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Abstract

We apply noncanonical Hamiltonian methods to examine relative equilibria of a rigid

body in a central gravitational field. These equilibria correspond to fixed points of a

reduced set of equations expressed in a rotating frame and are representative of an orbit-

ing satellite with fixed attitude relative to an observer rotating at the orbital rate. Our

objective is to clarify the relationship between the classical approximation and a recent

noncanonical Hamiltonian treatment. In contrast to the classical approximation, the or-

bital and attitude equations of motion for the noncanonical system remain coupled and the

general solution is a circular orbit for which the orbit center and the center of attraction are

not necessarily coincident. Our approach involves development of a hierarchy of Hamilto-

nian approximations. The hierarchy consists of the existing noncanonical system and two

noncanonical formulations which we derive for rigid bodies subject to certain constraints

- motion about a fixed point and motion about a point following a Keplerian orbit. The

classical solution is dynamically equivalent to this latter constrained (Keplerian) system.

We apply Hamiltonian methods to identify relative equilibria and determine stability con-

ditions. In general, we find that relative equilibria for the Keplerian and unconstrained

systems are in close agreement.

xii



RELATIVE EQUILIBRIA OF A RIGID SATELLITE

IN A CENTRAL GRAVITATIONAL FIELD

. Introduction

1.1 Background

The motion of a system of particles or point masses acting under their mutual grav-

itational attraction is the archetypal problem of celestial mechanics. For n particles, the

problem has 3n degrees of freedom associated with the translation of the particles. The

equations of motion form a 6nth-order system of differential equations. This system of

equations has ten first integrals: the total system energy, the three components of the

angular momentum about the center of mass, the three components of total linear momen-

tum, and the three components of position of the center of mass at epoch. These integrals

are sufficient to ensure integrability only in the case of one or two particles. For a larger

number of particles, consideration is often restricted to special cases (e.g., planar mo-

tion, central configurations). For a discussion of this problem in the classical Hamiltonian

setting, see Meyer and Hall [71] or Pollard [80].

An analysis which treats all bodies as particles may be sufficient if we are only interested

in the orbits of bodies which remain separated by distances which are much greater than

the dimensions of the bodies. However, if the bodies pass in close proximity or if we are

specifically interested in the attitude dynamics of one or more of the bodies, then our

analysis must be expanded to include the additional degrees of freedom associated with

the distribution of mass within some or all of the bodies. Such is the case in the motion

of an artificial satellite orbiting the Earth, which is ultimately our interest here. We may

treat the bodies as rigid, recognizing that this is still only an approximation of the true

situation. In this case, the additional degrees of freedom are due entirely to the rotation

of the bodies.
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We depart from the literature in that we reserve the expression n-body problem for

the latter case, referring to the classical problem as the n-particle problem. The n-body

problem adds an additional 3n degrees of freedom associated with the rotation of the rigid

bodies. The equations of motion thus form a 12nth-order system, doubling the order of

the n-particle problem. Unfortunately, the number of first integrals does not do likewise.

Duboshin [24] has shown that there are still ten first integrals analogous to those in the

n-particle problem. Integrability is not even assured in the two-body problem, although

it is for a single body. The one-body case was first treated by Euler in the mid-eighteenth

century and the complete solution was eventually specified in terms of elliptic functions

by Jacobi in the mid-nineteenth century. (See, e.g., Whittaker [106:144].) It is often

considered as a special case of the classical heavy top problem which treats a rigid body

rotating about a fixed point in a uniform gravitational field. When the fixed point is

the center of mass of the body, zero net torque results from the gravitational field. The

equations of rotational dynamics are then identical to those for a single rigid body in the

absence of external forces and torques. This is frequently referred to as Euler's case.

The problem of two bodies is the focus of the current work. We further restrict our

investigation to the case where (i) one body (the primary) is assumed to have a total

mass which is much greater than that of the other body (the satellite), and (ii) the mass

distribution of the primary is spherically symmetric. The first condition implies the mo-

tion of the primary is essentially unaffected by the satellite and is perfectly valid for the

artificial Earth satellite problem. The second condition implies the motion of the satellite

is independent of the rotational dynamics of the primary and is somewhat more suspect.

Clearly, the oblateness of the Earth is an issue which should be factored in at some point.

However, the symmetry assumption allows considerable simplification and provides a valu-

able first approximation from which additional effects can be explored as perturbations at

some later point. Therefore, we proceed based on the above assumptions.

We may now treat the primary as a point mass fixed at the origin in some inertial

frame and consider the motion of the satellite in the corresponding central gravitational
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Figure 1.1 Rigid Body in a Central Gravitational Field

field. This is the restricted two-body problem or the problem of a rigid body in a central

gravitational field. Figure 1.1 shows a rigid body 13 in a central gravitational field with

center of attraction 0 which we treat as the origin of an inertial frame of reference. We

characterize the motion of B in the inertial frame in terms of a vector A representing the

position of the center of mass, C, and a direction cosine matrix representing the rotation of

the body (and any associated body-fixed frame) relative to the inertial frame. For particles,

the restricted two-particle problem, or Kepler problem, is equivalent to the motion of a

particle with reduced mass in a central gravitational field. (See, e.g., Goldstein [30:70-71].)

For finite bodies, however, we will show that in general no such equivalence exists.

Although this simplified system is still not integrable for an arbitrary satellite, we

can find particular solutions to the equations of motion which correspond to motions of

practical interest. No nontrivial equilibrium solutions exist. However, by recognizing the

symmetry present in the problem and eliminating cyclic coordinates, we can reduce the

order of the system. Equilibria of the reduced system do exist and are referred to as

relative equilibria. For an arbitrary rigid body in a central gravitational field, the problem

is invariant under rotations in three-dimensional space. The relative equilibria correspond

to circular orbits about the primary with the body appearing stationary in an orbiting

reference frame. Artificial satellites designed to remain in this relative equilibrium are

referred to as gravity-gradient satellites. For axisymmetric bodies, the problem is also
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0

Figure 1.2 General Configuration of a Relative Equilibrium Orbit

invariant under rotations about the axis of symmetry. In this case, the relative equilibria

are steady spins about the symmetry axis which is fixed in the orbiting frame. Artificial

satellites designed to take advantage of a stable relative equilibrium of this nature are

referred to as spin-stabilized satellites.

For relative equilibria of an arbitrary rigid body, the general configuration is shown in

Figure 1.2 where 0 and C are as defined previously and 0' is the orbit center. When 0

and 0' coincide, the angular velocity vector, w, and the position vector, A, are orthogonal.

We refer to such a relative equilibrium as an orthogonal relative equilibrium and to the

corresponding motion as an orthogonal orbit. When the two points are distinct, we refer

to the relative equilibrium and its orbit as oblique.

One of the difficulties of the n-body problem in contrast to the n-particle problem

is that the potential involves an integral evaluated over the rigid body. In general, this

integral cannot be solved in closed form. However, the integral can be represented by a

series expansion in powers of the ratio of body dimension to distance from the center of

attraction. For problems such as that of an artificial Earth satellite, this ratio is very

small and the series converges rapidly. We are therefore justified in truncating the series

expansion to approximate the potential. This approximation is then used to derive the

force and torque. Alternatively, we may expand and truncate the force and torque integrals

directly. This latter approach, however, raises the issue of whether or not the two series
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truncations are consistent, i.e., both derivable from the same truncated approximation of

the potential.

The first analysis of relative equilibria for this problem was given by Lagrange[52]. He

truncated the force and moment directly. Using only the dominant term in each of the

series expansions, he found that the translational and rotational equations decoupled. The

resulting relative equilibria for this approximate system are orthogonal and the attitude

is such that one principal axis of inertia is aligned with the radial direction and another

is aligned with the orbit normal. For a body with distinct moments of inertia there are

twenty-four such relative equilibria and we refer to these as the principal relative equilibria.

For this approximation, it is not possible for oblique relative equilibria to exist.

Recently Wang et al [104, 105] have employed a generalized (noncanonical) Hamilto-

nian approach to reexamine relative equilibria of arbitrary rigid satellites. This approach

involves the use of phase variables that do not necessarily occur in canonical coordinate-

momentum pairs. They showed that the gravitational center of attraction lies on the axis

of rotation but does not always coincide with the center of the orbit. Their results are

valid for the exact potential since they do not rely on a truncated series expansion. The

discrepancy with the classical results arises from symmetries implicit in the truncation of

the force and torque. Note that the displacement of the orbit center shown in Figure 1.2

is greatly exaggerated for clarity. The displacement is much smaller than the greatest di-

mension of the satellite. However, Wang et al [105] have demonstrated that under certain

circumstances the attitude can vary significantly from the classical solution.

An advantage of the generalized Hamiltonian approach is that the formulation of the

problem is the same regardless of the form of the potential (approximate or exact) and

certain results can be developed which are valid for all forms. It must be emphasized that

each choice of truncation order results in a different Hamiltonian system. Caution must

be used when applying the results with regard to the existence and stability of relative

equilibria. For most bodies with distinct inertias, the classical approximation of Lagrange

is sufficiently accurate. A similar approximation exists for the noncanonical formulation
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(a) Cylindrical (b) Conical (c) Hyperbolic

Figure 1.3 Relative Equilibrium Classes for Axisymmetric Satellites (after Likins [56])

of the rigid body in a central gravitational field. However, since this method uses the

potential rather than the force and torque, the approximation is necessarily consistent and

the translational and rotational equations remain coupled. Wang et al [104] have treated

this approximation in part, identifying certain relative equilibria analogous to the classical

relative equilibria and examining their nonlinear stability.

For axisymmetric spin-stabilized satellites, the classical treatment admits several dif-

ferent classes of relative equilibria. As in the classical treatment of arbitrary satellites, all

orbits are orthogonal. Differences appear in the orientation of the symmetry axis. Thom-

son [101] and Kane et al [45] first considered relative equilibria with the axis of symmetry

normal to the orbital plane. Pringle [81] and Likins [56] identified two additional classes

of relative equilibria, one with the symmetry axis in the plane formed by the radial and

orbit normal directions, and the second with the symmetry axis in the plane formed by

the tangential and orbit normal directions. These relative equilibria are denoted as cylin-

drical, conical, and hyperbolic, in reference to the figure of revolution traced out by the

symmetry axis during a complete orbit (see Figure 1.3). To our knowledge, no previous

(canonical or noncanonical) treatment of the axisymmetric case has been accomplished

which incorporates orbital-attitude coupling.
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1.2 Objective and Approach

The objective of this dissertation is to apply generalized Hamiltonian methods to study

the relative equilibria of a rigid body in a central gravitational field. Specifically, we wish

to establish the relationships between the various approximations and more clearly define

the circumstances under which a given approximation accurately represents the dynamics

of a satellite in orbit about a primary.

We would like to compare the classical approximation of Lagrange with the approxima-

tions associated with the noncanonical formulation of Wang et al. The series truncations

in the classical approximation are not consistent in the sense defined above. If the force

and torque expansions are each truncated at the next higher order, the system is no longer

Hamiltonian. The Hamiltonian nature of the classical approximation is purely a result of

the decoupling of the translational equations from the rotational equations. (In fact, it is

really two separate Hamiltonian systems.) However, an alternative viewpoint exists which

allows us to treat the classical approximation as one in a series of Hamiltonian approxima-

tions: if we constrain the center of mass of the rigid body to follow a Keplerian orbit (the

orbit of a particle of equal mass), then we can study the rotational dynamics associated

with various approximations of the torque, one of which is the classical approximation. We

can express this series of Hamiltonian systems in a noncanonical form which may then be

compared to the series of noncanonical systems of Wang which represent the motion of a

rigid body free to move in a central gravitational field. If we further constrain the body to

move about a point fixed in inertial space, we obtain a third series of Hamiltonian systems.

In this case, the effects of centripetal acceleration due to orbital motion about the center

of attraction are eliminated, but central field effects remain.

Thus, we have identified three related problems of rigid body motion in a central

gravitational field: motion about a fixed point, motion about a point on a Keplerian

orbit, and free motion. From these, we develop a heirarchy of Hamiltonian systems which

are related to the two-body problem. The Hamiltonian system for each problem may

be expressed in a noncanonical form. These three problems of rigid-body motion form
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a dimension of our hierarchy reflecting the constraints on the body. Since each of the

noncanonical formulations allows any order of approximation of the potential, the degree of

approximation forms a second dimension of the hierarchy. A third dimension is associated

with the degree of symmetry present in the rigid body: spherical, axial, or none. It should

be noted that the degree of approximation determines the stringency of the symmetry

requirements. For instance, the second-order approximation reduces the axial symmetry

requirement to one of dynamic symmetry, i.e., equal moments of inertia.

The noncanonical formulations of the Keplerian and fixed-point problems are a new

result. The fixed-point problem is a generalization of the heavy-top system treated by Mad-

docks [62] and is not treated further. From the systems associated with the Keplerian and

free rigid-body problems in the hierarchy, we identify three particular Hamiltonian systems

for further investigation: the second-order approximation of the Keplerian system (the non-

canonical formulation of the classical approximation), the second-order approximation of

the free rigid-body system, and the exact free rigid-body system. These systems represent

increasingly accurate approximations of the two-body system. From the noncanonical for-

mulation of each, we identify the relative equilibria and investigate their stability (linear

and nonlinear). We treat both the arbitrary and the axisymmetric cases. In particular,

we are interested in extending the classical results to the more rigorous setting of coupled

translational and rotational dynamics.

The analysis presented here enables further understanding of all three systems. Al-

though the results for the Keplerian problem are well known (at least for the second-order

approximation), the noncanonical derivation has several advantages. One such advantage

is that rotations are not parameterized in terms of Euler angles so that, for instance, the

relative equilibrium conditions for the axisymmetric case in the Keplerian problem are

stated in a more general form than has previously been given. While the case of an ar-

bitrary body for the free rigid-body problem has been previously explored by Wang et

al, we extend their results with regard to the second-order approximation and the exact
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potential. The results for the axisymmetric case in the free rigid-body problem are entirely

new.

1.3 Overview

The presentation of this dissertation consists of two primary parts. In the first part,

we lay out the background material and develop the hierarchy of systems relating to the

two-body problem. In the second part, we narrow our focus to three specific systems and

present the detailed analysis of their relative equilibria for comparison.

The first part consists of Chapters 2-5. In Chapter 2, we review the literature on the

three related problems in mechanics identified above which deal with the motion of a rigid

body in a central gravitational field. Within the astronautics literature, we emphasize the

work pertaining to gravity-gradient and spin-stabilized satellites. In Chapter 3, we discuss

relative equilibria of Hamiltonian systems. Relevant definitions and characterizations of

relative equilibria are presented. A review of stability definitions and analysis techniques is

given with emphasis on those concepts which result directly from the Hamiltonian frame-

work. Chapter 4 and Chapter 5 examine the two-body problem and develop the heirarchy

of systems which approximate it in the presence of a spherical primary. We develop the

relationships between the various systems and identify the assumptions implicit as we move

further down the heirarchy.

The second part, consisting of Chapters 6 through 8, investigates three particular

Hamiltonian systems which progressively improve upon the approximation of the two-

body problem. In Chapter 6, we examine the second-order approximation of the Keplerian

problem. This system is equivalent to the classical approximation which appears through-

out the literature, but we take advantage of the noncanonical formulation to state the

relative equilibrium condition in a more general form. Chapter 7 presents the second-order

approximation of the free-body problem. Here we introduce orbital-attitude coupling while

maintaining the simple torque expression of the classical approximation. Finally, in Chap-

ter 8 we address the exact form of the free-body problem, which further adds the gravita-
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tional torque effects due to third- and higher-order inertia integrals. In each chapter, we

develop the noncanonical Hamiltonian system in nondimensional form and determine the

conditions for existence of relative equilibria. In Chapters 6 and 7, we identify all relative

equilibria for both the arbitrary and axisymmetric cases and investigate their stability. In

Chapter 8, we build on the work of Wang et al [105] to explore the conditions for existence

of orthogonal and oblique relative equilibria. Some stability results are also presented.

Finally, in Chapter 9 we summarize our results and identify possible directions for

further investigation. The appendices include a presentation of some of the fundamentals of

generalized Hamiltonian mechanics, a development of the gravitational potential (including

series expansions used to approximate the potential), and proof of an identity used to derive

the noncanonical formulation of the Keplerian problem.
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II. Literature Review

In this chapter, we review much of the previous work on rigid-body dynamics in a

central gravitational field. While our analysis of the dynamics will be partitioned to treat

three separate problems (motion about a fixed point, motion about a point on a Keplerian

orbit, and free motion), no such distinction can be made in a review of the literature with

regard to the latter two problems. We therefore treat them as a single problem which

we refer to as the orbiting satellite problem. We begin with a review of the classical

origins of these problems. We then examine modern developments of the orbiting satellite

problem. Obviously, a great deal of this work comes from the field of astronautics. We place

particular emphasis on those works directly related to gravity-gradient and spin-stabilized

satellites. Most of this work has been extended to more complex multibody systems such

as dual-spin satellites for which we merely provide references to recent literature reviews.

We then review previous work on the fixed point problem. This work has appeared almost

exclusively within the Russian literature and, due to the more abstract nature of the

problem, has been presented in the more general setting of the field of applied mechanics.

We close with a discussion of some textbook treatments of these problems which the reader

may find useful.

2.1 Classical Origins

The motion of a rigid body in a central gravitational field is a simplification of the

two-body problem. As such, it is integrally tied to celestial mechanics. Much of the early

work in the two-body problem was directed towards identifying trajectories or orbits of

heavenly bodies. It is well known that in 1609 Kepler [48] first identified the planetary

orbits as ellipses with the sun at one focus and in 1687 Newton published his Principia [78]

showing the corresponding force of attraction is inversely proportional to the square of the

distance between the bodies. Newton also showed that a spherically symmetric attracting

body results in a force equivalent to that of a point mass located at the center of mass of
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the attracting body. This provided a solid mathematical foundation for the study of orbits

of celestial bodies.

The attitude motion of heavenly bodies has received less attention historically. Two

notable exceptions are the Earth and the Moon - the former because its attitude di-

rectly influences the observations of other celestial bodies and the latter because its close

proximity to the Earth has significant effects and also makes attitude motions more read-

ily observable. In 1749, while attempting to explain the precession of the equinoxes,

d'Alembert [19] and Euler [27] developed the equations of motion for a rigid body in a

central gravitational field, first deducing the presence of a gravitational torque on a rigid

body of arbitrary shape. In 1780, interest in the librations of the Moon led Lagrange [52]

to study the equilibria of these equations expressed in an orbiting reference frame. He

identified twenty-four such relative equilibria corresponding to each of the possible combi-

nations of principal inertia axes aligned with orbital frame axes. He developed sufficient

conditions for stability in terms of the inertia ratios.

Note that these two cases typify in certain respects the types of motion we are interested

in here. The Moon is a tri-inertial body and its motion in orbit about the Earth is a

libration about a stable relative equilibrium for an arbitrary body. In contrast, the Earth

is approximately dynamically symmetric and its motion in orbit about the Sun is essentially

a relative equilibrium for an axisymmetric body. In the case of the Earth, however, factors

such as the presence of the Moon introduce other significant effects.

According to Roberson [92], a considerable body of work on this problem exists from the

nineteenth century, however, advances were limited due to the narrow scope of applications

under consideration. The development of the artificial satellite brought renewed interest.

2.2 Modern Developments

2.2.1 The Orbiting Satellite Problem.

Equations of Motion and Relative Equilibria. The moment equations for a rigid

body in a central gravitational field had become a part of the astronomical literature by

2-2



the turn of the century. (See, e.g., Tisserand [103] or Routh [93].) However, at the start of

the space age, they went through a series of "rederivations." As Roberson [85] points out,

some of these new derivations were useful for presenting the equations in modern vectorial

form or in a more general setting (generalized potentials, nonspherical primaries, etc.).

In 1956, Roberson and Tatistcheff [88] developed the potential function for a finite rigid

body in the gravitational field of a homogeneous oblate spheroid. For the special case of a

spherical primary, their approximation is equivalent to MacCullagh's [58] approximation for

the potential of a body evaluated at a distant point. The difference is just a reversal of the

roles of primary and satellite.1 This approximation neglects terms in the series expansion

of the potential which involve third-order or higher inertia integrals and is justified under

the assumption that the size of the satellite is very small in comparison to the distance

from the center of the primary. This same approximation has continued to be used in

various forms throughout nearly all the literature, usually with the additional caveat that

only the dominant term in the resulting force is kept. This is the same approximation used

by Lagrange which we refer to as the classical approximation. In 1958, Roberson [83, 89]

outlined the problem of satellite attitude control and developed expressions for several

torques, including the gravity-gradient torque. He identified the stability or instability

of various configurations in terms of principal inertia ratios, listing the configurations

previously found by Lagrange as the only stable configurations.

In 1958, Duboshin [24] derived the translational and rotational equations of motion

for a system of n rigid bodies of finite size. He demonstrated that in general the problem

has ten first integrals, analogous to the first integrals for the motion of n point masses

acting under their mutual gravitation. Also, Beletskii [12] considered the effects of aerody-

namic and gravitational torques along with orbital regression on satellite attitude motion.

A year later, Beletskii [13] restricted his analysis to admit only the gravitational torque.

'The current usage should be contrasted with the more typical usage of MacCullagh's approximation
where the satellite is a point mass and we are interested in the effects of the nonspherical mass distribution
of the primary on the orbit of the satellite.
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He demonstrated the nonlinear stability of Lagrange's stable equilibria and examined li-

brations about those equilibria. In an independent effort in 1961, DeBra and Delp [23],

working from the derivations of Roberson [83], applied a linear stability analysis to the

problem. They demonstrated the weaker condition of spectral stability for Lagrange's sta-

ble equilibria as well as the existence of a second set of inertia configurations which are

spectrally stable. Beletskii [13] had also identified this second set of configurations but had

incorrectly declared them unstable when considered in the nonlinear problem.2 In 1963,

Garber [29] extended the results of DeBra and Delp [23] to consider aerodynamic torques.

He determined the presence of an instability under the influence of a body-fixed torque.

In 1963, Michelson [72, 73] presented another derivation of the equations of motion for

a rigid body in a central gravitational field. He claimed the existence of a one-parameter

family of relative equilibria. This claim was refuted by Kane and Likins [43], who argued

that the moment equations linearized about the known equilibria do not permit a family

of equilibria. As a direct result of this debate, Likins and Roberson [55] gave a proof of

the uniqueness of the twenty-four relative equilibria for a tri-inertial rigid body. They

converted the equilibrium conditions to an eigenvalue problem and showed that the ra-

dial and binormal unit vectors are eigenvectors of the inertia matrix. In 1968, however,

Meirovitch [69] pointed out that this proof relied on the truncated approximation of the

potential and that for inertially symmetric or nearly symmetric rigid bodies, higher-order

terms in the series expansion of the potential should be included.

In 1968, Roberson [90, 91] considered the possibility that orbits of relative equilibria

could lie in a plane which does not contain the center of force. Roberson was specifically

interested in the motion of a gyrostat and ruled out the possibility of these oblique orbits for

a simple rigid body. However, his findings were a direct result of the truncated form of the

potential and in 1985 Barkin [9] showed the existence of oblique orbits by including third-

order inertia integrals in the potential. In 1991, Wang, Krishnaprasad, and Maddocks [104]

2Meyer and Hall [71] point out that during this period several proofs of instability appeared in the
literature which were incorrect (e.g., Malkin [64] and La Salle and Lefschetz [51]).

2-4



developed an approach to solution of the exact problem using a noncanonical Hamiltonian

formulation and variational principles. Their method agreed with previous results when

applied to approximations of the Hamiltonian corresponding to truncated forms of the

potential. In 1992, Wang, Maddocks, and Krishnaprasad [105] showed that the classical

relative equilibria are guaranteed to exist if the rigid body has three mutually orthogonal

planes of symmetry. This was implicitly assumed in previous developments which truncated

the potential at second order. They examined the exact problem for a specific rigid body

and showed numerically the existence of oblique orbits. They pointed out that while the

displacements of the orbit plane from the center of attraction were necessarily small, the

equilibrium attitudes associated with these orbits could vary greatly from those of the

classical relative equilibria. In 1993, Provost [82] attempted to verify these findings and

further examine the nature of these equilibria. Unfortunately, this effort met with limited

success due apparently to difficulties associated with the ill-conditioned numerics in the

problem.

Librations about the Relative Equilibria. In 1957, Klemperer and Baker [49] began

to examine the problem of satellite librations about a relative equilibrium. They devel-

oped equations for planar librations of both a dumbbell-shaped satellite and a prolate

spheroid. They examined the frequency of the librations and suggested the possibility of

using instruments to sense these librations for satellite control. Davis [20] also examined

the planar librations of a dumbbell-shaped satellite about its stable relative equilibria. He

developed linearized equations for roll, pitch, and yaw. Baker [8] and Schindler [97] were

among those extending these analyses to examine planar librations for elliptical orbits in

the early 1960's.

As mentioned above, Beletskii [13] also considered the libration problem. It is note-

worthy that he distinguished between the restricted problem where a Keplerian orbit is

assumed and the resulting attitude motion treated independently and the unrestricted

problem where the orbital and attitude motion are coupled. He derived the general li-
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bration equations for the restricted problem in a circular orbit and the planar libration

equations for the restricted problem in an elliptical orbit. He determined an expression for

the period of the librations. The general libration equations for an axisymmetric rigid body

in a circular orbit were also derived by Auelmann [7] in 1963. DeBra and Delp [23] and

Michelson [73] also discussed the frequency of librations for circular orbits in their work

mentioned previously. In 1965, Kane [41] reexamined the analysis of DeBra and Delp. By

considering the amplitude of librations, he showed that while the relative equilibria found

by Lagrange and DeBra and Delp are stable, librations about some of these configurations

can be unstable for amplitudes as small as one degree.

In the late 1960's, Brereton and Modi [74, 17, 75, 76] employed both numerical and

analytical methods to study the librations in circular and elliptical orbits. They found

periodic solutions with periods of several times the orbital period. They also numerically

determined the existence of invariant surfaces. Marandi and Modi [65] applied Morse

theory to determine the libration bounds of asymmetric satellites. More recently there

has been considerable interest in chaotic motions associated with the pitch dynamics in an

elliptical orbit (e.g., [47, 31]).

Several symposia have been dedicated to the subject of gravity-gradient satellites (e.g.,

[77, 95]). These proceedings provide a source of theoretical and applied works. Provost [82]

has also recently reviewed the gravity-gradient satellite literature.

Spin-Stabilized Satellites. In 1962, Thomson [101] and Kane, Marsh, and Wil-

son [45] showed that for axisymmetric satellites it is possible to stabilize the direction

of the symmetry axis normal to the orbit plane by spinning the body. This is true for

both oblate satellites which are naturally stabilized by the gravity gradient and prolate

satellites which are not. Kane and Shippy [42] extended this analysis to consider spinning

asymmetric rigid bodies. Pringle [81] and Likins [56] demonstrated the possibility of di-

rectional stability for axisymmetric satellites along directions other than the orbit normal

and examined the bounds for librations of the symmetry axis. Meirovitch and Wallace [68]
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extended these results to consider aerodynamic torque effects. With the development of

the dual-spin concept, this research was quickly overtaken by interest in more complex

multibody systems.

Gyrostats and Dual-Spin Satellites. Roberson [84] first considered the influence of

rotors on the stability of a rigid body in a central gravitational field in 1958. A large

body of literature exists on this area starting in the mid 1960's. It continues to be a topic

of interest, however, it is not directly relevant to this dissertation. We refer the reader

to [94, 85, 86, 92, 87] for discussions of developments relating to gyrostats and dual-spin

satellites and to Hall [32] for a recent survey of the literature relating to dual-spin satellites.

2.2.2 The Fixed-Point Problem. The problem of rigid-body motion about a fixed

point in a central gravitational field may be viewed as a simplification of the orbiting

satellite problem in which we eliminate the rotational effects due to centripetal acceleration

and consider only the gravitational torques. In this case, we specify the fixed point to be

the center of mass. Alternatively, it may be viewed as a generalization of the classical

heavy top problem. Here the fixed point is not specified and the classical problem arises

as one of the approximations based on truncation of a series expansion of the potential.

There is a large body of literature on the heavy top problem. (See, e.g., Whittaker [106] or

Leimanis [53].) Maddocks [62] and Lewis et al [54] have recently reexamined this classical

problem using generalized Hamiltonian methods.

Several integrable cases of the classical problem are well known. Two of these -

the cases of Euler and Lagrange - have analogous integrable cases for the problem in a

central gravitational field. For the case analogous to Euler's, an additional first integral was

discovered by de Brun [22] and the problem was solved by Kobb [50] and Harlamova [33].

The case analogous to Lagrange's was reduced to quadratures by Beletskii [11, 14]. An

additional integrable case exists when the body has complete dynamic symmetry (three

equal inertias) with respect to axes originating at the fixed point. The case of Euler

and the case of complete dynamic symmetry are only integrable for the classical potential
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approximation. The case of Lagrange is integrable for all approximations. Arkhangelskii [2,

3, 5, 4] has shown that these are the only integrable cases for the classical approximation.

In more recent work, Bogoyavlenskii [16] has generalized the case of Euler to show

that the classical approximation for an arbitrary (non-spherical) primary is integrable. His

formulation of the problem is noncanonical. Sulikashvili [99, 100] has examined the relative

equilibria of bodies which admit regular polyhedron symmetry groups and are fixed at their

center of mass. Periodic solutions of the fixed point problem have been investigated by

El-Sabaa [26].

2.3 Textbook Treatments

Most celestial mechanics texts treat only the n-particle problem. However, the work

by Duboshin on the n-body problem appears as a chapter in his own text [25] with the

addition of a section in which the equations of motion are converted from Lagrangian to

Hamiltonian form. For the problem of a rigid body in a central gravitational field, the

text by Beletskii [15], written in 1965, is remarkably complete and remains one of the most

thorough treatments. Appendix 1 covers the motion about a fixed point, while the main

text examines both the restricted (Keplerian) and unrestricted (free body) cases. In the

same year, Leimanis [53] presented a survey of the literature which reviews some of the

material found in [15] but includes the heavy top problem as well as some analysis of the

dynamics of gyrostats and gyroscopes. A more recent presentation of satellite attitude

dynamics is given by Hughes [40]. This treatise develops the dynamics from first principles

and concludes with three full chapters devoted to gravity-gradient satellites, spin-stabilized

satellites, and gyrostats and dual-spin satellites. The presentation includes most of the

pertinent results from the above literature as well as application-oriented discussions. The

text by Kane, Likins, and Levinson [44] presents much of the dynamics, but in a less

readable fashion. Elementary presentations of satellite attitude dynamics can also be

found in the texts by Kaplan [46], Thomson [102], and Wiesel [107]. Meirovitch [70]

includes a chapter on celestial mechanics (including the n-particle problem and Earth
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attitude dynamics) and a chapter on spacecraft dynamics (including relative equilibria of

gravity-gradient and spin-stabilized satellites) as applications in a text on Lagrangian and

Hamiltonian mechanics.

2-9



III. Stability of Relative Equilibria of Hamiltonian Systems

In this chapter, we examine relative equilibria which arise as critical points of non-

canonical Hamiltonian systems and explore their stability. Our objective is to provide a

collection of analytical tools to be used in later chapters when we investigate particular

Hamiltonian systems of interest. We presume the reader has some familiarity with prop-

erties of Hamiltonian systems. A primer on both canonical and noncanonical systems is

provided in Appendix A.

We begin by presenting a definition of relative equilibrium as well as definitions of

several different types of stability. Relative equilibria are then characterized in terms of a

variational principal. Subsequently, we focus on two types of stability - spectral stability

and nonlinear stability - which are considered in some detail.

