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1    Introduction 

In addition to requirements such as strength, stiffness, and aeroelastic response it is necessary 
to design both metallic and composite aircraft structures to withstand the effects of damage. 
By doing so, safe, economical fleets with high operational readiness can be insured. The 
importance of safety and operational readiness to profitability and competitiveness in a 
commercial aviation setting and national defense in a military one is apparent. To insure 
that metallic aircraft structures are designed and maintained to withstand the effects of 
damage, the Federal Aviation Administration (FAA) and United States Air Force (USAF) 
have established specific guidelines which must be followed. The FAA requires commercial 
transport aircraft certified under part 25 of the Federal Aviation Regulations (FAR) to meet 
certain Damage Tolerance Requirements (DTR). Similarly, the USAF has specified a set of 
DTR for metallic structures which are described in detail in MIL-STD-1530A. For composite 
structures, the FAA does not have formal requirements for certification at this time. The 
Air Force, on the other hand, has specified a set of DTR for composite structures in AFGS- 
87221A. The DTR, as set forth by both the FAA and the Air Force, essentially state that: 

• the residual strength of an airframe structural component shall not drop below that 
required to sustain limit load, and 

• that inspections must be scheduled to insure that the required level of residual strength 
is maintained. 

The primary means by which the DTR are satisfied by commercial and military air- 
frame manufacturers and maintenance organizations is through the performance of a Damage 
Tolerance Assessment (DTA). The DTA involves the development of damage growth curves 
and residual strength diagrams for individual structural components of an airframe. This 
allows the residual strength as a function of aircraft usage to be determined. With this in- 
formation, manufacturers can design components which minimize the evolution and growth 
of damage and its effect on the integrity of the aircraft structure. Further, appropriate in- 
spection intervals can be specified which insure that the structural integrity of the aircraft 
will be maintained through out its life. 

At present, there is no software which integrates damage tolerance with the other 
disciplines (i.e. strength, stiffness, aeroelastic response, etc.) which impact the design of 
an aircraft structure. As a result, the design of an aircraft structure which satisfies damage 
tolerance requirements in addition to those of other disciplines, is presently accomplished 
via a manual "cut and try" procedure. This type of design process is time consuming and 
therefore very costly [Nees (1995)]. To address this deficiency in existing software, this SBIR 
project is implementing a damage tolerance module into the multidisciplinary analysis and 
design software, ASTROS. 

Phase I of this SBIR project has addressed the damage tolerance analysis of aircraft 
structures made of laminated composites. The damage considered was in the form of a 
delamination between lamina in a stiffened panel. The Phase I effort accomplished the 
following. 



• A damage tolerance software applicable to laminated composites, called BUCKDEL, 
was developed. The BUCKDEL software, performs geometrically nonlinear analysis 
of stiffened laminated composite plates with and without delaminations. BUCKDEL 
allows the user to perform: a linear static solution; a linear buckling (eigenvalue) anal- 
ysis; and a nonlinear post-buckling analysis through both limit and bifurcation points. 
BUCKDEL also calculates the pointwise energy release rates around a delamination 
front using an Equivalent Domain Integral (EDI) technique. The energy release rates 
can be used to predict the growth and onset of unstable propagation of a delamination. 

• The feasibility of using a global-local approach to link an ASTROS finite element 
analysis (global) with a local damage analysis (such as that performed by BUCKDEL) 
was investigated. This global-local approach was found to be workable, due in large 
part to the ASTROS system architecture which allows the user to introduce special 
purpose modules by making use of the SYSGEN program which is provided with 
ASTROS. 

Based on the Phase I results, the implementation of a damage tolerance module into ASTROS 
which accounts for typical damage in both composite and metallic structure is feasible. The 
remainder of this report will describe how the implementation of the damage tolerance 
module will be carried out. In addition, Users and Theory Manuals for BUCKDEL are 
included with this report. The BUCKDEL software represents a component of the damage 
tolerance module. 

2    SBIR Technical Objectives 

The objective of this SBIR project is to develop damage tolerance software which can be 
used in a 'stand alone' mode or as an analysis module in the multidisciplinary analysis and 
design software, ASTROS. The software will use state of the art, computationally efficient 
algorithms for determining the residual strength and life [Atluri (1995)] of metallic and com- 
posite structures with damage. When used as an analysis module, it will enhance the existing 
capabilities of ASTROS by allowing constraints based on damage tolerance requirements to 
be considered simultaneously with those based on strength, stiffness, aeroelastic response, 
etc. during design optimization. Included in potential commercial applications of such a 
capability are industries involved in the design of aircraft structures, automobiles, bridges 
and buildings. 

ASTROS is well suited for modeling global strength, stiffness, and aeroelastic response 
of undamaged, stiffened structure. However, it presently does not have the capability to 
account for local damage such as cracks, delaminations, and penetration holes. Therefore, 
this SBIR project will: 

• utilize ASTROS existing capabilities for performing global level modeling of the struc- 
ture; 



• 

utilize an existing loads program called USAGE [Nees (1995)] to general load spectra 
in terms of ASTROS load cases; 

develop a finite element based damage tolerance module to model local damage in 
metallic and composite materials; 

• develop interface software to facilitate the linking of ASTROS with the damage toler- 
ance module via the SYSGEN program and a modified MAPOL sequence. 

• define new bulk data entries, relational schema and error messages needed to integrate 
the damage tolerance module with ASTROS. 

To supplement the finite element based damage tolerance module, the SBIR project will also 
develop 'look up' tables containing cataloged solutions (i.e. stress intensity factors, energy 
release rates, etc.), which can be used to obtain estimates of the residual strength and life 
of common structural geometries. In addition to saving computational time, these 'look up' 
tables can be used to provide sanity checks on the finite element calculations. 

The damage scenarios that will be considered in the damage tolerance module are: 

• single or multiple skin cracks (Widespread Fatigue Damage) in a stiffened structure, 
including the effect of broken stiffeners (Fig. 1) [tensile loading, metallic and composite 
materials]; 

• skin crack turning at stiffeners and its effect on fail safety [tensile loading, metallic and 
composite materials]; 

• single or multiple part elliptical surface flaws at holes or other stress raisers (Fig. 2) 
[tensile loading; metallic materials] 

• arbitrary shaped holes (Fig. 3)[compressive loading, metallic and composite materials]; 
and 

• arbitrary shaped delaminations (Fig. 4)[compressive loading, composite materials]. 

For each damage scenario, the ability to calculate the residual strength of a structure con- 
taining that type of damage will be provided in the damage tolerance module. A residual 
life (fatigue) capability will be provided for elliptical surface flaws and skin cracks which 
propagate in a self similar manner. The damage tolerance module will also evaluate DTR 
imposed design constraints and constraint sensitivities for use by the optimization routine 
in ASTROS. 

For metallic or composite aircraft structure loaded in tension, the damage of principal 
interest during design is usually in the form of cracks normal to the direction of principal 
tension. These cracks typically occur over time due to fatigue or suddenly due to an event 
such as an uncontained failure of a rotating engine component or battle damage. A crack 
arising suddenly due to a catastrophic event is an example of discrete source damage (DSD). 
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Figure 1: Central Crack and Broken Stiffener in a Panel 

Figure 2: Failed Lower Wing Panel of a U.S. Air Force C-141B Due to the Growth of a 
Surface Flaw 
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Figure 3: Hole in the Upper (Compression) Skin of a Wing 

Figure 4: Delamination Due to Impact of a Laminated Composite 



In reality, DSD in a structure loaded in tension such as a fuselage or lower wing would 
be in the form of an irregular shaped hole. However, since a crack of length V is more 
critical than a hole of diameter V, the crack representation of DSD represents a worst case 
scenario. Therefore, for reasons of conservatism and practicality (both experimental and 
analytical) the crack is used in the certification of primary structural elements loaded in 
tension. Residual strength and life calculations for structure containing cracks and loaded 
in tension will be based on Linear Elastic Fracture Mechanics (LEFM). Thus, the parts of 
the damage tolerance module which address cracked structure will compute stress intensity 
factors and their sensitivities to changes in the design variables. These values can then 
be used to evaluate constraints based on residual strength requirements. For constraints 
based on residual life (fatigue) requirements, computed stress intensity factors will be used 
in crack growth equations to determine the time required for a crack or cracks to grow to 
a critical size. The critical size is determined from a residual strength requirement such as 
that requiring the structure to be able to sustain limit load at any time in its life. 

