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Abstract. 1 We introduce the fundamentals of cyclic 
multirate systems and filter banks and present a num- 
ber of important differences between the cyclic and 
noncyclic (traditional) cases. Some of the additional 
freedom offered by cyclic systems is pointed out, and 
a number of open issues are summarized. 

1. INTRODUCTION 
Digital filter banks [l]-[2] for finite length signals have 
been considered by a number of authors [3]-[8]. Smith 
and Eddins [3] introduced this idea for image coding, 
and among other significant results, proposed replac- 
ing linear filtering operations with cyclic (or circular) 
convolution. They also noted that many results from 
the noncyclic case carry over routinely. In this paper 
we draw inspiration from these references to develop 
the theory for cyclic filter banks, and highlight the sig- 
nificant differences from noncyclic case. A cyclic(L) 
filter bank (with the letter L often omitted) has an in- 
put x(n) defined only for 0 < n < L - 1 (this could be 
a symmetrically extended version [3] of a shorter finite 
length signal; but this is not the main point here). 

Fig.   1 shows the M-channel cyclic(L) filter bank. 
We assume throughout that 

L = KM,    K = integer. (1) 

The filters have impulse responses h^n) and fi(n) con- 
fined toO < n < L-l, and their L-point DFTs 
are denoted as Hi(k) and Fi(k). All convolutions are 
cychc(L). So we can regard x(n) to be periodic (or 
cyclic) with period L. Since a cyclic(L) signal can be 
represented by L samples of the Fourier transform (i.e., 
the DFT coefficients) rather than the entire Fourier 
transform, it implies more freedom in the design. The 
paraunitary and power complementary properties, and 
even the linear phase property are more relaxed, as 
they are imposed only on a discrete frequency grid. 

2. BASICS OF CYCLIC MULTIRATE SYSTEMS 
The notation WL=e~j2n/L (or just W) will be used 
throughout.    Since the frequency variable u is re- 

placed by the discrete version 2irk/L, the quantity 
Wj? = e~~i2'*klL is the unit-delay operator analogous to 
z_1 = e--7". The cyclic decimator, denoted by [ M in 
Fig. 1, has the input-output relation y(n) = x(Mn). 
With x(n) regarded as cyclic(L), the output y(n) is 
cyclic(Ä"). Thus all the subband signals v^n) are 
cyclic(K'). For the decimator, let X(k) denote the L- 
point DFT of x{n) and Y(k) the tf-point DFT of its 
output y(n), i.e., 

L-l 

X(k) = J2 x(n)W£k,    0<k<L-l        (2) 
n=0 

and Y(k) = T,*=o v(n)WKk> 0 < fc < Ä" - 1. It can 
be verified that Y(k) = Y.^1 X{Ki + k)/M, for 0 < 
k < K - 1. The cyclic expander, denoted by | M in 
Fig. 1, has a periodic(Ä') input x{n) and periodic(L) 
output y(n) related by 

(n) = / x(n/M),    n = mul. of M (3) 
yy  '     \0 otherwise. v ; 

The corresponding DFT relation is Y(k) = X(k) for 
0 < k < L - 1. Since X{k) are the K-point DFT coef- 
ficients of x(n), the L-point DFT Y(k) has the shorter 
period K = L/M. 

Polyphase representation.    The L-point DFT of a 
cyclic(L) impulse response h{n) can be expressed as 

L-l M-l 

H(k) = 2>(n)W£fc =   ^2{Wt)eEe(k)       (4) 
n=0 e=o 

where Ee(k) = J2*=o K^n + £)Wkn, for 0 < k < 
L-l. Thus, Ei(k) is the K-point DFT of the tth 

polyphase component ee(n)=h(Mn +£). From the def- 
inition of Et{k) we see that it is cyclic(AT). Eq. (4) is 
analogous to the traditional Type 1 polyphase decom- 
position H(z) = Y!?=O

1
 
z~eEz{zM). Fig. 2(b) shows 

a decimation filter redrawn in polyphase form. Simi- 
larly the Type 2 polyphase form is given by H{k) = 

,M-1 
vf=0 
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 W£   Rz{k).   Since the polyphase components 
Ee{k) have a smaller period K, they can be relocated 
to the right of the decimators as in Fig. 2(c) (similar 
to the use of noble identities in the noncyclic case). 
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A caution: We have used the same notation Eg(k) in 
Figs. 2(b) and 2(c). This is regarded as a Appoint 
DFT in Fig. 2(c) and an L-point DFT (with values 
repeating after a shorter period K) in Fig. 2(b). 

