
"• Carnegie Mellon University
Software Engineering Institute

A Perspective on the State
of Research in
Fault-Tolerant Systems
Charles B. Weinstock
David P. Gluch
June 1997

-S5§§tmoir
red jta Püefcc

Dnc^A^nmsPmmD

iß..i;X::.;
::": j Bit

Special Report
CMU/SEI-97-SR-008

mm 019

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Special Report
CMU/SEI-97-SR-008

June 1997

A Perspective on the State of Research in Fault-Tolerant Systems

Charles B. Weinstock

David P. Gluch

Dependable System Upgrade

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTTTUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.saic^om/-
contact.html / e-mail: webmaster@cpqm.saic.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Dimensions of the Problem Space 3
2.1 System Perspective 3
2.2 Means to Achieve Dependability 5
2.3 Design for Dependability 5
2.4 Social and Economic Issues 5

3 Evolution of Fault-Tolerance Research 7
3.1 Issues Facing Fault-Tolerance Researchers 8

3.1.1 Broad Range of Issues 8
3.1.2 Technology Transition 10
3.1.3 Difficult Challenges 11

3.2 Prospects for Fault Tolerance Technologies 11
3.2.1 Advancing the Technology 11
3.2.2 Making the Technology Available 13

4 Summary 15

References 17

CMU/SEI-97-SR-008

CMU/SEI-97-SR-008

Acknowledgments

The authors would like to thank Jacob Abraham of the University of Texas at Austin, and Peter
Feiler, Mark Klein, Lui Sha, and Suzanne Couturiaux at the Software Engineering Institute for
their review and helpful comments on this work.

CMU/SEI-97-SR-008

IV CMU/SEI-97-SR-008

A Perspective on the State of Research
in Fault-Tolerant Systems

Abstract: As computers take on a greater role in society, their dependability
is becoming increasingly important. Given software's critical role in computing
systems, reliable software has emerged as crucial to achieving a dependable
infrastructure. Using a system perspective that recognizes the prominence of
software, we characterize the current state of fault-tolerance research as it
contributes to the dependability of computer systems and we conjecture on
future directions for this research area.

1 Introduction

We are becoming increasingly dependent on software-based systems, often without realizing
it. While by no means can all such systems be classified as critical, software is turning up ev-
erywhere, from airplanes and automobiles to television sets and electric razors. Also, the per-
centage of software in these systems (relative to hardware) is increasing. According to Randell
[Randell 95], the amount of software in consumer products is doubling every year (e.g., a top-
of-the-line television now contains 500 kilobytes of software).

Consequences of failures in these systems can range from inconvenient (e.g., a television re-
mote control that will not work) to catastrophic (e.g., software in a commercial aircraft that in-
advertently prevents the pilot from recovering from an error.) The dependability of a television
set may not be critical in the normal sense; however, for the manufacturer a television's low
dependability can translate into lower sales and higher warranty repair costs. For the consum-
er an undependable television may result in the inability to obtain important information (e.g.,
school closings in a snow storm.)

Fault tolerance has long been used as a means of improving the dependability of computer
systems. This report presents a perspective on research in fault tolerance as it relates to de-
pendability in software-based systems and attempts to describe the current state of, and out-
line future directions for, this broad research field. While references are made to the
commercial suppliers of fault-tolerant systems, this is not intended to be a survey of the capa-
bilities of these systems.

The next section presents the system perspective that is used throughout this paper and dis-
cusses the problems involved in designing a system for dependability. Section 3 discusses the
evolution of fault-tolerance research including the current state and future prospects. Finally,
Section 4 presents a summary of the report.

CMU/SEI-97-SR-008

CMU/SEI-97-SR-008

2 Dimensions of the Problem Space

2.1 System Perspective
In the software engineering arena, a system is often equated with software, or perhaps with
the combination of computer hardware and software. Here, we use the term system in its
broader sense. As shown in Figure 2-1, a system is the entire set of components, both com-
puter related and non-computer related, that provides a service to a user. For instance, an au-
tomobile is a system composed of many hundreds of components, some of which are likely to
be computer subsystems running software.

Operator
feedback"* Inputs

Environment

Computer-based
services
(to system)

User

Computer subsystem/
System interface System services (to user)

Figure 2-1 System Relationships

A system exists in an environment (e.g., a space probe in deep space), and has operators and
users (possibly the same). The system provides feedback to the operator and services to the
user. Operators are shown inside the system because operator procedures are usually a part
of the system design; and many system functions, including fault recovery, may involve oper-

CMU/SEI-97-SR-008

ator action. Not shown in the figure, but of equal importance, are the system's designers and
maintainers.

Systems are developed to satisfy a set of requirements that meet a need. A requirement that
is important in some systems is that they be dependable. A dependable system is one for
which "reliance can justifiably be placed on the service it delivers [Laprie 92]." Fault tolerance
is a means of achieving dependability.