For metallic or composite aircraft structure loaded in compression, the primary concern 
is with DSD in the form of a hole or crack parallel to the direction of principal compression. 
For laminated composites, delaminations between lamina are also of concern. Delaminations 
can result from excessive interlaminar shear stresses or through-the-thickness tensile stresses 
at holes, free edges, section changes, or in bonded joints; panel buckling; and low velocity 
impact. The modeling of delaminations in laminated composites was addressed in Phase I 
and resulted in the development of the BUCKDEL software. The residual strength of struc- 
ture loaded in compression will be based on the buckling and post-buckling behavior of the 
structure. For laminated composites containing delaminations, the pointwise energy release 
rate around the delamination front will also be used in the residual strength prediction. 

The motivation for modeling DSD in a structure loaded in compression in the form of 
a hole or crack parallel to the direction of principal compression is as follows. For a stiffened 
structure, the buckling load is expected to vary significantly with the size, shape (i.e. circular 
or elliptical), and location (i.e. distance from the wing tip) of the hole. Some results reported 
in the literature [Vellaichamy et. al (1990), Nemeth (1990), and Britt (1994)] indicate, as 
is to be expected, that for an elliptical hole with the major axis along the direction of 
compression, the initial buckling load is lower than that for a circular hole of the same area. 
Similarly, if a panel is subject to pure shear in the x-y plane, the shear buckling load will be 
minimum when the major axis of the ellipse is at 45 degrees to the x axis. The buckling load 
will decrease with an increase in the aspect ratio of the ellipse. The most severe case being 
in the limit when the ellipse degenerates into a crack (with the crack axis along the direction 
parallel to the direction of compression). Based upon this discussion, it is anticipated that 
the worst case DSD scenario for primary structure loaded in compression will be a crack 
oriented such that its axis is parallel to the direction of maximum compressive stress. 



3    Implementation of the Damage Tolerance Module 

3.1    Damage Tolerance Analysis of Stiffened Structure, Using a 
Global-Local Methodology 

The method for calculating the residual strength and life of a stiffened structure made of 
metallic and/or composite materials is to use a global-local methodology. The global analysis 
will be accomplished via ASTROS while the damage tolerance module will be used for the 
local analysis. To illustrate this methodology, consider the case of a wing containing a crack 
in the skin of the lower surface [Fig. 5]. (Note that the methodology is general in nature 
and can be used for structure containing damage in the form of penetration holes and/or 
delaminations.) A coarse finite element mesh is first used to model the global behavior of 
the cracked wing. The traction and/or displacement boundary conditions to be applied to 
the local model are determined from the results of the global analysis. These boundary 
conditions include the reaction forces, exerted by the stringers and ribs, on the skin. The 
Finite Element Alternating Method (FEAM) is used in the local analysis to determine the 
stress intensity factors. The FEAM allows a coarse finite element mesh to be used for the 
local model of the skin because the crack tip fields are captured by an analytical solution and 
thus cracks need not be modeled explicitly in the mesh. The FEAM along with the other 
local damage modeling methodologies to be implemented in the damage tolerance module 
will be discussed in detail in later sections. 

In the global analysis, the stringers are modeled as beams (ASTROS CBAR elements) 
attached to the skin (ASTROS CQUAD4 or CTRIA3 elements), and ribs are modeled as 
plates (ASTROS CQUAD4 or CTRIA3 elements) or shear panels (ASTROS CSHEAR ele- 
ments), as illustrated in Fig. 6. To account for fastener flexibility, springs (ASTROS CELASl 
or CELAS2 element) can be used to model connections between stiffening elements and the 
skin. This level of detail in the global model should be sufficient for most situations. How- 
ever, the user is free to either decrease or increase the complexity of the global model, within 
the limits imposed by the modeling capabilities of ASTROS. 

Damage in the form of delaminations typically need not be accounted for in the global 
model. On the other hand, damage in the form of cracks or penetration holes does need to be 
accounted for if it is of sufficient size to affect load transfer in the structure. To accomplish 
this, holes are modeled explicitly (as holes) while cracks are modeled via unconnected nodes 
at the crack locations. This crude representation of the crack in the global model reflects the 
loss of stiffness in the structure, so that the redistribution of loads among the skin, stringers 
and ribs can be captured. Broken stringers and ribs, if any, are also accounted for in a similar 
manner. The details of the crack tip fields are ignored at this level of analysis. The global 
analysis results are used to construct a free-body diagram (Fig. 7) of the cracked sheet (local 
model), with the applied loading on the sheet being the reaction forces from stringers and 
ribs as well as the loading on the periphery of the sheet. 

For problems involving fatigue where the crack is of sufficient size that it must be 
accounted for in the globlal model, it will be necessary to update the crack size periodically. 

7 
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This will allow changes in the load distribution to be determined and the boundary conditions 
applied to the local model to be updated. In general, the same global model can be used for 
a number of local analyses. The SBIR project will automate this updating of crack size in 
the global model. 

During the course of the Phase I project, the possibility of using an intermediate analysis 
between the global and local analysis was considered. The intermediate analysis would 
provide an additional level of detail which in some cases, may improve the fidelity of the 
local boundary conditions. The global-local approach was settled upon over the global- 
intermediate-local approach for two reasons. First, since ASTROS is primarily a preliminary 
design tool, the geometric details required to do the finite element modeling of stiffeners and 
fasteners at the intermediate level may not be available at this design phase. Second, the 
additional computational burden imposed by the intermediate analysis would likely slow 
down the ASTROS iterative design process. This would be of particular concern during 
the design of a structure such as a wing in which damage related constraints were being 
considered in multiple panels. 

3.2    Damage Tolerance Module 

The finite element based damage tolerance module for modeling local damage will implement 
the following computational methods: 

• Finite Element Alternating Method [Wang and Atluri (1996)] for modeling single or 
multiple cracks (including Widespread Fatigue Damage) under tension loading; 

• hybrid crack-tip finite elements [Atluri (1986)] for modeling single or multiple cracks 
under tension loading and crack turning at a stiffener; 

• Finite Element Alternating Method for modeling single or multiple part elliptical sur- 
face flaws at holes or other stress raisers [Nishioka and Atluri (1983)]; and 

• a multi-domain modeling method (implemented in BUCKDEL during Phase I) for 
calculating the buckling and post-buckling strengths of stiffened panels with arbitrary 
shaped holes and/or delaminations. 

This module, when combined with ASTROS will provide a global-local methodology for 
modeling damage in a complex stiffened structure. This will allow residual strength and 
residual life (fatigue) constraints stemming from the DTR to be treated by ASTROS dur- 
ing multidisciplinary design and optimization. In addition to finite element based damage 
modeling, 'look up' tables containing cataloged solutions will provide a means of treating 
problems involving common geometries as efficiently as possible as well as a convenient way 
of checking the finite element calculations. 

10 
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Figure 8: Superposition Principle Used in the Finite Element Alternating Method 

3.2.1    Finite Element Alternating Method For Modeling Single or Multiple 
Cracks: Tensile Loading 

Once the global analysis is performed with ASTROS, one can consider the free-body diagram 
of the cracked skin alone (see Fig. 7); the skin being subjected to far-field tractions, and the 
stiffener reaction forces. The stress-intensity factors for single or multiple cracks (including 
Widespread Fatigue Damage) in the skin can be determined in the local analysis using the 
Finite Element Alternating Method (FEAM), while still using a coarse finite element mesh. 
The problem in Fig. 7 can be solved with the FEAM depicted in Fig. 8, wherein it can be 
seen that the problem of Fig. 7, can be identified with the problem labeled as the "original 
problem" in Fig. 8. 

