
F
rearer,

I*.

Aft-0(0-14^
bS1§-"Tfc-0S00

BwteitftaV-Vi-fH.'j ,'.. , r .■■,.,

aSbS&t'^^j*.jv:yJ...;:
J
f..-t'v^.Jr'b,

,L-; r : -.

♦aft
3&i.

A MONTE-CARLO SIMULATION
OF LIGHT PROPAGATION IN

SEA WATER

Mike Brennan

] [APPROVED FOR PUBLIC RELEASI

(Q) r r\mmr>nw£»n1tVi r\f Anstrnlin

DEPARTMENTOF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

A MONTE-CARLO SIMULATION OF LIGHT
PROPAGATION IN SEA WATER

Mike Brennan

Land Space and Optoelectronics Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0500

ABSTRACT

The design and implementation of a suite of programs for Monte Carlo simulation of
light propagation in turbid media is described. The program has been tailored to
simulate the propagation of the green laser in the RAN Laser Airborne Depth Sounder
(LADS) through turbid water. The paper describes the Monte Carlo program in detail,
particularly how the inherent multiple scattering problem is interpreted for
incorporation into a single scattering simulation. Assumptions made in the
implementation of the program are discussed. Results of some initial simulations are
presented, together with data obtained during a recent LADS sortie for comparison
with the simulations. This paper forms part of the formal documentation for the
simulation suite.

RELEASE LIMITATION
.^CQUALtTY!^

Approved for public release '

DEPARTMENT OF DEFENCE
 +

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

19970724 086

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA Australia 5108

Telephone: (61) (08) 82595555
Fax: (61) (08) 82596567
© Commonwealth of Australia 1997
AR No. AR-010-149
March 1997

APPROVED FOR PUBLIC RELEASE

A MONTE-CARLO SIMULATION OF LIGHT
PROPAGATION IN SEA WATER

Executive Summary (U)

This is an interim report on Monte Carlo simulations of photon propagation in turbid
water. Application of the method to simulating the performance of laser bathymetric
systems (The Royal Australian Navy LADS system in particular) is considered in
detail. Initial results suggest that the method qualitatively describes the so-called
"depth bias" measured by such systems (the tendency of the laser hydrographic
systems to record depths greater than the actual depth in turbid water). Future
extensions to the method are proposed to quantify this bias, which will yield a better
understanding of the factors affecting the measured depth bias and may suggest a
method for improving the existing depth bias model for the RAN LADS system.

The simulation described may be generalised to the study of a wide range of
propagation problems in the opto-electronics area.

Authors

Mike Brennan
Land, Space and Optoelectronics Division

In 1982 Mike Brennan commenced a PhD in Atomic Physics at
Flinders University, in which he studied electron transport in
gases under the influence of crossed electric and magnetic fields,
using experimental and Monte Carlo techniques.
After completing his PhD in 1986, he began post doctoral work in
Zurich at the Swiss Federal Institute of Technology, where Monte
Carlo and experimental techniques were extended to study
strongly electron attaching gases.
Mike returned to Australia in 1988 as a School Post-Doctoral

Fellow in the Research School of Physical Sciences at the
Australian National University. At the ANU, Mike studied low
energy electron collisions, using a time-of-flight electron
spectrometer, Monte Carlo and electron swarm techniques. In
1990 he was appointed as a Research Fellow in the Electron
Physics Group, where his work on low energy electron physics
continued.
In October 1995 Mike joined LSOD of DSTO as a Research
Scientist to conduct Monte Carlo simulations of the Laser
Airborne Depth Sounder and research other problems related to
underwater light propagation.
The work presented in this report builds on 15 years of experience
in numerical and experimental physics.

Contents

1. INTRODUCTION 1

2. FUNCTIONAL DESCRIPTIONS 2
2.1 The Laser Airborne Depth Sounder (LADS) 2
2.2 The Simulation 3

3. STRUCTURE OF THE SIMULATION 6
3.1 Choice of Programming Language 6
3.2 The Simulation Code 6

3.2.1 MAIN (main.f90) 7
3.2.2 Subroutine BEGIN (main.f90) 10
3.2.3 Subroutine WHERE (main.f90) 12
3.2.4 Subroutine COLLIDE (main.f90) 14
3.2.5 Subroutine TRACE_WATER (main.f90) 16

3.3 The Processing Code 17

4. INITIAL RESULTS 18

5. IMPROVEMENTS TO THE SIMULATION 23
5.1 Rayleigh Scattering from Water 23
5.2 Finite Acceptance Angle Receiver 24
5.3 Data Storage 25

6. COMPARISONS WITH SURVEY DATA 25

7. EXTENSIONS TO THE SIMULATION 27
7.1 Provision for Wave Action 27
7.2 Provision for Non-Trivial Bottoms 28
7.3 Scattering of Polarised Light / Depolarisation of Light 28

8. PROGRAM INPUT 29
8.1 Simulation Code 29

8.1.1 Explicit 29
8.1.2 Implicit 30

9. ACKNOWLEDGMENTS 30

10. REFERENCES 30

Appendix 1 32
Appendix 2 34
Appendix 3 54
Appendix 4 59
Appendix 5 61

1. INTRODUCTION

The software described in this report has been written for Monte Carlo simulation of
anisotropic transport of visible light in turbid sea water, including air-sea and sea-
floor boundaries. The principal motivation for writing this software is to provide a
simulation tool for studying the propagation of light from the typically green laser
in laser bathymetric systems in turbid water. The aim is to construct a simulation
with sufficient detail to study the parameters which effect the 'depth bias' (the result
of an increase in optical path length due to scattering) experienced by laser
bathymetric systems. By studying the propagation of the green laser beam through
simulation, it is hoped that methods of reducing the uncertainty of the depth
determinations of laser bathymetric systems can be identified. Monte Carlo
techniques are preferred in this case for two main reasons.

1. Monte Carlo techniques provide an effective treatment for the major physical
boundary conditions imposed by
• a laser pulse of variable spatio-temporal width,
• a complex air-sea interface, inevitably involving wave action,
• a desire to simulate a non-trivial sea-floor topography.

2. The output from Monte Carlo simulations can be simply tailored to provide
intuitive descriptions of phenomena, using probability distribution histograms
for example.

An attempt has been made to construct the code from discrete, function specific
modules, with the intention that the program may be simply modified to simulate
the widest possible variety of light scattering problems. Many Monte Carlo codes
exist which simulate light transport in water [see for example - Joelson & Kattawar
1996, Poole et al 1981, Gordon 1982, Kaijser 1990, Koerber 1996, Fernee 1995 and
Groenhuis 1983]. However, the application specific nature of the previous codes has
made the task of altering them difficult. Therefore, new code has been written. The
operation of each module has been tested using benchmarks and documented.
These tests are described below. Short of an analytic solution of the transport
equations for a specific case, or another independent method, this approach is aimed
at establishing the highest confidence in the output of the simulations.

The type of Monte Carlo algorithm chosen for this study differs from most of the
methods used in the papers cited above. Briefly, a 'simple' Monte Carlo algorithm
has been chosen, over more sophisticated methods (so called semi-analytic codes),
which bias the choice of photon paths which are followed in detail (forward
scattering for example) to enhance the sampling of a particular piece of the sample
space which is determined a-priori as 'interesting'. Scattering from water and
suspended matter are treated separately - A variable beam attenuation coefficient
and volume scattering function is included for each, together with a rate for
absorption. Post collision velocity cosines of each "photon" in the simulation are
determined on the basis of the shape of the Volume Scattering Function as described
later in this work. Apart from this weighting, no other biasing of photon paths has
been attempted.

If successful, the results of this simulation will be used to guide an extensive
experimental trials program, which will determine how an operational bathymetric
system (The RAN Laser Airborne Depth Sounder - LADS) can be modified to best
measure, and thus compensate for, errors and uncertainties introduced into depth
soundings due to water turbidity. It is important that the simulation generate output
with a clearly defined statistical merit to facilitate objective comparison of results

from different input parameters, such as the density of suspended scatterers for
example. A further justification of the 'simple' (or brute-force) approach can be
made in the case of laser-bathymetry, where, while the 'merit' of the depth
determination comes principally from photons which are highly forward scattered
(supporting the use of semi-analytic methods), a significant and important feature of
received signal comes from photons backscattered from water and suspended
matter at depths shallower than the true bottom. Indeed, this contribution is
enhanced in more turbid water and analysis of this feature in future laser-
bathymetric systems is likely to provide a method of extending the operational
range to more turbid waters [Billard 1986] and is best studied using an algorithm
similar to that presented here; one which does not bias the paths followed and one
which can be analysed using naive statistical methods for determining merit.

This paper details the elements of the simulation. In presenting the algorithms and
code for the simulation as a technical report at a relatively early stage of
development, the intention is to lay the foundation for informed discussion and
criticism of this numerical interpretation of the physics of light propagation in turbid
media and the interpretation of the LADS system in particular. The other function of
this report is to act as formal documentation for the simulation software. This paper
is the first in a series of reports documenting the details of the simulation and
results. To achieve these goals, the paper begins with a functional description of the
RAN LADS system, highlighting elements which need to be considered and solved
by any successful simulation of these problems. Section two continues with a
discussion of the major assumptions implicit in the interpretation of the multiple
scattering problem presented in this paper and a brief description of the code. In
section three, the implementation of each module in the main program is examined
as a guide to the program structure. A description of the processing code and output
is given. In section four, initial results are presented, primarily as a benchmark for
future reference. They do, however, reveal some interesting information concerning
measurement of depth. Since initial debugging began, several important
modifications to the program (technical and scientific) have been identified. These
are discussed in section five. No simulation is complete without data against which
it can be tested. LADS data, with the automatic gain controller disengaged, was
obtained during a sortie over the Sahul Banks in the Timor Sea, west of Darwin, for
qualitative comparison with the simulations. Examples of this data are given and
discussed in section six. The version of the simulation code presented here is not a
'complete' simulation. The code presented here assumes a receiver with an infinite
aperture and infinite field-of-view, FOV. However, it has been written with a view to
including variable apertures and finite FOVs, and to extending the simulation to
include representations of the polarisation state of the laser, sea-surface wave action
and non-trivial sea-floor topologies. The way in which the implementation of each of
these is planned is detailed in section seven. In section eight, a brief guide to the
simulation input is given. This is followed by acknowledgments, references and
program listings.

2. FUNCTIONAL DESCRIPTIONS

2.1 The Laser Airborne Depth Sounder (LADS)

The simulation described in this document has been specially tailored to provide a
numerical analogue of the RAN Laser Airborne Depth Sounder system. The
interpretation is based around the following functional description of the LADS

system. Each of the words and phrases in italics below is interpreted in the
simulation, as discussed in the remainder of the document.

The LADS system is based around a pulsed laser, which is scanned about the nadir
position, parallel to the aircraft wings, flown at 500 m, producing a raster with 3 m
radius spots at the sea surface, with 10 m spacing. Light from the beam either reflects
back to the aircraft, or enters the water and propagates through the water to the sea floor.
The intensity of the beam is attenuated, due to absorption and scattering from the water
and scattering from particles suspended in the water.

The time difference in the recorded Time-of-Flight of light returned to a receiver in the
aircraft by reflection from the sea surface and the sea floor, yields a measure of the
depth. The received Time-of-Flight signal also contains contributions from light
which is backscattered at approximately 180 degrees, following scattering from water,
or suspended matter, which may be used to estimate the turbidity of the water
sample in the optical path.

2.2 The Simulation

Radiation transport through a liquid at visible wavelengths, is a multiple scattering
problem. That is, the radiation interacts with the light as a light field, across a
distributed front, as it propagates through the liquid. In addition, there is interaction
of the radiation with discrete, suspended particles to be considered. In contrast,
Monte Carlo techniques of the type described here are, strictly speaking, only
applicable to the (efficient) simulation of a series of local, binary encounters - ie.
between two 'particles'. Thus, in order to simulate the transport problems associated
with LADS, it is important to note the following points as approximations:

Optical properties of a medium, such as refraction, transmission, reflection,
polarisation and absorption of light, are descriptions of aspects of the macroscopic
interaction of the light field with the bulk medium through which it is travelling,
rather than descriptions of the various microscopic photon-molecule interactions. All
are consequences of multiple scattering across a distributed wave front. However,
refraction, transmission, reflection, polarisation and photon absorption have well
defined interpretations in Ray Optics, through Snell's Law, the Fresnel formulae and
the like. In this simulation therefore, the light field is represented by 'rays' which
have directions chosen using pseudo-random numbers, weighted by probability
distributions for the relevant processes. The manner in which the ray vectors are
chosen is described in the remainder of this document. For simplicity, these
individual rays are referred to as 'photons' in the remainder of this document.

In short then, an initial ray is chosen at random with weighting determined by the
profile of the beam leaving the source. Ray optics describes the propagation between
scattering events. When scattering occurs, again according to a weighted probability,
wave optics is used to describe the angular distribution of the scattered field. The
simulated photon maintains its identity during scattering, but has new direction
cosines, chosen at random with weighting determined by the angular distribution of
the scattered field.

Note that a 'Monte Carlo photon' is not precisely a classical ray because wave optics
is used to describe scattering and the photon maintains its identity during
scattering. However, in contrast to the electron transport code on which this
simulation is based [Brennan, 1991], no explicit reference is made to the microscopic
description (photon - molecule scattering cross sections) of the interaction.

To minimise arithmetic in the simulation, all calculations are in SI units, conversions
to and from other units are made either at the start of the simulation, or in the post
processing software. The speed of the photons in air is set to be the group velocity of
the light field in air: 3xl08 ms *. Similarly, the speed of the photons in water is set to
be 2.25xl08 ms1, where the ratio of the two velocities is the assumed non-complex
index of refraction for the sea water. The following Cartesian geometry is assumed:
z = 0 at mean sea level. The altitude of the photon source (the aircraft) is positive.
The source travels with the plane, notionally in the positive y direction, although it
is fixed during the simulation. Photons propagate initially from the source at z = h in
the negative z direction, at some angle to the vertical, towards the sea floor at some
user defined depth, d, (currently fixed at 50 m) on the negative z axis (Figure 1).
Their positions in r (the radius wrt to an origin at the nadir position defined as in
Figure 1), z and t (time) are recorded periodically. Those which are reflected, or back
scattered, propagate back towards the altitude of the source. The positions of the
photons in x, y and t are recorded at the point where they intersect the plane
containing the source, which is parallel to the mean sea surface. The beam scanning
function of LADS is simulated by setting the initial photon velocities at a user
specified angle, 6, in the positive x direction with respect to the nadir position.

t
d

1

4
/i z
/i
/1

i k

i i
i i

/ei/
x <-j

y

u

/v I* ...•■

r .1 . • • ■

_L JL

Figure 1. Schematic representation of the LADS system, showing the coordinate system used in the

simulation. The laser source and receiver are co-locatod at the bottom of the aircraft. In the simulation,

the laser beam is assumed to be 'scanned-out' away for nadir, at a variable angle 9, in the positive x

direction only.

The fundamental output of the simulation is histograms describing the probability
distributions for spatially resolved Time-of-Flight (ToF) spectra at the receiver, and
in the water. For efficient simulation of the ToF spectra it is necessary to convert the
characteristic attenuation coefficients from a spatial measurement, expressed in units
of nv1, to the time domain. The rate at which the laser beam is attenuated is
characterised in the simulation by a 'mean collision frequency', set in the following
manner:

We note that for processes in a scattering medium, the z dependence of the beam
intensity, /, due to process, p, is given by

I(z)= /0exp(- p,z),

where pz is the appropriate rate coefficient; the inverse of the mean free path,
expressed in m1. In this paper, by analogy with statistical mechanics, we relate the
mean free path, l/pz, and the mean free time for the same process, pwr through the
average velocity, in this case Vgroup,

P MFT

This relationship allows us to base the simulation naturally around the basic unit of
a mean free time, for the purpose of tracking the photons and interrogating their
positions in phase space.

In addition to refraction at the sea-air interface, the simulation considers three
possible interactions between the light and the sea-water;

• Absorption: The mean free time for the absorption process is determined from
the absorption coefficient as described by the equations above. When this process
is 'chosen', the photon is 'lost' from the simulation and a new photon initiated.

• Scattering from water: The mean free time for this process is set in the same
manner. In the initial coding, a Henyey - Greenstein function with a user defined
value for the angular form, g, [as in Bergougnoux et al 1996] is used to determine
the post-collision velocity cosines. The Henyey - Greenstein function has been
used previously to describe scattering from high forward scattering systems such
as clouds [Bergougnoux et al 1996] and has been adopted in this simulation so
that the dependence of the simulation on variations in the shape of the volume
scattering function may be assessed. At present, Rayleigh scattering from pure
water is also approximated (poorly) by this function. Future representation of the
interaction with water in terms of Rayleigh scattering is discussed later.

• Scattering from suspended matter: In this simulation, a single component
suspended scatterer is assumed. A single mean free time and anisotropy are
used. Again a Henyey - Greenstein function is used to represent the distribution
of the anisotropy.

That is, the effective density and properties of the water as an absorber and scatterer
are set separately, as is the density of the scatterer. The sum of the mean free times
for the above processes sets the overall mean free time for the simulation. Individual
treatment of the scattering from separate components of the medium represents a
relatively novel approach, in that the literature suggests that most contemporary
codes use a single volume scattering function to represent the scattering from all
processes in water. This novel approach allows us to simply vary the 'turbidity' of
the simulation by increasing the attenuation coefficient for the suspended matter,
thereby decreasing the mean free time for collisions with suspended particles.
Further details are given in the next section.

The temporal width of the laser beam is variable, characterised as a temporal 'flat
top' with a user defined width. The beam divergence is a user defined variable.
Initial photon velocity cosines are set by observing that the spot size is the point at
which the beam intensity at the sea surface has been reduced by a factor e1. The
spatial distribution is modelled by a Gaussian, characterised by a user defined spot
radius.

The sea state is initially modelled as flat. Snell's Law is used to determine the
components of the photon velocities on entry and exit of the photons from the sea
surface. Photons are reflected from, and refracted into, the sea surface at entry and
exit using Fresnel's Equations. Reflection from the sea surface is considered to be
specular. The bottom is also modelled as flat. Photons are reflected from the bottom

according to a user defined albedo. Photons reflected from the bottom have a
Lambertian distribution. Photon positions are recorded in x, y and t boxes at the
source altitude and in r, z and t in the bulk of the water. Thus histograms are
formed, representing the photon distribution.