There are three levels at which fault tolerance can be applied—hardware, software, and sys-
tem (user interface). All three levels are susceptible to design, implementation, or mainte-
nance errors—human mistakes that exist as faults in the hardware, code, or user interface and
that are manifested in the behavior of the system. Hardware is unique among the three in that
it is susceptible to "wear out" and damage. Traditional fault tolerance compensates for faults
in computing resources (hardware). By managing extra hardware resources, the computer
subsystem increases its ability to continue operation. Measures to ensure hardware fault tol-
erance include redundant communications, replicated processors, additional memory, and re-
dundant power/energy supplies. Management of this redundancy often involves the use of
software. Hardware fault tolerance was particularly important in the early days of computing,
when the time between machine failures was measured in minutes.

A second level of fault tolerance recognizes that a fault-tolerant hardware platform does not,
in itself, guarantee high availability to the system user. Faults can also arise from software
components. These faults occur because the software was designed, implemented, or main-
tained incorrectly. Software fault tolerance (including mechanisms such as checkpoint/restart,
recovery blocks, and multiple-version programs) is used to compensate for faults at this level.

A third level of fault tolerance realizes that software and hardware do not exist independently
and that they execute in some environment. For instance, failures can arise as the result of
actions by a user, whether a person or another computer system through the operational in-
terface between the system and user. Measures taken at this level are usually application-spe-
cific and may be implemented in hardware or in software. At this level we have system fault
tolerance.

The system view is recursive in nature. A subsystem may in itself consist of both hardware and
software components. A simple example of this is a microprocessor whose instruction set is
implemented in microcode. The microprocessor is subject to all of the usual kinds of hardware
faults (e.g., single bit upsets), as well as all of the usual kinds of software faults (e.g., design
errors in the microcode). The user of the microprocessor does not know or care which aspects
of the subsystem are implemented in hardware or software. The microprocessor looks like a
piece of hardware to most users. To the designer of the microcode, the microcode looks like
software running on a specialized piece of hardware (the engine that executes the microcode.)
The designer will have to deal with the hardware and software, which together make up the
microprocessor, and be prepared to deal with the potential misuse of the microprocessor by
the user.

CMU/SEI-97-SR-008

2.2 Means to Achieve Dependability

The International Federation for Information Processing (IFIP) Working Group 10.4 has iden-
tified [Laprie 92] means to achieve improved dependability for a system. These can be cate-
gorized into fault-avoidance or fault-tolerance techniques. Fault avoidance prevents faults
from occurring in the operational system and includes fault prevention, fault removal, and fault
forecasting. Fault tolerance compensates for, and protects against, the impacts of faults dur-

ing system operation.

Because the desired property of a system is improved dependability, software fault-tolerance
research is not isolated from software fault avoidance issues. Understanding how faults occur
and their nature is essential to defining strategies for tolerating the manifestation of faults in
operational systems. Consequently, issues in fault-avoidance research are inseparable from
considerations of fault-tolerance research.

2.3 Design for Dependability
When designing systems where dependability is required, it is important to deal with depend-
ability issues from the start by including fault-tolerance mechanisms within the system design
and employing fault-avoidance techniques as appropriate in the design process. Adding de-
pendability after the fact can be both expensive and not as effective as designing it in from the
start.

Depending on the nature of the system, tolerance of conventional faults or failures is not the
only important consideration when designing dependable systems. Attention should also be
paid to potential malicious "threats." As systems become more integrated, it is increasingly at-
tractive to attack them, for teenage hackers as well as foreign terrorists. Attacks on the net-
worked computer systems are becoming common, as evidenced by the increasing number of
CERT® advisories appearing on the Internet. Much of our nation's infrastructure is becoming
dependent on fragile, distributed software-dependent systems—the power grid, transportation
(particularly air and rail), and our financial systems. These system are potential targets for in-
truder attacks.

2.4 Social and Economic Issues

The issues surrounding dependable systems are not just technical in nature. There are difficult
social and economic barriers to be surmounted before dependability practices become stan-
dard in software-based systems. Although this report concentrates on technical areas, it is im-
portant to recognize the crucial role of these social and economic issues.

® registered in the U.S. Patent and Trademark Office.

CMU/SEI-97-SR-008

Building dependable systems has a higher initial cost than building a system without paying
special attention to dependability. Because of this, dependability has been a hard sell. Except
in a limited set of critical applications with catastrophic failure modes (e.g., flight control, rail-
road signaling), there has been little perception or hard data to establish that the extra costs
are worthwhile. This is changing. Whole industries are becoming dependent on software to op-
erate, and the need for and cost effectiveness of higher levels of dependability are being rec-
ognized. Still, where the safety or economic benefit of dependability is not obvious, there is
little demand for it.

There are cases where dependability (safety) drives the design (e.g., commercial aircraft). In
others, regulations or economic incentives, such as severe penalties, may be needed to help
push developers into designing for dependability.

Society demands dependability in other arenas—much more so than in software. Often, the
demand for dependability is the result of some disaster or series of disasters that brings the
dependability issue to the forefront. Leveson [Leveson 94] draws parallels between the prolif-
eration of high-pressure steam engines in the early steam-era and computer software today.
Boiler explosions and their aftermath led to the routine use of safety devices and to higher
standards of workmanship and engineering. Similarly, it may require a major software-related
disaster(s) to cause the public or management to routinely demand dependability guarantees
on software-based systems.

