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Abstract 

This report studies a statistical skin-color model and its adaptation. By quantitative anal- 

ysis and goodness-of-fit test, we reveal that (1) skin-color differences among people can be 

reduced by intensity normalization, and (2) under a certain lighting condition, a skin-color 

distribution can be characterized by a multivariate normal distribution in the normalized 

color space. We then propose an adaptive model to characterize human skin-color distribu- 

tions for locating human faces under different lighting conditions. The parameters of the 

model are adapted by a linear combination of the known parameters. The maximum likeli- 

hood criterion has been used to obtain the optimal estimation of the coefficients. The model 

has been successfully applied to a real-time face tracker and other applications. 
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1     Introduction 

Human face perception is currently an active research area in the computer vision commu- 

nity. Locating and tracking human faces is a prerequisite for face recognition and/or facial 

expressions analysis, although it is often assumed that a normalized face image is available. 

In order to locate a human face, the system needs to capture an image using a camera and a 

framegrabber, to process the image, to search the image for important features, and then to 

use these features to determine the location of the face. In order to track a human face, the 

system not only needs to locate a face, but also needs to find the same face in a sequence of 

images. 

Several systems of locating human face have been reported. Eigenfaces, obtained by 

performing a principal component analysis on a set of faces, have been used to identify faces 

[1]. By moving a window covering a subimage over the entire image, faces can be located 

within the entire image. [2] reports a face detection system based on clustering techniques. 

The system passes a small window over all portions of the image, and determines whether a 

face exists in each window. A similar system with better results has been claimed by [3]. A 

different approach for locating and tracking faces using skin-colors is described in   [4, 5, 6]. 

Facial features, such as eyes, nose and mouth, are natural candidates for locating human 

faces. These features, however, may change from time to time. Occlusion and non-rigidity 

are basic problems with these features. For example, when a person rotates his/her head, 

depth changes can warp or occlude facial features. If we take a sequence of images of a 

person's rotating his/her head from left to right, the facial features will change as follows: in 

moving from a left sided face to a front face, the image of the left eye warps and the right ear 

appears (the inverse of occlusion); in moving from a front face to a right sided face, the left 

ear disappears (occlusion) and the image of the right eye warps. Four basic techniques are 

commonly used for dealing with feature variations: correlation templates [8, 9], deformable 

templates [10], spatial image invariants [11], and neural networks [2,3]. These methods are, 

however, computational expensive and hardly achieve real-time performance. For example, 

the system described in [12] tracks object at about 5 frames/second speed with a 189 x 144 

image by using a neural network to detect faces. 

Color is another feature on human faces. Using skin-color as a feature for tracking a face 

has several advantages. Processing color is much faster than processing other facial features. 

Under certain lighting conditions, color is orientation invariant. This property makes motion 

estimation much easier because only a translation model is needed for motion estimation. 

However, color is not a physical phenomenon. It is a perceptual phenomenon that is related 

to the spectral characteristics of electro-magnetic radiation in the visible wavelengths striking 



the retina [13]. Tracking human faces using color as a feature has several problems. First, 

the color representation of a face obtained by a camera is influenced by many factors such 

as ambient light, object movement, etc. Second, different cameras produce significantly 

different color values even for the same person under the same lighting condition. Finally, 

human skin colors differ from person to person. In order to use color as a feature for face 

tracking, we have to solve these problems. 

Much research has been-directed to understanding and making use of color information. 

Color has been long used for recognition and segmentation [14, 15, 16, 17] and recently 

has been successfully used for road tracking [18] and face locating and tracking [4, 5]. 

Yang and Waibel proposed to use a statistical skin-color model for tracking human faces 

in real-time and developed a real-time face tracker achieved a rate of 30+ frames/second 

[6, 7]. While the system is successful, the skin-color model has yet to find a more rigorous 

theoretical foundation and quantitative justification. The general procedure for developing 

a distribution model includes finding cluster, extracting features (dimensionality reduction), 

and determining a distribution. In this report, we quantitatively investigate human skin 

color distributions. We demonstrate that: 

• human skin-colors are clustered in the color space 

• skin-color differences among people can be reduced by intensity normalization 

• under a certain lighting condition, a skin-color distribution can be characterized by a 

multivariate normal distribution in the normalized color space. 