3. STRUCTURE OF THE SIMULATION

The most important but obvious, tenet of any Monte Carlo simulation is to design
code which performs the minimum number of calculations per photon in the
simulation, allowing the maximum number of photons to be simulated in a given
time, thereby minimising the uncertainty in the results of a simulation. Following
this principle, two programs have been developed in the initial release of the
simulation. The first, described in section 3.2, is designed to perform the simulation
efficiently, storing intermediate results as histograms, in arrays and periodically
writing to a disk file. The second, described in section 3.3, reads and processes the
results of the simulation. Splitting the simulation into discrete programs serves two
purposes. First, by creating a program focussed on conducting the simulation and
determining basic data for output and subsequently conducting any analysis of the
data in another program, the efficiency of the simulation is increased, due to the
absence of computational overhead associated with the analysis. Secondly, if the
data storage from a single run can be optimised, while remaining generic to the
simulation (i.e. unprocessed), the data can be analysed later for details which may
not be immediately apparent during the first analysis. Storing of generic data also
allows for a degree of parallelism in the simulation, in that uniquely 'seeded' runs
for the same parameter set may be conducted on several machines and the output
simply combined before further analysis.

3.1 Choice of Programming Language

Fortran90 was chosen as the development language for two significant reasons.
Firstly, it allowed simple migration of Fortran77 code, previously developed for
electron transport simulations by the author [Brennan 1991]. Secondly, Fortran90
has been developed to take advantage of, and extend, many of the sophisticated C
and C++ functions for handling arrays, the principal output of this type of
simulation. Microsoft Fortran Powerstation 'Development Studio', version 4, was
used as a development environment under Windows95. DEC fortran90 and dbx for
the DECalpha, running OSF v3.2 were used in the workstation environment. The
DECalpha is the target platform. Critical sections of the calculation, where round-off
cannot be tolerated, are performed in double precision. Elsewhere, single and
integer precision are used to enhance performance.

3.2 The Simulation Code

In this section, source code file names appear in italics, program subroutines and
functions are BOLD. Fortran90 elements are in CAPS. The simulation code is compiled
from modules contained in four source files. The discrete source code structure was
adopted to aid editing and debugging in the Windows95 environment. The first file,
modules.ßO, contains Fortran90 modules, which replace COMMON blocks in Fortran90
as the preferred method of transporting data between program units. The second
file, listed in appendix 2, contains the main program and the subroutines and
functions called directly by the main program. A third file, levell.f90, contains
subroutines and functions used by the subroutines which main calls. The hierarchy
continues to levell.flO which contains routines called by units in levell.f90. The

hierarchy is truncated at this point, so leveü.ßO also contains functions which are
used by other units in level! flO. The implementation of important subroutines in the
main file are discussed below.

3.2.1 MAIN (main.f90)

The main program begins by initialising five random seeds and initialising sensitive
variables to a known state. Independent pseudo random sequences are used for
determining the frequency of collision and the results of the collision, to ensure that
there is no underlying correlation between a series of processes. The user is
interrogated for input defining the parameters for the simulation - rate coefficients,
laser beam properties and the like. Details of the input may be found in section 8.1.1
The program then calls DEP_VAR, which takes the user input, performs unit
conversions and calculates mean free times as described in section 2 and determines
relative weights for the scattering processes, which are reported to the screen. In the
subroutine, DEP.VAR, the minimum time required for photons in the simulation to
reach the water surface and to return to the source height is calculated. This value,
dependent on source altitude, beam scan angle and the temporal width of the laser
is used to minimise the storage requirements for the simulation as described later.
The program proper then begins.

The primary control loop, executed by the main program, performs a test 'WHILE' the
number of simulated photons is smaller than the total desired in the simulation.
sim: DO WHILE (m_photons.LT.n_total)

Because the simulations typically run for many days, and some intermediate
monitoring is desired, OUTPUT routines are called regularly and an output counter
reset.

IF(i_output.EQ.n_output)THEN
CALL OUTPUT
i_output=0

! reset - incremented in BEGIN
END IF

On the first pass, the program falls through this conditional test and BEGINS a new
photon. The BEGIN routine, described in detail later, ultimately returns the initial
phase space information for the photons at entry to the water, and increments
counters appropriately.

CALL BEGIN

Since BEGIN passes the photon from the source to the point of entry to the water
surface, there is a likelihood that the photon will be lost from the simulation due to
surface reflection. In this case the program CYCLES control to the primary loop to
begin another photon. While this is roughly 2% of all simulated photons, the
computation cost is much smaller than this because it occurs at the start of a photon
path, which has consumed the minimum computational effort.

IF(ph_finish)THEN
CYCLE sim

ELSE

Otherwise, the simulation of the photon path continues and a time variable tO, used
in the traditional sense in the evaluation of Newton's equations of motion, is set to
the elapsed time for the photon to reach the water from the source.

tO = t
END IF

Control then passes to the secondary loop, which determines the time to the next
collision for the photon under consideration, according to the previously calculated
total mean free time and monitors and updates the phase space coordinates of the

photons. Control is held by this loop until one of the subroutines reports the photon
'lost', either to absorption (water and bottom), or to the altitude of the source, at
which point the program CYCLES to the main loop.
between: DO ! between collision, until 'lost' loop

The rate at which the intensity of a beam of photons is attenuated with respect to
time, due to collisions with particles in a medium of uniform density is governed by
the rate equation:

dl_ = l__

dt x MFT

where TMFT is the mean free time between collisions. The solution is an exponential
function, as stated in section 2. The time interval between any two collisions can be
simulated using a uniform pseudo-random deviate, by finding the appropriate
function which maps the uniform probability of the pseudo-random generator onto
the probability of the function in question. In this case, for an exponential
distribution, characterised by a rate TMFT, the mapping function is a natural
logarithm weighted by TMFT:

At = -tMFTin(R),

where R is a uniform pseudo-random number, R, drawn from the exclusive interval
0.0< R< 1.0.

delta_t = - time_mean*DLOG(DBLE(R))

The time of the collision is put on an absolute scale with respect to the center of the
laser pulse,

tck = t + delta_t

To monitor the temporal motion of the photon beam as it collides, reflects and
subsequently diffuses, the phase positions of the photons are updated between
collisions and recorded at fixed intervals. To achieve this, control is passed to a third
loop between collisions, which compares the time of the next collision with the time
of the next interrogation point or update slice.
slices: DO ! trace loop
! time to next interrogation slice

tcut = DBLE(it + l)*dt_slice

In the present simulation, the interrogation interval has been arbitrarily fixed at
0.5 ns, which is significantly smaller than the temporal resolution of the LADS
system (2 ns). In a time interval of 0.5 ns, the photon propagates 0.11 m in the
direction given by the velocity components. In a 'worst' case (V = Vz) this
represents an intrinsic minimum depth resolution of 0.05 m. That is, the simulation
is completely insensitive to variations in parameters which change the total 'in-
water' path by less than 0.11 meters. However, the LADS data analysis algorithms,
which will be ultimately used analyse the simulated 'return waveforms' to
determine 'simulated' depth, use a 50% constant fraction discrimination technique
to derive the depth. This method has an intrinsic dependence on the 'timing-
granularity' or the recorded signal. At some point, this dependence should be
investigated, by varying the sampling interval.

There are three possible outcomes from the comparison against the fixed interval:
IF(tck.LT.tcut)THEN

The photon crosses no interrogation point before collision, in which case the photon
proceeds immediately to collision, modifying the time variable, t, to equal the time
at collision:

t = tck

Using this time, and the time, to, from the last phase space update, Newtonian
physics gives the current x, y, z coordinates

CALL WHERE

WHERE is also the routine in which bottom and surface reflections are handled. It is
possible to 'lose' a photon from the simulation at this point, .ie. before collision, so
provision must be made to cycle out to the primary loop in this event.

IF(ph_finish)THEN
CYCLE sim ! next photon

END IF

If the photon has survived to this point, the routine COLLIDE is called, in which the
collision outcomes are determined. That is, the photon is either absorbed, or
scattered from either water, or the suspended scatterer.

CALL COLLIDE

If absorbed, then control must be returned to the main loop.
IF(ph_finish)THEN

CYCLE sim ! next photon
END IF

Otherwise, control returns to the secondary loop to determine a new time of
collision.

CYCLE between ! cycle to top of loop

The second possible outcome from the test of the time of collision against the time of
the next interrogation, is that the photon collides exactly at the fixed time when it is
interrogated:

ELSE IF(tck.EQ.tcut)THEN

It is necessary to update counters and the time, before calling WHERE and
subsequently COLLIDE

1 update slice counter
it = it + 1
t = tcut
CALL WHERE
IF(ph_finish)THEN

CYCLE sim ! next photon
END IF

Immediately before calling the collision subroutine, where the photon may be lost,
the subroutine TRACE_WATER is called, in which the r and z coordinates of the photon
at time t are added to the appropriate histogram. Note that it is correct to call
TRACE_WATER after WHERE, not before, because WHERE really deals with the motion
between two times, whereas the trace and subsequent collisions occur at the end of a
given interval.

CALL TRACE_WATER
CALL COLLIDE
IF(ph_finish)THEN

CYCLE sim ! next photon
END IF
CYCLE between ! cycle to top of loop

ELSE

The third possibility is that the photon crosses at least one interrogation slice before
colliding, in which case, the same procedure as for the previous possibility is
invoked, but, no collision occurs and the simulation falls out to the base of this loop
to check the time of collision against the next (new) interrogation time.

it = it + 1
t = tcut
CALL WHERE
IF(ph_finish)THEN

CYCLE sim ! next photon
END IF

CALL TRACE_WATER
END IF

Note that in the simulation the interrogation interval of 0.5 ns is much smaller than
typical mean free times between collisions, which are of the order of several
nanoseconds at least. Thus, the third case is executed more often. While this
ordering makes for easy reading, in future releases the order of the cases will be
changed to 3, 1, 2 which will have an effect on the program execution, removing
several conditional statement evaluations for the vast majority of collisions.

This completes the controlling loops and all that remains for the main program is to
complete a redundant final output to file and screen.

3.2.2 Subroutine BEGIN (main.f90)

This subroutine, called from the main control loop only, initiates a photon. Initially,
the controlling counters are incremented, the timing counters reset and the phase
space coordinates set to a defined state in air at mean sea-level. Provision has been
made at this point to include surface action, by modifying z at surface entry, calling
the function SURFACE, which returns zero in this implementation:

z = z + SURFACEO

The distribution in the time-of-arrival of the laser pulse at the sea surface, due to the
temporal and spatial widths of the laser, is calculated in the subroutine LASER. The
routine SPOT_DEV is called by LASER to modify the x and y positions at entry,
previously determined by the scan angle, to simulate the laser foot print on the sea
surface (a Gaussian spatial distribution in two dimensions), using the following
algorithm:

dx= . s J-2ln[u,] cos [Imu]
^-2111(1.0- 0.14))

dy= , * J-2\n[u2]cos[2imx]
^-2111(1.0-0.14))

where rs is the radius of the laser spot; defined in laser optics as a disk of radius rs

which encompasses 86% of the beam intensity, ie. the 1/e width.

Once the position (x, y, z) that the simulated photon strikes the water has been
determined, the routine SURFACE_ENTRY is called to determine whether the photon
is specularly reflected, or refracted into the water.

CALL SURFACE_ENTRY
The probability that a simulated photon is reflected, or refracted, at the air/sea
interface requires a prior knowledge of the 'in air' velocity vector, the angle of
incidence and the degree of polarisation of the beam. Until this time, the treatment
of the photon has only required a knowledge of position and time. In
SURFACE_ENTRY the velocity components of the photon, immediately before entry
into the water, are determined for the first time by calculating the distance travelled
to the water surface, including wave action (null in this release) and using the group
velocity of the photon in air and the previously determined relative time of release
of the photon from the source. At this point, the time-of-flight array index, it, is
determined. Despite the fact that the calculations for the air/sea are performed,
usually, at most twice for each simulated photon, this section of code is relatively
CPU intensive, as a number of trigonometric functions and square roots must been
evaluated. Thus, some optimisation is required.

10

As an initial step, the cosine of the angle of incidence with respect to the z axis, cosGi,
is determined. Note that modifications to the program, which include wave action,
will require modifications to this section to calculate the normal to the wave surface.
Snell's Law is used to calculate the cosine of the angle of propagation, cos8t, of the
photon w.r.t. to the local surface normal, if refracted.

cos 0, =l/«-y/n2 -sin20, .

costh = ABS(Vz)/3.d8
sinth_sq = 1.0 - costh*costh
n_i=1.0
n_t = water_n
costh_i = costh
costh_t = 1.0/water_n*SQRT(water_n_sq - sinth_sq)

It is efficient, even necessary, to perform the calculation for the refracted angle at
this point and store the result, because the Fresnel Formulae, given below, define the
ratio of the reflected and refracted fractions at the interface, for light of arbitrary
incident angle and polarisation, in terms of the refractive index of both regions, n;

and nt, and cosfyand cos8t:

Reflection coefficient for beam component with polarisation parallel to the plane of
incidence:

_ (n, cos 0, - n, cos 0()/
rPara ~ /(«, cos 0; + n, cos 9,) '

Reflection coefficient for beam component with polarisation perpendicular to the
plane of incidence:

_ (n, cos 0, - nt cos 9,)/
rPerP ~ /(rii cos 0, + n, cos 0,) '

Transmission coefficient for beam component with polarisation parallel to the plane
of incidence:

= (2«,cos0,)/
para y^ CQS ß. + „. CQS Qf) •

Transmission coefficient for beam component with polarisation perpendicular to the
plane of incidence:

_(2«,cos0,)/
lPerP ~ /(rii cos0, + n, cos 6,) '

For an unpolarised beam, as is in this case, the fraction of the reflected flux, or the
reflectance, surfjreflect, is

1 (\ |2 . | |2

2
surf _reflect = -1 \rpara\ +1rperp

The components rpara and rperp are determined in SURFACE_ENTRY by calls to
functions, R_PARA and R_PERP, found in leveü.ßO. A random number, rl, on the
interval [0,1] is generated and forms a test against the calculated probability of
reflection from the interface, for a particular photon trajectory.

IF(rl .gt.surf_reflect)THEN

If the photon is not reflected, it is refracted into the water and the components of the
'in-water' photon velocity are given by Snell's Law in 3 dimensions:

11

-V air

Vz= ^Jnf-sm'd,,

vv=v,/«;,

Vx=Vx/nf,

where Vgroup is the photon group velocity in water and 0; is the incident angle to the
surface normal, calculated previously. The routine TRACE_WATER is then called to
add the initial position of the photon to the appropriate histogram.

Vz = -2.25d8/water_n*SQRT(water_n_sq - sinth_sq)
Vy = Vy/water_n_sq
Vx = Vx/water_n_sq
CALL TRACE_WATER

ELSE

If the test determines that the photon is reflected at the air/sea interface, then the
reflection is considered to be specular. That is, the sign of the z component of
velocity, Vz, is reversed and the photon propagates to the source altitude, where
TO_PLANE is called to record the time and position of arrival at the source and end
the simulation of that photon.

Vz = -Vz
CALLTO_PLANE

END IF

At this point, control is returned to BEGIN, which in turn returns control to the
primary control loop of the MAIN program.

3.2.3 Subroutine WHERE (main.f90)

As indicated previously in this section, subroutine WHERE, is called exclusively from
the third level control loop in the main program. The main function of the routine is
to calculate the position and velocity of the photon at time t, each time an
interrogation point is reached (every 0.5 ns). The updated phase space information is
returned through the module PHASE. This subroutine also provides treatments for
photons which strike the sea floor and those which may strike the sea/air interface.

Newtonian mechanics forms the basis for this subroutine. The time interval between
the current and latest previous call to WHERE is calculated.

deltaj = t - tO

Because there is possibility that photons strike either the sea floor, or sea/air
interface, intermediate values of x, y and z must be calculated to test against criteria
which define the local profile and position of the sea surface and sea floor.

z_int = Vz*delta_t + z
y_int = Vy*delta_t + y
x_int = Vx*delta_t + x

Note that in the present release, with trivial sea surface and floor topologies, it is not
strictly necessary to calculate intermediate values for x and y. However, to assist in
the development of the code to include these features, intermediate values are
calculated as shown above. In addition, values for the local surface and bottom are
calculated by calls to functions, which currently return 0 and 50 m respectively.

local_s = surface()
local_b = bottomO
IF((z_int.LT.local_s).AND.(z_int.GT.local_b))THEN

The intermediate value of z is tested against the local values for surface and bottom.
The most frequent occurrence is that the calculated position of the photon lies

12

between the local surface and bottom values. In this case, x, y and z are set to the
intermediate values, the velocity components remaining unchanged.

z = z_int
y = y_int
x = x_int

Having satisfied the most frequent condition, the loop is complete and control
passes back to the main program after setting to equal to the current value of t in
preparation for the next call to WHERE.

ELSE IF(z_int.lt.local_b) THEN

The next most frequent occurrence is that the photon strikes the bottom within the
time interval t - to. Since the probability of reflection from a realistic sea floor is
considerably less than 50%, it is most efficient, on average, to throw a random
variable to determine whether the photon is absorbed, before proceeding to calculate
the outcome of the reflection.

IF(rl .ge.bott_reflect)THEN

If the photon is absorbed by the sea floor, the flag ph_finish is set and control jumps
to the end of the subroutine, setting to = t as above.

ph_finish = .TRUE.
GOTO 666

END IF

Alternatively, the photon is reflected and the fraction of the time interval required
for the photon to intersect the local bottom is determined. In addition x, y and z are
determined for the time of intersection.

t_int = (local_b-z)/Vz
z = local_b
y = Vy*t_int + y
x = Vx*t_int + x

Lambertian, or diffuse, scattering from the ocean floor implies that regardless of the
angle of incidence, the velocity vectors of the scattered photons are uniformly
distributed on a half sphere. The value of cos6 of the scattered photon is thus,
uniformly distributed on the interval [0-1] and may be chosen directly from the
pseudo random deviate. The azimuthal angle q> is chosen, using an uncorrelated
deviate, normalised to 2rc radians. The corresponding components of the velocity
vector may now be calculated and normalised to the 'in-water' group velocity
(2.25x108 ms-i).

costh = rl
sinth = SQRT(1.0d0 - costh*costh)
phi=6.283185308d0*r2
Vz=2.25d8*costh
Vx=2.25d8*sinth*COS(phi)
Vy=2.25d8*sinth*SIN(phi)

The position at the end of the time interval, t - to, is calculated using the new velocity
components.

t_int = delta_t - t_int
z = Vz*t_int + z
y = Vy*t_int + y
x = Vx*t_int + x

ELSE IF(z_int.GT.local_s) THEN

Treatment of the sea/air interface is similar to that of the interaction with the sea-
floor. If the intermediate value of z is found to be greater than the local sea surface,
an intercept time is calculated, along with values for the surface position.

t_int = (local_s-z)/Vz
z = local_s
y = Vy*t_int + y
x = Vx*t_int + x
CALL surface_exit(t_int)

13

The possibility of refraction through the interface, to the source altitude, must be
considered at the surface, by calling SURFACE_EXIT at the time of intercept. The
routine SURFACE_EXIT performs the complimentary calculations to SURFACE_ENTRY.
If the photon is reflected, either as a consequence of total internal reflection, for
angles greater than 53°, or on the basis of a calculated probability for smaller angles,
control is returned to WHERE and the position at the end of the interval t-to is
calculated. In future, this may involve un-physical paths through the sea/air
interface, depending on the model used for the wave action.

