
\

f 5PORT NO. NADC-82183-50

A SOFTWARE ENGINEERING ENVIRONMENT FOR WEAPON

SYSTEM SOFTWARE: FUNCTIONAL DESCRIPTION

FOR THE CODE AND TEST PHASE

George AAebus
Software and Computer Directorate
NAVAL AIR DEVELOPMENT CENTER

Warminster, Pennsylvania 18974

NADC
30 NOVEMBER 1982

Te c h. Info.
PHASE REPORT

Approved For Public Release; Distribution Unlimited

[ÜEIC QUALITY CTSFECTBD S

'"60

o

0»

IPORT NO. NADC-82183-50 w

A SOFTWARE ENGINEERING ENVIRONMENT FOR WEAPON
SYSTEM SOFTWARE: FUNCTIONAL DESCRIPTION

FOR THE CODE AND TEST PHASE

George Mebus
Software and Computer Directorate
NAVAL AIR DEVELOPMENT CENTER

Warminster, Pennsylvania 18974

N ADC
30 NOVEMBER 1982

V 19 •

PHASE REPORT

o.

i!^

Approved For Public Release; Distribution Unlimited

[Wi® QUALITY ISJSPECTflB S

NOTICES

REPORT NUMBERING SYSTEM - The nunbering of technical project reports issued by the
Naval Air Development Center is arranged for specific identification purposes. Each
number consists of the Center acronym, the calendar year in which the number was
assigned, the sequence namber of the report within the specific calendar year, and
the official 2-digit correspondence code of the Command Office or the Functional
Directorate responsible for the report. For example: Report No. NADC-7801S-20
indicates the fifteenth Center report for the year 1978, and prepared by the Systems
Directorate. The numerical codes are as follows:

C0DE OFFICE OR DIRECTORATE

00 Commander, Naval Air Development Center
01 Technical Director, Naval Air Development Center
02 Comptroller
10 Directorate Command Projects
20 Systems Directorate
30 Sensors 5 Avionics Technology Directorate
40 Communication 5 Navigation Technology Directorate
50 Software Computer Directorate
60 Aircraft 6 Crew Systems Technology Directorate
70 Planning Assessment Resources
SO Engineering Support Group

PRODUC ENDORSEMENT - The discussion or instructions concerning commercial products
herein do not constitute an endorsement by the Government nor do they convey or
imply the license or right to use such products.

APPROVED EY: ^^\^„, XS ^ ^/sS^/iX: "*'c; y/y/C^

NADC-82183-50

TABLE OF CONTENTS

Page

1. Purposes of a SEE 1

2. Present Navy Efforts 2

3. Distinctives of the SEE 4

4. Purposes of the Software Functional
Description 5

Appendix A - Software Functional Description

Appendix B - SPF Performance Requirements

»TIC qii&LW? mCFE^m I

.NADC-82183-50

A Software Engineering Environment for Weapon
System Software: Functional Description

for the Code and Test Phase

George Mebus

Software and Computer Directorate
NAVAL AIR DEVELOPMENT CENTER

Warminster, Pennsylvania 18974

1_. Purposes of a SEE

"Software Engineering" is concerned with developing software sys-
tems that satisfy the requirements of the user over the whole life of
the system; a SEE assists the accomplishment of software engineering
through sets of computer facilities, integrated software tools, and
uniform engineering procedures. The term "weapon system software"
inherently implies a concern with software for embedded computer sys-
tems and support over the entire life-cycle. Among the aims of a SEE
are to increase productivity, support development of reproducible
software and promote standardization of software and software develop-
ment methods. The industrialization of computer hardware is already
successful in these areas; the SEE will enable a similar industriali-
zation of computer software.

Productivity

To increase productivity, the SEE must let users work in the most
productive mental surroundings, i.e., at a high level of abstraction,
dealing with the problem they are to solve, rather than the details of
the host computer system. DoD recognized this when they emphasized
High Order Languages (HOL's) and Ada1 in particular. The SEE must
automate what can be automated to free users of details irrelevant to
their work (how to access the compiler, organization of file struc-
tures, etc.), and guide users in systematic software development.

This guidance will both disencumber users and restrict what they
can do. Structured programming provides a taste of this freedom with
restriction. It makes one's thinking about decisions easier by pro-
viding a standard set of control structures. It also restricts use of
a large class of possible control statements because they may
adversely affect program quality. Thus, productivity is enhanced by
both the provisions and the restrictions of structured programming.
The SEE's guidance will have similar benefits.

Software sharing is also essential to increased productivity.
Repeated re-invention of software is a costly waste of resources.
Software developers should be able to make general, flexible

Ada is a Registered Trademark of the Ada Joint Program Office - U.S.
Government

NADC-82183-50

subprograms that can be freely shared. The programming language used ^^
greatly affects the generality of software modules. But the software ^p
engineering environment also affects the ability to know about the
software components as well as the freedom to access them. SEE will
provide convenient support of software sharing.

Reproducibility

The Navy must be able to reproduce its software. This means that
the Navy must have control over the tools used to generate the
software. A contractor's proprietary tools must not be part of the
software development process because they tend to lock the contractor
into the project for the entire life cycle. Also, the Navy must limit
users' ability to make arbitrary changes to their data base informa-
tion. For example, if someone can modify the object code so that it
does not reflect the associated source code (a current capability of
the MTASS SYSGEN) then the Navy cannot always reproduce the object
code from the source.

Standardization

Standardization is essential to the above topics. It is also
necessary for automated Configuration Management. The SEE will
enforce both internal standards (file formats, file contents, file and
tool accesses, development data collection, etc.) and external stan-
dards (e.g., compliance with MIL-STD-1679).

Standardization carries much weight in the aims of Ada. Ada is
intended to be a standard language across all DoD with neither subsets
nor dialects. A standard language support system is also envisioned.
Proposed benefits of these standardizations include user transporta-
bility, software transportability and reduced re-invention. SEE stan-
dardizations have similar virtues to promote higher productivity and
better software.

One important feature of the SEE is the standard data base struc-
ture, automatically provided and maintained. A typical benefit is the
transition of software from software developer to the Software Support
Activity (SSA). Although usually a tedious, expensive process it
becomes trivial when both developer and SSA have the software in
standardized SEE data bases throughout the different life cycle
phases.

2. Present Navy Efforts

MTASS

The Machine Transportable AN/UYK-20, AN/AYK-14 Support Software
(MTASS) is a set of tools for military software development, hosted on
several large commercial computers and targeted for the military com-
puters mentioned in its name as well as the AN/UYK-44. The tools are
cooperative in that the outputs of some are the inputs of others.
They are standardized in that they work the same way on the various
hosts and they provide a basic set of tools for all programmers of the

NADC-82183-50

target machines. The set is not complete in that some use of auxili-
ary host machine tools is required (e.g., for source and object
library maintenance). PMS-408 maintains the MTASS source code and
distributes only the object.

SHARE/7

An interactive operating system for the AN/UYK-7 military com-
puter. It allows direct user manipulation of files, tapes and tools.
While the Navy controls who may use SHARE/7, there is no Navy control
over its use, the content or structure of files or the methods of tool
invocation.

2
UNIX

3
An interactive operating system for DEC VAX computers and other

commercial hosts. UNIX has an extensive compatible tool set, a flexi-
ble convenient file system and good internal communication among
tools. Most tools do a simple operation on a file, producing another
file as a result. Many desirable file processing operations can be
quickly developed by stringing various tools together. UNIX provides
a tree-structured file system with flexible ways of accessing and pro-
cessing groups of files. Since UNIX is a general purpose commercial
operating system, the Navy does not control its distribution and use.