Making systems dependable is difficult and requires systematic engineering, not just extensive
user testing. The additional cost and/or time involved in achieving higher levels of dependabil-
ity result in systems with a higher initial cost. Therefore if a consumer makes a purchase de-
cision based only on price, ignoring the long-term costs associated with lower dependability,
there is little incentive for the supplier to spend the additional resources on making the system
dependable.

One reason that dependable systems cost more is that most fault-tolerant system architec-
tures are proprietary. There is hope that increased demand will result in generic implementa-
tions which will bring the cost down. There is evidence that this is already happening. New
fault-tolerant systems by Tandem [Tandem 96], Sequoia [Sequoia 96], and other manufactur-
ers are based on UNIX and are much more open than their predecessors.

CMU/SEI-97-SR-008

3 Evolution of Fault-Tolerance Research

Research in the field of computer system fault tolerance has evolved throughout the history of
electronic computing. The unreliability of vacuum tubes and related discrete components of
the earliest electronic computers necessitated conservative engineering and constant atten-
tion, if not extensive redundancy. For example, ENIAC included over 17,000 vacuum tubes
and related components totalling more than 100,000 discrete parts. The key designers of the
ENIAC realized that the success of the entire project rested on achieving component and sys-

tem reliability [Goldstine 72].

As the field of computer design evolved, inherent component reliability and overall hardware
reliability increased [Gray 91]. These improvements were due to the evolution of hardware
technology (e.g., vacuum tubes to transistors to integrated circuits and higher levels of com-
ponent integration), as well as the advancement of fault-avoidance and fault-tolerance tech-
niques. Fault avoidance helped improve the quality of both the components and the systems,
while fault tolerance found its greatest application in high-availability and continuous-perfor-
mance systems, where computers began to take on increasingly critical roles in commercial
and industrial endeavors (e.g., process control and information processing and storage).

An increase in overall complexity and capability accompanied the evolution of computer tech-
nology, with much of this increase implemented within software. Consequently, software be-
came a larger and indispensable part of systems. With this growth, software began to emerge
as a significant contributor to system unreliability [Gray 90].

While software reliability issues continue to play a critical role in achieving higher levels of de-
pendability, the ubiquitous role of software has elevated human-computer interaction (HCI) is-
sues into prominence. This situation is especially evident in applications where software-
intensive systems have replaced traditional hardware-intensive systems as the primary tech-
nologies for information presentation and interaction (e.g., control panels replaced with graph-
ical display units). Within these domains and in the operation of these systems, human error
has been responsible for more downtime than generally recognized and, as a result, has had
a significant effect on system performance and dependability [Maxion 96, Velpuri 95].

It is within the context of computer system evolution that fault-tolerance research has contrib-
uted substantially to improved system dependability. It is this evolution that has resulted in in-
creasing research into the broader (non-hardware oriented) aspects of system dependability.
Reliable software, user interfaces, and inter-application interfaces within software-intensive
systems have emerged as important considerations in fault-tolerance research.

The broad focus has stimulated research into understanding the effect of software develop-
ment practices on system reliability. In addition, researchers are investigating the characteris-
tics of software architectures that will enable the attributes (specifically dependability) of
software-intensive systems to be predicted.

CMU/SEI-97-SR-008

3.1 Issues Facing Fault-Tolerance Researchers

As reflected in specialized conferences, sessions within general conferences, and journal pub-
lications, fault tolerance is a very active research field. Much of today's work is aimed at incre-
mental improvement, maturing basic understanding in specific technology focus areas, and
expanding the applicability of fault-tolerance technologies. There are no overriding technolog-
ical approaches that dominate or help focus research, and the community is attacking pieces
of the technology, problems, and solutions. This situation is in contrast to a few years ago
where a central theme (i.e., n-version programming) typified much of the software fault-toler-
ance research and attracted a multitude of researchers.

3.1.1 Broad Range of Issues

This section includes a representative set of active research topics in fault tolerance. These
range from fundamental fault-tolerance design and implementation issues (e.g., checkpoint
restart, distributed algorithms) to fault-avoidance approaches (e.g., formal methods). The wide
range of topics and the interweaving of fault-avoidance with classical fault-tolerance issues
are indicative of the broad and complementary nature of these research areas.

Checkpoint Restart

Checkpoint restart strategies are backward recovery techniques for saving the state of a sys-
tem to enable resuming operation from a well-defined state [Pradhan 96, Jalote 94]. This is
classic fault-tolerance issue that is now being addressed in the context of increasingly complex
and distributed systems. Much of the current research work involves issues relating to reliable
high performance checkpointing [Plank 95] and distributed systems [Wang 95, Smith 95].

Distributed Algorithms

Unlike uniprocessor-based systems, distributed systems present a new set of challenges to
achieving dependability. Clocks of the processors often must be synchronized, data must sur-
vive failures of individual processors, nodes must fail in controlled ways, and the communica-
tions between the processors must be reliable. Techniques such as interactive consistency,
fail-stop processors, and reliable transport mechanisms have been developed to deal with
these challenges. Many of the mechanisms are expensive to implement, and researchers con-
tinue to look for more efficient algorithms [Jalote 94].