IF(.NOT.ph_finish)THEN
t_int = delta_t - t_int
z = Vz*t_int + z
y = Vy*t_int + y
x = Vx*t_int + x

For very shallow bottoms, it is possible that in the remaining time, the photon
strikes the bottom. In this case the photon is ignored.

IF(z.le.bottom())THEN
! Ignore the rest of this photon

WRITE(*,*)' A surface reflected photon has struck the bottom'
ph_finish = .TRUE.
WRITE(*,*)' z = \REAL(z)

END IF
ENDDF

ELSE IF(z_int.EQ.local_b)THEN

It is possible that the calculated intermediate value of z is equal to either the local
surface, or bottom. If these cases are not treated, then the photon is effectively lost
from the simulation, either 'floating' or 'drowning', not satisfying the condition that
a photon be between the two boundaries. A simple treatment is to adjust the depth
by an appropriately small amount, in this case 1 mm.
! set the depth to depth +0.1 mm

z = local_b + 0.0001
y = y_int
x = x_int

ELSE
! photon is relaxing on the surface ...
I set the depth to depth -0.1 mm
! may need checking for V normalisation 02/08/96

z=local_s-0.0001
y = y_int
x = x_int

END IF

The subroutine ends, setting to = t in preparation for the next call.
666 tO = t

RETURN
END

3.2.4 Subroutine COLLIDE (main.f90)

COLLIDE is the most computationally intensive section of the simulation. Called
exclusively from second level control loop of the main program at the time of
collision, COLLIDE determines which component of the water / suspension
medium the photon strikes, the type of collision and the appropriate outcomes,
including new velocity vectors for those photons which are anisotropically scattered.
The possible processes are represented by relative probabilities, calculated from the
characteristic coefficients in DEPJVAR at the start of the simulation. A random
number, RCOLL, is generated and compared against the calculated fractions
representing the processes.

IF(Rcoll.GT.s_coeff) THEN ! greater than scat ... absorb

14

Some of the photons are absorbed, a diagnostic counter is incremented and the
photon 'finished' flag set to true. Control returns to the main program.

xabsorb = xabsorb + 1 .dO
ph_finish = .true.
RETURN

ELSE EF(Rcoll.GT.w_coeff) THEN ! greater than water ... suspended

If scattering from the suspension is 'chosen', the mean value of cos(8), which defines
the broad shape of the Henyey - Greenstein function, is set to the user defined value
for the scatterer and the appropriate diagnostic counter is incremented.

g_ = g_scatt
xscatt = xscatt + 1 .dO

ELSE

Since the same function is used to describe the angular scattering from both water
and suspension, the same procedure is followed if scattering from water is chosen.

g_ = g_water
xwater = xwater + 1 .dO

END IF

Seven steps are required to return the new velocity cosines for the scattered photon.
Clearly, the calculation of the initial choice of scattering angles can be optimised
using look-up tables, as discussed later. However, it is not obvious how the
transformations which place these otherwise arbitrary angles in the frame of
reference defined by the relationship of source and sea-surface may be optimised. In
the case of electron scattering from a gas for example, isotropic scattering is often
assumed as an approximation to the random thermal motion of the gas molecules.
Isotropic scattering, which is quick to calculate can not be assumed here, a full
treatment is required.

The theta dependence of the differential scattering cross section, do/d9, (or volume
scattering function for multi-component suspensions) has the same dependence as
the probability density for cos(9). Thus, a uniform deviate may be appropriately
transformed, using the functional form for da/d0 to randomly choose a value for
the scattering angle, cos(9). The transformation function between the random
number Rl and cos(9) is analytic for the Henyey - Greenstein function, which
explains its widespread acceptance in random media simulation. A random number
is used, together with the mean value of cos(9), g, to determine a value for cos(9) in
the simulation with the correct anisotropic dependence.

Rl =randti(ks , rks)
ak = ak + DBLE(rl)
callsk = callsk+1.0d0
costh = I.d0/2.d0/g_*(l.d0+g_*g_- (I.d0-g_*g_)*(l.d0-g_*g_)/ &

(l.dO-g_+2.dO*g_*rl)/(l.dO-g_+2.dO*g_*Rl))

The relationship cos2(9) + sin2(9) = 1 is used to determine the value of sin(9).
IF(ABS(costh).EQ. 1.0)THEN

sinth = O.dO
ELSE

sinth = DSQRT(1.0dO - costh*costh)
END IF

Thus far, an element of solid angle, in effect an annulus between 9 and 9+d9,
centred about the direction of the photon velocity immediately before scattering, has
been chosen, into which the photon must scatter. To uniquely determine the 9
dependence and thus the new scattered velocity cosines, while preserving the
anisotropy of the scattering function, it is necessary to first find the component of
the scattered velocity vector which is parallel to the incident. That is to scale cos(9) to
Vt/Vi.

vxp=vx*costh

15

vyp=vy*costh
vzp=vz*costh

Then define a non zero length random vector in space.
rcosth=(l.d0-2.d0*rl)
rsinth=SQRT(l .dO-rcosth*rcosth)

rl = randti(ms , rms)
am = am + DBLE(rl)
callsm = callsm + l.OdO
rl=6.283185308d0*rl
rx=rsinth*COS(rl)
ry=rsinth*SIN(rl)
rz=rcosth

Now, the random vector and the initial velocity define an arbitrary, but known
plane, from which the azimuthal angle, 9, may be determined. First the components
of the random vector which lie parallel and orthogonal to V; are determined:

c=(vx*rx+vy *ry+vz*rz)/5.0625dl 6
rxp=vx*c
ryp=vy*c

rxo=rx-rxp
ryo=ry-ryp
rzo=rz-rzp
c=SQRT(rxo*rxo+ryo *ryo+rzo * rzo)

The orthogonal components are scaled to the appropriate length for the scattered
velocity in water:

c=2.25d8*sinth/c
vxo=rxo*c
vyo=ryo*c
vzo=rzo*c

Simple scalar addition of the orthogonal and parallel components gives the velocity
components in the frame of reference defined by our simulation.

vx=(vxo+vxp)
vy=(vyo+vyp)
vz=(vzo+vzp)

While not strictly necessary, the group velocity is calculated to check for internal
consistency and control returns to the main program.

v=SQRT(vx*vx+vy*vy+vz*vz)
RETURN
END

3.2.5 Subroutine TRACE_WATER (main.f90)

Once called from the inner most control loop in the main program, subroutine
TRACE_WATER, determines which cell in the 'in-water' histogram the current phase
space information of the photon contributes to. Other relevant monitors and flags
are updated. A similar routine TRACE_PLANE deals with the special case of the
photons at z=plane, ie it accumulates the histograms at the source altitude. In order
to optimally pack the array space for non-nadir simulations, photon histories are
recorded in a histogram centred at x = plane*sin(scan_angle), y = 0. An array index,
ir, representing the radius is determined by subtracting the 'center' in x
[x = plane*sin(scan_angle)] from the photon's absolute x coordinate and combining
this with the y coordinate appropriately.

x_int = x - x_center
r = SQRT(x_int*x_int + y*y)

Given the 1 meter boxing used in this simulation, ir is then found simply:

16

ir = INT(r)+l

If the value of r is greater than that allowed for in the static array size of this
program (10 meters), ir is set to the maximum array index and the diagnostic flag,
xrjiot, representing the number of photons having radii larger than that allowed for,
is incremented.

IF(ir.gt.ir_rzt)THEN
ir = ir_rzt
xr_hot = xr_hot +1.0

END IF

A similar treatment is used for the histogram index in the z direction. Note that since
for sub-surface z values, z is negative, it is necessary to form the index on the
absolute value of z.

iz = EMT(ABS(z))+l

A value of iz which is greater than the maximum z index of the array in this version
of the code represents a serious coding error, as somehow photons have reached
depths greater than the bottom. The user is alerted to the fact that this has occurred,
iz is set to the maximum allowable index of the array and the simulation proceeds.

IF(iz.gt.jz_rzt)THEN
iz = jz_rzt
WRITE(*,*)' ALERT: iz = 50'

END IF

At the time that any photon enters the water, a zero reference timing index, it_entry,
is determined. The appropriate offset time is determined for the 'in-water'
histogram.

it_water = it - it_entry + 1
IF(it_water.gt.kt_rzt)THEN

it_water = kt_rzt
xrwjiot = xtwjiot +1.0

END IF

Following appropriate end-treatment for long lived photons, the histogram is
modified and arrays which monitor the maximum temporal and radial extents are
updated if necessary. Control then returns to the main program.

box_rzt(ir, iz, it_water) = box_rzt(ir, iz, it_water) + 1
IF(t.lt.t_max(l)) t_max(l)=t
IF(t.gt.t_max(2)) t_max(2)=t
IF(r.gt.r_max(l)) r_max(l)=r
RETURN

END

3.3 The Processing Code
The processing code comprises two files: the module file modules.ßO, which is
identical to that used in the simulation code, and the main program, as listed in
sect on 10.5.

The main processing code is relatively simple in structure. The user is interrogated
for the names and paths of the files containing the output from the simulation and
the run parameters. The program then reads the data from the histogram files for
both the 'in-air' and 'in-water' cases. As a development aid, the number of array
elements which contain 'non-zero' data are counted for both cases and reported to
the screen. This gives a measure of the efficiency with which data is being stored.
The data concerning the number of photons simulated is read from the run
parameter file to allow the user to check that the content of the files do indeed reflect
the data that the user wishes to process.

The possible options for data analysis are listed at the start of a loop:

17

qu: DO
WRITER,*)''
WRITE(*,*)' What operation do you wish to perform?'
WRITE(*,*)' Write out ASCII ToF histogram at plane height? ... 1'
WRITE(*,*)' Write out ASCII ToF ln(data) in water? . .. 2'
WRITE(*,*)' Write out ASCII R,Z in-water data for given time(s)? ... 3'
WRITE(*,*)' Quit from Case loop? ... 0'
READ(*,*)iqu
SELECT CASE (iqu)

On the basis of the answer to the questions above, one of 4 CASE statements is
executed:

In case one, the in-air ToF histogram is written as an array of coordinate pairs,
representing elapsed time from start of pulse and the corresponding histogram
height. In case two, the ordering of the z dependence of the in-water r,z,t histogram
is inverted, so that in a two dimensional plot, shallow depths (z, a small negative
number) appear at the top of the page, rather than near the origin at z = 0. Similarly,
the radial data are written out so that contour plots are across the diameter, centred
at r = 0. The dynamic range of the in-water histogram is compressed by taking the
natural logarithm of the height of the histogram to facilitate display on a 256 discrete
colour map. Note that the 'end treatment' for the in-water data, implies that the last
box in the ToF histogram is meaningless and will usually be higher than the trend of
the adjacent boxes suggest, as all photons at larger radii are recorded in the last box.
The third option allows the user to select specific time intervals for which the R,Z in-
water data is written to file.

4. INITIAL RESULTS

In the process of developing ^nd debugging the code, benchmark tests were
performed on individual modules to verify their correct function. The functions
RANDT and RANDTI which generate the uniform pseudo-random deviates on the
exclusive and inclusive intervals (0 -1) and [0 -1], have been used extensively
elsewhere by the author (see for example Brennan [1992]), and have only been tested
superficially in this work. It is noted that the algorithms of Tootill et al [1973], which
are used to generate the random numbers with a 2607 period are now considered to
represent a minimum standard for uniformity and randomness [Brent 1996]. The
subroutine SPOT_DEV, which generates the x and y offsets for a Gaussian beam
profile of known (given) spot size was tested by generating 108 pseudo-random
pairs and comparing the results by eye for a 3 meter spot beam, against the expected
Gaussian distribution on a log scale. The agreement was sufficiently impressive to a
diameter of 6 meters (ie. 2x spot size) that no rigorous y} testing was attempted.

The integrity of other subroutines and functions in the simulation and analysis
programs were tested during debugging using hand checking for individual
photons throughout representative paths. Most of the program functionality has
been tested to date, with the exception of the simulation of non-nadir beams, which
awaits the enhancement of the data storage routines (section 5). Figure 2., above,
shows the results of a 'special case' test of the validity of the Snell's Law and Fresnel
formulae algorithms. 2.5x10* photons, propagating from a delta function source at
500 m, orthogonal to the sea-surface, with zero beam divergence, were simulated.
Scattering and absorption processes from both water and the suspended matter
were calculated, but the results suppressed (that is - no scattering, or absorption). In
this test, the sea-floor was modelled as a non-absorbing/specular reflector, as
opposed to a more realistic partially absorbing Lambertian scatter used elsewhere in

18

this simulation. This approach preserves the "zero angle scattering" nature of the
test. In the test, as elsewhere, the Air/Water interface treatment was complete for
unpolarised rays, the transmitted and reflected fractions given by the Fresnel
formulae (2.04% reflected at nadir for n« = 1.3333). At nadir, Snell's Law was
calculated, but returned only vz = - c/ni2 for the group velocity in water. In the
figure, the peak at 3333.333 ns, with a height of 2.04% of the simulated photons,
corresponds to photons which propagated to the surface and were immediately
reflected back to the source. The next peak, at 3777.777 ns, corresponds to photons
which were refracted into the water, then striking the perfectly reflective bottom and
propagating back to the sea-surface, being transmitted through the sea/air interface
and returning to the source altitude. A further peak is evident 444.444 ns later,
corresponding to those photons which have been reflected at the sea/air transition
at 3777.777 ns, propagating once more to the bottom and back, exiting at this time to
the source altitude. In this particular simulation this process was faithfully repeated
out to 5111 ns. The amplitude of the peaks generated were within one standard
deviation of the expected values.

3
f
>
'5

OS

25000

20000

15000

10000

5000 —

I I I | I I I | I I I | I I I | I I I | I I I | I I I

Surface Reflection Test
25000 Photons

I I I | I I I | I » I

Surface
Return:- 2.04%
for Nadir at
air/water
interface

Bottom Return:-
95.96% for Nadir
at water/air
interface

Bottom-Surface-Bottom transit:-
1.95% at Nadir on air/water interface

32.50 4000 \ 4250^/ 4500
Time of Flight (ns)

4750 5000 5250 5500

Figure 2. Test run for Snell's Law and Fresnel formulae algorithms. Peaks correspond to reflections

from interfaces. 2.5xl04 photons propagating from delta function source at 500 m at nadir with zero

beam divergence. Scattering and absorption processes are suppressed. Sea-floor is modelled as a non-

absorbing / specular reflector. Air/Water interface treatment is complete for unpolarised rays.

The series of figures 3a-c show simulated spectra for all photons arriving at the x-y
plane containing the photon source for three key test source configurations. In effect
they are LADS simulations for an infinite receiving aperture and an infinite field of
view (FOV). In each, 108 photons where initiated from a source 500 m above the sea
surface. The sea floor was modelled as a non-absorbing, diffuse scatterer, 50 m
below the surface. In 3a and 3b the source was a delta function in time and space.
The scattering coefficients were from table 3 of Joelson and Kattawar [1996] for
X = 532 nm. For the data in Figure 3a the water scattering coefficient was 0.0022 m1,

19

the suspended matter scattering coefficient: 0.0035 m1 and the absorption
coefficient: 0.0544 nv1. The surface reflected photons appear at the same time as in
Figure 2 (3333.333 ns). The growth of low level backscatter is due to the forward
scattering dominated Henyey - Greenstein distribution (gw = gsus = 0.95). The sharp
step at 3777.777 ns corresponds to photons suffering no collisions throughout the
path (or at least very forward scattered). Long path photons (those suffering several
collisions) then appear as a decaying tail. Note again that the spectrum is integrated
over all x and y at the source height. This explains the long decaying tail after the
first bottom reflection, in contrast to real LADS data, where the finite acceptance
angle of the green receiver and the finite FOV sharply truncates the tail of the
observed spectra.

Figure 3b is similar to 3a, except the suspended matter scattering coefficient was set
to 0.1955 m1, corresponding to 'coastal waters'. Significantly more backscatter
following the surface pulse is evident in this case. The bottom reflection appears as a
small step in the data plotted on a log scale. Comparison of Figures 3a and 3b
reveals that while the bottom feature in Figure 3b begins at the same time as in
Figure 3a (as expected, given that the depth is the same), the larger scattering
coefficient delays the peak of the bottom feature. As discussed in section 3.2.1, the
LADS data analysis algorithms, use a 50% constant fraction discrimination
technique to derive the depth.

Figure 3b suggests that the LADS data processing would therefore determine the
'bottom' to be midway between the actual bottom at the foot of the step and the
peak of the feature, that is somewhat delayed in time. This is evidence that the
'depth bias' can be successfully modelled by this simulation.

3000 3500 5000 ^S 4000 4500
Time of Flight (ns)

Figure 3a. Test run for 108 photons propagating from delta function source at 500 m at nadir with

zero beam divergence. Water scattering coefficient: 0.0022 nv1. Suspended matter scattering

coefficient: 0.0035 nr1. Absorption coefficient: 0.0544 nv1.

5500

20

1E+7

1E+6

1E+5

1 1E+4
o

J=
o-
•o
tu
.£ 1E+3

ÖÜ

1E+2

1E+1

1E+0
3000

200

100 —

■ I.I. I.I. I. I
3700 39-50

rfr-r^i
3500

1
4000 4500

Time of Flight (ns)
5000 5500

Figure 3b. Simulation details as for Figure 3a., except: Suspended matter scattering

coefficient: 0.1955 nr1. The highlighted bottom return feature is slightly delayed w.r.t. Figure 3a.

Figure 3c is again similar to 3a, except that a 10 ns full width 'flat top' source is used,
as evidenced by the finite width of the surface reflected pulse, which is
approximately an order of magnitude smaller in amplitude - the 2.04% of reflected
photons now distributed over 10 ns, as opposed to a delta function in time.
Interestingly, the simulation correctly predicts an identical minimum source-bottom-
source transit time, and close inspection reveals a somewhat wider 'step'
corresponding to the bottom return.

Figure 4 shows the evolution of the density profile of a pulse of photons for the
same attenuation parameters as in Figure 3a, as they propagate from r = 0, z = 0 at t
= 0, towards the bottom, which they first strike between t = 215 ns and t = 230 ns.
After 425 ns the 'front' of the simulated pulse can be seen approaching the surface
on the 'way up'. The front appears as a slight change in shading below -5 m. The
lighter shading at shallow depths for this frame represents photons which have been
backscattered several times, and have not been reflected from the bottom. The dark
band (high concentration) at r = 10 m, evident for times > 50 ns represents photons
at larger radii. The positions of these photons are tracked in the simulation, thus
they may contribute to the return signal, but the distribution is only recorded out to
10 m radius. The granularity evident at t = 50 ns is due to the fact that the density
distribution is recorded in lm x lm boxes. At t = 50 ns, there are a small number of
photons in front of the 'head' of the pulse. This is due to small imperfections in
modelling the temporal 'flat top' of the laser pulse, which will be attended to in later
releases.

