October 1984 Report No. STAN-CS-84-1024

IR RO

PB96-150867

How to Share Memory in a Distributed System

by

Fli Upfal and Avi Wigderson

' Department of Computer Science

Stanford University
Stanford, CA 94305

DTI0 OUAIITY INICECIED 3

HOW TO SHARE MEMORY IN A DISTRIBUTED SYSTEM

Eli Upfalt

Stanford University
Stanford, CA 94305

Avi Wigderson*

IBM Rescarch Lab.
San-Jose, CA 95193

ABSTRACT

We study the power of shared-memory in modecls of parallel computation. We describe
a novel distributed data structure that climinates the nced for shared memory without
significantly increasing the run time of the parallel computation. More specifically we show
how a complete nctwork of processors can deterministicly simulate onc PRAM step in
O(log n(loglog n)?) time, when both models use » processors, and the size of the PRAM's
shared memory is polynomial in n. (The best previously known upper bound was the trivial
0O(n)). Wc also cstablish that this upper bounds is ncarly optimal. We prove t.hat an on-line

simulation of T PRAM steps by a complcte network of processors requires ﬂ(Tl—)ngg)ﬁ) time.

A simple conscquence of the upper bound is that an Ultracomputer (the only currently
feasible general purpose parallel machine), can simulate one step of a PRAM (the most con-
vcmcm parallel model to program), in O((log n loglog n)?) steps.

Categorics and Subject Descriptors: C.1.2 [Processor Architectures]: Muitiple Data Strcam
Architectures (Multiprocessors) - Parallel Processors: 1).4.2 [Operating Systems]: Storage
Management - Distributed memories: 1).4.7 [Operating Systems]: Organization and Design -
Distributed Systems; F.1.2 [Computation by Abstract Devices]: Modes of Computation - Paral-
lelism; Relations among Models;

Gencral ‘Terms: Algorithms, Theory

Additional Key Words 5hd Phrases: Parallcl Computation, Theorctical Model, Feasible model,
Simulation between Modcls, Parallel Algorithm

A preliminary version of this work was presented at the 25th Annual Symposium on Foundations of Computer
Science, 1lorida, October 1984,

Part of this work was donc while the authors were visiting U.C. Berkeley.

% Rescarch supported by a Weizmann Post- l)ocloml fellowship, and in part by DARPA Grant N00039-83-C-
1036. .

$ Rescarch supported by DARPA Grant N00039-82-C-0235.

1. INTRODUCTION

The cooperation of # processors to solve a problem is uscful only if the following two

goals can be achieved:
1. Efficient parallelization of the computation involved.
2. Efficient communication of partial results between processors.

Models of parallel computation that allow processors to randomly access a large shared
memory {c.g. PRAM) idealize communication and let us focus on the computation. Indecd,

they arc convenient to program and most parallel algorithms in the literature usc them,

Unfortunately, no rcaliﬁation of .such modcls scems feasible in foresceable technologics.
The only current feasible model is a distributed system - a sct of processors (RAMs) connected
by some communication network. As there is no shared memory, data items are stored in the
processors’ Jocal memories, and information can be cexchanged between processors only by

messages. A processor can send or receive only one data item per unit time.

Let n be the number of processors in the system and m the number of data items. At
cvery logical (c.g. PRAM) step of the computation, cach processor can specify one data item it
wishes to access (rcad or updatc). The cxccution time of the logical step is at lcast the number

of machinc steps required to satisfy all these requests in parallcl.

To illustratc the problem, assume m>n?. A naive distripution of data items in local
memorics that uses no hashing or duplication will result in some local memory having at lcast
n data items. Then, a perverse program can in cvery step force all processors to access these
particular data items. This will causc an £(n) communication botticneck, cven if the commun-
ication nctwork is complcte. This mcans that using n processors may not have an advantage

over using just one, even when computation is parallelizable!

We therefore sce that it is a fundamental problem is to find a scheme to organize the

data in the processors’ memories such that information about any subsct of # data itcms can be

-3-

retricved and updated in parallel as fast as possible.

