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Cherny, LV, and V.P. Nakonechny

Simulation of Satellite Measurements of Radiance over Water for Operational Testing of MODIS Ocean Color
Algorithms
Fleig, A.J., and K. Yang

Resolution Enhancement in SAR Images
Guglielmi, V., E. Castanie and P. Piau

Diffuse Reflectance of the Optically Deep Sea Under Combined Illumination of Its Surface

Haltrin, VI
Light Scattering Coefficient of Seawater for Arbitrary Concentrations of Hydrosols :
Haltrin, V.I

Multi-Wavelength Laser Scattering at the Air-Sea Interface
Lin, C.S.

The MUBEX Experiment - Validation of Satellite Data and Air-Sea Interaction Studies at Mutsu Bay, Japan
Llewellyn-Jones, D.T,, LM. Parkes, D.T,, R. Yokoyama, S. Tamba, M. Takagi, C.T. Mutlow,
T. Nightingale, C. Donlan and V. Bennett

Line Noise Extraction of Thermal Infrared Camera Image in Observing Sea Skin Temperature
Tamba, S., and R. Yokoyama

Spatial and Temporal Behaviors of Sea Skin Temperature Observed by Thermal Infrared Camera
Tamba, S., S. Oikawa, R. Yokoyama, L. Redley, 1. Parkes and D. Llewellyn-Jones

MUBEX: Japan and U.K. Collaboration for Mutsu Bay Sea Surface Temperature Validation Experiment
Yokoyama, R., S. Tamba, T. Souma, D. Llewellyn-Jones and 1. Parkes

Laser Spark Spectroscopy in Remote Sensing of Sea and Land Surfaces Element Analysis
Tsipenyuk, D.Yu, and M.A. Davydov

Interactive Area 17: Remote Sensing Data Processing Techniques

Simulation of Split-Window Algorithm Performance
Axelsson, S.R.J., and B. Lunden

Analysis of Single and Multi-Channel SAR Data Using Fuzzy Logic
Benz, U.

Processing and Validation of the ERS-1 Radar Altimeter Data at the Italian PAF
Celani, C., A. Bartoloni and F. Nirchio

A Visual Tool for Capturing the Knowledge of Expert Image Interpreters: A Picture is Worth More than a Thousand
Words
Crowther, P, J. Hartnett, and R.N. Williams

Data-Driven Decomposition of Mixed Pixels for Crop Area Esitmation
Gebbinck, M.S.K., and T.E. Schouten

Xvi
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Radarsat Processing Using the Desk-Top Synthetic Aperture Radar Processor NA
Goulding, M., PR. Lim, L. Wilke and P. Vachon

Congestion Data Acquisition Using High Resolution Satellite Imagery and Frequency Analysis Techniques 331
: Kim, K.H., J.H. Lee and B.G. Lee

Geoinformation Monitoring System - Gims (The Concept, Structure, Examples of Application) NA
Krapivin, VF, and A .M. Shutko

The ENVISAT-1 Advanced Synthetic Aperture Radar Generic Processor NA
Lim, PR., D.R. Stevens, D. Rae, Y.L. Desnos, H. Laur and T. Gach

A Framework for SAR Image Classification: Comparison of Co-Occurrence Method and a Gabor Based Method 335
Manian, V,, and R. Vasquez

A Network Distributed Processing System for TRMM Ground Validation NA
Merritt, J.H., N.T. Nguyen, D.B. Wolff and D. Han

Fuzzy Supervised Classification of JERS-1 SAR Data for Soil Salinity Studies 338
Metternicht, G.I

Land Cover Change Detection Using Radiometrically-Corrected Multi-Sensor Data NA
Mispan, M.R., and PM. Mather

Quality Assurance of Global Vegetation Index Compositing Algorithms Using AVHRR Data 341
van Leeuwen, W.J.D., TW. Laing and A.R. Huete

Interactive Area 18: Remote Sensing of the Ocean

Investigations of Possibilities of Using SAR Data for Monitoring of Volga Estuary and Kalmykija Shore of Caspian 347
Sea
Armand, N.A., A.S. Shmalenyuk, Y.F, Knizhnikov, V.I. Kravtsova and E.N. Baldina

Laboratory Investigations of Nonlinear Surface Wave Transformation in a Field of Two-Dimensionally 350
Inhomogeneous Currents
Bakhanov, V.V,, $.D. Bogatyrev, V1. Kazakov and O.N. Kemarskaya

Global Optimization Algorithms for Field-Wise Scatterometer Wind Estimation 353
Brown, C.G., and D.G. Long

Retrieval of Air-Water Interaction by Thermal Radio Emission Dynamics at 60 GHZ NA
Gaikovich, K.P.

Ka-Band Ocean Wave-Radar and Wave Envelope-Radar Modulation Transfer Function Measurements and Modeling NA
Grodsky, S.A., V.N. Kudryavtsey and A.N. Bol’shakov

Gulf Stream Signatures and Surface Wave Observation Using ALMAZ-1 SAR NA
Grodsky, S.A., V.N. Kudryavtsev and A.Y. lvanov

Ocean Wave Spectrum Reconstruction for ERS-1 Satellite Scatterometer Data 356
He, Y, and J. Zhao

g The Fine Grained Sediment Load of the Mississippi River: A Land Building Commodity NA
: Huh, O.K.

“NA" indicates not available at time of printing.
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Studies of Ocean Surface Processes Which Influence Climate
Jenkins, A.D., HA. Espedal, H. Drange and O.M. Johannessen

SICH-1 Real Aperture Radar Imagery of Ocean Temperature Fronts
Malinovsky, V.V,, A.V. Rodin and V.N. Kudryavtsev

Validation of Models and Algorithms for Microwave Radiometric Investigations of Tropical Cyclones
Petrenko, B.Z., A.F. Nerushev, L.I. Milekhin and G.K. Zagorin

Bistatic Model of Ocean Scattering
Picardi, G., R. Seu and S. Sorge

Azimuthal Anisotropy of Sea Surface Polarized Microwave Emission
Pospelov, M.

Simultaneous Observation of Oceanic and Atmospheric Internal Waves by Air-Bome Dual Polarization Ku-Band Side
Looking Radar
Pungin, V.G., and M 1. Mityagina

The Satellite Data “Resource” and NOAA/AVHRR for Black Sea Dynamics Investigation
Stanichy, S.V,, and D.M. Solov’ev

The Surface Active Sea Films: Properties and Dynamics
Talipova, T.

Aerocosmic Method of Investigations of Short Time Hydrodynamic Processes and Phenomena at the Surface of Seas

and Oceans
Tomilov, G.M., and V.P. Bobykina

Interactive Area 19: Remote Sensing Techniques and Instrumentation

L-Band 300-Watt Solid State Pulse Power Amplifiers for SAR
Deng, Y.

Development of a PC Based System for Real-Time, Local Reception of High Resolution Satellite Data for

Environmental Monitoring
Downey, 1.D., J.B. Williams, J.R. Stephenson, R. Stephenson and W. Looyen

A Real Aperture Radar for Low Resolution Mapping at Low Costs
Impagnatiello, E, G. Angino and G. Leggeri

Effects of Faraday Rotation on Microwave Remote Sensing from Space at L-Band
Le Vine, D.M., and M. Kao

Using JPEG Data Compression for Remote Moving Window Display
Leung, PS., M. Adair and J.H. Lam

The Universal Multichannel Technique for Enhancing Images Obtained from Different Sensors
Petrenko, B.Z.

YSAR: A Compact, Low-Cost Synthetic Aperture Radar
Thompson, D.G., D.V. Arnold, D.G. Long, G.F. Miner, TW. Karlinsey and A.E. Robertson

xviii
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The China Airborne Radar Altimeter Control System 389
Xu, K., M. Li, N. Zhou, Y.L. Xue and Y.S.Liu

Miniature Ocean Radar Altimeter NA
Xu, K.

Computer Simulation of Spaceborne Multimodes Microwave Sensors 392
Zhang, Y., and J. Jiang
Interactive Area 20: Snow and Glaciers

Improved Elevation Change Measurements of the Greenland Ice Sheet from Satellite Radar Altimetry 397
Davis, C.H., and C. Perez

Multi-year Ice Concentration from RADARSAT 402
Fetterer, F, C. Bertoia and J.P. Ye

Analysis of a Microwave Airborne Campaign Over Snow and Ice NA
Hewison, T., and S. English

Vector Radiative Transfer for Scattering Signature from Multi-Layer Snow/Vegetation at SSM/I Channels 405
Jin, Y.0.

Deriving Glaciers Variation Integrated Remote and GIS in Tibetan Plateau 408
Li, Z, and Q. Zeng

On the Accuracy of Snow Cover Segmentation in Optical Satellite Images 411
Luca, D., K. Seidel and M. Datcu

A Comparison of Antarictic Sea Ice Concentration Derived from SSM/I, SAR, and Ship Observations NA
Lytle, V.I, and M. Rapley

Sea Ice Concentration and Flow Size Distribution in the Antarctic Using Video Image Processing 414
Muramoto, K., T. Endoh, M. Kubo and K. Matsuura

Spectral RF Reflection from Water and Ice Layers NA
Noyman, Z. Zlotnick, and A. Ben-Shalom

Compatability of Sea Ice Edges Detected in ERS-SAR Images and SSM/I Data 417
Schmidt, R., and T. Hunewinkel

Snow-Cover Mapping Experiment by EMISAR C Band - Discrimination and Optimum Resolution NA
. Solberg, R., A. Schistad Solberg, E. Volden, H. Koren and A. Teigland

Characterization of Snow Cover from Multispectral Satellite Remote Sensing and Modelling Runoff Over High NA

Mountainous River Basins

Swamy, A.N., and PA. Brivio

“NA” indicates not available at time of printing.
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Interactive Area 21: Lidars

Statistical Approach for Lidar Sensing of Turbulence Parameters with a Vi to Atmosphere Pollution
Avramova, R.P.

Accurate Height Information from Airborne Laser-Altimetry
Lemmens, M.J.PM.

Technique Doppler Lidar Measurement of the Atmospheric Wind Field
Li, 8.X., BM. Gentry, and C.L. Korb

A New Airborne Remote Sensing System Integrating Scanning Altimeter with Infrared Scanner
Liu, Z., and S. Li

Air Turbulence Measurements Using CCD Camera for Obtaining Laser Spot Fluctuations
Mitev, V.

Interactive Area 22: SAR Interferometry

Local, Global and Unconventional Phase Unwrapping Techniques
Collaro, A., G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti and M. Tesauro

Applicaiton of Wavelets to Improve IFSAR DEM Reconstruction
Curlander, J.C., G. Burkhart and C. Johnson

ERS Tandem INSAR Processing for Exploration of the Svalbard Archipelago
Eldhuset, K., Amlien, J., PH. Andersen, S. Hauge, E. Isaksson, T. Wahl and D.J. Weydahl

Motion Compensation Effects in Wavelength-Resolution VHF SAR Interferomtry
Frolind, P.O., and L.M.H. Ulander

The Exact Solution of the Imaging Equations for Crosstrack Interferometers
Goblirsch, W.

SAR Interferometric Analysis of ERS Tandem Data over an Alpine Terrain
Kenyi, LW,, and H. Raggam

Baseline Estimation Using Ground Points for Interferomteric SAR
Kimura, H., and M. Todo

Development of an Interferometric SAR Data Processing System
Li, JF, H. Liu and H.D. Guo

Phase Noise Filter for Interferometric SAR
Lim, L, TS. Yeo, C.S. Ng, Y.H. Lu and C.B. Zhang

Calibration and Classification of SIR-C Polarimetric and Interferometric SAR Data in Areas with Slope Variations
Pasquali, P, F. Holecz, D. Small and T. Michel

On the Motion Compensation and Geocoding of Airborne Interferometric SAR Data
Sansosti, E., R. Scheiber, G. Fornaro, M. Tesauro, R. Lanari, and A. Moreira

A Method for Precise Reconstruction of INSAR Imaging Geometry
ShiPing, S.
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Baseline Estimation in Interferometric SAR 454
Singh, K., N. Stussi, LK. Kwoh, and H. Lim

Removal of Residual Errors from SAR-Derived Digital Elevation Models for Improved Topographic Mapping of 457
Low-Relief Areas
Slatton, K.C., M.M. Crawford, J.C. Gibeaut and R. Gutierrez

Digital Elevation Models from SIR-C Interferometric and Shuttle Laser Altimetry (SAL) Data 460
Sun, G.; and K.J. Ranson

Interactive Area 23: SAR Techniques
A High Precision Workstation - Based Chirp Scaling SAR Processor 465

Breit, H., B. Schattler and U. Steinbrecher

Investigations of Coastal Zones in the North West Pacific by Remote Sensing NA
Bobykina, V.P.

SAR Image Simulation of Moving Targets with LOCOSAR NA
Cazaban, F, M. Deschaux-Beaume, J.G. Planes and M. Busson

Automated Acquisition of Ground Control Using SAR Layover and Shadows 468
Gelautz, M., E. Mitteregger, and F. Leber]

An Accelerated Chirp Scaling Algorithm for Synthetic Aperture Imaging 471
' Hawkins, D.W., and P.T. Gough

Analysis of Code Error Effect in Spaceborne SAR Imaging Processing 474
Jiang, Z., and J. Song

High Quality Spotlight SAR Processing Algorithm ' 477
Jin, M.Y.

Interpretation of Brightness Temperature Retrieved by Supersynthesis Radiometer 481

Komiyama, K., Y. Kato and K. Furuya

Non-Iterative Spotlight SAR Autofocusing Using 2 Modified Phase-Gradient Approach 484
Chan, H.L., and T.S. Yeo

Real Time Synthetic Aperture Radar Preprocessor Design Via Three-Dimensional Modular Filtering Architecture 487
Chan, H.L., and T.S. Yeo

High Resolution SAR Processing Using Stepped-Frequencies 490
. ~ Lord, R.T, and M.R. Inggs

RADARSAT Attitude Estimates Based on Doppler Centroid of SAR Imagery 493
Marandi, S.R.

A Research of Moving Targets Detection and Imaging by SAR 498

Pan,R.,, G. Liand X. Zhu

Tree Structured Filter Banks for Speckle Reduction of SAR Images 501
Sveinsson, J.R., and J.A. Benediktsson

Feasibility of Satellite On-Board SAR Processing NA
Thompson, A., H. Jiang, S. Spenler and A. Macikunas

“NA” indicates not available at time of printing.
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Near Real-Time RADARSAT Data System for NOAA CoastWatch Applications
Tseng, WY, W.G. Pichel, A.K. Liu, P. Clemente-Colon, G.A. Leshkevich, S.V. Nghiem,
R. Kwok and R.N. Stone

Interactive Area 24: Surface Temperatures

Land Surface Temperature Interpretation of Equatorial South America from AVHRR Data
Li, G., and PJ. Hardin

Tropical Model for Retrieving Surface Temperature from Satellite Data
Mansor, S.B.

Sea Surface Temperatures from NOAA Satellites in the Swordfish and Jack Mackerel Fisheries of Chile’s Central
Zone
Yanez, E., M.A. Barbieri, V. Catasti, C. Silva and K. Nieto

Interactive Area 25: Neural Network and Intelligeni Systems

Pollution Analysis of Hyperdimensional Data Using Neural Networks
Benedikisson, J.A., K. Arnason and S. Jonsson

A Classification of Multispectral Landsat TM Data Using Principle Component Analysis of Artificial Neural Network
Chae, H.S., §.J. Kim and J.A. Ryu

Unsupervised Classification for Remotely Sensed Data Using Fuzzy Set Theory
Dinesh, M.S., K.C. Gowda and P. Nagabhushan

Development of a Intelligent Image Analysis System for the Detailed Analysis of the Land Surface Information
Kim, K.O., YL. Ha, LS. Jung, J.Y. Lee, K.H. Choi and J.H. Lee

Study on the Characteristics of the Supervised Classification of Remotely Sensed Data Using Artificial Neural

Networks
Pack, K.N., Y.S. Song, H.S. Chae and K.E. Kim

Interactive 26: Missions and Programs

The Advanced Remote Sensing Data from MOMS-2P on PRIRODA
Bodechtel, J., and Q. Lei

Multi-Frequency and Multi-Polarization SAR System Analysis with Simulation Software Developed at CSA
Huang, Y., G. Seguin, and N. Sultan

Oceanological Results from the ALMAZ-1 Mission: An Overview
Ivanov, A.Y,, and K.T. Litovchenko

Some Options for RadarSAR-IT
Parashar, S., E.J. Langham and S. Ahmed

A Summary of the Upper Atmosphere Research Satellite (UARS)
Schoeberl, M., A.R. Douglass and C.H. Jackman

xxii
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BEAWARE: Budget Effective All Weather Accurate Radar for Earth Observation
Vincent, N., E. Souleres and N. Suinot

Design of MACSIM Cloud Radar for Earth Observation Radiation Mission
Vincent, N., N. Suinot and C.C. Lin

Interactive 27;: Inverse Technigues

Ice Concentration Estimation Based on Local Inversion
Arai, K.

Retrieving of LAT and FAPAR with Airborne POLDER Data over Various Biomes
Bicheron, P, M. Leroy and O. Hautecoeur

The Uncertainty and Confidence in BRDF Model Inversion
Jindi, W, and L. Xiaowen

SAIL Model Experiment of the Inversion of Growth Indices from Rice Conopy Reflectance Using the Information on
Variation and Regulation of Leaf Spectral Characteristics
Kushida, K.

Algorithms for Estimating Some Optically Active Substances and Apparent Optical Properties from Subsurface
Irradiance Reflectance Measurements in Lakes
Reinart, A.

Geometry-Based Deconvolution of Geophysical Data
Simaan, M.A.

A Priori Information in Inverse Problems of Atmospheric Optics
Timofeyev, Y.M.

Three-Dimensional DC Resistivity Inversion at a Gasoline Contaminated Site
Xiao, L., and L. Liu

Retrieval of Electrical Properties of a Stratified Medium with Slightly Rough Surface Using an Inversion Method
Zhuck, N.P, D.O. Batrakov and K. Schuenemann
Interactive 28: Calibration

Characterization of Passive NMMW Backgrounds at 140 and 220 GHz
Ben-Shalom, A., Y. Oreg, and M. Engel

Some Issues on Calibration/Validation Algorithms of SSM/I Data
Jin, Y.Q.

Calibration and Validation of ADEOS/NSCAT in Japan
Masuko, H., and Japanese ADESO/NSCAT CAL/VAL Team

Calibration Experiments of the CRL/NASDA X/L-Band Airborne Syﬁthetic Aperture Radar
Satake, M., T. Kobayashi, H. Masuko and M. Shimada

“NA” indicates not available at time of printing.
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Interactive 29;: Education and Information Systems

Development of Interactive, Graphical, Computer-Based Teaching Tools for Remote Sensing in Tcl/Tk
Barnsley, M., and P. Hobson

Ocean Expeditions: El Nino — An Interactive Education Tool Based on Remote Sensing Data
Gautier, C.

Meteorological Satellite Image Service via WWW
Lee, H.G.

Interactive 30;: Wavelet Techniques in Remote Sensing

Wavelet Techniques Applied to Lidar Temperature Profiles in the Middle Atmosphere to Study Gravity Waves
Chane-Ming, F, E. Molinaro, and J. Leveau

Robust Terrain Classiﬁcation Using Wavelet Packets
Keshava, N., and J.M.F. Moura

High Resolution Image Classification with Features from Wavelet Frames
‘ Kim, K.0., LS. Jung and YK. Yang

A Hierarchical Stereo Matching Algorithm Using Wavelet Representation Based on Edge and Area Information
Um, G.M., C.S. Ye and K.H. Lee

Interactive 31: Classification

The Impact of the Initial Land-Cover Classification on the Retrieval of Land Use Information from Remotely-Sensed

Images Using Structural Pattern Recognition Techniques
Barr, S., and M. Barnsley

Snow Covered Area Classification Using Time Series ERS - 1 SAR
Li, Z, and J. Shi

From the Satellite to the Airborn Platforms Imagery: Behavioral Classification and Segmentation
Orban-Ferauge, F, J.P. Rasson and S. Baudart-Lissoir

Symbolic ISODATA Clustering Procedure Useful for Land Cover Classification: A Case Study Employing IRS-1B
LISS II Data for Nagarahole Forest, Karnataka State, India) \
: Prakash, HN. S., P. Nagabhushan and K.C. Gowda

Interactive 32: Coastal Environment

Retrieval of the Remote Radiance Reflection Coefficient of Coastal Waters from the Inherent Optical Properties
Haltrin, VI.

Monitoring Coastal Water Systems: An Integrated Approach
Krishnan, P,

Near-Bottom Fluxes of Sediment Matter on a Shelf and Their Research by Remote Techniques
) Likht, FR., and L.M. Mitnik

The Analysis and Comparison of Satellite and “ In Situ” Temperature Measurements for Coastal Zone Dynamic
Processes Investigation
Stanichnaya, R.R., A.S. Kuznetsov, S.A. Shurov, D.M. Solov’ev and S.V. Stanichny
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Interactive 33: General Applications

New Method of the Characterization of the Simiconductor Plate Homogeneity by its Thermal Image NA
Bolgov, C., and V. Morozhenko

Ozone Distributions in the Stratosphere-Troposphere System Using the Interdisciplinary Physics Modelling 607
Caldararu, F, S. Patrascu, M. Caldararu, A. Paraschiv and D. Nicolaescu

An Improved Description of the MTF of the Moderate Resolution Imaging Spectroradiometer and a Method for NA
Enhancing Its Cross Track Resolution
Fleig, A.J., and K. Yang

Spectral Identification of Coral Biological Vigour 610
Holden, H., and E. LeDrew

Variance Fractal Dimension Analysis of Crustal Seismic Refraction Signals NA
Jiao, LX., and W.M. Moon

A Study of the Micro-Scale Disturbances Associated with a Shear Layer in the Lower Atmosphere 613
Natarajan, M.P, and M. Isaac

New Architecture for Remote Sensing Image Archives 616
Seidel, K., R. Mastropietro and M. Datcu

The Evaluation of Bending Waves and Modified Path Profile , NA
Uz, B., O. Yildrim and HM. El-Khattib

Combined Resistive and Conductive Three-Part Plane: Oblique Incidence Plane Wave ‘ NA
'Yildrim, O.

1
Constraint Propagation in the Multi-Granularity World ' NA

Zequn, G., and L.Deren

“NA” indicates not available at time of printing.
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IGARSS’97 DIGEST VOLUME II

A01: Remote Sensing of Snow and Glaciers

A01.01 Improving the MODIS Global Snow-Mapping Algorithm
Klein, A.G., D.X. Hall and G.A. Riggs

A01.02 The HUT Brightmess Temperature Model for Snow-Covered Terrain
Hallikainen, M., J. Pulliainen, L. Kurvonen and J. Grandell

A01.03 Snow Crystal Shape and Microwave Scattering
Foster, J.L., D.K. Hall, AT.C. Chang, A. Rango, W. Wergin and E. Erbe

A01.04 Mapping Snow Cover with Repeat Pass Synthetic Aperture Radar
Shi, J., S. Hensley and J. Dozier

A01.05 Snow Monitoring Using EMISAR and ERS-1 Data Within the European Multi-Sensor Airborne Campaign
EMAC-95
Guneriusson, T, H. Johnsen, R. Solberg and E. Volden

A01.06 Ground Penetration Radar and ERS SAR Data for Glacier Monitoring
Hamran, S.E., T. Guneriusson, J.O. Hagen and R. Odegard

A01.07 Comparison of Ranging Scatterometer and ERS-1 SAR Microwave Signatures Over Boreal Forest Zone

During Winter Season
Koskinen, J., J. Pulliainen, M. Makynen and M. Hallikainen

A01.08 Multi-Source Snow Cover Monitoring in the Swiss Alps
Piesbergen, J., and H. Haefner

A02: Image Processing Techniques

A02.01 The Use of Mathematical Morphology for Accurate Detection and Identification of Microwave Images in the
K-Space Domain
Gader, P, and A.J. Blanchard

A02.02 New Classification Techniques for Analysis of Remote Sensing Integrated Data
Console, E., and M.C. Mouchot

A02.03 From the Unsupervised Remote Sensing Data Behavioral Classification to the Image Segmentation
Rasson, J.P, F. Orban-Ferauge and S. Baudart-Lissoir

A02.04 Hughes Phenomenon in the Spatial Resolution Enhancement of Low Resolution Images and Derivation
of Selection Rule for High Resolution Images
Nishii, R., S. Kusanobu and N. Nakaoka

A02.05 Forming Digital Elevation Models from Single Pass Spot Data: Results on a Generation from Optical Stereo
Data
Massonnet, D., A. Giros, and B. Rouge
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A02.06 AMixed Fractal/Wavelet Based Approach for Characterization of Textured Remote Sensing Images
Marazzi, A., P. Gamba, A. Mecocci and E. Costamagna

A02.07 Significance-Weighted Classification by Triplet Tree
Yoshikawa, M., S. Fujimura, S. Tanaka and R. Nishii

A02.08 On-Line System for Monitoring and Forecasting Earth Surface Changes Using Sequences of Remotely-
Sensed Imagery
Lee, S.

A03: Data Fusion I

A03.01 Effect of Scale on the Information Content in Remote Sensing Imagery
Niemann, K.O., D.G. Goodenough and G.J. Hay

A03.02 Multisensor Classification of Wetland Environments Using Airborne Multispectral and SAR Data
Ricard, M.R., A.L. Neuenschwander, M.M. Crawford and J.C. Gibeaut

A03.03 Automated Forest Inventory Update with SEIDAM
Goodenough, D., D. Charlebois, A.S. Bhogal, S. Matwin and N. Daley

A03.04 Modeling Soil Erosion Hazard by Using a Fuzzy Knowledge-Based Approach
Metternicht, G.1.

A03.05 Comparing Raster and Object Generalization
Daley, N., D.G. Goodenough, A.S. Bhogal, Q. Bradley, J. Grant and Z. Yin

A03.06 Expert Maps: An Alternative for Integrating Expert Knowledge in Satellite Imagery Classification
Campagnolo, M.L., and M. Caetano

A03.07 Data Fusion in a Context of Data Mining, Identification and Classification
Wu, D., and J. Linders

A03.08 Infusion of Altimeter Data to Same Spatial, Temporal Resolution Infrared Images to Improve the Accuracy
of Classification of Images and DEM
Liu, Z, and S. Li

A03.09 Data Integration in Support of Research on the Gulf of Mexico
Mason, M., G.L. Rochon, M. Singletary, N. Blackmon, D. Bardell, C. Jernigan and M. Fernandez

A04: Innovations in Remote Sensing Educational Programs and Information

A04.01 NASA’s Mission to Planet Earth Invests in the Future Through a Broad National Education Program
Khazenie, N., and S. Stockman

A04.02 What is Earth System Science?
Johnson, D.R., M. Ruzek, and M. Kalb

A04.03 A Web-Based Earth Systems Science Graduate Course for Middle School Teachers
Myers, R.J., E.L. Shay, H. Shay, H.B. Davis, and J.A. Botti

A04.04 Globe: An International Science and Education Collaboration to Obtain Accurate Data for Monitoring Earth
Systems
Becker, M.L., R.G. Congalton, R.Budd, and A. Fried

“NA” indicates not available at time of printing.
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A04.05 Teacher Enhancement Programs in the Atmospheric Sciences: The American Meteorological Society’s
Project Aunosphere and DataStreme
Moore, J.D.

A04.06 Global Classroom Education Network
Mesarovic, M., and N. Sreenath

A04.07 System Thinking and System Modeling in the Earth System Science Classroom
Mahootian, F.

A04.08 Practical Uses of Math and Science (PUMAS)
Kahn, R.

A04.09 An Earth System Science Education and Training Program for the Inter American Institute for Global
Change Research (TAI)
Johnson, D.R., M. Ruzek, M. Kalb

A05: Rough Surface Scattering

A05.01 An Exact Technique for Calculating the Scattering from Roughness Surfaces
Kasilingam, D.

A05.02 Application of an Extended IEM to Multiple Surface Scattering and Backscatter Enhancement
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Abstract --The space borne microwave radiometer will
have a lowest frequency in the C-band. We have to
prepare the use of this band to estimate the soil
moisture. This paper consider the case of sparsely
vegetated areas encountered in semi-arid area. This
paper is based on the HAPEX-Sahel data set. We show
that the single scattering albedo could be neglected at
C-band when the amount of vegetation is low. The
vegetation transmission coefficient can be estimated
from the polarization difference at 5.05 GHz and an
angle of incidence of 45°. However the obtained
relationship needs to be tested in various wetness
conditions.

INTRODUCTION

It has been shown that the L band allows straight
forward estimation of soil moisture on sparsely covered
vegetation as the Sahelian Savannah or semi arid areas
[1-2]. However, in a near future, spaceborne
microwave radiometers will be operated with a lowest
frequency located in the C-band. Therefore, it is
important to prepare the use of the C band results for
soil surface moisture assessment. Results obtained
during the Hapex Sahel [I] experiment have shown
that the vegetation influence should be accounted for to
estimate the soil moisture accurately, even when the
amounts of vegetation are low. The vegetation in the
HAPEX-Sahel area was very complex to describe and
the quantification of vegetation parameters as the Leaf
Area Index or the vegetation water content was almost

impossible to characterize in situ at the scale of

microwave radiometer pixels. Therefore we chose to
derive vegetation information from remotely sensed
observation using the different configurations of the
microwave radiometers involved in the experiment and
the SPOT images collected during the airborne
campaign. The aim of the presented study was to
characterize the vegetation transmission coefficient (Y)
and the single scattering albedo (®) of the vegetation
which are related to the brightness temperature (T;)

[3]:

Tpp= (1 +4T)(1 -9)(1 - ©)Ty + (1 -TTg (1)

0-7803-3836-7/97/810.00 © 1997 IEEE
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where p denotes the polarization, T, and T, are the
vegetation and the soil temperature and I is the soil
reflectivity. In order to extent the data set obtained
during the Hapex Sahel experiment, we also used the
data collected in the Avignon 93 experiment [4] over a
sparse sorghum field which was sowed to reproduce a
“Sahelian field".

MATERIEL AND METHOD

The HAPEX-Sahel and the Avignon 93 experiments
were described in [1] and [4], respectively. It is
important to note that the radiometric measurement
were acquired by the French PORTOS CNES
radiometer for both experiments. PORTOS is a
multifrequency (1.4, 5.05, 10.65, 23.8, 36.5 and 90
GHz) and dual-polarized radiometer. The radiometer
can be operated at different angles of incidence. The
PORTOS radiometer was installed aboard the ARAT
aircraft during HAPEX-Sahel experiment whereas it
was mounted under a crane boom during the Avignon
93 experiment. As the PORTOS [.4 GHz channel
could not be operated with the airborne mode, we used
the measurements collected by the Push Broom
Microwave Radiometer (PBMR) which flew together
with PORTOS at 3 dates.

To compute y and @ at C-band, we estimated the I’
from the soil moisture in the top tive millimeters of the
soil [5]. The soil moisture (8,) is derived from the
T,=f(8,) relationship obtained at L-Band. Such a
procedure was only applied when the soil footprints of
the PBMR and PORTOS is located at same place with
a tolerance of 50 m. A correction was done to account
for the difference in penetration depth between the C
and the L bands. We assumed that the soil and

vegetation temperature were equal to the skin
temperature measured by a thermal infrared
thermometer.

RESULTS

Since the L-band was used to estimate the soil
moisture, we have displayed in Figure | the T,=f(8)
relationship at L band. The symbols corresponds to the



Avignon 93 data collected with PORTOS, whereas the
lines are the regression lines computed with the PBMR
measurements collected during the HAPEX-Sahel [1]
and the Walnut Gulch experiments [2]. The Figures
show that the vegetation does not influence the
measurements when the amount of vegetation remains
small (Vegetation water content {Wc} < 0.225 kg/m?).
Moreover, Figure 1 shows that the data collected in
three different areas in the world fall within a similar
relationship. These results demonstrate the usefulness
of the L-band which allows a straight forward
estimation of the soil moisture over semi-arid areas.
The relationships displayed in Figure I were then used
to compute the soil moisture and the soil reflectivity.

In Table I, we report the results of the transmission
coefficient computed from the HAPEX-Sahel Data. y
was computed by inverting Equation 1 for different
values of ®. ® influences significantly the 1y results. Y
can be related to Wc by the relationship [6-7] :
We=Log(y)*cos(I)/b )

where 1 is angle of incidence and b an empirical
parameter which depends on the frequency and the
vegetation type. From the Avignon 93 data, Haboudane
et al. [7] have found b=0.4 m2kg"’. The most realistic
value of Wc obtained from Eq. 2 were those computed
with @=0. This invite us to neglect the single scattering
albedo. The 7y values obtained for day 246 are
significantly higher than those obtained for the day 239
which was wetter. Although we were in the middle of
the rainy season, the vegetation growth can not explain
the increase rate of . The instability in v is likely the
consequences of error propagation (error in T, error in
soil moisture) which is more sensitive in dry condition,
when the soil and the vegetation emissivities are
similar.

In Figure 2, we have plotted the relationship between y
and different radiometric indices for the day 239. The
Figures 2-abc show clearly that a polarization
combination at 5.05 GHz offers the best correlation
with y while results obtained with the NDVI or with the
microwave radiometer at 36.5 GHz are disappointing.
The relationship between the polarization difference at
5.05 GHz and vy is however established for one day
with a soil moisture varying from 0.10 to 0.15 m*/m’.
We have now to analyze in which proportion this
relationship varies with the soil wetness conditions.

In figure 3, we have inverted the Equation 1 to retrieve
the soil moisture. The inversion was performed with
w=0 and y=f(T, -T4,);,s Where f is the regression line
through the Figure 2 scatter plot. The results of the
inversion is encouraging,

CONCLUSIONS

This paper is devoted to the estimation of the
vegetation properties for microwave emission and
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propagation in case of sparsely vegetated fields. It
appears that the vegetation is mainly involved in the
surface emission process at C-band through its
transmission coefficient. This coefficient is clearly
related to the polarization difference at 5.05 GHz.
However this relationship have to be tested under
various wetness conditions.
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TABLE | : Transmission coefficient at 5.05 GHz, H polarization and a 45° incidence angle. Data
! ) . llected
during the HAPEX Sahel experiment ; e COTEEE
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Abstract -- Surface soil moisture dynamics was derived using
microwave remote sensing, and employed to estimate soil
physical and hydraulic properties. The L-band ESTAR
radiometer was employed in an airborne campaign over the
Little Washita watershed, Oklahoma during June 10-18,
1992. Brightness temperature (TB) data were employed in a
soil moisture inversion algorithm which corrected for
vegetation and soil effects. Analyses of spatial TB and soil
moisture dynamics during the dry-down period revealed a
direct relationship between changes in TB, soil moisture and
soil texture. Extensive regression analyses were carried out
which yielded statistically significant quantitative
relationships between ratio of percent sand to percent clay
(RSC, a term derived to quantify soil texture) and saturated
hydraulic conductivity (Ksat) in terms of change components
of TB and surface soil moisture. Validation of results
indicated that both RSC and Ksat can be estimated with
reasonable accuracy. These findings have potential
applications for deriving spatial distributions of RSC and
Ksat over large areas.

INTRODUCTION

Surface soil moisture is of great significance to hydrologic
research for partitioning rainfall into runoff and infiltration.
Soil properties such as soil texture and saturated hydraulic
conductivity (Ksat) play a key role in the drainage and
redistribution of soil moisture, but these properties are
difficult to obtain in the field and/or laboratory. Therefore,
methods based on remote sensing will have capabilities of
deriving spatial distribution of Ksat. Earlier studies have
employed brightness temperature (TB) data obtained from
passive remote sensing and soil hydrology models for
estimation of soil hydraulic parameters [1, 2]. Such
approaches require information on several hydrologic and
meteorological parameters, and therefore might not be ideally
suited for application to large areas.

Reference [3] established highly significant relationships
between changes in moisture content of the surface soil, 2
days after a thorough wetting, and average Ksat of the soil
profile. The log-log transformations of an effective profile-
average Ksat and the initial two-day drainage of the soil were
valuable to obtain estimates of an average Ksat. These
findings have a potential to obtain quick estimates of the
spatial distribution of Ksat from the soil moisture contents if

0-7803-3836-7/97/$10.00 © 1997 IEEE

microwave remote sensing observations are made at two day
temporal resolution after saturation [4]. The objective of the
present study was to test the approach of [3] for the field
conditions of a medium-sized watershed, and to evaluate if
soil physical properties (viz. soil texture and Ksat) can be
estimated from the temporal variability of microwave
remotely sensed TB and soil moisture data.

MATERIALS AND METHODS

The Washita'92 research experiment was carried out during
June 10-18, 1992 in the Little Washita watershed, Oklahoma.
The climate of Little Washita region is moist and sub-humid
with an average annual rainfall of about 750 mm [5]. During
the experiment, land cover in the Little Washita watershed
was dominated by pasture and senesced or harvested winter
wheat with some other agricultural crops including corn and
alfalfa [S]. Forest cover within the watershed is very sparse
and constitutes a small proportion of the watershed.

Multitemporal airborne microwave data were collected
using the L band (21 cm wavelength, or 1.4 GHz frequency)
synthetic aperture Electronically Steered Thinned Array
Radiometer (ESTAR) [6]. A large number of ground soil
moisture measurements were carried out to support and
validate microwave remotely sensed data. The study area
experienced heavy rainfall (more than 30 mm) on June 5,
1992, and the rainfall continued till June 9, 1992. However,
there was no rainfall in the watershed for the entire duration
of the Washita'92 experiment [7]. Therefore, the hydrologic
conditions in the watershed were ideal to follow a drying
period from very wet (about 30%) to dry (about 10%) over a
period of nine days.

Temporal soil moisture information was derived from the
ESTAR TB images. The soil moisture retrieval algorithm
corrects thermal emission records for vegetation cover and
surface roughness, and estimates the real part of the soil
dielectric constant based on the Fresnel assumptions {7]. Soil
texture effects were corrected before inverting a dielectric
mixing model for soil moisture determination. Vegetation
parameters (i.e., type and water content) and soil texture data
were derived from land-use data base and soils map,
respectively. The ESTAR derived soil moisture values were
validated by comparing them with the field measured soil
moisture values, and the standard error of estimates were
within 3.5% for the bare fields and 5.7% for the vegetated
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fields for all days during the experiment [7].
Over a large comn field, which represented the densest
vegetation cover encountered during the experiment (canopy

height of 2.1 m; canopy water content of 4.05 kg/mz), a
match of predicted to measured soil moisture was excellent,
with an average absolute error of less than 1.5% [8].

A change analysis was carried out using multitemporal TB
* and soil moisture data [9]. Georegistered data layers were
employed in overlay and difference operations to quantify the
changes. Change analysis was carried out for each soil texture
class and eight temporal resolutions. To establish
quantitative relationships between soil texture and temporal
changes in TB and surface soil moisture, the ratio of percent
sand to percent clay (RSC) has been computed. RSC was
chosen because it numerically indicates soil texture such that
an assumed value of 100 represents sand (although its
theoretical value reaches o for sand), and its decreasing
values indicate higher clay contents. Percent sand and percent
clay values were obtained from field measurements and data
assembled in [10]. Validation of the statistical relationships
was carried out by comparing predicted RSC and Ksat with
those measured in the laboratory and also extracted from soil
texture map for sites not incorporated in the development of
relationships.

RESULTS

A comparative study of TB and soil moisture images with
soil texture map clearly suggested that temporal variation of
both TB and soil moisture was closely related to soil texture.
This supports the hypothesis that remotely sensed TB and
soil moisture and associated temporal changes can be
employed to identify soil types and can be related to Ksat.

Relationships with soil texture

RSC holds a strong negative log-normal relationship with
multitemporal changes in both TB and surface soil moisture
(Table 1). Regression relationships are characterized by 2>
0.6 for four temporal resolutions in the case of TB and for all
temporal resolutions in the case of soil moisture (probably
because soil moisture retrieval algorithm uses soil texture as
input). Table 3 presents correlation coefficients of predicted
and measured RSC values for various temporal resolutions. It
is evident that the relationships yield RSC values close to
the measured values although some deviations exist in the
predictions. This suggests that RSC and hence the soil
texture can be estimated with reasonable accuracy. Selection
of a particular relationship is subject to the temporal data
availability.

Relationships with Ksat

Regression analysis was carried out to establish
relationships between Ksat and multitemporal changes in TB
and surface soil moisture (Table 2). Evidently, Ksat also
bears a negative log-normal relationship with changes of both
TB and surface soil moisture. Similar to RSC, relationships

for Ksat are characterized by 2> 0.6 in the case of I-, 4-, 5-
and 6-days resolution for TB change, and for all temporal

resolutions in the case of soil moisture change. Values of r2
consistently greater than 0.8 suggest that temporal changes in
soil moisture can be employed to estimate Ksat with
reasonable accuracy. Validation of the relationships suggested
(Table 3), despite minor errors in some cases, the
relationships yielded acceptable Ksat values. Regression
equations presented in Table 2 are invaluable for the quick
estimation of Ksat using temporal remotely sensed TB and
soil moisture data.

SUMMARY

Microwave remote sensing was employed to obtain spatial
and multitemporal soil moisture data for the Little Washita
watershed, OK. As part of the Washita'92 airborne campaign
during June 10-18, 1992, the ESTAR instrument was flown
each day to acquire TB data at a spatial resolution of 200 m,
which were converted into soil moisture information. Data
sets were georeferenced to monitor spatial and temporal
variability of both TB and surface soil moisture.

Analysis of multitemporal TB and soil moisture maps
with soils map suggested that remotely sensed TB and soil
moisture and their associated changes could be employed to
identify soil type and to estimate soil hydraulic properties. It
was observed that temporal changes of TB and surface soil
moisture held statistically significant negative log-normal
relationships with RSC and Ksat, and validations of these
relationships suggested that both soil properties could be
estimated with acceptable accuracy. Quantitative regression
relationships are invaluable to determine spatial distribution
of Ksat which is typically not measured in the field. Further,
such relationships can be used to indicate soil properties
(percent sand and percent clay) from observed changes in
remotely sensed TB and soil moisture patterns. These
findings have significant long term potential of employing
space borne microwave remotely sensed observations for
identification of soil texture and derivation of soil physical
properties over large spatial scales.
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Table 1: Relationships between RSC and mean temporal changes of TB and soil water content.

Period of Estimation of RSC
Change (days) From TB r2 From soil water content (SM) 2
1 RSC = 1.3025 x 1041 x TB-4381 095 RSC =5.5325 x 10° x SM-11.36 39
2 RSC = 1.8563 x 1025 x TB23.95 029 RSC =2.3374 x 107 x sm-11.39 .76
3 RSC =2.2083 x 1018 x TB-16.64 (45 RSC =2.1679 x 106 x smM929 0387
4 RSC =5.6156 x 1017 x TB-1467 (386 RSC =9.9705 x 106 x sm-8384 099
5 RSC =22211 x 1016 x TB-1298 (383 RSC =1.1650 x 107 x SM-345 036
6 RSC = 1.0450 x 1017 x TB-1251 .70 RSC =8.1714 x 107 x sSM346 036
7 RSC = 1.0819 x 1018 x TB-1246 .40 RSC = 84541 x 108 x sM-876 0380
8 RSC = 8.0543 x 1020 x TB-1346 (.49 RSC =1.5315 x 1010 x smM-9.02 ¢33
Table 2: Relationships between Ksat and mean temporal changes of TB and soil water content.
Period of Estimation of Ksat
Change (days) From TB 2 From soil water content (SM) r2
1 Ksat=1.1795 x 1035 x TB-3945 094 | Ksat=3.7860 x 104 x SM969 0386
2 Ksat=6.9265 x 1023 x TB2298 029 | Ksat=3.0690 x 106 x SMm-1061 ¢33
3 Ksat=1.9351 x 1016 x TB-1510 040 | Ksat=2.6070 x 105 x sSM-348 (.91
4 Ksat=1.5414 x 1015 x TB-12.84 084 | Ksat=77820 x 105 x sSM79 0.92
5 Ksat=9.1992 x 1013 x 7TB-11.36 (385 Ksat =9.5030 x 105 x SM7-38  0.90
6 Ksat=6.7263 x 1014 x TB-11.16 069 | Ksat=62090 x 106 x SM-765  (3sg
7 Ksat=1.0303 x 1016 x TB-11.31 4] Ksat = 6.4010 x 107 x SM-802 ¢33
8 Ksat=4.8968 x 1018 x TB-1227 050 | Ksat=93832 x 108 x sM827  (g8s
Table 3: Comparison between measured and estimated RSC
and Ksat values from temporal changes of TB and soil water .
content (SM). Measured RSC and Ksat values were derived [6] g{ac(li(soln, T. djé & Scrlzfe‘t:;, };1'. t 1}9'2 (e{djss.%)[gl 193?'
from laboratory experiment, soil texture map, and from data Ry go ogy I\? ? ;epf) W t asa E}. .L b. N A-Wgri:
compiled in [10]. 9;_51' gl\;;ﬁ’t Oz}(. gri. Water Quality Lab., Q
7] Jackson, T. J., Le Vine, D. M., Swift, C. T.,
Period of No. of 12 between measured and estimated 7] é?:;n:ﬁgge T.J & gchi;%ee F. R. (1995‘;1Large area
of Change  data RSC from Ksat from mapping of soil moisture using the ESTAR passive
(days)  points B SM B SM microwave radiometer in Washita'92. Rem. Sens.
Environ., 53, 27-37.
1 36 0.96 0.98 0.96 0.98 [8] O?I:I,leri(illt P. E., Chauhan, N. S., Jackson, T. J., Le
2 30 0.770.90 0.77°0.92 Vine, D. M. & Lang, R. H. (1994). Microwave soil
3 24 0.88 0.98 0.90  0.96 moisture prediction through corn in Washita'92. Proc.
4 24 0.9 0.98 0.98 0.8 IGARSS'94 Symp., 1585-1587.
5 18 0.98 0.98 0.98 0.98 [9] Mattikalli, N. M., Engman, E. T., Jackson, T. J. &
6 18 0.98 0.96 0.96 0.96 Ahuja, L. R. (1996). Microwave remote sensing of
7 12 0.90 0.98 0.94 096 temporal variations of surface soil moisture during
8 6 0.98 098 0.96 0.98 Washita'92, and its application to the estimation of soil
physical properties. Submitted to Water Resou.
Research.
10] Rawls, W. J. & Brakensiek, D. L. (1982). Estimati
[S] Allen, P. B, and Naney, J. W. (1991). Hydrology of [10] Rawls raxensie ( ). Estimating

the Little Washita River watershed, Oklahoma: data and
analysis. USDA/ARS-90, 74 pages.
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ABSTRACT

We present a retrieval approach that uses satellite
radiobrightness to infer surface parameters of prairie
grassland based on a Dynamic Learning Neural Net-
work (DLNN) trained with a 1-dimensional Hydrol-
ogy/Radiobrightness (1dH/R) model. The parame-
ters of interest include the temperatures and mois-
ture contents of the soil and canopy. To evaluate
the feasibility of the retrieval approach, we conduct
two case studies. The first study is based on prod-
ucts from the 1dH/R model that are used for the
model validation. The second study is based on re-
sults from a 60-day summer dry-down run of the
1dH/R model with a vegetation coverage of 100 %.
In each case, we utilize about 95 % of the 1dH/R
model predictions to train the DLNN and the rest
of the predictions are used to evaluate the DLNN
retrievals. The training data include horizontally-
and vertically-polarized brightnesses at 1.4, 19, and
37 GHz, and the corresponding temperatures and
moisture contents of the soil and canopy. In the first
study, we find that differences between DLNN re-
trievals and desired quantities (1dH/R model prod-
ucts) are less than 0.1 Kelvin for the canopy tem-
perature, 1.2 Kelvins for the soil temperature (up-
permost 5 mm), 0.0001 kg/m2 for the canopy water
content, and 1.2 % for the soil moisture content (by
volume). In the second study, the corresponding dif-
ferences are smaller as expected.

