 
leaving only those related to displacement and/or DEM 
improvement. 

5) DIAPASON corrects the geometry of the interferogram 
into an orthogonal cartographic or geographic coordinates, so 
that users do not work in the distorted radar geometry. 

RLE INTERFACE 

The interfaces are critical for simplicity of use and 
optimal re-use of previous processing. DIAPASON is 
designed to define separately the information dealing with the 
sensor (for instance ERS-1), the DEM (for instance a UTM 
file on a specific area) or the data take (with a given starting 
time, sampling window and mean Doppler). 

The corresponding files must be filled independently. For 
instance if we want to work with ERS1 and JERS1 on the 
same site, as we have done for the Northridge earthquake, we 
will use DIAPASON with different sensors and data takes 
files, but the same DEM file. In this regard, adding a new 
radar image to study a site where a lot of interferometry has 
already been done is really simple : a new data file must be 
created, which is almost the exact copy of a previous one, 
except for a few figures (the orbit number for instance, the 
starting time can be updated as well, but it is re-checked 
anyway by the process). 

The current DEM structure accepts files in UTM, 
LAMBERT I, II or III, as well as latitude/longitude framing 
such as the one used in the DTED1 by USGS. Other 
descriptions of DEM (such as contour lines) must be first 
transcribed into one of the above possibilities. If no DEM is 
available, the user may describe a "fake" DEM (filled with 
zeroes for instance), which will still be very useful in the 
processing (orbital fringes removal, adaptive filtering for 
optimized interferometric fusion, better a priori co- 
registration, etc.). A fake DEM will also permit the final 

result to be presented in the chosen geographic reference, 
even if the relief is, of course, not corrected. 

Again, we advocate using any kind of preliminary 
information to improve the result and ease its interpretation. 
This information always exists: one may use an oversampled 
part of the world global DEM as an input. 

In order to improve its flexibility, DIAPASON works 
from radar raw data as well as from complex data. Whenever 
possible, we prefer working from raw data although it 
requires the additional processing time. The specific 
parameters required may be used or generated blindly by users 
who are not radar specialists. Processing of one 100 by 100 
km ERS scene typically takes one hour. 

It is better than both images are processed identically. For 
instance, two radar images to be combined must share the 
same Doppler centroid, which should be set to the average of 
the optimal value found for each image. Another practical 
advantage is found when the study involves long segments. 
One the files of raw data are created, they are processed as a 
single data stream, which takes long for... the computer! 
Finally, raw data may cost less. 

Being fully autonomous in interferometric processing 
implies being able to select one's scene of interest, which 
involves a number criteria, including the availability of 
images, their date and orbits. For example, events occurring 
at a specific time require an image both before and after the 
event. Slow, continuous ground movements need two 
acquisition dates separated by enough time to grow larger 
than the noise. The choice of scenes is influenced by local 
conditions. Seasonal effects such as snow are undesirable. If 
deciduous trees are present, it is better to work with scenes 
from the same time of year. 

The choice of radar images depends crucially on the 
relative positions of the orbital trajectories and, of course, on 
the scenes available. As the number of possible 
interferometric pairs becomes large quickly when several 
scenes are available for the same site, CNES has developed 
software to help select useful pairs by considering computed 
orbits and catalogues of existing scenes. In practice, only the 
European Space Agency has made such information public 
and the selection program currently only handles data from 
ERS-1 and ERS-2. The program calculates which orbital 
tracks can see a given site, determines if radar images arc 
available there, and computes the altitude of ambiguity for 
each potential pair. The final list of image pairs can be 
conditioned by logical criteria brought by the expertise of the 
final user. Among these, one can exclude pairs with an 
altitude of ambiguity lower than a specified value and/or 
pairs which do not span a specified date, etc. 
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Since the orbital files as well as the satellite activity files 
must be refreshed very often, we decided to make the data 
selection software, called ORBISCAN, available through 
electronic mail. It means that the potential user may 
interrogate a dedicated computer whose files are kept up to 
date. We plan to add J-ERS1 data to ORBISCAN soon. 

Another specific tool allows the removal of residual 
orbital fringes. The user must just indicate how the fringe 
pattern should be modified at four selected points in the 
interferogram. The program then computes the proper orbital 
correction and, using the DEM again, creates the final 
differential interferogram. 

An important point is that DIAPASON does not include 
a phase unwrapping tool. Unlike many other teams, we did 
not put emphasis on this aspect of interferometric processing 
because the "differential" philosophy of DIAPASON greatly 
reduces the use of phase unwrapping. Besides, we developed 
fringe simplification techniques which do not require prior 
phase unwrapping. However, if some phase unwrapping is 
needed at the end of the process, there exist many 
possibilities in the world which could be added to the 
DIAPASON process. That phase unwrapping works on the 
wrapped image alone without other interface is one more 
reason to keep phase unwrapping outside of the processing 
procedure. 

Other auxiliary tools include interferogram enhancement 
and visualization, for which we will no go into details. 

AVAILABILITY 

DIAPASON can currently operate on VAX VMS 
workstations, for instance equipped with the DECa family of 
processors, as well as on UNIX stations such as SUN 
workstations. The software works best with a typical 
configuration of 64 Mbytes of core memory and a 4 Gbytes 
hard-disk. 

The availability of the software depends on its use. For 
scientific applications, a license can be obtained at a cost 
typically equivalent to the cost of five ERS1 scenes. It has 
not been possible to make DIAPASON a freeware for legal 
reasons. We recommend following a dedicated course for 
optimal use. 

For commercial applications, a more expensive license is 
available. It may include the right to re-sell the software 
within a more complete image processing package. 

Several licenses of both types have been attributed. We 
expect the multiplication of users to be a continuous source 
of ideas for a better match between radar interferometry and 
its final users. 
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Abstract — With the increasing application of SAR 
interferometry the need for interferometric products is 
developing rapidly. While the algorithms for phase 
unwrapping are still being developed, upcoming missions like 
the Shuttle Radar Topography Mission are calling for stable 
and operational high throughput systems to generate continent 
wide Digital Elevation Maps (DEMs). At the German Remote 
Sensing Data Center (DFD) a modular interferometry system 
is being developed that bridges the aforementioned 
controversies. Due to the multithreaded architecture it takes 
full advantage of multiprocessor computers while it can run on 
small workstations as well. The system takes its flexibility 
from a modular concept: new input modules can easily 
connect to new SAR data sources, different phase unwrapping 
modules can be plugged in and compared. Subsets of the 
available modules comprise a pre-operational InSAR 
processor for ERS-1/2 Tandem data, while the overall system 
is also used as a development and research platform. The paper 
presents the architecture and the algorithms involved as well 
as throughput examples in the current configuration. Sample 
results from the field of differential interferometry and from 
topographic mapping experiments are presented. 

INTRODUCTION 

In the recent years InSAR technology that exploits the phase 
of SAR images developed rapidly. Starting originally with the 
generation of digital elevation models (DEM), todays 
applications in the field of differential interferometry range 
from detection of small surface changes of the earth to 
measurements of dielectric atmospheric effects. However, 
even if most processing steps are now well understood, the 
sheer amount of the data and even key processing steps like 
unwrapping the ambiguous phase make an operational InSAR 
system still an ambitious task. 

DATA SOURCES AND DERIVED PRODUCTS 

Most of the current InSAR data origin from ERS-1/2 sensors, 
especially the Tandem phase [7]. Environmental changes 
between the two interferometric data takes may limit the 
capabilities for DEM generation. However, the large number 
of repeats and the long temporal coverage since 1992 opens 
the field of surface change detection. Alone during the ERS 
tandem phase 110,000 [7] ERS frames have bee aquired that 
can be processed to interferometric products like 

•    coherence maps for qualitative surface change detection 
and land classification [5] 

• unwrapped interferometric phase for DEM generation 
and differential interferometry 

• surface slope maps derived from the interferometric 
phase 

In 1999 the modified X-SAR sensor will fly as a part of the 
Shuttle Radar Topography Mission (SRTM) and acquire high 
quality single pass interferometric data between ± 60 degree 
latitude during an 11 day mission. The data will be processed 
to DEMs with a local error of 4 m and a global error of ca. 14 
m. 

THE DEM PROCESSING SYSTEM AT DFD 

Fig. 1. shows the embedding of the InSAR System into the 
DEM Processing Chain at DFD as it is currently being 
developed. Input data is read from tape or transferred via 
highspeed network from the DFD robot archive. The GENEric 
System for Interferometric SAR (GENESIS) produces an 
unwrapped phase map and a coherence map, both in the radar 
slant range geometry. This phase map is later converted to a 
geocoded DEM using ground control points. DEMs from 
individual scenes are mosaicked to a large scale DEM with the 
DFD geocoding and mosaicking system GEMOS. 

Generic CEOS 
Products 

i°—ai=r 

©0 

Ground 
Control Points 

DFD Archive 
p—iy=r 

00 
SRTM 1999 

\*£-/   J Map 

Fig 1. Structure of DEM Data Processing Chain 

The following chapters will deal with the algorithms and 
system aspects in the interferometric processing system 
GENESIS. 
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GENESIS ALGORITHMS 

Fig. 2. shows the algorithms currently involved. Some of the 
modules still origin from the work of M. Schwäbisch and D. 
Geudtner at DLR [10], [11]. The given computation times are 
for a ERS quarter scene (50 km x 50 km) on a SUN E4000 with 
8 CPUs. 

reference 
DEM 

Orbit: 

a) 

SAR 
Product 
Reader 

e) 

Differential 
InSAR 
Module 

reference phase 

b) 

Spectra 
shift 
Filter 

C) 

Coregister 
and 
Resample 

d) 

Multilook 
and 
Multiply 

f) 
Branch cut 
phaseunwrapping 

g) 
(Weighted) 
Least squares 
phaseunwrapping 

h) 

Multi resolution 
phaseunwrapping 

^» Unwrapped Phase 

Fig 2. Interferometric processing steps 

a) A data format specific SAR product reader extracts data and 
annotation from disk or Exabyte tape. For ERS products 
precise orbit state vectors from the DFD archive are used to 
coregister the scenes with an accuracy of a few pixels. 

b) The following spectral shift filter improves coherence by 
filtering the data to common object spectrum in the range and 
azimuth domain. Nominally, a flat earth is assumed. When a 
coarse DEM is available which may even come from a first 
iteration step, a slope adaptive filtering may optionally be 
applied. See [1] for more details. The filtering process takes 
about 3.5 minutes CPU time. 

c) After filtering, both data sets are coregistered. A bilinear 
transfer function is derived from the correlation results of 121 
patches distributed over both images. The actual resampling 
is done with a cubic convolution kernel. For ERS data with a 
oversampling ratio of 18.96 MHz / 15.5 MHz a kernel of 4 x 
4 points gives sufficient quality and computational speed: 50 
seconds CPU time. 

d) Now both data sets can be multilooked reducing resolution 
and phase noise. During multilooking the phase of the flat 
earth is subtracted which is estimated from the state vectors 
and a WGS84 ellipsoid or simply the signal spectrum if the 
precision of the state vectors is not sufficient. 

e) For differential interferometry applications the virtual 
phase of a reference DEM can be calculated for the given 
orbits and subtracted from the SAR data phase. The remaining 
fringes can then be interpreted as terrain movement. The 
module uses the DEM to improve the orbit timing accuracy 
and for geocoding. 

Usually only one of the phase unwrapping modules f)-h) is 
applied. Since the phase unwrapping problem is currently not 
solved satisfactory, several options are investigated and 
compared: 

f) Branch cut algorithms - The phase is unwrapped avoiding 
branchcuts or adding/subtracting a fringe when crossing a 
branch cut [9]. The quality of the result depends strongly on 
the correctness of the branchcuts. Wrong branchcuts result in 
large errors (multiple cycles) along the unwrapping path. 
There are many different attempts to find the correct branch 
cuts. A very promising one based on network flow is currently 
being implemented and tested [6]. 

g) Least squares algorithms [8] find global and smooth 
solutions. A weighting process is required similar to branch 
cuts to discharge residues or curls in the gradient field. The 
typical errors are smooth and propagated over the scene. They 
can be visualized by subtracting the input phase and 
rewrapping the result. Execution time for weighted least 
squares phase unwrapping is ca. 10 minutes. 

h) Another promising approach, the adaptive multi resolution 
phase unwrapping estimates the phase gradients in a more 
robust way on windows with varying size depending on the 
local data quality. Details can be found in [1], [2]. 

SYSTEM ASPECTS AND PERFORMANCE 

The GENESIS software is coded in C++ for optimal 
performance and good maintainability. Tools for visualization 
and quality check are coded in IDL. Much effort was put into 
selection of the appropriate hardware and signal processing 
libraries. After benchmarking several systems and 
configurations a SUN E 4000 with 8 CPUs and 2 GB of RAM 
was selected. For FFTs, which dominate the computational 
load in SAR processing, "SUN Performance Library " was 
selected. A fast striped disk array holds the large intermediate 
data files. 

The software scales automatically and distributes the load 
equally over all available CPUs using multithreading 
techniques. Typically 8 CPUs reduce the computation time by 
a factor of 7.5. 

The current processing time for an ERS quarter scene starting 
from disk files including weighted least squares phase 
unwrapping is 15 minutes. 
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APPLICATION EXAMPLES 

DEM Generation 

The system is already used for preliminary DEM generation 
projects and validation tests. 

Fig 3. shows the unwrapped phase map of the Fort Irwin area 
in California. The image was produced from two ERS data sets 
processed with DLR's precision chirp scaling processor [4]. 
The area covers 100 km x 100 km and was processed in 1 hour 
CPU time. 

Fig 5. shows the motion field of the glacier Vatnajökull in 
Iceland. It was generated from two ERS tandem scenes 
acquired on 21.122. October 1996. The arrows represent the 
ice flow estimated along the sensor range direction, projected 
to the terrain slope vector. The longest arrows correspond to 
a speed of 40 centimeters per day. 

m^Mw—^^ 
Fig 4. Unwrapped phase of Ft. Irwin area I US 
(raw data ®ESA) 

Differential Interferometry 

Fig 5. Ice flow on glacier Vatnajökull I Iceland 
(raw data ®ESA) 
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ABSTRACT 

SAR images from the ERS Tandem Phase have been 
shown to be suitable for generation of digital elevation 
models by means of SAR interferometry. Based on previous 
work on SAR interferometry at VTT, a project has been 
started in Finland on the use of repeat-pass SAR 
interferometry for operational generation of digital elevation 
models. The project uses Northern Finland as a test area. 
This is an area covering approximately 100000 square 
kilometers between 66 and 70 degrees north. The dataset 
used is approx. 35 image pairs from the ERS Tandem 
mission, containing both ascending and descending passes. 
The area is moderately hilly, with relatively small amounts 
of areas causing radar overlay or shadowing. Most of the 
area is covered by boreal forests. An elevation model already 
exists for the area, as well as forest and land use maps. This 
makes the area very suitable as a test bed for operational 
DEM generation. Results indicate an elevation accuracy of 
10 meters and a throughput of one image pair of 100 km by 
100 km per day per operator. 

INTRODUCTION 

The National Land Survey, which is responsible for 
making and updating maps in Finland, has initiated a 
project on operational generation of digital elevation models 
(DEM) based on SAR interferometry. The data from the 
ERS Tandem Phase forms a particularly well suited data set 
for this purpose. The project is based on previous work on 
SAR interferometry at VTT Automation where the basic 
methods and software have been developed and tested ([1]). 

Traditionally DEMs are generated from airborne optical 
stereo images. This is based on image correlation, either by 
automatic methods or a human operator. The process is quite 
slow and the data collection is expensive compared to 
satellite images. The existing height model in Finland is 

generated from digitized contour lines. The rasterized DEM 
is then generated by mathematical interpolation, which, 
depending on the method, introduces errors at hill tops and 
shore lines. The accuracy of a high quality DEM generated 
by this method is typically a few meters. 

For certain areas a course DEM may already exist and 
other data may be available, e.g. water masks and land use 
maps. This kind of data is also useful when using INSAR 
through the relationship with interferometric coherence. One 
use of the software system developed in this project is to 
improve on low quality DEMs and to update old DEMs. 
Although the system is made as automatic as possible, the 
main emphasis is on the quality of the resulting DEM. This 
means that when the system is not able to decide on the 
unwrapping of a certain area, the human operator will be 
used to decide on how to proceed. Particular emphasis is 
therefore placed on the optimum use of the operator in order 
to optimize the DEM quality versus processing time. 

When the system is completed in about half a year, it will 
be installed in the operational environment of the National 
Land Survey. 

THE METHOD 

The DEM generation for a certain area is defined as a 
project comprising the geographical coordinates and the 
projection together with the datum. This does in general 
comprise a number of SAR image pairs. The different 
processing steps for a single image pair are shown in Fig. 1. 

Based on the precision orbit parameters available from 
ESA for the ERS satellites, the state vectors at the beginning 
of the two images are calculated with an in-house developed 
orbit propagator. Together with the header information from 
the SLCI-files, this forms the parameter set used for 
mapping from image to terrain and vice versa. When doing 
this positioning, the iterative algorithm presented in [3] is 
used. 

0-7803-3836-7/97/S10.00 © 1997 IEEE 1344 



The relative position of the images is then calculated 
from the orbit parameters. This is done for the corners of the 
images and is used as input to an image correlation routine 
for precision registration to subpixel accuracy. Based on this, 
a least mean square error fit is done to generate an 
interpolation grid for the slave image with respect to the 
master image. The master image is chosen to be the image 
with the larger incidence angle at near range in order to 
always maintain the same sign of the flat earth induced 
phase ramp.  

Generation of image state vectors 

Calculate relative image positions 
from the orbit parameters 

Image registration by correlation 

Slave image reinterpolation 

Ellipsoid earth phase bias, phase to 
height conversion factors and local 
incidence angles 

Fringe and coherence calculation 

Phase unwrapping with operator 
assistance 

Conversion of phase to height and 
generation of ortho DEM 

DEM to map projection 

Fig. 1. Processing chain for one complex image pair. 

By means of the interpolation grid the slave image is 
then reinterpolated by means of a 4-point sine-filter. The 
reinterpolated image is stored in a separate file and used in 
the subsequent processing. 

The orbit parameters are used for calculating the 
ellipsoid earth induced phase bias. At the same time the 
baselines are calculated and converted into scaling factors 
for transforming the unwrapped phase into terrain elevation 
and the local incidence angles are calculated. Because all 
these parameters change relatively slowly throughout the 
image, a sparse grid is calculated and stored into separate 
files. 

Calculation of interferometric fringes and coherence is 
done in three steps: 

• azimuth common band filtering 
• range common band filtering 
• phase difference and coherence calculation 

The azimuth common band filtering is done by means of 
FFTs using the doppler centroids from the SLCI image 
header a block at a time. The range common band filtering 
is done similarly using the calculated baseline values. The 
coherence is calculated after removal of the ellipsoid earth 
induced phase bias, but is not terrain corrected. The fringes 
are smoothed in azimuth and resampled with a factor of 5. 
This gives approximately equal pixel spacing in both 
directions. Before phase unwrapping the phases are 
smoothed by a 3 by 3 filter. The coherence is calculated 
using a window of 2 by 10 pixels in range and azimuth, 
respectively. 

The method used for phase unwrapping is based on 
extraction of residuals from prefiltered fringe images ([2]) 
and direct integration of the unwrapped phase. After 
detection of inconsistent points ghost lines are generated. 
This is done by using the proximity of inconsistent points 
together with certain topological properties of the height 
curves connecting these points. When the algorithm does not 
succeed, the operator is asked to graphically connect the 
points. After this the interferometric phase is unwrapped by 
direct integration and the areas around inconsistent points 
and ghost lines are smoothed. 

The unwrapped phase is transformed into elevation by 
means of the previously calculated scaling factors, and the 
local incidence angles are used to transform the height 
values into a ground range ortho image. 

The final DEM is transformed into the desired projection 
by using the orbit parameters and height biases are removed 
by using ground control points if these are available. 

RESULTS 

The first version of the software also included a SAR 
processor for generating the complex images. This has later 
been changed so that the ESA supplied SLCI images are 
used as input data. Currently the system has been tested on 
two sets of SLCI images, one descending and one ascending 
pair, from March and April 1996. The area is located at 
about 69°N, and an existing DEM with 25 m pixel spacing 
is used as a refernce. 

The orbit parameter based image registration is for both 
image pairs accurate to within 0.5 pixel in range, but in 
azimuth the accuracy is 0.5 pixel for one pair and 1.5 pixels 
for the other. This is thus insufficient for accurate 
registration, but it allows a very small search area to be used 
in the image correlation. 

The baselines are 130 m for the descending pair and 70 
m for the ascending one. The coherence is for both images 
around 0.5-0.8, and connection of inconsistent points by 
ghost lines succeeded without need for operator decisions. 

Although relative positioning of the images succeeded 
with an accuracy of about 1-2 pixels, the absolute 
positioning is slightly worse in the range direction, about 4-5 
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pixels. To find out whether this is a systematic effect, in case 
it can be removed, or whether it is inherent, will need a 
larger amount of test images. 

For the ascending image pair, the ellipsoid earth phase 
bias seemed to be corrected with a high accuracy. For the 
descending pair, however, there seemed to be a residual 
across the 100 km by 100 km scene. Several control points 
will therefore be needed for large areas. 

Fig. 2. shows the resulting DEMs. The image at the top 
is the rectified DEM from the ascending pair, the middle one 
from the descending pair, and the bottom image is the 
existing DEM. The general accuracy is between 10-15 m, 
and it is clearly seen that the accuracy of the lower baseline 
DEM is worse than for the higher baseline, as is to be 
expected from theory. 

CONCLUSION 

A first version of an operational DEM generation system 
based on SAR interferometry has been developed and tested. 
The test data indicated an accuracy of 10-15 m in elevation, 
and also showed that baselines above 100 m are preferable in 
order to achieve good accuracy. 
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Abstract - Spaceborne synthetic aperture radar (SAR) 
multi-pass interferometry is a technique based on the ex- 
ploitation of the phase differences between two complex 
radar images taken from two slightly separated positions 
on different dates [4]. This measure contains not only 
geometric and topographic information, but also differ- 
ential information covering land or atmospheric changes 
between the two scenes observed [3]. These atmospheric 
artifacts can be an obstacle to the production of digital 
terrain models (DTM) from multi-pass SAR interferome- 
try [6, 7]. 

INTRODUCTION 

Since 1991, ISTAR has developed, in association with 
CNES (French Space Agency), a DTM processing chain 
as an alternative to SPOT for DTM production [5]. Fea- 
sibility was demonstrated in 1993, a pre-operational soft- 
ware was set up in 94-95 and production tests on a large 
scale took place in 1996. Processing starts from raw im- 
ages and includes DIAPASON software from CNES for 
interferogram generation. We then use three ISTAR mod- 
ules, namely phase unwrapping, baseline registration with 
ground control points, and geocoding of the unwrapped 
phases, to get the DTM [1, 2]. To validate the chain on 
a large scale, multiple test sites were chosen. The com- 
plete surface exceeds 400,000 km2. The results show large 
perturbations probably due to refractive index variations. 
These large perturbations introduce topographic elevation 
errors which can be an obstacle for DTM generation. 

OBSERVATIONS 

In all processed sites, we observed the presence of low 
frequency artifacts with a weak amplitude (between 0.3 
and 0.5 phase cycles) and covering the whole image. 

In a few processed images (about 10 %, although the 
weak number of processed images does not yield real 
statistics), we observed the presence of more localized 
phenomena, probably due to convective effects, with a 
higher amplitude (between 1 and 3 phase cycles) (Fig. 1). 
They can hide a valley or a peak altogether). If they are 
detected, their small expanse allow them to be masked. 
We can then complete the masked area with exogenous in- 
formation (DTM generated from digitized contour lines, 
for example). If they are not detected, their presence 
could have serious consequences in the generated DTM. 
In the worst case encountered (three phase cycles), alti- 
metric errors can be 60 m for a 500 m baseline (altitude 
of ambiguity of 20 m), up to 300 m for a 100 m baseline 
(altitude of ambiguity of 100 m)! 

For the main sites, the amplitudes of atmospheric ef- 
fects were measured after the subtraction of a reference 
DTM to the InSAR DTM. The results are compiled in 
table 1. In this table, we can also find the mean and the 
maximal amplitudes of observed atmospheric phenomena 
in a number of phase cycles. 

The results shown are as a whole more pessimistic than 
the ones already published. They were obtained in an 
industrial context for the production of DTM on a surface 
larger than 10 000 km2 (the ground surface of an entire 
ERS scene). Consequently, they should not be compared 
to the published ones obtained over smaller surfaces. 
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In the case of 30 km x 30 km stamps, the high density of 
registration points, associated with a rather flexible mod- 
elization of interferometric geometry, can literally override 
the generated DTM to be combined with existing data. 
The flexibility of the model partially distorts the intrinsic 
results of SAR interferometry by compensating the effect 
of possible low frequency atmospheric phenomena on the 
reduced areas. The ensuing results can thus be compared 
to the result of an interpolation between ground control 
points, rather than to a true InSAR DTM production. 

The results mentioned in this document show that the 
density of the ground control points is lower. Those points 
are used for orbital registration only. In addition, when 
segments are processed, the orbital constraints limit the 
model and have little chance of compensating atmospheric 
artifacts. 

The ensuing results are of lower quality; however, they 
are more representative of what is expected from SAR in- 
terferometry, used in real production conditions for large 
surfaces. 

Note: The division of unit images into small 
30 km x 30 km stamps, registered separately, would not 
be a good solution. A set of tiny DTM would be obtained, 
tilted respective of one another and impossible to merge 
(each registration would, in its own way, compensate for 
atmospheric effects). 

Tandem data may be used to limit ground incoherent 
differential effects but will not solve atmospheric problems 
due to their high temporal variability. Furthermore, the 
comparison of ascending and descending views has not 
yielded a more favorable time window which would mini- 
mize atmospheric artifacts. 

SUMMARY AND CONCLUSIONS 

Much more importantly than incoherent differential 
phenomena such as forests and rivers which remain very 
localized and visible on the coherence image, the coherent 
differential phenomena are the real problems. They are 
impossible to detect on a single interferogram and over- 
lay sometimes the whole image. They can also represent 
several phase cycles locally. These important phase cy- 
cles have two consequences: they alter the registration of 
view parameters (DTM tilting) and are then converted to 
altitude (error amplitude depending on altitude of ambi- 
guity). 

These phemonena limit the use of multi-pass satel- 
lite InSAR DTM in an industrial context. The assumed 
"all-weather" aspect of radar images presented the In- 
SAR DTM as a valid alternative to optical DTM, such as 
SPOT, on areas often covered with clouds. As explained 
in this document, these very clouds can also make radar 
interferometry useless. 

To overcome these problems, only a confidence map can 
be envisaged [1]. This image is a linear combination of two 
interferograms normalized by their altitude of ambiguity 
which includes coherent differential effects only. The cal- 
culation, which can be combined with a quicklook type 
of processing, should allow ESA's ERS-l/ERS-2 archive 
to be purged until a simultaneous interferometric sensor 
becomes available. 
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Site Perpendicular Altitude Elevation error Elevation error Atmospheric artifacts 
(Ascending/ baseline of ambiguity Bias Pans [mean/max] 
Descending) (m) (m) (m) (m) (phase cycle) 
Angouleme (D) 700 13 0.2 4.9 [0.3/0.5] 
Brittany (D) 560 18 1.2 5.2 [0.3/0.5] 
Drum Hill (D) 255 40 0.4 10.7 [0.3/0.5] 
Kununura (D) 465 20 -8.3 12.5 [0.5/1] 
Death Valley (D) 181 55 7.7 14.6 [0.3/0.5] 
Death Valley (A) 95 104 5.2 15.2 [0.3/0.5] 
Luxemburg (D) 95 104 8.2 23.2 [0.3/0.5] 
Brittany (D) 170 65 5.3 25.9 [0.5/2] 
Kununura (D) 25 400 -17.9 98.9 [0.8/1.4] 
Irish Canyon (D) 22 450 -146.6 370.5 [0.4/3] 

Table 1: Statistics for several test sites. 

Figure 1: Example over Brittany test site: image of the difference between the InSAR DTM with a 65 m altitude of 
ambiguity and the InSAR DTM with a 18 m altitude of ambiguity in the master geometry. Amplitude of atmospheric 
artefacts is locally higher than 1.5 phase cycles. Ground dimensions are 50 km x 35 km. 
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ABSTRACT 

In November of 1996, a new commercial venture, Intermap Technologies Inc. (Intermap), 
commenced operating the InterFerometric Synthetic Aperture Radar for terrain Elevation 
(IFSARE) system, developed by ERIM and NASA's Jet Propulsion Laboratory (JPL). The 
Defense Advanced Research Projects Agency (DARPA) had originally funded the IFSARE under 
an innovative program for developing new remote sensing technology for government and 
commercial applications. The IFSARE (now referred to as "STAR-3i") system is now being 
operated by Intermap for a wide variety of international commercial mapping applications 
including terrain mapping, resource exploration, resource management, and telecommunications 
and transportation planning. This paper presents an overview of the commercial applications of 
this X-Band IFSAR and Intermap's methodology in uniting this new technology with traditional 
remote sensing and mapping techniques. Technical improvements to the STAR-3i system that are 
currently in progress are also presented. 

1.0 INTRODUCTION 

1.1 GENESIS OF STARSi 

Generation of large scale, highly accurate terrain and 
land cover maps for military, environmental and 
commercial applications has been a challenge for 
remote sensor system developers. The need is for 
rapid generation of accurate terrain elevations and 
associated land cover/use over large areas. 
Operational and economic requirements requires all- 
weather, day or night operations, as well as a high 
speed collection and processing capability. To 
address these needs. DARPA, formerly known as the 
Advanced Research Projects Agency (ARPA), 
initiated a multiphase program intended to advance 

new technology from the conceptual stage through to 
a fully functional system with practical capabilities. 
The proposed solution was the single pass 
Interferometric Synthetic Aperture Radar (IFSAR). 
The U.S. Army Topographic Engineering Center 
(TEC) in Fort Belvoir, Va., because of their 
expertise, was chosen by DARPA to act as agent to 
oversee and evaluate this program. 

In Phase I, a small scale IFSAR demonstration was 
performed in April 1992 followed by extensive proof 
of concept testing ending in April 1993. The 
feasibility experiments carried out in Phase I proved 
the capabilities of IFSAR and DARPA awarded the 
contract to design and build the interferometric radar 
and auxiliary data processor to the Environmental 
Research Institute of Michigan (ERIM). NASA's JPL 
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(Pasadena, California), had researched IFSAR on its 
DC-8 aircraft testbed (AIRSAR) for several years, 
and provided technical support to the contractor 
teams during Phase I. JPL was tasked to deliver the 
ground-based hardware and software for the image 
formation and Digital Terrain Elevation (DTE) 
processor necessary to produce the IFSAR output 
products. The EPJM designed IFSAR was installed 
in a Learjet aircraft and completed the integration 
and test phase of development late in 1994. 
Extensive evaluation of the system's operational 
capabilities were then carried out ending in late 
1995. The product at the end of this highly 
successful development effort was the IFSARE 
system. 

1.2 DARPA TECHNOLOGY TRANSFER 
PROGRAM 

In response to DARPA's initial vision to utilize this 
new IFSARE mapping system in commercial 
applications, a new company, capable of realizing 
the potential of the technology, was established. This 
new company, Intermap Technologies Ltd., supplies 
complete information products and services to its 
clients. Intermap combines the resources and 
expertise of two partners: 

• ERIM, who provide their valuable technical 
experience in radar imaging systems, and 

• The Image Mapping Division of IITC 
Holdings Limited (formerly Intera 
Information Technologies), providing 
expertise in marketing, operation and 
management of remote sensing systems and 
the production of mapping products. 

Intermap Technologies Inc., located in Englewood, 
Colorado, operates the IFSARE system, which is 
now referred to as the Intermap STAR-3i system. 
The STAR-3i aircraft is based in Denver. 

On February 11, 1997, Undersecretary of Defense for 
Acquisition and Technology, Dr. Paul Kaminski, 
signed the DARPA transfer agreement, which 
transfers the ERIM-built IFSARE system to 
Intermap Technologies Inc. for world-wide 
commercial operations. The Department of Defense 
(DoD) still has access to the system for mapping and 
other applications. In times of U.S. national 
emergency (e.g., natural disaster, peace-keeping, 

military conflict, etc.), the DoD will have priority 
access to the IFSARE system. 

2.0 STAR-3i SYSTEM DESCRIPTION 

2.1 RADAR INTERFEROMETRY 
Interferometric SAR is a technique that uses the 
relative phase difference between two coherent SAR 
images, obtained by two antennae separated by an 
across track baseline, to derive an estimate of the 
terrain surface height. The baseline length is an 
important design parameter since the height error 
diverges as the length approaches zero. Conversely, 
if the baseline length is too large, the returns from 
the two antennae become decorrelated, increasing 
the phase measurement error. The baseline length 
also affects the interferometer scale factor, which is 
the amount of phase shift for a given height change. 
Increasing the baseline length increases the height 
measurement accuracy (until the decorrelation limits 
performance) but decreases the ambiguity interval 
which causes the need for more phase unwrapping to 
occur, an often difficult operation. Decreasing the 
baseline length will have the opposite effect. Thus, 
an optimum baseline length exists. A block diagram 
of the basic process is illustrated in Figure 1 below. 

In order to extract accurate height information from 
the airborne data, an interferogram must be created 
during the post-processing routine. Briefly, post- 
processing combines the highly accurate aircraft 
inertial navigation with airborne and ground-based 
GPS data to generate all the information necessary to 
align the raw radar data for proper focusing, and 
determine the location of the radar data with respect 
to local and global coordinate systems. Range 
compression, range curvature correction, range 
alignment, azimuth compression, depth of focus 
correction, and azimuth alignment are achieved, and 
result in two sets of two dimensional SAR imagery, 
one from each radar channel. The interferogram is 
created by combining the two complex SAR image 
data channels by multiplying one channel by the 
conjugate of the other oh a pixel by pixel basis. The 
phase of the resulting complex samples is 
proportional to elevation and the magnitude is 
proportional to radar cross section. Inherent phase 
ambiguities present in the data are partially resolved 
in a process called phase unwrapping by comparison 
of the phases of adjacent pixels and from contextual 
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information (Zebker and Goldstein, 1986). For the 
placement of a pixel in three dimensional space, 
however, the absolute phase measured by the 
interferometer must be known. The elevations of 
control points in the area being mapped may be used 
to determine the absolute phase, thus resolving the 
remaining ambiguities. Madsen and Zebker have 

developed an alternate approach to obtain phase 
across the scene without the use of control points. 
Several references are available detailing height 
measurements from interferometric radar such as 
(Graham, 1974), (Madsen and Zebker, 1992), and 
(Adams et al, 1993). 
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Figure 1. Basic IFSAR Process. 