A common believe is that different people have different color appearances. This study 

shows that such a difference lies largely in intensity than color itself. By color normalization, 

the skin-color difference among different people can be greatly reduced. Furthermore, using 

goodness-of-fit techniques, we verify that under a certain lighting condition, a human skin- 

color distribution is a normal distribution. Based on these results, we present an adaptive 

parametric model to characterize human skin-color distributions for different people under 

different lighting conditions. Since a linear transformation of a normal distribution is still a 

normal distribution, the different skin-color distributions can be considered as transformed 

distributions from other distributions. We propose to use a linear combination of the known 

parameters to predict or approximate new parameters. The maximum likelihood method 

has been used to estimate the coefficients of the linear transformation. We investigate two 

cases: estimating mean vector only and estimating both mean vector and covariance matrix. 

We derive the maximum likelihood estimates for both cases. 



The remainder of the report is structured as follows. Section 2 discusses the general 

problem of skin-color distributions. Section 3 performs quantitative analysis and goodness- 

of-fit test on skin-color distributions. Section 4 addresses the maximum likelihood adaptation 

of skin-color model to different lighting conditions and different people. We close with a 

discussion of future work. 

2     Skin-Color Distributions 

Color is the perceptual result of light in the visible region of the spectrum, having wavelengths 

in the region of 400 nm to 700 nm, incident upon the retina. Physical power (or radiance) 

is expressed in a spectral power distribution. A color histogram is a distribution of colors 

in the color space and has long been used by the computer vision community in image 

understanding. For example, analysis of color histograms has been a key tool in applying 

physics-based models to computer vision. It has been shown that color histograms are 

stable object representations unaffected by occlusion and changes in view, and that they 

can be used to differentiate among a large number of objects [16]. In the mid-1980s, it was 

recognized that the color histogram for a single inhomogeneous surface with highlights will 

have a planar distribution in color space [19]. It has since been shown that the colors do not 

fall randomly in a plane, but form clusters at specific points [20, 21]. The color histograms 

of human skin coincide with these observations. The Figure 1 shows a face image and the 

skin-color occurrences in the RGB color space (256x256x256). The skin-colors are clustered 

in a small area in the RGB color space, i.e., only a few of all possible colors actually occur 

in a human face. 

(a) Face image (color!) (b) Skin-color occurrences 

Figure 1: An example of a face image and the skin-color occurrences in the RGB space 



2.1     Color Space 

A variety of spectral distributions of light can produce perceptions of color which are in- 

distinguishable from one another. The human retina has three different types of color pho- 

toreceptor cone cells, which respond to incident radiation with somewhat different spectral 

response curves. Based on the human color perceptual system, three numerical components 

are necessary and sufficient to describe a color, provided that appropriate spectral weighting 

functions are used. Theoretically, color coordinates can be defined as product integrals of 

the stimulus spectrum U(n) with three linearly independent color matching functions f(u), 

fa), ~h(y), 
R = /    f(u)U(u)du, (1) 

V2 

G = f2 g{v)U(v)dv, (2) 

B=  Pl{y)U{v)dv. (3) 

where v is the frequency of the light stimulus. 

It is well known that different people have different skin-color appearances. Even for the 

same person, his/her skin-color appearance will be different if he/she wears different clothes 

or under different lighting conditions. In other words, many factors contribute to human 

skin-color appearance. In order to characterize skin-color, we hope to find a color space in 

which skin-colors are less variants. For human color perception, a 3D color space such as 

an RGB space, is essential. Most video cameras use an RGB model; other color models can 

be easily converted into an RGB model. However, an RGB space is not necessarily essential 

for all other problems. In the problem of locating human faces, intensity is not important. 