This problem, called in several references ‘the granularity problem of parallel memories’,
is discussed in numerous papers. The survey paper by Kuck [Ku] mentions 14 of them, all
solving only part of the problem as they tailor data organization to particular familics of pro-
grams. For a gencral purpose para]lcl.machine, such as thc NYU-Ultracomputer (Gottlich et
al. [GGK])), the PDDI machine (Vishkin [Vil]), and others, one would clearly like a general
purpose organization scheme, that will be the basis of an automatic (compilcr-li‘kc) cfficient

simulation of any program writtcn for a shared memory model by a distributed model.

If the number of data items, m, is roughly thc number of processors, n, then the fast
parallcl sorting algorithms, [AKS]. and [Le], solve the problem. Howcver, we argue that in
most applications this is not the casc. For example, in distributed databasés, typically
thousands of processors will perform transactions on billions of data items. Also, in parallel
computation, appectitc incrcases with c:.xting: the more processors we can have in a parallel com-

puters, the larger the problems we want to solve.

In a probabilistic sense, the problem is solved cven for m®n. Mclhorn and Vishkin

[MV] proposc distributing the data items using universal hashing. This guafanlccs that onc
parallcl request for n data items will be satisficd in expected time ()(-i-gég—og'-'-;). Upfal [U]

presents a randomized distributed data structure that guarantees exccution of any sequence of

T parallcl requests in O(T log n) steps with probability tending to 1 as # tends to ©0,

By contrast, if m¥n, no deterministic upper bound better than the trivial O(n) in known.
Mecthorn and Vishkin [MV], who provide an cxtensive study of this problem, suggest keeping

several copics of each data item. In their scheme, if all requests arc*for ‘read’ instructions, the

. 1-1
‘casicst’ copy will be read, and all requests will be satisfied in time O(kn *) where m = n*.

When update instructions arc present, they cannot guarantee time better than O(n), as all -

copics of a data item have to be updated.

-4-

In this paper we present a data organization scheme that guarantees a worst case upper
bound of Q(log n(loglog n)?), for any m polynomial in n. Our scheme also keeps several
copies of cach data item. The major novel idea is that not all of these copies have to be updated
- it suffices that a majority of them are. This idea allows the ‘read’ and "updatc’ operations to
be handled completely symmcn:ically, and still‘allows processors to access only the ‘easiest’

majority of copics.

Our scheme is derived from the structurc of a concentrator-like bipartite graph [Pi]. Itis
a long standing open problem to construct such graphs cxplicitly. However, a random graph
from a given family will have the right propertics with probability 1. As in the casc of
expandcrs and supcrconcentrators (c.g. [Pi]) this is not a serious drawback, as the randomization

is donc only once - when constructing the system.

“Onc immediate application of the upper bdund is to the simulation of idcal paralicl
computers by feasible ones. Since a bounded degree network can simulate a complete network
in O(log n) steps ([AKS]. {I.c]. a typical simulation result which is derived from our upper
bound ‘is the following: Any n-processors PRAM program that runs in T steps can be simulated
by a bounded degree network bf n processors (Ultracomputer [Sc]) that runs in deterministic lt:me

O(T(log nY(loglog n)?) steps.

The scheme we propose has very strong fault-tolerance properties, which arc very desir-
able in distributed systems. It can sustain up to O(log n) maliciously chosen faults and up to

(1—¢)n random ones without any information or cfficicncy loss.

Finally we derive lower bounds for the efficiency of memory organizations schemes.
We consider schemes that allow many copies of cach data item, as long as cach memory cell
contains onc copy of onc data item. The redundancy of such a scheme is the average number

of copics per data item.

Our lower bound. gives a trade-off between the efficiency of a scheme 'and its redun-

dancy. If the redundancy is bounded, we get an Q(n€) lower bound on the cfficicncy. This

. -5-

result partially explains why previous attempts, that considered only bounded redundancy failed

[MV], and why our scheme uscs O(log n) copics per data item.

We also derive an Q(l_(:ézl%gn_n) unconditional lower bound on the efficicncy - almost

matching our O(log n(loglog n)?) upper bound. This lower bound is the first result that

scparates models with shared memory from the feasible models of parallcl. computation that

forbid it.