Return now to the analysis/synthesis system of 
Fig. 1. With the filters Hi(k) represented in Type 
1 polyphase form and the filters Fi(k) in Type 2 form, 
we have the equivalent representation of Fig. 3 where 
E(fc) and R(fc) are the polyphase matrices of the cyclic 
filter bank. These should be interpreted as if-point 
DFTs, e.g., E(Jfc) = T,"=o e{n)WJ?. The filter bank 
has the PR property iff R(k)E{k) = I for all Jfc. 

Orthonormality. We define the M-band cyclic fil- 
ter bank to be orthonormal if the matrix E(fc) is 
unitary for all k. This property is referred to as the 
cyclic-paraunitary property. The perfect reconstruc- 
tion property then reduces to R(&) = E*(k), or, in 
terms of impulse responses, 

fi(n) = h*(-n) (5) 

(with arguments interpreted modulo L). The DFTs are 
correspondingly related as Fj(fc) = H*(k). Assuming 
x(n) — x(n) in Fig. 1 we have 

M-1K-1 

x(n) = Y, £ viWfi(n - iM)>    0 < n < L - 1. 
i=o e=o 

The basis functions are Vi,e(n)=fi(n — £M), 0 < n < 
L -1, where 0 < i < M -1,0<£<K-1. Thus there 
are MK = L basis functions rjite(n). It can be shown 
that the unitarity of R(k) is equivalent to orthonor- 
mality of the basis 77^(71). This orthonormality can be 
reexpressed as £n=o fi(n)f^{n - Mi) = 6(i - m)6(£). 
As in traditional filter banks, orthonormality of the 
cyclic filter bank implies the unit energy property 
Sn=o l/i(n)|2 — 1 and the power complementary prop- 
ertyE^öViWI^M. 

3. CYCLIC VERSUS NONCYCLIC FILTER BANKS 
In the cyclic(L) case, any transfer function can be ex- 
pressed in the form H[k) = ^IQ h(n)W£n. The non- 
cyclic counterpart of H(k) is defined as Hnon(z) = 
Yln=o h(n)z~n. It is an interpolated version in the 
frequency domain, since H(k) = samples of Hnon(z) 
at z — ei

2nk/L. Similarly the noncyclic counterpart 
of Ef>) = E^'e(n)^ (Fig. 3) is Enon(z) = 
X)n=o e(n)z~n. If Enotl(z) is paraunitary (PU) it read- 
ily follows that E(fc) is cyclic-PU because each k cor- 
responds to a special z on the unit circle. But the 
converse does not hold as we shall see. Thus the 
cyclic-PU property is less stringent than traditional 
PU. More generally, if we impose a certain constraint 
on the cyclic system, it does not mean that the non- 
cyclic counterpart has to satisfy the same constraint. 

To demonstrate, consider the second order cyclic(4) 
transfer function 

G(k) = 0.5 + 0.5(j - l)W4
fc + 0.5jWf 

Using the facts that W£ = 1 and W4
2 = —1, it is readily 

verified that \G(k)\2 = 1 for all k. Thus G(k) is allpass 
in the cyclic(4) sense. However, the noncyclic version 
G„on(z) = 0.5 + 0.5(j - l).z-1 + 0.5jz~2 which is an 
FIR filter, is evidently not allpass. If we now construct 
the M x M polyphase matrix E(&) = G(k)lM (for 
arbitrary M) then it is cyclic-PU, but the noncyclic 
version Enon(z) = Gnon(z)I is not PU. As a second 
example, consider the cyclic(3) analysis bank 

H(*) 
Hoik) 
HAk) 
H2\k) 

ao + aiWg + a2Wj 2k 

where a; are the column-vectors given by 

ao = 
•v/10 

ai = 
VTÖ 

l 
-l 
-2 

a2 -/TO 

It can be verified that HT(A;)H(A;) = 1, that is, the 
three transfer functions Ho(k), Hi(k) and H2(k) satisfy 
the cyclic power complementary property \Ho(k)\2 + 
|-ffi(fc)|2 + \H2(k)\2 = 1. But the noncyclic version 
Hnon(z) = X)n=oa"z_n *s not power complementary, 
that is, Hnon(z)Hnon(z) ^ 1. 

