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ABSTRACT 

The design and implementation of a suite of programs for Monte Carlo simulation of 
light propagation in turbid media is described. The program has been tailored to 
simulate the propagation of the green laser in the RAN Laser Airborne Depth Sounder 
(LADS) through turbid water. The paper describes the Monte Carlo program in detail, 
particularly how the inherent multiple scattering problem is interpreted for 
incorporation into a single scattering simulation. Assumptions made in the 
implementation of the program are discussed. Results of some initial simulations are 
presented, together with data obtained during a recent LADS sortie for comparison 
with the simulations. This paper forms part of the formal documentation for the 
simulation suite. 
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A MONTE-CARLO SIMULATION OF LIGHT 
PROPAGATION IN SEA WATER 

Executive Summary (U) 

This is an interim report on Monte Carlo simulations of photon propagation in turbid 
water. Application of the method to simulating the performance of laser bathymetric 
systems (The Royal Australian Navy LADS system in particular) is considered in 
detail. Initial results suggest that the method qualitatively describes the so-called 
"depth bias" measured by such systems (the tendency of the laser hydrographic 
systems to record depths greater than the actual depth in turbid water). Future 
extensions to the method are proposed to quantify this bias, which will yield a better 
understanding of the factors affecting the measured depth bias and may suggest a 
method for improving the existing depth bias model for the RAN LADS system. 

The simulation described may be generalised to the study of a wide range of 
propagation problems in the opto-electronics area. 
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1.     INTRODUCTION 

The software described in this report has been written for Monte Carlo simulation of 
anisotropic transport of visible light in turbid sea water, including air-sea and sea- 
floor boundaries. The principal motivation for writing this software is to provide a 
simulation tool for studying the propagation of light from the typically green laser 
in laser bathymetric systems in turbid water. The aim is to construct a simulation 
with sufficient detail to study the parameters which effect the 'depth bias' (the result 
of an increase in optical path length due to scattering) experienced by laser 
bathymetric systems. By studying the propagation of the green laser beam through 
simulation, it is hoped that methods of reducing the uncertainty of the depth 
determinations of laser bathymetric systems can be identified. Monte Carlo 
techniques are preferred in this case for two main reasons. 

1. Monte Carlo techniques provide an effective treatment for the major physical 
boundary conditions imposed by 
• a laser pulse of variable spatio-temporal width, 
• a complex air-sea interface, inevitably involving wave action, 
• a desire to simulate a non-trivial sea-floor topography. 

2. The output from Monte Carlo simulations can be simply tailored to provide 
intuitive descriptions of phenomena, using probability distribution histograms 
for example. 

An attempt has been made to construct the code from discrete, function specific 
modules, with the intention that the program may be simply modified to simulate 
the widest possible variety of light scattering problems. Many Monte Carlo codes 
exist which simulate light transport in water [see for example - Joelson & Kattawar 
1996, Poole et al 1981, Gordon 1982, Kaijser 1990, Koerber 1996, Fernee 1995 and 
Groenhuis 1983]. However, the application specific nature of the previous codes has 
made the task of altering them difficult. Therefore, new code has been written. The 
operation of each module has been tested using benchmarks and documented. 
These tests are described below. Short of an analytic solution of the transport 
equations for a specific case, or another independent method, this approach is aimed 
at establishing the highest confidence in the output of the simulations. 

The type of Monte Carlo algorithm chosen for this study differs from most of the 
methods used in the papers cited above. Briefly, a 'simple' Monte Carlo algorithm 
has been chosen, over more sophisticated methods (so called semi-analytic codes), 
which bias the choice of photon paths which are followed in detail (forward 
scattering for example) to enhance the sampling of a particular piece of the sample 
space which is determined a-priori as 'interesting'. Scattering from water and 
suspended matter are treated separately - A variable beam attenuation coefficient 
and volume scattering function is included for each, together with a rate for 
absorption. Post collision velocity cosines of each "photon" in the simulation are 
determined on the basis of the shape of the Volume Scattering Function as described 
later in this work. Apart from this weighting, no other biasing of photon paths has 
been attempted. 

If successful, the results of this simulation will be used to guide an extensive 
experimental trials program, which will determine how an operational bathymetric 
system (The RAN Laser Airborne Depth Sounder - LADS) can be modified to best 
measure, and thus compensate for, errors and uncertainties introduced into depth 
soundings due to water turbidity. It is important that the simulation generate output 
with a clearly defined statistical merit to facilitate objective comparison of results 



from different input parameters, such as the density of suspended scatterers for 
example. A further justification of the 'simple' (or brute-force) approach can be 
made in the case of laser-bathymetry, where, while the 'merit' of the depth 
determination comes principally from photons which are highly forward scattered 
(supporting the use of semi-analytic methods), a significant and important feature of 
received signal comes from photons backscattered from water and suspended 
matter at depths shallower than the true bottom. Indeed, this contribution is 
enhanced in more turbid water and analysis of this feature in future laser- 
bathymetric systems is likely to provide a method of extending the operational 
range to more turbid waters [Billard 1986] and is best studied using an algorithm 
similar to that presented here; one which does not bias the paths followed and one 
which can be analysed using naive statistical methods for determining merit. 

This paper details the elements of the simulation. In presenting the algorithms and 
code for the simulation as a technical report at a relatively early stage of 
development, the intention is to lay the foundation for informed discussion and 
criticism of this numerical interpretation of the physics of light propagation in turbid 
media and the interpretation of the LADS system in particular. The other function of 
this report is to act as formal documentation for the simulation software. This paper 
is the first in a series of reports documenting the details of the simulation and 
results. To achieve these goals, the paper begins with a functional description of the 
RAN LADS system, highlighting elements which need to be considered and solved 
by any successful simulation of these problems. Section two continues with a 
discussion of the major assumptions implicit in the interpretation of the multiple 
scattering problem presented in this paper and a brief description of the code. In 
section three, the implementation of each module in the main program is examined 
as a guide to the program structure. A description of the processing code and output 
is given. In section four, initial results are presented, primarily as a benchmark for 
future reference. They do, however, reveal some interesting information concerning 
measurement of depth. Since initial debugging began, several important 
modifications to the program (technical and scientific) have been identified. These 
are discussed in section five. No simulation is complete without data against which 
it can be tested. LADS data, with the automatic gain controller disengaged, was 
obtained during a sortie over the Sahul Banks in the Timor Sea, west of Darwin, for 
qualitative comparison with the simulations. Examples of this data are given and 
discussed in section six. The version of the simulation code presented here is not a 
'complete' simulation. The code presented here assumes a receiver with an infinite 
aperture and infinite field-of-view, FOV. However, it has been written with a view to 
including variable apertures and finite FOVs, and to extending the simulation to 
include representations of the polarisation state of the laser, sea-surface wave action 
and non-trivial sea-floor topologies. The way in which the implementation of each of 
these is planned is detailed in section seven. In section eight, a brief guide to the 
simulation input is given. This is followed by acknowledgments, references and 
program listings. 

2.     FUNCTIONAL DESCRIPTIONS 

2.1     The Laser Airborne Depth Sounder (LADS) 

The simulation described in this document has been specially tailored to provide a 
numerical analogue of the RAN Laser Airborne Depth Sounder system. The 
interpretation is based around the following functional description of the LADS 



system. Each of the words and phrases in italics below is interpreted in the 
simulation, as discussed in the remainder of the document. 

The LADS system is based around a pulsed laser, which is scanned about the nadir 
position, parallel to the aircraft wings, flown at 500 m, producing a raster with 3 m 
radius spots at the sea surface, with 10 m spacing. Light from the beam either reflects 
back to the aircraft, or enters the water and propagates through the water to the sea floor. 
The intensity of the beam is attenuated, due to absorption and scattering from the water 
and scattering from particles suspended in the water. 

The time difference in the recorded Time-of-Flight of light returned to a receiver in the 
aircraft by reflection from the sea surface and the sea floor, yields a measure of the 
depth. The received Time-of-Flight signal also contains contributions from light 
which is backscattered at approximately 180 degrees, following scattering from water, 
or suspended matter, which may be used to estimate the turbidity of the water 
sample in the optical path. 

2.2     The Simulation 

Radiation transport through a liquid at visible wavelengths, is a multiple scattering 
problem. That is, the radiation interacts with the light as a light field, across a 
distributed front, as it propagates through the liquid. In addition, there is interaction 
of the radiation with discrete, suspended particles to be considered. In contrast, 
Monte Carlo techniques of the type described here are, strictly speaking, only 
applicable to the (efficient) simulation of a series of local, binary encounters - ie. 
between two 'particles'. Thus, in order to simulate the transport problems associated 
with LADS, it is important to note the following points as approximations: 

Optical properties of a medium, such as refraction, transmission, reflection, 
polarisation and absorption of light, are descriptions of aspects of the macroscopic 
interaction of the light field with the bulk medium through which it is travelling, 
rather than descriptions of the various microscopic photon-molecule interactions. All 
are consequences of multiple scattering across a distributed wave front. However, 
refraction, transmission, reflection, polarisation and photon absorption have well 
defined interpretations in Ray Optics, through Snell's Law, the Fresnel formulae and 
the like. In this simulation therefore, the light field is represented by 'rays' which 
have directions chosen using pseudo-random numbers, weighted by probability 
distributions for the relevant processes. The manner in which the ray vectors are 
chosen is described in the remainder of this document. For simplicity, these 
individual rays are referred to as 'photons' in the remainder of this document. 

In short then, an initial ray is chosen at random with weighting determined by the 
profile of the beam leaving the source. Ray optics describes the propagation between 
scattering events. When scattering occurs, again according to a weighted probability, 
wave optics is used to describe the angular distribution of the scattered field. The 
simulated photon maintains its identity during scattering, but has new direction 
cosines, chosen at random with weighting determined by the angular distribution of 
the scattered field. 

Note that a 'Monte Carlo photon' is not precisely a classical ray because wave optics 
is used to describe scattering and the photon maintains its identity during 
scattering. However, in contrast to the electron transport code on which this 
simulation is based [Brennan, 1991], no explicit reference is made to the microscopic 
description (photon - molecule scattering cross sections) of the interaction. 



To minimise arithmetic in the simulation, all calculations are in SI units, conversions 
to and from other units are made either at the start of the simulation, or in the post 
processing software. The speed of the photons in air is set to be the group velocity of 
the light field in air: 3xl08 ms *. Similarly, the speed of the photons in water is set to 
be 2.25xl08 ms1, where the ratio of the two velocities is the assumed non-complex 
index of refraction for the sea water. The following Cartesian geometry is assumed: 
z = 0 at mean sea level. The altitude of the photon source (the aircraft) is positive. 
The source travels with the plane, notionally in the positive y direction, although it 
is fixed during the simulation. Photons propagate initially from the source at z = h in 
the negative z direction, at some angle to the vertical, towards the sea floor at some 
user defined depth, d, (currently fixed at 50 m) on the negative z axis (Figure 1). 
Their positions in r (the radius wrt to an origin at the nadir position defined as in 
Figure 1), z and t (time) are recorded periodically. Those which are reflected, or back 
scattered, propagate back towards the altitude of the source. The positions of the 
photons in x, y and t are recorded at the point where they intersect the plane 
containing the source, which is parallel to the mean sea surface. The beam scanning 
function of LADS is simulated by setting the initial photon velocities at a user 
specified angle, 6, in the positive x direction with respect to the nadir position. 
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Figure 1. Schematic representation of the LADS system, showing the coordinate system used in the 

simulation. The laser source and receiver are co-locatod at the bottom of the aircraft. In the simulation, 

the laser beam is assumed to be 'scanned-out' away for nadir, at a variable angle 9, in the positive x 

direction only. 

The fundamental output of the simulation is histograms describing the probability 
distributions for spatially resolved Time-of-Flight (ToF) spectra at the receiver, and 
in the water. For efficient simulation of the ToF spectra it is necessary to convert the 
characteristic attenuation coefficients from a spatial measurement, expressed in units 
of nv1, to the time domain. The rate at which the laser beam is attenuated is 
characterised in the simulation by a 'mean collision frequency', set in the following 
manner: 

We note that for processes in a scattering medium, the z dependence of the beam 
intensity, /, due to process, p, is given by 

I(z)= /0exp( - p,z), 



where pz is the appropriate rate coefficient; the inverse of the mean free path, 
expressed in m1. In this paper, by analogy with statistical mechanics, we relate the 
mean free path, l/pz, and the mean free time for the same process, pwr through the 
average velocity, in this case Vgroup, 

P MFT 

This relationship allows us to base the simulation naturally around the basic unit of 
a mean free time, for the purpose of tracking the photons and interrogating their 
positions in phase space. 

In addition to refraction at the sea-air interface, the simulation considers three 
possible interactions between the light and the sea-water; 

• Absorption: The mean free time for the absorption process is determined from 
the absorption coefficient as described by the equations above. When this process 
is 'chosen', the photon is 'lost' from the simulation and a new photon initiated. 

• Scattering from water: The mean free time for this process is set in the same 
manner. In the initial coding, a Henyey - Greenstein function with a user defined 
value for the angular form, g, [as in Bergougnoux et al 1996] is used to determine 
the post-collision velocity cosines. The Henyey - Greenstein function has been 
used previously to describe scattering from high forward scattering systems such 
as clouds [Bergougnoux et al 1996] and has been adopted in this simulation so 
that the dependence of the simulation on variations in the shape of the volume 
scattering function may be assessed. At present, Rayleigh scattering from pure 
water is also approximated (poorly) by this function. Future representation of the 
interaction with water in terms of Rayleigh scattering is discussed later. 

• Scattering from suspended matter: In this simulation, a single component 
suspended scatterer is assumed. A single mean free time and anisotropy are 
used. Again a Henyey - Greenstein function is used to represent the distribution 
of the anisotropy. 

That is, the effective density and properties of the water as an absorber and scatterer 
are set separately, as is the density of the scatterer. The sum of the mean free times 
for the above processes sets the overall mean free time for the simulation. Individual 
treatment of the scattering from separate components of the medium represents a 
relatively novel approach, in that the literature suggests that most contemporary 
codes use a single volume scattering function to represent the scattering from all 
processes in water. This novel approach allows us to simply vary the 'turbidity' of 
the simulation by increasing the attenuation coefficient for the suspended matter, 
thereby decreasing the mean free time for collisions with suspended particles. 
Further details are given in the next section. 

The temporal width of the laser beam is variable, characterised as a temporal 'flat 
top' with a user defined width. The beam divergence is a user defined variable. 
Initial photon velocity cosines are set by observing that the spot size is the point at 
which the beam intensity at the sea surface has been reduced by a factor e1. The 
spatial distribution is modelled by a Gaussian, characterised by a user defined spot 
radius. 

The sea state is initially modelled as flat. Snell's Law is used to determine the 
components of the photon velocities on entry and exit of the photons from the sea 
surface. Photons are reflected from, and refracted into, the sea surface at entry and 
exit using Fresnel's Equations. Reflection from the sea surface is considered to be 
specular. The bottom is also modelled as flat. Photons are reflected from the bottom 



according to a user defined albedo. Photons reflected from the bottom have a 
Lambertian distribution. Photon positions are recorded in x, y and t boxes at the 
source altitude and in r, z and t in the bulk of the water. Thus histograms are 
formed, representing the photon distribution. 

3.     STRUCTURE OF THE SIMULATION 

The most important but obvious, tenet of any Monte Carlo simulation is to design 
code which performs the minimum number of calculations per photon in the 
simulation, allowing the maximum number of photons to be simulated in a given 
time, thereby minimising the uncertainty in the results of a simulation. Following 
this principle, two programs have been developed in the initial release of the 
simulation. The first, described in section 3.2, is designed to perform the simulation 
efficiently, storing intermediate results as histograms, in arrays and periodically 
writing to a disk file. The second, described in section 3.3, reads and processes the 
results of the simulation. Splitting the simulation into discrete programs serves two 
purposes. First, by creating a program focussed on conducting the simulation and 
determining basic data for output and subsequently conducting any analysis of the 
data in another program, the efficiency of the simulation is increased, due to the 
absence of computational overhead associated with the analysis. Secondly, if the 
data storage from a single run can be optimised, while remaining generic to the 
simulation (i.e. unprocessed), the data can be analysed later for details which may 
not be immediately apparent during the first analysis. Storing of generic data also 
allows for a degree of parallelism in the simulation, in that uniquely 'seeded' runs 
for the same parameter set may be conducted on several machines and the output 
simply combined before further analysis. 

3.1 Choice of Programming Language 

Fortran90 was chosen as the development language for two significant reasons. 
Firstly, it allowed simple migration of Fortran77 code, previously developed for 
electron transport simulations by the author [Brennan 1991]. Secondly, Fortran90 
has been developed to take advantage of, and extend, many of the sophisticated C 
and C++ functions for handling arrays, the principal output of this type of 
simulation. Microsoft Fortran Powerstation 'Development Studio', version 4, was 
used as a development environment under Windows95. DEC fortran90 and dbx for 
the DECalpha, running OSF v3.2 were used in the workstation environment. The 
DECalpha is the target platform. Critical sections of the calculation, where round-off 
cannot be tolerated, are performed in double precision. Elsewhere, single and 
integer precision are used to enhance performance. 

3.2 The Simulation Code 

In this section, source code file names appear in italics, program subroutines and 
functions are BOLD. Fortran90 elements are in CAPS. The simulation code is compiled 
from modules contained in four source files. The discrete source code structure was 
adopted to aid editing and debugging in the Windows95 environment. The first file, 
modules.ßO, contains Fortran90 modules, which replace COMMON blocks in Fortran90 
as the preferred method of transporting data between program units. The second 
file, listed in appendix 2, contains the main program and the subroutines and 
functions called directly by the main program. A third file, levell.f90, contains 
subroutines and functions used by the subroutines which main calls. The hierarchy 
continues to levell.flO which contains routines called by units in levell.f90. The 



hierarchy is truncated at this point, so leveü.ßO also contains functions which are 
used by other units in level! flO. The implementation of important subroutines in the 
main file are discussed below. 