2. DEFINITIONS

To simplify the presentation, we shall concentrate on simulation of the weakest shared
memory model - the EREW (Exclusive-Read Exclusive-Write) PRAM, by the sfrongest distri-
buted system - a model cquivalent to a complete network of processors. Extending this result
to a simulation of a the strongest PRAM model (thc CRCW PRAM) by a bounded degree net-
work of processors (an Ultracomputer) requires standard techniques, which we shall mention at

the end of scction 3.

An EREW PRAM consists of n processors Py, ..., P,, (RAMs) which opcrate syn-
chronously on a sct U of m sharcd variables (or data items). In a single PRAM step, a proces-
sor may perform some internal computation or access (read or updatc) onc data item. Each

data item is accessed by at most onc processor at cach step.

An MPC (Module Parallel Computer) [MV] consists of n synchronous processors,
PyP,, and n memory modules, M, ..., M,. Every module is a collection of memory

cells, cach of which can storc a valuc of one data item.

In cach MPC step, a processor may perform some internal computation, or request an
access to a memory cell in one of the memory modules. From the sct of processors trying to
access a specific module, exactly onc will (arbitrarily) be granted permission. Only this proces-

sor can conscquently access (read or update) cxactly onc ccll in this module.

-6-

The task of the MPC is to executc a PRAM program. This program is a sequence of_
instructions /,, ¢=1,...,7. Each instruction is a vector of n sub-instructions, specifying the
task of cach of thc n processors in this instruction. The sub-instruction of the processor P; can
be either to exccute some local computation, or to access (rcad or update) a data item (shared

variable) 4, €U. In the casc of an update, a new valuc v; is also assigned.

For the simulation, cach data item ¥ €U may have scveral ‘physical addresses’ or copies
in scveral memory modules of the MPC, not all of which arc necessarily updated. Let I'(u) be
the sct of modules containing a copy of u. We somctimes refer to T'(u) also as the sct of

copics of u.

The essence of the simulation is capturcd by an organization scheme S. It consists of
an assignment of scts I'(u) to cvery u€U, together with a protocol for execution of
rcad/update instructions (c.g. how many copics to access, in what order, etc.). Both the assign-

ment and the protocol may be time dependent.

A scheme is consistent if after the simulation of every PRAM instruction /,, a protocol
to read data item u temminates with the valuc assigned to u by the latest previous write instruc-

tion.

The efficiency of a given scheme § is the worst casc number of paralicl MPC steps
required to exccute onc PRAM instruction (according to the protocol). Note that the worst
casc is taken over all possible n-subscts of the set of data items U, and over all possible access

patterns (rcad/writc).
_ 3 IT(u)]
Finally, we define the redundancy r(S) of S (at this step), to be r(S) = !SUITI—'

the average number of copics of a data item in the scheme at this step.

3. UPPER BOUNDS

Our main results arc given below.

THEOREM 3.1: If m is polynomial in n then there exists a consisten! scheme whose
efficiency is O (log n(loglog n))..

Theorem 3.1 is a special casc of:

THEOREM 3.2: There is a constant by > 1, st for every b>by and c satisfying
b > m?, there exists a consistent scheme with cfficiency
O(b[c (log ¢)* + b log n log c].

In our scheme, every item u € U will have exactly 2¢ —1 copics, ic. |T(u)|=2c-1.
Each cépy of a data item is of the form <valuc, time-stamp>, before the exccution of the first
instrucﬁon all the copics of cach data item contain identical value and arc time stamped ‘0.

We will show later how to locate the copics of cach data item.
The protocol for accessing data item u at the ™ instruction is as follows:

1. To updatc u, access any ¢ copics in I'(u), updatc their valucs and set their time-

stamp to ¢.
2. To read u. access any ¢ copics in I'(u), and rcad the valuc of the copy with the latest
time-stamp.

This protocol completely symmetrizes the roles of rcad and update instructions, and
gives a new application to the majority rulc used in [Th] for concurrency control of distributed

databascs.
LEMMA 3.1: The scheme is consistent.