FASP

A Navy integrated software development environment, hosted on
large-scale commercial computers and targeted to fully support all
Navy standard military computers. FASP enforces development standards
through the mandatory use of "procedures" tailored by parameters to do
the required tasks. The automated procedures remove the necessity for
users to directly access either tools or files. Thus they release
users from the tedious intricacies of operational detail, while giving
advanced programming capabilities to the user, control of the tools to
the Navy, and control of the files to a project manager. The manager
is also able to control the use of both procedures and parameters via
a set of "keys" which establish the system privileges afforded to each
user. A set of management report procedures enhance management visi-
bility by producing reports from data automatically gathered during
software development.

Two versions of FASP currently exist. One hosted on CDC CYBER
machines, using KRONOS and NOS operating systems, supports many major
Navy projects using the Navy standard embedded military computers
(e.g., AN/AYK-14, AN/UYK-44, AN/UYS-1). Extensive tool development
was done to make an integrated environment. The CYBER version of FASP
has been in use for the past seven years. The second version, which
supports microprocessor code development, is hosted on VAX machines

2 -,UNIX is a trademark of Bell Laboratories.
DEC and VAX are trademarks of Digital Equipment Corporation.

NADC-82183-50

using the UNIX operating system. A much greater use of existing
operating system facilities was made in UNIX than with the CYBER
operating system. A faster, easier implementation was possible
because the UNIX tools were more easily combined and new tools were
more easily created through use of the UNIX shell and the C language.
NAVAIRDEVCEN is the developer and maintainer of FASP.

Ada MAPSE

The Minimum Ada Program Support Environment (MAPSE) will be an
environment for military software development. The goals are to have
a transportable tool set, good inter-tool communication, and standard
tools for all users. STONEMAN defines requirements of the MAPSE. The
Ada Program Support Environment (APSE) is less clearly defined
although broad principles and goals exist. PMS-408 will control the
Navy Ada MAPSE as it does MTASS.

3_. Distinctives of the SEE

Two notable areas of the SEE are its technical characteristics
and user-friendliness. Technical characteristics are design features
of the SEE, while user-friendliness is an intended by-product of them.

Technical Characteristics

Multiple language support is essential for the SEE. Even when
Ada is firmly established, the SEE must still maintain existing fleet
software written in a variety of current Navy-standard languages.
Differences in compiler facilities, object libraries, and target com-
puter emulators require different tool sets for each supported
language. The SEE will offer standardized facilities for dealing with
the several language systems to provide a consistent framework for
software maintenance.

Procedures perform specific high-level jobs important to software
life cycle phases. Procedures are predefined sets of host computer
commands that do the software development jobs by ensuring that
appropriate tools are properly sequenced and invoked, that appropriate
files are properly accessed and created, that development information
is collected and saved, etc. The SEE may develop and execute hundreds
of operating system statements in doing a single procedure. Pro-
cedures are invoked by commands whose names reflect the jobs they do
(e.g., Develop Software, Execute Tests). Mnemonic abbreviations are
available for convenience (e.g., DEVSW, EXTEST). The procedure opera-
tions are tailored by parameters (like Translator or its abbreviation
XLATR), most of which have default values (like XLATR=ADA). These
parameter values add the flexibility required by specific tasks. A
procedure handles all complexities of tool invocation and sequencing,
data base management, error recovery, and collection of development
statistics, with no need for the users' involvement or awareness.

Encapsulated data bases are standard sets of files with standard
organizations. For a set of software modules a data base contains
source, object, tests, test results, development histories,

NADC-82183-50

documentation, etc. With a fixed structure that users cannot directly
change, the SEE assures that the proper information in the proper
relationship is available for Configuration Management (CM) reporting,
management tracking and re-creation of software. It can check the
internal integrity of a data base. Regularity of the data base results
in efficient processing and also allows efficient enhancement of the
SEE in that any new language-independent procedure can be applied to
any SEE data base, thus reducing development cost.

User-friendliness

Programmers are lifted above internal details of the host operat-
ing system and repetitive operations. Some details are unrelated to
program design and coding (such as compiler access or object library
directives) and are prone to error. Others may even be dangerous. If
unrestricted access to files were allowed, users could independently
modify any file, potentially destroying file relationships. The SEE
assures that tools are accessed and sequenced properly, requiring
users to provide only their program data as inputs.

Managers benefit in two areas: visibility and control. Visibil-
ity Is presented through a series of software and CM reporting pro-
cedures. They tell what software has been developed, the current
testing activity, how development is tracking previous estimates, etc.

The manager initially exercises control when creating new data
bases or defining "keys" for programmers. Subsequent control is a
result of the key definitions. For example, a manager may not want a
new programmer to be able to modify a data base but only make tem-
porary changes for the present. The keys may then prevent use of
modifying procedures like Develop Software, but allow procedures that
produce reports. Similarly, the manager can restrict a programmer
from using an particular version of a translator by restricting the
use of the Translator parameter, forcing the default value to be used
when software is modified.

4. Purposes of the Software Functional Description

Appendix A presents the Software Functional Description of a SEE.
The design is general and applicable to all Navy software development.
The Functional Description concentrates on the code and test phases
but the adequacy and advantages of its organization clearly apply to
earlier phases as well.

Discussing a complex system like a SEE often becomes a confusion
of details and specifications that cloud the power and usefulness of
the capabilities the system affords. For clarity this Software Func-
tional Description shows the salient features of a SEE at a fairly
high level--the user interface. The features are organized by user
activities (e.g., Develop Software, Execute Tests, Document). Each
activity has an associated "procedure" in the SEE and an associated
command name to invoke the procedure.

The Functional Description is arranged as a representative list

NADC-82183-50

of procedures corresponding to the discrete steps performed by pro-
grammers and software managers. In itself this list demonstrates how
the SEE helps to organize user activity. Each procedure is individu-
ally presented in the Functional Description in several ways. First,
a narrative text verbally describes the intent of a procedure and the
capability it provides. Next, the appropriate parameters are listed
to show how the users can control the operations performed. The
parameter list also shows the level of detail users must consider.

After this a graphic display shows what goes on "behind the
scenes" from the viewpoint of software architecture. This graphic
display uses structured English to define the flow of control. The
control flow description is coupled with a parallel pictorial diagram
that defines the data flow. These two parallel flow descriptions
illustrate several things:

- the many automated steps executed by the procedure in response to
the single command invocation;

- just how parameters affect the processing and provide the needed
flexibility;

- data flow information, data base contents used and produced, and
other necessary file information;

- the protection given to processing, tools and data base contents;

- automatic provisions for error recovery.

In all, the Software Functional Description shows the degree to
which software development can be automated and indicates the complex-
ity that users need not contend with, but which is instead designed
into the SEE. It is intended to give a clear picture of the operation
of a SEE that meets needs of software developers, managers and the
Navy.

NADC-82183-50

APPENDIX A

SOFTWARE FUNCTIONAL DESCRIPTION

•

NADC-82183-50

TABLE OF CONTENTS

SECTION PAGE

CONTENTS A-i

FIGURES A-iii

1. INTRODUCTION A-l

2. REFERENCE DOCUMENTS A-2

3. ABBREVIATIONS A-3

4. PROCEDURES, COMMANDS, AND THEIR PROCESSING A-4

5. SOFTWARE REQUIREMENTS SPECIFICATION
AND ANALYSIS PROCEDURE GROUPS A-ll

6. SOFTWARE DESIGN PROCEDURE GROUPS A-12

7. SOFTWARE CODE AND TEST PROCEDURE GROUPS A-13
7.1 Software Development Procedures A-13
7.1.1 Create/Copy/Save/Restore a Data Base A-13
7.1.2 Develop Software A-18
7.1.3 Install External Software A-19
7.1.4 Share/Copy Software A-20
7.1.5 Create Load Images/Tape A-22
7.1.6 Print Reports A-23
7.2 Software Testing Procedures A-24
7.2.1 Analyze Source Code A-25
7.2.2 Develop Tests A-26
7.2.3 Instrument Code A-27
7.2.4 Execute Tests A-28
7.2.5 Debug Tests A-29-
7.2.6 Regression Test A-30
7.2.7 Analyze Test Results A-31

8. COMON PROCEDURE GROUPS A-32
8.1 User Assistance Procedures A-32
8.1.1 List Bulletin A-33
8.1.2 List News A-34
8.1.3 List Help A-35
8.1.4 List User Manual A-36
8.1.5 Contact SPF Personnel A-37
8.2 Software Management Procedures A-38
8.2.1 Configure a Project A-39
8.2.2 Control Access A-40
8.2.3 Print Progress Reports A-41

A-i

NADC-82183-50

TABLE OF CONTENTS (Cont.)