3.2.1   MAIN (main.f90) 

The main program begins by initialising five random seeds and initialising sensitive 
variables to a known state. Independent pseudo random sequences are used for 
determining the frequency of collision and the results of the collision, to ensure that 
there is no underlying correlation between a series of processes. The user is 
interrogated for input defining the parameters for the simulation - rate coefficients, 
laser beam properties and the like. Details of the input may be found in section 8.1.1 
The program then calls DEP_VAR, which takes the user input, performs unit 
conversions and calculates mean free times as described in section 2 and determines 
relative weights for the scattering processes, which are reported to the screen. In the 
subroutine, DEP.VAR, the minimum time required for photons in the simulation to 
reach the water surface and to return to the source height is calculated. This value, 
dependent on source altitude, beam scan angle and the temporal width of the laser 
is used to minimise the storage requirements for the simulation as described later. 
The program proper then begins. 

The primary control loop, executed by the main program, performs a test 'WHILE' the 
number of simulated photons is smaller than the total desired in the simulation. 
sim: DO WHILE (m_photons.LT.n_total) 

Because the simulations typically run for many days, and some intermediate 
monitoring is desired, OUTPUT routines are called regularly and an output counter 
reset. 

IF(i_output.EQ.n_output)THEN 
CALL OUTPUT 
i_output=0 

! reset - incremented in BEGIN 
END IF 

On the first pass, the program falls through this conditional test and BEGINS a new 
photon. The BEGIN routine, described in detail later, ultimately returns the initial 
phase space information for the photons at entry to the water, and increments 
counters appropriately. 

CALL BEGIN 

Since BEGIN passes the photon from the source to the point of entry to the water 
surface, there is a likelihood that the photon will be lost from the simulation due to 
surface reflection. In this case the program CYCLES control to the primary loop to 
begin another photon. While this is roughly 2% of all simulated photons, the 
computation cost is much smaller than this because it occurs at the start of a photon 
path, which has consumed the minimum computational effort. 

IF(ph_finish)THEN 
CYCLE sim 

ELSE 

Otherwise, the simulation of the photon path continues and a time variable tO, used 
in the traditional sense in the evaluation of Newton's equations of motion, is set to 
the elapsed time for the photon to reach the water from the source. 

tO = t 
END IF 

Control then passes to the secondary loop, which determines the time to the next 
collision for the photon under consideration, according to the previously calculated 
total mean free time and monitors and updates the phase space coordinates of the 



photons. Control is held by this loop until one of the subroutines reports the photon 
'lost', either to absorption (water and bottom), or to the altitude of the source, at 
which point the program CYCLES to the main loop. 
between: DO ! between collision, until 'lost' loop 

The rate at which the intensity of a beam of photons is attenuated with respect to 
time, due to collisions with particles in a medium of uniform density is governed by 
the rate equation: 

dl_ = l__ 

dt x MFT 

where TMFT is the mean free time between collisions. The solution is an exponential 
function, as stated in section 2. The time interval between any two collisions can be 
simulated using a uniform pseudo-random deviate, by finding the appropriate 
function which maps the uniform probability of the pseudo-random generator onto 
the probability of the function in question. In this case, for an exponential 
distribution, characterised by a rate TMFT, the mapping function is a natural 
logarithm weighted by TMFT: 

At = -tMFTin(R), 

where R is a uniform pseudo-random number, R, drawn from the exclusive interval 
0.0< R< 1.0. 

delta_t = - time_mean*DLOG(DBLE(R)) 

The time of the collision is put on an absolute scale with respect to the center of the 
laser pulse, 

tck = t + delta_t 

To monitor the temporal motion of the photon beam as it collides, reflects and 
subsequently diffuses, the phase positions of the photons are updated between 
collisions and recorded at fixed intervals. To achieve this, control is passed to a third 
loop between collisions, which compares the time of the next collision with the time 
of the next interrogation point or update slice. 
slices:    DO ! trace loop 
! time to next interrogation slice 

tcut = DBLE(it + l)*dt_slice 

In the present simulation, the interrogation interval has been arbitrarily fixed at 
0.5 ns, which is significantly smaller than the temporal resolution of the LADS 
system (2 ns). In a time interval of 0.5 ns, the photon propagates 0.11 m in the 
direction given by the velocity components. In a 'worst' case ( V = Vz) this 
represents an intrinsic minimum depth resolution of 0.05 m. That is, the simulation 
is completely insensitive to variations in parameters which change the total 'in- 
water' path by less than 0.11 meters. However, the LADS data analysis algorithms, 
which will be ultimately used analyse the simulated 'return waveforms' to 
determine 'simulated' depth, use a 50% constant fraction discrimination technique 
to derive the depth. This method has an intrinsic dependence on the 'timing- 
granularity' or the recorded signal. At some point, this dependence should be 
investigated, by varying the sampling interval. 

There are three possible outcomes from the comparison against the fixed interval: 
IF(tck.LT.tcut)THEN 

The photon crosses no interrogation point before collision, in which case the photon 
proceeds immediately to collision, modifying the time variable, t, to equal the time 
at collision: 

t = tck 



Using this time, and the time, to, from the last phase space update, Newtonian 
physics gives the current x, y, z coordinates 

CALL WHERE 

WHERE is also the routine in which bottom and surface reflections are handled. It is 
possible to 'lose' a photon from the simulation at this point, .ie. before collision, so 
provision must be made to cycle out to the primary loop in this event. 

IF(ph_finish)THEN 
CYCLE sim ! next photon 

END IF 

If the photon has survived to this point, the routine COLLIDE is called, in which the 
collision outcomes are determined. That is, the photon is either absorbed, or 
scattered from either water, or the suspended scatterer. 

CALL COLLIDE 

If absorbed, then control must be returned to the main loop. 
IF(ph_finish)THEN 

CYCLE sim ! next photon 
END IF 

Otherwise, control returns to the secondary loop to determine a new time of 
collision. 

CYCLE between ! cycle to top of loop 

The second possible outcome from the test of the time of collision against the time of 
the next interrogation, is that the photon collides exactly at the fixed time when it is 
interrogated: 

ELSE IF(tck.EQ.tcut)THEN 

It is necessary to update counters and the time, before calling WHERE and 
subsequently COLLIDE 

1 update slice counter 
it = it + 1 
t = tcut 
CALL WHERE 
IF(ph_finish)THEN 

CYCLE sim ! next photon 
END IF 

Immediately before calling the collision subroutine, where the photon may be lost, 
the subroutine TRACE_WATER is called, in which the r and z coordinates of the photon 
at time t are added to the appropriate histogram. Note that it is correct to call 
TRACE_WATER after WHERE, not before, because WHERE really deals with the motion 
between two times, whereas the trace and subsequent collisions occur at the end of a 
given interval. 

CALL TRACE_WATER 
CALL COLLIDE 
IF(ph_finish)THEN 

CYCLE sim ! next photon 
END IF 
CYCLE between ! cycle to top of loop 

ELSE 

The third possibility is that the photon crosses at least one interrogation slice before 
colliding, in which case, the same procedure as for the previous possibility is 
invoked, but, no collision occurs and the simulation falls out to the base of this loop 
to check the time of collision against the next (new) interrogation time. 

it = it + 1 
t = tcut 
CALL WHERE 
IF(ph_finish)THEN 

CYCLE sim ! next photon 
END IF 



CALL TRACE_WATER 
END IF 

Note that in the simulation the interrogation interval of 0.5 ns is much smaller than 
typical mean free times between collisions, which are of the order of several 
nanoseconds at least. Thus, the third case is executed more often. While this 
ordering makes for easy reading, in future releases the order of the cases will be 
changed to 3, 1, 2 which will have an effect on the program execution, removing 
several conditional statement evaluations for the vast majority of collisions. 

This completes the controlling loops and all that remains for the main program is to 
complete a redundant final output to file and screen. 

3.2.2   Subroutine BEGIN (main.f90) 

This subroutine, called from the main control loop only, initiates a photon. Initially, 
the controlling counters are incremented, the timing counters reset and the phase 
space coordinates set to a defined state in air at mean sea-level. Provision has been 
made at this point to include surface action, by modifying z at surface entry, calling 
the function SURFACE, which returns zero in this implementation: 

z = z + SURFACEO 

The distribution in the time-of-arrival of the laser pulse at the sea surface, due to the 
temporal and spatial widths of the laser, is calculated in the subroutine LASER. The 
routine SPOT_DEV is called by LASER to modify the x and y positions at entry, 
previously determined by the scan angle, to simulate the laser foot print on the sea 
surface (a Gaussian spatial distribution in two dimensions), using the following 
algorithm: 

dx=   . s J-2ln[u,] cos [Imu] 
^-2111(1.0- 0.14)) 

dy=   ,      * J-2\n[u2]cos[2imx] 
^-2111(1.0-0.14)) 

where rs is the radius of the laser spot; defined in laser optics as a disk of radius rs 

which encompasses 86% of the beam intensity, ie. the 1/e width. 

Once the position (x, y, z) that the simulated photon strikes the water has been 
determined, the routine SURFACE_ENTRY is called to determine whether the photon 
is specularly reflected, or refracted into the water. 

CALL SURFACE_ENTRY 
The probability that a simulated photon is reflected, or refracted, at the air/sea 
interface requires a prior knowledge of the 'in air' velocity vector, the angle of 
incidence and the degree of polarisation of the beam. Until this time, the treatment 
of the photon has only required a knowledge of position and time. In 
SURFACE_ENTRY the velocity components of the photon, immediately before entry 
into the water, are determined for the first time by calculating the distance travelled 
to the water surface, including wave action (null in this release) and using the group 
velocity of the photon in air and the previously determined relative time of release 
of the photon from the source. At this point, the time-of-flight array index, it, is 
determined. Despite the fact that the calculations for the air/sea are performed, 
usually, at most twice for each simulated photon, this section of code is relatively 
CPU intensive, as a number of trigonometric functions and square roots must been 
evaluated. Thus, some optimisation is required. 
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As an initial step, the cosine of the angle of incidence with respect to the z axis, cosGi, 
is determined. Note that modifications to the program, which include wave action, 
will require modifications to this section to calculate the normal to the wave surface. 
Snell's Law is used to calculate the cosine of the angle of propagation, cos8t, of the 
photon w.r.t. to the local surface normal, if refracted. 

cos 0, =l/«-y/n2 -sin20, . 

costh = ABS(Vz)/3.d8 
sinth_sq = 1.0 - costh*costh 
n_i=1.0 
n_t = water_n 
costh_i = costh 
costh_t = 1.0/water_n*SQRT(water_n_sq - sinth_sq) 

It is efficient, even necessary, to perform the calculation for the refracted angle at 
this point and store the result, because the Fresnel Formulae, given below, define the 
ratio of the reflected and refracted fractions at the interface, for light of arbitrary 
incident angle and polarisation, in terms of the refractive index of both regions, n; 

and nt, and cosfyand cos8t: 

Reflection coefficient for beam component with polarisation parallel to the plane of 
incidence: 

_ (n, cos 0, - n, cos 0()/ 
rPara ~ /(«, cos 0; + n, cos 9,) ' 

Reflection coefficient for beam component with polarisation perpendicular to the 
plane of incidence: 

_ (n, cos 0, - nt cos 9,)/ 
rPerP ~ /(rii cos 0, + n, cos 0,) ' 

Transmission coefficient for beam component with polarisation parallel to the plane 
of incidence: 

= (2«,cos0,)/ 
para y^ CQS ß. + „. CQS Qf ) • 

Transmission coefficient for beam component with polarisation perpendicular to the 
plane of incidence: 

_(2«,cos0,)/ 
lPerP ~ /(rii cos0, + n, cos 6,) ' 

For an unpolarised beam, as is in this case, the fraction of the reflected flux, or the 
reflectance, surfjreflect, is 

1 (\ |2  . | |2 

2 
surf _reflect = -1 \rpara\  +1rperp 

The components rpara and rperp are determined in SURFACE_ENTRY by calls to 
functions, R_PARA and R_PERP, found in leveü.ßO. A random number, rl, on the 
interval [0,1] is generated and forms a test against the calculated probability of 
reflection from the interface, for a particular photon trajectory. 

IF(rl .gt.surf_reflect)THEN 

If the photon is not reflected, it is refracted into the water and the components of the 
'in-water' photon velocity are given by Snell's Law in 3 dimensions: 
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-V air 

Vz= ^Jnf-sm'd,, 

vv=v,/«;, 

Vx=Vx/nf, 

where Vgroup is the photon group velocity in water and 0; is the incident angle to the 
surface normal, calculated previously. The routine TRACE_WATER is then called to 
add the initial position of the photon to the appropriate histogram. 

Vz = -2.25d8/water_n*SQRT(water_n_sq - sinth_sq) 
Vy = Vy/water_n_sq 
Vx = Vx/water_n_sq 
CALL TRACE_WATER 

ELSE 

If the test determines that the photon is reflected at the air/sea interface, then the 
reflection is considered to be specular. That is, the sign of the z component of 
velocity, Vz, is reversed and the photon propagates to the source altitude, where 
TO_PLANE is called to record the time and position of arrival at the source and end 
the simulation of that photon. 

Vz = -Vz 
CALLTO_PLANE 

END IF 

At this point, control is returned to BEGIN, which in turn returns control to the 
primary control loop of the MAIN program. 

3.2.3   Subroutine WHERE (main.f90) 

As indicated previously in this section, subroutine WHERE, is called exclusively from 
the third level control loop in the main program. The main function of the routine is 
to calculate the position and velocity of the photon at time t, each time an 
interrogation point is reached (every 0.5 ns). The updated phase space information is 
returned through the module PHASE. This subroutine also provides treatments for 
photons which strike the sea floor and those which may strike the sea/air interface. 

Newtonian mechanics forms the basis for this subroutine. The time interval between 
the current and latest previous call to WHERE is calculated. 

deltaj = t - tO 

Because there is possibility that photons strike either the sea floor, or sea/air 
interface, intermediate values of x, y and z must be calculated to test against criteria 
which define the local profile and position of the sea surface and sea floor. 

z_int = Vz*delta_t + z 
y_int = Vy*delta_t + y 
x_int = Vx*delta_t + x 

Note that in the present release, with trivial sea surface and floor topologies, it is not 
strictly necessary to calculate intermediate values for x and y. However, to assist in 
the development of the code to include these features, intermediate values are 
calculated as shown above. In addition, values for the local surface and bottom are 
calculated by calls to functions, which currently return 0 and 50 m respectively. 

local_s = surface() 
local_b = bottomO 
IF((z_int.LT.local_s).AND.(z_int.GT.local_b))THEN 

The intermediate value of z is tested against the local values for surface and bottom. 
The most frequent occurrence is that the calculated position of the photon lies 
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between the local surface and bottom values. In this case, x, y and z are set to the 
intermediate values, the velocity components remaining unchanged. 

z = z_int 
y = y_int 
x = x_int 

Having satisfied the most frequent condition, the loop is complete and control 
passes back to the main program after setting to equal to the current value of t in 
preparation for the next call to WHERE. 

ELSE IF(z_int.lt.local_b) THEN 

The next most frequent occurrence is that the photon strikes the bottom within the 
time interval t - to. Since the probability of reflection from a realistic sea floor is 
considerably less than 50%, it is most efficient, on average, to throw a random 
variable to determine whether the photon is absorbed, before proceeding to calculate 
the outcome of the reflection. 

IF(rl .ge.bott_reflect)THEN 

If the photon is absorbed by the sea floor, the flag ph_finish is set and control jumps 
to the end of the subroutine, setting to = t as above. 

ph_finish = .TRUE. 
GOTO 666 

END IF 

Alternatively, the photon is reflected and the fraction of the time interval required 
for the photon to intersect the local bottom is determined. In addition x, y and z are 
determined for the time of intersection. 

t_int = (local_b-z)/Vz 
z = local_b 
y = Vy*t_int + y 
x = Vx*t_int + x 

Lambertian, or diffuse, scattering from the ocean floor implies that regardless of the 
angle of incidence, the velocity vectors of the scattered photons are uniformly 
distributed on a half sphere. The value of cos6 of the scattered photon is thus, 
uniformly distributed on the interval [0-1] and may be chosen directly from the 
pseudo random deviate. The azimuthal angle q> is chosen, using an uncorrelated 
deviate, normalised to 2rc radians. The corresponding components of the velocity 
vector may now be calculated and normalised to the 'in-water' group velocity 
(2.25x108 ms-i). 

costh = rl 
sinth = SQRT(1.0d0 - costh*costh) 
phi=6.283185308d0*r2 
Vz=2.25d8*costh 
Vx=2.25d8*sinth*COS(phi) 
Vy=2.25d8*sinth*SIN(phi) 

The position at the end of the time interval, t - to, is calculated using the new velocity 
components. 

t_int = delta_t - t_int 
z = Vz*t_int + z 
y = Vy*t_int + y 
x = Vx*t_int + x 

ELSE IF(z_int.GT.local_s) THEN 

Treatment of the sea/air interface is similar to that of the interaction with the sea- 
floor. If the intermediate value of z is found to be greater than the local sea surface, 
an intercept time is calculated, along with values for the surface position. 

t_int = (local_s-z)/Vz 
z = local_s 
y = Vy*t_int + y 
x = Vx*t_int + x 
CALL surface_exit(t_int) 
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The possibility of refraction through the interface, to the source altitude, must be 
considered at the surface, by calling SURFACE_EXIT at the time of intercept. The 
routine SURFACE_EXIT performs the complimentary calculations to SURFACE_ENTRY. 
If the photon is reflected, either as a consequence of total internal reflection, for 
angles greater than 53°, or on the basis of a calculated probability for smaller angles, 
control is returned to WHERE and the position at the end of the interval t-to is 
calculated. In future, this may involve un-physical paths through the sea/air 
interface, depending on the model used for the wave action. 

IF(.NOT.ph_finish)THEN 
t_int = delta_t - t_int 
z = Vz*t_int + z 
y = Vy*t_int + y 
x = Vx*t_int + x 

For very shallow bottoms, it is possible that in the remaining time, the photon 
strikes the bottom. In this case the photon is ignored. 