2.2 THE STAR-3i SYSTEM 
The STAR-3i system is one implementation of an 
airborne single pass across track interferometric 
SAR. As in any implementation, the designers 
selected various compromises that determine the 
overall system performance. A major decision made 
by the ERIM design team was to limit the airborne 
system, which is referred to as the Interferometric 
Data Collection Sub-system (IDCS) to perform data 
acquisition functions only. Thus the IDCS has no 
processing, navigation or dynamic antenna control. 
The IDCS generates, amplifies and transmits a coded 
FM waveform and receives the returns. These raw 
return echoes and all motion data are recorded on 
high density digital tapes. 

2.2.1 Coverage 
Knowledge of the exact baseline length is critical to 
the performance of the interferometer. For this 
reason the STAR-3i antennae are welded to the 
antenna pedestal. This fact causes the coverage 
obtained to be dependent on the aircraft height above 
ground. As the aircraft height above ground 
decreases, so too does the ground coverage. The two 
critical parameters for the coverage are the far 
incidence angle and the antenna beam width, which 
are both constants for the STAR-3i. The combination 
of these two provides the swath coverage as 
illustrated in Figure 2 
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Figure 2. STAR-3i Ground Swath as a Function of Height (2.25 meter mode) 

2.2.2 Resolution 
The accepted parameter for determining a radar 
systems "resolution" performance is impulse 
response. Range impulse response is a function of 
the range bandwidth. Azimuth impulse response is a 
function of azimuth bandwidth, which is in turn a 
function of antenna azimuth beam width, aircraft 
speed and the number of azimuth looks processed. 
For the STAR-3i system, the impulse responses in 
range and azimuth are as follows: 

• The 3 dB range impulse response is 2.5 
meters. This resolution is represented by a 
2.2 meter pixel in the slant plane. 

• The azimuth impulse is processed to 
approximately 4 looks providing a 3 dB 
azimuth impulse response of nominally 3 
meters. A single "look" of STAR-3i data 
has a nominal 0.75 meter resolution 
dependent on aircraft speed. The looks are 
used to reduce the presence of speckle in 
coherent image data. 

The data is resampled (orthorectified) to provide 
nominal ground resolutions of 3 x 3 meter. However, 
through product resampling, the standard 3 meter 
pixel can be resampled to meet customer 
requirements. 

2.2.3 Geometric Performance 

The STAR-3i system has been verified for operation 
in Standard resolution (2.5 meter) mode and may be 
configured for two different data collection 
scenarios: 

• Standard precision mode     Operation at 
40,000 ft. AGL to obtain standard vertical 
accuracy. 

• High precision mode Operation at 
20,000 ft. AGL to achieve higher vertical 
accuracy. 

STAR-3i has been verified in independent tests to 
meet the following performance accuracy's: 

Table 1. STAR-3i Performance 
Mode Aircraft AGL X&Y (CEP) Z noise 
Standard Precision 40,000 5mRMS 1.5-3mRMS 
High Precision 20,000 5 m RMS 0.3-2mRMS 

These performance accuracy's assume the GPS base 
station is within 200 km of the collection site. The 
performance improvement realized in high precision 
mode is primarily due to the fact the aircraft is 
operated at a lower altitude. This provides a better 
signal-to-noise ratio (SNR) and reduces the effect of 
any navigational errors present. The Z noise is 
"localized" variation of the vertical. The localization 

of the error is dependent on many factors including 
target type and navigation performance. Ground 
control could be utilized within "small scenes" of 
STAR-3i data to remove offsets and provide DEM 
accuracy's at the noise levels. To apply this process 
to an entire project area would require a statistically 
significant number of ground control points. 
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2.2.4 STAR-3i Aircraft platform 

Practical IFSAR operations dictate the need for a 
high performance aircraft to carry the radar sensor 
package. The Learjet 36A is considered to be an 
excellent all-round aircraft to fulfill this role because 
of its high performance, excellent cabin environment 
for radar equipment, very robust design and proven 
field reliability, and two pilot operation. 

The climb and cruise performance of the Learjet 
allow the aircraft to reach a project area quickly and 
to collect data at a very high rate (up to 100 sq. 
kms/minute). Its nominal true airspeed of 740 km/hr 
enables rapid deployment to worldwide destinations 
in order to meet specific deadlines or to monitor 
natural disasters. The maximum operational ceiling 
of the Learjet is 45,000 feet. This allows a wide 
range of field project planning options and the 
ability to get above most weather. 

2.2.S STAR-3i Ground Processing System 

Unlike the IFSARE systems aboard the aircraft, the 
ground processing system required significant 
improvements for it to be commercially viable. 
When operated by ERIM, the IFSARE was used 
primarily for research studies and periodic mapping 
projects to support TEC and the DoD. Under this 
scenario, accuracy of the DEM and SAR image 
products was the main priority. 

During the process to commercialize the IFSARE, it 
became quite apparent that the ability to process 
large volumes of data would become equally 
important to the requirement for product accuracy. A 
commercially viable system requires that the product 
generation keep up with the rate of data acquisition. 
Therefore, in 1996 Intermap initiated an aggressive 

program to improve the ground processing 
throughput. 

The ground processing system has the function of 
generating IFSARE products from the collected data. 
As described in (Sos et ai, 1994), the processing 
system consists of the tape playback unit, the 
position/attitude processor, two image formation 
processor channels and the DTE processor. When 
initially developed by ERIM and JPL, the ground 
processing system was implemented on a Cray 
processor. 

To improve the data throughput capability as well as 
the overall system reliability, ERIM recently 
completed the porting of the Cray software to a Unix 
environment. Now running on a network of six Sun 
Ultra2 workstations, the overall throughput of the 
ground processor has been increased by 
approximately a factor of 3. Further optimization of 
the processing sequence is underway. 

In addition, the next major phase of ground 
processor improvements has already begun. ERIM 
and Intermap recognized that the Unix port of the 
original JPL processing software was just an interim 
solution. The long term solution involves the 
development of an entirely new ground processing 
segment that utilizes the latest advances in DTE 
formation algorithms. An important goal of this next 
phase is to automate the entire processing chain as 
far as is reasonably achievable. To realize these 
goals. Intermap has initiated a contract with ERIM 
to build this next generation IFSARE processor. 
Known as the High Throughput IFSARE Processing 
System, or HiTIPS, this system will offer significant 
improvements in the areas of motion compensation 
processing, ambiguity determination, and phase 
unwrapping. HiTIPS should be fully operational in 
late 1997. 

3.0 COMMERCIAL APPLICATIONS 

The worlds of remote sensing and geographic 
information systems (GIS) are undergoing a 
revolution that is being propelled by the rapid 
advance of technology and the continuing discovery 
of new applications. High resolution commercial 
satellites are planned for 1997 and onward, thus 
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providing new capabilities in mapping, earth 
observation, and resource monitoring. 

However, this remote sensing and GIS revolution 
will require timely and accurate digital terrain data if 
it is to continue its rapid rate of advance. Accurate 
digital elevation models (DEMs) are required for 
most applications that require high geolocation 
accuracy. In fact, DEMs are a very suitable base map 
for many GIS applications such as mapping, land 
use classification, and transportation planning. 

Figure 3 shows the trends in topographic mapping. 
Airborne IFSAR has created a new class of DEM 
product having high accuracy at costs that can be 
significantly less than that using traditional 
photographic means. This is particularly true for 
tropical regions where cloud cover can make 
photogrammetry (by aircraft or satellite) impractical 
in terms of cost and time. 
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IFSAR, DEM noise is minimal. In a low altitude 
area, localized DEM noise can be as little as 30 cm. 

Orthorectified Image Maps STAR-3i high resolution 
radar images are orthorectified using the 
simultaneously-generated DEM. Consequently the 
radar imagery is presented with all vertical height 
distortions removed. These images are registered to a 
desired projection and are mosaicked into image 
maps. STAR-3i digital images can be used as base 
maps for GIS applications or output as hard copy 
image maps at scales as large as 1:10,000. 

Thematic Maps Most DEMs and orthorectified 
images are used to produce value-added products, 
including thematic maps by application, contour and 
topographic maps, and perspective views. Digital 
STAR-3i data is extremely versatile, allowing 
presentation forms to suit a wide range of 
requirements. DEMs can be presented as wire-mesh 
diagrams or radar image data can be draped over the 
DEM to produce a realistic perspective view. High 
resolution STAR-3i images can be interpreted to 
derive thematic maps such as land cover, land use, 
geology, forestry, and mining. If satellite or airborne 
optical imagery is available, it can be draped over 
the DEM for realistic 3-D fly-through applications. 

100 10 

VerticalAccuracy (m) RMS 
Increasing DctaiT *- 

Figure 3. Relation of STAR-3i to Topographic 
Mapping Trends. 

Intermap's STAR-3i produces three main product 
types: 

Digital Elevation Models In a timely manner, the 
STAR-3i system provides large area coverage DEMs 
at finer terrain elevation accuracy's than commonly 
available from other remote sensing systems. Due to 
the density of the DEM information available from 

3.1 FORESTRY 
Photography 

ctemperate)   Mapping the world's forests has become an 
important application. Ecosystem management, 
resource monitoring, and the preservation of certain 
habitats and species has created the need for timely 
and accurate remotely sensed data. Foresters have 
successfully employed aerial photography for many 
years and some now look to the possibility of using 
high resolution satellite imagery (Green, 1996). 

However, for many parts of the world the frequent 
presence of cloud cover make the use of optical 
remote sensing extremely difficult. For these parts of 
the world, such as the tropics, the use of radar 
becomes an attractive solution from the standpoint of 
product accuracy and cost (Mercer, 1993). STAR-3i 
now offers the capability to generate high accuracy 
image maps and DEMs that can serve as the base 
map for forestry applications. Since the STAR-3i 
system uses X-band radar, the scattering is generally 
off the top layer of foliage or other scattering surface 
that the incident radar beam might encounter. The 
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derived DEM is therefore with respect to this layer 
and might more accurately be termed a "surface 
model." In instances of dense forest canopy, the 
underlying "bald earth" elevation model can be 
obtained by removing the tree height through 
algorithmic post-processing. 

Furthermore, orthorectified radar image maps can be 
collected at planned intervals to monitor the forested 
regions. It is precisely this ability acquire mapping 
and land use data on a regular schedule in cloud 
covered regions that make radar such a useful 
technology for forestry. To date, Intermap has found 
forestry to be a key application for the STAR-3i 
system. Intermap is currently producing DEMs of 
widespread tropical forests, making these regions 
among the most accurately mapped in the world. 

3.2 EXPLORATION 

Many exploration applications require precise 
knowledge of the terrain to be effective. 
Development of coal deposits, oil and gas 
exploration, logistical planning, geological hazard 
mapping and environmental monitoring are 
examples of such applications. Petroleum and coal 
exploration activities in tropical regions and other 
heavily-vegetated areas are hampered by lack of 
bedrock exposure and difficult logistics due to 
surface conditions. This may result in poor quality 
seismic data. Geological structural mapping in such 
areas depends on the use of remotely sensed imagery 
and other reconnaissance exploration tools {e.g., 
airborne gravity and magnetics). Although 
geophysical tools provide quantitative subsurface 
information, surface structural and lithological 
information is also required in order to accurately 
determine potential areas of interest. The STAR-3i 
imaging system is a preferred remote sensing tool 
because it can penetrate persistent cloud cover, haze 
and smoke. The radar shadow allows for the 
interpretation of geological structures, lithology and 
geomorphologic features covered by dense 
vegetation. In addition, STAR-3i DEM data and 
imagery aid in seismic line planning by providing 
surface topographical information. This is 
particularly true in areas with limited field control. 
Orthorectification of the radar imagery eliminates 
geometric distortions due to layover and 
foreshortening inherent in radar imagery. Due to the 
side-looking nature of radar imagery, choice of radar 

look direction is critical in obtaining the optimum 
structural and lithological information. This allows 
the geologist to map directly from the imagery into a 
GIS. 

3.3 TELECOMMUNICATIONS AND 
TRANSPORTATION 

Telecommunications is an exploding field where 
accurate DEMs are essential for client services. 
Cellular telecommunication is dependent upon 
customer's access to towers. Selection of cellular 
tower locations is becoming more complex due to the 
trends in urban growth and stricter zoning 
regulations. As a result, planning and engineering 
are becoming even more important to the successful 
construction of the telecommunications 
infrastructure. 

STAR-3i can quickly provide large area coverage 
DEMs at finer terrain elevation accuracy's to service 
providers. For example, the telecommunications 
industry may require response times of only a few 
weeks for delivery of DEM and other spatial data 
products. Thus the ability to respond on these time 
periods is an important pre-requisite for successful 
commercial operation of the STAR-3i system. 
STAR-3i data are used for "line of sight" tower 
planning, accurate DEM and DTM mapping for 
microcell planning, land use and clutter mapping for 
microwave propagation planning. 

STAR-3i can also be an attractive solution when 
mapping long, linear projects. Examples of these 
applications include: powerline right of way 
planning and monitoring, pipeline planning and 
highway planning. Data acquisition for these 
applications can be much more efficient when using 
an airborne platform as compared to using a satellite 
platform, which are generally inefficient for sensing 
extended linear features that are not aligned with its 
orbital path. The STAR-3i system allows for the 
rapid generation of DEMs for these extended linear 
features without the requirement for ground control. 
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4.0 CONCLUSIONS 
Intermap's STAR-3i is the first commercial 
implementation of a high performance single pass 
across track interferometer. The STAR-3i system 
allows Intermap to provide high quality mapping 
products to meet the needs of the worldwide imaging 
and mapping community. DEMs and orthorectified 
image maps produced by the STAR-3i system are 
already making important contributions towards a 
variety of commercial applications such as forestry, 
exploration, telecommunications, and transportation. 
As GIS and global navigation and positioning (i.e., 
GPS) applications continue to proliferate and exploit 
advances in technology to increase their accuracy, 
the need for high accuracy DEMs will continue to 
increase. For example, with the upcoming launch of 
high resolution commercial imaging satellites by 
companies such as Earth Watch and Space Imaging- 
EOSAT, we believe that many new applications of 
STAR-3i DEMs are on the horizon. Consequently, 
as the pace of remote sensing and GIS accelerates, 
IFSAR technology will be an increasingly important 
element to help advance these industries. 
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I. INTRODUCTION 

Research on the utility of Synthetic Aperture Radar (SAR) 
data in many diverse applications has seen great activity in 
the past decade. In particular, two powerful SAR techniques 
emerged during this time. Polarimetric SARs were first 
demonstrated during the 1980's and is described by van Zyl et 
al. [1] and Zebker et al. [2]. Since then polarimetric SAR 
data have been applied to most disciplines of Earth Science. 
A recent summary of these investigations can be found in [3]. 
The second powerful SAR technique that has received much 
attention lately is SAR interferometry. While first published 
by Graham [4] in the 1970's, interest in this technique has 
steadily increased since the demonstration of SAR 
interferometry using digital processing [5]. For a summary 
of the different applications of SAR interferometry, please see 
[6]. 

To really derive the maximum information content from SAR 
data, it is desirable to combine polarimetric and interfero- 
metric techniques, preferably at multiple frequencies. The 
NASA/JPL AIRSAR/TOPSAR system [14] is capable of 
simultaneously acquiring interferometric (C- and/or L-band) 
and polarimetric data (C-, L- and P-band). In this paper we 
describe a processing approach that is used to process data 
acquired in these modes. This approach is different from that 
described by Madsen et al. [7] in both the motion 
compensation approach, as well as in the sense that data are 
deskewed before interferograms are formed. Using this 
approach, the same basic SAR processor is used to process 
data acquired in any of the modes supported by the 
AIRSAR/TOPSAR system. 

microstrip antennas are mounted fixed to the body of the DC- 
8 aft of the left wing. The earliest mode implemented in the 
AIRSAR system (operational since 1988) was the three- 
frequency polarimetric mode, where fully polarimetric data are 
acquired simultaneously at C-band, L-band and P-band. This 
mode was used to provide prototype data for the SIR-C/X- 
SAR science team and many of the algorithms applied to 
SIR-C data were developed using AIRSAR data. 

In 1990 NASA, in collaboration with an Italian consortium 
(CORISTA), approved the addition of another set of C-band 
antennas to implement a single-pass, fixed baseline cross- 
track interferometer (XTT) for topographic mapping. The C- 
band antennas were provided by CORISTA, while NASA 
sponsored the system modifications and processor 
development described by Madsen et al. [7]. This mode of the 
AIRSAR system became known as TOPSAR [8] and data 
have been acquired since 1991. The original TOPSAR 
processing software has been updated several times since the 
original publication in [7]. One version of this updated 
software was delivered to the Environmental Research 
Institute of Michigan (ERIM) under a contract with the 
Defence Advance Research Projects Agency (DARPA), and is 
currently being used to process the data from the ERIM 
IFSARE system. In 1995 TOPSAR was extended to acquire 
XTI data simultaneously at C-band and L-band [9]. All 
TOPSAR interferometers can be operated in single or dual 
baseline modes. For single baseline operation signals are 
transmitted out of one antenna only, and the received signals 
are measured simultaneously through two antennas. In the 
dual baseline mode, signals are alternately transmitted out of 
the antennas at either end of the baseline, while the received 
signals are measured simultaneously through both antennas. 

n. THE ATRSAR/TOPSAR SYSTEM 

The NASA/JPL AIRSAR system is a three-frequency 
airborne SAR system that was developed to be a general test- 
bed for advanced SAR techniques. The SAR system is flown 
on a NASA DC-8 passenger jet operated by NASA's Ames 
Research Center in Mountainview, California. The AIRSAR 
antennas   are   not   gimaballed;   instead   the   dual-polarized 

IE. PROCESSING APPROACH 

The aim of the Integrated AIRSAR Processor is to implement 
a processing strategy capable of processing all the modes 
described above with the same basic processor. Therefore, the 
processor must automatically produce co-registered multi- 
frequency images, whether or not at least one frequency was 
acquired in the interferometric mode.    Madsen et al.   [7] 
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describe a way to process single frequency cross-track 
interferometry data. In this approach, the individual images 
are never explicitly deskewed. Rather, the deskew forms an 
integral part of the location algorithm; the along-track offset 
given by Madsen et al. [7] is identical to the deskew used in 
the traditional range-Doppler processor [10]. 

This follows from the fact that in traditional (non- 
interferometric) SAR processing, it is assumed that the 
imaged pixel is located at the intersection of the Doppler cone 
(centered on the velocity vector), the range sphere (centered at 
the antenna) and an assumed reference plane. Since the 
Doppler cone has its apex at the center of the range sphere, 
and its axis of symmetry is aligned with the velocity vector, 
it follows that all points on the intersection of the Doppler 
cone and the range sphere lie in a plane orthogonal to the 
velocity vector. The additional information provided by the 
interferometry is that the imaged point also has to lie on the 
cone described by a constant phase, which means that one no 
longer has to assume an arbitrary reference plane. This cone 
of equal phase has its axis of symmetry aligned with the 
interferometer baseline and also has its apex at the center of 
the range sphere. It then follows that the imaged point lies at 
the intersection of the Doppler cone, the range sphere and the 
equal phase cone. Using the same argument as before, it is 
clear that the point still lies in a plane orthogonal to the 
velocity vector. This along-track offset can still be calculated 
using the traditional expression for the deskew, as shown in 
Madsen et al. [7]. 

When processing multi-frequency data, one has two options 
to ensure that the output images automatically co-register. In 
the first approach, the sub-patch size is chosen such that the 
same number of output lines are kept for all frequencies. 
(This assumes that the radars operate at the same pulse 
repetition frequency, which is the case for the AIRSAR 
system.) All frequencies can then be processed with properly 
scaled Doppler parameters, meaning that the along-track shift 
for all frequencies will be the same. Therefore, the location 
parameters derived at any frequency can directly be applied to 
all the other frequencies. In this case, the size of the sub- 
patch used, as well as the amount of overlap between adjacent 
sub-patches are determined by the length of the azimuth 
reference functions at the lowest frequency. 

There are two main disadvantages to this approach. First, the 
fixed number of output lines for all frequencies means that the 
processor becomes quite inefficient in the case of the high 
frequencies for which the azimuth reference functions are 
much shorter than at the low frequencies, since large parts of 
the overlap areas between successive sub-patches are 
unnecessarily recalculated. Secondly, since the size of the 
patch at  the  high  frequencies is   large compared to   the 

synthetic aperture size, the motion compensation may be less 
than optimum. 

These disadvantages can be overcome by processing each 
frequency separately into the zero squint geometry before 
utilizing any interferometric information. After the deskew is 
applied, the multi-frequency images automatically co-register. 
This now means that each frequency can be processed with a 
sub-patch size optimally chosen for that particular frequency. 
In a sense this follows the same processing paradigm usually 
employed in repeat-pass interferometry. The disadvantage, at 
least in our implementation, is that the bookkeeping of the 
phases during motion compensation is slightly more 
complicated. 

The post processing steps applied after the SAR processing 
depends on the mode in which the data were acquired. For the 
three-frequency polarimetric mode the various cross-products 
are combined into the standard AIRSAR compressed Stokes 
Matrix format and then radiometrically calibrated. 

In the case where interferometric data were acquired, the 
interferogram phase is first unwrapped and the slant range 
digital elevation model is formed. The location parameters 
for each slant range pixel is now calculated using the 
elevation model just derived. Since all the images acquired at 
the different frequencies now are co-registered, the same set of 
locations parameters an be used to geometrically resample all 
images. These location parameters are then used to resample 
the calibrated polarimetric SAR images. In addition to the 
calibrated and geometrically corrected SAR images and the 
digital elevation model, images of the local incidence angle 
and the interferometric correlation coeffiecient are also 
provided. These images are also geometrically corrected using 
the location parameters calculated from the interferometric 
phase information. 

IV. RESULTS 

The performance of the TOPSAR instrument and processor 
was previously reported by Madsen, et al. [7], who compared 
the radar derived digital elevation models with ones derived 
using conventional optical stereo techniques. Their analysis 
showed the difference between the DEMs to be 2.2 m r.m.s in 
relatively flat terrain, and up to 5.0 m in mountainous areas. 
Instead of repeating these analyses here, we compare the 
results of the Integrated Processor described here to that of the 
TOPSAR processor described by Madsen et al. [7]. 

To compare the results of the processors, we processed two 
strips of data through both processors, and then compared the 
results. First we tested the relative geometrical accuracy of 
the two resulting data sets. This is done by cross-correlating 
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small subsections of the images, and measuring the along- 
track and cross-track offsets between the images. This 
analysis is repeated for a grid of 100 points spaced uniformly 
through the images. To test the effect of relief on the results, 
this comparison was done for a flat area covering the Bolivar 
peninsula near Galveston, Texas, and a mountainous area 
covering part of Mount Rainier in Washington State. The 
total relief in the Bolivar scene is less than 50 m while the 
total relief in the Mount Rainier scene is about 1500 m. The 
results of the relative geometry test shows the rms difference 
between the Bolivar images to be 1.3 m in the cross-track 
direction, and 2.1 m in the along-track direction for a nominal 
post spacing of 10 m. For the Mount Rainier scenes, the 
rms difference are 2.3 m and 4.9 m in the cross- and long- 
track directions respectively. This confirms previous reports 
that results for relatively flat areas are typically better than 
those for high relief areas. 
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Abstract - An implementation of the Integral Equation 
Model applicable to rough isotropic surfaces is presented 
which makes use of Fourier Transform numerical methods 
to compute the surface spectrum. Different approaches 
for performing the calculations are compared in terms of 
computational accuracy and efficiency. Optimum values 
for window size and sampling step are reviewed and illus- 
trated in practical cases depending on the surface auto- 
correlation function and the operating frequency. 

INTRODUCTION 

The computation of the scattering coefficient of rough sur- 
faces through the Integral Equation Model (IEM) requires 
the estimation of the Fourier Transform of the surface au- 
tocorrelation function (ACF) elevated to the nth power, 
where n takes integer values from 1 to oo. In practice, a 
value nmax is selected on the basis of a reasonable con- 
vergence criterion for the series. In some canonical cases, 
such as the Gaussian and Exponential ACFs, the spec- 
trum can be computed analytically but in general only a 
direct numerical calculation is possible. In this numerical 
approach, two aspects require careful consideration: (1) 
the computational efficiency to avoid unnecessarily long 
computation time, and (2) the proper sampling and win- 
dowing of the ACF to avoid aliasing and leakage effects. 

In this paper, an implementation of the IEM applica- 
ble to rough surfaces with azimuth-isotropic ACFs is pre- 
sented which is based on the computation of the surface 
spectrum via numerical methods. The criteria for select- 
ing the window size and the sampling step are reviewed 
and demonstrated in practical cases on dependence of the 
type of ACF and the operating frequency. Different ap- 
proaches for performing the calculations are compared in 
terms of computational accuracy and efficiency. 

As an application of the method, simulated results 
are compared with experimental backscattering data ac- 
quired at the European Microwave Signature Laboratory 
(EMSL) on an artificial rough dielectric surface, in the 
frequency range 2 - 18 GHz and for incidence angles from 
10 to 50 degrees. 

THE IEM MODEL 

The Integral Equation Method (IEM) Model is based on 
an approximate solution of a pair of surface integral equa- 
tions for the tangential fields E and H. This method 
yields an estimation of the tangential fields by introduc- 
ing in the formal exact solution the Kirchhoff field as first 
approximation [1]. 

The far-zone electric scattered field is computed from 
the tangential electric and magnetic fields by using the 
Stratton-Chu integral and finally the scattering coefficient 
is derived from an ensemble average which takes into ac- 
count the distribution of the surface heights. 

The explicit final formula actually requires the compu- 
tation of the spectrum ACF elevated to the nth power, 
where n takes all integer values from 1 to a convenient 
large value (nrooa;). 

For example, the copolar backscattering coefficient from 
a random surface with height RMS = a and ACF = p(u,v) 
reduces to (for single scattering): 

k2 
-2<T*ki 

pp (i) 

& = (Uz)
nfppe-°2k* + fc"[J?^(-fc^°)+jrpPfe»0)l 

W< 

(2) 
I      r+oo    />+oo 

n\Kx,Ky) = —J       J     pn{u,v)e-*K^+K^dudv 

(3) 
where 6 is the local incident angle, k = 2ir/\, kz = fccosö, 
kx = k sin 9. The explicit expressions for the coefficients 
fPp and FPp are given in [1], Appendix 4B. They are func- 
tion of 9, er (frequency dependent dielectric constant) and 
fj,r (relative permeability) either explicitly or through the 
surface Fresnel reflection coefficients (Ä|| and R±). 

Approximations to local incidence angle 

Two simple approximations to the local angle 6 used for 
the calculation of R in fpp can be considered: (1) replace it 
with the incidence angle (flat surface approximation) and 
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(2) set 6 = 0 (normal incidence approximation). In the co- 
efficients FpP, the local angle is always approximated by 
the incidence angle. Comparison between the Moments 
Method and the IEM Model [1, section 6.4] have shown 
that the first approximation is good in the low frequency 
region, while the other is good in the high frequency re- 
gion. However, a transition region is always present where 
the two approximations give the upper and lower bound 
of the correct value. In the simulation results presented 
here a simple transition function has been used (for all the 
incidence angles) to weight the two limit cases in the inter- 
mediate region and get a good fit with the experimental 
data: 

/i        "incident r 0 = ■ erfc (f-fo\ 
U//4; (4) 

where /0 is the center frequency and A/ is the measured 
band. 

Up to now, no method is available to select the weight- 
ing function on the bases of the surface characteristics (er, 
a, p). 

COMPUTATION OF SURFACE SPECTRUM 

In general, the surface spectrum has dependence along 
orthogonal directions u and v, accounting for geomet- 
ric anisotropic surfaces. In the following, only azimuth- 
isotropic surfaces are considered where the ACF=p(r) 
with r = y/u2 + v2. In these cases the power spectrum 
W(")(Kx,Ky) will have also circular symmetry and can 
be computed by taking the Hankel transform of p": 

r+oo 

W{n)(K)= pn(r)-r-J0(Kr)dr 
Jr=0 

(5) 

In a few canonical cases, such as the Gaussian and Ex- 
ponential ACFs, the spectrum can be computed analyti- 
cally using (5) but in general real surfaces do not follow 
such simple functions and the spectrum must be computed 
numerically. We have rejected the possibility of perform- 
ing the numerical integration due to the oscillating charac- 
teristics of Jo (Kr). This function behaves like a sine with 
period 2ir/K, and it is necessary to use a large number of 
nodes Nnodes in the numerical integration in order to ob- 
tain accurate results for high values of K [2]. An approxi- 
mate expression of Nnodes based on the Gaussian method 
to compute the integration is Nnodes = 16 -rmax/P, where 
P — 2n/K is the period and rmax is the value of r from 
which the function becomes negligible. Therefore, we have 
resorted to use Fourier Transform (FT) methods to com- 
pute directly the spectrum. 

Discrete Two-Dimensional Fourier Transform 

If s[n,m] is the finite sequence obtained by sampling the 
ACF along x and y with a spatial frequency fs = 1/TS, 

its two-dimensional Discrete Fourier Transform (DFT): 

N-l N-i 

S[k,l] = E E s[n,m] •e-J'-(^'fc-"+^'-ro)      (6) 
n=0 m=0 

is related to the 2D-FT of the original ACF (5c (wi;w2)) 
by the following relation: 

S[k,l] = (l/Ts) 
foo        +oo 

(7) 
™ TIAJ ,„ . 

E      E   Sc(wkfs-2nk1fs;^lfs-2nl1fs\ 
i= — ooii = — OO ^ ' 

Sampling rate 

Equation (7) shows that the original surface spectrum is 
corrupted by the sampling procedure (aliasing effect) if fs 

does not satisfy the Nyquist criterion /s > BW = 2-fmax. 
As an application example, we will apply the method 

to a specific ACF: 

p(r) = exp Wi 
Z4 + (L • r) (8) 

where the gaussian term I and the exponential term L 
dominate the function shape in the limit of short or long 
displacement, respectively. 

In this case, at high frequency the spectrum is dom- 
inated essentially by the gaussian term (=> BW = 
BWgaUs) except if / < L (=» BW = BWexp) where 
BWgaus and BWexp are estimated from the analytical ex- 
pressions of the Gaussian and Exponential ACF spectra, 
respectively. Since those spectra are unlimited, we have to 
define empirically the bandwitdh by setting a limit value 
(i.e. 10~£o) in the normalised spectrum. 

In the general case where no a priori knowledge is avail- 
able, a possible approach is to oversample the ACF and 
apply an anti-aliasing low-pass filter according to the re- 
quired maximum value of K, i.e., Kmax. 

Data window 

Obviously, it is necessary to use a large data window for 
the ACF to get a good accuracy in the computed spec- 
trum. However, a tradeoff has to be established between 
window size and sampling rate in order to keep the num- 
ber of samples within reasonable limits. A criterion for 
selecting the window size can be established by imposing 
the level of the ACF to be lower than an arbitrary value 
i.e. pn{r) < 10~ß. 

The application of this condition to (8) yields, 

r > 
■ELlog(lO) 

n\/2      \ 
1 + 4/1 + 

4l4n2 

L4E2 log2 (10) (9) 
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Figure 1: Relationship between Abel, Fourier and Hankel Trans- 
forms 

COMPARISON OF TRANSFORM METHODS 

Simulated data can be required for a few K-values of in- 
terest or for- a set of if-values covering a large ÜT-range. 
In the first case the formula (6) can be conveniently used 
while in the other it is more efficient to apply the FFT 
algorithm even if not all the computed points are needed. 
The efficiency of the method can be improved, taking ad- 
vantage of the surface circular isotropy, by replacing the 
2D-FT with an Abel Transform followed by one 1D-FT as 
discussed below. 

The Abel Transform 

Given the circular isotropy of the surface ACF we can 
write: 

f+OO 

p^\x)e-jKxdx 
-CO 

(10) 

where 

P%\*) pn (V^+F) dy (11) 

is the Abel transform of pn(r) [3, Chapter 9]. 
The Abel transform is, for a given x, the line integral 

of pn(r) in the y-direction. The numerical integration is 
performed by using integration formulae of Gaussian type. 
The spectrum is finally obtained by using a 1D-FT along 
x, as shown schematically in Fig. 1. 

Computation efficiency 

If N is the number of points where the spectrum is 
computed, the number of operations in all methods is 
dependent on N. Computing the spectrum by means 
of a 2D-FFT, the total number of floating point opera- 
tions (FLOPS) is known to be proportional to JV2 log2(7V). 
However, using the Abel Transform, only N integrations 
and a single 1D-FFT are needed. The integration method 
consists on the evaluation of the integrand at a fixed num- 
ber of points (usually less than 40) and a weigthed sum- 
mation. Then, the total number is approximately propor- 
tional to N(\og2{N)+Nint). On the other hand, the above 
mentioned methods yield the value of the spectrum at N 
points in the frequency (or K) domain. By using the 2D- 
DFT one can obtain the spectrum at NK arbitrary points. 

Figure 2: Comparison of the computation complexity between 
2D-FFT and Abel Transform plus 1D-FFT 

Then, the number of FLOPS of the 2D-DFT will be ex- 
pressed as NK ■ N2, and therefore this method will be more 
efficient than the 2D-FFT only if NK < log2(iV). 

In order to show real results we have obtained the num- 
ber of FLOPS required by Matlab for each method in the 
range from JV=2 to 1024. This result is depicted in Fig. 2. 
As expected, for high values of N the Abel Transform is 
more efficient, and the 2D-FFT becomes useless due to its 
great computation complexity and consequent high com- 
putation time. 

Accuracy 

In the application of the IEM Model the spectra will be 
evaluated at K = —2kx. The upper limit of this value (in 
modulus) is given by Kmax =2k = Anf/c » 42/(GHz). 

The accuracy of both methods (2D-FT and Abel Trans- 
form) and its dependence on parameters has been ana- 
lyzed in the range 0 < K < 1000 corresponding to a max- 
imum frequency of about 24 GHz. Of course, the 2D-DFT 
and the 2D-FFT have the same accuracy, the difference 
being only in the number of evaluated frequency points. 

The accuracy has been estimated against reference re- 
sults, obtained in this case from the analytical solution of 
the Exponential ACF. As described in previous sections, 
the window size and the spectrum bandwidth depend on n 
(the exponent). The accuracy of both methods as a func- 
tion of n, for fixed N, E and EQ, is outlined in Table I. 

When n grows the maximum error becomes negligible. 
Moreover, even with this relatively large error for low n 
the final backscattering coefficient is quite accurate (error 
less than 0.2 dB in the worst case). 

The parameter EQ has been fixed to 5 because with 

Table I: Maximum error (dB) of the nth power spectra com- 
puted by the 2D-FT and the Abel Transform in the range 
0 < K < 1000. Parameters: Exponential ACF, E - 7, E0 = 5, 
N = 1024, L = 3 cm 

n 1- 2 3 4 8 15 
2D-FT 1.1 0.13 0.04 0.017 0.0025 0.001 
AbelT 0.5 0.09 0.0225 0.009 0.0015 0.0005 
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lower values accuracy decreases and with higher values 
the number of points N used in the 2D-FT becomes too 
large. On the other hand, E produces good results from 4 
to 7, being inaccurate for lower values and inefficient for 
higher values. 