SECTION PAGE

8.2.4 Identify Software Configuration A-42
8.2.5 Release Software A-43
8.2.6 Track STRs, SCPs, SEPs A-44
8.2.7 Configuration Status Accounting A-45
8.3 Document Production Procedures A-46
8.3.1 Document A-47
8.4 Context Control Procedures A-48
8.4.1 Logging Procedures A-49
8.4.2 Global Parameter Handling Procedures A-51
8.4.3 Command Queue Handling Procedures A-54
8.4.4 Data Creation Procedures A-57
8.4.5 Output Handling Procedures A-58

9. VERIFICATION AND VALIDATION PROCEDURE GROUPS A-61

10. QUALITY ASSURANCE PROCEDURE GROUPS A-62

A-ii

NADC-82183-50

FIGURES

FIGURE PAGE

Figure 1 Software Product Hierarchy Tree A-6

Figure 2 Process Flow Diagram Legend A-8

Figure 3 Standard Processing for Procedures A-9

Figure 4 Command Processing A-10

Figure 5 Summary of Software Development Procedures A-13

Figure 6 Summary of Software Testing Procedures A-24

Figure 7 Summary of User Assistance Procedures A-32

Figure 8 Summary of Software Management Procedures A-38

Figure 9 Summary of Document Production Procedures A-46

Figure 10 Summary of Context Control Procedures A-48

A-iii

NADC-82183-50

1. INTRODUCTION

Reference (a), "The Industrialization of Weapon System Software," advances
the concept of a Software Engineering Environment (SEE) composed of a Software
Production Facility (SPF) and a set of hardware/software Integration
Facilities (IFs). The SPF is used to develop, test and maintain operational
software which is then sent to the IFs for integration. Functionally, the SPF
provides named "procedures" as the first level of user communication. These
procedures automatically invoke specific software tools to perform the
prescribed sequences of operations. They use a Data Base Management System
(DBMS) to manage the storage and retrieval of data developed during the
operations.

As described in reference (a), the SPF provides three phases of software
support: requirements, design, and code & test. This software Functional
Description identifies the functional groups of procedures provided by the
SPF. For each group, narrative descriptions and process flow diagrams of the
procedures are given followed by a list of the procedures, the tools they
invoke, and the data base contents used and produced by the tools.

A- 1

NADC-82183-50

2. REFERENCE (DOCUMENTS

(a) "The Industrialization of Weapon System Software," H. G. Stuebing,
15 May, 1981.

A- 2

NADC-82183-50

3. ABBREVIATIONS *v

DB Data Base

DBMS Data Base Management System

FD Functional Description

IF Integration Facility

INST Instrumented (resulting from software probes inserted in source
code)

MTASS Machine Transportable AN/UYK-20, AN/AYK-14 Support Software

SCP Software Change Proposal

SEE Software Engineering Environment

SEP Software Enhancement Proposal

SPF Software Production Facility

STR Software Trouble Report

SW Software

A- 3-

NADC-82183-50

4. PROCEDURES, COMMANDS AND PROCESSING

The SPF is driven by procedures which are invoked by simple user
commands. This system provides:

a Automated standards enforcement

• Centralized data collection

• Convenience and flexibility for the software developer

• Control, security and visibility for the software manager

4.1 Procedures

A procedure is a set of SPF computer directives which:

• Automates a particular software production task

• Invokes the proper tools in the proper sequence

• Handles all file manipulations and correspondences

• Automatically records job statistics

Procedures are available to meet all user needs (e.g., specify, design,
develop, test, maintain, document, track) throughout the software life cycle.
They require only information and data pertinent to the user's specific
software production tasks (not tool invocations and file processing), thus
simplifying the user's work.

A procedure may perform many smaller tasks, handling all details of data
collection and tool invocation in the process. For example, the DEVELOP
SOFTWARE procedure invokes an editor for text development, invokes the
user-specified translator (e.g., CMS-2M compiler) to translate or retranslate
all affected software modules, and invokes an object code interface extractor
to identify all externals. The source and object code are always kept
synchronized and job statistics are automatically collected for project
tracking.

4.2 Software Tools

The software tools available through the SPF cover the full range of
functions for mission software design, development, and maintenance. Examples
are:

requirements tools system generators
design tools analyzers
editors data extractors
translators report generators

A- A

NADC-82183-50

4.3 Data Bases

SPF procedures use a Data Base Management System (DBMS) to manage the
storage and retrieval of data developed during SPF usage. The DBMS creates
and maintains a hierarchical project tree file structure in which data bases
are terminal nodes (or "leaves") of the tree. Project managers configure the
project tree to reflect the structure of their projects. Figure 1 shows such
a tree structure for a typical Navy software project.

Data bases are the repositories for the software and all information
related to the software. A particular data base is assigned to developing and
maintaining software for a particular operational capability. A data base
will contain:

requirements specifications and documentation

design specifications and documentation

source and object code for one or more modules

system generator directives

load modules (executable programs)

tests and test results

histories - items, changes, metrics

configuration management information

interface data - source and text inclusions, subroutine calls,
external definitions and references

A.A Commands

Each procedure is invoked by a command. Each command is a string of
characters which begins with a procedure name, to identify the procedure to be
performed. The name is typically followed by parameter value specifications.
These values give the user flexibility in directing the performance of the
procedure to accomplish the specific function required. There are two kinds
of commands:

Immediate commands are executed as soon as received and validated by
the SPF.

Queued commands are collected on a command queue for later processing.

All commands are processed as described in section A. 6.

A-5

NADC-82183-50

ACCESS
KEYS

EXEC

DB

INITIAL-
IZATION

OB

IPL

DB

PROJECT
AIR

SOFTWARE

AOP

ACOUSTICS

STR SCP
SEP LOG

ESMOP

DB

AMTP

MAO

DB DB DB

FIGURE 1
SOFTWARE PRODUCT HIERARCHY TREE

A-6

NADC-82183-50

4.5 Process Flow Diagrams

Process Flow Diagrams are used in this Functional Descrition to describe
the unique operation of each procedure supported by the SPF. They consist of
two associated parts:

(1) a structured English description (using standard IF-THEN-ELSE-ENDIF
and DQWHILE-ENDDO constructions) of the control flow for a procedure,
and

(2) a data flow diagram showing process performed, tools used, data base
contents used and produced, and other information required by the
procedure. A legend of diagram symbols is shown in Figure 2.

When a procedure is performed, a certain amount of "standard" processing
is done before and after the "unique" processing for that procedure. This
standard processing done for each procedure is shown in Figure 3 using a
structured English description.

4.6 Command Processing

The SPF reads and validates the user's commands. In a batch processing
mode, each valid command is executed as it is received.

In an interactive mode, any command recognized as "immediate" is executed
immediately. All others are placed on the command queue for later execution.
Upon receipt of the EXECUTE COMMAND QUEUE command, the SPF will execute the
queued commands.

