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Abstract 
A method is described for assessing the performance of acoustic arrays 
used to determine source bearings. The method involves calculation of the 
Cramer-Rao lower bound (CRLB), which characterizes the best performance 
obtainable for a given array configuration and set of operating conditions. 
The CRLB calculations are used to show that the performance of the arrays 
depends on the sensor configuration, the acoustic frequency, the distance 
from the source, the background noise, and atmospheric turbulence. Near 
to the source, and at low frequencies, it is the background noise that limits 
array performance. Turbulence becomes the limiting factor as the distance 
and frequency are increased. When performance is limited by turbulence, 
the calculations are found to be very sensitive to the particular turbulence 
model used. The von Karman type of model appears to provide the most 
reasonable CRLB calculations. The turbulent degradation is found to result 
primarily from small-scale fluctuations in the wind velocity. Performance 
predictions for ARL's Remote Netted Acoustic Detection System (RNADS) 
are presented; it is found that RNADS should provide angle-of-arrival (AOA) 
accuracy of several degrees or better for signal-to-noise ratios above 10 dB 
during most atmospheric turbulence conditions. 
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1.    Introduction 

Acoustic sensor arrays can be used to detect, locate, and classify targets 
in atmospheric battlespaces. Their main advantages, in comparison to radar 
and optical systems, are low cost, functionality in non-line-of-sight situations, 
and insusceptibility to simple countermeasures (Srour and Robertson, 1995). 
These advantages help explain why acoustical systems have achieved a surge 
in popularity in recent years; some of these new acoustical systems are listed 
in figure 1. The deployment of an acoustical array for target tracking is 
illustrated in figure 2. The operational principle is to use the phase differences 
between the signals recorded at the individual microphones to determine the 
orientation of the wavefronts, which corresponds to the bearing of the target. 

Acoustical systems are not without shortcomings. Most importantly, the 
performance of acoustical arrays depends strongly on meteorological condi- 
tions. It is normally enhanced by still, nighttime conditions. On the other 
hand, the atmospheric turbulence characteristic of windy conditions or a 
sunny day can cause significant degradation. This is because array beam- 
forming depends on good mutual coherence of the signals received by the 
individual sensors; turbulence causes a loss of such coherence. 

Despite the recent popularity of acoustical arrays and the importance 
of atmospheric turbulence in determining the performance of these systems, 
so far little effort has been devoted to quantifying the turbulence effects. 

Brilliant Antitank Munition (BAT) 

Remote Sentry 

Wide Area Mine (WAM) b Use acoustic arrays to detect, classify, 
estimate bearing, and cue optics. 

Intelligent Minefield (IMF) 

Internetted, Unattended 
Ground Sensors (IUGS) 

0 Use multiple, networked arrays to 
track targets by bearing estimation 
and triangulation. 

Figure 1: Partial listing of current generation of acoustical systems used to 
track sources on battlefield. 

Figure 2: Deployment of acoustical array for tracking target. Phase infor- 
mation at microphones is used to determine orientation of incoming sound 
wavefronts. Turbulence causes random fluctuations in wavefront orientation. 



In order to place the previous research in perspective, it is helpful to break 
down the general topic of turbulence effects on acoustic sensor arrays into 
two subtopics: first, the effect of turbulence on reducing the mutual coher- 
ence between a single pair of microphones, as a function of their separation; 
and second, the statistical analysis of the performance of a full array, given 
knowledge of the coherence. 

Some of the earliest work on coherence is summarized by Tatarskii (1961, 
1971). Tatarskii's theoretical treatment has served as the basis for most 
subsequent work throughout the acoustical spectrum. The main difficulty 
with Tatarskii's theory is its inapplicability to large-scale turbulence (i.e., 
eddy sizes larger than several meters), which has a complicated anisotropic 
and inhomogeneous structure. Acoustical systems that operate in frequency 
ranges of several hundred hertz and lower are strongly affected by large-scale 
turbulence. 

Tatarskii also described some experimental evidence for his treatment of 
coherence, although the studies he considered dealt mostly with ultrasonic 
frequencies, which are less sensitive to large-scale turbulence structure. Ex- 
perimental studies on the coherence of audible-range sound waves have been 
performed during recent decades by Daigle et al. (1983) and Havelock et 
al. (1995). 

The second topic mentioned above, the statistical analysis of array per- 
formance, has apparently not been addressed previously for a turbulent at- 
mosphere. Song and Ritcey (1996), however, do consider the performance of 
acoustic arrays in a randomly fluctuating ocean. Their analysis applies quite 
well to the atmospheric case, so long as the statistical model used for the 
fluctuations is appropriate to the atmosphere. The analysis in this report is 
derived in part from Song and Ritcey's. 

Section 2 provides a statistical formulation of array performance. A ma- 
trix representation for the sensor cross correlations is employed to cast the 
equations in a particularly simple format. Modeling of turbulence effects 
on the signal coherence is discussed in section 3. Section 4 presents ex- 
ample assessments of array performance for realistic meteorological condi- 
tions. Among the array configurations considered is the one used by the 
Army Research Laboratory (ARL) Remote Netted Acoustic Detection Sys- 
tem (RNADS) (Srour and Robertson, 1995). RNADS is fairly representative 
of the acoustical systems listed in figure 1. 

It will become clear from many of the example calculations in this report 
that accurate assessments of acoustic array performance require careful at- 
tention to modeling of atmospheric turbulence. Therefore, I include some of 
the relevant turbulence modeling issues and mathematics in an appendix. 



2.    General Matrix Formulation 

2.1    Angle of Arrival versus Bearing 

The analysis described in this section is for two-dimensional sensor arrays. 
Three-dimensional arrays can, of course, also be built and analyzed; we gain 
little physical insight, however, by introducing this additional complication. 

A two-dimensional array can be used to determine the bearing of a source 
only in the plane of the array. For example, if the array is horizontal, it can be 
used to determine only the azimuthal bearing of the source. A vertical array 
would determine the elevation angle. Most of the analysis in this section 
applies equally well to horizontal and vertical arrays. However, there are 
practical reasons why most acoustical systems designed for the battlefield 
are horizontal arrays, rather than vertical ones. The most important of these 
is refraction, as illustrated in figure 3. Refraction by atmospheric wind and 
temperature gradients causes the orientation of the wavefronts to gradually 
change. Eventually, there may be little resemblance between the angle of 
arrival of the wavefronts and the actual bearing of the source. 

When propagation is upwind (or the temperature increases with height), 
sound is refracted downward. As a result, there can be a "multipath effect": 
i.e., multiple wavefronts and angles of arrival. When propagation is down- 
wind (or the temperature decreases with height), sound is refracted upward. 
Most of the sound energy reaching the receivers is normally scattered there 
by turbulence. As a result, the angle of arrival has more to do with the 
location of the dominant scattering volume than the actual bearing of the 
source. 

Fortunately, horizontal refraction is minimal in comparison to vertical 
refraction. Hence we need not worry about this complication if we are in- 
terested only in horizontal arrays. It is worth pointing out, however, that if 

wind 

»P% 
downwind case 

upwind case 

Figure 3: Effect of refraction on angle of arrival of acoustic wavefronts. As 
result of refraction, actual bearing of source can differ from angle of arrival. 



we have access to propagation models that can determine vertical refractive 
effects sufficiently well, it should be possible to build vertical arrays that ac- 
curately track the elevation of targets. In the remaining part of this section, 
I circumvent the issue of refraction by referring to the accuracy of angle- 
of-arrival (AOA) estimates for the acoustic wavefronts, as opposed to the 
actual angle of bearing (AOB) of the source. The distinction between AOA 
and AOB is of little practical significance for horizontal tracking arrays, but 
should be kept in mind for vertical tracking arrays. 