PROOF: We say that a copy v,(u) of the data item u is updated after step ¢, if it con-

tains the value assigned to u by the latest previous write instruction.

From the fact that cvery two c-subsct:s of I'(u) have a non-cmpty intcrscdion, it follows

-8-

by induction on ¢ that when the simulation of every instruction 7, terminates, at lcast ¢ copies
of cvery data item u arc updated, thesc copics have the latest time stamp among all the copics

of u, and a read « protocol would return their value. O

Let u; be 'thc data item requested by P;, 1<i<n, at this step. Rccall that ¢ copics in
T'(y;) have to be accessed in order to read or update »;. Denote the j* copy in I'(u) by y ().
During the simulation of this instruction, we will say that y ;(;) is alive if this copy was not
accessed yet. Also, séy that y; is alive if at lcast ¢ copics in T'(y;) are still alive. ‘Notice that a
request for u; is satisfied when ; is no longer alive. At this point the protocol for accessing u;

can terminate.,
We arc ready now to describe the algorithm. We start with an informal description.

Assume that the task of P; is cither to rcad u; or to update its value to v, Processors

will help cach other to access these data items according to the protocol. It turns out to be

n
2c—-1

cfficicnt if at most data items arc processed at a time. Thercfore, we shall partition the

sct of processors into & = groupé, cach of size 2c —1. There will be 2¢ phases to the

n
2c—-1
algorithm. In cach of the phascs, cach group will work, in parallcl, to satisfy the rc'qucst of or;e
of its members. ‘This will be donc as follows: The current distinguished member, say Py, will
broadcast its request (access u;, and the new value v; in casc of a write request) to the other
members of its group. Each of them will repeatedly try to access a fixed distinct copy of u.
After cach step, the processors in this group will check whether u‘,- is still alive, and at the first
time it is not alive (i.c. at lcast ¢ of its copics were accessed), this group will stop working on

;. If the request was for a rcad, the copy with the latest time stamp will be computed and

sent to P,

Each of the first 2c —1 phases will have a time limit, that may stop the processing of the

k data items whilc some arc still alive. However, we will show that at most from the k

k
2c-1

items processed in cach phasc will remain alive. Hence, after 2c —1 phascs at most & items

-9-

will remain. These will be distributed, using sorting, one to cach group. The last phase, that
has no time limit, will handle them till all arc processed. | .

For the formal presentation of the algorithm, let P_1yac-1)+i» i =1, . .., 2¢c —1 denote

the processors in group I, I=1,...,k, _k = 2c'-'-1 . The structure of the j* copy of the data

items u is, as before, <value;(u),time — stamp;(u)>.

Phase (i time_limit):
begin
1= processor_no 1

2c—1
S:=(- 1X2c - 1);
Py, broadcast its request
[read(uy ;) or update(us 4 ;.v44)]

to I, ES R ,P +2€~'1;
livc({zf+,-):=lm£;
count: =0; :
while live(u,,;) and count < timc_limit do
count := count+1; »
Py, ; trics to access y;(uyp4);
if pcrmission granted then
if rcad request then
read <valuej(uy ;). time_stamp;(us 4)>;
clse (update request)
Svaluej(uy ;). time_stamp(up 4 Y> := gy 03,
if lcss than ¢ copics of u, 4 ; arc still alive then
live(uy ;. ;):= false,
end while
if arcad request then
find and scnd to /s, ; the value with the
latest time_stamp; '
end Phase i;

The algorithm:
begin
for i=1 to 2c—1 do
run Phasc(i logy4c), _
[for a fixed 5 (to be calculated later),
there arc at most & live request at this
point of the algorithm]
sort the k' live requests and route them to
the first processors in the &’ first groups,
onc to cach processor;
run Phase(L,log, n);
end algorithm,

Consider now onc iteration of the while loop in an cxccution of a phase in the algo-

-10-

rithm. The number of requests sent to each module during the exccution of this iteration is
cqual to the number of live copies of live data item this module contains. The module may
receive all the requests together and thercfore process only onc of them, thus we can only
guarantee that the number of copies processed in each iteration of the while loop is cqual to
the number of memory modulcs.comaining live cobics of data items that werc alive before this

iteration.

