
October 1984 Report No. STAN-CS-84-1024

Uli In ill
PB96-150867

How to Share Memory in a Distributed System

by

Kli Upfal and Avi Wigderson

Department of Computer Science

Stanford University
Stanford, CA 94305

19970612 023

tmS %ÜMMJ JMSSMMM

HOW TO SHARE MEMORY IN A DISTRIBUTED SYSTEM

Eli Upfafi

Stanford University
Stanford, CA 94305

Avi Wigderson t

IBM Research I,ab.
San-Jose, CA 95193

ABSTRACT

We study the power of shared-memory in models of parallel computation. Wc describe
a novel distributed data structure that eliminates the need for shared memory without
significantly increasing die run time of the parallel computation. More specifically we show
how a complete network of processors can dctcrministicly simulate one PRAM step in
Oflog //(loglog n)7) time, when both models use n processors, and the size of the PRAM's
shared memory is polynomial in n. (The best previously known upper bound was the trivial
O(n)). Wc also establish that this upper bounds is nearly optimal. Wc prove that an on-line

simulation of T PRAM steps by a complete network of processors requires Q(T °* ") time.

A simple consequence of the upper bound is that an Ultracomputcr (the only currently
feasible general purpose parallel machine), can simulate one step of a PRAM (the most con-
venient parallel model to program), in (7((log n loglog H)

2
) steps.

Categories and Subject l^cscriptors: C.1.2 (Processor Architectures): Multiple Data Stream
Architectures (Multiprocessors) - Parallel Processors: D.4.2 [Operating Systems]: Storage
Management - Distributed memories: D.4.7 [Operating Systems]: Organization and Design -
Distributed Systems: F.1.2 [Computation by Abstract Devices]: Modes of Computation - Paral-
lelism: Relations among Models;

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Parallel Computation, Theoretical Model, Feasible model,
Simulation between Models, Parallel Algorithm

A preliminary version of this work was presented at the 25lh Annual Symposium on Foundations of Computer
Science, Horida, October 1984.

Part of this work was done while the authors were visiting U.C. Berkeley.
t Research supported by a Wcizmann Post-Doctoral fellowship, and in part by DARPA Grant NO0O39-83-C-

1036.
% Research supported by DARPA Grant N0O039-82-C-O235.

-2-

1. INTRODUCTION

The cooperation of /; processors to solve a problem is useful only if the following two

goals can be achieved:

1. Efficient parallelization of the computation involved.

2. Efficient communication of partial results between processors.

Models of parallel computation that allow processors to randomly access a large shared

memory (e.g. PRAM) idealize communication and let us focus on the computation. Indeed,

they arc convenient to program and most parallel algorithms in the literature use them.

Unfortunately, no realization of such models seems feasible in foreseeable technologies.

The only current feasible model is a distributed system - a set of processors (RAMs) connected

by some communication network. As there is no shared memory, data items are stored in the

processors' local memories, and information can be exchanged between processors only by

messages. A processor can send or receive only one data item per unit time.

Let n be the number of processors in the system and m the number of data items. At

every logical (e.g. PRAM) step of the computation, each processor can specify one data item it

wishes to access (read or update). The execution time of the logical step is at least the number

of machine steps required to satisfy all these requests in parallel.

To illustrate the problem, assume m>n7. A naive distribution of data items in local

memories that uses no hashing or duplication will result in some local memory having at least

n data items. Then, a perverse program can in every step force all processors to access these

particular data items. This will cause an Q(«) communication bottleneck, even if the commun-

ication network is complete. This means that using n processors may not have an advantage

over using just one, even when computation is parallelizable!

We therefore sec that it is a fundamental problem is to find a scheme to organize the

data in the processors' memories such that information about any subset of n data items can be

-3-

retricvcd and updated in parallel as fast as possible.

This problem, called in several references 'the granularity problem of parallel memories',

is discussed in numerous papers. The survey paper by Kuck [Ku] mentions 14 of them, all

solving only part of the problem as they tailor data organization to particular families of pro-

grams. For a general purpose parallel machine, such as the NYU-Ultracomputcr (Gottlieb et

al. [GGK]), the PDD1 machine (Vishkin [Vil]), and others, one would clearly like a general

purpose organization scheme, that will be the basis of an automatic (compiler-like) efficient

simulation of any program written for a shared memory model by a distributed model.