The FEAM is based on the Schwartz-Neumann alternating method (see the Appendix 
for theoretical details). The combination of the powerful finite element method, and the 
analytical solutions for cracks in an infinite domain, subjected to arbitrary crack surface 
tractions (that have only recently been developed), enable the alternating method to be used 
to solve fracture problems for complex structures. With the help of the initial stress method, 
it can even be used in elastoplastic analyses [Wang, Brust and Atluri (1995a), (1995b), and 
(1995c)]. It has been used successfully in the evaluation of residual strength and life of 
cracked metallic and composite structures. The Finite Element Alternating Method solves 
the problem of cracks in finite bodies by iterating between the analytical solution for an 
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embedded crack in an infinite domain, and the finite element solution for the uncracked 
finite skin. Essentially, it is a fixed point iteration scheme which solves the superposition of 
the following two problems[see Fig. 8]. 

1. the uncracked, finite-sized skin subjected to external loads (including the reaction 
forces exerted by the stiffeners on the skin) and unknown external boundary loads; 

2. a crack in an infinite sheet subjected to a crack surface traction 

The crack surface traction in the infinite sheet cancels out the cohesive traction at the 
location of the crack in the first problem; while the unknown external boundary loads in the 
first problem cancel out the tractions at the same location in the second problem. Thus, 
the original problem, i.e. a cracked sheet of a finite dimension subjected to reaction forces 
exerted by the stiffeners with other boundary loadings, is exactly the superposition of these 
two problems. 

The FEAM is used to solve this superposition problem. First, reverse the cohesive 
tractions at the location of the crack in the finite element model of the uncracked skin and 
use them as the load acting on the crack in an infinite sheet. Then, reverse the residuals at 
the locations of the far field boundries in the infinite sheet and apply them as loads acting on 
the boundaries of the uncracked skin. In this way, the cohesive tractions at the location of 
cracks and residuals at the locations of the external boundaries are corrected iteratively. This 
procedure converges very fast, usually in two or three iterations. A flow chart illustrating 
the FEAM is shown in Fig. 9. 

Fracture mechanics parameters can be found accurately because the near crack tip fields 
are captured exactly by the analytical solutions. Coarser meshes can be used in the finite 
element analysis because the cracks are not modeled explicitly. The finite element method 
is only used to compute the cohesive tractions at the crack location, which has a smooth 
distribution. Therefore, a very coarse mesh can be used. Fig. 10 shows the typical finite 
element meshes around the crack tip, when a) the Equivalent Domain Integral (EDI) based 
method is used to evaluate stress intensity factors; or, b) the FEAM is used. In Fig. 10, the 
EDI based method also uses singular quarter-point elements. The simplicity of the FEAM 
mesh relative to the EDI mesh, which must explicitly model crack tips is apparent from this 
figure. 

In a parametric analysis of various crack sizes, such as is necessary in fatigue calcu- 
lations, the stiffness matrix of the finite element model is decomposed only once, since the 
stiffness of the uncracked structure remains the same for all crack sizes. In the other ap- 
proaches, such as those using singular/hybrid type special crack-tip finite elements or EDI 
methods, the cracks must be modeled explicitly. Therefore, the global stiffness matrix must 
be computed and decomposed for each crack size. Thus, the FEAM is very efficient in 
terms of both computational time and human effort (i.e. mesh generation) when applied to 
problems such as fatigue crack growth. 

Finally, it is noted that a simple superposition method can be used to construct the so- 
lution for multiple cracks in an infinite domain, subjected to arbitrary crack surface tractions, 
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 I  
Solve the uncracked body under external 
loads using the Finite Element Method 

Compute cohesive tractions at crack 
locations using the FEM solutions 

Calculate crack surface loads on 
single cracks in infinite domains 

Calculate the K-factors for all 
crack tips using analytical solutions 

Calculate residuals on external boundaries 
 due to the analytical solutions 
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Add all K-factor solutions 
of all iterations 
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Figure 9: Flow Chart of the Finite Element Alternating Method 
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(a) (b) 

Figure 10: The Finite Element Mesh When a) The EDI Method is Used; b) The Finite 
Element Alternating Method is Used 

using the solution for a single crack in an infinite domain (see the Appendix for theoretical 
details). With the solution for multiple cracks in an infinite domain, the FEAM can be used 
to solve problems of multiple cracks with arbitrary crack lengths and orientations at arbi- 
trary locations. This is particularly useful in the treatment of Widespread Fatigue Damage 
(WFD). 

3.2.2 Hybrid Crack-Tip Finite Elements for Modeling Skin-Crack Turning at 
Stiffeners: Tensile Loading 

In assessing the integrity of a structure containing a crack, accurate evaluation of fracture 
parameters (i.e. stress intensity factors) is required. If the finite element method is used 
for such purposes, proper numerical modeling of the crack-tip singularities is necessary. An 
alternative to the Finite Element Alternating Method is to use singular/hybrid crack-tip 
finite elements.   The use of these special elements enables one to use a relatively coarse 
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finite element mesh around the crack tips; as compared to the very fine and focused mesh 
when ordinary, non-singular finite elements are used. However, explicit crack-tip meshing 
must still be carried out and hence this method requires considerable human effort in the 
construction of meshes as compared to the FEAM. 

The hybrid crack element can be used to analyze general anisotropic materials. Hybrid 
multilayer elements [Nishioka and Atluri(1980)] can be used to study complex, non-self- 
similar crack growth in composite structures. While self-similar crack growth in a homo- 
geneous anisotropic sheet, can be studied easily using the FEAM, the FEAM cannot be 
applied to non-self-similar crack growth. Thus the hybrid crack element will be used in the 
SBIR project to handle problems involving non-self-similar crack growth. In hybrid multi- 
layer elements, the fully three dimensional stress-state, including <733 is accounted for. The 
mixed-mode stress and strain singularities whose intensities vary within each layer (or a 
group of layers in a repeated lay-up sequence) near the crack-front, are built into the formu- 
lation a priori. The interlayer traction reciprocity conditions are satisfied through the use 
of Lagrange multipliers and individual cross-sectional rotations of each layer are allowed. 

In aircraft design, the problem of crack-turning near a stiffener is of particular interest. 
This is desirable in most situations as it acts as a form of crack arrest. In fact, most 
aircraft structures are designed with this fail safe feature. The analysis of crack turning at 
a stiffener will be handled in the damage tolerance module by using the hybrid crack-tip 
element method. If a crack approaches the stiffener at right angles, the T-stress at the crack 
tip plays an important role in postulating a criterion which will predict whether the crack 
will turn along the stiffener. During the process of crack-turning, the hybrid crack elements 
will be used near the tip of the curving crack, to evaluate the condition for the continued 
turning of the crack. A constraint based on the T-stress at the crack tip will be introduced 
in order to account for this crack-turning criterion in the ASTROS design iteration. 

3.2.3    Finite Element Alternating Method for Modeling Single or Multiple Part 
Elliptical Surface Flaws at Holes or Other Stress Raisers: Tensile Loading 

The Finite Element Alternating Method for through skin cracks has already been described. 
The application of the FEAM to surface cracks is similar. In the FEAM for a surface crack 
in a finite solid, two solutions are required. Solution 1: A general analytical solution for an 
embedded elliptical crack in a body subject to arbitrary crack face tractions [Vijayakumar 
and Atluri (1981)]. 

Solution 2: A numerical scheme (the finite element method in this instance) to solve for the 
stresses in an uncracked finite body. The analytical solution is for a crack of elliptical shape. 
Because of this, all physical cracks that are being analyzed must be either elliptical or part 
elliptical in shape. 

The finite element solution involves the analysis of the uncracked solid. Thus, non-zero 
stresses are calculated at the location of the actual crack. These stresses must be removed 
in order to create a traction free crack as in the actual problem. The infinite body with an 
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embedded crack has a solution which is valid for an arbitrary distribution of tractions on 
the crack face. The detailed steps involved in the FEAM for a crack in a finite body are as 
follows. 

1. Solve the uncracked finite body under the given external loads using the finite element 
method. The uncracked body has the same geometry as in the given problem except 
for the crack. For example, when a crack emanates from a hole in a structure, the hole 
must still be analyzed in the uncracked structure. 

2. Using the finite element solution, the program computes the stresses at the crack 
location. 

3. It then compares the residual stresses calculated in Step 2 with a permissible stress 
magnitude. 

4. The residual stresses at the crack location as computed in Step 2 are reversed to create 
the traction free crack faces as in the given problem. From this, the program determines 
a polynomial form for these stresses using a "least squares fit". 

5. The analytical solution to the infinite body problem with the crack subject to the 
polynomial loading calculated in Step 4 is now obtained. 