Let ACU denote the sct of live data items at the start of a given iteration. Let the set
I(u)C (1) denote the set of live copics of u€U at this time. Since u is alive, |T'(u)] 2> c.

"The number of live copics at the start of this itcration is given by 3. |T"'(«)]. The number of
u€U

memory modules containing live copics of live data items, and thus a lower bound for the

number of copics processed during this iteration is given by [T'(4)] = [|J I'(w)].
u€4

We first show that a good organization scheme can guarantee that |T'(A4)] is not too

small.

b
(2e)*

2c —1 copies of each of the m shared data items among the n modules s.t. before the start of

<
"LEMMA 3.2: For cvery 24, if m < ()2 then there is a way to distribute the

each iteration of the ‘while’ loop |T'(A4)] 2> -I—Ab—'-(2c -1).

PROOF: It is convenicnt to model the arrangement of the copics among the memory
modcls in terms of a bipatitc graph G(U,N.E), where U represents the sct of m shared data
items, N the sct of # memory modules, and T'(u), the sct of ncighbors (;f a veriex u€U
represents the sct of memory modules storing a copy of the data item u. Wc usc a probabilis-

tic construction in order to prove the cxistence of a good memory allocation.

Let Gpn. be the probabilistic space of all bipartitc graphs G(U .NA.E) st
U]l = m, |N| = n and the degree of cach vertex u €U is 2c —1. Give all graphs in the
space cqual probability.

-11-

Say that a graph G(U,N,E) € Gy, ., is ‘good if for all possible choic'es_ of the sets

{T'(u) : T'W)CT(w),{T' ()| >c, u€U} and for all ACU |4] < the incquality

1
Tl 2 %(2¢—1)|A | holds. This condition capturcs the property that for any set 4 of
live data items, no matter which of their copies are still alive, the sct of all the copics of data

items in A arc distributed among at least -lb-(2c —1)| 4 | memory modules.

Pr{ G€Gnc is not ‘good’'} < 3 (m)

9SG

l(2c—1]l(2c 1)4] | %)’

‘Q(Zc l)I

form < (—)2,and b>4. 'O

@)4
In what follows we assumc that the algorithm is applicd to a memory organization that
posscsses the pi'opcrtics proven in Lemma 3.2
LEMMA 3.3: If the number of live items at the beginning of a phase is w (<k), then
afier the first s iterations of the while loop at most 2(1— %)‘ w live copies remain.
PROOIF: At the beginning of a phase there arc w live items, and all their copics are
- alive, so there is a total of (2c —1)w live copics. By lemma 3.2, after s itcrqtion#. the number
of livc‘éopics remaining is < (1—%)’(2c—1)w. Since |T '(u)l 2 c for cach live item, these
21 |
c

can be the live copics of at most (1— -15)‘ w<2Al- %)‘ witems. O

COROLLARY 3.2: Lety = (1 ~ %)"l.

live items

1. After the first log,(4c —2) iterations of the while loop in a phase, at most 2c,-‘-1
remain alive (establishes the fact that the last phase has to process no more than k requests).
2. Afier logy 2k < logy n iterations in a phase, no live items remain (establishes the correctness

of the last phase).

-12-

To complete the analysis, observe that each group needs during cach phase to perform
the following operations: broadcast, maximum (for finding the latest time stamp) and summa-
tion (testing whether y; -is still alive). Also, before the last phase, all the requests that are still

alive are sorted.

_LEMMA 34: Any subset of p' processors of the MPC, using only p of the memory
modules, can perform maximum, summation, and sorting of p elements, and can broadcast one

message in O(log p) steps.

PROOF: The only non-trivial casc is the sorting and this can be donc using i.cighton’s

sorting algorithm [Le]. O

b
Qe)

£
THEOREM 3.2: Foreveryb 2> 4, ifm < ()2, then there exists a memory organ-

ization scheme with efficiency

O(be(log ¢ + b(log nXlog ¢)).