If the number of data items, HI, is roughly the number of processors, «, then the fast

parallel sorting algorithms, [AKS], and [Le], solve the problem. However, we argue that in

most applications this is not the case. For example, in distributed databases, typically

thousands of processors will perform transactions on billions of data items. Also, in parallel

computation, appetite increases with eating; the more processors we can have in a parallel com-

puters, the larger the problems we want to solve.

In a probabilistic sense, the problem is solved even for »;>«. Mclhorn and Vishkin

[MV] propose distributing the data'items using universal hashing. This guarantees that one

parallel request for // data items will be satisfied in expected time ()(°% "). Upfal [U]

presents a randomized distributed data structure that guarantees execution of any sequence of

T parallel requests in 0(T log n) steps with probability tending to 1 as n tends to oo.

liy contrast, ifm>n, no deterministic upper bound better than (he trivia! O(n) in known.

Mclhorn and Vishkin [MV], who provide an extensive study of this problem, suggest keeping

several copies of each data item. In their scheme, if all requests arc'for 'read' instructions, the

. l-i
'casicst' copy will be read, and all requests will be satisfied in time 0(kn *) where m = nk.

When update instructions arc present, they cannot guarantee time better than 0(n), as all

copies of a data item have to be updated.

-4-

In this paper we present a data organization scheme that guarantees a worst case upper

bound of 0(log «Ooglog nf), for any m polynomial in n. Our scheme also keeps several

copies of each data item. The major novel idea is thai not all of these copies have to be updated

- it suffices that a majority of them are. This idea allows the 'read' and 'update' operations to

be handled completely symmetrically, and still allows processors to access only the 'easiest'

majority of copies.

Our scheme is derived from the structure of a concentrator-like bipartite graph [Pi]. It is

a long standing open problem to construct such graphs explicitly. However, a random graph

from a given family will have the right properties with probability 1. As in the case of

expanders and supcrconccntrators (e.g. [Pi]) this is not a serious drawback, as the randomization

is done only once - when constructing the system.

' One immediate application of the upper bound is to the simulation of ideal parallel

computers by feasible ones. Since a bounded degree network can simulate a complete network

in Oflog n) steps ([AKS], [l.c]). a typical simulation result which is derived from our upper

bound is the following: Any n-processors PRAM program that runs in T steps can be simulated

by a bounded degree network ofn processors (Ullracomputer fScJ) that runs in deterministic time

0(7(log nftloglog nj1) steps.

The scheme wc propose has very strong fault-tolerance properties, which arc very desir-

able in distributed systems. It can sustain up to 0(log n) maliciously chosen faults and up to

(l-e)w random ones without any information or efficiency loss.

Finally wc derive lower bounds for the efficiency of memory organizations schemes.

We consider schemes that allow many copies of each data item, as long as each memory cell

contains one copy of one data item. The redundancy of such a scheme is the average number

of copies per data item.

Our lower bound gives a trade-off between the efficiency of a scheme and its redun-

dancy. If the redundancy is bounded, wc get an ß(«€) lower bound on the efficiency. This

-5-

result partially explains why previous attempts, that considered only bounded redundancy failed

[MV], and why our scheme uses 0(log n) copies per data item.

We also derive an Q(, ?n) unconditional lower bound on the efficiency - almost
loglog n

matching our 0(log //(loglog n)7) upper bound. This lower bound is the first result that

separates models with shared memory from the feasible models of parallel computation that

forbid it.

2. DKFINITIONS

To simplify the presentation, we shall concentrate on simulation of the weakest shared

memory model - the EREW (Exclusive-Read Exclusivc-Write) PRAM, by the strongest distri-

buted system - a model equivalent to a complete network of processors. Extending this result

to a simulation of a the strongest PRAM model (the CRCW PRAM) by a bounded degree net-

work of processors (an Ultracomputcr) requires standard techniques, which wc shall mention at

the end of section 3.

An EREW PRAM consists of n processors /'j Pn, (RAMs) which operate syn-

chronously on a set U of m shared variables (or data items). In a single PRAM step, a proces-

sor may perform some internal computation or access (read or update) one data item. Each

data item is accessed by at most one processor at each step.

An MPC (Module Parallel Computer) [MV] consists of n synchronous processors,

Px P„, and n memory modules. Mx M„. Every module is a collection of memory

cells, each of which can store a value of one data item.