IF(z.le.bottom())THEN 
! Ignore the rest of this photon 

WRITE(*,*)' A surface reflected photon has struck the bottom' 
ph_finish = .TRUE. 
WRITE(*,*)' z = \REAL(z) 

END IF 
ENDDF 

ELSE IF(z_int.EQ.local_b)THEN 

It is possible that the calculated intermediate value of z is equal to either the local 
surface, or bottom. If these cases are not treated, then the photon is effectively lost 
from the simulation, either 'floating' or 'drowning', not satisfying the condition that 
a photon be between the two boundaries. A simple treatment is to adjust the depth 
by an appropriately small amount, in this case 1 mm. 
! set the depth to depth +0.1 mm 

z = local_b + 0.0001 
y = y_int 
x = x_int 

ELSE 
! photon is relaxing on the surface ... 
I set the depth to depth -0.1 mm 
! may need checking for V normalisation 02/08/96 

z=local_s-0.0001 
y = y_int 
x = x_int 

END IF 

The subroutine ends, setting to = t in preparation for the next call. 
666      tO = t 

RETURN 
END 

3.2.4   Subroutine COLLIDE (main.f90) 

COLLIDE is the most computationally intensive section of the simulation. Called 
exclusively from second level control loop of the main program at the time of 
collision, COLLIDE determines which component of the water / suspension 
medium the photon strikes, the type of collision and the appropriate outcomes, 
including new velocity vectors for those photons which are anisotropically scattered. 
The possible processes are represented by relative probabilities, calculated from the 
characteristic coefficients in DEPJVAR at the start of the simulation. A random 
number, RCOLL, is generated and compared against the calculated fractions 
representing the processes. 

IF(Rcoll.GT.s_coeff) THEN ! greater than scat ... absorb 
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Some of the photons are absorbed, a diagnostic counter is incremented and the 
photon 'finished' flag set to true. Control returns to the main program. 

xabsorb = xabsorb + 1 .dO 
ph_finish = .true. 
RETURN 

ELSE EF(Rcoll.GT.w_coeff) THEN ! greater than water ... suspended 

If scattering from the suspension is 'chosen', the mean value of cos(8), which defines 
the broad shape of the Henyey - Greenstein function, is set to the user defined value 
for the scatterer and the appropriate diagnostic counter is incremented. 

g_ = g_scatt 
xscatt = xscatt + 1 .dO 

ELSE 

Since the same function is used to describe the angular scattering from both water 
and suspension, the same procedure is followed if scattering from water is chosen. 

g_ = g_water 
xwater = xwater + 1 .dO 

END IF 

Seven steps are required to return the new velocity cosines for the scattered photon. 
Clearly, the calculation of the initial choice of scattering angles can be optimised 
using look-up tables, as discussed later. However, it is not obvious how the 
transformations which place these otherwise arbitrary angles in the frame of 
reference defined by the relationship of source and sea-surface may be optimised. In 
the case of electron scattering from a gas for example, isotropic scattering is often 
assumed as an approximation to the random thermal motion of the gas molecules. 
Isotropic scattering, which is quick to calculate can not be assumed here, a full 
treatment is required. 

The theta dependence of the differential scattering cross section, do/d9, (or volume 
scattering function for multi-component suspensions) has the same dependence as 
the probability density for cos(9). Thus, a uniform deviate may be appropriately 
transformed, using the functional form for da/d0 to randomly choose a value for 
the scattering angle, cos(9). The transformation function between the random 
number Rl and cos(9) is analytic for the Henyey - Greenstein function, which 
explains its widespread acceptance in random media simulation. A random number 
is used, together with the mean value of cos(9), g, to determine a value for cos(9) in 
the simulation with the correct anisotropic dependence. 

Rl =randti(ks , rks) 
ak = ak + DBLE(rl) 
callsk = callsk+1.0d0 
costh = I.d0/2.d0/g_*(l.d0+g_*g_- (I.d0-g_*g_)*(l.d0-g_*g_)/        & 

(l.dO-g_+2.dO*g_*rl)/(l.dO-g_+2.dO*g_*Rl)) 

The relationship cos2(9) + sin2(9) = 1 is used to determine the value of sin(9). 
IF(ABS(costh).EQ. 1.0)THEN 

sinth = O.dO 
ELSE 

sinth = DSQRT(1.0dO - costh*costh) 
END IF 

Thus far, an element of solid angle, in effect an annulus between 9 and 9+d9, 
centred about the direction of the photon velocity immediately before scattering, has 
been chosen, into which the photon must scatter. To uniquely determine the 9 
dependence and thus the new scattered velocity cosines, while preserving the 
anisotropy of the scattering function, it is necessary to first find the component of 
the scattered velocity vector which is parallel to the incident. That is to scale cos(9) to 
Vt/Vi. 

vxp=vx*costh 
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vyp=vy*costh 
vzp=vz*costh 

Then define a non zero length random vector in space. 
rcosth=(l.d0-2.d0*rl) 
rsinth=SQRT(l .dO-rcosth*rcosth) 

rl = randti(ms , rms) 
am = am + DBLE(rl) 
callsm = callsm + l.OdO 
rl=6.283185308d0*rl 
rx=rsinth*COS(rl) 
ry=rsinth*SIN(rl) 
rz=rcosth 

Now, the random vector and the initial velocity define an arbitrary, but known 
plane, from which the azimuthal angle, 9, may be determined. First the components 
of the random vector which lie parallel and orthogonal to V; are determined: 

c=(vx*rx+vy *ry+vz*rz)/5.0625dl 6 
rxp=vx*c 
ryp=vy*c 

rxo=rx-rxp 
ryo=ry-ryp 
rzo=rz-rzp 
c=SQRT(rxo*rxo+ryo *ryo+rzo * rzo) 

The orthogonal components are scaled to the appropriate length for the scattered 
velocity in water: 

c=2.25d8*sinth/c 
vxo=rxo*c 
vyo=ryo*c 
vzo=rzo*c 

Simple scalar addition of the orthogonal and parallel components gives the velocity 
components in the frame of reference defined by our simulation. 

vx=(vxo+vxp) 
vy=(vyo+vyp) 
vz=(vzo+vzp) 

While not strictly necessary, the group velocity is calculated to check for internal 
consistency and control returns to the main program. 

v=SQRT(vx*vx+vy*vy+vz*vz) 
RETURN 
END 

3.2.5 Subroutine TRACE_WATER (main.f90) 

Once called from the inner most control loop in the main program, subroutine 
TRACE_WATER, determines which cell in the 'in-water' histogram the current phase 
space information of the photon contributes to. Other relevant monitors and flags 
are updated. A similar routine TRACE_PLANE deals with the special case of the 
photons at z=plane, ie it accumulates the histograms at the source altitude. In order 
to optimally pack the array space for non-nadir simulations, photon histories are 
recorded in a histogram centred at x = plane*sin(scan_angle), y = 0. An array index, 
ir, representing the radius is determined by subtracting the 'center' in x 
[x = plane*sin(scan_angle)] from the photon's absolute x coordinate and combining 
this with the y coordinate appropriately. 

x_int = x - x_center 
r = SQRT(x_int*x_int + y*y) 

Given the 1 meter boxing used in this simulation, ir is then found simply: 
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ir = INT(r)+l 

If the value of r is greater than that allowed for in the static array size of this 
program (10 meters), ir is set to the maximum array index and the diagnostic flag, 
xrjiot, representing the number of photons having radii larger than that allowed for, 
is incremented. 

IF(ir.gt.ir_rzt)THEN 
ir = ir_rzt 
xr_hot = xr_hot +1.0 

END IF 

A similar treatment is used for the histogram index in the z direction. Note that since 
for sub-surface z values, z is negative, it is necessary to form the index on the 
absolute value of z. 

iz = EMT(ABS(z))+l 

A value of iz which is greater than the maximum z index of the array in this version 
of the code represents a serious coding error, as somehow photons have reached 
depths greater than the bottom. The user is alerted to the fact that this has occurred, 
iz is set to the maximum allowable index of the array and the simulation proceeds. 

IF(iz.gt.jz_rzt)THEN 
iz = jz_rzt 
WRITE(*,*)' ALERT: iz = 50' 

END IF 

At the time that any photon enters the water, a zero reference timing index, it_entry, 
is determined. The appropriate offset time is determined for the 'in-water' 
histogram. 

it_water = it - it_entry + 1 
IF(it_water.gt.kt_rzt)THEN 

it_water = kt_rzt 
xrwjiot = xtwjiot +1.0 

END IF 

Following appropriate end-treatment for long lived photons, the histogram is 
modified and arrays which monitor the maximum temporal and radial extents are 
updated if necessary. Control then returns to the main program. 

box_rzt(ir, iz, it_water) = box_rzt(ir, iz, it_water) + 1 
IF(t.lt.t_max(l)) t_max(l)=t 
IF(t.gt.t_max(2)) t_max(2)=t 
IF(r.gt.r_max(l)) r_max(l)=r 
RETURN 

END 

3.3     The Processing Code 
The processing code comprises two files: the module file modules.ßO, which is 
identical to that used in the simulation code, and the main program, as listed in 
sect on 10.5. 

The main processing code is relatively simple in structure. The user is interrogated 
for the names and paths of the files containing the output from the simulation and 
the run parameters. The program then reads the data from the histogram files for 
both the 'in-air' and 'in-water' cases. As a development aid, the number of array 
elements which contain 'non-zero' data are counted for both cases and reported to 
the screen. This gives a measure of the efficiency with which data is being stored. 
The data concerning the number of photons simulated is read from the run 
parameter file to allow the user to check that the content of the files do indeed reflect 
the data that the user wishes to process. 

The possible options for data analysis are listed at the start of a loop: 
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qu:       DO 
WRITER,*)'' 
WRITE(*,*)' What operation do you wish to perform?' 
WRITE(*,*)' Write out ASCII ToF histogram at plane height? ... 1' 
WRITE(*,*)' Write out ASCII ToF ln(data) in water? .     .. 2' 
WRITE(*,*)' Write out ASCII R,Z in-water data for given time(s)?      ... 3' 
WRITE(*,*)' Quit from Case loop? ... 0' 
READ(*,*)iqu 
SELECT CASE (iqu) 

On the basis of the answer to the questions above, one of 4 CASE statements is 
executed: 

In case one, the in-air ToF histogram is written as an array of coordinate pairs, 
representing elapsed time from start of pulse and the corresponding histogram 
height. In case two, the ordering of the z dependence of the in-water r,z,t histogram 
is inverted, so that in a two dimensional plot, shallow depths (z, a small negative 
number) appear at the top of the page, rather than near the origin at z = 0. Similarly, 
the radial data are written out so that contour plots are across the diameter, centred 
at r = 0. The dynamic range of the in-water histogram is compressed by taking the 
natural logarithm of the height of the histogram to facilitate display on a 256 discrete 
colour map. Note that the 'end treatment' for the in-water data, implies that the last 
box in the ToF histogram is meaningless and will usually be higher than the trend of 
the adjacent boxes suggest, as all photons at larger radii are recorded in the last box. 
The third option allows the user to select specific time intervals for which the R,Z in- 
water data is written to file. 

4.     INITIAL RESULTS 

In the process of developing ^nd debugging the code, benchmark tests were 
performed on individual modules to verify their correct function. The functions 
RANDT and RANDTI which generate the uniform pseudo-random deviates on the 
exclusive and inclusive intervals (0 -1) and [0 -1], have been used extensively 
elsewhere by the author (see for example Brennan [1992]), and have only been tested 
superficially in this work. It is noted that the algorithms of Tootill et al [1973], which 
are used to generate the random numbers with a 2607 period are now considered to 
represent a minimum standard for uniformity and randomness [Brent 1996]. The 
subroutine SPOT_DEV, which generates the x and y offsets for a Gaussian beam 
profile of known (given) spot size was tested by generating 108 pseudo-random 
pairs and comparing the results by eye for a 3 meter spot beam, against the expected 
Gaussian distribution on a log scale. The agreement was sufficiently impressive to a 
diameter of 6 meters (ie. 2x spot size) that no rigorous y} testing was attempted. 

The integrity of other subroutines and functions in the simulation and analysis 
programs were tested during debugging using hand checking for individual 
photons throughout representative paths. Most of the program functionality has 
been tested to date, with the exception of the simulation of non-nadir beams, which 
awaits the enhancement of the data storage routines (section 5). Figure 2., above, 
shows the results of a 'special case' test of the validity of the Snell's Law and Fresnel 
formulae algorithms. 2.5x10* photons, propagating from a delta function source at 
500 m, orthogonal to the sea-surface, with zero beam divergence, were simulated. 
Scattering and absorption processes from both water and the suspended matter 
were calculated, but the results suppressed (that is - no scattering, or absorption). In 
this test, the sea-floor was modelled as a non-absorbing/specular reflector, as 
opposed to a more realistic partially absorbing Lambertian scatter used elsewhere in 

18 



this simulation. This approach preserves the "zero angle scattering" nature of the 
test. In the test, as elsewhere, the Air/Water interface treatment was complete for 
unpolarised rays, the transmitted and reflected fractions given by the Fresnel 
formulae (2.04% reflected at nadir for n« = 1.3333). At nadir, Snell's Law was 
calculated, but returned only vz = - c/ni2 for the group velocity in water. In the 
figure, the peak at 3333.333 ns, with a height of 2.04% of the simulated photons, 
corresponds to photons which propagated to the surface and were immediately 
reflected back to the source. The next peak, at 3777.777 ns, corresponds to photons 
which were refracted into the water, then striking the perfectly reflective bottom and 
propagating back to the sea-surface, being transmitted through the sea/air interface 
and returning to the source altitude. A further peak is evident 444.444 ns later, 
corresponding to those photons which have been reflected at the sea/air transition 
at 3777.777 ns, propagating once more to the bottom and back, exiting at this time to 
the source altitude. In this particular simulation this process was faithfully repeated 
out to 5111 ns. The amplitude of the peaks generated were within one standard 
deviation of the expected values. 
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Figure 2. Test run for Snell's Law and Fresnel formulae algorithms. Peaks correspond to reflections 

from interfaces. 2.5xl04 photons propagating from delta function source at 500 m at nadir with zero 

beam divergence. Scattering and absorption processes are suppressed. Sea-floor is modelled as a non- 

absorbing / specular reflector. Air/Water interface treatment is complete for unpolarised rays. 

The series of figures 3a-c show simulated spectra for all photons arriving at the x-y 
plane containing the photon source for three key test source configurations. In effect 
they are LADS simulations for an infinite receiving aperture and an infinite field of 
view (FOV). In each, 108 photons where initiated from a source 500 m above the sea 
surface. The sea floor was modelled as a non-absorbing, diffuse scatterer, 50 m 
below the surface. In 3a and 3b the source was a delta function in time and space. 
The scattering coefficients were from table 3 of Joelson and Kattawar [1996] for 
X = 532 nm. For the data in Figure 3a the water scattering coefficient was 0.0022 m1, 
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the suspended matter scattering coefficient: 0.0035 m1 and the absorption 
coefficient: 0.0544 nv1. The surface reflected photons appear at the same time as in 
Figure 2 (3333.333 ns). The growth of low level backscatter is due to the forward 
scattering dominated Henyey - Greenstein distribution (gw = gsus = 0.95). The sharp 
step at 3777.777 ns corresponds to photons suffering no collisions throughout the 
path (or at least very forward scattered). Long path photons (those suffering several 
collisions) then appear as a decaying tail. Note again that the spectrum is integrated 
over all x and y at the source height. This explains the long decaying tail after the 
first bottom reflection, in contrast to real LADS data, where the finite acceptance 
angle of the green receiver and the finite FOV sharply truncates the tail of the 
observed spectra. 

Figure 3b is similar to 3a, except the suspended matter scattering coefficient was set 
to 0.1955 m1, corresponding to 'coastal waters'. Significantly more backscatter 
following the surface pulse is evident in this case. The bottom reflection appears as a 
small step in the data plotted on a log scale. Comparison of Figures 3a and 3b 
reveals that while the bottom feature in Figure 3b begins at the same time as in 
Figure 3a (as expected, given that the depth is the same), the larger scattering 
coefficient delays the peak of the bottom feature. As discussed in section 3.2.1, the 
LADS data analysis algorithms, use a 50% constant fraction discrimination 
technique to derive the depth. 

Figure 3b suggests that the LADS data processing would therefore determine the 
'bottom' to be midway between the actual bottom at the foot of the step and the 
peak of the feature, that is somewhat delayed in time. This is evidence that the 
'depth bias' can be successfully modelled by this simulation. 

3000 3500 5000 ^S    4000 4500 
Time of Flight (ns) 

Figure 3a. Test run for 108 photons propagating from delta function source at 500 m at nadir with 

zero beam divergence. Water scattering coefficient: 0.0022 nv1. Suspended matter scattering 

coefficient: 0.0035 nr1. Absorption coefficient: 0.0544 nv1. 
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Figure 3b. Simulation details as for Figure 3a., except: Suspended matter scattering 

coefficient: 0.1955 nr1. The highlighted bottom return feature is slightly delayed w.r.t. Figure 3a. 

Figure 3c is again similar to 3a, except that a 10 ns full width 'flat top' source is used, 
as evidenced by the finite width of the surface reflected pulse, which is 
approximately an order of magnitude smaller in amplitude - the 2.04% of reflected 
photons now distributed over 10 ns, as opposed to a delta function in time. 
Interestingly, the simulation correctly predicts an identical minimum source-bottom- 
source transit time, and close inspection reveals a somewhat wider 'step' 
corresponding to the bottom return. 

Figure 4 shows the evolution of the density profile of a pulse of photons for the 
same attenuation parameters as in Figure 3a, as they propagate from r = 0, z = 0 at t 
= 0, towards the bottom, which they first strike between t = 215 ns and t = 230 ns. 
After 425 ns the 'front' of the simulated pulse can be seen approaching the surface 
on the 'way up'. The front appears as a slight change in shading below -5 m. The 
lighter shading at shallow depths for this frame represents photons which have been 
backscattered several times, and have not been reflected from the bottom. The dark 
band (high concentration) at r = 10 m, evident for times > 50 ns represents photons 
at larger radii. The positions of these photons are tracked in the simulation, thus 
they may contribute to the return signal, but the distribution is only recorded out to 
10 m radius. The granularity evident at t = 50 ns is due to the fact that the density 
distribution is recorded in lm x lm boxes. At t = 50 ns, there are a small number of 
photons in front of the 'head' of the pulse. This is due to small imperfections in 
modelling the temporal 'flat top' of the laser pulse, which will be attended to in later 
releases. 
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Figure 3c. Simulation details as for Figure 3a., except: photons propagate from 'flat top' source with 

10 ns full width, at 500 m at nadir with zero beam divergence. 
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Figure 4. Evolution of the R-Z density profile for photons in water. 'Flat top' source, with 10 ns full 

width, at 500 m at nadir with 3m beam spot size at surface. Water scattering coefficient: 0.0022 nr1. 