Command processing is illustrated by a process flow diagram in Figure 4.

A-7

NADC-82183-50

ONLINE KEYBOARD TERMINAL

FILE

^

COLLECTION OF FILES

SOFTWARE TOOL

OUTPUT OR DOCUMENT FILE

INPUT INFORMATION

GLOBAL INFORMATION

MAGNETIC TAPE

FIGURE 2
PROCESS FLOW DIAGRAM LEGEND

A- 8

NÄDC-82183-50

Verify user access rights for this procedure
IF verification fails
THEN raise abort flag
• Notify user
ELSE
•
• (unique process flow for procedure)
•
ENDIF
IF abort flag is not raised
THEN save production data
■ Make "saved" files permanent
ENDIF
Save job statistics
Make job statistics permanent

Figure 3 - Standard Processing for Procedures

A- 9

NADC-82183-50

COMMAND

DOWHILE no LOGOFF command received
DOWHILE no valid LOGON command received
• Read and identify command
• IF not LOGON
• THEN notify user that LOGON is required

ELSE invoke LOGON processor

USER

See process flow for LOGON
paragraph 8.4.1.1

LOGON
PROCESSOR

SPF

• ENDIF
ENDDO (user is now identified)
Read and identify command
IF not identifiable
THEN notify user
ELSE validate command

IF error
THEN notify user
ELSE
• Append default values of unspecified parameters
• IF an immediate command

PROCEDURE
FILES

THEN execute the command

• ELSE put the command on the command queue
• ENDIF
ENDIF

ENDIF
ENDDO

COMMAND
EXECUTOR

COMMAND
QUEUE

Figure A - Command Processing

A- 10

NADC-82183-50

5. SOFTWARE REQUIREMENTS SPECIFICATION AND ANALYSIS PROCEDURE GROUPS

Studies of requirements tools, particularly RSL/REVS and PSL/PSA, and
their integration into a Software Engineering Environment are ongoing.
Results of the studies are not available at the time of this draft.

A-ll

NADC-82183-50

6. SOFTWARE DESIGN PROCEDURE GROUPS

A study of software design methodologies is ongoing. The aim of the study
is to identify one or a combination of methodologies which will best serve
Navy Weapon System software and identify how automated tools can aid the use
of that methodology. Results of the study are not available at the time of
this draft.

A- 12

NADC-82183-50

7. SOFTWARE CODE AND TEST PROCEDURE GROUPS

7.1 Software Development Procedures

The "code" part of "code and test" is oriented toward operational software
development. Developers must be able to establish a safe repository for their
software, develop that software and make loadable object code for test
integration and fleet issue. They must also be able to get current
information about the software content and organization, and control the
disposition of job output.

PROCEDURES TOOLS
D3 CONTENTS

USED PRODUCED

Create/Copy/Save/
Restore DB

DBMS File
Directories/
Dependencies

File
Directories/
Dependencies

Develop SW Text Editors
Translators

Source/Object
Code

Source/Object
Code

Object Interface
Extractors

SW Histories
SW Interfaces

Install External SW Preprocessors
Translators
Object Interface

Extractors

Source/Object
Code

SW Histories
SW Interfaces

Share SW Source/Object/
Tests/Text

Source/Object/
Tests/Text

Copy SW Source Selector
Translators
Object Interface

Extractors

Source (and
possibly Object/
SW Histories/
SW Interfaces)

Source/Object
SW Histories
SW Interfaces

Create Load
Module/Tape

System Generator System Generator
Script

Object Code

Load Module

Print Reports Data Extractor
Report Generator

Data Base
Contents

Source Code

Figure 5 - Summary of Software Development Procedures

A- 13

NADC-82183-50

7.1.1 Create/Copy/Save/Restore a Data Base

The SPF, through the DBMS, automatically maintains each data base and the
information on it. Use of these procedures is typically restricted by the

software manager.

7.1.1.1 Create a Data Base

The SPF creates the files and directories comprising an initial
configuration of a data base with a specified identifier at a specified
project tree terminal node.

CREATE A NEW DATA BASE

params:
Data Bas« Identifier (DBID)

Establish data base with DBID
Create data base files
Initialize fiie contents

NEW DBID

A-14

NADC-82183-50

7.1.1.2 Copy a Data Base

The SPF creates a new data base at a specified node. The data base
duplicates the file structure and contents of a specified alternate data base.

OLD DBIDALT

COPY A DATA BASE

params:
Data Base Identifier (DBID)
Alternate Data Base Identifier (DBIDALT)

Establish data base with DBID
Create data base files
Copy contents of DBIDALT files into DBID files

NEW DBID

DATA
BASE

A-15

NADC-82183-50

7.1.1.3 Save a DataBase

Tne SPF copies the specified data base structure and contents to a
specified magnetic tape. A data base may be saved for baselining or for file
damage protection beyond that automatically provided by the SPF.

OLD DBID

SAVE A DATA BASE ON TAPE

params:
Data Base Identifier (DBID)
Tape Identifier (TAPEID)

Copy DBID files to TAPEID tape

A-16

NADC-82183-50

7.1.1.4 Restore a Data Base

The SPF creates a new data base and copies the contents of the specified
magnetic tape into the data base, thus completing the restoration of an
archived data base.

NEWOBID
(DBIDNEW)

RESTORE A DATA BASE FROM TAPE

params:
Data Base Identifier (D3ID)
New Data Base Identifier (DBIDNEW)
Tape Identifier (TAPEID)

IF tape not recorded from DBID
THEN raise abort flag
ELSE establish data base with DBIDNEW
• Create data base files
• Copy TAPEID contents into DBIDNEW files
ENDiF

A-17

NADC-82183-50

7.1.2 Develop Software

This procedure allows entry of source code into a data base and subsequent
modification of source code. All source affected by entry or modification is
automatically (re)translated to ensure that source and object code are always
synchronized. Other information developed and saved on the data bases are
software histories and software interface information (cross references,
externals information, software dependencies).

DEVELOP SOFTWARE

params:
Data Base Identifier (DBIO)
Input Data File (INPUT)
Source Code Translator (TRANSLATOR)

Access INPUT file
Access source code
Access shared source copy (if there)
Invoke source code Text Editor

OLD
STATE

IF old state file exists
THEN identify file to user
• IF desired
• THEN use state file
• ELSE clear editor state
• • Delete the state file
• ENDIF
ENDIF
Process source code from INPUT (if there)
IF an interactive job
THEN
• Read source code
• DOWHILE no END command received
• • Process commands from the user
• ENDDO
ENDIF
Create a new state file

USER

NEW
STATE

IF included code members were modified
THEN mark all modules including them as edited
ENDIF
Build a file of all edited modules
Save member modification history information
Save source interface modification information
Save modified source code
Invoke the TRANSLATOR

Read source code
Produce object code

IF fatal errors
THEN raise abort flag
ELSE save the new object code
* Delete the new state file
• Invoke Object Interface Extractor

Read object
Produce object interface information

• Save object interface modification information
ENDIF

OBJECT
INTERFACE
EXTRACTOR

OLD DBID NEW DBID

MEMBER
HISTORY

SOURCE
INTERFACE

SOURCE

OBJECT

OBJECT
INTERFACE

A-18

NADC-82183-50

7.1.3 Install External Software

Existing software developed outside of the SPF requires additional
processing when transferring it to SPF data bases. Requirements on SPF
processing of external software depend on the developers adherence to the
content and formats specified in reference (b). In particular, preprocessors
may be required if the source code is written in a language that is not a Navy
standard programming language. Conversely, if Navy standard tools were used
to develop the software (e.g., MTASS), it will not only make source code
transfer simpler but may also permit transfer of tests and test results to the
SPF.