6. The stress intensity factors for the current iteration are then calculated from the ana- 
lytical solution. 

7. The residual stresses on the external surfaces of the body due to the applied loads on 
the crack faces, are now computed. To satisfy the given traction boundary conditions 
at the external boundaries, the residual stresses on the external surfaces of the body 
are reversed and this allows calculation of the equivalent nodal forces. 

8. Consider the nodal forces in Step 7 as externally applied loads acting on the uncracked 
body. 

All the steps in the iteration process are repeated until the residual stresses on the crack 
surface become negligible. It has been observed that this iteration process typically takes 
three or four steps. The overall stress intensity factor solution is obtained by adding the 
stress intensity factor solutions for all iterations. 

One recent application [O'Donoghue, Atluri and Pipkins (1995)] of the FEAM was 
to the analysis of fatigue cracking in the lower wing skin of the U.S. Air Force C-141B 
(Fig. 11). In this application, the growth of corner cracks from the weep holes located in 
the integral risers of the wing skin was modeled with the FEAM (Fig. 12 and Fig. 13). 
Fatigue crack growth predictions were made wherein the FEAM was used to generate stress 
intensity factors which were inturn used in a Forman equation. The load spectrum used was 
comprised of peak-valley pairs representing 3027 equivalent flight hours. Comparisons with 
limited test data showed good correlation between the FEAM based fatigue crack growth 
predictions and the experimental data. 
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Figure 11: U.S. Air Force C-141B 

Figure 12: Cut-Out Lower Wing Panel from the C-141B Showing Weep Holes 
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3.2.4 

Figure 13: Cross-Section of Failed Lower Wing Panel of the C-141B 

Multi-Domain Modeling of the Buckling and Post-Buckling Strengths of 
Stiffened Panels with Arbitrary Shaped Holes and Delaminations: Com- 
pressive Loading 

The primary damage in structure loaded in compression which must be considered during 
design is a hole (Fig. 14). For laminated composites, delaminations will also be of relevance. 
It is to be expected [with some preliminary results that confirm these expectations being 
reported in Vellaichamy, et. al (1990)] that the buckling load of a panel, with a hole, in 
compression will depend on the shape and the size of the hole. The buckling load of a panel 
with an elliptical hole whose major axis is aligned with the direction of compression can be 
expected to be lower than that with a circular hole of the same area. Further, it is expected 
that for an elliptical hole of a given area, the buckling load will decrease with an increase 
in the aspect ratio of the ellipse, as long as the major axis of the ellipse is aligned with the 
direction of compression. In the limit as the elliptical hole shrinks to a crack whose axis 
is parallel to the direction of compression, with the slightest imperfection, the crack may 
propagate in mode III in post-buckling deformation. Such mode III behavior would severely 
affect the structural integrity. BUCKDEL, as developed in Phase I of this SBIR project, can 
be used to compute the buckling and post-buckling response of stiffened structure containing 
damage in the form of holes and delaminations of arbitrary shape. In addition, it computes 
the pointwise energy release rate around the delamination front. In future work, the ability 
to treat the mode III crack problem will be added to BUCKDEL. 

A brief overview of BUCKDEL is given here. For more details, see the Users and Theory 
Manuals which are included with this report. BUCKDEL uses a multi-domain method to 
model delaminations of arbitrary shape. In this method, the delaminated shell is assumed 
to be assembled with three regions-(l) Undelaminate: undelaminated zone; (2) Delaminate: 
thinner side of the delaminated zone and (3) Base: thicker side of the delaminated zone. 
Transverse shear deformation plays an important part in the case of composite structures, 
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Figure 14: Damage in the Upper (Compression) Skin of a Wing 
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hence, it is introduced explicitly and the assumptions of Reissner-Mindlin theories of plate 
bending are used for modeling each region of the multi-domain model. Thus, for each 
region, the 3-dimensional displacement field (U = {Ux U2 U3}) is expressed in terms of the 
corresponding mid-surface displacement (u = {ui u2 uz}) and rotation (0 = {0X 02 0}) fields 
as, 

U«(rra,x3) = u®(xa) - 4°0<O(s«) (1) 

where xW (a = 1,2) are the inplane curvilinear shell coordinates and x3
l) is the thickness 

coordinate for the ith (i = 1,2,3) shell. The structural continuity at the delamination front 
T is maintained by assuming the deformation to be unique at the junction of the three shells 
i.e. IJW = U<2) = U(3) on T in accordance with the Reissner-Mindlin law of flexure (Eq. 
(1)). In other words, at the delamination edge, the mid-surface degrees of freedom of the 
delaminate and the base shells are assumed to be related to those of the undelaminated shell 
by, 

41} = 42) = uf 
eP (2) 

where ftw is the distance of the midsurface of the ith shell from the laminate midsurface. 

Each lamina is assumed to be orthotropic and the inplane stresses a® = {au CT22 cru}^ 
and the transverse shear stresses r(i) = {r13 r23}

(i) are related to linear components of 
membrane strain ew = {en e22 £12} W; nonlinear components of membrane strain u® = 
{un v22 vl2}M; flexural strain due to mid-surface rotation K® = {KU K22 Ki2}

(i); flexural 
strain due to transverse shear strain x® 
7(i) = {7i3 723>(i) as 
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where the material constitutive terms E>f are functions of the thickness coordinate of each 

shell 4 . Generally, for a laminate with orthotropic layers, E$ are assumed to be piecewise 
constants over the laminate thickness. 

Integrating along the thickness, the constitutive equations can be written in terms of 
the inplane stress resultants N = {Nn N22 Nu}, bending moments M = {Mn M22 Mi2}, 
and transverse shear stress resultant Q = {Q13 Q23}, for each region of the multi-plate model 
as, 
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where 

{Aki; B, 'ki, Da)® =    [ E$(x3)(l; rr3; xj) dx3 
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G£L    =     [ SnSnE$(xS)dX3 

In addition to a beam element, BUCKDEL implements a three noded triangular curved 
shell element. The shell element is described in the curvilinear coordinate system x — y and 
the area coordinates are used for field-description. Accordingly we have, 

3 

{x y l} = Y,Li{x y l}t (5) 

Inverting the above relationship, we get, 

Li= 2Ä ^anX + ai2V + °i3^ ^ 

where 
a>n = yj-yk;    ai2 = xk-Xj;    ai3 = Xjyk - xkyj 

A = 2 (X2V3 ~ xzV2 + x3yt - x^yz + xxy2 - x2yi) 

and j = 2,3,1;  k = 3,1,2 as i = 1,2,3. 

The inplane displacements and the transverse shear strains need to satisfy C°-continuity 
while the transverse deflection need to satisfy C1-continuity in the present formulation. The 
independent field variables u, v, w, 7I2 and *yyz are expressed in terms of the nodal degrees 
of freedom uu vh wh gXi = (-wiy)i} Qyi = (w,x)i, 7X2i and yyZi as, 

3 

{ti V Ifzz lyz}     =     £ LdU V Txz lyz}i 
i=l 

3 

w   =   ^(NnWi + NxQxi + NxQyi) (7) 

where 

Nu   =   Li + Lfa + tfiLk-Litf-LiLl 

N2i   =   akl \L?Lj + -ULjL^j + an (l%Lk + -ULjL^j 

N3i   =   ak2 (LILJ + -LiLjL^j + aj2 (l%Lk + ~ULjLk\ (8) 

are the cubic polynomials for the transverse deflection. 

