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Abstract 
A prominent characteristic of light scattered from a microparticle containing 
inclusions is fluctuating intensity due to changing positions of the inclusions 
with respect to each other and the host droplet. Y.'e calculate the magnitude 
of these fluctuations for a host sphere containing a single nonconcentric 
spherical inclusion and experimentally measure the fluctuation amplitudes 
for host spheres containing multiple inclusions. We find that for relatively 
small single inclusions, the amplitude of the scattering fluctuations increases 
approximately linearly with the area of the inclusion. For multiple inclu- 
sions, the fluctuation amplitude increases with concentration, with an 
approximate power-law dependence. 
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1.    Introduction 

A great deal of interest has recently developed in the elastic [1-5] and inelastic 
[6-11] scattering of host droplets containing small inclusions. The scattered 
intensity from such systems fluctuates with time, as the relative positions 
of the inclusions change. Such systems are of interest in atmospheric op- 
tics, since atmospheric water droplets and aerosols generally contain inhomo- 
geneities that can significantly affect the scattering and absorption properties 
of the host [12]. Knowing the effects of microcontaminants on the scatter- 
ing and absorption by water droplets and aerosols is important in radiative 
transfer calculations [13,14]. These effects are also of interest in scattering 
from biological systems (cells), which are generally inhomogeneous and may 
undergo refractive index changes with time. 

The inverse problem of calculating the contaminant characteristics from the 
scattering signal should not be overlooked: information about the scattering 
system is often our primary interest. We realize the difficulties in this lat- 
ter task for our system of a host particle containing small inclusions when 
we consider the relative sizes of the particles involved. Scattering signals of 
two particles in close proximity do not add linearly, especially when one of 
the particles is encapsulated within the other; nevertheless, we know that 
the scattering effect of an inclusion whose volume is orders of magnitude 
smaller than the host is small [15]. Furthermore, the inclusion does not add 
additional structure to the scattering phase function of the host; the rela- 
tive amplitudes of the maxima and minima may be altered somewhat, but 
the number of spherical harmonics necessary to describe the host, with or 
without an inclusion, is approximately the same [16-20]. The time-varying 
intensities remain to be analyzed. 

We examine the time-varying intensities in two separate experiments. First, 
we examine the effects of a single spherical inclusion on the scattering in- 
tensity fluctuations. We performed this investigation numerically, since it is 
rather difficult to prepare samples to such precision, and computer codes 
exist that make such an investigation routine [16-26]. Second, we examine 
the effects of inclusion concentration. We performed this investigation ex- 
perimentally, since the number of computations currently required for an 
adequate numerical study make such an approach impractical. 
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2.    Single Inclusions 

We begin our analysis by examining numerical results calculated from a host 
sphere containing a single, nonconcentric, spherical inclusion. We choose this 
particular system because it is the simplest encapsulated system for which a 
complete theory has been derived [16-26]. Two relevant systems are exam- 
ined: a glycerol host containing a polystyrene latex inclusion, and a water 
host containing a carbon inclusion. Figure la shows the standard deviation 
of the backscatter intensity aback (reflecting the intensity fluctuations) as a 
function of latex inclusion radius rinc. We calculate the backscatter intensities 
(Mueller matrix element Sn) by letting the inclusion position vary system- 
atically throughout the host. The density of inclusion positions is doubled 
until the results vary by less than 1 percent from those of the previous den- 
sity. Since we assume that the inclusion placement within the host droplet is 
arbitrary, we neglect the effects of surface tension. Although neglecting these 
effects may appear an oversimplification, pictures of water droplets contain- 
ing carbon inclusions show the inclusions to be placed "randomly throughout 
the volume of each drop" [12]. For at least some applications, the assumption 
of a random distribution is appropriate, and we use it in our calculations. 
It should be noted that these calculations are extremely computer intensive; 
for instance, the 10 data points calculated for host radius rhost = 3.0 //m 
took approximately 10 cpu days on a Silicon Graphics 8000-series processor 
running at 1.4 Gflops. 