After source code is in acceptable SPF form in data bases, the DEVELOP
SOFTWARE procedure will be used to maintain it.

INSTALL EXTERNAL SOFTWARE

params:
Data Base Identifier (DBID)
Input Source Code File (INPUT)
Source Code Preprocessor (PREPROCESSOR)
Source Code Translator (TRANSLATOR)

Access INPUT file (if there)
Invoke PREPROCESSOR

Read INPUT source code
Produce Navy-standard source code

IF fatal errors
THEN raise abort flag
ELSE save member history information
• Save source code interface information
• Save source code
• Invoke TRANSLATOR

INPUT

PREPROCESSOR

Read source code
Produce relocatable object code

IF fatal errors
THEN raise abort flag
ELSE save object code
• Invoke Object Interface Extractor

 TRANSLATOR

Read object
Produce object interface information

• • Save object code interface information
• ENDIF
ENDIF

OBJECT
INTERFACE
EXTRACTOR

NEW DBID

MEMBER
HISTORY

SOURCE
INTERFACES

SOURCE

OBJECT

OBJECT
INTERFACES

A-19

NADC-82183-50

7.1.4 Share/Copy Software

7.1.4.1 Share Software

Source code may be shared from a master data base to ensure that naming
conventions and special data values are applied consistently throughout the
project software. Object code, sections of tests and documentation text may
also be shared among data bases.

SHARE SOFTWARE

params:
Alternate Data Base Identifier (DBIDALT)
Software Type (SWTYPE)

Access SWTYPE file (source objecl/test/text)
from DBIDALT

Make a temporary copy for future access

OLD DBIDALT

SHARED
SWTYPE
COPY

A-20

NADC-82183-50

7.1.4.2 Copy Software

When code is copied from one data base to another, the integrity is always
maintained either by copying all pertinent information (e.g., source, object
histories, etc.) or by copying only the source code and developing the rest by
translation.

COPY SOFTWARE

params:
Data Base Identifier (DBIO)
Alternate Data Base Identifier (DBIDALT)
Retranslate Request Indicator (RETRANSLATE!
Source Code Translator (TRANSLATOR)

Access source code from DBIDALT
Access shared source code (if there)
Invoke Source Selector

Read user commands
Read selected source members
Produce input to TRANSLATOR

IF RETRANSLATE = YES
THEN invoke TRANSLATOR

SOURCE
TO

TRANSLATOR

Read source code
Produce object code

5
SOURCE

SELECTOR

IF fatal error
THEN raise abort flag
ELSE save source code
• Save object code
• Save member history information
• Save source interface information
• Invoke Object interface Extractor

TRANSLATOR

OLD DBIDALT

Read obiect
Produce object interface information

• Save object interface information
ENDIF

ELSE copy member history information
Copy source interface information
Copy object code
Copy object interface information

ENDIF

OBJECT
INTERFACE
EXTRACTOR

A-21

NADC-82183-50

7.1.5 Create Load Module/Tape

Load tapes may be created for integration or fleet issue. Load modules
can be saved on a data base for: multiple tape creation, inclusion on a
multiple-data base tape, or testing with a target computer emulator.
Directives for a system generator are entered into and maintained on the data
base. The generators use the directives and relocatable object code from the
data base to create the load module file/tape.

CREATE LOAD MODULE/TAPE

params:
Data Base Identifier (D8ID)
System Generator Script (SGSCRIPT)
Tape Identifier (TAPEID)

Access object code from DBID
Access shared object copy (if there)
Access SGSCRIPT
Invoke System Generator

SHARED
OBJECT
COPY

Read SGSCRIPT
Process object code
Produce load module file or load tape

I
SYSTEM

GENERATOR

NEW DBID

LOAD
MODULE

A-22

NADC-82183-50

7.1.6 Print Reports

_ A variety of reports, useful in various stages of software development and
maintenance, is available. The reports are produced from data ase information
which was explicitly or implicitly collected in the data base by the SPF.
Representative information is: source code, software histories, software
dependencies (nesting, externals), code statistics, translators used, etc.

DXSCRIPT
PRINT REPORTS

params:
Data Base Identifier (DBID)
Data Extractor Script (DXSCRIPT)
Report Generator Script (RGSCRIPT)

Access DXSCRIPT
Invoke Data Extractor

Read DXSCRIPT/user commands
Extract data as directed
Produce data file

Access RGSCRIPT
Invoke Report Generator

Read data file
Read RGSCRIPT/user commands
Produce formatted report

OLD DBID

RGSCRIPT

A-23

NADC-82183-50

7.2 Software Testing Procedures

Testing is oriented toward software evaluation. The testers must be able
to identify, develop and execute tests. They must also be able to evaluate
the results and effectiveness of the tests.

DB CONTENTS
PROCEDURES

Analyze Source Code

Develop Tests

Instrument Code

Execute Tests

Debug Tests

Regression Test

Analyze Test Results

TOOLS

Source Analyzer

Test Case
Generator

Text Editor

Source
Instrumentor

Translator
System
Generator

Computer Emulator

Computer
Emulator

Computer Emulator
Test Results

Comparator

Test Results
Analyzer

USED

Source Code
Analysis Results

Analysis
Results

Test Scripts
Test Histories

Source Code

PRODUCED

Analysis Results

Test Schema Data

Test Scripts

Source Instrumentor
Script

System Generator
Script

Test Script
(Inst) Load Module

Source Code
Test Scripts
Load Modules

Test Results
Test Scripts
Load Modules

Inst Test Results

Inst Source
Inst Object
Inst Load Module

(Inst) Test Results
Test Histories

Test Results
Test Histories

Figure 6 - Summary of Software Testing Procedures

A-24

NADC-82183-50

7.2-1 Analyze Source Code

A static analyzer examines source code and previous analyses to enforce
standards, check for coding errors and perform quantitative analyses. It also
provides information for test case development (e.g., value ranges of
variables).

NEW DBID

ANALYZE SOURCE CODE

params:
Data Base Identifier (D8ID)

Access source code
Access shared source copy M there)
Access analysis results
Invoke Source Analyzer

Read user commands ncau uw vuiii"»«"--
Process source code and analysis results
Produce analysis on output
Produce updated analysis results

A-25

NADC-82183-50

7.2.2 Develop Tests

A test consists of sequences of directives for a target computer emulator
to specify the environment in which a load module will be executed as well as
to specify the execution data to be sampled. Tests are saved as scripts and
maintained on the data base just as system generator scripts are. Examples of
environment specifications are memory and register initialization, and the
values and timing of input data. Execution data include values in registers,
memory, program counter, emulated clock timings and output data. Additional
directives may identify those areas of test results which are important for
regression test comparisons.

DEVELOP TESTS

params:
Data Base identifier (DBID)
Test Case Generator Request (TESTGEN)

Access analysis results and test histories
IF TESTGEN = YES
THEN invoke Test Case Generator

Read analysis results and test histories
Read user commands
Produce Test schema data

ENDIF
Access test scripts
Invoke Editor

Read test scripts, test schema data
Read user commands
Produce new test scripts

TEST CASE
GENERATOR

Save test scripts

EDITOR

OLD DBID NEW DBID

TEST
SCRIPTS

A-26

NADC-82183-50

7.2.3 Instrument Code

Instrumentation of code provides a significant improvement in testing and
evaluating test effectiveness. A source code instrumenter identifies the
optimum locations for inserting "software probes" (calls to information-
collecting programs) then instruments the source code by inserting the probes,
and adding the programs. The source is automatically translated to create
instrumented object code from which an instrumented load module is generated.
All are saved on the data base.