2.2    Sensor Cross-Correlation Analysis 

Consider a planar array of N sensors. The signal at each of the sensors is 
assumed to have two contributions: one that has propagated through the 
atmosphere from a source and arrived at the array with wavefront normal 
angle tp, and the second consisting of random noise. These two contributions 
are indicated by s(ip, t) and n(i), respectively. The signals are represented in 
complex notation, as is common in acoustics and wave propagation generally. 
(See, for example, Kinsler et al. (1982) or sect. 6.9 in Burdic (1984). The 
complex part of the signal may be regarded as the Hubert transform of 
the real signal.) Boldface is used here to indicate matrices; s(ip,t) and n(i) 
are column vectors having N elements, each element corresponding to the 
signal received by one of the sensors. The source contributions vary in time 
owing to the effect of random turbulent fluctuations on the propagation.* 
The noise contributions may be from the wind or other acoustic sources on 
the battlefield. 

The total received signal is 

pfoM) = sW>,t) + n(t). (2-1) 

The cross correlations between the sensor signals can be written compactly 
in matrix form as 

Rpp(if>) = (p(il>,t)p(tl>,t)), (2.2) 

where the angle brackets indicate the ensemble average, and the tilde is the 
conjugate transpose. Assuming that the source signal and noise are uncor- 
related, 

Rpp (V) = Rss (</>) + Rnn WO • (2-3) 

Assuming furthermore that the noise at the sensors is mutually uncorrelated 
and equal in variance, we can write 

Rpp(^) = Kss^) + all, (2.4) 

* Of course, the source signal may vary in time for other reasons. For example, its bearing 
and distance may change as a result of source motion, or its spectral content may change as 
a result of mechanical operations (e.g., a tank accelerating). Although such complications 
can be significant, I do not consider them in this report in order to preserve the focus on 
turbulence effects. 



where a2 is the noise variance. It is convenient to normalize the signals and 
noise so that s(ip, t) has unit variance. Then a2 becomes a noise-to-signal 
variance ratio. The signal-to-noise ratio (SNR) in decibels is defined as 

SNR = -101og<. (2.5) 

2.3    Wavefront Phase Delays 
Realistic modeling of Kss (i/>) is rather difficult. While this correlation matrix 
depends most importantly on the relative sensor positions, it also depends 
on several other factors that affect the propagation, such as turbulence, re- 
fraction, and absorption of sound by air. I consider the turbulence effects in 
section 3; for now, I formulate Rss (ip) assuming perfect plane-wave propa- 
gation. This sort of formulation is valid if the dimensions of the array are 
small compared to its distance from the source. 

Assuming perfect plane-wave propagation, the elements of Rss (ip) de- 
pend only on the relative phase delays between the incidence of the acoustic 
wavefronts at the receivers. The situation is shown, for two sensors, in fig- 
ure 4. 

In the figure, one sensor is at the origin, while the second is at (x,y). 
The AOB of the second sensor is a — arctan (y/x). Suppose there are plane 
waves incident on the sensors, having an orientation angle ß. Note that ß = 
ip—w/2, ift being the angle of the wavefront normal. The distance between the 
receivers, projected onto the wavefront normal, is d\ = dsin (ß — a), where 
d2 = x2 + y2. Therefore, the phase delay between wavefront incidence at the 
two receivers is kd\ = fed sin (ß — a) = —kd cos (ip - a), where k = 27r/A is 
the wavenumber. The signal at sensor two is equal to the signal at sensor 
one times the phase factor exp (ikd^). 

The same geometrical arguments hold when multiple receivers are con- 
sidered. The phase delay between sensors m and n is, therefore, 

where 

Smn (ip) = exp [~ikdmn cos (xp - amn)], 

\Xn      Xm)     i   (j/n      Vm) 

(2.6) 

wavefronts 

receivers 

Figure 4: Planar wavefronts incident on pair of receivers. 



and 
amn = arctan \{yn - ym) / (xn - xm)) 

The matrix formed from the phase delays, S (i/>), is generally referred 
to as the array steering matrix. In the nonturbulent case, Kss (ip) = S(ip). 
I show in section 3, however, that this simple relationship no longer holds 
when turbulence is considered. 

2.4    Assessment of Array Performance 
We can quantify the performance of the sensor array by calculating the mean 
square error (mse) ((ip — ip)2\ where ip is the estimated AOA. By way of 
an introduction, I calculate the mse for a simple example: an array of two 
sensors separated by a distance d. 

Suppose there are two sensors on the t/-axis at y = —d/2 and y = +d/2. 
If we take the phase at the sensor at y = +d/2 as the reference phase, 
equation (2.1) becomes for this case 

Pi 
V2 

1 
-ikdcos(i/>—ir/2) + s—ikdsinip + 

ri2 

When there is no noise, we can determine ip exactly from the phase difference 
A<f> between p\ and p2' 

and hence 

A</> = Zpi - Zp2 = Z (P1P2) = kdsmip, 

'A<£N 

ip = arcsin 
kd 

(2.7) 

(The asterisk denotes the complex conjugate.) When noise is present, it is 
natural to estimate ip by averaging several samples of A<f> = Z (pip^)- It can 
be shown that the real and imaginary parts of pip^ are 

K \p1P2} = cos a + ri2x + nix cos a + niy sin a + n\xri2x + niyn2y, 
(2.8) 

9 \p1P2} = — sin a — U2y + n\y cos a — n\x sin a — n\xn2y + n\yn2X, 
(2.9) 

where a = —kd sin ip, njX = 3? [rij], and rijy = Ö [rij]. Note that the variance 
of rijX and n,jy must individually be cr^/2, in order for the variance of rij to 
be equal to a\. 

It is not possible to derive closed-form results for ^ from equations (2.8) 
and (2.9) in general. However, if we suppose that o\, kd, and ip are all much 
less than one (i.e., low noise, small separation compared to the wavelength, 
and near broadside incidence), we have 

& \P1P2] - ! + n2x + «lx, 



$ \P1P2} - -a - «2y + niy 

Hence the phase angle A<fi is approximately 

-a — n,2y + n\y 
A6   ~   arctan.   „ 

\ 1 + n2x + nix 
~   (-a — n,2y + niy) (1 - ri2x - nix) 

~   -a - n2y + niy 

~   kdtp — ri2y + niy. 

