
RL-TR-97-20
Final Technical Report
June 1997

CERTIFICATION OF
REUSABLE SOFTWARE
COMPONENTS

Software Productivity Solutions, Inc.

Sharon Rohde and Pamela Geriner

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

wmm w
ßnc QUALITY msemzm* 4

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-20 has been reviewed and is approved for publication.

üiikaicik (J> U^yid APPROVED:
DEBORAH A. CERINO
Project Engineer

^^iß£tJ(^Uc FOR THE COMMANDER: „
JOHN A. GRANIERO, Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1216 Jefferson Devis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1997

3. REPORT TYPE AND DATES COVERED

Final Dec 93 - Dec 96
4. TITLE AND SUBTITLE

CERTIFICATION OF REUSABLE SOFTWARE COMPONENTS

6. AUTHOR(S)

Sharon Rohde and Pamela Geriner

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Productivity Solutions, Inc.
122 Fourth Avenue
Indialantic FL 32903

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)

Rome Laboratory/C3CB
525 Brooks Road
Rome, NY 13441-4505

5. FUNDING NUMBERS

C - F30602-94-C-0024
PE -62702F
PR -5581
TA -18
WU-61

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-20

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Deborah A. Cerino/C3CB/(315) 330-2054

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words!

Recognizing that software will not be reused unless its quality can be accurately and effectively determined, Rome
Laboratory has initiated a research project in reusable software asset certification. Certification, as used in this
document, refers to a process in which inspection, analysis, and testing techniques are used to achieve assurance of the
quality of reusable assets. This process might be performed by a reuse repository, by a reuser, by an independent
organization providing such services, or by a development organization. This effort provides a certification
framework that defines methods and tools that can be applied to detect defects and ultimately avoid rework. The
framework focuses on certifying individual components (i.e., smaller pieces of a system) for a particular quality or
group of qualities. These individual components can then be used as system building blocks.

14. SUBJECT TERMS

Software Certification, Software Assessment and Evaluation

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

264
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Proscribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 94

Table of Contents

Executive Summary.
V1X

-I
1 Introduction x

2 Motivations

3 Definition of Certification 7

4 The CRC Project 9

4.1 Project Team y

4.2 Project Goals y

4.3 Measures of Success lü

4.4 Technical Approach 12

4.5 Task Areas, Roles and Work Products 13

5 Reuse and Certification Technologies 15

5.1 History 15

5.2 State of the Art 16

5.3 State of the Practice 18

5.4 Trends 21

6 Reuse Context 23

6.1 Business Strategies 25

6.2 Domain 26

6.3 Asset Production 28

6.4 Asset Selection 30

6.5 Reuse Frameworks 31

6.6 Relationships Among Context Elements 32
6.7 Validation of the Reuse Context 34

7 Impacts of Reuse Context to the Certification Framework 35

7.1 Software Reuse Business Model 35
7.2 Domain 36

7.3 Asset Type 38

7.4 Quality Factor :
39

7.5 A Thread through the CF 40

8 Project History 43

9 Project Results 47

9.1 Summary of Certification Framework 47

9.1.1 Defect Model Elements 50
9.1.2 Non-Conformance Class 51
9.1.3 Certification Techniques 52
9.1.4 Process Definition 55
9.1.5 Certification Levels 57
9.1.6 The Economics of Certification 61
9.1.7 Certification Framework Synopsis 61

9.2 Summary of Cost/Benefit Plan 64

9.2.1 Certification Method Effectiveness by Error Type 67
9.2.2 Evaluation of Models and Data Collection 68
9.2.3 Cost/Benefit Synopsis 70

9.3 Summary of OCD 71

9.4 Summary of the Certification Toolset 76
9.5 Summary of the Certification Field Trial 78
9.6 Summary of the Code Defect Model 93