In the above element formulations, the inter-element C°—continuity is exactly satisfied 
for all the field variables. However, the inter-element C1—continuity required for the trans- 
verse deflection, in case of shell element, is satisfied a posteriori in a weak form using the 
Hu-Washizu variational principle. 
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BUCKDEL uses an automated method to follow the post-buckling paths of the damaged 
structure. Automated post-buckling solution involves: detection of possible instability in 
solution and elimination of possible path-retracing; classification of the detected instabilities; 
and computation of the post-through buckling solution (s). Solution instabilities are detected 
by monitoring the rank of the tangent stiffness matrix. Whenever the determinant of the 
tangent stiffness matrix changes its sign the solution senses possible instabilities in that range 
of load and changes the sign of the next load increment to avoid path-retracing. Through 
a cycle of iterations, location of instabilities are identified as the load levels for which the 
tangent stiffness becomes singular. The tangent stiffness is often scaled to minimize numerical 
errors. The identified instability points are then classified as limit points or bifurcation points 
using some simple and cost-effective rules [Huang and Atluri (1995)]. If the instability point 
is a limit point, the arc-length continuation is enough to obtain post-buckling solution path. 
However, if the instability point happens to be a bifurcation point, the strategies described 
in detail in Huang and Atluri (1995) are used to trace the appropriate post-buckling solution 
branch. The nonlinear fundamental state between the two solution points n - 1 and n in 
the neighborhood of the bifurcation point is linearized to obtain the asymptotic solution 
for obtaining an approximate critical buckling load factor. A linear combination of the 
normalized eigen-vector associated with the critical buckling load factor and its orthogonal 
counterpart is used to used to determine the initial post-buckling paths. 

3.2.5    Look Up Tables 

The finite element based methodologies for modeling the various types of damage being 
considered in this project are quite general (i.e. they are applicable to complex structural 
geometries and metallic and composite materials). They are also computationally efficient 
and very accurate. Nevertheless, it is sometimes useful to have access to cataloged solutions 
(i.e. stress intensity factors, energy release rates, etc.), which can be used to obtain estimates 
of the residual strength and life of common structural geometries. In addition to saving 
computational time, these 'look up' tables can be used to provide sanity checks on the finite 
element calculations. There are existing programs which are essentially 'look up' tables 
of stress intensity factors and material property data. Two such programs are AFGROW 
(formally MODGRO) and NASGRO. It is not the intent of the present project to duplicate 
effort already expended on programs such as AFGROW and NASGRO. Rather, some of the 
more common damage scenarios such as the center cracked panel, corner crack at a hole, etc. 
will be added to the damage tolerance module. By doing so, the user of the damage tolerance 
module will be able to access parameters such as stress intensity factors for these common 
damage scenarios without having to go through a finite element analysis. Besides stress 
intensity factor solutions for structures containing cracks, buckling loads for structures with 
holes of various sizes and shapes will be available to the user through the 'look up' tables. 
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3.2.6    Fatigue Crack Growth 

The problem of fatigue crack growth is of considerable practical importance when designing 
a structure which satisfies the DTR. To successfully employ damage tolerance principles, an 
accurate determination is required of the number of load cycles to failure in a component. 
These estimates will have a significant influence in the design and maintenance of a safe 
structure such as in the scheduling of inspection intervals. 

Fatigue crack growth frequently occurs when a flawed component is subject to some 
form of cyclic loading. Here the crack growth is termed subcritical since, due to the cyclic 
loading, it takes place at stress intensity factor levels that are less than the fracture toughness 
of the material. The form of the cyclic loading is also of great importance such as whether it 
has constant amplitude or has a variable amplitude. The damage tolerance module will have 
the capability to model fatigue crack under conditions of constant amplitude and variable 
amplitude loading. This capability will be limited to self similar (i.e. Mode I) crack growth. 

The crack growth calculations will be performed based on stress intensity factors ob- 
tained either by the FEAM or from the 'look up' tables containing cataloged solutions. For 
reasons of computational efficiency, the 'look up' table method is preferred if a solution is 
available. For geometries not having cataloged solutions, use will be made of the Finite 
Element Alternating Method. The FEAM has made the use of finite elements in fatigue 
calculations feasible. The reason being that the global stiffness matrix of the finite element 
model is assembled and decomposed only once, since the stiffness of the uncracked structure 
remains the same for all crack sizes. In other finite element approaches, such as those us- 
ing singular/hybrid type special crack-tip finite elements or using EDI methods, the cracks 
must be modeled explicitly. Therefore, the global stiffness matrix must be assembled and 
decomposed for each crack size. The assembly and decomposition of the global stiffness 
matrix accounts for about 80% of the computational time required in a typical finite element 
analysis. Given that the FEAM has to perform this operation only once during a fatigue 
analysis, the benefits of this approach over other finite element techniques for fatigue crack 
growth are readily apparent. 

Load spectra, in terms of ASTROS load cases, will be provided to the damage toler- 
ance module by the USAGE module described in Nees (1995). Since the USAGE module 
defines aircraft maneuvers in terms of ASTROS load cases, the load spectra at any point 
in the aircraft structure can be easily determined by extracting stresses at that point from 
the ASTROS solution database. Use will be made of USAGE features such as repeating 
and blocking of data to minimize storage and/or computatational requirements of variable 
amplitude crack growth calculations. 

Numerous studies have been conducted on the characteristics of fatigue crack growth. 
It has been established that when the plastic or inelastic zone in the vicinity of the crack is 
small, then the stress intensity factor is the governing parameter during crack growth [Paris 
and Erdogan (1963)]. In general, the crack growth rate is a function of stress intensity factor 
change, which is given by: 

£\/i — J^max      **-min (&) 

23 



where Kmax is the maximum stress intensity factor during the load cycle and Kmin is the 
minimum value of the stress intensity factor. Based on the minimum and maximum loads, 
it is customary to define the parameter R where: 

"■ — ■"■min I■**■max (lO) 

An important point must be made in relation to the functional relationship between the 
fatigue crack growth rate and the change in stress intensity factor. This crack growth rate 
function can be partitioned into three separate regions. At low values of AK, there is very 
little crack growth with a negligible crack growth rate. Therefore, it can be stated that 
there exists a AK below which there is no crack growth. This quantity is referred to as 
the threshold stress intensity factor and is denoted as (AK)th. At higher values of AK, 
crack growth takes place. It has been observed experimentally that this curve, relating the 
crack growth rate, da/dN, to AK, is usually linear on a log-log plot and this corresponds 
to a power law relation between da/dN and AK. This is commonly referred to as the Paris 
relation and is given as [Paris, Gomez and Anderson (1961)]: 

% = C{AKT (11) 

where a is the crack length and N is the number of load cycles. The quantities C and 
n are material dependent constants. At higher values of AK the stress intensity factor is 
approaching the fracture toughness of the material, Kc. The crack growth rate will increase 
significantly, eventually leading to the onset of rapid unstable crack growth 

Recognizing that several distinct phases in fatigue crack growth exist, a more general 
form for the relationship between crack growth rate and stress intensity factor is expressed 
as: 

da _ C(l - RT(AKf{AK - (AK)thy 
dN {(1 - R)KC - AKY [   > 

where m,p and q are constants that relate to the particular crack growth relation that is 
being used. By assigning different values to these quantities some of the well known crack 
growth relations can be recovered. For example, when m = p = q = 0, the Paris relation 
is obtained. The Forman relation [Forman, Kearney and Engle (1967)], which accounts for 
high crack growth rates and instability, is recovered by setting m = p = 0 and q = 1. By 
setting p = q = 0 and m = (Mw - l)n, the Walker relation [Walker (1970)] is derived, where 
Mw is an exponent in the Walker relation. 

With stress intensity factor solutions and a crack growth relation in hand, the ultimate 
objective of fatigue crack growth calculations, to calculate the number of cycles for a crack 
to grow by a specified amount, can be carried out. This is done by integrating the growth 
relation [Equation (11) or (12)]. For example, equation (11) is integrated to give: 

1   rai   da ,    s N 
>ao 

where a0 and Oi are the initial and final crack lengths. This integration is done numerically by 
sub-dividing the crack growth distance into a number of intervals and calculating the stress 
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intensity factor at each interval. A trapezoidal rule is then used to calculate the number of 
cycles. All of these steps will be carried out automatically by the damage tolerance module. 

Self-similar growth of through skin cracks is straightforward to carry out using the 
above procedure. However, for an elliptical or part elliptical crack since the stress intensity 
factor distribution is generally not constant along the elliptical crack front, the crack growth 
rates will not be the same in every direction. Consequently, the shape of the crack will 
change. It has been often observed in practice that a semi-elliptical surface crack, initially 
having a small aspect ratio, will have a larger crack growth rate in the minor axis direction. 
Therefore, in the damage tolerace module crack growth will be based on the extension of 
the minor axis by a specified amount. The number of cycles for this is then calculated be 
evaluating the stress intensity factor at each sub-interval as described earlier. The procedure 
to adjust the major axis length is as follows. Based on the extension of the minor axis in a 
given interval, an estimate is made of the extension of the major axis. The cycles for crack 
growth in these two directions are calculated using Equation (13). Since these are different, 
in general, the crack extension in the major axis direction is adjusted such that the number 
of cycles is the same for both directions in a given interval. This is done by simple linear 
interpolation/extrapolation. 