Group Communications

In distributed systems high availability can be achieved by replicating state among groups of
servers. As long as the state is consistent between the servers, the system is able to recover
from the failure of one of them. This replica consistency \s often achieved by using group mem-
bership protocols, which ensure that all running servers share a common view of the system
configuration, and atomic broadcast, which ensures that each server is updated correctly.
Work in this area is widespread, including the University of California at San Diego [Cristian
96] and Cornell University [Schneider 90].

CMU/SEI-97-SR-008

Fault Tolerance in Human Computer Interaction (HCI)

Issues and perspectives in fault-tolerance research are expanding from internal software state
issues to considerations of interfaces between systems and between humans and computers.
This broadened perspective includes considerations of the environment and its effect on soft-
ware and overall system dependability.

Questions such as, "How will this technology affect usability and safety?" and "How do human
errors contribute to system downtime?" are being addressed [Neumann 95], [Gray 91]. These
investigations involve both fault-tolerance and fault-avoidance issues in trying first to predict
how errors will be introduced by human operators, under what conditions they will be intro-
duced, what types of errors will be introduced, and how to tolerate these occurrences [Maxion

96, Velpuri 95, Ladkin 96].

Fault Injection
Fault injection is a technique for evaluating the dependability of a system. It's purpose is to test
the ability of a system to detect and recover from faults. Äs a result of running fault-injection
experiments, designers are able to determine the fault coverage of their system. Fault injection
involves seeding the system with faults under controlled conditions and observing its behavior.
Many tools have been developed to aid in fault injection including FIAT at Carnegie Mellon
University [Barton 90], FERARRI at the University of Texas at Austin [Kanawati 95], and DE-
PEND at the University of Illinois [Ries 96].

Measurement and Interpretation
A significant difficulty in evaluating fault-tolerance and fault-avoidance mechanisms is the lack
of real-world data. Without this data it is impossible to determine the efficacy of a method in a
deployed system. Such data exist but are often proprietary. Some researchers have obtained
access to such data and have been able to tune techniques and improve systems as a result.
Notable examples of work in this area have taken place at the University of Illinois and Tandem
Computers [Lee 95, Thakur 95], and at IBM's T. J. Watson Research Center [Chillarege 95].

Reliability Modeling

Reliability modeling is the modeling of faults and errors with the intention of predicting future
behavior [Musa 90, Laprie 96, Farr 96]. Traditional hardware reliability models are empirically
based and reflect physical characteristics of hardware failures, e.g., random failure models. In
contrast, software and system failure models lack the physical data to guide reliability model-
ing and require reliance on usage data. Usage data is highly problematic both to collect and,
because of the dependency of software reliability on its use, to generalize across systems.

Recent research in reliability models for predicting the future behavior of a system has focused
on extending models, including complex and distributed systems, and addressing software re-
liability and its impact on overall system reliability. Summaries of these are available in a vari-
ety of publications [Pham 92, Pham 95, Lyu 96].

CMU/SEI-97-SR-008

Formal Methods

The use of formal methods is a fault-avoidance technique which helps to achieve dependable
systems by locating inconsistencies in their design or implementation. The application of for-
mal methods to dependable system may involve detailed hand analysis, semi-automatic anal-
ysis (e.g., tools to help tabulate data), or the use of complex theorem provers. No matter which
techniques are used, the use of formal methods can often find extremely subtle problems but
scaling to large systems can be problematic. SRI International [Rushby 95], the National Aero-
nautics and Space Administration (NASA) [Bulter 95], and the Naval Research Laboratory
(NRL) [Heitmeyer 96] are among the many organizations working in this area.

Object-Oriented Systems

Advances in the implementation of object-oriented systems and their expansion into critical
and real-time applications has stimulated work attempting to integrate fault-tolerance and ob-
ject-oriented technologies [Xu 95, Landis 95]. Specific efforts include addressing the critical
fault-tolerance issues of partial failures and consistent ordering of events in distributed sys-
tems that are not adequately handled, for example, in Object Request Broker (ORB) or Com-
mon Object Request Broker Architecture (CORBA) technologies [Maffeis 95].

Innovative Applications

This research involves applying fault tolerance in new ways to solve problems that have not
traditionally been associated with fault tolerance. It is based on abstracting the results of fault-
tolerance research and mapping these to other problem spaces. Examples include the use of
fault tolerance to enable dependable system upgrade [Sha 96] and the application of fault tol-
erance to information survivability and security problems [Randell 95, Wilken 95].

3.1.2 Technology Transition

An emerging perspective that is gaining greater emphasis is the challenge associated with
transferring existing fault-tolerance technology into widespread practice.

Recently, the High Assurance Computing Workshop team (which was composed of 50 experts
from academe, government, and industry), identified two primary problems associated with
high-assurance (dependable) computing. Both problems involved the application of depend-
able computing to the development of practical systems. These problems were (1) lack of
technology to support the application of dependability techniques and (2) lack of a unified
framework for building systems that satisfy several critical properties (e.g., dependability and
performance) simultaneously [McLean 95].