INTRODUCTION

*This work has been supported by NSC grant NSC86-2111-
M-008-035-T.

0-7803-3836-7/97/$10.00 © 1997 IEEE

Land-air exchanges of moisture and energy are im-
portant boundary forcings of the atmospheric cir-
culation models. These exchanges are governed by
surface parameters, such as temperatures and wa-
ter contents of the soil and canopy [1, 2]. Mi-
crowave emission is sensitive to temperature and
moisture so that radiometry is useful in monitoring
these parameters. Since microwave emission is non-
linear dependent on the temperature and moisture,
it is extremely difficult to retrieve the parameters
by biophysically-based models without considerably-
simplified approximations on the relation between
measured quantities (e.g., radiobrightness) and de-
sired variables (e.g., surface parameters)

In this paper, we examine a scheme that utilizes
satellite radiobrightness to infer surface parameters
without losing the nonlinearity between the mea-
sured quantities and desired variables. Our approach
is to incorporate products from the 1dH/R model
into the DLNN where the 1dH/R model describes
the nonlinearity and the DLNN manages the nonlin-
ear mappings.

THE 1dH/R MODEL

The 1dH/R model consists of two modules, a 1dH
module and an R module. It has been developed for
years ([3]-[6]). A series of Radiobrightness Energy
Balance Experiments has been conducted to validate
the model [7]. The 1dH module that treats energy
and moisture exchanges between the land and atmo-
sphere computes temperature and moisture profiles
of the soil and canopy. The R module manages ra-
diative transfer within canopy, and absorption from
the canopy to estimate microwave emission.
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Energy and moisture transfer in soil and canopy
involves solving the 1-dimensional form of the cou-
pled equations

0Xm, x

5 = —V - Qmn, « (1)
E)Xh, k -
5 = V- Qu, x, (2)

where the subscript k represents the soil or canopy,
Xm is the total water mass per unit volume, kg/m®,
Xp is the total heat content per unit volume, J /m3,
t is the time, s, Q_‘m is the vector moisture (vapor
and liquid) flux density, kg/ m?2-s, and Qy, is the vec-
tor heat flux density, J/m%s. The constitutive re-
lations, the boundary conditions, and the numeri-
cal solutions of temperature and moisture to Equa-
tions (1) and (2) are presented by Liou et al [6].

The R module follows the approach of England
and Galantowicz [8]. The combined soil and canopy
radiobrightness is

Tb = Ty (1= Rp(p))e 0/ + T, o(1—e"T0/k)
(L+ Rp(w)e /%) (3)

where T ¢ is the effective emitting temperature of
the soil [3, 4], K, R}, is the Fresnel reflectivity of the
moist soil for polarization p, 7y is the optical thick-
ness of the canopy, p is the cosine of the SSM/I inci-
dence angle of 53°, and T, e is the effective emitting
temperature of the canopy, K.

THE DLNN

The DLNN is utilized to manage a nonlinear map-
ping relation between the radiobrightnesses and the
surface parameters. Based on a polynomial basis
function expansion [10], a multilayer perceptron net-
work is modified so that at the output layer the
functional form is linearized while the hidden lay-
ers remain nonlinear. The weighting functions in
each layer are cascaded to form a long vector through
which the outputs and inputs are related [9], i.e.,

y = W, (4)

where the output vector y contains all the output
nodes of a network, the long input vector z is formed
by concatenating all the input and hidden nodes
in the network, and the long output weight ma-
trix W is formed by concatenating all the weights

that connected to each output node. This modifi-
cation allows us to apply the dynamic Kalman fil-
tering algorithm [11] to adjust the network weights
with a recursive minimum least square error, which
is very suitable for computer implementation [12].
The network, i.e, the DLNN, bears features such as
fast learning and built-in optimization of a weight-
ing function at little expense of the computer stor-
age. The fast learning feature stems from the fact
that the updating of the weights is accomplished in
a global manner avoiding back-propagation, which
usually makes the learning process very lengthy. The
DLNN is presented by Tzeng et al [9].

RESULTS AND DISCUSSION

Fig. 1 shows temperatures and moisture contents
of the soil and canopy from products of the 1dH/R
model in a run for the model validation, and from the
DLNN retrievals. In general, differences between the
retrievals and desired variables are small — less than
0.1 Kelvin for the canopy temperature, 1.2 Kelvins
for the soil temperature (uppermost 5 mm), 0.0001
kg/m? for the canopy water content, and 1.2 % for
the soil moisture content. That is, the retrievals for
the four parameters of interest are all better than
96 % accuracy. We do not show comparisons be-
tween results from the 1dH/R model for the dry-
down case and the DLNN retrievals because the re-
trievals are all better than 98 % accuracy — less than
0.1 Kelvin for the canopy temperature, 0.8 Kelvin
for the soil temperature (uppermost 5 mm), 0.00001
kg/m2 for the canopy water content, and 0.3 % for
the soil moisture content.

Fig. 1 also shows the inferred canopy temperature
appears to match the corresponding variable much
better than the other three parameters. Our inter-
pretations include three aspects: 1. Emissions at 19
and 37 GHz are primarily from the canopy — about
more than 90 % for the former and 95 % for the lat-
ter [6]; 2. Brightnesses at 19 and 37 GHz are almost
linearly related to the physical temperature of the
canopy; and 3. Brightnesses at 1.4, 19, and 37 GHz
depend on the canopy moisture, and soil tempera-
ture and moisture content’ with a higher degree of
nonlinearity than on the canopy temperature. Total
effect of 1 to 3 permits the DLNN to infer the canopy
temperature better than the other three parameters.



This study has shown that (1) the DLNN can rela-
tively well infer the desired variables from the radio-
brightnesses if the radiobrightnesses are sensitive to
the variables, and, hence, most of the uncertainities
or errors produced in the retrieving process might be
from the training data; and (2) the retrieval scheme
presented in the paper can be very powerful if one
were using a reliable 1dH/R model.
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Figure 1: (a) Canopy temperature, (b) soil tempera-
ture, (c) canopy water content, and (d) soil moisture
content from the products of the 1ldH/R model and
DLNN retrievals.
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Abstract -- Infiltration is a time varying process of water entry
into soil. Experiments were conducted here using truck based
microwave radiometers to observe small plots during and
following sprinkler irrigation. Experiments were conducted on a
sandy loam soil in 1994 and a silt loam in 1995. Sandy loam
soils typically have higher infiltration capabilities than clays. For
the sandy loam, the observed brightness temperature (TB) quickly
reached a nominally constant value during irrigation. When the
irrigation was stopped the TB began to increase as drainage took
place. The irrigation rates in 1995 with the silt loam soil exceeded
the saturated conductivity of the soil. During irrigation the TB
values exhibited a pattern that suggests the occurrence of coherent
reflection, a rarely observed phenomena under natural conditions.
These results suggested the existence of a sharp dielectric
boundary (wet over dry soil) that was increasing in depth with
time.

INTRODUCTION

In this investigation the role of remote sensing in infiltration
studies is considered. One reason for our interest is that remote
sensing provides a spatially integrated measurement. Another is
the increased availability of sensors which have the potential of
providing soil water information, i.e. microwave. Previous
research in this area has been very limited {1 and 2]. Several
recent investigations have examined new approaches to estimating
infiltration parameters which depend upon temporal observations
of soil moisture {3, 4 and 5}.

The work described here focuses on the results obtained in a
series of experiments using passive microwave radiometers
mstalled on a truck based observing platform. Unique aspects of
these studies include multi frequency microwave measurements,
high temporal resolution (as compared with typical remote
sensing field observations) and a spatial resolution on the order of
lto2m.

0-7803-3836-7/97/$10.00 © 1997 IEEE

S AND L BAND MICROWA VE RADIOMETER SYSTEM
(SLMR)

The S and L Microwave Radiometer (SLMR) is a dual
frequency passive sensor system operating at S band (2.65 GHz
or 11.3 cm) and L band (1.413 GHz or 21.2 cm) [6]. For the
1994 experiments the SLMR system was mounted on a 1966 Ford
hydraulic boom truck belonging to the Hydrological Sciences
Branch at NASA's Goddard Space Flight Center. The antennas
were mounted to observe horizontal polarization. At the nominal
operating height of 5 m with the specified field of view of the
radiometers (20°), the footprint size was 1.5 m at a viewing angle
of 10°off nadir. The centers of the S and L band radiometers are
offset by approximately 1 m in the installation, therefore, the
centers of the ground footprints will be offset. The beams do
overlap but there is the potential for some variation in target
properties in the area contributing to the two individual
measurements.  In 1995, a different truck system was used.
This was a 1990 Navstar hydraulic boom with a maximum height
of 19m. The observations in 1995 were made at a slightly higher
elevation of 8 m which results in footprints closer to 2.5 m for the
Sensors. '

EXPERIMENT DESCRIPTIONS

The experiments were conducted at two sites using sprinkler
irrigation to apply water. In 1994, plots at the Beltsville
Agricultural Research Center (BARC) were used. The soil was
a sandy loam (70% sand, 6% clay) with a smooth surface. Bulk
density averaged 1.45 g/em’. Hydraulic conductivity was
measured using disc permeameters at 4 cm tension as 0.338
cm/hr.  From this the saturated hydraulic conductivity was
estimated as 22 cm/hr.

In 1995, the experiments were conducted at facilities of the
University of California at Davis. Soil conditions were quite
different from 1994. This was also a smooth bare soil. The
particular area these measurements were conducted in was a Yolo

1099




Silt Loam (20% sand and 20% clay). Bulk density was measured
after irrigation as 1.4 g/em®. Soil properties reported in [7] for the
30 cm layer are saturated water content 44%, saturated
conductivity 0.44 cm/hr, and bulk density of 1.39 g/em’.

RESULTS AND DISCUSSION
Beltsville 1994

Two sets of bare soil observations were made September 27
(bare) and October 3 (bare). Water applications amounts were
estimated as 4.2 cm on September 27 and 2.5 cm October 3.
Prior to September 27, there had been a rainfall event the previous
night (> 2.5 cm) that left the soil wet at the outset of irrigation. A
rainfall event on October 1 of more than 1 ¢cm resulted in wet
conditions for the October 3 observations.

Microwave data were collected every 2 minutes and integrated
over a 15 second interval. Figure 1 shows the brightness
temperature versus time plot for September 27 (similar results
were observed October 3). There was a very rapid decrease in Ty,
after the start of water application. Second, in all cases the Ty
then remains at a constant level for the balance of the irrigation.
This level does vary between the S and L band. Visual
observations indicated that ponding (water pooling on the surface)
did not occur. Considering the high saturated conductivity of this
soil this was to be expected under the relatively low water
application rates possible with the sprinkler irrigation system.
The Ty values would indicate a soil moisture close to saturation
for this soil.

A close examination of the Ty, curves at the end of irrigation
shows indications of wavelength specific effects that reflect the
differences in the contributing depth of the S and L bands. After
the end of the irrigation, the water in the column should drain to
the 1/3 bar (sometimes called field capacity) soil moisture.
Without evaporation the soil moisture should remain at this
nominal level. The results shown in Figure 1 indicate a more
rapid increase in Ty for S band which would be expected because
a shallower depth contributes to the measurement. The longer
term variations involve diurnal (nighttime) temperature changes.

Davis 1995

The soil at the Davis site was very dry prior to the irrigation
performed on June 12. Very limited sampling indicated the
following soil moisture profile; 0-5 cm 6%, 5-10 cm 11%, and
10-15 ¢m 19%. Visual observation within the 0-5 cm layer
indicated uniform conditions. For a silt loam soil, the 15 bar
tension moisture content will be on the order of 10% and the 1/3
bar will be on the order of 35%.

The irrigation rate was approximately 0.5 cm/hr and was
initiated in the early evening to minimize losses to evaporation
and blowing. As opposed to the Beltsville experiment, the
irrigation rate was on the order of the saturated conductivity for
this soil (~0.44 cm/hr). Figure 2 shows the Ty trace observed for
S and L band. At the outset of irrigation we observed large

decreases in Ty as expected. However, as time progressed an
oscillation began to occur. The pattern of this oscillation was
similar to that which is predicted using coherent radiative transfer
models [8] for a layered media having a sharp dielectric boundary.

This is the first time that coherent reflection has been observed
in soil moisture studies. Previous soil related investigations
designed to verify this theory have utilized buried plate
experiments [9 and 10]. In these studies a metal plate (which has
a very high reflectivity) is buried at increasing depths in a uniform
soil. As the soil depth increases, the oscillatory pattern predicted
from coherent models has been observed. Since no field
experiments have ever reported this phenomenon, it has been
assumed that the sharp dielectric boundaries needed to produce
the effect do not occur in nature with sufficient uniformity over an
area the size of a radiometer field of view.

There are several features of the coherent reflectivity that can
be readily observed in Figure 2. For an individual wavelength, the
time between peaks is consistent and the magnitude of the
oscillation decreases with each peak. The theory [8] predicts that
the reflectivity will oscillate as the depth to the dielectric boundary
increases and that the peaks will occur at fixed depth intervals
(Me)/2, where A = wavelength and € = dielectric constant. For
L band and a wet soil, this oscillation interval would be on the
order of 2 cm. The decrease in oscillation with time (or depth) is
attributed to the decreasing impact of this layer interface as it gets
deeper in the soil column and approaches a depth at which the
profile can be treated as uniform.

In addition to the individual wavelength behavior, the L and S
band results can be compared. It appears that the time period for
S band is roughly half that of L band and that the oscillations
appear to stop sooner than for L band. Both of these features
would be expected from the coherent reflection.

SUMMARY

Experiments were conducted using truck based microwave
radiometer to observe small plots during and following sprinkler
irrigation. Data were collected using microwave radiometers
operating at 1.41 (L band) and 2.65 (S band) GHz. horizontal
polarization mounted on a boom type truck over a sandy loam soil
in 1994 and a silt loam in 1995. For the soils with infiltration
capabilities exceeding the water application rate, the observed
brightness temperature quickly reached a nominally constant value
during irrigation. When the irrigation was stopped the brightness
temperature began to increase as drainage took place. The
irrigation rates in 1995 with the silt loam soil exceeded the
saturated conductivity of the soil. During irrigation the brightness
temperature values exhibited a phenomena that had not been
previously observed and identified. The temporal variation
exhibited the pattern that is associated with coherent reflection.
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Abstract ~ Field experiments designed to support
climate studies are of limited spatial and temporal
coverage. Satellite data bridges the gap between
field experiments and large scale modeling by aid-
ing in model validation. The Tiros Operational
Vertical Sounder (TOVS) Pathfinder Path A sur-
face data of surface skin temperature, surface air
temperature and the relative humidity will be used
for the Red River Basin grid box in the GCIP LSA-
SW region to simulate the surface fluxes, surface
skin temperature and surface soil moisture. The
surface skin temperatures simulated and observed
by the TOVS will be compared.

BACKGROUND

Large scale studies of hydrology are greatly aided
by the use of satellite data. Satellite data have
repeat temporal and large scale spatial coverage
and can be used in conjunction with station data
to infer land surface - atmosphere interactions.
The TIROS Operational Vertical Sounder (TOVS),
comprised of the infrared and microwave sounders
HIRS2 and MSU, have flown on the NOAA op-
erational sun synchronous polar orbiting satellites
TIROS N, NOAA 6-12 and NOAA 14 from late
1978 to the present day. These satellites view
the earth twice daily at roughly 7:30 am/pm local
crossing time or 2:30 am/pm local crossing time
depending on the satellite. Susskind et. al., (1996)
analyzed TOVS data for the period 1985-1991 to
produce the Extended Pathfinder Path A data set
which includes surface skin temperature, air tem-
perature, specific humidity and microwave emis-

0-7803-3836-7/97/$10.00 © 1997 IEEE

sivity, atmospheric moisture and temperature pro-
files, as well as information about clouds, radia-
tive fluxes and precipitation. The TOVS (Tiros
Operational Vertical Sounder) Pathfinder Path A
data of immediate interest are the surface skin and
air temperatures, surface specific humidity, surface
microwave emissivity and precipitation. Scientific
studies using this data has been carried out (Lak-
shmi et. al. 1997d) and has shown that TOVS
data is useful for land surface process studies.

METHODOLOGY AND RESULTS

The use of satellite data in land surface model-
ing requires developing a hydrological model with
a thin upper layer to be compatible with the na-
ture of the satellite observations and that would
evaluate the soil moisture and soil temperature of
a thin layer close to the surface. Such a model
has been developed and validated using data from
the Kings Creek catchment in Kansas (Lakshmi et.
al. 1997a). This hydrological model has been used
in a coupled model framework in order to simu-
late Special Sensor Microwave Imager (SSM/I) 19
and 37 GHz brightness temperatures as well as es-
timate the soil moisture over the Red River Basin
grid box using the SSM/I observations (Lakshmi
et. al. 1997b). The simulation region extends be-
tween 31°50'N,36°N and 94°30'W, 104°30'W and
the simulation time period is between August 1,
1987 and July 31, 1988. The coupled model is
run on a hourly time step and the simulated values
correspond to the SSM/I ascending overpass (ap-
proximately 6:00 am). The surface meteorological
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data was obtained from 17 Surface Airways sta-
tions in the region. The rainfall was derived from
the Manually Digitzed Radar, the vegetation in-
dex from the Advanced Very High Resolution Ra-
diometer Global Vegetation Index (AVHRR-GVT)
and the shortwave radiation was obtained using a
topographic model of the region. An example of
the SSM/I estimated soil moistures and the hydro-
logical model simulated soil moistures as well as
the simulated and the observed SSM/I average and
polarization difference brightness temperatures are
shown in Figure 1.

focation : (33.0N,104.25W)

O simulation
® 19 GHz SSM/I

soil moisture
00 01 02 03 04 05

average brightness temperature (K)

o
éf'gi.'u; s '.\"'*‘oo
R e

% ©

260
s®
o8

260

20

difference K)

| copet beidch i

15

10

o 100 200 300

Day of Year (DOY) (day 1 corrasponds to August 1, 1987)

Figure 1: Simulated and 19 GHz SSM/I brightness
temperature derived soil moisture and average and
polarization difference brightness temperature at
the location 33.0°N and 104.25°W

The monthly cumulative evapotranspiration has
been computed using atmospheric data and the at-

mospheric water budget and compared to that esti-
mated using the SSM/I estimated surface soil mois-
tures and the hydrological model estimated stream-
flows. This is shown in Figure 2.

O Atmospheric model
A SSM/ and hydrological mode!

100
)

40 60 80
! 1 I

Evapotranspiration (mm)

20
1

Figure 2: Monthly total evapotranspif*ation com-
puted using atmospheric water vapor budgets and
estimated using SSM/I and hydrological modeling

The comparisons are quite good considering the
fact that the soil moisture estimates and the evap-
transpiration comes from different sources.

USE OF SURFACE SATELLITE DATA

Figure 3 shows the comparisons between the TOVS
derived surface air temperatures and the data mea-
sured at FIFE (First ISLSCP - International Satel-
lite Land Surface Climatology Project, Field Ex-
periment) corresponding to the NOAA 10 satellite.
The NOAA 10 satellite is at 7:30am/pm only for
the spots at the nadir. For spots viewed in the off-
nadir portions of the scan, the local time can differ
from 7:30am/pm by up to two hours. Accounting
for this is extremely important when comparing a
rapidly varying quantity such as surface skin tem-
perature. In addition, since the HIRS2/MSU spot
size is 60kmX60km, there may be more than one
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spot in a 1°X1° box. In such a case, the average
skin temperature at the mean time of the spots is
used. The exact local time of satellite measure-
ments in the 1°X1° grid box is used in comparing
the am and the pm values of the derived surface
skin temperature with the closest (with 15 min-
utes) AMS air temperatures. Results of daily com-
parisons are shown in Figure 3 separately for the
nominal 7:30am and 7:30pm overpass. There has
been no tuning or calibration in comparing these
two sets of data. Furthermore, these two sets of
data are derived from completely different sources
with nothing in common. The comparison between
the TOVS derived and the FIFE measured surface
skin temperatures shows good agreement. This
study is similar to the one carried out by Sugita
et. al. (1993) except that this result has been car-
ried out over more number of days. The dotted line
is for the best fit regression line. More comparisons
can be found in Lakshmi et. al. (1997c).

It is our desire to use the surface air tempera-
tures and surface relative humidity from the TOVS
data and perform the above simulations and make
a three way comparison between the hydrological
model estimates of soil moisture using station data,
hydrological model using TOVS data and that de-
rived using SSM/I brightness temperatures and
TOVS data. This should help in future uses of
TOVS and other satellite data in large scale hy-
drologica] modeling.

REFERENCES

(1] Lakshmi, V., E.F.Wood and B.J.Choudhury,
A soil-canopy-atmosphere model for use in satel-
lite microwave remote sensing, J. Geophys. Res.,
102(D6), 6911-6927, 1997a

[2] Lakshmi, V., E.F.Wood and B.J.Choudhury,
Evaluation of SSM/I data for regional soil moisture
estimation over the Red River basin, To appear in
J. App. Met., 1997b

[3] Lakshmi, V. and J. Susskind, Validation of
TOVS Land Surface Parameters using Ground Ob-
servations, submitted to J. Geophys. Res., 1997c
[4] Lakshmi, V. and J. Susskind, Determina-
tion of Land Surface Skin Temperatures and Sur-

AM:NOAA 10
T T T

50F T
correlation: 0.932 rms: 3.734C

40| intercept: -0.050C  slope: 0.931 3

TOVS Surface Air Temperature (C)

-10 0 10 20 30 40 50
FIFE Surface Air Temperature (C)

PM : NOAA 10
50 TTOTT T T LAARAS

E correlation: 0.945 rms: 4,934C

40:.intercept: 4.268C  slope: 0.956 3

TOVS Surface Air Temperature (C)

30 40 50

-10 0 10 20
FIFE Surface Air Temperature (C)

Figure 3: Surface air temperature measured in
FIFE versus derived from NOAA 10

face Air Temperature and Humidity from TOVS
HIRS2/MSU Data, To appear in Adv. Space Res.,
1997d

[5] Sugita, M. and W.Brutsaert, Comparison of
Land ‘Surface Temperatures Derived from Satel-
lite Observations with Ground Truth During FIFE,
Int. J. Rem. Sen., 14, 1659-1676, 1993

[6] Susskind, J., P.Piraino, L.Rokke, L.Iredell and
A.Mehta, Characteristics of the TOVS Pathfinder
Path A Data Set, To appear in Bull. Am. Met.
Soc., 1997

1104



Soil Moisture Profile Determination Using Remote Sensing Techniques

A.LTimchenko, Yu.V.Gorishnya
Institute for Radiophysics and Electronics
National Academy of Sciences of Ukraine
Proscura 12, Kharkov, 310085, UKRAINE

Phone: 7-0572-448429/ Fax: 7-0572-441012/
E-mail: Timchenko@ire.kharkov.ua

Abstract -- This paper studies the behavior of the scattered
intensity from the inhomogeneous medium bounded the
rough surface. The theoretical analysis is based on an
extension of the diagram and smoothing methods for the
semi-transparent boundary. The series of numerical
calculations for the various dielectric profiles which are
typical for the different weather conditions have been made
in the case of backscattering. The comparison between
calculated intensity and remote sensing data shows a good
correlation for the moistened soil before and after rainfalls. It
was shown that the spatial variation experimental data of the
rainfall zone can be related due to the variation in the soil
moisture profile.

INTRODUCTION

The air- and space-borne radar sensing of the Earth can
be an efficient source of the data on the soil conditions over
vast areas. In this connection an adequate interpretation of
remotely sensed data and estimation of the various
hydrological parameters, such as soil moisture, is becoming
increasingly important. In the recently developed models
(see, for example, [1}) relating to the connection between the
characteristics of the scattered radar signal and the soil
moisture  parameters the inhomogeneous  moisture
distributions were not usually taken into account. However,
the natural media have an inhomogeneous profile with a
depth for the moisture, density, salinity, etc. [2,3] and, as a
consequance;” the corresponding dielectric permittivity
profile have a direct impact on the characteristics of the
scattered signals.

In this paper we investigate the peculiar features of the
radar signal scattered from depth-inhomogeneous medium as
compared to the homogencous one. Initially, we developed
the theory of rough surface scattering for the semi-
transparent boundary based on the smoothing and diagram
methods which extends the range validity beyond the usual
perturbation solution. The similar method has been proposed
by Ishimaru for the conducting rough surface [4].

Next, we described the inhomogeneous moisture profile as
an analytical function, whose parameters variation allows to
describe the natural distribution of the soil moisture content

0-7803-3836-7/97/$10.00 © 1997 IEEE

and, at the same time, permits to apply the Witteker function
for the analytical solution to the rough surface scattering
problem. The calculating results “of backscattering was
compared with the remote sensing data.

THEORETICAL BACKGROUND

Consider the one-dimensional rough surface with the semi-
transparent boundary. Let the incident electromagnetic wave
have the s-polarization (E, , H, , H,). For the upper half-
space with the dielectric permittivity g, = 1 the total
electromagnetic field E, is the sum of incident and scattered
fields. The propagation in the lower half-space with the
dielectric permittivity ¢, is described by the field E, The
boundary conditions at the surface z = h(x,y) is:

Eo=E;, Hpx =Hiy, 1

where Hy, , Hj, are the x-components of the magnetic fields;
k is the wave number.

Let us convert (1) into the equivalent boundary conditions
at z= 0. For this purpose expand E, and E, about z = 0:

& pn n
Eo“'nzo py T’Z" Eo)z=0, (2a)
o] hn an
E = n_ 2b
: ,,Zoni(o”z”E‘) ’ @)

z=0

Substituting (2a) and (2b) into (1) we obtain the boundary
conditions at z = 0. Note that h is considered to be a small
quantity (¢ h) and shown above are the terms up to €2 .

Now we can obtain the Dyson equations set for dyadic
Green’s function G with the source placed in the upper half-
space and satisfies the same wave equations set and the same
boundary conditions than the electromagnetic field. We
make use the Greens’ functions Gy ,Gy¢ , which are related
to the upper and lower half-space correspondingly and
satisfy the boundary condition at h(x,y) = 0.

Then apply Green’s theorem to obtain
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Gy = Gox — [ dx h(x1) Gy V G, (3a)

Gy = Goy - dx1 h(x;) Gox V G, (3b)

where: Gy=Go+ G, Gy=Go-Gi, Gox= Gort+ Gig,

Goy = Gor — Gy, the indexes 0,1 are related to the values in

the upper and lower half-space, respectively, v = _é’__é’_,
0z, 0z,

and V means that it operates on the functions on the left and
on the right side of V.
The Dyson’s equation can be obtained for the average

Green’s function G, . Making use the first-order smoothing

we get the bilocal approximation for G,., G y

Gy =G~ I dx; dxs Gox Nia(x1, x2) G,,
Gy = Goy - I dx; dx, Goy Ni2(x1, %2) Gy )

(4a)
(4b)

where N, is
Ni2 = (h(x) h(x2)) V (21) Gox (X1, X2 ) V (22).

Next, express G; , Gy and Nz (i =

x,y ) in terms of
Fourier transform and substitute theirs into (4) we obtain the
reflection and transmission coefficients:

In order to calculate the incoherent intensity we apply the
Bethe-Salpeter equation. The first-order intensity / is
obtained by taking the first-term of iteration. Also, we use
the Fourier transform representation and evaluate intensity
in the far field zone where p = (x> + z° )' 2 is large. Next, we
obtain the scattering cross section o, which is defined by
Ishimaru [4] as ¢ = 27p [ /%, , where X, is the unit length of
the rough surface. Finally, we have

2 2 2 2
kpiky TaiTa Wk = ky )
c=Q2n/k) ) 2 )
(1- Q)" (1-Qy)
whereT,, =1 — Ry, , ¥ = i,s, Ry is the reflection

coefficient in the case of the flat surface z = 0, the indexes
i, s are related to the incident and scattered angles 6, ,

respectively; Qr = = kzr (1-Ro ) | dky k, (1-Ro) W(ky — ku );
ko =,/k2 - k; o kyr =k sin®,, W(k) is the Fourier transform
from the spectral density of the rough boundary.

CALCULATION RESULTS AND ANALYSIS

The moisture distribution in the soil between the land
cover surface and the ground water level is dependent upon

the soil type, meteorogical conditions, etc. [2,3]. The
moisture is directly related to the soil dielectric permittivity
value.

The experimental data from the study of the moisture
content in the soil indicates that distribution &, which
corresponds to the moisture profile, may vary from smoothly
decaying or rising in depth to the typically curved profile [2].
The last type of the vertical distribution has an extremum
(maximum or minimum) located at a certain depth. The
extremum value and its location depend on the soil type and
meteorogical conditions.

To describe . a uniform moisture distribution with depth
(z-coordinate) an analytica! function ¢(z) was chosen

©(2) = by + b, exp(- az) +b; exp(- 2az). ©6)

Then the dielectric permittivity can be presented as
e1(z)=e; (1-9) + e,0, where g, = ¢,° +1 8", g, = 8,° + g,”
are the dielectric permittivities for the dry soil and water
correspondingly. The variation of the parameters b; , b, , b;,
a gives us a various profiles &, which present a typical
experimental moisture content distribution with a depth.

As regards the different profiles the numerical
calculations were made for the angular and spectral-spatial
characteristics. The comparison of the angular
backscattering from the homogeneous and inhomogeneous
moistened soil has shown that the only small quality
difference between this cases are observed. More information
can be obtained from the spatial distribution of the
backscattering characteristics. Thus, we studied the scattered
intensity dependence on the extremum profile location at a
depth. Some typical results are presented in Fig. 1(a,b),
2(a,b) and 3. The backscattering behavior for the wavelength
A =3 cm are shown in Fig.1(a), 2(a), and for A = 3 cm and
21 cm in Fig.3; the corresponding profile of the moisture
content are illustrated in Fig.1(b), 2(b). Calculation was
carried out for the incident angle 30°, the correlation length
is equal / = 0./ k, and rms is # = A / 6. The data in
Fig.1(a),2(a),3 are presented as K, where K is the ratio
between o; for the dry soil and o; for the inhomogeneously
moistened soil. The calculated K are plotted as a function of
extremum profile location. The curves (1,2,3) in Fig.1(a)
present K for the various values of the moisture content at
the point of minimum, while the curves (4,6) are typical for
the exponential profile and the curve (5) is typical for the
profile with the maximum content. The curve (1) has the
negative value K in the minimum location, ie. the
backscattering from the inhomogeneous soil is a smaller
than it is from the dry soil. This result indicate that the
transparency effect can be observed when the minimum
location are compared with the effective wavelength in the
medium. The study of the backscattering intensity for the
various values of the moisture content has shown that for the
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wetter inhomogeneous soil the variation of K against the
extremum profile is decreased. This fact is given in Fig.1(a)
(curve 3).

Fig.3 present the comparison between the backscattering
for the wavelength 2=3 cm(curve 1) and A=21 ¢m (curve 2)
for the profile of moisture content which was illustrated by
curve 1 in Fig.1(b).
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The typical situation describing the soil condition before
and after rainfalls is presented in Fig.2. Since the top layer
soil has a small moisture content w~2% (before the rainfall)
and the w increases up to 70% (after the rainfall) the
considerable difference for K is observed. Note that the curve
(2) can describe the soil moisture profile directly after the
rainfall while the only top layer soil becomes wetter.

The calculations results presented in Fig.2 were compared
with the measured K values. The experimental data for K
were obtained from the mapping of the soutern territory of
Ukraine, which was performed using the SLR aboard the
satellite “SICH-1" on April 1, 24, and 27 1996. The active
rainfall zones are clearly seen on the images. The difference
in K for the soil conditions before and after the rainfalls
amounts to 5+6 dB. However, the typical ratio K is on the
order 3+4 dB which is in agreement with the calculated K
presented in Fig 2.

To summarize, the comparison of the calculating results
and remote sensing data has shown that variations of the
backscattering intensity due to the rainfall zone displacement
can be determined by the variations in the soil moisture
profile.

REFERENCES

[1] A.Beaudoin, T. Le Toan, and QH.J.Gwyn, “SAR
observations and modeling of the C-band backscatter
variability due to multiscale geometry and soil
moisture,” IEEE Trans. Geosci. Rem. Sensing, vol. 28,
pp. 886-896, September 1990.

[2] JR. Wang, “Microwave emission from smooth bare
fields and soil moisture sampling depth,” IEEE Trans.
Geosci. Rem. Sensing, vol. 25, pp. 616-622, September
1987.

[3] AM.Shutko, A Radiometry of the Water Surface and
Soil. Moscow: Nauka, 1986, pp. 128-133.

[4] Akira Ishimaru, “The diagram and smoothing methods
for rough surface scattering,” The 1989 URSI
International Symposium of Electromagnetic Theory,
Stockholm, Sweden, 14-17 Aug. 1989 (Stockholm,
Sweden; Royal. Inst. Technol., 1989, pp. 509-511).




Dielectric model of bound water in wet soils for microwave remote sensing

V.V.Tikhonov
Space Research Institute, Russian Academy of Sciences.
Profsojuznaya 84/32, Moscow 117810, Russia.
Fax. (7-095) 3331056, E-mail: kub@asp.iki.rssi.ru

INTRODUCTION

At present, modelling of dielectric properties of bound
water in soil encounters significant obstacles. There are
two main reasons: great variety of classifications of water
in soils existing and controversial data on physical
properties of water in contact with soil particles [1].
Classifying soil water, specialists of different fields
propose different approaches taking as principal one or
another feature of water and soil interaction [1].
Classification differences lead to different ways of
estimation of the volume of bound water in soils for
electrodynamic models of soils [2-4]: from one
monomolecular layer of water covering soil particles to
all non-gravity water in soil. As to physical
characteristics of water, it is known, that the closer it is
to the surface of a body, the more distorted its structure
is compared to the structure of free water and ice [1].
Such structural distortions induce changes in water
physical properties. However, available data on those
characteristics are very controversial [1].

We believe, that determination of the volume of bound
water in soils for electrodynamic models should be based
on soil water dielectric properties and water should be
considered bound if its permittivity differs from that of
free water.

DIELECTRIC MODEL

To define volumetric content and permittivity of
bound water in soils, let us first consider the following
facts.  Experiments described in [1] show, that bound
water molecule relaxation time 7, differs from relaxation
times of free water molecule t, and of ice molecule T,
and t,< 7, < 7;. On the other hand, as noted in [1], with
the increase of water content in clay minerals T,
approaches t,. In [1], through the analysis of nuclear
magnetic resonance of bound water films in clay, upper
limits of bound water molecule relaxation time at +27°C
depending on the number of monomolecular layers
covering water particles were determined. Those
investigations show, that t,,, falls with the increase of the
number of monomolecular layers covering particles [5]
and 1, is the same as 1, at a film 10 layer thick.

Based on the facts given and assuming, that bound
water permittivity, like that of free water, agrees with the
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Debye model, we suggest the following statements:

1.With soil wetness increase, water in soil remains
bound till a certain level of wetness.

2.The change of bound water volume results in
different bound water dielectric properties induced by
the change of bound water molecule relaxation time.

3.At a certain soil wetness, dielectric properties of
bound water become similar to those of free water.
Further increase of wetness brings no effect on the
permittivity of bound water which remains equal to free
water permittivity.

Using t,,, obtained in [1], we defined an approximation
of t,, depending on thickness h of water film covering
soil particles. The dependence has the following form:

To(+27) = exp(-5.95x10"%12-27.93exp(h) +
-7
+”5—2;1°_+1.95x1o7h+o.6),

where 1., is expressed in seconds, h - in centimetres.
The dependence is worked out under the assumption
that t,, becomes equal to 1, at water film density hy,
equal to 10 diameters of a water molecule (2.8 x 107cm
(1]). I assume 7,,= 7, at h > h,,.

To define bound water permittivity s,,, the relaxation
model of free water permittivity [6] was used.

Given the bound water molecule relaxation time at
+27°C from (1), it is easy to determine bound water
relaxation wave length at the same temperature.
Assuming that A,,(+27°C), 1,(+27°C) and A,,(t), A, (t)
are proportionally connected, we get:

AplD)= A (2D, (D 1,+27). @

Then real and imaginary parts of bound water
permittivity can be derived from expressions found in
[6], where A, (t) is substituted for A, (t):

(s-€d  « (& €Ay (0I2)
y Epw™ ’ (3
1+(A, (OI1) 1+(Ay,, (OI1)?

here ¢, and ¢, are retrieved from the same formulas as
for free water [6].

Thus, we can calculate g, in soil depending on the
thickness of bound water covering soil particles. The film
thickness can be determined from the soil wetness and
the soil model applied.

I used the wet soil model described in detail in [35].

ebw= €°°+
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According to it, the soil is an air medium with spherical
granular inclusions divided in three fractions: sand, silt
and clay. It is assumed that at volumetric soil wetness V,
ranging from 0% to max(V,,), when bound water
dielectric properties become similar to those of free
water, water is distributed in the shape of spherical
covers only on clay particles and is bound [1,2]. At soil
wetness max(V,,) < V,, < Vi, water covers particles of all
fractions and is free. Soil wetness V. is called field
capacity and represents maximum quantity of capillary
suspended water. According to [2], V. can be derived
from the regression dependency given there. At soil
wetness V, > Vic, surplus (gravity) water V-V
accumulates in the shape of spherical drops in soil pores.
Effective permittivity e of wet soil is obtained from the
equation given in [5].
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Model calculations of e ; of wet soils were compared to
experimental data presented in [7,8]. Actual soil
structural parameters were used in calculations.

Comparisons gave good agreement between calculations
and experimental data.

1 and 2 present model calculations and

Figs.

experimental data [8] of real (a) and imaginary (b) parts
of wet sandy loam depending on emission frequency. In
agreement with the fractional composition of the soil
and the model of soil bound water suggested, at low
wetness (4.3%), all soil water is bound, while at high soil
wetness (24.3%), it is free.
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For comparison purpose, the figures also give
dependencies calculated based on the "refractive” model,
which does not take into account bound water in soil [9].

Analysis of Figs. 1 and 2 leads to the following
conclusion. At low soil wetness, less than max(V,,),
bound water has to be taken into account in models for
g Of wet soil. This is confirmed by the difference of
calculations made according to the present and
“refractive” models at low wetness and their practical
identity at high wetness.

Theoretical and experimental [7] dependencies of real
and imaginary parts of g, of silt loam on the soil
volumetric wetness are presented in Fig. 3. Figures show
two breaks of theoretical curves. The first one
corresponds to that soil wetness at which bound water
becomes free (¥, = max(V,,) = 17.5%). This break is




placed in the so-called region of transitional moisture.
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Most papers say this is the region of wetness where free
water starts to appear. In the light of the models of ¢, of
soil and g, in soil, this transitional region obtains new
explanation as being region of wetness at which bound
water becomes free. The second break of theoretical
dependencies of soil permittivity on wetness relates to
wetness where gravity water starts to appear in the soil.
Experimental data, however, do not show such a break
which, apparently, evidences that in reality water is
simultaneously distributed as in film covers around soil
particles as in drops in soil pores at wetness starting with
V,,which is much earlier than the calculated wetness V.
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It is noteworthy that the model of soil ¢, suggested
assumes that bound water is found in soil only when the
latter contains clay particles. In \Ije'?lity,\bdi.%d water also
covers other particles (sand; and|silt). Ho; ever, given
assumed maximum' thickness of bound water of 10
monomolecular layers, estimations show that water
covering sand and silt particles amounts to only 0.1% of
total volume of water and is, hence, negligible. The

statement is confirmed by Fig. 4 showing experimental

permittivities of sand [2] and calculated dependencies of
g,c on wetness of the soil. Naturally, only sand fraction
is present in the soil meaning, according to the model of
g, that there is now bound water. Calculated and
experimental dependencies agree well within the whole
wetness range.

CONCLUSIONS

Calculations of ¢, carried out based on the suggested
model of &, are in good agreement with experimental
data for various soils. This agreement was reached due to
the consideration of structural properties of soil in the
model of ¢, as well as due to the model of g,,. The
suggested model of soil bound water permittivity allows
to explain the region of transitional wetness and to
describe dielectric properties of soils with low wetness.
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Abstract—An algorithm for discrimination whether rain
exists or not in the TRMM PR (Precipitation Radar) data is
being developed. The rain/no-rain discrimination will
provide us with useful information for on-line data
processing, data storage control, and data analysis in post
processing. A simple rain/no-rain discrimination with a flag
output representing the possibility of rain is employed. The
flag expresses the three states of rain as ‘rain certain’, ‘rain
possible’, and ‘rain little’ at each PR footprint. Rain top
height is also determined in this algorithm. The algorithm
described here is implemented as one of TRMM standard
algorithms.

1. INTRODUCTION

TRMM PR (Tropical Rainfall Measuring Mission/
Precipitation Radar) is the first spaceborne rain radar which
objective is to achieve more quantitative rain measurement in
global scale than ever made in tropical and sub-tropical
regions. In the PR algorithms for the TRMM data system, an
algorithm to discriminate whether rain exists or not has been
developed. One of products of this algorithm is a flag
representing the rain status for an footprint. This flag is used
for the algorithms in downstream in the data system,
reduction of storage data volume by eliminating data judged
as rain-little, and data analysis in the post-processing.

The rain/no-rain discrimination is the statistical testing
problem using thresholds in the radar received signal. The
probability distribution function (PDF) of received signal
describes both the detection probability and false alarm
probability for some particular threshold. The PDF
particularly with the mean value and standard deviation of
weather radar signal has been studied by Zrnic [1]. The task
to be solved here is to choose optimum thresholds to separate
rain and no-rain condition effectively under the TRMM PR
performance. The algorithm first compares the radar range
data in an anglebin with threshold. Then, a flag output for
the anglebin is generated by examining the result of range
data comparison. The rain top height at each anglebin is also
derived. The method in deriving these products and

0-7803-3836-7/97/$10.00 © 1997 IEEE

simulation study to find optimum parameters are discussed.
2. TRMM PR MEASUREMENT

TRMM PR is an active phased array radar which is
composed of all solid state components. The electronic
antenna beam scanning in cross-track direction performs
contiguous rain mapping over the swath width of about 220
km on the earth surface. The antenna scan angle ranges +17
deg centered at nadir. The footprint size is 4.3 km at nadir.
The cross-track swath is filled with 49 footprints (anglebins).
The range resolution (a rangebin size) in each anglebin is
250 m.

The signal to noise ratio (SNR) in the TRMM PR is generally
poorer than typical ground-based radars due mainly to longer
radar range. The designed and achieved PR sensitivity is
given as S, , which is the SNR per one pulse, being unity (U

dB) for the signal from 0.5 mm/h rainrate. In this case, the
noise figure of the PR receiver is about 5 dB. Here, the
following Z-R relation which is considered to be suitable to
tropical rainfall is assumed,

Z =372R™*, ¢))

In the case of rain radar measurements from space or aircraft,
ground (sea) surface echo is much intense than typical rain
echo. Therefore, effect from the surface clutter to the rain
discrimination must be considered. There are two causes for
the surface clutter: one is caused from the PR antenna
mainlobe. PR footprint size is 17 times larger than range
resolution. Therefore, at the scan edge of +17 deg, the clutter
echo caused from the antenna mainlobe shoulder appears up
to 1.6 km above the surface in the radar range. Because
received level of mainlobe coupled clutter is much intense
than rain echo, the rain discrimination can not be made
where the mainlobe clutter appears. Another type of clutter is
the antenna sidelobe-coupled clutter. After examination of
the PR antenna radiation pattern, it is concluded that the
sidelobe-coupled clutter level is low enough in usual surface
conditions.
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3. PR SIGNAL STATISTICS AND RAIN
DISCRIMINATION METHOD

In the rain discrimination, PR data between the sea surface
and 20 km above it are used, although the upper portion of
data are not always available. This algorithm belongs to the
Level-1 data processing in the TRMM data system. In this
level, the instantaneous data in the anglebin-basis are
processed. The rain discrimination is applied to each
anglebin data and a flag is generated at anglebin by anglebin.
The height (range) distribution of rain in each angle bin is
used in this processing.

After logarithmic detection is applied, incoherent averaging
of data is applied over 64 data for received power and 256
data for receiver noise in PR. Standard deviation of rain
signal obtained in PR after integration is expressed as [1]{2]
1
2 212
AR TES @
J6|INU s, M\S,
where, N and M are the integration number for received
power and noise, respectively. P, and S, are the averaged

(8

signal power and SNR per pulse, respectively. A standard
deviation in the case of no-rain (1—’; = 0) is given as,
. P
s0 Jg N M
Although above discussion does not specify the PDF shape,

PDF will be close to the normal distribution due to large
number of integration.

6

To examine the PDF of the PR received signal, PDF is
generated using random numbers. Fig. 1 shows the PDF of
PR signal which is generated from 40000 random numbers
simulating the PR signal processing: abscissa is scaled by
radar reflectivity factor (Z). Fig. 1 shows two cases for
different PR receiver noise level, that is, S, =1 at 0.5 mm/h

rainrate signal and at 0.7 mm/h rainrate signal. Three curves
representing no-rain case, and rain cases with rainrate of 0.5
mm/h and 0.7 mm/h. Dots represent simulation results and
solid lines show the normal distribution with the standard
deviation given from (2) and (3). Each simulated PDF is well
consistent with corresponding normal distribution curve. It is
noted, however, that the PDF from simulation is slightly
asymmetric with its center and the probability in the upper
skirt is a little higher than that of normal distribution.

It is postulated that the goal of this discrimination is to
separate rain data at 0.5 mm/h effectively from receiver noise
fluctuation. To achieve this, we can set a threshold at the
upper 3o point of no-rain PDF. The false alarm probability in
this case is 0.4%. In the case (a), this threshold will work
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well with relatively high detection probability (92 %) for 0.5
mm/h rain. However, in the case of the increased receiver
noise (b), this threshold gives poor detection probability
(about 59 %), which means that 41 % of rain data at 0.5
mm/h is left by oversight. To prevent this, the second (lower)
threshold is set at upper 10 percentile of no-rain PDF with
detection probability of 92% in (b). The rain state is
considered as ‘rain certain’ for the signal above the higher
threshold, ‘rain possible’ for that above the lower threshold,
and ‘rain little’ for that below the lower threshold.
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Fig. 1: PDFs of PR received signal for no-rain case, and rain
cases with rainrate of 0.5 mm/h and 0.7 mm/h. (a) 5, =1 at

0.5 mm/h rainrate signal and (b) at 0.7 mm/h rainrate signal.