3.3    Integration of the Damage Tolerance Module with ASTROS 

This section will address the integration of the damage tolerance module into ASTROS. An 
important point which must be addressed is the level of integration between the damage 
tolerance module and ASTROS. Here, level of integration refers to the extent to which the 
damage tolerance module will make use of existing ASTROS modules which handle tasks such 
as I/O, memory management, large matrix operations, etc. This subject was investigated 
during Phase I and it was concluded that the damage tolerance module will be designed 
to run in a 'stand alone' mode or as an analysis module in ASTROS. This conclusion was 
reached for the following three reasons. 

1. From a development standpoint, complete control over the source code is needed. If 
the software can be compiled and executed independent of ASTROS, this will assist in 
debugging, verification, and maximization of computational efficiency. Further, future 
porting and maintenance of the software will be much simpler. 

2. For the purposes of commercialization of the software (which is a requirement of Phase 
II), some potential customers may need only the damage tolerance module and not the 
global modeling and multidisciplinary design and optimization capabilities of ASTROS. 
Thus, they may not be willing to pay the extra costs associated with ASTROS just to 
be able to make use of the damage tolerance module. 

3. Nothing is lost by developing the damage tolerance module to run in both a 'stand 
alone' mode and as an ASTROS analysis module as opposed to being developed to run 
only with ASTROS. 
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The software developed in this SBIR project will consist of four components. These are 
ASTROS, the USAGE module, an interface module and the damage tolerance module. The 
software architecture is shown schematically in Fig. 15. The ASTROS system will be rebuilt 

local Modelfsp 
»Input 

Interface 
Module 

Damage 
Tolerance 
Module 

Figure 15: Software Architecture 

with a modified MAPOL sequence, new relational entities, new bulk data entities, new error 
messages and the new module definition so that it will call the damage tolerance module 
when instructed to do so by the global model input. The USAGE module, described in Nees 
(1995), will be used to generate load spectra in terms of ASTROS load cases. The interface 
and damage tolerance module will be coded in FORTRAN 77 by Knowledge Systems. The 
interface module will facilitate the exchange of data between ASTROS, the USAGE module 
and the damage tolerance module. The data flowing from ASTROS to the damage tolerance 
module will be information on the contstraints and associated sensitivities to be evaluated 
for each local model, current values of the design variables, and boundary conditions to be 
applied to the local models. The data flowing from the damage tolerance module to ASTROS 
will be the constraints and sensitivities which were evaluated by the damage module. 
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Figure 16: Global Finite Element Model of the Intermediate Complexity Wing (ICW) 

3.3.1    Illustration: BUCKDEL Integration with ASTROS 

As an explicit illustration of how this integrated system will work, this section describes 
how the BUCKDEL software [Pipkins and Atluri (1996)], developed in Phase I, would be 
used to introduce panel buckling constraints, in the presence of delaminations, to the design 
of the Intermediate Complexity Wing (ICW). In this illustration, BUCKDEL assumes the 
role of the damage tolerance module of Fig. 15. The ICW model is described in Sections 
4.7 and 4.8 of the ASTROS Applications Manual. Fig. 16 shows the global finite element 
model of the ICW. The model consists of 39 rod elements, 55 shear panel elements, 62 
quadrilateral plate elements and 2 triangular plate elements. The substructure material is 
modeled as aluminum while the wing skins are made of a graphite/epoxy composite. The 
ICW examples in the ASTROS Applications Manual are designing a minimum weight wing 
under strength and flutter constraints. In this illustration, panel buckling constraints in the 
presence of delaminations are also introduced into the design. The panel buckling constraint 
is applied to Panel A (see Fig. 16). A local finite element model of Panel A (Fig. 17) is 
developed and will be read as input by BUCKDEL, when it is called by ASTROS. 

The integration of BUCKDEL into version 11 of ASTROS is quite easy due to the 
presence of an existing panel buckling constraint for rectangular panels with no damage. 
With just a slight modification to the MAPOL sequence, BUCKDEL can be used in place of 
this panel buckling constraint capability which is included in version 11 of ASTROS. First, 
the Module Definitions file (MODDEF.DAT) is modified. By doing so, BUCKDEL can then 
be called by the MAPOL code. Next the MAPOL sequence is edited. MAPOL calls to 
the engineering application modules PBKLEVAL and PBKLSENS are replaced with calls 
to BUCKDEL. The arguments passed to and from BUCKDEL would be the same as those 
passed to and from PBKLEVAL and PBKLSENS except that a flag to inform BUCKDEL 
whether it is to evaluate a constraint or constraint sensitivity is also passed. With the 
above changes made to the MODDEF.DAT file and the MAPOL sequence, the SYSGEN 
program is run.   SYSGEN will generate a new XQDRIV subroutine, which provides the 
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Figure 17: Local Finite Element Model of Panel A with Delamination 

actual link between the MAPOL call and the FORTRAN routines that make up BUCKDEL. 
The new XQDRIV subroutine must be compiled and linked with the ASTROS object file to 
produce the new executable version of ASTROS which can make use of the damage modeling 
capabilities in BUCKDEL. 

From this point, the use of BUCKDEL to evaluate the panel buckling constraint and 
associated sensitivities for panel A of the ICW model, with account taken for the presence 
of a delamination, is exactly the same as the use of the panel buckling constraint capability- 
shipped with version 11 of ASTROS. Namely, the user must specify a DCONBK bulk data 
card for panel A. After reading the DCONBK bulk data card, ASTROS will call BUCKDEL 
at the appropriate points in the MAPOL sequence. When called, BUCKDEL will read the 
local finite element model data for panel A, extract necessary information such as panel loads 
from the ASTROS database and carry out the constraint or constraint sensitivity evaluation. 
After evaluating this information, BUCKDEL will store this information in the ASTROS 
database for use by the optimization routine. 
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Appendix A: Schwartz-Neumann Alternating Method 

The Schwartz-Neumann alternating method is based on the superposition principle. The 
solution on a given domain is the sum of the solutions on two other overlapping domains, 
with part of the boundary conditions as unknowns. The alternating method can be viewed 
as the fixed point iteration scheme used to solve these unknown boundary conditions. Based 
on this point of view, we can perform a convergence study. The alternating method con- 
verges unconditionally when there are only traction boundary conditions specified on the 
body. The convergence criterion for mixed boundary value problems, where there are ap- 
plied displacement boundary conditions as well as traction boundary conditions, is discussed 
in the following. Compare the work done by the applied forces in the following two cases. 
In the first case, arbitrary displacement conditions exist on the surfaces of the cracks in the 
cracked finite body, while all the boundary conditions elsewhere are replaced by homogeneous 
boundary conditions, i.e. remove all tractions and reduce all the applied displacements to 
zero magnitude. In the second case, the same displacement conditions exist on the surfaces 
of the cracks in the infinite domain. If the work done in the cracked finite body is always 
smaller than twice of the work done in the infinite domain, the alternating method converges. 
Otherwise, it does not. For most practical problems, this ratio is close to one. Thus, the 
alternating method converges rapidly, as discussed in detail in the following section. 

A.l    Superposition Principle and the Alternating Method 

Consider n cracks in a body of a finite size. The crack surfaces which are traction free, are 
denoted collectively as Tc. Let the boundary of the finite domain(not including the crack 
surface) be T, of which the boundary with prescribed tractions t° is Tt, and the boundary 
with prescribed displacements u° is Tu. It is clear that r = Tu U Tt. 

The alternating method uses the following two simpler problems to solve the original 
one. The first one, denoted as PAN A [shown1 in Fig. 18(c)], is that of the same n cracks in the 
infinite domain subjected to the unknown crack surface loading T. The second one, denoted 
as PFEM [shown in Fig. 18(b)], has the same finite geometry as in the original problem except 
that the cracks are ignored. The boundary Tu of PFEM has the prescribed displacement u, 
while the boundary Tt has the prescribed traction t. The prescribed displacements and 
tractions are different from those in the original problem in general. Because of the absence 
of the cracks, the problem PFEM can be solved much easier by the finite element method (or 
the boundary element method). 