Evidence of efforts to transfer fault-tolerance techniques is seen in recent publications. For ex-
ample, in the field of software fault tolerance two volumes edited by Michael Lyu [Lyu 95, Lyu
96] attempt to capture the state of software fault tolerance and software reliability. Similarly
[Jalote 94, Pradhan 96, Siewiorek 92] capture broader design practices for fault-tolerant sys-
tems. These efforts are representative of the process of codifying the field toward integrating
fault-tolerance techniques into more general engineering practice.

10 CMU/SEI-97-SR-008

As with any transition challenge, the transition of fault-tolerance technologies must address
not only technical but economic issues. This must include engineering studies and validated
data on the impact (e.g., performance, cost) and the benefits (e.g., reduced downtime, lower
maintenance costs) involved in engineering more dependable software-intensive systems.

3.1.3 Difficult Challenges
While one might conjecture that the field is mature, based on the emergence of the importance
of transition, this is not a completely accurate description. Rather, while substantial success
has been realized in the application of established techniques, the system and software fault-
tolerance research communities still face complex problems that are too challenging for cur-
rent technologies. As an example, published work has identified the difficulties in black box
testing of software systems for high-reliability applications. In some cases, this work has de-
scribed the infeasibility of proving ultra-high levels of software reliability, even with the use of
advanced testing methods [Littlewood 91, Butler 93].

Similarly, challenges such as proving levels of independence among various software ver-
sions and establishing reliable (provable) error-detection mechanisms remain unanswered.
For example, to determine if an error has occurred, a reference (a "correct" value) must be
used. In hardware, the output of redundant components can be used as a reference. In this
case, the challenge is the reliable implementation of the mechanism to compare outputs with
the reference(s). In software the challenge is not only to implement the comparison but to es-
tablish a credible reference across the system's full operating environment, a reference that is
itself sufficiently reliable.

Current fault-tolerance research areas are varied and there is no obvious central direction for
future research activities. There is a sense in the community, as evidenced by informal discus-
sions at conferences and workshops, of a need to develop more of a focus, or at least more
clearly define the state of fault-tolerance research. The situation can be characterized as one
that is opportune for a major breakthrough, perhaps a paradigm shift that would enable funda-
mental improvement in predictably achieving software and system dependability and safety.

3.2 Prospects for Fault-Tolerance Technologies

Building upon the assessment of the current state of fault-tolerance research, this section
summarizes potential directions for technologies and research in fault tolerance. These are di-
vided into those areas that are advancing the technology itself and those that are making fault-
tolerance technology more widely available.

3.2.1 Advancing the Technology
The core of the activity in fault-tolerance research will center on advancing fundamental ap-
proaches within the discipline. These directions will likely involve four broad aspects: new
breakthroughs, software, user issues, and proof of correctness.

CMU/SEI-97-SR-008 11

New Breakthroughs

Redundancy and diversity of implementation have been cornerstones of system and software
fault tolerance. But given the current situation, significant advancements in system fault toler-
ance may be realized only through a fundamentally new paradigm (e.g., a revolutionary fault-
tolerance approach, the identification of methods that prove the degree of independence of
various software versions, or dramatic advances in the application of formal methods or proof
of correctness). Some of these approaches may involve post-implementation testing or mod-
ifications to software development practices. This work may very well profit from general re-
search in understanding software engineering practices, software structure, and software
attribute prediction.

Software Fault Tolerance

Software faults are idiosyncratic to a software implementation and represent logical or design
errors made by human beings. While the use of software dictates how and when faults are
manifested, software and software reliability embody the results of human efforts to interpret
and understand the interactions of complex structure and behavior.

These logical or design errors in software mirror research problems found in software engi-
neering generally. Much of the current and future research in software engineering seeks to
establish patterns in the structure of software [Clements 95] and to better understand the prac-
tice of engineering software systems. In the future, fault tolerance research will find greater
synergy with and benefit from the research in architectures, patterns, objects, and related
technologies. These efforts may form the foundation for enabling greater predictability in the
reliability and dependability attributes of software systems.

User Environment

Continuing issues related to the interplay of the user and the system will provide a substantial
challenge for researchers. These issues will require more interdisciplinary work, especially be-
tween fault-tolerance and HCI researchers, and will require understanding the interrelation-
ships between technology and its role within society.

Proof of Correctness

At least for critical parts of a system, such as error detection and recovery software, a concert-
ed effort to find new directions in "proving" the correctness of software may be necessary.
Some possible directions include the use of powerful abstractions to reduce the complexity
and more "natural" specification languages which would be embraced by programmers. Such
techniques are being applied successfully to complex hardware designs. (Intel, IBM, Motorola,
AMD, HP, DEC, SUN, SGI, etc., all have formal verification groups; Intel, for example, has a
large number of researchers working on the problem.1)

The ideas expressed in this paragraph reflect a private communication between the authors and Jacob Abra-
ham of the University of Texas at Austin.