PROOF: In cach itcration of the while loop cach processor performs up to onc access
to a memory module, and cach group of 2¢ —1 processors computes the summétion and the
maximum of up to 2¢ -1 clcmcl;ts. Thus, cach iteration takes Q(log ¢) steps. “The first 2c —1
phascs perform log, ¢ iteration cach, thercfore together they require -

0 (2c ~1)Xlog c)?
log 9

paralicl steps.

The sorting before the last phase takes O(log n) steps, and the last phasc consists of

O(logyn) while itcrations, hence requires O((loggnXlog ¢)) steps. As
log n = log (1—-%)’1 = 0(%) the total number of steps is
O(bc(log ¢ + b(log nXlog ¢)). O

We mention how to extend the result of this section to a simulation of a CRCW (con-

current read concurrent write) PRAM by an Ultracomputer. The CRCW PRAM differs from

-13-

the EREW PRAM (dcfined in scction 2) in having no restrictions on memory acces When
several processors try to write into the same memory cell, the one with the smallest index

succeeds.

An Ultracomputer is a synchronized nctwork of n processors, connected together by a
fixed bounded degrec network. At cach step cach processor can send and reccive only one
message, through onc of the lincs connecting it to a direct ncighbor in thc network. The net-

work topology enablcs sorting of n keys, initially one at each processor, in O(log n) stcps.

THEOREM 3.3: Any program that requires T steps on a CRCW PRAM with n proces-
sors and m shared variables (m polynomial in n), can be simulated by an n processor Ultracom-

puter within O(T (log n)loglog n) steps.

PROOF (skctch): There arc two logical parts to the simulation of cach instruction.
Both barts rclay on the capability of the Ultracomputer to sort n items in O(log n) steps. The
first part (which involves pre- and post-processing) implements a simulation of a CRCW
PRAM instmclion by the EREW PRAM model. An O(log n) algorithm for this simulation is
described in several papers (e.g. [Vi2]). The second part simulates the MPC model on the
Ultracomputer. We use the local memorics of the individual processors to simulate the MPC’s
memory modules. ‘The only di‘f’ﬁcully in this simulation is to guarantee that no processor (as a
module) receive more than onc message at any step. ‘To achicve that, the memory request are
sorted before cach exccution of the ‘while’ loop, and only onc request for cach memory
module is exccuted. Each of the broadcast, minimum and summation computation requires
O(log n) steps on the Ultracomputer instcad of the O(log ¢) steps it rcqui.rcs on the MPC,
Thus cach CRCW PRAM instruction is simulated by O((log n)loglog n) Ultracomputer steps.

(m]
We conclude this section with some remarks:

1. Fault tolerance: A variant of our scheme, in which cvery processor trics to access

(2—¢€)c copics rather than ¢, guarantees that cven if up to (1—2¢)c of the copics of cach data

-14-

item are destroyed by an adversary, no information or efficicncy loss will occur.

2. Explicit construction: The problem of explicit construction of a good graph in Gy, , ¢
remains open. This problem is intimatcly rclated to the long standing open problem of explicit

construction of (bz,n)-concentrators (e.g. [DDPW)), when m>n.

4. LOWER BOUNDS

The fast performance of the organization scheme presented above depends on having at
lcast O(log n) updated copics of cach data item, distributed among the modules. A natural
qucstion to ask here is whether this redundancy in representing the data items in the memory is
esscntial. In this section we give a positive answer to this question. We prove a lower bound
relating the cfficiency of any organization scheme to the redundancy in it. Using this tradc-off
we dcrive a lower bound for any on-linc simulation of idcal modecls for parallel computation

with sharcd memory by feasible models that forbid it.

We assume without loss of gcncrality that cach processor of thc MPC has only a con-
stant number, d, of registers for internal éompumﬁon. (This is no restriction as P; can usc M;
as its local memory). In what follows we consider only schemes that allow a memory cell or an
internal register to contain onc valuc of onc data item (no cncoding or compression are
allowed).

THEOREM 4.1: The efficiency of any organization scheme with m data items, n

1
memory modules and redundancy r is Q((L::-) 2').