A comprehensive review of the existing knowledge on stability of Hamiltonian systems

would go far beyond the scope of the current effort. We focus on topics directly applicable

to the systems considered in later chapters and apply methods recently developed specifi-

cally for treatment of noncanonical Hamiltonian systems. However, we emphasize spectral

stability to a greater degree than most of the current literature (with the exception of

Howard and Mackay [36] and Howard [38, 39]). Therefore, the section on spectral stability

contains some results which have not appeared elsewhere in the literature to our knowledge.

Our reasoning for increased emphasis on spectral stability is to present a more complete

picture of stability in terms of the parameters which specify the configuration of the dy-

namical system. This argument is presented more fully in the section on stability. For

nonlinear stability, we discuss several methods which exploit the advantages of noncanon-

ical Hamiltonian formulations - two methods which consider the relative equilibrium as

an unconstrained extremum and two which treat it as a constrained extremum.

3.1 Definitions

When we refer to the stability of a dynamical system, we are describing the tendency

for the trajectory of the system to remain close to a given reference trajectory. Exactly
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in what sense the trajectories are close must be more clearly defined. We consider the

stability of trajectories which correspond to a particular type of solution to the equations

of motion:

Definition 3.1 (Equilibrium, Relative Equilibrium). For an autonomous
dynamical system

z = f(z), (3.1)

a point ze which satisfies f(ze) = 0 is an equilibrium. If the dynamical system
(3.1) describes motion relative to a moving coordinate system, then we refer to
an equilibrium of this system as a relative equilibrium.

Along with the dynamical system (3.1), we also consider its linearization. A Taylor series

expansion of (3.1) about the equilibrium z, gives

=z = A(ze)6z + 0 (6Z 2 ) (3.2)

where 6z = z - z, is the perturbation vector and A(z) is the Jacobian matrix

A(z) - df(z) (3.3)dz

Truncating all terms above first order in Equation (3.2) gives the linearized system and we

consider stability of the origin, 6z = 0.

Four definitions of stability which often appear in the literature1 are:

Definition 3.2 (Nonlinear Stability). An equilibrium z, is nonlinearly sta-
ble (or Liapunov stable) if for every E > 0 there is a 6 > 0 such that if
Iiz(0) - z,11 < 6, then IIz(t) - z,11 < e for t > 0.

Definition 3.3 (Formal Stability). An equilibrium ze is formally stable if
a conserved quantity is identified for which the first variation is zero and the
second variation is positive or negative definite when evaluated at the equilib-
rium.

Definition 3.4 (Linear Stability). An equilibrium ze is linearly stable (or
infinitesimally stable) if the linearized system is nonlinearly stable.

'See, e.g., Holm et al [35].
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Definition 3.5 (Spectral Stability). An equilibrium z, is spectrally stable

if the spectrum of the linearized operator A(z') has no positive real part.

We also must consider the converse:

Definition 3.6 (Instability). An equilibrium z, is unstable if it is not non-

linearly stable.

In general, we have [35:4-5]

formal stability =' linear stability spectral stability

where A =' B indicates "A implies B". The former implication follows since the quadratic

form associated with the second variation of the conserved quantity is the square of a

norm which may be used to prove linear stability. The latter implication is a result of the

fact that for an unstable eigenspace no sufficiently small perturbation can be found (not

spectrally stable . not linearly stable). For the finite-dimensional systems we consider

here, we also have

formal stability * nonlinear stability.

This is a classical result due to Liapunov [57:62] and is a generalization of a theorem

attributed to Lagrange and Dirichlet 2 which states that an equilibrium which occurs at an

isolated minimum of the potential function is nonlinearly stable.

3.2 Characterization of Relative Equilibria

We are interested in the class of dynamical systems known as Hamiltonian systems for

which the equations of motion (3.1) take the special form

= J(z)VH(z) (3.4)

2See, e.g., Marsden and Ratiu [67:31].
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as described in Appendix A. For these systems, a relative equilibrium ze must satisfy the

condition

J(ze)VH(z,) =0. (3.5)

One interpretation of this equation is that z, is a relative equilibrium if and only if the

gradient of the Hamiltonian lies in the null space of the structure matrix J(ze). If the

structure matrix is singular, then there exist functions known as Casimir functions which

are conserved (independent of the Hamiltonian). The gradient of each of these functions

lies in the null space of J(z) for any choice of z. If the system has order n and the structure

matrix has rank n - m then we may identify m Casimir functions such that their gradients

are linearly independent and form a basis for the null space of J(z). Thus, at relative

equilibrium the gradient of the Hamiltonian must equal some linear combination of the

gradients of the Casimir functions:

m

VH(z,) = ZpliVCi(ze). (3.6)
i=1

Whereas Condition (3.5) is a system of n algebraic equations in n unknowns (the phase

variables at equilibrium), Condition (3.6) is a system of n equations in n + m unknowns

(the phase variables and the multipliers, pi). We additionally require the m equations

Ci(z) = ki (Z' = 1, 2, ... , m) (3.7)

where the ki may be constants or parameters of the physical system. We shall see ex-

amples of each possibility in later chapters. Conditions (3.6) and (3.7) are equivalent to

Condition (3.5).

Following Maddocks [62], we introduce the function

m

F(z) = H(z) - ZtiCi(z). (3.8)
i=1
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Critical points of this function are relative equilibria since the condition

VF(ze) =0 (3.9)

is equivalent to Condition (3.6). It is immediately apparent that Conditions (3.9) and (3.7)

arise from the constrained variational principle

make stationary H(z) subject to Ci(z) = ki. (3.10)

Here the pi serve as the Lagrange multipliers and the function F(z) is the variational

Lagrangian. 3 In many respects, F assumes the role which the Hamiltonian serves for

canonical systems. This is not too surprising since canonical systems have a nonsingular

structure matrix (so that there are no constraints) and the variational Lagrangian reduces

to F(z) = H(z). This variational characterization not only provides a direct method of

determining the conditions for relative equilibrium, it will also prove useful in both the

spectral and nonlinear stability analyses.

3.3 Stability of Relative Equilibria

Our intent is to examine the nonlinear stability of systems parameterized by physical

quantities. Nonlinear stability criteria (which typically arise from proofs of formal sta-

bility) tend to provide sufficient rather than necessary conditions for nonlinear stability.

They therefore divide the parameter space into two types of regions: nonlinearly stable

configurations and configurations of unknown stability. This is shown conceptually in

Figure 3.1(a) where the Ai represent physical parameters.

We would like to present a more complete picture of stability in terms of the parameters

which specify the configuration. From the definitions above, it can be deduced that an

equilibrium is linearly stable if and only if it is spectrally stable and the Jordan block cor-

3 We use the adjective variational to clearly distinguish this function from the Lagrangian function which
arises in mechanics.
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Figure 3.1 Stability Regions with (a) Nonlinear Stability Analysis and (b) Nonlinear and

Spectral Stability Analyses

responding to each imaginary eigenvalue is one dimensional [34]. Furthermore, the spectral

and linear stability boundaries in parameter space are identical for Hamiltonian systems.

We opt to consider only spectral stability and avoid the concerns of repeated roots. It

turns out these borderline cases will often correspond to configurations with additional

symmetry which we treat separately. By considering spectral stability in addition to non-

linear stability, we can refine our categorization of parameter space into three types of

regions: nonlinearly (and spectrally) stable regions, spectrally (and nonlinearly) unstable

regions, and spectrally stable regions. This is shown conceptually in Figure 3.1(b). The

effort required to analyze spectral stability can be considerably less than that required to

analyze nonlinear stability and it allows us to focus the nonlinear analysis on only those

regions which are spectrally stable.

3.3.1 Spectral Stability.

Linearized Equations of Motion. For Hamiltonian systems, we can develop an ex-

pression for the linear system matrix A(z,) in terms of the structure matrix and the

variational Lagrangian [62]. Linearization of Equation (3.4) about relative equilibrium
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gives

'z = [VJ(z,)VH(z,) + J(Ze)V 2 H(ze)] 6 z. (3.11)

However, for each Casimir function we have

J(z)Vci(z) = 0 (3.12)

and differentiation with respect to the phase variable vector gives

VJ(z)VCi(z) + J(z)V2 C, z) = 0. (3.13)

Combining this result with Equation (3.6), we may then conclude

m

VJ(ze)VH(z,) =- iJ(Z)VCi(ze) (3.14)
i=1

which may be substituted into Equation (3.11) to give

z = j(ze)V 2 F(ze)6z. (3.15)

Thus, given any Hamiltonian system, we may write the system matrix for the linearized

equations of motions directly (after determining suitable Casimir functions) as

A(ze) = J(ze)V 2 F(ze) (3.16)

without performing linearization.

Eigenstructure of Hamiltonian Systems. The eigenvalues of the linear system ma-

trix are the roots of the characteristic equation

P(s) = det [sl - A(z,)] = 0. (3.17)
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For low-order systems, we may solve for the eigenvalues explicitly. More typically, we

apply an algorithm such as the Routh-Hurwitz method to determine conditions on the

coefficients of P(s) which are necessary and sufficient to guarantee no eigenvalues lie in the

right half-plane. For a general high-order polynomial, development of these conditions can

be a daunting task. Fortunately, Hamiltonian systems have special properties with regard

to both the form of the characteristic polynomial and the eigenstructure which greatly

simplify this effort.

Property 1. Eigenvalues of the linear system matrix are symmetric about both the real

and imaginary axes.

This is a well-known property for canonical Hamiltonian systems. Symmetry about

the real axis is a property of all real matrices. Symmetry about the imaginary axis results

from A(ze) being the product of a skew-symmetric and a symmetric matrix.

Property 2. A zero eigenvalue exists for each linearly independent Casimir function.

The gradient of a Casimir function lies in both the left and right nullspaces of the

structure matrix J(z,). Therefore, it also lies in the left nullspace of A(z,) = J(ze)V 2 F(ze).

In other words, it is the left eigenvector associated with a zero eigenvalue. The linear

independence of the Casimir function gradient vectors assures us that the multiplicity

of the zero eigenvalue must be at least as great as the number of independent Casimir

functions.

Property 3. An additional pair of zero eigenvalues exists for each first integral which is

associated with a symmetry of the Hamiltonian, and which is linear in the phase variables.

For any first integral, we have

C(Ze) = VC(Ze) J(ze)VH(ze) = 0. (3.18)
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Differentiating with respect to the phase variable vector gives

V 2 C(Ze) J(ze)VH(ze) + VC(ze)" VJ(ze)VH(Ze) + VC(Ze)" J(ze)V 2 H(ze) = 0.

(3.19)

The first term is zero because C(z,) is linear in the phase variables. By Equations (3.11)-

(3.16), the rest reduces to

VC(ze). A(z,) = 0. (3.20)

Thus, the gradient of such a first integral is a left eigenvector of the linear system ma-

trix associated with a zero eigenvalue. If the gradient of this integral and the gradients

of the Casimir functions are linearly independent, then there will be an additional zero

eigenvalue. However, for an nth-order system with m independent Casimir functions, the

n - m eigenvalues associated with the (n - m)/2 degrees of freedom must occur in pairs

or quadruplets symmetric about the real and imaginary axes.4 Therefore, the symmetry

must drive a pair (and possibly a quadruplet) to the origin.

Consideration of these properties leads us to conclude that the characteristic polynomial

for a Hamiltonian system is of the form

P(s) = 8m( 8
n -r + Anm_2 8 n---2 + Anm_48n-m-4 

±." + A 2s 2 + Ao). (3.21)

The even form of the polynomial inside the parentheses is a byproduct of the first property

and allows the polynomial to be treated as a polynomial in a = -s2 of order (n - m)/2.

For an additional integral of motion associated with a symmetry of the Hamiltonian as

described in the third property, A0 would go to zero so that an additional s2 would fac-

tor out. While these properties lead to considerable simplification of the characteristic

polynomial, we can simplify still further in many cases.

4In Appendix A, we discuss why n - m must be even.
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Decoupling of Linear Subsystems. For noncanonical systems, there is no pairing of

phase variables into conjugate pairs. Hence, we are completely free to rearrange the phase

variables as necessary to simplify our computations. We will often find that the linearized

system decouples into (1) entirely independent subsystems so that the linear system matrix

may be block-diagonalized, or (2) subsystems for which the coupling is only in one direction

so that the linear system matrix may be block-triangularized. For instance, suppose we

have a Hamiltonian system with phase variable vector z = (zI, z2, z 3 , z4 , zs) for which the

linear system matrix takes the form

all 0 a13  a14 0

a21  a22  a23  a24 a25

A(ze)= a31 0 a3 3  a34 0 (3.22)

a 4 1  0 a43 a44 0

as1 a52 a53 a54  a55

We may consider the Hamiltonian system with permuted phase variable vector

1 0 0 0 0 Zl Zl

00 1 0 0 z 2  Z3

z= 0 0 1 0 z3  = Z4 (3.23)

01 0 0 0 z4  z2

o0 0 0 1 z 5  z5

for which the linear system matrix would become

al a13 a14 0 0

a31  a33  a3 4  0 0

A(z)= a41  a43  a44 0 0 (3.24)

a21  a2 3  a24 a22 a25

a5l a53  a5 4 a 52 a55
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Recognition of this decoupling into block-diagonal or block-triangular form greatly simpli-

fies the computation of the characteristic equation since, in either case, we may then treat

each subsystem independently. That is, the characteristic polynomial is

P(s)= Isl - A(ze) sI A - A- A(z,)0 sl - Ali(ze)Isl - A 22 (ze)I
-A 2 1  Ai - A22(Ze)

(3.25)

where the Aij (ze) are the submatrices of the block-triangular (or block-diagonal) form. We

can easily extend this to treat more than two independent subsystems through repeated

application of the above procedure.

Stability Criteria. The above results guarantee that for an nth-order Hamiltonian

system with m independent Casimir functions, we will only need to analyze a polynomial

of order n - m or less in s 2 (or (n - m)/2 in a = -s 2). By the symmetry property of the

roots, the system can only be spectrally stable when all the eigenvalues lie on the imaginary

axis. We thus need to determine under what conditions this requirement is satisfied. Two

methods are available for this analysis. One is a special case of Routh's method and the

other is based on Sturm sequences. We briefly describe both methods here and refer the

reader to more detailed descriptions.

Routh's method is commonly treated in textbooks on linear systems or linear control

theory. It involves the construction of a table based upon the coefficients of the character-

istic polynomial. For an nth-order polynomial

ans n + an-is n- 1 +'" + als + ao, (3.26)

the table has n rows. The first two rows of the table are given by (let n be even for this

example)

sn  an an-2 an-4 ... ao
sn-1 an-i an- 3  ... al
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Each subsequent row is produced from the previous two as

8sn - 2  b.- 2  b.- 4  ... bo

where

bn- 2  an-lan-2 - anan-3
an-1

anlan-4 - anan-5
an-1

and so forth, using zero where no table entry is present. Spectral stability conditions are

then determined by requiring all entries in the first column to have the same sign. It

should be immediately apparent that this method fails for Hamiltonian systems because

the second row will always contain only zeroes. This is indicative of roots occurring in

pairs which are symmetric about the origin. An extension to Routh's method allows us

to recover. A zero row is replaced by the coefficients of the derivative of the auxiliary

polynomial formed from the elements of the previous row. Thus, for a Hamiltonian system

with characteristic polynomial (neglecting zero roots)

ans n + an_28n - 2 -± " - a28s2 + a0 , (3.27)

the characteristic polynomial is the auxiliary polynomial for the first row and its derivative

is

±ansn - 1 + (n - 2)a_ 2 s' - 3 ±... + 2a 2 s (3.28)

which supplies the coefficients used for the second row. This procedure is repeated any

time a zero row occurs. Again, stability conditions are determined by requiring all entries

in the first column to have the same sign. A reaonably complete discussion of Routh's

method and the extension for zero rows is presented by D'Azzo and Houpis [21:185-191].
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An alternative method based on Sturm sequences has recently been explored by Howard

and Mackay [37, 36] and Howard [38, 39] which exploits the even form of the characteristic

polynomial. Essentially, we form a reduced characteristic polynomial Q(o-) by substitut-

ing o- = -s 2 into the characteristic polynomial. For an nth-order Hamiltonian system,

this results in a reduced characteristic polynomial of order n/2. For stability, we require

the eigenvalues of the Hamiltonian system to lie on the imaginary axis. The equivalent

requirement is that the roots of the reduced polynomial lie on the positive real axis. To

determine the conditions for meeting this requirement, we apply Sturm's method. This

method consists of defining a sequence of functions {Fk(o-)} given by

Fo(a) = Q(ai)

F1(ai) = Q'(ci)

Fk(ai) Gk(U)Fkl() - Fk-2( ()

where k = 2,... ,r and r < n/2. Gk(Or) is the quotient when Fk-2(0-) is divided by Fk-l(c)

and Fk (or) is the remainder. The final function in the sequence, Fr (ai) is a constant. For

spectral stability, we require r = n/2 and, for j = 0, 1,... , n/2 - 1,

(-1)n/2-JFj (O) > 0,

Fj(+o) > 0,

Fn/ 2 >_ 0.

The details of this procedure are presented, along with the calculations for an arbitrary

sixth-order Hamiltonian system, by Howard and Mackay [36]. It should be pointed out

that Routh's method is also derived from an analysis of Sturm sequences and, in some

sense, the two methods are equivalent. The use of Sturm sequences in the development of

Routh's method is described in Chapter XV of Gantmacher [28]. It would be of interest
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Table 3.1 Spectral Stability Conditions
n = 2 : P(s) = s2 + Ao

Ao > 0

n = 4: P(s) = s 4 + A 2s 2 + Ao

A0 > 0 A 2 > 0 A2 - 4A0 > 0

n =6 : P(s) = s6 + A 4
8 4 + A 2 S 2 + Ao

Ao >_ 0 A 2  _ 0 A2A 4 - 9Ao _> 0 A2 - 3A2 > 0
-2A 32 2_AA O

-27A - 4A + 18AoA 2A 4 + A A - 4AoAI > 0

n= 8 : P(s) = s8 + A6s 6 + A 4 s 4 + A2s 2 + Ao

A 0 _> 0 A 2 _ 0 3A 2 - 8A 4 > 0 A6 A2 - 16A0 > 0

A A 4 A 2 - 4A2A 2 + 3A 6A2 - 9AIAo + 32A 6A 4Ao - 48A 2A0 > 0

A 4A - 3AIA 2 + 14A 6A4 A2 - 18A2 - 6A2Ao + 16A 4A0 > 0

A2A2 A2 - 4A3A2 - 4A A 3+ 18A 6A4A
3 - 27A 46 4 2 4 2 4 6A2 2 2

- 4A2A 3Ao + 16A 4Ao + 18A3A 4A2Ao - 80A 6A2A 2Ao - 6A2A2Ao
+ 144A 4 A2Ao - 27A4A2 + 144A2A 4 A2 - 128A2A2 - 192A 6A2 A2 + 256A 3 > 0

to explore this relationship further and clarify the advantages and disadvantages of one

method over the other.

The Hamiltonian systems considered in this dissertation are all ninth-order, and, hence,

we will never be concerned with polynomials greater than eighth order in s or fourth order

in a. Table 3.1 presents the spectral stability conditions derived by the method of Howard

and Mackay for second-, fourth-, sixth-, and eighth-order polynomials. Recall that each

coefficient is a function of the phase variables and physical parameters describing the

system. Typically, the stability conditions will be further reduced to expressions involving

these variables.

3.3.2 Nonlinear Stability.
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Unconstrained Minimum Methods. For finite-dimensional systems, formal stability

implies nonlinear stability. Recall that formal stability signifies the existence of a conserved

quantity for which the first variation is zero at the relative equilibrium and the second vari-

ation is positive- or negative-definite. Such a function is called a Liapunov function. The

difficulty in proving nonlinear stability lies in determining a suitable Liapunov function.

Direct Consideration of the Variational Lagrangian. The variational Lagrangi-

an F(z) = H(z) - -=1 IiCi (z) is a candidate Liapunov function for a Hamiltonian system

since we have already shown that setting the first variation equal to zero gives precisely

the conditions for relative equilibrium. Furthermore, because it is a linear combination of

first integrals, it is also conserved. Finally, we have already computed the second variation

as part of computing the linear system matrix A(z,) = J(ze)V2 F(ze). Therefore, direct

examination to determine positive- or negative-definiteness provides an immediate test

for nonlinear stability with little more computational effort. This test provides sufficient

conditions for nonlinear stability; however, the conditions are not very sharp and this

method proves to be of limited utility.

Energy-Casimir Method. The variational Lagrangian is suggestive of a large

class of candidate relative equilibria. If C(z) is a Casimir function or other first integral,

then for any smooth scalar function O(x) we find that q(C(z)) is also a first integral (by

the chain rule). Thus, any function of the form

m

HO(z) = H(z) + ) 7 i (Ci(z)) (3.29)

is a candidate Liapunov function. This may be generalized even further if we consider a

scalar function (2)(xo, xl,..., X.) of m + 1 variables. Then the class of functions

HD (z) = 1) (H(z), C, (z),. . . , C(z)) (3.30)

3-15



are also candidate Liapunov functions. This latter class includes functions of the type

HO (z) but also admits functions which include terms containing products of integrals. The

cost of this greater generality is a more difficult analysis. Therefore, although we will start

our analysis considering the most general class, H, it will sometimes be advantageous to

consider when the simplification to class HO will be sufficient to find a suitable Liapunov

function.

The first variation specifies conditions on the first derivative of the scalar function(s).

These conditions are then substituted into the second variation which is required to be

positive- or negative-definite to derive conditions on the second derivatives. If a scalar

function (or functions) can be identified which satisfy these conditions, then nonlinear

stability has been proven. Extensive details of the application of this method are presented

by Holm et al [35].

Constrained Minimum Methods. In the preceding analysis of the variational La-

grangian, we may take a variational approach and view the requirement for the second

variation to be positive- or negative-definite as equivalently requiring that the relative equi-

librium be an unconstrained minimum or maximum of the variational Lagrangian. This is a

direct extension of the Lagrange-Dirichlet Theorem for canonical systems which states that

a nondegenerate minimum or maximum of the Hamiltonian implies a stable equilibrium.

However, as we described earlier, the relative equilibrium may also be viewed as a con-

strained extremum of the Hamiltonian subject to fixed values of the Casimir functions. The

requirement to be a constrained minimum or maximum is less restrictive and thus might be

successfully applied to a larger class of relative equilibria. Essentially, rather than consid-

ering general perturbations in phase space, this restricts consideration to perturbations on

TMIz7, the tangent space to the invariant manifold M = {z: Ci(z) = Ci(ze), i = 1,...,m}

at the relative equilibrium, which may be identified with T (A(ze)), the range of the lin-

earized system matrix. Then, by a theory due to Hestenes, 5 we are assured of the existence

5See Lemma 1 of Maddocks and Sachs [63].

3-16



of a suitable Liapunov function and may conclude full nonlinear stability when ze is a con-

strained minimum or maximum of the Hamiltonian. 6 Two approaches have evolved from

this realization. The first involves direct compution of the projection onto the constraint

manifold. The second, the Lagrange Multiplier Approach, has been investigated by Mad-

docks [62, 61] and Maddocks and Sachs [63] with some success. We briefly summarize

these approaches here.

Projection Method. Without loss of generality, we seek a constrained mini-

mum. The second-variation condition may be stated as: For all h C TMI., such that

h = 0 (i.e., for all h # 0 such that VCi(ze)" h = 0 (i = 1,

h V 2 F(ze)h > 0. (3.31)

In the absence of symmetries, the range of A(z) is identically the range of J(z), and

conversely, the nullspace of AT(z) is identically the nullspace of J(z). Introducing the

orthogonal projection matrix, P(z), onto the range of A(z), we may write the second-

order condition as (recall that VCi(ze) span 2N (J(ze)), the nullspace of J(z,)): For all h

such that P(ze)h 0 0,

h. P(z6 ) V 2 F(ze)P(ze)h > 0. (3.32)

Let Q(z) be the projection onto N (AT(z)) = N (J(z)) given by

Q(z) = K(z) (KT(z)K(z)) KT(Z) (3.33)

6 We present the case where all the known integrals are Casimir functions. For systems with symmetry

integrals, a similar result applies; however, the analysis must be revised to account for the additional

constraints and the function for which we seek a constrained extremum is no longer the Hamiltonian. The

details of this analysis are presented by example in Chapters 6 and 7 for an axisymmetric rigid body in a

central gravitational field.
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where K(z) is the matrix whose columns span the nullspace,

K(z) = IVCi(z) ... VCm(z)]. (3.34)

Then the projection onto the range is given by

P(z) = 1 - Q(z). (3.35)

We could also have computed P(z) directly by using row-reduction of either AT(z) or J(z)

to generate a basis for 9? (A(z)). We may then compute the projected Hessian matrix

S(z 6 ) = P(Ze)V 2F(ze)P(ze). (3.36)

This n x n matrix will have m zero eigenvalues associated with the nullspace. If the

remaining eigenvalues are all positive, then z, is a constrained minimum and the relative

equilibrium is nonlinearly stable.

Lagrange Multiplier Method. Maddocks and Sachs [63] point out that the pro-

jection method may be computationally difficult for large n unless there is a simple re-

lationship between the range of J(z,) and the eigenvectors of V 2F(ze). They take an

alternative approach to determining whether the relative equilibrium is a constrained min-

imum which relies on the fact that the relative equilibrium may be embedded in a family

of equilibria associated with different values of the Casimir functions. Assuming V 2 F(ze)

is nonsingular, we may determine a relationship for ze as a function of the Lagrange mul-

tipliers, t = (btl,...,p.m). Then, the relative equilibrium corresponding to z, is embedded

in the surface F(ze(Ii)). Maddocks [61] has shown that the requirement (3.31) is satisfied

if and only if the number of positive principal curvatures of the solution surface F(ze(/))

at the relative equilibrium point fte equals the number of negative eigenvalues of V2 F(ze).

The interested reader is referred to [63] for a very readable presentation of the details. This

method turns out to have limited utility for our applications because the Hessian of F is
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singular. In general, we will apply one of the previous three methods to analyze nonlinear

stability.
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IV. Reduction of the Two-Body Problem

In this chapter, we develop the Hamiltonian system for the motion of two arbitrary

rigid bodies moving under the influence of their mutual gravitational attraction. We then

specialize to the case when one of the bodies has a spherically symmetric mass distribution.

The Hamiltonian system in this case can be reduced to a form which asymptotically ap-

proaches that of a free rigid body moving in a central gravitational field as the mass of the

second body gets small with respect to the mass of the spherical body. However, unlike the

classical two-particle problem, we do not find an exact equivalence. When the second body

is also assumed to have a spherically symmetric mass distribution, a pseudo-equivalence

can be found which is valid in most regions of phase space.

The reduction of the two-body problem to a noncanonical system is a new development 1

which follows directly from the reduction presented by Wang et al [104] for a rigid body in a

central gravitational field. To our knowledge, the question of an equivalence between these

two problems has not been addressed previously. Thus, our proof that no equivalence exists

and our initial investigations into the matter of pseudo-equivalence are new contributions.

4.1 Hamiltonian Formulation of Two-Body Problem

4.1.1 Inertial Coordinates. Consider a system comprised of two rigid bodies, BO and

B1, which are acted upon by their mutual gravitational attraction and which experience no

external forces or moments. Let Ti be an inertial reference frame and let j = ( j, mj j)

be the coordinates 2 of the center of mass, Cj, of body 3 j where j = 0, 1. Let Tpj be a

centroidal principal frame fixed in body 3 j and let Oj = (Vbj, Oj, Oj) be the classical Euler

angles describing the orientation of body frame Tp. with respect to the inertial frame where

Oj is the spin angle, Oj is the nutation angle, and Oj is the precession angle. Denote the

'Independent of the current work, this problem has recently been treated by Maciejewski [59] in a more
general form than presented here. He expresses the general system in noncanonical variables whereas here
we apply reduction through canonical transformations and assume a spherical primary prior to expressing
a noncanonical form.

2As a matter of convenience, we use the same notation to represent both an ordered set and the
corresponding column vector which we treat as interchangeable.
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direction cosine matrix for transformation from principal body frame Tpj to the inertial

frame Yi by Bj. Then the parameterization of Bj in terms of Oj is

[cVjc~j -SOc~s~ COS3-~cj 0 O s Oj S~ 1
Bj(Oj)= lc js j+ s jc jcj -s js j+c jc jc j -sOjc j| (4.1)

S sijsOj c jsj c 3  J
where we have used c and s as abbreviations for cos and sin. Let wj be the angular

velocity of body 3 j expressed in inertial frame Yi and let nj = B Twj be the angular

velocity expressed in body frame Ypj. The body frame angular velocity f1j is related to

the Euler angles by 3

fj = Sj bj (4.2)

where

[O cos Oj sin jsin Oj
Sj (0j)= 0 sin Oj cos Vj sin Oj. (4.3)

0 cosO j

Note that Sj is nonsingular for sin Oj 0 so that we may invert it to express the time

derivatives of the Euler angles as functions of Oj. The inverse is

sn~kjcos~j/sinOj -cosbjcosOj/sinOj I-
Si 1 (0j) Cos j - sin Oj 0 (4.4)

sin Oj / sin Oj cos Oj / sin Oj 0J

Also note that Sj and S1 are independent of the precession angle Oj.

'See, e.g., Hughes [40:26-27].
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Figure 4.1 Two-Body Configuration

The kinetic energy of the system is

7=0 (m Ji+ sis~)(4.5)

' 1~ 1T I sT J j~a, 1

where mj and Ij are the mass and the inertia tensor corresponding to body 33. The inertia

tensor is expressed in the body frame. The potential energy of the system is

j 0 1 (4.6)

1 2 2

where G is the universal gravitational constant and aj is the position of differential mass

element dmj in the appropriate body frame as shown in Figure 4.1. We consider only the

case where the bodies do not contact each other. This is assured if we require

1 1 - 1 > maxfla0l} + max{fjail} ai C 93. (4.7)

Any conclusions must be limited to regions of phase space satisfying this restriction in

order to be physically meaningful.
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Each body has six degrees of freedom and we choose

q = (q , Iq27... ,I q12) -- (G 0 0 0, 1 0 1) (4.8)

as our generalized coordinates. The kinetic energy is a homogeneous quadratic in the

generalized velocities and the potential is a function of only the coordinates. Thus, the

system is natural and the Hamiltonian is the total energy

H = T + V (4.9)

expressed in terms of the coordinates and the conjugate momenta

P = (PliP2, ... ,P12) = (Po, Poo, P I, P01) (4.10)

The momenta are given by

OT j] m~ (4.11a)

P= OT = STIjSjbj. (4.11b)

The momenta conjugate to j are the inertial components of the linear momentum of 93j

while the momenta conjugate to Oj are the projections of the angular momentum of Bj

onto the nonorthogonal axes about which the Euler angles are defined. The Hamiltonian

may then be expressed as

H(q,p) -p. Dp + V(q) (4.12)
2
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where

!1 0 0 0mo

o(q) =S0 1 IS0 T  0 0 (4.13)

0 0 0 0

L 0 0 0 S -1 l lIS T

The superscript -T indicates the inverse of the transpose and 0 and 1 denote the zero and

identity matrices of appropriate dimension. Let z = (q, p). Then the equations of motion

are given as

= JVzH(z) (4.14)

where J is the standard symplectic matrix

j = (4.15)

This is a twenty-fourth-order system of differential equations describing the translational

and rotational motion of the two-body system.