4. SIMULATION OF RAIN DISCRIMINATION

Propriety of thresholds and flag derivation method is tested
using simulation data. The data used for this simulation were
originally obtained from airborne rain radar measurement of
vertical rain distribution along flight track. Fig. 2(a) shows
an example of original data with coordinate and resolution
being modified to match those in TRMM PR. The data are
first spatially averaged to meet the PR resolution with 250 in
vertical and 4.3 km in horizontal, and then re-arranged to
form the TRMM scan plane which consists of 49 anglebins



and about 80 rangebins. The PR scan plane is plotted in
rectangular shape for simplicity. Black portion and white
portion in the bottom are the ground and mainlobe-coupled
clutter region, respectively. The noise fluctuation in this
original plot is considered to be small enough because of
higher SNR in the airborne radar measurement and very
large number of integration in the averaging process.

Fig 2(b) shows the plot simulating PR data. Noise fluctuation
expected in the PR SNR is added to the data in (a). Vertical
pattern which appears in the plot is caused by the subtraction
of constant noise level at an anglebin.

Comparison with threshold values is made over all rangebin
and anglebin data. The results for (a) and (b) are shown in (c)
and (d), respectively. The signal level at black and gray

points are above the higher and lower thresholds, respectively.

Here, the values of 2 and 1 are assigned to the black and gray
points, respectively. The final product is the flag output for
anglebin basis. Here, we introduce a concept of vertical
correlation distance d to avoid the flag being ON due to noise
fluctuation. The rule is that the anglebin flag is 2 or 1 only
for the cases that at least d-consecutive rangebins are judged
as 2, or larger than or equal to 1. The final anglebin flags
derived are plotted with d value in (). The result for d = 0 is
the result obtained from the plot (c) and is the reference.
Comparison of results from d=1 to 4 with that for d=0
suggests that the case of d=2 gives the best result among the
4 cases.

SUMMARY

Outline of an algorithm for rain/no-rain discrimination in the
TRMM PR is described together with an example of
algorithm performance test using simulation data.
Preliminary test suggests that vertical correlation distance of
2-rangebin sizes gives the best discrimination performance.
Parameter tuning and further algorithm improvement will be
continued throughout the TRMM mission.

This study has been conducted under collaboration with
NASDA based on the TRMM Joint Research Announcement.
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Abstract — An optimal area method is described which is used
as a basis for comparing Kdp, (Kdp,Zdr) and Zh based
estimates of rain rates with gauge measured rain rates. This
method differs from conventional methods which typically
use a square LxL area centered on the gauge. The spatial
structure of the rms error field, which is the difference
between Kdp-based rain rate and gauge-measured rain rate is
used in an objective manner to define the optimal area over
which the radar data is averaged; additionally, an optimum
time delay is calculated. Three convective rain events (with
pea-to-marble sized hail) are analyzed using the data from the
CSU-CHILL Radar and gauge data. In two cases, a young
capacitance rain gauge installed in a chase van was used to
record rainfall. The chase van was directed by radar for
storm cell intercepts. Another radar algorithm using the
principle of the optimal area was also developed relying on
radar data only. In this algorithm radar data from different
elevation angles are used to arrive at an optimal area and time
delay. These rainfall estimates are then compared with gauge
reports to provide an independent measure of accuracy and
assessment of the various rain rate algorithms.

INTRODUCTION

Until recently there have been few opportunities to
measure polarimetric radar parameters including differential
propagation phase (®dp) from which Kdp is estimated and to
assess performance of algorithms based on (Kdp) or
(Kdp,Zdr) [1][10]. Quantitative assessments of algorithms
based on (Zh,Zdr) against distrometer and gauges have
shown that fractional standard errors of (30-40%) are typical
for these algorithms [2]{31{5][6].

Radar-gauge comparisons are complicated by various error
sources. The conventional approach is to construct an LxL
square area centered over the gauge location and then to
spatially average the radar data within this region [11].
Aydin, et al, [2] have suggested a method based on choosing
an optimal area from a set of pre-determined sub-areas or
swaths. Radar Zh and Zdr values are averaged within this

* VNB & VC acknowledge support from AFOSR via grant
FA9620-95-1-0133 and NSF via grant ATM-9612519. The
instrumented chase van was funded by the Center for Geosciences
Phase II at CSU via DoD grant DAA04-94-G-0420. SB
acknowledges support from USAF/Rome Laboratory.
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optimal area before comparing to distrometer values. Swath
areas are pre-defined and laid out in the path of storm motion
relative to the distrometer location. Areas are chosen within
each radar PPI scan that minimize the time-delayed cross-
correlation between radar Zh and distrometer Zh. Such
swaths would define an optimal area that likely contributed to
the distrometer measurements and thus can be used to
compare radar-distrometer rainfall estimates.

In this paper we present an approach similar to Aydin, et
al, except that there are no predefined areas used to select the
optimal area and no apriori knowledge of the storm motion
is assumed. An objective procedure for locating an
elliptically-shaped optimal area is described that minimizes
the rms error difference between radar rain rate estimates and
the gauge rain rate over an appropriate time interval. The
dimensions of the ellipse are obtained from the spatial
correlation structure of the rms error field.

DATA SOURCES
CSU-CHILL Radar

Radar data such as Zh, Zdr, and ®dp were available at
resolution volumes spaced 150 m apart with a dwell time of
128 ms (64 horizontal/vertical polarized pulse pairs). Kdp
was derived by post-processing the raw ®dp range profiles
using an adaptive digital range filtering technique described
in [8]. The resulting Kdp accuracy is estimated to be within
+0.5 deg km'.

Rain Gauges

For the 20 June 1994 storm event a tipping bucket was
used for Gauge #1 and a weighing gauge was used for Gauge
#2. Both gauges logged cumulative rainfall measurements at
5 minute intervals. The storm duration for this event was ~45
minutes over both gauges. The distance of Gauge #1 and #2
from the radar was 45.6 km and 40.6 km respectively.

For the 2 June 1995 and 6 July 1996 events, a Young
capacitance rain gauge was used. The gauge was interfaced
to a PC; cumulative rainfall was recorded every ~3 seconds.
The distance of the gauges from the radar was 14.8 km and
24.1 km for the 2 June 1995 and the 6 July 1996 events
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respectively. The duration of the 2-June 1995 event lasted
~30 minutes and the 6 July 1996 event a ~30 minutes.

OPTIMAL AREA METHOD - RADAR/GAUGE ELLIPSE

Data from the 2 June 1995 storm will be used as an
example to describe the optimal area method. A time series
of radar data is constructed through each resolution cell from
multiple PPI scans. We use a 3.5 km radius circle centered
over the gauge location as an observation area to study to
reduce computation time.

The temporal and spatial variability of rainfall are
important considerations in the development of the optimal
area. Gauge data is used to determine the time interval that
the optimal area can be matched to the gauge measurements.
The autocorrelation of the gauge time series is taken and then
best fit to a smooth exponential function. The time lag (t,)
where the best fit curve is equal to 1/e is chosen to be the time
interval of interest. The radar data time series are truncated to
a window size equal to T,.

In turn, each radar time series are shifted incrementally in
time across the gauge data. Increments of 1 second are used.
At each successive increment the rms difference (RGp)
between the radar and gauge measurements is computed. The
minimum RG value is then found from all of the time lag
calculations:

n i=1

1a 2 %
Min(RGpy) = min {—Z[Rﬁ(t+‘c)—Rgi(t)] } :
M

Next, the time lag of all the radar time series are set to the
lag of the R-G time series pair that has the smallest rms value.
RG;y, is then re-computed for all time series once more. The
result is an rms difference field as shown in fig. 1. The

physical dimensions of the ellipse are determined from the
rms difference field. The center location of the ellipse is

Fig. 1. RMS difference field (mm hr'') from the radar/gauge method
is shown with gauge-point and cross axis lines as indicated. Data is
from the 2 June 1995 event.

Fig. 2. Optimal area from radar/gauge method. Data is from 2 June
1995 event.

taken to be at the point location with the smallest rms value.

A gauge-point axis and orthogonal cross-axis line are
drawn as shown in fig.1. The rms difference values profiled
along each line are used to determine the axis lengths of the
ellipse. Rather than using an arbitrary cutoff level of the error
measure, an -adaptive procedure is used. The autocorrelation
of the rms error profile is taken for each line and the
decorrelation value equal to 1/e is used to fix the spatial lag
corresponding to the axis length. The optimal area for the 2
June 1995 event is shown in fig. 2. Radar data within the
optimal area ellipse are averaged to form a composite radar
value. The optimum time delay (T,) is taken as the time shift
where the radar composite time series and gauge
measurements have a minimum rms difference.

OPTIMAL AREA METHOD - RADAR/RADAR ELLIPSE

This method is similar to the previously described
approach except that radar data alone is used to determine the
optimal area ellipse. Data from two elevation levels are used
to develop the ellipse area. Gauge data is substituted for
radar data (R.s) selected at the center of the observation area
in one of the elevation planes (the reference plane). The other
elevation plane represents a test a field to compare with the
Rys. The time interval, rms difference field, and ellipse axis
lengths are computed exactly in the same manner as before
except that the Ry is used instead of the gauge data.

The point where the R-R,. difference pair has the smallest
rms value is used to calculate a storm vector. This vector is
then used to find the displacement from the center location of
the optimal area with respect to any desired location. Thus, a
point on the ground can be matched to a point aloft by the
projection of the storm vector. For comparison purposes, the
ground point is chosen to be the gauge location.

Radar data are averaged within the optimal area to form a
composite radar time series. To find T,y all of the radar time
series in the reference elevation are shifted ahead in time and




series in the reference elevation are shifted ahead in time and
the rms difference between these time series and the original
R, at O time shift is computed. Again, the best R(t+1)-R ¢
pair is found. The distance from this point and the time shift
determine a storm speed. T, is then computed from storm
speed and the distance from the center of the optimal area to
the gauge location. The composite radar value and T, can
be used to compare with the gauge reports on the ground.

RESULTS/CONCLUSIONS

Table 1 lists the rain rate estimators. Table 2 contains the
results for the optimal area radar/gauge and radar/radar
methods compared to the gauge reports. Radar/radar results
are given only for the 2 June 1995 and 6 July 1996 events.
The errors shown in Table 2 are in excellent agreement with
theoretical predictions [10]. Further, our results support the
conclusions of [1][10] that Kdp-based algorithms offer an
excellent, physically based radar method for measuring rain
rate in mixed phase precipitation.
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Table 1. Radar Algorithms of Rain Rate (mm hr-1) and References

R(Kdp) =40.5(Kdp)0-85 4]
R(Kdp,Zdr,]) = 52.0[(Kdp)0-96][(Zdr)-0-447} [10]
R(Kdp,Zdr,2) = 67.152[(Kdp)0-956](10)-0.125(Zdr) (7]

R(Zh) =0.017(Zh)0.714 1]
R(Zh,55) =0.017(Zh,55)0.714
R(Zh,53) =0.017(Zh,53)0.714 -
R(Zh,51) =0.017(Zh,51)0.714 .

note: Kdp in deg km-}, Zdr in dB, and Zh in units of mmOm=3.
Zh_55 means truncated at 55 (53,51 dBZ) respectively.
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Table 2. Radar Algorithms of Rain Rate (mm hr-1) & Fractional Standard Error (%)

Algorithm FSE (%)
20 June 1994 #1 20 June 1994 #2 | 2 June 1995 2June 1995 | 6July 1996 6 July 1996
radar/gauge radar/gauge | radar/gauge radar/radar {  radar/gauge radar/radar
R(Kdp) 10.80 10.72 I 11.27 13.78 : 06.13 12.18
R(Kdp,Zdr,1) 48.42 18.39 } 10.99 10.91 : 19.87 25.58
R(Kdp,Zdr,2) 44.81 25.00 : 17.61 16.07 : 33.69 37.34
R(Zh) 57.64 373 : 33.28 35.58 l 35.11 35.44
R(Zh,55) . ; : - - : - 35.41
R(Zh,53) ; ; ! 34.81 36.44 : 2736 30.45
R(Zh,51) - : | 3045 418 | 3016 3183

note: Algorithms are as defined in Table 1. Dash indicates entry is the same as the above previous value.
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Abstract -- A method to correct spaceborne rain radar mea-
surement for non-uniform beam filling (NUBF) is studied
using a shipborne radar data set over tropical Pacific.
Statistical analyses are made on spatial variabilities of rain
rate. The result is reflected into estimating the variability
in a radar IFOV which is then used to obtain a NUBF
correction factor. Results indicate the usefulness of this
method for reducing bias error in rain rate estimation.

INTRODUCTION

It is well known that the non-uniform beam-filling
(NUBF) is a major error source in rainfall measurement
with a spaceborne rain radar the foot-print size of which
may be comparable to or greater than a typical convective
cell size. The effect of NUBF depends on the algorithm
used for a rain-parameter estimation. It has been shown
that the use of the path-integrated attenuation (PIA) derived
from the surface reference target (SRT) method suffers from
stronger effect than the use of a Z-R relation [1,2].
However, the SRT method is also recognized as the most
important algorithm to stabilize the rain attenuation
correction in heavy rain. It is crucial to develop a method
to correct the SRT-derived PIA for the NUBF effect.

We proposed a method for correcting the SRT-measured
PIA for NUBF, and studied its feasibility using shipborne
and ground-based radar data obtained in the TOGA/COARE
campaign [3]. This method is based on a characteristic of
spatial variability of rain rate, which has been used for the
SSM/I rain retrieval algorithm {4]. In this method, the
key point is to estimate the fine-scale rain rate variability
(normalized standard deviation, NSD, NSDy; SD divided
by mean) in an instantaneous field-of-view (IFOV) from
the large-scale NSD (NSDyp ) that can be measured by radar.
The concept of this process is shown in Fig. 1. The
NSDpg in IFOV (i = 5) is estimated from the NSDf,
obtained from the radar data measured at IFOVs (i =1 - 9).

This paper presents a follow-up study of this method
using a more comprehensive data set for statistical
evaluation of this correction method.

FORMULATION OF THE PROBLEM
Referring to Figure 1, let R; (i = 1 - 9) be the IFOV-

averaged path-averaged rain rate which consists of » rain
rate elements (rj j, j =1, n) within the IFOV:

R,‘:g_rj,,'/n M
J
The path-integrated attenuation we should obtain when

rain is uniform in the IFOV, A; (dB), is:
Aj=2L oR;P = 2LoR; )
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Fig. 1 Concept of estimating fine-scale
variability from large-scale one

where a and P are coefficient and the exponent of the k-R
relation, and L is the rain depth. The exponent B depends
upon the frequency and dropsize distribution, but fairly
close to unity for the frequency range of interest (10 - 35
GHz). Similar to rj ;, PIA element aj ; is expressed as

ajj=2Larj ,'B = 2Lo rj, 3)
The SRT-measured PIA (Ay,) is given by
Ap,i = -10log(zexp(-In10c rj,; L/5)) @)
J
The NSDpg ; is given by
NSDy ; = [ .. 211725,
H,i = [(Un)z(rj; - RY*]IR; ®
J

As an estimate of NSD of spatially averaged rain rate
(NSDp), we use samples of Ay, surrounding the IFOV of
interest (i = S) as shown in Fig. 1.
NSDL = [(1/m)5(Am,i - <Am>)] PI<hm> 6
i

where <A ;> is the average of Ay, | through Ay 9. Note
that A, ; and NSD[, can be obtained from spaceborne radar
measurement. First we estimate NSDy 5 from NSD[,.
Next, we estimate A5 from A;; 5 and NSDy 5 using a
relation between Ap 5 and A5 for a given NSDy 5
assuming a pdf model within the IFOV.

RAIN RATE VARIABILITY
We may expect that, if we see high variability in large-
scale rain field, fine-scale variability is also high. Such a
correlation may be related to the statistical properties of
spatial variability of rain rate. The statistical properties are




studied using 42 rain fields that are classified into four
categories; Type-1 (squall line system), Type-2 (randomly
spread convective), Type-3 (wide-spread stratiform), and
Type-4 (mixed stratiform/convective).

To characterize the spatial variability of rain rate, the
spatial auto-correlation function (ACF) is calculated. If the
ACF is stable, it is expected that the magnitudes of fine-
scale and large-scale rain rate variabilities is also stable. It
is found that the 1-D normalized auto-correlation function,
p(x), obtained from the averaging of the values of a 2-D
auto-correlation function at an equi-distance, x, is well
approximated by

p(x) = exp(-axb). 0

From regression analyses of all rain fields, a and b values
and the correlation distance, xJe (the distance at which

p(xdec) is e-1) are obtained. Results show that a, b, and
Xdec vary significantly, and xgec somewhat correlates with
the coefficient c relating NSDy to NSDy, (Eq.8).

For each rain field, pairs of NSDy of rain rate and
NSDJ, of Ay, are calculated, and a regression analysis is
performed to relate NSDy to NSDJ, with

NSDy =c NSDy, ®)

The results for Types 1, 2, and 4 are shown in Fig. 2, in
which correlation coefficient (r) and the coefficient ¢ are
shown as histograms. It is found that there is a reasonable
degree of correlation between NSDy and NSDJ, and that ¢
is fairly stable. As for stratiform rain, r and ¢ are slightly
lower than convective rain, suggesting the necessity of
classifying rain type in the NUBF correction.

It is known that the probability density function (pdf)
of rain rate is well approximated by a log-normal distribu-
tion combined with a delta function representing "no rain"
region, when the area is sufficiently wide. In this case,
however, the area of interest is as small as several tens of
square kilometers, and the pdf may not be stable enough to
apply a single pdf mode!l. To investigate the log-normality

of such area, x2 tests are applied for 7km by 7km rainy
areas in each rain field. Percentage of areas judged non-
lognormal is a measure of non-lognormality of the rain
field. The result is summarized in Fig. 3. For convective
rains, about half the areas appear to be judged non-
lognormal as anticipated. For the simulation described
later, however, we assume the log-normal pdf for
simplicity. More study is needed for the statistical charac-
terization of rain field within the spatial domain related to
the problem we consider here.

SIMULATION OF NUBF CORRECTION

Using the relationship between NSD[, and NSDy
(Eq.8, with ¢ = 0.73), a simulation is performed. A
flowchart of the simulation is shown in Fig. 4. we start
with the conversion of the 1-km spatial resolution Z-factor
map to the corresponding rain rate and PIA. Next, we
calculate the rain rate and PIA of 4-km resolution. At the
same time, we calculate NSDy using Eq. 5 and NSD[L
using Eq. 6. The simulation starts with looking at the
radar measurement (A,,) of each IFOV. For a specific
IFOV, we obtain A, and NSDy. The NSDj, is then
converted to NSDg using Eq.8. Ay, and the estimated
NSDpy are input to the look-up table to obtain a corrected
Ap (an estimate of A). This result is finally compared
with the "uniform" PIA (A) directly calculated from the 1-
km resolution data.

An example of the simulation result is shown in
Fig.5, where scattergrams of (a) "Uniform” PIA (A) vs
"Apparent” PIA (A,;), (b) A vs. NUBF-corrected PIA
using NSDy estimated from NSDy, and (c) A vs. NUBF-
corrected PIA with "true" NSDp are plotted. It is clear
that the NUBF correction reduces bias errors; however,
some "over-correction” appears in some cases.

10 L L | LA | LA | M
8 1 . : ' ' . . _ _ . _
' ' ' ' 10 T v T T s b Convective _
8 ] @ u rain
@ 6 I 1 - ] N § 6 F -
‘::, [ 6 \ -
B 4 s 4 L |
8 at . 5"
(@]
) 1 EzLatllln, -
E 2T 12F . o L1l s
r4 i 1 | 0 20 40 60 80 100
0~ 0 ot Percent of rain areas judged
o 2 4 6 8 1 2 4 6 8 1 12 "non-lognormal" with 5% sig-
Correlation coefficient Inclination, ¢ nificance for each rain scene

Fig. 2 Results of linear regression analysis of NSDg vs. NSD[, relation
for Type 1, 2 and 4 rains. (Rain rate corresponding to A5 > 5 mm/h)

Fig. 3 Result of x2 test to evaluate
"non-lognormality” of rain rate pdf.
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When we use "true" NSDp, random errors in the corrected

PIA are reduced; however, there remains some underesti-
mation. This is probably due to the assumption of log-
normal pdf. In Fig. 6, errors in estimating rain rate cumu-
lative distribution (CDF) are compared. In this figure, the
ordinate is the percent difference between the NUBF-
corrected (or without correction) CDF versus "Uniform"
PIA CDF. It is shown that the NUBF correction reduces
the bias error except for very small PIA range (<2 dB).

SUMMARY

The NUBF correction method presented here appears to
work reasonably well to reduce the bias error. Care should
be given, however, to the possible "over-correction”
caused by the over-estimation of NSDy. This method is
currently implemented in the TRMM PR standard
algorithm for range profiling [5]. The usefulness of this
method in this algorithm needs to be evaluated.
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Abstract -- In this paper, a retrieval method of remote
sensing of cloud liquid water content by space-borne
combined radar-radiometer is suggested. A 3-layer vertical
cloud model is chosen to represent the typical stratified
precipitating cloud. The retrieval method mainly follow our
previously suggested scheme[l] with minor modification.
Numerical comparative study shows that in space-borne
remote sensing of liquid water content the combined method
is much better than by radar only; Also the retrieval
accuracy of liquid water content may increase when using
the 3-layer cloud model in combined method.

INTRODUCTION

Global precipitation distribution at earth surface and
vertical structure of precipitating cloud are of vital important
in global energy and water cycle. It is well known that the
global precipitation measurement can only be made from
space. Passive microwave techniques such as SSMR and
SSM/T have been used in global precipitation remote sensing
with preliminary success. In principle it is very difficult to
remote sensing the vertical structure of the liquid water
content (LWC) in precipitating cloud. Combined radar-
radiometer will be the best arrangement to solve this
problem. For ground-based situation we have shown that
remote sensing of precipitation and LWC distribution with a
combined radar-radiometer system is better than that with
only a radar[1,2]. In comparison with ground-based remote
sensing of horizontal rainfall distribution where only the
lowest part of cloud is concerned, space-borne remote
sensing of precipitating cloud is necessary to consider the
vertical structure of whole cloud, surface rainfall and surface
situation. In this paper, we will discuss the retrieval method
of space-borne remote sensing of precipitating cloud
structure with combined radar-radiometer and give some
preliminary simulation results.

CLOUD MODEL AND RETRIEVAL METHOD

Cloud Model

* This work is sponsored by National Science Foundation of China.
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A three layer ( ice layer, mixed layer and liquid layer)
stratified cloud model is assumed. Fig 1. is a schematic view
of the model which is deduced from the field observation of
stratified precipitating cloud in China. H,,H,,H,,H, are
cloud bottom( for cloud with rainfall H, = 0), cloud top,
height of -10°C and 0.3 ki below the freezing level
respectively, H,, H, are determined by radio sounding data,
H, and H, may be obtained by radar observation.

Retrieval Algorithm

In the retrieval, reflectivity Ze, attenuation coefficient o,
are related in an empirical exponential manner. Those
coefficient in the empirical relationship are different for
different cloud particle size distribution (DSD). it is assumed
that the fraction of cloud LWC/AWC (ice water content)
Mqg/Mi in mixed layer is known in prior.

The retrieval method suggested here is similar to the
method for the situation of ground-based remote sensing
described in detail in [1,2]. The main procedures are as
follow: 1)We may derive the distribution of attenuation
coefficient o(7) from radar reflectivity along ray path with

empirical regressive relation (Ze= ccrd) between radar

LWC
H4
° ° \ olce: o
Hy i -10
O s 0 o0\ =..
H2 ........ 0...°5.0.... \ OM 1xed O ° C
0 © 0 > 1iqUid
Hl 9
7/ 7

Fig.1 A schematic view of the stratified cloud model.
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reflectivity and attenuation coefficient for liquid and ice
droplet respectively; 2)Using MW radiative transfer model to
calculate the brightness temperature Tb with g(r) from 1)

and compare with observed Tb; 3) Adjust the derived o (r)

by adjusting the empirical coefficient so as the calculated Tb
approximating to observed Tb with in the required error; 4)
derived LWC and surface rainfall R with respective
relationships of c— M and o — R. The details of this
retrieval method can be found in our paper [ 1,2 ], the only
difference is the constraint factor, we used total attenuation
rather than the brightness temperature in that paper.

NUMERICAL SIMULATION AND RESULTS

By using radar equation and MW radiative calculation
code, we may establish the 'observation' Z (r) and Tb with
input of different cloud parameters and surface condition.

In this calculation we choose calm ocean as ground
surface and 9.364GHz (X-band) for the frequency .

Variations with Different Drop Size Distribution

From the field observations we know that in mature stage
the LWC profile mostly has the pattern indicated in Fig. 2.
Here we only consider this kind of LWC vertical profile.
Four kinds of cloud drop size distribution are chosen: Type
1, M-P DSD in all three layer, Type 2, I" DSD for ice

8 -
7 ‘:*\ --------- 00 e - 3-‘1y
. \\ N, 1-ly
6 N SIMULATION
. \
= ] \
= 5 \
- T
£ °7 =D
T 4 A
& 1 > »
E 3 3 =
T ]
7 Z
23 7
1 3] ] ///
1 =
17
O lI1|III|III|16llIII|III|

0.0 02 04 06 08 1.0 1.2

LWC (g/M**3)
Fig.2 Vertical profile of LWC obtained with different cloud

models, MaqMi=1/1, LWC=0.5 g/m’. M-P DSD in
simulation and CS DSD in retrieval.

droplets and M-P for liquid drop; Type 3, SS DSD for liquid
drops derived from stratified precipitating clouds of South
China, I" DSD for ice droplets; Type 4, CS DSD for liquid
drops derived from convective precipitating clouds of South
China, I" DSD for ice droplets.

For comparative study, with the original LWC vertical
profile which we used in simulation procedure the one-
layer structure and the single radar( without radiometer
observation) method are also calculated. All the results show
that the combined method is much better than single radar
method; And the 3-layer model is better than the 1-layer for
various drop size distributions. especially when the value of
LWC is small.

For investigating the influence of drop size distribution,
different type of DSD are chosen between the simulation and
retrieval calculations. One of the results is given in Fig 2. it
can be seen that 3-layer cloud model is much better than 1-
layer, especially for mixed layer ( 4.6-6.8 km ) and the ice
layer ( 6.8-8.0 km).

The relative deviations of root-mean-square(rms) are
given in Table 1. It shows that the accuracy of retrieval
LWC can be increased when using combined method than
single radar method , even comparing with the 1-layer
structure, it may increase about 70 %; When we use 3-layer
instead of 1-layer structure in combined method, the
increased accuracy would be about 20-30 % .

Variation with the Fraction of Mq and Mi in Mixed Layer

As we know that to obtain the real fraction of Mq and Mi
in the mixed layer is very difficult and it plays important role
in measuring LWC with combined method.

We change the proportion of Mq and Mi in simulation
and retrieval calculations, it is found that larger deviations
exist in retrieving LWC vertical profile, especially when
overestimated Mi is in retrieval calculation. For example,
when Mi/Mqg=1 is chosen in the simulation calculation and
Mi/Mq=2 in retrieval calculation, the results are shown in
Table 2. It is indicated that the deviations of 3-layer may
increase, but it still better than 1-layer situation. When

Table 1. The relative rms deviation in LWC vertical profile
calculation by 1-layer , 3-layer model with combined

method and single radar method for different LWC ,
MgMi=1/1, M-P DSD in simulation and I" DSD in
retrieval.

IwC(0.1{02103104105[(06}0.7[08109{1.0
1-ly |.491].451].443].440).438].437.437|.436].436].436
3-ly 1.232[.169).157].152(.149{.147|.145|.143].142|.140
radar(1.19{1.19]1.19]1.19{1.19{1.20|1.20/1.21]1.21]1.22




Table 2. Same as Table 1, but for I' DSD, Mg/Mi=1/1 in
simulation and Mg/Mi=1/2 in retrieval.

Iwc 10.1(02103(04]05]06[07/0.8)09]1.0

Table 3. Same as Table 1 but for I" DSD | the difference of
surface albedo is 0.01 between simulation and retrieval
calculation.

Mi/Mq is taken as > 3 in retrieval calculation it is found that
the rms of 3-layer model mostly larger than 1-layer structure.
The reason is that, the retrieval method(retrieval calculation)
is based on both radar return and radiative absorption of
cloud particles, the contribution of ice particles to radar
reflectivity is larger than water drops for the same LWC
while the contribution of ice particles is smaller to radiative
absorption. When Mi overestimated, through constraining
the brightness temperature obtained by radiometer and radar
reflectivity vertical distribution, it would result in larger
overestimation of the retrieval LWC in the mixed layer, also
in ice layer.

Variation with Surface Albedo
For understanding the influence of surface albedo , 0.01

difference of surface albedo is chosen between simulation
and retrieval calculation, the results is given in Table 3. It

e 10.1]0.2]0.3]0.4[0.5]0.6[0.7]0.80.9]10
1-ly :424|.425].425].425].426| 426] 426}.426}.425] 425 1-ly |.685].442[ 413 410].410[.412] 413].415] 416[ 417
3-ly |.386].383|.379.374].370[.370{.369|.367|.365{.363 3-ly |.732[.303].178[.120].088] 068.055].047].041].038
radar |.425(.428(.433|.438].445|.454) 464).476].490].504 radar|.425|.428) 433].438|.445|.454].464) 476] 490|. 504

shows that the rms versus LWC are very changeable by
using combined method. When LWC is small, e.g.

LWC=0.1 g/m3, the rms of 3-layer is larger than 1-layer and
single radar method, but when LWC is getting larger the
deviation of 3-layer may better than the others, when

LWC>05 g/m3, the deviation of rms may decrease to
<08 %.
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Abstract: There is an increasing interest for a low cost X-
band radar systems to be used for wurban rainfall
monitoring, for airport weather surveillance or other short
range purposes. However at X-band the reflectivity
measurements are significantly affected by attenuation due
to the precipitation, an attenuation correction is needed
and some related techniques are described.

INTRODUCTION

In the modern applications of weather radar, the
absolute and differential reflectivity techniques to improve
the rainfall rate estimation are of increasing interest.

It is possible to estimate the rainrate using radar
polarimetric  observables, for example employing
relationships between the rainrate » and the reflectivity
factor Zy and the differential reflectivity Zpg, or between
the rainrate » and the differential phase shift Xpp.

Existing X-band radar are not polarimetric but the low
cost of RF components in this band makes an
enhancement to dual polarization (H on transmit, H and V
on receive) affordable in some cases. Even a
coherentization can be proposed as a further enhancement.

However at X-band the reflectivity measurements
(absolute Zy and differential Zpg) are significantly affected
by attenuation due to the precipitation [1]. In fact
experimental measurements have shown that the absolute
specific attenuation (one way) at horizontal polarization
oy and differential specific attenuation a;, are around 0.37
dB/Km and 0.06 dB/Km respectively when the rainfall rate
r is equal to 20 mm/h and increase to 1.2 dB/Km and 0.22
dB/Km for r = 50 mm/h.

A computer simulation has been carried on to evaluate
the sensitivity of attenuation correction algorithms based
on a cumulative scheme in which the absolute and
differential attenuation, at n” range cell, are estimated
using the attenuation-corrected reflectivity at previous the
cells [2].

0-7803-3836-7/97/$10.00 © 1997 IEEE

The quantities o and ap are estimated using a non
linear best-fit with (Zy, Zpg), or, if phase measurements
are available (i.e. the radar is coherent and has adequate
processing) by linear best-fit relationships with the
differential specific phase shift Kpp.

The propagation path is supposed equal to 20 Km, and
a triangular rainfall path model has been considered to
take account the variability of the rainfall rate along the
horizontal direction. A comparison between the frue
profile, the aftenuated profile and the corrected profile is
shown.

METEOROLOGICAL RADAR OBSERVABLES

The meteorological radar observables are defined as
follow [1]:
Rainfall rate (mm/h)

r=06-10% 7 [ D*-W(D)-N(D)-dD (1)
Reflectivity at horizontal and vertical polarization (dBZ)
2
Zyy =10 Ingo[TW'IUH,V(D) -N(D)- dD:| )]
Differential reflectivity (dB)

Specific differential phase shift (deg/Km)

Kop =222 Re {[[ /(D)= £, ()] - N(D) - D) e

Specific attenuation (dB/Km)

Oty = 8,686+ A Im {j fur(D)-N(D) -dD} )
Specific differential attenuation (dB/Km)
Op =ap —ay (6)
Where D is the equivolumetric spherical diameter of a
raindrop.

In (1), (2), (4) and (5) N(D) is the number of raindrops
per unit volume per unit size interval (D to D+4D) and
can be adequately described by a Gamma model given by:
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N(D)=N,-D* -exp(—$ : D) )
where the parameter N,, D, and u of the Drop Size
Distribution (DSD) are made to vary over a wide range as
suggested by Ulbrich [3].

In (1) v(D) is the fall speed of raindrop. In (2) oy (D)
represent the radar cross sections at horizontal and vertical
polarization respectively, A is the wavelength and
K= m2 -1

n+2
water (for a fixed temperature). In (4) and (5) fuA(D) are
the forward scatter amplitudes at H and V polarization,
respectively.

(2]

where m is the complex refractive index of

ATTENUATION COMPENSATION AND RAINFALL
RATE ESTIMATION

The radar signal attenuation in the range direction is a
cumulative process. Then the measured (m) reflectivity
factor Zy (dBZ) and the differential reflectivity Zpg (dB) at
the n™ range cell are related to true (f) values as [4]:

CRECRED AP C
IR CIRED Y APORC
i=

where Ax; is the length of the i range cell, a; and ap; are
the specific attenuation (one way) at the i* range cell.
Using an iterative correction scheme the atfenuation-
corrected (c) values of the horizontal reflectivity and the
differential reflectivity can be estimated as [4],[5]:

[Z;{“)]n = [Z;{m)]n +2. "Z_IaAHi - Ay, (10
i=1

[252], =[26%], +2 'géoi -, (an
i=1

where ‘;‘H,- and &D’_ are the estimates of the specific
attenuation:
ay =a, . 10°2%H . 19?3 ZDR (12)
ap =b, L 10%2%H . 19b3ZoR (13)
where the reflectivity Zy and Zpg are in (dBZ) and (dB)
respectively, while @ and @, are expressed in (dB/Km).

The coefficients of the equations (12) and (13) change
with the temperature but their variation is not very large.
In the following we will consider the coefficients at
T'= 20 °C. Scarchilli at X-band has obtained:

a,=7.0310°, a,=0.098, a;=-0.321,

b;=8.3810° by=0.1, by=-0.278.

The specific absolute and differential attenuation can
be also estimated using the relations related to the
differential phase shift Kpp as:

éH =¥;-Kpp (14)
éD =72-Kpp (15)

where Kpp is in (deg/Km). At X-band we have obtained
¥ =0.1836 and y, = 0.0319.

In the iterative scheme for attenuation compensation
the absolute attenuation and the differential attenuation at
i range cell are estimated using atfenuation-corrected
values of the reflectivity factor and differential reflectivity
related to the (i—1)" range cell. Then the first cell is not
attenuated through the propagation path. After attenuation
corrected reflectivity Zy and Zpg, the corrected rainfall
rate (mm/h) is derived to apply the following relationship:

r=c .]0°2%H . J°3ZDR (16)

where, at X-band: ¢, = 9.107410°, ¢, = 0.0984,
¢; = -0.4833 with Zy and Zpy are in (dBZ) and (dB)
respectively.

The rainfall rate can be also estimated using the best-fit
relationship at X-band:

r=y;-Kpp 17
where y; = 11.57.

In the latter way the rainfall rate is estimated using a
non attenuated radar observable. However it should be
noted here that Kpp is composed by two terms related to
the forward and to the back scattering; in this work the
back scattering contribution is neglected. Moreover, Kpp
estimates are poor in low Signal-to-Noise conditions.

In Fig. 1 are shown the Percent Error PE and the
Fractional Standard Error FSE of (16) and (17).

RAIN MODEL AND ERROR SOURCES IN
RAINFALL RATE ESTIMATION*

The effectiveness of the correction technique for
improving rainrate estimates is related to the rainfall path
between measurement cell and radar. In our analysis we
have considered a triangular rainfall path. In this model
the rainfall rate along the propagation path has a
triangular profile, where, along the path, the Drop Size
Distribution parameters N, and u are varied randomly
following the Ulbrich’s range [3], while D, is calculated
from the inversion of the rainfall rate equation. In this
model the rainrate is decorrelated from cell to cell.

The correction attenuation scheme above described is
affected by a set of errors that we can classify as [6]:

e Random error sources related to the physical variability
(DSD variation) and statistical variability of the radar
observables.

e Systematic error sources, for example bias in the Zy
measurements related to the calibration system, or bias
in the Zpr measurements due to the mismatching
between the radiation pattern at horizontal polarization
and the one at vertical polarization.

In our analysis, to evaluate the best-fit relationship
errors, the statistical signal fluctuations are neglected;. in
any case these errors can be minimized using suitable
time-space average. Then the random errors can be
decomposed in:

1) best-fit (16) errors related to rainfall rate estimation; 2)

best-fit (12), (13) or (14), (15) related to attenuation

estimation; 3) best-fit relation errors related to attenuation
estimated by attenuation corrected values of Zy and Zpg
instead than by the true values.
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We point out that the correction procedure is not a
linear procedure, then the total error is not the sum of
€r1ors.

CONCLUSION

For X-band dual polarization radar we have analyzed
by computer simulations an attenuation compensation
techniques.

The iterative procedure to correct the radar observables
Zy, Zpr from the absolute and differential attenuation is
based on the best-fit relationships between (Zy, Zpg) or
Kpp and the specific absolute and differential attenuation
(au, ap).

A triangular rain path model has been introduced
varying the drop size distribution parameters (N, , D , , )
from cell to cell. The random errors due to the variation of
the DSD have been analyzed. Fig. 2 shown the comparison

50.0

between the true profile and the attenuated and corrected
profiles, the latter obtained using (12), (13) and (14), (15)
to estimate the absolute and differential attenuation.

The results have shown that the application of the
attenuation compensation technique produces a negative
bias in the rainfall rate estimation. The bias increases
when the propagation path and the rainfall rate increase,
while it is little sensitive to the number of cells along the
propagation path with a fixed range.

In conclusion the examined attenuation-corrected
technique based on Zy, Zpr measurements, generally, has
shown a good behaviour. Operational limits are presented
when the rainrate is very high, then, in this case, the best-
fit relationships are affected by high errors. The direct use
of Kpp (observable no affected by attenuation) to estimate
the rainrate is useful particularly when the rainfall rate is
very high.

40.0

Percent Error PE

/

300

Fractional Standard Error FSE
r=r(ZH, ZOR)

200

r=FHKDP)

- FSE

(%)

100

0.0

Rl
m

s

-10.0

h
m

-20.0

[EANAANNR RN R ANENANRRNARRNREANRRENNEN]

-30.0

TTT Ty TirTT

50 75

TTTT

100

o
[*3
0

TTT7T

TT 11

125
r (mm/h)

L

150 175

TT 71
200

TTTT
225

1 TT

250

Fig. 1 Percent Error (PE) and Fractional Standard Error (FSE) of the rainfall rate estimation (16) and (17).

175

E — True
150 : ---=-  Measured ZH ZDR)
I AN - - - Estimated (KDP)
125 — VLA - @  Atisn-Corected (ZH.ZDR)
3 7% .° o\ O Atlen-Comrectad (XDP)
£ 100 2
I3 1 < ol Y
£ | A ° X
O R I Rty Ry S S
3 . . \
] - . o\
i L] Q.
3 / S
] - . o
1 / *
] ? +es &
A I Y Y T -8
[ T T 17 T T 17 T T 17 117 LR ] T 11T T T T ]-l
0.0 25 50 75 100 125 15.0 17.5 200
Range (Km)

Fig. 2 Triangular rain profile: true; measured (16); estimated (17); corrected (16), (12), (13); corrected (16), (14), (15).

RFERENCES

[1] R.J. Doviak and D.S. Zmic, “Doppler radar and weather
observation”, Academic Press, INC, 1984, pp. 39-42.

[2] K. Aydin, T.A. Seliga and Y. Zhao, “A self correction
procedure of attenuation due to rain for C band dual linear
‘polarization radars”, 23rd Conf. Radar Meteorol., Amer.
Meteor. Soc., vol. 3 pp. JP337-JP341, 1986.

[3] C.W. Ulbrich, “Natural variations in the analytical form of
raindrop size distribution”, J. Climate Appl. Meteor., vol. 22,
pp. 1774-1775, 1983.

[4] E. Gorgucci, G. Scarchilli and V. Chandrasekar, “Radar and
raingage measurements of rainfall over the Amo basin”,
AMS Conference on Hydrology, 15-20 January 1995, Dallas.

[5] G. Scarchilli, E. Gorgucci, V. Chandrasekar and T.A. Seliga,
“Rainfall estimation using polarimetric techniques at C-band
frequencies”, J. of App. Meteor., vol.32, n.6, pp 1150-1160,
1993. i

[6] G. Galati, G. Pavan, G. Scarchilli and E. Gorgucci, “Rainfall
rate estimation using C-band dual polarisation radar:
attenuation compensation technique”, Proceedings of
RADMES96, Rome 11-12 June 1996, pp. 175-196.




Dual Polarisation and Multifrequency Measurements of Rain Rate
and Drop Size Distribution by Ground-Based Radar and Radiometers

A. Hornbostel and A. Schroth
DLR, Deutsche Forschungsanstalt fuer Luft- und Raumfahrt
Institut fuer Hochfrequenztechnik
D-82230 Oberpfaffenhofen, P.O. Box 1116, Germany

Tel.: ++ 49 8153 28 2318/2325, Fax.: ++ 49 8153 28

Email: achim.hornbostel@dlIr.de, arno.schroth@dlr.de

B.G. Kutuza and A. Evtuchenko
Russian Academy of Sciences
Institute of Radio Engineering and Electronics
Moscow, Mokhovaya St. 11, Russia
Tel: ++7095 203 47 93, Fax ++7 095 203 84 14
email: kutuza@mail.cplire.ru, eandrey@mail.cplire.ru

Abstract -- Polarisation effects can be observed as well in
radar as in radiometer data of stratiform and convective rain.
These polarisation effects are due to different influences, e, g.
the oblateness of large rain drops and path inhomogeneities.
The dual polarisation technique is well known in radar
meteorology. The emphasis in this contribution is therefore on
the event based and statistical accuracy of the derived rain
rate and on different sources of errors. In the passive remote
sensing of rain the use of two polarisations is a new subject.
By such measurements also drop size distributions can be
derived, which improve the rain rate determination.

INTRODUCTION

Rain rate estimation by ground based weather radar is a
widely used technique today. Although many operational
dual polarisation
and

radars still use only one polarisation,

techniques have been developed experimentally
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approved, which allow the determination of the shape,
distribution and type of the hydrometeors, and finally the rain
rate with more precision. However, there are a many sources
of errors, which have to be taken into account carefully.

In the rain rate estimation by microwave radiometers there
are two principle ways: absorption (emission) measurements
using frequencies below 30 GHz and scattering measurements
using higher frequencies up to 90 GHz. The second approach
is in particular useful for spaceborne applications, where the
reduction of the surface emission due to the scattering by rain
or clouds can be measured. For ground-based applications
with low background radiation from space the absorption
technique seems to be preferable.

A dual polarisation technique for -radiometers was
developed in [1]. Similar to the radar differential reflectivity
technique, the drop size distribution is determined, which
allows then a more precise calculation of the rain rate or of
propagation parameters along the path. Drop size
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Fig. 1: Brightness temperature and differential temperature versus rain rate (elevation 27.3°, rain height 2.5km).
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distributions, derived from such passive measurements, are
coincident with radar and distrometer measurements [1]. The
effectiveness of this technique is also demonstrated in this
paper.

BRIGHTNESS TEMPERATURE AND DIFFERENTIAL
TEMPERATURE

The dependence of brightness temperature (7B) and its
difference between horizontal and vertical polarisation , the
differential temperature (TD = TBy -TBy) was investigated by
numerical solution of the vector radiative transfer equation.
Fig. 1 shows downwelling 7B and 7D, which is seen by a
ground based radiometer under an elevation of 27.3°. A
plane-parallel rain slab with 2,5 km height and a temperature
lapse rate of -6.5 K/km above a land surface with temperature
288 K and emissivity 0.96 was assumed. Absorption by water
vapour and oxygen is included. The simulations have been
carried out for oblate rain drops with Pruppacher-Pitter axial
ratio and different two parameter drop size distributions of the
form

N(D)= N,exp(-3.67D/ D), 1)

where No=0.8*#10" m>mm™. The parameter n=4, for instance,

corresponds to the well know Marshall-Palmer distribution

with No=8000m™mm, The curves show that

e TD can reach values up to 15-20 K at 13 and 19 GHz,

e TD decreases with frequency,

¢ the relations of 7B and 7D to the rain rate depend clearly
on the drop size distribution,

o TB is saturated for rain rates higher 10 mm/h for 37 and 90
GHz.

e At 90 GHz 7B decreases for high rain rates due to
scattering effects, where TD slightly grows but still
remains small.

DUAL POLARISATION TECHNIQUE

In the classical Radar dual polarisation technique, the drop
size distribution parameter D, is derived from the differential
reflectivity Zpgr and N, then with the aid of the effective
reflectivity factor Z. For constant N, the rain rate is directly
related to the second drop size distribution parameter Dy,

Fig . 1 shows that a similar approach is also possible for
dual polarisation radiometer measurements. Although, here
the differential temperature does not depend directly on D,
but also on Ny, both parameters (or equivalently N, and the
rain rate) can be determined, if 7B and TD are measured
simultaneously. Practically, this is done by a search and
interpolation algorithm and a look-up table. The resolution
and accuracy of this algorithm is best at 13 and 19 GHz up to
rain rates of 30 - 40 mm/h, where 7D has measurable values
and a good sensitivity to the drop size distribution and 7B is
not saturated. For 37 and 90 GHz the values of 7D are too
small.
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Fig. 2: Drop size parameters N, and D, for stratiform rain,

Fig. 2 represents an example of Dy and N, for stratiform
rain, which have been derived from radiometer measurements
at 19 GHz, in comparison with path averaged values obtained
from 5.5 GHz radar measurements .

RAIN RATE MEASUREMENTS

The effectiveness of the dual polarisation technique is
demonstrated in Fig. 3. The rain rate was determined by the
dual polarisation technique from 19 and 13 GHz radiometer
data and are compared with the rain rate measured by a rain
gauge located near the radiometer antennas. The rain rate was
also calculated from TB only, assuming a Marshall-Palmer
distribution with constant No= 8000 m>mm™.

The figure shows a significant improvement of the rain rate
estimation by the dual polarisation technique, in particular by
the 13 GHz radiometer and for the second peak of rain rate.
Comparing the 13 and 19 GHz results, one have to take into
account the very different beamwidths of the two radiometers
of 15° for 13 GHz and 1.2° for 19 GHz.