10 Lessons Learned 95

11 Conclusions 99

12 Implications for Future Research 103

References 107

Other Documents Used Ill

Appendix A - Annotated Bibliography of Business Strategies A-l

Appendix B - Annotated Bibliography of Domain Analysis B-l

Appendix C - Annotated Bibliography of Asset Production C-l

Appendix D -Annotated Bibliography of Asset Selection D-l

Appendix E - Annotated Bibliography of Reuse Frameworks E-l

Appendix F - Technical Paper - "Certification of Reusable Software
Components" F-l

11

List of Figures

Figure 4-1. Measures of success as an R&D project 11
Figure 4-2. Measures of success for technology transfer 12

Figure 4-3. CRC's major task areas and products 14
Figure 6-1. Reuse context for asset quality certification 23

Figure 6-2. Time line of research in domain analysis 27

Figure 6-3. Asset evaluation/selection and the make-versus-buy decision 29

Figure 6-4. Relationships among elements of the reuse context 32

Figure 7-1. Quality factors influence the resulting certification process 40
Figure 7-2. CF tailored to the quality factor of "Correctness" for "Code" assets 42

Figure 8-1. CRC chronological project history 43

Figure 8-2. Evolution of the CF 44
Figure 9-1. Decision support mechanism for the Certification Framework 49
Figure 9-2. Certification Framework element groups 50

Figure 9-3. Certification method filters and effectiveness 54

Figure 9-4. Family of certification processes for an asset type 56

Figure 9-5. Certification Framework operational overview 56

Figure 9-6. Context of Cost/Benefit Models 65

Figure 9-7. Certification Risk Reduction 66
Figure 9-8. Reuse Certification Cost Model Construction Process 69

Figure 9-9. ACE operational concept 72

Figure 9-10. ACE scenarios of use 73
Figure 9-11. Desired level of confidence with a minimum level of required reliability. 75
Figure 9-12. Certification tool selection process customization 77

Figure 9-13. Comparison of actual effort to predicted 84

Figure 9-14. Effort to achieve additional test coverage 84

Figure 9-15. Defect detection 87

Figure 9-16. Asset's defect profile 88
Figure 9-17. Comparison of asset's defect profile to default profile 90
Figure 9-18. Cumulative effectiveness of certification steps 92
Figure 12-1. Phases and milestones for technology maturity [RED93] 104

Figure 12-2. Extension of the CF to other quality concerns 106
Figure A-l. Productivity enhancement through reuse versus cost of reuse A-16

Figure B-l. Domain analysis supports software development B-15

ill

Figure B-2. The Synthesis process B-26

Figure C-l. Factors pointing toward reuse C-14
Figure D-l. CEP (Components Evaluation Procedure) Model D-5

Figure D-2. Certification of reusable software components D-8
Figure E-l. STARS Conceptual framework for reuse processes E-5

Figure E-2. Factors affecting reusability E-9

Figure E-3. Conceptual Framework for Reuse Processes E-15

Figure F-l. Measures of success for CRC F-9

Figure F-2. Reuse Context for Asset Quality Certification F-9

Figure F-3. Default certification process overview F-ll

Figure F-4. ProGen certification results of defect detection F-ll

Figure F-5. Asset's defect profile F-12
Figure F-6. Comparison of asset's defect profile to default profile F-13
Figure F-7. Cumulative effectiveness of certification steps F-14
Figure F-8. Phases and milestones for technology maturation F-15

IV

List of Tables

Table 5-1. Answers to sixteen reuse questions 20
Table 6-1. Total research articles in each of the background areas 25

Table 6-2. Dependencies of business strategy on other reuse context elements 34

Table 7-1. Tabular view of the CF 36
Table 7-2. Example of domain certification considerations for space application 39

Table 7-3. Thread through the tabular view of the CF 41

Table 9-1. Certification Research Areas 48

Table 9-2. Defect model 51

Table 9-3. Defect data profile 51
Table 9-4. Techniques effectiveness profile 53
Table 9-5. Cost/benefit optimization data elements 55
Table 9-6. Consequences Considered for Determining Degree of System Integrity 58