To solve the original problem, PORG (shown in Fig. 18(a)), the crack surface loading T, 
the prescribed displacement u and the traction t must be found such that the superposition 
of the two alternative problems PAN A and PFEM yields the original one, PORG- The detailed 
procedures to find these boundary conditions are described as the following. 

In the uncracked body problem PFEM-, the tractions T at the location of the cracks in 
1Fig. 18 only illustrates one crack. Many cracks may be present. 
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Figure 18: Superposition Principle for Finite Element Alternating Method 

the cracked body P0RG can be solved, for any given boundary loads u and t, using the finite 
element method. Due to the linearity of the problem, the solution can be denoted as 

T = Kuu + KH (14) 

where Ku and Kl are linear operators. 

Similarly, the tractions ta on boundary Tt and the displacements ua on boundary Tu 

can be found in the infinite domain PAN A for the given crack surface load T, which is the 
same as the crack surface traction obtained in the PFEM- The solution can be denoted as 

w (15) 

(16) 

KUT 

ta = K*T 

where Ku and ÜC* are also linear operators. Subtract the solution for PAN A from the one 
for PFEM- The resulting solution has zero tractions at the location of the crack surfaces. To 
ensure that the resulting solution has the same boundary conditions on T, the Eq. (17) and 
Eq. (18) must be satisfied. 

u = u° + ua (17) 

t = t° + ta (18) 

The unknown tractions T, t and unknown displacement u can be solved using these 
equations [Eq. (14) through Eq. (18)].  Eliminate u, ua and t, ta by substituting Eq. (17), 
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Eq. (18), Eq. (15) and Eq. (16) into Eq. (14) to obtain the following equation for the traction 

I - (KUKU + A*«*)] T = (KU
U° + KH°) (19) 

Eliminate ua, ta and T to obtain the following equation for the unknown traction t and 
unknown displacement u. 

(I-A) 
u 

t° (20) 

where 

A = 
KtKu   ^iKt 

and I is the identity operator. 

Similarly, we can obtain the following linear system for traction ta and displacement 
uu 

(I - A)X = Y (21) 

where 

X = 
ta 

Y = A 
t° 

ITKU   ICJC1 

KtKu   KtKt 
u" 
t° 

It is possible to solve these equations directly to obtain the tractions T, t and displace- 
ment u. But this involves the evaluation of Ku and K*, which requires solving the traction 
T at the location of the uncracked body subjected to all different loading patterns u and t. 
We have to solve the uncracked body problem a larger number of times, of the same order 
as that of the total number of degrees of freedom of the boundary nodes, using the finite 
element method. Thus, it can be very expensive to find X by solving directly the linear 
system (I - A)X = Y. A fixed point iteration scheme can be used to solve this linear 
system. The iterative scheme can be devised as: 

X(i+V = AX® i = 0,1,2,..., oo 

where X^ = {u°, t°}T. If this procedure converges, the solution is 

00 

Since 

(22) 

i=l 

A = Y{K\   K*} 

the iterative scheme Eq. (22) is equivalent to the following alternating scheme 

(23) 
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(24) 

for i = 0,1,2,..., oo. In this case, the uncracked body problem is solved only a few times, 
because this fixed point iteration scheme converges quickly for practical problems. Therefore, 
the alternating method is much more efficient than solving the linear system directly. But it 
should be noticed that it may not be necessary to use the alternating method in some cases. 
It can be more efficient and accurate to solve directly when multiple crack solutions are 
constructed from that for a single crack. This will be discussed in detail in a later section. 

A.2    Convergence of the Alternating Method 

First it is shown that I - A is not singular and the linear system Eq. (21) has a unique 
solution. Suppose I - A is singular. Then, there must exist a non-zero X such that 
(I - A)X = 0, which means that there exist non-zero ua and ta, and therefore a non-zero 
T, such that 

T = Kuua + KHa 

ua = KuT 
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In this case the analytical solution and the finite element solution have the same displacement 
ua on boundary Tu and the same traction ta on boundary Tt. Subtracting the analytical 
solution from the FEM solution, we obtain the solution for the following problem. The entire 
boundary V is free of external loadings as well as the crack surfaces. But, the FEM solution 
gives zero displacements for the crack surfaces, while the analytical solution gives non-zero 
displacements for the crack surfaces because of the non-zero T. Thus, the resulting solution 
has non-zero displacements at the crack surfaces. This is a contradiction because the cracks 
cannot be opened without any external load. Consequently, I - A is not singular. 

The fixed point iteration scheme Eq. (22) converges if all the eigenvalues of A are in 
the open interval (-1,1). The scheme of Eq. (22) converges since the eigenvalues of A are 
in (-1,1) for most problems of practical interest. The eigenvalues of A are smaller than 1. 
Let X\ be an eigenvector of A corresponding to the eigenvalue A. 

T = Ku(ux) + K\tx) 

\ux = K*T 

Xtx = K*T 

The solution PREs, shown in Fig. 19(a), is obtained by subtracting A times the FEM solu- 
tion(Fig. 19(c)) from the analytical solution(Fig. 19(b)). Here, u = 0 and t = 0 on T and 
the crack surface loading is (1 - A)T, while the displacements at the crack surfaces are the 
same as those in the analytical solution. If the work done in opening the cracks in the infinite 
domain is W, the work done in opening the cracks in the finite domain (with the boundary 
condition u — 0 and t = 0) is (1 - X)W, which is equal to the strain energy stored in the 
body. It must be positive. Thus, A < 1. 

It can be shown that A > 0 in the absence of the prescribed displacement boundary 
conditions. In this case, the resulting solution from the subtraction has zero tractions at the 
boundary T. Apply additional load At to the boundary T with the crack surfaces fixed. The 
stress state in the body will be the same as that in the analytical solution described above, 
after this additional loading is applied. This procedure of adding load on the boundary T is 
exactly the same as that in the FEM solution for the uncracked body, except that the load 
level is A times of that in the FEM solution, because the crack surfaces are fixed. Therefore, 
the work done by the additional load is positive. Consequently, (1 - X)W < W and A > 0. 
So, the alternating method converges for cracks in finite domains with arbitrary shapes and 
arbitrary traction boundary conditions. 

In general, the eigenvalue A can be smaller than zero for mixed boundary problems. It 
is greater than -1 only if (l-\)W < 2W. Thus, the convergence criterion for the alternating 
method for the general case with mixed boundary conditions can be stated as follows. The 
alternating method [Eq. (22)] converges if the crack surface loads do less work in the finite 
domain, with the homogeneous boundary condition u = 0 and t = 0 on T, than twice 
as much as they do in the infinite domain for any arbitrary distribution of crack surface 
displacements (see Fig. 20). 

Quick convergence can be expected for most of the practical applications. For any crack 
surface displacements, the displacements and stresses at a point decay rapidly as the point 
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Figure 20: Convergence Criterion 

moves away from the cracks. Thus, the work done in the finite domain with the homogeneous 
boundary condition is very close to the work done in the infinite domain. This implies that 
the eigenvalues of A are very small and the fixed point iteration converges rapidly. Indeed, 
all mixed boundary value problems we have solved (for both 2D and 3D problems) to date 
using finite element alternating method have converged. 

A.3    Summary of FEAM Procedure 

The alternating procedure defined in Eq. (22) can be translated into the following simple 
procedure. Refer to Fig. 18. 

1. Solve PFEM with the given load on the boundary Y. Solve for the tractions, which are 
used to close the cracks. Denote the solution as S[EM, where 1 indicates that this is 
the solution for the first iteration. 

SFEM.     T(l) = Kuuo + Ktto 
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2. Reverse the crack surface traction obtained in the previous step and apply it as the 
load on the crack surfaces and solve the PAN A- Denote the solution as SANA. 

-*-<= {;}-{?}* 
(!) 

(1) 

3. Find the tractions on the boundary Tt and the displacements on the boundary Tu from 
the analytical solutions obtained in the previous step. Reverse them as the load for 
PFEM- Find the crack closing tractions from the solution SFEM. 