In each MPC step, a processor may perform some internal computation, or request an

access to a memory cell in one of the memory modules. From the set of processors trying to

access a specific module, exactly one will (arbitrarily) be granted permission. Only this proces-

sor can consequently access (read or update) exactly one cell in this module.

-6-

Thc task of the MPC is to execute a PRAM program. This program is a sequence of

instructions /,, / = 1 T. Each instruction is a vector of n sub-instructions, specifying the

task of each of the n processors in this instruction. The sub-instruction of the processor P, can

be either to execute some local computation, or to access (read or update) a data item (shared

variable) u,€(7. In the case of an update, a new value v, is also assigned.

For the simulation, each data item u£U may have several 'physical addresses' or copies

in several memory modules of the MPC, not all of which arc necessarily updated. Let T(u) be

the set of modules containing a copy of u. We sometimes refer to Y(u) also as the set of

copies of u.

The essence of the simulation is captured by an organization scheme S. It consists of

an assignment of sets T(u) to every u€U, together with a protocol for execution of

read/update instructions (e.g. how many copies to access, in what order, etc.). Both the assign-

ment and the protocol may be time dependent.

A scheme is consistent if after the simulation of every PRAM instruction /,, a protocol

to read data item u terminates with the value assigned to u by the latest previous write instruc-

tion.

The efficiency of a given scheme S is die worst case number of parallel MPC steps

required to execute one PRAM instruction (according to the protocol). Note that the worst

case is taken over all possible /t-subscts of the set of data items U, and over all possible access

patterns (read/write).

2IWI
Finally, we define the redundancy r{S) of 5 (at this step), to be r(S) = "€l/

the average number of copies of a data item in the scheme at this step.

3. UPPER BOUNDS

Our main results arc given below.

THEOREM 3.1: lfm is polynomial in n then there exists a consistent scheme whose

efficiency is 0(log //(loglog nf)..

Theorem 3.1 is a special case of:

THEOREM 3.2: There is a constant bQ>l. s.L for every b>b0 and c satisfying

bc > m7, there exists a consistent scheme with efficiency

G(b[c (log c)7 + b log n log c]).

In our scheme, every item u € U will have exactly 2c-1 copies, i.e. |T(«)| =2c-l.

Each copy of a data item is of the form <valuc, time-stamp>, before the execution of the first

instruction all the copies of each data item contain identical value and arc time stamped '0'.

We will show later how to locate the copies of each data item.

The protocol for accessing data item u at the Ith instruction is as follows:

1. To update M, access any c copies in r(w), update their values and set their time-

stamp to /.

2. To read w, access any c copies in T(w), and read the value of the copy with the latest

time-stamp.

This protocol completely symmetrizes the roles of read and update instructions, and

gives a new application to the majority rule used in [Yh] for concurrency control of distributed

databases.

LEMMA 3.1: The scheme is consistent.

PROOF: We say that a copy yj(u) of the data item u is updated after step /, if it con-

tains the value assigned to w by the latest previous write instruction.

From the fact that every two c -subsets of TCu) have a non-empty intersection, it follows

-8-

by induction on / that when the simulation of every instruction lt terminates, at least c copies

of every data item u arc updated, these copies have the latest time stamp among all the copies

of u, and a read u protocol would return their value. D

Let ttj be the data item requested by Ph l</<n, at this step. Recall that c copies in

T(uj) have to be accessed in order to read or update uh Denote the /* copy in T(u) by yj(u).

During the simulation of this instruction, we will say that y/w,) is alive if this copy was not

accessed yet Also, say that u, is alive if at least c copies in T(w,) are still alive. Notice that a

request for w, is satisfied when u, is no longer alive. At this point the protocol for accessing u,

can terminate.

Wc arc ready now to describe the algorithm. We start with an informal description.

Assume that the task of Pt is cither to read «,- or to update its value to v,. Processors

will help each other to access these data items according to the protocol. It turns out to be

efficient if at most , data items arc processed at a time. Therefore, wc shall partition the

set of processors into k = "_ groups, each of size 2c -1. There will be 2c phases to the

algorithm. In each of the phases, each group will work, in parallel, to satisfy the request of one

of its members. This will be done as follows: The current distinguished member, say Ph will

broadcast its request (access ul% and the new value v, in case of a write request) to the other

members of its group. Each of them will repeatedly try to access a fixed distinct copy of ut.