Table 9-7. Determining Required Degree of System Integrity 58

Table 9-8. Determining System Control/Complexity 59

Table 9-9. Risk Classes 59
Table 9-10. Examples of Risk Classes from Nuclear Power Industry 60

Table 9-11. Certification Levels 62

Table 11-1. Assessment of CRC measures of R&D success 100

Table 11-2. Assessment of CRC measures of technology transfer success 100

Table 11-3. Examples of CRC technology awareness 101
Table A-l. Approximate return for each dollar invested in reuse A-18

Table B-l. A summary of the FODA method B-13
Table C-l. A comparison of chemical engineering and software engineering C-12

Table E-l. A framework for reusability technologies E-3

Table E-2. Reuse maturity model E"l7

Table F-l. Tabular view of the Certification Framework F-10

Table F-2. Asset's defect density F-12
Table F-3. Effectiveness at detecting seeded defects F-13

Contributors to the CRC Project

Listed in alphabetical order, the following persons contributed to the CEC Project:

Lynda L. Burns, Software Productivity Solutions, Inc.

David N. Card, Software Productivity Solutions, Inc.

Deborah A. Cerino, Rome Laboratory of the U.S. Air Force Material Command

Edward R. Comer, InQuisiX, Inc.

Karen A. Dyson, Software Productivity Solutions, Inc.

Janet Flynt, Underweiters Laboratories, Inc.

Pamela T. Geriner, Ph.D., Software Productivity Solutions, Inc.

Jeffrey A. Heimberger, Software Productivity Solutions, Inc.

Duane W. Hybertson, Ph.D., The MITRE Corporation

Holly G. Mills, Software Productivity Solutions, Inc.

Sharon L. Rhode Software Productivity Solutions, Inc.

Charlotte O. Scheper, VeriQuest, LLC

Sharon Smith, Underwriters Laboratories, Inc.

Tom Strelich, General Research Corporation

William M. Thomas, The MITRE Corporation

VI

Executive Summary

It has been estimated that the U.S. Department of Defense (DoD) spends in excess of $24
billion per year to develop and maintain software for weapons, command and control,
and other automated information systems [GA093]. The increase in number and size of
software intensive systems has led to rising software development and maintenance
costs. Consequently, the DoD needs to identify methods that will accelerate
development schedules, lower cost, and improve quality.

Software component reuse and certification are two technologies that have great
potential to counteract the rising costs of software development and maintenance.
Certification, as defined in this and related documents, refers to a process by which
inspection, analysis, and testing techniques are used to achieve assurance of the quality
of reusable assets. Certification is expected to stimulate component reuse and reduce
the amount of rework required [DUN92]. The certification process is performed by a
reuse repository, by a reuser, by an independent organization providing such services,
or by a development organization.

As more and more organizations embark on software reuse programs, the need for a
comprehensive and systematic approach to component reuse and certification becomes
essential. Organizations need guidance within their reuse programs to assess the
benefits of certification in terms of risk reduction and cost savings. Recognizing that
software will not be reused unless its quality can be accurately and effectively
determined, Rome Laboratory (RL) of the United States Air Force Materiel Command
established a research program in reusable software asset certification. The goal of this
technology thrust at RL was to make certification usable, practical, and cost-effective.

In January of 1994, RL began a thirty-month, exploratory development project entitled
"Certification of Reusable Software Components" (CRC). The prime contractor for CRC
was Software Productivity Solutions, Inc., with subcontractors from General Research
Corporation and VeriQuest, LLC.

Under the CRC contract, a Certification Framework (CF) for software components was
developed which is sensitive to varying domains, business strategies and asset types. A
cost benefit plan, an operational concept, and a suite of certification tools were defined.
An automated prototype of the CF was developed and can be accessed on the World
Wide Web through a CRC home page. A data collection guide and procedures for a
certification field trial were developed, an initial field trial was conducted, and the
results were analyzed and reported. Additional certification field trials are planned
under separately funded contracts.