Therefor we can remove it from the original information by normalization. Our experiments 

reveal that human color appearances differ more in brightness than in color itself. If we can 

remove the brightness from the color representation, the difference among human skin-colors 

can be greatly reduced. 

The human visual system adapts to different brightness and various illumination sources 

such that a perception of color constancy is maintained within a wide range of environmental 

lighting conditions [22]. Therefore it is possible for us to remove brightness from the skin- 

color representation while preserving an accurate but low dimensional color information. In 

fact, a triple [r,g,b] in the RGB space represents not only color but also brightness. If the 

corresponding elements in two points, [ri,gi,bi] and [r2,g2,h], are proportional, i.e., 

:>=** (4) 
r2      #2      o2 



they have the same color but different brightness. The brightness can be removed from color 

space by normalization. Chromatic colors (r,g) [13], known as "pure" colors in the absence 

of brightness, are defined by a normalization process: 

R (5) [R + G + BV 

9     {R + G + B)' ( ^ 

In fact, (5) and (6) define an R3 —> R2 mapping. Color blue is redundant after the 

normalization because r + g + b = 1. It has been showed that the differences of the color 

distributions have been reduced after the normalization. In other words, skin-colors of 

different people are less variant in the normalized color space. This result is significant 

because it provides evidence of the possibility of modeling human faces with different color 

appearances in the chromatic color space. 

2.2     Skin-Color Representation 

We have so far revealed that human skin-colors cluster in the color space and are less variant 

in the chromatic color space. We are further interested in the representation of the skin- 

color distributions. However, the skin-color distribution is related not only to the skin- 

color, but also to the illumination color because only those colors can be reflected. For 

example, sunlight will shift color histograms towards blue because it contains more blue than 

fluorescent lighting. Therefore, it is impossible to characterize all the skin-color distributions 

using a fixed model. On the other hand, although skin colors of different people appear to 

vary over a wide range, it is possible to model the skin-color distribution of each individual 

under a certain lighting condition. Since the skin-color distribution has only two variables 

in the normalized color space, it is convenient to investigate it graphically. Figure 2 shows a 

skin color distribution of the image in Figure 1. 

(a) Global view (b) Local view 

Figure 2: Skin-color distribution of the image in Figure 1 in the normalized color space 



Moreover, we have found that the shape of the skin-color distribution of a person remains 

similar although there is a shift in the distribution under changing lighting conditions. By 

closely investigating the face color cluster, we have discovered that the distribution has a 

regular shape. By comparing the shape of skin-color distributions with a bivariate nor- 

mal distribution, it concludes that it is possible to use a bivariate normal distribution to 

characterize the skin-color distributions 

3     Quantitative Analysis and Goodness-of-Fit Test 

We present in this section the human face color data along with the quantitative analysis 

to determine its statistical distribution using goodness-of-fit techniques. We demonstrate 

that the composition of human skin-color distributions can be approximated by bivariate 

normal distributions as we have asserted earlier in the previous section. The data we used 

in this study are from a large pool (about one thousand) of color digital images collected 

from the public domain on the internet as well as those recorded in our multimedia lab. 

A large portion of our face database were down-loaded from http://pics.psych.stir.ac.uk/, 

which contains a collection of images for use in psychology and visual science research. We 

choose approximately seven hundred color images from this database that cover both both 

genders, a wide age range, and various lighting conditions. To compliment the shortcomings 

of these data, we also built a database in our own lab which contains facial images of people 

of the Caucasian, African American, and Asian races and of both genders, and the lighting 

intensity were varied to cover the most normal application conditions. 

3.1     Data Analysis 

We first investigate the problem of color space for representing human skin-colors. A digital 

color image is actually a two-dimensional array of pixels with a finite size, each of which is 

specified by a set of intensities for three independent colors, usually red, green, and blue. 