4.1.2 Jacobi Coordinates. We next transform the system to a new set of coordinates.

We use a canonical transformation which is an identity transformation in the rotational

coordinates, but which transforms the translational coordinates to Jacobi coordinates. 4

The Jacobi coordinates for a system of two bodies consist of the inertial coordinates of the

center of mass of the system and the coordinates of one mass relative to the other:

)X0  Tmnoo + ml 1  (4.16a)
m 0 + m,1

1 = 1- 0" (4.16b)

4See, e.g., Meyer and Hall [71:92-94] or Battin [10:398-400].
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Let z = (qP) ((Ao, Oo, Al,01), (PAo, P0o, pA, p01)) be the new phase variables and let

m = no + mi be the total system mass. The generating function for this canonical

transformation is

F 2 (q,]P) PAo. (- O + - + P h0  1  - o) + PO1 01 (4.17)

which gives

P oF - 29 ° - -- Poo - PAi (4.18a)

F2 ml
P I - F2 - Pm + PA1 (4.18b)

for the translational momenta along with an identity transformation in the rotational

momenta. Solving for the new momenta, PAo and PA1 , we find

Ph0 = P 0 + P j = MAO (4.19a)

PA, = -- Po + -Ps =tA1  (4.19b)
m m

where [p = momi/m is the reduced mass. We may also solve for the old translational

coordinates in terms of the new ones to get

= Ao - Y A, (4.20a)

1 A 0 -+- 11. (4.20b)

Since F2 is independent of time, the new Hamiltonian is

r(l, P) = H(q(t), p(P))

= T(q(t), p(P)) + V(q(t)) (4.21)

1 i +
= 2-Dp+V()
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where

"1 0 0 0

0 SolIoISoT 0 0
ID(E) 0 (4.22)

0 0 11 0

0 0 0 SllIlST

and

-(t) = -G 4 din401 dro IAI + Bial - Boaol"

The potential is independent of Ao. The new equations of motion are given by

z = JV (4.24)

which is still a twenty-fourth-order system. In the new phase variables, the restriction

given in Equation (4.7) becomes

IA1! > max {la0} + max{Iail} ai 13i (4.25)

which identifies the regions of phase space that are physically possible.

4.1.3 Integrals of Motion and Partial Reduction. Duboshin [24, 25] has shown that

for the general problem of n finite bodies there are ten first integrals, analogous to the ten

first integrals of the classical n-body problem in which bodies are treated as point masses.

There are six associated with conservation of linear momentum, three associated with

conservation of angular momentum about the system center of mass, and one associated

with conservation of energy.

The energy integral is immediately apparent since the Hamiltonian is independent of

time. The integrals related to conservation of linear momentum are also readily apparent

when the system is expressed in Jacobi coordinates. Note that A0 is ignorable, implying
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that the conjugate momentum PA0 = mA0 is a first integral. A second integration yields

t
A0 (t) = -PAO + C (4.26)

where c is a vector of constants of integration representing the coordinates of the center of

mass at epoch. The remaining three integrals are the components of the system angular

momentum in the inertial frame. We omit the proof which is given by Duboshin [24, 25].

In terms of 2 the angular momentum integral vector is

L(2) = Ao×Pxo + B0 Sop 0 ± lpAu + BlS 1p,0 (4.27)

where the superscript x denotes the skew-symmetric matrix form associated with the

cross-product in R3 .

Since the center of mass moves with constant velocity relative to an inertial frame,

we may choose an inertial frame with the system center of mass as its origin, effectively

removing three degrees of freedom. Then we have A0 (t) =_ 0 and PAo (t) 0. Let the phase

variables for the reduced system be = (i4 ((A1,0 1,0o), (pAI, P01, P 0o))" The new

Hamiltonian is

1(4 5) P. Df + V(E1) (4.28)

where

1 0 0O~lo

and f/(i1) = V(t). The equations of motion are

z = JVH(i) (4.30)
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which is an eighteenth-order system. For this reduced system, only four integrals of mo-

tion remain: the energy and the three components of total angular momentum given in

Equation (4.27) (noting that the first term on the right-hand side vanishes).

4.1.4 One Spherically Symmetric Body. Now suppose that body Bo has a mass dis-

tribution which is spherically symmetric. Newton [78] showed that at all points exterior to

such a body the potential function is equal to that of a particle of like mass located at the

center of mass of the body. The potential function is then independent of 00 which implies

there is no net torque acting on body B0 about its center of mass. Since the moments of

inertia are equal (to 10, say), the body angular momentum is HI = Io0o and Euler's equa-

tions of motion show that the angular velocity and the angular momentum are constant in

both the inertial frame Yi and the body frame Tp0. The attitude motion of DO is therefore

decoupled and we may subtract its constant contribution to the energy and consider just

the six degrees of freedom associated with A1 and 01. The new Hamiltonian is

1
( ), = 2 P -DP + V( ) (4.31)

where the coordinate and momentum vectors are - (A,, 01) and j = (P 1 , P01) and

where

LA0  S17ST 1  (4.32)

and

V -Gmo1 dml IA 1 + Biai1 (4.33)

The equations of motion for this reduced system are then

= JV H(i) (4.34)
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which is a twelfth-order system. We may also subtract the constant contribution of the

rotation of 30 to the system angular momentum to get the new integral vector

L(A) = X pA, + B1 S -Tp01 . (4.35)

We have effectively removed the three degrees of freedom associated with the rotation of

30.

4.1.5 Noncanonical Coordinates. The above canonical system has been reduced to

a twelfth-order system from the twenty-fourth-order system we developed at the start of

this chapter. We know four independent first integrals for this reduced system: the energy

integral and three angular momentum integrals. The last reduction was a result of the

spherical symmetry assumption imposed on body 30. This symmetry caused the attitude

dynamics of the spherical body to decouple from the remaining dynamics which form our

reduced system. However, the symmetry of 30 also introduces symmetry into the solutions

of the reduced system. If we consider a transformation which takes the phase variables

to the body frame for 3 1, the result is a reduction to a ninth-order noncanonical system

with two known first integrals. Before presenting this transformation, however, we briefly

review notation and terminology.

Much of the development which follows builds on the work of Wang et al [105] which

treats a rigid body in a central gravitational field. However, for clarity we have modified

their notation and adopted the practice of Marsden and Ratiu [67] where a small greek let-

ter denotes the inertial frame representation of a quantity while the capital letter denotes

the body (or nodal) frame representation. Caution must be exercised in comparing the

results given here to those in [105]. Table 4.1 shows the notation for the particular quan-

tities dealt with here. The variables are subscripted as appropriate to indicate association

with a given rigid body.

Our terminology may also cause some confusion. It must be emphasized that what we

refer to here as the position is relative to 30 and what we refer to as linear momentum is
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Table 4.1 Notation Convention for Phase Variables
Quantity Inertial Body Relation to Canonical Coordinates
Position A A A = A
Linear Momentum 0' E a pN
Angular Momentum 7r 1 [I S-Tpo
Angular Velocity w n 0= I 1 HI

not truly the linear momentum. The true linear momentum for 31i was given earlier as p6,

the momentum conjugate to the inertial position 1. However, we will find it convenient

to overlook this difference since, when we approximate the system as a rigid body in a

central gravitational field, these terms will regain their usual meaning.

Consider the Hamiltonian equations for the canonical system, which may be expressed

as

A1 = -PAr (4.36a)

b1 = S IIlIS TpO1  (4.36b)

1 1 = -VA, 1 V(A I , 0) (4.36c)

k = -Vo 1 V(AI, 01). (4.36d)

We may rewrite these equations in terms of the variables A1 , El, and III, along with the

direction cosine matrix B 1. Equation (4.36b) may be written more generally in terms of

the direction cosine matrix as

B31 = Bnix (4.37)

which is a form of Poisson's equations for the rotational kinematics of a rigid body. The

differential equations for Al and E1 may be derived by differentiating the relations A1 =

BT A1 and El = BTao- and subsequently incorporating Equations (4.36a), (4.36c), and
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(4.37) to give

A , = A 'xI×I + 1El (4.38a)

t 1i ElxIl'II1 - VA1 V(A 1 ) (4.38b)

where the potential

f 1 (439)
V(A) = -Gmo dinl 41 .39

131 IAi +all'

is derived from Equation (4.33). Note that by transforming to body frame variables,

the potential is now independent of 01 (or B1 ). A similar derivation for I, requires

considerably more effort. However, the desired equation is Euler's equation which may be

written as

Hi = IIIIII + AIxVAlV(Al) (4.40)

where the latter term is an expression for the gravitational torque (derived in Appendix B).

The differential equations for A1, El, and H1 turn out to be independent of B1 .

Thus we may treat this decoupled ninth-order subsystem. The equations for this reduced

system may be written in noncanonical Hamiltonian form for the phase variable vector

z = (E 1 ,Al,III) as

= J(z)VH(z) (4.41)

where the Poisson structure matrix is

0 -1 Ei!]

J(z) 0 Ai (4.42)

E12 Aix I
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and the Hamiltonian is

H(z) iH fII1 + 1 El" E + V(A 1 ) (4.43)
211p

which is derived from Equation (4.31).

The Hamiltonian for this system is still the energy integral. In addition, the Pois-

son structure matrix has a one-dimensional null space from which we derive the Casimir

function

1 1
C(z) = ii 1 +AhxE 1 2 (4.44)

2

which is the magnitude of the system angular momentum vector given in Equation (4.35).

We thus have a ninth-order system with two independent first integrals, as claimed. This

is the form of the two-body problem which we seek to approximate in the work which

follows.

4.2 Comparison to a Free Rigid Body in a Central Gravitational Field

For the classical problem of two particles, there exists a one-to-one correspondence with

the problem of a particle moving in a central gravitational field. That is, given a system of

two particles of known mass, m0 and mi, we can express the equations of motion in Jacobi

coordinates and eliminate the three degrees of freedom associated with the motion of the

center of mass. The remaining equations of relative motion are precisely the equations

of motion for a particle with reduced mass p = momj/(mo + ml) moving in a central

gravitational field with strength G(mo + mi).

It seems reasonable to question whether a similar equivalence exists between the prob-

lem of two finite bodies and the problem of a rigid body in a central gravitational field.

From the previous sections, it should be clear that it is necessary to assume one of the

bodies in the two-body problem is spherical to introduce the symmetry present in the

central gravitational field. The resulting Hamiltonian system given in Equation (4.41) has
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a form which is identical to that of a rigid body in a central gravitational field as first

derived by Wang et al [104]. In our notation, this system is given as

i., = J,(z,')VH,(z,) (4.45)

where the phase variable vector is z, = (E,, A,, Hl), the structure matrix is

[0 -1 E

J,(z.) = 1 0 A*× , (4.46)

-x AX Ii x

and the Hamiltonian is

1 lT

H*(z,) = 2II 1*1I* + E E*+ V (A*). (4.47)

The potential for this problem is

= dm 1 (4.48)V,(,)= -, 4 n IA* + a*1

where G, is the gravitational field strength. This Hamiltonian system is obviously of

the same form as the Hamiltonian system for the two-body problem. The search for an

equivalence becomes a question of existence. That is, given the physical description of the

bodies in the two-body problem, is there a finite rigid body and choice of field strength

for which the equations of motion in a central gravitational field are identical when we set

A* = Al = A, E, = E, = E and H, = I1 = II? For such an equivalence to exist, the

requirements may be specified in terms of the mass, the inertia tensor, and the potential:

m, = (4.49a)

L = Ii (4.49b)

V(A) = V(A) V A C R3. (4.49c)
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Let 23i and the proposed equivalent body 3, be described by the density distributions

pi (a) and p, (a) defined over a sphere 8 of radius R centered on the center of mass. Choose

R sufficiently large so that the sphere encloses both bodies. Then we require

f p,(a)da =m"m j p l (a)da (4.50a)

J axaxp,(a)da = I aXaXpl(a)da (4.50b)

G j, fA 1 p*(a)da =[G o f a p i (a)da (4.50c)

or

po pi(a)1 da = 0 (4.51a)

Jaxa' [p,(a) - p (a)] da = 0 (4.51b)

[G~p,(a) - Gmopi(a)] I-da = 0 (4.51c)
A +a al

in order for an equivalence to exist.

We begin by showing that these requirements cannot be satisfied for all A. It is well

known that the potential for a rigid body satisfies Laplace's equation

AV=V.VV=O (4.52)

at all points outside the rigid body. This result was given in more general form by Poisson5

as

AV = -47p (4.53)

which is valid at all points in space. This equation states that there is a one-to-one

correspondence between the mass distribution and the potential function and implies that

5See, e.g., MacMillan [60:§69].
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Equation (4.49c) can only be satisfied if

p.,(a) = G oPil(a). (4.54)G,

That is, the proposed equivalent body is the actual body with the density scaled by aG.

Substituting this into Equation (4.50a), we find

G, = G(mo + ml) (4.55)

while substitution into Equation (4.50b) leads to

G, = Gmo. (4.56)

Obviously, these results are incompatible and therefore no equivalent body exists.

However, the above analysis is overly restrictive since we have previously limited con-

sideration to only those regions of phase space where the bodies are not in contact. A

looser definition of equivalence was assumed when we equated the spherical primary with

a mass point, since their potentials are only identical at points outside the spherical body.

Similarly, here we are only interested in equivalence for values of A sufficiently large so that

the body does not contact the primary. If the primary has radius R0 then the restriction

in Equation (4.25) becomes

JAI > Ro + max {Iail} al e B 1. (4.57)

This again restricts us to the physically realizable portions of phase space we are interested

in. We refer to two systems which are equivalent within this region as pseudo-equivalent.

The possibility of pseudo-equivalence still remains. For instance, the equivalence re-

quirements can easily be satisfied when body 3 1 has a spherically symmetric mass distri-

bution. We may assume a spherically symmetric pseudo-equivalent body, in which case
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requirement (4.51c) reduces to

Gm, - Gmom 1 = 0. (4.58)

In light of requirement (4.50a), this is satisfied when the gravitational field strength is

G, = G (m 0 + mi). The volume integral in the mass requirement (4.50a) reduces to a line

integral to give the simpler condition

47 1 r2p,(r)dr = p. (4.59)

Likewise, the volume integral in the inertia requirement (4.50b) reduces to a line integral.

Furthermore, this matrix equation reduces to the scalar equation

-r .r4p rdr = A1 (4.60)

where I, = Ill. These two requirements can always be satisfied if we assume the pseudo-

equivalent body is a homogeneous sphere of radius ro and density Po. Conditions (4.59)

and (4.60) may be solved for r0 and P0 to give

r 2 51 (4.61a)
5

P 3p (4.61b)
5 0 r11 "

There is no reason to expect that this pseudo-equivalent body is unique. The existence of

a pseudo-equivalent body for an arbitrary rigid body remains an open question.

If we consider the limiting case as the mass of 3 1 becomes very small relative to the

mass of 30, we find

lim = m- lim 7_ 1  (4.62)
mi/mo-O mi/mo-40 mO ± ml ml/mo-O 1 + mi/mo
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and the equivalent body J3 is just the original body 311. The gravitational field strength

is G =Gmo. This limiting case justifies the use of the central gravitational field approx-

imation for problems where ml is many orders of magnitude smaller than m0 (as in the

case of the artificial satellite problem). This turns out to be the first in a hierarchy of

approximations we can use in order to simplify the two-body problem. This hierarchy is

addressed in the next chapter.
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V. Approximation of the Two-Body Problem

In this chapter, we further examine approaches to approximation of the two-body

problem, establishing a three-dimensional hierarchy of related Hamiltonian systems. All

approximations considered here consist of a rigid body moving in a central gravitational

field. They differ in the degree of simplifications introduced. The first dimension of the

hierarchy is associated with increasing constraints on the trajectory of the satellite; the

second dimension is increasing symmetry of the satellite; and the third dimension is de-

creasing order of approximation of the potential. Primary emphasis is placed on deriving

the Hamiltonian systems for the three problems comprising the first dimension. The sim-

plifications introduced by progression along the other two dimensions are then discussed.

Finally, we present the entire hierarchy, highlighting those problems which are investigated

in this dissertation.

The presentation given here finds its origin in the work of Beletskii [15] whose research

examined many of the systems in the hierarchy using classical methods. The relationships

between the various systems in the hierarchy can be inferred from the discussion in [15], but

here we formally identify those relationships. Of the three problems for which we derive

the noncanonical Hamiltonian system, one of the derivations is due to Wang et al [104],

one is new but virtually identical to the system treated by Maddocks [62], and the third

is an entirely new derivation. The treatment of potential approximations is based on the

treatment by Wang et al [104].

5.1 Trajectory Constraints

In the previous chapter, we used a process of reduction (along with an assumption of

spherical symmetry of one body) to transform the Hamiltonian system under consideration

from a twenty-fourth-order system with ten known first integrals to a ninth-order system

with two known first integrals. We also showed that this system can be approximated as

a rigid body moving in a central gravitational field when the mass of the second body (or
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arbitrary ip principal plane:: p- principal axis oigi

Figure 5.1 Constraints on Location of Center of Mass in Body Frame

satellite) is very small compared to the mass of the spherical body (or primary). We refer

to the approximate system as the free rigid-body system.

The classical approach to treating the relative equilibria of a satellite moving about a

large primary results in a different approximation. In this approach, the series expansions

of the force and torque are each truncated after the lead term. The force which results is

the same as the force for a particle of equal mass located at the center of mass. The center

of mass therefore follows an (orthogonal) Keplerian orbit. If we constrain the center of

mass to follow this orbit and consider the resulting attitude motion of the rigid body due

to the torques derived from the true potential, we have what we refer to as the Keplerian

system. Since we are interested in relative equilibria similar to those of the two-body and

free rigid-body systems, we only consider circular orbits.

Finally, if we constrain a point in the body to remain fixed in inertial space, we have

a system in which the centripetal acceleration effects are removed and only the central

gravitational field effects remain. We refer to this as the fixed-point system. This system

is a generalization of the classical heavy-top problem which treats motion about a fixed

point in a uniform gravitational field.

Beletskii [15:11] first identified this categorization for the problems of a rigid body in

a central gravitational field. Note that in the free rigid-body and Keplerian systems we

assume the point C is the center of mass, while no such assumption is made for the fixed-

point system. In fact we could expand this dimension of the hierarchy to two dimensions by

treating a series of possible constraints on the position of the center of mass relative to the

origin of the body frame, C, as shown in Figure 5.1. Maddocks [62] considered the same

series of constraints in a noncanonical treatment of the heavy-top problem. However, by
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C

Figure 5.2 Configuration of Free Rigid-Body System

restricting consideration to only those problems where C is either fixed or is the center of

mass, the relationship between angular momentum and torque about C takes the simpler

form

jt = ge (5.1)

in the inertial frame. For the free rigid-body system, the choice of the point C as the

center of mass is simply a matter of convenience. However, for the constrained systems,

the choice of C changes the dynamics.

5.1.1 Free Rigid-Body System. For an unconstrained rigid body in a central gravita-

tional field, the configuration is described by the inertial position of the point C at the

origin of the body frame and the orientation of the body frame relative to the inertial

frame. We assume the frame is centroidal. The system has six degrees of freedom - three

associated with translation of the body and three associated with rotation. As before, let A

denote the position of the center of mass and 0 denote the Euler angles. This configuration

is shown in Figure 5.2.

Following a development similar to that presented in Chapter 4 for the two-body prob-

lem, a twelfth-order canonical system can be derived for which the total energy and the

angular momentum about the center of attraction provide four first integrals. We instead

proceed directly to the noncanonical system from Newton's Second Law and Equation (5.1).

5-3



In the inertial frame we have

6 f (5.2a)

1 o (5.2b)
m

-g (5.2c)

where f and g, are the inertial force and torque about the center of mass. In the body

frame these equations become

=VxI-'II + F (5.3a)
1

S= AXI-Ii + -E (5.3b)
m

f =IXI-lI + G,. (5.3c)

The expressions for the force, F, and torque, G,, in the body frame are derived in Ap-

pendix B as

F(A) = -VAV(A) (B.21)

Go(A) = AxVAV(A) (B.22)

where the potential is

V(A) =- G din. (B.11)

The system of equations in (5.3a) may be written as the noncanonical Hamiltonian system

= 1 0 A x  VAV(A) (5.4)

E x Ax I- I-1I
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Figure 5.3 Configuration of Keplerian System

with Hamiltonian

H(z) = -I I-II + • - + V(A). (5.5)
2 2m

This ninth-order system was first derived by Wang, et al [104]. The two first integrals for

this reduced system are the Hamiltonian and the total angular momentum,

S(Z) I + Ax 12  (5.6)
2

The latter arises as a Casimir function of the noncanonical system.

5.1.2 Keplerian System. In this problem we consider the motion of a rigid body about

its center of mass, which is constrained to follow a circular Keplerian orbit about the center

of attraction as shown in Figure 5.3. The frequency of a Keplerian orbit with radius JAI is

C = G *(5.7)

In the canonical treatment, the nature of the constraint leads to a derivation of the equa-

tions in an orbiting frame. The problem has three degrees of freedom associated with

rotation about the center of mass and hence a sixth-order system results. The Hamilto-

nian for the canonical system is not the total energy, but it is an integral of motion. The

canonical system has no other known integrals of motion for an arbitrary rigid body.

In deriving the noncanonical system, we will also be interested in motion relative to

the orbital frame. Let a, 3, and -y be the body-frame representations of the orbital
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frame unit vectors as shown in Figure 5.3. If B is the direction cosine matrix for the

transformation from body to orbital frame, then BT = [a /3 -,]. We then start by

transforming Equation (5.1) to the body frame to get Euler's equation for the rotation of

the body:

rlII-1Ii + Gc = IlXI-1H + YxVyV(-Y) (5.8)

where we have used the expression for the torque given in Equation (B.23). The relative

angular velocity and angular momentum may be defined as

f2r = -Wc,3 (5.9a)

Hr = H -WcI/3. (5.9b)

Differentiation of Equation (5.9b) leads to

(r = HrXl I,+ WdHrXf3 + Wc(I3)Xl ]I+ W2(I/3)x/3 _ WI + yXVyV(_Y). (5.10)

In Appendix C, we show that 3 and I satisfy the identity

/3xI + 1,3 x - {[tr () 1 - I]/3}x. (C.6)

We also have the rotational kinematic relations

/3 = /3xI-IIr (5.11a)

1 = ,yXI-1Ir. (5.11b)

Using Equations (C.6) and (5.11a), Equation (5.10) reduces to

ftr {Hr - W, [tr (I) 1 - 21]/)3}xi-1wr C + () (5.12)
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Equations (5.11) and (5.12) form the noncanonical system

(flr)=[{1r-Wc [tr (I)1,yj× -2]3}x /0 o×|JI 00 (\T(.})I1~

OX W) ~ (~ j(5.13)

with Hamiltonian

H(z) =2, I I-I - 1/ W. J3 + V(y). (5.14)2 2

This is the same Hamiltonian found in the canonical system and it is a first integral. The

nullspace of the structure matrix is three-dimensional:

N[J(z)] = span J , , . (5.15)

From the spanning vectors, we identify three independent Casimir functions:

1
Cl(Z) = 13.3 (5.16a)

2

C2 (z) = 1 "y (5.16b)

c3(Z) =037 (5.16c)

In this problem, all three Casimir functions are trivial since 3 and -Y are rows of the

direction cosine matrix B so that

/3./3=1 -y0- 1 /3- 0. (5.17)

We thus have a ninth-order system with four known first integrals.

5.1.3 Fixed-Point System. This system combines the simpler aspects of the two pre-

vious systems. Motion is described relative to the inertial frame as in the free rigid-body
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Figure 5.4 Configuration for Fixed-Point System

system, but there are only three degrees of freedom associated with rotation about the

constrained point C as in the Keplerian system. The configuration is shown in Figure 5.4.

In this problem, we do not assume C is the center of mass. However, we do assume C is

fixed in inertial space so that the body angular momentum and torque are still related by

* = g (5.18)

in the inertial frame. In the body frame this becomes

[I = ixI1rI + G, = IIXI-1I + ,xVyV(-Y) (5.19)

where we have again used Equation (B.23) for the torque. We also need the kinematic

equation for the radial unit vector, -y,

= 7XI-1I. (5.20)

These two equations form a noncanonical Hamiltonian system:

( )=[ 70×](I-II~vV(,)//(5.21)

with Hamiltonian

H(z) = -. I-'I + V(-y). (5.22)
2
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The structure matrix has a two-dimensional null space:

N [J (z)] z=span{() () }(.3
resulting in the Casimir functions

C1 (z) = II. (5.24a)

C2 (z) = Iy • -.Y (5.24b)

The structure of this Hamiltonian system is identical to the heavy-top system given by

Maddocks [62]. The only difference lies in the form of the potential.

5.2 Potential Approximations

In Appendix B, we present the series expansion of the gravitational potential and define

the nth-order approximation as the potential which results when the expansion is truncated

at 0 (6n). In the Hamiltonian systems presented above, we may directly substitute the nth-

order potential approximation for the exact potential. The structure of the Hamiltonian

system remains unchanged: the equations of motion and the Casimir functions given are

equally valid for any potential. However, each choice of potential approximation results

in a different Hamiltonian system. We refer to the system which results from substituting

the nth-order potential approximation as the nth-order model of the Hamiltonian system.

5.3 Satellite Symmetry

The above derivations assume the satellite is an arbitrary rigid body. If the body

has continuous rotational symmetry, further simplifications can be made. Continuous

rotational symmetry implies either the mass distribution of the body is axisymmetric or it

is spherically symmetric. If it is spherically symmetric, the attitude motion is a constant

spin since the components of the angular momentum in the body frame are all integrals of

motion. The translation of the satellite decouples from the attitude dynamics and we may
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treat it as a point mass. If the body is axisymmetric, we have just one additional integral

of motion - angular momentum about the symmetry axis. To treat this problem, the

equations of motion are transformed from the body frame to a frame in which the body

spins at a constant rate about the symmetry axis (along which we take one direction to be

the third basis vector of the new frame). We refer to this new frame as the nodal frame

since it turns out to be a generalization of the conventional nodal frame which arises as an

intermediate frame when the transformation from orbital to body frame is parameterized

by the classical Euler angles. The noncanonical Hamiltonian system in this new frame

turns out to be identical to the Hamiltonian system for an arbitrary rigid body with one

exception - the Hamiltonian has an additional term consisting of the new first integral

multiplied by the spin rate of the nodal frame relative to the body frame. This result will

be demonstrated for each axisymmetric system we treat.

5.4 The Hierarchy of Approximations

The hierarchy of Hamiltonian systems for a rigid body in a central gravitational field is

shown in Figure 5.5. This is a 3 x 3 x oc array of problems. The three layers associated with

different levels of satellite symmetry are stacked in a column. The symmetry is shown in

the upper left corner of each 3 x oc matrix. Within each matrix, the trajectory constraint

increases as we move down and the order of the potential approximation decreases as we

move to the right. Each element has two pairs of numbers. The pair on the left indicates the

dimension and the number of known first integrals for the standard canonical system. The

pair on the right indicates the dimension and number of first integrals for the noncanonical

system. An asterisk in place of the first integral count indicates the system is known to

be integrable. A bidirectional arrow connecting two matrix elements indicates the two

systems are equivalent.

Before focusing on the specific problems to be addressed in this dissertation, we high-

light a few points of interest. First, it is noteworthy that while the conversion from the

canonical system to the noncanonical system for the free rigid-body system involves a
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decreasing order of potential approximation

arbitrary
exact nth 2nd 1st 0th

increasing l
trajectory Free __ Free Free Free Free

constraint (12,4) (9,2) (12,4)1 (9,2) (12,4) 9,2) (12, *) (9, *) (12, *)(9,,*

increasing Keplerian - Keplerian Keplerian Keplerian Keplerian

symmetry
(6,1) (9,4) (6,1) (9,4) (6,1) (9,4) (6,*) (9,*) (6*) (9,*)

Fixed-Point ___ Fixed-Point Fixed-Point Fixed-Point Fixed-Point

(6,2) (6,3) (6,2)T(6,3) (6,2)(6,3) (6,2) (6,3) (6,*) (6,*)

decreasing order of potential approximation

exact nth 2nd 1st Oth

increasing I
trajectory Free Free Free Free Free

constraint (12,5)(9,3) (12,5)1(9,3) (12,5) (9,3) (12, ) (9,,) (12, ) (9,,)

Keplerian Keplerian Keplerian eplerian Keplerian

(6,2) (9,5) (6,2) (9,5) (6,2) (9,5) (6,*) (9,*) (6,*) (9,*)

Fixed-Point __ Fixed-Point __ Fixed-Point Fixed-Point Fixed-Point

(6,*) (6,*) (6,*)T(6,*) (6,*) (6,*) (6,*) (6,*) (6,*) (6,*)

decreasing order of potential approximation

spherical
exact nth 2nd 1st Oth

increasing

trajectory Free __ Free Free Free Free

constraint (12, )(* (12, *) (9, *)(12, *) (9, *) (12, *) (9, *) (12, *) (9, *

Keplerian Keplerian Keplerian Keplerian Keplerian

(6, *) (9,) (6, *) (9*) (6,*) (9, (6,*) (9,*) (6,*) (9, *)

Fixed-Point- -- Fixed-Point __ Fixed-Point Fixed-Point Fixed-Point

(6,6*) (6,) (6,*)(6,* (6, *) *) ( ,*) (6,*)

Figure 5.5 Hierarchy of Problems
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reduction, the fixed-point problem does not change dimension and the Keplerian system

actually increases dimension. It is also worthwhile to note the interplay between dimen-

sions of the hierarchy. For instance, the order of the potential approximation determines

how stringent the symmetry requirement is for the satellite. In particular, a second-order

potential approximation includes only moment integrals up to second order. Therefore, the

satellite is considered symmetric if it is dynamically symmetric, i.e., it has equal moments

of inertia. Also, in the free and Keplerian problems where we assume the origin of the

body frame is the center of mass, the zeroth- and first-order potential approximations are

identical (as shown in Appendix B).

Although we left the relationship between the center of mass and the origin of the

body frame unspecified for the fixed-point problem, the symmetry requirements are with

respect to the axes of the body frame. Hence, for the axisymmetric satellite, we may

assume that the center of mass lies on the principal axis which is the axis of symmetry.

For the spherically symmetric satellite, the origin must be the center of mass.

Beletskii [15] apparently recognized the significance of using different potential approxi-

mations, and discussion of the use of differing order approximations has appeared occasion-

ally in the literature (for instance, Meirovitch [69] and Barkin [9]). Wang et al [104] were

the first to address the topic of consistent approximations. They noted that the classical

approximation of a rigid body in a central gravitational field (which is our second-order

model of the Keplerian system) does not "[respect] the symmetries and conservation laws

inherent in the problem". This is apparent in the derivations above. The Keplerian sys-

tem conserves neither energy nor angular momentum whereas these quantities are both

conserved in the two-body and free rigid-body systems.

This suggests that moving up and to the left in each matrix gives a better approx-

imation of the two-body system. In the bottom matrix where the body is spherically

symmetric, all systems are equivalent since in each case the body experiences no torque

and spins at a constant rate. We therefore do not consider any problems from this ma-

trix. We also omit further consideration of the fixed-point problem. Appendix 1 of [15]
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provides a fairly complete treatment of this problem via classical means. Furthermore,

portions of the presentation in the noncanonical treatment of the heavy-top problem by

Maddocks [62] are also applicable (or can be easily extended) since the two problems have

identical Hamiltonian structure.

Of the remaining systems in each of the upper two matrices, the three problems we

investigate are highlighted by a double border. Beginning with the second-order model

of the Keplerian system, we demonstrate that the classical results can be derived rather

easily from the noncanonical formulation. We then consider the second order model of

the free rigid-body system. This problem introduces orbital-attitude coupling neglected

in the classical approximation. Finally, we address the exact model of the free rigid-body

system. The last two problems were treated in part for an arbitrary body by Wang et

al [104, 105]. We enhance their results for the arbitrary satellite and also consider the

axisymmetric satellite.
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VI. Keplerian System: Second-Order Approximation

In the following, we examine the relative equilibria of a rigid body which moves about

a point (fixed in the body) which is constrained to follow a Keplerian orbit in a central

gravitational field. By a Keplerian orbit, we mean the orbit of a particle with mass equal

to that of the rigid body. For our purposes, it will suffice to consider the special case where

the orbit is circular and the point following the orbit is the center of mass of the rigid body.