ERROR SOURCES

Calibration Errors

The calibration of the radiometer can be performed with a
cold and a hot load or by clear sky measurements. In the first
case the losses and mismatches of the connections from the
load to the receiver must be measured exactly. These
connections can change the effective temperature of a liquid
nitrogen load by 10 K and more, respectively [2]. In the
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Fig. 3: Comparison of rain rate estimation by radiometers.

second case the reference temperature of the clear sky must be
calculated with the help of models and meteorological
information. The error can be reduced by performing clear
sky measurements at different elevations. By a combination
of the different methods, accuracies of 1 K for the absolute
and differential temperature are possible [2].

For the calibration of the radar constant and radar
polarisation states often a metallic sphere is used as a target.
For the differential reflectivity a calibration accuracy of 0.1
dB is possible. However, due to uncertainties about the
antenna gain, transmit power, antenna pattern and internal
calibration of the amplifiers, the overall accuracy of the radar
constant and the effective reflectivity factor is only 1-2 dB.
Therefore, the radar may be additionally (or alternatively)
calibrated statistically by comparison with rain rate
measurements.

Instrument Errors

Even with a good calibration errors can occur due to
statistical signal fluctuations, non-perfect linearity of the
amplifiers and quantisation effects in the signal processing
chain. A major source of errors are also instrument
instabilities, e. g. temperature drifts of the amplifier
coefficients, if there is no good temperature stabilization.

Path Inhomogeneity and Beam Filling

Radiometers measure integral values of the emission along
the total path through the atmosphere. Therefore, when
comparing point rain rates measured by a rain gauge with
radiometer measurements, the agreement will be best for
homogeneous paths. For rain rates above 10 mm/h, normally
rain cells exist with dimensions smaller than the path length.
If a rain cell is located near the antenna and fills the total
antenna beamwidth, the rest of the path do not contribute
much and the error will be small. On the other hand the
radiometer can detect rain cells, which do not pass the rain
gauge.

For the radar, the problem of path inhomogeneity exists on a
first view only, if the rain rate is inhomogeneous within the
scale size of the radar pulse volume. However, when the
average rain rate along the radar beam (path) or a radar scan
volume is compared with a rain gauge, similar problems as
for the radiometer exist.

Model Errors

For the conversion of brightness temperature to rain rate a
plane-parallel atmosphere was assumed here. Besides the
problem of the path inhomogeneity the rain height (altitude of
the rain area above ground) must be estimated, which is
probably the major error source of the model. Other error
sources are connected with the modeling of the hydrometeors
itself, e.g. their shape and orientation. Also the two parameter
drop size distribution is only an approximation.

It has been found that the distribution of the drop canting
angle (even with a zero mean) reduces the measured Zpr
values and leads to values of N, which are too high. Also the
existence of hail or other hydrometerors can produce large
errors in the radar rain rate, if they are not detected and not
taken into consideration [3]. The radiomefric emission
measurements seem to be less sensitive to these types of
errors in comparison to the radar backscatter measurements.

CONCLUSIONS

The performance of rain rate estimation by radiometers
shows the same (or even better) accuracy than radar
measurements. Both active and passive dual polarisations
measurements allow the determination of the drop size
distribution. The knowledge of the drop size distribution can
improve the rain rate estimation significantly. Additionally, it
opens the door to many other applications, e. g. the complete
transmission matrix of a path including differential
propagation parameters like differential attenuation and XPD
can be calculated for satllite communication links.

Radar measurements provide a good spatial resolution and
can cover large areas. In contrast, the advantages of the
radiometer measurements are high temporal resolution and
their principal simplicity. By combining dual polarisation and
multi-frequency measurements the accuracy of the rain rate
estimation by radiometers may be still improved.
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Abstract —India Meteorological Department (IMD) is the
nodal agency for weather service in India.IMD Operates a
chain of conventional weather radars along the peninsular
coastline for the Cyclone detection & charecterization of
severe weather.This chain of Cyclone Detection Radar
(CDR) systems is now being replaced by Pulse Doppler
Radar systems known as Doppler Weather Radar (DWR)
systems.As part of this program IMD entered into a
Memorandum of Understanding with the Indian Space
Research Organisation (ISRO) for the design, development
and commissioning of an operationdl DWR system.The
overall system level and detailed subsystem level
specifications for this radar were arrived at by IMD & ISRO
after detailed deliberations with experts in the fields of radar
meteorology and radar system design.This paper describes
the salient features of the Indian Doppler Weather Radar.
INTRODUCTION

IMD has a distinguished service spanning two centuries
providing weather forecasts & severe weather alerts over
peninsular India.Cyclonic storms especially over the east
coast of India cause wide spread damage & destruction to life
& property. Radar systems have played a major role in
charecterisation of cyclones & other severe weather
systems.Use of radar systems for this purpose is well
established & documented[1],[2].Advances in Pulse Doppler
Radar systems made them ideal choice for severe weather
charecterisation.Development & operationalisation of WSR-
88 (also known as NEXRAD) by National Weather
Service(NWS) in USA, has set the trend for the use of
Doppler Weather Radar for operational weather forecasting.
An inter agency program between IMD & ISRO was initiated
to design & develop a Doppler Weather Radar System in S
band to meet the specific requirements of IMD in the area of
Cyclone detection & charecterisation of severe weather
systems.Based on the sytem level performance
specifications,and subsystem requirements projected by IMD,
the DWR Project team at ISRO/ISTRAC carriedout a
detailed design study. After detailed design review by a
committee of experts the DWR system is being realised to be
integrated,tested & commissioned by the first quarter of

0-7803-3836-7/97/$10.00 © 1997 IEEE

1999, thus making it a Weather Radar for the 21st
century.The following is an overview of this DWR system:

SYSTEM SPECIFICATIONS & FUNCTIONAL

REQUIREMENTS
Table 1 summarises the system level performance
specifications.
Table.1
Reﬂectivity Velocity Sp Width
1. Range (Km) 500 250 250
2. Resolution ( m) 300 300 300
3. Accuracy @23dBZ 2dB  1m/s 1 m/s

@2 1pm
Unambiguous maximum velocity +30 m/s for 125 Km
Ambiguity Resolution techniques to extend velocity to
= 60 nv/s for 125 Km or + 30 m/s for 250 Km.

DOPPLER WEATHER RADAR SYSTEM
DESCRIPTION

With the design approach adopted the DWR system was
configured as shown in Fig.1. DWR employs a low sidelobe
antenna enclosed in a rigid spherical radome employing
curved sandwich panels.Radome is designed to withstand
winds of 200Km/hr gusting to 300Km/hr.The antenna drive
system employs a position loop servo with digital
compensator to provide accurate scan functions including a
programmable volumetric scan.Provision for vertical scan at
selected Azimuth can generate quick RHI display. A coherent
transmit / receive system employs a master reference
oscillator with very low phase noise,to phaselock the COHO
& STALO synthesisers. Transmitter waveform selected for a
given observation is modulated on the buffered COHO ,
upconverted & given to the transmitter input. Transmitter
with a hard tube modulator employs a klystron as power
amplifier to generate a nominal peak power of 1MW ,with an
average power around 2KW Receiver with LNA (~1dB NF)
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and a mixer preamplifer located along with TR limiter right
at the antenna hub provides a sytem noise temperature close
to 300 Kelvin. IF portion of the receiver is split into LOG &
LINEAR channels.LOG channel is used to cover the entire
dynamic range of 95 dB and provide a control voltage to set
the IAGC to the proper level to avoid saturation of the LIN
channel. I & Q outputs of the LIN channel are digitised with
14 bit resolution Data & fed to a modular DSP system to
derive base products,viz the three moments of the time
series,thus providing signal power,mean Doppler & spectrum
width. DSP is programmable to provide the moments either
directly using the popular Pulse Pair algorithm,or in certain
special situations by obtaining power spectrum using
FFT.Provision exists to dispaly the base products on the
graphical workstations or on a simple PC monitor.

RADAR DATA ACQUISITION AND
PROCESSING SYSTEM
The DSP subsystem uses PCI bus compatible boards for the
ADC and DSP and these boards are pluggable on to a
general purpose PC. This option is cost-effective and also
uses the PCI bus which is prefered for I/O applications due
to its bandwidth and throughput capabilities. The Computer
System for the Doppler Weather Radar uses the distributed
computing environment in which a powerful file server is
connected to three workstations on a high speed Ethernet bus
along with a Radar Controller and the Radar Data
Acquisition & Processing System (RADAPS) as in Fig.2.
The Radar Controller is a PC which provides the graphical
use interface (GUI) for the operator to operate the radar. The
data acquired and processed by the RADAPS is sent to the
server which in turn makes the data available on the ethernet
to the workstations for displaying higher order data
products.Server maintains the data archive. Options exist for
the user to further process the data and display any-of the

Data Products on a remote workstation. The Data Products
are classified as follows.

1. Base Products ---- Z, Vand &
2. Primary Products
a) X-Z cross-section
b) CAPPI (Constant Altitude PPI)
¢) Echotop image display
d) Rainfall intensity
e) Rainfall Accumulation
f) Vertically Integrated Liquid Water Content
g) Hail Warning
h) Velocity Volume Products
3. Derived Products.
a) Track Forecast

b) Height of Tidal Waves
Peripherals /Storage /
Archival
4mm DAT
Erasable CD-ROM Drive
RGB - PAL | —1 Color Printer
RADAPS I Server
|| Data
VCR Communication
Ethernet (100 Mbps) | Interface
RC WSl WS2 Ws3
[ 1 1 [T
[ sG02 SG-02 SG-Indy
Fig.2 Computer System for DWR
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SYSTEM PERFORMANCE SIMULATION
Overall system performance was evaluated for different
precipitation levels using the classical PROBERT JONES
equation. The resultant signal to noise ratio as a function of
slant range for different values of reflectivities is plotted in
Fig 3. Estimation of accuracies for measurement of
reflectivity , Mean Doppler velocity & Spectrum width for
antenna rotation at 2 rpm were made for relevant prf values
using estimators given by Doviak & Zrnic[2]. Results are
tabulated as Table.2. It can be seen that the accuracies meet

like Society for Advanced Microwave & Electronic Engg &
Research, Indian Institute of Technology, Electronics &
Radar Development Establishment, National Aerospace
Laboratory and Thumba Equatorial Rocket Launching
Station, System design & Engg being the responsibility of
ISRO-ISTRAC.

SNR Vs Range

SNR (dB)
specifications. :00 N
A\
Table -2. NS i e
NS
NN R
PRF Std deviation m/s at SNR of AT S| =
0dB’ 20dB° g ENN R S _
250 Hz 1.02 0.5 NN : |
1200 Hz 0.93 0.44 P R -
o]
SCAN STRATEGIES -20 ==
Scan strategies are worked out for three typical cases and are ::

shown in Table.3. Presently a two prt/prf method for
resolving Range - Doppler ambiguities is effected. Efforts are
on to include a phase coded waveform which can yield better

resolution of such ambiguities.
Table 3
Parameters | Severe Precipitati | Cyclone
Weather -on
El steps 15 5 3,15
Total time S min 2 min i) 1 min
ii) 5 min
AZ Rate 3 ipm 3 ipm 3 rpm
PRF i) 1200 Hz 250 Hz i) 250 Hz
ii) Dual PRF ii)Dual
800 Hz, 600 PRF
Hz 600 Hz,
450 Hz
Pulse Width | 2 sec 2 sec 1 or2 psec
Data Base Products | Base i)Precip
Products Echo top Products products
VIL, Hail VIL, Hail ii)Volume
Severe weather | Echo top scan
probability, Strom track | products
storm track | CAPPI
CAPPI X-Z cross
X-Z cross section
section
PROJECT TEAM

DWR Project is an interagency program between ISRO &
IMD.Different subsystems are subcontracted to work centres

0 50 100 150 200 250 300 350 400 450 500

RANGE (KMS)
Fig 3.
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Abstract -- A simple model for normal incident angle and close-
in detection was developed and presented at the SPIE conference
in 1996. Complex models that include normal and oblique
incident angles and stand-off detection are included in this
paper. The models and algorithms are based on
electromagnetic and radar equations. Electromagnetic equations
determining transmission and reflection coefficients, attenuation
factors, and wave numbers, as well as radar equations involving
power and radar cross-section are used in the simulation.
Variables included in the models are operating frequencies, three
and four boundary models, two detection techniques, four mine
_ types, different environments, and four incident angles.

INTRODUCTION

The purpose of this paper is to model the detection of
buried metallic and non-metallic land mines in snow and ice
as well as in dry and moist soil, while attempting to simulate
some of the real conditions that an actual detector, using
monostatic Ground Penetrating Radar (GPR), might
encounter. A detection algorithm is designed and
implemented using the engineering programming software
MATLAB.

The mine detection process is simulated by using the
concept of pulse transmission, reflection and attenuation in
each medium. Each medium layer, through which the
transmitting signal pulse propagates, is modeled as a
characteristic impedance, derived from the electrical
properties of that medium. Then reflection and transmission
coefficients are calculated based on these impedances and
the attenuation constant is calculated using the properties of
the medium.

Simulations are presented for a GPR radiating into a
three- boundary (antenna/air, air/soil, soil/mine) and a four-
boundary (antenna/air, air/snow, snow/soil, soil/mine)
environment. Both near-field (close-in) and far-field (stand-
off) techniques consider four anti-tank mines: two non-
metallic and two metallic. Operating frequencies in the
range from 200 MHz to 4 GHz (200 MHz incremental step)
and four incident angles: 0° (normal), 30°, 60°, and 90° are
considered.

0-7803-3836-7/97/$10.00 © 1997 IEEE

CONCEPTS

Simulation techniques for near-field and far-field mine
detection are modeled mainly by using the concept of pulse
reflections and transmissions at surface boundaries and pulse
attenuations in the media through which the signal
propagates. The main difference between the two techniques
is the calculation in air medium (i.e., between the antenna
and ground).

Assume as illustrated in Fig. 1, a monostatic GPR looks
directly into multi-layers of different materials such as air,
snow or ice, soil and a mine.

1 2 3 4
®- *—@—
Zant Zair Zsnow  Zsoil Zmine

- *—0—
< [—><] >e— | —>

snow soil

Fig. 1. An analogous transmission line with load

According to the model, a GPR produces a short pulse
of magnitude Viia which propagates along the
transmission line as indicated in Fig. 1. At each junction, an
incident pulse splits into reflected and transmitted pulses.
The magnitude of the pulses after each encounter with each
junction is indicated by 7 and p the transmission and

reflection coefficients. For example, the pulse traveling
sequentially through each junction from the antenna to the
mine and back to the antenna has a magnitude of
(7174730473 T3 Ty) Via. This amplitude attenuates by

-2 'rlm' -2 .mowl_r W -2 .roil i
(e "arar @ Cmoleon o sl y - VWe  assume that the

attenuation of the soil is large enough so that multiple
reflections within a material reduce to zero. The
backscattered signal reduces to the product of
-2 gy l,

arlar 5,2 W -2 oil i
(TI »z-21-3p4 T3, sz Tl‘ )( e ar o 'Z:nowl.mo e @ soitt soil )VInitial-
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MODELING AND ALGORITHMS

Technique 1

The method used to find the backscattered signal returned
from a mine buried in dry soil or moist soil covered with
snow (or ice), involves calculating the characteristic
impedances Z, the transmission coefficients 7 , the reflection
coefficients 0, and attenuation factors.

The characteristic impedance Z () of 73+j42.5 is chosen

for the antenna while Z (Q) of the air, snow, ice, soil, and
mines are computed using

7 = E, _ ]w,f‘o/‘r )
H, \/a+]coaos,
where

@ = 27z f = radian frequency of operation (f = frequency
of operation)

M =, @, = permeability of medium

€ =&, &, = permittivity of medium

g, =¢&,'—j&,"= complex relative permittivity of medium
o = conductivity of medium

The impedances of adjacent media are used to compute
the reflection coefficient using

p= Z, =% Q)
Z,+7Z,
Using p from equation (2), the transmission coefficient
at a given junction from left to right is

7, =1+p 3)

whereas the transmission coefficient at a given junction
from right to left is

Tj.=1—p 4

The propagation constant of waves in a given medium is
computed using

}/med = '\/(O—med + ngogrmed )(ja)luoﬂrmed) (5)

and the attenuation constant is simply corresponding

amea’ = real(}’ med) (6)

Waves attenuate according to
e ~2a medlmzd (7)
where /., is the thickness or depth of the medium .

Finally, the signal reflected from the mine is given by

Vinat =(T1 T, T304 Ty Ty Ty )*

( e“zam'rlm'r e -2 gpondsnow e—2 @ siitksoit ) * I/Initial 8)

Oblique angle

In the event that the incident wave propagates in a
direction that is not perpendicular to the boundary, the
incident wave (from medium 1) makes an angle 6; with the y
axis (v is orthogonal to the surface of the ground), the
reflected wave (medium 1) makes an angle of 6, with the y
axis, and the transmitted wave (medium 2) makes an angle
of 6, with the negative y axis. In this model, it is assumed
that the electric field is perpendicular to the plane of
incidence (the Xy plane) and the antenna does not receive the
reflected wave from the ground . Using Snell’s law, the sine
of the angle of transmission is equal to

) k, .
sinf, = —Lsiné, ©)
k2
where k; is wave number of medium 1 and k, is wave
nmumber of medium 2.

The wave number in a high-loss medium, kg, is
computed using

ky :\/_jw/‘lr‘ﬂo(o—+jw£r'€0) (10)
whereas the wave number in a low-loss medium, k;;,
is given by
ki :w\/:ur'/”ogr'go(l_jtana) D
If the medium is lossless then
ky, = O\ 1, 1oE," 8, (12)

The characteristic impedance Z(€2) of the medium when
incident angle is oblique is given by

Zoblique = Znormal/ COS(e) (13)
where Z,,,a is obtained from equation (1) and O can be

either the incident or transmit angle.

For a wave incident at an oblique angle, the reflection
coefficient becomes

VA

2_oblique ~ Zl _oblique

+7Z

poblique = Z (14)

2_oblique

1_oblique




then equations (3) through (8) are used to obtain the
backscattered signal, Vo, ;.

For oblique incident angles, the scattered field returned to
the antenna follows the same path as the incident wave.

Technique 2

Technique 2 is used to simulate far-field or stand-off mine
detection. The modeling and the simulation process are
similar to technique 1 with a few exceptions. Technique 2
uses the power equation while technique 1 uses the
coefficient equations and attenuation constants in the
boundary between the antenna and air. Also, technique 1
assumes an infinite boundary of the detection area, while
technique 2 assumes a finite boundary, which is equal to the
circular flat surface area of an anti-tank mine, in this case a
radius of 17 cm.

A far-field mine detection model can be used because the
standoff operating ranges (5 to 30 m) qualify as far-ficld by
the criterion '

2D? as)
A

where R (m) is the distance to the boundary between the
radiating near-field and far-field regions, D is the largest
dimension (0.5 m) of a horn antenna aperture and X is the
wavelength (0.075 to 1.5 m for the above frequency range).

R=

The mean received power P, (W) in air (between antenna
and ground) is given by
Ao
P =Pt a6
47A°d
where P, is the transmit power, Ap is the physical aperture of
the horn antenna, o, is the radar cross-section as obtained
from equation (17) below, A is the wavelength, and d is the
distance from the radar to the ground. In order for equation
to be valid, several assumptions are made, namely: the gain
of the receive antenna is the same as the gain of the transmit
antenna (both equal to 47 Ap 2 ), and furthermore, the size
of the mine is large compared to the waveléngth.

The radar cross-section (m”) of the circular flat mine is
given by

J,(4mrsin@/ 1)
47rsin@/ A

_167°r!

2
O s P cos” 6(

) an

where 1 is the radius of the ground area, which is equal to
the surface area of the mine, and © is the oblique incident
angle to the ground.

The backscattered signal in mediums other than air are
computed using equation (8) of technmique 1; the
backscattered signal (dB) in all mediums except air is

811=20 % 10g10 [(T,T30,T5 T, )*

( e-z a.mawl.mow e"za.roill.roil )] (18)
Total power received (dB) by the antenna:
P
Piotat = S11 (dB) + 10 loglo(Fy) (19)
t

CONCLUSION

In the near-field detection, the results from technique 1
agree with the experimental results when the targets are
buried in dry soil. However, when the targets are buried in
moist and wet soil, the simulated results only partially agree
with the experimental results. For far-field detection, the
experimental results are not available; hence, no comparison
is made. However, when they are available, they will be
presented at the symposium.

Simulated data for oblique angles shows that the received
power is strongest when the incident wave propagates
normally to the boundary.

Results confirm that non-metallic mines are very hard to
detect in dry soil. This is so because the dielectric constant of
the mines is similar to that dry sand (low contrast).
However, the simulated data shows that when the soil is
moist or the dry sand is covered with snow or ice, the non-
metallic mines are less difficult to detect. However, the
increased moisture content in the dry soil does not help to
detect the metallic mines.

Although .the models presented here are not completely
rigorous, they have the advantage of being computationally
efficient.” Under certain condition, results were obtained
which were in reasonable agreement with measured data.
The work is presented mainly as a starting point from which
a more sophisticated analyses may depart.
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The problem of abandoned landmines and unexploded
ordnance is particularly acute when these objects are near the
surface, so that their radar returns cannot easily be separated
from the ground surface response. To address this, we pur-
sue simulations here designed to test methods of sensor de-
ployment and data processing that exploit angular, posi-
tional, and frequency diversity for detection of metallic tar-
gets that are on the order of the subsurface wavelength in
size. Rigorous 2-D computations were performed and
results processed for the angular correlation function (ACF)
approach, in which one performs a coherent average of re-
ceived signals from two incidence and observation angles.
Simulations pursue the behavior of the ACF under realistic
ground roughness and moisture content, target geometry, and
highest practical resolution GPR frequencies. To achieve an
expanded ensemble of cases, given a single subject ground
surface, we average both over frequencies and overlapping
incident beam locations.

INTRODUCTION

The investigations discussed here are part of a larger study
in which measurements and simulations are pursued to test
innovations in sensing strategy for detection of buried
objects. A principal motivation is to improve methods for
detecting abandoned landmines or unexploded ordnance.
These objects pose an enormously widespread and urgent
problem worldwide, and also put extraordinary burdens on
subsurface sensing methods. This is partly because the
criteria applied must be extremely strict, requiring an
absolute minimum of both false positive and false negative
judgments as to the presence of a target sought. This is
particularly challenging in as much as the targets of interest
typically reside in randomized environments. Simply
increasing the sensitivity of sensors tends to inundate the
record with irrelevant clutter. One must pursue creative
sensing strategies, by which we mean the totality of sensor
configuration, combination, deployment, and data processing
methods.

The nature of the problem is illustrated in Figure 1, which
shows bistatic results from 2-D numerical solutions for radar
reflection from metallic targets embedded in a moist soil
with randomly rough surface. The two targets are ap-
proximately the same size, one elliptically shaped and the
other having a mine-like geometrical cross section (Figure
2). Radar cross section values are shown, arbitrarily but con-
sistently scaled, in negative scattering directions, i.e. back
into the quadrant occupied by the transmitter. For these re-
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sults from a single frequency, incidence angle, and beam po-
sition, one sees that relative visibility of the subsurface target
depends very much on which target one considers and which
observation angle he chooses.

Bistatic cross sections on arithmetic scale
for 1600 MHz with ei =50

v W
G 4/1—\ "‘2”“‘3"‘ f!J
// :/cllipsq \\!'
AN ANYiN
,—'\-'—_ __—"’

-70 -65 -60 -55 -50 -45 40 -35 -30
8, (deg)

Figure 1. Bistatic radar cross sections-at 1600 MHz for
rough ground with and without buried target.

We must pool data to ascertain ways in which any of a vari-
ety of targets will stand out, reliably and over a broad range
of angular and environmental conditions. Because our tar-
gets of concemn are quite localized, one’s options are limited
for achieving an ensemble of sensor data for processing. We
proceed by defining a particular scene (Figure 2) and solving
for the scattered response over a broad frequency band, va-
riety of incidence and observation angles, and beam position
combinations. We then investigate the behavior of ACF
processing schemes when applied to that data.

SIMULATION AND PROCESSING APPROACH

The example target (Fig. 2) is 10 cm high, 22 cm wide at
the base, buried with its top 5 cm below the mean surface.
We treat only horizontal polarization here (E field into the
page). The taper of the beam is illustrated by the E field so-
lution magnitudes shown for total field along the soil sur-
face. Environmental randomness is expressed through the
rough soil surface, which is otherwise homogeneous. The
real part of the soil dielectric constant is 9, typical of a moist

soil, and its electrical conductivity is 103 S/m.




Surface field solution at 800 MHz and 1600 MHz
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Figure 2. Example target and surface geometry, with ground
surface field solution.

The random surface is generated by selecting a parent dis-
tribution Fourier transform Z(K) of its height profile, corre-
sponding to a power spectrum W(K) in the form of a

Rayleigh distribution.
w22
Kl exp(—ﬂ;—z—-) 1)

where  is the root mean square height and £ the correlation
length. This suppresses low frequency surface shape com-
ponents and produces many relatively small bumps, as

shown. We choose Z(K) proportional to \[W(K )for each K,

but then randomize the phase of the component. This pro-
duces an ensemble in which each member surface is

different but has the same specified 4 and £ equal here to 1
cm and 3 cm respectively. The E field is obtained from
numerical solution of an integral equation in the manner of
[1), for each electromagnetic frequency, beam position, and
surface.

To achieve positional diversity we shift the beam from
side to side over five positions: centered over the target, and
centered over points + 25cm and +50cm from there. Thus
the target remains at least generally within the main beam,
and with each shift of the beam we change the sample of the
surface by a significant amount. Examination of amplitude
and phase of backscatter suggests that this is the best we can
do with these surface parameter/ radar wavelength relations.
Larger shifts would take us away from the target. Scattering
data are pooled from nine frequencies equally spaced be-
tween 800 MHz and 1600 MHz. This appears optimal from

nl*h?

W(K) =
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the point of the view of the angular correlation study over
this band. That is, a coarser frequency division shows
angular correlation effects poorly; a finer division produces
samples that are less independent, thus bringing no
improvement.  Altogether, with five shifts and nine
frequencies, we achieve an ensemble of 45 cases for each
surface surveyed, over a total ensemble with 25 such
surfaces.

Recent work suggests that angular correlation function
analysis (ACF) may succeed in suppressing scattered signal
clutter from random surface irregularities, relative to the
effect of the target [2]. One computes the complex product
of fields scattered in directions 857 and 65 produced by
incident waves from directions 6;7 and 6;2, respectively.

ACF = (E(©,,,6,)E"(0,,,8,)) @

When the averaging <..> is performed over samples of a sta-
tistically homogeneous domain, the fields will decorrelate
except along the “memory line,” determined by the angular
relations sin(82) - sin(8s7) = sin(6;2) - sin(6;;). This
applies for any statistically appropriate source of random re-
flection in the medium. The effect of the target represents an
underlying coherence that will not decorrelate in the same
way over the sample space. Here we take care to choose a
relevant target with irregularities on the order of the surface
perturbations, in part to see whether its effect simply aver-
ages out as if it were tantamount to another surface variation.
We will proceed by selecting 6;;, 6;2, and 8y, viewing the
results over 652, A major quiestion has been the width of
the memory line, i.e of the region where surface effects may
correlate, obscuring the hopefully high ACF value from the
target. This relates to our preoccupation with reliability: how
decisively (and when) will the target case ACF be larger than
that from the surface alone. The ACF/ memory line phe-
nomenon was originally shown to occur for ensembles of
spatial samples. Here we must rely more on sampling over
frequencies.

Figure 3 shows bistatic ACF bounds computed with fre-
quency averaging but without space shifting. The ACF
magnitude is calculated for each surface, with and without
buried target; the bounds defined as +/- one standard devia-
tion from ensemble average are determined at each 6s).
While peaks appear at the memory line angle of -4.5°, they
are quite diffuse and ill-defined. In any case, the locus of
ACF magnitudes with target present is generally higher than
without a target. Next we consider both frequency and spa-
tial averaging. Figure 4 shows quite distinct peaks directly
at the memory line angle. Given the range of positions and
the frequency band at our disposal, this is about as narrow a
memory line as can be achieved. At observation angles 62
around -60°, the target would usually though not always be
distinguishable. However for 6j2 between about -20° and
-55° the distributions overlap badly. Note also that in both
target and non-target cases there is a prominent secondary
lobe; detectability of the target is distinctly better over these
lobes, including the memory line lobe. Detection




performance is not better in 67 regions that show maximum
decorrelation behavior (652 ~ -30°). The target seems pri-

marily to intensify the non-zero correlation at the memory
line and secondary lobes.

Upper and lower ACF bounds
from frequency but not spatial averaging
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Figure 3. ACF bounds: 6;; = 25°, 657 = -25°, 62 = 50°.

Upper and lower ACF bounds
with both frequency and spatial averaging
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Figure 4. ACF bounds: 8;] = 25°, 81 = -25°, 8j2 = 50°.

As a second case we reverse the angular selections, with
results shown in Figure 5. In this diffuse ACF pattern our
angular selection has pushed the memory line to the left be-
yond real 652. When data from space shifts is included we
obtain Figure 6 where the lobes do not correspond to theoret-
ically identifiable memory effects. Again we note primary
and secondary off-specular lobes, with an undesirable
amount of overlap between the target and no-target distribu-
tions over much of the angular range.

CONCLUSION

The promising new technique of angular correlation func-
tion analysis has been applied to simulation cases involving
realistic soil parameters and roughness relative to high reso-

lution GPR wavelengths. A fundamental ACF problem lies
in obtaining a profitable ensemble of averaging samples per-
taining to a single spot of ground. In general, increasing the
sample pool by including overlapping space shifts as well as
frequency diversity has improved definition and isolation of
the memory line relative to frequency averaging alone. At
the same time, this has not improved buried target detection
performance in the cases investigated. Ironically, it provided
less evidence of the presence of the target in angular zones
of maximum noise decorrelation. Interestingly, it seems
more to intensify target case ACF response in memory line
and secondary lobe regions, relative to the no-target case.

Upper and lower ACF bounds
from frequency averaging alone
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Figure 5. ACF bounds: 6;; = 50°, 85; = -50°, 6,2 = 25°.

Upper and lower ACF bounds
from frequency and spatial averaging
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Figure 6. ACF bounds: 6;1 = 50°, 8;; = -50°, 62 = 25°.
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Abstract — The traditional linear synthetic aperture radar
(LSAR) flying along a linear flight path is modified to
circular synthetic aperture radar (CSAR) flying along a
circular flight path. When operating in down-looking
spotlight mode for imaging purposes, CSAR, in comparison
with LSAR, can provide higher pixel resolutions on any
confocally focused plane within the volume illuminated by
the antenna beams. By combining this 3D imaging technique
with the circular angular memory effect, it is possible to
reconstruct volume radar images in localized subsurface
imaging applications where poor signal-to-noise ratio (SNR)
is a critical issue. Laboratory experiments at X-band (7-13
GHz) and W-band (75-100 GHz) frequencies were
conducted to illustrate the capability of CSAR to perform 3D
imaging, and the analytical basis of circular angular memory
effect due to random surface scattering based on the first-
order Kirchhoff approximation.

INTRODUCTION

Since its emergence in the late 1950’s, synthetic aperture
radar (SAR) has been popular for imaging applications among
civilian and military users [1]. In a manner similar to the
beam-forming process of phased array antennas, SAR
operates on the principle of synthesizing a large antenna
aperture by proper coherent summation of the pulses
produced by the transmitting and receiving antennas

temporally located along a sequence of known positions. The

sharp beam resulting from this synthesis process allows one to
use it as a ‘flashlight probe’ to obtain a 2D mapping (image)
of the received echoes with moderately fine pixel resolution.

Traditionally, most SAR-based systems for geophysical
remote sensing operate by launching an airborne SAR sensor
along a straight flight path [1], with the synthesized beam
scanning in stripmap mode or spotlight mode, depending on
the tradeoff between pixel resolution and the size of the
region under surveillance that a SAR user has to make. For
brevity, these traditional SAR-based systems will be referred
to as linear SARs (LSARs) in the following discussion,
signifying the fact that the SAR sensors move along a linear
path.

Although useful for many applications, the images
produced by a LSAR system are projection images which are
2D in nature. Therefore, for a given illuminated structure, the
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portion of its scattering which takes place along a common
wavefront but at different altitudes will all be mapped as one
projection image pixel only, with no resolution in vertical
dimension.

Among other alternatives such as interferometric SARs that
aim at extracting the altitude information of the illuminated
structures, SAR systems that move along a circular orbit,
referred to in Fig. 1 as circular SARs (CSARs), can perform
altitude-mapping imaging together with a number of unique
features not found in LSARs. First, CSAR, which moves
along a circular path circumferential to the illuminated spot,
provides a full-rotation 2D view of the illuminated structure.
Second, the spotlight nature of its operation makes CSAR
capable of achieving pixel resolution on the order of A
(principally lower-bounded by diffraction limit as in optics
research), where A is the center wavelength of the wideband
radiation produced by the pulse-sending SAR system. Third,
the path differences between scattering points lying along a
common wavefront but different altitudes can be resolved
using SAR measurements made in front-looking, back-
looking and/or side-looking directions, thus making it
possible for 3D image reconstruction of the object at
microwave frequencies in a way similar to confocal imaging
in medical applications at optical and ultrasound frequencies.
Last but not least, the circular geometry of operating CSAR
also makes it a practical means for hardware implementation
using airborne wideband radar systems.

Before proceeding to the details of performing 3D imaging
using CSAR, it is perhaps a suitable point of digression to
understand a correlation phenomenon with which CSAR can
combine: circular angular memory effect.

CIRCULAR ANGULAR MEMORY EFFECT

Recently, it was shown analytically, experimentally, and
numerically that under a phase matching condition for the
transverse wave components, there exists a novel correlation
phenomenon known as the angular memory effect for waves
multiply scattered by random media [2]. Simply stated, this
effect predicts that there is non-zero angular correlation
between waves observed at different scattering angles in
response to a change in incident angles under the phase
matching condition mentioned above, but close-to-zero
angular correlation otherwise. For scattering (2D scattering)
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airborne SAR

illumination spot

Figure 1: Geometry of CSAR

which takes place at variable scattering angles 0 but a fixed
azimuth angle ¢, this phase matching condition [2] can be
expressed as

sin(6) — sin(6;) = sin(67) - sin(6") M

where the unprimed quantities represent the reference
incidence and scattering angles and the primed quantities
represent the variable incidence and scattering angles.
Equation (1) represents a straight line of slope +1 for a given
reference antenna configuration represented by (8, 6,).

In contrast, for scattering (3D scattering) which takes place
at variable azimuth angles ¢ but a fixed scattering angle 6,
however, the phase matching condition can be shown, using
the classical first-order Kirchhoff approximation, to be

{[cos(¢,) — cos(¢)] — [cos(¢%) — cos(¢7]}>
+ {[sin(¢y) - sin(¢)] - [sin(¢;) —sin(¥D1}>=0 (2

Unlike (1), (2) can represent anything from straight line to
spread spots, depending on the choice of the reference
antenna configuration represented by (¢;, ¢,). Since locus for
the variable antenna positions describes a circular path, the
resulting memory effect is appropriately known as the circular
angular memory effect. For transmitting and receiving
antennas located in the backscattering direction [(¢y, @) =
(0°,180°)], the corresponding circular angular memory
signature, predicted using Kirchhoff approximation and
confirmed by experiments on scattering by 2D perfectly
conducting Gaussian random rough surfaces (correlation
lengths = 2A, rms height = 1A) at W-band (75-100 GHz)
frequencies, are shown in Fig. 2. The significance of circular
angular memory effect for this experiment is this: it exhibits
strong angular correlation between multiply scattered waves
under the phase matching condition, but very low correlation
otherwise. The rate of decorrelation is inversely proportional

ACF (@ ACF ®)
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Figure 2: Circular angular memory signature due to scattering
by 2D random rough surface. (a) Kirchhoff approximation.
(b) Millimeter-wave experiments

to the size of the illumination footprint and is independent of
the surface roughness [2]. Since the traditional cross-section
(intensity) measurement forces the reference antenna
configuration to be equal to the variable antenna
configuration (i.e. ¢; = ¢ and ¢, = ¢7), the phase matching
condition, as in (2), is satisfied. Therefore, the traditional
detection/imaging techniques, which rely on cross-section
measurement, will automatically contain a strong contribution
(in the form of undesirable radar clutter) from multiple-
scattering components produced by the scattering media,
resulting in poor SNR.

With this viewpoint on clutter existence based on the
concept of angular correlation, it is relatively easy to devise a
measurement scheme that could suppress the clutter in CSAR
application: perform field measurements at a specific set of
angular positions around the circular scanning path and
correlate them in such a manner that the azimuth angles
represented by individual measurements are located at the far
end of the decorrelation tail of the memory signature in Fig.
2. The clutter-rejection capability of this correlation
technique in buried object detection at X-band frequencies
has been reported in the literature [3].

CONFOCAL IMAGING USING CSAR

To illustrate the principle of CSAR in performing confocal
imaging, and hence extracting the altitude information of the
illuminated structure, laboratory experiments were performed
at X-band frequencies in an anechoic chamber. The
transmitting and receiving antennas were positioned in the
backscattering direction and oriented at 45° below the
horizon.

At a slant reference range of 140 cm the dimension of the
illuminated volume is about 37.4 cm. Within the illuminated
volume, spheres were supported by two thick styrofoam
sheets. The lower sheet supported three uniformly spaced




metal spheres of different diameters (one of 2” and two of 17,
with a 4” separation) and the upper sheet supported one metal
sphere with a diameter of 2.5”. The lower sheet was
separated from the upper sheet by a vertical distance of 7.5”.
A frequency-domain SAR measurement was made at every 5°
along the circular path over a frequency band of 7-13 GHz.
The experimental setup is shown in Fig. 3.

CSAR PROCESSING AND RESULTS

To process the SAR measurement, the illuminated volume
was first discretized into 77 x 77 x 9 cubes (pixel resolution:
6 points/wavelength). To each of these cubes, a unique set of
time-domain, Kaiser-based tracking filter functions was
computed and applied to each of the measurements made
along the circular path. The resulting gated measurements
were then magnitude-phase adjusted and coherently added for
beamforming. Since this spotlight-mode focusing process can
be done on any plane within the illumination volume, the 3D
images can be obtained by focusing one slice at a time. With
the help of software that can perform surface or volume
rendering, it is possible to stack up all the image slices for 3D
. image reconstruction.

The processed data are presented as contour plots in Fig. 4.
As evident from the contour plots, CSAR has the capability of
focusing at a given plane with all other planes within the
illumination volume being defocused. This confocal imaging
feature should make CSAR a suitable candidate in practical
subsurface 3D imaging applications.

CONCLUSION

In this paper, the confocal imaging capability of CSAR is
experimentally demonstrated at X-band frequencies. Although
we did not make a quantitative effort to link the uses of CSAR
and circular angular memory effect in this research work, we
expect that, with previous successful demonstration of the
clutter-rejection feature of angular memory effect in target
detection applications, similar ideas of enhancing SNR could
be extended to imaging applications. For further studies on
the combination of CSAR and circular angular memory efféect
in practical settings, efforts are being made to construct an
indoor wideband bistatic X-band radar system capable of
performing SAR measurement for a natural soil surface at any
azimuth angle along a circular path. It is expected that
successful combination of these techniques could result in a
3D imaging system particularly useful in low-SNR
applications.
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Figure 3: Experimental setup for confocal imaging using
CSAR
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(no sphere)
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Abstract

In this paper, we study the angular correlation
function (ACF) of a rough surface and volume scat-
tering and apply it to the detection of a target em-
bedded in the clutter. Both the 2-D and 3-D ACF
are studied by using numerical simulations with fre-
quency averaging and circular azimuthal angle av-
eraging techniques. The 3-D case has an increase of
degree of freedom over the 2-D case. This increase
of freedom makes the circular azimuthal angle av-
eraging more successful in suppressing the clutter,
making the technique attractive in real life imple-
mentation.

1. Introduction

Wave scattering by random rough surfaces and ran-
dom scatterers has been studied extensively using
analytic techniques, laboratory experimental mea-
surements, and numerical simulations[1,2]. Most
of the studies have utilized the bistatic scattering
intensities to characterize the scattering results.

In 1988, a paper by Feng et al. demonstrated the
existence of memory effects by taking the angular
correlation of wave scattering [3]. The angular cor-
relation function (ACF) is the correlation function
of two scattered fields in directions 6,5 and 6,; cor-
responding to two incident waves in directions 6;y
and 6;;, respectively (Fig. 1). A strong correlation,
called the angular memory effect, is exhibited on
the memory line. The values of the ACF are very
small for the angle pairs away from the memory
line. This has been verified by theoretical models
and experiments.For volume scattering, the same
phase matching condition holds for the horizontal
direction, sinf;; —sinfs; = sinf;s — sinfgs. For the

0-7803-3836-7/97/$10.00 © 1997 IEEE

case of a thick layer, an additional phase matching
condition is cosf;; + cosfs1 = cosf;s + cosfye. The
existence of the second condition makes the mem-
ory line shorter.

Recently, the ACF has been applied to the detec-
tion of a buried object [4,5,6). For the detection
of a target embedded in random scatterers under a
rough surface, the scattering of waves by the target
is often obscured by clutter such as rough surface
scattering and random medium scattering. This
makes the detection of a target difficult based on
scattering intensity. However, by making use of the
ACF, one can show that the contribution of clutter
to the angular correlation function is minimal away
from the memory line making the contribution of
the buried object more conspicuous by many dB.

In this paper, we study the ACF of wave scatter-
ing by a random rough surface and random discrete
scatterers for 2-D and 3-D scattering problems. In
the ACF for detection of buried object, the target is
associated with one realization of the random rough
surface and random medium, therefore realization
averaging is meaningless. In the 2-D ACF, we have
been using averaging over frequency and angular
averaging over zenithal angle . These averaging
techniques are moderatally successful because the
scattering properties are strongly dependent on fre-
quency and the zenithal angle §. However, in the
3-D case, there is an increase in the degree of free-
dom.

2. Formulation
2.1. General Definition

The general definition of the ACF is the correlation
between two scattered waves corresponding to the
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two incident waves, given by

Dk, kir; ks, kiz) =< F(ks1, kir ) F* (ks2, ki) ? )
1

where F(I}s,ki) is the total scattering amplitude
(or normalized scattered field), k (9, ¢) is the di-
rection of wave propagation. The ensemble aver-
age is usually calculated over many realizations in
experiments and numerical simulations, written as

N,
e . 1 & .
Ty (ks1, kirs ks2, kiz) = A > F(ks, kix,m)
T n=1
F*(ke2, ki,m)  (2)

There are eight variables in the ACF defined by (1)
and (2). The ACF only exists on the angular pairs
which are controlled by the three phase match con-
ditions, which is called memory effect. The study of
the ACF can be simplified for the specific problem.

2.2. 2-D ACF Based on Frequency Averag-

ing

Consider a problem of a target embedded in dis-
crete random scatterers below a rough surface as
shown in figure 1. The target and the scatterers
are all cylinders for the 2-D scattering problem. We
formulate the problem by using the integral.equa-
tion method. The equations are solved numerically
using the method of moments, giving an exact solu-
tion of Maxwell’s equations. Then, the normalized
far field scattered field in direction 6, is obtained.

Consider incident waves at two incident directions
0;1 and ;2 with corresponding scattered waves at
051 and 6,, respectively. Since the target is under a
single realization of rough surface and random scat-
terers, we use frequency averaging with the angular
correlation function (ACF) defined by

Ny
1
T¢(0s1,0:1;0s2,0:2) = Ff E F(0s1,6:1, fn)
n=1

F*(952,0i2afn) (3)

where f, is the frequency. The averaging is taken
over the frequency range with center frequency f,.

2.3. 3-D ACF Based on Circular Averaging
To calculate the 3-D ACF, we consider the wave
scattering by a volume consisting of many scatter-
ers (small spheres). The total scattering amplitude
is calculated by using coherent addition approxi-
mation. The 3-D ACF can be studied in various

ways depending on different applications. For the
target detection purpose, we illustrate our studies
on the back-scattering configuration which reduces
the eight variables into four. The 3-D ACF can
be defined in ways similar to the 2-D ACF. After
studying the 3-D scattering problem, a way of cal-
culating the 3-D ACF is by circular averaging,

Ne
Le(01, 1302, 42) = NL D F (61,61 + ¢n)
¢ n=1
F*(02,¢2 + ¢n)  (4)

The circular averaging defined in Eq. (4) is to take
an average by changing the azimuth angles. There-
fore, the circular SAR. data can be used for ACF
processing.

3. Numerical Results

In the 2-D scattering problem, we use 300 circular
cylinders with radius of a = 0.05), to model the
random scatterers and an elliptical cylinder with
size of b = 0.7), and ¢ = 1.0, as the target. We
use a single random rough surface with the height
profile plotted in figure 1, and a rough surface of
length L = 40\, with rms height h = 0.25), and
correlation length [ = 0.5),. The target elliptical
cylinder is placed at a depth d = 2),. The 2-d ACF
with fixed 6;; = 20° and 8,; = —20° is calculated
by frequency averaging over a frequency band 0.5f,
to 1.5f, as defined in Eq. (3). The ACF is plot-
ted as a function of sinf;; and sinf,s, as shown in
figure 2. We see a strong correlation on the angle
pairs of memory.

To show the effectiveness of using ACF in the 3-D
case which has real life applications, we calculate
the 3-D ACF of wave scattering by a target sphere
embedded in 500 small spheres by using the cir-
cular averaging. The results are shown in figure 3.
The 3-d ACF is plotted as a function of the incident
angle 6, with fixed 6; = 20° and ¢; = ¢, = 0°. We
can see a peak at 6, = 20°, which we call “mem-
ory dot”. At the memory dot, the values of the
ACF with and without the target are almost the
same. This means that the random scatterers dom-
inate the back-scattered intensity (self-correlation).
Away from the memory dot, however, the ACF
with the target is 10 to 20dB larger than that with-
out the target. Therefore, the ACF is useful in the
detection of target embedded in clutter. The tech-
nique works much better in 3-D real life situations.
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Abstract — A numerical modeling algorithm is developed
and used to compute the scattering from objects buried under
an irregular ground surface. The algorithm integrates object
scattering with scattering from a rough surface above these
objects.The algorithm will support two modes of operation:
(a) return signal strength as a function of system, geometry,
ground and object parameters and (b) angle and frequency
diverse image as a function of system, geometry, ground and
object parameters. The technique to be used for this effort will
be a combination of the standard finite difference time domain
(FD-TD) method, a randomly rough surface generation rou-
tine and an image generation routine developed at the Univer-
sity of Texas At Arlington (UTA). Such an algorithm should
be useful for predicting the return signal as a function of the
radar system parameters and the ground condition. It also
offers the potential to find an optimum choice of system and
geometric parameters for detecting buried objects under a
given situation.