Suspended matter scattering coefficient: 0.0035 nr1. Absorption coefficient: 0.0544 nr1 
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5.     IMPROVEMENTS TO THE SIMULATION 
While the initial results provide some evidence of the numerical integrity of the 
simulation code, they have also highlighted some weaknesses. Several of these were 
identified and immediately corrected during the initial phase. Several weaknesses 
remain, however. Four of these are discussed below, along with solutions, which 
will be implemented shortly. 

5.1     Rayleigh Scattering from Water 
Close inspection of the data used to produce the frames in Figure 4, reveals that as 
the pulse 'head' approaches the bottom (t = 215 ns), there is a significant 
depopulation of photons at small radial values. At later times still, the radial 
distribution of photons may be likened to a 'smoke ring' - a doughnut shape, 
propagating to wider radii with time. While experience suggests that this is un- 
physical behaviour, this is a characteristic of the Henyey - Greenstein scattering 
model and the initial Gaussian distribution of photon velocities. The Henyey - 
Greenstein distribution is used to model the angular scattering distribution from 
both water and suspended mater. Because this distribution is strongly forward 
biased, there is an unrealistically small backward scattering contribution, as 
indicated by figures 3a and 3c for example, which would 're-populate' the 
distribution at small radii, once the pulse head has passed. Light scattering from 
water is governed by fluctuations in the random uniform distribution of water 
molecules. This is well described by Rayleigh scattering and higher order processes. 

The angular dependence of the differential scattering cross section for Rayleigh 
scattering follows a 1+ cos26 distribution, which is peaked at backward and forward 
angles. This dependence gives rise to the small backward peak in volume scattering 
functions characteristic of ocean waters, as shown in figure 5, where the angular 
dependence of a volume scattering measured in deep, clean, ocean water (850 - 870 
fathoms, Lat: 24°29'N, Long: 77°33'W, [Petzold 1972]), is compared to a Henyey - 
Greenstein function and an appropriately normalised Rayleigh Scattering function. 

Clearly, while a Henyey - Greenstein distribution satisfactorily describes the 
scattering for forward angles, at angles > 90 degrees, a Rayleigh distribution is 
required. In principle, any function can be used to describe the angular probability 
distribution of scattered photons, with varying degrees of 'realism', in the 
subroutine COLLIDE, described in section 3.2. To improve the efficiency of the code, 
the probability distribution for cos(8) for suspended scatterers, now evaluated in 
COLLIDE, using a Henyey - Greenstein function, is to be represented by a table of 
cubic spline coefficients. Each spline function represents an equal (small) fraction of 
the integral of the function from 0 < 6 < n, which will be used to give an 
interpolated value for cos(9), depending on a random variable, as in the present 
case. The existence of the Henyey - Greenstein distribution will provide a definitive 
test for the integrity of this piece of code. A similar table will be used to represent 
P(cos(8)) for the Rayleigh distribution for scattering from water. After the impact of 

' these changes are assessed, the Henyey - Greenstein distribution for scattering from 
the suspended matter may be superseded by a more realistic measured volume 
scattering function. To achieve this, an appropriate Rayleigh dependence would be 
subtracted from a fitted functional representation of the discrete measured data. The 
principal advantage of using real volume scattering functions in this way, is that it 
represents a closer approximation to a multi-component suspension, while retaining 
the computational advantages of the single suspended scatterer representation. 
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Figure 5. Measured angular dependence of the Volume Scattering Function ■"■"■ for 'deep ocean 

water' (850 - 870 fathoms: station 8, Petzold 1972) compared with a Henyey - Greenstein distribution 

function for <cos9> = 0.99 ■ ■ • , and a Rayleigh Scattering distribution  

5.2     Finite Acceptance Angle Receiver 

The shape of the decay of the signal following the appearance of the bottom in 
Figures 3a - 3c, is due to loss of signal through absorption alone, as the signal from 
an infinite field-of-view, is received to an infinite aperture at the source altitude. In 
reality, the LADS system has an effective receiving aperture of 180 mm, centred at 
the source and either a FOV which is closely matched to the initial laser spot size 
(6 mrad); the so-called 'narrow' FOV, or one of 40 mrad; the 'wide' FOV. The effect 
of the finite aperture - FOV combination is to sharply truncate the tail of the 
returned signal, as photons propagate through the water, away from the field of 
view of the aperture, to positions where they are significantly less likely to be 
scattered into the receiving aperture. Exact duplication of the physical receiving 
aperture / FOV in the simulation would result in an inevitable increase in the 
statistical uncertainty of the returned signal. The following approach is proposed, in 
part as a compromise between the slow statistical convergence of the simulation and 
the physical constraints of the LADS system. 

Three receiver fields of view are defined from the center of the laser spot on the 
mean sea surface; a point xc on the x-axis 

xc = h tan 9 

where h is the height of the source above the mean sea surface, and 0 is the angle of 
the beam with respect to nadir, (see Figure 1.). The diameter of the first, 'narrow' 
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FOV, is identical to the spot size of the probe beam. The diameter of the second, or 
'wide' FOV is identical to that found in the LADS system: defined by a 40 mrad 
wide cone, or 20m diameter spot at 500 meters. The third FOV is infinite in extent. 

At the point of exit from the water, the radial position of the photon w.r.t. xc is used 
to assess which of the receiver fields of view: narrow, wide, or infinite, the exiting 
photon belongs to. The photon then propagates to the source altitude, where the 
final radius w.r.t. the source position, is compared with disks (apertures) of radius 
0.1 m, 1 m, 10 m, 100 m and infinite. A similar comparison is made for apertures of 
the same dimensions, centred on xc, (ie. Immediately above the point of entry into 
the water). The time of arrival of the photon at the source altitude is then added to 
the histogram for each, and any, of the arrays defined by the three FOVs and ten 
possible apertures. 

In order to minimise simulation time spent following 'long path' photons, photons 
which have survived unabsorbed for longer than three 'direct path' surface-bottom- 
9urface transits will be terminated and considered to have exited from the infinite 
FOV to the infinite aperture at that time, plus the source-surface-source transit with 
x = 1000m and y = 1000m. This should prove a considerable saving in simulation 
time, based on the evidence of Figure 4. 

5.3     Data Storage 
The changes mooted in the previous section require a review of the data structures 
used for storing the simulation data. Firstly, the maximum radius for the 'in water' 
arrays should be increased from the present 10 m to 20 m, to match the wide FOV 
'in-air' data. Secondly, the array structures for the 'in-air' data need to be changed to 
reflect the change in the recorded data: 10x3 dimensional arrays with a histogram of 
Time-of-Flight data for the three FOVs in three columns, 'binned' in 0.5 ns elements. 

The magnitude of the 'depth bias', or increase in optical path due to scattering, 
which this program is designed to study is of the order of one meter in 30 - 50 
meters depth. The present 'in-water' data structure stores the density distribution 
profiles on a lmeter x lmeter grid. This was sufficient for the initial testing described 
in this report, but is not sufficiently sensitive to study the dependence of the depth 
bias on the turbidity. In order to perform such studies it is necessary to increase the 
resolution of the boxes to 0.1 meters. However, the size of the present type of data 
structure increases prohibitively. This problem can be overcome by utilising a new 
feature in Fortran90, that of variable structure arrays which have sizes which can be 
allocated and reallocated dynamically. Using this feature and pointers, an optimally 
dense data structure can be created, rather than the present structures, which were 
le9s than 40% filled in the initial tests. In keeping with the present practice, photons 
achieving a radius of greater than 20 meters, or surviving longer than three times 
the direct surface-bottom-surface transit will be boxed at 20 m. These approaches, 
while making the data structures somewhat less intuitive to interpret, will also 
reduce the number of elements to be written to file periodically, hence increasing 
overall execution speed. The approach of using pointers and variable structure 
arrays will also simplify efficient data storage for simulations for depths less than 
the current fixed value of 50 meters. 

6.     COMPARISONS WITH SURVEY DATA 
During a LADS sortie (#235) over the Sahul Banks in the Timor Sea, west of Darwin, 
in June 1996, a single line (Frame 84) was flown in clear water, with the automatic 
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gain control disengaged, to obtain data for qualitative comparison with the 
simulations. The values of the photomultiplier gain control parameters, G2 and G3, 
were set manually, such that the bottom return signals were un-saturated for depths 
deeper than about 30m. The gain was constant and fixed for all scan angles. The 
surface returns were allowed to saturate. At present it is not possible to directly 
compare the simulation with the Sahul Banks data, because the LADS system has a 
finite receiving aperture, whereas the present simulation integrates across an infinite 
receiver at the source. However, some features in the real data are worthy of note, as 
they may bear on the future direction of the simulations. It is clear from examples of 
data on flat bottoms, below 30m, that there is little, if any, degradation of the bottom 
return signal strength at angles away from nadir. This behaviour, may indicate the 
importance of relatively small amplitude wave action in the amplitude of the 
returned signal for scan angles other than nadir (The trial was conducted in 
relatively flat, but windy seas. 

It was discovered during the sortie, that it was difficult to maintain constant gain 
across the time of the depth return, using independent manual control of G2 and G3. 
The exercise has recently been successfully repeated. 

Sahul Banks - Quasi Uniform Gain Data 

261 
29/05/96 
Sortie 6 
Run 90 
Frame 84 
Eastings 4931 IS 
Waveforms 265-288 

Figure 6a. LADS swath data. 29/5/96 Sortie #235, Run 90, Frame 84, Waveforms 265 - 288. Note the 

saturated surface returns and the large dynamic range in the bottom returns from depths of - 35m. 

The deep pulses on waveforms 265 and 288 are calibration points injected into the green receiver. 

Figures 6a and 6b show data from two swath scans over a shoaling bottom, 
separated by approximately 150 meters. Examined together, it is evident that the 
larger amplitude returns (adjacent waveforms 265 and 169), are from a flatter, 
slightly deeper bottom, whereas the shallower waveforms (adjacent waveforms 
288 and 192) are smaller in amplitude. It is likely that the change in amplitude is 
due to an intrinsic decrease in bottom albedo with decreasing depth. This data 
provides an interesting point of comparison for the simulations with non-trivial 
bottom topographies. 
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Sahul Banks - Quasi Uniform Gain Data 
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29/05/96 
Sortie 6 
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Eistlngi 493228 
Waveforms 169 - 192 

Figure 6b. LADS swath data. 29/5/96 Sortie #235, Frame 84, Run 91, Waveforms 169 -192. Note 

that the smaller bottom returns occur at shoaler depths than the larger returns for waveforms 169 - 

175. 

7.     EXTENSIONS TO THE SIMULATION 
Three additional features are planned for the simulation. The proposed 
interpretation of each of these concepts is discussed below. 

7.1     Provision for Wave Action 

The function SURFACE (Appendix 3) is used to define the z value of the surface when 
called. At present it is a trivial function, returning zero (the mean surface level). At 
least three considerations are required to introduce wave action into this function. 
The first is a definition of the wave itself. A simple proposal, is to define a wave in 
terms of a single dimension in the x direction (parallel to the scanned beam). The 
wave is defined by user input as a sinusoidal function, with a maximum amplitude, 
a wavelength in x and phase, relative to the nadir position in x. A photon which is 
projected to stnke the mean sea surface at x = xo, from either above or below the 
surface, instead strikes the surface at a height defined by the wave. At present it is 
not expected that an exact re-calculation of the corresponding x position will be 
required, given the arbitrary nature of the approximation. The principal focus is on 
the change in z and the surface normal, due to wave action. This approach should be 
particularly suitable for long wavelength swells. The local derivative of the wave 
surface will define the tangent and the angle of incidence for the purpose of Snell's 
Law. 

An alternative description, which may be both faster to implement computationally 
and provide a more realistic description, is to describe the distribution of wave 
slopes at any point and time using a two dimensional Gram Charlier distribution, 
together with a Pierson-Moskowitz spectrum which are reported [Gambling 1973, 
Cox & Munk 1954, Dietrich & Wegener 1996] to provide a useful description of the 
distribution of ocean wave  slopes  and  amplitudes.  This  approach  could  be 
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implemented by choosing a suitably weighted random number. In this case, some 
distribution should be used for defining the tangent to the wave surface. 

7.2 Provision for Non-Trivial Bottoms 
The ability of LADS to survey shallow and reef areas is an important operational 
advantage in Australia's coastal waters. The LADS surveys of reef areas are 
characterised in part by a significant number of soundings from isolated single 
shoals, due to coral heads ('bommies') and other narrow features. While LADS has 
surveyed many of these features, it is desirable that the simulation is able to at least 
qualitatively reproduce the waveforms observed from such features. With this 
extension to the simulation, it is possible to investigate issues relating to so-called 
'bottom coverage'. It is necessary for example to investigate how the returned signal 
from a sharp bottom feature varies, depending on the whether beam strikes the side, 
foot or top of the feature. By analysing the shape of the returned signal it may be 
possible to determine if LADS has recorded the 'shoalest' depth, or whether the 
feature deserves further overflight. In addition, it will be possible to investigate the 
dependence and sensitivity of the LADS system to depth, spots size and spot 
spacing. Specifically, how the interplay of these parameters may effect the ability of 
the system to resolve separate adjacent features and to investigate to what degree 
the presence of a sharp bottom feature 'shadows' the adjacent bottom. 

A simple method for providing an irregular bottom in the simulation is to prompt 
the user for 2 sets of 4 (x, y, z) triplets, defining the coordinates of the base and top of 
the feature respectively. In the bulk of the medium, that is below the surface and 
above the shoalest depth of the bottom feature, the simulation proceeds as before, 
regardless of the bottom. At depths deeper than the shoalest, the program must test 
whether the interim x and y coordinates calculated in WHERE lie inside or outside of 
the feature, probably, most economically defined by the base coordinates. If the 
interim coordinates lie within the feature, then, as now for the 'flat bottom', the 
program determines the time to intercept the plane defining one side of the feature 
and scattering takes place at that time, with the scattering surface defined as the 
appropriate plane of the feature. The process of transforming between coordinate 
frames is somewhat computationally expensive, however, by providing earlier 
conditional tests, this is usually performed at most once per photon. Note that 
different scattering albedos for the feature may be defined. 

7.3 Scattering of Polarised Light / Depolarisation of Light 
In the present LADS system, the polarisation of the source beam plays an important 
role. The light from the green laser is polarised orthogonal to the wings of the plane. 
The reflection from the sea surface is approximately specular. Thus, the direction of 
polarisation of the fraction of the beam reflected back to the receiver is preserved. A 
polarising filter, which is oriented orthogonally to the direction of polarisation of the 
returned beam, is placed in front of the 'green beam' receiver. This has the effect of 
strongly reducing the intensity of polarised light reaching the receiver, and thus 
reduces the problem of immediate saturation of the receiver electronics by the 
surface reflected light. However, if the suspended particles are large compared with 
the wavelength of the incident radiation and sufficiently smooth, the light 
backscattered at 180 degrees is also specular and thus photons reaching the receiver 
which have been backscattered from suspended particles will also be strongly 
attenuated. This is of concern because the strength of the backscattered signal and 
the shape of its subsequent decay is used as a measure of the turbidity of the water 
and provides a important parameter in depth bias modelling. 
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The degree and direction of polarisation of light may be defined by the Stokes 
parameters. In general, scattering of the beam results in both a reduction of the 
degree of polarisation and a change in the state of polarisation. A description of 
scattering of polarised light in terms of incident and scattered Stokes parameters can 
be found in Bohren and Huffman [1983]. 

To simulate polarisation of the incident and returned beams the following approach 
is proposed. The light from the source is considered to be 100% linearly polarised in 
the y direction. A photon exiting the source will carry the appropriate Stokes vector 
(1,1,0,0). Each scattering event (including surface and bottom reflections) modifies 
the Stokes vector appropriately, according to the scattering, or Müller matrices. In 
the present simulation, if the photon is returned to the receiver, the position of the 
photon in x, y, and t is boxed and added to a 3D histogram. In the extension to 
polarisation, the x, y, t histogram at the receiver will be extended to include the 
Stokes vector. Thus, average values for each of the parameters as a function of space 
and time can be obtained. From this information, the required polarisation state may 
be readily derived in a modified post-simulation algorithm. 

8.     PROGRAM INPUT 
8.1     Simulation Code 

8.1.1   Explicit 

The initial input to the simulation is divided into sections. At present these comprise 
a File information section, followed by Beam, Water and Bottom information 
sections. When wave action or other features discussed above are included, then 
appropriate input sections will be introduced. In the File information section, the 
user is asked for the names of 4 files in which information is to be stored: 

• Run information output: This is essentially the file which indicates the status of 
the simulation - the number of photons output, CPU time consumed, collisions 
processed etc. The information in this file is largely self explanatory. 

• Boxed x, y, t output at plane . 

• Boxed r, z, t output in water, where r is the radius: TJX
2
 + y2 

• Run parameter file name: This is the auxiliary file read by the processing 
program, containing information concerning the run. 

Input defining the beam parameters is then requested. The user enters 

• The aircraft height in meters. 
• The full temporal width of laser beam in nanoseconds. 
• The beam scan angle from nadir in degrees. Note that in the LADS system, the 

maximum angle is 15 degrees, however, no such limit is set in the simulation. 
• The beam spot diameter at the sea surface meters, representing the width of a 

Gaussian beam encompassing 86% of the total beam intensity. 

Input defining the attenuation and scattering of the light in water follows. The user 
enters 

• The photon absorption coefficient, a, in m1 

• The water scattering coefficient, bray, in m1 

• A value for average cosine for water, as represented by the Henyey-Greenstein 
distribution (typically 0.95 - 0.99). 

• The suspended matter scattering coefficient, bSus, in m1. 
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# A value for average cosine for the suspended scatterer, as represented by the 
Henyey-Greenstein distribution (typically 0.95 - 0.99). 

• The bottom depth in meters is entered, together with the reflectivity of the 
bottom, expressed as a percentage 

t Lastly the user is prompted for the total number of photons to be simulated and 
the number of photons to be processed between calls to the routines which save 
intermediate data to file. 

The simulation can be run either interactively as describe above, or as a batch job. In 
the later case, under Unix, the appropriate command is: 

nohup photon.exe < input.file > log.file &, 

where photon.exe is the name of the executable file, input.file is a file containing the 
information otherwise entered interactively through stdin and log.file contains the 
output re-directed from stdout. 