COMPARISON WITH EXPERIMENTAL DATA 

As an application example, data computed with the 
method presented here have been compared with exper- 
imental data acquired at the EMSL [4] on an artificial 
rough dielectric surface with a = 0.9 cm and ACF defined 
in (8) (I = 1.8 cm,L = 3.0 cm), in the frequency range 2 
- 18 GHz and for incidence angles from 10 to 50 degrees. 
The dielectric constant of the material ranged from 5-U.4 
at 2 GHz to 3.7 - t0.9 at 18 GHz. The parameters used 
in the simulation are: E = 7,E0 = 5, N = 1024. 

Fig. 3 shows the comparison versus frequency for an 
incidence angle of 40°. No frequency averaging has been 
applied to the experimental data. The noise is due to the 
residual speckle after averaging 72 independent samples 
per frequency point. The line labelled R(erfc) refers to 
the local angle 6 interpolated using (4). 

For this incidence angle the agreement is excellent in 
the whole frequency range, however the same is not true 
at lower incidence angles where a significant deviation can 
be noted at high frequency (e.g in Fig. 4b). This discrep- 
ancy may be partly due to the contribution of multiple 
scattering. Further investigation in this direction is in 
progress. 

CONCLUDING REMARKS 

The results presented here show that numerical Fourier 
Transform techniques can be efficiently and accurately ap- 
plied in the implementation of the IEM model to estimate 
the surface spectrum of rough surfaces with generic ACF. 
For azimuth isotropic surfaces, and when the number of 
data points required to properly sample the ACF is higher 
than 64, the 2D-FFT can be conveniently replaced by the 
Abel Transform, followed by a 1D-FFT. The typical pa- 
rameters values (sampling step, window size) which are 
required to obtain a good accuracy have been discussed in 
practical cases. 
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Figure 3: Backscattering Coefficient vs. frequency for a dielec- 
tric rough surface. Comparison of measured and IEM simu- 
lated data: 6 = 40°, (a) HH and (b) VV polarisation 
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Figure 4: Backscattering Coefficient vs. incidence angle for a 
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ABSTRACT 

A surface scattering model based on the integral equation 
method is examined in terms of its applicability to laboratory 
measurements. The Fresnel reflection coefficients used in the 
model have been approximated as a function of the incident 
angle at low frequency and a function of the specular angle at 
high frequency. Based on a limited set of experimental meas- 
urements, a transition function are suggested for estimating 
the Fresnel reflection coefficients in the intermediate regions. 
Results of comparison indicate that the IEM is accurate and 
practical to use. Issue raised from dielectric information is 
also addressed. 

INTRODUCTION 

A surface scattering model based on an integral equation 
method (IEM) was proposed by Fung et al [1]. It has been 
demonstrated that the standard Kirchhoff and small perturba- 
tion models (SPM) are the special cases of the IEM in the 
high and low frequency regions respectively. Recently, IEM 
surfac'e model has been widely used to interpret measurement 
data from laboratory-controlled experiment and field meas- 
urement. Satisfactory results between model and data were 
reported. Nevertheless, there remains rooms for improve- 
ments of model itself and its applications. 

In the derivation of applicable approximation for IEM, the 
Fresnel reflection coefficients are treated as independent of 
the spatial variable and set the local angle in them as equal to 
either the incidence angle or the specular angle. An obvious 
question raised is what do we use in the intermediate region 
where both approximations fail. In this paper, the transition 
frequency was investigated and a transition function is sug- 
gested to naturally connect these two approximation in the 
intermediate region. This modification is examined by mak- 
ing comparisons with the laboratory measurement[2] of 
backscattering coefficients from the Gaussian correlated 
surface which was irrigated or dried out for each experiment 
step. The moisture contents measured at different depth and 

different frequency were converted to dielectric constant. The 
first data set was measured from a smooth surface with rms 
height of 0.4 cm and correlation length of 6 cm. The fre- 
quency range was from 1 GHz to 10 GHz and the incident 
angles were 11, 23 and 35 degrees. The second data set was 
measured from rough surface with rms height of 2.5 cm and 
correlation length of 6 cm, and its frequency range was from 
0.55 GHz to 5.05 GHz. The third data set has the same condi- 
tion with the second data except for frequency range from 1 
GHz to 10 GHz. In the model calculations, we used the 
measured dielectric constant at smallest depth. 

THE IEM SURFACE SCATTERING MODEL 

From [1], the form of the single-scatter backscattering co- 
efficient of a randomly rough surface at an incidence angle 0 
is 

a 
as

qp=^-exp(-2a2k2)^cr2" 
1 n=\ 

I" IP 
2 W{n){-2kx,Q) 

(1) 

where  kz = k cos 6,   kx= k sin 9 and 

ln
qp={2kz)

nfqpexp{-cT2k2
z) 

k"[PqP(-kx,0) + Fqp(kx,0)] 

+ 2      • (2) 

The Kirchhoff coefficient/^ and complementary field co- 
efficients Fqp are functions of Fresnel reflection coefficient 
/?H or RL for parallel or perpendicular polarizations; k is the 
wave number; a2 is the variance of the surface heights and 
W(n\-2kx,0) is the Fourier transform of the n^power of the 
surface correlation function normalized to the surface vari- 
ance. 

For a dielectric surfaces there are two approximations to 
the local angle in the Fresnel reflection coefficients i?y ± used 
in the Kirchhoff coefficient fqp: one approximation replaces 
the local angle by the incident angle in low frequency region, 
that is R(Q), and the other by the normal angle in high fre- 
quency region, that is R(0). The local angle in the Fresnel 
reflection coefficients in the complementary field coefficients 
Fqp is always approximated by the incident angle. It is worth 
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to note that the single scattering coefficient given by Vqp is 
always approximated by the incident angle[l]. It is worth to 
note that the single scattering coefficient given by IEM using 
the second approximation R(0) will be in agreement with the 
standard geometric optics model (GOM) which is the Kirch- 
hoff model in high frequency limite and is independent on 
frequency. It can also be observed that in rough surface case 
the scattering coefficient computed from IEM with R(Q) will 
cross that from GOM near high frequency region, and the 
cross point depends on the incident angle, dielectic constant, 
rms height and rms slope of the surface. Therefore, as the 
frequency increases from low to high, we suggest a transition 
frequency fT which is the maximum frequency corresponding 
the cross point between IEM and GOM. In some cases of 
vertical polarized scattering which have no cross point, then 
we set the transition frequency being the frequency corre- 
sponding to the peak value of scattering coefficient of IEM 
with R(Q), which is the nearest point to GOM. In the special 
case of surface with small rms slope, the fT for horizontal 
polarization is set equal to that for vertical polarization. We 
also suggest a transition function T to estimate the Fresnell 
reflection coefficients RT=R(e)+[R(Q)-R(Q)]-T2 as follows: 

T = l + x~Utan 25ya2 cos2 0-(k2 -\3kj\ -0.5* (3) 

where AT is the wave number at fT and y is the rms slope of 
the surface. It can be observed that T lies approximately be- 
tween 0 and 1 which corresponding to RT=R(Q) in low fre- 
quency and RT=R(0) in high frequency, respectively; there- 
fore, it satisfies respective approximations at low and high 
frequency limits discussed above. Fig.l shows the backscat- 
tering coefficient versus ka for GOM and IEM using R(Q), 
R(0) and RT for VV and HH polarizations. It can be seen that 
the IEM using Rr provides a smooth transition between the 
one with R(Q) and with Ä(0) from small ka (low frequency) 
to large ka (high frequency). 

COMPARISONS WITH MEASUREMENTS 

Selected comparisons between model and measurements 
are given below. Figure 2 shows a comparison of backscatter- 
ing coefficient between IEM, Kirchoff, SPM and measure- 
ment from smooth surface with pretest irrigation at incident 
angle 11 degrees. In this case the Fresnel reflection coeffi- 
cient is approximated by R(Q). It is obvious that IEM is in 
agreement with measurement all the way from low to high 
frequency. The second case is the backscattering coefficient 
of the rough surface measured form 0.55 to 5.05 GHz. The 
IEM with R(Q), R(0) and RT are compared with measurement 
data for HH and VV polarizations. It is seen that with the use 
of RT the IEM matches the data better. 

In our comparisons, we find that the IEM can in in excel- 
lent agreement with measurement, both trend and level, for 
all initial and irrigated soil surface. However, in the dried-out 
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Fig. 1 Comparisons between GOM and IEM with R(Q), R(0) 
and RT for (a) HH polarization, (b) VV polarization. 

case, the level of model prediction is slightly higher than 
measured data. This may be due to the effect of inhomogene- 
ous layer. It was noted from the measured data that the 
changing rate of dielectric constant with depth in dried-out 
soil surface is indeed larger than that in irrigated soil surface. 
To obtain a consistent dielectric constant values, hence, we 
first calculate the slope of the line fitting the dielectric coeffi- 
cients of the dried-out soil surface at the depth of 4, 6.5 and 
11.5 cm and then shift the dielectric constant by: 

£r,shifted = £r~ sloPe ! sloperef - 0.65 , (4) 

where sr is the dielectric constant at 4cm depth, slopere/ is the 
slope of dielectric constant in the reference condition from 
the surface without irrigation or dry-out. Using the shifted 
dielectric constant in the third case of the measured backscat- 
tering coefficient of the rough surface from 1 to 10 GHz, we 
can see from Fig. 4 that the prediction of IEM with Fresnel 
reflection coefficient approximated by RT in in excellent 
agreement with measurement even in the second dried-out 
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Fig. 2 Comparisons between IEM, GOM, SPM and meas- 
urements from a smooth soil surface. 
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Fig. 3 Comparisons between model and measurements 
from a rough soil surface. 

CONCLUSION 

A modified Fresnel reflection coefficient was proposed 
based on a limited set of experimental data. The model pre- 
dictions of IEM are in excellent agreement with data in agu- 
lar, frequency and polarization dependence. The effect of the 
inhomogeneity in surface layer remains further study 
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ABSTRACT 

The understanding of the sensitivity of radar backscat- 
tering to surface parameters is essential in applying mi- 
crowave remote sensing to the retrieval of geo- and bio- 
physical parameters. A theoretical model, the Integral 
Equation Model, is used to investigate the sensitivity of 
radar backscattering to soil surface parameters. This 
model is first tested against a dataset retrieved under 
well controlled conditions at the European Microwave Sig- 
nature Laboratory, Joint Research Centre, Ispra, Italy. 
Then the surface roughness parameters are normalised 
with respect to wavelength and incidence angle to im- 
prove our insight into the sensitivity of radar observations 
to surface roughness. In this way the roughness space can 
be subdivided in two regions where surface slope controls 
the dependency of the signal to roughness. 

INTRODUCTION 

A thorough understanding of the sensitivity of radar 
backscattering to surface parameters is crucial in develop- 
ing inversion algorithms for microwave remote sensing of 
geo- and bio-physical parameters. In this contribution, 
we aim at evaluating this sensitivity based on both the- 
oretical analysis and experimental evidence. Since it is 
impossible, in an experimental setup, to mimic all the 
possible combinations of surface geometrical characteris- 
tics, surface dielectric properties and radar configurations, 
one has to resort to theoretical analysis to generalize what 
one can experimentally observe under limited conditions. 
This requires that the theoretical tool used is valid for a 
wide range and that the experimental data are reliable. 

'This work is partly financed by the Belgian Federal 'Office for 
Scientific, Technical en Cultural Affairs through grants n° T3/02/46 
and T4/DD/009 

Using a set of well controlled laboratory polarimetric 
data and soil dielectric data obtained from an experi- 
mental research program on the scattering properties of 
non vegetated terrains conducted at the European Mi- 
crowave Signature Laboratory (EMSL), Joint Research 
Centre (JRC), Ispra, Italy, we shall first validate a the- 
oretical model, the Integral Equation Model (IEM) [1]. 
The IEM is then used to help to interpret the EMSL data 
in order to generalize the experimental findings as regard 
to sensitivities of radar backscattering to surface param- 
eters. 

THE EMSL EXPERIMENT 

The data used are obtained from an experimental research 
on the scattering properties of non vegetated terrains con- 
ducted at the EMSL, JRC, Ispra, Italy. The objectives of 
the program include validation of surface scattering mod- 
els and retrieval of soil moisture profiles. The experiment 
on retrieval of soil moisture profiles was established with 
the objective to create, under controlled conditions, dif- 
ferent datasets which enable the retrieval of soil moisture 
profiles from microwave observations [2]. 

The datasets consist of monostatic, multifrequency 
(0.55 to 10 GHz, step size 11.25 MHz), polarimetric radar 
measurements at 3 incidence angles 6 (11°, 23° and 35°), 
and measurements of soil moisture and temperature pro- 
files using Time Domain Reflectometry probes (TDK) and 
thermocouples (TC). Measurements have been obtained 
for two soil surfaces. The surface of the soil target is 
shaped using a mould with specific roughness characteris- 
tics. One surface is relatively smooth with a Gaussian au- 
tocorrelation function, an root mean squared (rms) height 
a of 0.4 cm and a surface correlation length L of 6 cm. The 
other is very rough with a Gaussian autocorrelation func- 
tion, a a of 2.5 cm and L equal to 6 cm. The soil sample 
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Figure 1: Comparison between measurements and simu- 
lations for the smooth surface at 3 incidence angles (VV 
polarisation, moisture content mv = 0.17) 
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Figure 2: Sensitivity of a0 to dielectric constant at dif- 
ferent frequencies (exponential correlation function,' a — 
1.4 cm, L = 10 cm, 9 = 35°, VV polarisation) 

is contained in a cilinder of 2 m in diameter and 0.4 m in 
depth, placed in the center of the anechoic measurement 
chamber (radius 10 m). During the radar measurements, 
stable moisture profiles are realised with a series of irri- 
gation and drying out steps. 

Dielectric constant (dc) values at five depths (2.5, 5, 
10, 15 and 25 cm) are available. Only the real part of the 
relative dielectric constant is measured. The measured 
value is first converted into volumetric soil moisture us- 
ing a calibration equation, which takes into account soil 
texture and temperature [3]. A dielectric mixing model [4] 
is then used to convert the soil moisture into frequency de- 
pendent dielectric constants. The measurements at 2.5 cm 
are used as model input. 

VALIDATION OF THE IEM MODEL 

The IEM used in this work is an approximate version 
for surfaces with small to moderate roughness [5]. The 
validity conditions can be expressed as ka < 3, where 
k = ^Y is the free space wave number, A is the wave 
length and a is the surface rms height, and, as only the 
single scattering term is used, s < 0.4, where s is the rms 
surface slope, s = y/2 j- for Gaussian surfaces and s = j 
for exponential surfaces. Due to the large slope, the rough 
surface falls not within these validity conditions. 

In fig.l, comparison between IEM simulation and the 
measurements is shown. It can be seen that, except for 
the higher frequencies at 35° incidence angle, the agree- 
ment between model simulated and measured backscat- 
tering coefficients is very good. The fluctuation in the 
measured data are due to interference and its treatment 
is beyond the scope of this contribution. The deviations 
between measurements and simulations at 35° are possi- 
bly due to the neglection of the volume scattering term, 
which is expected to have an important influence at such 
low backscatter values. 

SENSITIVITY ANALYSIS 

Generally, moisture content and roughness characteristics 
(rms height and correlation length for a given type of 
correlation function) are considered to be the soil surface 
parameters. As will be shown, frequency and incidence 
angle will be taken into account, through a redefinition of 
the roughness parameters. 

Fig.2 shows backscatter increasing with dielectric con- 
stant. A variation of dielectric constant between 3 and 
30 (a shift in moisture content between 2.5% and about 
50%, depending on frequency and neglecting soil texture) 
causes an 8 to 9 dB rise in backscatter coefficient. This 
shift is almost independent on other parameters, such as 
incidence angle, frequency or surface roughness. The in- 
crement is not linear, but decreases as dielectric constant 
rises. This implies that the wetter the soil, the lesser the 
sensitivity of a° to dielectric constant will be. 

The sensitivity of the backscatter value a0 to the rough- 
ness parameters a and L has already been discussed [6]. 
Reference [6] divide the {cr,L) space at C-band in 4 re- 
gions, defining different sensitivities to one or both of the 
parameters. Though we can find some regions also in the 
(a,L) spaces at other frequencies, not all can always be 
found in the range of realistic a and L values, so con- 
clusions depend on the frequency used. Here we want to 
generalise their statements concerning the sensitivity to 
the roughness parameters. 

Rescaling this space to the (ka, kL) space makes the 
sensitivity independent on observation frequency. In fig.3, 
the (ka, kL) space is divided in 2 regions by drawing a 
line A. The shaded area is excluded through the validity 
condition on the slope. In region I the sensitivity of a0 to 
kL is small. The sensitivity to ka is very strong at low 
ka values, but decreases as ka increases. For region II, 
the situation is just opposite: sensitivity to ka is small, 
while kL has a strong influence at low kL values, this 
dependency decreasing with rising kL.   The division is 

1369 



Figure 3: Division of.the (kcr, kL) space in 2 regions of 
sensitivity at 11° {left) and 52° {right) {dc = 15, VV 
polarisation, exponential correlated surface) 
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Figure 4: Division of the {ka cos9, kL sind) space in 2 re- 
gions of sensitivity at 11° {left) and 52° {right) {dc = 15, 
VV polarisation, exponential correlated surface) 

independent on frequency, dielectric constant and polari- 
sation, but is still influenced by the incidence angle (rising 
slope of line A with incidence angle). The incidence angle 
affects both the shape as the level of the {ka, kL) surface. 

A further redefinition of the roughness parameters to 
ka cos 9 and kL sin 9 results in a constant shape of the 
{kacos9, kLsin9) surface, though the level of the sur- 
face still changes with incidence angle. As can be seen 
from fig.4, line A can be redrawn in this space through 
the points (0.6,0) and (20.,3.). The sensitivity in the 2 re- 
gions is as mentioned before, but the division is now also 
independent on the incidence angle. Though the redefini- 
tion is only shown for exponential correlated surfaces, it 
can also be applied to Gaussian ones. 

From fig.4, it can be concluded that, for each region 
(I or II), the only required information to define the 
backscatter level is the surface slope relative to the inci- 
dence angle (j cot 9 for exponential correlated surfaces), 
as contourlines are near straigth lines through the ori- 
gin. An important consequence is that once the region 
in the roughness space for a given application is known, 
the number of roughness parameters in the retrieval of 
soil moisture can be reduced from two (rms height a and 
correlation length L) to one (surface slope s). 

CONCLUSIONS 

We conclude that the roughness as seen by the radar can 
be expressed in terms of ka cos 9 and kL sin 9. Apart from 
the measured roughness parameters, also the observation 
frequency and the incidence angle are of importance. As 
the roughness parameters have a large influence at small 
numerical values, the knowledge about the correlation 
length L is important at lower incidence angles, while 
the rms height a has to be accurately known at higher 

incidence angles. It is stated that both dielectric con- 
stant and incidence angle affect the level of the {kacos9, 
kL sin 9) surface, but the introduction of the generalised 
roughness characteristics simplifies the understanding of 
the behaviour of the approximated IEM to the roughness 
characteristics. 

The sensitivity of backscattering to the surfaces's di- 
electric constant decreases as the soil becomes wetter, but 
is independent on other parameters such as radar config- 
uration or roughness characteristics. 
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ABSTRACT 

The authors have recently proposed an algorithm to derive top- 
ographical information from polarimetric SAR data. The algo- 
rithm is based on empirical comparisons between the terrain 
local slope angle and the corresponding changes in the relative 
position of the co-pol polarimetric signature maximum, and 
was supported by some preliminary theoretical analysis. Also 
the algorithm has been validated experimentally using data 
sets acquired over different geographical areas, over different 
types of natural targets (forest, bare soil) and using different 
digital elevation models as reference system. This paper 
presents some theoretical considerations on the scattering 
mechanisms which underpin the phenomenological aspects of 
the topography sensing method. A simplified closed form 
approximation to the relationship between the co-pol maxi- 
mum shift and the measured covariance matrix elements is 
introduced. This step highlights the major contributions to the 
co-pol maximum shift and suggests an interpretation in terms 
of the azimuthal symmetry properties of the target. Covariance 
matrices generated from experimental or modelling data can 
then be used as input variables to establish the relationship 
between the true and estimated terrain tilt angle. An example 
of the theoretical analysis relative to the influence of the inci- 
dence angle on the estimator error for a slightly rough surface 
is reported. From the algorithm's application point of view a 
new technique is finally demonstrated, whereby using two pass 
orthogonal acquisition data the elevation surface can be gener- 
ated as a solution of a Poisson type differential equation with 
only one tie-point. 

INTRODUCTION 

The authors have recently proposed an algorithm to derive top- 
ographical information from polarimetric SAR data [1]. The 
algorithm is based on the dependency of the co-polarized 
polarimetric signature maximum position on the terrain tilt 
angle in the azimuthal direction. The relative displacement of 
the co-pol maximum can therefore be linked to the resolved 
terrain slope in a direction perpendicular to the illuminating 
radar beam, and provides a differential measurement of the ter- 

rain elevation profile. The algorithm has been validated exper- 
imentally using air-borne polarimetric SAR data acquired over 
different geographical areas, over different types of natural tar- 
gets (forest, bare soil) and using different digital elevation 
models as reference system. The performance assessment 
reported in [1] indicates that the error budget on the slope 
measurement is moderately sensitive to the type of scatterer, 
and therefore the algorithm is self adaptive within the scene 
heterogeneity (e.g. forest, bare soil). Experimental results also 
show empirically that there exist a useful quasi-linear relation- 
ship between the relative co-pol signature maximum shift and 
the azimuth tilt angle within ranges of terrain slopes and SAR 
incidence angles. Since this relationship is at the core of the 
algorithm, theoretical understanding of the underlying mecha- 
nisms is important. Investigations in this direction to predict 
the technique's performance and the signal to noise ratio using 
a slightly rough surface model [2] have been reported in [1]. In 
this communication we want to tackle the problem from a 
slightly different perspective. The idea is to try to establish, 
subject to a number of approximations and boundary condi- 
tions, a closed form approximation to the relationship between 
the co-pol maximum shift and the measured covariance matrix 
elements. This step will highlight the dominating elements in 
the maximum shift and suggest an interpretation in terms of the 
azimuthal symmetry properties of the target. Covariance 
matrices generated from experimental or modelling data can 
then be used as input variables to derive the link with the ter- 
rain tilt angle. The approach is described in detail in the next 
section. 
Finally from the application point of view results of a new 
technique are reported which allows for the generation of an 
elevation map using orthogonal two-pass polarimetric SAR 
data and only one tie point. 

METHODOLOGY 

As a first approximation we assume that the transmitted and 
received waves are linearly polarized, and study only the 
dependency on the polarization orientation angle \|/ (ellipticity 
angle %= 0°). This is justified because the co-pol maxima 
alignment is skewed with respect to the ellipticity angle as a 
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function of Im [hh ■ vv*] and is significant only if the mean 
hh ■ vv* phase is largely different from 0. In this case a rotation 
of the (\|/,x) coordinate system can be done, to reduce the prob- 
lem to the mono-dimensional case. 
We then establish a relationship between the co-pol maximum 
relative shift and the measured polarimetric covariance matrix 
elements yC0MAX= /(C;/) . 
This is achieved through a decomposition method into basis 
trigonometric functions [3], which allows us to identify graph- 
ically the contribution of each covariance matrix element to the 
overall co-pol signature. In our case the basis functions can be 
built from combinations of the following functions: 

(1) 

C, (v|/)= 0.5(cos2\)/+l) 

C2(\|/)= sin2y 

C3(\|/)i 0.5(-cos2\|/+l) 

The co-pol power in terms of the covariance matrix is given 
by: 

(2) 

P= |C,|2(/iA ■ hh*) + \C2\2(hv ■ hv*) + |C3|
2(vv • vv*> 

+ 2(CiC2)Re[(hhhv*)] +2(C2C3)Re[(hwv*)] + 

2(C]C?i)Re[(hhvv*)] 

The basis functions are represented graphically in Fig. 1. 
The co-pol maxima are then given by the nulls of the first 
derivative provided that the second derivative is positive. The 
first derivative of Eq. 2 is: 

(3) 

dP 
j-=  ((-0.5 (hh ■ hh") + 2(hv ■ hv*) - 0.5 (vv • vv*) + 

Re [ (hh ■ vv*)]) sin4y + ((vv ■ vv*) - (hh ■ hh*))) sin2\|/ 

+ (2Re[(hh-hv*)] - 2Re [ (hv ■ vv*)]) cos4\|/ 

+ {2Re[(hh- hv*)] + 2Re [ (hv ■ vv*)]) cos2i|/ 

The derivative of the co-pol power is therefore in the form of 
a trigonometric polynomial, which within certain boundary 
conditions can be approximated by an nth degree polynomial 
in v|/ using a Taylor series expansion of the trigonometric func- 
tions. As it can be inferred from the basis functions, the co-pol 
signature has absolute maxima either near \y= 0° or \|/= 90° 
according to whether the hh ■ hh* or the vv • vv* term is larger. 
At first order Eq. 3 can be linearized around these two values, 

and the co-pol maxima relative displacements are then given 
by: 

(4) 

VW0°) = 
Re[(hh-hv*)] 

(hh ■ hh*) -2(hv hv*) - Re [ (hh ■ vv*)] 

(5) 

NW90o) = 
Re[(hvvv*)] 

(vv ■ vv*) + 2(hv- hv*) + Re [ (hh ■ vv*)] 

ANALYSIS 

Reflection Symmetry Interpretation 
The first consideration that we can make from the visual 
inspection of the co-pol signature basis functions in Fig. 1 is 
that the co-pol maximum can only be shifted from the "equi- 
librium" position at \\i = 0° or \\i = 90° if there is a non-zero 
cross correlation term ((hh ■ hv*) or (hv ■ vv*)). This suggests 
an intuitive physical interpretation of the phenomenon in terms 
of the azimuthal reflection symmetry properties of the target. 
The polarimetric response from reflection symmetric targets 
has been studied for instance in [4][5], where it is demon- 
strated theoretically that for azimuthally symmetric targets the 
correlations between co- and cross- polarized backscattering 
components is zero. In simple intuitive terms we can summa- 
rize this effect and relate it to our problem in the following 
way. Consider a deterministic target which is symmetric with 
respect to a plane (the reflection plane RP) containing the inci- 
dent radar beam. A complementary problem is defined in wave 
scattering when the sources (charges and currents) and the 
fields are the images of the original problem with respect to 
some operator. In our case the operator is the reflection with 
respect to RP. If the charge and current distribution is the same 
for the complementary problem, i.e.the target is symmetric, the 
H polarized scattered fields will be an odd function of the azi- 

hh 

_    hv   •■- 

—   -   —     vv 

hhhv 

Fig. 1. Basis functions 
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(6) 

Orientation  V 

Fig. 2 Signature decomposition highlighting the 
influence of the cross correlation term on the 
co-pol maximum shift. 

muthal angle, and the V polarized field will be an even func- 
tion. This stems form the invariance of the Maxwell equations 
with respect to reflection operators. Since the excitation 
sources are the same for the original and complementary prob- 
lem, this also implies that the co-pol scattering matrix elements 
will be even functions, and the cross-pol scattering elements 
will be odd functions. Now consider a random target and com- 
pute the ensemble average hh ■ hv* over all azimuthal angles; 
then there will always be a contribution coming from a resolu- 
tion element in the complementary problem that will cancel 
out the respective contribution from the' original problem. In 
other words the cross correlations terms in the covariance 
matrix will be zero. 
On the other hand if the target is tilted with respect to RP, and 
loses reflection symmetry, the sources in the complementary 
problem will be different from the original problem, terms in 
the ensemble average will not be balanced out, and the cross 
correlation will tend to increase. The signature decomposition 
illustrates nicely the influence of the cross correlation terms on 
the polarization maximum shift. An example is shown is Fig. 
2 taken from an analysis performed using JPL AIRSAR P- 
band data, acquired over the Freiburg forest in Germany. 
As a side remark, we observe that, following this interpreta- 
tion, a target which is intrinsically azimuthally non symmetric 
would exhibit a co-pol maximum shift even for flat terrain. The 
error introduced should be evaluated and eventually the algo- 
rithm should be calibrated for certain natural targets with 
respect to the absolute co-pol maximum at 8= 0°. 
An alternative way of estimating the terrain slope is suggested 
by the azimuthal symmetry analysis. In fact the tilted terrain 
will exhibit again reflection symmetry with respect to a plane 
which is rotated with respect to the original beam incidence 
plane; if the wave polarization orientation is rotated by the 
same amount, the cross correlation terms will be minimized. 
This can be computed by the following polarization basis 
transformation: Cs(p)= 7"(p) CSP (p) where p= EV/EH is 
the complex polarization ration and: 

T(p) = 
1 

1 + pp* 

2p 

-p* 1 ■PP*   P 

p*2   _2p* 

From (4)(5) we can make the following considerations on the 
dependency of the co-pol maximum relative shift from the 
cross correlation terms (for first order deviations). We remind 
that the two equations are respectively valid for a relative shift 
around 0° and 90° (hh ■ hh* > vv ■ vv* or hh ■ hh* < vv ■ vv* ). 
Let us consider for simplicity the first case only. 
1) The shift is proportional to the cross correlation term and 
inversely proportional to (hh ■ hh*) -Re[(hh- vv*)] , since the 
cross-pol power term is usually one order of magnitude less 
then the co-pol power. For random targets which exhibit low 
correlation between the co-pol channels (such as forest) the 
shift is inversely proportional to (hh ■ hh*) only. Also for small 
angles the (hh ■ hh*) term can be considered constant, and the 
shift will be proportional to the cross correlation term, which 
is highly linear with tilt angle. On the contrary for targets with 
high co-pol channels correlation, such as bare soil, the differ- 
ence (hh ■ hh*) - Re [ (hh ■ vv*)]  becomes important. 
2) The effective scattering area on the ground corresponding to 
a resolution element is a function of the local incidence angle; 
therefore on sloping terrain the power return will be affected 
both by the resolution element inclination in range and azimuth 
direction; variations in the local incidence angle will affect 
non-proportionally the (hh ■ hh*) and (hh ■ hv*) terms, there- 
fore introducing and additional source of error in the azimuth 
tilt angle estimation. 
3) Equations (4)(5) suggest the interesting possibility of con- 
structing a tilt angle estimator (within the limits of the linear 
assumption) from the power terms (hh-hh*) and (hv ■ hv*) 
only. In fact the phase and amplitude statistics of the cross cor- 
relation term (hv ■ hv*) has been fully characterized [6], which 
would allow us to derive an estimator of the Re [(hv ■ hv*)] 
term. If the estimator bias and variance permit, this approach 
would open up the possibility of using non-fully polarimetric 
space-borne SAR instruments for topography sensing, such as 
the foreseen NASDA VSAR aboard the ALOS spacecraft and 
some acquisition modes of the NASA Shuttle radar. 
4) Negative and positive terrain tilt angles can be resolved 
because the cross correlation term changes sign. 
Even this simplified view points out the fact that the underly- 
ing mechanisms in the polarimetric topography sensing algo- 
rithms depend heavily on the type of target, and that the error 
budget of the tilt angle estimation is affected by several factors. 
The full theoretical characterization of the end to end process 
is therefore a challenging task; we present in the next section 
some results towards this goal. 
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Rough Surface Scattering Model 

As a first step in the algorithm theoretical analysis, an electro- 
magnetic scattering model for a slightly rough surface based 
on Rice's method was used to compute the polarimetric covar- 
iance matrix elements as a function of the incidence and tilt 
angles. The model is a suitably modified version of the one 
described in [2] for ocean applications. Results of a numerical 
simulation for wave scattering from tilted terrain (P-band, 
£= (9.0 + 1.0/) , Gaussian power spectrum of the surface) are 
reported in Fig. 3. Only the covariance terms playing a role in 
the linearized maximum shift expression are shown. Also the 
estimated co-pol maximum shift was computed for different 
incidence angles, using a numerical solution for the roots of the 
trigonometric polynomial (Eq. 3), and is also reported in Fig. 
3. It can be observed that for small incidence angles there is a 
high non-linearity in the relationship, and the slope angle is 
over estimated. 

APPLICATION 

The processing of both single-pass, and orthogonal two-pass 
polarimetric SAR data sets has been investigated [8]. When 
single-pass data is used elevation ground truth must be availa- 
ble for at least one point of each profile formed in the azimuthal 
direction. When orthogonal two-pass slope data is employed, 
the elevation surface may be generated, in a new algorithm, as 
an iterative solution of the Poisson equation and only a single 
elevation tie-point is required. The study reported here uses 
orthogonal two-pass P-band data as a test of the Poisson equa- 
tion approach for an area in Death Valley National Park, Cali- 
fornia. The orthogonal two-pass results have been compared 
with a co-registered, conventional, U.S. Geological Survey 
(USGS) Digital Elevation Model (DEM). The SAR look direc- 
tions for the two data collection passes need not be strictly 
orthogonal for the method to work. 
The data used is NASA/JPL/AIRSAR P-band backscatter, 
sampled on a 10m x 10m grid, from a desert region of open- 
terrain centred on Stovepipe Wells in Death Valley National 
Park. This data set has been chosen for analysis because two 
nearly orthogonal AIRSAR passes (140° and 220°) were 
made over a common area of intersection. Orthogonal slopes 
are generated for each pixel using data from both passes. Slope 
gradients are then used in the new algorithm to solve for the 
terrain elevation surface. This algorithm, which is similar to 
that required in interferometric SAR phase unwrapping prob- 
lems, requires only one ground truth point to relate the surface 
to some standard reference ellipsoid. The analytic method 
attempts though an initial trial solution and iterations to find a 
solution <J> (x, v) to the Poisson equation for a rectangular 
gridded area of terrain elevations. For this problem the Poisson 
equation may be written in Cartesian coordinates as 

terrain tilt angle 

terrain tilt angle 

Fig. 3 - Results from the slightly rough surface wave 
scattering model. Covariance matrix elements and 
estimated co-pol maximum shift as a function of the 
azimuth terrain tilt angle and the incidence angle. 
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(7) CONCLUSIONS 

V2<t>(x,y)= p(x,y) 

2 
where, V is the Laplacian operator. The source function 
p (x, y) consists of values of the surface curvature estimated 
from input slopes, S (x, y) . This Poisson equation algorithm is 
made more accurate by weighting the individual input slope 
values by carefully chosen arrays of weights which correspond 
to confidence levels in the slopes for each image pixel. The 
weight map that was used heavily weighted areas where the 
linear-pol polarimetric signature peak was strong. 
The resulting elevation surface is given in Fig. 4 and may be 
compared with an available USGS DEM. Registration of the 
surfaces was carefully done but was made difficult by terrain 
layover effects. In Fig. 4 the terrain on the right-side is domi- 
nated by the Amargosa Mountain Range. The well-defined V- 
shaped canyon feature at the lower-right is Mud Canyon and its 
orifice is known as "Hell's Gate". The central desert basin is 
partly below sea-level and contains alluvial fans and sand 
dunes. The sloping area (right side) has localized areas of 
rough rocks. 
The agreement between the two elevation surfaces is good in 
those regions of the two-pass intersection area where the lin- 
ear-pol peak of the polarimetric signature is well-defined. In 
particular, for data regions dominated by Bragg scatter good 
results were obtained while areas dominated by specular 
returns introduced errors because the signature peak was 
weakly defined. Bragg scatter dominated areas in the (central) 
desert basin and near Mud Canyon. The rms surface differ- 
ences for these regions were 6m and 18m, respectively. Rms 
differences over the complete surface were 29m. 

stance -  Ikm] 

Fig. 4 - Terrain elevation surface produced using 
polarimetric SAR orthogonal two-pass data. 