INTRODUCTION

Many sensors have been utilized (or proposed for use) in
the detection of buried objects such as land mines. They
include metal detector, ground penetrating radar (GPR), pola-
rimetric microwave imaging, forward looking infrared (ther-
mal) sensor (FLIR), video, and ultraviolet (UV) sensor.
Accurate detection of land mine in a cost effective manner
requires the right mix of sensors and the associated processing
algorithms. An understanding of land mine signature charac-
teristics and detectability is needed in order to determine the
optimum sensor combination, sensor parameters, and the
associated processing algorithms. In this study we investigate
the scattering characteristics of buried objects in the micro-
wave region using a numerical modeling approach.

For a medium with buried object as shown in Fig. 1 there
are discontinuities at the object-medium boundary and the air-
medium boundary. An impinging wave will experience multi-
ple scattering between the object and the medium boundary as
well as within the object. We expect complex wave, object and
medium boundary interactions to occur. Except for special,
idealized cases, analytical methods are ineffective for such
problems. Numerical methods designed to solve frequency
domain problems such as moment methods are also not suit-

This work is supported by ARO grant DAAGS55-97-1-0014.
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able because of the wide band nature of the problem. On the
other hand, the finite difference time domain method (FD-TD)
offers many advantages as an electromagnetic modeling, sim-
ulation, and analysis tool with capabilities including [1,2]
broadband response predictions; arbitrary 3-D model geome-
tries; and interaction with an object of any conductivity.

The formulation of the FD-TD method is summarized in
the following section. The implementation of a window func-
tion to obtain the scattering coefficient of a randomly rough
surface with buried object are given in the subsequent section.
Numerical results and summary are presented in the last two
sections.

FD-TD: A SCATTERED FIELD APPROACH

The FD-TD approach has many formulations: scattered
field, total field, potential, implicit etc. [1]. For scattering cal-
culations where the amplitude of the scattered field is signifi-
cantly smaller than the incident, it is particularly
advantageous to use the scattered field formulation. This sec-
tion summarizes the scattered field FD-TD formulation start-
ing with the Maxwell’s equations and then a conversion of
them to finite difference forms. The conditions for acceptable
time and spatial increments are also given.

A set of governing equations for the scattered fields in the
medium defined by | and € are

VxE = - ulH o, B o, H - w-m)dH M
at ot
s s =g -
VxI?(s = e%ff +UZ>? +0E'+(e—eo)%E‘ 2)

where the superscript i and s denote the incident and scattered
fields, respectively. Applying the central difference approxi-
mation to the differential operagons in (2), we obtain three

. . &) . .
scalar difference equations for H , and one of them is given
by

. 20-06,80\ .12, .
H:;ln{l, Ik} =(mm—SE)H?x Y260, .k}
m

( -28t/dy
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m
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where a sampled scalar function of time and space is denoted
as F'{i, j, k} = F{idx, jdy, kdz,ndt}, and 8t, &x, dy,
and 8z are the time and spatial sampling Bes:riods respectively.
The three scalar difference equations for £~ are also obtained
using a similar procedure. Note that in this formulation, the
transmitted field below the rough interface is the sum of the
incident and scattered fields.

To ensure an algorithm which is stable and accurate, the
conditions on the spatial increment and the time increment 8t
are given in [2]. The spatial sampling periods, 6x, 8y, and
dz are chosen to be A/16. 3t is chosen to satisfy the ine-
quality

1 1 1 1
o< E[(Sx)2 OO MTE

]—1/2 (4)

Truncation Condition

A radiation boundary condition or truncation boundary
condition is needed at the boundary of the FD-TD computa-
tion domain (grid). The first order Mur’s radiation boundary
conditions [3] is used in this study.

THE RADAR CROSS SECTION, SCATTERING
COEFFICIENT, AND ISAR IMAGING

The Radar Cross Section (RCS)

To utilize the existing frequency-domain near-to-far field
transformation method, a discrete Fourier transform is first
applied to the time domain near fields, i.e., the FD-TD solu-
tions, giving the frequency domain near fields. The equivalent
surface currents are determined using the freqiiency domain
near fields by applying the equivalence theorem. The equiva-
lent currents on the virtual surface above the rough boundary
are given by

2 pc2) - 25
Jseqg = AXH (W) and Mseq = -Aix E (®) 6)

where 7 is the outward unit normal vector of the surface. The
scattered far fields (in frequency domain) are obtained by
transforming the equivalent currents over free space Green’s
function [5]. The radar cross section is computed using

2 2
Eje .+ E
RCS = lim 4mz{_g_fai__g..f.a_r] ™
roe E¢ inc+E6inc

where Eg ;. and Eg;,. are the components of the incident
(excitation) plane wave. .

Window Function And Scattering Coefficient
To reduce the error due to boundary reflection and finite

surface size, a window (or weighting) function is applied to
the truncated surface such that field near the surface edges are
weighted down in the scattered far-field calculations. A Gaus-
sian window function [4] with 60 dB attenuation at the edges
of truncated surface is used in this study.

The window is applied to the fields (in frequency domain)
prior to the near-to-far field transformation. Following the
transformation, the radar cross section (RCS) is calculated
using the scattered far fields. The scattering coefficient is
obtained by normalizing the RCS to the effective area of the
truncated surface.

Bistatic Inverse Synthetic Aperture Radar (ISAR) Imaging

The scattered far-fields from FD-TD simulation are used as
inputs to the bistatic ISAR imaging algorithm developed at
UTA. The 2-D complex reflectivity image can be written as

10, ) = [ [y ky)exp(ik,x + jk,y)dk, dk, ®)
k, k, .

where k, and k, are the x- and y-component of free-space
propagation vector.

NUMERICAL RESULTS

Case 1: bistatic scattering coefficients
Fig. 2 shows the bistatic scattering coefficients of the

medium with rough boundary for VV polarization. The rough
boundary has Gaussian correlation function and height distri-
bution with k6 = 0.35 and kL = 5.5, where k is the free
space wave number. The medium parameters are €, = 2.1
and ¢ = 106 [S/m]. An incident wave with an incident
angle of 30° and wavelength, A, of 10 cm are used in the cal-
culations.

A perfect conducting object (a rectangular box) with
dimensions I/, = I, = 60 cm and [, = 10 cm is introduced
into the lower medium. The object is 3 cm below the mean,
height of the boundary. Fig. 3 shows the bistatic scattering
coefficients of the medium with buried object for VV polar-
ization. Note that the difference between Fig. 2 and Fig,. 3 is
caused by the presence of the buried object only.

Case 2: 2-D ISAR Imaging

Fig. 4 and Fig. 5 show the 2-D ISAR images for the flat sur-
face without and with a buried object, respectively. The
images are constructed using the V-polarized scattered far-
fields generated by the FD-TD simulation. The medium
parameters are €, = 2.5 and 6 = 10~5 [S/m]. Dimensions
of the perfect conducting object are I, = I, = 24 cm and
I, = 16 cm. The object is 8 cm below the surface. An inci-
dent wave with an incident angle of 0° and wavelength, A, of
16 cm are used in the calculations. Note that the Gaussian
window used in the FD-TD calculations is clearly observed in
both figures. The presence of rectangular shaped buried object
is also discernible in Fig. 5.




SUMMARY

FD-TD simulation of scattering from object embedded in a
medium with either plane or rough boundary has been carried
out in this study. Simulation results which show the effects of
buried object on the scattering pattern of medium with rough
boundary are presented in this paper.
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Figure 1. Geometry of the scattering from rough surface
with buried object.
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ABSTRACT

Using ground-penetrating radar (GPR) and seismic
reflection measurements simultaneously can give a
much better characterization of buried objects than a
stand-alone measurement since electromagnetic and
seismic measurements provide complementary infor-
mation of the buried objects and the surrounding
environment. However, successful interpretation and
processing of these measurements in large-scale prob-
lems rely on fast simulations. In this work we
use the pseudospectral time-domain (PSTD) method
newly developed by the author together with the fi-
nite-difference time-domain (FDTD) method to per-
form large-scale simulations of ground penetrating
radar (GPR) and seismic reflection measurements.
The PSTD method uses the fast Fourier transform
(FFT) together with the perfectly matched layer
(PML) to solve the partial-differential equations. It
requires only two cells per wavelength regardless of
the problem size. For multidimensional problems,
the PSTD method is 4°-32P times more efficient
than the conventional FDTD method. Hence, the
PSTD algorithm is ideal for large-scale problems.
The FDTD method, on the other hand, is used to
model structures with fine details below 1/8 wave-
length. Both the FDTD and PSTD algorithms are
developed for conductive and viscous media, and

thus can be used to model realistic losses in the sub-
surface media.

1. INTRODUCTION

Electromagnetic and acoustic measurements are
widely used for detection and characterization of
buried objects and voids, for examples in land-mine

detection and identification and in nuclear waste-site
characterization and monitoring. These measure-

ments provide complementary information, namely
the electromagnetic and mechanical properties, of
the buried objects and the surrounding environment.

*This work was supported by a Presidential Early Career Award
for Scientists and Engineers (PECASE) through EPA and by Sandia
National Laboratories under the SURP program.
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The electromagnetic field is more sensitive to the
fluid contents in the pore space, while acoustic waves
are more sensitive to the rock matrix. Therefore, we
combine both measurements in this work for better
detection and characterization of buried objects.
The emphasis of this work is to perform large-
scale simulations of ground penetrating radar (GPR)
and seismic reflection measurements using both the
finite-difference time-domain (FDTD) method and
the pseudospectral time-domain (PSTD) method re-
cently developed by the author. The PSTD method
uses the Fourier transform through an FFT fast
Fourier transform) algorithm, instead of finite differ-
ences in the FDTD method, to represent the spatial
derivatives in the partial differential equations. The
wraparound effect due to the use of FFT is elim-
inated by using a perfectly matched layer (PML)
as an absorbing boundary condition. The PSTD
method requires only two cells per wavelength to ob-
tain a comparable accuracy as the FDTD method
with 8-16 cells per wavelength for a moderate size
problem. For larger problems, the FDTD method
requires much smaller cells, and hence the advantage
of the PSTD method becomes even more profound.

Thus, the PSTD method is ideal for large-scale
problems where the minimum structure of inhomo-
geneities is at least in the order of half wavelength.
For other problems where the structure has fine de-
tails below 1/8 wavelength, we still use the FDTD
method, since in order to resolve such small details
in the geometrical representation, the PSTD method

also needs a fine discretization and a smaller time
step. In this sense the FDTD method is complemen-

tary to the new PSTD method for problems with
very fine details. Both the FDTD and PSTD al-
gorithms are developed for conductive and viscous
media, and thus can be used to model realistic losses

in the subsurface media. We will show various re-
sults using both algorithms for large-scale multi-

dimensional problems. The development of the new
PSTD method provides an important simulation tool
for many large-scale electromagnetic and acoustic
problems which are currently unsolvable with con-
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ventional methods.

2. THE PSTD AND FDTD
ALGORITHMS

For simulations of GPR and seismic measurements,
Maxwell’s equations and scalar acoustic equation are
solved numerically using both the new PSTD and
the conventional FDTD algorithms. The absorbing
boundary condition used at the computational edge
is the new perfectly matched layer (PML) [1]. In
order to formulate the problem with PML, let us
consider the acoustic equation using a coordinate-
stretching variable e, = a, + z%’i Following [2], we
can derive the split acoustic equations as

. Ov Op
aﬂpa—tn +wppvy = _8_77, (1)

apm

anw -+ (an’)’C2 + wn)p(")

t
st [ B0 O)a = —p T4 {0 (ey1). (@)

—0o0

It is worthwhile to note the following important dif-
ference between an acoustic PML and an elastic
PML: In the acoustic PML, there is no need to split
the particle velocity v into v(? as in the elastic PML.
This is simply because that the second-rank stress
tensor in the elastic case collapses into a zero-rank
tensor (i.e., a scalar pressure field) in the acoustic
case. Equations (1) and (2) consist of a total of 6
scalar equations. Similarly, split Maxwell’s equations
can be derived for conductive media [3-5].

These partial differential equations can be solved
by using the conventional FDTD methods where
both the spatial and temporal derivatives are ap-
proximated by finite differences. In contrast, in the
newly developed PSTD method , the FFT algorithm
is used to represent the spatial derivative in (1) and
(2). For example, from (1) we have

v 1.
anpa—: + wppvy = F, 1{”“7;}—17@]}’ (3)

where F, and F;7! denote forward and inverse FFT
in the n direction which are calculated by FFT’s. A
similar result can be obtained for (2) as well as the
split Maxwell's equations [5]. FDTD methods have
also been developed for elastic wave propagation in
multidimensional problems [6, 7].

The important difference between the PSTD
method and the FDTD method is the approxima-
tion of spatial derivatives. The spatial derivatives

have an infinite order of accuracy in the PSTD al-
gorithm, while a second-order accuracy in the con-
ventional FDTD method. In addition, in contrast
to the standard Yee’s algorithm, the PSTD method
uses a spatially centered grid where all field com-
ponents are located at the same points. This pro-
vides an important advantage over the Yee's algo-
rithm since 'the material properties are not altered
by the presence of the staggered grid. The temporal
grid, however, is staggered in the same way as in the
FDTD method. In the PSTD algorithm, perfectly
matched layers are implemented at the outer edge as
the absorbing boundary condition to eliminate the
wraparound effect. The dispersion relations and the
stability condition in the PSTD algorithm are ana-
lyzed in [5)].

3. NUMERICAL RESULTS

Theoretical analysis and numerical experiments con-
firm that the PSTD algorithm requires only two cells
per minimum wavelength, i.e., the minimum Nyquist
sampling rate, regardless of the problem size [5]. In
contrast, the conventional FDTD method requires
10-20 cells per wavelength for a problem of mod-
erate size. As the problem size grows, the FDTD
requires increasingly finer discretization to maintain
the accuracy.

As an example of the applications of the PSTD
algorithm, we simulate subsurface radar and seis-
mic reflection measurements of two buried objects as
shown in Fig. 1(a) at the cross section of y = 4.875 m.
The two rectangular objects extend from y = 3.675
to y = 6.075 m. The half-space is truncated to
0 <y £ 9.6 m by the PML absorbing boundary con-
dition. The electromagnetic source and the seismic
source are location at the center of the earth surface,
and they operate at a center frequency of f, = 100
MHz and f. = 2.667 kHz respectively. With respect
to the background medium in the earth, the object
on the left has a large contrast in its electromagnetic
properties, and a small contrast in its acoustic prop-
erties, and vise versa for the object on the right. At
the highest frequency (f, = 2.5f.) beyond which the
energy is negligible, this 3-D problem has a size of
32X x 32X x 32X (where X is the wavelength in the
earth). Using the PSTD method, we need a grid with
only 64 x 64 x 64 cells. Figs. 1(b) and 1(c) display the
electromagnetic and acoustic waveforms measured at
an array of receivers on the ground. Clearly, the two
sets of measurements provide complementary infor-
mation about the buried objects. If the conventional
FDTD method had been used, this problem would
have to be discretized by a grid with roughly 256-512

cells in each dimension in order to achieve a com-
parable accuracy. Therefore, for this problem, the
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PSTD algorithm is about two orders of magnitude

more efficient than the FDTD method. More nu-
merical examples will be shown in the presentation.

4. CONCLUSIONS

The ground-penetrating radar and seismic reflec-
tion measurements can be used together to enhance
the ability to characterize buried objects. We have
developed pseudospectral time-domain and finite-
difference time-domain algorithms to simulate large-
scale problems encountered in GPR and seismic mea-
surements for lossy media. The PSTD algorithm
has an infinite-order of accuracy in the spatial rep-
resentation, and hence requires only two cells per
wavelength (Nyquist rate) to obtain accurate results.
It is a factor of 4°-32° times more efficient than
FDTD methods (where D is the dimensionality of
the problem) for a problem of size 32\ to 512\ in
each dimension. In terms of the spatial sampling
rate, the PSTD algorithm is an optimal solution to
time-domain Maxwell’s equations and acoustic equa-
tions. The FDTD method, on the other hand, can

be used for simulations of structures with fine details
much smaller than half a wavelength.
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ABSTRACT

CLIMACS (Climate studies of Land surfaces and Ice using
Microwave ACtive Sensing) is a synthetic aperture radar and
is intended to be an element of a mission dedicated to global
observation of land surfaces and ice. CLIMACS will provide
relevant information for the studies related to climate change.
In addition further expected applications are in the areas of
disaster monitoring, ice reconnaissance and forest monitoring.
In order to obtain valuable geophysical products for these
applications, SAR images with modest spatial resolution but
very high radiometric accuracy and high temporal sampling
are desirable.

INTRODUCTION

In the context of the Earth Observation Preparatory
Program, ESA is looking for a modest spatial resolution wide
fixed swath SAR instrument for global monitoring of the
Earth. This is the CLIMACS instrument which is intended to
be an element of a global land and sea ice monitoring mission

[1].

ESA has awarded two parallel prephase A studies at
industrial level in order to design a SAR for CLIMACS
purpose. This paper is related to the feasibility study leaded
by ALCATEL ESPACE with CASA, SAAB ERICSSON
SPACE, Oerlikon Contraves and Ylinen Electronics as
subcontractors. We first recall the main mission objectives
and the origin of the main instrument requirements. Then the
remarkable features of the instrument and the main
performance are reported with special emphasis on coverage,
radiometric performances and needed resources. The final
budgets show the compliance with small satellite mission and
low cost program.

MISSION OBJECTIVES

The land surfaces act as a part of the coupled boundary to
the global heat exchanges, to the general atmospheric
circulation and to the global hydrological cycle. Their role is
complex due to their heterogeneous nature and to their short
time scale response. Although, the part played by the land is
smaller than the one played by the ocean, it is over the land
that many of the apparently irreversible changes occur. Hence
it is a good indicator of any climatic changes which are faking
place over the lifetime of the Earth.

0-7803-3836-7/97/$10.00 © 1997 IEEE

Furthermore the radar measurements are independent of
cloud coverage, illumination by the sun and atmospheric
disturbances, hence provide uninterrupted observations with
high temporal sampling rate.

CLIMACS will provide relevant information for the studies
of:
—Climate change in terms of global carbon cycle and
global energy cycle,
—Processes monitoring,
—Interactions between human activities and ecological
systems.

In addition, further expected applications are in the areas
of:

—Operational ice reconnaissance,
—Operational large scale hydrology,
—Large scale disaster monitoring,
—Large scale crop monitoring,
—Forest monitoring.

INSTRUMENT REQUIREMENTS

In order to obtain valuable geophysical products for the
above applications, SAR images with modest spatial
resolution, but high radiometric accuracy are desirable.
Furthermore, the objective of global Earth monitoring with
high temporal resolution leads to an ambitious coverage
requirement (more than 95% of earth surface within 5 days)
which in turn implies a very large swath instrument. In
addition, since the land surfaces and polar regions are rather
of heterogeneous nature, a multiple frequency (2 among P,
L, C, X band) and multiple polarization system is desirable.
This is the basis of the instrument requirements [2].

We have to notice that the absolute radiometric accuracy
includes the radiometric resolution (speckle contribution) but
also all the errors (calibration, mispointing, radar drift,
ambiguities...). Finally we have to point out that the
requirements are given in terms of final image quality (multi
look spatial resolution, absolute radiometric accuracy) thus
leading to a more open definition of the instrument.

The first challenge of such a radar is to design a very large
swath instrument in order to be compliant with the coverage
requirement. The second challenge is on one hand to be able
to generate a great number of looks and on the other hand to
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have a good calibration scheme in order to be compliant with
the absolute radiometric accuracy requirement. The third
challenge, which is not negligible, is to design a low mass
and low power consumption dual frequency and dual
polarization concept.

INSTRUMENT DESIGN

In order to reach the challenging design objective a coupled
parametric orbital mission and radar system study was first
performed. This phase was followed by a trade-off among the
main promising concepts [3]. Finally the selected design is
based on a ScanSAR mode (Fig 1) with 4 sub-swaths
ensuring a total swath width of 430 km. Each sub-swath is
illuminated twice during the SAR integration time in order to
reduce the radiometric variation.

Spacecraft

4 sub-swaths

The instrument synoptic is given Fig 2. It includes
separated antennas and HPA (High Power Amplifier)
subsystems, but common RF (RadioFrequency) and digital
subsystems. In order to limit the antenna size and the mass, C
and X-band are selected. An absolute radiometric accuracy of
0.65 dB is obtained by averaging of a great number of looks
(430) and by using a stable calibration scheme. In turn the
multi-look spatial resolution is modest (2 km) in order to limit
the needed resources. A complete cold redundancy scheme is
included in order to ensure continuous operation during 5
years.

A low risk and low cost approach is followed for the design
by selecting as far as possible mature technologies and
techniques.

The remarkable features of the CLIMACS instrument are:

eDigital chirp generator ensuring versatility,
eDemodulator using sub-harmonic sampling scheme,

*Centralized distribution using one 1800 W RF peak
power TWT in C-band, and one 400 W RF peak
power TWT in X-band,

eBlass matrices in order to ensure beam steering
capability (4 sub-swaths),

oX-band single polarization antenna using waveguide
technology,

oC-band dual polarization antenna using waveguide
distribution and triplate radiating elements,

eRaw data reduction using BAQ algorithm,
eSolid state mass memory with 90 Gbits capacity.
The fully passive multi-beam antenna design (Fig 3),
ensures low losses, low mass and high stability. The Blass

matrices are of particular importance in order to ensure the
beam steering capability necessary for the ScanSar mode.

X-band panel

X band
B Cband |, “_aés At
: LI Chirp generator Up - : 9, {))
] — _ Jconverter t I S -/
G . Local —II_’ — HPA subsystem
Lt Sequencer 1 oscillator. = Calibration|:#.".. :
ELN ; .
E BAQ Demodulato Down
3P ADC .| CONVETEr |
Q "+ Digital subsystem " ‘RE subsystem,”

Figure 2: Instrument synoptic (redundancy not shown)




INSTRUMENT PERFORMANCES

JH 3 DAYS

COVERAGE
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Figure 4: Coverage performance

The main performance and budget characteristics are given
in Table 1 and Table 2. In addition the coverage obtained
within 3 days and 5 days is shown Fig 4. These rather good
figures are obtained mainly due to the orbit choice and radar
swath width. We have to notice that the frequency choice (X
and C band) is of importance in the coverage performance. In
fact for .a given antenna height requirement, the high
frequency choice allows a larger swath and thus a better
coverage performance. For example the L band choice could
not lead to such a swath width.

Table 1: Performances summary

Orbit Polar sun-synchronous
Altitude 510 km
Coverage 80 % within 3 days
98% within 5 days
Global within 6 days
Swath width 430 km
Incidence range 12 to 50 deg
Frequency C and X band
Polarization C band: HH and VV
X band: VV
Spatial resolution 2km * 2 km
Radiometric accuracy | < 0.65 dB for 2*2 km? spatial
resolution
Radiometric <£0.40 dB for 2*2 km?
resolution <0.76 dB for 1*1 km?
< 1.40 dB for 0.5*0.5 km?
Ambiguity ratio 20 dB
ISLR 19 dB
PSLR 25 dB

The absolute radiometric accuracy is better than 0.65 dB
for a spatial resolution of 2 km by 2 km. This figure includes
the radiometric resolution contribution (0.4 dB) and all the

instrument errors. We can notice that, depending on the user
needs, we can simply trade the radiometric resolution with the
spatial resolution. This allows a very flexible final product.

The needed resources are rather low for a multiple
frequency and multiple polarization instrument. In addition
the stowed size of the antenna (5 panels) is compatible with
various types of launchers and platforms. These figures are
compatible with a small satellite mission. On the other hand
the design being based on mature technology, the technical
risks are very limited. This leads to a low cost mission.

Table 2: Budget summary

Antenna size 12m * 1.6 m

Mass 230 kg

Power consumption {350 W

In flight operation 5 years continuous

Reliability 0.9

Data rate 15 Mbit/s

Mass memory unit 90 Gbits

Launcher ARIANE 4

compatibility DELTA 111
PROTON 1D
ATLAS MPF

CONCLUSION

The proposed CLIMACS instrument offers:

#Good coverage performance (global within 6 days and
better than 95% within 5 days),

¢Good radiometric accuracy thanks to the number of
looks (430) and the calibration,

eRather low budget figures (mass, power consumption,
and antenna size),

oCompatibility with various types of launchers,

eUncriticallity of necessary technology,

+Continuous operation.

This instrument will ensure continuity of C band data
availability (ERS, ASAR) enhanced by a X band channel.

In addition the design is compatible with small satellite
mission and low cost program.
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ABSTRACT

A unique series of ERS-1/2 C-band SAR images was
obtained off the southern coast of Norway during the COAST
WATCH'95 experiment in September 1995. In this paper we
carry out a systematic analysis of the mesoscale coastal wind
field conditions expressed in the SAR images. Four different
categories of phenomena including wind rows, fetch limited
seas, wind fronts and oceanographic fronts are examined and
discussed. The quantitative retrievals of the wind field are
based on examination of the backscatter characteristics and
the spectral properties of the SAR image. Results are
compared and validated against coincident ship and buoy
data providing independent observations of the
oceanographic and meteorological conditions.

INTRODUCTION

In order to better quantify SAR imaging of upper ocean and
atmospheric boundary layer processes, an experiment,
COAST WATCH’9S5 [1], was carried out off the southwest
coast of Norway during September 1995 as a ERS-1 and
ERS-2 tandem announcement of opportunity experiment.
The tandem operation provided a unique SAR coverage of
the experiment area consisting of 148 SAR images (frames).
Meteorological and oceanographical in situ observations
were provided from the research vessel R/V Hikon Mosby of
University of Bergen, and an advanced metocean buoy from
the Naval Postgraduate School, Monterey.

The main study objective reported in this paper is to
demonstrate the optimum wind retrieval from SAR images.
We will use the procedure outlined in [2] and [3].

WIND RETRIEVAL ALGORITHMS

The two SAR wind retrieval algorithms used are based on the
extraction of the wind field from different parts of the ocean
surface wave spectrum, in particular the medium wind wave
regime and the small centimeter scale regime. Fig. 1 shows a

0-7803-3836-7/97/$10.00 © 1997 IEEE

conceptual overview of the wind field estimation as further
described below.

SAR Wind Algorithm (SWA)

In case of a fully developed sea (no fetch limitation) the
empirical SWA relation, based on evaluation of 1200 SAR
wave-mode imagettes with a central incidence angle of 20.2°

is given by [4] as
A, =30 (mj
110 m

where Uy, is the wind speed at 10 m above the surface and
A is the azimuth cut-off wave length. Assuming a Gaussian
shaped low pass filter for the azimuth cut-off the cut-off
wavelength can be estimated from the auto covariance
function (ACF) derived from an inverse Fourier transform of
the SAR image power spectrum.

The CMOD4 model

The CMOD4 wind retrieval model [5] is developed for the
ERS-1 C-band scatterometer but it is also shown to give
good estimates of wind speed when applied to ERS-1 SAR
images

Uy, = 4.75(ms_])(

The CMOD4 model provides o, values as a function of
relative wind direction (¢=0 for a wind blowing toward the
radar), wind speed and incidence angle, expressed as

o, = B[1+ B, cos(¢)+ B, cos(2¢)]

The coefficients BO, Bl and B2 depend on the local
incidence angle of the radar beam and wind speed.

In this paper we also emphasize that the wind direction can
be estimated from the CMOD4 model for different incidence
angles provided the wind speed, derived from the SWA
method, can be associated with the corresponding measured
backscatter (op). In such cases we will show that four
solutions, i.e. two pairs, each with a 180° ambiguity can be
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Figure 1 Conceptual overview of wind retrieval models. The
external wind direction may be obtained from wind rows in
the SAR image.

found, except in the cases when the direction is close to
upwind (the wind blowing towards the radar) or downwind,
for which only one pair is found.

COAST WATCH 95 Analysis

Two case studies from the Coast Watch’95 data base are
presented including: a) wind rows under fetch limited
conditions and b) oceanic front (jet) together with a local
wind front:

a) The ERS-1 SAR images are from 17 September 1995
shows a characteristic pattern of wind rows aligned in the
wind direction of about 110°. In particular, the northernmost
area, west of the coast, lacks of expressions features, while
the southern areas are recognized with wind rows with an
west-northwestward orientation of 110°. There is also a
gradual increase in the backscatter towards south.. The wind

owigo
o

&

o LS oo@

—~ 10F o ° gAA -
: WG
& AL A9°
3 o [y a
8 <N
4 o N £
8 204
° o A%
<
3z o A
< A
7 st 8

0 ] I

5 10
CMOD4 wind speed (m/s)

Figure 2 SAR image scatter plot and wind vector map from
17 September 1995

speed obtained in vicinity of the ship is about 13 m/s, and
reveals a clear north west gradient as expected. The obtained
wind direction is in good agreement with the isobars from
the hindcast model. Wind retrievals from a total of 238 sub-
images were compared for the 17 September images. The
CMOD4 - SWA wind speed difference was less than 2 m/s
for about 90 % of the sub images. The scatter plot in Fig. 2
(right) shows good agreement between the SWA and the
CMOD4 derived wind speeds in the range of 3 to 15 m/s for
all three images.

b) The final case study is based on the SAR images from 27
September 1995 which shows a westward flowing coastal jet
bounded by two distinct, some places parallel fronts. A local,
5-10 km wide wind feature is also running diagonally across
the image, in the second image. A total of 144 sub images
were analyzed for the 27 September image of which only 8
% have a wind speed difference of less than 2 m/s in the
range from 3 to 15 m/s. From the SAR image power
spectrum (SIPS) analysis a strong peak in the energy occurs

SWA wind speed (m/s)

DArea 3
XAreo 4
+Area 5

1 . n " .
5 10 15
CMOD4 wind speed (m/s)

Figure 3
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between 150 and 300 m wavelength, 30° to 50° to the range
axis, in the SIPS. This peak in the SIPS is most likely caused
by a corresponding peak in the real ocean wave spectrum
suggesting the presence of incoming swell. The swell seems
to affect the wind field results, in particular the SWA wind
speed and the directional estimates. A shift of about 1.5 m/s
to 2 m/s in the CMOD4 wind speed is observed across the jet.
In contrast to CMOD4 wind speeds there is a large spread in
the SWA derived wind speed for the areas. However, no
evidence of wind shifts are found across the fronts.

Fig.3 (right) shows that the SWA wind speed is up to 10 m/s
higher than the CMOD4. Particularly no correlation is
therefore present. In comparison to the previous results, in
particular from Case a, the results are poor. The SWA is
consistently larger than CMOD4 by at least 4 m/s and
completely without any correlation for the conditions
encountered in Case b.

SUMMARY

In this paper we have shown that the radar backscatter and
spectral signatures of the ocean surface obtained from ERS-
1,2 SAR images can provide valuable and quantitative
information on near surface wind speed and wind direction.
5 ERS SAR images, from 17 and 27 September 1995 have
been examined by studying their o, and spectral properties.
Two different wind retrieval models, SWA and CMOD4,
have been applied to the data. We have found by comparing
the SWA and CMOD4 wind speed retrievals that about 90 %
of the sub images gives a wind speed difference less than 2
m/s for case a) and about 8 % for case b).

It is demonstrated that the surface conditions impact on the
performances of the different wind field retrieval methods
and their corresponding results. The presence of homogenous
wind rows are clearly favored. For fetch limited seas and in
vicinity of wind fronts, on the other hand, the SWA method
underestimates the wind speed. For fetch limited seas the
waves are not in equilibrium with the near surface wind
speed. Hence, the distribution of the velocity field of surface
scatters, as introduced by the orbital velocity of the waves
will be narrower than for fully developed seas leading to
underestimation. Moreover the relatively large relaxation
rate for the longer wind waves allows these waves to
propagate across a wind front. Hence they will maintain their
original equilibrium state over some distance away from the
front. In turn, the wind front will not be resolved properly by
the SWA method. For the same reason, the presence of swell
may cause an increase in the derived wind speed. In contrast
the CMOD4 method is not limited by these conditions.

While absolute image calibration is necessary for the
CMOD4 method, it is not required for the SWA method

since the first method uses radar backscatter values while
the latter uses spectral characteristics. But as mentioned in
the analysis of the 17 September image, the SWA method is
limited to SAR images containing clear waveé modulation
from which the azimuth cut-off can be derived. In the case
of very low wind conditions (lower than approximately 3
n/s) or in presence of slicks the SWA method will therefore
breakdown. But these conditions will also effect the CMOD4
since the threshold wind speed for C-band waves is around 3
m/s [6].

Hence, by combining the SWA and CMOD4 methods, the
limitations encountered by each individually, can be
suppressed. Moreover, this combination allows the wind
direction to be retrieved independently thus offering a
system for quantitative estimation of wind speed and
direction at a resolution of about 10 km.
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Abstract — Based on comparisons with buoy data, the wind
speed and wave height measured by satellite altimeters are in
excellent agreement with in-situ measurements. In regions of
low swell effects, the combination of wind speed and wave
height further yields the information of wave period. The
long-term monitoring of these wave parameters from satellite
altimeters can be used to study the wave climate of the world
oceans. Examples from application to the Gulf of Mexico and
the Yellow and East China Seas are presented. Using three
years of TOPEX/POSEIDON continuous data, the annual and
seasonal maps of the wind and wave climatology of the two
regions can be constructed. Many mesoscale features can be
clearly identified, and the geometric effects on the wave
pattern can be seen from the wind and wave distributions.

INTRODUCTION

Satellite remote sensing provides an efficient way for
monitoring global and regional oceanographic parameters.
Spaceborne altimeters following their many generations of
development have provided high-quality data on the sea state
with an unusually high spatial density. For example,
TOPEX/POSEIDON (hereafter referred. to as TOPEX)
provides wind and wave information every second,
corresponding to approximately a 7-km resolution along the
satellite tracks. The spacing of the tracks is nominally 316
km (127 revolutions per repeat cycle) at the equator and
much smaller at higher latitudes. The revisiting period of
each track is 9.9156 days [1]. With such high density
coverage, we can study the regional wave climatology using
the TOPEX altimeter data output of wind and wave
parameters. In this paper, the measurement accuracy of the
wind and wave parameters from the TOPEX altimeter is
validated with in-situ ocean buoy data

COMPARISON OF WIND AND WAVE PARAMETERS
FROM ALTIMETERS WITH IN-SITU BUOY DATA

Comparisons of TOPEX significant wave heights () and
wind speed (U) with in-situ measurements from surface
buoys have shown very positive agreement [2-3]. In
particular, Ref. [3] presents a comprehensive comparison of
wind speed and wave height between the TOPEX altimeters
and 14 moored buoys along the west coast of Canada, of
which 3 are in the deep ocean, approximately 400 km west of
the British Columbia coast; 6 are in the exposed positions
within 100 km from the coast, and 5 are in sheltered coastal
waters. Detailed statistical comparisons of these three groups
of buoys with all three altimeters (NASA Ku- and C-band
altimeters and CNES Ku-band solid state altimeter) are
performed. Excellent agreement between the altimeter and
buoy measurements of the significant wave height is found
for the nine buoys in exposed positions. For coastal regions,
the agreement is clearly not as good. The large variation in
the coastal comparison is attributed to the local variation of
the wave conditions due to the close proximity to the
shoreline. Ref. [3] further shows that in the exposed
locations, the rms data scatter is greatly reduced when the
spatial distance between TOPEX and buoy observations is
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reduced to 10 km. For the three outer buoys and 6 inner
buoys, the rms differences in wave height reduce to 0.14 and
0.15 m, respectively.

The excellent agreement on the wave height measurement
is also confirmed in the Gulf of Mexico stations. A detailed
statistical comparison of 6 data sets in the Gulf of Mexico is
presented in [4]. The results pertaining to the three key
properties of a wave field, the significant wave height,
significant wave period and wind speed, are shown in Figs.
la-c, which display the comparisons of the significant wave
height, wind speed and characteristic (average) wave period
derived from the TOPEX Ku-band altimeter and NDBC
buoy. Only data points within 10 km spatial lags are used.
The measurements from the two systems are essentially
equivalent. The average ratio and one standard deviation of
the wave heights, wind speeds, and characteristic wave
periods are 1.01£0.14, 0.95+0.11, 1.06:0.13, respectively.
The distributions of these ratios are displayed in Figures 1d-f,
showing very narrow spreading.

WIND AND WAVE CLIMATOLOGY

Gulf of Mexico (GoM)

There are fourteen ground tracks from TOPEX in the
GoM. The wind speed and wave height derived from the
altimeters can be used to construct synoptic views of the
regions. In addition, wave period and large scale surface
steepness due to wave motion can be calculated from the
wind speed and wave height parameters. In forming the
climatological maps, the TOPEX data are averaged over one-
degree squares. TOPEX data from one or more tracks that
fall within any part of a square are used in the average for
that square. The TOPEX data have high spatial resolution of
about 7 km along track. The across-tracks (approximately
300 km) and temporal (10 days repeat cycle) resolutions are
relatively coarse, so the shortest averaging period used at this
stage is 90 days. The results reveal the seasonal and annual
variations of the wind and wave climate in the regions [5].
Fig. 2 shows an example of the three-month (January to
March, 1994) average of the wind speed, wave height, wave
period and wave steepness in the GoM. Other seasons, and
annual as well as three-year averages are also processed but
not shown here. A few common features of the wind and
wave climate in the GoM include: (1) The long-term average
of the mean wave height increases from east to west. For
example, the wave height range of the three-year average is
from 0.5 m off the coast of Florida to 1.5 m off the coast of
Texas. Similarly, mean wind speed, wave period and wave
steepness show a trend of increasing from east to west. (2)
Superimposed on the westward increasing trend, there is an
oscillatory components, such that there are one to two local
maximum values of the wind and wave parameters in the
longitudinal direction. The length scale of the oscillatory
component is on the order of 300 to 600 km.

The GoM is a deep (more than 4000 m in the deepest
region) semi-enclosed sea with the opening in the SE corner.
Although the entrance to the GoM is partially blocked by the
islands of Cuba and the Yucatan Peninsula, the Equatorial
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Current enters the GoM through the Caribbean Sea and
Yucatan Channel, forming the Loop Current with a transport
of approximately 30x106 m3/s. The Loop Current traces an
anticyclonic path and exits the GoM through the Florida
Straits and eventually becomes a principal component of the
Gulf Stream [7]. Frequently, eddies are shedded from the
Loop Current and propagate westward. The Loop Current in
the gulf forms a very dynamic and active region. From
examining the seasonal, annual and three-year average of the
climatology maps, it is found that one of the dominant
locations of the local highs is near the center of the eastern
gulf in the area of Loop Current instabilities [6]. This local
high is relatively stationary (compare the three-month
average in Fig. 2 and the three-year average in Fig. 3) and
may be an indication of active air-sea interactions in the
region of the Loop Current instabilities.

Yellow and East China Seas (YES)

In the YES, there are seven TOPEX tracks passing through
the region. The same procedure to construct the climatology
maps of the GoM is applied to the YES. Fig. 4 shows an
example of the three-month average (January to March,
1994) wind and wave climatology, which is distinctively
different from that in the Gulf of Mexico. The distribution of
the wind speed or wave parameters is almost stratified and
follow closely the local bathymetry. For the long-term
average, a north-south stratification of the distribution is
evident (Fig. 5 shows an example of the 1994 averages). The
oscillatory component is much weaker.

The YES are on a large and shallow continental shelf, with
depths less than 100 m on the shelf. The major current system
in the region is the Kuroshio, which enters YES just southeast
of Taiwan and exits from southwest of Japan. The main axis
of the Kuroshio is usually just outside of the 200 m contour
line. The Kuroshio may intrude onto the shelf through two
major regions. The first is through the Taiwan Strait during
the winter months when the Taiwan Warm Current is weak
[8]. The second source is the branching of the Tsushima
Current from the Kuroshio [9] and the subsequent intrusion
of the Yellow Sea Warm Current northward into the Yellow
Sea [10]. One of the driving forces of the Yellow Sea Warm
Current and the flux of open ocean properties onto the
continental shelf is the northerly wind bursts during the
winter season. Due to the shallow water depth, the wind
events are capable of creating large sea level changes, which
produce horizontal pressure gradients that drive the
subsurface currents [11].

Interestingly, the ranges of wind speeds, wave heights,
waver periods and wave steepnesses in the GoM and YES are
quite similar (compare Figs. 2-3 with Figs. 4-5). The dynamic
processes and the circulation patterns in the two regions are
obviously different. These may contribute to the very
different climatology of wind and waves in the two regions.

SUMMARY AND CONCLUSIONS

Using the TOPEX altimeter output of wind speed and
wave height, the regional distributions of the wind and wave
characteristics in the Gulf of Mexico and in the Yellow and
East China Seas are investigated. The distributions of wind
and wave parameters in the Gulf of Mexico is characterized
by an oscillatory mode in the longitudinal direction. The
Loop Current appears to have a strong influence on the
dynamics of the region; this effect shows up in the presence
of a stationary Jocal high in the distributions of wind speeds,

wave heights, wave periods and wave steepnesses. In the
Yellow and East China Sea, although the ranges of wind and
wave parameters are very similar to those observed in the
Gulf of Mexico, the climatology of the region is
predominately a stratified distribution in -the north-south
orientation, and closely follows the local bathymetry.
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Abstract — Tower- and aircraft-based research over the
last three decades has shown that the spatial or temporal
averages of radar backscatter from the ocean surface at
radar wavelengths that sample the gravity-capillary part of
the ocean’s surface-wave spectrum are proportional to
nearly the square of the mean wind speed. During the last
15 years, analyses of satellite-based scatterometer images
of the ocean surface (that is, radar images whose pixels
measure 25 km to a side) show atmospheric frontal features
and other, synoptic atmospheric structures. With these
images, researchers have created images of the spatial
distribution of wind (with extra work, they get both speed
and direction) associated with those synoptic structures.
Going down in scale, recent research has shown that
synthetic aperture radar (SAR) images of the oceans
(snapshots of the radar-backscatter patterns of the ocean
surface with pixels measuring 100 m or 12.5 m to a side)
manifest signatures of atmospheric turbulence - scales of
motion on the order of hundreds of meters to tens of
kilometers. These facts raise the following question:
“(How) can one use SAR images of the ocean surface to
infer fine-scale winds, that is wind patterns on scales of
atmospheric turbulence?” The present work represents a
step towards answering that question, by asking a related
question, namely: “How much spatial averaging of
backscatter is required to define a stable, convergent
backscatter value for a given area, so that that value can
then be translated into a wind speed?” The answer is based
on the hypothesis that the statistics of radar backscatter
patterns created by atmospheric turbulence should be
related to the statistics of the atmospheric turbulence that
generated the roughness patterns on the ocean surface.

BACKGROUND

As an example, {1] describes the multiscale structure of
SAR backscatter seen in an image made by the ERS-1 SAR
system and interprets this structure as the impression on the
surface of the ocean of three scales of interacting
atmospheric  turbulence: quasi-two-dimensional  roll
vortices, boundary-layer scale thermals, and gust
microfronts. Figure 1 is a repeat of their Figure 5 showing
a binary image of the radar-backscatter patterns exhibited
within the Bering Sea adjacent to its ice pack at the time of
a cold air outbreak. (In this image, backscatter greater than
a given value is colored gray, while backscatter less than
that value is whited out. See Plate 1 from [1] for more
detailed images. Also, a linear trend has been removed

0-7803-3836-7/97/$10.00 © 1997 IEEE
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fromi the original image, so the average backscatter value
of the entire image is zero.) This low resolution (100~m
pixel diameter) SAR image shows linear trends of
enhanced radar backscatter or SAR-streaks , aligned with
the mean surface-layer wind (10 m/s here). They have a
dominant cross-wind scale of about 5 km (five times the
boundary layer depth), and down-wind lengths of many
tens of kilometers. These are argued [1] to be due to quasi-
two-dimensional atmospheric roll vortices. Note that the
linear features are actually created by linear arrangements
of two-dimensional backscatter regions. These are argued
[1] to be the footprints of boundary-layer scale thermals.
A higher resolution image (12.5 m pixel diameter) of the
same area shows even smaller-scale, two-dimensional
structure in the radar backscatter image. The average and
range of intensity of these features are significantly greater
within than outside of the kilometer-scale enhanced
backscatter regions. These backscatter patterns compare
favorably [1] in both scale and effect to observations of the
modulation of microfronts in the atmospheric surface
layer by boundary-layer scale thermals, themselves
modulated by roll vortices.

RESULTS

The hypothesis of this work is that if backscatter patterns
are created by spatially and temporally-evolving
atmospheric turbulence, then the amount of spatial
averaging of a SAR image required to define a stable and
convergent backscatter value for a given area should be
related to if not identical to the amount of averaging
required to define well the mean stress (hence, via
modeling, a mean wind) associated with that atmospheric
turbulence. When atmospheric rolls are present, the rule of
thumb is that one must average an in-situ time series for
20--60 minutes (or 1200 to 3600 s) to get a convergent
stress, while for aircraft data flown across the wind (and
therefore across the axes of the rolls), one must capture
about five to ten realizations of the roll vortices. In terms
of the present image and the hypothesis of this work, one
should therefore spatially average that image for (10
m/s)*(1200 to 3600 s) = 12 to 36 km in a direction along
the SAR-streak axes, and 25—50 km in the cross-roll
direction. The next figures demonstrate those calculations.

Figure 2 shows three panels that contain the results of
averaging the backscatter values in the 520 columns
centered within Fig. 1 and leaning slightly so that they are




aligned with the roll-vortex signatures. The averages start
from the bottom and stop at an ever-increasing distance
from the bottom. With 100 m pixels, this is equivalent to
collecting “time series” of radar backscatter from 520
adjacent stations within the roll field across the centered 52
km of the SAR image, and assuming that the backscatter
pattern of Fig. 1 advects by each of those stations for a
given amount of time. (For example, the center panel
shows the column averages of the bottom 240 pixels —
equivalent to the bottom 24 km of the imaged region.)
Along the left-hand side of each sub-figure is the range of
relative backscatter averaged along the roll axes. The
right-hand side of each sub-figure gives the percentage
change of those backscatter, values from the cumulative,
across-roll average. The rate of convergence of the column
averages is qualitatively similar to that of in-situ time series
of atmospheric turbulence, consistent with the hypothesis
of this paper.

Note the across-roll variability in the along-roll average
backscatter. This shows that a series of adjacent in-situ
measurements of average backscatter, equivalent here to
adjacent, in-situ measurements of averaged, turbulence-
induced stress or wind, will differ from each other because
of the intrinsic anisotropy of the atmospheric turbulence
field. Thus, those differences in average quantities would
not represent relative errors, but instead reflect the real
effects of structured atmospheric turbulence. Also, not
shown here is the fact that if one did these same
calculations with rows rather than columns one would
produce row-averages (across the rolls) that would
converge when one included the backscatter associated
with five to ten roll-vortex signatures. Such averages
exhibit the same intrinsic variability shown in the column
averages of Fig. 2, due again to the anisotropic backscatter
field caused, in turn, by the anisotropic atmospheric-
turbulence field.