Vll

This document, the Final Technical Report (FTR), describes the work performed and the
results of the CRC project. Additional supporting information is found in the following
succeeding volumes of the project documentation suite:

• Volume 1 - Project Summary - summarizes the project, the reuse context and its
impacts to the development of a certification framework.

• Volume 2 - Certification Framework (CF) - describes the research conducted to
develop the CF.

• Volume 3 - Cost/Benefit Plan - describes a systematic approach to evaluating
the costs and benefits of applying certification technology in the context of a
reuse program.

• Volume 4 - Operational Concept Document (OCD) - defines the operational
concept of an automated certification environment and reports the results of
field interviews with potential users.

• Volume 5 - Certification Field Trial - details the procedures, collection forms,
results, and lessons learned from the initial certification field trial performed by
Software Productivity Solutions, Inc.

• Volume 6 - Certification Toolset - identifies the requirements for certification
tools and reports the evaluation and selection of tools based on these
requirements.

• Volume 7 - Code Defect Model - provides a model of code defects based on
empirical data collected from studies of industry projects.

• Automated Certification Environment (ACE) System/Segment Specification
(SSS) - specifies the requirements for the ACE.

The details of the work completed in each of these topic areas can be found in the
designated supporting document.

Vlll

1 Introduction

This document, the Final Technical Report (FTR), captures the work done under
Certification of Reusable Software Components (CRC), Contract Number F30602-94-C-
0024, funded by the Rome Laboratory of the Air Force Materiel Command, Rome, NY.
The FTR is organized into the following sections:

• Section 1, Introduction - describes the organization of this document and the
other associated volumes of project documentation.

• Section 2, Motivations - discusses the climate and incentives of reuse and
certification within the software industry.

• Section 3, Definition of Certification - defines and differentiates certification for
reuse.

• Section 4, The CRC Project - identifies the project goals, the CRC Team, the
measures of success, our technical approach, task areas, roles and work
products.

• Section 5, Reuse and Certification Technologies - discusses the history, state of
the art, the state of the practice, and trends of reuse and certification.

• Section 6, Reuse Context - defines the reuse context for asset quality certification
and discusses its elements.

• Section 7, Impacts of the Reuse Context to the Certification Framework -
discusses the impacts of the elements of the reuse context to the development of
the CF.

• Section 8, Project Results - indicates the history of the project and reports the
results of the development of the Certification Framework, the Cost/Benefit
Plan, the Operational Context Document, the Certification Field Trial, the
Certification Toolset, and the Code Defect Model.

• Section 9, Lessons Learned - captures the experiences gained through the
activities of the project.

• Section 10, Conclusions - assesses the accomplishments of the project using
established measures of success and identifies implications for future areas of
research.

• References - lists the references for the body of the report and its appendices.

• Appendix A, Business Strategies - the first of a subdivided annotated
bibliography of a literature survey of prior research in reuse business strategies.

• Appendix B, Domain Analysis - the second of a subdivided annotated
bibliography of a literature survey of prior research in domain analysis.

• Appendix C, Asset Production - the third of a subdivided annotated
bibliography of a literature survey of prior research in asset production.

• Appendix D, Asset Selection - the fourth of a subdivided annotated
bibliography of a literature survey of prior research in asset selection.

• Appendix E, Reuse Frameworks - the fifth of a subdivided annotated
bibliography of a literature survey of prior research in reuse frameworks.

• Appendix F, Technical Paper - submitted for juried review to the Second IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS '96).

Some of the annotated bibliographies in Appendix A-E are lengthy, whereas others are
very short. For those that are short, a full reference pointing to the original source
appears if the reader desires further study. For those references whose annotations are
lengthy, a more elaborate discussion was included since these particular references
critically impacted and closely fed into the development of the Certification Framework.

Additional supporting information about the work performed under CRC is found in
the following succeeding volumes of the project documentation suite:

• Volume 1 - Project Summary - summarizes the project and the reuse context and
its impacts to the development of a certification framework.