PROOF: Let S be a scheme with m data items, # modulcs, and redundancy r, If the
cfficicncy of the scheme S is less than somc number k then there is no set of # data items
such that all their updated copics arc concentrated in a sct of A~'n modules. Otherwise, it
would have taken at least A steps to read these data items, since only orié data itcm can be rcad

per step at cach module.

-15-

Recall that r is the average number of updated copics of a data items in the scheme,

-

Thercfore, there arc at least —;’— data items with no more than 2r copics. At most dn out of

these items appear in the internal registers of processors.

sets of A~1n modulcs, and each set can store all the copics of no

n
There are [h=1n

more than n —1 data items. If a data item has at most 2r copics then all its copics are included

in at Jcast [h'n‘n——-?r 5] sets of h~'n modules. Counting the total number of data items with

at most 2r copics that are stored by the scheme, we get

1h f‘n](n -1
—— 22—

1 n-2r
h~ln -2

1
which implics & = 9((-'3)"). a)
Using the result of thcorem 4.1 we can now derive a tower bound for the on-line simu-

lation of a PRAM program by the MPC modecl.

In an on-linc simulation, the MPC is required to finish cxccuting the 1 PRAM instruc-
tion before reading the (+1%. Of course it can perform other operations as well during the

execution of the (" instruction, but these can not depend on future instructions.

We shall assume, w.lo.g., that the initial value of all data items (and all MPC memory

cells) are zero. Since we have m data items and n processors, it makes sensc to consider

PRAM programs. of length Q(—'s—). otherwise some items were redundant.

-

THEOREM 4.2: Any on-line simulation of T steps of a PRAM with n processors and

m shared variables on an MPC with n processors and n memory modules requires

o7 M) parallel MPC steps.
loglog n

-16-

PROOF: We will construct a PRAM program of length T as follows: The first —'3—

instructions will assign new valucs to all the data items. Subscquent instructions will alternate

betwcen a hard read and a hard write instructions.

Consider the redundancy -r, of the scheme after the cxccution of the ¢ instruction. A
hard read instruction will cssentially implement thecorem 4.1 - it will assign processors to read n
items that all of their updated cdpics are condensed among a small number of modules. A
hard write in;truction will assign new values to the n items with the highest number of ﬁpdatcd

copics. Clearly there are always n data items with at Icast r, updated copics (as m»n)

For simplicity consider cach pair of a hard rcad followed by a hard write as onc PRAM

instruction. ILect s, be the number of MPC steps used while executing the ¢ instruction. For

m. . L .
the first 7 = " instructions, at most 3, s, memory locations were accessed, and hence
=1

T

2131- (1)

n;

|=

r: <

-~

Recall that r, is the redundancy when we start alternating reads and writes. Let
' 1

t>r = —':T? By thcorem 4.1, at lcast L Bi-1 of the 5, MPC steps were used by cach

processor to cxecute the hard rcad instruction. Hence, at most (s, — 8,-1)n cells were
accessed for write instructions. Also, the value of n data items, with >r,_; updated copics

each, was changed, thus, we have

: n
n<n+ (Sx—ﬂt-l""z—l)_m
1]

fort =7+1...,T. ..

Summing all these incqualitics we get

T T n T
>2nL X nat— 3 (—Bi1—-n-p.
t=7+1 t=1+1 m,=s+1

Using simplc manipulation we get:

-17-

"S'TT"' Z S«>""T+ E Bi-1+n-),

1= T+l t=r+1

and using (1),

T T m T-1 : T-1
Ss =28+ 2 31_—"1“' 2 3:..""T+ S@+r)2 X Bitn
=1 t=1 1=7+1 t=7+1 _ t=T7 t=1-

T . - .
Where 3 5, is the total simulation time.

t=1

1 T-1
Let # = ——— 3 r, be the average redundancy in the last T—— steps. Notlce
(r-2) i=r -

1 .
that B(r) = (%)2’ is a convex function in r, for r2>0. Hence by Jensen's incquality

[RV,211-216),

1. 1
T-1 T-1 5 -
S8 = 3 > (T-TX2)
t=7 =7 n n n
Hence,

m

|
>:s, >(r——x +<"’>2) = (T -)——2-).
Iuglug'—;'-

For m > m*e and T > (1+e)—"—' the simulation time is Q(T—lg——)
loglog n

5. CONCLUSIONS

We describe a novel schemie for organizing data in a distributed system, that admits

highly cfMicient retricval and update of information in paralicl.