Defining a convergent spatial average from the SAR image
will subsume the variability shown in the adjacent line
averages presented in Fig. 2. This is done in Figure 3,
which is also motivated by the fact that SAR images
resolve subgrid scale backscatter patterns that are averaged
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together into scatterometer images. In particular, Fig. 3
shows the average backscatter found within coincident
ever-increasing square areas taken from the same region of
the SAR image used to create the line averages of Fig. 2.
The lengths of the sides of these areas marks the horizontal
axis. (The average backscatter value for this part of the
entire image is slightly greater than zero, which balances
off the blank, low-backscatter region in the upper right-
hand corner of Fig. 1 which is caused by ice in the original
imaged area.) One needs to average over squares of at
least about 30 km to a side in order to get close to a
convergent backscatter value associated with this segment
of the SAR image. It is of interest that the pixels in
scatterometer images measure 25 km to a side: the kind of
analysis here shows that the structured sub-grid scale
variability in surface roughness is a source of intrinsic
variability in scatterometer pixels.

CONCLUSIONS
Averaging lengths required to generate convergent
backscatter coefficients from SAR images whose

backscatter variability is caused by atmospheric turbulence
parallel the averaging lengths required to get convergent
mean stress values associated with atmospheric turbulence.
Thus, in order to extract well-defined wind fields within
SAR images, one must carefully spatially average subsets
of the image with attention to the source of the backscatter
variability in those images.
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Fig. 1, from [1], showing a binary form
of a SAR image which contains linearly-
aggregated features in radar backscatter created
by the impression on the ocean surface of three-
dimensional, boundary-layer thermals herded by
quasi-two-dimensional atmospheric roll vortices.
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Fig. 2. Shows column averages of the
bottom portion of the original SAR image
corresponding to Fig. 1. Each panel shows the
result of averaging over adjacent columns starting
from the bottom of the image, for different
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Fig. 3 shows the average backscatter
from ever-increasing squares of the SAR image
centered near the bottom of the SAR image. The
length of those squares mark the horizontal axis of
the plot. When one averages enough SAR pixels
to form a square on the order of the size of pixels
in scatterometer images (25 km to a side), the
average backscatter converges to its final value.
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Abstract -- An ERS 1 SAR image of the Greenland Sea
showing sea surface manifestations of atmospheric boundary
layer rolls is used to determine the orientation and spacing of
the rolls as well as the variation of the sea surface wind speed
associated with the secondary flow. Furthermore, the sea sur-
face wind field associated with these rolls is simulated by us-
ing a 3-dimensional atmospheric model. It is shown that the
model reproduces well the roll spacing and the sea surface
wind speed derived from the ERS 1 SAR image intensity.

INTRODUCTION

Atmospheric boundary layer rolls are helical circulation
patterns in the atmospheric boundary layer which are super-
imposed on the mean wind field. The flow pattern associated

with atmospheric boundary layer rolls is depicted schemati-
cally in Fig. 1 [1]. These rolls can be generated either by
thermal instability (Rayleigh-Bénard instability) when the
layer is heated from below or cooled from above, or by dy-
namic instability (inflection point instability) when the wind
velocity changes with height in such a way that an inflection
point occurs in the wind component normal to the roll axis.
The axes of the boundary layer rolls are oriented between the
directions of the mean surface wind and the geostrophic wind
above the boundary layer. In the case of a thermal instability,
the aspect ratio, i.e., the horizontal wavelength of the roll
pattern (roll spacing), A, divided by the roll height, h, is 2.8
according to the linear Rayleigh-Bénard convection. How-
ever, the most frequently observed values range
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Fig. 1: Schematic plots of secondary flow pattern associated with atmospheric boundary layer rolls. Panel A: Perspective
view of the three-dimensional flow; Panel B: Variation of the vertical component u, of the wind velocity along the y direction;
Panel C: Variation of the horizontal components u, and uy (in the x-y plane).
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between 2 and 6, but also values of 15 have been reported

[2].

If the moisture conditions are favorable, cloud streets may
be formed in the upward rising branches of the roll circula-
tion.

In this paper we analyze a radar image which was acquired
by the synthetic aperture radar (SAR) aboard the First Euro-
pean Remote Sensing satellite over the Greenland Sea during
a cold air outbreak on which sea surface manifestations of
atmospheric boundary layer rolls are visible. At the time of
the SAR data acquisition a meteorological experiment took
place in this area in which data were collected which are
needed as input for model calculations.

ERS 1 SAR IMAGE OF ATMOSPHERIC BOUNDARY
LAYER ROLLS

Figure 2 shows an ERS 1 SAR image that was acquired
over the Greenland Sea near Spitsbergen on March 24, 1993,
at 19:54 UTC (orbit 8833, frames 1611 and 1629). In the up-
per part of the image, the fissured ice edge can be delineated.
Areas covered with sea ice have a low normalized radar cross
section (NRCS) and thus appear dark on the SAR image. The
area exhibiting a streaky pattern is open-water area. The
streaky pattern is caused by variations .of the short-scale sea
surface roughness induced by the atmospheric boundary layer
rolls.

Figure 3 shows the variation of the NRCS along the scan-
line A-B marked in Figure 2. From this scan we see that the
wavelength of the roughness pattern varies between 2.7 km
and 4.6 km and that the average wavelength is 3.5 km. We
have also made scans in several other areas of the SAR image
and found that the average wavelength increases continuously
with distance from the ice edge: from 1.3 km near the ice edge
to 3.5 km at a distance of 140 km downwind.

If the wind direction at the sea surface is known, then the
NRCS values can be converted into wind speed by using a
wind scatterometer model. Here we assume that the mean
wind direction as well as the main component of the wind
speed fluctuation associated with the boundary layer rolls are
parallel to the direction of the wind streaks visible on the SAR
image. For the conversion of NRCS values into sea surface
wind speeds we use the CMOD4 model [4]. Exactly speaking,
this wind scatterometer model converts NRCS values into
wind speeds at a reference height of 10 m above the sea sur-
face for a neutrally stable air-sea interface. In the present case,
the air-sea interface was highly unstable since at the ice edge
the air-sea temperature difference was around -30 K and de-
creased to about -20 K at a distance 140 km downwind from
the ice edge. However, the CMOD4 model can also be ap-
plied in this case because, the NRCS does not change

Flight

Look

Fig. 2: ERS 1 SAR image acquired over the Greenland Sea
near Spitsbergen (Corner coordinates: 79.93° N, 0.88° E/
80.47° N, 5.07°E/78.47° N, 6.88° E/78.95° N, 10.55° E)
on 24 March, 1993, at 19:54 UTC showing sea surface mani-
festations of atmospheric boundary layer rolls.

significantly when the air-sea interface changes from neu-
trally stable to unstable.

The wind speed calculated in this way is depicted on the
right-hand vertical coordinate axis in Figure 3. Note that the
curve in Figure 3 is tilted because, at constant wind speed, the
NRCS increases with decreasing incidence angle. We see
from Figure 3 that the average wind speed decreases slightly
from 17 m/s at point A to 16 m/s at point B. The maximum
(minimum) wind speed in direction of the streaks is approxi-
mately 19 m/s (15.5 m/s).
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Fig. 4: Variation of the mean horizontal wind velocity

component paralle! to the direction of the wind streaks at a
height of 16 m along the scan line A-B marked in Fig. 5.

SIMULATIONS OF ATMOSPHERIC BOUNDARY
LAYERROLLS

The atmospheric boundary layer rolls visible on the S* 7
image have been simulated by using a modified version of a
3-dimensional, time dependent, non-hydrostatic model de-
scribed in [5]. The equations governing the resolved-scale
motions are the three-dimensional, spatially averaged, incom-
pressible Boussinesq equations conserving mass, momentum,
liquid water potential temperature, and total moisture content.

On March 24, 1993, during the ARKTIS 1993 experiment
[3], meteorological measurements were carried out in the
Greenland Sea from a research aircraft. Thus the meteorologi-
cal parameters needed for the model calculations are known.
On that day, cold and stably stratified air blew off the Arctic
ice pack over the warm West-Spitsbergen current. Due to an
air-sea temperature difference of about -30 K, the initially
very shallow boundary layer rapidly changed with respect to
depth, temperature and moisture with increasing distance from
the ice edge. The wind direction was about 10° and the wind
speed within the boundary layer increased from about 10 m/s
at the ice edge to 17 m/s in the area marked A-B in Figure 2.
Near the top of the boundary layer, the wind decreased and
exhibited a vertical shear which increased downstream.

8

Inserting the measured meteorological parameters in the
3-dimensional atmospheric model we have calculated the
horizontal wind speed at the lowest grid level (16 m) in the
direction parallel to the direction of the wind streaks at the
location A-B marked in Figure 2. The variation of this wind
velocity component along a line perpendicular to the wind
streaks at a distance of 140 km downstream from the ice edge
is plotted in Fig. 4. Comparing the plots of Figure 3 and Fig-
ure 4 we see that the SAR derived and simulated wind speeds
agree quite well [13].

CONCLUSIONS

The present investigation shows that SAR imagery acquired
over the sea can yield valuable information on atmospheric
boundary layer rolls over the ocean. The orientation and
spacing (wavelength) of the rolls can be extracted from SAR
images. By using a wind scatterometer model also the varia-
tion of the sea surface wind velocity associated with the at-
mospheric rolls can be extracted from SAR images. ERS SAR
images acquired over the ocean are also well suited for vali-
dating atmospheric models of atmospheric boundary layer
rolls.
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ABSTRACT

In order to quantify the mesoscale upper ocean and
atmospheric boundary layer processes, a tandem ERS-1/2
ESA AO experiment was carried out off the south-western
coast of Norway during September 1995. A unique integrated
data set was collected, including SAR coverage (148 scenes)
in the ERS-1/2 tandem mode, an extensive set of
oceanographic and meteorological variables from the R/V
Hédkon Mosby of the University of Bergen, met-ocean
parameters from state-of-the-art metocean buoys, and natural
slick sampling with two radio-controlled “mini research
vessels”. Also ATSR and NOAHH AVHRR data was
obtained during the experiment.

Analysis from this comprehensive integrated experiment is
reported (in this paper and references), in particular a brief
examination of a) coastal jet and currents, b) surface slicks
and c) wind front. Features in the SAR images are discussed
in terms of ABL stratification, coastal wind field retrieval,
surface slick detection and in situ measurements of
oceanographical and meteorological parameters. We have
also focused on advantages of ERS-1 and ERS-2 tandem
operation, and synergetic use of different spaceborne sensors
in coastal applications.

INTRODUCTION

In order to advance in the understanding of, and to quantify
the mesoscale upper ocean and atmospheric boundary layer
processes, a tandem ERS-1/2 ESA AO experiment [1] was
carried out in the Skagerak, off the south-west coast of
Norway, during September 1995.The data collected
represents a unique integrated data set, with SAR coverage in
the ERS-1/2 tandem mode, ship-borne active/passive
microwave observations, meteorological and oceanographic
observations from a ship and moored instruments and in situ
sampling of natural surface slicks. Fig.l shows the
experimental area. The ERS SAR coverage (Fig.1) shows
that ample use was made of the tandem ERS-1/2 SAR

0-7803-3836-7/97/$10.00 © 1997 IEEE
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Figure 1 The experimental area, showing SAR coverage in
gray (including both descending and ascending orbits), the
location of moorings (M = metocean buoy, C1/C2 = current
meter moorings), and ship track. The field experiment took
place from 11 September to 1 October 1995.

imagery at 24-hour separation, and also
ascending/descending ERS passes at 11-13-hour separation.
There was also substantial cloud-free coverage by ERS
ATSR and NOAA AVHRR infra-red sensors, giving good
information on the ocean surface thermal structure.

The University of Bergen research vessel R/V Hikon Mosby
was employed in the field program, to make in situ
meteorological and oceanographic measurements.

The Norwegian Meteorological Institute also provided a
special operational forecast service, for meteorology, sea
state and currents and also diagnostic weather data from
hindcast model.

An Aanderaa weather station provided wind, pressure, air
temperature and humidity observations from the Hakon
Mosby. The Naval Postgraduate School (NPS) weather
station duplicated these observations, with additional
observations of turbulent wind components using an
ultrasonic anemometer and turbulent humidity fluctuations
using an Ophir hygrometer. Surface-layer aerosol particle
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size distribution in the range 0.3-200 um was measured
continuously, and regular rawindsonde launches were
performed.

In situ measurements were made by the Environmental
Research Institute of Michigan/University of Michigan team,
using a rail-mounted system consisting of a C-band dual-
polarized Doppler radar, C-band radiometer and video
camera.

Temperature and salinity measurements down to seabed or
maximum 200 m depth were made using a SeaSoar towed
CTD (Conductivity Temperature Depth instrument). The
current profile was measured from the bottom of the ship to
the seabed or maximum 500 m depth with an Acoustic
Doppler Current Profiler (ADCP).

The NPS metocean buoy measured two-dimensional wave
spectra using a Hippy Datawell sensor. It also measured
pressure, vector wind, air and sea temperature, humidity,
turbulent fluctuations in wind, temperature and humidity,
and aerosol particle size distribution. Two sub-surface
current meter moorings were deployed, with Aanderaa
current meters at 25 m, 50 m and 100 m depth and at 25 m
above the sea bottom. Two remotely-controlled platforms
“INTERFACE I and II” were deployed on September 13, 15,
17 and 18. Both were equipped with a rotating Teflon drum
to take direct samples of the surface microlayer.
INTERFACE I was also equipped with air and sea
temperature sensors and a K-band radar.

COAST WATCH’95 DATA ANALYSIS

In the following sections we will give a brief analysis of a
coastal current, for analysis of surface slicks and coastal wind
fields se respectively [2] and 3]

30 September.

COASTAL CURRENTS

Several of the SAR images from the COAST WATCH’95
show oceanic fronts which can be explained as the effect of
current gradients. In Figure 2, A-D, taking advantage of the
ERS-1, ERS-2 tandem operation, a series of four collocated
SAR images from 27, 28 ,29 and 30 September are shown.
However, these images show a very clear example of
signature persistence and demonstrate the SAR capabilities
due to a higher temporal sampling frequency of an area. A
comparison of the strohg front or jet in the four images
reveals a westward movement for the jet structure within
four days. The wind as obtained from R/V Hikon Mosby
varies from 9 m/s SW (27.09) to 1.0 m/s NE (28.09); 8 m/s
NW (29.09) and 3 m/s SE on the 30.09. An AVHRR image
(Figure 2, F) from 30 September also clearly reveals the SST
gradients in the same area as the prior SAR images,
demonstrating the possibility of a synergetic use of different
remote sensors to improve the spatial and temporal coverage
and provide quantitative information about the ocean
feature.

The west boundary of the jet like feature in the image from
27 September is crossed by R/V Hikon Mosby
simultaneously with satellite overpass resulting in a unique
record of meteorological and oceanographical parameters
and corresponding backscatter coefficient over the jet,
Figure 2 A (ship track inserted as white line) and Fig. 3.
The SST measured by the thermistor (Fig. 3, bottom)
established the surface layer to be 9°C in the jet (dark.
signature in the SAR image) and 13°C outside (west of) the
strong gradient at the boundary. The salinity and density
sections from the SeaSoar (not shown) also clearly

Figure 2 A-Dis the mosaic of SAR images on 27 to 30 Septémber 1995 Panel E shows a NOAA AVHRR thermal image from
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Figure 3 The upper panel shows the averaged backscatter
coefficient profile (the peak oo value at the shear for each line is
indicated with an asterisk) and the corresponding sub-image along
the ship track. The remaining four plots shows respectively air and
sea temperature, air-sea temperature difference and finally the wind
speed from R/V Hékon Mosby.

show the west boundary of the jet well collocated with the
temperature structure. The cold water moves westwards in
the jet at typical current speeds, measured by the ship-borne
ADCP, to 60 cm/s. Sharp changes in the current were
measured when the ship moved across the jet boundaries.
The SAR backscatter and the surface met/ocean parameters
shows clearly the western boundary of the jet, moreover the
eastern boundary is somewhat interfered with a wind front.
The dark signature of the jet is associated with a stable
atmospheric condition. This suggest that the visibility of the
jet is likely to be a result of the increased atmospheric
stability as the air flows over the colder water, reducing the
wind stress and thus the growth of short wind-waves.

However the backscatter peak (Fig. 3, top, plotted as
asterisks) on the western side of the jet (the boundary zone)
is probably caused by strong horizontal shear. interacting
with the short wind waves [4].

SUMMARY

During COAST WATCH’95 a unique integrated data set
was collected, including extensive SAR coverage (148
scenes) in the ERS-1/2 tandem mode, an extensive set of
oceanographic and meteorological variables from the R/V
Hékon Mosby of the University of Bergen, met-ocean
parameters from state-of-the-art met-ocean buoys, and
natural slick sampling with two radio-controlled ‘mini-
research vessels’. Also ATSR and NOAA AVHRR data was
obtained during the experiment.

Analysis from this comprehensive integrated experiment is
reported, in particular a brief examination of; coastal jet,
currents, surface slicks-and coastal wind field.

In addition we have addressed the ERS-1 and ERS-2 tandem
operation, and synergetic use of different spaceborne sensors
in coastal applications. We anticipate that further studies
will lead to improved algorithms and validation for retrieval
of quantitative estimates of dominating geophysical
parameters in the upper ocean and lower atmospheric
boundary layer such as strength of current shear and
convergence, and sub-synoptic wind field. Better
quantitative interpretation of SAR images will furthermore
lead to improved classification capabilities of natural film
and oil spill.
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ABSTRACT

Ocean mesoscale phenomena such as eddies and cur-
rent convergence zones can often be seen in SAR im-
ages due to characteristic patterns caused by natural
film induced damping of the waves. Such films have
also been found to exert a significant effect on air-sea
gas exchange, which may be important for the global
scale climate system. Satellite synthetic aperture radar
(SAR) may prove very useful to quantify the extent of
natural film. To investigate the composition of these
films and their effect on radar return, samples of the
sea surface were taken simultaneously with ERS-1/2
SAR coverage of a fjord (the Korsfjord experiment),
and later in coastal ocean areas (COASTWATCH’95).
During COASTWATCH’95, simultaneous observations
were made with a shipmounted C-band dual-polarized
Doppler radar, and surface drifters were deployed to
investigate the surface current variations in vicinity of
the slicks. The dependence of the existence of slicks
on wind speed is also investigated, and an estimate of
natural film distribution during the experiment period
given.
INTRODUCTION

Natural film on the ocean surface is formed from ma-
rine organisms or terrestial material delivered by runoff
or atmospheric transport. The composition of natural
films varies, but substances such as proteins, lipids, sac-
charides, organic acids, and metals associated with the
organic matter, are usually present at higher concen-
trations than in the corresponding bulk water [1]. Sea
surface films have been seen to influence energy dissipa-
tion in capillary waves [2;3], gas exchange rates [4] and
marine aerosol formation {5]. Asher [6] has estimated

*Also at Geophysical Institute, University of Bergen, Norway.
tAlso at the University of Michigan, Ann Arbor, USA.
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that the impact of various hypothetical slick coverages
on global air-sea COg exchange is important. How-
ever, global spatial film quantification has so far not
been done, and it is therefore difficult to know whether
natural films really are extensive enough to be of im-
portance in global change studies.

The spaceborne SAR, with its high spatial resolution
(26m), may contribute significantly in global mapping
of natural films at the ocean surface during moderate
wind conditions. Damping of the capillary and short
gravity waves by the film, which are sensed by radars
via the Bragg backscatter, produce dark slick signa-
tures in the ERS SAR imagery. So far, oil slicks [7] and
artificial monomolecular films [8] are well documented
in satellite and airborne SAR experiments respectively.
In contrast, only one previous study exists in which
the chemical components of natural films were sampled
simultaneously with satellite SAR acquisition. This ex-
periment was conducted under calm wind conditions
in a Norwegian fjord [9] and showed that there exists
a chemical difference between slicked and non-slicked
areas in an ERS~1 SAR image.

The primary objective of the work reported here, was
to extend the documentation of the composition of nat-
ural films and their effect on radar return, to include
different coastal oceanographic and atmospheric condi-
tions. This may in turn give new valuable insight into
the geophysical processes responsible for accumulation
of different natural films in coastal areas. Eventually
this may also help develop satellite SAR as a tool in
mapping the global extent, distribution and variabil-
ity of natural films, to be used in e.g. climate studies.
Knowledge of natural films are also important for SAR
oil-spill detection systems, since these films are difficult
to distinguish from oil in the SAR imagery.
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THE COASTWATCH’95 EXPERIMENT

A tandem ERS-1/2 ESA AO experiment was carried
out off the south-western coast of Norway during the
month of September 1995 [10]. The main objectives of
this experiment were to investigate and quantify natu-
ral films, coastal jets, ocean fronts, wind velocity, wind
fronts and rain showers from ERS-1/2 SAR. Informa-
tion from the C-band (5.3GHz) VV-polarized SAR im-
ages in near real time were used to navigate the research
vessel R/V Hakon Mosby to different SAR features of
interest.

Extensive temporal and complete spatial satellite
SAR coverage of the experiment region was possible due
to the ERS-1/2 tandem mission. A total of 53 SAR
scenes (each covering 100 x 100km) from the experi-
ment region were analyzed during the field campaign
from 11 September to 1 October 1995. In addition, 18
scenes covering the same region in the months before
and after the experiment, were analyzed in this work.

A C-band (4.92GHz) continuous wave (CW) Doppler
scatterometer with VV and HH polarization, was in-
stalled to acquire shipborne radar backscatter measure-
ments during COASTWATCH’95. The radar cross sec-
tion (RCS) and spectral statistics plots in this work
were based upon a 35sec running average {equal to a
distance of ~100m).

During the first part of the COASTWATCH’95 ex-
periment surface slick material was collected using two
remotely controlled surface slick samplers, INTER-
FACE I (length 1.2m) and II (length 2m) [11]. They
were both equipped with a rotating hydrophilic teflon
drum [9]. The INTERFACE II was also fitted with
a GPS receiver, temperature probes, an anemometer
and a data logger. Bulk water samples were obtained
at 20cm depth for comparison. The samples were an-
alyzed for salinity, anions, fatty acids, alcanes, total
organic carbon, cations and trace metals. Ultra violet
(UV) and visual light (VIS) scans were made on all sam-
ples, and pH, specific conductivity and turbidity were
determined.

QUANTIFICATION OF FILM COVERAGE

To investigate the dependence of observed slicks on
wind speed and give an estimate of natural film dis-
tribution, 71 ERS-1/2 SAR images collected over the
COASTWATCH’95 experiment region (in the period
August-October 1995) were analyzed for slick signa-
tures. It is by now a well documented fact that also oil
spills, grease ice, convergent current zones, rain cells,
internal waves, threshold wind speed (<2-3m/s), wind
sheltering by land or large platforms and current wakes
(created when ocean currents meet an obstacle such as
a large platform) may cause dark areas in SAR imagery
[12]. To discriminate between natural films and these
similarly appearing features requires a direct analysis

of the SAR image (shape, size, texture, gradients and
backscatter reduction of the slick), and a contextual
analysis (meteorological data, currents, bathymetry,
platform and ship lane locations). In some cases, run-
ning SAR models such as the ERIM Ocean Model [13]
or oil drift models, may give important additional in-
formation. In this work, the decision of whether a slick
was caused by natural film was based on simple flow
chart algorithms and experience in slick classification
using SAR.

The results indicates that for increasing wind speeds,
the percentage of film coverage in the SAR, scenes ex-
pectedly decreases. Many of the 71 investigated SAR,
scenes have the approximate same % film coverage. The
largest film coverages (up to 40%) are found for the low-
est wind speeds, 2.5m/s (in these cases large homoge-
neous areas are classified as caused by low winds, while
the surrounding inhomogeneous slick features includ-
ing eddies are classified as caused by natural film). For
5 to 10m/s wind speed, the natural film coverage has
sunken below 5% in all cases. For 12.5m/s and 15m/s,
the coverage is below 1%. The backscatter values for

slicks classified as natural film varied between -6dB and
-26dB (noise floor).

DISCUSSION

For the Doppler radar, the average drop in vertically
polarized radar cross section (RCS) when entering the
slicks is 9.4dB (includes cases where no SAR or slick
sampling were available). Low backscatter levels were
observed to persist over time intervals ranging from tens
of seconds to several minutes, depending on the width
of the slick. The overall RCS varied with wind speed
and other environmental parameters, but stayed in the
range between -20 and -40dB (includes both slicked and
non-slicked regions).

The chemical analysis of the samples showed that
trace metals were generally enriched in the surface mi-
crolayer, especially in the slicked areas. Trace metal en-
richment is related to particulate matter present in the
films, and possibly associated with humic substances
(measured as UV absorbance). Humic substances were
also enriched in the surface microlayer. Concentrations
of free fatty acids indicate that these are raised in-
side slicks, but also in one of the outsidé slick sam-
ples. In this outside slick case, the high wind speed
(9-10m/s) predicts that much lower values should have
been found. The sample is therefore believed to be
contaminated (probably by biological fats/fish oil from
fishing vessels). Most fatty acids originated from ma-
rine organisms (plankton and macro-algae), since there
are very few high molecular weight fatty acids available.
The latter might have indicated higher plant material
from terrestial sources, that could have been introduced
from land via fjords into coastal waters.

The typical drop in backscatter caused by the natu-
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ral films varied between 2dB and 11dB. Increasing wind
speeds expectedly lead to decreasing damping by natu-
ral film. The wide range of damping values, especially
for low wind speeds, is probably due to varying film
composition and thickness. Moreover, 27 SAR scenes
were classified as showing no natural film (no damping).
They all had a wind speed of bm/s or more.

When comparing COASTWATCH’95 results with
the slick sampling experiment carried out in Korsfjord
south—~west of Bergen, Norway [10], none of the surface
microlayer samples seemed heavily impacted by mineral
oil products, even though the fjord carried considerable
ship traffic. Less, and smaller molecules of fatty acids
were found during COASTWATCH’95 compared to the
fjord case. The small fatty acid molecules are associated
with marine organisms, while the larger come from ter-
restial sources. Moreover, the investigated slicks from
COASTWATCH’95 were generally thinner than those
studied in Korsfjord. This is most likely related to fetch
lengths which are shorter in fjords than in coastal areas
[14]. However, both experiments showed an approxi-
mate one order of magnitude increase of the concen-
tration of fatty acids inside compared to outside slicks.
For the Korsfjord case, the backscatter damping was
slightly higher than found in COASTWATCH’95 cases.
This is probably due to film thickness.

CONCLUSIONS

Generally, a correspondence was found between damp-
ing in ERS SAR images, C-band Doppler radar val-
ues and sea surface chemistry. Compared to an ear-
lier fjord experiment, the investigated slicks were thin-
ner and contained smaller fatty acid molecules, which
indicated marine organisms. In the fjord, terrestial
sources dominated the slicks. The thinner slicks in
COASTWATCH’95 gave slightly lower damping (dB)
in the SAR imagery compared to the fjord cases. More-
over, the damping caused by the slicks investigated in
COASTWATCH’95 were higher for the Doppler radar,
than in the ERS SAR imagery. This is probably due
to the lower resolution of the ERS SAR, causing some
resolution cells to contain returns from both slick and
surrounding slick—free sea, thus reducing contrast. Us-
ing the Doppler radar data and surface drifters, we were
also able to show that one geophysical process respon-
sible for verified natural film accumulation, was conver-
gence. Also a natural film discrimination algorithm was
used to obtain estimates of natural film coverage under
different wind conditions.
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Abstract — The tilting effect (caused by water waves that are
much longer than the radar waves) modifies the local radar
incidence angle and introduces a strong attenuation of the
radar backscattering return. It is shown that when this tilting
effect is accounted for, the agreement of the wind speed
derived from the altimeter with the buoy measurement of
wind speed is significantly improved.

INTRODUCTION

Feasibility of deriving the wind speed at the sea surface
from satellite altimeter data has been convincingly
demonstrated during the past two decades with output from
GEOS, SEASAT, GEOSAT and most recently
TOPEX/POSEIDON missions. The basis for relating radar
measurements to wind speed is that the radar backscattering
intensity is dependent on the surface roughness and that in
the ocean, the surface roughness is mainly caused by wind-
generated surface waves. The measured radar intensity (the

normalized radar cross section), o, however, was found to
differ significantly from theoretical calculations using
equations derived from scattering processes (e.g., [1]) and
measured physical properties of the surface roughness (e.g.,
[2]). Most puzzling of all, calculations consistently indicated
that the sea surface detected by radars, with wavelengths on
the order of a few centimeters, was “rougher” than those
detected by optical instruments that depend on light with
wavelengths in the sub-micrometer wavelength range (Fig.
D).
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Fig. 1. Ku-band altimeter-derived mean square slopes. x:
GEOS-3 [3], o: TOPEX data reported in this article, the solid

curve representing the average of the optical measurements.

This perplexing result was not resolved in the past two
decades since the advent of altimeter data. Up to this stage,
the majority of wind speed algorithms are based on empirical

0-7803-3836-7/97/$10.00 © 1997 IEEE

or statistical analyses, most of them rely on the correlation of
coincident and collocated databases of the satellite radar
cross section and in-situ wind speed (e.g., [4-6]). One
algorithm [7] relies completely on the independently derived
statistical properties of the altimeter backscattering cross
section and sea surface wind speed. The difference among
these algorithms are relatively minor. It is shown that the
tilting effect (caused by water waves that are much longer
than the radar waves) modifies the local radar incidence
angle. The change of local incident angle results in an
exponential attenuation of the radar return. When this tilting
effect is accounted for, the agreement of the wind speed
derived from the altimeter with the buoy measurement is
significantly improved.

TILTING EFFECT

A conceptual sketch to illustrate the tilting effect is shown
in Fig.2 [8]. The sketch illustrates a train of plane waves
(indicated by the parallel wave front) impinging on the water
surface, corresponding to the scattering of the far-field radar
waves from satellite altimeters. The scattered wave patterns
from the water surface will vary according to the surface
roughness conditions, been more directional and narrowly
distributed from a smooth surface, as in patch 1. The primary
direction of the scattering pattern is along the direction of
specular reflection. Therefore, for surfaces of equivalent
roughness, such as patches 2, 3 and 4, the scattering patterns
are similar in the directional distribution (the beam width,
determined by the surface roughness), but the primary
direction of the scattering will vary depending on the
orientation of the roughness patch. The backscattering
intensities, that is, the scattering in the direction opposite to
the incoming waves, for the three patches shown will be
different. The modification of the local incident angle results
in a reduced, or attenuated, radar return compared to the
condition when the scattering is assumed to be on a flat
surface such as depicted in patch 5. The concept illustrated in
Fig. 2 forms the basis of this paper regarding the tilting effect
on the altimeter scattering from the ocean surface.

Fig. 2. A conceptual sketch illustrating the scattering of radar
waves by surface roughness.

1171




For monostatic radar applications, that is, projecting and
receiving radar waves with the same antenna, backscattering
properties are of most interest. The backscattering intensity is
generally expressed as the normalized radar cross section

(NRCS), ap. Many expressions of oy have been presented in
the literature. The major differences of their results are the
assumptions of the surface roughness and the dielectric
constant of sea water, which determines the refractive index
of the sea surface. For radar altimeter applications, the
expression given in [1] is frequently employed (assuming a
Gaussian distribution of the scattering surface roughness)

R(0)? ~tan? 4
0'0(9,-)=' si;’ sec4@exp{——¥J > (D

5f

where 6; is the radar incidence angle, denoting the angle
between the propagation direction of radar waves and the
surface normal; |[R(0)|2 is the Fresnel reflection coefficient,
characterizing the surface reflectivity; and sﬂ is the filtered
mean square slope, representing the portion of surface
roughness elements with length scales greater than the
diffraction limit. Eq. (1) corresponds to the zero-th order
solution of the scattering of electromagnetic waves from a

rough surface. With a normal incidence, 6;,=0, (1) can be
expressed as

R(0)?
ou(0)= 2O @
Sr
Introducing the concept of local incident angle (e.g., [9-
10]), (1) can be expressed as

20(0,-) =] ]R(02|2 sec4(¢9i + 0) exp[iag?(%if—@]p(e)dﬁ » (3
5f

s

f

where 8 is the slope of the long wave roughness (the tilting
waves) that contributes to the modification of the local
incidence angle, p(6) is the probability density distribution
(pdf) of the tilting waves, and 2 is the expected radar cross
section measured by the altimeter. For normal incidence,
6=0, and (4) becomes

|R(O |2 4 —tan’ @

Z,(0)= J—(z)——sec 6 exp ———
5 St

Comparing (2) and (4), the analytical form of the attenuation

factor, Aoy, due to the tilting effect can be assessed by the

ratio of 2 and oy

Aoy = j’:—g = I sect Hexp[_ta—n;gJ p(6)de . (5)

5f
Fig. 2 shows a comparison of computational results using
(2), shown as dashed curve, and (5), shown as solid curve,
with the TOPEX Ku-band altimeter data, shown as circles.
The agreement with the altimeter data with the consideration
of the tilting effect is significantly improved.

p(6)do . 4

Sigma0 (dB)

3
10 (mis)

Fig. 3. Tilting effect on the altimeter cross section.

COMPARISON WITH BUOY MEASUREMENTS

Two different wind speed algorithms are developed in [8,
11] to account for the tilting effect. The first (Tilt-ALT) is an
operational algorithm that calculate the wind speed directly
from the altimeter cross section, and the second is a research
algorithm (Tilt-Surface) that assumes a prior knowledge of
the tilting slopes in order to correct the altimeter cross section
(5). Comparison in term of the distributions of the wind
speed difference between in-situ buoy data and altimeter
measurements based on five different algorithms are
presented in [11]: the two mentioned above plus the
empirical algorithms of Brown et al. (B81) [4]; Modified
Chelton and Wentz (MCW) [6]; and the statistical algorithm
of Freilich and Challenor (F&C) [7]. Typically, the
distributions of the first three empirical algorithms are quite
similar. For example, one case study (Fig. 4) shows the
following statistics: the rms difference and the correlation
coefficient are (1.41 m/s, 0.81), (1.39 m/s, 0.81) and (1.51
m/s, 0.81), respectively for B81, MCW and F&C. The
statistical properties of the wind speed difference based on
the operational algorithm (Tilt-ALT) are very similar to the
other three algorithms just discussed, the rms difference and
the correlation coefficient are (1.49 m/s, 0.80). However, if
the tilting slope can be accurately calculated, and the
correction to the measured cross section applied properly, the
distribution of wind speed difference is noticeably narrowed.
The mms difference and the correlation coefficient improve
significantly to (0.84 m/s, 0.96). Similar improvements are
found with other data sets we have compiled in the Gulf of
Mexico. Table 1 lists the rms differences and the correlation
coefficients of the surface wind speed comparisons using the
5 algorithms just described. We may conclude from this
comparison that the accuracy of the satellite altimeter is
considerably better than we have previously accepted. If
independent measurement of the tilting slope is available, the
rms difference between the altimeter output and in-situ
measurements will be reduced from the currently accepted
magnitudes established by empirical algorithms. The
improvement is approximately 40 percent based on the
results shown in Table 1. And most significant of all, this
conclusion is based on sound physical ground relating the
altimeter backscattering and the surface slope properties,
unlike the earlier operational algorithms that depend on
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empirical formulae established from co-located buoy and

altimater datahacec
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Table 1. Comparison of the rms difference and correlation
coefficient of buoy winds and altimeter winds [11].
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B81 MCW F&C Tilt- | Tilt-
ALT | Surf
AT15B220 1.41 1.39 1.51 149 | 0.84
A21B220 1.28 1.35 1.62 1.58 | 0.97
A46B203 1.75 1.74 1.79 1.83 1.07
A39B202 1.30 1.14 1.33 1.56 ] 0.36
A46B236 130 1.36 1.46 141 1 0.80
A26B202 2.73 1.45 1.52 1.65 21

(b) Correlation Coetficient
BRI MCW | F&C Tilt- | Tilt-
ALT | Swf
ATI5B220 0.81 0.81 0.81 0.80 0.96
A21B220 0.90 0.90 0.90 0.89 | 097
A46B203 0.82 0.83 0.83 0.81 0.95
A59B202 0.92 0.93 0.93 0.91 0.98
A46B236 0.90 0.91 0.91 0.90 0.98
A26B202 0.65 0.88 0.87 0.80 0.91

CONCLUSIONS

In the course of studying the wind speed derivation from
satellite altimeters, it is found that the surface tilting effect is
a significant factor of consideration. The effect is especially
noticeable at lower wind velocities where differences of more
than 6 dB are found between the altimeter measurements and
the computations using the classical equation relating the
backscattering cross section and the surface roughness (2).
With the correction of the tilting effect in the cross section
measurement, the calculated wind speed is found to be in

much better agreement with the surface buoy measurement.
The improvement is on the order of 40 percent when
compared to the results derived from other statistical or
empirical algorithms including B81, MCW and F&C. This
result suggests that the theoretical frame work relating the
backscattering cross section and the surface roughness is
fundamentally sound when the tilting effect that modifies the
local incident angle is taken into account. It also indicates
that the accuracy of deriving wind speeds from altimeter
cross sections is potentially much better than we have
perceived, however, in order to achieve the full potential of
the altimeter wind sensing, independent measurement of the
sea surface slope component contributing to the tilting may
be needed.
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Abstract - This paper faces the problem of achieving a
satisfactory  classification of SAR data, based on
statistical methods as Maximum Likelihood. The
proposed method performs a hierarchical classification,
making an automatic feature selection, simulating the
behaviour of a real exhaustive selection in the features
space. The method, whose accuracies outperforms those
obtainable with a classical ML one shot, uses a new
statistical characterisation of classical features as sample
mean and sample variance that exploits the spatial
correlation between data.

INTRODUCTION
The supervised, statistical classification of Synthetic
Aperture Radar (SAR) images has to deal with the
difficulties involved in processing this kind of data, and
often results in poor accuracies.

There are two important issues that relate to this
problem. The first issue regards the low flexibility of the
mathematical models which are used to describe the data
to be classified. For instance, the statistical properties of
the second order are often overlooked, and so the
resulting models may be heavily simplified.

The second issue is of a more specific kind and
regards one of the major problems in all supervised
classification algorithms: the limited availability of
training samples [1],[2]. Conventional classification
technologies, as the classical ML one shot or KNN, often
do not respond effectively to the rapid development in
SAR technology: resolution increases, as does the
amount of data, with the possibility to distinguish
between an always growing number of particulars, while
often the training areas remain small.

This paper offers a solution to these problems in the
framework of an automated hierarchical classification
methods.

METHOD
The proposed method follows a hierarchical approach
[3], and provides decisional trees which are searched in
the graph space using a branch function based on the
Battacharyya distance [4]. The search of the decisional

This work was supported by the European Community
program Training and Mobility for Researchers (Marte Curie
Fellowship) under contract ERBF MBICT 95257.
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tree follows a top-down approach and is carried out by
simulating the search strategy of the exhaustive
classification algorithm in the feature space.

The simulation of the exhaustive search is done by
observing the extraction strategy of the features and of
the classes, which set the nodes of the tree, followed by
the real exhaustive classification method. Two sets, the
first empty and the second containing all the natural
classes, are initialised at the first step. Then, the natural
class which has the best separability measure as
compared to the set formed by the remaining natural
classes, is extracted from the second set. The chosen
class is put in the set initially empty and the state of the
two set is stored together with the feature selected to
separate the class. The extraction and storing process
continues until the set, initially full, is composed by only
one class and all the others are put in the set initially
empty. Finally, the configuration of the two sets is
chosen which has the best separability compared to those
of all the stored configurations. The winning
configuration will form the state of two new nodes of the
hierarchical tree. The method continues until each state
of each node of the tree is formed by only one natural
class.

The method provides a locally optimal classification
result, reducing the computational complexity from the
exponential level (real exhaustive search) to the
quadratic level (proposed simulated exhaustive search).
Moreover it performs an automatic selection in the
features space. In the following, an estimate of the
computational complexities, expressed as a function of
the number of Battacharyya distances that have to be
computed by the different algorithms, is presented.

We define the following quantities:C complexity,
Ktotal number of considered images, P total number of
considered features, N total number of considered
classes. The total number of features used is: K*P.

Real hierarchical exhaustive classification complexity

c- k[e{2)
The behaviour of the function is exponential.

Simulated algorithm for hierarchical classification
The complexity of the algorithm is the following:

C= KP]:SOZI:NE;Z[(N— 1-i)-1)+(N -1 ~2)]

In this case we have that:
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The double sum exploits the almost square behaviour of
the complexity of algorithm.

Simulated algorithm for hierarchical classification with
variable branch function

This is the computational complexity for a variation of
the simulated algorithm. In this case, instead “of
computing the Battacharyya distance for all the natural
classes contained in the set initially full a simplifying
hypothesis is done. The mean and the standard deviation
of the feature under examination are used to compute a
distance measure based only on the difference between
these quantities. The accuracy achievabile by this
algorithm is lower than those of the simulated algorithm.
This happens because the introduced simplification is
equivalent to consider classes as characterised by
rectangular probabilities densities. The computational
complexity allowed by this variation is almost linear.

C=K % [(N-1-D(P+D)-1

In Fig.1 a graph of the behaviour of the complexities of
the different algorithms , considering one only image and
one only feature, is shown. The complexity of the real
exhaustive algorithm makes the problem intractable
while, thanks to their reduced complexity, the two
proposed algorithms are suitable to make tractable the

hierarchical classification with automated feature
selection.

¢ Exhauaﬁvef
6000
4000
2000 Simulated,

ulated i)
0 5 10 15 201200

Fig.1. Behaviour of the complexities for the proposed algorithms.

An important issue of the statistical classification is that
classical statistical feature estimators do not exploit the
dependence among the samples of an acquired image.
The textural information of an object is lost because of
the simplified approach to classification.

We have developed estimators of the first and second
statistical properties of features like sample mean and
sample variance that exploit the correlation property. We
have made the simplifying hypothesis of data with
gaussian distribution.

In the following, the parametric estimators of the
statistical properties of the first and the second order of
the two features are shown.

Those features have been used by the hierarchical
classifier developed both to compute the Battacharyya
distance and to make the maximum likelihood
classification.
This increase of information captured by the proposed
method of features estimation makes an improvement of
the classification accuracy.
Mean of the sample mean
The mean of the above sample mean is the same of the
one estimated with the hypothesis of sample
independence:
A 1 N-1
E{”}:}_ % Elxi} = 4
Variance of the sample mean: The estimate of the
variance of the sample mean is quite difficult because we
don’t use the hypothesis of data independence. The
parametric expression of the variance of the sample
mean is the following:
A) 1 N-l 1 N=i-1, , 1 N-1 2
var{p} = 'F iEI 2(N—-i{; ":L_:O x"x”+i:l+—]\-lk§0(xk) n

where x,' are the samples of the signal with the

estimated mean value subtracted, and: i=1...N.
As can be observed from (1), the number of calculations
necessary for the estimate of the variance of the sample
mean is onerous, but it can be reduced investigating the
nature of the data. In fact, we have experimentally seen
on our set of SAR images that after seven, at most ten
samples, the spatial autocorrelation value is about zero.
In (1), we have limited, the term which express the
spatial autocorrelation to the meaningful values that we
have estimated on our images.

Classes: 1,2,34,5
Feature: Me-L-HV
Battacharyya: 14,95

Classes: 1,235
Feature: Me-L-HH
Battacharyya: 3,56

Classes: 1,5
Feature: Me-C-VV
Battacharyya: 1,16

Fig. 2. Classification tree generated by the simulated hierarchical
algorithm (Legend: ME-LHV=sample mean on L band with
HVpolarization).

Mean of the sample variance

The mean of the sample variance made without the
independence hypothesis has a difficult demonstration,
similar to those found for the variance of the sample

Classes: 2,3
Feafure: Me-L-VV
Battacharyya: 1,09

Class: 1

mean




The new estimate of the mean of the sample variance is
the following:

a ~ 1 i g 2
The reasoning made about pos51ble smphﬁcations
related to the nature of the spatial correlation keeps the
computation of the estimator effective.
Variance of the sample variance: The analytic estimate
of the variance of the sample variance is very complex,
because the demonstration reqmres the computation of
4™ order moments. This estimator is still to develope. We
suggest, for the moment, to use, when computing this
quantity, the simplifying hypothesis of independent
samples.

RESULTS AND CONCLUSIONS

The method for the hierarchical classification with
automated features selection has been tested on different
agricultural sites (Flevoland and Feltwell).

The classification results for the Feltwell sites are shown
in Fig.3, while in Fig.2 the generated classification tree
can be seen. In Fig 3, five different classes are present:
sugar beets, stubble, bare soil, carrots and potatoes. We
have contemporary used, for the classification six, one
look, SAR data acquisitions of this site: HH, HV and HV
polarised, in the L and C bands. For every image we
have computed the intensity and the sample mean and
sample variance features with the new

Fig. 3 Clasmﬁcatxon map of the Feltwell site.
estimators of their statistical properties of the first and
the second order.

The space of the features, in which the algorithm made
the feature selection, was set to 18 elements.

In Table 1 the classification accuracy achieved with
these features is compared with that obtained with other
classical methods.

Table I. Classification accuracy obtained on the Feltwell site. A: ML
one shot; B: Simulated hierarchical, C: Simulated simplified
hierarchical

It can be seen that the dlfference in quahty is high. In
fact the average accuracy improves of more than 20% if
compared with the classical Maximum Likelihood one
shot. The classification accuracy percentage is based on
the training areas. We have always found, in our tests,
the accuracy of the simulated algorithm to be the same of
the really exhaustive algorithm, while that of the
simulated simplified degrades of something, which is
due to the hypothesis done. The discrimination power of
the features with the new estimators is good. The sample
mean, thanks to our statistical characterisation, obtains
classification accuracies that exceed those obtained by

work developed in the same field [S].

In conclusion, both from the theoretical and the practical

point of view, the method represents a good solution to

efficiently achieve accurate classification maps. The
automated feature selection allows to find that
configuration which performs better and thus which
better reduces the confusion between classes. The
proposed method prooved to be extremely suitable to be
employed .as an initial classification for higher level
systems like, for instance, Markov Random Field based
approaches.
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Abstract -- This paper presents a new technique in
identifying classes in Synthetic Aperture Radar (SAR) sea
ice imagery using correlated texture. First, we employ
dynamic local thresholding to generate a histogram of
thresholds. Then, we use a multi-resolution peak-detection
method, a strategy used in digital image quantization
field, to extract significant intensity thresholds from the
histogram and provide an initial scgmentation. Next, we
compute correlated texture of the result and create a
matrix of spatial, probabilistic relationships among the
classes. Given the texture, we cluster the classes into
different groups. The clustering concept is based on an
innovative 'solidification' model that strives to obtain
similar auto-correlated textural values for all groups. This
process produces a second segmentation with the correct
number of classes. We have tested our technique in more
than 200 SAR sea ice imagery successfully. The entire
process is fully automated and fast.

INTRODUCTION

In SAR sea ice research, the improvement in the image
resolution and the increase in the number of satellites
have rendered manual image analysis impractical. In
addition, the analysis of natural scenes such as sea ice
presents many unique problems. Sea ice features are not
structured and cannot be represented consistently by
structural rules or grammars. Also, in contrast to artificial
objects, sea ice features do not obey strict positioning
rules. Finally, the backscatter of sea ice types can vary
greatly based on the geographic arca, the season, the
weather conditions[2][7]1[10]. Thus, approaches using pre-
determined number of classes are not viable in performing
segmentation of such imagery. This leads to the need of a
data-driven method that automatically derives the number
of segmentation classes from the image (or data) itself.