Cyclic allpass filters. A cyclic(L) allpass filter satis- 
fies H(k) = e-^W for 0 < k < L - 1. We can always 

o»nrrL )with write H{k) = c(EL^-n^")/(E;=o^^n 

\c\ — 1. For example, we can let N = L — 1 and set 
e-j4>(k)/2 = Y^tZoKWJ?71. The coefficients bn are es- 
sentially the inverse DFT coefficients of e-J<^fc)/2 and 
can readily be identified. More interesting is the open 
problem, of obtaining the rational form with smallest 
order N. Now consider the L x L circulant matrix H 
whose first row is h(0), h(l), h{2)... We know that cir- 
culant matrices are diagonalized by the DFT matrix 
(which is unitary) and that the eigenvalues are the 
DFT coefficients H(k). Using this we see that the all- 
pass property is equivalent to unitariness ofH. 

Factorization of cyclic paraunitary systems. Non- 
cyclic PU systems can be factored [2] in terms of the 

building blocks I — UJUJ + z~1uiuj, where UJUJ = 
1. But in the cyclic case, factorization in terms of 

(I —UjuJ + W^UjuJ) is not always possible. When it is 
possible, we can replace Wj? with z~l in the factoriza- 
tion, and obtain a noncyclic PU counterpart Enon(z). 

Determinant of cyclic paraunitary system. If E(/c) is 
cyclic PU, then [det E(k)] = e^^ which is allpass. 
In the noncyclic FIR case the degree of [det Enon(z)] 



is equal to the degree of Enon(z), but the same is not 
true in the cyclic case. Thus let 

E(fc) 
cos 6(k) 

-sin0(fc) 
sin Of A) 
cos 6(k) 0<k<L-l  (6) 

which is cyclic PU with [det E(fc)] = 1. The determi- 
nantal degree is zero, regardless of the degree of E(fc) 
(which is the minimum number of unit delay elements 
Wk required in the implementation). 

Nyquist and Linear-Phase Properties. Consider a 
cyclic(6) transfer function 

H0(k) = (1+wg - wik+wik+wtyvz. 

We can regard this as FIR in the sense that h(n) 
is nonzero only on a subset of points in 0 < n < 
L-l. (In the cyclic case this is the only FIR-definition 
that makes sense). The symmetry of the impulse 
response implies the linear-phase property, that is, 
H0{k) = Wgk x R(k) where R(k) is real. Now consider 
G(k) — \Ho(k)\2. Its cyclic(6) impulse response g(n) 
satisfies the halfband property g(2n) = 6(n). Equiva- 
lently H(k) is power symmetric [2] in the cyclic sense: 

\H0{k)\2 + \H0(3 + k)\2 = 2,    0<fc<5.      (7) 

So we have a cyclic(6) filter Ho(k) which is both linear- 
phase and power-symmetric. This is not possible in the 
noncyclic FIR case [2]. 

Using the above example we can construct a two- 
channel cyclic(6) orthonormal filter bank where the fil- 
ters are nontrivial linear phase filters. (Such construc- 
tions are not possible in the noncyclic FIR case [2].) 
For this choose ho(n) as above, and the remaining three 
filters as h^n) = (-l)nh*0(l - n), /4(n) = h*(-n). 
That is, Hi(jfe) = -WkH^{k-K) where K = L/2, and 
Fi(k) — H*(k) (recall all arguments are interpreted 
modulo-6). This an example of a cyclic(6) version of 
the CQF design. 

More on the CQF Design. Given a cyclic(L) half- 
band filter g{n) with the property G(k) > 0, we can 
construct infinitely many cyclic(L) two channel or- 
thonormal filter banks by choosing Ho(k) as a spectral 
factor   

(8) H0(k) PMfc) y/G(k), 

and the remaining three filters according to the CQF 
equations above. Recall that for noncyclic FIR fil- 
ters, the usual definition of spectral factors allows only 
finitely many phase responses, and the spectral factors 
all have the same length JV+1. In Eq. (8) however, the 
phase response cf>(k) of the spectral factor Ho(k) is ar- 
bitrary. In particular, the choice 4>{k) = 0 would yield 
linear phase analysis filters Ho{k) and Hi(k) with good 
frequency responses (if G(k) is a good lowpass filter). 
However, even if G(k) is cyclic(L) FIR (in the sense 

that g(n) = 0 for N < n < L - N) the cyclic spec- 
tral factor Ho(k) may not be FIR (i.e., h0(k) could be 
nonzero for all n). See Fig. 4. An open question here 
is, what is the most general form of the phase response 
4>{k) which ensures that H0(k) is FIR (possibly with 
length AT+1). 