21

o
o
x:
<X
-a

ei

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0
3000

/ 200 i—

100 —

tAiLi I i 11 I i I i J
3700 3950

3500 \y' 4000 4500
Time of Flight (ns)

5000 5500

Figure 3c. Simulation details as for Figure 3a., except: photons propagate from 'flat top' source with

10 ns full width, at 500 m at nadir with zero beam divergence.

Radius (m)
5 10

a
a

-5

-10

-15

-20

-25

-30'

-35'

-40-

-45-

t= 0.0ns t= 12.5ns t= 50.0ns t= 215.0ns t= 230.0ns t= 425.0ns

Figure 4. Evolution of the R-Z density profile for photons in water. 'Flat top' source, with 10 ns full

width, at 500 m at nadir with 3m beam spot size at surface. Water scattering coefficient: 0.0022 nr1.

Suspended matter scattering coefficient: 0.0035 nr1. Absorption coefficient: 0.0544 nr1

22

5. IMPROVEMENTS TO THE SIMULATION
While the initial results provide some evidence of the numerical integrity of the
simulation code, they have also highlighted some weaknesses. Several of these were
identified and immediately corrected during the initial phase. Several weaknesses
remain, however. Four of these are discussed below, along with solutions, which
will be implemented shortly.

5.1 Rayleigh Scattering from Water
Close inspection of the data used to produce the frames in Figure 4, reveals that as
the pulse 'head' approaches the bottom (t = 215 ns), there is a significant
depopulation of photons at small radial values. At later times still, the radial
distribution of photons may be likened to a 'smoke ring' - a doughnut shape,
propagating to wider radii with time. While experience suggests that this is un-
physical behaviour, this is a characteristic of the Henyey - Greenstein scattering
model and the initial Gaussian distribution of photon velocities. The Henyey -
Greenstein distribution is used to model the angular scattering distribution from
both water and suspended mater. Because this distribution is strongly forward
biased, there is an unrealistically small backward scattering contribution, as
indicated by figures 3a and 3c for example, which would 're-populate' the
distribution at small radii, once the pulse head has passed. Light scattering from
water is governed by fluctuations in the random uniform distribution of water
molecules. This is well described by Rayleigh scattering and higher order processes.

The angular dependence of the differential scattering cross section for Rayleigh
scattering follows a 1+ cos26 distribution, which is peaked at backward and forward
angles. This dependence gives rise to the small backward peak in volume scattering
functions characteristic of ocean waters, as shown in figure 5, where the angular
dependence of a volume scattering measured in deep, clean, ocean water (850 - 870
fathoms, Lat: 24°29'N, Long: 77°33'W, [Petzold 1972]), is compared to a Henyey -
Greenstein function and an appropriately normalised Rayleigh Scattering function.

Clearly, while a Henyey - Greenstein distribution satisfactorily describes the
scattering for forward angles, at angles > 90 degrees, a Rayleigh distribution is
required. In principle, any function can be used to describe the angular probability
distribution of scattered photons, with varying degrees of 'realism', in the
subroutine COLLIDE, described in section 3.2. To improve the efficiency of the code,
the probability distribution for cos(8) for suspended scatterers, now evaluated in
COLLIDE, using a Henyey - Greenstein function, is to be represented by a table of
cubic spline coefficients. Each spline function represents an equal (small) fraction of
the integral of the function from 0 < 6 < n, which will be used to give an
interpolated value for cos(9), depending on a random variable, as in the present
case. The existence of the Henyey - Greenstein distribution will provide a definitive
test for the integrity of this piece of code. A similar table will be used to represent
P(cos(8)) for the Rayleigh distribution for scattering from water. After the impact of

' these changes are assessed, the Henyey - Greenstein distribution for scattering from
the suspended matter may be superseded by a more realistic measured volume
scattering function. To achieve this, an appropriate Rayleigh dependence would be
subtracted from a fitted functional representation of the discrete measured data. The
principal advantage of using real volume scattering functions in this way, is that it
represents a closer approximation to a multi-component suspension, while retaining
the computational advantages of the single suspended scatterer representation.

23

1E + 3 I—| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1—|

c
o

c
tu

ft
O

C/3

J3
O

1E + 2

1E+1

1E + 0

1E-1

1E-2

1E-3

1E-4 -

1E-5 J L J L X X 1 J L
30 60 90 120

Angle (Degrees)
150 180

Figure 5. Measured angular dependence of the Volume Scattering Function ■"■"■ for 'deep ocean

water' (850 - 870 fathoms: station 8, Petzold 1972) compared with a Henyey - Greenstein distribution

function for <cos9> = 0.99 ■ ■ • , and a Rayleigh Scattering distribution

5.2 Finite Acceptance Angle Receiver

The shape of the decay of the signal following the appearance of the bottom in
Figures 3a - 3c, is due to loss of signal through absorption alone, as the signal from
an infinite field-of-view, is received to an infinite aperture at the source altitude. In
reality, the LADS system has an effective receiving aperture of 180 mm, centred at
the source and either a FOV which is closely matched to the initial laser spot size
(6 mrad); the so-called 'narrow' FOV, or one of 40 mrad; the 'wide' FOV. The effect
of the finite aperture - FOV combination is to sharply truncate the tail of the
returned signal, as photons propagate through the water, away from the field of
view of the aperture, to positions where they are significantly less likely to be
scattered into the receiving aperture. Exact duplication of the physical receiving
aperture / FOV in the simulation would result in an inevitable increase in the
statistical uncertainty of the returned signal. The following approach is proposed, in
part as a compromise between the slow statistical convergence of the simulation and
the physical constraints of the LADS system.

Three receiver fields of view are defined from the center of the laser spot on the
mean sea surface; a point xc on the x-axis

xc = h tan 9

where h is the height of the source above the mean sea surface, and 0 is the angle of
the beam with respect to nadir, (see Figure 1.). The diameter of the first, 'narrow'

24

FOV, is identical to the spot size of the probe beam. The diameter of the second, or
'wide' FOV is identical to that found in the LADS system: defined by a 40 mrad
wide cone, or 20m diameter spot at 500 meters. The third FOV is infinite in extent.

At the point of exit from the water, the radial position of the photon w.r.t. xc is used
to assess which of the receiver fields of view: narrow, wide, or infinite, the exiting
photon belongs to. The photon then propagates to the source altitude, where the
final radius w.r.t. the source position, is compared with disks (apertures) of radius
0.1 m, 1 m, 10 m, 100 m and infinite. A similar comparison is made for apertures of
the same dimensions, centred on xc, (ie. Immediately above the point of entry into
the water). The time of arrival of the photon at the source altitude is then added to
the histogram for each, and any, of the arrays defined by the three FOVs and ten
possible apertures.

In order to minimise simulation time spent following 'long path' photons, photons
which have survived unabsorbed for longer than three 'direct path' surface-bottom-
9urface transits will be terminated and considered to have exited from the infinite
FOV to the infinite aperture at that time, plus the source-surface-source transit with
x = 1000m and y = 1000m. This should prove a considerable saving in simulation
time, based on the evidence of Figure 4.

5.3 Data Storage
The changes mooted in the previous section require a review of the data structures
used for storing the simulation data. Firstly, the maximum radius for the 'in water'
arrays should be increased from the present 10 m to 20 m, to match the wide FOV
'in-air' data. Secondly, the array structures for the 'in-air' data need to be changed to
reflect the change in the recorded data: 10x3 dimensional arrays with a histogram of
Time-of-Flight data for the three FOVs in three columns, 'binned' in 0.5 ns elements.

The magnitude of the 'depth bias', or increase in optical path due to scattering,
which this program is designed to study is of the order of one meter in 30 - 50
meters depth. The present 'in-water' data structure stores the density distribution
profiles on a lmeter x lmeter grid. This was sufficient for the initial testing described
in this report, but is not sufficiently sensitive to study the dependence of the depth
bias on the turbidity. In order to perform such studies it is necessary to increase the
resolution of the boxes to 0.1 meters. However, the size of the present type of data
structure increases prohibitively. This problem can be overcome by utilising a new
feature in Fortran90, that of variable structure arrays which have sizes which can be
allocated and reallocated dynamically. Using this feature and pointers, an optimally
dense data structure can be created, rather than the present structures, which were
le9s than 40% filled in the initial tests. In keeping with the present practice, photons
achieving a radius of greater than 20 meters, or surviving longer than three times
the direct surface-bottom-surface transit will be boxed at 20 m. These approaches,
while making the data structures somewhat less intuitive to interpret, will also
reduce the number of elements to be written to file periodically, hence increasing
overall execution speed. The approach of using pointers and variable structure
arrays will also simplify efficient data storage for simulations for depths less than
the current fixed value of 50 meters.

6. COMPARISONS WITH SURVEY DATA
During a LADS sortie (#235) over the Sahul Banks in the Timor Sea, west of Darwin,
in June 1996, a single line (Frame 84) was flown in clear water, with the automatic

25

gain control disengaged, to obtain data for qualitative comparison with the
simulations. The values of the photomultiplier gain control parameters, G2 and G3,
were set manually, such that the bottom return signals were un-saturated for depths
deeper than about 30m. The gain was constant and fixed for all scan angles. The
surface returns were allowed to saturate. At present it is not possible to directly
compare the simulation with the Sahul Banks data, because the LADS system has a
finite receiving aperture, whereas the present simulation integrates across an infinite
receiver at the source. However, some features in the real data are worthy of note, as
they may bear on the future direction of the simulations. It is clear from examples of
data on flat bottoms, below 30m, that there is little, if any, degradation of the bottom
return signal strength at angles away from nadir. This behaviour, may indicate the
importance of relatively small amplitude wave action in the amplitude of the
returned signal for scan angles other than nadir (The trial was conducted in
relatively flat, but windy seas.

It was discovered during the sortie, that it was difficult to maintain constant gain
across the time of the depth return, using independent manual control of G2 and G3.
The exercise has recently been successfully repeated.

Sahul Banks - Quasi Uniform Gain Data

261
29/05/96
Sortie 6
Run 90
Frame 84
Eastings 4931 IS
Waveforms 265-288

Figure 6a. LADS swath data. 29/5/96 Sortie #235, Run 90, Frame 84, Waveforms 265 - 288. Note the

saturated surface returns and the large dynamic range in the bottom returns from depths of - 35m.

The deep pulses on waveforms 265 and 288 are calibration points injected into the green receiver.

Figures 6a and 6b show data from two swath scans over a shoaling bottom,
separated by approximately 150 meters. Examined together, it is evident that the
larger amplitude returns (adjacent waveforms 265 and 169), are from a flatter,
slightly deeper bottom, whereas the shallower waveforms (adjacent waveforms
288 and 192) are smaller in amplitude. It is likely that the change in amplitude is
due to an intrinsic decrease in bottom albedo with decreasing depth. This data
provides an interesting point of comparison for the simulations with non-trivial
bottom topographies.

26

Sahul Banks - Quasi Uniform Gain Data

ist
29/05/96
Sortie 6
RUD91
Frame 84
Eistlngi 493228
Waveforms 169 - 192

Figure 6b. LADS swath data. 29/5/96 Sortie #235, Frame 84, Run 91, Waveforms 169 -192. Note

that the smaller bottom returns occur at shoaler depths than the larger returns for waveforms 169 -

175.

7. EXTENSIONS TO THE SIMULATION
Three additional features are planned for the simulation. The proposed
interpretation of each of these concepts is discussed below.

7.1 Provision for Wave Action

The function SURFACE (Appendix 3) is used to define the z value of the surface when
called. At present it is a trivial function, returning zero (the mean surface level). At
least three considerations are required to introduce wave action into this function.
The first is a definition of the wave itself. A simple proposal, is to define a wave in
terms of a single dimension in the x direction (parallel to the scanned beam). The
wave is defined by user input as a sinusoidal function, with a maximum amplitude,
a wavelength in x and phase, relative to the nadir position in x. A photon which is
projected to stnke the mean sea surface at x = xo, from either above or below the
surface, instead strikes the surface at a height defined by the wave. At present it is
not expected that an exact re-calculation of the corresponding x position will be
required, given the arbitrary nature of the approximation. The principal focus is on
the change in z and the surface normal, due to wave action. This approach should be
particularly suitable for long wavelength swells. The local derivative of the wave
surface will define the tangent and the angle of incidence for the purpose of Snell's
Law.

An alternative description, which may be both faster to implement computationally
and provide a more realistic description, is to describe the distribution of wave
slopes at any point and time using a two dimensional Gram Charlier distribution,
together with a Pierson-Moskowitz spectrum which are reported [Gambling 1973,
Cox & Munk 1954, Dietrich & Wegener 1996] to provide a useful description of the
distribution of ocean wave slopes and amplitudes. This approach could be

27

implemented by choosing a suitably weighted random number. In this case, some
distribution should be used for defining the tangent to the wave surface.

7.2 Provision for Non-Trivial Bottoms
The ability of LADS to survey shallow and reef areas is an important operational
advantage in Australia's coastal waters. The LADS surveys of reef areas are
characterised in part by a significant number of soundings from isolated single
shoals, due to coral heads ('bommies') and other narrow features. While LADS has
surveyed many of these features, it is desirable that the simulation is able to at least
qualitatively reproduce the waveforms observed from such features. With this
extension to the simulation, it is possible to investigate issues relating to so-called
'bottom coverage'. It is necessary for example to investigate how the returned signal
from a sharp bottom feature varies, depending on the whether beam strikes the side,
foot or top of the feature. By analysing the shape of the returned signal it may be
possible to determine if LADS has recorded the 'shoalest' depth, or whether the
feature deserves further overflight. In addition, it will be possible to investigate the
dependence and sensitivity of the LADS system to depth, spots size and spot
spacing. Specifically, how the interplay of these parameters may effect the ability of
the system to resolve separate adjacent features and to investigate to what degree
the presence of a sharp bottom feature 'shadows' the adjacent bottom.

A simple method for providing an irregular bottom in the simulation is to prompt
the user for 2 sets of 4 (x, y, z) triplets, defining the coordinates of the base and top of
the feature respectively. In the bulk of the medium, that is below the surface and
above the shoalest depth of the bottom feature, the simulation proceeds as before,
regardless of the bottom. At depths deeper than the shoalest, the program must test
whether the interim x and y coordinates calculated in WHERE lie inside or outside of
the feature, probably, most economically defined by the base coordinates. If the
interim coordinates lie within the feature, then, as now for the 'flat bottom', the
program determines the time to intercept the plane defining one side of the feature
and scattering takes place at that time, with the scattering surface defined as the
appropriate plane of the feature. The process of transforming between coordinate
frames is somewhat computationally expensive, however, by providing earlier
conditional tests, this is usually performed at most once per photon. Note that
different scattering albedos for the feature may be defined.

7.3 Scattering of Polarised Light / Depolarisation of Light
In the present LADS system, the polarisation of the source beam plays an important
role. The light from the green laser is polarised orthogonal to the wings of the plane.
The reflection from the sea surface is approximately specular. Thus, the direction of
polarisation of the fraction of the beam reflected back to the receiver is preserved. A
polarising filter, which is oriented orthogonally to the direction of polarisation of the
returned beam, is placed in front of the 'green beam' receiver. This has the effect of
strongly reducing the intensity of polarised light reaching the receiver, and thus
reduces the problem of immediate saturation of the receiver electronics by the
surface reflected light. However, if the suspended particles are large compared with
the wavelength of the incident radiation and sufficiently smooth, the light
backscattered at 180 degrees is also specular and thus photons reaching the receiver
which have been backscattered from suspended particles will also be strongly
attenuated. This is of concern because the strength of the backscattered signal and
the shape of its subsequent decay is used as a measure of the turbidity of the water
and provides a important parameter in depth bias modelling.

28

The degree and direction of polarisation of light may be defined by the Stokes
parameters. In general, scattering of the beam results in both a reduction of the
degree of polarisation and a change in the state of polarisation. A description of
scattering of polarised light in terms of incident and scattered Stokes parameters can
be found in Bohren and Huffman [1983].

To simulate polarisation of the incident and returned beams the following approach
is proposed. The light from the source is considered to be 100% linearly polarised in
the y direction. A photon exiting the source will carry the appropriate Stokes vector
(1,1,0,0). Each scattering event (including surface and bottom reflections) modifies
the Stokes vector appropriately, according to the scattering, or Müller matrices. In
the present simulation, if the photon is returned to the receiver, the position of the
photon in x, y, and t is boxed and added to a 3D histogram. In the extension to
polarisation, the x, y, t histogram at the receiver will be extended to include the
Stokes vector. Thus, average values for each of the parameters as a function of space
and time can be obtained. From this information, the required polarisation state may
be readily derived in a modified post-simulation algorithm.

8. PROGRAM INPUT
8.1 Simulation Code

8.1.1 Explicit

The initial input to the simulation is divided into sections. At present these comprise
a File information section, followed by Beam, Water and Bottom information
sections. When wave action or other features discussed above are included, then
appropriate input sections will be introduced. In the File information section, the
user is asked for the names of 4 files in which information is to be stored:

• Run information output: This is essentially the file which indicates the status of
the simulation - the number of photons output, CPU time consumed, collisions
processed etc. The information in this file is largely self explanatory.

• Boxed x, y, t output at plane .

• Boxed r, z, t output in water, where r is the radius: TJX
2
 + y2

• Run parameter file name: This is the auxiliary file read by the processing
program, containing information concerning the run.

Input defining the beam parameters is then requested. The user enters

• The aircraft height in meters.
• The full temporal width of laser beam in nanoseconds.
• The beam scan angle from nadir in degrees. Note that in the LADS system, the

maximum angle is 15 degrees, however, no such limit is set in the simulation.
• The beam spot diameter at the sea surface meters, representing the width of a

Gaussian beam encompassing 86% of the total beam intensity.

Input defining the attenuation and scattering of the light in water follows. The user
enters

• The photon absorption coefficient, a, in m1

• The water scattering coefficient, bray, in m1

• A value for average cosine for water, as represented by the Henyey-Greenstein
distribution (typically 0.95 - 0.99).

• The suspended matter scattering coefficient, bSus, in m1.

29

A value for average cosine for the suspended scatterer, as represented by the
Henyey-Greenstein distribution (typically 0.95 - 0.99).

• The bottom depth in meters is entered, together with the reflectivity of the
bottom, expressed as a percentage

t Lastly the user is prompted for the total number of photons to be simulated and
the number of photons to be processed between calls to the routines which save
intermediate data to file.

The simulation can be run either interactively as describe above, or as a batch job. In
the later case, under Unix, the appropriate command is:

nohup photon.exe < input.file > log.file &,

where photon.exe is the name of the executable file, input.file is a file containing the
information otherwise entered interactively through stdin and log.file contains the
output re-directed from stdout.