In this paper we present a methodology that integrates
traditional image processing algorithms with a clustering
process that employs correlated texture of the classes in
the image. First, we analyze a sea ice image using multi-
level dynamic local thresholding to generate a histogram
of thresholds. Next, we apply a multi-resolution peak
detection strategy to extract significant thresholds from the
histogram. Given these significant thresholds, an initial
segmentation is achieved. Further, we compute for each
class a correlated texture, a vector that specifies the
probability of another class being a neighbor to the class.
Our clustering then uses an innovative solidification model
to partition the threshold set into a number of groups, with

0-7803-3836-7/97/$10.00 © 1997 IEEE

each group made up of several classes. This unsupervised
discovery is the key to the automation of our design. The
final segmentation of sea ice imagery is then achieved by
thresholding the image using the maximum threshold
value of each group.

Note that we propose a segmentation technique that
identifies classes in SAR sea ice imagery as a pre-
processor to classification. We believe a SAR image
processing task be incremental and modular. To be
incremental, a good segmentation process preempts a
good classification result. To be modular, it allows us to
incorporate expert geophysical knowledge and ancillary
data into classification and not overburden the task of
image segmentation. This two-tier strategy has been
utilized in sea ice classification[3], land use mapping[6],
drainage channel networks detection[5], integration of
ancillary data[1][4], and other image processing tasks.

METHODOLOGY

Our underlying methodology is to use image processing
to provide clues to describe a preliminary segmentation of
the image and perform numerical clustering to refine and
produce the final segmentation. This approach allows
clustering to analyze only on selected information of the
image, reducing the amount of computational work, and
preventing irrelevant information from influencing its
outcome. Moreover, the clustering module relieves the

‘burden of determining the number of classes from the

segmentation process. Hence the segmentation process
can focus on low-level, syntactic image manipulation,
leaving higher order tasks such as semantic interpretation
to clustering.

Multi-Level Dynamic Local Thresholding

We have adapted the dynamic local thresholding
technique from [3). We assume an N-class image, instead
of three, with N determined by our multi-resolution peak
detection algorithm. First, we divide the image into
overlapping regions and compute the histogram and its
variance for each region. Only histograms with their
variance values greater than an image dependent threshold
are selected for further processing. The threshold is set to
admit at least 25% of all histograms. This implicitly helps
preserve global information. Second, given each qualified
histogram, we approximate its binormal Gaussian mixture
by computing its means and standard deviations using
stochastic estimation in [11]. Third, given the parameters
of the approximation process, we compute peak-to-valley
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ratios to filter out mixtures that are not significantly
bimodal. Further, we derive from these parameters the
optimal threshold via the maximum likelihood method. As
a result, we obtain a histogram of computed threshold
values, from which significant thresholds are extracted.

Multi-Resolution Peak Detection

This feature extraction process assumes that each class of
areas could have a range of intensities such that the
representative thresholds found from these areas could be
far apart from each other. Occupying the interval between
each pair of these thresholds are other (residual) threshold
values compromising the intensity difference. We have
designed a multi-resolution peak detection technique that
extracts significant jumps in the cumulative distribution
function (CDF) of the histogram. Utilizing the cumulative
distribution function to look for peaks has two advantages:
1) a peak's significance can be based on its surrounding
values, and 2) noisy peaks can be ignored due to the use
of windowing [9]. First, we generate, from the histogram,
the cumulative distributed function. Second, we search for
the starting windowing size, K, based on the range of the
histogram. Second, we develop a resolution plane of
peaks detected from the CDF when it is averaged using
size K, K-2, ..., and 3. Note that peaks found at low
resolutions (when the window size is large) are substantial
since, for them to survive the averaging, they must have
been significant in the original histogram. This is the
detection objective. On the other hand, peaks found at
higher resolutions are for the localization purpose. They
define the exact location of a peak. This detction-
localization approach has been used in most multi-
resolution tasks[8]. Third, we track peaks through the
resolution plane and obtain a set of significant thresholds.
A preliminary segmentation is then generated by applying
these thresholds to the image.

Numerical Clustering

From the preliminary segmentation, we obtain correlated
texture for each class. A correlated textural value of a
class i for a class j, C(i,j), is the probability of a pixel
labeled as class i having a neighboring pixel of class j.
Thus, we have a vector of probabilities describing the
relationship between each class and every other class. In
our solidification model, a compact class i will have a
high auto-correlated textural value, C(i,i). On the other
hand, a scattered class i, usually occupying the fringes of
another class, j, will have a high C(i,j). Given these two
assumptions, we use a over-commitment clustering
strategy that allows us to overshoot a target score—the
strongest C(i,i)}—by admitting the partial borderline class
into a group and speeds up the process of clustering. First,
we identify the strongest class, i.e., the class with the
highest C(i,i). Second, we scan the list, from top to
bottom, of classes and combine them to form an aggregate
of C(i,i)s to match the strongest class. Third, we scan
from bottom to top. As a result, we obtain two clustering
configurations. Fourth, we combine the two by resolving

conflicts, if any, between them. This produces a cluster of
groups of classes with which we threshold the image for
the final segmentation.

RESULTS

Fig. 1 shows one part of an ERS-1 SAR sea ice image,
taken on December 1, at 73.1N, 130.7W. The lower
portion of the figure depicts the classification result. Our
technique found three classes: dark, gray, and bright. To
reiterate, we do not attempt to label these classes but
simply label them as segmentation classes useful for
further classification. The technique is fast. The average
computational time required to process a 1024x1024
image is less than 30 seconds on an SGI-IRIX 5.3
operating system. We have applied our technique to more
than 200 SAR images and achieved satisfactory visual
evaluation for more than 75% of them.

CONCLUSION

In conclusion, we have designed a fully automated and
fast technique that identifies classes in SAR sea ice
imagery. It integrates image segmentation and numerical
clustering techniques as a two-tier process: the former to
derive selected information; the later to perform numerical
taxonomy on the information to discover classes. This
data-driven methodology suits the image processing tasks
of SAR sea ice imagery with dynamic characteristics.
The technique is also fast and fully automated.
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Figure 1 The original ERS-1 SAR sea ice image and the result of our segmentation. Our technique
has identified three segmentation classes in the image automatically.
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Abstract -- Classification is a common first step in the use
of SAR data. Intensity of a pixel is generally used as a
feature vector. This is complicated by coherent fading that
yields multiplicative noise. Consequently, the first
statistical moment of intensity (over some local window) is
often used as a feature vector instead. In some cases this
leads to unacceptably high rates of misclassification. The 2nd
statistical moment also can be used to distinguish categories
but is dependent on the composite effects of the sensor (N of
looks), the mean backscatter (via multiplicative noise) and
the true spatial variance in average backscatter relative to
SAR resolution. Thus, using variance measures as feature
vectors can lead to increased classification accuracy.
However, such measures ignore the observation that the
variance for many terrain categories is not stationary and
indeed may not be isotropic. Further improvement in
classification can be realized by quantifying the translational
variance in backscatter using scale-dependent geostatistical
measures such as semi-variance and lacunarity that
characterize the spatial structure of image intensity.
Simulated SAR data are used to understand the effects of
system parameters (such as number of looks and spatial
resolution) and target conditions (such as probability of
occurance and stationarity) on geostatistical measures of
texture. ERS-1 and JERS-1 SAR data demonstrate the use
of these techniques in terrain characterization.  These
statistics also give measures of heterogeneity of interest to
ecologists.

INTRODUCTION

In general, there are four types of intensity
variations within a radar image that must be considered in
terrain classification from SAR data: (1) variations in average
intensity from one terrain type to another (i.e., such as
between bare soil and forest), (2) variations within a given
terrain category related to the spatial variance in geometrical
attributes of the surface or overlying vegetation (i.e., such as
between tree plantations of differing ages), (3) variations
within a given terrain type due to temporal variance (such as
those resulting from changes in dielectric properties of the
scene i.e., soil moisture or snow cover), and (4) random
variation due to fading at the pixel level. For purposes of
terrain classification, single-date classifications are typically

0-7803-3836-7/97/$10.00 © 1997 IEEE

based upon the pixel means and variations (2-4) become
noise. Multi-temporal approaches extend this to explicit
treatment of variation (3). Both commonly use spatial
filtering to mitigate the noise contributed by fading. In this
study we examine geostatistical techniques to quantify true
spatial variance in scene properties in the presence of fading.

Local variance in backscatter arises from (1) coherent
fading which is a multiplicative noise dependent upon the n-
of-looks and (2) fine scale spatial variance in scene attributes,
primarily vegetation structure and is dependent upon spatial
resolution of the SAR relative to the patch size of vegetation.
Two general methods can be used to define the joint PDF due
to texture and fading: (1) a purely statistical approach and (2)
an image-based spatial approach. In the statistical approach,
the measured single-look scattering PDF is compared to the
expected distributions for common clutter models such as the
Rayleigh fading model, the log-normal distribution, the
Weibull distribution, the Rice distribution and the k-
distribution [1-3]. The Rayleigh model works well for many
combinations of sensor parameters (frequency and
polarization) and terrain category. However, some categories,
such as forest and savanna woodlands, characterized by strong
scattering elements are better characterized by models such as
the Rice or log-normal distributions. Multiple forward
scattering between the ground and the trunks (double-bounce)
can dominate backscatter from forests particularly for hh-
polarization at long wavelengths.

Statistical approaches assume random distributions
of scattering elements within a given region.  This
assumption is valid in many situations particularly when the
scattering elements are numerous and small relative to
resolution and vegetation cover is actively managed to
maintain uniformity (i.e., agriculture, rangeland and forest
plantations), but natural vegetative covers often exhibit
‘clumpiness’ and gaps. Studies of SAR image texture [4]
have largely ignored the spatial structure of texture.

GEOSTATISTICAL METHODS

Geostatistical ~ techniques can be wused to
quantitatively characterize ‘texture’ with respect to both the
variance and the spatial dependence of this variability.
These measures test the assumption that the underlying
attributes (scatterers in this case) are randomly distributed and
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therefore characterized by a stationary PDF (i.e.,
translationally invariant).  Importantly, these measures
explicitly incorporate the scale dependence of the phenomenon
and hence have the potential to describe the dependence of
texture on image resolution. Two common being those (1)
based upon the spatial autocorrelation function and (2) related
to the fractal dimension.

The autocorrelation function can be calculated from
the measured distributions and summarized in terms of the
correlation length and the form of decay (i.e., exponential or
Gaussian). A related approach is the semi-variogram [5]
which describes the mean squared pair differences (semi-
variance) as a function of spatial offset or lag, h. The semi-
variogram function is defined as

¥(h) = (12N)X(z; - 2,,,,)° M

where there are N pairs of observations, z, at distance h from
the i" location. When z is translationally invariant, v(h) will
be a constant (for h>0) related to the variance. For SAR data,
the variance is a function of both sensor parameters (N of
looks) and average target properties (mean backscatter) plus
the true spatial variance in target properties. Spatially variant
distributions asymptotically approach this value, or sill, at a
log distance called the range. y(h) will oscillate for periodic
patterns. Thus, it is not surprising that Miranda and Carr [6]
found consistent differences in the values of the sill between
terrain categories in SIR-B, ERS and JERS SAR data. They
found consistent differences in the range which provides
information on the spatial structure. The behavior of Y(h)
shows the degree of translational invariance in the
fading/textural statistics. Miranda’s analyses show a spatial
periodicity of radar backscatter from open tropical vegetation
and flooded vegetation, in particular, while dense tropical
vegetation decorrelates quickly with distance.

This approach has been modified by Cressie and
Hawkins [7] to be less sensitive to the skewing effect induced
by large outliers in the distribution of z, through the use of
mean square-root pair difference (SRPD).

SRPD(h) = (1/Np)Xlz; - z;,,|°* @
This is significant for SAR data because the underlying
statistics are exponentially distributed (assuming Rayleigh
fading and square-law detection); and furthermore, the sample
may contain one or more point targets of high return. SRPD
has been applied to imagery [8], but not SAR data.

Another geostatistic to test stationarity is lacunarity,
the term Mandelbrot [9] applied to describe the spatial
distribution of gap sizes in self similar geometric structures.
Lacunarity is a scale dependent measure of translational
invariance that can operate using a windowing approach on 2-
D images [10]. The lacunarity index has been developed for
binary data and is calculated as a function of window size
(scale). This index has been used for quantized orbital SAR
data of the Pantanal region of Brazil [11] and the results were

compared to measures based upon the gray level co-occurrence
matrix, GCLM [12]. They found the GCLM measures to be
relatively insensitive to dramatic temporal changes in the
texture of ERS-1 SAR imagery related to seasonal flooding,

while the lacunarity index provided good textural
discrimination .
" This technique can be easily extended to scalar data
A = (0,() / p,(1)* + 1 ©))

where A(r) is the lacunarity index for a window of dimension
I, O, is the standard deviation of the Y.z within the sliding
window and |, is the mean Xz within the window over some
region. A(r) is maximum for r=1 and is proportional to the
number of looks of the source data. As r becomes very
large, A(r) approaches unity. The rate of decay in A(r)
describes the ‘granularity’ in the texture. A constant rate of
decay indicates a self-similar, fractal structure.

A textural variance index (TVI) has been defined for
SAR data [4] that explicitly incorporates n-of-looks

TVI() = (0,/1,)-((4/m)-1YNY/(1+((4/m)-1)/N))  (4)

where all terms aré as previously defined and N is the number
of independent looks. Assuming linear detection with N=1,
TVI=((o./1,)*-1)/2.

SAR RESULTS

Simulated SAR data (linear detection) was generated
for various spatial patterns of two classes: ‘A’ is a tree-like
class with a mean backscatter 0°=5dB and ‘B’ is an
agricultural class with 6°=-20dB. The following patterns
where generated: (1) random location with P(A)=(0, 0.1, 0.5,
0.9 and 1.0), (2) regular ‘checkerboard’ patterns with squares
of side lengths 1, 2, 3, 4, 5 and 9 and (3) randomly located
squares with P(A)=0.5 of side lengths 2, 3 and (4) a fractal
‘Y’ pattern. For each pattern, class names are assigned using
the stated probabilities. Backscatter values are generated
using the mean backscatter and assuming Rayleigy fading.
The simulations are iterated for N=1, 2, 3, 4, 5 and 1,000.

The two measures based on the autocorrelation
function are very similar in behavior and are highly
dependent on N while lacunarity and TVI(r) quickly
aopproach a limit for N>2 (see Fig.1). The dependencies of
the geostatistical measures on spatial pattern and probability
of class occurrence are shown in Fig.2 for N=1 with linear
detection. All are found to be sensitive to pattern type,
spatial scale and probability.

Orthorectified and coregistered composites of 6-look
ERS and JERS SAR data from southwestern and northern
Michigan are subsampled for various general land-cover
classes. The average results are shown in Fig.3 for
operations over windows with a spatial dimension of 675-m.
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Abstract -- Texture is an important feature to improve image
segmentation. This paper describes a wavelet-based fuzzy
clustering procedure which receives as input both the original
image and a texture map based on a fractal model, derived
from the wavelet transform of the image itself. This
preliminary evaluation has shown the potential usefulness of
the fractal signature for improving texture discrimination and
enhancing segmentation results, and suggests this multi-scale
approach for Remote Sensing image texture analysis.

INTRODUCTION

Clustering is a segmentation technique commonly used for
Remote Sensing image interpretation. When ground truth is
not available to provide samples to train a supervised
classifier, segmentation is often accomplished by clustering,
which requires little "a priori" information about the imaged
scene. In particular, multi-resolution clustering methods
generally provide better performance in discriminating
different cover classes, when compared to global algorithms:
the wavelet transform is a scale-space representation which
yields uncorrelated data at different resolutions [1].

Segmentation success strongly relies on the dimensionality
of the data set: in the case of mono-band, non-polarimetric
SAR images, the local variation coefficient is the most useful
feature, besides the signal itself. Due to the lack of features
reflecting spatial correlation, however, a number of pixels may
result to be mislabeled. In this case, additional features can be
provided by textural measurements, based on the relation
between signals backscattered from neighboring pixels [2].

A useful mathematical tool for describing many complex
shapes found in natural scenes is provided by fractal
geometry. The essential feature of fractals is their statistical
self-similarity, i.e., invariance under changes of magnification.
Many natural surfaces exhibit a fractal behavior within a
certain range of scales. Such a behavior is well represented by
the concept of fractal dimension [3], which can be related to
an intuitive concept of surface "roughness". Since the
effectiveness of the fractal model increases with resolution, it
is particularly useful in the case of SAR images [4].

The most suited approach to computation of fractal
dimension comes from power spectra: the ratio between
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powers at different scales is straightforwardly related to fractal
dimension. In this work, we propose a method to obtain a
fractal signature, based on the multi-scale image
decomposition provided by the wavelet transform.

Fuzzy clustering is widely used for image segmentation [5].
In fact, fuzzy set theory provides a better representation for
information in the cases in which clusters boundaries are
vague. This often happens in Remote Sensing images, where
situations such as cover class mixture are often found [6].

The Fuzzy C-Means algorithm, which is an iterative
technique based on the minimization of generalized objective
functions, was employed. Instead of performing clustering on
the whole data set, the multi-resolution framework was used
to reduce computation while preserving segmentation results.

This paper describes a complete wavelet-based fuzzy
clustering procedure which receives as input both a SAR
image and a texture map, built starting from a fractal model
derived from the wavelet transform of the image itself. Trials
were carried out on samples of true textures derived from
SAR images coming from the X-SAR experiment.

FRACTAL ANALYSIS

The common feature used in most segmentation techniques
is image fone, i.e., grey level throughout the entire scene. The
other complementary aspect that characterizes a digital image
is texture, which represents intrinsic spatial variability of grey
level in the neighborhood of each pixel.

A fractal approach [6,7] started being used with promising
results, since many natural surfaces exhibit a fractal behavior
within a certain range of scales. Such behavior is summarized
by the concept of fractal dimension, which can be related to
our intuitive concept of surface “roughness” [3].

The most suitable mathematical model for random fractals
found in nature is the fractional Brownian motion (FBM).
Basically, a FBM surface function Vy(x,y) is described by a
random field having zero-mean Gaussian increments satisfying

[V eV, esanysay)) = kacapl’ @

where Il is the Euclidean norm, and 0 < H < [ is the Hurst,
or persistence parameter, controlling the roughness of the
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surface, with H = 1 corresponding to a smooth surface and H
= 0 to a very rough texture. The fractal dimension D and the
persistence parameter are related by: D = 3 - H.

Different approaches exist to compute D [4]. FBM can be
characterized by a random-phase Fourier description obeying
a generalized power density of the form:

1

B
[,/mf +0 J

in which B = 2H +2. Thus, D can be computed through a
linear regression on log/P(,,®,)] versus log[(®,®,2)"].
The above methods have already been used in remote
sensing texture analysis [2,4], although, given the variability
of fractal dimension with the computation algorithm, other
methods have often been preferred. As it has been shown in
[4], however, the power spectrum technique seems to yield
very accurate estimates, and for this reason it has been chosen
here, by exploiting the characteristics of the wavelet
representation, which is well suited to evaluate self similarity.
In fact, wavelets can be seen as a new analysis technique in
time-frequency domain (space-frequency, in the 2D case) [1].
The wavelet representation allows to easily obtain fractal
dimension D from power spectrum: since the detail signals
are obtained by filtering and downsampling the original signal,
the power spectrum of the output at resolution 2 is given by:

P((JJI,(DZ) = (2)

Py(0,0,) = P(0,0,)'|¥ (270,,270,) |2 ©)

After sampling at a rate 2, and integrating at two different
scales, the following relationship is obtained from (2):

Fa g @

P,
where P is the energy of the detail signals. The above result
is independent of the specific scale 2/, with -/ < Jj < J; alinear
least square fit performed on (4) yields:

Jog /™! &)
(J+Dlogd ~ ﬁ

j=1

which is used to obtain H, and thus fractal dimension D.

FUZZY CLUSTERING ALGORITHM

In a fuzzy clustering framework, each cluster is a fuzzy set,
and each pixel in the image has a membership value
associated to each cluster, ranging between 0 and 1, measuring
“how much” the pixel belongs to that particular cluster [5].

There have been many different families of fuzzy clustering
algorithms proposed in the last decade: the one used in this
work is the Fuzzy C-Means algorithm (FCM), which is an
iterative technique based on minimization of a generalized
within-group sum of squares (WGSS) objective function [5].

Instead of performing clustering on the whole data set, a
multiresolution framework can be exploited to reduce the
computational burden while retaining segmentation results.
First, an image pyramid is obtained by using the wavelet
transform; the fuzzy clustering procedure is then implemented
on the pyramid using a region growing method: given J < 0,
FCM algorithm is first run on the coarsest image version; for
each pixel, a test is carried out on the final membership values

max{i,,tyotty} 2 T (6)

where ¢ is the number of clusters and 7 a prescribed
threshold. If this condition is not met, the pixel is labelled as
uncertain. Clustering is then repeated on all uncertain pixels
at the lower level, higher resolution, approximation. This
procedure is iterated downward until the bottom of the
pyramid is reached, where all pixels remaining uncertain are
labeled. Thus, cluster membership values can be used to split
mixed regions into smaller regions at higher resolution levels.
The clustering algorithm is described in Figure 1. Median
post-filtering is used to obtain more homogeneous regions.

FCM ON LOW »/ASSIGN PIXEL TO CLUSTER
RESQLUTION WITH MAX MEMBERSHIP
IMAGE [—>
UNCERTAIN PIXEL
(MEMBERSHIP <T) UNCERTAIN
RE-CLUSTERED AT PIXEL ?
A HIGHER LEVEL

MEDIAN
FILTER

h

PARTITION

Figure 1. FCM algorithm implemented on the wavelet pyramid of
the input image.

The method is very similar to the one proposed in [6], but
implemented on a different pyramid structure, in which each
layer represents a more precise approximation of the original
image, thus providing better results than in [6].

The same algorithm that builds the pyramid also gives the
fractal measure to be input to the clustering chain, together
with the original data. There is no need for a separate
processing, as it always happens for the commonly used
methods for computing D.




RESULTS

X-SAR spaceborne system operates with vertical
polarization, and incidence angles from 15° to 55°. From the
images provided by such experiments, some texture patches,
shown in Figure 2, have been extracted to test the
performance of the clustering algorithm. These are mainly
natural cover types, coming from different places around the
world, with the exception of one showing an urban district.

The level J of wavelet decomposition was set equal to -5. In
the FCM algorithm parameter T was empirically set to 0.985.
The maps resulting from directly clustering the original mono-
band images are shown in Figure 3. As it can be seen a large
number of pixels were misclassified: the only tone intensity
value is insufficient to discriminate among the different cover
types. Thus, parameter H has been obtained for each of the
four different textures in the two test images and assigned as
an additional feature to each pixel of every subregion. Figure
4 shows the maps resulting from clustering the images with
both features. By comparing such maps with those in Fig. 3,
it can be seen that addition of the fractal signature has
considerably improved segmentation accuracy. Correct
classification rates of the maps in Fig. 4, relative to the texture
patches of Fig. 2, are shown in Table 1.

Table 1 - Correct classification rates for the textures in Fig. 2.

Correct Classification rates

Equatorial Forest 100 %
Mountainous Area 89.7 %
Urban Dastrict 99.8 %
Sandy Desert 99.9 %
Water Surface 100 %
Boreal Forest 98.1 %
Rocky Desert 98.8 %
‘Tundra 99.2 %

(@) (b)
Figure 2. Test images: clockwise from upper left: (a): equatorial
forest (Amazonas, Brazil); mountainous area (Alps, Austria); urban
district (Moscow, Russia); hot sandy desert (Sahara, Algeria). (b):
water surface (Tropical Pacific Ocean); boreal forest (Black Forest,
Germany); mid-latitude rocky desert (Gobi, Mongolia); tundra
(Kamchatka).

Figure 3. - Clustering maps obtained from images of Fig. 3, by using
FCM based on image tone only.

Figure 4. - Clustering maps obtained from images of Fig. 3, by using
FCM based on tone and local fractal dimension.
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Abstract — This paper proposes new techniques of mul-
tiresolution analysis and processing of synthetic aperture
radar (SAR) images using wavelets. Here, two works are
presented; one is speckle reduction by reducing the am-
plitude of the detail images in wavelet subspaces, while
preserving edges by releasing the amplitude reduction
around edges, and the other is estimation of fractal di-
mension which is featuring ’roughness’ of the 2-D surface,
by wavelet-based multiresolution analysis combined with
the fractal Brownian motion (fBm). Both methods have
been satisfactorily applied to real SAR images, and are
expected to be useful for SAR remote sensing.

INTRODUCTION

This paper presents new techniques of multiresolution
analysis and processing of synthetic aperture radar (SAR)
images using wavelets, and has two aims; one is speckle
reduction, the other is estimation of fractal dimension.

For the last several years, the wavelet analysis has been
applied to various fields, where the theoretical bases are
given by the multiresolution analysis by Mallat [1] and the
composition of compactly supported orthonormal wavelet
bases by Daubechies [2]. The multiresolution analysis de-
composes an input signal into low frequency sub-bands it-
eratively, and as a result, the pyramidal representation of
the signal is constructed. The multiresolution analysis can
be easily applied to 2-dimensional images by transforming
in row and column directions separately. A wavelet trans-
form of an image generates four sub-images with a quarter
area; one “approximated image” and three “detail images”
(see Fig.1). In this paper, we aim at speckle reduction and
estimation of fractal dimension by processing or analysing
detail images in each wavelet subspace.

SPECKLE REDUCTION

Algorithm

First, we propose a new method of reducing speckle in
SAR images by reducing the range of the pixel power (the
“wavelet coefficient” in [1]) of detail images in each wavelet
subspace [3,4]. In detail images, information on edges of
the original image appears with the following properties:

e The LH image: information on the edges in vertical

and 45° directions,

e The HL image: information on the edges in horizontal
and 45° directions,

0-7803-3836-7/97/$10.00 © 1997 IEEE

LL LH

image

2D wavelet HL HH

transform

Fig.1. A wavelet transform of an image; “approximated image”
is the sub-image composed of the low frequency parts in both
row and column derections (LL), and “detail images” are the

remaining three images, containing high frequency components
(LH, HL, and HH).

= o, e

in LH image in HL image in HH image

. high level pixel

. high area

Fig.2. Windows for judgement of edge information.

e The HH image: information on the edges in 45° di-
rections.

If we reduce the power range of entire detail images, we
will smooth not only speckle but also edges, and conse-
quently, unacceptable square ghosts will appear around
edges. Then, we propose the following algorithm:

I. Classify each pixel of detail images as high level or
low level using the threshold T
II. Reduce the power of the low level pixels to a%.

II1. Consider a 3 x 3 window around the high level pix-
els, and define high area in the window for each detail
image as Fig.2. If the high area in the window con-
tains at least one high level pixel, let the power of the
central pixel of the window to keep its original value,
judging that it has edge information.

IV. Regard the pixel, which is not judged in III to be with
edge information, as speckle component, and reduce
the power of it to $%.

An output image is reconstructed from the processed de-
tail images in each wavelet subspace. Identification of the
pixels with edge information in III is following the appear-
ance property of edge information.

Simulations and Application to SAR Images

We have evaluated performance characteristics of the
method through simulations and application to a SAR
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TABLE 1. Comparison of smoothing capability.

ENL
Original 4.06
Proposed level 1 2 3 4 5
method | Haar(D2) || 10.78 | 18.71 [ 22.96 | 24.35 | 24.75
D4 10.80 | 18.84 | 22.92 | 24.32 | 24.72
Local statistics (3 x 3) 25.41

Image. Concerning the parameters in the algorithm, we
have set T'= 128, o = 40, 8 = 50. We have employed the

Daubechies wavelet [2]; D2 and D4. D2 is known to be.

equivalent to the Haar basis. ,

TABLE I shows the comparison of the smoothing capa-
bility between the proposed method and the local statis-
tics method by Lee [5]. The value in the table is equivalent
number of looks (ENL) given by

ENL = 4*/o?, (1)

where p and o are the average value and the standard
deviation, respectively, of the power. The original im-
age is 4 look one simulated a homogeneous area; size
256 x 256, grayscale levels 256, average power 50. We
see from TABLE I that the smoothing capability of the
proposed method, when the wavelet subspace level is 5
or so, is almost comparable to that of the local statistics
method. We also see that smoothing characteristics seem
to be insensible to the difference of the basis, Haar or D4.

Fig.3 shows 3-dimensional representation of the pixel
power by which we have tried to evaluate the edge preser-
vation characteristics of the proposed method. The edge
in the output of the proposed method using the Haar basis
when the wavelet subspace level is 5, seems to be preserved
more sharply than that in the output of the local statis-
tics method. This indicates that the algorithm described
above, works efficiently. The edge in the D4 basis case is a
little degraded compared with that in the Haar basis case.
From this result, it is deduced that a wavelet basis with a
shorter tap is useful in preserving edges.

Fig.4 shows an example of a real SAR image processed
by the proposed method. The original SAR image is 4
look one, obtained by NASA/JPL AIRSAR. The scene is
an agricultural field in Flevoland, the Netherlands. The
frequency band is L, and the polarization is HH. Examing
the figure, we see that the proposed method succeeds both
in smoothing speckle and in preserving edges, and also
succeeds in attaining visually-natural appearance. The
performance of the proposed method for this scene seems
superior to that of the local statistics method.

ESTIMATION OF FRACTAL DIMENSION
Method

Some natural scenes can be considered to be statistically
self-similar, while they are not self-similar in the strict

1188

.5 38 3 %%
EEEEE

5881

Fig.3. Comparison of the performance at an edge; upper left
— original speckle pattern (4look), upper right — local statis-
tics (3 x 3), lower left — proposed (Haar, 5level), lower right -
proposed (D4, 5level).
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Fig.4. Filtering of a SAR image; upper left — original (4look),
upper right — local statistics (3 x3), lower left ~ proposed (Haar,
5level), lower right — proposed (D4, 5level).

L

mathematical sense. When such a 3-D surface regarded as
’statistically fractal’ is imaged by SAR, fractal dimension
of the image is featuring roughness of the surface. Here,
we present that fractal dimension of a SAR image can be
estimated by wavelet-based multiresolution analysis.
Fractional Brownian motion (fBm) is known to be a
typical model of statistically fractal. It is a nonstationary
zero-mean Gaussian random process, and defined as [6]

By(t) =
2.1t = sl=% = |s|#=4) dB(s) + f; |t — 5|~ 1aB(s)]
[(H +1/2) ’
(2)
where B(t) is an ordinary Brownian motion and H is the

self-similar parameter (0 < H < 1). The parameter H is
directly related to the fractal dimension D by

D=E+1-H, (3)

where E is the topological dimension.



Flandrin showed that the self-similar parameter H of a
1-dimensional signal can be estimated by wavelet analysis
[7]. In [7], the variance of the detail signal at the j-th
wavelet subspace level is given by

log, (var (dj[n])) = (2H + 1) + const. (4)

Hence, we can easily acquire the parameter H (and the
related fractal dimension D) from the slope of this vari-
ance plotted as a function of wavelet subspace level j in a
log plot.

For wavelet-based estimation of fractal dimension of
SAR images, we have to extend (4) to the 2-dimensional
case. Now we asuume that 2-dimensional fBm has char-
acteristics of fBm in both x- and y- directions. As the de-
tail signal of 2-dimensional wavelet transform, we consider
dfH[n,m], the detail image containing high frequency
components of an input image in both x- and y- direc-
tions (i.e., the HH image in Fig.1). Then, we have [8]

log, (var (df'#[n,m])) = 2(H + 1)j + const.  (5)

Using (5), we can obtain the self-similar parameter H of a
2-dimensional image in the same way as the 1-dimensional
case, while the slope of the log plot varies from 2H +1 to
2(H +1).

Application to Multi-Parameter SAR, Images

We have estimated the fractal dimension of multifre-
quency, multipolarization, 4look AIRSAR images using
(5). The scene is Raco area in U.S.A. The frequency band
is C, L, P, and the polarization is HH, HV, VV. We have
also estimated the fractal dimension of speckle reduced
images by the above-mensioned method, to examine the
relation between fractal dimension and speckle.

Since the SAR image using here is a discrete data, we
should estimate the fractal dimension from the slope of
the log plot at coarse wavelet subspace levels [7]. So we
have obtained the fractal dimension by linear regression
at 3 points; j = 6,7, 8.

TABLE II shows the estimated fractal dimension of each
SAR image. We see from this table that the fractal dimen-
sion of the SAR images depends upon observation param-
eters; the fractal dimension seems to be large in order L,
P, C band concerning the frequency, and in order HV, HH,
VV concerning the polarization. From this result, we can
infer that the manner of describing roughness of the sur-
face differs with frequency and polarization, though the
order may be restricted to images used here. Another no-
ticeable result is that the fractal demension of the speckle
reduced images is almost equal to that of the original im-
ages; fractal dimension of SAR images seems to be inde-
pendent of speckle. Consequently, we may regard fractal
dimension of speckle reduced images as that of original
images straightforwardly.

TABLEII. Relation between observation parameter and fractal
dimension

Frequency C Band
Polarization HH HV \'AY%
Original Image 2.3513 2.5323  2.2863
Speckle reduced. || 2.3519 2.5338 2.2868
L Band P Band
HH HV A% HH HV \'A"
2.9214 29817 2.8968 | 2.6388 2.7078 2.5740
2.9215 2.9862 2.8983 | 2.6387 2.7066 2.5749

From the results, we think that fractal dimension could
be used as an efficient quantity for segmentation of mul-
tifrequency, multipolarization SAR images.

SUMMARY

We have introduced new wavelet-based multiresolution
methods for speckle reduction and estimation of fractal
dimension. The methods have been satisfactorily applied
to SAR images. We will treat classification/segmentation
of multifrequency, multipolarization SAR images using es-
timated fractal dimension in a future study.
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Abstract - There has been greatly increased
activity in the last twelve years on the use of
information processing techniques on remote
sensing problems including signal/image
processing, compression, segmentation, feature
extraction, pattern recognition, neural networks,
etc. The past progress is reviewed from which
a trend is developed. The trend shows a further
emphasis on using neural networks and wavelet
transforms for remote sensing.

REVIEW OF PAST PROGRESS

This review is based mainly on a small set of
selected publications on the IEEE Trans. on
Geoscience and Remote Sensing from 1986 to
1997. A major progress has been made on the
use of statistical and contextual pattern
recognition [15,16,18,23,28], feature extraction
[1,3,7,25,36], principal component analysis [19,
22], SAR image filtering & edge detection [20,
21,32, 33], image/signal compression [4,6,17,
30,40], image registration [31,37], fuzzy method
[38], Al & knowledge based systems [24,26,27,
39]. The interest in using neural network since
early 90s has not been decreased [2,5,8,9,10,13,
14,29,34,35,41] because of the many capabilities
offered by the neural nets. However neural nets
have not been able to replace existing techniques
and much more study or exploration of neural
nets in remote sensing is needed.

THE TRENDS

It is always risky to predict future from limited
past. However remote sensing encompasses
many different problem areas with a variety of
data involved. Neural nets offer some universal
properties suitable for many such problems.
Also the nerual net potential has not been fully
known. So a continued and strong interest is
expected. We have noted another trend in the
use of wavelet transforms which also have mnay
different capabilities [11,12,40]. Asan

0-7803-3836-7/97/$10.00 © 1997 IEEE
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example, Fig. 1 shows a popular SAR image
studied by many researchers. Fig. 2 shows the
wavelet representation reesult. Figs. 3 and 4 are
wavelet transform segmentation results without
feature selection [11] and with channel selection
[12] respectively. . The result in [12] making
use of the physical properties of the SAR image
data is better than that in [11]. An important
advanatge of the wavelet domain analysis is that
the procedure is again universal and it can be
computationally very efficient. We believe that
wavelet analysis is another emerging approach
in information processing for remote sensing.

It should be emphasized that the opinion given
in this paper is strictly that of the author.
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Figure 1. Polarimetric SAR HH Channel image of San Figure 2. Wavelet representation of the polarimetric
Francisco Bay area (512 by 512) SAR HH Channel image of San Francisco Bay
area in the 1* level (512 by 512)

Figure 3. Segmentation of the polarimetric SAR imagery Figure 4. Segmentation of the polarimetric SAR
using non-feature extraction representation in the imagery using the combination representation
wavelet domain. (256 by 256) of approximation and detail channels in the

wavelet domain. (256 by 256)
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Abstract: An artificial neural network (ANN) based nonlinear
technique for inverting the SAR image spectrum of ocean
surface waves is developed. In this technique, a multi-layer
perceptron (MLP) is used to perform the inversion process.
The MLP is trained using simulated SAR and wave spectra.
The training process utilizes the standard error-
backpropagation technique. The results indicate that the
method works well over a large range of wind and wave
conditions. The error in the inversion process was found to
increase in the higher sea states. The technique works best if
the network is used within the range over which it was
trained. It is noted that this technique may be used
independent of SAR imaging models, by training the network
with coincident and co-located measurements of SAR and
wave spectra.

INTRODUCTION

Satellite-borne synthetic aperture radar (SAR) imaging
systems have the potential for synoptically measuring the
ocean surface wave spectra on a global scale. The capability
to quantitatively monitor ocean surfaces wave spectra from
SAR images would serve a critical need in oceanography.
The SAR image is a map of the complex radar reflectivity
from the ocean surface [1]. The amplitude and phase of the
radar reflectivity are modulated by the surface waves.
Information about the surface waves is imparted onto the
backscattered signal through complex interaction processes.
In SAR systems, there are additional motion effects that also
influence the image information content. The mapping of the
ocean surface waves onto the SAR image is inherently
nonlinear. Thus, extracting useful quantitative information
about surface waves requires accurate and efficient nonlinear
inversion techniques.

0-7803-3836-7/97/$10.00 © 1997 IEEE

ANN are ideally suited for applications where the input to
output relationship is either unknown or too complex to
describe analytically. They simply require a sufficiently large
and variable data set consisting of measurements of the input
parameters and the corresponding measurements of the
output parameters. The ANN can then be trained to learn the
mapping process between the input and the output. This type
of inversion has been used in other applications in remote
sensing [2].

In this paper, an ANN-based technique is developed for the
extraction of ocean surface wave spectra from SAR image
spectra. Simulated wave and SAR spectra are used as the
input and the output, respectively, to train the ANN. It has to
be noted that the inversion process is specific to the SAR
imaging model used to simulate the training data. However,
the technique may also be used independent of imaging
models, by training the network with coincident and co-
located measurements of SAR and wave spectra.

METHODOLOGY

The forward process that describes the nonlinear relationship
between the SAR image spectrum and the wave spectrum is
well understood. Since the nonlinear models that relate the
SAR image spectrum to the wave spectrum are known,
simulations of these models may be used to train an ANN to
perform the nonlinear inversion process. During the training
phase, the SAR image spectrum will be used as the input and
the wave spectrum (orbital velocity or slope) will be used as
the output.

In the simulations, the SAR image is generated using the
Kasilingam and Shemdin model [1]. This model uses the
modulated normalized radar cross-section (NRCS) and the
orbital velocities of the surface waves as inputs. The NRCS is
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described by the composite surface model [3]. In the
composite surface model, the backscatter is shown to be due
to the resonant interaction between the electromagnetic wave
and short scale surface waves of comparable wavelength
which is known as the Bragg wavelength. The NRCS of a
small scale facet is proportional to the short scale roughness
determined at the Bragg wavelength. The longer waves
influence the scattering process by tilting and
hydrodynamically modulating the short scale waves. A
modified form of the Pierson Moskowitz model [4] is used to
generate random realizations of ocean surface waves.

An artificial neural network is a highly parallel distributed
information processing array of elementary processing
elements connected to each other [5]. A multi-layered
perceptron (MLP) is such an array consisting of several
cascaded layers of elements. The layers consist of input and
output layers and one or'many hidden layers. Each layer
consists of one or more elements. The signals flow from the
input layer and pass through the hidden layers and terminate
at the output layer.

The network is trained to produce the proper nonlinear
mapping process sequentially using samples of input/output
conditions. After each training set is presented to the network
the strengths of the interconnections are modified so as to
produce the desirable input/output relationship. The
modifications are driven by the error between the output of
the network and the desired output. The back-propagation
method is the most widely used training scheme for training a
layered perceptron.

RESULTS AND DISCUSSION

Fig. 1 shows the normalized error for three different
networks. 1500 SAR images were simulated for wind seas,
over the wind speed region 5-15 m/s. The wind direction was
varied uniformly. The (R/V) ratio is 20 s. The wave and
image spectra used for the training consisted of 64x64
spectral values. The input and output layers, each had that
many units. All three networks had two hidden layers. Each
layer in networks 1, 2 and 3 had 50, 30 and 20 units each,
respectively. Each network was trained for 1 million cycles.
Network 1 learns the fastest and has the smallest final error.
This is because it has more weights and hence can describe
the mapping process more accurately. However, the final
error between the three networks does not vary significantly.

0.5 -

0.4

Normalized Error

0 100000 200000 300000
Number of Training Cycles

/400000

Figure 1 - The normalized training error as a function of the
training cycle for three different networks.

Fig. 2 shows the results when network 2 is used to invert a
SAR image at a wind speed of 5 m/s in the range direction

(4, =90°). Figures 2(b) and 2(c) show the actual and the
inverted two-dimensional wave spectra. Figure 2(a) is the
two-dimensional SAR image spectrum which was used as the
input to the network. In this case, velocity bunching is
negligible, since most of the waves are travelling in the range
direction. Even though velocity bunching is small, the
imaging process is still nonlinear because of the
nonlinearities in the tilt modulation. The output of the
network appears to be in good agreement with the actual
wave spectrum used to generate the SAR image.

SAR Image Spactrum - Wind Speed 25 mis
U,

Range i
Wavenumber ...

@%

Azimuth Wavenumber

(@)

Actual Wave Spectium ANN Wave Spectrum

Range Wavenumber
Wavenumber

Range

Azimuth Wavenumber Azimuth Wavenumber

(®) ©

Figure 2 - Inversion of range travelling waves at a wind
speed of 5 m/s - (a) SAR image spectrum, (b) wave orbital
velocity spectrum and () ANN output.

1194



Figure 3 shows the results for the inversion of a SAR image

at a wind speed of 5 m/s for g, = 45°. In this case, the image
content is determined by both velocity bunching and tilt
modulation. There is coupling between the different
modulation processes because of the nonlinearities in both
mechanisms. Tilt modulation is dependent on the wave
slopes and velocity bunching is dependent on the wave
orbital velocities. Even though in linear wave theory, these
quantities are related, the nonlinear coupling of the two
modulation mechanisms results in a rather convoluted
mapping process. Estimating the wave spectrum requires the
de-coupling of these two processes. Again, the outputs of the
network appears to be in good agreement with the actual
wave spectra used to generate the SAR images. It appears
that the inversion technique is able to de-couple the different
modulation mechanisms to produce accurate estimates of the
wave spectrum.

SAR Image Spectrum - Wind Speed =5 mis
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(b) (©)

Figure 3 - Inversion of waves travelling at 45° to range at a
wind speed of 5 m/s - (a) SAR image spectrum, (b) wave
orbital velocity spectrum and (c) ANN output.

Figure 4 shows the normalized testing error when network 2
was tested with independent SAR image spectra at various
wind speeds. The normalized error is largest at the extremes
of the wind speed range. Note this network was trained with
data samples in the 5-15 m/s wind speed range. Yet it appears
to have acceptable error levels at wind speeds around 17 m/s.
It is important to train the network with training samples that
cover the wind speed range over which it is to be used.
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Figure 4 - The normalized testing error plotted as a function
of wind speed. The network was trained with samples in the
wind speed range 5-15 m/s.

CONCLUSION

The ANN-based inversion technique is able to accurately
invert the SAR image spectrum to generate estimates of the
wave orbital velocity spectrum. It is able to de-couple the
different competing modulating processes. It is also shown
that the inversion process is least accurate at the extremes of
the wind speed range over which the network is trained. It is
recommended that the network be trained with training
samples that cover the wind speed range over which it is to
be used.
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Neural Computing for Seismic Principal Components Analysis
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Abstract -- The neural network of the unsupervised
generalized Hebbian algorithm (GHA) is adopted to find the
principal eigenvectors of a covariance matrix in different kinds
of seismograms. The theorem about the effect of adding one
extra point along the direction of the eigenvector is proposed
to help the interpretations that more uniform data vectors
along one principal eigenvector direction can enhance the
eigenvalue. Diffraction pattern, fault pattern, bright spot
pattern and real seismogram are in the experiments. From
analyses the principal components can show the high
amplitude, polarity reversal, and low frequency wavelet in the
detection of seismic anamalies and can improve seismic
interpretations.

INTRODUCTION

Given a set of random data X with dimension N and

E[X]=0 , We can compute the correlation matrix (covariance

matrix) Q=E[X X"] and find the eigenvalues and the
corresponding eigenvectors. This is the Karhunen-Loeve
transformation [1] or the principal components analysis
(PCA). The principal components analysis had been applied
to seismic data set by Hagen (1981) {2] and Jones (1985) [3].
But they did not use the method of neural network. Here the
neural network of the Sanger’s unsupervised generalized
Hebbian algorithm (GHA) [4, 5] is adopted to find the
principal eigenvectors of a covariance matrix in different kinds
of seismograms, the input data vectors are from horizontal
and vertical directions respectively.

GENERALIZED HEBBIAN LEARNING RULE

The neural network of Sanger’s learning rule is
shown in Fig. 1. The network has a single weighting layer.

The input N-dimensional column vector is X, E[X]=0, the
weight matrix W is MxN, and the output M-dimensional
column vector is Y =W X with M<N. The input data are fed
into the net iteratively to find the principal eigenvectors of the
correlation (covariance) matrix Q=E[X XT]. The weight
matrix W needs to be updated for each step.

Sanger (1989) had proved that the network
converged from any initially random set of weights to find the
principal eigenvectors of the input covariance matrix in
decreasing eigenvalue order. And the algorithm was called
the “Generalized Hebbian Algorithm” (GHA). The learning
rule from Sanger (1989) is given by:

0-7803-3836-7/97/810.00 © 1997 IEEE

( i )
Wij(t+ )= Wij(t) +77(t) YiLXj - kz 1ka jJ’

where j is the index of input, i is the index of output.
or in matrix form as:

AW(t) = (t(YX" - LT[YY W(1),
where X=[X,,X,,....X, 1", Y=[Y,,Y,,...,Y,,]", and

LT[.] is the lower triangular matrix, i.e., all elements above
the diagonal of its matrix argument are zeros. lim7(¢) =0
t—®

=00

and Zn(t) =00. The procedure is guaranteed to find the
1=0

eigenvectors which we seek. The i-th eigenvector @, is

Wij =1 . N

EFFECT OF ADDING ONE EXTRA POINT ALONG
THE DIRECTION OF EIGENVECTOR

Because the Sanger’s learning net updates the
eigenvectors sequentially one sample by one sample, the
theorem about the effect of adding one extra point along the
direction of the eigenvector is proposed to help the
interpretation that more data points along one principal
eigenvector direction can enhance the eigenvalue. The
theorem can help interpretations in the input data vectors of
uniform wavelets and uniform neighboring traces.