We find the estimated AOA \j) by averaging several (M) samples of A<f> and 
dividing by kd: 

1     M   „m  „m 1 JVJ       „7(1      „71 
i    ^—v   nly       n2y 

m=l M ^n       kd 

where the superscripts m indicate statistically independent samples of the 
noise. The mse can now be calculated: 

{kdMy 

1 
(2.10) 

M(kdf 

For most array geometries and processing methods, it is unfortunately 
impossible to calculate the mse in closed form. Fortunately, it is possible to 
perform calculations on a computer that give useful information on the mse. 
A particularly useful characterization of the mse is provided by the Cramer- 
Rao theorem. According to this theorem, the minimum mse is the inverse of 
the Fisher information matrix J (i/>) (Scharf, 1991): 

((V-^)2)>J_1W. (2.11) 

The right-hand side of equation (2.11) is called the Cramer-Rao lower bound 
(CRLB). In our case, since we have only one parameter to be determined, 
ip, the information matrix is actually a scalar. (For multiple sources, the 
information matrix would have multiple elements.) Song and Ritcey (1996) 
show, for signals having a joint-Gaussian probability distribution, that 

(V>) = Aftr(: in^tfcy     <2-i2> 
In the above, tr() is the trace of the matrix, and M is the number of sta- 
tistically independent samples used to estimate the correlation matrix of 

P(<M). 
It must be kept in mind that the Cramer-Rao theorem gives the minimum 

possible error. Since noise and turbulence effects on the propagation are ran- 
dom, the actual error is also random. The error furthermore depends on what 



method is used to estimate the AOA. Among the more common methods 
are sum-difference beamforming, the Bartlett beamformer, and maximum- 
likelihood estimation. The essential task to be accomplished is this: given a 
number of independent samples of p(V>, t) collected at a discrete set of times 
tm, and a theoretical model for Kpp (ip), we desire an estimate for ij). Most 
methods involve estimating the correlation matrix of p(tp, t) from the actual 
measurements. For example, the following matrix may be computed: 

M 
JW M 

Yl P(<Mm)pOMm)- 
m=l 

Given enough independent samples, we would expect Cpp to converge to 
Rpp. The reason the number of samples M appears in the calculation of the 
Fisher information matrix is that the fidelity of the estimate Cpp improves 
with more data, so that the estimate of the AOA is improved. 

For the acoustic array performance evaluations given in this report, I 
provide only calculations of the CRLB. The calculated errors are therefore 
intrinsically optimistic assessments of actual array performance. However, 
it is worth pointing out that Song and Ritcey (1996), in their calculations 
of turbulence effects on AOA estimates, were able to achieve performance 
very near the CRLB using the maximum-likelihood method. Therefore, the 
CRLB calculations are useful. 

In most of the remainder of this report, when I speak of the CRLB, I 
actually mean its square root. Since the square root has linear dimensions 
(in degrees), it is more intuitive to deal with than the actual CRLB (in units 
of degrees squared). The square root of the CRLB can be thought of as a 
lower bound on the standard deviation of the measurement error. 

2.4.1 Example 1: Two-Element Array To illustrate the CRLB 
analysis, I return to the simple example considered earlier: that of two sensors 
separated by a distance d. In matrix form, the product of the wavenumber 
and sensor spacings is 

' 0     kd 
[kdmn\ — 

kd   0 

The relative angles between the sensors are 

Ömn   — 
0 it/2 
-it/2   0 

Hence, from equations (2.6) and (2.4), 

R?P W = ;,—ikdcos(ip+n /2) 

-ikdcos(ip—n/2) 

l + ol 

which, using elementary trigonometric identities, we can simplify to 

RwW 
l + a2      e-ifcdsint/> 

eifcdsinV        1 + (T2 



In order to calculate the CRLB, we still need the inverse of Rpp (ip), as well 
as its derivative with respect to ip (see eq (2.12)). The inverse of the matrix 
is simply 

RPp (V>) = pp 

and the derivative is 

dip 

°l (2 + o*) 

0 

_Akd sin ip 

_p-ikd sin ij> 

1 + ^ 

ikdcosiPeikdsin^ 
-ikdcosiPe-ikdsin^ 

0 

Multiplying these matrices, we have 

,-idKpp _   ikd cosip 
K 'pp dip       al{2 + al) 

-1 
(l + a2)eikds^ 

(1 + a2) e-ikdsin^ 
1 

and therefore 

tr  R; 
-idKPPx)_1dKpp\ _ 2(kd)2cos2V> 

"pp 
:R; dlP   "W    00   ; 0-2(2 + (r2) 

Hence the CRLB (eq (2.11)) is 

J-1 (iP) °l (2 + °l) 
2M (kd)2 cos2 ip' 

(2.13) 

Clearly the two-element array performs best when the source is perpendic- 
ular to the array axis (ip = 0). In fact, when the source is in a line with the 
receivers (ip = 7r/2), the CRLB becomes singular. Note that equation (2.13) 
is equivalent to equation (2.10) if one makes the approximations a2, < 1 
and ip < 1. Also, the two-element array has a ±7r ambiguity in the AOA 
estimation (e.g., it has no intrinsic way to distinguish ip = 0 from ip = w). 
The CRLB calculation actually assumes, implicitly, that this information is 
somehow available. 

A polar plot of the CRLB is presented in figure 5 (solid line), for a2, = 0.1 
and d = A/2 (kd = 7r). The CRLB appears as two parallel lines when plotted 
in this manner. 

2.4.2 Example 2: Triangular Array A more complicated case is 
that of an equilateral triangular array. With vertices at (0,d/\/3), (-d/2, 
-d/2\/3), and (d/2, -d/2y/3), the sensor spacing matrix is 

[fcumnj — 
0 kd kd 
kd 0 kd 
kd kd 0 

and the angular orientation matrix is 

OJrmi   — 

0 -2TT/3 

TT/3 0 
2TT/3 7T 

-TT/3 

7T 

0 



Hence, 

Ryp (</>) = 

i + &. n 
pikd COS(4>+2TT/3) 

pikdcos{tl>+n/3) 

e-ifedcos(t/>+27r/3) 

! + <% 
pikdcos(ip) 

p—ikd cos(^+7r/3) 

p—ikdcos(tjj) 

r2 l + < 

Analytical calculation of the CRLB becomes extremely complicated for this 
case. It is rather simple, though, to compute numerical results with a matrix 
computation package such as Matlab®. Results for d = A/2 are shown 
(dotted line) superimposed on the polar plot for the two-element line array 
(fig. 5). 

The CRLB for an equilateral triangle is a circle, meaning that there are 
no preferred directions for detection. This is somewhat surprising: since the 
line array has two preferred directions, one might expect the triangular array 
to have three preferred directions. But all test cases that I have computed 
for regular polygons (such as a hexagon with side length d = A/2, results for 
which are also shown in fig. 5, double-dash-dotted line) have yielded an omni- 
directional CRLB. The underlying mathematical reasons for this are unclear 
to me. The CRLB calculation for a random configuration of three or more 
sensors, also shown in figure 5 (dotted line), yields an ellipsoidal response. 
(The ellipsoid depicted is a typical result; other random configurations yield 
ellipsoids having different orientations and axes.) 

In connection with figure 5, it should be stressed that the calculations 
are for the CRLB, and not for actual phased-array beam patterns or for 
specific signal-processing algorithms. As discussed in section 2.2.4, the CRLB 
represents the theoretically best attainable performance. Only with good 
algorithms can one actually obtain similar results. 

a-  2 
TO 
CO 

o 

(0 a. 
m   -2 

ü 

-A 

equilaleral 
^  triangular 

• 

'    /■ 

array 

'. \      \ \ 

>    ■ hexagonal ' '. i 

i'.   'array 
i •.' 
<    -i 

i      '■ 

>    \ 
/      / *      / 

\            V". 