12 CMU/SEI-97-SR-008

3.2.2 Making the Technology Available
Much of the research in fault tolerance will continue to support making these techniques avail-
able to a broader community of practice and applying them to more domains. The exact direc-
tion of these efforts will likely be driven by the technologies that emerge as important to society
(e.g., World Wide Web, mobile computing [Pradhan 96]). Work in this area will focus on the
following three issues: repackaging and improving fault-tolerance technologies, transitioning
the technology, and extending the technologies to other areas.

Repackage and Improve
Work will continue on new and optimized algorithms and enhanced implementations of fault-
tolerance technologies. Much of this work will be aimed at structuring building blocks for use
and reuse. For example, some of these advances may include higher quality, more robust al-
gorithms for complex highly distributed systems; enhanced approximations toward ensuring
near absolute fail-stop capabilities; and reuse of fault-tolerant software based upon architec-
tural patterns.

Transition Mission
As fault-tolerance technology matures, increasing attention will likely turn to implementation
and use in real systems. Investigations may include determining the practicality of techniques
and whether these will scale to large real-world systems. These efforts will also need to con-
sider the social and economic aspects of the technology.

Extend to Other Pressing Problem Areas
Efforts will likely continue in the application of fault-tolerance techniques to other problem
spaces and in the integration of fault-tolerance techniques with related or supporting technol-
ogies. These directions will also foster a broad systems orientation in developing software-in-
tensive systems. Current examples include the use of Simplex [Sha 96] for system upgrade,
use of commercial off-the-shelf (COTS) components in dependable systems, integrating ob-
ject-oriented approaches with fault tolerance in reflective programming [Xu 95], and the appli-
cation of fault tolerance to information survivability problems [Randell 95].

CMU/SEI-97-SR-008 13

14 CMU/SEI-97-SR-008

4 Summary

This report presents a perspective on the directions of research in the field of fault tolerance
for dependable computing systems. The field of fault tolerance encompasses hardware, soft-
ware, system, and user issues. In the past, most research has centered on developing new
techniques to achieve dependable systems and on the details of system design and perfor-
mance. Increasingly, though, the issues of user errors and the effects of the environment of
use are being recognized as critical to overall system dependability.

Reliable software will continue to be a key factor in achieving dependable system perfor-
mance. Future research will need to address techniques for not only measuring but predicting
the dependability of software-intensive systems. Within this area, opportunities will exist for
synergy between fault tolerance and software engineering research.

While future progress will likely be incremental, the community appears poised for fundamen-
tally new developments. As a context for these developments, and perhaps as precursors to
them, important challenges exist. Some of these include

• software reliability prediction and measurement

• black-box testing

• user and usability issues

• repackaging and improvements

• reliable error detection

• proving the independence of software components

• extension to other problem domains

• transition of the technology to industry (real-world issues)

• information survivability

These problems are not just technical; there are also social and economic issues that have
broad effect on the research and adoption of fault-tolerance technologies.

This is a living document that represents the current thinking of the authors. Readers are in-
vited to help improve this document by sending comments to the authors at

dependable, software @ sei. emu. edu

CMU/SEI-97-SR-008 15

16 CMU/SEI-97-SR-008

References

[Barton 90]

[Butler 93]

[Butler 95]

[Chillarege 95]

[Clements 95]

[Cristian 96]

[Farr 96]

[Goldstine 72]

[Gray 90]

[Gray 91]

Barton, J.H.; Czeck, E.W.; Segall, Z.Z.; & Siewiorek, DP. "Fault
Injection Experiments using FIAT." IEEE Transactions on Com-
puters 39, 4 (April 1990): 575-582.

Butler, Ricky W. & Finelli, George B. 'The Infeasibility of Quanti-
fying the Reliability of Life-Critical Real-Time Software." IEEE
Transactions on Software Engineering 19, 1 (January 1993): 3-
12.

Butler, Ricky W.; Caldwell, James L; Carreno, Victor A.; Hollo-
way, C. Michael; Miner, Paul S.; & Di Vito, Ben L. "NASA Lan-
gley's Research and Technology Transfer Program in Formal
Methods." Proceedings of the Tenth Annual Conference on Com-
puter Assurance (COMPASS 95). Gaithersburg, MD, June 1995.
New York, NY: IEEE, 1995.

Chillarege, R; Biyani, S.; & Rosenthal, J., "Measurement of Fail-
ure Rate in Widely Distributed Software," 424-433. 25th Interna-
tional Symposium on Fault Tolerant Computing. Digest of Papers.
Pasadena, CA, June 1995. Los Alamitos, CA: IEEE Computer
Society Press, 1995.

Clements, Paul C. Coming Attractions in Software Architecture
(CMU/SEI-96-TR-008, ADA 309156). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.

Cristian, Flaviu. "Synchronous and Asynchronous Group Com-
munication." Communications of the ACM 39, 4 (April 1996): 88-
97.

Farr, William. Ch. 3. "Software Reliability Modeling Survey." 71-
117. Software Reliability Engineering, IEEE Society Press, Los
Alamitos, California (1996).

Goldstine, Herman H. The Computer from Pascal to von Neu-
man. Princeton, NJ: Princeton University Press, 1972.

Gray, J. "A Census of Tandem System Availability Between 1985
and 1990." IEEE Transactions on Reliability 39,4 (October 1990):
409-418.

