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A SIMPLE MODEL FOR DISSOCIATION OF DIATOMIC MOLECULES 

1    Equation of state 
The equation of state (EOS) which is currently used in the NRL hydro code is an 
improved version of the EOS described in reference [1]. In this section We shall 
briefly review the parts of this EOS which are relevant to dissociation. 

1.0.1    The basic approach 
The fundamental assumption in the formulation of this EOS is that the free 
energy of the system (and therefore all the thermodynamic quantities) may be 
written as a superposition of three terms representing the free energy associated 
with; 

1. atomic and electronic interactions at zero temperature-Fc(p) 

2. Thermal motion of atoms and ions-Fn(p, T) 

3. Thermal motion, excitation and ionization of electrons.-Fe (p,T) 

( T is the temperature and p is the mass density.) 

1.0.2    Nuclear contribution to the EOS 
In order to describe the motion of atoms and ions in solid, liquid and gaseous 
states in a single analytical formula, the authors of [1] use an interpolation 
method. Equations (4.18),(4.19),(4.20) of reference [1] present an interpolation 
between the free energy of solid according to the Debye-Griineisen model and the 
free energy for ideal gas. Explicitly these equations read; 

where 

J3,-JVbfcBr|31n(l-e-*)r-l + |ln(l + *)} (i) 

     _. (2) 
2irkB   e2 

In these equations, h is the Plank constant, kB is the Boltzman constant, Nt is the 
number of atoms per unit mass with atomic number Zt and atomic mass mj, N0 

is the number of atoms per unit mass; N0 = £ Nt. 0 is the Debye temperature 

which in this model has the following functional dependence on the mass density: 
(equation (4.12) in reference [1]): 

6(p) « 0o * (^) "§ er°M?)>-i(*-e)+W2> (3) 
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In the above formula, 60 and T0 are reference values of the Debye temperature 
and the Grüneizen coefficient at a reference mass density p0 .The pressure and 

energy associated with this free energy (by P„ = p2^ and En = -T2 dT ) are: 

P„ = piV0feBT 
3r + ^ 

and 3 2 + ^ 
En = -N0kBT — 

(4) 

(5) 

where V is the Grüneisen coefficient: 

6dp 

2    The partition function 
In the present section We will derive the effective "single particle partition func- 
tion" from which the free energy of equation 1 ,and therefore also the nuclear 
parts of the equation of state used at NRL are derivable. In section 3 We will 
use this partition function in the derivation of the equation for the degree of 
dissociation. 

Consider the function \1> of equation 2 

# =M^iiJs^bto)l 
2nkB   02 

27TfcR    02 

(6) 

n N, 
2«L 
3N0 

I N$mf 

Using the relation JV0 = £ Win the last e^10*1' one Sets 

i 

*=n 

-n 

-n 

N$h2p*T\      Nj 

2nkB   0* 

(h2{NlP)^T 

y 2nmikB Q2) 

'h?{NlP)*TX^ 
2nrrnkB 02 J 

N'mf 
a-,2^- §1 a N0 

2Nl 
3N0 

(7) 



Denote the number of atoms with atomic number Z{ and atomic mass m, in 
the volume V by rji and the total number of atoms by t] (i.e.  7? = £> p = 

^    m    = iai) . Using this notation and rearranging formula 
7 , \P may be rewritten as: 
£ 5>mj,and ty = ^jmj 

*=n m {(e(?)3)} 
22. 
3 .j 

(8) 

The term in the denominator of the right hand side of equation 8 is the well 
known single particle partition function for noninteracting particles of mass mj 
in a volume V (ideal gas) 

qr=v (2vmikBT\2 

V      &      ) 
(9) 

The term in the numerator is the partition function for solid (Debye Grüneisen 
model, in the limit £ « 1) 

-n(*D" 
Return now to equation 1, in the limit f « 1, it may be written as: 

P.=NokBT {in (!(£)>) + | ln(l + «)} 

-AM.r{ii:'»'"g4)')+ii-(i+*)} 

Kn&)?)-[1+n(S; 

+n(?#f] 

= N0kBT 

= N0kBTla 

ift^Y* 

,W \ 8 ij 

= JV0kj*Tln< 

(10) 

(11) 

(12) 