We use the second-order approximation of the potential.

Classically this problem arises as an approximation to the motion of a satellite about

a primary when the size of the satellite is small enough in relation to the radius of the

orbit that the influence of attitude motion on the orbit may be neglected. The orbit is

thus orthogonal with Keplerian frequency. We are concerned with motion relative to an

orbiting frame as shown in Figure 5.3. We treat two cases: an arbitrary body and an

axisymmetric body. The second-order potential approximation contains inertia integrals

only up to second order so that the symmetry is in the dynamic sense.

The noncanonical formulation of the Keplerian system is a new development. However,

the results regarding relative equilibria for the second-order model are well known. What

is of interest in this chapter is the means by which we achieve those results. These same

methods will be applied in the following chapters to the free rigid-body system for which

considerably less analysis has been done previously.

6.1 Relative Equilibria for an Arbitrary Rigid Body

6.1.1 Nondimensional Hamiltonian System. In Appendix B, the second-order ap-

proximation of the potential is given as

G ,m G , -y " x 1 G , tr (I) 3 G ,,7 • I -y( B 36
V2( - IA1 + IAl2  2 IA13  +2 IAl 3  (B.36)

The first and third terms on the right-hand side may be neglected since they are constant

for this problem. The second term also disappears since C is the center of mass and X = 0.
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Introducing the Keplerian frequency w, given in Equation (5.7), the remaining expression

for the potential may be written as

V2 = 3 I'Y. (6.1)2c

This potential approximation may be substituted into the Hamiltonian equations of motion

for the Keplerian system given in Equation (5.13) to obtain

= [{Y 0 [ 12] (6.2)

_t× 0 0 \ 3 2'7

The overbar denotes dimensional variables. To nondimensionalize the system, we choose

the mass, length, and time scales

M =mjj dm- I t = zi. (6.3)

The equations of motion then become

r [r-(1-2i)13]x /3x 7x i-1ii

lOx 0 -13 (6.4)

"7 x0 0 MI7

where 1r (n-1- 2t) ft and I = (M-11- 2 ) I. This is the nondimensional second-order

model of the Keplerian system. The Casimir functions for this system were given in

Chapter 5 as

1
Ci(z) = 1/3. (5.16a)

2
C2(Z) = 1 (5.16b)

3 (z) = )3 -y (5.16c)
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and are already in dimensionless form.

6.1.2 Relative Equilibrium Conditions. We are interested in critical points of the

Hamiltonian system (6.4) which may be characterized as described in Chapter 3 by the

first-variation condition

VF(ze) = 0 (3.9)

where for this system

F(z) = H(z) - AICl(z) - /b2C2(z) - / 3 C3 (z). (6.6)

The resulting relative equilibrium conditions are

I- 0r = o (6.7a)

-We - 1l0 - /137, = 0 (6.7b)

3 1-f, - 02Ye - P3/3e = 0 (6.7c)

along with the Casimir Conditions (5.16). Equation (6.7a) gives re = re ---= 0. Phys-

ically, this corresponds to the situation where the body is stationary with respect to the

orbital frame. Taking the dot product of Ye with Equation (6.7b) gives P3 = -7, " 10,

while the dot product of )3e with Equation (6.7c) gives /13 = 3)3, - I-fe. Symmetry of the

inertia matrix implies these two requirements can only be satisfied if /3 is identically zero.

Then the relative equilibrium conditions on f,3 e and -y, become

I)e = -/P10, (6.8a)

I-Ye = P12 (6.8b)
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We find that 83e and -'e must be eigenvectors of the inertia matrix. Thus, the principal

relative equilibria are solutions for this system, as first shown by Lagrange [52], and are in

fact the only solutions - a result first demonstrated by Likins and Roberson [55].'

Without loss of generality, we choose the principal frame so that the relative equilibrium

of interest is given as

Ire= /3e 12 "7e=13 (6.9a)

Al = -12 P2 = 313 P3 = 0. (6.9b)

Thus, at relative equilibrium the body frame and orbital frame are aligned.

6.1.3 Spectral Stability. Linearization of the noncanonical Hamiltonian system about

the relative equilibrium gives 6z = A(ze)6Z where 6z = z - z, and

A(z) J(z)V 2F(z)

[11r -(1 -21)3]x )3x ,x [1-, 1
0 X 0 0 -IA - Pl1  -/131

,y X 0 0l - -/131 31 -/121J

[r -(1- 2I)3]xI-1 -Ox (1 +,"11)- P3"7×  -P3,3' + 7× (3I- P21)1

3xI-1 0 0

(6.10)

'Our proof is more direct. Likins and Roberson began with the condition 3-.×I-(e - )× /eXI3 = 0
which is derived from the fr equation with II, set equal to zero. We refer to this as the Likins-Roberson
Condition for relative equilibrium. We will find that a similar condition arises for each system we consider.
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Inserting the relative equilibrium conditions, the linear system matrix becomes

A(z,) =

0 0 -(1 - 212)/13 0 0 12 - 13 0 -3(12 -13) 0

0 0 0 0 0 0 3(/1 -43) 0 0

(1-212)/I1 0 0 11 - 12 0 0 0 0 0

0 0 1/13 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1/1, 0 0 0 0 0 0 0 0

0 -1/12 0 0 0 0 0 0 0

1/1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

(6.11)

We find that the system decouples into four subsystems: a pitch system associated with

(H1 2, 1y), a roll-yaw system associated with (ir 1, Hr 1 03, -y2), and two trivial systems

associated with /32 and y3. The characteristic polynomial takes the form

P(s) -= 8 3 
(S2 + Ao) (.34 + B 2 8 2 + Bo) . (6.12)

The three zero roots are associated with the three Casimir functions as discussed in Chap-

ter 3. The coefficients of the polynomial are

Ao 3k 2  B 2 = 1 + 3k, + kjk 3  Bo = 4klk 3  (6.13)

where we introduce the Smelt inertia parameters

k 1 = 2 -13 k2 - k3 1211 (6.14)
1 2 13
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12>I3>Il

0.5 13>I2>Il

12>Il>I3

13>Il>I2

-0.5 II>I2>I3

Ii>I3>I2

-1 -0.5 0 0.5 1
k1

Figure 6.1 Regions of the Smelt Parameter Plane

Only two of these parameters are independent so that we may express k2 as a function of

k, and k 3 :

kl- k3
k2 - k 3  (6.15)1 - klk3"

In addition, these parameters satisfy the constraints ki I < 1. The six regions of the k1-k 3

plane formed by the k, = k 3 , k, = 0, and k3 = 0 lines each correspond to different choices

of the major and minor axis directions as shown in Figure 6.1. The spectral stability

requirements from Table 3.1 are

Ao > 0 B0 > 0 B2 0 B2 - 4Bo 0 (6.16)

which, upon eliminating strictly positive factors, reduces to

ki - k 3 > 0 (6.17a)

1 + 3kl + k~k3 > 0 (6.17b)

klk 3 > 0 (6.17c)

(1 + 3k, + klk 3)2 
- 16kik 3 > 0. (6.17d)
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0.5

M20

-0.5 DeBra-Delp

-1 -0.5 0 0.5 1
k1

Figure 6.2 Stability Diagram for Tri-Inertial Keplerian System (medium gray nonlin-

early and spectrally stable, light gray = spectrally stable, white = unstable)

Condition (6.17a) implies that in the orbital plane the smaller principal inertia axis must

be directed along the radial while Condition (6.17c) implies that the orbit normal cannot

be the intermediate principal axis. The regions satisfying Conditions (6.17) are shown

in the Smelt parameter plane in Figure 6.2. The dark gray region in the first quadrant

corresponds to the stable relative equilibria identified by Lagrange [52]. The light gray

region in the third quadrant was identified by DeBra and Delp [23]. The DeBra-Delp

relative equilibria represent configurations for which the stabilizing effect of the rotation

due to the orbital motion overcomes the destabilizing effect of the inertia ratios. The

stability of these equilibria are an artifact of the rigid-body assumption. In the presence

of energy dissipation, they are unstable [40].

It is important to recognize that, for a given tri-inertial rigid body, the twenty-four

principal relative equilibria are grouped in sets of four 2 which lie at a single point in each

of the six regions shown in Figure 6.1. Therefore, four relative equilibria must lie in the

Lagrange region and an additional four may lie in the DeBra-Delp region. Thus, a given

tri-inertial configuration has either four or eight spectrally stable relative equilibria.

2For a given principal relative equilibrium, three more with identical moments of inertia are found by
rotating the body 180 degrees about one of the principal axes.
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6.1.4 Nonlinear Stability. In this first problem, we will consider all four of the non-

linear stability analysis methods of Chapter 3 for comparison. We find that two of the

methods fail for this system while the other two successfully demonstrate stability of the

Lagrange region. No conclusion can be drawn by any of these methods regarding the

DeBra-Delp region. Portions of the DeBra-Delp region have been shown to be nonlinearly

stable by Modi and Marandi [65] through application of an extension of KAM theory to the

normal form of Hamiltonian systems. Their method is beyond the scope of this dissertation

and will not be explored here.

Direct Consideration of the Variational Lagrangian. In the process of computing

the linear system matrix, we also computed the Hessian of the variational Lagrangian.

From Equation (6.10), we have

11 0 0

V 2 F(z) [0 -I - pli -/P31 1 (6.18)

0 -P31 31 -/121J

At relative equilibrium, this becomes

1/1, 0 0 0 0 0 0 0 0

0 1/12 0 0 0 0 0 0 0

0 0 1/13 0 0 0 0 0 0

0 0 0 12 - 11 0 0 0 0 0

V2F(z,) 0 0 0 0 0 0 0 0 0 (6.19)

0 0 0 0 0 12-13 0 0 0

0 0 0 0 0 0 3(11 -13) 0 0

0 0 0 0 0 0 0 3(12 -13) 0

0 0 0 0 0 0 0 0 0

which is clearly not positive- or negative-definite. Thus, this method fails for this problem.
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Projection Method. Although the previous results for the variational Lagrangian

were inconclusive, Equation (6.19) is positive-semidefinite in the Lagrange region and sug-

gestive that H(ze) may be a constrained minimum. Following the procedure outlined

in Section 3.3.2, we construct a matrix of basis vectors for N(J(ze)) = N (AT(z,)) as

K(z,) = [VCi(ze) VC 2 (Ze) VC 3 (Ze)I and compute the projection onto the tangent

space TMIz. as

P(z,) 1 - K(ze) (KT(ze)K(ze)) KT(z)

10000 0 0 0 0

01000 0 0 0 0

00 1 00 0 0 0 0

0 0 0 1 0 0 0 0 0 (6.20)

- 0000 0 0 0 0 0

0 0 0 0 0 1/2 0 -1/2 0

00000 0 1 0 0

0 0 0 0 0 -1/2 0 1/2 0

00000 0 0 0 0

From this we may compute the projected Hessian

P(Ze)V 2 F(ze)P(ze)

1/1 0 0 0 0 0 0 0 0

0 1/12 0 0 0 0 0 0 0

0 0 1/13 0 0 0 0 0 0

0 0 0 12 - 11 0 0 0 0 0

0 0 0 0 0 0 0 0 0 (6.21)

0 0 0 0 0 12-13 0 -(V2-13) 0

0 0 0 0 0 0 3(11 -13) 0 0

0 0 0 0 0 -(12-13) 0 12-13 0

0 0 0 0 0 0 0 0 0
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for which we find that the eigenvalues are

{0, 0, 0, 1/11, 1/12, 1/13, 12 - I1, 2(12 3), 3(11- 3).

The three zero eigenvalues are associated with the nullspace and the remaining five are

associated with the tangent space of the constraint manifold. The conditions for positive-

definiteness on the tangent space are precisely the conditions for the Lagrange region

(12 > 1 > 13). That is, in this region the Hamiltonian is a constrained minimum and we

may conclude nonlinear stability.

Energy-Casimir Method. The energy-Casimir method appears to offer a significant

advantage in terms of flexibility of the choice of Liapunov function. Consider the function

H,(z) = ) (H(z), C, (z), C 2 (z), C3(z)) (6.22)

where 4 ,(xo, xIX2, x3) is a smooth scalar function. The first variation evaluated at the

relative equilibrium gives the condition

VHp(z,) = DxoVH(z,) + 4xVCl(z,) + 4x2 VC2 (z,) + 4)x3VC 3(ze) = 0 (6.23)

where 4)x denotes the partial derivative of 'D (xO, x1 , X2, X3) with respect to the ith argu-

ment, evaluated at the relative equilibrium. This reduces to give the conditions

Ix, = I2 4Dx0 D2 = -3/34x0 4X3 = 0. (6.24)
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Computing the second variation and incorporating conditions (6.24), we find

V 2H,,(Ze) =

0 -0 0 0 0
12

o o -0 0 013

0 0 0 (12 -I1)Ixo 0

0 0 0 0 OI,xl - 212(xx1 ± 12,)o,xo

0 0 0 0 I Xl,X3 - I2(,)Xox3

0 0 0 0 0

0 0 0 0 x,X3 - I2XO,X3

0 0 0 0 (XD1,X2 - '2(,)-.,2 + 3 1 3(Ixo,xl - I2Ixo,xo

0 0 0

0 0 0

0 0 0

0 0 0

(Dxl,X3 - I2(XO,x3 0 ZX1 ,X3 - I2(XO,X3 ...

x3,X3 + (12 - I3)(Dxo 0 OX3,X3

0 3(I1 - I3)IxO 0

4)x3,X3 0 zX3,X3 + 3(12 - 13)0.o

3x2,x3 + 3 13DXO,x3 0 4)x2,X3 + 3 1
34)xo,x3

0

0

0

0

... aIxl,X2- 12''XO,X2 + 3 1 3 xo,xl - I20zo,xo (6.25)

X2,5X3 + 3 1
30Xo,X3

0

OZ2,X3 + 3 1
30XO,X3

4Z2,X2 + 6 1 3(XO,X2 + 91 3 xo,o
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where is the second partial derivative of 4 (Xo,xI,x 2 ,x 3 ) with respect to the ith

and jth arguments, evaluated at the relative equilibrium. For positive definiteness, the

first three diagonal elements require Ixo to be positive. Then consideration of the fourth

and seventh diagonal elements assures that our results are limited to the Lagrange region.

Without loss of generality, we may assume the Liapunov function is of the restricted class

of functions He(z) = H(z) + Ei, qi(Ci(z)) described in Section 3.3.2. Thus, 4)xo = 1,

-PX0,Xo = 0, and 4zi,.j = 0 for i = j. The conditions for V2Hj,(ze) to be positive definite

reduce to

12 > I1 > 13 (6.26a)
-3(/_/)(.25

Dxr,l > 0 4)X2,X > 0 (DX3,Z3 > - 13). (6.26b)

Let

D(XO, XI iX2, X3) = xo + I2 X1 + 313(1 - X2). (6.27)

This function satisfies conditions (6.24) and (6.26). With the given function,

li ili 1  3 1___ 2  ( 1 2

H4(z) = 2 Hr - 2 010+ 2"IY +12 1233) +313 (1 3.2 (6.28)

is a Liapunov function and the nonlinear stability of the Lagrange region is proven. The

above Liapunov function should be contrasted with the classical Liapunov function used

to prove the nonlinear stability of the Lagrange region, 3 which may be expressed in our

variables as

1 3
v(z) = H(z) - H(z,) = 2r .I-1Hr -1 (I -21)0 + 3- (I - 131)'Y. (6.29)

3 See, e.g., Hughes [40:297].
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This function is precisely the variational Lagrangian which we have previously shown to

be only positive semi-definite in our choice of variables, which are dependent due to the

Casimir constraints. In the classical treatment, the constraints are incorporated directly

to eliminate dependent variables. This is effectively what we did above in the projection

method.

Lagrange Multiplier Method. In this method, we attempt to determine a solution

for the relative equilibria as a function of the Lagrange multipliers and then look at how

this solution is embedded in the surface F(ze(L)). Interestingly, while this method works

very well for the closely related heavy top problem as considered by Maddocks [62], it

breaks down completely for the current problem. To see why this happens, consider the

relative equilibrium condition which, since F(z(pa), p) is quadratic in the phase variables,

may be written as

VF(/)ze 0. (6.30)

Unlike the heavy top problem, this system has no valid solutions when V 2 F(p) is nonsin-

gular since that requires 8 = -y = 0, violating the Casimir constraints. Furthermore, the

singularity condition (I - pi)(3Ih - /12) + I2 = 0 must be satisfied for two of the three

possible values of i in order for the Casimir constraints to be satisfied. This implies that

for a tri-inertial configuration the singular solutions are isolated in P-space. Hence, no

relationship may be determined for the relative equilibrium as a function of the Lagrange

multipliers. This should be clear since the relative equilibria are the principal relative

equilibria regardless of inertias.

In point of fact, our problem is analogous to the Euler case of the heavy top problem

since we have required the constrained point to be the center of mass. This limiting case

is not treated by Maddocks [62]. If we remove this requirement, the left-hand side of

Equation (6.30) would contain parameters describing the position of the center of mass
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relative to the constrained point and we might expect the method to again be successful.

Such an analysis is of limited interest here and we shall not pursue it.

6.2 Relative Equilibria for an Axisymmetric Rigid Body

6.2.1 Transformation to Nodal Frame. We now consider the Keplerian problem with

the additional restriction that the body has an axis of symmetry. Dynamic symmetry is

sufficient for the second-order approximation we treat here. Associated with the symmetry

is an additional ignorable coordinate (and a conserved quantity). To treat this problem,

the equations of motion are transformed from the body frame to a frame in which the

body spins at a constant rate about the symmetry axis. We take one direction along the

symmetry axis to be the third basis vector of both the body frame and the new frame. We

refer to the new frame as the nodal frame since it turns out to be a generalization of the

conventional nodal frame which arises as an intermediate frame when the transformation

from orbital to body frame is parameterized by the classical Euler angles. The choice of

the symmetry axis as a basis vector implies both the body and nodal frames are principal

inertia frames.

The transformation to the nodal frame is given by

z = Mzb (6.31)

where z is the phase variable vector in the nodal frame, Zb is the phase variable vector in

the body frame, and

Cnb 0 0]

M=[0 Cub 0 (6.32)

0 Cnb
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with

[COS 14 t -Sin1t4t 01
Csb Sini 4t COS /-W 0 (6.33)

S0 0 1-

Here P4 is the rotation rate of the body about the symmetry axis relative to the nodal

frame. The new conserved quantity is the angular momentum component in the direction

of the symmetry axis, which is given by

C 4 (z) = II' 13 = (H1 11) . 13. (6.34)

We will now show that the Hamiltonian form of the system remains unchanged with one

exception - the Hamiltonian takes the form

H(z) = Hb(z) - P 464(Z) (6.35)

where Hb(z) is the previous Hamiltonian expressed in terms of the new phase variables.

Differentiating Equation (6.31) with respect to time gives

= Mib + MZb

= MJ(zb)VHb(Zb) + MMTz
(6.36)

= MMTj(z)MMTVHb(z) + Wz

=J(z)gVHb(z) + Wz

where

onb Cn [P413' 0 0

CnbCnb -- /413
×  I (6.37)

CnbCb L 0 [41 3X
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We may show that Wz = -/-1 4 J(z)VC4 (z) by direct computation so that

= J(z) [VHb(z) - PnVCn(z)]
(6.38)

= J(z)VH(z)

as claimed.

6.2.2 Relative Equilibrium Conditions. Given the transformation above, the relative

equilibria of the axisymmetric system are now characterized by critical points of

3 4

F(z) = H(z) - ZpiCi(z) = Hb(z) - Z/tiCi(z). (6.39)
i---1 i ---1

Taking the gradient, we find the relative equilibrium conditions

I- 1Ire - /413 = 0 (6.40a)

-Ie - /140e - -3)'e -/14113 = 0 (6.40b)

31-t, - 12 e - P30,d = 0. (6.40c)

Along with the Casimir constraints (5.16) and the symmetry integral (6.34), these define a

family of relative equilibria parameterized by P4 and the inertias. Equation (6.40a) gives

nr = A413 which implies at relative equilibrium the body rotates with angular velocity

A4 about the symmetry axis relative to the orbital frame (i.e., the nodal frame is fixed

with respect to the orbital frame). We eliminate the Lagrange multipliers /1, /2, and /13

from Equations (6.40b) and (6.40c) by taking the crossproduct of f3e with the first and y/

with the second and adding to get

3"teXI-Ye - /3e×I/3e - P4/3eXI13 = 0. (6.41)

We refer to this as the Pringle-Likins Condition for axisymmetric relative equilibria since it

is a generalization of the relative equilibrium conditions given by Pringle [81] and Likins [56]

for specific choices of Euler angles. Note the similarity to the Likins-Roberson Condition
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found for tri-inertial bodies. This condition is applicable for any parameterization of the

transformation from orbital to nodal frame. Let I1 = 12 = It and 13 = Ia be the transverse

and axial principal moments of inertia. Then Equation (6.41) becomes

(I. - It) (3-y2y3 - /323) - [ 443 2

(Ia - It) (3Y1y33 - /31/33) - 14 a3 1  = 0. (6.42)

0

Let the inertia parameter kt and the spin parameter Q be given by

kt = (Ia - It) /It (6.43a)

Q = -(Ia/It)i'4 = - (1 + kt) P4. (6.43b)

Then, multiplying Equation (6.42) by 1i/t, we may write the scalar form of the Pringle-

Likins Condition as

3ktyi-y3 - kto3i/33 + Q/3i = 0 (i = 1, 2). (6.44)

There are three classes of solutions to these conditions: 4

i. Cylindrical Relative Equilibria: /3 = 1

ii. Hyperbolic Relative Equilibria: 73 = 0 /3 = Q/kt (kt , 0)

iii. Conical Relative Equilibria: a3 = 0 /33 = Q/(4kt) (kt $ 0).

These relative equilibria were shown in Figure 1.3 which we repeat here as Figure 6.3 for

convenience. To be complete, we note that the orbital frame unit vector a is defined

in terms of phase variables by a = 13 X., Only the components a3, /33, and 73 along

the symmetry axis are determinate. This situation occurs because there are infinitely

many equally valid choices for the nodal frame. Given one choice, any rotation about the

4 When kt = 0 only the cylindrical relative equilibria are possible for a nonzero spin rate. Equality of

the axial and transverse inertias results in the attitude motion of the body being decoupled from the orbit.

The angular velocity vector is fixed in inertial space and, while the vector may point in any direction, only

when the vector points normal to the orbit is the motion a relative equilibrium.
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(a) Cylindrical (b) Hyperbolic (c) Conical

Figure 6.3 Relative Equilibrium Classes for Axisymmetric Satellites (after Likins [56])

symmetry axis by a fixed amount gives another. We will introduce additional constraints

to completely specify the nodal frame and simplify our computations; however, this is not

a necessary step since we are only interested in the orientation of the symmetry axis in the

orbital frame. Let q denote the unit vector along this axis so that r7 = B1 3 = [a )3 _7 ]T 13 =

(a 3 ,3, -y3). Hence, this vector is completely specified for each class of solution and the

physical orientations shown in Figure 6.3 are readily apparent.

To derive these solutions, we write Equation (6.44) as the linear system

[kt/ 3kty 1 1 (3) = (-QOI) (6.45)

-kt3 2 3kty 2  73 } -Q32

The coefficient matrix is nonsingular for k2/31ly 2 = k2/ 22y1 (or k2 a 3 z 0). Inverting this

matrix, we find

(03) 1 [ 3k,-y2  -3ky 1 1 (- Q'31 Q/kt (.6(Y )--3kt a3 [ktO2  -ltli ]. -Q/32) ( ).(.6
This is the hyperbolic solution of Likins [56].

Next consider the singular case where we have

-a3  - k 2/32 -'Y = 0. (6.47)
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In addition we have the orthogonality constraint -y 0 which may be written as

,17y1 + 12 72 = -,3373" (6.48)

We may then form another linear system

[0k 2 /1 (721) =(07) (6.49)

The coefficient matrix in this system is nonsingular when k2(02 +,32) $ 0 (or, for k : 0,

93 $, 1). In this case, we may invert the matrix to get

1 kt9 1  (6.50)

(72 k ( 02 - 2) [kt 2  /1 ") 3 9 2

where we have recognized that/31 +1322 = 1 -332 = y32 (since OZ3 = 0 by the first singularity

condition). This result may be substituted into Likins' condition which then reduces to

03 = Q/(4kt). (6.51)

This is the conical case of Likins [56].

Considering the singular case of system (6.49), we have 332 = 1 which (recognizing that

we must also have 01 = 02 = -y3 = 0) satisfies the Pringle-Likins Condition directly. This

is the cylindrical case of Likins [56].

We now return to the Lagrange multipliers which we previously eliminated. Taking

the dot product of Equations (6.40b) and (6.40c) with )3 and y, respectively, we find

[l = -0, e 10, - P04e 113 (6.52a)

P 72 = 3 7e I"y. (6.52b)
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Conversely, taking the dot product of each of Equations (6.40b) and (6.40c) with -y and

)d, respectively, we find

/P3 = - " I3 - P47e • 113 (6.53a)

/P3 = 3)3e I-f, (6.53b)

Either one of these equations will serve our purpose.5 Reducing Equations (6.52a), (6.52b),

and (6.53b) to scalar form and expressing in terms of the inertias and spin rate, we obtain

P1i = - [It + (Ia - It)3 2 + P41a3] (6.54a)

P2 = 3 [I3 (Ia - (6.54b)

P3 = 3(Il - It) 33y3. (6.54c)

In terms of the inertia and spin parameters defined above, these become

1 + ktO3 - Q03 (6.55a)

3 1 = 3 + kt

A2 3 (1 + kt) (6.55b)2- 3 + kt

/13 
(6.55c)

3+kt

These expressions are valid for all three relative equilibrium classes and will be used in the

stability analysis to follow.

The additional integral for the axisymmetric system given in Equation (6.34) is linear in

the phase variables and has no influence on the Hessian of the variational Lagrangian F(z)

given in Equation (6.18). The general form of the linear system matrix shown in Equa-

tion (6.10) also remains valid for the axisymmetric system (recognizing that the variables

are now expressed in the nodal frame rather than the body frame). However, inserting the

relative equilibrium conditions results in different matrices for each class of relative equi-

51n fact, setting the right-hand sides equal is an alternative means of deriving the relative equilibrium
conditions which more closely follows the method used earlier for the arbitrary rigid body.
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libria. We treat the stability of the cylindrical, hyperbolic, and conical relative equilibria

in turn.

6.2.3 Cylindrical Relative Equilibria.

Spectral Stability. For the cylindrical relative equilibria, the symmetry axis is align-

ed with the orbit normal so that32 = 1. Without loss of generality, let /3 = 1. By the

orthogonality of the unit vectors a, )3, and -y, this further implies a3 = 7'3 =/31 =/32 = 0.

The choice of -yj and 'y2 is arbitrary as long as y2 + -y22 = 1. For definiteness, we choose

-yj = 1 and 72 = 0. The complete set of relative equilibrium conditions are then given as

lrlI = 0 11r 2 = 0 1lr3 = 141a (6.56a)

/31 0 /32 = 0 /33 = 1 (6.56b)

Y = 1  Y2 = 0 73 = 0 (6.56c)

P1 -a(1 + P4) P-2 = 3 It 3 = 0. (6.56d)

For these values, the linear system matrix becomes

1-kt+Q 0 0 kt-Q 0 0 0 0

kt + Q 03+kt

-1+kt - Q 0 0 kt-Q 0 0 0 0 -3kt
3+kt 3+kt

0 0 0 0 0 0 0 0 0

0 -(3+kt) 0 0 0 0 0 0 0

A(ze) = 3+kt 0 0 0 0 0 0 0 0 (6.57)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 3+kt 0 0 0 0 0 0

0 3+kt 0 0 0 0 0 0 0

where kt and Q are the inertia and spin parameters defined in Equation (6.43). This system

matrix decouples into a trivial pitch subsystem associated with (Hr 3, /33, -Y, 72) and a roll-

yaw subsystem associated with (Hr1 , r3,2/ 31,/32, 'y3). The characteristic equation takes the
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form

P(s) = 85 (s4 + A 2s2 + Ao). (6.58)

We note that the pitch subsystem has all zero roots since its submatrix is lower triangular.

This might be anticipated since the symmetry axis is aligned with the pitch axis. However,

another way to consider this is that in addition to the three zero roots associated with the

Casimir functions, two more roots are forced to zero by the symmetry of the body as

discussed in Chapter 3. So we will find that the characteristic polynomial takes this form

for the other two classes of relative equilibria as well, even though we will no longer be

able to distinguish pitch and roll-yaw subsystems. The coefficients of the characteristic

equation may be expressed as

Ao = (kt - Q)(4kt - Q) A 2 = 1 + 3kt + (kt - Q)2. (6.59)

The spectral stability requirements from Table 3.1 are

A 0 _ 0 A 2 >_ 0 A 2 - 4A0 > 0 (6.60)

which reduce to

(kt - Q)(4kt - Q) > 0 (6.61a)

1 + 3kt + (kt - Q) 2 > 0 (6.61b)

(kt - Q) 2 (4kt - Q)2 - 4(kt - Q) 2 - 4(1 + 3kt) _ 0. (6.61c)

The stability regions are shown in Figure 6.4 which plots the inertia parameter, kt, versus

the spin rate, P4. Shaded regions are stable. Only slow spin rates are shown (IPi41 _ 5). The

vertical axis kt = 0 splits the parameter space into two regions with prolate configurations

on the left and oblate configurations on the right. The horizontal axis p4 = 0 represents

configurations which are stationary in the orbital frame while the horizontal axis /4 = -1
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Figure 6.4 Stability Diagram for Cylindrical Relative Equilibria of Axisymmetric Keple-
rian System (medium gray = nonlinearly and spectrally stable, light gray =

spectrally stable, white = unstable)

gives configurations which do not rotate in inertial space. 6 At larger values of 1141, the

curves in the left half plane tend asymptotically toward kt = -1. Thus, all but the very

prolate configurations are spectrally stable.

Nonlinear Stability. For the remaining nonlinear stability analyses, we will focus on

the projection method. Similar results should be obtained by the energy-Casimir method.

The projection method as described in Chapter 3 assumed the system had no symmetries.

The presence of a symmetry introduces a new first integral (additional constraint) and

requires some adjustments to our approach.

Recall that in the projection method we construct the projection onto the tangent

space at relative equilibrium (i.e., onto SZ (A(ze)), the range of A(ze)). For the arbitrary

rigid body, JZ (A(ze)) coincided with J, (J(ze)) as long as no two principal inertias were

equal.7 Recognizing that N (J(z,)), the nullspace of J(z,), is the orthogonal complement

to Z (J(ze)) (and thus 9Z (A(ze))), a projection onto the tangent space is constructed by

6This latter characterization is only valid for the cylindrical relative equilibria. Relative equilibria with
no inertial rotation are not possible for the other two classes.7In terms of the characteristic polynomial (6.12), we require that A 0 and Bo not equal zero so that no
additional zero roots are present. These conditions are satisfied if and only if no two principal inertias are
equal.
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subtracting a projection onto N(J(ze)) from the identity matrix. The projection onto

2N (J(z,)) is easily constructed using the gradients of the Casimir functions as a basis.