Theorem 1 (Effect of adding one extra point along the
direction of eigenvector of a covariance matrix):
Given a covariance matrix Q computed from N data and its

eigenvalues A, and eigenvectors €, » if adding one extra data

vector (mean vector is removed) along the direction of

eigenvector @. , then (a) the new eigenvalue ii' is enhanced
more than new eigenvalues A4 j' (j # 1), (b) the new eigenvalue
li, is larger than the original eigenvalue A, if the square
length of the extra data vector is larger than A,, otherwise
/?,-' is less than A, .

t
Proof: The extra data vector (the mean vector is removed) is
represented as c@, , c is the length of the vector, c# 0. The

set of the new eigenvalues and eigenvectors computed from
the N+1 data is as follows.
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New covariance matrix is T INQ+(cg,) (cg, ) ]. For
Q, its eigenvalues A, and eigenvectors @ are given. For

T T
c¢C > CC €&°€C> &

eigenvector is @. . So the eigenvectors of the new covariance

because T e =L the

matrix are the same as those of Q.

N+1 [NQ+(C el )(C en ) ]el l el

For eigenvector @, ,

%Qei+ﬁlﬁc2 e (€ ' c )=/1i C-

N+1 ‘el N+1 e-=’1' C eiTei:1

!

(ﬁ At N+1c )el ’1 Ci- N+1’1 N+1c =4
A + NLH (cz'ﬂ'i)zﬂ“i @
From (2), if c2>l- then A4, > Z , . This proves (b).

For eigenvector e G#1), N+1 INQ+ (ce ) (cel) ]
&4 e heA e e e

o A=Ay G)

14
From (1) and (3), the new /'ti is enhanced more than the

t
new A; (j*1). This proves (a).

EXPERIMENTAL RESULTS

(I) Analysis of a fault

The seismogram in Fig. 2(a) shows a fault. The left
hand side has 24 uniform traces and the right hand side has 8
uniform traces. The seismic trace has the 20 Hz zero-phase
Ricker wavelet with reflection coefficient -0.2, 4 ms sampling
interval, and 10 - 56 Hz Gaussian white band noise (mean=0,
standard deviation=0.1). Fig. 2(b) shows the projection of
each horizontal data vector on the 1st eigenvector. And Fig.
2(c) shows the projection of each horizontal data vector on
the 2nd eigenvector.

(II) Filtering of diffraction pattern

The simulated horizontal geological layer with
termination is shown in Fig. 3(a). The depth of the layer is
500 meters, the seismic P-wave velocity is 2,500 meter/sec.,
and the receiving station interval is 50 meters. The generated
seismogram after normal moveout correction (NMO) has
reflection and diffraction patterns in Fig. 3(b). The source
signal is a 20 Hz zero-phase Ricker wavelet with reflection
coefficient 0.2. The Gaussian white band noise are added to
the seismogram. Fig. 3(c) shows that the diffraction seismic

pattern is filtered from horizontal reflection layer in the
projection of each horizontal input data vector on the first
eigenvector.

(IIT) Analysis of bright spots

For the input data vector in the horizontal and
vertical directions, the central part of bright spots can show
the uniform property.

(IV) Application to real seismogram at Mississippi Canyon

(A) We use the input data vector in the horizontal
direction to compute the principal eigenvectors of the
covariance matrix in real seismogram at Mississippi Canyon in
Fig. 4(a). Fig. 4(b) shows the 3 projection values. The
central part of Fig. 4(c) reflects strong to the projection on the -
Ist eigenvector. The left part of Fig. 4(d) reflects strong to
the projection on the 2nd eigenvector. A structure can be
decomposed into several principal components.

(B) We use the input data vector in the vertical
direction in Fig. 4(a). Fig. 5(a) shows the 3 projection
components, the 1st projection component can show the high
amplitude and polarity reversal.  Fig. 5(b) shows the
projection vector of each trace on the 1st eigenvector. The
seismic traces at the central part of the seismogram show the
uniform property.
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Abstract

Feature extraction from SAR images is usually impeded by
the presence of speckle noise. This becomes more serious in
the case of polarimetric SAR system. A polarimetric filter
recently proposed by Lee et al.[1] emphasizes not introducing
additional cross-talk and statistical correlation between chan-
nels, preserving polarimetric information and not degrading
the image quality. This paper exams its effects on the image
classification by a supervised fuzzy dynamic learning neural
network trained by a Kalman filter technique. Based on the
available ground truth, the classification performance were
evaluated using the original and filtered SAR images. Two
independent test sites are selected for this purpose. The first
case is a P-band JPL polarimetric SAR data over Les Landes
for tree age classification. A total of 12 classes between 5 to
44 years of age were to be classified, along with a bare soil
type. The second test site is over Flevoland of the Nethelands.
This agricultural site consists of 11 landcover types. Again,
the polarimetric SAR data were acquired with JPL P, L, C
bands airsar system. For the first case, it was found that the
overall classification accuracy was able to improve from 69%
to about 86% with kappa coefficient up from 0.46 to 0.76.
Substantial improvement was also confirmed for the second
case. In particular, when classification was performed using
only single frequency. This shows that the polarimetric infor-
mation are well preserved. By visual inspection from classi-
fied map, the land cover boundaries were also delincated
more clearly. As for fuzzy neural network performance,
among the tested cases, the fuzzy index equal to 2 gets the
best results.

1.0 Introduction

Polarimetric SAR is a powerful tool for terrain mapping and
classification[2]. It stores target complete polarimetric
responses from which the targets are discernible. Although
polarimetric SAR needs a more complicated calibration pro-
cedure to maintain the polarization information and channel
balance, and subsequently obtain absolute radar coefficients
of target, when properly applied, identification and classifica-
tion can be achieved to a highly acceptable degree. For
parameter retrieval, care about absolute calibration should be
taken.

0-7803-3836-7/97/$10.00 © 1997 IEEE

Speckle reduction of polarimetric SAR imagery has been
studied using several different approaches. Novak and
Burl[4] derived the polarimetric whitening filter by optimally
combining all elements of the polarimetric covariance
matrix, and produced a single speckle reduced image. Lee et
al. proposed two algorithms that produced speckle reduced
HH, VV and HV images by using a multiplicative noise
model and minimizing the mean square error. The off-diago-
nal terms were not filtered. Goze and Lopes generalized
Lee's approach to include all element of the covariance
matrix for one-look imagery. All these approaches exploited
the degree of independence between HH, HV and VV chan-
nels. The statistical characteristics, such as correlation
between channels, and polarimetric signature preservation,
were not addressed[4]. This paper examines the impact of
using this polarimetric speckle filtering on terrain classifica-
tion. NASA/JPL polarimetric P-L-C-band SAR data is used
for illustration,

2.0 A Fuzzy Neural Classifier

A new fuzzy classifier, FDL [3] was used to perform super-
vised classification to evaluate the filtering impacts. This
classifier is based on the framework of dynamic learning
NNI[2] and makes use of c-means algorithm to determine the
desired outputs, or class centers in such a way that the inputs
may belong to several classes in a fuzzy fashion according to
their membership values. The algorithm is simple, easily
implemented, and yet, naturally integrates the features of
neural net and fuzzy logic into one classifier. It has been
shown that a fuzzy neural classifier is more robust in classifi-
cation and indeed has pixel unmixing capability[3]. A neural
network can be modelled as Y=WX, where X is input vectors,
Y is output vectors, and W is network weights matrix. The
determination and update of W in FDL network are summa-
rized below. The more detail algorithm of FDL was referred
in [3).

Step 1: for k=1,2,....,C, initialize network weights wll{
Step 2: forj=1,2,..,.N

for k=1,2,...,C

assign ui = di
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Step 3: for j=1,2,...,,.N
for k=1,2,...,,C
calculate Kalman gain g‘L
update network weights w’: - w’;‘ + g’;‘ (u’; - w’;)_(j)
Step 4: for k=1,2,...,C
calculate class center Ve
Step 5: for j=1,2,...,.N
for k=1,2,...,,C

calculate membership values u‘}(

N C
. 1 . n
Step6: if e = Y, 3, EI”::'WI:+I§JI<S and JAU] <
then stop =1%=!
else go to Step 3.

In above, C is number of class, N is total number of patterns
for training and AU is the differenc? of matrix U whose
dimension is C x N with elements L, , between two itera-
tions. The calculations of class center and membership val-
ues are according to the c-means algorithm.

3.0 Test Sites and Data Processing

Two independent test data sets were used in this paper. Both
were acquired by JPL  multifrequency polarimetric AIRSA
system. One site was over Landes, France, a forest area with
tree age from 5 to 44 years old. Since the tree age classifica-
tion is of interest, only P-band data were used. Another data
set was acquired over Flevoland, The Nethelands, an agricul-
ture area with total 13 classes to be classified. A combination
of P, L, C band multipolarization data were used for this
case. First, the data were filtered by the polarimetric SAR
speckle filter[1]. The steps are as follows:

1) convert the stokes' matrix into covariance matrix for filter-
ing:

[HH]> HH.HV* HH. VV*
Z = {gH* . HV [HV}® HV.VV*
HH*- VV HV*.VV  |[VV]?

(M

The diagonal terms can be characterized by multiplicative
noise model. The off-diagonal complex terms are difficult to
characterize, but their real and imagery parts can be approxi-
mated by an additive and multiplicative noise model.

2) To filter the whole covariance matrix, we use the span
image to obtain filtering weight by applying the refined Lee
filter with multiplicative noise model.

S = [HHJ? + 2]HVE + [V V)P @)
The the filtered pixel value with local statistics filter are
S = S+k(S,-8) 3)
-2 2
var(S,) - 8,0,
and k = 4

var(S,) (1+ 6‘2,)

where the SZ is the pixel to be filtered, S is the local mean
and var(S, ) is the local variance. They are computed in an
edge directed window.

Note that the gradient is determined by using four 3x3 edge
masks. The window is selected based on the location of the
center pixel on the side of similar pixel value.

3) For each pixel, the k value and the window number
obtained from step 2) are used to filter the whole covariance
matrix including the off-diagonal terms. The filtered covari-
ance matrix is

Z=2+k(Z-Z) 5)

where each element of Z is the local mean computed using
the same sub-window.

4) The covariance matrix can be converted easily into the
stokes' matrix in either uncompressed or JPL compressed for-
mat.

Now that, synthesizing the SAR image from Stokes* matrix
of polarimetric SAR data into HH, HV, and VV polarized
images is in order. Then, it is a common practice[2] to select
the suitable training data and to test the classifier, with the
available ground truth map. It is of interesting at this point to
investigate the statistical properties of pre- and post-filtered
data, in particular, the phase-difference and amplitude ratio
between channels. Fig.1 shows the comparison of phase-dif-
ference(C-band HH-VV) distribution of pre- and post-fil-
tered. The reduction of speckle noise is obviously shown.
The amplitude ratio distributions were plotted in Fig.2.
Again, the variance was greatly reduced making the ratio val-
ues concentrated around the mean. The correlation coeffi-
cient and phase angle were nearly unchanged stating the fact
of preservation of polarimetric information using the polari-
metric filter.

4.0 Results and Discussions

For the first case we illustrated the tree age classification
from P-band data. Although optimum polarized channels
may be extracted, only linear polarizations were used here.
The tree ages were divided into 6 groups, 5-8, 8-11, 11-14,
15-19, 20-25, 33-44 years. A bare soil class was also identi-
fied although it was clearly distinguished from tree covers.
After the filtering, the overall classification accuracy was up
from 69% to 86.5% while Kappa coefficient was up from
0.46 to 0.766. The most distinct improvement is the 8-11
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years class. For each class, the respective accuracy of each high performance in SAR image classification in terms of
class was also observed. At this point, we have shown the learning speed and classification accuracy.

effectiveness of our classifier and filter. It should be useful to
illustrate the polarimetric filtering effects using the second
test case, when compared to non-polarimetric filters, as
shown below.
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Fig.1Phase difference (HH-VV) distributions of pre- and
post-filtered data
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Fig.2Amplitude ratio distribution of pre-and post-filtered data.

The Flevoland site was surveyed with total of 13 classes
identified. Again only linear polarizations were extracted.
For single frequency-multipolarization configuration, P-
band(HH,HV,VV) gives best classification results with accu-
racy of 96%. If multifrequency-single polarization is chosen,
HV-polarized (P-L-C) has accuracy of 92%. VV- and HH-
polarized gave comparable results. For comparisons, the
adaptive Lee filter, Gamma MAp filter were selected. No
efforts was yet made to compare other polarimetric filters
but should be of interests to do so in the future work. Table 1
and 2 gave the final compared results of multipolarization
and multifrequency, respectively. Of all the comparisons, we
find that the new polarimetric filtering give best classifica-
tion results. It should be emphasized that the FDL indeed is a

Table 1: Multipolarization classification

Lee Gam map New filter

C 0.58(0.54) 0.58(0.54) 0.63(0.60)

L 0.81(0.79) 0.81(0.79) 0.82(0.80)

P 0.95(0.95) 0.94(0.94) 0.97(0.96)
HH,HY, VV-polarizations were used

Table 2: Multifrequency classification

Lee Gam map New filter

HH 0.78(0.76) 0.78(0.76) 0.79(0.77)

HV 0.89(0.88) 0.90(0.89) 0.92(0.91)

vv 0.79(0.77) 0.79(0.77) 0.80(0.78)
P,L,C-band wefused

5.0 Conclusions

Using a fuzzy neural network as image classifier, the effects
of polarimetric filter on SAR image classification was evalu-
ated using two independent data sets both acquired by JPL
AIRSAR system. The new filter was developed by Lee based
on his earlier adaptive version. When compared to regular fil-
ters, it is clearly demonstrated that the new filter removes
effectively the speckle noise while perseveres polarimetric
information more effectively. This definitely improves the
image classification accuracy.
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Abstract -- The multilayer perceptron is currently one of
the most widely used neural models for the classification of
remote-sensing images. Unfortunately, training of multilayer
perceptron using data with very different a-priori class
probabilities (imbalanced data) is very slow. This paper
describes a three-phase learning technique aimed at speeding
up the training of multilayer perceptrons when applied to
imbalanced data. The results, obtained on remote-sensing
data acquired with a passive multispectral scanner, confirm
the validity of the proposed technique.

INTRODUCTION

The multilayer perceptron (MLP), trained by the
backpropagation algorithm [1], is one of the most widely
used neural models for the classification of remote-sensing
data [2]. If properly trained, it provides approximations to the
posterior class probabilities, given the feature vectors of the
samples to be classified [3], which can be used to apply the
optimal Bayes decision rule [4]. The major problems related
to this classifier are the duration and the reliability of the
training process, in particular, when the process is performed
in "batch mode" on imbalanced data (i.e., when the a-priori
probabilities of the various classes considered are very
different from one another). Such problems are encountered in
many remote-sensing applications.

In literature, several techniques aimed at speeding up the
training of MLPs have been proposed [1,5]. However, only
few authors have addressed the problem of training an MLP
in presence of imbalanced data sets [6,7]. Anand et al. [6]
proposed a technique suited to two-class cases aimed at
reducing the training time for MLPs. The same authors
extended the use of this technique to multiclass cases [7].
However, these techniques do not allow the output of the
networks to be considered an approximation of the posterior
class probabilities optimized in accordance to a given
criterion,

This paper describes a three-phase learning technique for
speeding up the training process of an MLP when it is
applied to imbalanced data. Such a technique allows to train
MLPs so to obtain an estimate of the a-posteriori class
probabilities by minimization of the mean squared error
(MSE). Experiments are carried out on remote-sensing data
acquired by a passive multispectral scanner on an agricultural
area.

TRAINING MLPS WITH IMBALANCED DATA

Let us assume to use a neural network with one hidden

0-7803-3836-7/97/$10.00 © 1997 IEEE

layer and sigmoidal non-linearities; let us consider a problem
with M classes and assume that the number of samples from
each class is in proportion of the a-priori probability of class
membership. The class ®, is the dominant one, i.e., the

number n, of samples of this class is larger than the number
n, of samples of the other classes (ny, >>n,, V p#d). In
order to make the network output provide an approximation
to the a-posteriori probability P(w, /x) of the class o,,

given the feature vector x of a sample, optimized with respect
to the MSE, we use the error back-propagation (EBP)
training algorithm and the MSE as a cost function [3}:
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where n; is the number of samples of class ,; t(’) is the
target for the k-th output of the network for the samples of

the I-th class; ok( ()) is the k-th output of the network

when the i-th sample of the /-th class has been presented to
the input; E, is the contribution of the class ®, to the MSE.
In order to obtain approximations to the posterior class
probabilities, the sum of the outputs of the network should
be normalized to 1 [3].

Let us recall the reasons why training with imbalanced data
sets is slow. As shown in [6] in a similar situation, at the
beginning of the training phase, the gradient of the mean

squared error (VE) calculated with respect to the network
weights is dominated by the contribution related to the

dominant class ©, (lIVE ) || <|VE,| Vp = d). Since, at the

beginning of the training phase, the contribution of minority
classes to the direction of the gradient E of the error is
negligible, the mean squared error of some of such classes
may increase and approach its upper limit. Consequently,
training may become slow.

THE THREE-PHASE TECHNIQUE PROPOSED

The proposed technique divides the training process into
three phases so that convergence can be reached while
avoiding a sharp increase in E, related to minority classes.

In the first phase, it exploits a modified cost function that
"simulates” the training in presence of classes with the same
a-priori probabilities. Then, in the second phase, this cost
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function is gradually modified from that of the first phase to
the standard MSE criterion. Finally, in the third phase, the
training is completed according to the standard MSE criterion.

In the following we report a detailed description of each of
the three phases.

Phase 1: The EBP algorithm is applied to the following
modified cost:

.M M "y
E =)E=)qE, ¢=-* @
I=1 =1 n,
Thanks to the modification to the cost function, the mean

values "VE, " of all the contributions E, to E are about

equal, so that the contribution of minority classes to ||VE||

is not negligible any more (a similar proof as that of
Theorem 3 in [6] can be provided). This balance among
contributions (which is natural for training with data evenly
distributed among all different classes) helps to avoid slow
convergence. This phase is stopped when the following
condition is satisfied:

E,’s"T"-T (1=1,..,M; T<<1). 3)

This ensures that both the overall MSE (see (1)) and the
following class-related MSEs will be smaller than or equal to
T:

2

MSE, = nilg(t( V-o(x(")) = %E: <sT. @&

Phase 2: Unfortunately, the output of the network obtained
in this way does not represent an approximation to the a-
posteriori probability P(w,/x), due to the cost modification
introduced into Phase 1 (see (2)). We can then use the
network weights obtained at the end of the first phase as the
initial weights of the second training phase. This phase is
aimed at gradually modify the cost from E’ to the standard
MSE criterion in order to avoid a discontinuous change in the
cost function that could generate oscillatory phenomena. This
is carried out in S steps by gradually modifying the g,

coefficients of (2) according to the algorithm that is described
below.

Initialization: The initial values of the coefficients (i.e., g} )
are assumed equal to the values of ¢, in the first phase:
Q=q (I=1..M). G)
Step j: at step j (j=I1,.....,5-1) the values of the
coefficients ¢/ are updated as follows:

[qu_l _ (nd/nm - 1):| >1

S

©
1 if [4{_1 —————(nd/n; — 1)] <1

J ("d/”; -1) if

where n,, is the number of samples of the most minoritary
class w,,. Each step is carried out by training the network

with the EBP algorithm until the convergence criterion, that
evaluates the stability of the cost, is verified.

Phase 3: It corresponds to the S-th step of the algorithm
defined for Phase 2. The training is performed with the

standard MSE as cost function since all the coefficients g’
are equal to 1. Consequently, the network output may be used
directly as an approximation to P(, /x).

EXPERIMENTAL RESULTS

In our experiments, we considered a data set referred to an
agricultural area near the village of Feltwell (UK.). We
selected a section (250 x 350 pixels) of a scene acquired by a
multispectral optical sensor (a Daedalus 1278 Airborne
Thematic Mapper (ATM) with eleven spectral bands). We
considered only the six spectral bands of the ATM that
correspond to the bands provided by the Thematic Mapper
sensor installed on Landsat satellites (with exception for the
thermal band). Each pixel of the multispectral image was
considered as an input pattern. The six bands utilized were
associated with each pixel to form the “feature vector” that
was used as input to the neural classifier.

For our experiments, we considered the following
agricultural classes: wheat, sugar beets, potatoes, carrots, and
stubble. The training-set pixels were obtained by sampling
the related fields. In order to assess the advantages of the
proposed technique in presence of classes with low a-priori
probabilities, we reduced the probabilities of occurrence for
the wheat and the potatoes classes. This was accomplished by
further subsampling the fields of such classes. Table 1 shows
the numbers of samples obtained in the resulting training set.

For each experiment, we defined a fully-connected MLP
(with 6, 10, and 5 units in the input, hidden and output
layers, respectively) and compared the numbers of iterations
required by the standard EBP algorithm with the MSE
criterion and the proposed three-phase technique. The same
learning rate (n=0.01) was used for both training techniques
(and for all phases of the proposed technique). The final
convergence criterion was also the same for both training
techniques, and was given by fixing the number of
misclassified samples below which training can be stopped
(i.e., 4.5% of the training samples). The convergence
criterion to stop the first phase of the proposed technique was
given by fixing the value of the threshold T to 0.3.
Conceming the second phase, S was chosen equal to 15.

Five experiments were carried out on the above data set,
starting from the same five randomly generated sets of
weights for both the standard and the proposed techniques.
Results are given in Table 2. As can be noticed, the proposed
method allowed notable speed-ups (an average of about 49
times). An alternative evaluation of speed-ups can be
computed by neglecting the experiments which provided the
best and the worst speeding-ups, and by averaging the speed-
ups obtained in the other three experiments. Also according
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to this evaluation, the speed-up provided by the proposed
three-phase technique (i.e., about 15 times) can be considered
significant.

DISCUSSIONS AND CONCLUSIONS

In this paper, a technique to speed up the training of MLPs
with imbalanced remote-sensing data sets has been presented,
and compared with the standard EBP algorithm. For the
remote-sensing data sets considered, several experiments were
carried out, starting from the same randomly generated set of
weights for both the standard and the proposed techniques.
Results pointed out that the proposed method allowed notable
speed-ups for all randomly-generated weights considered.

The problem of the training of MLPs in presence of
imbalanced data was also faced in [6], for two-class cases,
and in [7] for multiclass cases. For a comparison, we may
note that the extension from two-class to multiclass cases
required the definition of as many networks as the number of
classes. In addition, the outputs of MLPs trained by the
techniques described in such papers cannot be used directly to
implement the Bayes decision rule for a minimum error
classification.
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Table 1. Classes and related number of pixels in the considered training set.

Class Number of pixels | A-priori probability
Wheat 90 0.06
Sugar Beets 728 0.51
Potatoes 90 0.06
Carrots 319 0.23
Stubble 191 0.14

Table 2. Numbers of iterations required to reach an overall classification error less or equal to 4.5% (i.e., 64 misclassified

samples) for the five experiments carried out. The speed-ups provided by the proposed technique are reported.

Experiment Standard EBP ‘Proposed technique Speed-up provided by the
proposed technique
1 5851 552 10.6
2 120258 676 191.2
3 7246 587 12.3
4 4581 578 7.9
5 12637 541 23.4
Average 31915 587 49.1
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Abstract -- The neural network approach by the
back-propagation method (BPM) to land-use has
been discussed in recent years. Using such a
method, the accuracy depends on a training data
set which has been selected manually. It takes
much time to select a suitable training data set. In
this paper, as a preprocessing of classifications we
use the Kohonen feature map (KFM) and the
competitive learning (CL) to get the better training
data set. As a first step, the KFM that takes the
Landsat TM data as input is adopted to form a
rough classification of the wide area based on the
observed data. In the next step, the CL whose
inputs are the weights of the KFM node data is
carried out to determine the category of each node
of the KFM. The first weight set of the CL is a set
on weights at four corners of the KFM. The
combination of the two neural network techniques
enables us to determine the rough land-use of an
object region automatically. After that, the
classification results by the KFM and the CL are
further classified into more fine items by using the
BPM. Finally, the classification results have been
compared with other methods.

INTRODUCTION

Remotely sensed multi-spectral data have been
used for many kinds of applications, for example,
land-use analysis, the estimated crop, the water
pollution, etc. It is important to analyze the data
sampled form a satellite since we can observe the
artificial and natural changes of the phenomenon in
cycles, and investigate the wide range data of the
earth surface at the same time. These could not be
certainly obtained by the ground truth. We have
classified the multi-spectral TM data observed from
Landsat-5 by neural network approaches. The
neural network trained by the BPM is also applied
to non-Gaussian distributed data so long as we can
choose a fine training data set. But the choice of the
training data set is difficult even if well-organized
ground truth were performed. Since a pixel does not
consist of only typical class. The remotely sensed
data are separated in many clusters even if they

0-7803-3836-7/97/$10.00 © 1997 IEEE

belong to the same class, since, shadow of the
neighboring buildings or cloud may cause the
different spatial phenomena for the same object.
Therefore, it is difficult to choose a good training
data set from the target image data. To overcome
the problem, some researchers have employed the
preprocessor before performing the classification.
The preprocessor by the KFM was used to perform
rough classification of the input data. A training
data set from classification result by the KFM is
chosen, and improved the classification accuracy.

However, how the remotely sensed data has been
influenced by the KFM has not been demonstrated
quantitatively. The KFM does not need a training
data set and can automatically make a topology
preserved map of the input data on its competitive
plane. Therefore, we consider that the competitive
units represent the small cluster of the input data.
In this paper, we propose a new approach using the
competitive weight vectors as the training data set.
Using the weight vectors enables us to find the good
training data set more easily than the random
sampling. It is illustrated that the approach to the
real remotely sensed data produces an excellent
computational result.

PROPOSED METHOD

The proposal method has two stages. As a first
step, the KFM that inputs the Landsat TM data is
adopted to form a rough classification of the wide
area based on the observed data. In the next step,
the CL that inputs the weight of the KFM node data
is carried out to determine the category of each
node of the KFM. The first weight set of the CL is a
corner weight set of the KFM nodes. We can select
easily and more accurate supervisor data from
classified data by the KFM and the CL for BPM.

Landsat TM Data

In this paper, we use TM band data observed
from LANDSAT-5. The TM image is composed of
seven bands, i.e., six of them, namely, band-1, 2, 3, 4,
5, and 7, are in the visible and near infrared
portions of the spectrum, and band-6 senses
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infracted data. The special resolution of the TM
band is about 30 square meters per pixel, except for
of band-6 of 120 square meters. We use three bands,
namely, band-3, 4, and 5.

The target area of this work is located around
Sakai City in Osaka, Japan, sampled on August
20th, 1995. The size of the images is 512 x 512
pixels and contains four classes, namely, W (water
area), C (city, road area), T (town, suburb area), and
G (wood, lawn area).

Kohonen Feature Map (KFM)

As shown in Fig.1, the KFM preprocessor is a
two-layered network, one is an input layer and
another is a competitive layer. The number of input
unit is specified by the dimension of the input
patterns likewise that of the BPM classifier. The
competitive layer is organized as a two-dimensional
grid. The two layers are fully interconnected via Uy,
as each input unit is connected to all of the
competitive units where u;; denotes the connection
weight vector between the j-th element of the input
pattern and the competitive unit i.

We also call the u; as a competitive weight
vector. For example, when an input pattern Xy =

| X1, ,X;,,%;,] is presented to the input layer, the

winner unit ¢ is chosen by using a competitive
learning rule:

u.zu; AVj (1
where
u, = Z xip ' W,‘j ’ (2)

Next, the weight vector in the nearest neighbor of
the winner unit c is updated to chose on the input

\
Wi Win
% Kohonen Feature Map

Xp Xp Xzp

Fig.1 The structure of network

pattern p . The weight updating is given by the
following algorithm:

ul™ =ul +Au; A je N, 3
Au; =1, (x,»p —ui‘}’.ld), 4)

M =M (1— /T) ®)

where t and T denote a current training epoch and
its total number, respectively.

The neighbor N, is the square grid around the
winner unit c.

N, =(d, +1)x(2d, +1), ©6)

d,=dfi- /] ™

After training, we can get the topology preserved
map, from the space of input patterns to the
competitive plane. When an input pattern is
presented, we can make sure that the topographic
map uniformly covers the distribution of input
patterns by checking the response from the closest
competitive unit.

Competitive Learning (CL)

The competitive learning is an unsupervised
neural network. The structure of the network is
consists of two layers; one is an input layer and
another is a competitive layer. In general the initial
weights of network are set randomly. But in this
study, the first weight set of the CL is a corner
weight set of the KFM nodes, shown AB C D nodes
in Fig.1, to converge the network. Since the KFM is

learned by using the neighbor N _, the feature map

is made up so that the similar weight vectors gather
in the neighborhood. As the result the weight
vectors of Feature map unit are distinct each other.

The CL needs a precision classification. Each of
the KFM weight vectors is close. The inputs of a
KFM node vector into the CL are very severe to
classify. As the weight vector of the KFM nodes does
not input directly into the CL input node, we code
the input data by using coarse coding as
preprocessing. Coarse coding can be considered as a
kind of interpolation. One uses n units which are
distributed (usually, but not necessary) uniformly in
an interval. This means that every node i is

assigned as a fixed location z,,. When coding the

numerical value w,, the output of node m at

ij:

location z, is given by a Gaussian response
function (other forms are also possible):
”(""if'zm)z
wij,,l(w,j)=e ot (8)
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Fig.2 The category of Feature map units after CL

where ¢ is a parameter characterizing the
width of the curve.

During learning, an input pattern is presented to
the input layer and using a competitive learning
rule we choose the winner unit c:

u 2u, AVj, ©)
where
Uy =D Wy Vs (10)
i
Vi = v?,lcd +Av,, (11
Av, =n, (Wz'jm - leid)’ (12

SIMULATION RESULTS

We show the structure of this method in Fig.1.
The lower network is the KFM. The upper network
is the CL. The KFM has two layers. We look a
suitable parameter of these networks in learning
speed and from accuracy point of view, the Feature
map has two-dimensional 8 x 8 nodes, the learning
late 1 is 0.2, the number of learning times T is

80,000 and the initial size of neighbor d is 5. The

CL has 4-competitve nodes, the learning late n 1is
0.02 and the number of learning times is 12,000.

At the second stage, the CL is carried out. The
conclusion of the CL is shown in Fig.2. This figure
shows which the category of the KFM units belong
to. These units in same category are close each
other.

Fig.3 shows the 4-classification result by the
unsupervised learning using the KFM and the CL.
We can select easier and more accurately the same
supervisor data from this figure than from the
original data. The accuracy of this method shows in
Table.1. This table shows that proposed method is
effective to give us finer supervised data set.

CONCLUSIONS

The KFM and the CL method indicates that it is
difficult to select the supervisor data set from
original data, but it is easier and finer to select
supervisor data set from roughly preclassified data

% i3

Fig.3 The classification results
Table.1 Comparison of classification accuracy
Method C{W| B |DG|LG| T
Only BPM
(%) 90 { 94 | 100 | 96 | 94 | 90
KFM+CL

100 | 100 | 98 | 94

+BPM(%) | 96 | 96

set. The second advantage of this method is the
ability to classify roughly even unknown data.

A problem of this method is that this method
cannot classify into 4-categories. But if we need to
more detail classification, we can use it again for
more divided category. Now I am considering the
method to classify into more than 5-category.
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Abstract -- A dynamic learning neural network is adopted to
relate the normalized radar backscattering coefficient c° to
the wind vector. By given the average wind speed and wind
direction and their standard deviations, a set of test wind
vector fields are simulated. The corresponding o° values are
calculated according to the well known empirical model
named CMOD-4. To improve the accuracy of the estimated
wind direction, spatial Information is considered in the
reconstruction process. Thereafter, the neural network is
iteratively trained by the input-output pairs generated from
the test wind fields. Finally, the wind parameters are
reconstructed upon applying ¢° values to the well trained
neural network. Experimental results indicate that neural
network is an effective tool for wind reconstruction.

INTRODUCTION

In the 1990s, several satellite scatterometers are dedicated
to Earth and ocean observation such as the ERS-1 advanced
micromave imager (AMI) [1] and the NASA scatterometer
(NSCAT) [2]. As shown in Fig. 1, the ERS-1 scatterometers
are microwave radar capable of measuring ocean surface wind
speed and direction. It provides three radar images of the
ocean surface with a spatial resolution of 50km and a swath
width of 500km. The three images are acquired by the three

Scatterometers

Aft beam ,

Fig. 1 ERS-1 scatterometer Geometry
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different antennas: the mid-beam, looking to the right side of
the satellite, perpendicular to the ERS-1 ground track, the
fore-beam, looking forward at 45° azimuth projection angle,
with respect to the mid-beam, and the aft-beam, looking
backwards at 45° azimuth projection angle, with respect to
the mid-beam. The relationship between the normalized radar
cross section o° measured by the scatterometers and the wind
vector can be established by using a geophysical model
function. It is known that the wind field estimate is not unique
but is identifiable from scatterometer measurements.
Conventional approach to wind estimate involves formulating
a cost function from the scatterometer measurements and then
minimizing it to obtain estimates of wind field. Local minima
are usually appear due to the nature of geophysical model
function. This leads to the so called aliasing or ambiguity.
Since dealiasing or ambiguity removal relies on the
information not contained in measurements, it is not pursed
here. In this paper, we are primarily concern with the
inversion of the geophysical model function. Because it is
nonlinear and the exact character of the nonlinear behavior
may not be known a priori, this paper suggests a highly
flexible, yet accurate, alternative approach to retrieve the
wind vector by making use of the neural network techniques.
In the next section, the detail experimental procedures are
listed. The experimental results are shown in the following
section. Finally, some conclusions are drawn.

EXPERIMENTAL PROCEDURES
Wind Field Generation

According to the simulation model [3], the wind vector
field is assumed to be an expression of the form

o [2 2
ulx,y)= 3 3 U(kx,ky)exp{{L—:’kaL—:kyy” o)

ke =0k, =0
nom | 27 2

v(x,y): >3 V(kx,ky)exp {—kxx+—7£kny )
ky=0k,=0 Ly Ly

where the coefficients U(k;,k,) and V(k,,k,) should satisfy the
following conditions
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for some @ > 0 and phase exp[i®(k,,k,)] where wk,k,) is a
random variable uniformly distributed in [0, 2n]. By given the
average wind speed and wind direction and their standard
deviations, a set of test wind vector fields are generated For
the case of ERS-1, we set m=19 and »=19, having a grid of
size of Dy(=25Km) x Dy(=25Km) with patch size of
Ly(=475Km) x L,,(=475Km). Fig. 2a shows an example of the

simulated wind vector field whose mean wind speed is 10
(m/s), mean wind direction is 22.5 (deg), and standard
deviations is 2 (m/s).

®)

Wind Field Reconstruction

The corresponding ¢° values which simulate the aft-beam,
the mid-beam, and the fore-beam of the ERS-1 scatterometer
returns are calculated according to the well known empirical
model named CMOD-4. The relationship between o° and
wind vector are given by

0°=bo[1+b; cosp+ by tanh(b, ) cos2p]"* ®)

where ¢ is the wind direction and the coefficients by, by, by,
and b; are functions of the wind speed and incident angle. A
dynamic learning neural network [4] is adopted to relate o°
and wind vector. To improve the accuracy of the estimated
wind direction, spatial information is considered in the
reconstruction process. Therefore, the neural network is
constructed to have twenty eight input nodes, the three o°
returns at each cell of a 3 X3 window and the incident angle
of the mid-beam, and two output nodes, the wind speed and
wind direction. Thereafter, the neural network is iteratively
trained by the input-output pairs generated from the test wind
fields. Finally, the wind parameters are reconstructed upon
applying the c° values to the well trained neural network. A
very satisfactory result is obtained. Fig. 2b shows an example
of the reconstructed wind vector field with mean wind speed
of 10.17 (m/s), mean wind direction of 23.68 (deg), and
standard deviations of 2.01 (m/s). In the following section, we
shall apply the measured o° values acquired by the ERS-1
scatterometers to the well trained neural network to retrieve
the wind speeds and wind directions.
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B wind speed = 10 m/s

b. reconstructed wind vector field
Fig. 2 An example of a wind vector field whose mean wind
speed is 10 (m/s), mean wind direction is 22.5 (deg), and
standard deviations is 2 (m/s)

EXPERIMENTAL RESULTS

Due to the absence of ground truth, we compare our results
with the wind field reported by ECMWF. First, from the wind
speeds and wind directions reconstructed by the neural
network and some related parameters, we can gain three c°
values of ERS-1 scatterometers using the model CMOD-4.
Similarly, from the wind fields reconstructed by ECMWF, we'
can acquire three c° values using CMOD-4. Finally, the
differences between these two sets of o° and measured o°
are calculated. In addition, since we take spatial context into
account, the grid mesh of a wind field becomes 17 x 17. An
example of the results for a data set labeled 1F14292-38 are
shown in Fig. 3. The axis represents 289 cells ( 17 x 17 ) and
the y axis represents the o° in real values.




Three Antennas

Fore Beam

Fig. 3 The difference between o° reconstructed by DLNN
and measured o° is plotted in solid line; and the difference
between o° reconstructed by ECMWF and measured o° is
plotted in dot line.

CONCLUSIONS

From, the above experimental results, a very satisfactory
result is obtained. Results indicate that neural network is an
effective tool for wind reconstruction. It is also seen that the
use of neural network to remove the ambiguity is also
applicable and reliable.
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Abstract -- In order to fully utilise SAR techniques, it is
important to employ classification schemes which can
discriminate between surface cover types having closely
related statistics. A hybrid method, consisting of statistical
textural measures and radial basis function (RBF) neural
networks, is proposed for this problem. Imagery obtained for
areas of South American rain forest are employed for this
study and standard statistical techmiques are used as a
benchmark for comparison.

A supervised method for training the RBF neural network
hidden layer and parameters (e.g. centres, width, etc.) is
proposed, based on a minimum-classification-error criterion.
This modified RBF network has been applied to the forest
data and has been found to outperform standard statistical
techniques and the conventional RBF with k-means (or other
similar) training method for hidden layer parameters in
these classification tasks.

INTRODUCTION

Satellite-borne synthetic aperture radar now provides
regular, quantitative, all weather images of the Earth and
microwave remote sensing is proving an essential tool for
Earth Observation. So far, the majority of approaches have
been limited to distinguishing between image classes with
quite different statistics. It is therefore important to address
the problem of classifying surface cover types having closely-
related statistics.

Recent years have seen an increase in the application of
artificial neural networks (ANNs) to radar imaging and
encouraging results have been reported [1,2,3]. ANNs are
able to process a large amount of input information in
parallel and generate categorical or generalised output. They
can adaptively learn to build non-linear input-output
mapping structures specific to a particular problem. Radial
basis functions are non-linear layered feedforward neural
networks which are capable of implementing arbitrary non-
linear transformations of the input space with consistent
computational efficiency and learning speed. This paper
proposes a new implementation of RBF networks which
differs from conventional approaches [4-5]. It adopts a
minimum-classification-error criterion to train the hidden
layer parameters of the network in a supervised manner. The
technique is applied to a series of SAREX images obtained
from the banks of the River Tapajos in the Tapajos National

0-7803-3836-7/97/$10.00 © 1997 IEEE

Park. The Grey-Level Co-occurrence Matrix [6-7] is used to
reduce the data by extracting 12 textural features from 3
different data sets, each of 300 image sections selected from
the original SAREX data. The probability density functions
of the resulting features are computed for each set of images
and the complexity of the data is assessed by means of the
probability of error between each corresponding feature. The
same data is used as input to a logistic regression classifier
[8] which provides a benchmark comparison for the ANN.
Finally, the radial basis function neural networks, with both
conventional and newly implemented training procedures,
are applied to the two sets of images whose statistical
features are highly overlapping and the performances of the
various methods are compared.

EXTRACTION OF TEXTURAL FEATURES

Grey-level Co-occurrence matrices (GLCMs) describe
texture by means of computational processing for various
angular relationships and distances between neighbouring
resolution cell pairs of a given image. Haralick et al. [6]
assumed that texture-context information is specified by the
matrix of relative frequencies P;; with which two
neighbouring resolution cells separated by distance d,
positioned at an angle a, occur on the image, one with grey
tone i and the other one with grey tone ;.

The GLCM technique was implemented in Fortran
software, which was fully tested and applied to 3 sets of 300
128x128 images selected from the original SAREX data of
the Tapajos National Park. Each set represented a different
surface cover: the lower level forest near the river Tapajos
[Fig.1(a)], the Terra Firme forest [Fig.1(b)] and non forest
data [Fig.1(c)] (for convenience, hereafter described
respectively as setl, set2 and set3).

For each image, twelve textural features were generated
according to the equations defined by Haralick. For
subsequent processing, the correlation between features was
calculated, together with the pdf of each feature. These
distributions were plotted and compared for each
corresponding feature of the 3 image sets.The
misclassification percentage of each pair of pdfs was
calculated as the probability of error between the two
distributions. This gave an approximate measure of the
classification accuracy that could be achieved by standard
statistical techniques.
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a) (b) ©

Fig.1. - Typical images respectively representing the three
data sets: (a) the lower level forest; (b) the Terra Firme forest
and (c) the non-forest data.

It was observed that the pdfs of setl and set2 were highly
overlapping, but each differed significantly from the pdfs of
set 3. As an example, the probabilities of error between the
SA distributions of setl/set2 , setl/set3 and set2/set3 are
respectively: 51.8%, 21.8% and 23.9%.

LOGISTIC REGRESSION ANALYSIS

Logistic regression (LR) is a multivariate technique for
directly estimating the probability of an event occurring and
in this application, the 12 sets of features of each image class
were used as the independent variables of the LR model of
the SPSS Windows package. As expected, in accordance
with the probability of error results, setl/set3, and set2/set3
could be perfectly distinguished, unlike setl/set2 that only
provided 79.3% and 80.7% classification accuracy on
training and test data respectively.

The Wald statistics option was selected from the SPSS LR
command window, in order to assess the contribution of each
feature to the correct classification percentage of the data.
The resulting values were very close to those already
calculated with the probability of error, for example the SA
feature gave 49%, 78% and 76% accuracy on the training
data for setl/set2, setl/set3, and set2/set3 respectively, thus
demonstrating the reliability of the LR method. The Wald
statistic had also been used to select the most meaningful
features for the classification of the two sets of forest data,
since some of the 12 features could mislead the classification
performance if not relevant with this investigation.

RADIAL BASIS FUNCTION NEURAL NETWORKS

Radial basis functions are feedforward neural networks
with an input layer, a single hidden layer and an output
layer. The input layer is made up of source nodes (sensory
units). The hidden layer consists of a number of RBF nodes,
with simple kernel functions. Each layer is fully connected to
the following one. The input data does not go through
complex and time consuming multi-hidden layer expansions,
therefore RBF networks result in great training speed and
application flexibility. Each hidden node evaluates a radial

basis function on the incoming input and the classifier
output is simply a weighted linear summation of these
functions.

The network can be configured with one radial basis
function centre at each training data point. However, to
minimise the complexity of the network it is convenient to
reduce the number of centres. For this purpose, a variety of
approaches have being developed [4,5]. The K-means
clustering algorithm was applied to the two data sets of the
South American rain forest, in order to select the centres of
the radial basis functions, and their width was fixed. The
output layer used a single perceptron and its weights were
calculated using the iterative least mean square algorithm

The network was trained for 50 cycles with 70 hidden
nodes and the width was set to be 60% of the minimum
distance between the basis function centres. This network
classified the training data with 81.7% accuracy, but only
gave 66.4% classification accuracy for test data.

A NEW SUPERVISED RBF NEURAL NETWORK

The accuracy of RBF networks can be improved if

supervised learning of the function centres is used. A new
supervised algorithm was developed. This uses a minimum-
classification-error criterion to select the best centres directly
from the input data and determines the optimum weights of
the output layer by means of Wiener-Hopf simultaneous
equations.
The algorithm starts with only one hidden unit. The training
sample that gives the minimum classification error is
selected as the first centre of the RBF network. Then, at each
subsequent cycle an unpicked sample, c,, is selected as a
new centre, c(n+1), and added to the network, if it, together
with the previously selected centres, p» gives the best
performance. When overlearning occurs, the performance of
the network stops improving, as shown in Fig.2. In this way
the algorithm also finds the optimal number of centres that
the RBF network should contain. This algorithm can be
mathematically expressed as in (1), when applied to N data
samples, Xp» whose desired output, d,,, can be either 1 or 0.

> p,
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Fig.2 - The curve of classification error vs number of
selected centres during training,
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Atstepn+ 1, forn=0,1,...,.N and K=n+1:
N n
c(n+1)= argmin Z d;—¢ pr(n+l)*d>p(xj,cp,0')+
uelV}~tn} pr

+wn+1(n+1)*®n+1(xj,cu,a)—l] ¢))

where, w, (n+1) is the bias weight, ®(-)=1, w,(n+1), for
p=12,.,(n+1), is the pth output weight, using p and ¢,
and finally ¢[-] is a unit function, so that:

ol]= {(1)

The initial width, o, and threshold, A, used in the above
method, are both set to 0.5. Once the RBF centres have been
selected, the width and threshold can be varied in order to
find their optimal values.

The newly developed RBF software was applied to the two
sets of forest data of the Tapajos Park. The resulting optimal
RBF network consisted of 39 hidden units and a width fixed
at 0.5. It consistently outperformed both common RBF
networks and traditional statistical techniques, achieving
90.7% and 87.4% classification accuracy on training and test

if [] >0
otherwise

data respectively. Furthermore, the similarity of these two -

values shows a very good generalisation ability, which
makes this network very reliable.

The classification performances of the above described
statistical and neural network techniques are summarised in
Table 1.

Table 1 - Comparison of the results for the three
classification techniques employed

Classification Training Data Test Data
Method Classification Classification
Accuracy Accuracy
LR 79.3% 80.7%
K-means RBF 81.7% 66.4%
New RBF 90.7% 87.4%
CONCLUSIONS

This paper has introduced a new approach to the
classification of imagery with closely related statistics. Both
standard statistical techniques and neural networks have
been applied to two sets of forest data and one set of non-
forest data. Logistic regression, the statistical technique,
gave a high accuracy on the classification of forest data and
non-forest data, but it only gave average results for the two
sets of forest data. However, this result could be consistently

improved by means of a newly developed RBF network. This
new RBF algorithm trains the network in a supervised
manner by means of a minimum-classification error criteria.
Also, it was found that image textural information is an
appropriate classification measure in this application. In
particular, the GLCM technique extracted meaningful
textural features used as inputs to the network classifier,
reducing in this way the dimensionality of the problem.

Future work will involve the use of this classification
system to sets of high resolution imagery acquired by means
of the ground based polarimetric SAR , developed in the
Comm