INSTRUMENT CODE

params:
Data Base Identifier (D8ID)
Soutre Code Translator (TRANSLATOR)
Source instrumenter Script (SISCRIPT)
System Generator Script (SGSCRIPT)

Access source code and SISCRIPT
Access shared source copy (if there)
Invoke Source Instrumenter

OLD DBID

Read SISCRIPT and source code
Produce instrumented source

IF fatal errors
HEN raise abort flag
LSE save instrumented source

Invoke TRANSLATOR

SOURCE
INSTRUMENTOR

Read instrumented source
Produce instrumented object

IF fatal errors
THEN raise abort flag
ELSE save instrumented object
• Access SGSCRIPT
• Invoke System Generator

TRANSLATOR

Read SGSCRIPT and instrumented object |_
Produce instrumented load module file |"

• IF fatal errors
• THEN raise abort flag
• ELSE save load module file
• ENDIF
ENDIF

NDIF

SYSTEM
GENERATOR

NEW DBID

A-27

NADC-82183-50

7.2.4 Execute Tests

Test execution uses a computer emulator program to evaluate development
progress by executing load module code as the target hardware would; that is,
it will go through the same internal states. But the fact that all emulated
memory and registers are fully accessible at any point in the execution
provides detailed visibility into the software execution. The existence of
source code pointers in the object allows source-level direction and
evaluation. Further, the use of instrumented load modules provides test
effectiveness information.

EXECUTE TESTS

params:
Data Base Identifier (DBiD)
List of Tests To Be Run (TESTLIST)

Access TESTLIST
Access shared test script copy (if there)
DOWHILE tests remain to be done

Access test script and load module
associated with test

Invoke Comouter Emulator

TESTLIST

Load load module into memory
Process test script
Produce test results
Produce test histories

ENDDO

COMPUTER
EMULATOR

NEW DBID

(INST)
TEST

RESULTS

TEST
HISTORIES

A-28

NADC-82183-50

7.2-5 Debug Tests

To isolate problems in software or in test scripts, the SPF provides
interactive control of the computer emulator. The computer emulator gives
source code traces of instructions executed to aid the user in debugging
source code.

This procedure is for interactive use only; no test results are saved on
the data base.

DEBUG TESTS

params:
Data Base Identifier (DBID)

Access tests, source, loadmodules
Access shared test and source copies (if there)
Invoke Computer Emulator

Perform user commands
(eg, load loadmodules, execute scripts)

Provide source code traces

OLD DBID

SOURCE

TEST
SCRIPTS

LOAD
MODULES

A-29

NADC-82183-50

7.2.6 Regression Test

Tests are automatically or explicitly rerun when changes are made to
determine whether any previously established capabilities have been
compromised (i.e., have regressed). The sections of the new test results
which are designated as "important" are compared with the same parts of the
previous results. The new results are saved and the tester informed of any
changes that occurred in important areas.

REGRESSION TEST

pa'ams:
Data Base Identifier (DBID)
List of Tests To Be Run (TESTLIST)

Establish TESTLIST of tests to be run
OOWHILE there are still tests to be run

Access next test and load module
Access shared test copy (if there)
Invoke Computer Emulator

TESTLIST

Load loadmodule into emulated memory
Execute test script
Produce test results
Produce test history

I
COMPUTER
EMULATOR

Save test results as "probationary"
Access "approved" results
Invoke Comparator

Compare approved and probationary results
Identify important differences
Write Comparator findings to output

ENDDO

COMPARATOR

OUTPUT

OLD DBID NEW DBID

TEST
HISTORY

'PROBATIONARY/
TEST

RESULTS

A-30

NADC-82183-50

7.2.7 Analyze Test Results

A test results analyzer examines the results of testing instrumented
object code to identify code paths highly used or not used at all, major
time-usage areas and time allocation violations, actual ranges of variables
and range assertion violations.

ANALYZE TEST RESULTS

params:
Data Base Identifier (DBID)
List of Tests To Be Run (TESTLIST)

Access instrumenied test results
DOWHILE test name left in TESTLIST

Invoke Test Results Analyzer

TESTLIST

Read test results
Read user commands
Produce information about:

path utilization
data ranges encountered
assertion violations
time usage

ENDDO

OLD DBID

INST
TEST

RESULTS

TEST
RESULTS

ANALYZER

A-31

NADC-82183-50

8- COMMON PROCEDURE GROUPS

8.1 User Assistance Procedures

The SPF must have adequate documentation about available features and
usage, and about current and future events affecting SPF usage. They must
also be able to communicate with SPF personnel for additional aid. User
assistance procedures are invoked by immediate commands.

PROCEDURES

List Bulletin

List News

List Help

List User Manual

Contact SPF Personnel

TOOLS

Lister

Lister

Lister

Lister

Electronic Mail System

Figure 7 - Summary of User Assistance Procedures

A-32

NADC-82183-50

8.1.1 List Bulletin

This procedure produces a brief note concerning current or future events
for SPF users. A bulletin is generally a notice that refers the user to the
new user's manual or news volumes for details. When a user runs a batch job,
this procedure is automatically invoked, causing the message to be printed on
the first page of the output listing.

LIST BULLETIN

params: (none)

Access bulletin file
Invoke Lister

Copy file to output

A-33

NADC-82183-50

8.1.2 List News

The news is an SPF-maintained library of timely narratives which contain
the details omitted from the bulletin. News items are available individually
or in groups.

LIST NEWS

params: ITEMS

Access news file
Invoke Lister

Copy news ITEMS to output |—

A-34

NADC-82183-50

8.1,3 List Help

"Help" is stable information about SPF procedures and their commands,
providing such information as data formats required, notable features and
examples of use. Additional help is typically available at several levels of
SPF usage, both inside and outside of tool invocations.

LIST HELP

params: COMMAND

Access help file
Invoke Lister

Copy COMMAND information to output

A-35

NADC-82183-50

8.1.4 List User Manual

A new copy of the current User Manual is available for printing by the SPF
user. Individual sections, or the entire new manual may be printed.

LIST USER MANUAL

params: SECTIONS

Access user manual file
Invoke Lister

Copy selected SECTIONS to output

A-36

NADC-82183-50

8.1.5 Contact SPF Personnel

This procedure enables users to mail a message to SPF maintenance
personnel or permits interactive communication.

CONTACT SPF PERSONNEL

params: (none)

Invoke Electronic Mail System

Send message to SPF personnel or
enable two-way communication

SPF
PERSONNEL

SPF
MAIL BOX

A-37

NADC-82183-50

8.2 Software Management procedures

The SPF must also be an effective management tool, providing visibility
and control of the software development and maintenance process. The manager
must be able to control and get reports on his/her subordinates, software data
bases, software products, and documentation. The reports must identify
development progress against projections, provide SPF usage information, and
provide for software configuration management.

PROCEDURES TOOLS
DB CONTENTS

USED PRODUCED

Configure a Project Tree
Maintainer

Project Tree
Structure

Project Tree
Structure

Control Access Keys
Maintainer

Keys
Project Tree
Structure

Keys

Print Progress
Reports

Report
Generator

DB Contents

Identify SW
Configuration

Project Data
Extractor

Project File
Contents

Release SW DB DB

Track STRs/SCPs/SEPs Tracker STR/SCP/SEP Log STR/SCP/SEP Log

Configuration
Status Accounting

Project Data
Extractor

Project Files
STR/SCP/SEP Log

Figure 8 - Summary of Software Management Procedures

A^8

NADC-82183-50

8.2.1 Configure a Project

The software manager defines a project tree structure that reflects the
hierarchy of the work groups and software products comprising his/her project,
as shown in Figure 1. The leaves of the tree are the data bases.