With the addition of axial symmetry, JZ (A(ze)) no longer coincides with JZ (J(ze)), or

conversely, N (AT (Ze)) no longer coincides with N (J(ze)). Two additional zero eigenvalues

of A(ze) appear; however, the nullspace of AT(Ze) is expanded by only one dimension

spanned by the gradient of the first integral associated with the symmetry.8 That is, the

algebraic multiplicity of the zero eigenvalue is m + 2 but the geometric multiplicity is only

m + 1 and

VCm+l(Ze)" J(ze)V 2 F(ze) = -J(Ze)VCm+i(Ze) V 2F(ze) = 0 (6.62)

However, for the axial symmetry treated here, we have

J(Z)VCm+i(z) = -(1/"m+i)WZ (6.63)

where W is the matrix defined in Equation (6.37). Let

(Z) =-(1/Pm+i)Wz = (13X13, 13'3, 13x'Y) • (6.64)

Then we find

(z) V 2F(ze) = 0. (6.65)

Perturbations in the direction of (z,) represent rotations about the symmetry axis and

clearly are not prevented by the constraints. Thus, we find that the variational Lagrangian

for axisymmetric systems must have at least a one-dimensional nullspace in the tangent

sWhile the gradients of the Casimir functions always lie in the nullspace of AT (z), this is only true for
the gradient of the symmetry integral at relative equilibrium (and only if the symmetry integral is linear
in the phase variables). To see this, consider that dCm+l(Z)/dt = VCm+l(Z) • J(z)VH(z) = 0. Taking

the gradient, we find V 2 Cm+1 (Z) . J(z)VH(z) + VCm+i (z) VJ(z)VH(z) + VCm+ (Z) . J(z)V 2H(z) = 0.
The first term is identically 0 since the symmetry integral is linear in z. By Equation (3.14), at relative
equilibrium we may combine the remaining two terms to conclude that VCm+i(Ze). J(ze)V 2 F(ze) = 0.
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space. This is related to the arbitrariness of the nodal frame and the concept of ignorable

or cyclic coordinates in canonical systems. To treat this, we revise our definition of stability

to omit perturbations in this direction. 9 Thus, in constructing the matrix of basis vectors

for the constraints, we include (ze). Note that we make no claims to the generality of

this approach to systems with symmetry beyond the axisymmetric systems treated here.

For the current problem, the variational Lagrangian was given previously as

3 4

F(z) = H(z) - piCi(z) = Hb(z) - ZpiCi(z). (6.39)
j=1 i=1

Note that in a variational sense, we are no longer seeking a constrained minimum of the

Hamiltonian, but of the function Hb(z) (which is the Hamiltonian of the arbitrary body

problem expressed in nodal frame variables). The form of the Hessian of the variational

Lagrangian given in Equation (6.18) is still applicable for the axisymmetric system because

the additional integral is linear in the phase variables. Substituting the current relative

equilibrium conditions, we have

V2F(ze)=diag(3 + kt3 kt++ tk t kt-Q kt-Q -Q 00 3kt (6.66)

which is clearly not positive definite, and is positive semi-definite only when kt > 0 and

Q<0.

To construct the projection onto the portion of the tangent space orthogonal to the

cyclic perturbation direction, we form the matrix of basis vectors for the N (A(ze)) aug-

mented with the cyclic perturbation vector:

K(ze) = [VCl(Ze) VC 2 (z,) VC 3 (Ze) VC4 (Ze) (Ze)]. (6.67)

9 This is the directional stability of Hughes [40:121].
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Then the projection matrix is given by

P(ze) = 1 - K(ze) (KT(ze)K(ze))- KT(Ze). (6.68)

From this we may compute the projected Hessian P(Ze)V 2 F(ze)P(ze) for which we find

that the eigenvalues are

{0, 0, 0,0,0, 3 + kt, 3 + kt-Q 2(3 kt)}

Four zero eigenvalues are associated with the constraints and one with the cyclic perturba-

tion direction. The remaining four eigenvalues are associated with the restricted tangent

space. Thus, the conditions for positive-definiteness on the restricted tangent space are

k t - Q > 0 and 4kt - Q > 0 which corresponds to the region shown in medium gray in

Figure 6.4. Recall that the variational Lagrangian was positive semi-definite in the first

quadrant only. This problem clearly demonstrates that the variational Lagrangian need

not even be positive semi-definite in order for a relative equilibrium to be a constrained

minimum.

6.2.4 Hyperbolic Relative Equilibria.

Spectral Stability. For the hyperbolic relative equilibria, the symmetry axis lies

within the plane formed by the tangential vector, a, and the orbit normal vector, /3, so

that 'y3 = 0. Furthermore, we have 33 = Q/kt. This condition restricts the permissible

range of Q/kt to IQ/ktl <_ 1 and results in portions of the kt-t14 parameter space being

physically unrealizable. For definiteness, we choose the nodal frame such that 7fe is in the

direction of the first basis vector. The complete set of relative equilibrium conditions for
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the hyperbolic case are

Hrl- = 0 Hlr 2 - 0 H' 3 = 4 Ia (6.69a)

01 = 0 /32 unspecified /3 = Q/kt (6.69b)

71 = 1 72 = 0 73 = 0 (6.69c)

P1 = -It P2 = 31t P3 = 0. (6.69d)

By the second Casimir constraint, we must have 032 = 1 -,32. The choice of/32 as positive

or negative corresponds to the positive symmetry axis leaning forward or aft. This makes

no difference in the analysis to follow and we leave it unspecified and treat both cases

simultaneously. For these values, the linear system matrix becomes

0- 0 0 -k 3 2 0 0 0
kt 3+kt

0 0 0 0 0 0 0
kt 3 k

(1+kt)32  0 0 0 0 0 0 0 0

0 (3+kt)Q (3+k) 2  0 0 0 0 0 0k 1 +k

A(ze) (3+t)Q0 0 0 0 0 0 0 0 (6.70)

-(3+kt)0 2  0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0+0 3+kt 0 0 0 0 0 0

0 3+ kt 0 0 0 0 0 0 0

This matrix does not decouple, but it does block-triangularize so that 31, /32, yii, and -72

are associated with trivial blocks on the diagonal. The characteristic equation again takes

the form

P(s) = 85(84 + A 2 s2 + Ao). (6.71)
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In terms of the inertia parameter, kt, and the spin parameter, Q, the coefficients of the

characteristic equation reduce to

Ao = 3-(kt - Q)(kt + Q) A 2 = 1 + 3kt. (6.72)

The spectral stability requirements from Table 3.1 are

A 0 _ 0 A 2 _ 0 A2 - 4A 0 > 0 (6.73)

which reduce to

k 2 _ Q2) > 0 (6.74a)

1 + 3kt > 0 (6.74b)

kt(kt - 6k2 + 9k + 12Q 2) > 0. (6.74c)

However, for physically realizable solutions, we require IQ/ktl _K 1. Thus Condition (6.74a)

reduces to kt > 0. Condition (6.74b) is then automatically satisfied. Condition (6.74c) may

be written as kt [(1 - 3kt) 2 + 12Q 2]  0 so that it is readily apparent that it too is satisfied

for kt > 0. Therefore, we need only look at the bounds given by the Condition (6.74a) and

the physical constraints. The stability regions are shown in Figure 6.5. We find that only

oblate configurations are stable, and then only for very small rotation rates.

Nonlinear Stability. We now apply the projection method to show that the spec-

trally stable relative equilibria are also nonlinearly stable. Substituting the relative equi-

librium conditions into (6.39), we have

V2F(ze) = diag ( 3 + kt, 3+kt, I + kt , 0, 0, 3 0+0kt , O, 3+kt (6.75)

which is clearly indefinite.
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Figure 6.5 Stability Diagram for Hyperbolic Relative Equilibria of Axisymmetric Keple-
rian System (dark gray = physically impossible, medium gray = nonlinearly
and spectrally stable, white = unstable)

We again construct the projection onto the portion of the tangent space orthogonal

to the cyclic perturbation direction by forming the matrix K(ze) of basis vectors for

N (AT(Ze)) augmented with the cyclic perturbation vector. We then compute the pro-

jected variational Lagrangian P(ze)V2F(ze)P(ze) for which the eigenvalues are

3(2k _ Q2)
O, 0, 0, 0, 0, 3 + kt, 3 + kt, 2kt

2kt (3±+kt)
(3 + kt)(k 2 

- Q2)
k (2k -Q 2) + 2kt(4k -Q 2 ) (10k - Q2)

As before, four zero eigenvalues are associated with the constraints and one with the cyclic

perturbation direction. The remaining four eigenvalues are associated with the restricted

tangent space. The conditions for positive-definiteness on the restricted tangent space are

kt > 0 along with the physical constraint k2 -Q2 > 0. Thus, the relative equilibria for

oblate configurations are nonlinearly stable.

6.2.5 Conical Relative Equilibria.
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Spectral Stability. For the conical relative equilibria, the symmetry axis lies within

the plane formed by the orbit normal vector, /3, and the radial vector, -y, so that a3 = 0.

Furthermore, we have /33 = Q/(4kt). This condition restricts the permissible range of

Q/kt to IQ/ktl 4 and, just as for the hyperbolic case, results in portions of the kt-t4

parameter space being physically unrealizable. We disregard the case where - = 0, since

this is treated under the cylindrical relative equilibria. For definiteness, we choose the

nodal frame such that the second basis vector is in the a direction and the first basis

vector is in the plane formed by /3 and -y. Then "'y = /3 and y3 = -01. The complete set

of relative equilibrium conditions for the conical case may then be given as

rl = 0 H' 2  0 lr 3 = P41a (6.76a)

/31 unspecified /32 = 0 /33 = Q/(4kt) (6.76b)

'1- = Q/(4kt) y2 = 0 -y3 = -,31 (6.76c)

-16kt + 3Q2  3(16kt + 16kt2 - Q2) 3Q/Oi
[Li - 16kt( 3 + kt) 112 16kt(3 + kt) 3 4(3 + kt) (6.76d)

where we have used the Casimir constraint /3 = 1 - /33 in specifying the /i. For these

values, the linear system matrix becomes

A(z,) =
(1+3kt)Q 0 0 3Q 0 0 30k 0

4kt 4(3+kt) 3+kt
(1+3kt)Q 0 1 3Q 0 ktl 3kto, 0 - 3Q

4k 4(3+k) +kt 3+k, 4(3+kt)

0 -(1 + kt)N 0 0 0 0 0 0 0

o (3+kt)Q 0 0 0 0 0 0 0
(3+kt)Q(3+k4kO

(kt 0 -+kt 0 0 0 0 0 0
4kt l+kt

0 (3 + kt)01  0 0 0 0 0 0 0

0 (3 + kt)/31  0 0 0 0 0 0 0

-(3 + kt)0l 0 (3+kt)Q 0 0 0 0 0 0

0 (3+kt)Q 0 0 0 0 0 0 0

(6.77)
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This matrix does not decouple or block-triangularize. However, because we have three

independent Casimir functions and a symmetry integral, we are assured the characteristic

equation again takes the form

P(s) = s5(s4 + A 2s 2 + Ao). (6.78)

In terms of the inertia parameter, kt, and the spin parameter, Q, the coefficients of the

characteristic equation are expressed as

-3(1 - 3kt)(4kt - Q)(4kt + Q) 16kt - 96k2 + 9Q 2 + 9ktQ 2

16kt 16kt

The spectral stability requirements are

Ao > 0 A 2  0 A2 - 4Ao > 0 (6.80)

which reduce to

-kt(1 - 3kt)(4kt - Q2) _ 0 (6.81a)

-kt(-16kt + 96k 2 
- 9Q 2 - 9ktQ 2 ) > 0 (6.81b)

256k 2 + 96ktQ 2 - 864k2Q 2 - 1728k3Q 2 + 81Q 4 + 162ktQ 4 + 81k2Q 4 > 0. (6.81c)

However, for physically realizable solutions, we require IQ/ktl I< 4. Thus, Condition (6.81a)

reduces to -kt(1 - 3kt) > 0. Unlike the hyperbolic case, this does not guarantee either

Condition (6.81b) or Condition (6.81c) is satisfied. So we need to look at the bounds

given by all three conditions. The stability regions are shown in Figure 6.6. We find that

a relatively large region of prolate configurations are spectrally stable while only a very

select set of oblate configurations satisfy the conditions. At large rotation rates, relative

equilibrium is not physically possible for most configurations.
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Figure 6.6 Stability Diagram for Conical Relative Equilibria of Axisymmetric Keplerian
System (dark gray = physically impossible, medium gray = nonlinearly and

spectrally stable, light gray = spectrally stable, white = unstable)

Nonlinear Stability. We again apply the projection method to determine nonlinear

stability. We show that the spectrally stable relative equilibria corresponding to prolate

configurations are also nonlinearly stable. Substituting the relative equilibrium conditions

into (6.39), we have

3 + kt 0 0 0 0 0

0 3 + kt 0 0 0 0

0 0 3+kt 0 0 0l+kt
0 0 0 -3Q2 0 0

16kt(3+kt)
V 2 F(z,) 00-3Q 2  0

= 0 0 0 0 16kt(3+kT)

0 0 0 0 0 -16k2+3Q 2)
16kt (3+kt)

0 0 0 3Q/3i 0 04(3+kt)

0 0 0 0 3Qf31 04(3+kt)

3QfO1
4(3+kt)
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0 0 0

0 0 0

0 0 0
3QO10

4(3+-kt) 0 0

0 3QOI 0 (6.82)4(3+kt)
0 0 3QOI

4(3+kt)

3(16k2-Q 2) 0 0
16kt(3+kt)

0 3(16k2-Q 2) 016kt(3+kt)
0 0 3Q 2

o o 16kt(3+kt)

which is not positive definite.

Following the same procedure as in the cylindrical and hyperbolic cases, we construct

the projection onto the portion of the tangent space orthogonal to the cyclic perturbation

direction by forming the matrix K(z,) of basis vectors for N (AT(ze)) augmented with

the cyclic perturbation vector. We then compute the projected variational Lagrangian

P(ze)V 2 F(ze)P(ze) for which the eigenvalues are

{ -3kt (1 - 3kt)(3 + kt)(16k2 - Q2)

0, 0, 0, 0, 0, 3 + kt, 3 + kt, 3+---'48 4 + 4-t-4 -- Q2_tQ2_kQ

3±+kt' 480 ±2240+±304k~ - Q2 - 2ktQ2 - k 2  j

As before, four zero eigenvalues are associated with the constraints and one with the cyclic

perturbation direction. The remaining four eigenvalues are associated with the restricted

tangent space. The conditions for positive-definiteness on the restricted tangent space are

kt < 0 along with the physical constraint 16k 2 - Q2 > 0. Thus, the relative equilibria for

prolate configurations are nonlinearly stable. This completes the analysis for the Keplerian

system.

6.3 Conclusions

We have applied noncanonical Hamiltonian methods to a nondimensional, second-order

approximation of the Keplerian system to derive relative equilibrium conditions and eval-
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uate the spectral and nonlinear stability of these solutions to the equations of motion. In

doing so, we have realized the classical results and validated our assertion that this system

is dynamically equivalent to the classical approximation of a rigid body in a central grav-

itational field. In addition, we considered several different nonlinear stability methods to

compare their utility. We found the projection method to be superior due to its simplicity.

We will use this method for all subsequent nonlinear stability analyses.
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VII. Free Rigid Body System: Second-Order Approximation

The previous chapter applied a noncanonical Hamiltonian approach to demonstrate the

classical results for the relative equilibria of a rigid body in a central gravitational field. In

this chapter and the one to follow, we examine the free rigid body system, which removes

the constraint on the trajectory of the center of mass imposed in the Keplerian system and

allows for coupling of the orbital and attitude motion. In the current chapter, we continue

using the second-order approximation of the potential.

The second-order model of the free rigid-body system has been investigated by Wang et

al [104] using noncanonical Hamiltonian methods. Their research considered the relative

equilibria for an arbitrary rigid body and showed that the principal relative equilibria are

still valid solutions. They also showed the nonlinear stability of principal relative equilibria

in the Lagrange region "at sufficiently large radius." These same results have previously

been found by Beletskii [15] using classical methods.

We demonstrate that the principal relative equilibria are essentially the only solutions

(as in the second-order Keplerian system) and determine conditions for spectral and non-

linear stability using the methods applied in the previous chapter for the Keplerian system.

We demonstrate nonlinear stability of the Lagrange region for all practical configurations.

We also present an analysis of the axisymmetric rigid body, which has not been inves-

tigated previously. We demonstrate the existence of three classes of relative equilibria as

in the Keplerian system; however, we find that one class - the conical relative equilibria

- must follow oblique orbits.

In the following, portions of the development will first be presented without regard

to the order of the potential approximation. These sections will be clearly identified as

general developments. They will provide points of departure for the second-order model

treated here and for the exact model to be examined in Chapter 8.

7.1 Relative Equilibria for an Arbitrary Rigid Body
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7.1.1 Nondimensional Hamiltonian System (General Development). The nondimen-

sionalization of the Hamiltonian system as presented here and the reduction of the relative

equilibrium conditions to be presented in the next section follow the analysis of Wang et

al [105]. We begin with the free rigid-body Hamiltonian system given in Chapter 5 as

[ 1 0 Al VV(A ) (7.1)
2x× Ax fix -f

where 2, A, and I are the linear momentum, position, and angular momentum about

the center of mass, respectively. Again, the overbar denotes dimensional variables. To

nondimensionalize the system, we use the mass, length, and time scales

rn = fn drh / t= (7.2)

Note that the time scale which was used for the Keplerian system is not appropriate here

since the orbital frequency is no longer a constant. The resulting nondimensional system

is

= 1 0 Ax VV(A) (7.3)

-E x  A x  11x  I-1II

where E = (mnl-t) , A = l1A, HI = (m- 1 l- 2 t)EI, and I = (m- 11- 2 )I. The Hamilto-

nian for this system is

H(z) = II. I-lrI + • E + V(A). (7.4)
2 2

The nondimensional form of the Casimir function for this system is

C I(Z) 1 1 + Ax1 2  (7.5)
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This and the Hamiltonian are the two first integrals for this system.

7.1.2 Relative Equilibrium Conditions and Linearization (General Development). To

determine the relative equilibria for this system, we consider the critical points of the

variational Lagrangian

F(z) = H(z) - pu C1(z). (7.6)

The resulting relative equilibrium conditions are

Ee + plnA6 (He ± AeX e) = 0 (7.7a)

V(Ae) - p "eX (Ie + AeXe)= 0 (7.7b)

I- e - Pi (He + AX e) = 0 (7.7c)

along with the Casimir constraint given by Equation (7.5). For convenience, let r =

I + Ax E be the angular momentum about the center of attraction. In terms of the

angular velocity n, = 1-1I,, the relative equilibrium conditions become

E, + plAexL = 0 (7.8a)

VV(Ae) - P/Eexre = 0 (7.8b)

n - [re = o. (7.8c)

Solving Equation (7.8c) for pLiFe, the first two conditions may be written as

2e + Ae×xAne 0 (7.9a)

VV(A,) - E x×Z 0. (7.9b)

Equation (7.9a) reduces to Ee - Ae Xe = neAe. This enables us to eliminate 2 e from

Equations (7.9b) and (7.8c). Then the relative equilibrium conditions may be expressed
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in terms of fl, Ae, and I as

VV(A) +!nex0exAe = 0 (7.10a)

fl - [lIfle + piAeXAe xe = 0. (7.1Ob)

Furthermore, in light of Equation (7.8c), the Casimir condition given in Equation (7.5)

becomes

1 0e2

- 2 (7.11)

where C, without the argument is a constant representing the value of the first integral.

Wang et al [105] introducei3 =l/pi and c =pCi so that Equations (7.10) and (7.11)

may be written as

VV(Ae) + 0fexfleXAe = 0 (7.12a)

/3e - Ife + AeXAeXfe = 0 (7.12b)

1
c- 1 f2ef = 0. (7.12c)

2

Wang et al [105] point out that this is equivalent to the variational problem

Make stationary L(A, f) _0. nI + 1 JXAJ - V(A)

subject to c - -f2. f2 = 0.
2

Note that this is different from the variational characterization discussed in Chapter 3

related to the variational Lagrangian F(z) = H(z) - piCi(z). The function for which

this problem seeks constrained extrema is the Lagrangian (of mechanics) rather than the

Hamiltonian. Wang et al [105] use this variational problem as a starting point to prove

the existence of oblique relative equilibria for asymmetric rigid bodies. We will return to

this characterization of the relative equilibria in Chapter 8.
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Equations (7.12) form a nonlinear system of seven equations in seven unknowns (fe,

Ae, and /3) parameterized by c. This is the general form of the relative equilibrium con-

ditions which we will use to determine the relative equilibria for both the second-order

model treated in this chapter and the exact model considered in Chapter 8. However, for

linearization of the equations of motion and stability analysis we will return to the form

given in Equation (7.7) upon which our methods are based.

Recall from Chapter 3 that the linearization of Equation (7.3) takes the form

6i = A(z) 6z. (7.14)

where z = z, + 6z and the linear system matrix A(z) = J(z) V2F(z). The second variation

of F(z) is

1 + PAXAx -/plrx - /_iAX~ x  /pA x

V 2F(z) pr x - plExAx V 2 V(A) + 1 ExEx -pIF x  (7.15)

L -/IAx /11Ex 1-1 -/p

where again for convenience we introduce the vector r = I + Ax to represent the

angular momentum about the center of attraction. Premultiplying this matrix by J(z)

and simplifying, we find that linearization about a relative equilibrium gives

- x  _V2 V(Ae) 1

A(ze) = 1 -fle x  AeXI-1 (7.16)

0 AexV 2 V(Ae) + (aXoE×)x (In)eI -) 1 -
a e

In deriving this matrix we have made use of Equation (7.8c).

Before focusing on the second-order model, we derive some general results from the

relative equilibrium conditions. We begin by taking the dot and cross products of A, and

Qe with Equation (7.12a) to get

Ae VV(Ae) = In'I2 JAe 2 - (ne . Ae) 2  (7.17a)
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AexVV(Ae) (ne" Ae)fiexAe (7.17b)

e. VV(Ae) 0 (7.17c)

fexVV(Ae) Ine12 ne xe. (7.17d)

Likewise, the dot and cross products of Ae and n, with Equation (7.12b) reduce to

Ae-Ifi = /(ne. Ae) (7.18a)

AeXIfe = (3 - IAe 2 )AeXfe (7.18b)

.I = (3 - IAeI2) ]Ie12 + (ne. (7.18c)

QexInie = (ne" Ae) exAe. (7.18d)

These equations, along with the original relative equilibrium conditions, allow us to make

some general remarks regarding the nature of relative equilibria for the free rigid-body

system:

Remark 1. Solving Equation (7.18c) for /3 gives

1 [n," Ine + IA,- 2 In, 12 _ (n e. Ae )2 (7.19)

Positive-definiteness of I implies n,* In, > 0 for ne 0 while the Cauchy-Schwartz

inequality gives IA., II , Ie A,. Thus, 0 is guaranteed to be positive (as is the

Lagrange multiplier pi').

Remark 2. By consideration of Equations (7.9a) and (7.9b), we find that the vectors e,

n,, and VV(Ae) form an orthogonal triplet, similar to the vectors e, 13 e, and -ye of

the Keplerian system. In addition, by combining Equations (7.17b) and (7.18d) we

find

AexVV(Ae) - fieXIe = 0. (7.20)

7-6



This is the form of the Likins-Roberson Condition for the free rigid-body system. It

can only be satisfied if A, and IIe= Ife are in the plane formed by ne and VV(Ae).

Positive definiteness of I assures that ne" In, is positive, while the Cauchy-Schwarz

inequality applied to Equation (7.17a) assures that Ae. VV(Ae) is positive. Finally,

by Equation (7.18a) and Remark 1, we find that Ae "Ine has the same sign as Ae "0e.

From this we may conclude that the relative equilibria assume one of the geometric

configurations shown in Figure 7.1. In these diagrams, we let the angular velocity

define a polar axis and refer to oblique orbits with positive and negative values of

n, " Ae as being in the northern and southern hemisphere, respectively.

Remark 3. If we assume the orbit is orthogonal, then Equations (7.17) and (7.18) reduce

to

A,. VV(Ae) =-I ne I2 IAe2  (7.21a)

AexVV(Ae) = 0 (7.21b)

n,. VV(Ae) = 0 (7.21c)

nexVV(Ae) = In'1 2 nexAe (7.21d)

and

A, .In, = 0 (7.22a)

AexIe . (3- JAe 2 )AeXne (7.22b)

f, Ine = (3 - IAI 2) IeI12 (7.22c)

rlexIfn = 0. (7.22d)

We find that the force is aligned with the radial direction (VV(Ae) and Ae are

parallel), the angular momentum is aligned with the angular velocity (Ine and ne

are parallel) so that the rotation is about a principal axis, and the gravitational

torque is identically zero (Ae × VV(Ae) is zero). The argument is reversible for each
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He 192

A

lie = Ie>eAe

VV(A,)

(a) Oblique Orbit (Northern Hemisphere)

VV(Ae) Ae

(b) Oblique Orbit (Southern Hemisphere)

VV(A,)

(c) Orthogonal Orbit

Figure 7.1 Relative Equilibrium Geometry for the Free Rigid-Body System
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of these properties, so that they are unique to orthogonal relative equilibria. It is the

converse that is then the surprising result: for oblique relative equilibria, the force is

not in the radial direction, the body rotates about an axis which is not a principal

axis, and a nonzero gravitational torque acts on the body about the tangential axis.

Remark 4. Equation (7.21a) may be solved for Ie to give a generalized form of the

Kepler frequency for orthogonal orbits:

0, [Ae" VV(Ae)1 / 2  (7.23)

Since we have shown that for orthogonal orbits the force is aligned with the radial,

this reduces to

lu ll -- c 1/2

IeI IA,1) 1 (7.24)

which has been derived previously by Beletskii [15]. For a particle or spherically

symmetric body, the gradient of the potential is Ae/ JAI 3 and this reduces to the

nondimensional form of the standard Kepler frequency ]Ine = A, 1- 3/ 2 . If we apply

the same method to Equation (7.17a), we obtain

l =e 1 [A, VV(A,) + (f2e A,) 2] 1/2 (7.25)

which is a generalization of the Kepler frequency valid for all relative equilibria.

We will return to these remarks below and again in Chapter 8.

7.1.3 Uniqueness of the Principal Relative Equilibria (2nd-Order Approximation).

We now turn to the specifics of the second-order potential approximation and examine

the relative equilibrium conditions of Equation (7.12) applied to this model. Wang et

al [104] have shown that the relative equilibria must be orthogonal for sufficiently large

IAJ. Use of a nondimensional formulation enables us to refine this result by reducing the

minimum radial distance for which it applies to JAl = 3/2. We then show that all relative
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equilibria satisfying this condition are not only orthogonal, but are also principal.' That

is, the principal axes are aligned with the orbital frame. Thus, the classical result of Likins

and Roberson [55] is extended to the case of coupled orbital and attitude motion with a

second-order potential approximation.

The second-order approximation of the potential, as a function of A, is given in Ap-

pendix B as

GT G,A. 1. tr(I) 3 GA. IA (B
V2(A)= A, + -A] 3  

- 2 I]13 +2 1].15 (B.33)

We again assume the origin of the body frame is located at the center of mass so that the

second term on the right-hand side is eliminated. This potential takes the nondimensional

form

1 1 1 3A .IA

JAI 2 Al 3 + 2 A 5  (7.26)

Taking the gradient gives

V V2 (A) 1 3  1  15 A • IA) A 3 5 A.
Al= + 2 A l 2I. (7.27)

The force F = -VV 2 (A) is not directed along the radial, in general, due to the last term

which is not a scalar multiple of A unless the body has three equal moments of inertia.

This suggests that general solutions of the equations of motion are not confined to orbits

which lie in an invariant plane containing the center of attraction, as is the case for the

particle moving in a central gravitational field.2 In spite of this fact, we will now show

that the second-order model does not allow oblique relative equilibria except possibly at

extremely small radii.

'In Ref. [104], the authors claim to show that the principal relative equilibria are the unique solution.
However, the proof presented is only sufficient to show orthogonality. The nonexistence of nonprincipal
orthogonal relative equilibria cannot be assumed as we show in the next chapter.

2In fact, general solutions are not restricted to any plane. It is the definition of relative equilibrium that
restricts these solutions to a plane.
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In the previous section, we showed that at relative equilibrium the force must lie in a

fixed plane for which the angular velocity is a normal vector. Inserting the second-order

potential into Equation (7.17c), we get

0 n, .VV2 (Ae)

1_ + 331 15 Ae IAe A 3 (7.28)

(1 A 3 A,12 IAe 2 (JAeAe)+ IAe).-- 2+ AI5  al (IA6

By Equation (7.18a) and the symmetry of I this reduces to

_ I__ + 230) 15 A, IAe (ne. Ae). (7.29)
Ae 1 3 I2IA4)/

But for IAel > 3/2, we have

+3 (1 +2)3) 15 A, .IA,/
(1 2 1 he 2  2 JhA,-- 1-

(1+ 3 1 15 Ae-IAn >
> 2 IA1I2 2 IA4J (since/3> 0)

(±2 1A6  
2  IA- ) (since A. -IAe Imax IAeI 2 < 2

- (1 IAiI2)

> 0 (since IA,1 > 3/2)

so that the previous equation can only be satisfied when ne • Ae = 0. Hence, the relative

equilibria are all orthogonal.

Returning to the relative equilibrium condition given in Equation (7.12a), the second-

order potential gives

1' 1 3 1 15A-IA\
1 3AlA 5  - IA A + A5IA = -nexne×A e.  (7.30)
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1.00E+00 1.00E+01 I .OOE+02 1.00E+03 1.00E+04 I OOE+05 1.00E+06 1.00E+07 1.OOE+08 1.00E+09

Figure 7.2 Value of Nondimensional Radius for Typical Satellites

Since the relative equilibria are orthogonal, this can be expressed as

Ue =IAeI5  
- _ 1 3 1 15 A IA (7.31)

3 il 2 lJ + IA 

which indicates the radial vector is along a principal axis. By Remark 3 of the previous

section, for orthogonal orbits the angular velocity is also along a principal axis. Thus, the

relative equilibria must be principal relative equilibria. This result is valid for all relative

equilibria satisfying the requirement Ael 3/2. Figure 7.2 shows several typical values of

JAel and illustrates that for all practical applications the requirement is met.

While not of great practical utility, it is interesting from a dynamical systems view-

point to note that for some of the principal relative equilibria the radius is bounded from

below. By Equation (7.17a) and the Cauchy-Schwarz inequality, we have Ae VV(A,) > 0.

Inserting the second-order potential approximation of Equation (7.26), we find

1 3 1 9A-IA
I+ 3I132 Al 5  > 0 (7.32)

I 21hA3  2 h
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which reduces to

9 3A >IA 3 (7.33)
22

where 1A = Ae • IAe/ JAI 2 is bounded by the minimum and maximum inertias. For a

spherically symmetric body, the nondimensionalization of the problem requires IA = 1/3

for which Equation (7.33) gives IAj > 0. However, for bodies with at least two unequal

inertias, one of these inertias must be larger than one third (but less than one half). For

the principal relative equilibria which have this principal axis along the radial direction,

the radius is bounded by

A0 = (9IA-_3 (7.34)

where 0 < A0 < N/3/4. The existence of a lower bound is suggestive that there is a radius

at which these principal relative equilibria bifurcate into oblique relative equilibria as the

distance of the body from the axis of rotation goes to zero. Investigation of the dynamics

at small radius is suggested as a potential topic for future research.