Although the three numerical values for the image coding could, in theory, be provided by 

a color specification system, a practical image coding system needs to be computationally 

efficient and cannot afford unlimited precision. In this work, we represent color in the RGB 

color space with 8 bits for each color band, i.e., there are 2563 bins into which a pixel may 

fall. Thus, a particular color is conveniently represented by a point in the color space whose 

axes corresponds to the intensity levels of each color: Red, Green, and Blue (see Figure 4). 

For each image, the sample data is collected from a region occupied mainly by the human 

skin, such as a subset frame shown in Figure 3. 



Figure 3:   This figures shows how the face color data is collected from the original digital 
image. 

3-D scatterplot 

Figure 4: This 3-D scatterplot displays all the colors that are present in 48 faces, which are 
taken as subsets from the original images. 

Figure 4 shows in the RGB space a typical aggregated color occurrence distribution from a 

random set of 48 human faces of various race, age, gender, and lighting conditions. Each point 

in the figure designates the presence of a particular color as specified by the corresponding 

coordinate values. The total number of images included in such a set is limited by the 

memory resource of the system associated with the statistical analysis software we used, and 

we did not attempt to migrate the computation to a more powerful machine because through 

experimentation, we found images beyond 20 adds little to the aggregated color pool. This 

attribute is further affirmed when we also analyzed several similar random sets of images 

and found no qualitative differences are found among them. As an example, the means and 



variances of each color for the set shown in Figure 4 are 

mgreen = 142.9157, 

mred = 188.9069, 

muue = 115.1863; 

Mgreen = 45.3306, 

sred = 58.3542, 

sbiue = 43.397. 

It is evident from these results that the color occurrences of all human faces under various 

lighting conditions (at least for all what we have collected, in which we carefully tried to 

cover most conceivable application scenarios) are well confined in a specific region in the 

color space. This property, as we have confirmed, is the foundation of skin-color modeling. 

Compared to the aggregated color distribution, colors from individual faces are expectedly 

more narrowly distributed, as shown in Figure 5.  The corresponding means and variances 

,1 

(a) Single face 3-D scatterplot (a) Single face 2-D scatterplot 

Figure 5: These scatterplot displays all the colors that are present in one face. 

of three examples are 

mgreen = 185.7177, 

mred - 234.2947, 

mbiue 

s 

sred = 26.7735, 

sbiue = 25.6779. 

Different people have different color appearances. This raises a question: can we reduce 

such differences in some way? While the RGB space represent the true color of the image, 

151.1090; 

green — 30.4088, 



it is not necessarily the best space for characterizing skin-colors. We hope to find a color 

space where the skin-colors are less variant. The skin-color appearance is related not only to 

the skin-color, but also to the illumination color. We want to minimize the effects from the 

illumination. An efficient way is normalization by Equation(5) and Equation(6). There is 

a two-fold benefit from this R3 to R2 mapping. First, it reduces the number of parameters 

needed for modeling skin-colors, resulting in a much less complex system. Second, the map- 

ping also reduces the variances of skin-color distributions, as is obvious from the comparison 

of the means and variance data for the 3-D case to the 2-D reduction: 

«Veen = 81.5879 

mred = 104.2225 

Sgreen = O.ooOO 

sred = 4.9317. 

(computed from the same data as shown in Figures 5). These attributes are essential to 

system performance and robustness. 

3.2     Goodness-of-fit Tests 

The remaining challenge is to determine what statistical distribution function best describes 

the data. We have observed that the skin-color distributions are Gaussian-like distributions. 

Unlike most of the methods used in engineering statistics assume a normal distribution of 

the measured data, we will examine whether the measured data of a sample do indeed have a 

normal distribution by goodness-of-fit techniques. Goodness-of-fit tests test the conformity 

of the observed data's empirical distribution function with a posited theoretical distribution 

function. 

Thus, we have a NULL hypothesis: 

human skin-color is normally distributed in a normalized bivariate space. 

Our task is to determine whether or not we can build up enough evidence to reject the 

hypothesis. We tested the hypothesis with more than a thousand images using the goodness- 

of-fit method, which is a widely used tool in the confirmatory statistical analysis that we 

need to accomplish. 