SFEM.   TW = KuuM + KHW 

4. Repeat the step 2 and 3 until the residual load is small enough to be ignored. 

(0 
_gANA. 

SFEM. r(i+l) = Kuu(i) + Ktt(i) 

for « = 2,3,.... 

The solution to the original problem is the summation of all those obtained in the 
alternating procedure, i.e. 

S = £ (S[EM + SANA) (25) 

A.4    Solutions for Multiple Skin Cracks 

Solutions for multiple skin cracks in an infinite body, subjected to arbitrary crack surfaces 
tractions, can be constructed using the solution for a single crack in a infinite body subjected 
to arbitrary crack surface loading. Analytical solutions for multiple embedded cracks in an 
infinite body are available only for some special configurations, such as multiple collinear 
cracks subjected to arbitrary crack surface tractions [Muskhelishvili (1953)]. There are sev- 
eral implementations of finite element alternating method based on such analytical solutions 
[Park and Atluri (1993), Wang and Atluri (1995), etc.]. It is in general easier to construct 
the solution of multiple embedded cracks in an infinite body using the solution for a single 
embedded crack. Solutions for arbitrary distributions of cracks can be obtained using this 
approach. It can be more accurate and efficient to build the multiple crack solutions from 
that for a single crack even when the analytical solution is available, such as for the multiple 
collinear cracks in an infinite domain. 

In the context of the finite element alternating method, it seems natural to use the 
Schwartz-Neumann alternating method to obtain the analytical solution iteratively. This 
approach has been used by many authors, such as O'Donoghue, Nishioka and Atluri (1984) 
and (1985). Using the alternating method and the solution for the single crack in the infinite 
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domain, residuals induced by closing the other cracks are erased by reversing them and 
applying them as loads on the crack surfaces. Consider n arbitrarily distributed cracks. Let 
the given crack surface load on fc'th crack be T°k, (k = 1,2, n). The alternating procedure 
is outlined as the following. 

1. Consider a single crack, located at the same position as that of the fc'th crack in the 
original problem, in the infinite domain.   Apply the load T°k on the crack surface. 
Denote the analytical solution for this loading as 5J (o) 

k   • 

2. Compute the cohesive traction tfk\ that is used to close the j'th crack in the original 
problem, using the solution Sk. 

Sf:   $ = Jr?]T<0)     j = l,2,...,n  and  j^k 

where Tk
0) = T°k, and Kf] (j = l,2,...,n and ;' ^ k) are linear operators. The 

superscript ^ indicates that the crack in the single-crack solution is at the same location 
as the fc'th crack in the original multiple-crack problem. 

3. Sum the crack closure tractions due to all solution Sk°\ (k = 1,2,... , n) to find the 
residual traction. Reverse the residual tractions as loads. 

T? = -    t    tf      j = l,2,...,n 
k=l,k^j 

4. Apply the load T\1' on the crack surface as in the first step. Denote the solution as 
Sk '. Repeat the process of finding residual tractions until the residual tractions are 
small enough to be ignored. 

5«:   1$ = KfTf      i = l,2,...,n     j^k 

r?+1) = -    E    4      i = l,2,...,n 
k=l,kjtj 

for £ = 1,2,. 

The solution to the multiple cracks subjected to the given load T°k (k — 1,2,... ,n) is 
the sum of all the solutions involved in the alternating procedure, i.e. 

oo    n 

5 = EE4i} 
i=\ k=l 

However, the solution can be obtained using a non-iterative approach in a simpler and 
more efficient fashion. As we have shown in the previous section, an alternating method is 
essentially a fixed point iteration scheme used to solve a linear system. In the analysis of a 
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cracked body, solving the linear system directly needs crack closure tractions for all possible 
boundary loadings. Thus the uncracked body problem has to be solved a large number of 
times, of the same order as that of the total number of degrees of freedom of the nodes at 
the boundary, for different loadings. Only a few iterations are needed when finite element 
alternating method is used. Thus the uncracked body is solved only a few times. 

On the other hand, these tractions can be easily evaluated in the analysis of multiple 
cracks using the analytical solutions. Since the number of degrees of freedom involved is 
small, the linear system can be solved directly. 

The linear system for solving the multiple crack problem is derived from the superposi- 
tion principle. Consider the superposition of n solutions of single cracks in the infinite body. 
Each of these n solutions involves only one crack. Denote the fc'th solution as Sk, where the 
crack is at the same location as that of the fc'th crack of the original multiple-crack problem. 
The crack surface traction Tk for the problem Sk (k = 1,2,..., n) is to be determined (see 
Fig. 21). 

The traction at the location of the j'th crack in the the problem Sk can be found for 
any load Tk, i.e. 

tjk = Kf]Tk     j,k = l,2,...,n. (26) 

It is noticed that K[ = I (k = 1,2,..., n) are identity operators, because the tractions at 
the crack surfaces are the same as the applied loads. 
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The superposition of the n solutions should give back the original problem, i.e. the 
tractions at the locations of the crack surfaces should be the same as the given crack surface 
loads. Thus, the linear system to be solved is 

£tjk = ibK¥]Tk = T°     j = l,2,...,n. (27) 
k=l k-1 

We can denote collectively the undetermined crack surface loads, Tk (k = 1,2,..., n), as T. 
Similarly, denote collectively the given loads, T°k (k = 1,2,..., n), as T°, Thus, Eq. (27) can 
be rewritten as 

KT = T° (28) 

where K is a linear operator. Once the linear operator K is evaluated numerically, we can 
solve the linear system directly instead of using alternating method. 

Crack surface tractions have to be discretized by a set of linearly independent basis 
functions, such as polynomial functions, Chebyshev polynomials, or certain piecewise con- 
tinuous functions, since arbitrary crack surface tractions can not be handled directly by 
numerical methods. 

Let the undetermined load T be approximated by N basis functions Bj (j = 1,2,.. .,N). 

TKJ^TJBJ (29) 

Similarly, the given load T° which can be approximated as in the following. 

N 

T°^J2TiBi (30) 

We apply load B, on the cracks. Close all other cracks except the single crack on which 
Bi has non-zero values. Find the tractions at the locations of the n cracks of the original 
problem (see2 Fig. 22 ), using the analytical solution for a single crack in an infinite domain. 

tj = KBj     j = l,2,...,N (31) 

where K is a linear operator. The tractions tj (j = 1,2,...,N) are also approximated by 
these basis functions. 

N 

t^Yl^Bi     3 = 1,2,...,N (32) 

Once the magnitude Uj are evaluated, the traction at the location of fc'th crack can be 
determined for a crack surface load TV Since 

t   =   KT 
2Point loads (Delta functions) are used to illustrate the base functions in the figure. Only some of the 

loading cases are illustrated in the figure. 
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the linear system Eq. (28) can be approximated as 

N    N N 
J£Y,tnTiBi = ET?Bi (33) 

which leads to the following linear system of equations for the magnitudes Tj (j = 1,2,..., n). 

N 

2*^=2?     i = l,2,...,N 
3=1 

(34) 

The alternating method essentially solves the same approximated linear system with a fixed 
point iteration scheme. 

The non-iterative procedure to solve the multiple crack problem is summarized as the 
following. 
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1. Apply loads in terms of unit basis functions on one of the cracks, ignoring the other 
cracks. Use the analytical solution for a single crack to solve the tractions at the 
locations of all the other cracks (see Fig. 22). 

2. Approximate these tractions in terms of the linear combination of the basis functions. 
Find the magnitude of each component. Thus, the coefficients of the linear system is 
determined as in Eq. (32). 

3. Approximate the given crack surface load Tk in terms of the linear combination of the 
basis functions. Find the magnitude of each components. 

4. Solve the linear system Eq. (34) to obtain the the loads applied on each single crack 
solution. 

5. Superpose the n single crack solutions to form a solution for the original problem. 

The coefficients of the linear system remain the same in the analysis of the same cracks 
under different loadings, because they depend only on the crack configuration and the basis 
functions. Thus, the linear system can be solved for different loads without recomputing the 
coefficients of the system. This feature is particularly useful when the constructed multiple 
crack solution is used in the finite element alternating method, where it is necessary to 
evaluate the solution for the same cracks under different loadings during the alternating 
procedure. 
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