After each step, the processors in this group will check whether u, is still alive, and at the first

time it is not alive (i.e. at least c of its copies were accessed), this group will stop working on

«,-. If the request was for a read, the copy with the latest time stamp will be computed and

sent to /»/.

Each of the first 2c -1 phases will have a time limit, that may stop the processing of the

k data items while some arc still alive. However, wc will show that at most —-— from the k
2c-1

items processed in each phase will remain alive. Hence, after 2c-1 phases at most k items

-9-

will remain. These will be distributed, using sorting, one to each group. The last phase, that

has no time limit, will handle them till ail arc processed.

For the formal presentation of the algorithm, let /fy-ixfc-tt+i. ' = 1 2c-1 denote

the processors in group /, / = 1,.,., k, k = _" .. The structure of the /* copy of the data

items u is, as before, <valuej(u),time—siampj(u)>.

Phase (/ Jimejimit):
begin

. _, processorjno .
/:_l 2c-l '
/:=(/ - lX2c - 1);
/'/+/ broadcast its request
[rcad(w/+1) or updatc(w/+,,v/+/)]
tO /V + l Pf+lc-l'y
\ivc(uf+i): = iive;
count:=0;
while livc(u/+;) and count < timejimit do

count := count+1;
Pf+j tries to access yy(i/y+i);
if permission granted then

if read request then
read <valucj(Uf+i), lime_siampj(uf+i)>;
else (update request)

<valuej(u/+i). liine_s(amp(uf+i)> := <vy+/,/>;
if less than c copies of uy>,- arc still alive then

\\\c(uf+i):= false;
end while
if a read request then

find and send to /'/+, the value with the
latest timc_stamp;

end Phase /;

The algorithm:
begin

for j = l to 2c -1 do
run Phasc(/,log,j4c);

[for a fixed ij (to IK calculated later),
there arc at most k live request at this

point of the algorithm]
sort the k' live requests and route them to
the first processors in the k' first groups,
one to each processor;
run Phascd.log^rt);

end algorithm.

Consider now one iteration of the while loop in an execution of a phase in the algo-

-10-

rithm. The number of requests sent to each module during the execution of this iteration is

equal to the number of live copies of live dato item this module contains. The module may

receive all the requests together and therefore process only one of them, thus we can only

guarantee that the number of copies processed in each iteration of the while loop is equal to

the number of memory modules containing live copies of data items that were alive before this

iteration.

Let ACU denote the set of live data items at the start of a given iteration. Let the set

r'(«)Cr(w) denote the set of live copies of u£U at this time. Since u is alive, |r'(«)| > c.

The number of live copies at the start of this iteration is given by 2 I T'(M)| . The number of

memory modules containing live copies of live data items, and thus a lower bound for the

number of copies processed during this iteration is given by | T'(A)\ = | JJ r'(«)|.

Wc first show that a good organization scheme can guarantee that | T\A) | is not too

small.

b ~ LKMMA 3.2: For every b>4, ifm < (-—rr)2 then there is a way to distribute the
— — (lef

2c-1 copies of each of the m shared data items among the n modules s.1. before the start of

each iteration of the 'while' loop \V(A)\ > ' . ' (2c — 1).

PROOF: It is convenient to model the arrangement of the copies among the memory

models in terms of a bipatitc graph G(U,N,K), where U represents the set of m shared data

items, N the set of n memory modules, and F(M), the set of neighbors of a vertex «€(/

represents die set of memory modules storing a copy of the data item u. Wc use a probabilis-

tic construction in order to prove the existence of a good memory allocation.

Let GmflX be the probabilistic space of all bipartite graphs G(U,N,E) s.L

\U\ = m, \N\ = n and the degree of each vertex u£U is 2c —1. Give all graphs in the

space equal probability.

-11-

Say that a graph G(U,N,E) € Gm/ltC, is 'good' if for all possible choices of the sets

{r'(w):r'(u)Cr(«),|r'(u)|>c,w€t/} and for all ACU, \A\ < —y, the inequality

\T'(A)\ > j(2c-l)\A | holds. This condition captures the property that for any set A of

live data items, no matter which of their copies are still alive, the set of all the copies of data

items in A arc distributed among at least -Ale - DM I memory modules.

Pr{ G€Gm,„x is not -good'} < £ Q
f(2c-l)
b

<%-■>'< ->>r w
e^\ = oih bn I «

b c

-Qc-l)

for m < (TTTT)
1

, and 6>4. D
~~ (2c)4

In what follows we assume that the algorithm is applied to a memory organization that

possesses the properties proven in Lemma 3.2.