= -N0kBT]n< 
nw- 

1 + 

 )') 

nW)M]J , 
We therefore conclude that the interpolated free energy of equation 1 is derivable 
from the partition function: 

Zn=< 
IK«0)1* 
i 

i + ?(*f)"J 
(13) 

In the limit * » 1, the interpolated partition function reduces to the partition 
function for a mixture of ideal gases; 

*-»oo -y- \rji    ) 

In the opposite limit.* -♦ 0 the partition function reduces to the Debye formula: 

BmZ. = nfeI>)*ss«1> 
p-»oo -y- 

(Since £ ty = 17) 
Notice that far from these limits, the partition function 13 does not factor 

into the partition functions the various species participating in the mixture.. 

3    Dissociation of diatomic molecules 

3.1    Law of mass action 
The incorporation of dissociation process into the equation of state is based on 
the law of mass action[2]. According to this law, the equilibrium constant for 
dissociation of diatomic molecules X2 (X2 +± 2X) is related to the single particle 
partition function for atoms, qx, and for molecules, qX2, by: 

r,        MV)' (g*/*02 (14) 
riJV   ~   qJV 

Where r\x is the number of atoms in the volume V, 7fe2, is the number of 
molecules in the volume V. Equation 14 together with the obvious relation 
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(which states that the total number of atoms in the system is constant) allows us 
to solve for the densities of the atoms and the molecules nx = rjx/V and nX2 = 
r)X2/V, in terms of the partition functions, qx/V and qxjV. Strictly speaking, the 
law of mass action is applicable only to mixtures of reacting ideal gases, in the 
present work We will ignore this restriction (without any justification) and use 
equation 14 together with the interpolated partition function. 

3.2    Single particle interpolated partition function for atoms 
and molecules 

By equation 13,the single particle partition function is: 

qn = rjZje = V 
IK«0)1* 

i 

i + n (iff] 
(16) 

This partition function takes into account only translation of atoms and mole- 
cules. For molecules, rotation, vibration and bonding energy of the molecule also 
contribute. In the next section We shall use qn as the single particle partition 
function for atoms, for molecules We shall multiply by the partition functions for 
vibration and rotation and dissociation, qv,qR,qdil>si-e., in equation 14 We shall 
use: 

qx = <ln(m) = iff)1 

1 + Vx {££ 

and; 

qX2 = qn(2m)qvqRqdiss 

y^rn^ry 

v& 

(17) 

1+1     *»(*>'» 
v/4*mk„T\S 

V  R 
—ä? q Qdiss (18) 

Strictly speaking, the right hand side of equation 17 should be multiplied by the 
partition function for electrons in an atom and the right hand side of equation 
18 by the partition function of electrons in a molecule. In the present work a less 
rigorous approach is used, the effect of electrons is accounted for only trough the 
dissociation partition function; 

to = e  kBT (19) 



which represent the ratio between the partition function of two dissociated atoms 
and that of a molecule in a phenomenological way with a density dependent 
dissociation energy. We use the function [3]: 

fO V>Vd 

For qv We shall take the partition function of harmonic oscillator in the limit 
where the temperature is higher than the vibrational temperature 6V = ^ « 

T; 

oo oo 

qv = y* e-en/kBT _ y^ e-üfcrh»vV"+v (20) 

n=0 n=0 
oo 

= e ar \   e 
n T = e  2T 

n=0 
1 

LI —e   T 

2sinh(f£) 

For q* we shall take the partition function for rotator with moment of inertia 

A: 

00 Ä im-»*8       f -x   S* Sn2IkBT      T 
q* = J2 9ie-€t/kBT = YPl + IK"^" - j e   i^?<*c = —^2 = ^ 

o (21) 

where: 

*-£ (22) 
(For hydrogen molecules the vibrational temperature is 6V = 6320 K, the rota- 
tional temperature is 9R - 87.5 K, and dissociation energy is Ediss - 4.48 eV.) 