8.1.2 Implicit

In this version of the simulation, the form of the scattered photon angular
distribution is given by a single analytic function. The functional form used is a
Henyey-Greenstein distribution, with a variable, separate, width for both photon-
water and photon-suspended matter collisions, given by a user input value for g, the
mean value of cos6. Henyey-Greenstein distributions have been widely for
describing the 9 dependence of light scattering from suspended matter used [see for
example Groenhuis et al 1983 and Bergougnoux et al 1996 and refs therein]. As
described above, the <(> dependence is uniform over 2JC. Comparison with measured
Volume Scattering functions for selected ocean waters [Petzold 1972] suggests that
values of g between 0.8 and 0.99 give an appropriate representation of scattering of
532 nm radiation from suspended matter. This proved a useful approximation for
scattering from water as well during testing. However, such a function significantly
under-estimates the backscattering from the random fluctuations in water, which is
governed by Rayleigh scattering (section 5.1).

9. Acknowledgments
Many people have contributed to the successful development of the code. However,
special thanks are due to Ralph Abbot, Derek Bertilone, David Cartwright, Dallas
Lane, Martin O'Connor and Bob Whatmough for their contributions to the
inlerpretation of the physics presented, and to Bruce Bennett, Dave Hemming,
Richard Watts and the staff of CISU for their efforts in assisting with the purchase,
installation and optimisation of the DECalpha used in the simulations.

10. References

Bergougnoux, L., Misguich-Ripault, J., Firpo, J-L., and Andre, J. (1996) Monte-Carlo
calculation of backscattered light intensity by suspension: comparison with
experimental data, Applied Optics, 35,1735

Billard, B. (1986) Remote sensing of scattering coefficient for airborne laser
hydrography, Applied Optics, 25, 2099

Bohren, C.F. and Huffman, D.R., (1983), Absorption and scattering of light by small
particles, Wiley Interscience (Brisbane)

30

Brennan, M.J., (1991) Optimization of Monte-Carlo codes using null collision
techniques for experimental simulation at low E/N, /£££ Trans. Plasma Science, 19,
256

Brent, R., (1996) private communication

Cox, C. and Munk, W. (1954) Measurement of the roughness of the sea surface from
photographs of the sun's glitter, /. Opt. Soc. Am. 44,838

Fernee, M., (1995) Report on LADS depth bias simulation using Monte-Carlo
simulations, LSOD-95-09-WP, ESRL

Gambling,D.J., (1973) Sun glitter on the surface of the ocean in the infrared spectral
region, WRE-TN-892, ESRL

Gordon, H.R., (1982) Interpretation of airborne oceanic lidar: effects of multiple
scattering, Applied Optics, 21,2996

Groenhuis, R.A.J., Ferwerda, H.A., and Ten Bosch, J.J., (1983) Scattering and
absorption of turbid materials determined from reflection measurements I: Theory,
Applied Optics, 12,2456

Joelson, B.D. and Kattawar, G.W. (1996) Multiple scattering effects on the remote
sensing of the speed of sound in the ocean by Brillouin scattering, Applied Optics, 35,
2693

Kaijser, T.J., (1990) A Monte Carlo simulation of airborne hydrographic laser
systems, FOA report C 30578-8.1.

Koerber, B., (1996) Mathematical modelling of optical image propagation in water,
DSTO-TR-0150, ESRL

Petzold, T.J., (1972), Volume scattering functions for selected ocean waters, SIO Ref.
72-78 (Scripps Institute of Oceanography, San Diego, Calif., 1972).

Poole, L.R., Venable, D.D. & Campbell, J.W. (1981) Semi-analytic Monte Carlo
radiative transfer model for oceanographic lidar systems, Applied Optics, 20,3653

Tootill, J.P., Robinson W.D. and Eagle }., (1973). An asymptotically random
Tausworthe sequence. J.A.C.M. 20,469

Dietrich, C.R. and Wegener, M., (1996). Generation of random sea surfaces satisfying
a Cox-Munk distribution for wave slopes and Pierson-Moskowitz spectrum for
wave height. Pre-print

31

Appendix 1

The program in this appendix is current as of 05-August-96.

modules.f90
I ********************* NylODI II P ^Ff^TION ********************

|
MODULE PHJ.OGIC

SAVE
LOGICAL(l)ph_finish

END MODULE PHJ.OGIC
I *********************

MODULE BOXES
SAVE
INTEGER(4) it_entry, ir_entry

! Max dimensions are referenced in main and several other routines
INTEGER(4), PARAMETER :: ix_plane = 25, jy_plane = 2, kt_plane = 4000
INTEGER(4), PARAMETER :: ir_rzt = 10, jz_rzt = 50, kt_rzt = 4000

! Boxed arrays for plane and water -
INTEGER(4) boxplane(ix_plane, jy_plane, kt_plane)
INTEGER(4) box_rzt(ir_rzt, jz_rzt, kt_rzt)

I center position of photon cone in water
I.,. x_center = plane*sin(scan_angle)

REAL(8)x_center
I minimum ToF for returned photon

REAL(8) plane_mint, water_mint
END MODULE BOXES

I *********************

MODULE RAN_PAR
SAVE
REAL(8) ai, aj, ak, al, am

I running sums of random numbers
REAL(8) callsi, callsj, callsk,callsl, callsm

I number of calls to generator
INTEGER(2) is, js, ks, Is, ms

I seeds
INTEGER(4) ris(607), rjs(607), rks(607), rls(607), rms(607)

I random seauence arrays
END MODULE RAN_PAR

| *********************

MODULE MONITORS
SAVE

! process monitors:
! number of total, absorbing, water and suspended scattering events
I and number of end treatments for radial and temporal boxes at the plane
I (x?p_hot) and in the water (x?w_hot)

REAL(8) xtotal, xabsorb, xwater, xscatt, xr_hot, xx_hot, xy_hot, &
xtp_hot xtw_hot

END MODULE MONITORS
| *********************

MODULE PHASE
SAVE
INTEGER(4) it
REAL(8) x, y, z, Vx, Vy, Vz, V, t, tO

END MODULE PHASE
I *********************

MODULE OUT_PAR
SAVE

32

INTEGER(4) Loutput m_photons, njotal, n_output
END MODULE OUT_PAR

MODULE FILES
SAVE
CHARACTER(40) finfo, fPlane, tot, frun

END MODULE FILES

MODULE EXTREMA
SAVE

maximum radial extent in water, max x and y at plane, min and max
temporal extents in water (1,2) and plane (3,4)
note: x and y max are allowed to be negative

REAL(4) r_max(3), t_max(4)
END MODULE EXTREMA

MODULE BEAM_PAR
SAVE
REAL(8) plane, laser_width, scan_angle, spot sigma
REAL(8) laser_time

END MODULE BEAM_PAR

MODULE SURFACE_PAR
SAVE
REAL(8) surfjeflect

END MODULE SURFACE_PAR

MODULE WATER_PAR
SAVE

total attenuation coefficient
REAL(8) atten_coeff

calculated mean free time in water
REAL(8) timejnean
REAL(8) a_coeff, w_coeff, g_water, s_coeff, g_scatt

values of scattering coeffs for output
REAL(4) a_out, w_out, gw_out, s_out, gs_out

END MODULE WATER_PAR

MODULE BOTTOM_PAR
SAVE
REAL(8) depth, bott_reflect

END MODULE BOTTOM_PAR

MODULE SEA_AIR
SAVE
REAL(8) costh, sinth_sg. water_n, water_n_sa

refractive index and cos theta for incident and transmitted media
REAL(4) n_i, n_t, costhj, costhj

END MODULE sea_air

MODULE SLICE
! temporal slice/bin size

REAL(8) dt_slice
DATAdt_slice/5.d-10/

END MODULE SLICE

******************* END MODULE SECTION ******************

33

Appendix 2

The program in this appendix is current as of 05-August-96.

960805.f90

960805.f90
Anisotropie program for simulation of photon transport in sea water
including air-sea and sea floor boundaries
provision is made for future extension to consider periodic surface
topology and arbitrary bottom topology

The program has been written with the following features...
All calculations are in SI units... meters and seconds
The speed of the photons in air is set to be 3x10A8 m/s
The speed of the photons in water is set to be 2.25x10A8 m/s,
where the ratio 1.3333333 is the assumed index of refraction
for the sea water

The following full Cartesian geometry (x,y,z) has been adopted:
z = 0 at mean sea level, z = +plane at plane height.

Photons propagate initially in the -z direction, are reflected and
propagate to +plane.

Plane notionally propagates in the +y direction
Photons are scanned out in the +x direction.
The mean collision frequency is set by a grand total collision cross
-section composed of the following:

There are three possible interactions of the photons with the water
- Absorption: mean free time set by mean free path for process x

lambda_ = 1 /coeff_x ... a = 0.05 %20 meter water'
- note that l(z) = l_0 exp(-lambda_x z) is analogous to

1(f) = L0 exp(-MFT_x t)
where lambda is the mean free distance
where the speed of the photons in the absorbing media implies

v = lambda_a/MFT_a

- Scattering from water:... MFT set as above ... Anisotropy from
Henyey-Greensteia using average cos theta g ~ 0.95 (variable)

- Scattering from suspended matter: - characterised by single MFT
set as above

- That is the effective density and properties of the water as an
absorber and scatterer are set separately, as is the density of
the scatterer

Laser beam temporal width is variable ...
characterised as a temporal 'flat top'

Beam divergence is variable
Initial photon velocity cosines set by observing that the spot
size is 2x the spot radius, which represents the 1 /e point for
the photon intensity
The photon distribution is modelled by a Gaussian characterised
by the spot radius

Sea state is flat... Snell's Law is used on photon entry and exit
'* Photons are reflected from the sea surface at entry and exit

using Fresnel's Eguations.

Bottom state is flat...

34

** Photons are reflected from the bottom with a variable probability
Cosine distribution is used in theta and 0-2Pi in Phi

Photon positions are recording in r,z,t in boxes,...
boxplane x (1 m boxes), y (1 meter boxes)

and t (.5 ns boxes) at z = plane meters
t is offset to be at box 1 for the first non-zero time

box_rzt: 1 m x 1 m x0.5ns, centred around water entry point

created for DECalpha May-July 1996 MJB
in collaboration with Robert Whatmough, Derek Bertilone and Ralph Abbot
change log started 060696

060696 Variables are described in declaration and/or first
assignment
170796 1 m boxes in z for initial debugging
180796 split monolithic program file into the following components

1) date-named file ... contains main and routines called by
main.

2) modules.f90 contains modules
3) level! .f90 contains routines called by subroutines in

main program
2) Ievel2.f90 contains routines called by subroutines in

levell .f90 and other routines in Ievel2.f90
A daily directory structure contains files
first attempt at array compacting ... at plane, it = 1

corresponds to a min ToF for given beam config
10 m boxes in x and y at plane for debugging ...

200796 First 'release' version ... cos theta set to 1 in scattering
and at bottom (phi = 0) for debugging

210796 Introduce parameters for array dimension
250796 Timing boxing verified through testing
260796 Correctly treat total internal reflection in levell .f90

Edited for Specular bottom 13:16
300796 Back to diffuse bottom
020896 Added treatment for z = locaLb in where

cleaned up a few errors and bugs found since 300796
NOT under RCS yet!

modules used
USE phjogic
USE boxes
USE ran_par
USE monitors
USE phase
USE out_par
USE files
USE extrema
USE beam_par
USE water_par
USE bottom_par
USE sea_air
USE slice
USE portlib
IMPLICIT NONE

main program bits and pieces
loop indices

INTEGER(4) i,j,k
loop index

INTEGER(4) ii
time between collisions

35

REAL(8) deltCLt
! absolute time of next collision

REAL(8) tck
! absolute time of next time bin

REAL(8) tout
I exclusive random number function

REAL(4) randt
I random variable - standard random number intermediate

REAL(4) rl
I machine specific timing

REAL(4) tarray(2)
REAL(4) cpu, old

I timing
CHARACTER^) tbuf
CHARACTER(9) dbuf
EXTERNAL ETIME
REAL(4) ETIME

I fall safe hanaiers
INTEGER(2)ifaill,ifail2

I
I Start the clock

CALLdate(dbuf)
CALLtime(tbuf)
WRrrE(V)tbuf,'on',dbuf
cpu = ETIME(tarray)

I Read in seeds and initialise random sequences
II OPEN(unit = 15, file = 'seeds.dat',

&
STATUS = 'unknown', err = 1011)

READ(15,*)is,js, ks. Is, ms
CLOSE(15)
IF((is.eq.js).OR.(is.eq.ks).OR.(is.eq.ls).OR.(is.eq.ms))THEN

WRITE(V)'Check last run: Seeds Equal!!'
STOP

END IF
IF(Qs.eq.ks).OR.Qs.eq.ls).OR.Qs.eq.ms))THEN

WRITE(V)'Check last run: Seeas Equal!!'
STOP

END IF
IF((ls.eq.ms))THEN

WRITE(*/)'Check last run: Seeds Equal!!'
STOP

END IF
12 OPEN(UNIT -15, FILE = 'ris607.dat',

&
FORM = 'UNFORMATTED', STATUS = 'unknown', err =1021)

DO 5000 ii = 1 , 607
READ(15)ris(ii)

5000 END DO
CLOSE(15)
OPEN(UNIT = 15 , FILE = 'rjs607.dat',

&
FORM = 'UNFORMATTED', STATUS = 'unknown', err =1021)

DO5010N = 1 ,607
READ(15)rjs(ii)

5010 END DO
CLOSE(15)
OPEN(UNIT = 15, FILE = Yks607.dat1,

&
FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021)

36

DO 5020 ii = 1 , 607
READ(15)rks(ii)

5020 CONTINUE
CLOSE(15)
OPEN(UNIT = 15, FILE = Yls607.dat1,

&
FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021)

DO 5030 ii = 1 , 607
READ(15)rls(ii)

5030 CONTINUE
CLOSE(15)
OPEN(UNIT = 15, FILE = 'rms607.dat',

&
FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021)

DO 5032 ii = 1 , 607
READ(15)rms(ii)

5032 CONTINUE
CLOSE(15)

20 FORMAT(ll)
WRITEf,*)'*" ENTER THE FOLLOWING FILE INFORMATION *"*
WRITE(*,*)*ENTER RUN INFORMATION OUTPUT FILE NAME'
READ(*,30)finfo
WRITE(V)finfo
WRITE(*,*)'ENTER BOXED x,y,t OUTPUT FILE NAME FOR PLANE HEIGHT'
READ(*,30)fplane
WRITE(V)fplane
WRITE(*,*)'ENTER BOXED r,z,t OUTPUT FILE NAME FOR WATER'
READ(*,30)frzt
WRITE(*,*)frzt
WRITE(*,*)'ENTER RUN PARAMETER FILE NAME'
READ(*,30)frun
WRITE(*,*)frun

30 FORMAT(A40)

***********************' VARIABLES SET*******"*""*** ***********

ai = 0.0d0 !
aj = O.OdO !}
ak = O.OdO !}
al = O.OdO !}
am = O.OdO !}
callsi = O.OdO IJrandom check
callsj = O.OdO !}
callsk = O.OdO !}
callsi = O.OdO i

callsm = O.OdO !
xtotal = O.OdO I total collisions monitor
xabsorb = O.OdO I absorbing collisions monitor
xwater = O.OdO I scattering collisions with water

I monitor
xscatt = O.OdO I scattering collisions with suspension

! monitor
xr_hot = O.OdO ! end treatment radial monitor
xx_hot = O.OdO I end treatment X monitor
xy_hot = O.OdO ! end treatment Y monitor
xtp_hot = O.OdO ! end treatment temporal monitor at

! plane
xtw_hot = O.OdO ! end treatment temporal monitor in

! water
m_photons=0 ! total number of photons modelled

37

i_output=0 ! number of modelled photons since the
! last write

water_n = 3.0d8/2.25d8 I refractive index of water
water_n_sa = water_n*water_n

! set exit time of photon from laser to zero
laserjime = O.dO

! **** SETUP ARRAYS ****
DOi= 1, ix_plane

DOj= 1, jy_plane
DOk= l,kt_plane

boxplane(i, j, k)= 0
END DO

END DO
END DO
DOi = l,ir_rzt

DOj= 1, jz_rzt
DOk=l,kt_rzt

box_rzt(i, j, k)= 0
END DO

END DO
END DO
DO I =1.3

r_max(i) = 0.
END DO
t_max(l) = 3.e8
t_max(2) = 0.
t_max(3) = 3.e8
t_max(4) = 0.

I
I ***************** ENTER RUN PARAMETERS *****************
I

WRITE(V)' ENTER THE FOL1 .OWING PARAMETERS:'
WRITEC*)' FOR THE BEAM:'
WRITE(V)"
WRITEC*)' PLANE HEIGHT IN METERS'
READ(*/)plane
WRITE(*/)REAL(plane)
WRITEC/)' FULL TEMPORAL WIDTH OF LASER BEAM (ns)'
READ(V)laser_width
laser_width = laser_width*l .d-9
WRITE(*/)REAL(laser_width)
WRITEC*)' BEAM SCAN ANGLE FROM NADIR IN DEGREES - LADS Max: 15'
READ(*/)scan_angle
WRITEC *)REAL(scan_angle)
WRITEC*)' BEAM SPOT DIAM AT SURFACE (86% INTENSITY)(METERS)'
READ(*,*)spot
WRITEC *)REAL(spof)

I
WRITEC*)"
WRITEC*)' FOR THE SEA SURFACE :'
WRITEC*)11

WRITEC/)' FOR THE WATER :'
WRITEC*)"
WRITEC*)' PHOTON ABSORPTION COEFFICIENT'
READ(*/)a_coeff
a_out = REAL(a_coeff)
WRITE(*,*)REAL(a_coeff)
WRITEC*)' WATER SCATTERING COEFFICIENT'
READ(*,*)w_coeff
w_out = REAL(w_coeff)

38

WRITEC *)REAL(w_coeff)
WRITEC *)' AVERAGE COSINE FOR WATER'
READ(V)g_water
gw_out = REAL(g_water)
WRITE(*/)REAL(g_water)
WRITEC*)' SUSPENDED MATTER SCATTERING COEFFICIENT'
READ(Y)s_coeff
s_out = REAL(s_coeff)
WRITEC *)REAL(s_coeff)
WRITEC*)' AVERAGE COSINE FOR SCATTERED
READ(*/)g_scatt
gs_out = REAL(g_scatt)
WRITEC*)REAL(g_scatt)
WRITEC*)"
WRITEC*)' FOR THE BOTTOM :'
WRITEC*)"
WRITEC*)' BOTTOM DEPTH IN METERS'
READ(*,*)depth
WRITE(*, *)REAL(depth)
WRITEC*)' PERCENTAGE PHOTON REFLECTANCE FROM BOTTOM'
READ(*,*)bott_reflect
bott_reflect = bott_reflect/100.d0
WRITE(*, *)REAL(bott_reflect)* 100.
WRITEC*,*)
VA/piTC/* *y***'

WRITEC*,'*)
WRITEC*-*)' ENTER TOTAL NUMBER OF PHOTONS TO BE SIMULATED'
READC*,*)n_total
WRITEC *)n_total
WRITEC*,*)' ENTER NUMBER OF SIMULATED PHOTONS BETWEEN OUTPUTS'
READC*)n_output
WRITEC*, *)n_output

I **** SETUP DEPENDENT VARIABLES ****
CALL dep_var

I
, **....*********.. CALCULATION BEGINS *****************
I

cpu = ETIME(tarray)
CALLtimeCtbul)
old = cpu
WRITEC*, *)'Calculation Start :' &

, cpu/60., 'CPU Cmin) @ ', tbuf
MAIN LOOP

slm: DO WHILE Cm_photons.LT.n_total) I logic check 111119b

note: m_photons traces the total number of modelled photons
go to output if necessary

IFCLoutput.EQ.n_output)THEN I logic check 11/7/96
cpu = ETIMECtarray)
CALLtimeCtbuf)
WRITEC*)'Outputing to Files :' &

, cpu/60., 'CPU Cmin) @ ', tbuf
CALL output
i_output=0

reset - incremented in BEGIN

39

cpu = ETIME(tarray)
old = cpu

END IF
! begin the photon, find initial phase space position at entry below
I mean sea surface, increment counters etc.