LEMMA 3.3: If the number of live items at the beginning of a phase is w (<k), then

after the first s iterations of the while loop at most 2(1 - -rYw live copies remain.

PROOF: At the beginning of a phase there are iv live items, and all their copies arc

alive, so there is a total of (2c — l)w live copies. Hy lemma 3.2, after * iterations, the number

of live copies remaining is < (l-j-Y(2c-l)w. Since \r'(u)\ > c for each live item, these

111 I

can be the live copies of at most (1 - -rY c~ w < 2(1 - —Y w items. D
DC D

COROLLARY 3.2: Lety = (1 - j)~\

1. After the first log,(4c -2) iterations of the while loop in a phase, at most live items

remain alive (establishes the fact that the last phase has to process no more than k requests).

2. After log,, 2fc < log, n iterations in a phase, no live items remain (establishes the correctness

of the last phase).

-12-

To complete the analysis, observe that each group needs, during each phase to perform

the following operations: broadcast, maximum (for finding the latest time stamp) and summa-

tion (testing whether u, is still alive). Also, before the last phase, all the requests that arc still

alive arc sorted.

LEMMA 3.4: Any subset of p processors of the MPC, using only p of the memory

modules, can perform maximum, summation, and sorting ofp elements, and can broadcast one

message in O(log p) steps

PROOF: The only non-trivial case is the sorting and this can be done using Ixighton's

sorting algorithm [Le]. D

THEOREM 3.2: For every b > 4. ifm < (-—rr)2. then there exists a memory organ-
~ (2eT

izalion scheme with efficiency

0(Mlog cf + Mlog nXlog c)).

PROOF: In each iteration of the while loop each processor performs up to one access

to a memory module, and each group of 2c — 1 processors computes the summation and the

maximum of up to 2c —1 elements. Thus, each iteration takes 0(log c) steps. The first 2c —1

phases perform log,, c iteration each, therefore together they require

O

parallel steps.

(2c-Woge?
logij

The sorting before the last phase takes 0(log n) steps, and the last phase consists of

0(logvn) while iterations, hence requires OiUog^nXlog c)) steps. As

logij = log(l—-)-1 = 0(—) the total number of steps is
a b

0(bc(log cf + b(log nXlog c)). D

We mention how to extend the result of this section to a simulation of a CRCW (con-

current read concurrent write) PRAM by an Ultracomputcr. The CRCW PRAM differs from

-13-

the EREW PRAM (defined in section 2) in having no restrictions on memory accc» When

several processors try to write into the same memory cell, the one with the smallest index

succeeds.

An Ultracomputcr is a synchronized network of n processors, connected together by a

fixed bounded degree network. At each step each processor can send and receive only one

message, through one of the lines connecting it to a direct neighbor in the network. The net-

work topology enables sorting of n keys, initially one at each processor, in 0(log «) steps.

THKORFM 3.3: Any program that requires T steps on a CRCW PRAM with n proces-

sors and in shared variables (in polynomial in n), can be simulated by an n processor Ultracom-

puter within 0(7(log /;)2loglog n) steps.

PROOF (sketch): There arc two logical parts to the simulation of each instruction.

Both parts relay on the capability of the Ultracomputcr to sort « items in 0(log n) steps. The

first part (which involves pre- and post-processing) implements a simulation of a CRCW

PRAM instruction by the EREW PRAM model. An 0(log n) algorithm for this simulation is

described in several papers (e.g. [Vi2]). The second part simulates the MPC model on the

Ultracomputcr. We use the local memories of the individual processors to simulate the MPC's

memory modules. The only difficulty in this simulation is to guarantee that no processor (as a

module) receive more than one message at any step. To achieve that, the memory request are

sorted before each execution of the 'while' loop, and only one request for each memory

module is executed. Each of the broadcast, minimum and summation computation requires

0(log'«) steps on the Ultracomputer instead of the O(1og c) steps it requires on the MI"C.

Thus each CRCW PRAM instruction is simulated by 0(0og n J^oglog n) Ultracomputcr steps.

D

We conclude this section with some remarks:

1. Fault tolerance: A variant of our scheme, in which every processor tries to access

(2-e)c copies rather than c, guarantees that even if up to (l-2e)c of the copies of each data

-14-

itcm arc destroyed by an adversary, no information or efficiency loss will occur.