8.1.2   Implicit 

In this version of the simulation, the form of the scattered photon angular 
distribution is given by a single analytic function. The functional form used is a 
Henyey-Greenstein distribution, with a variable, separate, width for both photon- 
water and photon-suspended matter collisions, given by a user input value for g, the 
mean value of cos6. Henyey-Greenstein distributions have been widely for 
describing the 9 dependence of light scattering from suspended matter used [see for 
example Groenhuis et al 1983 and Bergougnoux et al 1996 and refs therein]. As 
described above, the <(> dependence is uniform over 2JC. Comparison with measured 
Volume Scattering functions for selected ocean waters [Petzold 1972] suggests that 
values of g between 0.8 and 0.99 give an appropriate representation of scattering of 
532 nm radiation from suspended matter. This proved a useful approximation for 
scattering from water as well during testing. However, such a function significantly 
under-estimates the backscattering from the random fluctuations in water, which is 
governed by Rayleigh scattering (section 5.1). 
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Appendix 1 

The program in this appendix is current as of 05-August-96. 

modules.f90 
I ********************* NylODI II P ^Ff^TION ******************** 

| 
MODULE PHJ.OGIC 

SAVE 
LOGICAL(l)ph_finish 

END MODULE PHJ.OGIC 
I   ********************* 

MODULE BOXES 
SAVE 
INTEGER(4) it_entry, ir_entry 

! Max dimensions are referenced in main and several other routines 
INTEGER(4), PARAMETER :: ix_plane = 25, jy_plane = 2, kt_plane = 4000 
INTEGER(4), PARAMETER :: ir_rzt = 10, jz_rzt = 50, kt_rzt = 4000 

! Boxed arrays for plane and water - 
INTEGER(4) boxplane(ix_plane, jy_plane, kt_plane) 
INTEGER(4) box_rzt(ir_rzt, jz_rzt, kt_rzt) 

I center position of photon cone in water 
I.,. x_center = plane*sin(scan_angle) 

REAL(8)x_center 
I minimum ToF for returned photon 

REAL(8) plane_mint, water_mint 
END MODULE BOXES 

I   ********************* 

MODULE RAN_PAR 
SAVE 
REAL(8) ai, aj, ak, al, am 

I running sums of random numbers 
REAL(8) callsi, callsj, callsk,callsl, callsm 

I number of calls to generator 
INTEGER(2) is, js, ks, Is, ms 

I seeds 
INTEGER(4) ris(607), rjs(607), rks(607), rls(607), rms(607) 

I random seauence arrays 
END MODULE RAN_PAR 

|   ********************* 

MODULE MONITORS 
SAVE 

! process monitors: 
! number of total, absorbing, water and suspended scattering events 
I and number of end treatments for radial and temporal boxes at the plane 
I (x?p_hot) and in the water (x?w_hot) 

REAL(8) xtotal, xabsorb, xwater, xscatt, xr_hot, xx_hot, xy_hot, & 
xtp_hot xtw_hot 

END MODULE MONITORS 
|   ********************* 

MODULE PHASE 
SAVE 
INTEGER(4) it 
REAL(8) x, y, z, Vx, Vy, Vz, V, t, tO 

END MODULE PHASE 
I   ********************* 

MODULE OUT_PAR 
SAVE 
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INTEGER(4) Loutput m_photons, njotal, n_output 
END MODULE OUT_PAR 

********************* 

MODULE FILES 
SAVE 
CHARACTER(40) finfo, fPlane, tot, frun 

END MODULE FILES 
********************* 

MODULE EXTREMA 
SAVE 

maximum radial extent in water, max x and y at plane, min and max 
temporal extents in water (1,2) and plane (3,4) 
note: x and y max are allowed to be negative 

REAL(4) r_max(3), t_max(4) 
END MODULE EXTREMA 

********************* 

MODULE BEAM_PAR 
SAVE 
REAL(8) plane, laser_width, scan_angle, spot sigma 
REAL(8) laser_time 

END MODULE BEAM_PAR 
********************* 

MODULE SURFACE_PAR 
SAVE 
REAL(8) surfjeflect 

END MODULE SURFACE_PAR 
********************* 

MODULE WATER_PAR 
SAVE 

total attenuation coefficient 
REAL(8) atten_coeff 

calculated mean free time in water 
REAL(8) timejnean 
REAL(8) a_coeff, w_coeff, g_water, s_coeff, g_scatt 

values of scattering coeffs for output 
REAL(4) a_out, w_out, gw_out, s_out, gs_out 

END MODULE WATER_PAR 
********************* 

MODULE BOTTOM_PAR 
SAVE 
REAL(8) depth, bott_reflect 

END MODULE BOTTOM_PAR 
********************* 

MODULE SEA_AIR 
SAVE 
REAL(8) costh, sinth_sg. water_n, water_n_sa 

refractive index and cos theta for incident and transmitted media 
REAL(4) n_i, n_t, costhj, costhj 

END MODULE sea_air 
********************* 

MODULE SLICE 
! temporal slice/bin size 

REAL(8) dt_slice 
DATAdt_slice/5.d-10/ 

END MODULE SLICE 

******************* END MODULE SECTION ****************** 

33 



Appendix 2 

The program in this appendix is current as of 05-August-96. 

960805.f90 

960805.f90 
Anisotropie program for simulation of photon transport in sea water 
including air-sea and sea floor boundaries 
provision is made for future extension to consider periodic surface 
topology and arbitrary bottom topology 

The program has been written with the following features... 
All calculations are in SI units... meters and seconds 
The speed of the photons in air is set to be 3x10A8 m/s 
The speed of the photons in water is set to be 2.25x10A8 m/s, 
where the ratio 1.3333333 is the assumed index of refraction 
for the sea water 

The following full Cartesian geometry (x,y,z) has been adopted: 
z = 0 at mean sea level, z = +plane at plane height. 

Photons propagate initially in the -z direction, are reflected and 
propagate to +plane. 

Plane notionally propagates in the +y direction 
Photons are scanned out in the +x direction. 
The mean collision frequency is set by a grand total collision cross 
-section composed of the following: 

There are three possible interactions of the photons with the water 
- Absorption: mean free time set by mean free path for process x 

lambda_ = 1 /coeff_x ... a = 0.05 %20 meter water' 
- note that l(z) = l_0 exp(-lambda_x z) is analogous to 

1(f) = L0 exp(-MFT_x t) 
where lambda is the mean free distance 
where the speed of the photons in the absorbing media implies 

v = lambda_a/MFT_a 

- Scattering from water:... MFT set as above ... Anisotropy from 
Henyey-Greensteia using average cos theta g ~ 0.95 (variable) 

- Scattering from suspended matter: - characterised by single MFT 
set as above 

- That is the effective density and properties of the water as an 
absorber and scatterer are set separately, as is the density of 
the scatterer 

Laser beam temporal width is variable ... 
characterised as a temporal 'flat top' 

Beam divergence is variable 
Initial photon velocity cosines set by observing that the spot 
size is 2x the spot radius, which represents the 1 /e point for 
the photon intensity 
The photon distribution is modelled by a Gaussian characterised 
by the spot radius 

Sea state is flat... Snell's Law is used on photon entry and exit 
'* Photons are reflected from the sea surface at entry and exit 

using Fresnel's Eguations. 

Bottom state is flat... 
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** Photons are reflected from the bottom with a variable probability 
Cosine distribution is used in theta and 0-2Pi in Phi 

Photon positions are recording in r,z,t in boxes,... 
boxplane x (1 m boxes), y (1 meter boxes) 

and t (.5 ns boxes) at z = plane meters 
t is offset to be at box 1 for the first non-zero time 

box_rzt: 1 m x 1 m x0.5ns, centred around water entry point 

created for DECalpha May-July 1996 MJB 
in collaboration with Robert Whatmough, Derek Bertilone and Ralph Abbot 
change log started 060696 

060696 Variables are described in declaration and/or first 
assignment 
170796 1 m boxes in z for initial debugging 
180796 split monolithic program file into the following components 

1) date-named file ... contains main and routines called by 
main. 

2) modules.f90 contains modules 
3) level! .f90 contains routines called by subroutines in 

main program 
2) Ievel2.f90 contains routines called by subroutines in 

levell .f90 and other routines in Ievel2.f90 
A daily directory structure contains files 
first attempt at array compacting ... at plane, it = 1 

corresponds to a min ToF for given beam config 
10 m boxes in x and y at plane for debugging ... 

200796 First 'release' version ... cos theta set to 1 in scattering 
and at bottom (phi = 0) for debugging 

210796 Introduce parameters for array dimension 
250796 Timing boxing verified through testing 
260796 Correctly treat total internal reflection in levell .f90 

Edited for Specular bottom 13:16 
300796 Back to diffuse bottom 
020896 Added treatment for z = locaLb in where 

cleaned up a few errors and bugs found since 300796 
NOT under RCS yet! 

modules used 
USE phjogic 
USE boxes 
USE ran_par 
USE monitors 
USE phase 
USE out_par 
USE files 
USE extrema 
USE beam_par 
USE water_par 
USE bottom_par 
USE sea_air 
USE slice 
USE portlib 
IMPLICIT NONE 

main program bits and pieces 
loop indices 

INTEGER(4) i,j,k 
loop index 

INTEGER(4) ii 
time between collisions 
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REAL(8) deltCLt 
! absolute time of next collision 

REAL(8) tck 
! absolute time of next time bin 

REAL(8) tout 
I exclusive random number function 

REAL(4) randt 
I random variable - standard random number intermediate 

REAL(4) rl 
I machine specific timing 

REAL(4) tarray(2) 
REAL(4) cpu, old 

I timing 
CHARACTER^) tbuf 
CHARACTER(9) dbuf 
EXTERNAL ETIME 
REAL(4) ETIME 

I fall safe hanaiers 
INTEGER(2)ifaill,ifail2 

I 
I Start the clock 

CALLdate(dbuf) 
CALLtime(tbuf) 
WRrrE(V)tbuf,'on',dbuf 
cpu = ETIME(tarray) 

I Read in seeds and initialise random sequences 
II OPEN(unit = 15, file = 'seeds.dat', 

& 
STATUS = 'unknown', err = 1011) 

READ(15,*)is,js, ks. Is, ms 
CLOSE(15) 
IF((is.eq.js).OR.(is.eq.ks).OR.(is.eq.ls).OR.(is.eq.ms))THEN 

WRITE(V)'Check last run: Seeds Equal!!' 
STOP 

END IF 
IF(Qs.eq.ks).OR.Qs.eq.ls).OR.Qs.eq.ms))THEN 

WRITE(V)'Check last run: Seeas Equal!!' 
STOP 

END IF 
IF((ls.eq.ms))THEN 

WRITE(*/)'Check last run: Seeds Equal!!' 
STOP 

END IF 
12 OPEN(UNIT -15, FILE = 'ris607.dat', 

& 
FORM = 'UNFORMATTED', STATUS = 'unknown', err =1021) 

DO 5000 ii = 1 , 607 
READ(15)ris(ii) 

5000 END DO 
CLOSE(15) 
OPEN(UNIT = 15 , FILE = 'rjs607.dat', 

& 
FORM = 'UNFORMATTED', STATUS = 'unknown', err =1021) 

DO5010N = 1 ,607 
READ(15)rjs(ii) 

5010 END DO 
CLOSE(15) 
OPEN(UNIT = 15, FILE = Yks607.dat1, 

& 
FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021) 
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DO 5020 ii = 1 , 607 
READ(15)rks(ii) 

5020 CONTINUE 
CLOSE(15) 
OPEN(UNIT = 15, FILE = Yls607.dat1, 

& 
FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021) 

DO 5030 ii = 1 , 607 
READ(15)rls(ii) 

5030 CONTINUE 
CLOSE(15) 
OPEN(UNIT = 15, FILE = 'rms607.dat', 

& 
FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021) 

DO 5032 ii = 1 , 607 
READ(15)rms(ii) 

5032 CONTINUE 
CLOSE(15) 

20 FORMAT(ll) 
WRITEf,*)'*" ENTER THE FOLLOWING FILE INFORMATION *"* 
WRITE(*,*)*ENTER RUN INFORMATION OUTPUT FILE NAME' 
READ(*,30)finfo 
WRITE(V)finfo 
WRITE(*,*)'ENTER BOXED x,y,t OUTPUT FILE NAME FOR PLANE HEIGHT' 
READ(*,30)fplane 
WRITE(V)fplane 
WRITE(*,*)'ENTER BOXED r,z,t OUTPUT FILE NAME FOR WATER' 
READ(*,30)frzt 
WRITE(*,*)frzt 
WRITE(*,*)'ENTER RUN PARAMETER FILE NAME' 
READ(*,30)frun 
WRITE(*,*)frun 

30 FORMAT(A40) 

***********************' VARIABLES SET*******"*""*** *********** 

ai = 0.0d0 ! 
aj = O.OdO !} 
ak = O.OdO !} 
al = O.OdO !} 
am = O.OdO !} 
callsi = O.OdO IJrandom check 
callsj = O.OdO !} 
callsk = O.OdO !} 
callsi = O.OdO i 

callsm = O.OdO ! 
xtotal = O.OdO I total collisions monitor 
xabsorb = O.OdO I absorbing collisions monitor 
xwater = O.OdO I scattering collisions with water 

I monitor 
xscatt = O.OdO I scattering collisions with suspension 

! monitor 
xr_hot = O.OdO ! end treatment radial monitor 
xx_hot = O.OdO I end treatment X monitor 
xy_hot = O.OdO ! end treatment Y monitor 
xtp_hot = O.OdO ! end treatment temporal monitor at 

! plane 
xtw_hot = O.OdO ! end treatment temporal monitor in 

! water 
m_photons=0 ! total number of photons modelled 
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i_output=0 ! number of modelled photons since the 
! last write 

water_n = 3.0d8/2.25d8    I refractive index of water 
water_n_sa = water_n*water_n 

! set exit time of photon from laser to zero 
laserjime = O.dO 

! **** SETUP ARRAYS **** 
DOi= 1, ix_plane 

DOj= 1, jy_plane 
DOk= l,kt_plane 

boxplane(i, j, k)= 0 
END DO 

END DO 
END DO 
DOi = l,ir_rzt 

DOj= 1, jz_rzt 
DOk=l,kt_rzt 

box_rzt(i, j, k)= 0 
END DO 

END DO 
END DO 
DO I =1.3 

r_max(i) = 0. 
END DO 
t_max(l) = 3.e8 
t_max(2) = 0. 
t_max(3) = 3.e8 
t_max(4) = 0. 

I 
I ***************** ENTER RUN PARAMETERS ***************** 
I 

WRITE(V)' ENTER THE FOL1 .OWING PARAMETERS:' 
WRITEC*)' FOR THE BEAM:' 
WRITE(V)" 
WRITEC*)' PLANE HEIGHT IN METERS' 
READ(*/)plane 
WRITE(*/)REAL(plane) 
WRITEC/)' FULL TEMPORAL WIDTH OF LASER BEAM (ns)' 
READ(V)laser_width 
laser_width = laser_width*l .d-9 
WRITE(*/)REAL(laser_width) 
WRITEC*)' BEAM SCAN ANGLE FROM NADIR IN DEGREES - LADS Max: 15' 
READ(*/)scan_angle 
WRITEC *)REAL(scan_angle) 
WRITEC*)' BEAM SPOT DIAM AT SURFACE (86% INTENSITY)(METERS)' 
READ(*,*)spot 
WRITEC *)REAL(spof) 

I 
WRITEC*)" 
WRITEC*)' FOR THE SEA SURFACE :' 
WRITEC*)11 

WRITEC/)' FOR THE WATER :' 
WRITEC*)" 
WRITEC*)' PHOTON ABSORPTION COEFFICIENT' 
READ(*/)a_coeff 
a_out = REAL(a_coeff) 
WRITE(*,*)REAL(a_coeff) 
WRITEC*)' WATER SCATTERING COEFFICIENT' 
READ(*,*)w_coeff 
w_out = REAL(w_coeff) 
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WRITEC *)REAL(w_coeff) 
WRITEC *)' AVERAGE COSINE FOR WATER' 
READ(V)g_water 
gw_out = REAL(g_water) 
WRITE(*/)REAL(g_water) 
WRITEC*)' SUSPENDED MATTER SCATTERING COEFFICIENT' 
READ(Y)s_coeff 
s_out = REAL(s_coeff) 
WRITEC *)REAL(s_coeff) 
WRITEC*)' AVERAGE COSINE FOR SCATTERED 
READ(*/)g_scatt 
gs_out = REAL(g_scatt) 
WRITEC*)REAL(g_scatt) 
WRITEC*)" 
WRITEC*)' FOR THE BOTTOM :' 
WRITEC*)" 
WRITEC*)' BOTTOM DEPTH IN METERS' 
READ(*,*)depth 
WRITE(*, *)REAL(depth) 
WRITEC*)' PERCENTAGE PHOTON REFLECTANCE FROM BOTTOM' 
READ(*,*)bott_reflect 
bott_reflect = bott_reflect/100.d0 
WRITE(*, *)REAL(bott_reflect)* 100. 
WRITEC*,*) 
VA/piTC/*  *y*****************************************************' 

WRITEC*,'*) 
WRITEC*-*)' ENTER TOTAL NUMBER OF PHOTONS TO BE SIMULATED' 
READC*,*)n_total 
WRITEC *)n_total 
WRITEC*,*)' ENTER NUMBER OF SIMULATED PHOTONS BETWEEN OUTPUTS' 
READC*)n_output 
WRITEC*, *)n_output 

I **** SETUP DEPENDENT VARIABLES **** 
CALL dep_var 

I 
, **....*********.. CALCULATION BEGINS ***************** 
I 

cpu = ETIME(tarray) 
CALLtimeCtbul) 
old = cpu 
WRITEC*, *)'Calculation Start :' & 

, cpu/60., 'CPU Cmin) @ ', tbuf 
MAIN LOOP 
********************************************************************* 
********************************************************************* 
********************************************************************* 

slm:   DO WHILE Cm_photons.LT.n_total)    I logic check 111119b 
********************************************************************* 
********************************************************************* 
********************************************************************* 

note: m_photons traces the total number of modelled photons 
go to output if necessary 

IFCLoutput.EQ.n_output)THEN I logic check 11/7/96 
cpu = ETIMECtarray) 
CALLtimeCtbuf) 
WRITEC*)'Outputing to Files :' & 

, cpu/60., 'CPU Cmin) @ ', tbuf 
CALL output 
i_output=0 

reset - incremented in BEGIN 
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cpu = ETIME(tarray) 
old = cpu 

END IF 
! begin the photon, find initial phase space position at entry below 
I mean sea surface, increment counters etc. 