CALL BEGIN
IF(ph_finish)THEN

I the photon has been reflected at sea surface, or otherwise
! finished start new photon - ie. drop through to end of loop

CYCLE sim ! next photon
ELSE

I set tO = t
to = t

END IF
cpu = ETIME(tarray)
CALLtime(tbuf)

I ***

| ***

between: DO I between collision, until 'lost' loop
| ***
I ***

! throw deltaj to next collision
rl = randt(is, ris)
ai = ai + DBLE(r1)
callsi = callsi + 1 .OdO

I update random monitors
deltaj = - time_mean*DLOG(DBLE(rl))

! total simulated time to next collision for this photon
I

tck = t + deltaj
| ***

slices: DO ! trace loop
I «A***

I time to next interrogation slice
tcut = DBLE(it+l)*dt_slice
IF(tck.LT.tcut)THEN

! photon crosses no slice before collision - no problem
t = tck

I time equals time collision
CALL WHERE
IF(ph_finish)THEN

CYCLE sim I next photon
END IF

I go straight to collision
CALL collide
IF(phJinish)THEN

CYCLE sim ! next photon
END IF

I - choose next collision time
CYCLE between ! cycle to top of loop

ELSE IF(tck.EQ.tcut)THEN
I collides at time slice
I update slice counter

it = it + 1
I time equals time at 'next' slice

t = tcut
CALL WHERE
IF(phJinish)THEN

CYCLE sim I next photon
END IF

40

! trace photon at slice
CALL trace_water
CALL collide
IF(ph_finish)THEN

CYCLE sim ! next photon
END IF

I leave the loop - choose next collision time
CYCLE between ! cycle to top of loop

ELSE
I photon cross at least one time slice before collision
I update it

it = it + 1
t = tcut
CALL WHERE

I Note, tck remains abs time to collision
IF(ph_finish)THEN

CYCLE sim ! next photon
END IF
CALL trace_water

END IF
END DO slices

END DO between
END DO sim

***************** CALCULATION FINISH *****************

&

&

cpu = ETIME(tarray)
WRITE(*,*)'Outputing to Files ^cpu/öO./CPU (min) @ ',

tbuf
CALL output
cpu = ETIME(tarray)
CALLtime(tbuf)
WRITEC7STOP :',cpu/60.,'CPU (min) @ ',

tbuf
WRITE(V)''
WRITE(V)'ln this simulation there were:'
WRITE(V)'ln',REAL(xabsorb),' Absorption Events'
WRITE(V)'ln',REAL(xwater),' Scattering Events from Water'
WRITE(*)'ln',REAL(xscatt),' Scattering Events from Suspension'
WRITE07ln',REAL(xtotal),* Total Collisions'

WRITE(*,*)' Maximum r extent in water:', r_max(l),' (m)'
WRITEC-7 Maximum x extent at Plane:', r_max(2),' (m)'
WRITE(Y)' Maximum y extent at Plane:', r_max(3),' (m)'
WRITE(V)' Minimum temporal extent in water:', t_max(l),' (s)'
WRITE(V)' Maximum temporal extent in water:', t_max(2),' (s)'
WRITE(V)' Calculated minimum ToF to Plane :', REAL(plane_mint),' (s)'
WRITE(V)' Minimum temporal extent at Plane:', t_max(3),' (s)'
WRITE(\7 Maximum temporal extent at Plane:', t_max(4),' (s)'
IF(xr_hot.ne.0.dO)THEN

WRITEC 7 ', REAL(xr_hot),' Too Hot Radial Boxes in Water'
END IF
IF(xx_hot.ne.0.dO)THEN

WRITEC*)1 '. REAL(xx_hot),' Too Hot X Boxes at Plane'
END IF
IF(xy_hot.ne.0.dO)THEN

WRITE(V)' ', REAL(xy_hot),' Too Hot Y Boxes at Plane'
END IF

41

IF(xtp_hot.ne.0.dO)THEN
WRITE(*,7 ',REAL(xtp_hot),' Too Hot Temporal Boxes at Plane1

END IF
IF(xtw_hot.ne.0.dO)THEN

WRITEC7 ',REAL(xtw_hot),' Too Hot Temporal Boxes in Water'
END IF
GOTO 2000

I **.,„**..**.*.** Error on networ)< OPEN traps *******************
1011 WRITE(*,*)'Error opening seeds.dat'

ifaill =ifaill + 1
CALLSLEEP(l) ! Portlib Routine
IF(ifaill .gt.50)GOTO 2000
GOTO 11

1021 WRITEC,*)'Error opening r607.dat'
CALLSLEEP(l)
Ifail2 = ifail2 + 1
IF(ifail2.gt.50)GOTO 2000
GOTO 12

2000 STOP
END

I
j A**

I

SUBROUTINE DEP_VAR
I Set up variables which depend on user input characteristics
! modules used

USE phase
USE ran_par
USE beam_par
USE sea_air
USE boxes
USE water_par
USE slice
IMPLICIT NONE

I distance from wave included surface to water or plane
REAL(8) dist

I functions
REAL(8) surface

! Intermediate working variables
REAL(8) planejnt waterjnt

!
I convert scan_angle to SI

scan_angle = scan_angle* 3.14159265359d0/180.0d0
I set center of 'in' water array

x_center = plane*SIN(scan_angle)
I estimate minimum time for photon to reach water for efficient
I boxing. -
I corresponds to an 'early exit' photon travelling
I down along the scan angle to the surface.

dist = plane - surfaceO
waterjnt = dist/3.0d8 - laser_width

I Now find the nearest integral multiple of dt_slice which is less than
I or equal to waterjnt

water_mint = O.dO
DO WHILE (waterjnint.le.waterjnt)

water_mint = waterjnint + dt_slice
END DO
waterjnint = water_mint - dt_slice

I estimate minimum time for photon to reach plane height for efficient

42

! boxing. -
I corresponds to an 'early exit' photon travelling
! down along the scan angle to the surface, being immediately reflected
I vertically to plane height

dist = SQRT((plane - surfaceO)*(plane - surfaceO) &
+ plane*SIN(scan_angle)*plane*SIN(scan_angle)) &

+ plane - surfaceO
planejnt = dist/3.0d8 - laser_width

I Now find the nearest integral multiple of dt_slice which is less than
I or equal to planejnt

planejnint = O.dO
DO WHILE (plane_mint.le.plane_int)

planejnint = planejnint + dt_slice
END DO
planejnint = planejnint - dt_slice

i convert spot to radius
spot = spot/2.d0
Sigma = spot/SQRT(-2.dO*LOG(1 .dO - 0.86d0))

I
I ***..*...**.***** T0TAL MEAN COLLISION FREQUENCY *****"********"
!

atten_coeff = a_coeff + w_coeff + s_coeff
I Relative attenuations

a_coeff = a_coeff/atten_coeff
w_coeff = w_coeff/atten_coeff
s_coeff = s_coeff/atten_coeff

I Mean Free Time between collisions, as per header comments
timejnean = 1 ,d0/(atten_coeff*2.25d08)

I note: speed of light in water = 2.25d8 m/s
\kin\TC(* *y***'

WRITEC*)' Total Attenuation =', REAL(atten_coeff)-' /meter1

WRITEC *)' Mean Free Time =', 1 .e9*REAL(timejnean),' ns'
WRITEC-*)' Expected random Distribution'
WRITEC-*)' Scattering by Water: 0 -', REAL(w_coeff)
sjooeff = w_coeff + sjooeff
WRITE(*,*)' Scattering by Suspension:1 ,REAL(w_coeff),' -'- REAL(s_coeff)
a_coeff = s_coeff + a_coeff
WRITEC*)' Absorption by Water: ',REAL(s_coeff),' -'- REAL(a_coeff)
lyUpiTC/* *\l***'
uiniTr/* *\ 1***1

RETURN
END

I
I ***

I
SUBROUTINE BEGIN

I This routine begins a photon -
I Increments mjphoton and Loutput
!
I modules used

USE phjogic
USE boxes
USE phase
USE outjpar
IMPLICIT NONE

I local surface function
REAL(8) surface

!
mjphotons = mjphotons + 1

43

Loutput = Loutput +1
! set photon finished flag false

ph_finish = .FALSE.
! Initialize phase info for debugging

x = O.dO
y = O.dO
z = O.dO
Vx= O.dO
Vy= O.dO
Vz= O.dO
V = 3.0d8
t = O.dO
it = 0
it_entry = 0

l

z = z + surfaceO
CALL laser
CALL surface_entry

!
RETURN
END

I
I ***

I
SUBROUTINE WHERE

I This subroutine calculates the position and velocity of the
I photon at time t and returns the phase info through the module
I phase
I
I modules used

USE phjogic
USE phase
USE ran_par
USE bottom_par
IMPLICIT NONE

I elapsed time since last call to WHERE
REAL(8) deltaj

! local variables
REAL(8) locaLs, local_b, zjnt, yjnt, xjnt, tjnt

! scattering angle components
REAL(8) costh, sinth, phi

I boundary functions
REAL(8) surface, bottom

I Inclusive random number function
REAL(4) randti

I random variable
REAL(4)rl,r2

!
I calculate deltaj first and then intermediate x, y, z

deltaj = t - to
zjnt = Vz*delta J + z
yjnt = Vy*delta J + y
xjnt = Vx'delta J + x

I NB: this is compatible with wave action and bottom topography as
I described in log Book 1, page 32

locaLs = surfaceO
locaLb = bottomO
IF((z_int.LTJocaLs).AND.(zJnt.GT.IocaLb))THEN

I there is nothing more to do - set intermediates to final
I most common occurrence

44

z = zjnt
y = yjnt
x = x_int

ELSE IF(z_int.lt.local_b) THEN
! first, determine if photon is reflected ... saves time

rl = randti(ls, rls)
al = al + DBLE(rl)
callsl = calls! + 1 .OdO
IF(rl .ge.bott_reflect)THEN

I photon is absorbed ... set phjinish, exit to end
phjnish = .TRUE.
GOTO 666

END IF
I find time to intersection with bottom, reflect, then carry
I photon for the rest of the time associated with call

tjnt = (local_b-z)/Vz
z = locaLb
y = Vy*t_int + y
x = Vx*t_int + x

I set random variables
rl = randti(js, rjs)
aj = aj + DBLE(rl)
callsj = callsj + 1 .OdO
r2 = randti(is, ris)
ai = ai + DBLE(r2)
callsi = callsi + 1 .OdO

! determine cos theta for scattered vector... uniform on 0,1
I... only positive Vz on bottom reflection, from NB: FLAT BOTTOM

costh = rl
sinth = SQRT(1 .OdO - costh*costh)
phi=6.283185308d0*r2
Vz=2.25d8*costh
Vx=2.25d8*sinth*COS(phi)
Vy=2.25d8*sinth*SIN(phi)

I take the photon on to next collision with new Vx, Vy, Vz
I note that technically, the photon path
I may be unphysical... ie. may cross an interface here
I watch in debug later

tjnt = deitaj - tjnt
z = Vz*t_int + z
y = Vy*t_int + y
x = Vx*t_int + x
IF(z.ge.surfaceO)THEN

! Ignore the rest of this photon
WRITE(V)' A bottom reflected photon has exited the surface'
WRITE(V)'z = ',REAL(z)
phjnish = .TRUE.

END IF
ELSE IF(z_int.GT.Iocal_s) THEN

! find time to intersection with surface, call SURFACE_EXIT and
! take appropriate action
! NB: t is set if exit

tjnt = (local_s-z)/Vz
! t at surface

z = locaLs
y = Vy*tjnt + y
x = Vx*tjnt + x
CALL surface_exit(tjnt)
IF(.NOT.ph_finish)THEN

! take the photon on to next collision with new Vx, Vy, Vz

45

! note that technically, if very wavy, the photon path
I may Pe unphysical... ie. may cross an interface here
I watch in dePug later

tjnt = delta_t - tjnt
z = Vz*t_int + z
y = Vy*t_int + y
x = Vx*t_int + x
IF(z.le.PottomO)THEN

! Ignore the rest of this photon
WRITE(Y)' A surface reflected photon has struck the bottom1

phjinish = .TRUE.
WRITE(\7 z = ',REAL(z)

END IF
END IF

ELSE IF(z_int.EQ.Iocal_b)THEN
I set the depth to depth +0.1 mm and this will do
I may need checking for V normailisation 02/08/96

z = local_P + 0.0001
y = yJnt
x = xjnt

ELSE
I photon is relaxing on the surface ...
I set the depth to depth -0.1 mm and this will do
I may need checking for V normailisation 02/08/96

z = locaLs - 0.0001
y = yJnt
x = xjnt

END IF
666 t0 = t

RETURN
END

I
l A**

I
SUBROUTINE COLLIDE

I
I This subroutine determines which collision the photon has
I
I modules used

USE phjogic
USE ran_par
USE phase
USE monitors
USE water_par
IMPLICIT NONE

I random number variables
REAL(4) randti

I inclusive (0-1) function return
REAL(4) Rcoll, rl

I scattering angle components
REAL(8) costh, sinth

I variables for defining random vector and hence absolute velocity
I cosines wrt to known x,y,z

REAL(8) rcosth, rsinth
I random dangles

REAL(8) rx, ry, rz
I speed scalars

REAL(8) c
I parallel components

REAL(8) rxp, ryp, rzp, Vxp, Vyp, Vzp

46

I orthogonal components
REAL(8) rxo, ryo, rzo, Vxo, Vyo, Vzo

! local value for average cosine
REAL(8) g_

!
Rcoll = randtiQs, rjs)

! THROW DICE TO DETERMINE PROBABILITY
aj = aj + DBLE(Rcoll)
callsj = callsj + 1 .OdO
xtotal = xtotal + l.dO

COMPARING PROBABILITIES FOR PROCESSES AGAINST Rcoll

IF(Rcoll.GT.s_coeff) THEN I greater than scat... absorb
xabsorb = xabsorb + 1 ,d0

I absorbing collision...
ph_flnish = .true.

I finish flag set
RETURN

I return
ELSE IF(Rcoll.GT.w_coeff) THEN I greater than water... suspended

I scattering from suspension
g_ = g_scatt

I set average cosine for scattering
xscatt = xscatt + 1 ,d0

ELSE
I scattering from water

g_ = g_water
xwater = xwater + l.dO

END IF
I
I 1. find costh and sinth according to Henyey-Greenstein distribution
!

Rl = randti(ks, rks)
ak = ak + DBLE(rl)
callsk = callsk + 1 .OdO
costh = 1 ,d0/2.d0/g_*(l .dO+g_*g_ - (1 ,dO-g_*g _)*(1 ,dO-g_*g _)/ &

(1 ,d0-g_+2.d0*g_*rl)/(l ,d0-g_+2.d0*g_*rl))
I

IF(ABS(costh).EQ.1,0)THEN
sinth = O.dO

ELSE
sinth = DSQRT(1 .OdO - costh*costh)

END IF
l

! 2. find the component of Vf which is parallel to Vi
i (ie scale to costh and vf/vi)

vxp=vx*costh
vyp=vy*costh
vzp=vz*costh

I 3. Define a random vector in xyz space
!

200 rl = randti(ls, rls)
al = al + DBLE(rl)
callsl = callsl + 1 .OdO
rcosth=(1.d0-2.d0*rl)
rsinth=SQRT(l .dO-rcosth*rcosth)

47

rl = randti(ms, rms)
am = am + DBLE(rl)
callsm = callsm + 1 .OdO
rl =6.283185308d0*rl
rx=rsinth*COS(rl)
ry=rsinth*SIN(rl)
rz=rcosth

4. find the components of the random vector that is parallel to Vi

c=(vx*rx+vy*ry+vz*rz)/5.0625dl 6
rxp=vx*c
ryp=vy*c
rzp=vz*c

I
I 5. find the components of the random vector that is orthogonal to Vi
I

rxo=rx-rxp
ryo=ry-ryp
rzo=rz-rzp
c=SQRT(rxo*rxo+ryo*ryo+rzo*rzo)
IF(c.LT.l.e-5)GOTO200

I
! 6. Scale to get components of Vf orthog to Vinit
!

c=2.25d8*sinth/c
vxo=rxo*c
vyo=ryo*c
vzo=rzo*c

I
! 7. Add perp and orthog components for final components
I
I for debugging comment out the three lines below... no scattering

vx=(vxo+vxp)
vy=(vyo+vyp)
vz=(vzo+vzp)
v=SQRT(vx*vx+vy*vy+vz*vz)

I
RETURN
END

I
| ***

I
SUBROUTINE TRACE_WATER

I
! This routine traces the motion of the photons through the
I water
I photons are traced in r,z,t about x = plane*sin(scan_angle), y = 0
! note: this really only deals with the 'in water' motion of the
I photons TRACE_PLANE deals with the special case of the photons at
I z=plane
I
I modules used

USE phase
USE monitors
USE boxes
USE extrema
IMPLICIT NONE
INTEGER(4) ir, iz, it_water

48

I working intermediates
REAL(8) r, xjnt

!
i ******************* \A/niTp IMTO APPAV^ **********************

!
xjnt = x - x_center
r = SQRT(x_int*x_int + y*y)
lr = INT(r)+l
IF(ir.gt.ir_rzt)THEN

ir = ir_rzt
xr_hot = xr_hot + 1.0

END IF
! note boxing of iz includes abs(z)... wave action will blur!

iz = INT(ABS(z))+l
IF(iz.gt.jz_rzt)THEN

iz = jz_rzt
WRITEC*)1 ALERT: iz = 50'

END IF
I
I NOTE: THIS MEANS THAT AT Z = 0 IT.WATER = 1 ... MAY NEED SOME THOUGHT
I

it_water = it - it_entry + 1
IF(it_water.gt.kt_rzt)THEN

it_water = kt_rzt
xtw_hot = xtw_hot + 1.0

END IF
box_rzt(ir, iz, it_water) = box_rzt(ir, iz, it_water) + 1
IF(t.lt.t_max(1)) t_max(l)=t
IF(t.gt.t_max(2)) t_max(2)=t
IF(r.gt.r_max(l)) r_max(1)=r
RETURN
END

t ***

I
SUBROUTINE OUTPUT

I This routine outputs arrays of information gathered in trace
! to named files
I Also updates information files and save the random number info
I
I modules used

USE files
USE monitors
USE extreme
USE beam_par
USE water_par
USE bottom_par
USE out_par
USE ran_par
USE boxes

I USE portlib
IMPLICIT NONE

I WRITE loop indices
INTEGER(4) i

I as in main
REAL(4) tarray(2)

I as in main
EXTERNAL ETIME
REAL(4) ETIME

49

REAL(4) cpu
I as in main

CHARACTERS) tbuf
! fail safe handlers

INTEGER(2)ifaill,ifail2
!