— —'j-.- 

- • **          * 

two-element w. ■^ array of 6 random 
linear array elements 

-4 -2 0 2 4 

CRLB transverse to array (°) 

Figure 5: Polar plot of Cramer-Rao lower bounds for AOA estimations. 
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3.    Incorporation of Turbulence Effects 

Turbulence causes random fluctuations, in both phase and amplitude, of 
the received signals. These random fluctuations would not interfere with 
AOA estimation if they caused equal and synchronized fluctuations in phase 
and amplitude at all sensors. The problem is that the phase and amplitude 
fluctuations at the individual array elements are unsynchronized with one 
another. In this section, I explain how the effect of this imperfect coherence 
on the sensor array can be modeled. 

3.1    Effective Index-of-Refraction Fluctuation 

Turbulent fluctuations in air temperature, moisture, and wind velocity all 
affect acoustic propagation. Both the temperature and moisture fluctuations 
cause the acoustic index of refraction to fluctuate. Let us define the squared 
index of refraction as 

e = n2 - 1. (3.1) 

In the above, n = CQ/C is the index of refraction, c being the actual sound 
speed and CQ its ambient value. The speed of sound, in terms of the absolute 
temperature T and specific humidity q, is 

c ~ 20.02^/r(l + 0.62g). 

Normally, the fluctuations in the sound speed, d = c—CQ, are small compared 
to the ambient value. Therefore, 

n2 = 
r2 r2 Id 

(CQ + df        C2, + 2c^d °0 

The squared index of refraction is then 

2d 
e~-—. (3.2) 

co 

The effect of velocity fluctuations is similar to the effect of sound speed 
fluctuations. If we make a parabolic approximation to the acoustic wave 
equation, it can be shown that, in the presence of turbulent velocity fluctu- 
ations, e can be replaced by the following effective value (Ostashev, 1994): 

eeff = e- 2ui/co, (3.3) 

in which ui is the fluctuation of the velocity component parallel to the di- 
rection of propagation. 

The statistical spatial structure of the effective index of refraction, and 
its effects on acoustic propagation, is considered in section 3.3. 

11 



3.2 Mutual Coherence Function 
The main effect of turbulence on tracking arrays is to reduce the coherence 
of the signal received between the individual array elements. This effect is 
normally quantified by the transverse mutual coherence function (MCF). If 
pm(t) and pn{t) are the signals at two sensors whose separation p is parallel to 
the wavefronts (transverse to the propagation direction), the MCF is defined 
as 

,   , (Pm(t)p*n(t)) 
{p)   ipm(t)p*m(t)y 

(It is assumed that the average mean intensity at the two receivers matches, 

i.e., (pm(t)p*m(t)) = (Pn(t)p*n(t))-) 
Assuming the turbulence is homogeneous and isotropic, the MCF is given 

by (Tatarskii, 1971) 

T (p) = exp j-^ [beff (0) - beff (p)]\ , (3.4) 

where x is the propagation distance, p2 = (ym — yn) + (zm — zn) , and 
beff iß) is called the effective two-dimensional correlation function (TCF).*t 
The TCF is a special type of correlation function involving the effective index 
of refraction. (See the definition and note on terminology in the appendix.) It 
has two terms, one of which results from the actual fluctuations in the index 
of refraction, and the second from velocity fluctuations (Ostashev, 1994): 

beff(p) = b(p) + bn(p). (3-5) 

3.3 Turbulence Models 
The problem of modeling the turbulence effect on the sensors has now been 
reduced to one of modeling the TCFs of the turbulence field, b (p) and &n (p). 
The appendix shows how equations for the TCFs can be developed for two 
particular turbulence models, the Gaussian and von Kärmän. Both the Gaus- 
sian and von Karmän models come in two forms, one for scalars (e.g., the 

'Instead of equation (3.4), the formula for the MCF is often given as (Rytov, Kravtzov 
and Tatarskii, 1989) 

T (p) = exp < -n2k2x /     [1 - Jo («±p)] $ (0, K2, K3) K± <IK± > , 

where Jo is the Bessel function of the first kind, and K\ = «1 + Kh Using the identity 

1    [2* 
Jo (z) = — /     exp (iz cos 6) dd, 

27r Jo 

and the definition for the TCF (see appendix, eq (A-4)), we can show the two formulas to 
be equivalent. 

* Since the array configurations in this text are all horizontal, we could set zm = zn 

and p = j/m — 2/n at this point. It is better not to do so, however. The main reason is 
that the turbulence modeling (see the appendix) must be done in three dimensions in 
order to be valid; furthermore, the results in this section are not simplified when written 
in two-dimensional form. 
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actual index of refraction), and one for vectors (e.g., the velocity fluctua- 
tions). Each form contains two parameters, a variance and a length scale. 

The variance parameter for the scalar forms, in either the Gaussian or 
von Karman models, is seen from equation (3.2) to be 

_ u\. i^!> 
-2 = <<2) 

For the vector case, we have directly from equation (3.1) 

2\ 
r2_4(^l 

c0 

(3.6) 

(3.7) 

The length scale parameters used in the Gaussian and von Kärman mod- 
els are not equivalent. Therefore, a common standard for length scales is 
needed for comparing the models. The standard I adopt is the so-called 
integral length scale, which, as discussed in the appendix, we can find by 
integrating the standard correlation function from 0 to oo, and then divid- 
ing by the variance. For scalar fields, this procedure yields a single integral 
length scale C. Two scales can be defined, however, for vector fields: one 
for which the direction of integration is parallel to the orientation of the 
velocity components, and one in which the integration is perpendicular to 
the velocity components. I call these two cases the parallel and perpendicular 
integral length scales, denoted by C\\ and £j_, respectively. In a homogeneous, 
isotropic turbulent field, C\\ = 2£j_ (Batchelor, 1953). 

For the scalar form of the Gaussian model, the equation for the TCF, 
derived in the appendix, is 

tW = 0exp(-^)' (38) 

with the length scale parameter given by 

L = 4=£. (3.9) 

For the vector form of the Gaussian model, the TCF is (see appendix) 

M„) = ig£exP(-£), (3.10) 

with 

L=    *   £B=    *   £x. (3.11) 

The main advantage of the Gaussian model is its analytical convenience. 
Unfortunately, it is rather unrealistic, because most of its energy occurs con- 
centrated at the scale L. In actuality, turbulent energy spans a broad range 
of spatial scales. The von Karman model captures this characteristic of the 
turbulence much more satisfactorily. In particular, the von Karman model 
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includes a realistic inertial subrange, in which the energy decays according 
to Kolmogorov's —5/3 power law (1941). For the scalar form of the von 
Kärman model, the equation for the TCF, derived in the appendix, is 

b(p) = 
2V6a2£ 

3v^r (u) r K, 5/6 
_/v 

1/6 
(3.12) 

where Kv is the modified Bessel function of the second kind, and the length 
scale parameter is 

£ = 31» 
2V^r {v + 1/2) 

c. 