CONFIGURE A PROJECT

params:
Project identifier (PROJECT)

Access PROJECT tree structure
Invoke Tree Maintainer

OLD PROJECT NEW PROJECT

PROJECT
TREE

STRUCTURE OF
DATA BASES

Read manager commands
Create/modify PROJECT tree

TREE
MAINTAINER

PROJECT
TREE

STRUCTURE OF\
DATA BASES

A-39

NADC-82183-50

8.2-2 Control Access

The software manager controls creation and modification of the project
tree structure. He/she can limit access to limbs or leaves of the tree to
specified uslxs as well as restricting the use of SPF procedures to specified
Sets Examples of procedure restrictions are source or test modification,
sharing or copying from a data base, use of alternate translator versions and
establishing or changing user access keys. The access keys are the means by
which the manager controls the project.

CONTROL ACCESS

params:
Project identifier (PROJECT)

Access PROJECT tree structure
Access Keys file
Invoke Keys Maintainer

Read manager commands
Create/modify Keys
Produce new Keys file

KEYS
MAINTAINER

NEW PROJECT

KEYS

A-40

NADC-82183-50

8.2.3 Print Progress Reports

A report generator produces a variety of reports on the software
development process from information gathered by the DBMS. The reports
include software development histories, testing histories, software metrics,
SPF utilization, cost accounting, and job statistics.

REPORT
TYPE

PRINT PROGRESS REPORTS

params:
Data Base Identifier (DBID)
Type of Report (REPORTTYPE)

Invoke Data Extractor

Extract relevent data from DBID
Produce data file

Invoke Report Generator

Read data file
Produce formatted report

DATA
EXTRACTOR

REPORT
GENERATOR

I

OLD DBID

DATA BASE

REPORT

A- Al

NADC-82183-50

8.2.4 Identify Software Configuration

Configuration reports are produced for specified software products
identifying each of their component elements in the project tree. The report
may be produced for that portion of the project for which the requesting
manager has the access rights. For example, given the structure in figure 1,
the MAD manager could not get a report for the entire AOP, but the Operational
Software manager could. The reports include software histories, and software
statistics (metrics).

IDENTIFY SOFTWARE CONFIGURATION

params:
Project identifier (PROJECT)

Invoke PROJECT Data Extractor

Read manager commands
Extract software product information
Produce report

PROJECT
DATA

EXTRACTOR

I
REPORT

OLD PROJECT

A-42

NADC-82183-50

8-2.5 Release Software

This procedure transitions software from a development environment to a
maintenance or quality assurance environment where configuration status
accounting, access restrictions and access reporting may be performed in a
more rigorous fashion. At this point the software elements are linked to an
STR/SCP/SEP section of data base for control and/or reporting purposes.

RELEASE SOFTWARE

params:
Data Base Identifier (DBID)

Copy development version of DBID
to release version

OLD DBID

DEVELOPMENT
DATA BASE

NEW DBID

RELEASE
DATA BASE

A- A3

NADC-82183-50

8.2.6 Track STRs, SCPs, and SEPs

The SPF maintains a project log of STRs/SCPs/SEPs. This log is linked to
released software for control and/or reporting purposes. _The SPF will
maintain all necessary information about the STR/s/SCPs/StPs and will provide
reports on status of all or selected items from the log as requested.

OLD DBID NEW DBID

TRACK STRs. SCPs, SEPs

params:
Data Base Identifier (DBID)

Access history files of release version of DBID
Access STR/SCP/SEP Log
Invoke Tracker

Read manager commands
Update Log
Produce report

Save Log

A- 44

NADC-82183-50

8.2.7 Configuration Status Accounting

An audit report is produced showing the element hierarchy, part number,
and version number for each element. An expanded report includes the date of
all changes, the STR/SCP/SEP number that initiated the change, the name of the
engineer who made the change, and the validation and verification dates for
the element.

CONFIGURATION STATUS ACCOUNTING

params:
Project identifier (PROJECT)

Invoke PROJECT Data Extractor

SOFTWARE
MANAGER

Read manager commands
Extract software product information
Produce report

I
PROJECT

DATA
EXTRACTOR

I
REPORT

OLD PROJECT

PROJECT
FILES

LOG

A-45

NADC-82183-50

8.3 Documentation Production Procedures

Descriptive documents can be produced semi-automatically from the
information collected by the SPF from the software production activity.

PROCEDURES

Document

DB CONTENTS

TOOLS USED

Data Extractor Document Text
Text Editor/Prompter Document
Document Formatter History

PRODUCED

Document Text
Document History

Figure 9 - Summary of Document Production Procedures

A-46

NADC-82183-50

8.3.1 Document &

The user specifies how data is to be selected and processed and provides
narrative text through a text editor/prompter. A document formatter produces
the final document.

DOCUMENT

params:
Data Base Identifier (DBID)

Invoke Data Extractor

Read user commands
Extract requested data
Produce data file

Invoke Editor Prompter

Read user commands and narratives
Read raw document text from DBID
Produce new raw document text

Save text
S3ve text modification
Invoke Formatter

DATA
EXTRACTOR

Read user commands
Read raw text
Produce formatted document

EDITOR
PROMPTER

FORMATTER

DOCUMENT

OLD DBID

DATA
BASE

NEW DBID

DOCUMENT
HISTORY

DOCUMENT
TEXT

A-47

NADC-82183-50

8.4 Context Control Procedures

Context control provides the user with necessities and valuable
conveniences not covered in the other common procedure groups (e.g.,
controlling the command queue, setting global values). By their nature,
context control procedures are invoked by immediate commands.

PROCEDURES

Logon

Logoff

TOOLS

Key Validator

Wrapup

DB CONTENTS
USED PRODUCED

Keys

System Utilization
Record

List Global
Parameters

Set/Clear
Global Parameters

Lister

Globals
Maintainer

List Command
Queue

Lister

Activate/Deactivate
Command Queue

Command
Queue
Maintainer

Execute Command
Queue

Command
Queue
Executor

Generate Scripts Editor/
Prompter

Examine Output Text Scanner

Save Output DBMS

Print Output Lister

Figure 10 - Summary of

Scripts

Output Listings

A-48

NADC-82183-50

8.4.1 Logging Procedures

8.4.1-1 Logon

The user identifies him/herself and the project to be worked on. The list
of access permissions assigned to the user is made available to subsequently
executed procedures.

LOGON

params:
User Identification Key (USERKEY)
Project Identifier (PROJECT)

Access Keys file
Invoke Key Validator

Read USERKEY
Read Keys file
Produce User Access Permissions

A-49

NADC-82183-50

8.4.1.2 Logoff

The SPF terminates the session, ties up loose ends, establishes system
usage statistics which are both printed and recorded for accounting purposes.

LOGOFF

params: (none)

Invoke Wrapup Processor

Close all files used
Print and save User Activity Summary

NEW FILES

SYSTEM
UTILIZATION

RECORD

A-50

NADC-82183-50

8.4.2 Global Parameter Handling Procedures

The SPF affords the user the one-time setting of default values for
frequently used parameters.

8.4.2.1 Set Global Parameters

The user specifies parameter values to be applied as defaults for
subsequent commands.

SET GLOBAL PARAMETERS

params:
List of any param = value (PARMVALS)

Access Global Parameter List (Globals)
Invoke Globals Maintainer

Read Globals
Read input PARMVALS
Validate parameters and values
Add/change valid PARMVALS in Globals
nuiuy Usei uT lnimiu cimiea

GLOBALS PARMVALS

I
GLOBALS

MAINTAINER

I
OUTPUT

A-51

NADC-82183-50

8.A.2.2 Clear Global Parameters

The user specifies parameter names to be reset to system default values.