We have traced the main lines of a theoretical analysis and 
physical interpretation of the co-pol signature maximum 
dependency on the terrain azimuth slope. The suggested 
approach has some interesting connotations. On a qualitative 
basis, it allows us to gain an intuitive interpretation of the phe- 
nomenon, related to the target reflection symmetry, and to 
make considerations on the validity range of the algorithm. On 
a quantitative basis, it will permit, within the boundaries of the 
assumptions made, and if suitable scattering models are avail- 
able, to derive sensitivity figures with respect to radiation fre- 
quency, incidence angle and type of scatterer. Future work 
should be directed towards an analysis based on a volume scat- 
tering model which could account for the more complicated 
situation encountered with natural targets such as forest and 
agricultural areas. Qualitative conclusions have been reached 
using a modified version of the UTA model [7]. However in 
order to properly take into consideration the terrain tilt influ- 
ence on the polarimetric covariance matrix a model based on 
the solution of the field equations should be used. 
Applications for which the new polarimetric SAR technique 
can contribute are 1) for improving polarimetric image feature 
classification and 2) for terrain elevation surface measurement/ 
visualization. 
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Abstract— The IEM surface scattering model was applied to 
interpret sets of multifrequency, multipolarization radar 
measurements acquired from rough soil surfaces with 
measured permittivity profiles. The wetness was induced by 
irrigation and the profile was generated by evaporation. It is 
known that surface roughness parameters are difficult to 
estimate and are dependent on the measurement system 
resolution and record length. Hence, roughness parameters 
for a soil surface were estimated using the IEM surface 
scattering model applied to a data set at C- or L-band when 
the soil condition is wet. Then, the same surface parameters 
were used at other frequencies and moisture conditions. The 
measured permittivity profile is used to compute the effective 
reflection coefficient for the entire soil medium at normal 
incidence on the air-soil boundary from which an effective 
permittivity is derived for the soil medium and used for 
scattering calculation. For soil with a dry upper surface and an 
increasing permittivity value with depth an additional air-soil 
transition in permittivity is needed in estimating 
backscattering. 

INTRODUCTION 

A quantitative estimation of soil moisture from radar 
measurements has been a subject of interest for many years. 
Usually an empirical relationship that maps the measured 
normalized backscatter coefficient a" into volumetric soil 
moisture content mv is developed using linear regression for 
this study [1-4]. More advanced empirical non-linear 
regression models such as those of Oh et al. [5,6], and Dubois 
et al. [7,8] have also been demonstrated for specific data 
sets.To make the analysis independent of specific radiometric 
data sets we want to test the IEM scattering model [9] along 
with an effective permittivity calculated from the permittivity 
profile acquired from measurements at discrete intervals as 
shown in Fig. 1. The input to the reflection coefficient in the 
scattering model is the standard Fresnel coefficient. In 
estimating the effective permittivity at the air-soil boundary 
an incoherent model for reflectivity based on the multi-layer 
approach is selected. This model is given in the next Section. 

It is known that soil surfaces dry up from the top down after 
rain. Thus it is desirable to incorporate a physical dielectric 
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gradient into our theoretical modeling for this special 
situation. The modeling of this transition gradient is given in 
the third section. 

In this work, we combine the IEM model with an effective 
permittivity model based on a discretized vertical soil 
moisture profde and a dielectric transition model. The 
purpose of this paper is to illustrate the application of this 
combined model to two sets of multi-frequency, multi- 
polarization and multi-angle data taken from soil surfaces 
with permittivity measured over depth. 

PERMITTIVITY FOR MULTI-LAYER 

An effective permittivity for a multi-layered medium can be 
derived by inverting the standard reflection coefficient for a 
multi-layered medium at normal incidence. However, this 
quantity is an oscillatory function of frequency not suitable 
for application. In practice, there is no real boundary between 
inner layers and hence an incoherent reflection coefficient is 
determined empirically for a multi-layered medium and is 
inverted for the desired effective permittivity. The reflection 
coefficient for reflectivity of a layer of depth dx over a half- 
space is known to be [10] 

Constant soil moisture 

A layered soil medium based on dielectric measurements at 2 cm 
intervals over a distance of 10 cm. 
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/?, +R2exp[-2(a + jß)d] 
R' = l+/?1/?2exp[-2(a + ./ß)rf] (1) 

where Rv R2 are the Fresnel reflection coefficients at the 
boundaries of the layer. This expression can be extended 
without changing the format to having another layer of depth 
d0 above it with R0 denoting the reflection coefficient at the 
additional boundary as 

=  /?0 + /tfexp[-2(q + jß)<f] 
21 ~ l + R0R,exp[-2(a + ß)d] (2) 

Similar consideration allows us to extend the formula to as 
many layers as we wish. Based on this formula we choose its 
incoherent representation by dropping the phase yielding 

R2i = 
R0 + R[exp[-4ad] 

1 +/?0/?,exp[-2a</] 

The corresponding effective permittivity becomes 

V/ 
(l+K2iY 
U-R2i) 

(3) 

(4) 

DIELECTRIC TRANSITION MODEL 

We consider the transitional dielectric layer given by [11] in 
which the permittivity as a function of depth, z, is 

er(z) = 1 + er 
exp(mz) 

il + exp(mz) (5) 

In the formulation of Brekhovskikh, note that er = e^ - 1 , 
and -N = er . The inputs to the model are the transition rate 
factor m ana the dielectric constant at z = °° which is eeJy. 
The real part of the dielectric will always start at er =1 
which is air and changes to teß at a rate of m. The value for 
m accounts for dielectric transition over the depth of 
penetration seen at a given wavelength. Hence, it varies with 
frequency and the condition of the soil being smaller for dryer 
soil and very large for wet soil where no transition exists. 

The standard Fresnel reflectivities are replaced by a modified 
set of relations which are given by 

«± = 
r(;5cos90) -^)(cos60 + ^cos^o + te^-l))] 

r(-;scose0) ^m^_j———^ 

r[l - (f)(cos90 + Jcos^o + ^-l))] 

r[i + ^(cose0-^/cos2e0 + (er_-i))] 
(6) 

Rn 
r(jScosB0) (-2^)(coseo + i7'7cos2eo + (er_-1) 

r(-yscos60) 
(fXCOSeO-r7COs2eO + (Er.-1)) 

r[l -(f]((erJ
1/3cos90 + ^/cos^o + (er--1))] 

r[l + (f)(cos90 - ^cos290 + (er--l))] 
(7) 

where S = 2k/m. An example showing the differences in the 
reflectivities is shown in Figure 2. 

APPLICATION OF SCATTERING MODEL 

Backscattering measurements were taken from two soil 
surfaces at 1.5, 5.17 and 12.8 GHz and the relative 
permittivities were measured at depth intervals of 0-2, 2-4,4- 
6, 6-8, 8-10, and 10-12 cm. For wet and medium-wet soil 
conditions, the measured dielectric values are fed into the 
formula corresponding to (3) and (4) but for more layers to 
estimate the effective permittivities. These permittivities are 
then used in the backscattering model to predict 
backscattering. If the soil is dry (e < 3, in the first layer), an 
additional transition defined by (5) is included in which the 
parameter m is selected to fit data. 

Figure 3 (a) shows a comparison between data and model at 
1.5 GHz when soil is wet. Then the same surface parameters 
are used to fit data at 5.17 GHz in Fig.3 (b) for both vertical 
and horizontal polarizations. In Fig. 4 similar comparisons are 
shown for the same surface when it is dry at the top. 

REMARKS 

This paper provides an incoherent permittivity for a soil 
surface with a vertical profile. It also adapted a transition 
profile for dry soil based on the work of Brekhovskikh. It is 
shown that for wet soil the incoherent permittivity model 

Fig. 2 Comparison of standard Fresnel power reflection coefficients 
(dashed lines) with reflectivitites including transitional effects. 

and1 

1. This is an approximate relation not derived explicitly in 
Brekhovskikh [11]. 
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works well and for dry soil both models are needed as inputs 
to a surface scattering model. 
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Fig.3 (a) Comparisons of VV and HH with data at 1.5 GHz for a wet 
soil with rms height of 1 cm and correlation length of 4 cm. efff = 
23-J3.65. Exponenetial correlation. VVt and HHt means the same 
calculations with dielectric transition. 
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Fig. 3(b) Comparisons at 5.17 GHz, zeff = 22.67-j3.39. 
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Fig. 4 Similar comparisons as in Fig.3 when the surface is dry on 
top with (a) eeff = 5.78-J0.54 at 5.17 GHz and (b) eeff = 7.8-jl.l 
at 1.5 GHz. 
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Abstract - A successive approximation (SA) scheme is 
applied to the problem of scattering from a perfectly 
conducting surface, rough in one dimension. The SA scheme 
is based on appropriate reformulation of the extinction 
theorem integral equation, in combination with a convenient 
representation of the source function. An explicit expression 
is given for the general term, which allows derivation of the 
general term of a related perturbation series and of 
corrections to the Kirchhoff approximation to all orders. 

INTRODUCTION 

Iterative techniques to treat scattering from conducting 
rough surfaces are of current interest [1-3]. Such methods 
appear quite well suited to the complicated nature of the 
problem at hand; however, treatment of higher order terms 
often presents difficulties. A very efficient iterative technique 
was introduced recently [3]; being, however, of a numerical 
character, it does not lend itself directly to development of 
explicit expressions for the statistical quantities of interest. 

On the other hand, perturbation methods have been in use 
for quite a long time [4-6]. Notwithstanding their limitations, 
they have the advantage of simplicity and of being amenable 
to fairly straightforward statistical treatment, since they 
provide analytical results. Following a momentum transfer 
expansion [7], a unified perturbation method (UPM) was 
introduced recently by Rodriguez and Kim [8] and shown to 
possess various merits, combining features of both the 
Kirchhoff approximation and small perturbation models. 

The present work is largely based on the UPM approach, 
combining its basic features with an iterative approach 
recently proposed by the present authors [9]. The iterative 
method is based on the extended boundary condition (EBC) 
formulation, and makes possible the treatment of the general 
term in an explicit form. This, in turn, may be appropriately 
manipulated to yield the general term of the UPM. Further on, 
the Fourier transforms involved may be explicity inverted in 
the high frequency region, yielding closed form expressions 
for corrections of the Kirchoff approximation to all orders. 
Thus, the momentum tranfer expansion scheme [7] is 
recovered as a special case. For simplicity, the case of 
horizontal (TE) polarization is treated in more detail; the 
analogous procedure for the vertical (TM) polarization case is 
also outlined. 

FORMULATION AND BACKGROUND 

We consider a typical geometry of two infinite half-spaces 
seperated by an interface, rough in one dimension, 
characterized by a dererministic profile function z=£(x) 
giving the height of the surface from the z=0 plane. The 
upper half-space is assumed to be the free space, with 
dielectric permittivity 80 and magnetic permeability u0, while 

the lower half-space is taken to be perfectly conducting. An 
Qxp(-jcot) time dependence is assumed. 

An incident plane wave of linear polarization is considered 
with the direction of incidence in the xz-plane, so that the 
only field component is among the y-direction. Thus, the y- 
component of the incident electric (TE case) or magnetic (TM 
case) field is given by the following expression 

Ej(r) or Hj(r) = i//j(r)y = ex$(jkxx - jkzz)y (1) 

where 

kx = k0 sin(6{), kz = k0 cos((9,), k0 = co^Je^o (2) 

and the incidence angle 0t is measured from the vertical z- 

direction. More general incident wave forms could easily be 
considered by superposition. 

We apply the well-known EBC equations, taking into 
account the boundary conditions and the Fourier plane wave 
expansion for the two dimensional free space Green function. 
By the usual procedure based on the linear independence of 
the plane wave functions [4-8], the following operatorial 
equation is derived for the TE case 

+00 

|exp[yAx + ju(A)C(xj\f(x)dx = AKI{^)S{A + AQ)      (3) 

where 8(A.) is the Dirac functional and 

u0{A) = ( kl-Ä2) 
1/2 

(4) 

with the square root defined so as to satisfy the radiation 

conditions (Re(u0),Im(u0) >o). The unknown function is 

related to the normal derivative of the field through 

f{x) = jh-Vy/(f) -(f)' 
1/2 

(5) 
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A similar equation arises for the TM case 
+00 

Jexp[y^ + Jü{A)^X)\U{A) - A^ (x))f(x)dx = 
-00 

= 4zu(A0)S(A + A0) (6) 

where the unknown function corresponds to the magnetic 
field values on the surface. 

The scattered field in the upper half space is then given by 
+00 .     . 

Ysc 00 = - J -JJ^ exp[yVLx + ju(A)z]dA (7) 

where 
+00 

"W = 4^ jeXP[- J** - H^W)\f{x)dx      (8) 
—00 

in the TE case; a likewise expression is found in the TM case. 
Following the approach of [8], we write 

f(x) =2exp[yVt0x - jv(A0)c(x)]g(x) (9) 

The advantages of the representation (9) (the origin of which 
may be traced back to [10]) have been discussed in [8]. 

Combining (3) and (9), one gets the final equation to be 
solved 

jexp[y(A + A0)x + j(u(X) - ü(^{x)\g{x)dx = 

= 2zu(A0)ß(A + A0) (10) 

From this point on, the infinite limits of the integration will be 
dropped for brevity of notation, as it has been done in (10). 

Expanding g(x) in a perturbation series, with the perturba- 
tion parameter being in effect the corrugation height of the 
surface, one has the UPM series. Inserting the exponential 
expansion in (10), multiplying the series in the Cauchy sense 
and equating terms of the same order in £(x), we get the 
iterative relations 

go(x) = v(Ao) 

n-\     .„_m 

&(*+*)=-Zc^[^M4>)]- 

THE SUCCESSIVE APPROXIMATION SERIES 

The   successive  approximation  approach   is  based  on 
reformulation of (10) in a form suitable for iteration 

g{Ä + A0) + Kg(x)=2^v(A0)s(A + A()) (14) 

This is done by adding and substracting unity to the term 
containing the exponential of the surface profile, and taking 
into account the well known property of the Fourier transform 

F{a(x)}=A(A) o  F{exp0bx)a(x)}=Aß+b) 

In (14), the K operator is defined as 

Kg{x)= jexp[j(A + Ai))x]B{A,x)g(x)dx (15) 
X 

with 

B(A,X) = exp[y(üU)- ü(4)))^(X)] -1 (16) 

Based on (14) and applying the successive approximation 
technique (Neumann iteration) with the right-hand side as 
initial guess, one comes up with the following successive 
approximation (SA) series 

g(x) = ^gn(x) (17) 
n=0 

(11) 

where the SA terms are given by 

gn(A + Ao) = -Kgn_} (x), gQ (x) = V(AQ) (18) 

Thus, the general term of the SA series may be written 
explicitly as follows 

g"ix) = (2*7 ^ J---/exp[-X^ + 4))4 

■Q(K,Än_l)--o{Al,A0)dAl -dAn (19) 
where we have defined 

Q(A,M) = Jexp[y(// - A)x]B(A,x)dx (20) 
X 

Expanding the exponential in (16) and making use of (20), 
one gets an alternative expression 

m=0 ' 1    ,\« 

■\™v\j(A + A,)xy-">{x)gm{x)dx   , n>l (12) ^W=(^pMJ - \^(~ A^+ ^)x) 

where the tilde(~) denotes Fourier transform. 
For flat surfaces the solution is given from the term for n=0 

only, whereas the computation of f(x) would require an 
infinite number of terms. For smooth surfaces, one may 
extract the well-known Kirchhoff approximation 

fix) =2exp[jA0x - ju(Ao )tfx) Jt^ ) + 4)C(0 U)]      (13) 

which comes from the contribution of go(x), as well as part 

ofg,(x). 

+°o    .tn 

1 mn- mn=\     " 

i"h 

dAydAn (21) 

where we denote by Zk{X) the Fourier transform of the £-th 

power of the profile function, and 

w(A) = v{A)-v(Xd) 
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Expression (21) is well suited for the derivation of the general 
term of the UPM series. This may be carried out based on the 
observation that (21) represents a multiple series made up 
from various conrtibutions, the order of which in £(x) 
corresponds to the sum mi+...+m„, which is greater or equal 

to n. This means that all contributions of order up to m are 
contained in the first m+\ terms of the series (21), i.e. 
0<n<m. Thus, collecting all contributions of order m in £(x), 
one gets the following closed form expression for the general 
term of the UPM series 

*w
upM«-Mi(-ir z j 

/Mi ! 
I      1 n-\ mi+...+mn=m 

J - |exP(-X4+A.W^"U)-^U)- 

'ZmnV-n-X -^n)'"Zmi(^0 -A\)dAydK (22) 

which bears close resemblance to the general term of the field 
perturbation series given in [11], and may be shown by the 
method of [11] to satisfy the iterative relation (12). 

In the high frequency region, or, otherwise stated, for a 
surface of sufficiently narrow bandwidth, one may adopt a 
Taylor expansion for the function w(X) around the point A0 

and explicitly invert the Fourier transform to get 

^rocM^it-ir z 
«=1 m\+...+mn=m 

i»! !...!»„! 

Z-Z^+"+fl,)«2-«-A 
-«! 

P\="h   Pn=mn 

\/'nh Y^ rmi 
n) 

.£mn 

Pn) 

where 

am   =■ 
1 dnwm(A) 

*=h 

(23) 

(24) 
«1     dAn 

Eq. (23) yields the higher order corrections to the Kirchhoff 
approximation related to higher derivatives of the profile 
function to all orders. Obviously, an analogous expression 
may be derived directly from the SA series (21), rather than 
the rearranged form (22). 
For example.the up-to-third-order approximation of g(x) is 

g(x) = u(A0) + A0Cil)(x)-j 
k2 

2U
2
(ä0) 

£i2)(X)- 

_M0_   (3)/ x ,M.,(D(„V(2)W r2,s 
2u%f    M    v%f   {XK    (X)        (25) 

which agrees with the result of [7]. 
An analogous procedure may be carried out for the case of 

TM polarization, with a more complicated kernel of the form 

B{A,X) = exp[y(üU) - U(AQ ))^(X)][üU) - ^ (x)]/u(^ ) -1 

The corresponding up-to-third-order expression is found to be 

g(x)=\+j $ ki 

4*o) »%) ^{^\ 
<-(2)(x)- 

kl 4 
2u%)    v2(^fu%\ 

^\)^2) 
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Abstract - The operations plan for RADARSAT is based on 
implicit calibration of the imagery products from this sensor 
system. The determination of the antenna gain patterns in 
elevation for RADARSAT is a critical step in the radiometric 
calibration of this imagery. The shapes of the antenna 
patterns in elevation were derived from imagery collected 
over the South American rain forests of Brazil and Colombia 
with a consistency on the order of ±0.2 dB. The absolute 
levels of the patterns have been determined by superposing 
the shapes on results from a set of precision radar ground 
targets known as the RADARSAT Precision Transponders. 
As pattern revisions are determined, they are included 
operationally in the determination of the corrections that are 
required in the Canadian Data Processing Facility to create 
radiometrically calibrated image products. 

INTRODUCTION 

The Canadian Earth observation satellite, RADARSAT, 
was launched in late 1995. One mission objective of this 
spaceborne SAR program was to provide operationally 
calibrated products. To do so, there are a number of 
systematic corrections that must be performed in the 
processing. Perhaps the most critical of these is the 
correction for antenna gain variations across the swath. 

Determination of the antenna gain patterns for 
RADARSAT began during the testing prior to launch when 
measurements were performed by SPAR Aerospace using 
a partial set of the final Antenna Assembly on a Near Field 
Measurement Facility [1]. In flight verification of these 
pre-flight measurements was required to find the overall 
system gains which would depend on the particular 
processing   and   hardware   configuration.       Continuing 

monitoring also had to be established for calibration 
throughout the mission to cover the possibility of aging and 
other system changes. As a result, the capability to 
determine these antenna patterns was made a part of the 
operational scenario for RADARSAT [2]. 

ELEVATION GAIN PATTERN SHAPE 
DETERMINATION 

Elevation gain pattern determination is based on rough 
distributed target measurements as previously shown 
successful for airborne and spaceborne systems 
[3] [4] [5] [6] [7]. In the RADARSAT analysis, the extraction 
of clutter is based on the algorithm of Shimada and 
Freeman [6]. The implementation in the software of the 
RADARSAT Image Data Calibration Workstations (IDCW) 
was developed by Array Systems Computing Inc. for the 
Canadian Space Agency [2]. 

The calculations performed for RADARSAT are based 
on use of the South American rain forests. These stable 
targets have a simple backscatter variation across track. 
Indeed, results from the ERS-1 and -2 scatterometers show 
that the Amazon is stable over a long period with a mean yo 

of -6.5 ±0.1 dB over an incidence angle of 18 to 57 
degrees [7][8]. As a result, removal of the range 
dependence of the rain forest backscatter from the resulting 
imagery is particularly straight forward. The areas of South 
America used to derive the antenna gain patterns for 
RADARSAT during the Radiometric Calibration Phase 
were selected based on examination of rain forest imagery 
including those used by other groups in the determination of 
antenna gain patterns [5] [6]. Relief considerations can be 
ignored because the elevation variations are negligible. 
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The remaining unknown factor, the antenna gain pattern 
in elevation can be determined from the imagery (processed 
with antenna pattern correction off) by solving the 
following: 

YÄ.<e„) p       p        _L^A^p- (!) 
tanG 

where: 
Pr     power from the rain forest image or apparent 

Radar Brightness (ß0) when processor and 
antenna gain are neglected 

p      thermal noise power or apparent Noise Equivalent 

ßo (ßoNn) when processor and antenna gain are 
neglected 

yo    o0cos6 
O 0  normalized backscattering coefficient 

0 local incidence angle 
Q antenna pattern gain 

6 d    elevation angle from nadir 

Following the display of the image on the IDCW, the 
processing methodology for derivation of an antenna gain 
pattern from a candidate rain forest image is described 
below: 

1. The geometry of the image acquisition is 
calculated which makes it possible to optimize 
determination of geometry dependent parameters of 

(1). 

2. This image is subdivided into strips of a selected 
width (e.g. 0.015 degrees) each with a number of cells 
(16 is the typical number used). 

3. Areas which are clearly not uniform are excised 
by the operator. 

4. The %2 method [6] is used to reject non-uniform 
cells in each strip in the remaining data. If a majority 
of the cells in a strip are rejected, the complete strip is 
rejected. 

5. All non-rejected values in a strip are averaged. 

6. The data are corrected as shown in (1) by 
subtracting the contributions of thermal noise and, by 
multiplication by tan 6 which accounts for variations in 
backscatter (the effect of a constant 7 0). 

For each beam, the effective relative roll of the satellite 
between acquisitions was determined. A minimum of three 
patterns (except in a single case where only two were 
available) obtained as described above were superimposed 
and averaged to obtain a representative pattern. (See Fig. 1). 
Due to the angular limitations of the measured data, it was 

necessary to extrapolate the patterns using data from the 
pre-flight measurements supplied by SPAR. A "touch up" 
procedure was required to correct for minor discontinuities 
at the extrapolation seams and to smooth the curves. 

At the time of this writing, beams SI to S7 and Wl to 
W3 have been completed. In November 1996, the Canadian 
Space Agency initiated a set of intermediate Fine Beam 
imaging configurations to fill in the gaps in the high 
resolution imaging geometries. These configurations push 
the normal imaging range window on either side of the 
centre of the elevation pattern giving, for example an Fl 
Near, Fl, and Fl Far capability. This gives effectively 32 
single beam configurations. Work on the Fine Beams is 
nevertheless nearly complete. 

ABSOLUTE GAIN DETERMINATION 

The antenna gain pattern shape determination as 
described above does not complete the calibration of the 
processor in the approach used for RADARSAT. The 
final step to achieving absolute calibration requires 
knowledge of the RCS (radar cross section) of a ground 
target or the normalized backscatter (YO, ß0, or GO) for a 
distributed target. For RADARSAT, the derived patterns 
are scaled by the apparent YO and any applied gains in the 
processing and compared against a similar derivation from 
the precision transponders. In this case, the integrated 
response from the transponder was scaled by its RCS as 
indicated in [9]. For convenience, all pattern gain values 
were referenced to that at the middle of beam S3. In the 
final step, the patterns and associated gains were converted 
into the required formats for input to the CDPF. 

The patterns from each of three products used to obtain 
the final patterns for beam S1 are given in the top of Fig. 
1. The final pattern obtained from combining the 
measurements in the upper graph is given in the lower 
graph along with point target measurements for the 
RADARSAT Precision Transponders. 

Results show a small variation in the derived patterns, 
good agreement between point target and distributed target 
levels, and good agreement on antenna pattern shape as 
discussed in [10]. 

CONCLUSION 

The methodology described here has made it possible to 
determine the antenna gain patterns in elevation for the 
RADARSAT System. These patterns are critical to the 
production of radiometrically calibrated products for this 
imaging system which meet and exceed the radiometric 
design goals[ 10]. 
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Figure     1. Antenna     Pattern 
Determination for Standard Beam SI. 
The upper graph shows the three 
constituent beam patterns from the rain 
forest as they are processed by the CDPF 
with all gain corrections removed and 
with an expected y o = -65 dB.     The 

lower graph shows the resultant beam 
pattern when the three curves in the upper 
graph are optimally combined and 
averaged. The X's are point target 
measurements which are assumed to be 
absolutely correct. The level of the 
smoothed pattern has been adjusted, from 
the nominal level expected from the rain 
forest, in this case by 0.3 dB. The 
resultant pattern determined from the two 
methods agrees on average to better than 
±0.05 dB. 
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Abstract - During the Accelerated Canopy Chemistry 
Program (ACCP) study, AVIRIS data were acquired over 
Blackhawk Island, WI and Harvard Forest, MA to be used to 
assess the value of imaging spectrometer data in determining 
canopy chemistry constituents, in particular nitrogen and 
lignin. An extensive ground sample collection effort was 
undertaken to provide calibration for the chemical analysis. 
Correlations between the laboratory chemical analysis of 
leaves and AVIRIS 224 channel images were derived from a 
portion of the sample set and the ensuing calibration was 
used to derive nitrogen and lignin values from AVIRIS. 
Calibrations were derived from 1992 overflight data by 
multiple linear regression. However, the same calibrations 
applied to 1993 overflight data yielded values that woe 
internally consistent but approximately 50% too high for 
both lignin and nitrogen. Incorrect atmospheric correction 
is considered the main cause for the discrepancy. Sensitivity 
tests were applied to the original data by changing 
multiplicative and additive atmospheric parameters. The 
main source of error is in the atmospheric water vapor value 
applied Empirical-line correction is the most accurate 
method for spectral image correction. 

INTRODUCTION 

The NASA Accelerated Canopy Chemistry Program 
(ACCP) brought together a large number of interdisciplinary 
researchers to test whether it was possible to determine 
foliar chemistry, specifically lignin and nitrogen 
concentrations, by remote sensing with imaging 
spectrometry. Several methods of data analysis were 
attempted, but no single method was adopted because no 
intercomparisons could be completed. In particular, 
calibrations used in data analysis of AVIRIS overflights in 
1992 were not applicable to 1993 data. One of the major 
uncertainties was the quality of the atmospheric model used 
to reduce the data to apparent surface reflectance. Another 
uncertainty was the spectral calibration of AVIRIS which 
has been shown to vary as much as 3 nm over the 1992 
season [1]. 

AVIRIS data were acquired over Blackhawk Island, WI and 
Harvard Forest, MA. An extensive ground sample 
collection effort was undertaken to provide calibration for 
the chemical analysis. Correlations between the laboratory 
chemical analysis of leaves and AVIRIS 224 channel images 

were derived from a portion of the sample set and the 
ensuing calibration was used to derive nitrogen and lignin 
values from AVIRIS [2,3]. Calibrations were derived from 
1992 overflight data by multiple linear regression (MLR) on 
first-difference pixel spectra. Values of r between 0.85 and 
0.9 were obtained for Blackhawk Island and 0.7 and 0.85 for 
Harvard Forest [3]. However, the same calibrations applied 
to 1993 overflight data yielded values that were internally 
consistent but approximately 50% too high for both lignin 
and nitrogen. The subject of this paper is the determination 
of the cause, in particular the role played by atmospheric 
correction, in affecting multi-year calibration by undertaking 
a sensitivity analysis. 

BACKGROUND 

The ACCP was designed to help determine whether from 
orbit, using an imaging spectrometer, it would be possible 
to measure lignin and nitrogen concentrations in closed 
forest canopies. The motivation was to be able to document 
changes in canopy chemistry globally in response to 
elevating atmospheric C02 content [4] to determine whether 
plants are becoming more efficient in their storage of 
carbon. The charge was given to the EOS High Resolution 
Imaging Spectrometer Team, augmented by researchers from 
related disciplines, that ultimately resulted in a team of 38 
investigators [4]. 

The analysis of AVIRIS data during the ACCP campaign 
showed clearly the criticality of rapid and accurate 
atmospheric correction on a pixel by pixel basis. 
Ultimately, all analyses of vegetation biochemistry require 
apparent surface reflectance as the raw data form. The 
experience with ATREM [5] showed that under dry 
conditions, and with accurate wavelength calibration, that 
consistent pixel spectra within a single image could be 
obtained to a precision of approximately 1%. However, as 
the precipitable water content rose above approximately 1 
cm, regions in the spectrum surrounding the major and 
minor water vapor absorption features became unusable in 
the analyses because of inaccuracies in the model of the band 
shape used to correct for the absorption. In particular, the 
region around the unsaturated features centered at 0.94 and 
1.14 urn are not well modeled by ATREM [5], LOWTRAN 
7[6]orMODTRAN[7]. 

0-7803-3836-7/97/S10.00 © 1997 IEEE 1385 



During the ACCP, chemical analyses of samples of the 
forest canopy from 20 sites at Blackhawk Island, WI, and 20 
at Harvard Forest, MA were analyzed by both wet-chemical 
and near-infrared spectroscopy methods [2]. Using multiple 
linear regression, Martin and Aber [3] were able to relate field 
measurements and AVIRIS data for nitrogen and lignin to 
within an RMS error of 10% of the mean value of the 
constituent. Similar results were obtained by Gao and 
Goetz [8] using a curve-fitting method for lignin in the 1.72 
urn region after an MNF transformation of the [9]. 
However, calibrations based on 1992 data were not 
applicable to 1993 AVIRIS data sets as shown in Fig. 1. 
The discrepancy possibly can be attributed to an incorrect 
atmospheric correction, to an error in the AVIRIS 
calibration, to the effect of a different sun angle and azimuth 
during the 1993 AVIRIS overflight, or to a systematic error 
in the data analysis algorithms. 

ANALYSIS 

The prediction of lignin content in the canopy at Blackhawk 
Island using the regression coefficients derived from 1992 
data applied to 1993 data is in error by approximately a 
factor of two. Natural variation of less than 10% is 
expected, and, therefore, the errors must originate from 
either the viewing geometry, the instrument calibration, or 
in the correction of instrument radiance measurement to 
apparent surface reflectance. 

The solar zenith angles were 20° in 1992 and 30' in 1993. 
This difference, most likely, would not produce a BRDF- 
related effect of the magnitude seen in Fig. 1. The AVIRIS 
instrument spectral calibration was checked using 
atmospheric absorption band locations [1]. The radiometric 
calibration during the 1992 and 1993 flight seasons was 
monitored by regular, on-runway, standard lamp radiance 
calibrations. Sources of error would be multiplicative. The 
largest uncertainty is associated with atmospheric correction 
from the point of view of overall optical depth, path 
radiance and column precipitable water vapor. 

In order to determine the relative importance of the possible 
errors described above, we undertook a sensitivity analysis 
by modifying the data reduction in four different ways and 
analyzing the resulting data using multiple linear regression 
[3] and curve fitting techniques [10]. The data used woe 
four pixels for each of 20 sites at Blackhawk Island for 
which extensive ground data had been collected and foliar 
chemistry analysis had been performed [3]. The following 
were applied: (1) Add/subtract a constant representing 
approximately 1,5, and 10% of the signal; (2) Multiply by 
a constant (0.85, 0.9, 1.05, 1.1, 1.15); (3) Add/subtract a 
scaled scattering curve derived from ATREM using the same 
atmospheric model and geometry as during the overflight. 
The scale factors were: .05,0.1 and 0.5; (4) Multiply/divide 
by water vapor transmittance curves of varying total column 
precipitable water vapor amounts derived from ATREM. 
The amounts were: 0.11,0.5,1.06 and 2.05 cm. 
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Fig. 1.  (a) Lignin content predicted from the 1992 AVIRIS 
data at Blackhawk Island, WI. 

(b) Lignin content predicted from the 1993 AVIRIS data at 
Blackhawk Island, WI using calibrations based on 1992 data. 
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The results using the multiple linear regression method are 
shown in Fig. 2 and those from curve fitting in Fig. 3. The 
two techniques are very different The multiple linear 
regression makes use of first differences among 10 nm 
spectral bands, in this case at 0.79 and 1.7 um. The curve 
fitting technique [10] uses a glass beads and water spectrum 
to remove the effect of leaf water and a dried leaf spectrum in 
the 1.5-1.75 Jim region to provide the shape of the lignin 
spectral feature. Therefore, the different methods can be 
expected to yield different results in the sensitivity analysis. 

CONCLUSIONS 

The sensitivity analysis shows that both analysis techniques 
are affected to the greatest degree by inaccurate estimates of 
water vapor. However, probable errors are not sufficient to 
create the discrepancy between the 1992 and 1993 data. The 
multiple linear regression technique is more sensitive than 
the curve fitting technique to water vapor inaccuracies, most 
likely because the 1.7 Jim band used is on the wings of the. 

strong 1.9 pm atmospheric water vapor absorption feature 
On the other hand, varying scattering has no effect on the 
MLR results, and only a small effect on the curve fitting 
results. The curve fitting method is severely affected by 
offsets, while the MLR technique is insensitive to them. 
Other analysis techniques such as Partial Least Squares 
(PLS) were applied to the data. The results are not shown 
here because of lack of space. However, the sensitivity to 
water vapor correction errors for PLS was much greater than 
for the two techniques described above. A partial solution 
to the atmospheric correction problem in future missions is 
to find an invariant target in the area of interest and 
normalize the spectra to that point 
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Fig. 2. Plots of predicted canopy lignin using the 
regression equation derived from multiple linear regression 
analysis of AVIRIS data from 20 different plots at 
Blackhawk Island, WI. Solid lines are the 1992 values and 
the dotted line represents the 1993 data derived using the 
1992 regression coefficients. 