7.1.4 Spectral Stability (2nd-Order Approximation). Without loss of generality, we

consider the principal relative equilibrium for which the body frame is aligned with the

orbital frame. Let R -AI and w = 10,e1 so that the relative equilibrium is given by

A, = (0, 0, R) e = (0, w, 0) -e = (wR, 0, 0) f3 = 12 + R 2  (7.35)

where the last equality comes from Equation (7.19). Furthermore, the generalized Ke-

plerian frequency condition of Equation (7.24) gives the relationship between R and w

as

W,92= 1 [1+ 3(1-313) (7.36)
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The general form of the linear system matrix is given in Equation (7.16). Inserting the

relative equilibrium conditions of Equation (7.35), this becomes

A(ze) =

0 0 -W -V11 -V12 -V13 0 0 0

0 0 0 -V12 -V22 -V23 0 0 -wR
I3

W 0 0 -V13 -V2 3  -V33 0 wR 012

1 00 0 0 -w 0 -R 012

0 1 0 0 0 0 R 0 0 (7.37)

0 0 1 w 0 0 0 0 0

0 0 0 -v 1 2 R -(v 2 2 - W 2 )R -v 23 R 0 0 -w(13-12)

0 0 0 (V1l - w 2 )R V12 R V13R 0 0 0

0 0 0 0 0 0 W(I1-12) 0 0

where vij is the ijth element of V 2 V2 (Ae). For the second-order model, the Hessian of the

potential is

V 2 V2 (A)= (1+3 1 - 15A.IA) 1+ 3I1(J 3 21Ah1 5  2 JA 17  JA 1+i15

+ 3 15 1 105 AIA) T 15 IA )

+ IA15  2 A17  2 I. J A7 (AA -I + IAA . (7.38)

Incorporating the principal relative equilibrium conditions, we find

V 2V2 (Ae) =

[R2 + 3- -- I/3 + 311 0 0

-0 R + -_ 13 + 312 0 (7.39)

0 0 -2R 2 -6+ 1813j

Since we have V12 = V13 = V23 = 0, the linear system matrix decouples into two subsystems:

a pitch system associated with (El, E3, A1 , A3 , 1-2 ) and a roll-yaw system associated with
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(E2, A2 , 1-1, H3). The characteristic equations for these two subsystems are

Pp(s) = s(S4 + A 2s 2 + Ao) (7.40a)

Pry(S) = 8 4 + B 2s 2 + Bo (7.40b)

where

Ao = 212 Rlo (I1 -13) [2R 4 - (3 + 612 - 91 3 )R 2 - 1512(1 - 313)] (7.41a)

2 R
1 [2(311 + 12 - 313 )R2 - 312(12 - I1)] (7.41b)

1

Bo = 4=1i3RlO (12 - 11)(12 - 13) (2R 2 + 3 - 91 3 )(8R 2 + 3 + 612 - 1513) (7.41c)
1

B 2 = 21113 R 5 [(-2112 + 2I 2 + 41113 + 41213 - 612)R 2

+(15111213 + 6II3 - 18I1 + 3I 3 - 9I3 - 312132)] . (7.41d)

The spectral stability conditions given in Table 3.1 are

Ao>0  A2 >0 A2-4Ao 0 (7.42a)

B0 > 0 B 2  0 B 2 - 4A 0  0 (7.42b)

which, upon substitution of the inertia parameters for the inertias, may be reduced to

(k, - k 3 ) 2f 2 + 3ff2 + 15(1 - klk 3 )f3 0 (7.43a)

2fif4 - 3k 3(1 - ki)(1 - klk 3 ) ( 0 (7.43b)
4 f f_2_2 ) 2 _)4

4f~f - 12fif6(1 - k 1 k 3 ) + 9f7(1 - kxk 3)2 ( 0 (7.43c)

kjk 3 16f' + 6ff8( + 9f3f9 >0 (7.43d)

2fh(1 + 3kl + kik 3 ) + 3flo ) > 0 (7.43e)
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2f(1)2+ f 4>.
4f~fi + 12flf12 2+ 9f 3 ( O. (7.43f)

where

fi 3 - ki - k3 - klk 3  f 2 = -2 - 2k, + k 3 + 3klk 3  f3 = -2k, + k3 + kjk 3

f 4 = 1 + 3k - 3k3 - kjk 3  f 5 = 1 - 3kk+ 3 - kjk 3
2 + 12 2 2 2 2

f6 = -12k, - 12ki + 13k3 + 20kik3 + 15kik 3 - 9k3 - 16klk3 + klk3
2 2 2 2 2 2

f7 =80k2 - 120kk 3 - 40k k 3 + 41k3 + 38klk3 + klk 3

fA = 12k, - 5k 3 - 7kik 3  f9 - -4k + k3 + 3kjk 3

flo 4k, - k 3 - 3kjk 3 + 2k2k 3 - klk2 - k2k 2

fh 1 + 6k1 + 9k 2 - 14klk 3 + 6k2k3 + klk 3

f12 .. 4k, + 12k 2 - k3- 6klk 3 - 27k2k 3 + 6k3k 3 + 8klk 2 + 7k2k 2 - k33k2 - k2k3 - k3 k3

f13 = 4k, - k3 - 3kjk 3 - 2k2k 3 + klk 2 + k2k2

In contrast to the Keplerian system, spectral stability of the free system is dependent on

the radius. However, note that we have purposely arranged the stability conditions in

powers of (1/R)2. For practical applications (with R > 10), we may neglect all but the

zeroth-order terms. The resulting conditions reduce to precisely the conditions for spectral

stability of the Keplerian system. This approach is valid as long as the terms we keep do

not approach zero, which occurs in the vicinity of the curves shown in Figure 6.2 (typically

when two inertias are nearly equal).
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7.1.5 Nonlinear Stability (2nd-Order Approximation). The Hessian of the variational

Lagrangian was given in Equation (7.15) and, at relative equilibrium, reduces to

V2F(z,)

12 0 0 0 0 -w(3+R 2 ) 0 -R 0-y 0 0

0 0 0 0 0 R 0 0

0 0 1 w 0 0 0 0 0

3+611-15I13 +2R 2  0 0 0 0 0

0 0 0 0 f55 0 0 0

-w(i3+R 2) 0 0 0 0 A6 0 -R 0
0 )
0 E 0 0 0 0 -1 1 +12+R2  0 0

-R 0 0 0 0 -wR 0 R2 0

0 1203
0 0 0 0 0 0 12 -I 3 +R 2

R 0 0 '30 J

(7.44)

where

312 + 612 - 151213 + 81 2R 2 - 613R 2

5 =2R
5)3

f6 - 1212 - 361213 + 15R 2 + 412R 2 - 451 3R2 + 6R4 )
2R 503

and 3 = 12 + R 2. We can show that this matrix is indefinite, so we apply the projection

method to examine nonlinear stability of this system. Recall, the projection onto the

tangent space is given by

P(ze) = 1 - K(ze) [KT(ze)K(ze)]I KT(Ze) (7.45)

where K(z) is the matrix whose columns form a basis for the left nullspace of A(z). For the

current problem, the nullspace is one-dimensional since there is only one Casimir function:

K(z)[R 0 0 0 0 wR 0 1 0]. (7.46)
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The projected Hessian may then be computed as

P(ze)V2 F(ze)P(ze)

fi1 0 0 0 0 f16 0 f18 0

0 - 0  0 0 0 R 0 0

0 0 1 w 0 0 0 0 0

0 0 w 3+611 -15J 3 +2R 2  0 0 0 0 0

0 0 0 0 f55 0 0 0 wR (7.47)
/3

f16 0 0 0 0 f66 0 f68 0

0 A 0 0 0 0 -11+12+R2 0 0

f18 0 0 0 0 f68 0 fs 0

0 0 0 0 0 0 0 12-I3+R2

where

fii = (-912 + 541213 - 8112132 + 2412 R3 - 721213 R 3 + 412 R 4 + 161 2R 5 + 412R 6 + 4R')

f16 = 2wR3 (912 - 271213 + 51 2R 2 - 91 2 13 R 2 - 21 2R 3 - 212R 4 + 2R 5 - 412R 5 )
1

f18 = d(-2712 + 1621213 - 24312132 - 2412R2 + 721213R 2 + 612R 3 - 181213 R 3 - 412R 4

- 6R 5 - 81 2 R 5 + 181 3 R 5 + 361 213 R 5 - 4R 7 - 812 R 7 - 412 R' - 4R1 o)

f66 = 2R (-1212 + 361213 + 3R 2 - 2212R 2 - 91 3R 2

d

+ 541213 R 2 + 2R 4 - 712R 4 + 91 2 13R 4 + 21 2 R 6 )

2wR 2

f68 = d (1212 - 361213 - 3R 2 + 131 2R 2 + 91 3R 2

- 271213R 2 - 2R 4 + 212R 4 + 21 2R 5 - 2R 7 + 412R 7 )

f88 = 1(-3612 + 2161213 - 32412I 2 + 9R 2 - 361 2R 2 - 5413R2

+ 1081213R 2 + 8112R 2 + 12R 4 - 81 2R 4 - 361 3R 4 - 121 2R5 + 361213R 5

+ 4R 6 + 12R 7 - 81 2R 7 - 3613R 7 + 8R 9 + 412R 10 + 4_R12)

d =12(3 - 913 + 2R2 + 2R 3 + 2R5) 2
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and f55 is as defined for the original Hessian.

Analysis of the matrix is simplified by the fact that it may be put into block-diagonal

form by the permutation which reorders the phase variables as

(F, A3 , H2 , E2, M-1, 33, A1, A2 H3 )

The result is a 3 x 3 block in the upper left corner, followed by three separate 2 x 2 blocks. 3

In order to determine the signs of the eigenvalues, we factor this symmetric matrix into

the form LDLT where L is lower triangular with ones on the diagonal and D is a diagonal

matrix of pivots. By Sylvester's law of inertia,4 the signs of the pivots in D agree with

the signs of the eigenvalues of P(ze)V 2F(ze)P(ze). One pivot in the 3 x 3 block is zero

and is associated with the Casimir constraint. The remaining eight are associated with the

tangent space. Eliminating factors which are strictly positive for R > 0, the conditions for

positive definiteness are:5

4 + 412 ( )612 (1 )4 
8

+ 2412(1 - 313) - 912(1 - 313)2 > 0

2+2 +2 +3(1 -313) j

(7.48b)

•[2- 3(1+ 212 - 313) 1512(1 - 33) ( >0

(12 - II) > 0 (7.48c)

(II - 13) > 0 (7.48d)

2(412 - 313) + 312(1 + 212 - 513) ) > 0 (7.48e)

3 The same approach was used to analyze the variational Lagrangian prior to projection. The only
portion of the matrix changed by the projection is the 3 x 3 block associated with (El, A3 , 112).

4See, e.g., Strang [98:341].
'Some of the pivots are strictly positive, so negative definiteness, which would also prove nonlinear

stability, is not possible.
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E2
(12 - 43) 8 + 3(1 + 212 - 513)(R > 0. (7.48f)

The conditions given by Equations (7.48c) and (7.48d) restrict our results to configurations

in the Lagrange region (12 > I, > 13) of the inertia parameter plane. With this restriction,

Equations (7.48e) and (7.48f) are satisfied for any value of R (recognizing that by the

nondimensionalization of the inertia matrix we have 1/3 < 12 < 1/2 and 0 <13 < 1/3 in

the Lagrange region). Likewise, the lead term in Equations (7.48b) is strictly positive and

can be factored out of this equation. It is clear that for large R the remaining conditions

are satisfied. We find that the lower bound on R is given by Equation (7.48b) as

R2 > 6 + 96)3.95. (7.49)

Thus, for all practical radii, the Lagrange region is nonlinearly stable. By implication, the

spectral stability conditions must also be satisfied under these circumstances.

7.2 Relative Equilibria for an Axisymmetric Rigid Body

7.2.1 Transformation to Nodal Frame (General Development). For an axisymmetric

body, the angular momentum about the symmetry axis is conserved. For the free rigid-

body system the integral is

C2 (z) = II 13 (7.50)

where we assume the symmetry axis is directed along the third basis vector in the body

frame. Just as in the Keplerian system, we treat this problem by transforming to the

nodal frame by a rotation about the symmetry axis. Following the arguments presented

in Section 6.2.1, the axisymmetric Hamiltonian system is the Hamiltonian system of (7.3),

but with

H(z) = Hb(z) - A2 C2 (z). (7.51)

7-20



Here Hb is the Hamiltonian for the arbitrary rigid body system (expressed in nodal frame

variables) and P2 is the spin rate of the body frame relative to the nodal frame. The

equations of motion ie = J(z)VH(z) take the form

[ 0 A x VV(A) (7.52)

-Ex Ax II x  I-1I[I -/P213]

The only change from the equations for the arbitrary body system is in the last term of

VH(z). In addition, since the symmetry integral is linear in the phase variables, it does not

affect the Hessian of the variational Lagrangian which will be presented in the next section.

Hence, the form of the Hessian given for the arbitrary body in Equation (7.15) and the

form of the linear system matrix given in Equation (7.16) still apply to the axisymmetric

system.

7.2.2 Relative Equilibrium Conditions (General Development). The relative equilib-

ria for the axisymmetric system are critical points of the variational Lagrangian

F(z) = H(z) - pICI(z) = Hb(z) - PICI (z) - P2 C2 (z). (7.53)

Taking the gradient gives the relative equilibrium conditions

e +/ lAe×(He+ Aexe) = 0 (7.54a)

VV(A,) - /tE x (II, + Ae×E) = 0 (7.54b)

I-11e - ILI (Ie + AeX~e) - /213 = 0. (7.54c)
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The solutions to these equations are parameterized by the Casimir and symmetry integral

conditions

C, = 2 + A, (7.55a)

C2 = 13 " He (7.55b)

where C1 and C2 without the arguments represent constants. Similar to the treatment for

the arbitrary body, Equation (7.54) may be expressed as (cf. Equation (7.8))

Ee+ plAexr, = 0 (7.56a)

VV(Ae) - plEexr, = 0 (7.56b)

f - piF, = 0 (7.56c)

where, for convenience, we have introduced the angular momentum about the center of

mass, r = IH + AXE, and the angular velocity of the nodal frame, n - p21 3. By

Equation (7.56c), Equation (7.56a) and (7.56b) reduce to

Ee + Ae × e = 0 (7.57a)

VV(Ae) - 2e~xfe = 0. (7.57b)

Using Equation (7.57a), we may eliminate 2e so that the relative equilibrium conditions

expressed in terms of Ag, ne, pl, and P2 are

VV(A) + fexei A = 0 (7.58a)

fe - Pi (If€i - AexAex[f + /12113) = 0. (7.58b)
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Furthermore, the Casimir and symmetry integral constraints given in Equation (7.55)

become

1 2

C2 = 13" I (fe + P213) • (7.59b)

Introducing Q = l/pl, cl = 1'2C, and c2 = C2/Ia, Equations (7.58) and (7.59) may be

written in a form similar to that given by Wang et al [105] for the arbitrary body:

VV(Ae) + fiex[ ~xAe = 0 (7.60a)

Offe - Ife + Aex×A.xe - /2113 = 0 (7.60b)

5- .e =0 (7.60c)
2

c2 - 13 fe -/P2 = 0. (7.60d)

The last condition allows us to parameterize by /2 in place of c2 . The first three conditions

are equivalent to the variational problem

Make stationary L(A, 2) = f 1 3 21)+2Ii~ () (.1
1 1

subject to - . i= cl.
2

Again, this is different from the variational characterization discussed in Chapter 3 related

to the variational Lagrangian. Equations (7.60a)-(7.60c) form a nonlinear system of seven

equations in seven unknowns (fl, A6 , and f) parameterized by cl and /12.

The form of Equations (7.60a)-(7.60c) is similar to that of Equations (7.12a)-(7.12c)

with the nodal frame angular velocity replacing the body frame angular velocity. We follow

the same procedure as for the arbitrary body which lead to general remarks concerning

the nature of relative equilibria. Taking the dot products and cross products of A, and
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0, with Equation (7.60a) gives

A,. VV(Ae) = I1g2 IAI 2 - (e. he)2  (7.62a)

AexVV(A,) =(r A,) 6,'xA, (7.62b)

fe VV(A) = 0 (7.62c)

flexVV(A) = Ifel2 6, xAe. (7.62d)

Likewise, the dot and cross products of A, and ne with Equation (7.60b) reduce to

A, Ifg = i3(A, fie) - P 2 Ae" 113 (7.63a)

AgXIne = (,3 - IAe 2)heA e -x/ 2 Ae"I1 3  (7.63b)
fie" Ie = (3 - IAe 2) 1iel2 + (f. Ae) 2 -/ 2fe I13 (7.63c)

feXI6e = (fe" A,)bexAe - /126e×I13. (7.63d)

To emphasize the geometric implications more clearly, these last four equations may be

rewritten as

Ae I1, =H 3(A, • 6e) (7.64a)

AXI-I - (3- IA 2 )AgXfb (7.64b)

fi He = (,3 - IAe 2 ) 1e12 + (fe" Ae) 2  (7.64c)

le×Ig e = (be" Ae)fexAe. (7.64d)

Equations (7.62) and (7.64) are identical to Equations (7.17) and (7.18) with fe in place

of fie and He in place of IMe. However, whereas we were assured fne • Me is positive, the

same is not necessarily true for fl gIIe. Therefore, the remarks made for the arbitrary

body need to be reconsidered.
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Remark I(s). Solving for /3 in Equation (7.63c) gives

1 [fie" Ife + [t2fe" 113 + IAeI 2 i&eI2 _ ( e. Ae)2] . (7.65)

Previously, we found /3 to be positive. Now it is only guaranteed to be positive when

the dot product of fie with A213 is positive. Note that fe is the rotation due to

orbital motion while P213 is the rotation due to spin about the symmetry axis. When

the dot product is positive, we will refer to this as a positively oriented spin.

Remark 2(s). By consideration of Equations (7.57a) and (7.57b), we find that the vectors

Ee, l,, and Ae are an orthogonal triplet. By combining Equations (7.62b) and

(7.63d), we have the Pringle-Likins Condition for the free rigid body:

AexVV(Ae) - 6exIfe - eXI13 = 0. (7.66)

Written as

AxVV(A) - £lexile = 0 (7.67)

it becomes clear that [I and Ae must be in the plane formed by fe and VV(Ae).

By the Cauchy-Schwarz inequality, A, " VV(A,) is positive; however, as noted above,

fe " II, can be either positive or negative. We find that in contrast to the three

possible configurations for the arbitrary body, we have seventeen configurations as

shown in Figures 7.3 and 7.4. These figures show the direction of 2,, Ae, ][e, and

VV(Ae) when looking in the -E, direction. The direction of Ae is representative

based on the sign of Ae • fe. The arc represents the range of possible directions for

IIe corresponding to different values of /3 as given in Table 7.1. The parameter 0 in

the table is

00 1I2 [I 12 IAeI 2 - (, e. Ae)2] (7.68)
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Table 7.1 Relative Equilibrium Configurations

_>]Ae] 2  /=IAe] 2  I0<I3<IA,] 2 1 0=0I 0<0<0 I=0 ] 0<0
-A, > 0 1 2 3 4 5 6 7

A, = 0 8 8 8 8 8 9 10

S•A, < 0 11 12 13 14 15 16 17

Recognize that these configurations are only possible classes of relative equilibria.

Just as in the second-order arbitrary body system where only the orthogonal class

existed for R > 3/2, the presence of these equilibria is not certain. In addition, we

are unable to specify the direction of the symmetry axis based upon these results.

Further analysis requires more information about the potential function.

Remark 3(s). If we assume the orbit is orthogonal (e - Ae = 0), then we find that

the force is aligned with the radial direction (VV(Ae) and A, are parallel), the

angular momentum is aligned with the angular velocity (IIe and fe are parallel),

and the gravitational torque is identically zero (AeXVV(Ae) is zero). The argument

is reversible for each of these properties, so that they are unique to orthogonal relative

equilibria. However, we no longer conclude the rotation is about a principal axis as

for the arbitrary body.

Remark 4(s). Recognizing that the orbital angular velocity is now the nodal frame angu-

lar velocity, not the body frame angular velocity, the generalized Keplerian frequency

is still given by Equation (7.25) with fle substituted for 0e. This can be derived

directly from Equation (7.62a).

7.2.3 Relative Equilibrium Classes (2nd-Order Approximation). We begin our anal-

ysis of the relative equilibria for the second-order approximation by determining classes of

solutions to the Pringle-Likins Condition. We then substitute these solutions into the full

relative equilibrium conditions of Equation (7.60) to determine solutions for all the vari-

ables. For the second-order approximation, the gradient of the potential may be expressed
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Figure 7.3 Relative Equilibrium Geometry for the Axisymmetric Free Rigid Body
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(Part 2)
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as

VV2 (Ae) = alAe + a2 Ie (7.69)

where

1 3 1 15 Ae IAe 3
a,- IA5 l3 + 2 IAe 5 

-2 - Ae 7  a2 IAe 5
.

Introducing bt = al + a2It and ba = a, + a2Ia, we may also express the gradient of the

potential as VV2 (Ae) = (btA,, btA 2 , baA 3). With this approximation, the Pringle-Likins

Condition given in Equation (7.66) becomes

a2AexIAe - 6,xI[le - /12fieXI13 0 (7.70)

or, in scalar form,

a2ktAiA 3 - ktfi 3 + Qi = 0 (i = i, 2). (7.71)

Here, we have reintroduced the axisymmetric inertia parameter kt = (Ia - It)/It and the

spin parameter Q = -- 2a/It. By inspection, the general solutions to this equation are6

A3 = 0 Q, = Q2 = 0 (Cylindrical)

A3 = 0 Q3 = Q/kt (Hyperbolic)

A3 =4 0 (Conical).

For A3 = 0, the gradient of the potential is aligned with the radius (VV2 (Ae) = btAe)

and, by Equation (7.62b), we find fi • Ae = 0. Thus, the cylindrical and hyperbolic rela-

tive equilibria must have orthogonal orbits. Conversely, for conical relative equilibria with

6A fourth trivial solution exists for kt = Q = 0 which we do not treat here. For a non-spinning
axisymmetric body, we may revert back to the analysis for the arbitrary body to show that the orbit must
be orthogonal and the symmetry axis must be along one of the orbital frame axes.
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A3 =4 0, VV2 (Ae) is not aligned with the radius and the orbit must be oblique (excluding the

case where A1 - A2 = 0). The cylindrical and hyperbolic solutions are represented by con-

figurations 8-10 of Figures 7.3 and 7.4 while the conical solutions represent configurations

1-7 and 11-17. As with the arbitrary body, the orthogonal relative equilibria give results

which mirror the findings for the Keplerian system. The analysis of the conical solutions is

complicated considerably by the absence of orthogonality and has not been completed. We

present the analysis for the cylindrical relative equilibria which have practical application.

7.2.4 Cylindrical Relative Equilibria (2nd-Order Approximation).

Spectral Stability. The cylindrical solution to the Pringle-Likins Condition is A3 = 0

and Q1 = 22 = 0. The symmetry axis is normal to the orbit plane and we take the

positive direction to be in the nodal frame angular velocity vector direction. Without loss

of generality, we may choose the other two nodal frame basis vectors such that the first is

directed in the radial direction and the second is in the tangential direction. Let R = JAel

and w Ie1. Then the relative equilibrium conditions of Equation (7.60) may be used to

determine the full solution in terms of the original phase variables as

E, = (0, Rw, 0) Ae = (R, 0,0) He = (0,O, Ia(W+/P2))

Pl R - Q. (7.72)

w

Furthermore, the generalization of Kepler's third law for the relationship between angular

velocity and radius is

2= 3 - 91t + 2R 2  (7.73)

2R
5
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Inserting this solution into the linear system matrix of Equation (7.16), we find

A(z,)

0 W 0 -2(1-2btR 3 ) (3+kt)w

R 3  0 0 0 0 (+k

-w 0 0 0 -bt 0 0 0 0

0 0 0 0 0 -ba -(3 + kt)wR 0 0

1 00 0 w 0 0 0 0

0 1 0 - 0 0 0 0 -(3+kt)wRl+kt

0 0 1 0 0 0 0 (3 + kt)wR 0

0 0 0 0 0 0 0 Q - ktw 0

0 0 0 0 0 (bt - ba)R -Q + ktw 0 0

0 0 0 0 0 0 0 0 0

(7.74)

where we use the notation of the previous section for the gradient of the second-order po-

tential (VV2 (Ae) = (btAl, btA 2 , baA 3 )). This matrix decouples into a pitch subsystem asso-

ciated with (El, E2 , A1 , A2 , 113) and a roll-yaw subsystem associated with (E3, A3 , [11, 112).

Because we have one Casimir function and one symmetry integral, we are assured the

linear system matrix has three zero eigenvalues. In this case, they are all associated with

the pitch subsystem and the characteristic equations are

PP(8) = 3( 2 + AO) (7.75a)

Pry(s) = 8 4 + B 2 8 2 + B 0  (7.75b)

where

A0 = 2(3 + kt)R 5 (-3kt + 6R 2 + 2ktR 2 ) (7.76a)
1

B0 4(3 - kt)2 RO (3kt + 6R 2 + 2ktR 2 ) (kt - S)

* (9k 2 + 24ktR 2 + 8k2R 2 - 9ktS - 6R 2 S - 2ktR 2 S) (7.76b)
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1
B2- 2(3 -kt)R 5 (9kt + 3k 3 + 6R 2 + 20ktR 2 + 12k 2R 2 + 2k3R 2

- 6k2S - 12ktR 2 S - 4k 2R2 S + 3ktS 2 + 6R 2 S 2 + 2ktR 2S2). (7.76c)

Note that in order to compensate for the different time scale used in the nondimensional-

ization, we have defined a new spin parameter S = Q/w = -(IaU2)/(Itw). The spectral

stability conditions from Table 3.1 are

Ao _ 0 B 0  _ 0 B 2 _ 0 B 2 - 4B0 > 0

and, upon eliminating strictly positive factors, may be expressed as polynomials in 1/R:

2(3 + kt) - 3k 1 > 0 (7.77a)

3kt(7kt - 48) ( 1 )2 27k (kt -8) (tiN4 1] !(kt- S) (4kt - S) + 2(3 +kt) 4(3 kt) > 0 (7.77b)

22 S2) +3kt(3+ kt -2ktS + S 2 ) (1)2
(1 + 3kt + k2 - 2ktS S) 2(3 t) (7.77c)

3kt 2 (R1 9k2(-3 + k - 2ktS+2)2 ( 1(4.7

f 3 +kk + 4(3 + kt) 2  >0 (7.77d)

where

f, = 1 + 6kt - 5k + 6k3 +k' + 16ktS - 12k2S - 4k S

- 2S2 + 6ktS 2 + 6k2S 2 - 4ktS 3 +S 4

f2 = 3 + 9kt -10k 2 + 3k 3 + k4 + 14ktS - 60~S- 4k 3S

- 4S2 + 3ktS 2 + 6k2S 2 - 4ktS 3 +S 4 .

For all but very small values of R we may take just the zeroth-order terms, which are

precisely the conditions we found for the Keplerian system (accounting for the difference

in spin parameter). The resulting stability diagram was shown in Figure 6.4. As with the
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arbitrary body, we may show that for certain configurations (prolate bodies), the radius

has a lower bound.

Nonlinear Stability. For the Keplerian system, we found that cylindrical relative

equilibria with configurations in the region given by the conditions kt - Q > 0 and 4kt - Q >

0 were nonlinearly stable. We will now demonstrate the same result for the free rigid body

when kt - S > 0 and 4kt - S > 0. For the cylindrical relative equilibria, the Hessian of the

variational Lagrangian given in Equation (7.15) becomes

V 2 F(z,)

1 0 0 0 w 0 0 0 0

0 /3-R
2  0 -(3+R 2 )w 0 0 0 0

0 0 O-R 2  0 0 0 0 E 0

o -(O+R 2 )w 0 -4bt + - w2 R 2  0 0 0 0 -wR

w 0 0 0 bt 0 0 0 0 (7.78)

0ba w2 R 2  wR 0 0

0 0 0 0 0 wR 3-It 0 0
00 - 0

0 0R R 0 0 0 0 0

0 R 0 -wR 0 0 0 0 O-Ia
LO -OR 0 IaJ

This matrix can be shown to be indefinite. We use the projection method to determine the

conditions for a constrained extremum on the tangent space to the constraint manifold.

Because the system has symmetry, we also restrict the definition of stability to omit the

cyclic perturbations given by

(Ze) = (13× e, 13 ×Ae, 13XIIe) = (-wR, 0,0,0, R, 0,0,0,0). (7.79)

The resulting projection P(z,) = 1 - K(ze) [KT(ze)K(z,)] - 1 KT(Z) with

K(z,) =[VCI(Ze) VC 2 (Ze) (Ze) ]  (7.80)
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has rank six and we look for conditions for definiteness of the Hessian on this constrained

space.

The Hessian of the variational Lagrangian can be block-diagonalized by reordering the

phase variables as (El, A2 , E 2 , A1 , H3 , E 3 , H2 , A3 , 11). The diagonal would then consist of

a 2 x 2 block associated with E1 and A2, a 3 x 3 block associated with E2, A2 , and H3 ,

a 2 x 2 block associated with E3 and H12, and a 2 x 2 block associated with A3 and H1 .

The projection only affects the subspaces associated with the first and second blocks. The

projected Hessian (with the original order of variables) is

P(ze)V 2 F(ze)P(ze)

1 0 0 0 w 0 0 0 0

0 b(2-bt2R3) 0 -(2-btR 3 ) 0 0 0 0 0

0 0 3-R 2  0 0 0 0 0

0 -w(2-btR3) 0 2-btR 3  0 0 0 0 0
(1+bt)

2 R 3  (1+bt) 2 R 3

w 0 0 0 bt 0 0 0 0 (7.81)
0 0 0 0 0 baW 2 R2  wR 00

0 T- 0

0 0 0 0 0 oR 0-1, 0 07 Oit

0 0 0 0 0 0 it 0
0 fiIt

0 0 0 0 0 0 0 0 0

In preference to determining the eigenvalues, we again compute the pivots for each of the

blocks using LDL decomposition:

(E I,A2) {1,0}

(2AH) f(-3kt + 6R 2 + 2ktR 2 ) (3kt + 6R 2 + 2ktR 2
(E2, A,, 113) (3kt + 6R 2 + 2ktR 2 + 6R 5 + 2ktR 5)2  0,0

(E 3 ,H12 ) {+ lkt-2S (3+kt)(kt-S)}(E3, H2)1 + kt + -3R2t + -ktR2 - S' 1 -kt- -S

9kt + 9k2 + 6R 2 + 26ktR 2 + 8kR 2 - 9ktS - 6R 2 S - 2ktR 2S

(A 3 , 1 ) {2(3 + kt)R 5(1 + kt + 3R2 + ktR 2 - S)
(3 + kt)(9k + 24ktR 2 + 8k2R 2 - 9ktS - 6R 2 S - 2ktR 2 S)

9k+ 9k+ + 6R 2 + 26ktR 2 + 8k2R 2 - 9ktS-6R2S-2ktR2SJ
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The three zero pivots are associated with the Casimir and symmetry integrals and the cyclic

perturbation direction. The remaining six pivots are of the same sign as the eigenvalues

on the restricted tangent space. The first pivot in the first block assures our results are

restricted to the positive definite case. The conditions for positive definiteness may be

expressed as

4(3 + kt) 2 - 9kt > 0 (7.82a)

(1± k+ -) (3 +kt) +(l+kt-S) ) (7.82b)

(kt - S)(1 + kt - S) > 0 (7.82c)

2(3 + kt )2(1 + 4kt - S) + (3 + kt)(2 + 7kt - 2S)(1 + kt - S) 1) 2

+ 9kt(1 + kt - S) 2  1 > 0 (7.82d)

4(3 + kt)2(4kt - S)(1 + 4kt - S)

+ l8kt(3 + kt)(5kt + 8k 2 - 2S - 10ktS + 2S 2 ) ()2

+ 81k2(kt - S)(1 + kt- S) 1 )> 0 (7.82e)

which, for sufficiently large R, reduces to kt - S > 0 and 4kt - S > 0. In contrast to the

arbitrary body, we cannot determine a lower bound for which this region is nonlinearly

stable. Analysis of the second pivot in the (A3 , H1 ) block demonstrates that, for kt < 0,

the boundary given by 4kt - S = 0 is an asymptotic limit as R --+ oc. However, for all

practical values of R, the true boundary must be very close to this asymptotic limit. Thus,

the results for the Keplerian system have been extended to the free rigid-body system with

a second-order potential approximation.