2. Explicit construction: The problem of explicit construction of a good graph in GmMtC

remains open. This problem is intimately related to the long standing open problem of explicit

construction of (m,n^concentrators (e.g. [DDPW]), when m>n.

4. LOWKR ROUNDS

The fast performance of the organization scheme presented above depends on having at

least Oflog //) updated copies of each data item, distributed among the modules. A natural

question to ask here is whether this redundancy in representing the data items in the memory is

essential. In this section we give a positive answer to this question. We prove a lower bound

relating the efficiency of any organization scheme to the redundancy in it Using this trade-off

we derive a lower bound for any on-line simulation of ideal models for parallel computation

with shared memory by feasible models that forbid it

We assume without loss of generality that each processor of the MPC has only a con-

stant number, d, of registers for internal computation. (This is no restriction as Pt can use Mi

as its local memory). In what follows we consider only schemes that allow a memory cell or an

internal register to contain one value of one data item (no encoding or compression are

allowed).

THEOREM 4.1: The efficiency of any organization scheme with m data items, n

memory modules and redundancy r is ß((—) \

PROOF: Let S be a scheme with m data items, n modules, and redundancy r. If the

efficiency of the scheme S is less than some number h then there is no set of n data items

such that all their updated copies arc concentrated in a set of A-1n modules. Otherwise, it

would have taken at least h steps to read these data items, since only one data item can be read

per step at each module.

-15-

Rccall that r is the average number of updated copies of a data items in the scheme.
«

Therefore, there arc at least —■ data items with no more than 2r copies. At most dn out of

these items appear in the internal registers of processors.

There are n sets of h~lrt modules, and each set can store all the copies of no

more than n -1 data items. If a data item has at most 2r copies then all its copies arc included

in at least n — 2r
h~hi - 2r

sets of A-1// modules. Counting the total number of data items with

at most 2r copies that arc stored by the scheme, wc get

n
h~ln (n-D

n — 2r
h~ln - 2r

if-*
l

which implies h = 0((—) '). □
n

Using the result of theorem 4.1 wc can now derive a lower bound for the on-line simu-

lation of a PRAM program by the MPC model.

In an on-line simulation, the MPC is required lo finish executing the /'* PRAM instruc-

tion before reading the i + l'h. Of course it can perform other operations as well during the

execution of the /'* instruction, but these can not depend on future instructions.

Wc shall assume, w.l.o.g., that the initial value of all data items (and all MPC memory

cells) arc zero. Since wc have m data items and n processors, it makes sense to consider

PRAM programs of length ß(—), otherwise some items were redundant

THEOREM 4.2: Any on-line simulation ofT sleps of a PRAM with n processors and

m shared variables on an MPC with n processors and n memory modules requires

Q(T
loglog n

) parallel MPC steps,

-16-

PROOF: Wc will construct a PRAM program of length T as follows: The first —
n

instructions will assign new values to all the data items. Subsequent instructions will alternate

between a hard read and a hard write instructions.

Consider the redundancy r, of the scheme after the execution of the Ith instruction. A

hard read instruction will essentially implement theorem 4.1 - it will assign processors to read n

items that all of their updated copies are condensed among a small number of modules. A

hard write instruction will assign new values to the n items with the highest number of updated

copies. Gcarly there arc always n data items with at least r, updated copies (as m>n)

For simplicity consider each pair of a hard read followed by a hard write as one PRAM

instruction. Let s, be the number of MPC steps used while executing the t,h instruction. For

the first T = — instructions, at most 2 si memory locations were accessed, and hence
n i=i

rr<Tiis,. CD

Recall that rT is the redundancy when wc start alternating reads and writes. Let

l

/ > T = —. By theorem 4.1, at least T
r,~1 = ß,-\ of the s, MPC steps were used by each

processor to execute the hard read instruction. Hence, at most (st - ß,-i)n cells were

accessed for write instructions. Also, the value of n data items, with >r,_i updated copies

each, was changed, thus, wc have

n < r,-i + (st-ßt-i-n-i)-*-

for/ = T+l. ...,T. :

Summing all these inequalities wc get

J = T+1 l = T+l mt=T+l

Using simple manipulation wc get:

-17-

11 I = T+1 " »=T+1

and using (1),

is, = ist+ is,>^rr+ £*£■%■+ sW'iteSA + r,

r
Where 2 5/ is thc tota' simulation time.

i=i

r-i
Let r = y r, be the average redundancy in the last T steps. Notice

(7-_»l)<tV "
n

_
that B(r) = (—)2r is a convex function in r, for r>0. Hence by Jensen's inequality

n

[RV.211-216],

l i r-i r-i m TT 2^ = 2T(7)2f'>^-fXfP.