Since the computer time necessary to make the calculations is approximately 
proportional to r\ost, we limit ourselves to calculations of relatively small host 
radii. Even so, certain trends are apparent in these data. First, the amplitude 
of the intensity fluctuations tends to increase for small inclusion radii, even- 
tually reaching a maximum value, before dropping sharply toward zero as 
the inclusion fills the entire volume of the host sphere. Second, the intensity 
fluctuations appear to have little dependence on the host radius. Increasing 
the glycerol host radius by 50 percent has only a minor effect on the fluc- 
tuation amplitudes. The fluctuation amplitudes must show a dependence on 
the host refractive index mhosu because when rrihost approaches the refractive 
index of the inclusion or the incident medium, the system reduces to an iso- 
lated Mie sphere for which there are no intensity fluctuations. This could be 
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Figure 1. Comparison of scattering parameters of a spherical host containing single spher- 
ical inclusion as a function of inclusion radius (A = 647.1 nm): (a) calculated amplitude 
of intensity fluctuations, (b) average backscatter intensity, and (c) normalized intensity 
fluctuation amplitudes (intensity fluctuation amplitude normalized to average backscatter 
intensity). Data points are calculated for glycerol hosts {mhost = 1-471) containing latex 
inclusions (minc - 1.59) and for water hosts (mhost = 1.335) containing carbon inclusions 

(minc = 1.94 + 0.660- 



why the water host, having a lower refractive index than the glycerol host, 
displays a lower level of intensity fluctuations. Third, when the inclusion 
radius is relatively small compared with the host radius, the amplitude of 
the intensity fluctuations appears to have a power-law dependence—that is, 
an approximately quadratic dependence on the inclusion radius, increasing 
approximately linearly with the area of the inclusion. 

Figure lb shows the average backscatter intensity (over all inclusion posi- 
tions within the host) as a function of the inclusion radius for the scattering 
systems shown in figure la. As the inclusion radius is increased, the aver- 
age backscatter intensity also increases before decreasing to previous levels. 
The shape of these curves can be attributed to enhanced backscatter (EBS), 
which has been studied extensively from irregular surfaces [27-32]. EBS has 
been attributed to constructive interference of rays reflecting off multiple in- 
terfaces. The path difference is the same when the order of the interfaces 
that the light ray strikes is reversed for backscattered light; therefore, the 
forward and backward traversing rays interfere constructively, and the re- 
sulting intensity is enhanced. As the inclusion size increases, the inclusion 
scatters more light, contributing to this effect. As its size approaches that of 
the host sphere, the phase differences acquired by rays traveling through the 
host sphere become negligible, and the EBS disappears. 

Figure lc is the normalized fluctuation intensity: i.e., the standard devia- 
tion of the backscatter intensity, shown in figure la, divided by the average 
backscatter intensity shown in figure lb. This quantity corresponds to the 
proportion of intensity fluctuation or "noise" on the average signal, and is 
readily measurable. The normalized fluctuation intensity is extremely sensi- 
tive to system parameters. For the water host, the fluctuations are relatively 
constant, remaining approximately 1 percent of the average backscatter in- 
tensity signal, as the carbon inclusion size is increased from the Rayleigh 
regime until it is nearly the size of the host sphere. For the glycerol hosts, the 
amplitude of the intensity fluctuations again has an approximate power-law 
dependence on the inclusion radius, and for these parameters, the power-law 
exponent is approximately 2; i.e., the normalized intensity fluctuations are 
approximately proportional to the area of the inclusion. 



3.    Multiple Inclusions 

In many practical instances, like droplet seeding, the host droplet contains 
more than one inclusion. It is therefore desirable to examine the effects of 
inclusion concentration on the intensity fluctuations. Although theories have 
been derived to calculate the scatter from a host containing multiple in- 
clusions [18,19,22], it is currently impractical to make intensity fluctuation 
calculations for these types of scattering systems because of the enormous 
number of computations required. We therefore examine experimentally the 
fluctuation dependence on concentration; however, these experimental results 
are not meant to be compared with the theoretical results of the previous 
section. The results of this section are meant to provide additional informa- 
tion on the behavior of the scattered intensities as a function of the inclusion 
parameters: in this case, the inclusion concentration. 