(a) Offsets applied to the spectra; (b) Scattering added to the 
spectra; (c) Gains applied to the spectra. The highest value 
corresponds to 0.85; (d) Corrections made for differing water 
vapor. The high values correspond to undercorrecting. 
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Fig. 3. Plots of predicted canopy lignin using the 
regression equation derived from the curve fitting 
technique analysis of AVIRIS data from 20 different 
plots at Blackhawk Island, WI. Solid lines are the 1992 
values and the dotted line represents the 1993 data 
derived using the 1992 regression coefficients. 

(a) Offsets applied to the spectra; (b) Scattering added to 
the spectra. The upper curve corresponds to a scattering 
value of-0.5 and the bottom curve to a value of +0.5; 
(c) Gains applied to the spectra. The highest value 
corresponds to 0.85; (d) Corrections made for differing 
water vapor. The high values correspond to 
overcorrecting. 
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Abstract - A new airborne multi-frequency Synthetic Aper- 
ture Radar (SAR) was developed by Communications Research 
Laboratory (CRL) and National Space Development Agency of 
Japan (NASDA). This system observe earth surface by multi- 
frequency (L and X band), all polarization and high resolution. 
Furthermore the system has topographic mapping function for 
X band by a crosstrack interferometric SAR. In this report we 
describe our SAR system and preliminary results of the test 
flights. 

INTRODUCTION 

A new airborne multi-frequency Synthetic Aperture Radar 
(SAR) system was developed by the joint project of Commu- 
nication Research Laboratory (CRL) and National Space De- 
velopment Agency of Japan (NASDA) from 1993 to 1996. It is 
operated by installing on the airplane, Gulfstream II. The obser- 
vation is made at the airplane ground speeds between 150 m/s 
and 250 m/s in the altitude between 6,000 m and 12,000 m. A 
series of test flight experiments were made in 1996. The resolu- 
tion of X-band SAR is 1.5 m in both azimuth (after 4 looks pro- 
cessing) and range direction, whereas that of the L-band SAR 
is 3 m. The both SAR are operated with polarimeter capability, 
which provide the radar cross sections with phase in all parallel 
and cross polarizations in order to distinguish surface condi- 
tions in detail. Furthermore the X-band SAR has topographic 
mapping function, which yields the height at each point in the 
scene by using cross track interferometry with two vertical po- 
larized antennas equipped on the airplane. 

SYSTEM 

Each of L-band and X-band system is independent and can 
be operated independently. In the case of multi-frequency ob- 
servation all frequencies are locked to a crystal oscillator of the 
X-band system. The L-band system consists of two antennas 
(installed a radome), a transmitters receiver, a data process- 
ing system, a recording systems, a control systems, and a cal- 
ibration system. Whereas the X-band system consists of three 
antennas (installed two radomes), a transmitter, two receivers, 

»sa^gpr 

Figure 1: The picture of Gulf Stream II equipped 3 antenna 
radomes. (Provided by Diamond Air Service) 

two data processing systems, two recording systems, a control 
systems, aircraft data input interface, and a calibration system. 
This system is controlled throw the touch panel monitor. After 
landing, SAR image is processed in a work station. The main 
specifications of our system are shown in Table 1. 

The antenna of L-band is microstrip phased-array antennas, 
covered by a radome under the fuselage. Whereas the antenna 
of X-band is slotted waveguide phased-array antennas, installed 
in radomes equipped at the left and right side of airplane. The 
airplane equipped radomes is shown in Fig. 1. The beam width 
in the elevation direction at the -10 dB point is nearly 40° (from 
-30° to +10° around antenna peak). The beam width in the 
azimuth direction is 2.3° at the -3 dB points. The antenna of 
L-band is fixed, whereas the antennas of X-bans are variable. 
The incidence angle of the antenna peak is varied from 40° to 
65°. The antenna is moved between ±6.5° in yaw direction 
using motor drives to roughly compensate the drift angle of the 
airplane. 

The X-band transmitter use a traveling wave tube (TWT) am- 
plifier to generate the high power RF. The peak output power of 
the TWT is 8.2 kW for the 10 //s long pulse. The output send 
to the duplexer. It passes through the duplexer to the antenna, 
and the signal is transmitted. The output power after duplexer 
become 6.2 kW by the loss of waveguide, duplexer and mis- 
match. 

The return echo signals from the antenna are received by 
manual gain control or automatically gain control (AGC) and 
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Frequency 
weight 
Slant Range resolution 
Azimuth resolution (4-look Processing) 
Noise equivalent NRCS ~ 
S/N 
Polarimetry 
Polarimetric phase accuracy 
Interferometry 
Base line 
Phase Accuracy 
Height accuracy 
Radiometrie accuracy 
Incidence angle 
Antenna 
Antenna gain 
Sidelobe (elevation) 
Sidelobe (azimuth) 
Cross-polarization isolation 
Transmitter peak power 
Pulse length 
Pulse repetition frequency 
Transmitter bandwidth 
Transmitting/receiving 
Data sampling 
Quantization 
Data rate 
Recorder 

X-band  
707.6 kg (include INS) 
1.5/3 m 
1.5/3m 

L-band 
422.2 kg 
3/5/10/20m 

less than -40 dB for HH 
larger than 10 dB forHH 
HH/HV/VV/VH 
less than 5 degrees 

2.30 m 
less than 5 degrees 
less than 2 m (rms) 
less than 0.5 dB 
10-75deg. Variable 

3/6m 
less than -40 dB for HH 
larger than 10 dB forHH 
HH/HV/VV/VH 
less than 5 degrees 

less than 0.5 dB 

106.5 cm(length) x 20 cm      155.0 cm x 65.0cm 
26.5 dB 

20-60deg. Fix 

-20 dB 
-25 dB 
-33 dB 
6.3 kW 
10 ßs 
less than 3000 Hz 
100 MHz 
all digital 
123.45 MHz/61.725 MHz 
8 bits for both I and Q 
512 Mbps 
SONY/D1 x 2 

18 dB 
-17 dB 
-25 dB 
-25 dB 
3.0 kW 
10 ßs 
less than 1000 Hz 
50 MHz 
all digital 
61.7 MHz/30.9 MHz 
8 bits for both I and Q 
256 Mbps 
SONY/D1 

Table 1: System Parameter and Performance 

amplified. The I and Q signals are obtained using quadrature 
demodulators. 

The I and Q signals are digitalized in 8 bits by A/D convert- 
ers with the speed of 123 MHz. These I and Q data, opera- 
tion parameters, system monitors, and aircraft information are 
recorded to Dl cassette tape by using SONY DIR-1000. Three 
tapes is needed for each 50 minutes. The swath width is lim- 
ited by the record rate. The swath width of X-band is shown in 
Table.2. 

TEST FLIGHT 

Our SAR system was installed to Gulf Stream II and tested 
in the performance. The SAR image is shown in Fig. 2 and 3. 
This data was taken in the altitude of 12192 m at Noto in Japan. 
The image is about 3.5 km (Rg) x 1.6 km (Az). 

mode 

2 channel (HH/HV, VH,VV) 
2 channel (interferometry) 
4 channel (polarimetry) 
4 channel (polarimetry) 
6 channel (polarimetry) 
6 channel (polarimetry) 

sampling 
frequency 
60 MHz 
120 MHz 
60 MHz 
120 MHz 
60 MHz 
120 MHz 

Swath width 
in slant range 
37.0 km 
17.7 km 
17.5 km 
7.9 km 
10.8 km 
4.7 km 

Table 2: Observation mode for X-band system 
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Figure 2: The X-band SAR image of the Noto in Japan. The 
image is about 3.5 km(Rg) X 1.6 Km(Az). The resolution is 
6 m for 2 looks (Rg) x 19 m for 16 looks (Az). (processed by 
NEC) 

Figure 3: The L-band SAR image of the Noto in Japan. The 
image is about 3.5 km(Rg) X 1.6 Km(Az). The resolution is 
12 m for 4 looks (Rg) x 18 m for 8 looks (Az). (processed by 
NEC) 
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Abstract : With the new demands for SAR (Synthetic Aperture extract more valuable information from the SAR imagery using 
Radar), such as variable off-nadirand SCAN SAR, phasedarray electromagnetic wave theory. However, SAR imagery suffers 
radar technology is required for most of the next generation from many radiometric errors. Conventional type S ARs such as 
spaceborne SARs. Radiometric calibration of active phased EERS-1 and JERS-1 use the RF replica method to calibrate the 
array type SARs, however, is a very complicated task, because imagery , where the high power amplifier output is coupled into 
they have hundreds of active devices and phase shifters to be the receiver subsystem bypassing the antenna[2]. Calibration 
calibrated. process of phased array type SARs such as SER.-C, however, 
In this paper, we have conducted a study on the internal cannot bypass the antenna subsystem, because it has a lot of 
calibration method for phased array type SAR. First, we derive active devices on it. The RF tone signal method[2] is used to 
the error sources of such kind of SARs. These are mainly divided estimate the variations in antenna and transmitter/receiver, and 
into two categories, the variation in antenna and the variation in the absolute accuracy is reported to be around 3dB in the case of 
transmitter/receiver. Modified REV(Rotating Element Electric SIR-C[3]. 
Field Vector) methodfl] is proposed for the calibration of      In this paper, we propose anew internal calibration method 
antenna subsystem. By the compensation, the optimal antenna for next generation phased array type SAR to get the imagery 
pattern can be maintained to keephigh S/A andS/N of the SAR  whose radiometric accuracy is less than l.OdB. 
image, and the accurate antenna gain can be estimated. For the 
calibration of transmitter/receiver, tone signal method and 2. ERROR SOURCES 
ERP(Effective Radiated Power) measurement method using 
REV antenna is proposed. By the compensation, the total gain There are three kinds of error sources for phased array type 
variation of transmitter/receiver chains can be estimated. It is SARs. The first is the atmospheric propagation such as 
shown that the radiometric accuracy of 0.8dB can be obtained by attenuation, propagation delay, rotation of polarized wave 
the above calibration methods together with the standard (faraday rotation). The second is variations in antenna such as 
external calibration methods. distortion of antenna panel, phase and amplitude variation of 

T/R modules due to the  temperature change.  The last  is 
1. INTRODUCTION variations in  transmitter and receiver,   such as  phase  and 

amplitude variation of active devices due to temperature change. 
Spaceborne SAR imagery has been supplied by many sensors      In general, the second and the third error sources are large 

including EERS-1 SAR and JERS-1 SAR, since Seasat was  compared to the first one, and these error must be compensated 
launched in 1978. SAR was first regarded as a microwave camera  by the accurate calibrations, 
and imagery itself was considered important, because the images 
taken by microwave sensors are completely different from those       3. CALIBRATION OF ANTENNA PATTERN 
by optical sensors, and give substantial information which can 
not be obtained by optical sensors. Spaceborne phased array type SARs generally have large 

Recently, high radiometric accuracy is also necessary to variations in antenna due to its large physical scale (around 10m) 
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and a large number of active T/R modules. The antenna pattern 
is degraded both with the physical distortion and with the 
variation of the phase and amplitude of T/R modules due to the 
temperature changes in orbit. The degradation results in the loss 
of radiometric accuracy as well as that of high S/A and S/N of 

SAR imagery. 
Two calibration methods to compensate the variations in 

antenna are considered One is the modified REV(Rotating 
Element Electric Field Vector) method, and the other is the 
temperature monitoring method. 

REV uses an external calibration antenna which is installed in 
the main antenna panel, and measures the amplitude and the 
phase contributed from each T/R module by injecting the 
calibration signal from the external antenna and rotating the 
phase shifter value of each module as shown in Fig. 1 (in the case 
of Rx pattern)[l]. This method has the capability of 
compensating the phase and amplitude variation of T/R modules 
and also the distortion of antenna at the same time. 
Conventional REV uses only the phase information for the 
optimal beam forming. Amplitude information is used here to 
estimate the antenna gain to keep the radiometric accuracy. 

On the other hand, temperature monitoring method measures 
the temperature at each T/R module, and uses the phase and 
amplitude table which is obtained on the ground and retains the 
temperature characteristics of each T/R module. 

Tradeoff of antenna pattern calibration methods is shown in 
Table 1. As is clear from the table, the modified REV method is 
superior in hardware volume because of its simplicity of REV 
antenna, and test time because it does not need the temperature 
dependence data of each T/R module. Considering the above 
superiority and future expandability, we decide to adopt the 
modified REV method for the antenna pattern calibration. 

Table. 1 Tradeoff of antenna pattern calibration methods 

Modified 
REV method 

Temperature 
monitoring 
method 

Hardware 
volume O A 

On-board 
software volume A O 

Calibration 
accuracy o O 

Complexity of 
control software A A 

Test time o A 

Future 
expandability o X 

REV Antenna 

T/R module 

Fig.l Block diagram of REV method 

3. CALIBRATION OF 
TRANSMITTER AND RECEIVER 

The characteristics variation of analog devices with 
temperature changes affects radiometric accuracy in the 
transmitter and receiver subsystem. There are a lot of 
components, such as HP As and LNAs, in transmitter/receiver 
chain of the phased array type SAR. So, measuring the total 
system characteristics is necessary to obtain high radiometric 
accuracy. 

In this study, the extended RF tone signal method is adopted 
as a calibration method instead of the conventional RF replica 
method which bypasses the antenna. This method is an 
extension of the RF tone signal method applied in SIR-C, and 
uses the REV antenna to supply or monitor the calibration 
signal. 

To measure the receiver characteristics, the RF tone signal 
generated and stabilized at the exciter is injected through the 
REV antenna and coupled with the received signal in T/R 
modules. The RF tone signal goes through the entire receiver 
chain, and is extracted by spectral analyses at the ground station 
after A/D conversion in the signal processor. By constantly 
monitoring the RF tone signal, the receiver gain of each image 
can be estimated precisely. The block diagram of the receiver 
chain characteristics measurement is shown in Fig.2. 

To measure the transmitter characteristics, the ERP(Effective 
Radiated Power) is monitored by the REV antenna by coupling 
the transmitted signal into the REV antenna and further coupling 
it into the receiver. The block diagram of the transmitter chain 
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characteristics measurement is shown in Fig.3. 
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Fig.2. Block diagram of the receiver chain measurement 

for the antenna calibration, andRF tone signal method using the 
REV antenna is used for the transmitter/receiver calibration. By 
using the above methods combined with the standard external 
calibration methods, radiometric accuracy of 0.8dB can be 

achieved. 
This study was conducted under the contract with MITI 

(Ministry of International Trade and Industry). 
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Table 2. The operational mode of internal calibration 

Mode Tx/Rx Procedure Objective 

Calibration 
mode 

Receiver 
chain 

Inject RF tone signal to the receiver Receiver characteristics measurement 
SjauUheJtfltone s£nal,acws^bej)assband   

Modified REV in receive mode 

Frequency rejpgnsejnejaire_ment    
Antenna pattern optimization and 
antenna gain estimation 

Inject RF tone sgnal totheJIEV antenna  
Terminate T/RmoduiesLNA inputs 

f^^veicnajn^njnejsjJtjwm  
Noise measurement 

Transmitter 
chain 

Modified REV in transmit mode Antenna pattern optimization and 
antnna gain estimation 

Monitor ERP by the REV anfcnna Transmitted power measurement 

Observittioi 
made 

Receiver Inject RF tone signal to the REV antenna Kcceiver chain gain variation 
measurement 

r ransm itlci 
—chain— 

Monitor ERP by the REV antenna 
Transmitted power variation 
measurement 

Fig.3. Block diagram of the transmitter chain measurement 

4. IMPLEMENTATION 

In actual operation, the above calibration methods are 
implemented in the several modes as shown in Table 2. By the 
above calibration methods together with the external calibration 
method using ARC(Active Radar Calibrator), high radiometric 
accuracy can be obtained. Errorbudgetof the entire SAR system 
is shown in Table 3. The radiometric accuracy is estimated to be 
0.8dB. 

5. CONCLUSIONS 

A new internal calibration method for the next generation 
spaceborne SAR is proposed. The modified REV method is used 

Table 3 Error budget 

Error Factor 
hsiifflatM 

Error 

3) 

BT 

<s 
m 

P 

Antenna 

Mechanicalboresight pointing error 0.2 

Electrical beam pointingerror 0.4 
A ntema p attern variation d ue to 
deformation of antenna panels 0.1 
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Signal 
Processor 
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Abstract - The UKMO has developed an airborne 
interferometer to act as a simulator for satellite-based infrared 
sounders. ARIES, the Airborne Research Interferometer 
Evaluation System consists of a modified commercial 
interferometer, mounted on the UKMO C-130 aircraft. The 
instrument is sensitive to the wavelength range 3.3 - 
16.6 urn, and has a maximum optical path difference of 
± 1.037 cm. 

I. INTRODUCTION 

The Remote Sensing branch of the UKMO has developed a 
number of airborne radiometer simulators for forthcoming 
meteorological satellite instruments. These satellite 
instruments will provide improved temperature and humidity 
profiles for operational meteorology, ultimately leading to 
improvements in forecasting [1]. Airborne simulators are 
required to test and improve knowledge of the relevant 
atmospheric spectroscopy, surface characteristics and 
radiative transfer models. This is a necessary precursor to the 
routine extraction of the required atmospheric data from the 
satellite radiance measurements. 

Until now, much of this work has focussed on the 
development of simulators for AMSU - the Advanced 
Microwave Sounding Unit. This has lead to a pair of 
microwave radiometers [2] mounted on the UKMO C-130 
aircraft, which are capable of making measurements at a 
number of AMSU frequencies. Recently however, an 
infrared interferometer called ARIES - the Airborne 
Research Interferometer Evaluation System has been built as 
a simulator for a number of new infrared sounding satellite 
instruments, in particular IASI - the Infrared Atmospheric 
Sounding Interferometer. These new sounders, which also 
include IMG and AIRS, offer considerably higher spectral 
resolution and spectral coverage than previous 
meteorological sounders, e.g. FÜRS [1], with the intention of 
yielding both higher vertical resolution and accuracy in the 
retrievals. The feasibility of retrieving the improved data 
from such higher resolution sounders has been demonstrated 
experimentally, using HIS - the High-resolution 
Interferometer Sounder instrument mounted on the high 
flying NASA ER-2 aircraft [3]. 

As with the other UKMO simulators, ARIES is mounted 
on the C-130 aircraft, which is an extremely flexible and well 
instrumented platform. The aircraft has a range of 5000 km, 
can fly between 16 m and 10 km altitude, and offers a wide 
range of instrumentation to measure meteorological, 
radiative, cloud microphysical and related chemical 
parameters.      Some  of these  measurements,   particularly 

temperature, humidity and ozone concentration provide co- 
located 'truth' for comparison with the radiometer simulators. 
ARIES itself is mounted in a converted fuel tank on the 
starboard wing (Fig. 1). The instrument consists of a 
commercial infrared interferometer, modified by the UKMO 
for aircraft usage. The instrument is sensitive to infrared 
radiation in the wavelength range 3.3 - 16 urn (600 - 3000 
cm'1) and is capable of viewing both the upwelling and 
downwelling radiation (as well as various angular downward 
views). Fuller details of the instrument design are provided 
in the remainder of this paper 

ARIES data will be used to provide experimental airborne 
infrared spectra for comparison with simulations from line- 
by-line radiative transfer models. The intention in this 
exercise is to identify areas of uncertainty in the modelling 
and in the relevant atmospheric spectroscopy, prior to the 
launch of IASI. It is also hoped to fly ARIES in 
intercomparison campaigns with other airborne infrared 
interferometers, for example HIS - which views the 
upwelling radiation, typically mounted on a stratospheric 
aircraft [3], and TAFTS, an instrument currently under 
development (Imperial College, Univ. of London), which will 
monitor a very broad infrared spectral range (80 - 1000 cm"1) 
at relatively high resolution (0.1 cm"1). 

II. DESIGN 

At its heart, ARIES has a rugged commercial 
interferometer (MB200), developed by BOMEM Inc. of 
Canada. The interferometer views the external scene by way 
of a pointing mirror assembly, designed by the UKMO. The 
pointing mirror can also be directed to view a pair of on- 
board calibration targets. ARIES data is recorded on a PC 
located in the main body of the aircraft, connected to the 
instrument by a fibre-optic cable which runs down the 
starboard wing. Fig. 2 shows a schematic diagram of the 
package located in the aircraft wing pod. The design of the 
interferometer, scan mirror assembly, and acquisition system 
is now considered. 

Figure 1: The UKMO C-130 aircraft; an arrow indicates the 
wing pod in which ARIES is mounted. 
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Figure 2:   A schematic of the contents of the ARIES wing 
pod. 

II. 1 ARIES Interferometer 

As with other 'Michelson'-type interferometers, radiation 
incident on the instrument is partially reflected and partially 
transmitted by a beamsplitter. A variable optical path 
difference is introduced between the reflected and transmitted 
paths, prior to recombination of the beams. The resulting 
interference pattern is monitored as a function of the path 
difference; this so-called 'interferogram' contains all the 
spectral information about the source, which can be 
recovered using the technique of Fourier transform. 

Fig. 3 shows a schematic of the ARIES interferometer 
optics. Light enters the instrument through a ZnSe window 
and is partially reflected and partially transmitted by a 
beamsplitter. The beamsplitter directs the resulting beams to 
a pair of corner-cube reflectors, which are mounted on a 
pivoting arm. The motion of this arm rotates the reflectors in 
opposite directions with respect to the beamsplitter, providing 
a mechanism for the introduction of a variable path 
difference. At the corner-cubes, the beams are shifted to a 
higher vertical plane. Following reflection at the corner- 
cubes, the beams interfere on return to the beamsplitter and 
the interference pattern is monitored by a detection system. 
ARIES has two infrared detectors arranged in a sandwich. A 
Mercury Cadmium Telluride (MCT) detector is sensitive to 
the wavelength range 5.5 - 16 urn (600 - 1800 cm"1) and an 
Indium Antimonide (InSb) detector covers the range 3.3 - 5.9 
urn (1700 - 3000 cm"1). The detectors are cooled to ~ 80 K 
by a Sterling Microcooler. 

A 'Second Port' ambient black body is mounted, below 
mirror A, at the level of the input radiation. The black-body 
acts as a dump for any reflected light from the detector 
system which happens to enter the interferometer. The 
temperature of this black body is monitored using a Platinum 
Resistance Thermometer (PRT), so that its emission into the 
interferometer can be calculated [4]. 

The optical path difference sampling interval is set by the 
fringe spacing in an interference pattern, generated by a 

He-Ne laser. The maximum optical path difference (OPD^*) 
defines the instrument resolution. To avoid the description of 
a particular apodisation function, the resolution can be 
described in terms of the spectral sampling interval, 1/(2 x 
OPD^). For ARIES, OPD^ = 1.037 cm and therefore the 
spectral sampling interval, is 0.482 cm"1. Typically, at this 
'resolution', the sampling rate is 4 scans / sec, but this can be 
increased by decreasing the 'resolution' i.e. decreasing the 
OPDmax. The associated software provides options for a 
number of such degraded settings. 

The interferometer and detector system (see Fig.2, 'Optical 
Head') is mounted in a machined aluminium box, which is 
pressurised with dry nitrogen (~ 5 psi overpressure). A series 
of heaters (Minco 'foil'-type) maintain the unit within its 
operational temperature range. The entire unit is mounted to 
the pod via antivibration mounts designed to dampen the 
severe aircraft vibrations. 

II.2 Scan mirror and calibration targets 

A pointing mirror assembly (Fig.2) is coupled to the 
interferometer input window, to allow ARIES to view the 
external scene. 

Pivot arm 

Corner-cube 

ZnSe 
Window 

Input 
Signal 

Planar Mirror 

He-Ne 
LASER 

Paraboloid 
Mirror 

Planar Mirror 

Detector 
Sandwich 

Figure 3: A schematic diagram of the ARIES interferometer 
optics. 

1396 



The mirror is gold coated with a SiO protective layer. It can 
be directed to view upwards through an aperture in the pod 
(3° off Zenith) and downwards through a slot, with views 
Nadir and at a series of angles up to 55° towards the main 
fuselage (across the aircraft track). The ARIES field of view 
is 44 mrad. The mirror can also be directed to view either of 
two black-body (Nextel coated) heated calibration targets. 
The temperature of these calibration targets is monitored via 
a series of PRTs (Minco type S201PD) and can be set from 
software (up to 80°C). Typically, the temperatures are set to 
straddle those of the scene, to facilitate calibration (see § III). 

II.3 Software and Data Acquisition 

ARIES interferogram data is sent to a PC located within 
the main fuselage of the aircraft via two fibre-optic cables 
located in the wing. The data is handled by a dedicated 
digital signal processing card. Other data, including the PRT 
temperatures and communication to the scan mirror 
mechanism, are exchanged via RS-422 twisted pair 
connections. Using software developed by BOMEM, the 
operator can specify the acquisition timing, angular view, 
black-body temperatures and observe temperatures from 
various other PRTs located around the instrument. As well as 
recording the interferometer data, the software produces a 
'housekeeping file' which records all of these parameters for 
later use. 

III. CALIBRATION 

As described above, ARIES can view two temperature 
stabilised black-body calibration targets, which are mounted 
on the pointing mirror assembly. Viewing these targets 
provides the necessary information to calibrate the raw 
spectral information. The calibration procedure is similar to 
that described in [5]. In brief, following Fourier 
transformation of the observed interferogram, the relationship 
between the raw spectrum S and the calibrated radiance 
spectrum R is given by: 

S - G(R - R2nd Poit - C) 0) 

where G is a complex gain and C is a radiance offset, both 
dependent on frequency. R2nd Port is the radiance from the 
internal black body, which can be calculated from its 
measured temperature. 

By making measurements of the two black-body 
calibration targets, G and C can be derived. The radiance, R, 
from the targets can be calculated from their measured 
temperatures. A pair of simultaneous equations (based on 
eqn. 1) can then be formed, for the two black-body 
measurements. These equations can be solved for G and C, 
which can then be used to calibrate the atmospheric views. 
To achieve the best calibration, it is important mat the target 
temperatures straddle those of the atmospheric scene; this is 

not possible when flying at high level making a Zenith view, 
as the scene out to space is extremely cold. To alleviate this 
problem, a ground-use only cold calibration target, cooled to 
77 K is under development. 

It has been found that the MCT detector has a slightly non- 
linear output as a function of radiance; an appropriate 
correction is applied, which is described elsewhere [4]. 

IV. ARIES DATA 

ARIES made its first flight on the UKMO C-130 aircraft in 
Feb. '96, and since then has participated in a number of 
campaigns, most notably FASTEX, the Fronts and Atlantic 
Storm Track Experiment (Jan/Feb '97). However, a 
hardware fault in the BOMEM electronics, causing a non- 
linear response in the MCT detector amplifier has caused 
difficulty in analysis of the data. At the moment, 
measurements of the amplifier non-linearity are being used to 
recalibrate the old ARIES datasets, where possible. 
Following repair of the amplifier circuitry, it is planned to fly 
ARIES more extensively. In particular, the VIRMEM 
(Validation of IASI Retrieval Methods: Experiments and 
Modelling) campaign may provide an opportunity to compare 
ARIES airborne measurements with those of IMG, ground- 
based interferometers and radiosondes and Lidar instruments. 

V. CONCLUSIONS 

A new airborne interferometer, ARIES, has been 
developed by the UKMO for use on the office's C-130 
aircraft. The instrument will be used to improve knowledge 
of atmospheric spectroscopy and radiative transfer models for 
the new generation of higher resolution infrared sounding 
satellite instruments. 
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ABSTRACT 

Remote sensing images of the Earth have been 
regarded by many as an important source of data for 
environmental studies. In order to produce good 
quality data, all known errors should be removed or 
eliminated before any of the data are used, especially 
for time-dependent applications. Over the years a 
number of post-launch calibration methods and 
procedures have been suggested and used, particularly 
for the later spacecraft in the series; each of these has 
some advantages and disadvantages over the others. 
This paper reviews a post-launch calibration method 
which has been established using ocean and cloud 
views as the main calibration targets; it then applies 
this method to data from the earlier spacecraft in the 
series which are no longer in operation. 

1.0 INTRODUCTION 

In general, the problem addressed in this paper is 
associated with the data acquisition process with 
special reference to the archived AVHRR data, that is 
the data generated by the radiometers onboard the 
NOAA satellite series. The Dundee AVHRR archive 
contains data from late 1978 until the present time and 
it is an important source of data for various 
applications and has been referred to and used by many 
geographers and environmentalists. However, the 
archived AVHRR data set has been generated by about 
ten different instruments, each of which has been said 
to be suffering from degradation in responsivity over 
its lifetime. Therefore, the archived AVHRR data are 
subject to systematic or instrumental errors. If the 
archived data are going to be used as input data for 
time-dependent applications, the systematic errors 
should be eliminated before the data are blended with 
data from other sources. An example of such 
applications is the monitoring of change of the global 
climate which utilises information generated from 
long-term AVHRR data. 

Satellite sensors in the solar spectrum are very difficult 
to calibrate due to lack of reliable on-board calibration 
devices. The pre-launch calibrations are subject to 
change due to the hostile environment of the sensor 

during launch, outgasing, deterioration in the sensor 
system and variation in the spectral characteristics. 
Some work has been carried out in order to provide 
alternative calibration methods, which are based on the 
knowledge of some Earth phenomena as well as on the 
processing of the digital imagery data generated by the 
sensor itself. Examples of such work are described in 
[1] and [2]; however, much of this work is concerned 
with AVHRRs on spacecraft that were still operating 
when the work was done. 

This paper presents a calibration method for the 
AVHRR visible and near-infrared channels using 
oceans and clouds as the main target. An attempt is 
made to calibrate data from the earlier instruments in 
the series which are no longer active. 

2.0 THE CALIBRATION METHODS 

There are two main tasks involved in the proposed 
calibration method. The first task is to calibrate 
channel 1 of the AVHRR, which operates in the 
visible band of the solar spectrum. The second task is 
to establish the relation between the visible and near- 
infrared channels. The relation between the two 
channels is needed due to different radiation and 
propagation characteristics between them. Once the 
relation is established, calibration can be transferred 
between channels 1 and 2. 

2.1 Background 

Channel 1 of the AVHRR can be calibrated using a 
technique proposed in [1] using a selected ocean area 
as the target surface. The method used in the present 
study is based on radiances measured by the AVHRR 
over ocean areas, away from the sun-glint area. 
Theoretically, the upward radiance over a cloud-free 
ocean surface is greatly influenced by molecular 
scattering as well as by aerosol scattering. Of the two 
phenomena, the molecular scattering is more 
dominant; it contributes about 70 to 80 % of the 
upward radiance and the remaining 20-30 % is due to 
aerosol scattering, foam reflectivity and underwater 
reflectance as in [1]. Based on this background a 
radiative transfer code using a single order scattering 
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(SOS) technique has been developed to simulate the 
satellite-received radiance over a cloud-free ocean area. 

The spectral characteristics of channel 2 of the 
AVHRR are different from those of channel 1; thus its 
calibration requires a different approach from that 
developed for channel 1. Sun-glint areas over the 
ocean have frequently been used to establish the 
relation between channels 1 and 2; examples can be 
found from [1] and [2]. The sun-glint area was selected 
due to the high reflectivity and it is estimated that 
about 87 % of the glint radiance is due to the specular 
reflection and it is independent of the radiation 
wavelength and, therefore, it can be used to determine 
the relative calibration of band 1 and 2 as mentioned in 
[1] and [2]. Besides sun-glint areas, cloud bodies were 
also used by workers for the same purposes of 
transferring calibration from channel 1 to channel 2 of 
the AVHRR instrument. Reference [3] indicated that 
good intercalibration between channel 1 and channel 2 
of the AVHRR can be accomplished using high clouds. 
For the present study, where the area involved is 
located at high latitude and the chance of having a sun- 
glint area appearing in the image scene is very remote, 
the intercalibration between channels 1 and 2 has been 
established through the use of high altitude clouds. 

2.2 The calibration of channel 1 

The method described in this section is applied to the 
image data generated by the AVHRR on-board the 
TIROS-N satellite which have been received and 
archived at the receiving station at the University of 
Dundee. Image data from the Atlantic Ocean have 
been used for this study. Roughly, the extent of the 
study area is between latitudes 40° N to 55° N and 
longitudes 10° W to 25° W. However the actual points 
selected are scattered within this area. In terms of time, 
the selected image data are from April 1979 to October 
1980. 

Calibration for channel 1 is performed based on the 
method described in [1]. The calibration coefficients 
are defined the following equations: 

L* =7dLd2/E„ (1) 

where L; is the radiance observed in channel i, d is the 
distance between the Sun and the Earth in 
astronomical units and Eoi is the solar exoatmospheric 
band average solar irradiance for d = 1. 

The normalized radiance L*1 is equal to the surface 

reflectance for no atmosphere and for the Sun at 

zenith. The calibration equation for L™ is: 

where Y; = ai7id2 /Eoi. 

The change in the sensor calibration between the true, 
Yi (true), and the pre-launch, y{ (pre-launch), calibration 
coefficients is given by the calibration ratio (r;): 

_ Yi(Pre_ launch) 
Yi(true)' (3) 

The pre-launch calibration coefficient is given by 
NOAA [4]. Therefore, the calibration coefficient a; 

can be computed by using the following relation: 

a _ Yi(pre-launch)E0 

W2)' (4) 

L^YiCCj-CJ (2) 

In this case the pre-launch surface reflectance is 
determined using the information provided on the 
AVHRR magnetic tape and the pre-launch calibration 
coefficients; digital counts of channels 1 and 2 can be 
converted to surface radiance and then further 
converted to reflectance, see [1] and [4]. The surface 
radiance at the top of the atmosphere is determined 
using the radiative transfer codes based on the single 
order scattering (SOS) with the meteorological 
parameters provided by the archives of climate data 
kept at the NOAA Climatic Data Center (NCDC) and 
other organisations related to meteorological and 
climatic research. 

Using information provided on the magnetic tape and 
ephemeral data, a normalized radiance for each pixel 
in the selected areas is computed and divided into the 
one calibrated using the pre-launch calibration 
coefficients given by NOAA to produce the calibration 
ratio (r,) for channel 1. Therefore the post-launch 
calibration coefficient for channel 1 of the AVHRR can 
be determined using (4). On the other hand if 
calibrated radiances are plotted against the theoretical 
radiance, the slope of the graph will define the 
calibration ratio for channel 1 (ri). 