3.3    An equation for the densities of molecules and atoms 
Consider a mixture of t]x atoms of mass m, r)X2 diatomic molecules of mass 2m 
and %ii inert atoms of mass rm in a volume V. At every given temperature T and 
mass density p, assuming that the dissociation reaction has arrived a steady state, 
the number of atoms and molecules in every volume element is determined by the 
law of mass action 14. In the present section We shall use the law of mass action 
14 and the interpolated partition functions derived in section 3.2 and derive an 

6 



equation for the densities of atoms and molecules, nx = ^-,nX2 = ^; In terms 
of the total mass density; 

P = 
r\xm + 2r\X2m + iftnfr 

V 
(23) 

and the temperature T. 
Clearly, the ratio between the number of inert atoms and number of reacting 

atoms; 
(24) a = Vi 

and the total number of reacting atoms 

V = V* + 2*7*2 

are fixed. The mass density p in terms of these parameters reads: 

(25)    . 

P = 
rjxm + 2r}X2m + ^Wj 

V 
JVx + 2T]X2)(rn + a*mi) 

V 
n(m + a*mi)     ., , — Jl—!_ -^ = \(m + a*m,i) 

Where We have defined an effective density 

A     V 

By equation 25: 
A = nx + 2nX2 

Using equations 16,17,18,21,20,19 in the law of mass action 14,leads to: 

(26) 

(27) 

K = 
(WV0! = Wvf 
VxjV qxjV 

2   / 

V 1 + 
1_ 
v' 

1 + 

*/(f)3 
>     < 

v(i=^ai:) I 

(28) 

iff) 
T\3 

1     1     _.?di«n 
\ e   kBT 

>qvqR 

J 



or: 

or: 

1 + 1*2 (f) 

2 
3 \   3 

2 

kV(±EgaZl)i 

1 + 
^(f)3 

v/2*mk„Ty 

_V(fh/Vf 
3      1?  W^ 

(f)W Edii>B 
eksT 

2+[n,. ■X2 
Igt 

21 
3 

/2jrmfcBT\! iW 
2 

2\  3 

1+ \nx 
(iT 

(2irmfcHT\ ! 

A n. 0:2 
(£)' («V) 

2 2 grfi/m 
3 g3 *BT 

(29) 

(30) 

VK/A)V 

2+ I 2s*- iÖ 
T\H 1 /2irmfcBT\ 

t{.-i?r-) 

1 + 2a. ID! 
rl=2g)2(,V) 2 2 S<K.,8 

3 g3  fcsT 

A i(2s-eT)1 

Equations 30 and 27 are two equations for the atomic density nx and the 
molecular density nS2 for given values of mass density p and temperature T. 

In the rest of the section We shall simplify the notation of these equations. 
Define the quantities; 

av(T)qR(T) \     zSa^ 
ß(p,T)=2\ q K  )q K  I 1   e3fc*T, 

fi = 

1  (2icmh„T\2 
T\      ft2      ) 

nx       _ n£ 

271^ +nx      A ' 

and 

£ = 
P^) 
*■ (*) 

In terms of these quantities, equation 30 takes the form: 

(31) 

(32) 

(33) 



ffl'fg+re)1]-. (34) 

3.4 The procedure for obtaining the atomic and molecu- 
lar densities for a given state with known total mass 
density p and temperature T. 

For given temperature T and mass density p, the functions 0(p), A(p), £(p, T), ß{p, £) 
may be evaluated explicitly by using formulas 3,26 33, 31. Thus, the only un- 
known in equation 34 is R. Solving equation 34, one gets R(p,T) , the atomic 
and molecular densities nx and nX2 are obtained by: 

nx = RX (35) 

n,2 = Ü^A (36) 

In section 4 We will describe a numerical analysis of the equations and an example 
where the above procedure is applied to the case where £ « 1. In this case the 
equations may be solved analytically. In section 5 a Fortran routine for applying 
the procedure and solving for the atomic and molecular densities in the general 
case is presented. 