An immediate difficulty of the task is that there is no commonly agreed analytical tool 

available to test the normality of a bivariate distribution [25]. Since the marginal distribution 

of a bivariate normal must also be normal, it would be efficient that we test for marginal 

distributions first.   If the test fails at this level, we would know that the data cannot be 



bivariately normal and the NULL hypothesis should be rejected. It would thus save us the 

trouble of further bivariate level tests. 

To perform marginal normality test, we deal with each variable separately as if there is 

no other variables. For such one dimensional normality test, a few goodness-of-fit techniques 

exist, and we employ here the most popularly used Quantile-Quantile plot (or Q-Q plot) 

graphical technique due to its straightforwardness and simplicity. Given a set of n sample 

data, the quantiles are the same data ordered from the smallest to largest. Corresponding 

to each of the data point, its order position (e.g. zth) in that data set is associated with a 

cumulative percentage (called p value) in the occurrence distribution of that data (i — 0.5)/n 

( the interested readers are referred to textbooks on the subject, e.g. [25].) 

Once the data are ordered in place and with each p value calculated, the corresponding 

variable value of an ideal normal distribution can be computed by numerically solving the in- 

verse function of the cumulative normal distribution, whose mean and variance are estimated 

from the data. Hence a one-to-one match between the test data and theoretical data can be 

constructed. These matches can be plotted together on a standard normal distribution scale. 

The deducted normal distribution would show up as a straight line with its intercept and 

slope valued according to the group's mean and variance, and if the tested data is indeed 

normally distributed, the data points should basically match the line. 

Plots in Figures 6 are the marginal Q-Q plots of Asian, African American, and Caucasian 

races, respectively. Because of the limitation of the space, we show here only an extremely 

small selection of our results that capture the major features of the several hundred plots we 

have produced during this analysis. While the intercepts and slopes of the lines are different 

(expectedly, for different people and lighting condition) from plot to plot, all the plots have 

most of the data points fall on or scattered closely nearby these lines. 

These figures demonstrate that our data can be said to be at least marginally normal, 

and thus we have failed to reject the NULL hypothesis that states that the face color data 

satisfies the normal distribution by marginal normality tests. 

Having passed the marginal tests, we need to further verify the bivariate normality. A 

relatively simple and effective way to determine deviations from the normal distribution is 

the 2-dimensional Quantile-Quantile plot (Q-Q plot) method. It is based on the fact that, 

for normally distributed multivariate vector data x of dimension n, the transformation [24] 

(x-//)'5]-1(x-yu) = u'u (7) 

where /j, is the mean and S the dispersion matrix: 

£ = E[{x-E(x)}{x-E(x)}']. 

10 



fa) Red data, of an Asian (b) Green data of an 
Asian 

(c) Red of an African 
American 

(e) Red of a Caucasian (f) Green of a Caucasian 

Figure 6: The marginal q-q plot for the face colors of three different races. 

(d) Green of an African 
American 

results in the square of a standard normal u, i.e. u ~ N(0, /„). Since ufu = J27=i ul 1S tne 

sum of n independent N(0,1) variates, therefore 

z = (X-JU/E-^X-//) li'fi (8) 

has a x2 distribution with n degrees of freedom. We can thus test the normality of x by 

testing 2,-'s to the \\ distribution. 

The graphic testing procedure is as the following: similar to the marginal normality 

testing procedure, we first calculate 2;'s and sort them in the increasing order. Corresponding 

to each of the data point, its order position (e.g. ith) in that data set is associated with a 

cumulative probability (called p value) of (i — 0.5)/n (e.g. [25]). 

The quantile of the distribution is computed by numerically solving the inverse function 

of the cumulative distribution function at each specified probability point. Thus if 2,'s are 

truly independent observations from a xl distribution (in our case n = 2), then the plot of 

Zi against the x\ quantiles should yield a straight line. 