Gray, J. & Siewiorek, D.P. "High-Availability Computer Systems."
IEEE Computer 24, 9 (September 1991): 39-48.

CMU/SEI-97-SR-008 17

Heitmeyer 96]

[Jalote 94]

[Kanawati 95]

[Ladkin 96]

[Landis 95]

[Laprie 92]

[Laprie 96]

[Lee 95]

[Lyu 95]

[Leveson 94]

[Littewood 91]

[Lyu 95]

[Lyu 96]

Heitmeyer, Constance & Mandrioli, Dino, eds., "Formal Methods
for Real-Time Computing." Trends in Software, Volume 4. Chich-
ester, UK: John Wiley, 1996.

Jalote, Pankaj. Fault Tolerance in Distributed Systems. Engle-
wood Cliffs, NJ: Prentice Hall, 1994.

Kanawati, G. A.; Kanawati, N. A.; & Abraham, J. A., "FERRARI:
A Flexible Software-Based Fault and Error Injection System."
IEEE Transactions on Computers 44, 2 (February 1995): 248-
260.

Ladkin, Peter. Reasons and Causes [online]. Available WWW:
<URL:http://www.techfak.uni-bielefeld.de/~ladkin/Causes.html>
(1996).

Landis, S. & Stento, R. "CORBA with Fault Tolerance." ObjectT
Magazine 5, 7 (November-December 1995): 62-66.

Laprie, J. C, ed. Dependability: Basic Concepts and Terminolo-
gy. International Federation for Information Processing (IFIP)
WG10.4 Dependable Computing and Fault Tolerance. New York,
NY: Springer-Verlag, 1992.

Laprie, J. C. & Kanoun, Karama. Ch. 2, "Software Reliability and
System reliability," 27-70. Software Reliability Engineering, Los
Alamitos, California: IEEE Society Press, 1996.

Lee, Inhwan & Iyer, R.K. "Software Dependability in the Tandem
GUARDIAN System Source." IEEE Transactions on Software En-
gineering 21, 5 (1995): 455-467.

Lyu, Michael R. , ed. Software Fault Tolerance. Chichester, En-
gland: John Wiley & Sons, 1995.

Leveson, Nancy G. Safeware: System Safety and Computers.
New York, NY: Addison Wesley, 1994.

Littlewood, Bev. Ch. 6, "Limits to Evaluation of Software depend-
ability," 81-110. Software Reliability and Metrics. New York, NY:
Elsevier Science Publishing Co., Inc., 1991.

Lyu, Michael R. , ed. Software Fault Tolerance. Chichester, En-
gland: John Wiley & Sons, 1995.

Lyu, Michael R., ed. Software Reliability Engineering. Los Alami-
tos, California: IEEE Computer Society Press, 1996.

18 CMU/SEI-97-SR-008

[Maffeis 95]

[Maxion 96]

[McLean 95]

[Musa 90]

[Neumann 95]

[Pham 92]

[Pham 95]

[Plank 95]

[Pradhan 96]

[Randell 95]

[Ries 96]

Maffeis, Silvano. "Adding Group Communication and Fault-Toler-
ance to CORBA." Proceedings of the USENIX Conference on
Object-Oriented Technologies. Monterey, CA, June 1995. Berke-
ley, CA: USENIX Association, 1995.

Maxion, Roy A. & Syme, Philip A. Mitigating Operator-Induced
Unavailability by Matching Imprecise Queries," 240-249. 26th In-
ternational Symposium on Fault Tolerant Computing, Digest of
Papers. Sendai, Japan, June 1996. Los Alamitos, CA: IEEE Com-
puter Society Press, 1996.

McLean, John & Heitmeyer, Constance. High Assurance Com-
puter Systems: A Research Agenda (Workshop Report, February
21-23, 1995). Washington, DC: Naval Research Laboratory,
1995.

Musa, John D.; lannino, Anthony; & Okumoto, Kazuhira. Software
Reliability: Measurement, Prediction, Application. New York, NY:
McGraw-Hill Publishing Company, 1990.

Neumann, Peter G. Computer Related Risks. New York, NY: Ad-
dison-Wesley/ACM Press, 1995.

Pham, Hoang, ed. Software Systems: Techniques and Applica-
tions. Los Alamitos, CA: IEEE Computer Society Press, 1992.

Pham, Hoang. Software Reliability and Testing. Los Alamitos,
CA: IEEE Computer Society Press, 1995.

Plank, James S.; Kim, Youngbae; & Dongarra, Jack J. "Algorithm-
Based Diskless Checkpoints for Fault tolerant Matrix Operations,"
351-360. 25th International Symposium on Fault Tolerant Com-
puting, Digest of Papers. Pasadena, CA, June 1995. Los Alami-
tos, CA: IEEE Computer Society Press, 1995.

Pradhan, Dhiraj K. Fault-Tolerant Computer System Design. Up-
per Saddle River, NJ: Prentice-Hall, Inc., 1996.