4    Numerical Examples 

4.0.1    constants and functions definition 

h = 10"27 erg-sec 
kB = 1.38 * 10~16 erg/kelvin 
for Deuterium 
m = 2 * 1.67 * 10"24, m = 3.34 x 10"24 

6R = 87.5 k 
Ov = 6320 k 
Edi88 = 4.48 eV= 4.48 * 1.6022 * 10"12 : erg i.e. Edi8S = 7.1779 x 10~12 erg 
take: 
r0 = ffo = l-8 
Öo = 240 Kelvin 
p0 - 0.3017 g/cc 
mi = 16*1.67*10-24 

rrn =2.672 x 10"23 



«*co = ft 
ß(p,T)=2 

Qv(T)qy(T) e3 kBT 

t(P,T) = 

(tn+o*m{) 

/2irmkBT\% 
V-sr-J 

4.0.2    Debye temperature 

Let us start by plotting the formula for Debye temperature used in reference [1] : 

0.02 0.04 0.06 0.08   0.1    0.12 0.14 0.16 0.18   0.2 

Debye temperature (Kelvin) as a function of the mass density p (g/cc) 

4.0.3    The interpolation factor, f 

Notice that at low densities, 0 becomes very low, of the order of few degrees. 
This in turns means that £ becomes very small. For a single type of atoms, 

£ = fas.y , when this ratio becomes much smaller than 1, as can be seen 

immediately from equation 13, the partition function and consequently all the 
other thermodynamics quantities, reach the limit of ideal gas. The surface £(/>, T) 
is shown in the figure below. The line, in the p, T plane, formed by the intersection 
between the £ surface and the bottom of the box (£ = 0.2) determines the region 
for which £ « 1 and the ideal gas behavior prevails. Similarly , 
The line formed by the intersection between the £ surface and the top of the box 
(£ = 5) determines the region for which £ » 1 and solid state behavior prevaus. 
In the region between these lines the full interpolation formulas 1,4 and 5 should 

be used. 
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2000^^/^§ fSSS&i*^**™ 
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4000^<C ^^0.15 

50000.16 

The interpulation factor £ as a function of p(g/cc),T(Kelvin) 

4.0.4    Ideal gas case 

In the following We shall consider the case f « 1. This simple analytically 
solvable case will serve as a test case when solving numerically for the general 
case. When £ « 1, equation 34 takes the form: 

(¥)§[(¥)fL^ 
ßf [fit]2 

(37) 

or, 

R
2
 + -±TR- 

2/?! 2ßi 
= 0 (38) 

The solutions for this equation is: 

Only the upper sign solution is physical since this is the only solution which 
leads to values in the correct range, 0 < R < 1 . The figure below shows the 
dissociation ratio as a function of p and T. 
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Thedissociation ratio R[p, T) = 5-^ as a function of p(g/cc) and T(Kelvin) 

and at higher temperatures: 

0.04 

3800 ~-»-4-'"'   °-1 

40000.12 

Thedissociation ratio R(p, T) = jJjfc as a function of p(g/cc) and T(ffefoin) 

At the high density corner of the box £(0.13,3000) = . 26644 so beyond this 
density the ideal gas approximation is not valid anymore and we have to solve 
the more general equation 34 

5    The general case: A routine for solving for atomic and 
molecular densities 

5.1    The program 
The program for solving the equation for the molecular density nX2 and the atomic 
density nl2 for the general case, (equation 34) is presented in the Appendix, tor 
given values of a, p and T (a,rho and t in the program), the program evaluates 
the effective density of hydrogen atoms X(p) and the coefficients Z(p,T) and 
0(p T) (cm and beta in the program) of equation 34 . Having these coefficients 
the program calls the routine rtsafe which solves equation 34 for R. (The routine 
rtsafe is based on the Newton-Raphson method for finding zeros of functions). 
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the molecular density nX2 and the atomic density nX2 are evaluated by using 
equations 35 and 36. 

5.2    An example 
The routine described above was incorporated into the EOS. Figure (5) describes 
the results of the application of the improved EOS to measurements described 
in reference [4] . The squares describe the experimental Hugoniot.The left line 
("ion") describes the Hugoniot curve with the EOS without dissociation. The 
next Hugoniot ("sim") was obtained by using EOS with the assumption that 
dissociation fraction is just exp(-EdiM/kBT) . The curve "mol" was obtained 
by using EOS with the model described above but with a constant dissociation 
energy. The "new model" result was obtained by using the EOS with the complete 
model. The line "ref 11" corresponds to the model of reference (11) in [4]. 

CO 
JQ 

i_ 
3 
(0 
0) 
CD 

1    r 

0.1 

0.2 0.4 0.6 0.8 1 

Density (g/cc) 

1.2 

Figure (5): The results of the application of the improved EOS 
to the measurements described in reference [4]. 
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