Plots in Figure 7 shows the Q-Q plot against x2 distributions of 2 degree of freedom for 

face colors of Asian, African, and Caucasian races respectively. The result does not display 

any evidence of a significant deviation of our data from the line, and we can safely assert 

11 



(a) Asian (b) African American (c) Caucasian 

Figure 7: The \2 test f°r tne bivariate data of the face color for three races. 

that our tests failed to reject the NULL hypothesis; thus normality can be assumed for the 

any formal applications and analysis of the data. 

Having confirmed that our color data basically follows a normal distribution, however, we 

also can notice that the deviation from the straight line is sometimes significant, especially 

at the lower end of the line. These phenomena indicates there are some outliers in the data. 

The reason, in our belief, is partly contributed to by the rounding of the color values to an 

8-bit integer (between 0 and 255), and it may be verified only by increase the the number 

of bits for each color. Another major cause of deviation from normality is the cosmetic 

makeups on the faces, which makes a particular color predominantly strong and the thus the 

distribution would have a diminishing "shoulder." 

4    Maximum Likelihood Adaptation 

We have verified that under a certain lighting condition human skin-colors can be charac- 

terized by a multivariate normal distribution, i.e., N(fi, S), where JJL — (r,g) with 

N N 

= »£T< 9 = -üY,9i, 
iV i=i 

and 

S 
gr 

•rg 

'99 

(9) 

(10) 

A direct application of the skin-color model is to locate a face in an image. A straightforward 

way to locate a face is to match the model with the input image to find the face color 

clusters. Each pixel of the original image is converted into the chromatic color space and 

then compared with the distribution of the skin-color model. Since the skin colors occur in 

a small area of the chromatic color space, the matching process is very fast. This is useful 

for real-time face tracking.  Figure 8 b is an example of color segmentation for Figure 8 a 

12 



image using the skin-color model. Pixels with a high gray-scale value in Figure 8 correspond 

to frequently occurring skin colors. Although the skin-color region contains the eyes and the 

lips as well as background, there is little difficulty to locate a face based on the result of 

Figure 8. 

■ 

ityy 

mm 

*■•■ 

(a) Original image (b) Segmented face 

Figure 8: An example of face segmentation by skin-color model 

Although under a certain environment the skin-color distribution of each individual is 

a multivariate normal distribution, the parameters of the distribution for different people 

and different lighting conditions are different. A number of viewing factors,' such as light 

sources, background colors, luminance levels, and media, impact greatly on the change in 

color appearance of an image. Most color-based systems are sensitive to changes in viewing 

environment. Even under the same lighting conditions, background colors such as colored 

clothes may influence skin-color appearance. Furthermore, if a person is moving, the appar- 

ent skin-colors change as the person's position relative to camera or light changes. Therefore, 

the ability of handling lighting changes is the key to success for a skin-color model. 

There are two schools of philosophy to handle environment changes: tolerating and adapt- 

ing. Color constancy refers to the ability to identify a surface as having the same color 

under considerably different viewing conditions. Although human beings have such ability, 

the underlying mechanism is still unclear. A few color constancy theories have demonstrated 

success on real images [23]. On the other hand, the adaptive approach provides an alterna- 

tive to make a color model useful in a large range. Instead of emphasizing the recovery of 

the spectral properties of light sources and surfaces that combine to produce the reflected 

lights, the goal of adaptation is to transform the previously developed color model to the 

new environment. 

In this report we present a method to adapt the skin-color model. The basic idea is to 

use a linear combination of the known parameters to predict the new parameters. Suppose 

that X has a multivariate normal distribution. If Y = BX is any linear transformation of 

13 



X, where B is an (m x p) matrix of real numbers with m < p and rank ra, then Y also has a 

multivariate normal distribution. Based on the identification of the skin-color distribution at 

each sampling point, we can obtain its mean vector and covariance matrix. We can consider 

this set of parameters is a linear combination of the past r sets of parameters, such that 

fi = Y1 akmk, 
k=\ 

where fi is the estimated mean vector; a4- < 1, k = 1, 

k = 1,..., r, are the previous mean vectors. 