4. CYCLIC DIFFERENCE EQUATIONS 
Consider a cyclic(L) transfer function of the form 
H{k) = (oo + aiW£)/(l - bWk). The input and out- 
put of this system are constrained by (l-bW^)Y(k) = 
(oo + aiWk)X{k). By taking inverse DFT we obtain 

y{n) = by(n - 1) + aox(n) + aix(n — 1)        (9) 

Since the time-indices are interpreted modulo L, this 
is a cyclic difference equation. To demonstrate what 
is involved, let L = 3. Repeated use of the d.e. (and 
the facts that y{2) = y(-l), y(3) = j/(0) etc.) there- 
fore yields the conclusion that (1 — b3)y(0) = aox(0) + 
airr(l) + a2x(2) for some constants a;. Thus the initial 
condition y(0) is not arbitrary, but is uniquely deter- 
mined as long as b3 ^ 1, that is, as long as b ^ W% 
for any i. This is equivalent to the obvious require- 
ment that the denominator in H{k) does not become 
zero for any k. We can then write Y(k) = H(k)X(k), 
and the inverse DFT y(n) is determined for all n. 
More generally, consider the cyclic(L) transfer func- 

tion H(k) = (Eto«n^)/(l + En=i bnWt). With 
the implicit assumption that the denominator does not 
vanish for any k, the output is fully determined by the 
input. In particular the "initial" condition is predeter- 
mined, and is not arbitrary. 

To compute y(n) efficiently, we can use a recursive 
d.e. similar to (9) provided we know how to identify 
the (unique) initial condition. A convenient way is the 
state space apprach. From the direct-form structure of 
Fig. 5 we can identify a set of N state variables Vi(n) 
(outputs of the unit delay elements W^) and obtain 
equations of the form 

v(n + 1) = Av(n) + Bi(n) (10) 

and y(n) = Cv(n) -f Dx(n) where v(n) is the state 
vector with components Vi(n). Repeated use of (10) 
yields v(L) = A v(0) + a linear combination of sam- 
ples of x(n). Since all the time-indices are interpreted 
modulo-L, we have v(L) = v(0), so (I - AL)v(0) = 
linear combination of samples of x{n). Thus we can 
identify the initial state v(0), if I - PiP is nonsingular 
(i.e., no eigenvalue of A has the form W%

L for any i). 
As in the noncyclic case the transfer function H(k) 

can be expressed as H(k) = D+C(Wr
z;*

:I-A)-1B, but 
the impulse response is h{n) = CAn_1(I-AL)_1B for 

0 < n < L and h(0) = D + CA^fl-A1}    B. This 
is because the initial condition v(0) is predetermined 
and cannot be set to zero. 



The system matrix for an LTI cyclic implementa- 
"A    B" tion is denned as C   D If this is unitary, one 

can verify (as in the noncyclic case [2]) that E(k) is 
cyclic PU. However the converse is not true in the 
cyclic case: even if E(fe) is PU, there may not ex- 
ist a minimal structure with unitary system matrix. 
Whenever it does, we can find an interpolated PU ma- 
trix Enon(z) by replacing W£ by z~l in the expression 
H{k) = D + C(W£kI - A)_1B, and then factorize it. 
In the factored form if we replace z_1 with Wk, we 
obtain a factorization of E(&). 

x(n) x>) 
H0W |M 

v„(n) 

x/n) v/n) 

>V/k> — |M 
v   (n) 

fM -*■   F0(k) 
1 ' 

fM -»■   F,(k) 

• • • 

1 

J 

1 

1 
♦ ■* -~ Uk> 1 

■ „        x(n) 
Analysis bank Synthesis bank 

Fig. 1. The cyclic filter bank. 

(a) 
5. CONCLUDING REMARKS 

Perhaps the question of greatest interest for future 
work is, how to exploit the extra freedom offered by 
the cyclic system, in the design of subband coders. 
Can this be exploited to obtain increased coding gain 
(or compression), or to obtain reduced complexity of 
implementation? These require further study. The no- 
tion of cyclic LTI systems also opens up other problems 
in the general arena of signal and system theory. 
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The system matrix for an LTI cyclic implementa- 

tion is denned as If this is unitary, one C   D 
can verify (as in the noncyclic case [2]) that E(fc) is 
cyclic PU. However the converse is not true in the 
cyclic case: even if E(fc) is PU, there may not ex- 
ist a minimal structure with unitary system matrix. 
Whenever it does, we can find an interpolated PU ma- 
trix En0„(z) by replacing W£ by z_1 in the expression 
H[k) = D + C(W£kI - A)_1B, and then factorize it. 
In the factored form if we replace z_1 with Wk, we 
obtain a factorization of E(A). 
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Fig. 4. A cyclic(L) FIR filter with non-FIR spectral factor. 
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