CALL BEGIN 
IF(ph_finish)THEN 

I the photon has been reflected at sea surface, or otherwise 
! finished start new photon - ie. drop through to end of loop 

CYCLE sim ! next photon 
ELSE 

I set tO = t 
to = t 

END IF 
cpu = ETIME(tarray) 
CALLtime(tbuf) 

I ********************************************************************* 

| ********************************************************************* 

between: DO I between collision, until 'lost' loop 
|  ********************************************************************* 
I ********************************************************************* 

! throw deltaj to next collision 
rl = randt(is, ris) 
ai = ai + DBLE(r1) 
callsi = callsi + 1 .OdO 

I update random monitors 
deltaj = - time_mean*DLOG(DBLE(rl)) 

! total simulated time to next collision for this photon 
I 

tck = t + deltaj 
|  ********************************************************************* 

slices: DO ! trace loop 
I «A******************************************************************* 

I time to next interrogation slice 
tcut = DBLE(it+l)*dt_slice 
IF(tck.LT.tcut)THEN 

! photon crosses no slice before collision - no problem 
t = tck 

I time equals time collision 
CALL WHERE 
IF(ph_finish)THEN 

CYCLE sim I next photon 
END IF 

I go straight to collision 
CALL collide 
IF(phJinish)THEN 

CYCLE sim ! next photon 
END IF 

I - choose next collision time 
CYCLE between ! cycle to top of loop 

ELSE IF(tck.EQ.tcut)THEN 
I collides at time slice 
I update slice counter 

it = it + 1 
I time equals time at 'next' slice 

t = tcut 
CALL WHERE 
IF(phJinish)THEN 

CYCLE sim I next photon 
END IF 
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! trace photon at slice 
CALL trace_water 
CALL collide 
IF(ph_finish)THEN 

CYCLE sim ! next photon 
END IF 

I leave the loop - choose next collision time 
CYCLE between ! cycle to top of loop 

ELSE 
I photon cross at least one time slice before collision 
I update it 

it = it + 1 
t = tcut 
CALL WHERE 

I Note, tck remains abs time to collision 
IF(ph_finish)THEN 

CYCLE sim ! next photon 
END IF 
CALL trace_water 

END IF 
END DO slices 

END DO between 
END DO sim 

***************** CALCULATION FINISH ***************** 

& 

& 

cpu = ETIME(tarray) 
WRITE(*,*)'Outputing to Files ^cpu/öO./CPU (min) @ ', 

tbuf 
CALL output 
cpu = ETIME(tarray) 
CALLtime(tbuf) 
WRITEC7STOP :',cpu/60.,'CPU (min) @ ', 

tbuf 
WRITE(V)'' 
WRITE(V)'ln this simulation there were:' 
WRITE(V)'ln',REAL(xabsorb),' Absorption Events' 
WRITE(V)'ln',REAL(xwater),' Scattering Events from Water' 
WRITE(\*)'ln',REAL(xscatt),' Scattering Events from Suspension' 
WRITE07ln',REAL(xtotal),* Total Collisions' 

WRITE(*,*)' Maximum r extent in water:', r_max(l),' (m)' 
WRITEC-7 Maximum x extent at Plane:', r_max(2),' (m)' 
WRITE(Y)' Maximum y extent at Plane:', r_max(3),' (m)' 
WRITE(V)' Minimum temporal extent in water:', t_max(l),' (s)' 
WRITE(V)' Maximum temporal extent in water:', t_max(2),' (s)' 
WRITE(V)' Calculated minimum ToF to Plane :', REAL(plane_mint),' (s)' 
WRITE(V)' Minimum temporal extent at Plane:', t_max(3),' (s)' 
WRITE(\7 Maximum temporal extent at Plane:', t_max(4),' (s)' 
IF(xr_hot.ne.0.dO)THEN 

WRITEC 7 ', REAL(xr_hot),' Too Hot Radial Boxes in Water' 
END IF 
IF(xx_hot.ne.0.dO)THEN 

WRITEC*)1 '. REAL(xx_hot),' Too Hot X Boxes at Plane' 
END IF 
IF(xy_hot.ne.0.dO)THEN 

WRITE(V)' ', REAL(xy_hot),' Too Hot Y Boxes at Plane' 
END IF 
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IF(xtp_hot.ne.0.dO)THEN 
WRITE(*,7 ',REAL(xtp_hot),' Too Hot Temporal Boxes at Plane1 

END IF 
IF(xtw_hot.ne.0.dO)THEN 

WRITEC7 ',REAL(xtw_hot),' Too Hot Temporal Boxes in Water' 
END IF 
GOTO 2000 

I **.,„**..**.*.** Error on networ)< OPEN traps ******************* 
1011 WRITE(*,*)'Error opening seeds.dat' 

ifaill =ifaill + 1 
CALLSLEEP(l) ! Portlib Routine 
IF(ifaill .gt.50)GOTO 2000 
GOTO 11 

1021 WRITEC,*)'Error opening r607.dat' 
CALLSLEEP(l) 
Ifail2 = ifail2 + 1 
IF(ifail2.gt.50)GOTO 2000 
GOTO 12 

2000 STOP 
END 

I 
j  A****************************************************************** 

I 

SUBROUTINE DEP_VAR 
I Set up variables which depend on user input characteristics 
! modules used 

USE phase 
USE ran_par 
USE beam_par 
USE sea_air 
USE boxes 
USE water_par 
USE slice 
IMPLICIT NONE 

I distance from wave included surface to water or plane 
REAL(8) dist 

I functions 
REAL(8) surface 

! Intermediate working variables 
REAL(8) planejnt waterjnt 

! 
I convert scan_angle to SI 

scan_angle = scan_angle* 3.14159265359d0/180.0d0 
I set center of 'in' water array 

x_center = plane*SIN(scan_angle) 
I estimate minimum time for photon to reach water for efficient 
I boxing. - 
I corresponds to an 'early exit' photon travelling 
I down along the scan angle to the surface. 

dist = plane - surfaceO 
waterjnt = dist/3.0d8 - laser_width 

I Now find the nearest integral multiple of dt_slice which is less than 
I or equal to waterjnt 

water_mint = O.dO 
DO WHILE (waterjnint.le.waterjnt) 

water_mint = waterjnint + dt_slice 
END DO 
waterjnint = water_mint - dt_slice 

I estimate minimum time for photon to reach plane height for efficient 
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! boxing. - 
I corresponds to an 'early exit' photon travelling 
! down along the scan angle to the surface, being immediately reflected 
I vertically to plane height 

dist = SQRT((plane - surfaceO)*(plane - surfaceO) & 
+ plane*SIN(scan_angle)*plane*SIN(scan_angle)) & 

+ plane - surfaceO 
planejnt = dist/3.0d8 - laser_width 

I Now find the nearest integral multiple of dt_slice which is less than 
I or equal to planejnt 

planejnint = O.dO 
DO WHILE (plane_mint.le.plane_int) 

planejnint = planejnint + dt_slice 
END DO 
planejnint = planejnint - dt_slice 

i convert spot to radius 
spot = spot/2.d0 
Sigma = spot/SQRT(-2.dO*LOG(1 .dO - 0.86d0)) 

I 
I ***..*...**.***** T0TAL MEAN COLLISION FREQUENCY *****"********" 
! 

atten_coeff = a_coeff + w_coeff + s_coeff 
I Relative attenuations 

a_coeff = a_coeff/atten_coeff 
w_coeff = w_coeff/atten_coeff 
s_coeff = s_coeff/atten_coeff 

I Mean Free Time between collisions, as per header comments 
timejnean = 1 ,d0/(atten_coeff*2.25d08) 

I note: speed of light in water = 2.25d8 m/s 
\kin\TC(* *y*************************************************' 

WRITEC*)' Total Attenuation =', REAL(atten_coeff)-' /meter1 

WRITEC *)' Mean Free Time =', 1 .e9*REAL(timejnean),' ns' 
WRITEC-*)' Expected random Distribution' 
WRITEC-*)' Scattering by Water: 0 -', REAL(w_coeff) 
sjooeff = w_coeff + sjooeff 
WRITE(*,*)' Scattering by Suspension:1 ,REAL(w_coeff),' -'- REAL(s_coeff) 
a_coeff = s_coeff + a_coeff 
WRITEC*)' Absorption by Water: ',REAL(s_coeff),' -'- REAL(a_coeff) 
lyUpiTC/*  *\l*************************************************' 
uiniTr/* *\ 1*************************************************1 

RETURN 
END 

I 
I ******************************************************************* 

I 
SUBROUTINE BEGIN 

I This routine begins a photon - 
I Increments mjphoton and Loutput 
! 
I modules used 

USE phjogic 
USE boxes 
USE phase 
USE outjpar 
IMPLICIT NONE 

I local surface function 
REAL(8) surface 

! 
mjphotons = mjphotons + 1 
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Loutput = Loutput +1 
! set photon finished flag false 

ph_finish = .FALSE. 
! Initialize phase info for debugging 

x = O.dO 
y = O.dO 
z = O.dO 
Vx= O.dO 
Vy= O.dO 
Vz= O.dO 
V = 3.0d8 
t = O.dO 
it = 0 
it_entry = 0 

l 

z = z + surfaceO 
CALL laser 
CALL surface_entry 

! 
RETURN 
END 

I 
I ******************************************************************* 

I 
SUBROUTINE WHERE 

I This subroutine calculates the position and velocity of the 
I photon at time t and returns the phase info through the module 
I phase 
I 
I modules used 

USE phjogic 
USE phase 
USE ran_par 
USE bottom_par 
IMPLICIT NONE 

I elapsed time since last call to WHERE 
REAL(8) deltaj 

! local variables 
REAL(8) locaLs, local_b, zjnt, yjnt, xjnt, tjnt 

! scattering angle components 
REAL(8) costh, sinth, phi 

I boundary functions 
REAL(8) surface, bottom 

I Inclusive random number function 
REAL(4) randti 

I random variable 
REAL(4)rl,r2 

! 
I calculate deltaj first and then intermediate x, y, z 

deltaj = t - to 
zjnt = Vz*delta J + z 
yjnt = Vy*delta J + y 
xjnt = Vx'delta J + x 

I NB: this is compatible with wave action and bottom topography as 
I described in log Book 1, page 32 

locaLs = surfaceO 
locaLb = bottomO 
IF((z_int.LTJocaLs).AND.(zJnt.GT.IocaLb))THEN 

I there is nothing more to do - set intermediates to final 
I most common occurrence 
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z = zjnt 
y = yjnt 
x = x_int 

ELSE IF(z_int.lt.local_b) THEN 
! first, determine if photon is reflected ... saves time 

rl = randti(ls, rls) 
al = al + DBLE(rl) 
callsl = calls! + 1 .OdO 
IF(rl .ge.bott_reflect)THEN 

I photon is absorbed ... set phjinish, exit to end 
phjnish = .TRUE. 
GOTO 666 

END IF 
I find time to intersection with bottom, reflect, then carry 
I photon for the rest of the time associated with call 

tjnt = (local_b-z)/Vz 
z = locaLb 
y = Vy*t_int + y 
x = Vx*t_int + x 

I set random variables 
rl = randti(js, rjs) 
aj = aj + DBLE(rl) 
callsj = callsj + 1 .OdO 
r2 = randti(is, ris) 
ai = ai + DBLE(r2) 
callsi = callsi + 1 .OdO 

! determine cos theta for scattered vector... uniform on 0,1 
I... only positive Vz on bottom reflection, from NB: FLAT BOTTOM 

costh = rl 
sinth = SQRT(1 .OdO - costh*costh) 
phi=6.283185308d0*r2 
Vz=2.25d8*costh 
Vx=2.25d8*sinth*COS(phi) 
Vy=2.25d8*sinth*SIN(phi) 

I take the photon on to next collision with new Vx, Vy, Vz 
I note that technically, the photon path 
I may be unphysical... ie. may cross an interface here 
I watch in debug later 

tjnt = deitaj - tjnt 
z = Vz*t_int + z 
y = Vy*t_int + y 
x = Vx*t_int + x 
IF(z.ge.surfaceO)THEN 

! Ignore the rest of this photon 
WRITE(V)' A bottom reflected photon has exited the surface' 
WRITE(V)'z = ',REAL(z) 
phjnish = .TRUE. 

END IF 
ELSE IF(z_int.GT.Iocal_s) THEN 

! find time to intersection with surface, call SURFACE_EXIT and 
! take appropriate action 
! NB: t is set if exit 

tjnt = (local_s-z)/Vz 
! t at surface 

z = locaLs 
y = Vy*tjnt + y 
x = Vx*tjnt + x 
CALL surface_exit(tjnt) 
IF(.NOT.ph_finish)THEN 

! take the photon on to next collision with new Vx, Vy, Vz 
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! note that technically, if very wavy, the photon path 
I may Pe unphysical... ie. may cross an interface here 
I watch in dePug later 

tjnt = delta_t - tjnt 
z = Vz*t_int + z 
y = Vy*t_int + y 
x = Vx*t_int + x 
IF(z.le.PottomO)THEN 

! Ignore the rest of this photon 
WRITE(Y)' A surface reflected photon has struck the bottom1 

phjinish = .TRUE. 
WRITE(\7 z = ',REAL(z) 

END IF 
END IF 

ELSE IF(z_int.EQ.Iocal_b)THEN 
I set the depth to depth +0.1 mm and this will do 
I may need checking for V normailisation 02/08/96 

z = local_P + 0.0001 
y = yJnt 
x = xjnt 

ELSE 
I photon is relaxing on the surface ... 
I set the depth to depth -0.1 mm and this will do 
I may need checking for V normailisation 02/08/96 

z = locaLs - 0.0001 
y = yJnt 
x = xjnt 

END IF 
666   t0 = t 

RETURN 
END 

I 
l   A****************************************************************** 

I 
SUBROUTINE COLLIDE 

I 
I This subroutine determines which collision the photon has 
I 
I modules used 

USE phjogic 
USE ran_par 
USE phase 
USE monitors 
USE water_par 
IMPLICIT NONE 

I random number variables 
REAL(4) randti 

I inclusive (0-1) function return 
REAL(4) Rcoll, rl 

I scattering angle components 
REAL(8) costh, sinth 

I variables for defining random vector and hence absolute velocity 
I cosines wrt to known x,y,z 

REAL(8) rcosth, rsinth 
I random dangles 

REAL(8) rx, ry, rz 
I speed scalars 

REAL(8) c 
I parallel components 

REAL(8) rxp, ryp, rzp, Vxp, Vyp, Vzp 
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I orthogonal components 
REAL(8) rxo, ryo, rzo, Vxo, Vyo, Vzo 

! local value for average cosine 
REAL(8) g_ 

! 
Rcoll = randtiQs, rjs) 

! THROW DICE TO DETERMINE PROBABILITY 
aj = aj + DBLE(Rcoll) 
callsj = callsj + 1 .OdO 
xtotal = xtotal + l.dO 

COMPARING PROBABILITIES FOR PROCESSES AGAINST Rcoll 

IF(Rcoll.GT.s_coeff) THEN        I greater than scat... absorb 
xabsorb = xabsorb + 1 ,d0 

I absorbing collision... 
ph_flnish = .true. 

I finish flag set 
RETURN 

I return 
ELSE IF(Rcoll.GT.w_coeff) THEN I greater than water... suspended 

I scattering from suspension 
g_ = g_scatt 

I set average cosine for scattering 
xscatt = xscatt + 1 ,d0 

ELSE 
I scattering from water 

g_ = g_water 
xwater = xwater + l.dO 

END IF 
I 
I 1. find costh and sinth according to Henyey-Greenstein distribution 
! 

Rl = randti(ks, rks) 
ak = ak + DBLE(rl) 
callsk = callsk + 1 .OdO 
costh = 1 ,d0/2.d0/g_*(l .dO+g_*g_ - (1 ,dO-g_*g _)*(1 ,dO-g_*g _)/ & 

(1 ,d0-g_+2.d0*g_*rl)/(l ,d0-g_+2.d0*g_*rl)) 
I 

IF(ABS(costh).EQ.1,0)THEN 
sinth = O.dO 

ELSE 
sinth = DSQRT(1 .OdO - costh*costh) 

END IF 
l 

! 2. find the component of Vf which is parallel to Vi 
i (ie scale to costh and vf/vi) 

vxp=vx*costh 
vyp=vy*costh 
vzp=vz*costh 

I 3. Define a random vector in xyz space 
! 