(11) 

r, are weighting factors; m^, 

s Eft5*» 
k-i 

(12) 

, r, are weighting factors; Sk, where £ is the estimated covariance matrix; ßk < 1, k = 1,. 

k = 1,..., r are the previous covariance matrices. 

The weighting factors in (11) and (12) determine how much the past parameters will 

influence current parameters. We then use this set of coefficients to predict the new parame- 

ters. We will use the maximum likelihood criterion to find the best set of coefficients for the 

prediction. Since we have verified that the skin-color distribution is a normal distribution, 

The likelihood function of N observations on X = (xi,X2) in the normalized bivariate color 

space is 

L = 
1 

(27r)"|£| 
[N 

exp 
1 N 
^(xk-zO'S-^Xk-ji) (13) 

The logarithm of the likelihood function is 

log! = -iVlog(27r) - -iVlog 
N 

-XXxk-zO'E-^Xk-jO. (14) 
k=i 

Since log L is an increasing function of L, its maximum is at the same point in the space 

of /i as the maximum of L. 

Let the sample mean and variance be 

1 N 

iv k=l 

/l w     \ 

k=\ 
1     N 

N 1 (7 = ^I^(xk-Ä)(xk-x)' 

(15) 

(16) 
k=i 

14 



We have 
N 

£ (xk - fi)(xk - fi)' = NC + N(x - //)(x - fi)'. (17; 
A—1 

Using this result and the properties of the trace of a matrix we can rewrite (14) as 

1„     „   ,„      1 
M  lr,(T    V-1    _ 

2 

We will use (18) to derive the maximum likelihood equations. We will discuss two cases: (1 

adapting mean vector only; and (2) adapting both mean vector and covariance matrix. 

log L = -N\og(2n) - ^N log |S"x | - l-Ntr Z~lC - ^N(5L - ^'ST^x - p). (18) 

4.1     Mean Vector Adaptation 

In this case, the covariance matrix is assumed to be a constant and the mean vector \i is 

assumed to be a linear combination of the previous mean vectors 

r 

fi = Y^ akmk, 
fc=l 

V _ v 

where fi is the estimated mean vector; ak, k =  l,...,r, are unknown coefficients; Elk, 

k = 1,..., r, are the previous mean vectors; X is the covariance matrix. 

By setting the derivatives of the likelihood function (18) with respect to ak, k — 1,..., r, 

to 0, the equations for the maximum likelihood estimates are 

^mj'S^mica^mj'E-1*,    j = l,.--,r (19) 

r 

If ^2 mj'S_1nik / 0, j= 1, ..., r, we have 
fc=i 

N 

api^raj'S-'mkj-'m/S-'x,    j = l,..-,r (20) 

4.2    Mean Vector and Covariance Matrix Adaptation 

In this case, the mean vector is assumed to be a linear combination 

r 

fi = Y1 afcmk, 
fc=l 

and the covariance matrix is assumed to be a linear combination 

t = J2ßkSk, 
k=i 
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w here ß is the estimated mean vector; ak and ßk, k = 1,..., r, are unknown coefficients; 

nik, k = 1,..., r, are the previous mean vectors; S is the estimated covariance matrix; and 

Ski k = 1,..., r are the previous covariance matrices. 

Since the two sets of estimates are asymptotically independent, each set of parameters 

can be estimated as when the other set of parameters is known. ak, k = 1,... ,r, can be 

estimated by (19). We will derive the maximum likelihood estimates for ßk, k = 1,..., r, by 

the same likelihood function (18). Because E-1 is positive definite, (18) is maximized with 

respect to hi at ß = x. The logarithm of the reduced likelihood function is then proportional 

to 

(21) - log(2yr) - log s-1 
-tvYrxC. 