2.3 Intercalibration between channels 1 and 2 

In the case where the cloud is high enough (above 12 
km) the aerosol and water vapour have a negligible 
influence on the signal because they are located mainly 
at a much lower layer of the atmosphere. Thus, the 
main contributions to the signal received by a sensor 
are from the cloud reflectance, molecular scattering 
and absorption by oxygen and ozone. The only 
contributions to the observed signal are from the cloud 
reflectance, molecular scattering and absorption by 
oxygen and ozone. In order to relate the AVHRR 
measurement directly to the cloud reflectance, the 
measurements have to be corrected for the atmospheric 
scattering and absorption. The method described in [3] 
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has been adopted to establish the relation between 
channels 1 and 2 in this study. 

3.0 RESULTS 

A graph in fig. 1 shows the calibration coefficients for 
channel 1 for both pre-launch and post-launch periods. 
The best fit line for the post-launch calibration 
coefficient increases with time. The equation of the 
best fit line determines the calibration coefficient for 
channel 1: 

ax = 0.5724456 + 0.0052692 * D (5) 

where D is the month after launch date. 

The r]2 values computed using the method described in 
[3] are then used for transferring the calibration ratio 
(r0 from channel 1 to channel 2 and the calibration 
ratio (r2) for channel 2 can be determined by the 
following relation: 

(6) 
'12 

Furthermore, the calibration coefficient for channel 2 
can be determined using (4), similar to channel 1. Both 
pre-launch and post-launch coefficients are then 
plotted against the month of the year in Fig. 2. A 
significant variation is portrayed by those computed 
using model predictions. The calibration coefficient for 
channel 2 can be derived using the equation of its best 
fit line which is: 

a2 =0.4647135 + 0.0043156*2). (7) 
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Fig. 1. The calibration coefficients for channel 1 of the 
AVHRR on-board TIROS-N, based on model 
prediction (+) and pre-launch information (•) 

global vegetation, environmental and other phenomena 
at regional or continental scale. However, AVHRR 
users have been hampered by the problems of 
systematic errors. Now the availability of post-launch 
calibration methods will enable users to eliminate or 
minimise these systematic errors. After correcting for 
the systematic errors, the archived AVHRR data can 
then be used with confidence for time-dependent 
applications over long periods. At that stage the 
validity of the data will be known to the users and then 
the archived data will be much more valuable than 
before the calibration. 
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Fig. 2. The calibration coefficients for channel 2 of the 
AVHRR on-board the TIROS-N, based on model 
prediction (+) and pre-launch information (•) 
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Abstract: One of the great challenges for modem radar is to 
classify, sort and identify targets of all kinds for military 
battlespace surveillance as well as for civilian geo- 
environmental stress change monitoring purposes. Whereas, 
in military radar utilization of complete polarization scattering 
matrix radars is not yet fully accepted, in Remote Sensing on 
the other hand, Radar Polarimetry seems to have been 
accepted as an indispensable tool, and convincing results have 
ben obtained for geo-environmental applications in 
agriculture, forestry, hydrology, flood plain and rural 
infrastructure maintenance, volcanology and seismology, 
archeology, etc.. 

However, there still exists a large void in standardization 
and proper handling of basic and applied polarimetric theory 
and concepts. In this paper a succinct assessment of the 
current state-of-the-art is presented summarizing the basic 
polarimetry concepts spelled out in Boerner et al. (1997) [1]. 
It is the purpose of this paper to draw attention of the IEEE 
Geoscience and Remote Sensing community to this recent 
compendium on 'Polarimetry in Remote Sensing'. 

INTRODUCTION 

Polarimetry deals with the vector nature of polarized 
electromagnetic waves throughout the frequency spectrum 
from ultra-low frequencies to above the ultraviolet. In 
regions apart from radiating or reflecting bodies, the 
electromagnetic field is a traveling wave at the velocity of 
light, with an electric vector field and a magnetic vector field 
transverse to each other and to the direction of wave travel. 
Where there are abrupt or gradual changes in the index of 
refraction (or permittivity, magnetic permeability, and 
conductivity), the polarization state of a single-frequency 
wave is transformed, and the wave is repolarized. When the 
wave strikes an object such as a radar target and is reflected, 
important information about the reflecting body can be 
obtained from the nature of the reflected wave. The direction 
of the electric field vector with respect to a transverse 
reference axis plays a very important role in the interaction 
between a wave and a target, and much more information 
about the target can be obtained when the behavior of the 

transverse electric field is a variable under the control of an 
operator than can be obtained for fixed electric fields. In 
nature, polarization effects play a greater role, primarily in 
the optical regions, than was once believed. Although the 
human eye has only a rudimentary polarization sense, many 
crustacians, insects, birds, and especially fish possess a well- 
developed polarimetric sensory system within the IR to UV 
spectrum. Some creatures residing in terrestrial surface 
layers also appear to have a biomagnetic (induction-type) 
polarimetric snesor that operates in the ULF to VLF (below 
3Hz to 30KHz) range. 

Radar polarimetry is concerned with control of the 
polarimetric properties (electric field direction behavior) of 
radar waves and the extraction of target properties from the 
behavior of scattered (reflected) waves from a target. It has 
become an indispensable tool in modem electromagnetic 
sensor technology, and it is anticipated that within a few 
years new radars, except those with limited, specific 
purposes, and scatterometers will have complete polarimetric 
(scattering matrix) capability. Microwave radars with their 
ability to penetrate cloud ocover, have already proven to be 
of enormous value in recent years for environmental 
monitoring. With the advent of synthetic aperture radar 
(SAR) the ability now exists to construct high resolution 
ground maps. The incorporation of coherent polarimetric 
phase and amplitude into radar signal and image processing 
promises to bring about further improvements in monitoring 
capabilities, especially in 'polarimetric doppler radar 
meteorology' and also in POLarimetric Synthetic Aperture 
Radar (POL-SAR) image analysis. 

WISIP: WIDEBAND (uHz - PHz) INTERFEROMETRIC 
SENSING AND IMAGING POLARIMETRY 

WISIP has become an important, indispensable tool in wide 
area military battlespace surveillance and global 
environmental stress change monitoring of the terrestrial and 
planetary covers. It enables dynamic, real-time optimal 
feature extraction of significant characteristics of desirable 
targets and/or target sections with simultaneous suppression 
of undesirable background clutter and propagation path 
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speckle at hitherto unknown clarity and never before achieved 
quality. 'WISIP' may be adopted to the Detection, 
Recognition and Identification (DRI) of any stationary, 
moving or vibrating target or distributed scatterer segments 
versus arbitrary stationary, dynamically changing and/or 
moving geo-physical/ecological environments, provided the 
instantaneous 2x2 phasor (Jones/Sinclair) and 4x4 power 
density (Mueiler/Kennaugh) matrices for forward- 
propagation/backward-scattering, respectively, can be 
measured with sufficient accuracy. For example, the DRI of 
stealthy, dynamically moving and/or camouflaged stationary 
objects occluded deeply into heterogeneous stationary and/or 
dynamically moving inhomogeneous volumetric scatter 
environments such as precipitation scatter, the ocean sea/lake 
surface boundary layers, the littoral coastal surf zones, pack- 
ice and snow or vegetative canopies, dry sands and soils, 
etc., can now be successfully realized. A comprehensive 
overview is presented on how these modern high 
resolution/precision, complete polarimetric coregistered 
signature sensing and imaging techniques, complemented by 
full integration of novel navigational electronic tools, such as 
DGPS, will advance electromagnetic vector wave sensing and 
imaging towards the limits of physical realizability. Various 
examples utilizing most recent image data take sets of the 
NAWC/ERIM-P3-UWB-TOPIF'E-CATI/LTBL-POLSAR 
andNASA-JPL-AIRSAR airborne, the NASA/DARA/DASI- 
SIR-C/X-SAR shuttle, and the ESA ERS-1/2, JERS and 
RADARSAT satellite imaging systems [2] will be presented 
for demonstrating the utility of WISIP. 

BASIC AND TO ADVANCED THEORY OF 
OPTICAL - TO - RADAR POLARIMETRY 

Great care is taken in separating the optical forward 
propagation (2x2 Jones/4 X4 Mueller matrix) polarimetry 
from the microwave backward scattering (2x2 
Sinclair/4 x 4 Kennaugh matrix) radar polarimetry by 
developing the following concepts: 

Basic Polarimetric Radar Theory: Definition of 
Polarization State Operators and Polarimetric Matrices 
The basic formulation and mathematical representation of 
polarization vectors and of the set of four distinct scattering 
matrices, their inter-relations, and their transformations 
between different polarization bases is considered. Great care 
is taken in formulating the appropriate transmission (anti- 
monostatic) versus backscattering (monostatic) coordinate 
systems for treating the two distinct vector wave medium 
interaction cases - in order of complexity ~ expressed in 
terms of a set of four distinct matrices. In each case, these 
include: (i) the 2x2 complex phasor (coherent) Jones 
transmission [T] versus Sinclair scattering [S] matrices; (ii) 

the associated 2x2 complex coherent power density 
transmission [F] = [T]'[T] versus the Graves [G] = [SftS] 
complex coherent power scattering matrices (with t denoting 
the Hermitian conjugate); (iii) the 4x4 real power density 
Mueller [M] propagation versus Kennaugh [K] scattering 
matrices (of which an optical, but non-identical alternate is 
the 4x4 Stokes reflection matrix); and (iv) the 3x3 
(symmetric: monostatic reciprocal) or 4x4 (asymmetric: 
general bistatic and/or non-reciprocal) Polarimetric 
Covariance Transmission [TJ versus Scattering [2] matrices. 
It is then shown how each set of four unique polarimetric 
matrices can be strictly related to one another via a matrix 
tryptic by utilization of the coherence matrix and the SU 
(2,3,4) Lie and Lorentz transformation groups, where use is 
made of Cloude's group-theoretic expansion of the covariance 
matrices for the optical and radar cases, respectively. 

Distinct Polarimetric Matrix Optimization Approaches, 
Huynen Polarization Fork for the Coherent and Partially 
Coherent Cases, and Target Matrix Decomposition 

Although considerable progress was made in advancing the 
Kennaugh   radar   target  characteristic   polarization   theory 
(KRPT) for the determination of the Optimal (characteristic) 
Polarization States and Huynen's Polarization Fork Concept 
(HPF)   for   unique   association   of   these   characteristic 
polarization   states   on   the   Poincare   sphere;   no   fully 
transparent    theory    separating    the    forward    scattering 
(propagation)   from   the   backscattering   (monostatic   and 
bistatic) cases and/or its interactive relations was developed 
until recently. Unfortunately, still today, these distinct wave- 
scatterer   interaction   cases   are   wildly   confused   in   the 
literature.     However,  with the recent advances made by 
Lüneburg in analyzing 'similarity' versus 'consimilarity' 
eigenvalue/vector problems in radar polarimetry, we are now 
equipped to resolve the fine points (pitfalls) of the coherent 
radar transformation phase in the formulation of the proper 
transformation   matrices   which   differ   distinctly   for   the 
propagation (similarity) and the backscattering (consimilarity) 
cases and can be determined uniquely by inclusion of energy 
conservation principles.  Using these two distinct matrix sets 
and the associated similarity versus consimilarity problems, 
the resulting five pairs of optimal polarization states (KRPT) 
are determined together with the complementing set of two 
Huynen polarization forks (HPFs), where specific reference 
is made to the recent interactive forward propagation versus 
backscattering   formulation   along   an   idealized   lossless, 
reciprocal   polarimetric  propagation  two-port in terms of 
generalized transmission/reflection formulation of the 4x4 
complex cascading propagation matrices which serves to 
demonstrate   that   a   clear   distinction   of   the   forward 
propagation (optical: Jones/Mueller) versus back-reflection 
(radar: Sinclair/Kennaugh) matrix cases must be made in all 
cases. 
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APPLICATIONS OF WISIP TECHNOLOGY 

The wide ranging applications of WISIP-technology in 
air/space-borne remote sensing are slowly but steadily being 
accepted as major, indispensable tools in wide area military 
battlespace surveillance and local-to-global environmental 
stress change monitoring.    In the complementing papers 
special attention will be paid to the Detection, Recognition 
and Identification (DRI) of environmental stress changes of 
either natural and/or anthropogenic origin such as of: (i) 
wetland versus flood plain delineation and the stress/pressure 
build-up   along   dams,    dikes,   and   levies   as   well   as 
deformations of the river beds, coastal shorelines and dunes, 
and surrounding wetlands during major flash flood and storm 
events;   (ii) the DRI of acid rain and acid snow on boreal 
forests and permafrost tundra environments; (iii) altitudinal 
height and transverse skewing surface deformations during an 
entire tectonic stress change episode long before, precisely at, 
and long after the stress release (earthquake) has occurred; 
(iv) for sea-quakes, it will include tsunami-mapping and sub- 
ocean surface ocean-bottom fracture zone delineation; (v) of 
geo-ecologic   stress   changes   caused   by   natural   and/or 
anthropogenic secondary/primary source mechanisms;  (vi) 
subtle strategic changes in battlespace scenarios; and/or (vii) 
the camouflaged construction of hidden bunkers, arms caches 
and the overnight deployment of minefields, etc..   Various 
illustrative polarimetric   interferometric   images,   such  as 
applications of most recent UWB-TOPIF'E-CATI/LTBL- 
POL-SAR ** POL-MTI-TOP-RAR image data takes will be 
presented  for the purpose of demonstrating the general 
applicability of the WISIP principles introduced in this state- 
of-the-art-overview . 

FUTURE DEVELOPMENTS 

In addition to the advances reported here on ultrawideband 
and multiband polarimetric synthetic aperture radar 
technology, image processing and analysis in the VHF-to- 
microwave spectral domain, during the preparation of 
'Polarimetry in Remote Sensing' [1], very dramatic changes 
were made in perfecting space navigational tools such as GPS 
and precision inertial navigation (INU) systems and merging 
them into an IGU navigation system. Their merger made 
possible both spaceborne repeat-orbit and airborne repeat- 
track, high precision imaging platform operations that give 
centimeter image overlay accuracies. In addition to single 
platform cross-and-along-track (CATI) SAR interferometers, 
such as the JPL AIR/TOP-SAR in the same period satellite 
(ERS-1/2, JERS-1) and shuttle (SIR-C/X-SAR) LTBL repeat- 
orbit SAR-image overlay interferometry was conceived and 
realized. Some of the most impressive applications of high 
resolution CATI topographic interferometric digital elevation 

SAR (JPL-TOPSAR, ERIM-IFSARE, EMI-SAR) imaging 
have produced high precision digital 3D relief elevation maps 
approaching cubic-decimeter resolution. These developments 
will change global cartography to make it freely available on 
the world-wide web. 
Spaceborne repeat-orbit LTBL (long temporal base line) 
image-overlay interferometry has enabled more accurate 
coregistration of terrestrial surface height deformations caused 
by tectonic and volcanologic stress changes This has had an 
impact on earthquake and volcano erruption hazard 
prediction. With the recent advent of high precision IGU 
integrated navigation system, airborne repeat-track and 
satellite and shuttle LTBL image overlay interferometry was 
realized. In addition, this made possible the delineation of 
flood plains and changes in riverbeds, as well as ocean-beach 
and lakeshore deterioration, together with subaquatic 
sandbank motion as demonstrated for the 1993 Misssouri- 
Mississippi, the Werra-Fulda and Niederrhein floods. 
Hurricane and cyclone destruction of estuaries and coastal 
environments has also been depicted. 
As impressive as these CATI and LTBL repeat-track image 
overlay interferometric imaging results are, they were 
achieved without complete polarimetric image interferogram 
optimization. Interferometric coherence can be improved 
substantially by polarimetric speckle reduction. It can also be 
improved by complete scattering matrix POL-SAR 
interferometry, crucial for fully realizing all-weather real-time 
high resolution image overlay interferometric imaging and for 
advancing this technology to the limits. 
In conclusion, the significant achievements of topographic- 
interferometric and polarimetric SAR to date justify and make 
desirable the development of more precise systems and the 
substantial expansion of their use in monitoring natural and 
cultural features and changes in the planet's surface. 
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ABSTRACT 

In November and December 1996, the NASA/JPL Airborne 
Synthetic Aperture Radar system (AIRSAR) embarked on a 
seven-week campaign to several Pacific Rim countries. This 
mission was jointly organized by NASA, Australia's Office 
of Space Science and Application, and University of New 
South Wales. The major purpose of the mission is to 
establish a collaborative effort in the area of radar remote 
sensing application between the United States and the Pacific 
Rim countries. SAR data were acquired for both U.S. 
researchers as well as the participating countries. In addition 
to Hawaii, we imaged areas of interest in New Zealand, 
Australia, Papua New Guinea, Malaysia, Brunei, the 
Philippines, Taiwan, Thailand, and Cambodia including 
coastal regions of some countries. The target areas of this 
multi-frequency, polarimetric and interferometric SAR system 
included volcanoes, sites for studies in geology, hydrology, 
and landuse mapping, and forested mountains to generate 
height maps of rugged and inaccessible areas. 

INTRODUCTION 

AIRSAR operates in the fully polarimetric mode at P-, L-, 
and C-band simultaneously (POLSAR) or in the along-track 
(ATI) or cross-track interferometric (XTI) mode in L- and C- 
band simultaneously. The system began collecting data in 
late 1987 on its first mission aboard a DC-8 aircraft operated 
by NASA's Ames Research Center in Mountain View, 
California. Since then, AIRSAR has flown missions every 
year and acquired images in North, Central, and South 
America, Europe, Greenland, and Australia. In POLSAR 
mode, the image products are fully calibrated and are stored in 
compressed Stokes matrix format that contains all the 
polarization information. In XTI mode, C-band cross-track 
interferometer data are used to generate a digital elevation 
model (DEM) and an incidence angle map. In this case, L- 
band radar could operate in either cross-track interferometer 
mode or polarimetric mode whereas P-band radar is always in 
polarimetric mode. By using the incidence angle map, all 
output images are geometrically and radiometrically corrected 
taking the topography into account and resampled to ground 
range with a 10 m by 10 m pixel spacing.    The output 

images cover 10-12 km in the range direction for the 40 MHz 
chirp bandwidth mode. 

On AIRSAR's 1996 PacRim Deployment, data were 
collected over the following ten countries: the US, New 
Zealand, Australia, Papua New Guinea, Malaysia, Brunei, the 
Philippines, Taiwan, Thailand, and Cambodia as shown Fig. 
1. Most of the data were collected in XTI-1 mode, i.e. C- 
band cross-track interferometer with L- and P-band 
polarimeter. This mode provides users with a DEM of the 
imaged site and geometrically corrected L- and P-band 
polarimetry data. With over 100 sites imaged, investigators 
will study the following topics: wetlands and peat swamp 
characterization, mangrove forest mapping, floodplain 
morphology, archaeology, cultural resource management, 
crop classification, forest classification, deforestation and 
regrowth monitoring, biodiversity, soil moisture estimation, 
carbon dynamics of indigenous rainforests, geologic map- 
ping, DEM generation, volcanic hazards, mining exploration, 
coastline monitoring, mountain road planning and rehab- 
ilitation, and differential penetration of vegetation canopies. 

In addition to AIRSAR, three other science instruments 
were also on-board the DC-8 aircraft. These were TIMS 
(Thermal Infrared Mapper), AES (Airborne Emission 
Spectrometer), and Cloud Radar (in Hawaii and New Zealand 
only). The main objective of TTMS was to image volcanoes 
and selected geologic sites in Australia. AES provides 
temperature and humidity profiles for the TIMS imaging of 
S02 concentrations in volcanic gas plumes. AES also 
monitored gas ratios such as HCL:S02. 

In this paper, we will briefly describe the sites imaged in 
each country and their respective science objectives. In 
addition, we will outline our plan for data processing and data 
analysis. 

HAWAII 

Sites on three of the Hawaiian Islands were imaged, Oahu, 
Hawaii, and Maui. The Oahu site located on the summit of 
the Koolau Mountains was imaged to study differential radar 
penetration (C-/L-band) through distinct vegetation density 
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gradients. On the island of Hawaii, the Mauna Kea and 
Mauna Loa volcanoes were imaged to generate detailed digital 
elevation models of the summit regions. Two transects, one 
along the north shore of Hawaii and the other from Kohala 
Volcano in the northwest to the saddle between Mauna Loa 
and Mauna Kea, were imaged to study erosion patterns on the 
windward and leeward sides of the island. In addition, the 
rainforest on the flanks of Kilauea was imaged to study 
differential radar penetration along the vegetation gradient. 
Furthermore, the Kohala Ocean off the northwestern tip of the 
island of Hawaii was imaged in ATI mode to assist in the 
development of an ATI processor that will measure the radial 
component of the ocean current. Finally, we had an 
opportunity to image Haleakala volcano on the island of 
Maui on our way back from the PacRim deployment. 

NEW ZEALAND 

The New Zealand sites were coordinated through Landcare 
Research of New Zealand. The sites imaged included White 
Island, several sites on the North Island, Taupo, Ruapehu, 
Wanganui, Wairarapa, and Baring Head and a portion of the 
Southern Alps on the South Island. 

White Island is a 3 km x 3 km active volcanic island 
located off the northern shore of the North Island. The 
objective is to generate a DEM for monitoring the ongoing 
deformation of the island. Ruapehu is the largest and highest 
volcano in New Zealand where steam explosions cause hot 
water to spill over the flanks of the crater lake. Both TIMS 
and AES data were taken in addition to AIRSAR data. Taupo 
is an indigenous rainforest and was imaged to study the forest 
composition and biomass. Wanganui was imaged to evaluate 
the use of SAR data for landslide detection and vegetation 
mapping. Wairarapa is an area of active deformation where 
the growing folds will be examined in three-dimensions. The 
area contains extensive terraces that act as markers in 
determining the deformation rates. Finally, the Southern 
Alps includes a portion of the Alpine fault system, a very 
active strike-slip fault similar to the San Andreas fault in 
California. The results from this study will be compared to a 
study site in the San Gabriel Mountains north of Los 
Angeles. 

AUSTRALIA 

AIRSAR spent two weeks in Australia mapping sites in all 
six provinces in mainland Australia. These sites were 
selected by Australian scientists and mining companies, and 
NASA scientists. Sites in Eastern and Southeastern Australia 
included Condamine, Goulburn, and Tarrawara, which were 
imaged to generate soil moisture maps. Mt. Fitton is an 
international radar calibration site rich in minerals and 
geologic features such as alluvial fans and sand dunes.   Lake 

Acraman was imaged to study an ancient meteor impact crater 
whereas Cooper Creek was imaged to study the history of 
seasonal river channels in this desert region. In addition, a 
500 km long transect was imaged over the Cunnamulla 
region just west of Brisbane to provide a valuable verification 
data set for the upcoming Shuttle Radar Topography Mapping 
(SRTM) mission. 

In Northeastern Australia, Gilbert Range was imaged for 
hydrological studies and Lawn Hill was imaged to study a 
meteor impact crater. Weipa was a site selected for SRTM 
calibration. Queensland, also imaged in the 1993 AIRSAR 
Australian campaign, was mapped for a repeat-pass P-band 
interferometry study. 

Central Australia is rich with geologic sites where a 
number of meteor impact craters were imaged and they 
included Mt. Toondina, Henbury, Glickson, Connolly, Wolf 
Creek, Strangways, and Liverpool. In addition, a number of 
geologic sites were imaged for the mining companies. In 
the Northern Territory, several mangroves and coastal 
wetlands were imaged and they included Endyalgout Island, 
Pt. Farewell, Munmarlary, Mary River, Gunn Point, Humpty 
Doo, and Daly River. In addition, we also imaged Darwin 
Harbour for research in coastal ship watch. 

PAPUA NEW GUINEA (PNG) 

AIRSAR's flight over PNG was flown out of Townsville, 
Australia. Eight sites were imaged in which three were 
mining sites. The remaining sites included Manam Island, an 
active volcanic island which had a violent Strombolian 
eruption a few days after AIRSAR's overflight. Fly River 
was imaged for tropical wetland mapping and Lakekamu 
Basin, a Conservation International site, was imaged to map 
the topography and ecology of the tropical rainforest. In 
addition, Huon Peninsula and Ramu-Markham were imaged to 
study soil erosion, landslide, and landuse mapping. 

MALAYSIA 

Sites in Malaysia were selected by the Malaysian Center for 
Remote Sensing (MACRES) and included sites in Sarawak, 
Sabah, and the Malay Peninsula. The two sites in Sarawak 
were for landuse mapping of coastal area and mountainous 
region respectively, whereas Kota Kinabalu in Sabah, the 
tallest mountain in Southeast Asia, was imaged for land 
classification and coastal mapping. On the Malay Peninsula, 
Tioman Island on the east coast was imaged for landuse 
mapping of mangrove. In addition, Cameron Highland was 
imaged several times for landuse mapping as well as geologic 
studies. Muda Merbok was imaged to study landuse and rice 
crop whereas Terengganu was imaged for coastal zone 
management studies. 
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BRUNEI 

AIRSAR mapped much of coastal Brunei in six passes and 
the main objective is to use AIRSAR data to update maps. 
In addition, the data will provide the Survey Department with 
their first experience with SAR data for potential applications 
such as landuse mapping. 

PHILIPPINES 

The sites in the Philippines were organized by various 
agencies in the Philippines and coordinated by the National 
Mapping Agency (NAMRIA) and the Department of Science 
and Technology (DSTO). They included four volcanoes, 
ecology sites, and geology sites. The active volcanoes 
imaged were Taal, Mt. Pinatubo, Mayon, and Kanlaon. In 
addition, Visayas, a mining site, was imaged for topographic 
studies of a very rugged mountainous area. Coastal Panay 
was imaged for landuse mapping as well as soil moisture 
studies. Los Banos is a rice research site whereas Magat 
Watershed is a vegetation classification site. Finally, we also 
imaged Manila and Cebu for urban mapping. 

TAIWAN 

The Taiwan sites were organized by the Center for Space 
and Remote Sensing Research Center of National Central 
University in Chung Li. Two large study sites were selected 
for land cover and coastal zone mapping using both XTI and 
POLS AR modes. In addition, two transects were imaged for 
SRTM verification. One of these transects crossed the tip of 
the Oluan Peninsula in southern Taiwan whereas the other 
transect crossed central Taiwan. 

THAILAND 

Thailand's participation was organized through the Thailand 
National Research Council (NRCT) and 13 study sites were 
imaged. They included land cover mapping of Uthaithani, a 
wildlife sanctuary, and Ranong, a coastal mangrove forest 
reserve area and rubber plantation. In addition, AIRSAR 
imaged Lampang, a mining geology site, and Chanthaburi for 
land use classification. Nakhon Si Thammarat and Songkhla 
were imaged for wetlands studies whereas Prachuap Khiri 
Khan was imaged for coastline monitoring. A number of 
archaeology sites were imaged in northeast Thailand and 
Cambodia including the famous Angkor Wat in Cambodia. 
These data will assist the Fine Arts Department of Thailand 
as well as participants from the World Monuments Fund in 
cultural resource management and research. Finally, Chiang 
Mai and Surat Thani were imaged for forestry mapping and 
classification. 

FUTURE PLAN 

All the PacRim data have been survey processed and initial 
evaluation of data quality looks good. We have begun 
precision processing based on user requests. With just over 
100 sites imaged, it could take two to three years to process 
all the sites. Data collected for agencies and companies in 
these countries are under a one year proprietary period from 
the date of precision data processing. In addition, we had the 
first PacRim Workshop in Pasadena in March, 1997 and 
began the process of forming research teams by discipline. It 
is our hope that by teaming up inexperienced SAR users with 
experienced AIRSAR scientists, this will shorten the learning 
curve for the former and enable all of us to better utilize the 
rich data set we collected during the PacRim Deployment. 
Future PacRim Workshops will be held annually at different 
participating countries to report exciting research findings and 
exchange ideas. For more information and updates, please 
consult AIRSAR's home page at: http//airsar.jpl.nasa.gov. 

Location of AIRSAR Flight Lines 
Collected'During Pacific Rim Deployment 

■■ (Nov.-Dec. 1996) 
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Abstract - Polarimetric SAR has been successfully applied 
for, terrain and land-use classification, soil moisture and 
biomass measurements, and many other areas of remote 
sensing. However, its application to ocean and coastal areas 
has not been developed. This paper describes several remote- 
sensing applications for the littoral zone using polarimetric 
SAR. SIR-C L- and C-band and JPL AIRSAR images are 
used for illustration. 

INTRODUCTION 

The polarimetric scattering behavior of a target can be 
described by a 2x2 complex scattering matrix, S, which 
relates the incident and scattered electric fields according to 

-ik„r 
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El, (1) 

where the subscripts, h and v, represent horizontal and 
vertical polarization components, respectively [8]. The 
superscripts of E, s and i, indicate scattered and incident 
fields. The EJ term denotes the incident complex amplitude 
of the field component at horizontal polarization, and Shv 

denotes the horizontal transmitted and vertical received 
component of the scattering matrix, S. The parameter, k0, is 
the wavenumber of the radar, and r is a distance from the 
target. Polarimetric radar measures the complete scattering 
matrix, and from the scattering matrix, any combination of 
transmitted and received polarization can be synthesized by 
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In coastal remote sensing, many distinctive scattering 
mechanisms can be revealed by polarization signatures (van 
Zyl, 1987) using (2). Polarization synthesis can also be utilized 
to optimize the target to background ratios. In addition, the 
target decomposition theorys of Krogager[3], Cloude[4] and 
Wong[5] are valuable in classification and detection of 
targets and ocean surface features. SIR-C, L- and 
polarimetric SAR images are used for illustration. 

CROSS-POLARIZATION RESPONSE 

It has been pointed out that cross-polarization HV or VH 
radar returns are generated by azimuthal asymmetry within 
the SAR resolution cell. For azimuthal symmetrical media 
such  as,   ocean   surface,   double  bounce  reflectors,   and 

horizontal or vertical conductors, the scattering matrix can be 
represented by 

0" 
(3) 

where a and b are real. Without losing generality, we set the 
parameter a to be positive. For idealized Bragg scattering, 
b>a; for dihedral reflector, b= -a; for horizontal conductors, 
b=0; for vertical conductors, a=0; and for forests on level 
ground, it can be modeled by a>|b| and b is negative. 

Using (2), if we rotate the antenna H-V base vector by an 
angle 8, the scattering matrix is transformed into 

c(new) _ 

or 

2 (new) _ 

cos(8)   - sin(8) a   0 cos(8)     sin(8) 

sin(8)    cos(5) 0   b -sin(8)   cos(8) 

a cos2 (8) + b sin2 (8)    (a - b) cos(8) sin(8) 

(a - b)cos(S)sin(S)    a sin2 (8) + bcos2 (8) 
o(new)     o(new) 
ahh          öhv 
c(new)      (j(new) 

_övh           öw 

(4) 

(5) 

The above equation indicates that HV returns are induced by the 
rotation. The rotation of the antenna has the same effect as 
surface or object tilting in the azimuth direction. For desert or 
grassland characterized by Bragg scattering, higher HV returns 
are induced by the surface in the azimuthal direction. For 
dihedral reflectors (b= -a), HV returns are increasing with the tilt, 
while HH and VV returns are decreasing, and are equal to zero at 
8 = 45°. For coastal remote sensing, many features display 
strong cross-polarization signal-to-background ratios. 

1) Coastline Detection 
Coastlines are difficult to define accurately using single 

VV or HH polarization SAR, because the wind modulated 
coastal water frequently creates higher returns than flat 
beaches and adjacent inland areas[l]. The surface tilt and 
vegetation on the beaches induces higher HV returns than 
from ocean waves. Fig. 1 shows an L-band SIR-C image of 
Malaysia. The coastline can be easily detected by a simple 
thresholding using HV polarization. It would be much more 
difficult to detect it using HH or VV images 

2) Coastal Feature Detection 
Also shown in Fig. 1, the bridge, the pier and ships have 

higher signal to background ratios in the HV image (Fig. 
1(b)) than in  the HH or VV images (refer to Fig. 1(a) and 

U.S. Government work not protected by 
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(a) HH amplitude image (b) HV amplitude image (c) VV amplitude image 
Fig. 1 SIR - C L - band HH, HV and VV images of Malaysia are shown. Coastline and coastal features, 
such as the bridge and the pier can be easily detected using HV image, however, ocean waves, shipwakes 
and wind shadows are better defined in HH nad VV images. 

1(c)). Also, the fishing activity shown as a cluster of white 
spots in the lower left of the HV image has a contrast reversal 
in HH and VV images. Features that are dominated by Bragg 
scattering, such as oceanwaves, shipwakes and wind 
shadows, are better discerned with HH and VV. 

AZIMUTHAL SLOPE MEASUREMENT 

POLARIZATION SIGNATURES (PolSig) 

Coastal features often display distinctive PolSig (van Zyl, 
1987). The fishing activity shown as a cluster of white spots in 
Fig. 1(b) has co-pol signatures given in Fig. 2(a) and (b). Most 
pixels of this cluster have these kind of signatures with peaks 
displaced away from HH or VV. This displacement could be 
caused by surface tilt in a target with Bragg scattering. It can also 
be formed by objects tilted near 45 degrees. A small amount of 
helix related scatterings is also present. Helix scattering is 
measured by the difference between RR (right circular transmit 
and right circular receive) and LL. The close by ocean area show 
typical Bragg signatures with the peak located at VV, and helix 
scattering (see Fig. 2(c)). This SIR-C data has been calibrated, 
and PolSigs are computed on pixels from a 2x2 average of 4-look 
processed data. 

We have shown that surface tilts induce HV polarization. 
Theoretically, surface tilt can be obtained from the scattering 
matrix. From (5), we can solve for 8, 

S = — tan 
2 

2g(«ew) 

rr(ni'w) _ ci(new) 

The above equation reveals that surface tilt, S, increases with 

S("v
ew), but decreases with {S^-S^). The sign of 

the term in the parenthesis of the above equation is 
determined by the direction of the tilted surface. This 
equation indicates that polarimetric SAR could also be used 
to measure surface slope in the azimuthal direction. Schüler, 
Lee and De Grandi [2] have utilized this to develop a 
technique of topography measurement. Since the scattering 
matrix, in reality, is complex, the above equation is difficult 
to apply. It was found that the displacement of the peak in 
PolSig corresponds to the surface tilt. A steepest ascent 
algorithm was derived to efficiently locate the maximum in 

(a) The peak shifts towardr 45° (b) The peak shifts toward 135° (c) Helical scattering 
Fig. 2 Some peculiar polarization signatures of coastal features, (a) and (b) reveals the Polsig for the fishing activity as 
shown as a cluster of white spots in Fig. 1 (b). Many pixels in the nearby islands shows helicity in signatures. 
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(a) SAR image of Italy coast (b) Polarimetric SAR derived topography 
Fig. 3 Using SIR - C L - band polarimetric SAR data of the coast of Italy near Camerota (see (a)), topography are 
derived by integration azimuthal slopes from the coast upward as shown in (b) 

co-pol signatures. For areas with Bragg scattering, the 
azimuth slope is the displacement from the orientation angle 
of 90° (VV). For forest areas, the displacement from 0° or 
180° corresponds to the slope. To derive topography, tie 
points along a range line are required for starting integration 
in the azimuth direction. Alternatively, if orthogonal pass 
data are available, only a single tie point is needed. For 
coastal applications, however, topography can be obtained by 
integration from the coast upward without a priori tie point 
information on the land. 