7.3 Conclusions

We have extended much of the results of the Keplerian system to the free rigid-body

system via Hamiltonian methods. While some of the results for the free rigid body depend
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on the distance from the center of attraction, in general the results are identical to those

of the Keplerian system for all but very small values of AeI. The one unique finding of

note is the presence of a class of relative equilibria in the axisymmetric case for which the

orbits are oblique. We next look at how some of the classical results may also be extended

to the free rigid-body system with the exact potential and investigate some results which

are unique to higher order approximations.
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VIII. Free Rigid Body System: Exact Potential

In the preceding chapter, we developed the general relative equilibrium conditions

for a free rigid body in a central gravitational field. We then assumed a second-order

approximation of the potential and demonstrated that the (classical) Keplerian solutions

can be extended to the free rigid body where the dynamics of the orbit and attitude are

coupled. We considered both the arbitrary and axisymmetric cases and found that only

the conical relative equilibria of the axisymmetric body allow (and require) oblique orbits.

Certain symmetries are implicit in the second-order assumption which lead to these results.

For the untruncated potential, Wang et al [104, 105] have shown the possibility of

oblique relative equilibria. Moreover, they have proven the existence of oblique relative

equilibria for a specific rigid body. They also developed sufficient conditions for the ex-

istence of orthogonal relative equilibria in terms of symmetries present in a rigid body.

These criteria were used to determine orthogonal solutions for an example body and nu-

merical continuation methods were then applied to locate oblique relative equilibria. They

demonstrated that, while the displacement of oblique orbits is very small, the associated

variation in attitude can be significant for certain inertia configurations. This work serves

as the basis for the current effort.

In this chapter, we focus on the presence of orthogonal relative equilibria for the exact

potential. The general developments of Chapter 7 serve as a starting point to define

conditions for their existence and examine linear and nonlinear stability of the orbits. We

pay particular attention to bodies with one or more planes of symmetry for which the

existence of orthogonal relative equilibria is guaranteed. The axisymmetric case is not

considered. Analysis of an example rigid body is presented to clarify our discussion.

8.1 Orthogonal Relative Equilibria

8.1.1 Requirements for Orthogonality. In Section 7.1.2, we found the conditions for

relative equilibrium by determining the critical points of the variational Lagrangian. These
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conditions were reduced to the form

VV(Ae) + O Ae = 0 (7.12a)

on, - IQe + AAxe = 0 (7.12b)
1

c- Ifele- = 0. (7.12c)
2

We now restrict our consideration to orthogonal orbits with the defining condition feAe -

0. The relative equilibrium conditions in Equation (7.12) then reduce to

VV(Ae) - Inoi2 A6 = 0 (8.2a)
,3Q - In, - IAe2 Qe = 0 (8.2b)

1
C - I lne12 = 0 (8.2c)

These are the orthogonal relative equilibrium conditions. Equation (8.2a) requires that the

total force on the body act in the radial direction. Equation (8.2b), which may be written

as

IM7e = (3 - IAe 2 )nZe, (8.2b')

requires that the angular velocity be directed along a principal inertia axis of the rigid body.

By Remark 3 of Section 7.1.2, these findings are unique to orthogonal relative equilibria.

In the previous analysis of Chapters 6 and 7, we specified the body frame as a principal

frame and then sought solutions for the vectors fle and Ae. In this chapter, we take the

opposite approach and specify a body frame aligned with the orbital frame as shown in

Figure 8.1. (We do not require this frame to be a principal axis frame as in the classical

solution.) We then seek conditions on the inertias and potential in terms of the radius and

angular velocity. Let JAel = R and IkIe = w. For this frame, at relative equilibrium we
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1 2 0

direction of motion
fi3

Figure 8.1 Body Frame at Relative Equilibrium

have Ae = (0, 0, R) and fe = (0, w, 0) and Equation (8.2) gives

VI =0 1 1 2 w = 0 (8.3a)

v2 =0 (122 + R 2 -/3)w = 0 (8.3b)

w2 R + V3 -0 123 w = 0 (8.3c)

where we have set VV(A,) (Vl, v 2 , v 3 ) and

Ill -112 -113]

-12 122 -1231.

L-113 -123 133

Since n, is an eigenvector of the inertia matrix, we find that 112 = 123 = 0 is required

for equilibrium. We set 122 = 12 to indicate it is a principal moment of inertia. We also

conclude that/3 12 + R 2 .

While the conditions given in Equation (8.3) appear relatively simple, the components

of the gradient of the potential (vi, i = 1, 2, 3) are integrals over the body and are typically

not solvable in closed form. Without expanding the integrand in a series and truncating,

there is little we can say about the implications of these conditions. Furthermore, we are

limited in our ability to make general conclusions regarding stability, as we will discover

momentarily. It would appear that the conditions on the gradient would have some result-
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ing effect on the Hessian, but that effect has not been determined. This is suggested as a

topic for future research.

8.1.2 Spectral Stability. The system matrix for the linearization of the equations of

motion was given in Section 7.1.2 as

[(A,)T7(A\
A(ze) e A 1- (7.16)

AxV 2 V(A) + (xEe) x  (ile)×11 -

At an orthogonal relative equilibrium in our chosen body frame, this is

A(ze) =

0 0 -U) -Vii -V12 -V 13 0 0 0
-V22 I 3 wR 0 -I 1 wR

A A

w 0 0 V13 -V 2 3  -V 33  0 0
121 0 0 0 0 -w 0 -__R_ 0

0 1 0 0 0 0 13 3 R 0 113 R
A A

0 0 1 w 0 0 0 0 0
0 0 0 - Rv 1 2  -R(V 2 2 - W 2 ) -Rv 2 3  A2113w 0 w('A-L - 1)

A

0 0 0 R(vii - w 2 ) Rv 1 2  Rv 1 3  0 0 0

0 0 0 0 0 0 -w( -1) 0 -12113W

(8.4)

where A = 111133 - 113. We have a single Casimir function and no symmetry integrals, so

the characteristic polynomial for A(ze) takes the form

P(s) = s(s8 + A 6 86 + A 4 84 + A 2 s 2 + Ao). (8.5)

Examination of the system matrix reveals that the linear system is completely coupled

unless V12 = V2 3 = 0 in which case the system decouples into a pitch system associated

with (El, Z 3 , A1, A3 , H 2 ) and a roll-yaw subsystem associated with (E 2 , A2 ,111 ,113 ). This
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decoupling occurs for the systems with symmetry we will consider below. For the general

coupled case, the coefficients of this polynomial are complicated functions of the potential

terms, the inertias, and the radius. They are given in Table 8.1. The stability conditions

for this polynomial are given in Table 3.1. For a given rigid body at a known relative

equilibrium, we may compute the coefficients. However, at this point we can draw no

general conclusions regarding spectral stability.

Table 8.1: Coefficients of the Characteristic Equation for Orthog-

onal Relative Equilibria

A0 - IR3A (-IiiI 2R 3 V22 + ITR'v 3 V2 2 - I 3 3 R 13V22 - 2111 IR 4 
3V22 + 2ITR 4 13V22

- 2 133 R4 13V22 - I11R I V3 2 2 + 12R1 3V2 2 + 2I 1112R V12 V13 V2 3 - 2IR V1 2 V1 3 V2 3

S21221 3 3 R 2v 12v 1 3v 2 3 + 41j1 1 2 R 4 V 12 V 13 V2 3 - 412R 4v 1 2v 1 3v 2 3 + 21 2 13 3 R 4v 12 v 1 3v 2 3

+ 21 11R 6v 12v 13v 23 -21 2R 6v 12v 13v 23 - 1111 22R 23 + 1 23R 23

I22133 R 2 v 3 - -R3 + 212R 2 3 - 2 I3 R 2v11v 3 - 11 R 3
6VI 2 2 2 V2 3V

* I2 R v2 3 + I1112R12V3 - I R1 2 V3 + I2I 3 3 Rv12 V3 - 211 i 2R V3v
* 2 V V 252 3 2

+2I V v 3 - 312I33 R3 v2 V3 - 3I 1 1RI 12V3 + 3I2 R 12 V3 + 111I2 R 13 
3V

- IR 3V2 + I V2 - 12R± v2 - I1 1 I2Rv 1 V22 V3 + I23Rv1 V22  3

- II 33 Rv 1 v 22v3 + 21 12R~v1 v22 v3 - 2IR 3v11 v2 2 v3 + 312133R 3v 1 v2 2v3

+ 31 11R v11 v22 V3 - 312R vv 22V3 + I1112R 23V3 - I23v 3V3 + 12 33 R 3V3

S211 i2RIv23 V3 - 2i12R 3 V 3 + I2I 33 R 3 V3 + IjR 23v3 - 12R 23V3

+IlI 2 R2 v v - IR 2 vv - 3I 1 1 R 4 VlV 2 + 312Riv v2 + 1112V22V3 - I3v 2 2 v3

+ I2I 33 22 v3 - 2 11 2 RV 22v + 21R V2 2v3 - 312133R V22  3 - 3I 1 1RV 22 3

+ 3 3vv - 1112Rv + 12Rv' + 3I11,R - 312 R v - i 11i12R 2 V 3 3

+ 12R 12V 3 3 - I2 33R 12V 33 - 2 1 1 i 2R 12 l 33 + 212 4 12V3 3 - -I2 33R 4 12V33

I11 R
6
v1 2 V 3 3 + I 2 R

6
12V 3 3 + 1 1 II2R v 2 2 V33 - 12R13 V2 2 V3 3 + I2I 3 3 R V 2 2 V3 3

+ 211112R4vIv 22v33 - 2IR 4v 11 v 22v33 + I 2133 R 4v1 1v 22v 3 3 + 11R 6vIiv 22v 33

- 2R'vv 22v 33 - -111 12R lV3 V 33 + IR 1V3Vv33 - I,,R V3v 33 + 12 R 1Vv 33

- 11 I2RV22 V3 V33 + iRv 22 V3 V3 3 - I2I 33RV22 v 33 - 211112R 3V22vV 33

+ 2IR 3v 22 v 3v 33 - 12 1 33 Rv 22 v 3v 33 - I1Rv 22 v 3v 33 + I2R v2 2v3v 3 3 + 11 IR 2 vv 33

- I 2V2 + V 33 - 12R 4v2V33 + I 2 Rv2 v3V22i + R4 v3 V2 2A

- 21 2 R 2v 12 v 13 v 2 3 A - 2R 4 v 12v 3v 2 3 A + I 2 R 2v 1 1 v 3 A + R4 v v3A - I 2 Rv? 2v 3A

+ 3R 3 v 2 v 3 A + 12 Rv j jv 22 v3 A - 3R 3vV 22V3A - I2 Rv23v 3 A - R3v2 3v 3A

- 1v 2 2V3A + 3R v2 2v3 + 12R 12V 33/+ R R4 v 33 A - i 2 RV 1V22 V33 A

- R 4v11 v22v33A + 12 Rv22 V3 V33 A + R3v22 V3 v33 A)
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Table 8.1: Coefficients of the Characteristic Equation for Orthog-

onal Relative Equilibria (cont.)

A2 = 12 R3  (12 133 1?v1 3V22 + 133R 1v3 V22 - 212 133R 5v 12v 13v 23 - 21 33 R v 12v 13v 23A2= I135vv22 + 11 V12 2V-V V

+ I 2 13 3 R
5

Vl 1 2v3 + I 3 3 R
7

V V23- 1 1 1 I
2

R 2 12V 3 + I3
2

v 2 V3 - 122I 3 3R 
2

v
1 2

V 3

- 21 1 1 2 R 4 v1 2v 3 + 212R
4 V2 2 V3 - 2121 3 3 R

4 V2 2 V3 - I 1 1 R 6 v12V 3 + I 2 R'v22v 3

+ 3133 6V 2 V3 - 1 1 12
2

v 3v 3 + -R3
2

3R 13v 3 - 122I 3 3R 
2

v2 3v 3 - I1 1 2 R V 3 v 3

I2R
4

v1 3 V 3 - 2121 3 3 Rnv1 3v 3 - I 3 3 R v1 3v 3 + 1 1 1 122 12lV 22 V3 - I3R
2

V3lV22V3

± I21 3 3 R
2

VllV 2 2 V3 + 21 11 2 R 4
VllV 2 2 V3 - 212R

4
VllV 2 2 V3 + 21 2 1 33 R

4
V1lV 2 2 V3

11R 6 VllV 22 V3 - 12 Ruv11 v 22v 3 - 31 33R 6vnv22v 3 - 2 1 1
2 

3 v + 2

-r223R2V 424V2 4V -r 6V2

-I D2 V3V - IllI 2R4 v 3va + 22R 23 V3  I 2I3 3 R4v2 3v3 - I33 R 23V3
-'I1233

l V2 +23 v V V 2 3IV

11 I~R 31 1va + #R - I2I 33R1 1v 3 + 2111I 2R'v 1 v - 212Rv 1v3

+ 212 133 Ravlv 2 - 11 R 5v v + I 2R v 11 v + 3133 R 5 VlIV 2 + 2 1 1 IRv 22V2
-2RV2v V2 V2 3v22 V

S2I'RV 2 2 3 + 2II 33RV22v3 + 1 1 I2 R3 v 22v2 - I 2 3 V22V3 - 2121 33 R3 V22V3

- R 5V22  + I 2R v 22v + 31 33 R v 22v + - I 1v 3 3" 512R 23213R2V+ R ' V3- - T- 4- 31 4 V3  Vr2333 512 
3

+ 2  3 + I1
4 V3 2 R 4 v3 3 3 3R 4 v + I 2133 R 5v2 2v337v 55VR v a l 2V,2aR~a

+ I 33 R v1 2v 33 - 12133 R 1 llV22V33 - 133R 7vV 22V3 3 + IIR 2 VllV3V33
_ IaR2 vllv v3 + 2 I33

2v1 V3 V33 + 111 121?4v1 1vvl3v - IR 4v 1 1vv333

+ 21 2133R 4vnV3V33 + 133R 6VllV3 V33 + I 11I2R2 v 22v3 v 33 - I2R 2v 22v 3v 33

+ II 33 R2v 22 v3 v33 + I1I12R4V22v3v33 - I2R 4vv22 v3 33 + 12133R4v 22v3v 33

+ 133 R~v2 2v 3v 33 - I 11 I-Rv~v33 + I3Rv v 33 - I2I 33R v 33 - 21 11 121? 3 V 3 3

+ 2IR 3 vV 3 3 - 212133 Rav3v 3 3 - I 3 3 R
5 

V 3 3 + I 2R 3v2 3 v 2 2 A + R V13V 2 2 A

- 212 1?V 12 V13 V23A - 2R'Vl 2vl 3V23 A + I2R 3  A + R 2uv,3 A + 4R v 2V3 A

1 2R 2v 3v3A + R , 3 V3A - 41 4VlV22V3 A - R4 v3 V3A + I 2Rv1 1 3

- 3R 1 1viA - 312Rv 22v3A + 4R'V 22v - 32vS + 3R2v&A + -I2Rv 2v33 A

+ R~v22v33A - I 2 R 3 VV2 2v 33A - R V 22v33 A - 12 R 2vnv 3v 33A - R4 vllV3V3 3 A

+ R 4 V22V3 V33 A + I 2Rvv 3 3A + Ra 3 v 3 3A)
4V2 6V2 4V64V

A4  T2 IA (I2 I3 R 12 + I3aRV212 - 12 133 R4v 1 v 22 - I 33R 6vnlv 22 + I 2I 33 R4 v23

+ I1 1 1RvllV3 - I3Rv lV3 + I2I 33 RvllV3 + 11 -12R 3V11,v 3 - .1R 3v1 1V3 + 212I 33R 3 V11V3

+ Ig3 RSVlV3 + IllI Rv 22v 3 - I3Rv22v 3 + II 33 Rv 22v 3 + 11 112 Rnv 22v3 - IR 3v 22v 3

- 212133Rav 22v 3 + I33R 5v 22v 3 + 2 11 I.2v2 - 2123 + 212233 V2 - 211 112 1 2V2

-- 212R 2 V3 + - 2 I 3 3 R
2 v3 - I33R 4 v 3 - I21 3 3 R 4v 2 2v3 3 + I1 112Rv3v 3 3 - 13Rv 3v 3 3

+ I2I 33RV3 V3 3 + 12133R V3v33 + 12R 12A + R 4 2 A + 12R2
3 A + R4v1 3 A

- I2R2 V22 A - R4 VV 22A + I 2R2v2 3 A - 4R 1 V 3 A - 312 Rv 22v 3 A + R v 2 2v 3 A
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Table 8.1: Coefficients of the Characteristic Equation for Orthog-

onal Relative Equilibria (cont.)

- 312 v3A + 4R v32A - I 2R 2v11 v33 A - R4v11 v33A - I2R~v22 v33 A + Rav3 v33 A)

A 6  = ,A (I 2I 33 R 3v 22 - 111 12v 3 + ITv3 - I2 33 3 - 2I 33 R 2 v3 + I 2Rv11l, + R 3V11/

+ I2 Rv22 A + 31 2v3A - R2v3 A + I2Rv3 3A)

8.1.3 Nonlinear Stability. We next apply the projection method to the orthogonal

relative equilibria of the exact system. The Hessian of F(z) for the free rigid-body system

was given in Chapter 7 as

I + PiAxA x  -pir x - PlAXE x  p lA x

V 2F(z) =pr x - plxAx V 2 V(A) + iExE x  -p-- X  (7.15)

-/yIA x  Pl E x  1-I -/-Ill

To simplify matters somewhat, assume z, is a principal relative equilibrium. Then in the

body frame

12 0 0 0 0 -(O+R2) 0 -R 0

0 2 0 0 0 0 R 0 0

0 0 1w 0 0 0 0 0

0 0 W V11 V12 V13 0 0 0

V 2 F(ze)z= 0 0 0 v 1 2 V22 w2 V23 0 0 wR
-(O+R_ W2R2wR

W 0 0 V13 V23 V33 0 -wR 0
w 3 /3

R 1 1 0 0
0 0 0 0 0 I1 0

-R 0 0 0 0 -wR 0 1 1 0
3 3 12 3
0 0 00 wR 0 0 0 1_1

33

(8.6)

which may be shown to be indefinite. We construct the projection onto the tangent space

of the constraint manifold and compute the projected Hessian. This matrix is complicated

due to the full coupling and analysis of the stability conditions is not pursued.
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8.2 Rigid Bodies with Planes of Symmetry

In this section, we discuss the class of bodies with one or more planes of symmetry.

For such bodies, Wang et al [105] have proven the existence of certain minimum numbers

of orthogonal relative equilibria. We provide a clarification of their result along with a

few minor extensions. We then examine the implications of reflective symmetry on our

stability analysis. However, we first expand upon the concept of a constrained potential

surface introduced in Ref. [104] as a means of identifying orthogonal relative equilibria of

symmetric rigid bodies.

8.2.1 Constrained Potential Surface. Recall the orthogonal relative equilibrium con-

dition given in Equation (8.2). Equation (8.2a) is easily seen to be the first-order conditions

for the variational problem

1

Make stationary V(A) subject to 1 JAI2 = co. (8.7)
2

where Ilne12 acts as the Lagrange multiplier. (Wang et al [105] have shown that this

Lagrange multiplier will be positive for the physically relevant situation where the center

of attraction does not lie within the rigid body.) Fix the constant c, > 0. The set of all A

satisfying the constraint in variational problem (8.7) is the sphere, 8, of radius 2c/-co. For

each A on the sphere, compute the corresponding value of the potential (for a given rigid

body) and associate this scalar quantity with the -A direction to generate a new vector. 1

In this way, the sphere, 8, is mapped to a new surface V. This constrained potential surface

is shown conceptually in Figure 8.2. Critical points of this surface correspond directly to

solutions of the variational problem in Equation (8.7). The surface is fixed relative to

the body. When a principal axis of the body is orthogonal to the direction of a critical

point of V, then there are two solutions to the orthogonal relative equilibrium condition

'It is convenient to talk in terms of -A rather than A in the body frame. This may be thought of as the
position vector of the center of attraction which lies somewhere on the constraint sphere. Also, since the
potential is negative, for plotting we add a sufficiently large positive constant to make the range of values
nonnegative. For instance, we may plot U(A) = V(A) - Vj,-, where Vmi, = minAEs V(A).
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Figure 8.2 Constrained Potential Surface Associated with Constraint Sphere 8

corresponding to -Ae in the critical point direction and Q, in either direction along the

principal axis. In the example body examined later in this chapter, this surface provides

a helpful visualization of orthogonal relative equilibria.

8.2.2 Existence of Orthogonal Relative Equilibria. Wang et al [105] proved the exis-

tence of orthogonal relative equilibria for rigid bodies with one or more planes of symmetry.

Their result is stated as

Theorem 8.1 (WMK Symmetry Theorem). For a rigid body having a plane of sym-

metry, there are at least four orthogonal relative equilibria. Furthermore, if the rigid body

is symmetric with respect to two planes, there are at least eight orthogonal relative equilib-

ria, and for a rigid body with three planes of symmetry, there are at least 24 orthogonal

relative equilibria.

Note that a plane of symmetry of the rigid body is also a plane of symmetry of the

constrained potential surface and the component of VV normal to the plane is zero. Then

the above result follows from the argument that at least two critical points of the con-

strained potential surface lie in the plane of symmetry (a maximum and a minimum). A

symmetry plane is also a principal plane, thus the axis through the center of mass normal
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to this plane is a principal axis. Then there are two choices for Ae (the critical point

directions) and for each choice of Ae, two choices of f2e (either direction along the normal

principal axis). The multiple plane results follow with the additional realization that the

intersection of two symmetry planes is a principal axis and each direction along this axis

must correspond to a critical point of the constrained potential surface. However, implicit

in the discussion of the three-symmetry-plane result was the assumption that the planes

are all orthogonal. In the case where the three planes intersect in a line (and for any body

with more than three planes of symmetry this must occur), there are an infinite number of

relative equilibria. This follows from the requirement that if two distinct symmetry planes

intersect at other than a right angle the inertias are equal in the principal plane transverse

to their axis of intersection, thus providing an infinite number of choices for the direction

of 1. A similar analysis can be made for bodies with rotational symmetries.

8.2.3 Symmetry Implications on Stability. We now return to our stability analysis to

consider relative equilibria identified by the WMK Symmetry Theorem. Below we examine

two particular cases - a rigid body with one symmetry plane (Case 1) and a rigid body

with two symmetry planes which intersect at right angles (Case 2). All other possibilities

are simple extensions of these two cases.

Case 1: One Symmetry Plane. For these relative equilibria, the angular velocity

is normal to the symmetry plane. This implies the b 1 -1i3 plane is the symmetry plane.

Furthermore, any integral over the body of a function which is odd in the fi 2 coordinate

must be zero. In particular, 112, 123, v12 , and V2 3 are all zero. The first two are zero by

the orthogonal relative equilibrium conditions. The zero requirement on the latter two

is new and has an important effect on the spectral stability analysis. Setting these two

values to zero in the linear system matrix of Equation (8.4) results in a decoupling of the

characteristic equation. That is,

Ri(s) = s(s4 + B 2s 2 + Bo)(s 4 + C282 + Co) (8.8)
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Table 8.2 Spectral Stability Conditions - Symmetric Body

BO>0 C0 >0
B22>0 C2 >0

B 2 - 4B 0 > 0 C2 - 4CO > 0

Bo = w {v 22 [A + 12 (212 - 1)] + R 2 (12 - 111) (v22 - w 2)}/A

B 2 = [w212 (212 - 1) + R2133 (v22 - W2 ) + A (v22 + W2 )] /A

CO = {2 [(V 1 1 -W
2

) (V33 _ W2
) - V13

2
] + R2 [(V1 - W2

) (V 33 ± 3W
2 ) - V1 3

2
]} /12

C2 = [R 2 (vii _W 2) + 12 (V11  V33 + 2w 2)] /12

A = 111133 - 113

The spectral stability requirements are greatly simplified as shown in Table 8.2. The decou-

pled systems correspond to a longitudinal subsystem and a lateral-directional subsystem.

Similarly, for the nonlinear stability analysis, the projected Hessian decouples and the

computation of the stability conditions is simplified. The pivots for the projected Hessian

are given in Table 8.3.

Case 2: Two Perpendicular Symmetry Planes. For this case, the radius vector is

directed along the axis of intersection of the two planes and the angular velocity is normal

to one plane (and lies in the other). Both the b1-b3 and b2-b3 planes are symmetry

planes. Thus, any integral over the body of a function which is odd in either the b1 or 12

coordinate is zero. In addition to 112, 123, V12, and V2 3 being zero as above, we also find

that 113 and v13 are zero. Thus, these are principal relative equilibria. Although no further

decoupling occurs in the characteristic polynomial, the coefficients and stability conditions

in Tables 8.2 and 8.3 are further simplified.

8.3 Example Problem: Symmetric Molecule

To explore the utility of the preceding discussion, we examine the relative equilibria of

a very simple rigid body - the symmetric molecule. The molecule consists of six point

masses located in pairs along orthogonal axes such that the center of mass lies at the
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Figure 8.3 The Symmetric Molecule

intersection of the axes. We consider the symmetric molecule where each pair consists of

two equal masses (necessarily located at equal distances from the center of mass). The

general configuration is shown in Figure 8.3. The symmetric molecule has been examined

previously by Meirovitch [69] for the case of three equal inertias and by Beletskii [15] for

the case of distinct inertias. Wang et al [105] have investigated the asymmetric molecule.

8.3.1 Principal Relative Equilibria. The symmetric molecule has three orthogonal

symmetry planes with each pair of point masses located along an axis of intersection of

two of these planes. These axes are principal axes and considering Case 2 above we conclude

that all twenty-four principal relative equilibria exist for this body.

The discrete nature of the point mass model simplifies our analysis by reducing body

integrals to summations. The potential function for the symmetric molecule is

6

V(A) _ A - A+ail (8.9)

and the resulting gradient and Hessian are

m i(A + ai) (8.10)
83I+ail
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and

6

V2V(A) = A [IA +aI 2 1 - 3(A + ai)(A + ai)T. (8.11)
=,A+ al

For principal relative equilibria in the body frame, only the b 3-component of VV is nonzero:

-[2 m + y + , (R 2 +Z2)(
V3 = -2R (R2 + x 2 )3 / 2 + (R2 + y2 ) 3/ 2 + R(R 2 - Z2)2 (8.12)

The corresponding magnitude of the angular velocity is given by Equation (8.3c) as

2 [2 ±x2 )+/ mY m,,(R 2 + Z2) 1/2 (.3
S (R 2 + X2)3/2 (R 2 + y 2 ) 3 / 2 + R(R 2 

-z-
2 JJ " (8.13)

The Hessian for this case is diagonal with

[ m(R2 - 2X) MY + MzR(R 2 +3 2 ) (8.14a)
(R2 + X2)5/2 (R2 + y 2 )3/2  (R2 

- z 2) (4
rn m(R y 2  nR(R2 +A-2)

V22 -2 (f2 -- 2 ) 3 / 2 -+ (R 
2 - 2y2 ) (ft 2 -3z 2 ) (8.14b)(Rt2 + y2 )5/2  (R

V3 3 = 2~R +)/2 + ( 2 ±2)/ ± (f 2
-)mx (-2ft2 + X2) Imy(-2ft 2 + y 2 ) +- 2mzR(R2 + 3z2)1 (8.14c)v 1=2 (R2+ X2) 5/ 2  + (R2 +y2)5/2 + (R2 _- z 2 ) 3  (8.4c

These expressions may be applied to the conditions in Table 8.2 to determine the linear

stability of the relative equilibrium.

The configuration of the (nondimensional) molecule is described by the mass ratios

Vl = mX/my and v3 = mz/my and the Smelt inertia parameters k, and k3. Figure 8.4

shows the spectral stability regions at several different values of V, and v3 for a small

radius, R. The Lagrange region is essentially preserved while the DeBra-Delp region shifts

with variations in the mass ratios. Note that some of these configurations are spectrally

stable when the rotation associated with orbital motion is about the intermediate axis.

8.3.2 Additional Orthogonal Relative Equilibria. Figure 8.5 shows contour plots of

the constrained potential surface for several different values of k, and k 3 with R, vj, and
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Figure 8.5 Contour Plots of Constrained Potential Surface for Varying Inertia Ratios
(v1 = = 1 and R = 10; white=maximum, black=minimum)
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v3 fixed. The distance to the surface is plotted as a function of the angles defined in

Figure 8.6 for a specific principal axis frame. From these contour plots it is apparent that

the six principal axis directions (including signs) are not necessarily the only critical point

directions on the constrained potential surface. We can eliminate the maxima (lighter

shaded regions) as possible directions for Ae (except when two inertias are equal) since

there is no corresponding choice for fl,. (This does not rule out the possibility of oblique

relative equilibria associated with this direction.) The saddles, on the other hand, do

correspond to relative equilibria. Since they lie in a symmetry plane, the relative equilibria

must satisfy the conditions described in Case 1 of the previous section. Returning to the

body frame used previously, we consider the situation shown in Figure 8.7. Equation (8.3a)

gives

1 1
mxcosa [(R2 + X2 - 2Rxsina)3/2 - (R 2 + X 2 + 2Rxsina)3/2

=m'Z sin a (2+2 32- I a32 (8.15)
(R2 z- 2Rz cos a (R 2 + z 2 + 2Rz cos a)3/2

For all configurations, a = n7/2, n E Z, is a solution to this transcendental equation. This

solution corresponds to the principal relative equilibria described above. For configurations

where other solutions exist to this equation, there are orthogonal relative equilibria that

are not principal relative equilibria. This is clearly in contrast to the classical result based

on the second-order approximation. Figure 8.7 suggests that these correspond to a state of

balance between the forces in the b1 direction. By expanding both sides of Equation (8.15)

in a series, we find that to first order this equation is satisfied when 1 = 13. Numerical

investigations confirm that these relative equilibria only exist when the two inertias are

very nearly equal.

8.4 Conclusions

In this chapter, we have explored the relative equilibrium conditions for the free rigid-

body system when the exact form of the potential is used. While general results were
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Figure 8.7 Configuration in the Orbit Plane for Non-Principal Orthogonal Relative Equi-
lbria

limited, in the presence of one or more planes of reflective symmetry in the body we found

that the classical results could again be extended. We also found that the exact potential

allows for the possibility of other orthogonal relative equilibria to exist.
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IX. Summary and Conclusions

In this chapter, we review the findings of this dissertation and discuss proposals for

future work to extend these results.

9.1 Summary

In the preceding analysis, we have applied a noncanonical Hamiltonian approach to

examine the relative equilibria of a rigid body moving in a central gravitational field. These

equilibria correspond to fixed points of a reduced set of equations of motion expressed in

a rotating frame. This motion is representative of a rigid satellite moving in circular orbit

about a spherical primary with a fixed attitude relative to an observer rotating at the

orbital rate.

Our objective was to clarify the relationship between the classical approximation dating

back to Lagrange [52], in which the series expansion of the force and torque are truncated

after the lead term, and the noncanonical Hamiltonian treatment of Wang et al [104, 105].

In the classical approximation, the orbital equations are independent of the attitude motion

and take the same form as the Keplerian two-particle problem. Hence, the center of mass of

the body moves in a circular orbit about the center of attraction with Keplerian frequency.