200   rl = randti(ls, rls) 
al = al + DBLE(rl) 
callsl = callsl + 1 .OdO 
rcosth=(1.d0-2.d0*rl) 
rsinth=SQRT(l .dO-rcosth*rcosth) 
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rl = randti(ms, rms) 
am = am + DBLE(rl) 
callsm = callsm + 1 .OdO 
rl =6.283185308d0*rl 
rx=rsinth*COS(rl) 
ry=rsinth*SIN(rl) 
rz=rcosth 

4. find the components of the random vector that is parallel to Vi 

c=(vx*rx+vy*ry+vz*rz)/5.0625dl 6 
rxp=vx*c 
ryp=vy*c 
rzp=vz*c 

I 
I 5. find the components of the random vector that is orthogonal to Vi 
I 

rxo=rx-rxp 
ryo=ry-ryp 
rzo=rz-rzp 
c=SQRT(rxo*rxo+ryo*ryo+rzo*rzo) 
IF(c.LT.l.e-5)GOTO200 

I 
! 6. Scale to get components of Vf orthog to Vinit 
! 

c=2.25d8*sinth/c 
vxo=rxo*c 
vyo=ryo*c 
vzo=rzo*c 

I 
! 7. Add perp and orthog components for final components 
I 
I for debugging  comment out the three lines below... no scattering 

vx=(vxo+vxp) 
vy=(vyo+vyp) 
vz=(vzo+vzp) 
v=SQRT(vx*vx+vy*vy+vz*vz) 

I 
RETURN 
END 

I 
|   ********************************************************************* 

I 
SUBROUTINE TRACE_WATER 

I 
! This routine traces the motion of the photons through the 
I water 
I photons are traced in r,z,t about x = plane*sin(scan_angle), y = 0 
! note: this really only deals with the 'in water' motion of the 
I photons TRACE_PLANE deals with the special case of the photons at 
I z=plane 
I 
I modules used 

USE phase 
USE monitors 
USE boxes 
USE extrema 
IMPLICIT NONE 
INTEGER(4) ir, iz, it_water 
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I working intermediates 
REAL(8) r, xjnt 

! 
i ******************* \A/niTp IMTO APPAV^ ********************** 

! 
xjnt = x - x_center 
r = SQRT(x_int*x_int + y*y) 
lr = INT(r)+l 
IF(ir.gt.ir_rzt)THEN 

ir = ir_rzt 
xr_hot = xr_hot + 1.0 

END IF 
! note boxing of iz includes abs(z)... wave action will blur! 

iz = INT(ABS(z))+l 
IF(iz.gt.jz_rzt)THEN 

iz = jz_rzt 
WRITEC*)1 ALERT: iz = 50' 

END IF 
I 
I NOTE: THIS MEANS THAT AT Z = 0 IT.WATER = 1 ... MAY NEED SOME THOUGHT 
I 

it_water = it - it_entry + 1 
IF(it_water.gt.kt_rzt)THEN 

it_water = kt_rzt 
xtw_hot = xtw_hot + 1.0 

END IF 
box_rzt(ir, iz, it_water) = box_rzt(ir, iz, it_water) + 1 
IF(t.lt.t_max(1)) t_max(l)=t 
IF(t.gt.t_max(2)) t_max(2)=t 
IF(r.gt.r_max(l)) r_max(1)=r 
RETURN 
END 

t  ********************************************************************* 

I 
SUBROUTINE OUTPUT 

I This routine outputs arrays of information gathered in trace 
! to named files 
I Also updates information files and save the random number info 
I 
I modules used 

USE files 
USE monitors 
USE extreme 
USE beam_par 
USE water_par 
USE bottom_par 
USE out_par 
USE ran_par 
USE boxes 

I        USE portlib 
IMPLICIT NONE 

I WRITE loop indices 
INTEGER(4) i 

I as in main 
REAL(4) tarray(2) 

I as in main 
EXTERNAL ETIME 
REAL(4) ETIME 
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REAL(4) cpu 
I as in main 

CHARACTERS) tbuf 
! fail safe handlers 

INTEGER(2)ifaill,ifail2 
! 

CALLtime(tbuf) 
cpu = ETIME(tarray) 
WRITE(*,*)'Writing to files' 
WRITE(Y)m_photons,' photons in',cpu/60.,'CPU (min)@ ',tbuf 

CALL write_boxed 

OPEN(UNIT = 10, FILE = finfo, STATUS = 'unknown') 
I for PC based program 
!        OPEN(UNIT= 10,FILE='otest.txt',status='unknown') 

WRITE(1 (^'Calculation at:' 
WRITE(10,*)REAL(plane),' m PLANE HEIGHT' 
WRITE(10,*)REAL(laser_width)*l .e9,' ns LASER WIDTH' 
WRITE(10,*)REAL(scan_angle)*180./3.14159265359,' degrees SCAN ANGLE' 
WRITE(10,*)REAL(spot)*2.,' m SPOT DIAMETER' 
WRITE(10,*)REAL(depth),' m BOTTOM DEPTH' 
WRITE(10,*)REAL(bott_reflect)*100.,' % BOTTOM REFLECTANCE' 
WRITE(10,*)" 
WRITE(10,*)'ABSORPTION COEFF  :', a_out 
WRITE(10/)'H2O SCATTERING COEFF:', w_out 
WRITE(10,*)'H2O AVERAGE COSINE :', gw_out 
WRITE(10,*)'SUS SCATTERING COEFF:', s_Out 
WRITE(10,*)'SUS AVERAGE COSINE :', gs_out 
WRITE(10,*)' Total Attenuation = ', REAL(atten_coeff),' /meter' 
WRITEfJO/)' Mean Free Time = ', 1 .e9*REAL(time_mean),' ns' 
WRITE(10,*)" 
WRITE(10,*)m_photons,' photons in',cpu/60.,'CPU (min) @ ', tbuf 
WRITE(10,*)" 
WRITE(10,*)'ln this simulation there were:' 
WRITE(10,*)'ln',REAL(xabsorb),' Absorption Events' 
WRITE(10,*)'ln',REAL(xwater),' Scattering Events from Water' 
WRITE(10,*)'ln',REAL(xscatt)/ Scattering Events from Suspension' 
WRITE(10,*)'ln',REAL(xtotal),' Total Collisions' 

! 
WRITE(10,*)' Maximum r extent in water:', r_max(l),' (m)' 
WRITE(10,*)' Maximum x extent at Plane:', r_max(2),' (m)' 
WRITE(10,*)' Maximum y extent at Plane:', r_max(3),' (m)' 
WRITE(10,*)' Minimum temporal extent in water:', t_max(l),' (s)' 
WRITE(10,*)' Maximum temporal extent in water:', t_max(2),' (s)' 
WRITE(10,*)' Calculated minimum ToF to plane :', REAL(plane_mint),' (s)' 
WRITE(10,*)' Minimum temporal extent at Plane:', t_max(3),' (s)' 
WRITE(10,*)' Maximum temporal extent at Plane:', t_max(4),' (s)' 
IF(xr_hot.ne.0.dO)THEN 

WRITE(10,*)' ', REAL(xr_hot),' Too Hot Radial Boxes in Water' 
END IF 
IF(xx_hot.ne.0.dO)THEN 

WRITE(10,*)' ', REAL(xx_hot),' Too Hot X Boxes at Plane' 
END IF 
IF(xy_hot.ne.0.dO)THEN 

WRITE(10,7 ', REAL(xy_hot),' Too Hot Y Boxes Plane' 
END IF 
IF(xtp_hot.ne.0.dO)THEN 

WRITE(10,7 ',REAL(xtp_hot),' Too Hot Temporal Boxes at Plane' 
END IF 
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IF(xtw_hot.ne.0.dO)THEN 
WRITE(10,7 ',REAL(xtw_hot),' Too Hot Temporal Boxes in Water' 

END IF 
! 

WRITEOO, *)'PLANE HEIGHT OUTPUT IN ', fplane 
WRITE(10,*) ix_plane, jy_plane, kt_plane 
WRITE(10.*)'RZT OUTPUT IN ', frzt 
WRITEOO,*) ir_rzt, jz_rzt, kt_rzt 
CLOSE(IO) 
OPEN(UNIT = 10, FILE = frun , STATUS = 'unknown') 

! for PC based program 
!        OPEN(UNIT= 10,FILE='rtest.txt',status='unknown') 

WRITE(10, *)m_photons, n_total, n_output 
WRITE(10,*)plane_mint, waterjnint 
WRITEOO, *)plane, depth, spot 
WRITE(10,*)atten_coeff, time_mean 
WRITEOO, *)a_coeff, w_coeff, s_coeff 
WRITEOO, *)g_water, g_scatt 
WRITEOO, *)bott_reflect 
WRITEO0,*)is,js-ks,ls,ms 
IF(callsi.eq.O.)callsi = 1.0 
IF(callsj.eq.0.)callsj = 1.0 
IF(callsk.eq.0.)callsk = 1.0 
IF(callsl.eq.0.)callsl = 1.0 
IF(callsm.eq.O.)callsm = 1.0 
WRITE(10,*)ai/callsi, aj/callsj, ak/callsk 
WRITE00,*)al/callsl, am/callsm 
WRITEOO,*)callsi, callsj, callsk, callsl, callsm 
WRITE(10,50)finfo, fplane, frzt 
WRITEOO,*) ix_plane, jy_plane, kt_plane 
WRITEOO,*) ir_rzt, jz_rzt, kt_rzt 

50     FORMAT(5(lx,A40,/)) 
CLOSE(IO) 

11 OPEN(UNIT=15,FILE='seeds.dat',STATUS='unknown',err=1011) 
WRITE(15,*)is,js, ks. Is, ms 
CLOSE05) 

12 OPEN(UNIT =15, FILE = 'ris607.dat', & 
FORM = 'UNFORMATTED', STATUS = 'unknown', err =1021) 
DO i = 1 , 607 

WRITE(15)ris(i) 
END DO 
CLOSE(15) 
OPEN(UNIT = 15 , FILE = 'rjs607.dat', & 

FORM = 'UNFORMATTED', STATUS = 'unknown', orr =1021) 
DO i = 1 , 607 

WRITE(15)rjs(i) 
END DO 
CLOSE05) 
OPENCJNIT =15, FILE = 'rks607.dat', & 

FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021) 
DO i = 1 , 607 

WRITE(15)rks(i) 
END DO 
CLOSE05) 
OPEN(UNIT = 15 , FILE = Tls607 .dat', & 

FORM = 'UNFORMATTED', STATUS = 'unknown', err = 1021) 
DO i = 1 , 607 

WRITE(15)rls(i) 
END DO 
CLOSE(15) 
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OPEN(UNIT = 15, FILE = 'rms607.dat', & 
FORM = 'UNFORMATTED1, STATUS = 'unknown', err = 1021) 

DO i = 1 , 607 
WRITE(15)rms(i) 

END DO 
CLOSE(15) 
cpu = ETIME(tarray) 
CALLtime(tbuf) 
WRITEf ,*)'Written Files :',cpu/60.,'CPU (min) @ ',    & 

tbuf 
GOTO 2000 

I *«*.**......*.** Error on network OPEN traps ******************* 
1011 WRITE(V)'Error opening seeds.dat' 

CALLSLEEP(l) 
ifaill = ifaill + 1 
IFOfaill ,gt.50)GOTO 2000 
GOTO 11 

1021 WR!TE(V)'Error opening r607.dat' 
CALLSLEEP(l) 
ifail2 = ifail2 + 1 
IF(ifail2.gt.50)GOTO 2000 
GOTO 12 

2000 RETURN 
END 

I 
I   ******************************************************************** 

I 
REAL(4) FUNCTION RANDT(J,R) 

I This FORTRAN-callable function returns a pseudo-random REAL *4 
I number uniformly distributed over the exclusive interval (0,1). 
I Coded in December, 1982 by 
I W A Alford, 

School Computer Unit, 
Research School of Physical Sciences, 
Australian National University, 

I        Canberra, ACT 
I 
I Modified April 1989 (MJB) to remove possibility of generation of 0.0 
I and to retain the seeding between runs 
Mainly cosmetic modification July 1996 (MJB) for f90 compatibility 

The FORTRAN call to the REAL M function RANDT is of the form: 

y = RANDT (j) 
I 
I The coding is based on the following paper: 
! 
! TOOTILL J.P., ROBINSON W.D. and EAGLE J., 1973. %An asymptotically 
! random Tausworthe sequence.' J.A.C.M. 20(3), 469-481. 
I 

In the abstract to this paper they make the following statement. 

"An asymptotically random 23-bit number sequence of astronomic period 
607 

2    -1 is presented. An initialisation program is required to provide 
607 starting values, after which the sequence can be generated from 
a three-term recurrence of the Fibonacci type. In addition to 
possessing the theoretically demonstrable randomness properties 
associated with Tausworthe sequences, the sequence possesses equi- 
dlstribution and multi-dimensional uniformity properties vastly in 
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! excess of anything that has been shown for conventional congruent- 
I tally generated sequences.. The claimed randomness properties do not 
I necessarily extend to subsequences, though it is not yet known which 
! particular subsequences are at fault. Accordingly, the sequence is 
! at present suggested only for simulations with no fixed dimensional- 
! Ity requirements.' 
! 
I Some statistical tests (frequency, serial, auto-correlation, gap and 
! runs tests) on the output from this coding engender confidence in 
! these assertions and show that this pseudo-random number generator is 
I better than a generalised Fibonacci sequence type generator coded by 
I R Brent in use at the Australian National University. In terms of 
! speed on average this generator is comparable to the linear 
! congruential and generalised Fibonacci sequence type generators. 
! 
I The initialisation of array R comes from subroutine INIT23 in the 
! above paper. The statistical properties of the output from this 
I coding is highly dependent upon the initial set of 19 arbitrary 
I 32-bit integers used in subroutine INIT23. In this case they were 
I derived from a generalised Fibonacci sequence type generator with lag 
! 127 referred to above and then subroutine RECUR in the above paper 
! was called once again because it was observed that the first 607 
! output numbers were statistically poor but everything thereafter was 
I acceptable. Several other sets of initial 19 arbitrary 32-bit 
! integers were tried but in terms of the statistical properties of the 
I output sequences this set was the best found. There may be even 
I better sets of initial 19 arbitrary 32-bit integers (or 38 arbitrary 
I 16-bit integers for subroutine INIT16). This critical fact was not 
I mentioned in the above paper and suggested good sets of initial 
I arbitrary integers would have been appreciated in the above paper 
I (Initial attempts at finding these were disenchanting). The actual 
I values in array R used here are those for the first 607 terms of the 
I output (ie. after another call to subroutine RECUR). 
! 

IMPLICIT NONE 
INTEGER(2) I, j 
INTEGER(4) r(607) 

! Should we generate the next 607 terms of the sequence? 
5      J=J+1 

IF O-le.607) GOTO 40 
I 

! Generate the next 607 terms of the sequence. The sequence is based on 
! 
I 607 334 
I the primitive trinomial x   +x +1 over GF(2). 
! 
10     DO20j=l,273 

r(i)=r(i).XOR.r(i+334) 
20     END DO 

DO 30 i=274,607 
r(i)=r(i).XOR.r(i-273) 

30     END DO 
I Re-initialise J 

j=1 
! Scale the result to (0,1) by dividing by 2**23 (as arbitrary 23-bit 
! Integers are produced) 
IX      randt=REAL(R(J))/REAL(2**23) 
I modification to get random numbers on the exclusive interval (0,1) 
I 16777216 = 2**24 
40     randt=REAL(r(j)+r(j)+l)/REAL(l 6777216) 
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IX      IF(randt.eq.0.0)GOTO 5 
RETURN 
END 

I 
I   ********************************************************************* 

! 
REAL(4) FUNCTION RANDTI(j,r) 

I This FORTRAN-callable function returns a pseudo-random REAL *4 
I number uniformly distributed over the inclusive interval (0,1). 
I description as above 
I 

INTEGER(2) I, j 
INTEGER(4) r(607) 

I Should we generate the next 607 terms of the sequence? 
5      j =j +1 

IF Q.le.607) GO TO 40 
I 
I Generate the next 607 terms of the sequence. The sequence is based on 
I the 
! 607 334 
I primitive trinomial       x   +x+l overGF(2). 
I 
10    DO 20 i= 1,273 

r(i)=r(i).XOR.r(i+334) 
20     END DO 

DO 30 i=274,607 
r(i)=r(i).XOR.r(i-273) 

30     END DO 
I Re-initialise J 

j=l 
I Scale the result to (0,1) by dividing by 2**23 (as arbitrary 23-bit 
I Integers are produced) 
I 16777216 = 2**24 
I 8388608 = 2**23 
40    randti=REAL(r(j))/8388608 

RETURN 
END 

Appendix 3 

The program in this appendix is current as of 05-August-96. 

Ievell.f90 

SUBROUTINE LASER 
I This routine determines at what value of time, t, the photon is 
I Initiated by the laser, determines x and y a sea surface 
I 
! modules used 

USE beam_par 
USE phase 
USE ran_par 
USE boxes 
IMPLICIT NONE 

I increments to x, y due to laser width 
REAL(8) dx, dy 

! inclusive random number function 
REAL(4) randti 

I intermediate random var 
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REAL(4)rl 
! 

IF(laser_width.lt.l .d-1ö)THEN 
! RETURN a delta t of 0. 

Iaser_time = O.dO 
ELSE 

! throw a random fraction of the laser width for inclusion in laser 
! 'air time' 

rl = randti(ls, rls) 
al = al + DBLE(rl) 
callsl = callsl + 1 .OdO 
laser_time = (rl - 0.5)*laser_width 

! note that a positive value of laser_time, actually means that the 
I photon is emitted 'early' Rt t = 0. 