Fig. 3(a) shows an L-band SIR-C image of Italy coast. 
The polarimetric SAR derived topography is shown in Fig. 
3(b). Currently, this technique is not as accuracy as that from 
interferometry SAR. Further improvement requires pre- 
classification of the scattering mechanism of each pixel, and 
compensation for local incidence angle variations. 

This azimuth slope technique was also applied to the 
ocean surface to detect ocean features with large surface tilts 
and current fronts (Lee, IGARSS'96). 

POLARIMETRIC TARGET DECOMPOSITION 

One of the advantages of polarimetric SAR is its ability in 

revealing the inherent scattering mechanism of a medium. 
This unique capability can be utilized for better 
characterization and classification of targets and terrain types. 
Coastal features, such as, atolls, tropical rain cells, oil slicks, 
current fronts, and other atmospherically-induced ocean 
surface features have many distinctive scattering 
mechanisms, that include, dipole, Bragg, double bounce, 
sphere and helix. Recent target decomposition methods by 
Krogager[3] and Cloude[4] can be utilized to classify terrain 
and coastal features based on their scattering mechanisms. 

Fig. 4 shows an example of Krogager's decomposition. 
The polarimetric SAR image of Fig. 1 is decomposed into 
diplane,  surface  and hecility  scatterers.     Using  circular 
polarizations,   Krogager   has   shown   that   Max(RR,   LL) 
represents diplane (i.e., even bounce) scattering, Abs(RR-LL) 
for helicity, and RL for surface scattering.   The city blocks 
and ships are dominated by corner reflectors, and they 
are bright as shown in Fig. 4(a). The ocean surface consists 
mainly of surface scattering and shown with higher returns in 
Fig. 4(b). Helicity is mainly induced by defused scattering 
from vegetation as shown in Fig. 4(c). 

In Cloude's decomposition, he proposed a quantity named 
Entropy  as a measure  of randomness  in the  scattering 

SÄ^ 
(a) Diplane scattering image (b) Surface scattering image (c) Helix scattering image 

Fig. 4 Krogager's decomposition of the Malaysia SIR - C image of Fig. 1. Using circular polarization, the polarimetric 
image is decomposed into (a) diplane, (b) surface, and (c) helix scatterings 
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(a) Entropy image (b) Alpha angle image (c) HH and VV correlation 

Fig. 5 Cloude's target decomposition and its relation to the HH and VV correlation coefficient. Entropy is an indicator of 
randomness in scattering mechanisms as shown in (a), and the alpha angle as shown in (b) varys from surface scattering 
in dark, dipole scattering in gray, and dihedral in white. The HH and VV correlation coefficient is also a good measurement 
of the randomness in scattering mechanisms with ocean areas with high correlation of 0.97 to city areas near 0.4. 

characteristics, and an a angle to reveal the dominant 
scattering mechanism ranging from 0 for surface scattering, 
7i/4 for dipole scattering and 7t/2 for dihedral scattering. Fig. 
5(a) shows the entropy image. Ocean surfaces are dominated 
by the surface scattering with lower entropy. Land, ships and 
bridges have complex scatterings with higher entropy values. 
The alpha angle image shown in Fig. 5(b) clearly indicates 
the surface, dipole and dihedral scatterings. 

These decomposition methods can be incorporated into 
statistical classification algorithms to improve unsupervised 
terrain and target classification. 

STATISTICAL CORRELATION 

The statistical correlation between channels, especially, 
HH and VV reveals additional information for target 
characterization. The complex correlation coefficient is 
defined as 

Pc = 
E[yiY2] 

Ä 
■ = pe^ 

.|yif]E[|y2f] 
where \|/ is the phase. The magnitude p indicates the 
coherence of HH and VV, and \\r can be used to discern 
between surface scattering and dihedral scattering. The 
correlation coefficient is evaluated in a 5x5 moving window. 
The results applied to the Malaysia SIR-C image are shown 
in Fig. 5(c). The striking similarity between the correlation 
image and the Entropy image (Fig. 5(a)) with contrast 
reversal are clearly shown. In other coastal applications, 
such as, rain cells and atmospherically induced ocean surface 
features, low correlation between HH and VV has been 
observed indicating turbulence on the surface. 

CONCLUSION 

We have shown that polarimetric SAR is a powerful sensor 
for sensor for coastal remote sensing. Using synthesis, target 
decomposition, and statistical correlation, polarimetric SAR 
provides high target and terrain discrimination and 
classification and topography capability. 
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Abstract - The investigation presented in 
this paper demonstrate a first order approach 
to an automatic classification and extraction of 
cartographic relevant features from SAR data. 
We propose a fusion of polarimetric and interfer- 
ometric classification techniques that is able to 
solve several classification ambiguities which are 
not resolvable with one method alone and is also 
able to improve significantly the accuracy of the 
classification results. The complimentarity of the 
polarimetric and interferometric coherence based 
classification approaches and the improvements 
resulting from their combination are demonstrated 
using data from the space-shuttle-borne SIR-C/X- 
SAR radar system. 

INTRODUCTION 

The extraction of terrain information from SAR 
data has been a promising area of research for many 
years. Several algorithms have been developed for 
the classification of land features from SAR data 
[1] — [3]. In order to achieve reliable results, multi- 
parameter meassurements are generally necessary. 
Multitemporal, multifrequency and multipolariza- 
tion data have been suggested for remote sensing 
applications. Recently, radar interferometry gives 
a new oportunity for the interpretation and classi- 
fication of different natural surfaces. In this paper 
we consider the use of a combination of polarimetric 
and interferometric classification algorithms. Each 
of these techniques provides a variety of advan- 
tages but also some disadvantages. In this paper 
we demonstrate a fusion of these two techniques 
in order to improve the classification accuracy and 
avoid the drawbacks each technique shows if ap- 
plied alone. In the first two sections we will intro- 
duce the polarimetric and interefrometric classifica- 
tion algorithms. In the last section we demonstrate 
the fusion of both methods. 

DATA DESCRIPTION 

For the presented investigations we use data 
aquired during the 2nd SIR-C/X-SAR mission of 
the test site Oberpfaffenhofen, Germany. The 
interferometric data sets (C- and L-band) were 
aquired on October 9th and 10th, 1994 (data 
takes 129.30 and 142.12 ) and were processed by 
NASA/JPL in Pasadena, the full polarimetric data 
sets (C- and L-band) were aquired on Novem- 
ber, 2nd 1994 (data take 30.00 ) and processed by 
DLR/D-PAF in Oberpfaffenhofen, Germany. 

POLARIMETRIC CLASSIFICATION 

For the polarimetric classification we use a entropy 
based classification scheme proposed by Cloude and 
Pottier in [1]. It is a statistical model which sets 
out with the assumtion of the existance of one dom- 
inant "average" scattering mechanism in each res- 
olurtion cell. Two important parameters arise from 
this model: 

1. The entropy H - as a degree of disorder of the 
polarimetric backscattered signal - defined in 
the Neumann sense from the logarithmic sum 
of eigenvalues Xj of the coherency matrix [5] 

H=YJ~Pi^gnPi        Pi = 
A; 

£"=i^ 

H ranges from 0 for totaly polarized to 1 for 
fully depolarized (noise) backscattering. 

The a-angle which is defined as the 
propability-weighted sum of the phase- 
angle at of the maximum element of each 
eigenvector of the coherence matrix [1]: 

ä = ouPi + a2P2 + (X3P3 

a is related to the dominant scattering mech- 
anism, being zero for surface scatter and ir/2 
for dihedral-like scattering mechanisms [1]. 
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Figure 1: Polarimetric classification Figure 2: C-band coherence classification 

With these two parameters we can form a 2- 
dimensional classification space. The number of 
distinguishable classes is strongly dependent on the 
entropy H. If H equals zero we have a determinis- 
tic measurement of the scattering matrix with zero 
uncertainty in the elements and therefore we may, 
in theory, extract an infinite number of classes. On 
the other side when H equals 1 we can only talk 
about one class (random noise) which will require 
higher order statistics for classification. Polarimet- 
ric data is very sensitive to the differences between 
high and low vegetation. For forest as well as for 
low vegetation the entropy has a medium value be- 
cause of both classes provide a high randomness 
of scattering. The discrimination between both 
classes can be made by the a angle. For low vegeta- 
tion the dominant scattering mechanism in L-band 
is surface scattering leeding to an low value for the 
a angle while in forested area the dihedral compo- 
nent is dominant resulting in a high value for the 
a angle. The classification is shown in Fig. 1. The 
difference between forested areas (dark), medium 
(grey) and low (white) vegetation is clearly visible. 

INTERFEROMETIC CLASSIFICATION 

The SIR-C/X-SAR Sensor operated on L-, C- and, 
X-band providing radar data suitable for multifre- 
quency SAR Interferometry (INSAR). With repeat- 
pass interferometry one is able to measure the 
amount of temporal decorrelation. The sensitiv- 
ity of the coherence to changes in the characteris- 

tics of the scattering mechanisms in time can be 
used for the detection of a wide variety of surface 
processes and therefore for the classification of dif- 
ferent surface types. As shown in [2] a single band 
coherence map is not sufficient for an exact classi- 
fication due to ambiguities of different surfaces. It 
turns out that the interferometric coherence maps 
allow a good classification of water and man-made 
structures like buildings (high coherence in both 
bands) and the runway of the Oberpfaffenhofen air- 
field(low coherence in L-band and medium coher- 
ence in C-band) while some ambiguities, especially 
in the discimination between low vegetation and 
forested areas, remain. Therefore additional in- 
formation(.e.g. multifrequency and/or polarimetry 
innformation) is required. Fig. 2. shows the clas- 
sification derived from the L-band interferometric 
classification. The buildings (white), water (dark 
grey), the runway (pale grey) are clearly distiguis- 
able, while in the vegetated areas a lot of ambigui- 
ties remain. 

FUSION AND EXPERIMENTAL RESULTS 

The important features for map classification are 
buildings, water, forest, low and medium vegeta- 
tion. Neither the interferometric nor the polari- 
metric classification alone allows an exact classifi- 
cation of all classes. Therefore we use the C- and 
L-band coherence maps in combination with the 
polarimetric classification to seperate the classes 
from each other. Considering the demand for au- 
tomatic and unsupervised classification the polari- 
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metric method provides the advantage that the re- 
sults are corelated to the physical behaviour of the 
scatterer. Therefore it is possible to classify with- 
out prior groundtruth knowledge which is a basical 
condition for unsupervised and automatic classifi- 
cation. On the other hand the interferometric data 
provide a much higher sensitivity to different ter- 
rain types and due to this a better classification 
accuracy. The combination of both methods leeds 
to classification with good accuracy which is suite- 
able for unsupervised and automatic applications. 

The fusion of both methods led to the following 
classification: 

• buildings: High coherence in C-band (> 0.65) 
and L-Band (> 0.8) 

• water: low coherence (below 0.15) in C- and 
L-band 

• forest: Low coherence (below 0.2) in C-band 
and medium coherence in L-band (0.5 - 0.65) 
and medium (0.4-0.75) entropy and a high a 
(> 65 °) 

• low vegetation: Low coherence (0.15-0.4) in C- 
band and higher coherence in L-band (0.55- 
0.7) and medium (0.4 - 0.75) entropy and a 
small or medium a (< 65 °) 

• medium vegetation : High coherence in C- 
band (> 0.6) and L-band (> 0.75) and low 
entropy (<0.2) 

• runway: low coherence in L-band (<0.2) and 
medium coherence in L-band (0.2 - 0.45) 

The result of this classification is shown in Fig. ??. 
(runway: black, water: dark grey, forest: grey, 
buildings: bright grey, low vegetation: pale grey, 
medium vegetation: white) 

CONCLUSIONS 

Our aim was to develop an unsupervised method 
for classification of SAR-data suitable for auto- 
matic applications. The fusion of polarimetric and 
interferometric classification is a first approach to- 
wards this aim. As shown above it is possible to 
classify the five map relevant features with suficient 
accuracy. The main advantage of the combination 
of different algorithms is that due to the strong cor- 
relation between the polarimetric results and the 
physical reality this method is suitable for unsu- 
pervised and automatific classification and with the 
additional interferometric information a good res- 
olution can be acheived an remaining ambiguities 
can be resolved. 

Figure 3: Result of the combined classification 
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ABSTRACT INTRODUCTION 

A study on the texture and speckle statistics in polarimetric 
SAR synthesized images was carried out by the authors and 
presented in preliminary form at the IGARSS'95 Symposium. 
In this paper some results, which have been recently consoli- 
dated, are summarized. We introduce at first a formalism to 
measure from experimental SAR data and represent graphi- 
cally and in concise form the dependency of the statistical 
properties of the image on the polarization state. In particular 
we focus our attention on the one point statistics and on the 
second order normalized moment dependency on the polariza- 
tion state. This is an extension of the classical polarimetric sig- 
nature, and in the case of the second order moment is called the 
polarimetric texture signature. Application of this formalism to 
a data set acquired by the NASA JPL AIRSAR polarimetric 
radar over the Le Landes forest reveals some distinct and inter- 
esting trends in the texture signatures. Theoretical explanation 
of the phenomenon starts from the consideration of the influ- 
ence of the synthesis operation, seen as a linear transformation 
of random variables, on the probability distribution function of 
the radar signal. A first mechanism that underpins the second 
moment variation with polarization is defined; this effect arises 
when multi-look polarimetric data are derived in the space 
domain from correlated single look data, and is entirely due to 
the fading statistics. A second mechanism is postulated to 
account for the observed texture signatures, which is due to the 
polarimetric diversity of the underlying radar reflectivity. This 
asymmetry in the response of the scatterer to the polarized 
wave can be best modelled using a so called polarimetric mix- 
ture approach, whereby polarimetrically different scattering 
mechanisms are combined for each resolution cell. A Monte 
Carlo simulation approach is used to reconstruct the observed 
signatures, starting from the assumption of simple physical sit- 
uations, which can be realizable in scattering processes from 
natural targets. An example is presented, related to a mixture 
of deterministic point targets and a vegetation clutter. 
An interesting consequence from the application point of view 
is that the polarimetric texture signature is found to be a dis- 
criminator of weak targets against a clutter, when only polari- 
metric diversity and not radiometric diversity plays a role. 

A study on the texture and speckle statistics in polarimetric 
SAR synthesized images was carried out by the authors [1][2]. 
Topic of this research is the characterization of the statistical 
properties of polarimetric SAR images, when the power signal 
is represented in a vector basis, which is different from the one 
(usually H, V) used for the backscattered electric fields meas- 
ured by the radar instrument. This transformation is called 
polarimetric power synthesis. We are in particular interested in 
investigating statistical properties related to texture. Indeed the 
central theme is: are the textural properties of a SAR image 
affected by the vector basis used to represent the observations? 
Intuitively if the backscattered wave sees different geometrical 
or dielectric properties of the target according to the wave 
polarization, and if those properties are spatially modulated 
then also the image texture should be a function of polariza- 
tion. Our study tries to give an answer to this intuitive assump- 
tion, both from the experimental and the theoretical point of 
view. 
While a full account of the study is given in [2], we want to 
summarize in this communication some theoretical results, 
which in our opinion are of general interest in polarimetric 
remote sensing, and to highlight some examples where the 
polarimetric texture signature can be linked to the underlying 
scattering mechanisms in the SAR scene and therefore be of 
interest for thematic applications. 

POLARIMETRIC TEXTURE SIGNATURE 

The expected value of the backscattered power in the co-pol 
and cross-pol configuration can be computed as a function of 
the transmitted and received wave polarization states: 

(1) 

E[i] = f hvrxfvR,xR 

where\|/ß= \yT %R= xT in the co-pol configuration and 
\|/R= 7i/2 + \\ir %R= -Xj in the cross-pol configuration. This 
mapping can be achieved by a linear transformation of the 
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polarimetric covariance matrix Cs(p)= T(p)CsP(p)  where 
p= EV/EH is the complex polarization ratio and: 

(2) 

T(p)-- 
+ PP* 

1 

-p* 

LP*2 

2p 

-PP* 

-2p* 

The intensity expected value is therefore a function of two var- 
iables and can be represented graphically as a 3D surface. Such 
a representation was proposed by Van Zyl [3] and is called the 
polarimetric signature. 
We propose here to extend such a formalism to higher order 
moments of the single point statistics; in particular since we 
are dealing with the texture and speckle statistics in polarimet- 
ric imagery the normalized second order moment appears to be 
of interest, because it gives a measure of the speckle strength 
or of the textural properties of the image. 
Accordingly we consider: 

E[I
2
]       f 

E   [I] v 1 K 

(3) 

In analogy with the classical Van Zyl signature, we call this 
representation the polarimetric texture signature. The useful- 
ness of the signature formalism is to allow us to measure from 
experimental SAR polarimetric data both the first order 
(strength of the scattering event) and the second order statisti- 
cal properties (variation of the scattering event), and to repre- 
sent them synoptically in a graphical object. This in turn lends 
support to the visual interpretation of properties related to the 
scene. 

PDF TRANSFORMATION 

Theoretical characterization of the polarimetric texture signa- 
ture properties can be achieved from the statistical point of 
view considering the transformation of the polarimetric vector 
probability density function when the polarization basis is 
changed. 
The polarization synthesis operation can be considered as a lin- 
ear operator on the feature vector x= [SHH, SHV, Syv] for sin- 
gle look data or on the sample covariance matrix Cs for multi- 
look data. We are interested in investigating how the statistical 
properties of the polarimetric vector considered as a vector RV 
(Random Variable), are affected by a change of the orthonor- 
mal basis used to represent the vector (e.g. from (H, V) to (A, 
B): 

PDF(A.B)=f(p!>r,H,V)) 

In particular an interesting case arises when considering multi- 
look data with correlated speckle. We demonstrate here that if 
the multi-look operation is done on an intensity basis starting 
from single look complex data which are circular Gaussian but 
correlated, then the probability distribution function of the 
resulting intensity will be a function of the polarization state. 
For polarimetric data multi-look processing in the space 
domain is performed on the Mueller matrices, from which the 
returned power can be synthesized. The sum and synthesis 
operators can be commuted: 

(5) 

P=JJGRmiGTP=GR^MiG7 

Therefore the power corresponding to a certain polarization 
state p in the multi-look operation is equivalent to the sum of 
single look intensities, which are synthesized in the same 
polarization state: 

(6) 

P(p)=   x W 
nlooks 

The case of addition on an intensity basis of correlated speckle 
patterns is discussed for instance in [4]. Let us consider for 
simplicity the case of two correlated speckle patterns. Then the 
nth moment of the resulting intensity is given by: 

(7) 

(/">= 

,n + l  \ 

\\ ■ 
■ An     A. ■ "■V 

where Xi are the non-degenerate eigenvalues of the Hermitian 
coherency matrix [£]= [A] [A*<] .where A= [SvS2f and 
S]tS2 are two complex Gaussian fields. The normalized sec- 
ond order moment of the multi-look HH channel in the (H, V) 
basis will then be: 

(8) 

(I >(tf,v)_ 2[ki+X2 + XlX2 

<KH, V) (X, +Ä,,)' 

(4) 

If we now transform the single look values into a general polar- 
ization state using the linear transformation (2) the new corre- 
lation coefficient will be a function of correlations between the 
other polarimetric channels in the (H, V) basis and of the new 
polarization state p : 
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Therefore the linear transformation into a new polarization 
basis changes the statistics of the single look speckle patterns, 
and in particular the correlation properties of those variables; 
this in turn modulates the eigenvalues of the coherency matrix 
and finally the intensity moments. 
Numerical solution of (9) has been used to study the depend- 
ency of the polarimetric texture signature on the speckle corre- 
lation properties. An example is reported in Fig.   1, for 
(s\m-si*HH)\=Q.5,   .    \{s\vv-S2*vv)\=o,5,       and 
{S\HV ■ S2*HV)\ varying from 0.0 to 0.09 

It can be observed that the two characteristic maxima at orien- 
tation angle 45° and 135° are present; moreover the depth of 
the peak modulation is a function of the cross-pol channel cor- 
relation: for low HV speckle pattern correlation the moment 
tends to the nominal value of 1.5 as the basis tends towards the 
(H, V) basis; for higher values of the HV correlation the nor- 
malized moment variation with linear polarization is smoothed 
out, and the moment assumes higher values than the nominal 
even in the (H, V) basis. 

POLARIMETRIC MIXTURE MODEL 

50     75    100    125 

orientation Angle 

Fig. 1 - Dependency of the polarimetric texture 
signature from the speckle correlation properties. 

Gaussian statistics). Clearly this method lacks of generality, 
because we do not assume any a priori distribution for the tex- 
ture variable, but we construct case by case an empirical set of 
rules according to the scattering scenario; however it can be 
quite useful to gain physical insight into the polarimetric tex- 
ture observed in some experimental data, and lends itself 
nicely to a numerical Monte Carlo type simulation. 
To illustrate the approach, we present next a case dealing with 
a mixture of a grass clutter and deterministic point targets. 

The modulation with polarization state of the second order nor- 
malized moment described in the previous section is due 
entirely to the statistical properties of the radar coherent imag- 
ing process (i.e. transformation of RV for correlated single 
look circular Gaussian data). 
A second mechanism which can give rise to polarimetric tex- 
ture is a polarization dependent modulation of the underlying 
radar cross section. In other words we can postulate a multipli- 
cative model where the texture variable is dependent on the 
polarization state, and gives rise to different statistical proper- 
ties in each component of the polarimetric feature vector, and 
therefore to polarimetric texture. Such a mechanism can be 
modelled as an extension of the multiply stochastic approach 
which gives rise to the class of generalized K distributions. 
However this line of attack suffers from the difficulty of map- 
ping the statistical properties of the radar reflectivity vector to 
the underlying physical mechanisms. We propose here an 
inverse path, where we assume that the polarimetric diversity 
in the underlying radar cross section is due to a combination or 
mixture of different physical scattering mechanisms. Each 
scattering mechanism is assumed to be polarimetrically homo- 
geneous, and is described by simple models (e.g. circular 

TEXTURE SIGNATURES OF WEAK POINT TARGETS 
AND CLUTTER 

In this simulation we want to mimic the situation where a few 
dihedral reflectors are sprinkled on a vegetation background. 
Since the dihedral reflectors have a different polarimetric 
response with respect to the grass clutter, and in particular they 
have no response in the cross-pol channel and equal return and 
a phase shift of % in the co-pol channel, they are supposed to 
introduce an imbalance in the co-pol channel statistics. 
We suppose further to be in a fully developed speckle regime 
with the polarimetric vectors obeying a circular complex 
Gaussian distribution. The RVs in each class of the mixture are 
generated using a Monte Carlo approach. The grass clutter is 
modelled as a reciprocal azimuthally symmetric medium with 
the following covariance matrix parameters: a= 1.0, e= 0.1, 
Y= 1.27 , p= (0.61 + (0.04) . The dihedral is modelled with the 
scattering matrix: SHH= 1 SHV = 0 Svv= -1 The two RVs are 
then combined in a mixture, with the probability of occurrence 
for the dihedral class of 0.02. Finally the cross-pol texture sig- 
nature and the power signature are computed. The signatures 
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of the grass clutter only and the grass clutter with the dihedrals 
are shown in Fig. 2. 
It is interesting to notice that the power signature does not 
show any difference between the two situations: clutter only 
Fig. 2.a; clutter and dihedral Fig 2.b; this is due to the fact that 
the mean power return of the clutter is not affected by the addi- 
tion of a few different weak scatterers. On the other hand the 
texture signature shows the two typical peaks at \j/= (45°,135°) 
only in the case of clutter and dihedral (see Fig. 2.d). 
In the perspective of remote sensing applications the polari- 
metric texture signature seems therefore to be a powerful dis- 
criminator to detect polarimetrically diverse but 
radiometrically weak target embedded in a clutter. 

CONCLUSIONS 

Selected results from an investigation on speckle and texture 
statistics in SAR polarimetric images have been reported. The 
study highlights the fact that polarimetric diversity (the way 
the underlying scattering mechanism are sensitive to the elec- 
tromagnetic wave polarization) propagates to the higher order 
statistical properties of the observed radar signal. An extension 
of the theoretical speckle and texture models is necessary to 
account for these effects, and the polarimetric,texture signature 
is introduced as a formalism to analyse experimental data. 
With these tools at hand we finally arrive at the conclusion that 
polarimetric texture is useful from the application point of 
view when different scattering mechanisms can be resolved 
only due to their polarimetric diversity and not from their radi- 
ometric diversity. 
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Fig. 2 - Polarimetric power and texture 
signatures for weak point targets embedded 
in clutter. 
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ABSTRACT 

The Malaysian Centre for Remote Sensing (MACRES) was 
established as a research and development organisation 
with the objectives of developing remote sensing and 
related technologies and operationalising their applications 
for resource and environmental management in the 
country. Apart from implementing a National Remote 
Sensing Programme which is being fully participated by all 
the user agencies in the country, MACRES main task is to 
conduct and support research towards operaional use of 
relevant technologies for national development. Three main 
areas of emphasis for remote sensing research and 
development in the country are microwave remote sensing 
applications, remote sensing and Geographic Information 
System (GIS) integration, and multi-sensor/multi-platform 
data fusion. This paper highlights research and 
development activities in remote sensing and related 
technologies in Malaysia and indicates the direction taken 
towards operationalisation of these technologies in the 
country. 

INTRODUCTION 

Malaysian National Remote Sensing Programme (NRSP) 
which is currently being implemented under the 
coordination of MACRES since 1998 stipulated that the 
country involvement in remote sensing is divided into 
three segments - Ground, User and Space. Successful 
implementation of this programme has resulted in the 
widespread utilisation of predominantly optical remote 
sensing data for the different resource and environmental 
management objectives. Recent advances in microwave 
remote sensing, expecially with the availablility in 
several synthetic aperture radar (SAR) equipped satellite 
and airborne missions, have offered Malaysia 
opportunities to exploit the potentaility of SAR data for 
varied applications in Malaysia. 

Under the NRSP MACRES will continue to play a 
leading role in co-ordinating, operationalising and 
commercialising remote sensing and its related 
technologies in the country. Operationisation of the 
technology for national development is currently the 
focus and all research actvities in remote senisng and 
related technologies will be geared towards this 
direction. 

Operationalisation   of   remote   sensing   technology 

normally implies moving from an academic environment 
to an analysis of what is needed and how the technology 
can be used to solve practical problems. However, when 
addressing the same subject in a developing country like 
Malaysia, it also implies additional facets of capacity 
building encompassing both human resource and 
infrastructural development, and institutional 
arrangement. 

To upgrade research and development capacity in 
Malaysia, three projects are being implemented by 
MACRES . These are MACRES headquarters to be 
equipped with the state - of - the - art equipment and 
facility, Malaysia Earth Observation Ground Receiving 
Station, and a compehensive Human Resource 
Development Programme for development of skilled and 
trained manpower. 

In the Seventh Malaysian Plan (1996 - 2000), a 
special fund has been allocated by the Government 
under the Intensification of Research in Priority Areas 
(IRPA) Progamme to conduct research in prioritised 
fields for indegenious capacity building and 
commercialisation purposes. Remote sensing and GIS 
are incorporated in the programme. 

RESEARCH AND DEVELOPMENT DIRECTION 

Three main priority areas for remote sensing research in 
the country are microwave remote sensing applications, 
remote sensing and Geographic Information System 
(GIS) integration, and multi-sensor/multi-platform data 
applications. 

Microwave Remote Sensing 

Research activities in microwave remote sensing in the 
country are directed towards four major thrust areas: 
(i) Basic backscattering behaviour of major cover types 
in    response    to    different    microwave    bandwidths, 
polarisation and look angles; 
(ii)Information retrieval and classification of different 
cover types, effects of canopy, trunk and soil moisture, 
employing technique like least square, maximum 
likelihood and neural network; 
(iii)Data calibration  (system  effect removal,  speckle 
filtering, and geometric rectification); and 
(iv)Multisensor and multiplatform data fusion of optical 
and SAR systems. 
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Microwave research in the country started in early 
1980's. Initial efforts focussed on the development of 
theoretical models to understand electromagnetic wave 
interactions with random media such as vegetation and 
forest. The Monte Carlo technique was adopted for 
backscatter models developed for vegetation canopies 
and forest stands (2, 3). 

While basic research in SAR modelling was on-going, 
interest was also focussed on applications development, 
encompassing among others the development of 
classification and vegetation parameter retrieval 
algorithms and potentials of SAR technologies for 
agriculture and geological applications 

Most of the SAR applications research projects 
conducted in the country are undertaken in collaboration 
with partners from abroad. The first of such projects was 
implemented in 1991 with the University of New South 
Wales, Australia (10) to examine the complementarity of 
airborne SAR (X band , HH polarisation) and SPOT - 
MLA data for land cover mapping in the state of Kedah. 
Results obtained indicated that on the RGB composite 
(SAR, SPOT bands 3,1) slight improvements in visual 
separability of features - such as mangrove , rubber 
(different stages of growth), hilly topography, water 
bodies, urban and linear features were obtained 
compared to the SPOT RGB composite (bands 3,2,1). 

Pilot application studies in Johore state (7) using ERS- 
1 data acquired under the EC-ASEAN project (1993 - 
1996) and in Kedah state in collaboration with NASDA, 
Japan using JERS-1 data in 1996 (1), enlightened on the 
potentials of multi-temporal SAR composite for land 
cover change detection. 

Under the GLOBESAR project implemented in 1993 - 
1996 with Canada, the potentials of airborne SAR data 
for land use classification (5) and geological information 
extraction (8) was researched in detail. Fractal analysis 
and neural network technique (4) proved successful in 
digital land use classification using SAR data in Kedah 
state. The SAR data enhanced visual analysis and 
understanding of the geology of Tubau-Bukit Lumut, 
Bintulu area (8). 

In collaboration with NASA of USA, Malaysia is 
currently implementing AIRSAR PACRIM programme 
scheduled for completion during 1996 - 1999. The main 
objective of the programme is to acquire airborne 
polarimetric AIRSAR and interferometric TOPSAR data 
over Malaysia for research in terrain analysis, land 
use/cover change detection, forest density monitoring, 
coastal zone information extraction and enhancing 
understanding of local geological formation. 

With the establishment facilities like Microwave 
Anechoic Chamber in 1995 at the University of Malaya 

for SAR polametric and biostatic measurements (6) and 
another similar one with wider frequency range planned 
at MACRES in 1999, SAR research for backscatter 
studies as reported above is expected to be tremendously 
augmented. 

Remote Sensing and GIS Integration 

Multi-layered resource and environmental data 
analysis using the integration of remote sensing and GIS 
technologies is receiving increasing application in 
Malaysia expecially in the implimentation of 
development projects. This is an indication that the 
combined use of these technologies is moving towards 
operational mode. Successful applicaions of remote 
sensing/GIS integration can be seen in projects like 
agro-ecology mapping (9), soil erosion risk assessment 
and hydrological modelling in Malaysia. 

MACRES is presently undertaking a project under the 
request of Economic Planning Unit of the Prime Minister 
Department to generate a database using the integration 
of remote sensing and GIS for National Resources and 
Environmental Management, NAREM, in short. The 
database for NAREM will comprise both land and water 
resources information generated basically from remote 
sensing data. Derived information like slope stability, 
water quality, mineral potential and agro-ecology are 
anticipated deliverables in the GIS environment. 
Decision on development options of a specific area, 
resides on a decision support system incorporated also in 
NAREM, which takes into account socio-economic and 
other policy considerations. 

Future research in futher enhancing the combined use 
of remote sensing and GIS will focuss on the 
development of expert systems incorporating both 
physical and empirical models suitable to Malaysian 
conditions, for multi - layered GIS analysis. 

In most cases the integration of remote sensing and 
GIS has been unidirectional, that is from remote sensing 
into GIS to update its database comprising mainly of 
layers of information collected from remote sensing and 
other sources. The reverse direction from GIS into 
remote sensing has not been fully exploited in Malaysia 
and research in this area is also being given priority as 
there is vast potential for GIS inputs to improve 
classification outputs from remote sensing data. 

Multi-sensor Data Fusion 

Malaysia's experience in the fusion of datasets from 
different sensors and platforms for thematic mapping is 
still limited. Research in this direction is essentail to 
take advantage of the present availibility of several 
optical and SAR systems. 
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Complementary use of optical and SAR satellite data for 
land cover mapping shows that, depending on choice of 
bandwidths SAR data by themselves are unsuitable for 
land cover mapping. Combined with optical data there is 
little advantage in generating more precise land cover 
map. With the recent launch of high resolution optical 
satellites such as the IRS-1C and all weather capability 
Radarsat, there is potential in combining the two datasets 
for more reliable land cover mapping. 

SAR and optical satellite data fusion for hydrocarbon 
and mineral potential explorations is an area of potential 
where future research will be focussed. 

Production of precision coded satellite image maps 
requires data fusion to resolve cloud cover problems. 
Mosaicking of these datasets to ensure geometric 
accuracy and to remove radiometric anomalies is another 
focus for research. 

CONCLUSION 

Under the coordination of MACRES, Malaysia will 
continue to intensify research efforts in three main focus 
areas: microwave remote sensing, remote sensing and 
GIS integration and multi-sensor data fusion. This 
together with capacity building programmes covering 
both human resource and infra-structure development 
will set the country to move forward in operationalising 
the use of remote sensing and related technologies for 
national development. 
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Abstract — The microwave remote sensing research activities 
at the University of Malaya, Malaysia, is being carried out 
mainly at the Electrical Engineering Department. Various 
types of studies are conducted which include (a) development 
of convenient, practical and physically based scattering and 
emission models to elucidate multiple scattering processes in 
different kinds of random media; (b) development of 
classification and parameter retrieval algorithms for SAR 
imagery; (c) measurements and modelling of dielectric 
properties of tropical vegetative samples. Based on measured 
data over a frequency spectrum 2-14 GHz, a dielectric model 
using dual-dispersion technique has been formulated to 
predict dielectric constants of rubber and oil palm leaves at 
various moisture contents, and (d) monostatic and bistatic 
radar cross-section measurements in a microwave anechoic 
chamber. This paper gives an overview of these activities for 
the past decade. 