This paper concentrates on applications to synchronized modecls of paralicl computation,

and specifically to the question of the relative power of deterministic modcls with and without
sharcd memory. Quite surprisingly, we show that these two familics. of modcls arc ncarly
cquivalent in power, and thcrcforc_ we justify the usc of shared memory models in the design of

parallcl algorithms.

-18-

There are other applications of our scheme that we did not pursue in this paper. One
application is to probabilistic simulation. An interesting open problem, which we are consider-

ing, is whether our scheme can improve the probabilistic results in [MV] or [U].

Another application we did not pursuc here is to asynchronous systems. Although a
similalj scheme was suggested in this coﬁtext [Th], we belicve that the potential of this idea was
not fully exploited therc, and we plan to continue research in this direction. However, we
believe that thc new notion of consistency suggested by our scheme can have a tilajor impact
on the theory and design of such systems, in particular for distributed database systems, We

intend to continue rescarch in this direction.

ACKNOWLEDGMENTS:

We thank Dick Karp for ﬁc]pful discussions, and Edna Wigdersn, Oded Goldreich, and

David Shmoys for their comments on carlicr version of this papér.

REFERENCES

[AKS]

[AIS]

{DDPW]

GGl

[GGK]

{Ku]

- [Le]

iMV]

Pi]
[RV]

M. Ajtai, J. Komlos and E. Szemeredi. An O(log n) sorting network. Proc. of the
Fifteenth ACM STOC, 1983. 1-9.

B. Awerbuch, A. lsrqeli and Y. Shiloach. Efficient simulation of PRAM by Ultra-

computer. Preprint, Technion, Haifa, Isracl. 1983.

D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson. Superconcentrators, gen-
eralizers and gencralized conncctors with limited depth. Proc. of the f‘iﬂeenth
ACM STOC, 1983. 42-51.

O. Gabber and Z. Galil. Explicit construction of lincar-sized superconcentrators. J.
Comp. and Sys. Sci. 22, 1981. 407-420.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer - designing a MIMD sharcd mcmory parallcl maqhine.
IEEE Trans. on Comp. C-32, 2, 1983. 175-189.

D.J. Kuck. A survey of paralicl machines organization and programming. Com-

puter Surveys, Vol 9, No. 1, 1977. 29-59.

T. Leighton. Tight bounds on the complexity of parallcl sorting. Proc of the Six-

teenth ACM STOC, 1984. 71-80.

K. Mclhorn and U Vishkin. Randomized and deterministic simulation of PRAMs
by parallcl machines with restricted granularity of parallel memorics. Ninth
Workshop on Graph Theorctic Concepts in Computer Science, Fachbereich

Mathcematic; Universitat Osnabruck, Junc 1983,
N. Pippenger. Superconcentrators. SIAM J. on Computing, 6, 2, 1977.‘298-304.

A.W. Roberts and DE Varberg. Convex Analysis. Academic Press, New York,
London 1973.

[Sc]

[Th]

fvil]

[vig)

8

-20-

J. T. Schwartz. Ultracomputers. ACM TOPLAS 2 (1980) 484-521.

R.H. Thomas. A majority consensus approach to concurrency control for multiple
copy databasc. ACM Tran. on Database Systems. 4 (1979) 180-209.

U. Vvishkin. A parallel-design distributed-implementation general-purpose com-
puter. Preprint, Courant Institute, New York University. 1983. To appéar in J,

TCS.

U. Vishkin. Implementation of simultaneous memory address access in models that

forbid it. J. of Algorithms, 4,1 (1983) 45-50.

E. Upfal. A probabilistic relation between desirable and feasible models of parallcl

computation. Proc. of Sixteenth ACM STOC 1984. 258-265.