CLEAR GLOBAL PARAMETERS

params:
List of any param names (PARMLIST)

Access Global Parameter List (Globals)
Invoke Globals Maintainer

Read Globals
Read input PARMLIST
Remove valid PARMLIST names from Globals
Notify user of any invalid entries

A-52

NADC-82183-50

8.4.2.3 List Global Parameters

The SPF provides a listing of each globally set parameter and its current
default value.

LIST GLOBAL PARAMETERS

params:
List of any parameter names (PARMLIST)

Access Global Parameter List (Globals)
Invoke Lister

Read Globals
Read input PARMLIST
Copy valid PARMLIST values to output
Notify user of invalid entries

A-53

NADC-82183-50

8.4.3 Command Queue Handling Procedures

The SPF allows the user to inspect the command queue contents, change the
activation status of any entry and execute the activated commands.

8.4.3.1 Activate/Deactivate Command Queue

A command is normally activated when initially placed on the queue and
deactivated when executed. This command changes the activation status of
specified commands on the queue.

ACTIVATE/DEACTIVATE COMMAND QUEUE

params:
List of Command Queue Entries (QEs)

Access Command Queue
Invoke Command Queue Maintainer

Read CorriiTtSHü yusue
Read QEs
Set valid specified QEs to "activated

or "deactivated" status
Notify user of any invalid entries

COMMAND

QUEUE

X
COMMAND

QUEUE
MAINTAINER

I
OUTPUT

A-54

NADC-82183-50

8.4.3.2 Execute Command Queue

The SPF executes each activated command on the queue until all have been
executed or a procedure aborts.

EXECUTE COMMAND QUEUE

params: (none)

Access Command Queue
Invoke Command Queue Executor

PROCEDURE
FILE

COMMAND
QUEUE

DOWHILE an activated command is on the queue
• execute next activated command
ENDDO

XS
COMMAND

QUEUE
EXECUTOR

A-55

NADC-82183-50

8.4.3.3 List Command Queue

Each command in the queue is listed with its activation status and the
values of all its parameters, whether explicitly specified or supplied by
default.

LIST COMMAND QUEUE

params:
List of Command Queue Entries (QEs)

Access Command Queue
Invoke Lister

COMMAND
QUEUE QEs

Read Command Queue
Read QEs
List requested entries on output
Notify user of any invalid entries

A-56

NADC-82183-50

8.4.4 Data Creation Procedures &

8.4.4.1 Generate Scripts

The SPF assists the user in preparing scripts for use in other
procedures. The scripts are saved on the data base to provide repeatability
and accountability.

GENERATE SCRIPTS

params:
Data Base Identifier (DBID)
Procedure name (PROCNAME)
Script Name (SCRIPT)

Invoke Editor/Prompter

NEW DBID

DOWHILE no END command received
• Request input appropriate to PROCNAME
• Build appropriate script
ENDDO

Save script

A-57

NADC-82183-50

8.A.5 Output Handling Procedures

Output from procedures is collected for later inspection and disposal.

8.4.5.1 Examine Output

This is an interactive procedure to perform operations such as finding all
error messages on output without listing the entire output, or determining
whether the job output should be printed and/or saved.

EXAMINE OUTPUT
| USER

OUTPUT

params: (none)

Access output file

1
\ t M

Invoke Text Scanner

 — TEXT
SCANNER

Process user directives
Scan output file accordingly

A-58

NADC-82183-50

8.4.5.2 Save Output

The user can elect to save an output listing on the data base for purposes
such as establishing the success of translations for future audit/report/
contract deliverables, or to produce multiple copies of listings.

NEW DBID

SAVE OUTPUT

params:
Name of saved output file (NAME)
Data Base Identifier (DBIDj

Save output file as NAME on DBID

A-59

NADC-82183-50

8.4.5-3 Print Output

The user can have the output listing printed on a specified device or

deleted.

PRINT OUTPUT

params:
Identity of printer (PLACE)

Dispose output file to printer

A-60

NADC-82183-50

9. VERIFICATION AND VALIDATION PROCEDURE GROUPS

Studies of verification and validation tools are ongoing. Results of
these studies are not available at the time of this draft. See Section 7.2,
Software Testing Procedures, for related SPF capabilities.

A-61

NADC-82183-50

10. QUALITY ASSURANCE PROCEDURE GROUPS

Studies of Quality Assurance tools are ongoing. Results of these studies
are not available at the time of this draft. See section 8.2, Software
Management Procedures, for related SPF capabilities.

A-62

NADC-82183-50

APPENDIX B

SPF PERFORMANCE REQUIREMENTS

The total SPF system includes the host computer and the system software.
The system software implements the procedures described in the body of this
document. As a system, certain performance characteristics are essential for
successful operation; they are: data base capacity, job processing and
software tool performance.

Data base capacity includes the projects supported, source and object
code, tests, documentation and production information.

Job processing includes the average job load, CPU time and job turnaround
time.

Software tool performance includes the time used in processing jobs of
varying sizes.

Tne following data reflect the minimum performance baseline for the SPF.

DATA BASE CAPACITIES

40 PROJECTS
400 ACCOUNTS

1,000 DATA BASES
40,000 MODULES (COMPILABLE MEMBERS)
30,000 INCLUDED MEMBERS

12,000,000 SOURCE LINES
12,000,000 OBJECT WORDS

3,000,000,000 BYTES OF DATA BASE STORAGE

JOB PROCESSING

11,000 JOBS PER MONTH
150 HOURS TOTAL CPU TIME PER MONTH

1 HOUR AVERAGE BATCH JOB TURNAROUND

B-l

NADC-82183-50

SOFTWAFE TOOL PERFORMANCE

Definition of jobs:

a. The DEVELOP SOFTWARE procedure invokes the CMS-2M Compiler as one of its
translators. The procedure edits source code, identifies modified source
modules, invokes the translator to produce object code and saves the
source and object on the project data base. Timings for typical CMS-2M
systems are given below.

(1) Small - 17 CMS-2M source lines

(2) Medium - 468 CMS-2M source lines

(3) Large - 1043 CMS-2M source lines

The GENERATE LOAD MODULE/TAPE procedure invokes the SYSGEN 20/14 System
Generator to create a load module file or load tape. The job size is
determined by the length and the number of elements being loaded, and the
resolution of unsatisfied externals. Timings for typical object elements
are given below.

(1) SMALL -

(2) MEDIUM -

(3) LARGE -

5 AYK-14 relocatable object elements with a total length
of 30 (hex) words

2 AYK-14 relocatable ooject elements with a total length
of 231A (hex) words

11 AYK-14 relocatable object elements with a total length
of 2006 (hex) words

The EXECUTE TESTS procedure invokes the UYK-20/AYK-14 Computer Emulator to
exercise developed object code load modules and save the test results.
Timings for typical emulator instruction executions are given below.

(1) SMALL -

(2) MEDIUM -

(3) LARGE -

emulated 500 instructions

emulated 5000 instructions

emulated 50000 instructions

B-2

NADC-82183-50
Timings:

CMS-2M Compiler:

JOB

SMALL
MEDIUM
LARGE

CP TIME

sec

0.161
4.272
8.818

I/O TIME WALL CLOCK TIME

sec min:sec

2.773 00:09
26.201 00:51
53.836 01:32

SYSGEN System Generator:

JOB CP TIME

SMALL
MEDIUM
LARGE

sec

0.066
0.115
0.914

I/O TIME WALL CLOCK TIME

sec min:sec

6.810 00:13
6.851 00:12
13.774 00:22

UYK-20/AYK-14 Emulator:

JOB CP TIME

SMALL
MEDIUM
LARGE

sec

0.286
1.796

26.058

I/O TIME WALL CLOCK TIME

sec min:sec

1.687 00:04
1.687 00:05
1.686 00:31

B-3