1. INTRODUCTION 

Microwave remote sensing has become one of the targeted 
areas of intensified research in Malaysia for earth resources 
monitoring and management. This is primarily due to the 
capability of microwave to penetrate cloud covers and to 
transmit through rain since these two reasons limit the use of 
optical imagery. In the 80's, the Microwave Remote Sensing 
Research group at the University of Malaya started by 
concentrating on the development of theoretical models to 
understand electromagnetic wave-target interaction 
mechansims in random media such as vegetation and forest. 
Then the research work has been extended to other areas 
which include development of classification and parameter 
retrieval techniques and algorithms, and laboratory and field 
experiments; as well as in application areas. Based on 
measured data on rubber and oil palm leaves, a semi- 
empirical dielectric model using dual-dispersion technique 
has also been developed. With the setting up of a microwave 
anechoic chamber in 1995 to support polarimetric and 
bistatic measurement in the frequency range of 2-18 GHz, 
many types of measurement activities within the university 

and collaboration projects with outside research agencies are 
being conducted. 

2. MONTE CARLO MODELS 

The complex vector multiple scattering problem for 
propagation and scattering of em wave in a random medium 
is treated by a Monte Carlo formulation, in which an incident 
beam of photons is progressively scattered by scattering 
centres in the medium. The theory characterizes each 
scattering event by functions describing the probability of the 
photons being scattered into different directions, or absorbed 
by the scatterer. The process is tracked until the photon flux 
is sufficiently attenuated or is backscattered into the receiver. 
Several reduction techniques are introduced to reduce the 
computation time required to achieve acceptable ensemble 
averages of the statistics. This method of modelling allows 
the multiple scattering process to be studied in great details 
with different combinations of different types of scattering 
centres in multi-layered geometries. This Monte Carlo model 
has been applied to study microwave radar backscatter from 
(a) vegetation canopies and forest stands [1-2] 
(b) sea-ice [3] 
(c) wet snow [4]. 

These complex natural media are modelled as multiple layers 
of ellipsoidal dielectric scatterers of various shapes, 
representing the components of the medium such as leaves, 
stems, branches, trunks in the case of vegetation; air bubbles 
in the case of sea-ice; or water inclusions in the case of snow. 
These component scatterers are embedded in a suitable 
background medium and backed by a rough ground surfaces. 
Figure 1 shows typical comparisons of the theoretical 
calculations with measured data when the model is applied to 
a forest stand. 

Recently, a phase matrix has been developed to deal with 
densed random media [5]. In the formulation, both amplitude 
and phase correction are included to take into account the 
electrically dense medium effect. 
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3. LANDUSE CLASSIFICATION OF SAR IMAGES 

Natural objects generally present self-similarity and self- 
affinity in their shapes, structures and groupings. Since the 
SAR images are basically taken on natural terrains, 
classification of landuse can be performed based on the 
fractal analysis. A project is currently underway to study the 
SAR images on a GlobeSAR site in Kedah, Malaysia using 
fractal dimension of the images as an additional input to a 
neural network classifier. This fractal dimension corresponds 
closely to our general conception of the "roughness" of the 
intensity surface. Preliminary results [6] show that fractal 
analysis is useful in classifying the respective sea, urban, 
forested and paddy areas. 

The variations of ss, vfw, vb and the ionic conductivity 
of aqueous solution a with gravimetric moisture Mg are 
obtained by minimization of mean-square errors between 
measured data for rubber and oil palm leaf samples and 
calculations from the model, yielding the following values: 

ES =1.7-0.74Mg+6.16M^ 

vfw = Mg(0.756Mg - 0.1333) 

(1.5306Mg - 2.5909M;; + 1.4355M| 

(1-0.60Mg) 

a = 1.27 

.(3) 

•(4) 

(5) 

(6) 

Figure 2 shows a typical comparison of the model with 
measurements on rubber leaf samples at 10.0 GHz. 

4. DIELECTRIC MODEL FOR TROPICAL LEAVES 5. CONTROLLED LABORATORY EXPERIMENTS 

Dielectric properties of vegetation samples are important 
parameters to be investigated for they describe the linkage 
between electromagnetic properties and physical properties 
of the samples. The dielectric constants are required in 
theoretical models that calculate propagation constants and 
radar backscatter coefficients from a vegetation medium. 
Investigation into the ecology of tropical plants shows that 
free-water volume fraction of the moisture content of a 
tropical leaf should be higher when compared to that of a leaf 
from the temperate country. Experiments have been 
conducted in the Department of Electrical Engineering, 
University of Malaya, to measure dielectric constants of 
tropical leaves (especially rubber and oil palm, which are two 
commercial plants in Malaysia) as a function of frequency 
(4-18 GHz) and moisture content (10-85%). The waveguide 
thin sheet method is employed. A piece of leaf sample is 
sandwiched between two waveguide sections. The reflection 
coefficient is measured using a Network Analyser. The 
dielectric constant is calculated using the reflection 
coefficient. Using the dual-dispersion model in Ulaby and 
El-Rayes [7], the dielectric constant of a tropical leaf is 
given as a simple additive mixture of a non-dispersive 
residual component, ES; a free water component, vfwsw; and a 
bulk vegetation-bound water component, vbsb: 

e = £s+Vfw£w+Vb£b   (1) 

where vfw is the volume fraction of water and sw the free 
water dielectric constant; and vb the volume fraction of the 
bulk vegetation-bound water component and sb its dielectric 
constant. Based on the measured data, the following 
empirical formula is obtained: 

T4.9 + - 
73 5 

1 + jf 
19.7 

-j—] + vb[2.9 + 
55 0 

1 + ( Jf )°-5 

0.18 

rrJ ..(2) 

The Electrical Engineering Department has a polarimetric 
bistatic microwave anechoic chamber for monostatic and 
bistatic radar cross-section measurements. It covers a 
frequency range of 2 to 18 GHz. The structure of the 
chamber is a quarter goedesic dome with a 12 foot radius, 
and raised 3 feet above the floor. The chamber consists of 10 
dual-polarized quad-ridge antennas. The antenna railing 
system consists of 6 rails 30 degrees apart in azimuth angle 
behind the dome-shaped structure. The six antennas can be 
moved along the rails in the elevation direction, with the 
microwave beam pointing at the centre of the dome where 
the target is located. This design thus enables a very large 
combination of incident and scattering angles in bistatic 
measurements. 4 transmit antennas are fixed at different 
elevation angles next to one of the antenna rails. Using an 
azimuth-over-elevation positioner as the pedestal for the 
target, and by positioning the movable antenna along that rail 
beside those fixed transmit antennas, monostatic 
measurements with incident angles ranging from 0 - 90 
degrees can be accomplished (see Figure 3) [8]. A vector 
network analyser is used to measure the amplitude and phase 
of the radar returns. IEEE-488.2 interface bus is used to 
control various hardware components as well as to perform 
data acquisitions. A computer program was written to 
automate the measurement system. Data are stored in raw 
format and processed later with own-designed dedicated 
software so that different processing methods and parameters 
can be applied. Using a time-domain gating technique to 
remove spurious responses due to target-pedestal coupling 
effect, a measurement precision of 0.5dB can be achieved. 
Many types of measurement activities are being conducted 
and planned for the microwave anechoic chamber such as 
bistatic scattering from discrete sparse/dense random media 
with known scatterer size and statistically known positions. 
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Figure 2: Comparison of measurement and model for 
rubber leaf samples at 10.0GHz 

Figure 1: Comparison of Monte Carlo calculations with 
measurements from Kansas deciduos trees at 
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Abstract—An efficient coastland management is 
one of the major land development policy in 
Taiwan, an island with about  1780 miles of 
shoreline and most of the population resides in 
the west coast. One main mission of the policy is 
to  closely  investigate  and  watch the  coastal 
environment in order to protect island's limited 
land resources.    In this study we use satellite 
remote sensing imagery data to monitor the near- 
shore   environment   in   the   coastal   area.   In 
particular, the use of ERS1/2 SAR data to detect 
oil slicks near shore is described here. Because 
the presence of oil slicks on sea surface increases 
the surface tension of sea waterf the surface wave 
motion is significantly depressed or disappeared. 
This effect will relatively lower the sea surface 
roughness, and accordingly, will decrease the 
radar   backscattered   energy.   These   damping 
effects are now well understood and it is such 
effects that enable the oil slicks to be discernible 
from the radar image. In this study, we shall 
concern    with    the    digital    techniques    that 
effectively delineates the oil slicks pattern from 
SAR image. Directly using SAR images to detect 
the    oil     slicks,     however,     is    not    fully 
straightforward because of complex process of 
SAR imaging mechanism and the existing of 
inherent    multiplicative    speckle    noise.    The 
technique we developed here is based on the fact 
that the oil slicks on the image gray value surface 
is a concave area.    In order to correctly identify 
these concave areas and suppress the effect of 
speckle    noise,    an    image    pyramid    with 
multiresolution layers is generated sequentially 
from the  original  image.     Then a top-down 
approach, which applies both first and second 
order    derivative    operators,    Difference    of 
Gaussian(DoG) and Laplace of Gaussian(LoG), 
to the image pyramid,  is used to detect oil 
patches. Two ERS-1 SAR images acquired over 

Taiwan water area on August 5,1994 and 
September 5,1994 were used for testing. It was 
indicated that the proposed method effectively 
depresses the speckle noise and other sea clutter 
signal, and clearly enhances the oil slicks pattern. 

INTRODUCTION 

This study concerns with detection of oil spill on 
ocean     surface     using     Synthetic     Aperture 
Radar(SAR) image. Because the presence of oil 
slicks on sea surface increases the surface tension 
of sea water, the surface wave is significantly 
depressed or disappeared. This implies that the 
roughness of sea surface is lower if oil slick 
exists. It is now well understood that the radar 
backscattered  energy  is  highly  dependent  on 
surface roughness[l,2]. Therefore, the gray value 
surface  of such radar  image  will  become  a 
concave area if that area is corresponding to an 
oil slick. In this work, we propose a scheme to 
detect concave area on the SAR images and infer 
that area is covered by oil slick.    Generally, 
SAR   images   are   not   generated   by   direct 
interactions with ground target. The information 
on SAR images comes from some secondary 
effect,    for    example,    variation    of   surface 
roughness.   The   major   problem   is   that   the 
parameters that affect the roughness of sea water 
are too many, to name a few, wind field on sea 
surface, internal wave of sea water, etc. This 
problem becomes very severe when the area of 
interest is large. Another drawback is that the 
SAR system uses coherent polarized wave as a 
detection source. As a result, the SAR images 
inherently contain "multiplicative speckle noise" 
and further complicates the detection of oil slicks. 
Because   of   the   reasons   mentioned   above, 
traditional   image   classification   technique   is 
clearly not suitable for this application, especially 
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for some algorithms using pixel by pixel 
approach. In this study we propose a top-down 
scheme to overcome the aforementioned 
difficulties. The scheme basically includes two 
major components: (1) reducing original image 
resolution serially and generating an image 
pyramid, (2) applying Laplace of Gaussian[3] 
and Difference of Gaussian[3] to the multilayers 
of the image pyramid to locate the position of oil 
slicks. The detailed methodology will be 
addressed in next section. The following section 
will present the experimental results and 
discussion. Some conclusion remarks will be 
given in the final section. 

METHOD 

The proposed method basically consists of two 
major stages. At first stage, an image pyramid 
is generated from the original image. The 
following stage a top-down detection method is 
applied to the image pyramid. Two major 
stages are described as follows: 

The Image Pyramid Generation 

Directly using SAR images to detect the oil slicks, 
to some extent, is not sufficiently reliable 
because of complex process of SAR imaging 
mechanism and existing of inherent 
multiplicative speckle noise. Therefore, in order 
to decrease the effect of noise and other sea 
clutter and to perform the following oil detection, 
a unit of 2 by 2 pixels is used to reduce the 
original image sequentially and generate an 
image pyramid with a multilayer structure. 
Note that the top level of the pyramid is the 
coarsest image and the bottom of the pyramid is 
the original image. 

The Top-down Detection Scheme 

It was mentioned that gray values of oil slick are 
lower than that of background. That means that 
oil slicks on image gray value surface is a 
concave area and we can use a second order 
derivative operator, Laplace of Gaussian(LoG)[3], 
to detect such area.    It was firstly repeatedly 

applied LoG over a W by W window on the 
coarsest image of the image pyramid.   At this 
point, we can take the negative portion of the 
image and delineate the concave areas in image 
gray value surface.    However, not all of such 
concave  areas  are  oil  slicks  coverage,  some 
nature phenomena, for instance, the variation of 
wind field has similar effect. Nevertheless, oil 
film   and   sea   water   are   electromagnetically 
different. In fact, the gradient of image gray value 
on the boundary of oil-water normally is greater 
than  that  made  by  variation  of wind  field. 
Therefore,   a   first   order   derivative   operator, 
Difference of Gaussian (DoG)[3],  is used to 
measure  the   sharpness   of the   edge   on  the 
boundary of the slicks   detected by the previous 
procedure.   In   order   to  justify   whether   the 
detected area is oil slick or not, a criterion should 
be empirically chosen.. If the slick boundary 
pixels   whose   sharpness   is   greater   than   the 
selected threshold, they are classified as an oil 
slick boundary.    Because the oil slicks may vary 
in size, the window size of operator also has to be 
adjusted accordingly. In this paper, we apply 
lower resolution window (larger window size) to 
detect the oil slicks initially and then apply 
higher resolution window (smaller window size) 
to detect finer oil slicks based on the oil slicks 
detected by the lower resolution windows. This 
approach effectively reduces the sea clutter and 
preserves subtle variations of oil slicks.    Up to 
this point, the oil slicks are found only in the 
coarsest image.    The next step we will use these 
oil slick pixels as the seeds to perform further 
refinement from the top to down layers in the 
image pyramid.. First of all, LoG is used again to 
further delineate small variation of oil slicks on 
edge portion.    This coarse to fine multilayer 
approach is to assure that the pixels detected is 
the oil slicks.    Since there may be some small 
convex surfaces and can not be detected with 
LoG   plus   DoG   procedure   alone.   A   region 
growing method[4] is used along to find out the 
rest of oil slicks. 

EXPERIMENT RESULT 

We selected two ERS-1 SAR images to test the 
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proposed scheme. Two Images were acquired 
on August 5, 1994, and September 5, 1994, 
respectively. The subscenes were cut from 
original full scenes for testing. The image sizes 
of subscenes are 3000 by 3000 pixels and 2048 
by 2048 pixels, respectively. In Figures 1 and 2, 
the dark areas are the detected oil slicks with 
proposed scheme. Figures 3 and 4 are part of 
enlarged oil slicks. It is worth to note that the 
subtle variations of the oil slick edge was 
detected. 

CONCLUSION 

Three conclusive points can be made from this 
study: 
(1) From the experimental results, the proposed 
scheme is able to effectively suppress the speckle 
noise and other sea clutter, and clearly enhances 
the oil slicks pattern. 
(2) In spite of some of empirical parameters 
introduced in the proposed scheme, acceptable 
result were obtained when the same set of 
parameters are applied to different images. Thus, 
the applicability and robustness of the proposed 
scheme is demonstrated. 
(3) Because the field test of oil slicks spilled over 
on sea is extremely difficult, if not impossible, 
we have not sufficient ground truth as an 
evidence. Nevertheless, the effectiveness of the 
presented method was shown. Further validation 
may be required, if so necessary. 
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Fig. 1 The detected oil slicks for test SAR image I 

Fig. 2 The detected oil slicks for test SAR image II 

Fig. 3 Part of enlarged oil slicks of test SAR image I 

Fig. 4 Part of enlarged oil slicks of test SAR image II 
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Abstract — In an electrically dense medium, when the spacing 
between the scatterers is comparable to the wavelength, it is 
important to incorporate the near field effect, both amplitude 
and phase, into the backscattering theory. In this paper, a 
simple backscatter theory based on Radiative Transfer (RT) 
Theory is presented. The random medium, bounded on top 
and bottom by a rough surface, contains a layer of randomly 
distributed spherical scatterers. The phase matrix for these 
closely packed discrete scatterers is obtained using the Dense 
Medium Phase and Amplitude Correction Theory (DM- 
PACT) [1,2] and the rough surface is characterized by the 
IEM model [3]. The integro-differential equations of 
Radiative Transfer Theory are solved iteratively up to second 
order solutions. Scattering terms for direct surface, direct 
volume, surface-volume and volume-volume interactions are 
identified. These results are later compared with full model 
solution using matrix doubling method. 

INTRODUCTION 

It is vital to study the scattering mechanisms in a dense 
medium in order to predict the backscattering returns. Over 
the years, research has shown that for a random medium with 
high volume fraction of scatterers, the incoherent scattering 
approach to the problem is no longer valid [1]. When the 
spacing between the scatterers is comparable to the 
wavelength, the medium is an electrically dense medium. For 
these scatterers which are electrically close to each other, the 
calculated scattered field should include the near field 
amplitude terms and the phase coherent effect of the volume of 
scatterers. This incorporation of near field effect has been 
implemented through the Dense Medium Phase and 
Amplitude Correction Method [1,2], where both the 
amplitude correction and the phase correction are applied on 
the calculation of volume phase matrix of the spherical 
scatterers. This corrected phase matrix is later used in the 
radiative transfer equations. The medium is modeled as a 
layer embedded with the randomly distributed scatterers, 
bounded on top and bottom by a rough surface, which is 
characterized by the IEM model. The integro-differential 
equations of radiative transfer theory are solved iteratively up 
to second order solutions with respect to the albedo of the 
medium. The respective solution terms are later regrouped 
with respect to the scattering mechanisms involved. In this 
paper, relative contributions of three scattering mechanisms 
(direct surface, surface-volume and volume interactions) are 
investigated. The volume interactions include both direct 

volume and volume-volume interactions. To examine the 
range of validity of the simple model, the calculated results 
are compared with those of full model solution using matrix 
doubling method [3,4]. For co-polarized returns, predictions 
from the simple backscatter model solution compare well 
with those from the matrix doubling solution at low 
frequency when low order scattering is significant. At high 
frequency range, when the wavelength is short compared to 
the spacing between scatterers, it is found that far field phase 
matrix is applicable because the medium is now electrically 
sparse even though the medium may be spatially dense. For 
cross-polarized returns, since they are mainly due to high 
order scattering, the predictions from the simple 
backscattering model are not satisfactory as the solution 
contains only up to second order interactions. 

FORMULATION 

The dense medium with randomly distributed discrete 
spherical scatterers is shown in Fig. 1. Both the top (SI) and 
the bottom (S2) surfaces are characterized by the surface r.m.s. 
height and the correlation length. 

The propagation and scattering of waves inside the random 
medium can be described by the radiative transfer equation: 

cosQ — =-Ker+\ PIdQ. 
dz 

(1) 

where /   is the Stokes vector and    K„   is the extinction 

matrix of the medium. The volume phase matrix, P is 
obtained through the Dense Medium Phase and Amplitude 
Correction Method [1] and is given as 

/Ye,(|>;e',f j=/|¥|2\   -5 = "vv     "vh 

Phv    Phh. 
(2) 

where (| *F|   )   is the dense medium phase correction factor 

developed using a simple antenna array concept [1]. When 

the medium is sparse, fl*?!   ) will reduce to the number of 

scatterers per unit volume, n0. The amplitude correction has 

been incorporated by modifying the Stokes matrix S of a 
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Fig. 1. Physical configuration of the random medium. 

single sphere [5]. 

It is assumed that the transmission across the top boundary 
can be represented by the Fresnel power transmission T. In 
this paper, scattering process only up to second order volume 
scattering process is included. For the top and the bottom 
rough surfaces, only the single-scatter surface backscattering 
process for IEM model is considered. 

The radiative transfer equation in (1) is then solved iteratively 
with the albedo of the medium as the iteration parameter [3]. 
Expressions up to second order solutions are obtained. The 
zeroth, first and second order solutions of (1) are listed below: 

a    (0) = as    = a-51 +as2 
(3) 

°pq(V = <S
q(m->s2) +cvs (s2~->m) + a*   (up,down) 

(4) 
°pq (V = °pq (UP< UP< down) + Ov

pg (up, down, down) 

(5) 

where q is the incident field polarisation and p is the 
scattered field polarisation. The superscripts s, vs and v are 
used to indicate the surface scattering terms, the surface- 
volume interaction terms and the volume scattering terms, 

respectively. Gpq and ofq are the surface scattering terms 

from the top and bottom rough surfaces, respectively. Gvv {m 

-> s2) accounts for the volume to bottom surface scattering 

terms, whereas <Svp
s
q(s2 -» m) denotes the bottom surface to 

volume scattering terms. For volume scattering terms, 

<5pq(up, down) represents the single volume scattering 

process where the downward incident waves are scattered back 

in the upward direction, whereas  Ov    (up, up, down) and 

<Jvpq (up, down, down) are the double volume scattering 

terms for incident waves scattered following the down-up-up 
and the down-down-up sequences, respectively. 

The scattering terms in (3), (4) and (5) are then regrouped 
into the following three categories, depending on the 
scattering mechanisms involved. 

pq    upq^upg 

<Sq = <Um^ s2> +<C (&-> m) 

av   = ov   (up,down)+av   (up,up,down) 

+ Gpg (up, down, down) 

a    re,, fee,, <)>,)= a;  + a- + al 'pq 

(6) 

(7) 

(8) 

(9) 

The surface contribution terms, the surface-volume 
contribution terms and the volume contribution terms are 
represented by (6), (7) and (8) respectively. The total 
backscattering coefficient from the medium is given by (9). 

RESULTS AND DISCUSSION 

In order to investigate the range of validity of the simple 
backscattering model, a theoretical study is carried out. For 
the physical configuration shown in Fig. 1, the thickness of 
the layer is chosen to be 0.5 m and the volume fraction of the 
randomly distributed spheres (radius a = 0.5 mm) is 30%. 
The relative permittivity of the background medium is 
selected to be unity and the scatterers embedded within have 
a relative permittivity of 3.15 + z'0.015. The lower half-space 
has a relative permittivity of 5.0. The rms height and 
correlation length for both the top and bottom surfaces are 
(0.14 cm, 0.7 cm) and (0.056 cm, 0.28 cm) respectively. 
Two of the parameters used in DM-PACT [2], a and /, are 
chosen to be 0.55 c/and 0.12 mm respectively, where dis the 
average distance between adjacent scatterers. cris the standard 
deviation from mean position of the stationary Gaussian 
random process representing the random position of the 
scatterers; and / is the correlation length between two such 
processes. 

An incident angle of 15° is selected and the calculated W 
polarized backscatter from the simple model is plotted against 
the frequency (in GHz) and k0a as shown in Fig. 2. For 
comparison purposes, the matrix doubling solutions with 
DM-PACT and without DM-PACT (far field assumption 
in volume phase matrix of the scatterers) are also included in 
the same figure. It is found that at frequency lower than 40 
GHz (k0a < 0.4), there is a good match between the simple 
model predictions and the matrix doubling solutions with 
DM-PACT. However, at the high frequency end, when 
multiple scattering is dominant, the simple model, which has 
taken only up to second order volume scattering into account, 
fails to show agreement with the matrix doubling solutions 
with DM-PACT. It is also noted that at high frequency (> 40 
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Fig. 2. Comparison of aVv at 15° incident angle using different models. Fig. 3. Contributions of different scattering mechanisms at incident angle of 
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GHz), when the medium becomes electrically sparse, the 
DM-PACT matrix doubling solutions approach those of the 
far field matrix doubling solutions. 

Fig. 3. shows the relative contributions of different scattering 
mechanisms at incident angle of 15° for VV backscatter. It is 
shown that at frequency lower than 18 GHz, surface scattering 
is dominant, as the long wavelength waves penetrate through 
the random medium with little scattering loss. When the 
frequency becomes higher (> 18 GHz), the increasing activity 
of volume scattering (direct and multiple) in the layer makes 
the volume scattering contribution more important than the 
direct surface scattering contribution. It is also noted that 
although the surface-volume scattering curve shows an 
increasing trend initially, its backscattering contribution is 
too small to be significant. When the frequency becomes even 
higher, increasing scattering loss through the medium allows 
less energy to reach the bottom surface and thus decreases the 
surface-volume scattering contribution. 

For cross-polarized returns, contributions from high order of 
volume scattering and multiple scattering between the rough 
surfaces and the scatterers are important. It is found that the 
predictions from the simple model are lower than the matrix 
doubling solutions. Thus, more higher order scattering terms 
may have to be incorporated into the simple model for better 
prediction. 

low frequency when the medium is electrically dense. It is 
shown that at low frequency, surface scattering is dominant, 
whereas volume scattering catches up when frequency 
becomes higher. However, the simple model is not applicable 
for calculation of cross-polarized returns. 
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Abstract - The Multiple Temporal RADARSAT images were 
used to monitor the growth status of rice in Zhaoqing test site 
of south China. The relative brightness of rice fields shows 
that the radar backscatter increases as the rice grows up, and it 
is related to the growing period and status of rice and changes 
over different seasons. 

INTRODUCTION 

Rice is the staple food in China, especially in south of 
China. Forty percentage of grain yield in China is rice. It is 
an important task for remote sensing to monitoring the 
growing status of rice, however it is limited by the image 
acquisition. We applied the multiple temporal RADARSAT 
data to this study in Zhaoqing test site of Guangdong Province. 
The image acquired at different time show that there are 
enormous changes of intensity due to the variety of rice 
growing period and status. The radar backscatter intensity 
increases as the rice grows up and drops when the rice get 
matured. This paper discusses the radar backscatter intensity 
rather than backscatter coefficient of rice in relation to its 
growth status in term of relative brightness since the 
calibrated RADARSAT data has not been available for this 
study at this moment. 

RICE GROWTH CALENDAR 

Zhaoqing is the only one rice export prefecture in the region 
of Pearl River Delta. It is very important in the sense of 
agriculture, and produces a large mount of rice. 

It reaps two rice crops a year in Zhaoqing, the early season 
rice and the late season rice. Fig. 1 shows the rice growth 
calendar over a year. There are five major growth periods in a 
life of rice: 1) Transplant period: it transplants the seedling of 
rice from the seedbed to the paddy field, the transplanting date 
depends on the weather and temperature; 2) Seedling 
developing period: the seedling splits up and develops 
sufficiently in certain mount of quantity; 3) Ear differentiation 
period: the young ear starts the differentiation; 4) Heading 
period: it starts to form the heading; 5) Mature period: the rice 
are maturing and get ready for harvest. The date of those five 
periods for early season rice are April 4-10, April 20-25, May 
10-30, June 10-25, July 15-31; the late season rice are Aug. 1- 
10, Aug. 10-20, Sept. 1-30, Oct. 1-20, Nov. 1-25. 

DATA ACQUISITION 

There is a multiple temporal RADARSAT image sets 
acquired from April to December in the morning for the 
descending orbit facing west and at the afternoon for the 
ascending orbit facing east. The imaging date and mode are: 1) 
June 17, Aug. 4, Sept. 21, Oct. 15, Nov. 8, Dec. 2 in Fine 4 
Mode and descending pass, 2) March 6, June 10, Aug. 28 in 
Standard 5 or 6 mode and descending pass, 3) April 25, Aug. 
23, Sept. 16, Nov. 27 in Standard 6 mode and ascending pass. 

RELATIVE BRIGHTNESS OF RICE 

As we know that water surface acts as a specula reflector 
and has a little return to SAR antenna. In order to minimize 
the variations over the scenes of RADARSAT image acquired 
at 13 dates, we take the difference of a target and the water 
surface to see the brightness changes of rice over a year. 

The brightness of RADARSAT is defined as 

ß°Jk=101oglO(DNJk
1+A3)/A2J 

where DN is a digital number of a pixel's intensity, 
A3, A2j are constants, the range dependent LUT which is 

supplied with RADARSAT product. 

Because RADARSAT data we have are not calibrated, we 
use the radar backscatter difference of target and water to 
discuss the relative brightness of the target over the imaging 
time (Shao, 1996, 1997, Guo, 1997), here rice is the target, 
we assume that the effect of the range can be ignored, then 

ßr°=ßV»-ß° 101ogl0(DN jk(T)
2)/(DNik(W)

2) 

Fig. 2 is produced by above approach. It shows the relative 
brightness of four types of rice. The DN number is taken from 
the training area defined for classification within 
RADARSAT image acquired on March 6, April 25, June 17, 
Aug.4, Aug. 23, Sept. 21, Oct. 15, Nov. 8, Dec. 2. F stands 
for Fine mode, D for Standard mode/descending pass, A for 
Standard mode/ascending. 

Although there are two breaks of data acquisition, one is in 
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May, one is in July, we still can see the variations in relative 
brightness of rice. The R2 in fig.2 represents the moderate 
mature type of rice which is the most common rice species in 
that region with 100 days life. It had dense seedling on April 
25, got medium radar brightness, and reaches its peak volume 
with highest radar brightness, was reaped at the end of July; 
then transplanted again before Aug. 4. The small loose 
seedling gives weak response to SAR. As it grows up, the 
radar brightness increases. It reaches the highest point in June 
for early season rice, and in October for late season rice. R3 in 
fig. 2 is the late mature type of rice with about 120 days life 
and transplanted late than R2. It is obvious in fig. 2 that there 
is a delay of its relative brightness increasing compare to R2. 
Rl represents a field which was a fish pond in Spring, then 
become a rice field in Autumn, R4 is the other way round. 

The brightness of rice fields only have small changes, but 
there are still a little tone variations related to the rice growing 
status. 

CONCLUSIONS 

This paper is a primary result of our study. It shows that the 
RADARSAT image is an effective tool for rice growth status 
monitoring with its excellent target detecting capability. But it 
is still not clear enough that what part, which component, 
what kind of geometry characteristics of rice decide its 
response to SAR antenna, decide the intensity of the image, 
and its relationship to incidence angle and the orientation of 
rice. It is anticipated that the rice backscatter modeling 
research will give further explanation. 

RICE GROWTH STATUS MONITORING REFERENCE 

The multiple temporal RADARSAT data of 13 scenes were 
all registered together in three groups of Fine, Standard/ 
descending, Standard/ascending and filtered by Lee filter in 
PCI image processing system. The combination of images 
acquired at different dates helps us to understand the 
variations of rice over seasons and the differences in between 
of different type of rice. Fig. 3 is a subscene (1100 pixel x 
1800 line) of multiple temporal RADARSAT image of Fine 
mode. The left one was acquired on Oct. 15, Aug. 4, June 17 
(R, G, B), the right one was acquired on Oct. 15, Nov. 8, Sept. 
21 (R, G, B). There is a big contrast of brightness of rice in 
left image, R2 in magenta , R3 in yellow in central of image, 
Rl in red, R4 in light blue, water in black, euryale ferox, a 
kind of water plant in gray. The variations of the tone is 
related to the growing status of the agricultural vegetation. 
Image acquired on Aug. 4 is in green in left image, R2 was 
just transplanted, has a little response to radar, so shows up as 
magenta. R3 is in mature status with strong return to SAR 
antenna. There is much less variations in right image, because 
three of images are all taken from Autumn of late season rice. 
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Fig. 2 Relative Brightness of Rice 

Fig. 3 Multiple Temporal RADARSAT Image of Fine Mode, 
left acquired on Oct. 15, Aug. 4, June 17 (R, G, B), right acquired on Oct. 15, Nov. 8, Sept. 21 (R, G, B). 
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INTRODUCTION PACRIM 1996 

A unique opportunity was afforded Remote Sensing 
scientists in November 1993 to acquire state-of-the-art radar 
data over Australian test sites. CSIRO-COSSA and the 
University of New South Wales Centre for Remote Sensing 
and GIS collaborated with NASA's Mission to Planet Earth 
Airborne Sciences Program, and the Jet Propulsion 
Laboratory (JPL) to bring AIRSAR, the world's most 
advanced synthetic aperture radar system to Australia. 

AIRSAR operates in a full polarimetric mode at L-Band 
(24.5cm), C-Band (5.6cm) and P-Band (68cm). In addition 
to this three-frequency polarimetric capability called 
POLS AR, the incorporation of extra C- and L-band antennas 
permits interferometric data known äs TOPSAR to be 
acquired. 

During November 1993 this system acquired data over 55 
sites on the Australian continent for 35 Principal 
Investigators including both US and Australian scientists 
and collaborators. This data has been processed and 
analysed and the research and science findings presented in 
Proceedings of the International Workshop on Radar Image 
Processing and Applications, Sydney, 6-8 November 1995, 
(available from the author). 

AIRSAR Australia 1993 has made a significant contribution, 
both in terms of providing the Australian scientific 
community with advanced polarimetric and interferometric 
radar data not previously available and in fostering a 
research community interested in using the unique 
characteristics of radar to analyse a range of environmental 
surfaces and conditions. The program has also resulted in a 
significant increase in technology transfer in bringing 
together an Australian community not previously 
experienced in using polarimetric radar and in providing a 
knowledge base from which radar can be integrated into 
research aimed at determining geophysical parameters of 
surface materials. This research community has benefited 
significantly from collaboration with researchers from the 
JPL Radar Sciences Group in Pasadena, California. 

During a seven week deployment in November and 
December 1996, NASA's DC-8 aircraft carrying the Jet 
Propulsion Laboratory's Airborne Synthetic Aperture Radar 
System (AIRSAR), undertook a major data acquisition 
program in the Australian-ASEAN region. 

Known as the Pacific Rim (PACRIM) Mission, data was 
acquired over sites in Hawaii, New Zealand, Australia, 
Papua New Guinea, Brunei, Philippines, Taiwan, Cambodia, 
Thailand and Malaysia. Distribution of the sites covered in 
the ASEAN region is shown in Fig 1. 

Each country was responsible for identifying sites and 
determining the scientific objectives of the mission as it 
related to their own national resource priorities. Workshops 
and seminars were held in each country before the 
deployment to instruct potential researchers in the theory 
and techniques of polarimetric radar and interferometry, to 
discuss likely applications, and to promote collaborative 
scientific research. 

Locationof AIRSAR FlightLines 
Collected During Pacffic Rim Deployment 

■■ (Nov.-Dec. 1996J 

Fig. 1. Location of AIRSAR Flight Lines Collected 
During Pacific Rim Deployment (Nov-Dec. 1996) 
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Priorities identified as of interest to all participating 
countries include: 

• geologic studies embracing geomorphic studies, rock 
weathering and erosional processes, tectonics and 
geologic boundaries, geobotany, radar stereogrammetry, 
DEM and interferometry. 

• hydrological investigations which cover wetland, humid 
and arid environment characterisation, and in particular, 
the assessment of soil moisture conditions 

• mapping and identifying vegetation types, assessing the 
biophysical properties of plant canopies, modelling tree 
morphologies and examining soil-vegetation boundary 
layer. 

• oceanographic studies to analyse ocean wave spectra, 
internal wave-current interaction and detection of current- 
system boundaries, oceanic fronts and mesoscale eddies. 

It is anticipated that this data will help provide information 
for the baseline characterisation of control sites in many 
different environments for the continued analysis of earth 
surface, climatic and tectonic processes, with other 
calibrated radar datasets as they become more readily 
available from satellite and other airborne radar systems. 

A program of collaborative research studies involving 
scientists from all countries involved is ongoing and 
programmed for the next three years. This started with a 
Science and Image Processing Workshop at JPL in Pasadena 
in March 1997 and will be followed with a Science and 
Applications Workshop at the Malaysian Centre for Remote 
Sensing (MACRES) in August 1997. 
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