For a rigid body with distinct inertias, the classical approximation has twenty-four relative

equilibrium solutions - the principal relative equilibria - for which the attitude of the

body is such that the principal inertia axes are aligned with the radial, tangential, and orbit

normal directions. On the other hand, Wang et al [105] used a noncanonical formulation

with approximations derived from truncated series expansions of the potential. In this

system, the orbital and attitude equations of motion remain coupled for all but the trivial

zeroth-order approximation. They have proven that the general solution has a circular

orbit for which the orbit center and the center of attraction lie on the axis of rotation but

are not necessarily coincident as in the classical approximation. We introduced the terms

orthogonal and oblique to refer to solutions where the centers are and are not coincident,
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respectively. Wang et al also showed that for certain asymmetric bodies no orthogonal

relative equilibria exist and the orbits must be oblique.

Our approach involved development of a hierarchy of noncanonical Hamiltonian approx-

imations for rigid body motion in a central gravitational field. The hierarchy consists of

the WMK system (of Wang et al [104, 105]) and two new noncanonical formulations which

we derived for rigid bodies subject to certain constraints - motion about a point fixed in

inertial space and motion about a point which follows a Keplerian orbit. We demonstrated

that the classical solution is dynamically equivalent to this latter constrained (Keplerian)

system with a second-order potential approximation. We then applied modern Hamil-

tonian methods to identify the relative equilibria and determine conditions for spectral

and nonlinear stability. The results for the classical approximation are well known and

served to validate our techniques. We applied these same methods to the WMK system

(which represents unconstrained or free rigid-body motion) with a second-order potential

approximation. In this manner, we were able to examine more closely the similarities and

differences of these two systems.

In addition to the tri-inertial rigid body, we also considered relative equilibria of an

axisymmetric rigid body for both the Keplerian and WMK systems. Relative equilibrium

solutions and conditions for stability of the classical approximation are also well known

in this instance. However, the axisymmetric case of the WMK system had not previously

been examined. We again applied Hamiltonian methods to determine the classes of rel-

ative equilibria for both systems and determined conditions for stability of most of these

solutions.

Finally, we followed up on the investigation of Wang et al [105] into the WMK system

with the exact form of the potential. We focused on orthogonal relative equilibria and

the requirements placed on the inertias and potential of the body for these to exist. We

discussed bodies with reflective symmetries for which these requirements are satisfied and

the orthogonal relative equilibria are guaranteed to exist. We considered an example body

with reflective symmetry and showed that, whereas the principal relative equilibria always

9-2



exist in this circumstance, the equations of motion allow additional orthogonal solutions

for which the principal inertia axes in the orbit plane are not aligned with the radial and

tangential directions.

9.2 Conclusions

The noncanonical formulations of the Keplerian and WMK systems have consider-

able differences. While the WMK system is derived through reduction of a twelfth-order

canonical system, the Keplerian system is associated with a sixth-order canonical system

which must be inflated to incorporate constraints. Both resulting noncanonical systems

are ninth-order. The Keplerian system has three Casimir functions which are all trivial re-

lationships between orthogonal unit vectors, while the WMK system has only one Casimir

function, but it is physically meaningful (conservation of angular momentum about center

of attraction).

In spite of these differences, there are striking similarities in the form of relative equi-

librium conditions and the resulting solutions. Table 9.1 shows the Likins-Roberson and

Pringle-Likins Conditions for each system. We can see that the unit vectors in the orbit

normal and radial directions, )3e and -ye, in the Keplerian system play a similar role to

the angular velocity and radius, nAe (or 6e) and A6, in the second-order WMK system.

When we consider the exact form of the WMK system, it becomes apparent that 3IY, and

3IAe/ IAeI 5 in the other two systems are actually playing the same role as VV(Ae) in the

exact system.

Focusing on the arbitrary body, the Likins-Roberson Condition for each system may

be used to prove that four certain vectors are all coplanar. For the Keplerian system, these

vectors are , 'e,I/ 3 e, and IYe. Because )3, and -ye must be orthogonal, this can then

be used to prove that any relative equilibrium must be a principal relative equilibrium.

For the WMK system, the absence of the orthogonality requirement prevents this same

conclusion from being drawn. However, for the second-order system, we are still able to

prove this to be true for all but extremely small values of AJ. The existence of oblique
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Table 9.1 Relative Equilibrium Conditions for Keplerian and WMK Systems

Arbitrary Axisymmetric

(Likins-Roberson Condition) (Pringle-Likins Condition)

Keplerian
(2nd-order) 3 ,xIe - I3e 0 3-y,'17, - OeW - P4 3 Il3 = 0

WMK 3 AXI< = 0 15 Ax IA, - f-x Ine -_ e 1 13 = 0

(2nd-order) Aei 5 e e - 0 A e A

WMK AxVV(Ae) - QxM7 =0 AxVV(A,) - I1- 2n 3 =0
(exact) -e×_= 1_e e -=

relative equilibria for the exact WMK system demonstrates that the uniqueness of the

principal relative equilibria in the other systems is a result of symmetries implicit in the

second-order potential approximation, and not a result of the Keplerian constraint. For

bodies in which these symmetries are present, the classical results readily extend to the

exact WMK formulation. Significant deviations from the classical results occur only at

small distances or for bodies with unusual, impractical configurations (such as a gravity

gradient satellite with two nearly equal inertias). Hence, for general analysis of relative

equilibria of a rigid body, the Keplerian approximation is quite sufficient.

9.3 Recommendations

Our investigations focused strictly on the relative equilibria for a rigid body in a central

gravitational field. For these particular types of solutions to the equations of motion, the

Keplerian system provided accurate results for all practical purposes. We may draw no such

conclusion regarding the general motion of a rigid body. Since the Poisson structure and

the conserved quantities of the Keplerian system are considerably different from those of

the WMK system, there is no reason to expect the dynamics to be similar. In particular,

studies of chaotic motion, which one would expect to be extremely sensitive to system

structure, might lead to different results when orbit-attitude coupling is considered. An

investigation into dynamics of the WMK system other than relative equilibrium would
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provide insight into this question. Also, generalization of the Keplerian system to orbits

other than circular might prove useful.

The rigid body may be a reasonable approximation for passive gravity-gradient satel-

lites. However, most satellites use active control, often in the form of momentum control

devices, to maintain or change attitude. Hence, one might want to extend the WMK

system to consider a gyrostat in a central gravitational field. In hindsight, this might

have been a better approach than the one taken here since the arbitrary and axisymmetric

rigid body problems should just be limiting cases of the gyrostat problem as the rotor or

platform mass goes to zero.

In Chapter 6, we applied several nonlinear stability analysis techniques which are based

upon Hamiltonian methods. The projection method was quite successful and far surpassed

the other techniques in terms of simplicity. Therefore, all subsequent nonlinear stability

analyses were done using this approach. The projection method is algorithmic and could

be implemented to perform nonlinear stability analyses without user intervention once the

Hamiltonian and Casimir functions have been specified. The development of such general

algorithms should be investigated. In addition, for the symmetric body, we eliminated

cyclic perturbations by revising our definition of stability. However, by doing so, we are

no longer seeking the same constrained minimum and it is not apparent that the theorem

which guarantees the existence of a Liapunov function still applies. The mathematical

details of this argument should be refined.
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Appendix A. A Primer on Hamiltonian Mechanics

In this appendix, we present a brief review of Hamiltonian systems. Starting with

canonical systems, we examine the equations of motion, Poisson brackets, and first inte-

grals. We then show how these concepts generalize to noncanonical systems and discuss

the special first integrals known as Casimir functions. The last section identifies sources

for further reading.

A.1 Canonical Systems

A Hamiltonian system is a mechanical system for which the equations of motion may

be expressed in the canonical form

H(q,p,t) OH(q,p,t) for i = 1,2,... ,n (A.1)
tOp2  Oqi

where q = (qlq2,... , q) and p = (Pl,P2,... ,Pn) are the generalized coordinates and

conjugate momenta and H(q, p, t) is the Hamiltonian. These equations are often referred

to as Hamilton's Equations. The coordinates and momenta are collectively known as

the phase variables and the 2n-dimensional space of phase variables is the phase space.

Introducing the phase variable vector z = (q, p), the equations of motion take the compact

form

= J VH(z, t) (A.2)

where J is the 2n x 2n symplectic matrix

J = 1(A.3)

and V denotes the gradient (with respect to the phase variable vector).

An alternative representation of the system is given in terms of the Poisson bracket

operator. Let F(q, p, t) and G(q, p, t) be smooth functions of their arguments. Then we
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define the Poisson bracket of F and G as

SOFO OF OaG
{FG}=ZE - - p -qi (A.4)

i=l aqi api pi aqi

The Poisson bracket is a skew-symmetric and bilinear operator. In terms of the phase

variable vector, z, the Poisson bracket of F(z, t) and G(z, t) is

{F, G} = VF(z, t). J VG(z, t). (A.5)

Associated with every Hamiltonian is a vector field defined by

VH(F) = {F,H}. (A.6)

The flow of this vector field in phase space is governed by Hamilton's Equations (A.1) and

represent trajectories of the Hamiltonian system.

The time derivative of a smooth function F is
d DF(z, t)

- F(z, t) = VF(z,t) z+ (t

dt ,.

= VF(z, t) JVH(z, t) + aF(z,t) (A.7)

={FH} + OF(z, t)
at

In particular, for the phase variables themselves, we have

i = {zi, H} (A.8)

as an alternative expression of Hamilton's Equations (A.1). Furthermore, for the Hamil-

tonian we have

d DH(z, t)
{H(z, t) = {H, H} + . (A.9)
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The skew-symmetry of the Poisson bracket assures the first term on the right-hand side

must be zero. Therefore, if the Hamiltonian is not an explicit function of time, it must be

constant along trajectories in phase space. Hamiltonian systems of this type are referred

to as conservative. The equations of motion for a conservative system are autonomous.

The Hamiltonian of a conservative system is just one example of a class of special func-

tions known as integrals of motion or first integrals which are constant along trajectories

of the system. A first integral C(z, t) must therefore satisfy the equation

{C,H}- OC(z,t) (A.10)at

The level surfaces of C are known as invariant sets since a trajectory which begins in an

invariant set remains in that set for all time. The invariant set is typically a manifold

of dimension 2n - 1. Knowledge of 2n - 1 independent first integrals would allow us to

completely specify the solution. A system which can be solved in this manner is integrable.

If the first integral C is not an explicit function of time, then we find {C, H} = 0.

Two functions which have a Poisson bracket identically equal to zero are said to be in

involution, or sometimes are said to be J-orthogonal. A set of n first integrals which are

linearly independent and pairwise in involution form a Lagrangian set. Knowledge of a

Lagrangian set is sufficient to guarantee a system is integrable. 1

Symmetries play a special role in Hamiltonian systems. A coordinate is cyclic or

ignorable if it does not appear in the Hamiltonian. An immediate implication of this is that

the momentum conjugate to this coordinate is an integral of motion. Cyclic coordinates

are associated with a symmetry of the system. A theorem due to Noether 2 identifies a

correspondence between symmetries and first integrals. Thus, knowledge of symmetries

enables us to identify integrals.

'See Theorem 6 of Section I.A in Meyer and Hall [71].
2See, e.g., Olver [79:410].
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A.2 Noncanonical Systems

For canonical systems, the phase space is R2 n. However, it is often convenient to work

with variables defined on other manifolds. A prime example is the rotation of a rigid

body. Classically, the rotation is described by a direction cosine matrix parameterized

by Euler angles which form a set of three generalized coordinates. However, the use of

the Euler angles can result in considerable algebraic manipulation involving trigonometric

functions and can lead to singularites at certain attitudes. It can be considerably simpler

to speak generically in terms of a direction cosine matrix without parameterizing the

matrix. The direction cosine matrix is an element of the group SO(3) of orthogonal

matrices with determinant +1. This group forms a three-dimensional manifold embedded

in the nine-dimensional space R3 ×3 . In the main text, we find that analysis involving the

direction cosine matrix directly can lead to more general results which are not masked by

the intricacies of a particular parameterization and which allow direct substitution of any

parameterization.

The manifold SO(3) is an example of a Poisson manifold. A Poisson manifold is a

smooth manifold with a Poisson bracket defined on it. The Poisson bracket we refer to

here is a generalization of the Poisson bracket defined above for the canonical system. It

is a transformation which maps two smooth functions defined on the manifold to a third

smooth function such that the following properties are satisfied:

(i) {F, G} = - {G, F} (Skew-Symmetry)

(ii) {ciF + c2 G, H} = cl {F, H} + c2 {G, H} and (Bilinearity)

{F, cIG + c 2 H} = cl {F, G} + c 2 {F, H}

(iii) {F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0 (Jacobi Identity)

(iv) {F, G . H} = {F, G}. H + G. {F, H} (Leibniz' Rule)
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for three smooth functions F, G, and H on the manifold M. It can be shown [79:393-394]

that the Poisson bracket can be expressed as

{F, G} = VF(z) J(z)VG(z) (A.11)

where J(z) is a skew-symmetric matrix called the Poisson structure matrix of M. Most

of what was presented above for canonical systems extends directly to these systems with

the substitution of the structure matrix J(z) for the standard symplectic matrix J. Here,

we emphasize the differences.

The canonical system has coordinates and momenta which are conjugate to each other

and the phase space must be even-dimensional. No such restriction is placed on noncanoni-

cal systems. There is no pairing of phase variables in general, and subsequently the system

may have an odd dimension. In addition, the structure matrix is a function of the phase

variables and can be nonsingular. This property is very important in that it permits a

special class of first integrals known as Casimir or distinguished functions.3

Casimir functions are functions for which the Poisson bracket with any other function

is identically zero. That is, for a Casimir function C(z) and any smooth function F(z, t),

we have

{C, F} = VC(z) • J(z)VF(z, t) = 0 (A.12)

or upon transposing the dot product

VF(z, t) . J(z)VC(z, t) = 0. (A.13)

3 In fact, Casimir functions exist for all systems. However, for a full-rank structure matrix, the only

Casimir functions are the constant functions.
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Since this latter statement must be valid for any smooth function F defined on M, we

must have

J(z)VC(z) = 0. (A.14)

Hence, the gradient of a Casimir function must lie in the null space of the structure matrix.

Conversely, any vector in the null space must be the gradient of a Casimir function. If

one Casimir function exists, then an infinite number of them exist since, given a Casimir

function C(z), any function Co(z) = O(C(z)) (where 0 is a smooth scalar function) is also

a Casimir function. This follows because VC¢(z) = 0'(C(z))VC(z). Only a finite number

of these functions are of interest. The difference between the order of the Hamiltonian

system and the rank of the structure matrix is the number of Casimir functions which

have pairwise linearly independent gradients. Such a set forms a basis for the null space of

the structure matrix. In practice, this set can be found without much difficulty once the

structure matrix has been determined.

If the dimension of the Hamiltonian system is n and there are m linearly independent

Casimir functions, then the rank of the structure matrix is n - m. The rank is always

even and, by a theorem of Darboux [79:405], the system may be represented locally by a

canonical system of order n - m. Hence, the number of degrees of freedom of the system

is given by (n - m)/2. While this suggests that a noncanonical system is always of higher

order than a canonical system representing the same dynamics, one should not be misled

to disregard the utility of noncanonical systems. These systems are often derived from

a higher-order canonical system through a process of reduction which eliminates degrees

of freedom associated with ignorable coordinates. Although Darboux' theorem assures

the existence of a canonical system of equal or lower order, we are not assured that the

canonical variables are easy to determine or that this representation is useful.

As used here, the title "noncanonical" is a bit of a misnomer since canonical systems

are a subset of noncanonical systems. In much of the literature, no such distinction is
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made and all are referred to as Hamiltonian systems. We may do this without changing

our definition of Hamiltonian system presented above since Darboux' theorem shows that

any noncanonical system may be transformed (locally) into a canonical system. We should

also point out that in some of the literature noncanonical systems are referred to as Poisson

systems.

A.3 Further Reading

The above discussion is merely a cursory review. It is meant to highlight particular

concepts relevant to our study. Canonical Hamiltonian systems are covered in most texts

on classical mechanics. See, e.g., Goldstein [30], Marion [66], or Meirovitch [70]. For a very

complete, modern treatment, see Meyer and Hall [71]. Noncanonical systems are treated

by Olver [79], Scheck [96], Abraham and Marsden [1], and Marsden and Ratiu [67]. The

latter two require a firm foundation in differential geometry and group theory.
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Appendix B. The Gravitational Potential

This appendix examines the gravitational potential for a closed system of n particles

or rigid bodies. It then goes on to explore the idealization of a rigid body in a central

gravitational field. The potential for this system is investigated in great detail. A series

expansion is presented which allows approximation of the potential to varying degrees of

accuracy and complexity. Expressions for the force and torque acting on the rigid body are

developed which allow direct use of any order of approximation of the potential. Several

of the simpler approximations are discussed.

The results in this appendix are generally well-known. They are presented here to

provide a single point of reference in a consistent notation and to allow us to expound upon

some of the concepts in greater detail. The potential for a system of particles is developed

in every textbook on celestial mechanics. Duboshin [24, 25] presented the generalization to

a system of rigid bodies. The potential for a rigid body in a central gravitational field was

introduced into the modern astronautical literature by Roberson and Tatistcheff [88]. The

development we present (and particularly the approach to deriving consistent expressions

for force and torque from the same approximation of the potential) is due to Wang et

al [104]. We generalize their results by allowing the origin of the body frame to lie at a

point other than the center of mass. This leads to the appearance of a first-order term

in the force and torque and permits application to a broader class of problems. This

generalization was known to Beletskii [15].

B.1 A System of n Particles

Newton's Law of Gravitation states that two particles are attracted by a force which is

proportional to each of the masses and inversely proportional to the square of the distance

between them. This force acts along the line joining the two particles. For two particles

of mass mi and mj with position vectors i and / in some inertial frame, we may write

fij- Gmimj ij (B.1)
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where fij is the force on the ith particle due to the jth particle, ijj is the position of the

ith particle relative to the jth particle ( jj = j - j), and G is the universal gravitational

constant. Furthermore, we have fji = -fij. For a closed system of n particles, the force

on the ith particle is then

n-1
fi( W E fij( W ,1..,n1 (13.2)

j=0
j~i

Since the gravitational forces are only dependent on the relative positions, ijj, we know

that they are conservative.1 That is, the total work EZ- 1 fi • d~j is an exact differential of

a scalar potential function. In this case, the function is

Gmimj (B.3)

i<j IC

The forces may then be derived from the potential as fi = V ,V( ).

B.2 A System of n Rigid Bodies

If we wish to extend the above result to treat rigid bodies of finite extent, we must

consider the gravitational interaction pairwise between particles or elements in different

bodies. To do this, we introduce the differential mass element

dmi = pi(ai)dai (B.4)

where pi is the density distribution of body 3 , ai is the position of the element expressed

in a frame 3Tb, fixed in the body, and dai is a differential volume. For bodies 3i and 3j,

the mutual potential is

= -G dmf m 1 (B.5)
Vi J = -G13i dmi J1 dmj j + Biai - Bjaj(3

'See, e.g., Arnold [6:7].
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Figure B.1 Two-Body Configuration

where ijis the inertial position of Ci, the origin of frame 9h, relative to Cj, the origin

of frame 9b ( i = - and B i is the transformation matrix from body frame 9h

to the inertial frame 9i. The matrix Bi can be represented as a function of the Euler

angles O6 (¢bi, Oi, q¢i). The configuration for two bodies is shown in Figure B.1. We limit

consideration to those values of i and Oi for which the bodies are not in contact. The

total potential function for a closed system of n rigid bodies is then

V( , O) --- E =~ --- (0 1. , n-1), 0 --- (O0,O01,... , 0n-l). (B.6)

i<j

Note that this does not include gravitational interactions of particles within the same body.

We assume these are exactly counteracted by internal forces to maintain the rigid body

assumption.

B. 2.1 A Special Case. We consider a particular closed system consisting of two rigid

bodies 30 and 3 . Furthermore, we require 30 to have a spherically symmetric mass

distribution and we choose the body frame 95o so that the origin o is the center of mass
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of BO. From the previous section, the potential is

V( , O) = -G dino din1  1 Bojao = ( ), 0 = (0o, 01).

(B.7)

Because of the spherical symmetry requirement, we may accomplish the integration over

body Do (by introducing spherical coordinates in the body frame) to find

V( ,01) = -GmoJ din. (B.8)v({,Ol)~4 1 m 10 +- Blalld n 1

That is, the result is the same as if all the mass of 30 were concentrated at its center of

mass, as was first shown by Newton [78], and is independent of the attitude of 130. We

may redefine the potential as a function of the relative position. Let A1 = 10 =i -

Then

V(A,0 1) -Gm d . (B.9)
VAl± +Blall

Furthermore, we may now express all quantities in the body frame so that

V(A 1) = -Gmo 1a1dmi (B.1O)

and the Euler angle dependence is eliminated from the potential.

B.3 A Rigid Body in a Central Gravitational Field

Consider the special case of the previous section under the additional restriction that

the mass of the spherically symmetric body 930 is much larger than that of the other. We

refer to 30 as the primary and BI as the satellite. Hence, we assume the center of mass

of the two-body system is located at the center of mass of the primary and study the

motion of the satellite relative to the primary. This is the restricted two-body problem and

is equivalent to the motion of a rigid body in a central gravitational field with the center of
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attraction located at the center of mass of the primary. We fix the origin 0 of the inertial

frame at the center of attraction. The potential for a rigid body in this field is given by

V(A) = - a dm (B.II)

where G, = Gmo is the gravitational constant for the primary body. Here A is the vector

from the center of attraction to the origin C of the body frame Tb expressed in the body

frame. The "1" subscript is omitted since we no longer need to distinguish bodies.

B.3.1 Series Expansion of the Potential. We may expand the integrand in Equa-

tion (B.11) using

IA + al-' = [(A + a). (A + a)]- "'

= [IAI2 + 2a. A+ Ja12 -1/2 (B.12)

I-'[1+ 2a.A +(jal ) 2]1/2
=~ 1 2 JAI-y

Let = lal/JAI and cos 0 = (a. A)/(a JAI). Then

[A + al- = JAI 1- [1 + 2E cos q + E2] -1/2 (B.13)

For 12E cos 0 + _2 1 < 1 we can expand the term in square brackets in a binomial series and

collect on powers of - to get

JA+a- 1 = A' I -Ecos- -(1-3cos 2 ¢)+ (a . (B.14)

This expansion may also be expressed as

IA + al- = JAI-' E(_-6)kPk(cos ) (B.15)
k=O
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where the Pk are the Legendre polynomials. Then the potential is written as

V(A) A [ (--)kPk(cos¢)] din. (B.16)

Let 8 be a sphere of radius r centered on C such that the body 3 lies entirely within

S. Then for all A such that JAI > r, the series expansion is absolutely and uniformly

convergent [60:83] and may be integrated term by term to give

V(A) G E f (-)kPk(cosq)dm]. (B.17)khl

This expression for the potential should be compared to the more typical development in

astrodynamics in which a particle moves about a rigid body of arbitrary shape.2

For - < 1 the higher-order terms in Equation (B.17) quickly approach zero and it seems

reasonable to truncate the series. We refer to a particular truncation of the potential as

the nth-order potential approximation when it includes terms up to 0 (en). We denote the

nth-order approximation of the potential as Vn. Thus,

Vn(A) - I E* 9 (e)kP(cos)dm]  (B.18)k=0

Likewise, the associated approximate model of rigid body motion will be called the nth-

order model.

B.3.2 Force and Torque. The force and torque acting on the rigid body are derived

from the potential. We begin by considering the force acting on a differential mass element

dn. The potential for this element, from Equation (B.11), is given by

dV G* dm (B.19)
R

2 See, e.g., Battin [10:401-2].
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Figure B.2 Contribution to Torque About the Center of Mass

where R =A + a and R =IRI. Let F = BTf and G, = BTg, be the total force and the

torque about the point C expressed in the body frame. It should be clear that the force

on the differential mass element can be expressed as

dF(R) = -VRdV(R) .--Rdm. (B.20)3

With a simple change of variables, it follows that dF(A) = -VAdV(A). The contribution

to the torque about C is dG,(A) = a × dF(A) = -A × dF(A). The last equality follows from

the alignment of dF with R as shown in Figure B.2. Integration of the above expressions

over the rigid body gives the total force and moment about C. Exchanging the order of

differentiation and integration, we find

F(A) = -VAV(A) (B.21)

G,(A) = AVAV(A). (B.22)

Note that the torque is always orthogonal to A so that there is no torque component in

the radial direction.

For some problems we consider, the distance JAI is fixed. In those instances we are only

concerned with the torque and it is more convenient to work with the unit vector in the

radial direction, y, rather than A, as shown in Figure B.3. Again, a change of variables in
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Figure B.3 The Orbital Frame in Body Frame Variables

Equation (B.22) gives

G: (-y) = -y VYV(-Y). (B.23)

This expression for the gravity torque was given in scalar form by Beletskii [15:10]. The

expressions for force and torque given in Equations (B.21), (B.22), and (B.23) are relatively

simple expressions in terms of the potential and allow a direct substitution of any order

approximation.

B.3.3 Some Simple Approximations. For a given rigid body, the integral in Equa-

tion (B.16) is generally not solvable in closed form. However, the individual integrals in

Equation (B.17) are solvable in closed form where the nth integral may be expressed in

terms of the inertia integrals of order n.3 Then the approximations introduced above allow

us to circumvent the problem by expressing the potential as a finite sum of inertia integrals.

In practice, very few terms are actually required in order to capture the dominant effects.

Here we will consider approximations of the potential up to second order. We will need

the Legendre polynomials

P0(v) = 1 (B.24a)

Pi(v) = v (B.24b)

1 (3v2 - 1) (B.24c)12(v) =2

3 The inertia integrals of order n are all integrals of the form Jaibjck = f ab'ckdm where i +j + k = n.

The first-order inertia integrals are just the components of the position of the center of mass while the
second-order inertia integrals are related to the moments of inertia.
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in order to evaluate the integrals.

Beginning with the zeroth-order approximation, we have

V, A) FAI*[ Gm (B.25)

This is precisely the potential for a particle of equal mass located at the point C. The

force for this approximation is

G~m

Fo(A) = -VAVO(A) - A A (B.26)
JAI'

and there is no resulting torque about C since

Go(A) = A×VAVO(A) = - AXA 0. (B.27)
JAI'

Clearly, this approximation is of little use if we wish to study the attitude dynamics.

The next order of approximation is

Vi(A) = Vo(A) + -e cos dm

G,m G, A.fadm

JA IAI'31 (B.28)
G,m A  +G A

G*mA (A X)

where X is the position of the center of mass in frame 3Tb. Note that if Yb is a centroidal

frame (i.e., the origin C is the center of mass) then V1(A) = Vo(A). The force for this

approximation is

F1 (A) -VAV (A)

J AI 3JAI' (B.29)

-G~m GmG~ A + X)+Gm
- 13 3A(A. X)A.
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This is not the same force as would be experienced by a particle of equal mass located at

the center of mass (unless X = 0). The torque about C is

G,,(A) = A' VAVI (A) = GmA (B.30)

For a problem in which JAl is fixed, we have -y = A/ A I and

G,,(-Y) = IA- X x. (B.31)

We refer to this as the heavy-top torque since it is the torque which acts on a rigid body

moving about a point of the body that is fixed in a uniform gravitational field of strength

g = G,/ Al 2 - the classical heavy top problem. Again, in this approximation no torque

is present about C when the body frame is centroidal.

Finally, we consider the second-order approximation. This is the most important and

useful approximation because it introduces the principal torque effects due to the central

field while requiring no higher than second-order inertia integrals. The torque is referred

to as the gravity-gradient torque since it arises from the linear variation in gravity across

the body. The potential approximation is

V2 G(A) =7i(A) - G E 2(3cos2¢ 1)dm (B.32)

which reduces to

V2(A) Gm G,A. X 1 G, tr (I) 3 G,A. IA (B.33)
IAI + A3  2 JA13  2 JAI5

The above reduction requires use of the definition of the inertia matrix

I = (Ja12 1 - aaT)dm (B.34)
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along with the property

tr (I) = 2j 4a1 2 dm. (B.35)

In terms of -y for fixed JAI, the potential is

Gm Gy - X 1 G* tr (I) + 3 G,. Py (B.36)

IA + Al2  2 l- -  2 l3  (B.16

Treating the case of variable JAl first, we have

F 2 (A) = -VAV 2 (A)

G~m Gm
i 3 (A+)+ 3 5 (A- X)A (B.37)

3 G* tr (I) A G + 15 G*A IA A .
2 Al15  Al15  2 JAl 7

The torque for this approximation is

Gc2(A) = A×VAV 2 (A) = G*mAxx 3 G*AxIAAhla 3  A IA (B.38)

Similarly, in the fixed radius case, we have

Gc,('-) X V×rAV2 (-Y) = G -" ' X X-3 "*^×IP. (B.39)

Even if the body frame is centroidal, the second term in Equations (B.38) and (B.39)

remains. This is the gravity-gradient torque. For a tri-inertial body in a centroidal frame,

this term dominates the actual torque from the full expansion. However, for bodies with

two or more nearly equal principal inertias, higher-order terms may be required. For a

discussion of the need for higher-order inertia integrals, see Meirovitch [69].
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Appendix C. Proof of Identity /×I + 13x = {[tr (I) 1 - I],3}x

This appendix proves the stated identity for vector /3 and matrix I. The only restriction

is that I must be symmetric. We use indicial notation' for brevity.

It is well-known that any square matrix A may be split into its symmetric and skew-

symmetric parts by the formulas

Asym - I(A + AT) (C.la)
2

Askew = -(A - AT). (C.lb)
2

It then follows that a square matrix minus its transpose is always skew symmetric. Since

(OjI)T = -I ×3x (C.2)

we are assured that the sum on the left side of our identity is a skew-symmetric form. It

only remains to be shown that it is the skew-symmetric form given on the right-hand side.

Before we address the primary problem, we first prove a general proposition on the

form of a matrix minus its transpose. We make use of the Kronecker delta,

6ij = { :2:j (C.3)
0if/7 j,

the permutation symbol,

1 if (i, j,k) is an even permutation of (1, 2, 3),

Eijk -1 if (i,j,k) is an odd permutation of (1,2, 3), (C.4)

0 otherwise,

1See, e.g., Chapter 1 of Byron and Fuller [18].
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and the identity

Cijk~ilm = 6jil 5km - 6jm'5 kl. (C.5)

Proposition C.1. Given a matrix A = Aik, the difference of the matrix and its transpose

may be written as the skew-symmetric form Eijkbj where the vector b = bj is given by

bj = CljmAlm. Alternatively, we say b× = A - AT.

Proof.

Aik - Aki = 6iSmkAlm -
6 1kmiAlm

= ( 6 li mk - 6lk .i)Al.

= Ejik~jlmAlm

= EijkEjmAlm

= ijkbj .

We now proceed to our main result.

Proposition C.2. A vector 03 and a symmetric matrix I satisfy the identity

j3xI + I13x -{[tr () 1 - I] O}x. (C.6)

Proof. Let /3 = 0j and I = Iij. We then have

3xI + I/ × = CijkfijIkl + likEkjlfij

= EijkfjIkl - CljkjIlki.
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Let Ail Eijk/3 jIkl. Then

/8' 1 + 10'~ = Ail - Ali

=EimilrjmoArjo (by the previous proposition)

= EimlEnmoenjkf~j'ko

= imt(6mj 6 ko - 6mk6jo)/jlko

= Eimi(Ikk 6 mj - IjO

= f{[tr(J) 1 -I]31X

El
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latter constrained (Keplerian) system. We apply Hamiltonian methods to identify relative equilibria and determine stability
conditions. In general, we find that relative equilibria for the Keplerian and unconstrained systems are in close agreement.
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