END IF 
I 
I Determine x and y coord for photon on surface at time of entry 
! (NB: THIS ASSUMES Z =0 for the moment) 
I Two components... y = 0 and x = z sin (scan_angle) 
I 

x = plane*SIN(scan_angle) 
I ... x = x+dx y = y+dy from spot size 

CALL spot_dev(dx,dy) 
x = x + dx 
y = dy 

I 
RETURN 
END 

! 
1   ******************************************************************* 

! 
SUBROUTINE SPOT_DEV(dx,dy) 

I This routine returns dx and dy, the increment/decrement to x and y 
I due to the finite spot_zize of the Gaussian beam 
I 
! modules used 

USE beam_par 
USE ran_par 
IMPLICIT NONE 
REAL(4)rl,r2 
REAL(8) dx, dy 

! exclusive random number function 
REAL(4) randt, randti 

! 
IF(spot.lt.0.001d0)THEN 

dx = O.dO 
dy = O.dO 

ELSE 
rl = randt(js, rjs) 
aj = aj + DBLE(rl) 
callsj = callsj + 1 .OdO 
r2 = randti(ks, rks) 
ak = ak + DBLE(rl) 
callsk = callsk + 1 .OdO 
dx = sigma*SQRT(-2.*LOG(rl))*COS(6.28318530718d0*r2) 
dy = sigma*SQRT(-2.*LOG(rl))*SIN(6.28318530718d0*r2) 

END IF 
] 

RETURN 
END 
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A****************************************************************** 

SUBROUTINE SURFACE_ENTRY 
The photon is either reflected (Vz is inverted) and the program calls 
to_plane for Poxing, or the photon is refracted into the water 
according to Snell's law n_l*sin(thj) = n_2*sin(th_2), where n_l = 1 
for air and n_2 = 1.333333 for sea water 
Velocity components are assigned non-zero values for the first time 
photon is 'traced' 

modules used 
USE phase 
USE ran_par 

!        USE surface_par 
USE Peam_par 
USE sea_air 
USE Poxes 
USE slice 
IMPLICIT NONE 

! Fresnel Formulae components 
REAL(4) r_para, r_perp 

I reflected fraction 
REAL(4) surf.reflect 

! inclusive random numPer function 
REAL(4) randti 

! random intermediate 
REAL(4) rl 

I radius squared at z = 0 for the moment 
REAL(8) rsq_zO 

! distance from wave included surface to plane 
REAL(8) dist 

I local surface height 
REAL(8) top_Pound 

! functions 
REAL(8) surface 

! 
I determine 'air' time for photon 

rsq_zO = x*x + y*y 
top_Pound = z + surfaceO 
dist = SQRT(rsq_zO + (plane-top_Pound)*(plane-top_Pound)) 
t = dist/3.0d8 + laserjime 

I photon enters the water Petween it and it + 1 
! need to set it' to "previous slice' so that TCUT in main is set to 
I next slice 

it = INT(t/dt_slice) 
it_entry = it 

I Assign in air velocity vector for photon 
Vz = (z-plane)/t 
Vy = y/t 
Vx = x/t 

! 
I Does the photon reflect from the surface? 
I determine 

costh = ABS(Vz)/3.d8 
sinth_sq = 1.0- costh* costh 
nj = 1.0 
n_t = water_n 
costhj = costh 
costh_t = 1.0/water_n*SQRT(water_n_sq - sinth_sq) 
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I determine the fraction of the reflected flux 
surf_reflect=0.25*(r_para0+r_perp0)*(r_para0+r_perp0) 

! test surf „reflect against a random number 
R1 = randti(ms, rms) 
am = am + DBLE(rl) 
callsm = callsm + 1 .OdO 

I 
IF(r1 .gt.surf_reflecf)THEN 

I no: Snell's law gives V components in the water (log book 1 pg 37) 
Vz = -2.25d8/water_n*SQRT(water_n_sq - sinth_sq) 
Vy = Vy/water_n_sq 
Vx = Vx/water_n_sq 

I record initial position in water 
CALL trace_water 

ELSE 
I yes: reverse Vz and go to plane of plane 

Vz = -Vz 
CALL to_plane 

END IF 
I 

RETURN 
END 

I 
I ******************************************************************* 

! 
SUBROUTINE SURFACE_EXIT(t_int) 

I Note that this is re-entrant in principle... Snell's law is used. 
I The photon is either reflected (Vz is inverted) and the program 
I returns to WHERE, or the photon is refracted into the air 
I Calls to_plane for boxing if exit 
I Should not modify ph_finish 
I 
I modules used 

USE phase 
USE ran_par 

I        USE surface_par 
USE beam_par 
USE sea_air 
IMPLICIT NONE 

I fraction of t - to from WHERE required to take photon to surface 
REAL(8) tjnt 

! Intermediate variable for 1 /water_n_sq 
REAL(8) tjnv 

I Fresnel Formulae components 
REAL(4) r_para, r_perp 

I reflected fraction 
REAL(4) surf_reflect 

I inclusive random number function 
REAL(4) randti 

! random intermediate 
REAL(4) rl 

! 
I Does the photon reflect from the surface? 
I determine 

costh = ABS(Vz)/2.25d8 
sinth_sa = 1.0 - costh*costh 
tjnv = 1 .dO/water_n_sq 

I determine if theta > theta_critical => total internal reflection 
IF(sinth_sq.LT.t_inv)THEN 

I most common occurrence is reflection/refraction 
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nj = water_n 
n_t = 1.0 
costhj = costh 
costh_t = water_n*SQRT(t_inv - sinth_sq) 

! determine the fraction of the reflected flux 
surf_reflect=0.25*(r_paraO+r_perpO)*C_paraO+r_perpO) 

! test surfjeflect against a random numPer 
rl = randti(ms, rms) 
am = am + DBLE(rl) 
callsm = callsm + 1 .OdO 

ELSE 
I use rl Pelow as 100% switch when theta is large enough for 
! total internal reflection ... push to ELSE Pelow and reflect 

rl =-2.0 
END IF 
IF(rl .gt.surf_reflect)THEN 

I yes: Sneli's law gives V components in the air 
Vz = 3.0d8*water_n*SQRT(t_inv - sinth_sq) 
Vy = Vy*water_n_sq 
Vx = Vx*water_n_sq 

I time at surface exit is to + tjnt 
t = to + tjnt 

I go to plane 
CALL to_plane 

ELSE 
I no: reverse Vz and go Pack to WHERE 

Vz = -Vz 
END IF 

I 
RETURN 
END 

I 
I   fr****************************************************************** 

I 
REAL(8) FUNCTION SURFACE 

I Calculates the local surface topography 
I should have the same sense as plane ... ie. waves have positive height 
I troughs are negative 
I at the present (14/07/96) no wave action 
I 

surface = O.OdO 
I 

RETURN 
END 

! 
I fr****************************************************************** 

! 
REAL(8) FUNCTION BOTTOM 

I Calculates the local surface topography 
I at the present (14/07/96) flat Pottom 

USE Pottom_par 
Pottom = -depth 

! 
RETURN 
END 

I 

I 

SUBROUTINE WRITE_BOXED 
I This routine writes out the Poxed information 
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! Made modular to ease the future move to run length limited or 
I similar compression of data 
I 
! modules used 

USE boxes 
USE files 
USE out_par 
IMPLICIT NONE 
INTEGER(4) i,j,k 

! 
I photons to date 

OPEN(UNIT= 10,FILE=fplane,form='UNFORMATTED',status='unknown') 
I for PC based program 
!        OPEN(UNIT=10,FILE=,ptest.binl,form=,UNFORMATTED,,status=lunknown') 

DO i = 1, ix_plane 
DOj= l,jy_plane 

WRITE(10)(boxplane(i, j, k), k = 1, kt_plane) 
END DO 

END DO 
CLOSE(IO) 
OPEN(UNIT=15,FILE=frzt,form='UNFORMATTED',status=,unknown') 

I for PC based program 
I        OPEN(UNIT= 15,FILE='wtest.bin,,form=,UNFORMAnED,,status=lunknown') 

DO 20 i = 1 , ir_rzt 
D0 15j=l,jz_rzt 

WRITE(15)(box_rzt(i, j, k), k = 1. kt_rzt) 
15 END DO 
20 END DO 

CLOSE(15) 

RETURN 
END 

Appendix 4 

The program in this appendix is current as of 05-August-96. 

Ievel2.f90 

SUBROUTINE TO_PLANE 
! This routine solves the eguation to determine where the photon 
I intercepts the plane of the plane boxes the photon there 
I sets ,ph_finish. flag true 
I z should have already been modified to include surface action at 
I this point 
I 
I modules used 

USE phjogic 
USE phase 
USE beam_par 
IMPLICIT NONE 
REAL(8) airjime 

! 
I determine time to reach plane height 

airjime = (plane-z)/Vz 
I determine x, y, z, t at plane 

x = x + Vx*air_time 
y = y + Vy*air_time 
t = t + airjime 
ph_finish = .true. 

59 



CALL trace_plane 
! 

RETURN 
END 

******************************************************************* 

SUBROUTINE TRACE_PLANE 
This routine traces the time history of the photons and the radial 
extent at the height of the plane 
Note Absolute x and y are used 

modules used 
USE phase 
USE monitors 
USE boxes 
USE extrema 
USE slice 
IMPLICIT NONE 
INTEGER(4) ix, iy, it_plane 

******************* WRITE INTO ARRAYS ********************** 

ix = INT(ABS(x/10.dO)) + l 
iy = INT(ABS(y/10.dO))+l 
IF(ix.gt.25)THEN 

ix = 25 
xx_hot = xx_hot + 1 

END IF 
IF(iy.gt.2)THEN 

iy = 2 
xy_hot = xy_hot + 1 

END IF 
it_plane = INT((t-plane_mint)/dt_slice) + 1 
IF(it_plane.gt.4000) THEN 

itjDlane = 4000 
xtp_hot = xtp_hot + 1.0 

END IF 
IF(it_plane.lt.l)THEN 

write(*,*)' Error in time boxing at plane:   t \t 
write(V)' Calculated minimum ToF: planejnint', planejnint 
write(Y)' it_plane:', it_plane 

temp debug 030896 
it_plane = 1 

END IF 
boxplane(ix,iy,it_plane) = boxplane(ix,iy,it_plane) + 1 
IF(t.lt.t_max(3)) t_max(3)=t 
IF(t.gt.t_max(4)) t_max(4)=t 
IF(ABS(x).gt.r_max(2))r_max(2)=x 
IF(ABS(y).gt.r_max(3))r_max(3)=y 
RETURN 
END 

**************************************************************** 

REAL(4) FUNCTION R_PARA() 
Fresnel formula for reflection amplitude of component parallel 
to incident polarisation 

USE sea_air 
IMPLICIT NONE 
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! Hecht and Zajac pg 74 
r_para=ABS((n_t*costh_i-n_i*costh_t)/(n_t*costh_i+n_i*costh_t)) 

! 
RETURN 
END 

I 
I  ********************************************************** 

I 
REAL(4) FUNCTION R_PERP0 

! Fresnel formula for reflection amplitude of component perpendicular 
I to incident polarisation 

USE sea_air 
IMPLICIT NONE 

I Hecht and Zajac pg 74 
r_perp = ABS((n_i*costhJ-n_t*costh_t)/(nJ*costhJ+n_t*costh_t)) 

! 
RETURN 
END 

I 
|  **************************************************************** 

I 
REAL(4) FUNCTION T_PARA0 

I Fresnel formula for transmission amplitude of component parallel 
! to incident polarisation 

USE sea_air 
IMPLICIT NONE 

I Hecht and Zajac pg 74 
t_para = ABS(2.*nj*costh_i/(n_t*costh_i + n_i*costh_t)) 

I 
RETURN 
END 

I 
I  **************************************************************** 

I 
REAL(4) FUNCTION T_PERP() 

I Fresnel formula for transmission amplituPe of component perpendicular 
! to incident polarisation 

USE sea_air 
IMPLICIT NONE 

I Hecht and Zajac pg 74 
t_perp = ABS(2.*nJ*costh_i/(nJ*costh_i + n_t*costh_t)) 

I 
RETURN 
END 

Appendix 5 

The program in this appendix is current as of 02-September-96. 

960902p.f90 

phoproc 

Processes boxed data from photest series 
Createa July 1996 for Pentium MJB 
ported August 1996 to DECalpha MJB 

Change log 
240796     changed to output explicit histogram style x,y data 
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130896 created r,z,t data output for AVS 
190896 changed in water r,z,t data to log representation 

AVS only has 256 colours to represent the data 
200896 Introduced time slicer for water data ... 

I 210896 Changed r,z,t water data output to give ln(0) = 0 
I 220896 Change both the water r,z,t and r,z at output to 
I give data s.t. z = 0 is at the top! 
I 020996 19 boxes in diameter attempt in In(water) 
! 

I modules used 
USE boxes 
USE files 
USE extrema 
USE slice 
IMPLICIT NONE 

I function case integer 
INTEGER(2) iqu 

I number of time slices, slice index 
INTEGER(4) nslice, i_sl 

! main program bits and pieces 
! Array for x and y summed ToF at Plane 

INTEGER(4) ToF(kt_plane) 
I photons simulated and output at frequency .... 

INTEGER(4) m_photons, njfotal, n_output 
I loop indices 

INTEGER(4) i,j,k 
I non-zero element counter 

REAL(4) non_zero 
I x axis    time variable 

REAL(4) xjime 
! ToF output file name 

CHARACTER(40) fToF 
I ASCII water data filename 

CHARACTER(40) fwater 
I timing 

CHARACTER^) tbuf 
CHARACTERS) dbuf 

I 
CALL date(dbuf) 
CALLtime(tbuf) 
WRITE(V)tbuf,' on ', dbuf 

I 
I Read in files as written 

WRITECV)'*** ENTER THE FOLLOWING FILE INFORMATION ***' 
WRITEC7ENTER RUN INFORMATION OUTPUT FILE NAME1 

READ(\30)finfo 
WRITE(V)finfo 
WRITEC7ENTER BOXED x,y,t OUTPUT FILE NAME FOR PLANE HEIGHT' 
READ(*,30)fplane 
WRITE(V)f plane 
WRITEC7ENTER BOXED r,z,t OUTPUT FILE NAME FOR WATER' 
READ(*,30)frzt 
WRITE(V)frzt 
WRITE(*/)'ENTER RUN PARAMETER FILE NAME' 
READ(*,30)frun 
WRITE(V)frun 

30     FORMAT(A40) 
DOk= 1, kt_plane 

ToF(k) = 0 
END DO 
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! 
! Read in data arrays 
l 

CALL READ_BOXED 
I Manipulate 
! 

non_zero = 0. 
DOk = l,kt_plane 

DO i = 1, ixjDlane 
DOj= 1, jy_plane 

ToF(k) = Tof(k) + boxplane(i, j, k) 
IF(boxplane(i, j, k).GT.0.)non_zero = non_zero+1. 

END DO 
END DO 

END DO 
write(V)The total number of elements in array BOXPLANE is  ', & 

REAL(kt_plane*ix_plane*jy_plane) 
write(V)The number of non-zero elements in array BOXPLANE is ',& 

non_zero 
non_zero = 0. 
DO i = 1 , ir_rzt 

DOj= l,jz_rzt 
DOk=1,kt_rzt 

IF(box_rzt(i, j, k).GT.0.)non_zero = non_zero+l. 
END DO 

END DO 
END DO 
write(*,*)'The total number of elements in array BOX_RZT is ', & 

REAL(ir_rzt*jz_rzt*kt_rzt) 
write(V)'The number of non-zero elements in array BOX_RZT is', & 

non_zero 

Find minimum flight time in run parameter file 
OPEN(UNIT = 10, FILE = frun , STATUS = 'unknown') 
READ(10,*)m_photons, njotal, n_output 
WRITE(V)m_photons,' of', njotal, & 

' Photons simulated in run to be analysed' 
READ(10,*)plane_mint 
READ(10,*)plane, depth, spot 
READ(10,*)a_coeff, w_coeff, s_coeff 
READ(10,*)g_water, g_scatt 
READ(10,*)bott_reflect 
READ(10,*)is,js, ks, Is, ms 
IF(callsi.eq.O.)callsi = 1.0 
IF(callsj.eq.O.)callsj = 1.0 
IF(callsk.eq.0.)callsk = 1.0 
IF(callsl.eq.0.)callsl=1.0 
IF(callsm.eq.0.)callsm = 1.0 
READ(10,*)ai/callsi, aj/callsj, ak/callsk 
READ(10,*)al/callsl, am/callsm 
READ(10,*)callsi, callsj, callsk, callsl, callsm 
READ(10,50)finfo, fplane, frzt 

CLOSE(IO) 
qu:    DO 

WRITE(V)'' 
WRITE(*,*)' What operation do you wish to perform?' 
WRITEC*)' Write out ASCII ToF histogram at plane height? ... V 
WRITE(V)' Write out ASCII ToF In(data) in water? ... 2' 
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WRITEC7 Write out ASCII R,Z data for given time(s)? ... 31 

WRITEC*)' Quit from Case loop? ... 01 

READ(Y)iqu 
SELECT CASE (igu) 
CASE(l) 

WRITEC7ENTER PLANE TOF OUTPUT FILE NAME' 
READ(\30)fToF 
WRITE(\*)fTbF 
OPEN(UNIT= 10,FILE=fToF,status='unknown') 
DOk= l,kt_plane 

Calculate absolute time in nanoseconds for x axis 
x_time = 1 ,e9*(plane_mint + REAL(k)*dt_slice) 

write x, y histogram to file 
WRITE(10,*)(x_time-REAL(l .e9*dt_slice)).'', ToF(k) 
WRITE(10,*)x_time,'', ToF(k) 

END DO 
CLOSE(IO) 

CASE (2) 
WRITE(*/)'ENTER FILE NAME FOR ASCII WATER DATA OUTPUT1 

READ(*,30)fwater 
WRITEC *)fwater 
OPEN(UNIT= 10,FILE=fwater,status='unknown') 
DOi = ir_rzt, 1,-1 

DOj = jz_rzt, 1 ,-1 
DOk=l,kt_rzt 

IF(box_rzt(i, j, k).LT.l)THEN 
WRITE(10.*)'0.0' 

ELSE 
WRITE(10,*)LOG(REAL(box_rzt(i, j, k))) 

END IF 
END DO 

END DO 
END DO 
DO i = 2, ir_rzt 

DO j = jz_rzt ,1,-1 
DOk=l,kt_rzt 

IF(box_rzt(i, j, k).LT.l)THEN 
WRITE(10,7 0.0' 

ELSE 
WRITE(10,*)LOG(REAL(box_rzt(i, j, k))) 

END IF 
END DO 

END DO 
END DO 
CLOSE(IO) 

CASE (3) 
WRITE(*,*)'How many slices do you which to write out?' 
READ(V)nslice 
DO i si = 1, nslice 

WRITE(*,*)'Enter time array index for R, Z slice number ',i_sl 
READ(V)k 
WRITEC7ENTER FILE NAME FOR ASCII R, Z SLICE DATA OUTPUT' 
READ(*,30)fwater 
WRITE(V)fwater 
OPEN(UNIT= 10,FILE=fwater,status='unknown') 
DO i = 1 , ir_rzt 

DOj = l,jz_rzt 
IF(box_rzt(i,j, k).LT.l)THEN 

WRITE(10,7< -j, ' 1.0' 
ELSE 

64 



WRITE(10.*)i, -j, REAL(box_rzt(i, j, k)) 
END IF 

END DO 
END DO 
CLOSE(IO) 

END DO 
CASE (0) 

EXIT qu 
CASE DEFAULT 

CYCLE qu 
END SELECT 

END DO qu 
I 

END 
I 

! 
SUBROUTINE READ_BOXED 

! This routine reads in the boxed information ... as WRITE BOXED above 
I Made modular to ease the future move to run length limited or 
I similar compression of data 
I 
I modules used 

USE boxes 
USE files 
IMPLICIT NONE 
INTEGER(4) i,j,k 

I 
I read photon data as written above 

OPEN(UNIT= 1 aFILE=fplane,form=,UNFORMATTED,,status='unknown') 
I        OPEN(UNIT= 10,FILE='ptest.bin,,form=,UNFORMAnED,,status=lunknown') 

DO i = 1, ix_plane 
DOj= 1, jy_plane 

READ(10)(boxplane(i, j, k), k = 1, kt_plane) 
END DO 

END DO 
CLOSE(IO) 

I        OPEN(UNIT= 15,FILE=Vtest.bi^form='UNFORMATTED',status='unknown') 
OPEN(UNIT=15,FILE=frzt/form='UNFORMAnED,,status='unknownl) 
DO i = 1 , ir_rzt 

DOj= l,jz_rzt 
READ(15)(box_rzt(i, j, k). k = 1, kt_rzt) 

END DO 
END DO 
CLOSE(15) 

! 
RETURN 
END 
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