CALLtime(tbuf)
cpu = ETIME(tarray)
WRITE(*,*)'Writing to files'
WRITE(Y)m_photons,' photons in',cpu/60.,'CPU (min)@ ',tbuf

CALL write_boxed

OPEN(UNIT = 10, FILE = finfo, STATUS = 'unknown')
I for PC based program
! OPEN(UNIT= 10,FILE='otest.txt',status='unknown')

WRITE(1 (^'Calculation at:'
WRITE(10,*)REAL(plane),' m PLANE HEIGHT'
WRITE(10,*)REAL(laser_width)*l .e9,' ns LASER WIDTH'
WRITE(10,*)REAL(scan_angle)*180./3.14159265359,' degrees SCAN ANGLE'
WRITE(10,*)REAL(spot)*2.,' m SPOT DIAMETER'
WRITE(10,*)REAL(depth),' m BOTTOM DEPTH'
WRITE(10,*)REAL(bott_reflect)*100.,' % BOTTOM REFLECTANCE'
WRITE(10,*)"
WRITE(10,*)'ABSORPTION COEFF :', a_out
WRITE(10/)'H2O SCATTERING COEFF:', w_out
WRITE(10,*)'H2O AVERAGE COSINE :', gw_out
WRITE(10,*)'SUS SCATTERING COEFF:', s_Out
WRITE(10,*)'SUS AVERAGE COSINE :', gs_out
WRITE(10,*)' Total Attenuation = ', REAL(atten_coeff),' /meter'
WRITEfJO/)' Mean Free Time = ', 1 .e9*REAL(time_mean),' ns'
WRITE(10,*)"
WRITE(10,*)m_photons,' photons in',cpu/60.,'CPU (min) @ ', tbuf
WRITE(10,*)"
WRITE(10,*)'ln this simulation there were:'
WRITE(10,*)'ln',REAL(xabsorb),' Absorption Events'
WRITE(10,*)'ln',REAL(xwater),' Scattering Events from Water'
WRITE(10,*)'ln',REAL(xscatt)/ Scattering Events from Suspension'
WRITE(10,*)'ln',REAL(xtotal),' Total Collisions'

!
WRITE(10,*)' Maximum r extent in water:', r_max(l),' (m)'
WRITE(10,*)' Maximum x extent at Plane:', r_max(2),' (m)'
WRITE(10,*)' Maximum y extent at Plane:', r_max(3),' (m)'
WRITE(10,*)' Minimum temporal extent in water:', t_max(l),' (s)'
WRITE(10,*)' Maximum temporal extent in water:', t_max(2),' (s)'
WRITE(10,*)' Calculated minimum ToF to plane :', REAL(plane_mint),' (s)'
WRITE(10,*)' Minimum temporal extent at Plane:', t_max(3),' (s)'
WRITE(10,*)' Maximum temporal extent at Plane:', t_max(4),' (s)'
IF(xr_hot.ne.0.dO)THEN

WRITE(10,*)' ', REAL(xr_hot),' Too Hot Radial Boxes in Water'
END IF
IF(xx_hot.ne.0.dO)THEN

WRITE(10,*)' ', REAL(xx_hot),' Too Hot X Boxes at Plane'
END IF
IF(xy_hot.ne.0.dO)THEN

WRITE(10,7 ', REAL(xy_hot),' Too Hot Y Boxes Plane'
END IF
IF(xtp_hot.ne.0.dO)THEN

WRITE(10,7 ',REAL(xtp_hot),' Too Hot Temporal Boxes at Plane'
END IF

50

IF(xtw_hot.ne.0.dO)THEN
WRITE(10,7 ',REAL(xtw_hot),' Too Hot Temporal Boxes in Water'

END IF
!

WRITEOO, *)'PLANE HEIGHT OUTPUT IN ', fplane
WRITE(10,*) ix_plane, jy_plane, kt_plane
WRITE(10.*)'RZT OUTPUT IN ', frzt
WRITEOO,*) ir_rzt, jz_rzt, kt_rzt
CLOSE(IO)
OPEN(UNIT = 10, FILE = frun , STATUS = 'unknown')

! for PC based program
! OPEN(UNIT= 10,FILE='rtest.txt',status='unknown')

WRITE(10, *)m_photons, n_total, n_output
WRITE(10,*)plane_mint, waterjnint
WRITEOO, *)plane, depth, spot
WRITE(10,*)atten_coeff, time_mean
WRITEOO, *)a_coeff, w_coeff, s_coeff
WRITEOO, *)g_water, g_scatt
WRITEOO, *)bott_reflect
WRITEO0,*)is,js-ks,ls,ms
IF(callsi.eq.O.)callsi = 1.0
IF(callsj.eq.0.)callsj = 1.0
IF(callsk.eq.0.)callsk = 1.0
IF(callsl.eq.0.)callsl = 1.0
IF(callsm.eq.O.)callsm = 1.0
WRITE(10,*)ai/callsi, aj/callsj, ak/callsk
WRITE00,*)al/callsl, am/callsm
WRITEOO,*)callsi, callsj, callsk, callsl, callsm
WRITE(10,50)finfo, fplane, frzt
WRITEOO,*) ix_plane, jy_plane, kt_plane
WRITEOO,*) ir_rzt, jz_rzt, kt_rzt

50 FORMAT(5(lx,A40,/))
CLOSE(IO)

11 OPEN(UNIT=15,FILE='seeds.dat',STATUS='unknown',err=1011)
WRITE(15,*)is,js, ks. Is, ms
CLOSE05)

12 OPEN(UNIT =15, FILE = 'ris607.dat', &
FORM = 'UNFORMATTED', STATUS = 'unknown', err =1021)
DO i = 1 , 607

WRITE(15)ris(i)
END DO
CLOSE(15)
OPEN(UNIT = 15 , FILE = 'rjs607.dat', &

FORM = 'UNFORMATTED', STATUS = 'unknown', orr =1021)
DO i = 1 , 607

WRITE(15)rjs(i)
END DO
CLOSE05)
OPENCJNIT =15, FILE = 'rks607.dat', &

FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021)
DO i = 1 , 607

WRITE(15)rks(i)
END DO
CLOSE05)
OPEN(UNIT = 15 , FILE = Tls607 .dat', &

FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021)
DO i = 1 , 607

WRITE(15)rls(i)
END DO
CLOSE(15)

51

OPEN(UNIT = 15, FILE = 'rms607.dat', &
FORM = 'UNFORMATTED1, STATUS = 'unknown', err = 1021)

DO i = 1 , 607
WRITE(15)rms(i)

END DO
CLOSE(15)
cpu = ETIME(tarray)
CALLtime(tbuf)
WRITEf ,*)'Written Files :',cpu/60.,'CPU (min) @ ', &

tbuf
GOTO 2000

I *«*.**......*.** Error on network OPEN traps *******************
1011 WRITE(V)'Error opening seeds.dat'

CALLSLEEP(l)
ifaill = ifaill + 1
IFOfaill ,gt.50)GOTO 2000
GOTO 11

1021 WR!TE(V)'Error opening r607.dat'
CALLSLEEP(l)
ifail2 = ifail2 + 1
IF(ifail2.gt.50)GOTO 2000
GOTO 12

2000 RETURN
END

I
I **

I
REAL(4) FUNCTION RANDT(J,R)

I This FORTRAN-callable function returns a pseudo-random REAL *4
I number uniformly distributed over the exclusive interval (0,1).
I Coded in December, 1982 by
I W A Alford,

School Computer Unit,
Research School of Physical Sciences,
Australian National University,

I Canberra, ACT
I
I Modified April 1989 (MJB) to remove possibility of generation of 0.0
I and to retain the seeding between runs
Mainly cosmetic modification July 1996 (MJB) for f90 compatibility

The FORTRAN call to the REAL M function RANDT is of the form:

y = RANDT (j)
I
I The coding is based on the following paper:
!
! TOOTILL J.P., ROBINSON W.D. and EAGLE J., 1973. %An asymptotically
! random Tausworthe sequence.' J.A.C.M. 20(3), 469-481.
I

In the abstract to this paper they make the following statement.

"An asymptotically random 23-bit number sequence of astronomic period
607

2 -1 is presented. An initialisation program is required to provide
607 starting values, after which the sequence can be generated from
a three-term recurrence of the Fibonacci type. In addition to
possessing the theoretically demonstrable randomness properties
associated with Tausworthe sequences, the sequence possesses equi-
dlstribution and multi-dimensional uniformity properties vastly in

52

! excess of anything that has been shown for conventional congruent-
I tally generated sequences.. The claimed randomness properties do not
I necessarily extend to subsequences, though it is not yet known which
! particular subsequences are at fault. Accordingly, the sequence is
! at present suggested only for simulations with no fixed dimensional-
! Ity requirements.'
!
I Some statistical tests (frequency, serial, auto-correlation, gap and
! runs tests) on the output from this coding engender confidence in
! these assertions and show that this pseudo-random number generator is
I better than a generalised Fibonacci sequence type generator coded by
I R Brent in use at the Australian National University. In terms of
! speed on average this generator is comparable to the linear
! congruential and generalised Fibonacci sequence type generators.
!
I The initialisation of array R comes from subroutine INIT23 in the
! above paper. The statistical properties of the output from this
I coding is highly dependent upon the initial set of 19 arbitrary
I 32-bit integers used in subroutine INIT23. In this case they were
I derived from a generalised Fibonacci sequence type generator with lag
! 127 referred to above and then subroutine RECUR in the above paper
! was called once again because it was observed that the first 607
! output numbers were statistically poor but everything thereafter was
I acceptable. Several other sets of initial 19 arbitrary 32-bit
! integers were tried but in terms of the statistical properties of the
I output sequences this set was the best found. There may be even
I better sets of initial 19 arbitrary 32-bit integers (or 38 arbitrary
I 16-bit integers for subroutine INIT16). This critical fact was not
I mentioned in the above paper and suggested good sets of initial
I arbitrary integers would have been appreciated in the above paper
I (Initial attempts at finding these were disenchanting). The actual
I values in array R used here are those for the first 607 terms of the
I output (ie. after another call to subroutine RECUR).
!

IMPLICIT NONE
INTEGER(2) I, j
INTEGER(4) r(607)

! Should we generate the next 607 terms of the sequence?
5 J=J+1

IF O-le.607) GOTO 40
I

! Generate the next 607 terms of the sequence. The sequence is based on
!
I 607 334
I the primitive trinomial x +x +1 over GF(2).
!
10 DO20j=l,273

r(i)=r(i).XOR.r(i+334)
20 END DO

DO 30 i=274,607
r(i)=r(i).XOR.r(i-273)

30 END DO
I Re-initialise J

j=1
! Scale the result to (0,1) by dividing by 2**23 (as arbitrary 23-bit
! Integers are produced)
IX randt=REAL(R(J))/REAL(2**23)
I modification to get random numbers on the exclusive interval (0,1)
I 16777216 = 2**24
40 randt=REAL(r(j)+r(j)+l)/REAL(l 6777216)

53

IX IF(randt.eq.0.0)GOTO 5
RETURN
END

I
I ***

!
REAL(4) FUNCTION RANDTI(j,r)

I This FORTRAN-callable function returns a pseudo-random REAL *4
I number uniformly distributed over the inclusive interval (0,1).
I description as above
I

INTEGER(2) I, j
INTEGER(4) r(607)

I Should we generate the next 607 terms of the sequence?
5 j =j +1

IF Q.le.607) GO TO 40
I
I Generate the next 607 terms of the sequence. The sequence is based on
I the
! 607 334
I primitive trinomial x +x+l overGF(2).
I
10 DO 20 i= 1,273

r(i)=r(i).XOR.r(i+334)
20 END DO

DO 30 i=274,607
r(i)=r(i).XOR.r(i-273)

30 END DO
I Re-initialise J

j=l
I Scale the result to (0,1) by dividing by 2**23 (as arbitrary 23-bit
I Integers are produced)
I 16777216 = 2**24
I 8388608 = 2**23
40 randti=REAL(r(j))/8388608

RETURN
END

Appendix 3

The program in this appendix is current as of 05-August-96.

Ievell.f90

SUBROUTINE LASER
I This routine determines at what value of time, t, the photon is
I Initiated by the laser, determines x and y a sea surface
I
! modules used

USE beam_par
USE phase
USE ran_par
USE boxes
IMPLICIT NONE

I increments to x, y due to laser width
REAL(8) dx, dy

! inclusive random number function
REAL(4) randti

I intermediate random var

54

REAL(4)rl
!

IF(laser_width.lt.l .d-1ö)THEN
! RETURN a delta t of 0.

Iaser_time = O.dO
ELSE

! throw a random fraction of the laser width for inclusion in laser
! 'air time'

rl = randti(ls, rls)
al = al + DBLE(rl)
callsl = callsl + 1 .OdO
laser_time = (rl - 0.5)*laser_width

! note that a positive value of laser_time, actually means that the
I photon is emitted 'early' Rt t = 0.

END IF
I
I Determine x and y coord for photon on surface at time of entry
! (NB: THIS ASSUMES Z =0 for the moment)
I Two components... y = 0 and x = z sin (scan_angle)
I

x = plane*SIN(scan_angle)
I ... x = x+dx y = y+dy from spot size

CALL spot_dev(dx,dy)
x = x + dx
y = dy

I
RETURN
END

!
1 ***

!
SUBROUTINE SPOT_DEV(dx,dy)

I This routine returns dx and dy, the increment/decrement to x and y
I due to the finite spot_zize of the Gaussian beam
I
! modules used

USE beam_par
USE ran_par
IMPLICIT NONE
REAL(4)rl,r2
REAL(8) dx, dy

! exclusive random number function
REAL(4) randt, randti

!
IF(spot.lt.0.001d0)THEN

dx = O.dO
dy = O.dO

ELSE
rl = randt(js, rjs)
aj = aj + DBLE(rl)
callsj = callsj + 1 .OdO
r2 = randti(ks, rks)
ak = ak + DBLE(rl)
callsk = callsk + 1 .OdO
dx = sigma*SQRT(-2.*LOG(rl))*COS(6.28318530718d0*r2)
dy = sigma*SQRT(-2.*LOG(rl))*SIN(6.28318530718d0*r2)

END IF
]

RETURN
END

55

A**

SUBROUTINE SURFACE_ENTRY
The photon is either reflected (Vz is inverted) and the program calls
to_plane for Poxing, or the photon is refracted into the water
according to Snell's law n_l*sin(thj) = n_2*sin(th_2), where n_l = 1
for air and n_2 = 1.333333 for sea water
Velocity components are assigned non-zero values for the first time
photon is 'traced'

modules used
USE phase
USE ran_par

! USE surface_par
USE Peam_par
USE sea_air
USE Poxes
USE slice
IMPLICIT NONE

! Fresnel Formulae components
REAL(4) r_para, r_perp

I reflected fraction
REAL(4) surf.reflect

! inclusive random numPer function
REAL(4) randti

! random intermediate
REAL(4) rl

I radius squared at z = 0 for the moment
REAL(8) rsq_zO

! distance from wave included surface to plane
REAL(8) dist

I local surface height
REAL(8) top_Pound

! functions
REAL(8) surface

!
I determine 'air' time for photon

rsq_zO = x*x + y*y
top_Pound = z + surfaceO
dist = SQRT(rsq_zO + (plane-top_Pound)*(plane-top_Pound))
t = dist/3.0d8 + laserjime

I photon enters the water Petween it and it + 1
! need to set it' to "previous slice' so that TCUT in main is set to
I next slice

it = INT(t/dt_slice)
it_entry = it

I Assign in air velocity vector for photon
Vz = (z-plane)/t
Vy = y/t
Vx = x/t

!
I Does the photon reflect from the surface?
I determine

costh = ABS(Vz)/3.d8
sinth_sq = 1.0- costh* costh
nj = 1.0
n_t = water_n
costhj = costh
costh_t = 1.0/water_n*SQRT(water_n_sq - sinth_sq)

56

I determine the fraction of the reflected flux
surf_reflect=0.25*(r_para0+r_perp0)*(r_para0+r_perp0)

! test surf „reflect against a random number
R1 = randti(ms, rms)
am = am + DBLE(rl)
callsm = callsm + 1 .OdO

I
IF(r1 .gt.surf_reflecf)THEN

I no: Snell's law gives V components in the water (log book 1 pg 37)
Vz = -2.25d8/water_n*SQRT(water_n_sq - sinth_sq)
Vy = Vy/water_n_sq
Vx = Vx/water_n_sq

I record initial position in water
CALL trace_water

ELSE
I yes: reverse Vz and go to plane of plane

Vz = -Vz
CALL to_plane

END IF
I

RETURN
END

I
I ***

!
SUBROUTINE SURFACE_EXIT(t_int)

I Note that this is re-entrant in principle... Snell's law is used.
I The photon is either reflected (Vz is inverted) and the program
I returns to WHERE, or the photon is refracted into the air
I Calls to_plane for boxing if exit
I Should not modify ph_finish
I
I modules used

USE phase
USE ran_par

I USE surface_par
USE beam_par
USE sea_air
IMPLICIT NONE

I fraction of t - to from WHERE required to take photon to surface
REAL(8) tjnt

! Intermediate variable for 1 /water_n_sq
REAL(8) tjnv

I Fresnel Formulae components
REAL(4) r_para, r_perp

I reflected fraction
REAL(4) surf_reflect

I inclusive random number function
REAL(4) randti

! random intermediate
REAL(4) rl

!
I Does the photon reflect from the surface?
I determine

costh = ABS(Vz)/2.25d8
sinth_sa = 1.0 - costh*costh
tjnv = 1 .dO/water_n_sq

I determine if theta > theta_critical => total internal reflection
IF(sinth_sq.LT.t_inv)THEN