Randell, B. "Fault Tolerance and Security," 389-391. Proceedings
of Fourth IFIP Working Conference on Dependable Computing
for Critical Applications. San Diego, CA, January 4-6, 1994. New
York: Springer-Verlag, 1995.

Ries, G.; Kalbarczyk, Z.; Kraljevic, T.; Hsueh, M.-C; & Iyer, R. K.
"DEPEND: A Simulation Environment for System Dependability
Modeling and Evaluation." Proceedings of the Second IEEE Inter-
national Computer Performance and Dependability Symposium
(IPDS '96), September, 1996. Los Alamitos, CA: IEEE Computer
Society Press, 1996.

CMU/SEI-97-SR-008 19

[Rushby 95]

[Scheider 90]

[Sequoia 96]

[Sha 96]

[Siewiorek 92]

[Smith 95]

[Tandem 96]

[Thakur95]

[Velpuri 95]

[Wang 95]

[Wilken 95]

Rushby, John. Formal Methods and their Role in the Certification
of Critical Systems (SRI-CSL-95-1). Menlo Park, CA: SRI Interna-
tional, 1995.

Schneider, Fred B. "Implementing Fault-Tolerant Services Using
the State Machine Approach: a Tutorial." Computing Surveys 22,
4 (December 1990): 299-319.

Sequoia Enterprise Systems [online]. Available WWW: <URL:
http://seqweb.sequoia.com/ser400.html>.

Sha, Lui R.; Rajkumar, Ragunathan; & Gagliardi, Michael. "Evolv-
ing Dependable Systems," 335-346. Proceedings of 1996 IEEE
Aerospace Applications Conference on Reliability and Quality of
Design, Part 1. Aspen, CO, Feb, 1996. New York: IEEE, 1996.

Siewiorek, Daniel P. & Swarz, Robert S. Reliable Computer Sys-
Design and Evaluation. Burlington, MA: Digital Press, Inc., 1992.

Smith, Sean W.; Johnson, David B.; & Tygar, J. D. "Completely
Asynchronous Optimistic Recovery with Minimal Rollbacks," 361-
370. 25th International Symposium on Fault Tolerant Computing,
Digest of Papers. Pasadena, CA, June 1995. Los Alamitos, CA:
IEEE Computer Society Press, 1995.

Tandem Computer Home Page [online]. Available WWW: <URL:
http://www.tandem.com/> 1996.

Thakur, A.; Iyer, R. K.; Young, L; & Lee, I. "Analysis of Failures in
the Tandem NonStop-UX Operating System." 40-49. Proc. Inter-
national Symposium on Software Reliability Engineering, Tou-
louse, France, October 1995. Los Alamitos, CA: IEEE Computer
Society Press, 1995.

Velpuri, Rama. Oracle Backup Handbook. Berkeley, CA: Oracle
Press/Osborne McGraw-Hill, 1995.

Wang, Yi-Min; Chung, Pi-Yu; Lin, In-Jen; & Fuchs, W.K. "Check-
point Space Reclamation for Uncoordinated Checkpointing in
Message-Passing Systems." IEEE Transactions on Parallel and
Distributed Systems 6, 5 (May 1995): 546-54.

Wilken, K.D. "Common techniques in Fault Tolerance and Secu-
rity (and Performance!)," 393-395. Proceedings of Fourth IFIP
Working Conference on Dependable Computing for Critical Appli-
cations. San Diego, CA, January 4-6, 1994. New York: Springer-
Verlag, 1995.

20 CMU/SEI-97-SR-008

[Xu 95] Xu, Jie; Randell, Brian; Romanovsky, Alexander; Rubira, Cecilia
M. F.; Stroud, Robert; & Wu, Zhixue. "Fault Tolerance in Concur-
rent Object-Oriented Software through Coordinated Error Recov-
ery," 499-508. 25th International Symposium on Fault Tolerant
Computing. Digest of Papers. Pasadena, CA, June 1995. Los
Alamitos, CA: IEEE Computer Society Press, 1995.

CMU/SEI-97-SR-008 21

22 CMU/SEI-97-SR-008

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-97-SR-008

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AXS

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

7b. ADDRESS (city, state, and zip code)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A

11. TITLE (Include Security Classification)

A Perspective on the State of Research in Fault-Tolerant Systems

12. PERSONAL AUTHOR(S)
Charles B. Weinstock, David R Gluch

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

June 1997
15. PAGE COUNT

21

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

computing systems, fault-tolerance research, fault-tolerant systems, soft-
ware reliability

19. ABSTRACT (continue on reverse if necessary and identify by block number)

As computers take on a greater role in society, their dependability is becoming increasingly impor-
tant. Given software's critical role in computing systems, reliable software has emerged as crucial to
achieving a dependable infrastructure. Using a system perspective that recognizes the prominence
of software, we characterize the current state of fault-tolerance research as it contributes to the
dependability of computer systems and we conjecture on future directions for this research area.

(please tum over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED [] SAME AS RPTQ DTIC USERS fj

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22b. TELEPHONE NUMBER (include area code)

(412) 268-7631
22c. OFFICE SYMBOL

ESC/AXS (SEI) JPO)

DDFORM 147?. 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED. UNCLASSIFIED