The result for vectors is 

b(p) = 
21/Vl 
v^H» r 

where 

i» 

K5/6 ( 7 ) ~ 7^1/6 

21» 
v^Fr>+l/2)   "      v^rT (i/ + 1/2) 

(3.13) 

(3.14) 

(3.15) 

TCFs for the two turbulence models are compared in figure 6. The re- 
sulting MCFs are shown in figure 7. One notable feature of the curves is 
that the Gaussian and von Kärman models are fairly similar. The Gaussian 
curves for the MCF decay somewhat more quickly, because that model has 
less small-scale turbulent kinetic energy than the von Kärman model. The 
fact that the two models yield similar results for the TCF and MCF, despite 
the more realistic description of the inertial subrange turbulence intrinsic 
to the von Kärman model, indicates that the inertial subrange turbulence 
is of secondary importance in this particular application. Although Gaus- 
sian models often do not work well in wave propagation applications, in this 
particular application their usage may be justifiable. I consider this matter 
again in section 4.1. 

Figure 8 shows the MCF for several values of k2xC: 1, 10, and 100. 
This plot makes it clear that signal coherence is reduced dramatically with 
increasing range and decreasing wavelength. 

3.4    Modification of Signal Correlation Matrix 

The MCF describes the coherence between two sensors when the incident 
wavefronts are parallel to the sensor axis. Unfortunately, there is no similar 
result available for arbitrary orientation between the wavefronts and sensors. 
I assume here that the coherence between a pair of sensors in such cases can 
be estimated by multiplication of the phase delay, which would occur in 
the absence of turbulence by the MCF for parallel incidence. Hence we can 
include the turbulence effect by setting 

RssW0 = S(V>)©T, 

14 



0.8 

0.7 

ä  0.6 

§   0.5 

E   0.4 
8 
1   0.3 
| 
£   0.2 

0.1 

0 

1      ■' r..i—ii                   

vector von Kärmän, 

r^_               scalar von Kärmän 

h = L scalar Gaussian       "*   ~—., 

0.2 0.4 0.6 
Normalized separation, plL 

0.8 

Figure 6: Comparison of transverse correlation functions for different turbu- 
lence models. 

1 
v\"-,   scalar Gaussian 

0.8 V\V\ " 
c \ *'-^v- 
c \  "•   N> o 

0.6 \      \   ^v 

\           »v. 
t3 

CD 

0) 0.4 />, •■.,,<\ 

vector von Kärmän, N    •., \ v   scalar von Kärmän 

8 h'L             VV: /\V 
to 

'S 0.? .    '                     f~ *""**.   *"*v                  ^^^-^J 
:> vector von Kärmän,    * - . '.*.'■■ v. 

n 

LL= L 

0.2 0.4 0.6 0.8 
Normalized separation, p/x 

Figure 7: Comparison of mutual coherence functions for several different 
turbulence models. Value used for k2xC was 10. 

;S 0.8 

0.6 

0.4 

■s 5   0.2 

Y\^^ 4             ._ 

\ \ 
l?xL=-\ 

\         /\ 
\       t2xX= 10 

/\ 
' l?x£.= 100 

0.2 0.4 0.6 0.8 
Normalized separation, plL 

Figure 8: Mutual coherence function for several values of k2xC. Scalar form 
of Gaussian spectrum was used. 

15 



where S (tp) is the steering matrix (eq (2.6)), 

J-mn — ■!• (dmn) > 

and the symbol © indicates the Hadamard matrix product (simple element- 
by-element multiplication). 
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4.    Example Calculations and Discussion 

4.1    Long Baseline—Sensor Decorrelation Trade-Off 
If it were not for cost considerations and turbulence effects, it would be de- 
sirable to make acoustic tracking arrays as large as possible. This is evident, 
for example, from the equation for the CRLB of a two-element array (eq 
(2.13)). The CRLB in this case is inversely proportional to the square of the 
sensor spacing. Increasing the array dimensions is desirable because it in- 
creases the phase differences between the sensors, making the measurement 
less sensitive to noise. 

On the other hand, large arrays are undesirable when turbulence is con- 
sidered. Generally, one wants the dimensions of the array small compared to 
the size of the most energetic turbulent eddies, so that there is good mutual 
coherence across the array. 

The trade-off between array baseline and turbulence degradation is il- 
lustrated by the CRLB calculations shown in figure 9. The calculations are 
for parallel incidence (t/> = 0) on a five-element line array, at a normalized 
distance kx = 1000 from the source. The spacing kd (= 2nd/X) and strength 
of the turbulence a2 are varied in the figures. The normalized integral length 
scale is kC — 107r, and the noise-to-signal variance is a2 = 0.1 (SNR = 10). 
A scalar von Karman turbulence spectrum was used. 

For weak turbulence (a2 g 10~5), array performance essentially can be 
improved without bound by an increase in the sensor spacing. Performance is 
poor for small sensor spacings, because phase difference information becomes 
lost in the measurement noise. For strong turbulence (a2 ^ 10~4), array per- 
formance is degraded, particularly if the size of the array is comparable to 
the integral length scale of the turbulence. When this occurs, an "error reso- 
nance" in the CRLB is evident. If array dimensions are either much smaller 
or much larger than the turbulence length scale, however, array performance 
suffers little. 

Figure 10 is similar to 9, except that the noise variance has been decreased 
to a2 = 0.01. Because there is less noise than in the previous example, smaller 
arrays provide better performance. Although the error resonance for poor 
array performance is still clearly evident on the figure, now some turbulent 
degradation of array performance is observed, even for the smaller arrays. 

A scalar Gaussian spectrum for a2 = 0.01 is shown in figure 11. The 
error resonance in strong turbulence is sharper in the Gaussian spectrum, 
while the error for small arrays (2d/A < 1) is somewhat less. This difference 
results from a deficiency of the Gaussian model, discussed earlier: this model 
does not realistically capture the energy in the small-scale turbulence. 

4.2    Dependence of Array Performance on Meteorolog- 
ical Conditions 
In order to estimate lower bounds on array performance for actual scenarios, 
we need values of the turbulence spectral parameters a2 and C. Obtaining 
these is actually quite a challenging problem, since these parameters depend 
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Figure 9: Effect of changing sensor spacing on AOA estimation errors: mod- 
erate noise, von Karman turbulence model case. Array is five-element line 
array, and calculations are for a\ = 0.1, kC = 107r. 

Figure 10: Effect of changing sensor spacing on AOA estimation errors: low- 
noise, von Kärman turbulence model. Same as figure 9, except that noise 
variance has been reduced to ai = 0.01. 
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Figure 11: Effect of changing sensor spacing on AOA estimation errors: low- 
noise, Gaussian turbulence model. Except for change in turbulence model, 
this is same as figure 10. 
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strongly on meteorological and topographical conditions. There is no en- 
tirely satisfactory turbulence model available. Wilson and Thomson (1994) 
have proposed a Gaussian turbulence model for acoustical applications that 
accounts for many of the important features of the turbulence, although, 
like other Gaussian models, it is unrealistic for the small-scale turbulence 
structure. Since no comparable von Kärmän model is available, I adopt the 
Wilson and Thomson model for the remaining calculations in this report. 

Because the full Wilson and Thomson model is rather complicated, I 
provide here only a simplified version. The model has three independent 
physical parameters: 

1. The surface wind stress r. The wind stress increases with increasing 
wind speed. 

2. The surface temperature flux Q, from the ground to the air. The tem- 
perature flux is large when the ground is warmer than the overlying 
air, such as typically occurs when the sun heats the ground. 

3. The boundary-layer inversion height Z{. This is the height where the 
transition occurs between the relatively cool, atmospheric boundary 
layer air, and warmer air aloft (the free troposphere). In fair weather 
conditions, this boundary is quite frequently marked by stratocumulus 
(puffy, flattened) clouds at several hundred to several thousand meters 
altitude. 