I most common occurrence is reflection/refraction

57

nj = water_n
n_t = 1.0
costhj = costh
costh_t = water_n*SQRT(t_inv - sinth_sq)

! determine the fraction of the reflected flux
surf_reflect=0.25*(r_paraO+r_perpO)*C_paraO+r_perpO)

! test surfjeflect against a random numPer
rl = randti(ms, rms)
am = am + DBLE(rl)
callsm = callsm + 1 .OdO

ELSE
I use rl Pelow as 100% switch when theta is large enough for
! total internal reflection ... push to ELSE Pelow and reflect

rl =-2.0
END IF
IF(rl .gt.surf_reflect)THEN

I yes: Sneli's law gives V components in the air
Vz = 3.0d8*water_n*SQRT(t_inv - sinth_sq)
Vy = Vy*water_n_sq
Vx = Vx*water_n_sq

I time at surface exit is to + tjnt
t = to + tjnt

I go to plane
CALL to_plane

ELSE
I no: reverse Vz and go Pack to WHERE

Vz = -Vz
END IF

I
RETURN
END

I
I fr**

I
REAL(8) FUNCTION SURFACE

I Calculates the local surface topography
I should have the same sense as plane ... ie. waves have positive height
I troughs are negative
I at the present (14/07/96) no wave action
I

surface = O.OdO
I

RETURN
END

!
I fr**

!
REAL(8) FUNCTION BOTTOM

I Calculates the local surface topography
I at the present (14/07/96) flat Pottom

USE Pottom_par
Pottom = -depth

!
RETURN
END

I

I

SUBROUTINE WRITE_BOXED
I This routine writes out the Poxed information

58

! Made modular to ease the future move to run length limited or
I similar compression of data
I
! modules used

USE boxes
USE files
USE out_par
IMPLICIT NONE
INTEGER(4) i,j,k

!
I photons to date

OPEN(UNIT= 10,FILE=fplane,form='UNFORMATTED',status='unknown')
I for PC based program
! OPEN(UNIT=10,FILE=,ptest.binl,form=,UNFORMATTED,,status=lunknown')

DO i = 1, ix_plane
DOj= l,jy_plane

WRITE(10)(boxplane(i, j, k), k = 1, kt_plane)
END DO

END DO
CLOSE(IO)
OPEN(UNIT=15,FILE=frzt,form='UNFORMATTED',status=,unknown')

I for PC based program
I OPEN(UNIT= 15,FILE='wtest.bin,,form=,UNFORMAnED,,status=lunknown')

DO 20 i = 1 , ir_rzt
D0 15j=l,jz_rzt

WRITE(15)(box_rzt(i, j, k), k = 1. kt_rzt)
15 END DO
20 END DO

CLOSE(15)

RETURN
END

Appendix 4

The program in this appendix is current as of 05-August-96.

Ievel2.f90

SUBROUTINE TO_PLANE
! This routine solves the eguation to determine where the photon
I intercepts the plane of the plane boxes the photon there
I sets ,ph_finish. flag true
I z should have already been modified to include surface action at
I this point
I
I modules used

USE phjogic
USE phase
USE beam_par
IMPLICIT NONE
REAL(8) airjime

!
I determine time to reach plane height

airjime = (plane-z)/Vz
I determine x, y, z, t at plane

x = x + Vx*air_time
y = y + Vy*air_time
t = t + airjime
ph_finish = .true.

59

CALL trace_plane
!

RETURN
END

SUBROUTINE TRACE_PLANE
This routine traces the time history of the photons and the radial
extent at the height of the plane
Note Absolute x and y are used

modules used
USE phase
USE monitors
USE boxes
USE extrema
USE slice
IMPLICIT NONE
INTEGER(4) ix, iy, it_plane

******************* WRITE INTO ARRAYS **********************

ix = INT(ABS(x/10.dO)) + l
iy = INT(ABS(y/10.dO))+l
IF(ix.gt.25)THEN

ix = 25
xx_hot = xx_hot + 1

END IF
IF(iy.gt.2)THEN

iy = 2
xy_hot = xy_hot + 1

END IF
it_plane = INT((t-plane_mint)/dt_slice) + 1
IF(it_plane.gt.4000) THEN

itjDlane = 4000
xtp_hot = xtp_hot + 1.0

END IF
IF(it_plane.lt.l)THEN

write(*,*)' Error in time boxing at plane: t \t
write(V)' Calculated minimum ToF: planejnint', planejnint
write(Y)' it_plane:', it_plane

temp debug 030896
it_plane = 1

END IF
boxplane(ix,iy,it_plane) = boxplane(ix,iy,it_plane) + 1
IF(t.lt.t_max(3)) t_max(3)=t
IF(t.gt.t_max(4)) t_max(4)=t
IF(ABS(x).gt.r_max(2))r_max(2)=x
IF(ABS(y).gt.r_max(3))r_max(3)=y
RETURN
END

**

REAL(4) FUNCTION R_PARA()
Fresnel formula for reflection amplitude of component parallel
to incident polarisation

USE sea_air
IMPLICIT NONE

60

! Hecht and Zajac pg 74
r_para=ABS((n_t*costh_i-n_i*costh_t)/(n_t*costh_i+n_i*costh_t))

!
RETURN
END

I
I **

I
REAL(4) FUNCTION R_PERP0

! Fresnel formula for reflection amplitude of component perpendicular
I to incident polarisation

USE sea_air
IMPLICIT NONE

I Hecht and Zajac pg 74
r_perp = ABS((n_i*costhJ-n_t*costh_t)/(nJ*costhJ+n_t*costh_t))

!
RETURN
END

I
| **

I
REAL(4) FUNCTION T_PARA0

I Fresnel formula for transmission amplitude of component parallel
! to incident polarisation

USE sea_air
IMPLICIT NONE

I Hecht and Zajac pg 74
t_para = ABS(2.*nj*costh_i/(n_t*costh_i + n_i*costh_t))

I
RETURN
END

I
I **

I
REAL(4) FUNCTION T_PERP()

I Fresnel formula for transmission amplituPe of component perpendicular
! to incident polarisation

USE sea_air
IMPLICIT NONE

I Hecht and Zajac pg 74
t_perp = ABS(2.*nJ*costh_i/(nJ*costh_i + n_t*costh_t))

I
RETURN
END

Appendix 5

The program in this appendix is current as of 02-September-96.

960902p.f90

phoproc

Processes boxed data from photest series
Createa July 1996 for Pentium MJB
ported August 1996 to DECalpha MJB

Change log
240796 changed to output explicit histogram style x,y data

61

130896 created r,z,t data output for AVS
190896 changed in water r,z,t data to log representation

AVS only has 256 colours to represent the data
200896 Introduced time slicer for water data ...

I 210896 Changed r,z,t water data output to give ln(0) = 0
I 220896 Change both the water r,z,t and r,z at output to
I give data s.t. z = 0 is at the top!
I 020996 19 boxes in diameter attempt in In(water)
!

I modules used
USE boxes
USE files
USE extrema
USE slice
IMPLICIT NONE

I function case integer
INTEGER(2) iqu

I number of time slices, slice index
INTEGER(4) nslice, i_sl

! main program bits and pieces
! Array for x and y summed ToF at Plane

INTEGER(4) ToF(kt_plane)
I photons simulated and output at frequency

INTEGER(4) m_photons, njfotal, n_output
I loop indices

INTEGER(4) i,j,k
I non-zero element counter

REAL(4) non_zero
I x axis time variable

REAL(4) xjime
! ToF output file name

CHARACTER(40) fToF
I ASCII water data filename

CHARACTER(40) fwater
I timing

CHARACTER^) tbuf
CHARACTERS) dbuf

I
CALL date(dbuf)
CALLtime(tbuf)
WRITE(V)tbuf,' on ', dbuf

I
I Read in files as written

WRITECV)'*** ENTER THE FOLLOWING FILE INFORMATION ***'
WRITEC7ENTER RUN INFORMATION OUTPUT FILE NAME1

READ(\30)finfo
WRITE(V)finfo
WRITEC7ENTER BOXED x,y,t OUTPUT FILE NAME FOR PLANE HEIGHT'
READ(*,30)fplane
WRITE(V)f plane
WRITEC7ENTER BOXED r,z,t OUTPUT FILE NAME FOR WATER'
READ(*,30)frzt
WRITE(V)frzt
WRITE(*/)'ENTER RUN PARAMETER FILE NAME'
READ(*,30)frun
WRITE(V)frun

30 FORMAT(A40)
DOk= 1, kt_plane

ToF(k) = 0
END DO

62

!
! Read in data arrays
l

CALL READ_BOXED
I Manipulate
!

non_zero = 0.
DOk = l,kt_plane

DO i = 1, ixjDlane
DOj= 1, jy_plane

ToF(k) = Tof(k) + boxplane(i, j, k)
IF(boxplane(i, j, k).GT.0.)non_zero = non_zero+1.

END DO
END DO

END DO
write(V)The total number of elements in array BOXPLANE is ', &

REAL(kt_plane*ix_plane*jy_plane)
write(V)The number of non-zero elements in array BOXPLANE is ',&

non_zero
non_zero = 0.
DO i = 1 , ir_rzt

DOj= l,jz_rzt
DOk=1,kt_rzt

IF(box_rzt(i, j, k).GT.0.)non_zero = non_zero+l.
END DO

END DO
END DO
write(*,*)'The total number of elements in array BOX_RZT is ', &

REAL(ir_rzt*jz_rzt*kt_rzt)
write(V)'The number of non-zero elements in array BOX_RZT is', &

non_zero

Find minimum flight time in run parameter file
OPEN(UNIT = 10, FILE = frun , STATUS = 'unknown')
READ(10,*)m_photons, njotal, n_output
WRITE(V)m_photons,' of', njotal, &

' Photons simulated in run to be analysed'
READ(10,*)plane_mint
READ(10,*)plane, depth, spot
READ(10,*)a_coeff, w_coeff, s_coeff
READ(10,*)g_water, g_scatt
READ(10,*)bott_reflect
READ(10,*)is,js, ks, Is, ms
IF(callsi.eq.O.)callsi = 1.0
IF(callsj.eq.O.)callsj = 1.0
IF(callsk.eq.0.)callsk = 1.0
IF(callsl.eq.0.)callsl=1.0
IF(callsm.eq.0.)callsm = 1.0
READ(10,*)ai/callsi, aj/callsj, ak/callsk
READ(10,*)al/callsl, am/callsm
READ(10,*)callsi, callsj, callsk, callsl, callsm
READ(10,50)finfo, fplane, frzt

CLOSE(IO)
qu: DO

WRITE(V)''
WRITE(*,*)' What operation do you wish to perform?'
WRITEC*)' Write out ASCII ToF histogram at plane height? ... V
WRITE(V)' Write out ASCII ToF In(data) in water? ... 2'

63

WRITEC7 Write out ASCII R,Z data for given time(s)? ... 31

WRITEC*)' Quit from Case loop? ... 01

READ(Y)iqu
SELECT CASE (igu)
CASE(l)

WRITEC7ENTER PLANE TOF OUTPUT FILE NAME'
READ(\30)fToF
WRITE(*)fTbF
OPEN(UNIT= 10,FILE=fToF,status='unknown')
DOk= l,kt_plane

Calculate absolute time in nanoseconds for x axis
x_time = 1 ,e9*(plane_mint + REAL(k)*dt_slice)

write x, y histogram to file
WRITE(10,*)(x_time-REAL(l .e9*dt_slice)).'', ToF(k)
WRITE(10,*)x_time,'', ToF(k)

END DO
CLOSE(IO)

CASE (2)
WRITE(*/)'ENTER FILE NAME FOR ASCII WATER DATA OUTPUT1

READ(*,30)fwater
WRITEC *)fwater
OPEN(UNIT= 10,FILE=fwater,status='unknown')
DOi = ir_rzt, 1,-1

DOj = jz_rzt, 1 ,-1
DOk=l,kt_rzt

IF(box_rzt(i, j, k).LT.l)THEN
WRITE(10.*)'0.0'

ELSE
WRITE(10,*)LOG(REAL(box_rzt(i, j, k)))

END IF
END DO

END DO
END DO
DO i = 2, ir_rzt

DO j = jz_rzt ,1,-1
DOk=l,kt_rzt

IF(box_rzt(i, j, k).LT.l)THEN
WRITE(10,7 0.0'

ELSE
WRITE(10,*)LOG(REAL(box_rzt(i, j, k)))

END IF
END DO

END DO
END DO
CLOSE(IO)

CASE (3)
WRITE(*,*)'How many slices do you which to write out?'
READ(V)nslice
DO i si = 1, nslice

WRITE(*,*)'Enter time array index for R, Z slice number ',i_sl
READ(V)k
WRITEC7ENTER FILE NAME FOR ASCII R, Z SLICE DATA OUTPUT'
READ(*,30)fwater
WRITE(V)fwater
OPEN(UNIT= 10,FILE=fwater,status='unknown')
DO i = 1 , ir_rzt

DOj = l,jz_rzt
IF(box_rzt(i,j, k).LT.l)THEN

WRITE(10,7< -j, ' 1.0'
ELSE

64

WRITE(10.*)i, -j, REAL(box_rzt(i, j, k))
END IF

END DO
END DO
CLOSE(IO)

END DO
CASE (0)

EXIT qu
CASE DEFAULT

CYCLE qu
END SELECT

END DO qu
I

END
I

!
SUBROUTINE READ_BOXED

! This routine reads in the boxed information ... as WRITE BOXED above
I Made modular to ease the future move to run length limited or
I similar compression of data
I
I modules used

USE boxes
USE files
IMPLICIT NONE
INTEGER(4) i,j,k

I
I read photon data as written above

OPEN(UNIT= 1 aFILE=fplane,form=,UNFORMATTED,,status='unknown')
I OPEN(UNIT= 10,FILE='ptest.bin,,form=,UNFORMAnED,,status=lunknown')

DO i = 1, ix_plane
DOj= 1, jy_plane

READ(10)(boxplane(i, j, k), k = 1, kt_plane)
END DO

END DO
CLOSE(IO)

I OPEN(UNIT= 15,FILE=Vtest.bi^form='UNFORMATTED',status='unknown')
OPEN(UNIT=15,FILE=frzt/form='UNFORMAnED,,status='unknownl)
DO i = 1 , ir_rzt

DOj= l,jz_rzt
READ(15)(box_rzt(i, j, k). k = 1, kt_rzt)

END DO
END DO
CLOSE(15)

!
RETURN
END

65

DISTRIBUTION LIST

A MONTE-CARLO SIMULATION OF LIGHT PROPAGATION IN SEA WATER
Mike Brennan

AUSTRALIA

1. DEFENCE ORGANISATION

a. Task Sponsor
RAN Hydrographer
OIC LADS

b. S&T Program
Chief Defence Scientist]
FAS Science Policy \ shared copy
AS Science Corporate Management J
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Director General Science Policy Development
Director General Scientific Advisers and Trials/Scientific Adviser Policy and

Command (shared copy)
Navy Scientific Adviser
Scientific Adviser - Army (Doc Data Sheet and distribution list)
Air Force Scientific Adviser
Director Trials

Aeronautical and Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director

Chief, LSOD
Research Leader, Space & Surveillance Systems LSOD
Research Leader, Optoelectronics LSOD
Head, Systems Integration
Head, Image Processing & Propagation
Task Manager (NAV 95/024) Mr Ralph Abbot,
Author(s): Dr Mike Brennan (5 Copies)
Mr Dallas Lane LSOD
Mr Trevor Adams LSOD
Dr Derek Bertilone LSOD
Mr Martin O'Connor LSOD
Dr Brian Billard LTD
Dr Kim Brown EWD

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library DSTOS (2 copies)
Australian Archives

Library, MOD, Pyrmont (Doc Data sheet)

Forces Executive
Director General Force Development (Sea)
Director General Force Development (Land), (Doc Data Sheet)

d. Navy
SO (Science), Director of Naval Warfare, Maritime Headquarters Annex, Garden

Island, NSW 2000. (Doc Data Sheet)

e. Army
ABC A Office, G-l-34, Russell Offices, Canberra (4 copies)

f. Air Force
No compulsory distribution

g. S&I Program
Defence Intelligence Organisation
Library, Defence Signals Directorate (Doc Data Sheet only)

h. Acquisition and Logistics Program
No compulsory distribution

i. B&M Program (libraries)
OIC TRS, Defence Regional Library, Canberra
Officer in Charge, Document Exchange Centre (DEC), 1 copy

*US Defence Technical Information Centre, 2 copies
*UK Defence Research Information Center, 2 copies
"Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy

National Library of Australia, 1 copy

2. UNIVERSITIES AND COLLEGES

Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

Deakin University, Serials Section (M list), Deakin University Library
Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University
Prof John Thomas, School of Physics and Electronic Systems Eng., University of
South Australia.
Prof David Booth, Dept of Applied Physics, Victoria University of Technology.
Prof George Kattawar, Texas A&M University, USA

3. OTHER ORGANISATIONS

NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia

OUTSIDE AUSTRALIA

4. ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Science Abstracts
Documents Librarian, The Center for Research Libraries, US

5. INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (10 copies)

Total number of copies: 76

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

2. TITLE

A MONTE-CARLO SIMULATION OF LIGHT
PROPAGATION IN SEA WATER

1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document
Title
Abstract

(U)
(U)
(U)

4. AUTHOR(S)

Mike Brennan

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA Australia 5108

6a. DSTO NUMBER
DSTO-TR-0500

6b. AR NUMBER
AR-010-149

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
March 1997

8. FILE NUMBER
D9505-10-145

9. TASK NUMBER
NAV 95/024

10. TASK SPONSOR
RAN Hydrographer

11. NO. OF PAGES
65

12. NO. OF
REFERENCES
17

13. DOWNGRADING/DELIMITING INSTRUCTIONS

To be reviewed three years after date of publication

14. RELEASE AUTHORITY

Chief, Land Space and Optoelectronics Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEFT OF DEFENCE. CAMPBELL PARK OFFICES, CANBERRA ACT 2600
16. DELIBERATE ANNOUNCEMENT

No limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Monte Carlo uiethod, propagation, turbidity, scattering, laser bathymetry

19. ABSTRACT

The design and implementation of a suite of programs for Monte Carlo simulation of light propagation
in turbid media is described. The program has been tailored to simulate the propagation of the green
laser in the RAN Laser Airborne Depth Sounder (LADS) through turbid water. The paper describes the
Monte Carlo program in detail, particularly how the inherent multiple scattering problem is interpreted
for incorporation into a single scattering simulation. Assumptions made in the implementation of the
program are discussed. Results of some initial simulations are presented, together with data obtained
during a recent LADS sortie for comparison with the simulations. This paper forms part of the formal
documentation for the simulation suite.

Page classification: UNCLASSIFIED