Hence,

T 1 J lOg —

A'- « « " loglog-^
n

For m > M
1+e, and T > (1 + e)—, the simulation time is 0(7^ *^"). D

5. CONCLUSIONS

We describe a novel scheme for organizing data in a distributed system, that admits

highly efficient retrieval and update of information in parallel.

This paper concentrates on applications to synchronized models of parallel computation,

and specifically to the question of the relative power of deterministic models with and without

shared memory. Quite surprisingly, we show that these two families of models arc nearly

equivalent in power, and therefore we justify the use of shared memory models in the design of

parallel algorithms.

-18-

Thcre are other applications of our scheme that we did not pursue in this paper. One

application is to probabilistic simulation. An interesting open problem, which we are consider-

ing, is whether our scheme can improve the probabilistic results in [MV] or [U].

Another application we did not pursue here is to asynchronous systems. Although a

similar scheme was suggested in this context [Th], we believe that the potential of this idea was

not fully exploited there, and we plan to continue research in this direction. However, we

believe that the new notion of consistency suggested by our scheme can have a major impact

on the theory and design of such systems, in particular for distributed database systems. Wc

intend to continue research in this direction.

ACKNOWLEDGMENTS:

Wc thank Dick Karp for helpful discussions, and Edna Wigdersn, Odcd Goldrcich, and

David Shmoys for their comments on earlier version of this paper.

-19-

REFERENCES

[AKS] M. Ajtai, J. Komlos and E. Szcmeredi. An 0(log n) sorting network. Proc. of the

Fifteenth ACM STOC, 1983.1-9.

[AIS] B. Awcrbuch, A. Israeli and Y. Shiloach. Efficient simulation of PRAM by Ultra-

computer. Preprint, Tcchnion, Haifa, Israel. 1983.

pDPW] D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson. Superconcentrators, gen-

eralizcrs and generalized connectors with limited depth. Proc. of the Fifteenth

ACM STOC, 1983. 42-51.

IGG] O. Gabber and Z. Galil. Explicit construction of linear-sized superconcentrators. J.

Comp. and Sys. Sei. 22,1981.407-420.

[GGK] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffc, L. Rudolph, and M. Snir.

The NYU Ultracomputcr - designing a MIMD shared memory parallel machine.

IEEE Trans, on Comp. C-32, 2,1983.175-189.

[Ku] DJ. Kuck. A survey of parallel machines organization and programming. Com-

puter Surveys. Vol 9, No. 1, 1977. 29-59.

[Lc] T. Lcighton. Tight bounds on the complexity of parallel sorting. Proc of the Six-

teenth ACM STOC, 1984. 71-80.

[MV] K. Mclhorn and U Vishkin. Randomized and deterministic simulation of PRAMs

by parallel machines with restricted granularity of parallel memories. Ninth

Workshop on Graph Theoretic Concepts in Computer Science, Fachbereich

Mathcmatic, Universität Osnabrück, June 1983.

[Pi] N. Pippenger. Superconcentrators. SI AM J. on Computing, 6, 2,1977. 298-304.

[RVJ A.W. Roberts and D.E. Varbcrg. Convex Analysis. Academic Press, New York,

London 1973.

-20-

[Sc] J. T. Schwartz. Ultracomputers. ACM TOPLAS 2 (1980) 484-521.

[Th] R.H. Thomas. A majority consensus approach to concurrency control for multiple

copy database. ACM Tran, on Database Systems. 4 (1979) 180-209.

[Vil] U. Vishkin. A parallel-design distributed-implcmentation general-purpose com-

puter. Preprint, Courant Institute, New York University. 1983. To appear in /.

TCS.

[Vi2] U. Vishkin. Implementation of simultaneous memory address access in models that

forbid it J. of Algorithms, 4,1 (1983)45-50.

[U] E. Upfal. A probabilistic relation between desirable and feasible models of parallel

computation. Proc. of Sixteenth ACM STOC1984. 258-265.