By differentiating (21) with respect to ßk, k = 1,..., r, we have 

L S_1 -    S-^-E-1, j = h---,r, (22) 
op, 

and 
9   log |E| = tr E-1^- j = 1,... ,r. (23) 

The derivatives of (21) are —tr S-1^- + tr Y>~1SjY,~1C, and the maximum likelihood 

estimate equations are 

tr (ZßkSky'Sj = tr {JZßkSkY'S^ßkSkT'C,   j = l,...,r. (24) 
k=\ k=i k=i 

The maximum likelihood estimation problem for the multivariate normal distribution 

with linear structure of mean vector and covariance matrix has been studied by many re- 

searchers [26, 27, 28, 29, 30]. In general explicit solutions for the equation (24) do not exist 

and estimates must be performed by iterative numerical techniques. In the following we 

present an algorithm based on the estimate procedure proposed by Anderson [28]. 

The basic idea of the algorithm is to iteratively estimate two sets of parameters indepen- 

dently. In order to iteratively estimate a)*' and ß%\ where the superscript (i) denotes the 

zth iteration, we can rewrite (24) as 

£ tr (t^y'S^-^r'Skß^ = tr (Efr--1))-1^«'-1))-1^«    j = 1, ■ • • ,r,       (25) 

The initial values of a{0) and ß[°\ k = 1,. . ., r are obtained by setting £<0) to identity matrix 

/. The iteration proceeds by estimating parameters in the order of ak,k = l,...,r, ß, 

C, ßk,k = l,...,r, and E. The iteration is terminated if a\\k = l,...,r do not differ 

significantly from ak    \k — 1,...,r. The algorithm is as follows. 
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Algorithm 

1. Initialization 

a3 

r 
(0) E nij'mk)  ^Hj'x,   j = 1,..., r, 

k=\ 

ßj{0) = E "i°)mk,   3 = 19 • • •, r, 
k=\ 

C{0) = ^ E (xk - x)(xk - x)' + (xk - £W)(xk - /}<0>)' 
^ k=\ 

E tr S3Skßk
(0) = tr SjCW,   j = 1, • • •, r, 

s(0) = EÄ(0)5fc, 
fc=i 

2. Iteration 

k-l 

«i° = (E m/^''-1))-^)-^'^*'-1))-1*,   J = 1,.. •, r, 

r 

/V° = E4°mk,   j = l,...,r, 
fc=i 

TV 

C(l) = ^ E (xk - x)(xk - x)' + (xk - /}«)(xk - A(i))' 
^ fc=l 

fe=i 

Jk=l 

3. If max(|/?-^ - /3Jt_1^|, j = 1,..., r) < e for a small number e > 0, stop; otherwise goto 

step 2. 

It has been shown that the solution of these estimation equations is asymptotically effi- 

cient provided that estimate of X is consistent [28]. 
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4.3     Applications 

The adaptive skin-color model has been applied to many applications. The model plays a key 

role in the real-time face tracker [6, 7]. The system has achieved a rate of 30+ frames/second 

with 305 x 229 input sequences of images on both HP and Alpha workstations. The system 

can track a person's face while the person walks, jumps, sits and rises. The QuickTime 

movies of demo sequences in different situations and on different subjects can be found in 

the web site http://www.is.cs.cmu.edu/. The skin-color model has also been applied to other 

applications such as tele-conferencing [31], gaze tracking [32], and lip-reading [33]. 

5     Conclusions 

We have proposed a statistical skin-color model for tracking human faces in real-time. We 

have shown that differences of skin-color appearances of different people can be reduced by 

normalization by data analysis. Using goodness-of-fit techniques, we have further verified 

that the skin-color distribution of each individual under a certain lighting condition can 

be characterized by a multivariate normal distribution. Based on these results, we have 

proposed an adaptive skin-color model to characterize human faces different views under 

different lighting conditions. We have used a linear combination of the known parameters 

to predict or approximate new parameters. The maximum likelihood method has been used 

to estimate the coefficients of the linear transformation. We have investigated two cases: 

estimating mean vector only and estimating both mean vector and covariance matrix. In 

the later case, an iterative algorithm has been employed to obtain the optimal coefficients. 

The feasibility of the model has been demonstrated by a real-time face tracker and other 

applications in human computer interaction. 
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