In our experiment, a charged glycerol droplet having radius rhost ~ 10 to 
12 /im is captured in an electrodynamic trap [33]. The droplet is generated 
with a spray atomizer prepared to contain a known concentration of uniform 
spherical latex inclusions having nominal radius rinc. The solution contains 
a small amount of surfactant to prevent clumping. We determined the host 
droplet size to within 5 percent by measuring the positions of the first two 
minima of the Praunhoffer pattern using the technique outlined by Chen 
[34]. Levitated droplets are illuminated with a krypton-argon laser beam (A 
= 647.1 nm), and the scattered light is detected by photomultiplier tubes 
placed in the forward-scatter direction (~7°) and in the backward-scatter 
direction (~179.5°). The detectors collect light over a relatively small conical 
solid angle (approximately 0.1° half angle). The signals are amplified, fed 
through a low-pass filter (250 Hz) to remove detector shot noise, and digitized 
with an 820-Hz analog-to-digital recorder. To minimize evaporation, we hold 
the droplets for approximately 1 hour in the electrodynamic trap, so that 
equilibrium with the vapor within the containment vessel enclosing the trap 
can be attained. However, since the containment vessel is not completely 
airtight (it contains holes to allow for entrance and exit of the laser beam), 
some vapor does escape and the host droplet slowly evaporates. The rate of 
evaporation is approximately 0.2 nm over a 6-s data run. 



In order to estimate relative errors in the intensity fluctuations, we produce 3 
to 5 droplets for each concentration and measure the intensities over 20 data 
runs for each droplet. Since we do not know the exact number of inclusions 
in each droplet, only the inclusion concentrations in solution, we examined 
several droplets at each concentration to find their average scattering char- 
acteristics. Figure 2 shows the average of the standard deviations of the ex- 
perimental forward-scattered intensities, normalized to the average scattered 
intensity as a function of latex inclusion concentration, along with their rela- 
tive uncertainties for two different-size latex inclusions (rinc = 0.25,0.5 /im). 
As the inclusion concentration increases, the amplitude of the intensity fluc- 
tuations also increases. The amplitude of the intensity fluctuations is much 
larger for the hosts containing the larger inclusions, and remains larger even 
when the inclusion concentration is expressed as a volume fraction. Figure 2 
also shows regression curves for each inclusion size. The amplitude of the in- 
tensity fluctuations increases with inclusion concentration following a power 
law; the power-law exponent is dependent on the inclusion size. 

For the system of host droplets containing multiple inclusions, the backscat- 
ter intensity fluctuations vary dramatically with droplet size as well as in- 
clusion concentration. These variations are so large that a clear dependence 
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Figure 2. Experimental intensity fluctuation amplitudes from rhost ~ 10 to 12 /im glyc- 
erol hosts as a function of latex inclusion concentration. Number of inclusion spheres in 
Thost ~ 10 Mm nost is approximately 4.2 x 10~9 ml times concentration. 



of backscatter intensity fluctuation with concentration is not evident in our 
data. It is much easier to see a trend in the intensity fluctuation as a function 
of concentration if we look at the scatter in the forward direction. For smaller 
concentrations of smaller inclusions, we would expect the backward-scatter 
intensities to provide useful information, as demonstated by the theoretical 
results shown in figure 1. 



4.    Results 

We have explored the dependence of the intensity fluctuations found in mi- 
crodroplets containing inclusions. We found that for microdroplets containing 
a single, relatively small spherical inclusion, the amplitude of the intensity 
fluctuations increases approximately linearly with the area of the inclusion. 
Experimentally, we found that as the inclusion concentration increases, so 
does the amplitude of the fluctuations. The rate at which the intensity fluc- 
tuations increase is dependent on the inclusion size and also appears to have 
a power-law dependence on concentration. 
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