It is convenient to define several scaling parameters in terms of the phys- 
ical ones, r, Q, and Zi. The friction velocity is defined as 

U*   =   y^, (4.1) 

where p is the air density. The surface-layer temperature scale is 

r, = -^. (4.2) 

The free-convection velocity scale is 

w. = {QgzilTs)
l'z = (-utT*gzi/Ts)

1/3, (4.3) 

where g is gravitational acceleration and Ts the surface temperature. 
The Wilson and Thomson model includes four additive contributions: 

small-scale temperature fluctuations, small-scale velocity fluctuations, tem- 
perature/velocity covariance, and large-scale velocity fluctuations. The co- 
variance term is neglected in this report. The small-scale temperature (scalar) 
variance is modeled as 

The small-scale velocity (vector) variance is 

a2 = 20 
«*y 

- 
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For both of the small-scale contributions, the corresponding length scales 
simply equal the height: 

L = z. 

The large-scale velocity (vector) variance is 

<r2 = 0.80 (^ 

with corresponding length scale 

L = QAzi. 

From equation (3.8), the resulting scalar TCF is 

6(p) = l.lz(^)   expf- 

while from equation (3.10) the vector TCF is 

Mp) = 8.4z(^) 

(4.4) 

expf-^2 ) +0.142i 
CO 

exp 
0.16z/ (4.5) 

The effective TCF is simply the sum of b(p) and bn(p) (see eq (3.5)). 
It is plotted in figure 12 for it* = 0.5 m/s, T* = -0.3 K, z = 2 m, and 
Zi = 1000 m. These parameters are representative of a very sunny, some- 
what windy afternoon, what atmospheric scientists would call a convective 
boundary layer. 
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Figure 12: Two-dimensional correlation function (TCF) for convective, at- 
mospheric boundary layer conditions (u* = 0.5 m/s, T* = —0.3 K, z = 2 m, 
and Zi = 1000 m). 
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The figure clearly shows that the large-scale velocity fluctuations (the 
second term in eq (4.5)) dominate the effective TCF. The reason the TCF 
is dominated by large-scale structure is evident from the TCF definition (eq 
(A-4)): by setting «i = 0 before performing the two-dimensional (2D) inverse 
Fourier transform, we filter out the small-scale structure. 

The observation that large-scale structure dominates the TCF can lead 
to the incorrect conclusion that large-scale turbulence is most important for 
determining the MCF. Calculations of the MCF (eq (3.4)) actually depend 
on the difference beff (0) - be/f (p), not simply beff (p), as was plotted in 
figure 12. This difference function is plotted for the convective boundary layer 
case in figure 13. Now we see that, in actuality, the small-scale wind velocity 
fluctuations are most significant for MCF calculations when p < 10 m, the 
situation of primary interest for acoustical arrays. The large-scale velocity 
fluctuations become most important only when p > 100 m. Temperature 
fluctuations are unimportant compared to velocity at all separations. 

The difference 6e// (0)-&e// (p)is plotted for two other cases in figures 14 
and 15. Figure 14 is for u* = 0.5 m/s and T* = -0.01 K, with z and zt the 
same as earlier. These parameters are representative of what atmospheric sci- 
entists call neutral conditions, such as normally occur on an overcast, windy 
day. Figure 15 is for u* = 0.1 m/s and T* = 0.01 K, representative of calm 
conditions. In these two cases, as before, small-scale velocity fluctuations are 
dominant when p < 10. 

Example calculations of the MCF as a function of u* and T» are shown in 
figure 16. The calculations are for p equal to one-half wavelength, / = 200 Hz, 
z = 2 m, Zi — 1000 m, and propagation distance x = 500 m. The resulting 
CRLB is shown in figure 17 for a five-element line array, with spacing A/2, 
at parallel incidence (ip = 0). The number of samples was chosen as M = 5, 
and the noise variance was low, o\ = 0.01 (SNR = 20). 
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Figure 13: TCF difference function beff (0)-6e// (p) for convective boundary 
layer conditions. 
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Figure 15: TCF difference function 6e// (0)-&e// (p) for calm boundary layer 
conditions: w* = 0.1 m/s, T* = 0.01 K, z = 2 m, and z* = 1000 m. 
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Figure 16: MCF calculations as a function of turbulence conditions. Propa- 
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Figure 17: CRLB as a function of turbulence conditions, for a five-element 
line array at parallel incidence. Propagation distance 500 m, frequency 200 
Hz, and sensor spacing one-half wavelength. 

4.3    Calculations for Circular RNADS Array 

The purpose of ARL's RNADS is to acoustically detect ground and air tar- 
gets in battlefield environments (Srour and Robertson, 1995). The normal 
configuration for the acoustic array, shown in figure 18, has seven sensors: 
six spaced equally along a circle, and a seventh at the origin. In this sec- 
tion, I examine the theoretically best obtainable performance (CRLB) by 
the RNADS array in various turbulent environments. CRLB calculations 
are provided for the same three representative cases of turbulence parame- 
ters discussed in section 4.2: convective (tt* = 0.5 m/s, T* = —0.3 K), neutral 
(u* = 0.5 m/s, T* = -0.01 K), and calm (u* = 0.1 m/s, T, = -0.01 K). 
In all cases I set z = 2 m, Z{ = 1000 m, and M = 5. Note, as discussed 
in section 2, that regular polygons such as the RNADS array have a CRLB 
that is independent of the AOA ip. Therefore, it is unnecessary to plot the 
CRLB as a function of ip for RNADS. 

Two sets of calculations for convective conditions are shown in figures 19 
and 20, as a function of the propagation distance and the acoustic frequency. 
The difference between the figures is the value used for the noise variance: 
a\ = 0.01 (SNR = 20 dB) for figure 19, and a\ = 1 (SNR = 0 dB) for fig- 
ure 20. For both noise scenarios, there is an increase in AOA fidelity (decrease 
in the CRLB) with increasing frequency. This is because the wavelength de- 
creases with increasing frequency, thereby increasing the dimensions of the 
array relative to a wavelength. (Recall from sect. 4.1 that large arrays, rela- 
tive to the wavelength, have greater phase differences between the elements, 
so that noise is mitigated.) In the low SNR case, the CRLB is much higher, 
particularly for short propagation distances. In fact, the CRLB is nearly 
independent of propagation distance for low SNR. This is characteristic of 
a noise-limited array, meaning that noise is the dominant factor determin- 
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Figure 18: Sensor layout for circular RNADS array in a horizontal plane. 
Sensors are shown as dark circles. 
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Figure 19: CRLB for circular RNADS array in convective atmospheric 
boundary layer, low-noise case. SNR is 20 dB. 

ing array performance. For high SNR, the array is noise limited for short 
propagation distances, after which the CRLB rapidly increases. This rapid 
increase marks the distance where the array becomes turbulence limited. The 
transition distance becomes shorter as the frequency is increased. 

The near-neutral atmospheric case, with o\ = 0.01, is shown in figure 21. 
This case looks nearly identical to the convective, high-SNR case (fig. 19). 
The reason for this similarity is that the values used for u* in the convective 
and neutral cases were the same, and the CRLB responds primarily to small- 
scale velocity fluctuations (the u* term in eq (4.5)). 

The calm atmospheric case, with a\ = 0.01, is shown in figure 22. Al- 
though the SNR is high in this case, it looks qualitatively similar to the 
low-SNR convective case (fig. 20). This is because both cases are essentially 
noise limited. The turbulence in the calm atmosphere is not strong enough 
to affect the CRLB, at least for the range of frequencies and propagation 
distances shown. 
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Figure 20: CRLB for circular RNADS array in convective atmospheric 
boundary layer, high-noise case. SNR is 0 dB. 
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Figure 21: CRLB for circular RNADS array in neutral atmospheric boundary 
layer, low-noise case. SNR is 20 dB. 
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Figure 22: CRLB for circular RNADS array in calm atmospheric boundary 
layer, low-noise case. SNR is 20 dB. 
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5.    Conclusions 
Turbulence limits our ability to obtain accurate AOA estimates using acous- 
tic sensor arrays, particularly in low-noise environments. Fortunately, the 
calculations in this paper suggest that the AOA can be measured to an ac- 
curacy of several degrees or better, even in strong turbulence, by the use of 
an array with just a half dozen or so sensors. 

Turbulence effects on acoustic sensor arrays are most significant under 
the following conditions: 

• Sufficiently energetic turbulence is present. The type of turbulence that 
predominantly affects acoustic arrays is small-scale turbulence gener- 
ated by near-ground wind shear instabilities, the strength of which is 
parameterized by the friction velocity ti*. 

• There is low background noise, so that array performance is limited by 
turbulence, rather than noise. 

• Array dimensions are comparable in size to the most energetic turbu- 
lent eddies. This is usually true for the arrays of interest in current 
Army applications. 

Examples given in this report demonstrate that the turbulence model 
used to calculate array performance assessments can dramatically affect the 
results. In particular, a von Karmän turbulence spectrum is generally prefer- 
able to a Gaussian spectrum, since it models inertial subrange turbulence 
more realistically. 
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6.    Recommendations 
In this report, I have only scratched the surface of the many signal process- 
ing, turbulence modeling, and acoustic propagation issues relevant to design 
and performance assessment of acoustical tracking arrays. There are numer- 
ous areas for future research that will help improve our understanding and 
enhance the performance of acoustical systems: 

1. Most importantly, the theory and predictions developed in this report 
should be tested by a comparison to field data. 

2. The propagating wavefronts were assumed to be planar in this report. 
It would be very desirable to extend the theory to include spherical 
wavefronts, since in many situations of practical importance the sensor 
array will be close to the source. 

3. The assumption of uncorrelated noise at the sensor, as made in sec- 
tion 2.2, is very unrealistic. The potential importance of using realistic 
noise models needs to be explored. 

4. Acoustic tracking demonstrations previously performed by ARL (Srour 
and Robertson, 1995) have often used several separate independent 
arrays, each similar to the one shown in figure 18. The main reason 
for deploying multiple arrays in this fashion is to allow determination 
of the actual location (not just the AOA) of the acoustic source. It 
would, of course, be desirable to calculate performance estimates for 
these multiple-array deployments. Performance assessments also are 
needed when there are multiple sources. 

5. Improved turbulence models, including realistic inhomogeneity and 
anisotropy characteristic of atmospheric turbulence (Mann, 1994; Wil- 
son, 1996b), should be considered in future research. 

6. In field studies, acoustic tracking has sometimes been found to undergo 
periods of intermittent target loss (Pham and Sadler, 1995). The likely 
cause of such dropouts is a failure of the tracking algorithm brought 
about by an intermittent change in the meteorological conditions. Pre- 
viously (Wilson, (1996a)), I considered the effect of turbulent intermit- 
tency on acoustic detection in shadows. Future research should extend 
that work to acoustical tracking scenarios. 
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Appendix A.    Statistical Turbulence Models 
In order to determine the mutual coherence function (MCF), and hence 
model the turbulence effect on a sensor array, we need a spectral model for 
the turbulence field. The mathematics involved in properly defining and ma- 
nipulating turbulence spectra is rather complicated. The relevant equations 
are summarized in this appendix and applied to two different turbulence 
models: the Gaussian and von Kärman. 

A-l.    Correlation and Spectral Functions 
Let us define the correlation function of a scalar quantity c as 

R (ri, r2, r3) = (c (x[, x'2, x'z) c (xi, x2, x3)>, (A-l) 

where ri = x[ — x\, etc. For this definition, it has been assumed that the field 
is homogeneous: its statistics depend only on the displacement between the 
measurement points. If the field is also isotropic (i.e., its statistics are inde- 
pendent of coordinate rotations), then the correlation function for a scalar 
actually depends only on the radial distance r between the measurement 
points, where r2 = rf+r2-l-r3. In this case, we can write R(r) = R(n,r2,r3) 
for short. 

The three-dimensional spectral density function (spectrum, for short) is 
the three-dimensional Fourier transform of the correlation function: 

1        roo     roo     roo 

*(«1,K2,«3)     =     8W_0J_txJ_TO
i?(ri'r2'r3) (A"2) 

exp [—i («in + K2r2 + Kara)] dr\ dr2 dr$, 

/oo     roo     roo 

/       /      $(/Ci,K2,K3) (A-3) 
-OO J —OO J — 00 

exp [i (/«in. + Ki"fi + «3^3)] dm dht2 dnz. 

The two-dimensional correlation function (TCF, which is required to com- 
pute the MCF in sect. 3.2) is defined as the two-dimensional inverse Fourier 
transform of $ (0, «2? K3): 

/oo     roo 
/     $ (0, K2, K3) exp [i (/c2r2 + K3r3)] d«2 dn3. 

-00 J-00 fA-4) 

Equivalently, by Fourier transforming (A-3) with respect to r\ and setting 
KI = 0, one has 

1    f°° 
b(p) = 7T R(n,r2,r3) dri. (A-5) 

27T J-00 

A note on terminology: Other authors have called the TCF the transverse 
(rather than two-dimensional) correlation function. I prefer two-dimensional, 
since we derive the TCF by setting one of the wavenumbers in $ (KI, K2, K3) 

to zero and then taking the inverse Fourier transform in the remaining two 
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directions. Hence it is the logical counterpart of the two-dimensional spec- 
trum, which we derive by setting one of the displacements in the correlation 
function R(r\, r2, r3) to zero, and then taking the forward Fourier transform 
the remaining two directions. 

Vector quantities, such as turbulent velocity fluctuations, are handled 
similarly. However, the situation becomes somewhat more complicated for 
vectors, since three directions are definable in a given spectrum or corre- 
lation: the direction of the displacement, and also the orientations of the 
two velocity components under consideration. (Only the direction of the dis- 
placement is involved in the scalar case.) Let us define the correlation as 

Rij (n, r2, r3) = (u{ (x'v x2, x'3) Uj (xi,x2, rr3)>, (A-6) 

where the subscripts i and j indicate the velocity component. Note that 
Rij is a tensor quantity, having nine components. By taking the appropriate 
Fourier transforms in a manner analogous to the scalar case, we can define 
tensors for the spectral density and TCF. 

A-2.    Energy Spectra 
If only scalar quantities were of interest, it would be a straightforward mat- 
ter to propose a model for the correlation function or the three-dimensional 
spectrum, and then integrate to find the TCF. But in the vector case, since 
there are nine possible combinations for the values of i and j in the correla- 
tion tensor (eq (A-6)), trying to model the correlation functions or spectral 
density tensors directly can become complicated. It turns out to be some- 
what easier to start with a model for a scalar quantity that is a property of 
both scalar and vector fields, such as energy. For consistency, I adopt this 
approach in both the scalar and vector cases. The energy spectrum E(n) is 
defined such that its integral over the wavenumber domain equals half the 
total variance of the field. For a scalar quantity, 

f°° a2 

yo   E(K)dK=-. (A-7) 

Note from the Fourier transform relation (eq (A-3)), with r\ = r2 = 7*3 = 0, 

/oo     roo     roo 
/        /       $(KI,K2,«3) dK\ d,K2 dn3. 

-00 J—00 J—oo 

Hence, we find the three-dimensional spectrum $ (K) by multiplying E (n) 
by two, and then dividing by the "area" of a spherical shell in wavenumber 
space, 47TK2: 

*M = §M (A.8) 

Substituting into the definition of the TCF (eq (A-4)), we obtain 

E ( JKI + K2 

b(p) = 7T /              2.2 eXP f* (K2r2 + K3r3)5 dK2 dK^ 
^7T J-00 J—oo 1^2 "•   K3 f A-QA 
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where p2 = r2 + r\. 
For vectors, such as the turbulent velocities, E (K) is defined such that 

J°°E(K)dK=^. (A-10) 

If this definition is used, a2 represents the variance in just one of the three 
velocity components. The three-dimensional spectra are related to the energy 
spectrum according to (Batchelor, 1953) 

*« 00 = f^r M " w) ■ (A-n) 
From the above, the reader can verify, analogously to the scalar case, that 

E(K) 
$11 (K) + $22 («) + $33 («) 

2TTK
2 

Substituting $n (K), as given by equation (A-ll), into the definition of the 
TCF (eq (A-4)), we have 

E ( \IKI + K2 

6n (p) = — /     —W-—ö-^ exp [* (K2r2 + KZrz)\ dn2 ck3. 
4-nJ-ooJ-oo       «2 + K3 (A-12) 

Quite interestingly, this result is exactly half the result for a scalar. Hence, 
if we choose the same functional form for the energy spectrum in both the 
scalar and vector cases, the resulting TCFs will likewise have the same func- 
tional form. 

A-3.    Length Scales 
It is important that we be able to accurately quantify length scales associated 
with given spectra. By length scale, I mean a value representative of the size 
of the most energetic eddies in the spectrum. For a scalar quantity, the 
integral length scale is defined as 

1    r°° 
C=\        R(r)dr. (A-13) 

oz Jo 

It turns out that the integral length scale and TCF are simply related. From 
the Fourier transform relation between the correlation function and the spec- 
trum, and from equation (A-8), we have 

— I" A(n,0,0)e-iKiridri= f00  [°° EMe^+^dKidKt. 
2lT J-OO J-OO J-OO ^TTK 

Setting r-i = r3 = 0, «i = 0, and using the fact that i?(ri,0,0) is an even 
function, we obtain 

Woo 1     ,oo    ,oo E Ü4 +«?) 
dft2<^3- 
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Comparing now with equation (A-9), we find that 

£=^b{0). (A-14) 

In the vector case, the direction of the velocity components as well as the 
direction of the displacement must be considered. Two significant scales can 
be defined: one where the displacement is parallel to the velocity, e.g., 

1   r°° 
£\\ = -ö       Än(ri,0,0)dri, 

o* Jo 

and the other where it is perpendicular, e.g., 

l   r°° 
£± = ~2        Ä22(ri,0,0)dn. 

oi Jo 

For homogeneous, isotropic turbulence, it can be proven that (Batchelor, 
1953) 

£|| = 2£±. (A-15) 

Furthermore, using a derivation similar to the scalar case, one finds 

£|| = ^bn (0). (A-16) 

A-4.    Gaussian Model 
Let us now consider specific models for atmospheric turbulence. Unfortu- 
nately, we do not now have (and probably never will have) three-dimensional 
turbulence models that are known to work satisfactorily for a variety of at- 
mospheric conditions. Hence, we are forced to consider idealized models. 
In this section, I describe one such idealization, the Gaussian model. The 
main advantage of the Gaussian model is its analytical convenience; unfor- 
tunately, it can work well for qualitatively modeling only the largest scale 
features of the turbulence (called the energy-containing subrange). The von 
Karman model, described in section A-5, is somewhat more general, since it 
also describes well the smaller scale eddies (the inertial subrange). 

It is customary to define the Gaussian model in terms of its three- 
dimensional correlation function R(r). For the scalar case, 

R(r) = a2exp(-^Y (A-17) 

where L is a length scale. The corresponding three-dimensional spectrum, 
found by Fourier transformation of the correlation function in all three di- 
mensions, is 

The energy spectrum, which follows from multiplication by 27TK
2
, is shown 

in figure A-l. 
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Figure A-l: Comparison of Gaussian and von Karmän energy spectral mod- 
els. 

The TCF is found from the energy spectrum and equation (A-9). The 
integration is not difficult for the Gaussian function, with the result being 

KP) = 
a2L 

2v^ 
exp (A-19) 

Hence from equation (A-14), we have 

L-   2 L. (A-20) 

We find the TCF for the velocity field by multiplying by 3 (to account for 
the vector nature of this quantity, see eq (A-10)), and then dividing by 2, 
as discussed earlier in connection with equation (A-12). By equation (A-16), 
then, 

3V^; (A-21) 

A-5.    Von Kärmän Model 
The von Karmän type of model is developed directly from the following 
proposed form for the energy spectrum of a scalar: 

E(K) = 
4r (v + 5/2)       crVl5 

(A-22) 

The parameter £ is a characteristic length scale, and v controls the power- 
law dependence in the inertial subrange (K£ » 1). Generally, we set v = 
1/3 to obtain Kolmogorov's K~

5
/
3
 power law for the inertial subrange. The 

von Karmän model is compared to the Gaussian model in figure A-l. The 
main difference between the von Karman and Gaussian models is that the 
Gaussian model decays much more rapidly at large wavenumbers. 
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Calculating the TCF from relationship (A-9), we find 

b(p) 
23/2-V2l (py+1/2 

30rt» U. K, v+l/2 
(A-23) 

Integrals (3.773.6) and (6.726.4) in Gradshteyn and Rhyzhik (1994) were 
used to derive this result. Kv is the modified Bessel function of the second 
kind. As discussed above, the result bu (p) for vectors is simply 3/2 times 
the scalar result. 

Integral length scales can be derived by replacement of the Bessel func- 
tions by the first term in their Taylor series expansions. The result for scalars 
is 

2y^I> + l/2) 
31»       L 

For vectors, 

VH1 {v + 1/2) 
I 

(A-24) 

(A-25) 

From equation (A-20) and (A-24), it can be shown that L for the Gaus- 
sian model is 1.78 times £ for the von Kärmän model, assuming the same 
value for C is used in each case. 
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Acronyms 
AOA 
AOB 
ARL 
CRLB 
MCF 
mse 
TCF 
RNADS 
SNR 

angle of arrival 
angle of bearing 
Army Research Laboratory 
Cramer-Rao lower bound (or its square root) 
mutual coherence function 
mean square error 
two-dimensional correlation function 
Remote Netted Acoustic Detection System 
signal-to-noise ratio 
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