• Volume 2 - Certification Framework (CF) - describes the research conducted to
develop the CF.

• Volume 3 - Cost/Benefit Plan - describes a systematic approach to evaluating
the costs and benefits of applying certification technology in the context of a
reuse program.

• Volume 4 - Operational Concept Document (OCD) - defines the operational
concept of an automated certification environment and reports the results of
field interviews with potential users.

• Volume 5 - Certification Field Trial - details the procedures, collection forms,
results, and lessons learned from the initial certification field trial performed by
Software Productivity Solutions, Inc.

• Volume 6 - Certification Toolset - identifies the requirements for certification
tools and reports the evaluation and selection of tools based on these
requirements.

• Volume 7 - Code Defect Model - provides a model of code defects based on
empirical data collected from studies of industry projects.

• Automated Certification Environment (ACE) System /Segment Specification
(SSS) - specifies the requirements for the ACE.

The details of the work completed in each of these topic areas can be found in the
designated supporting document.

3/4

2 Motivations

It has been estimated that the Department of Defense (DoD) spends in excess of $24
billion per year to develop and maintain software for weapons, command and control,
and other automated information systems [GA093]. The increase of software intensive
systems in conjunction with rising software development and maintenance costs has
resulted in the need to identify methods that will accelerate development schedules,
lower cost, and improve quality. To address this problem, the DoD established a
program, on November 25,1991, for implementing software and other information
technology initiatives as a potential solution to the upwardly spiraling costs of
producing and maintaining software. As a part of this program, the Director for
Defense Information proposed a software reuse initiative to build partnerships among
users and suppliers of reusable components as well as the research and development
community. The following ten key thrusts of this software reuse strategy are discussed
in [GA093]:

1. Specify the domains where reuse opportunities exist and identify criteria to
prioritize, qualify, and select domains for application of reuse techniques.

2. Define the types of products suitable for reuse and develop criteria to validate
these components for new applications.

3. Determine what ownership criteria pertain to these components and require
conscious decisions regarding their ownership.

4. Modify the current acquisition process so reuse is integrated into each phase of
the acquisition process and into the overall system/software life cycle.

5. Define models that may suggest novel strategies and require tailored acquisition
approaches to support reuse, in order to guide business decisions.

6. Establish procedures to collect metrics that (1) measure the payoff from the
reuse initiative and (2) aid developers in the selection of reusable components.

7. Define standards for the various types of components that will permit their
certification for reuse.

8. Pursue a technology-based investment strategy that identifies, tracks, and
transitions appropriate reuse-oriented process and product technologies.

9. Conduct comprehensive training to ensure that practitioners and policy makers
capitalize on the initiative.

10. Exploit near-term products and services that facilitate movement to a reuse-
based paradigm.

The Defense's software technology strategy also states that the savings from reusing
software assets is estimated to be $11.3 billion in constant 1992 dollars by the year 2008.
In addition, other Defense sources report that "benefits go beyond cost savings to
include substantial increases in productivity for avoidance of rework, and added
software quality through the use of tested components [GA093]."

Recognizing that software will not be reused unless its quality can be accurately and
effectively determined, the U.S. Air Force Rome Laboratory established a research
program in reusable software asset certification. The Certification of Reusable
Components (CRC) Program is one of many projects being executed within the
certification initiative. RL's 20-year legacy of research in software quality,
measurement, test and validation provides an excellent foundation for certification
research and development. Certification is expected to stimulate component reuse and
reduce the amount of rework required [DUN92].

3 Definition of Certification

The term certification has been used traditionally to refer to a process whereby an
independent organization confirms that products meet certain requirements [ANS94].
Within the software reuse community, the term refers to a variety of activities including
inspection and documentation of reusable assets as well as quality evaluation and
assessment. Certification, as used in this and related documents, refers to a process in
which inspection, analysis, and testing techniques are used to achieve assurance of the
quality of reusable assets. This process might be performed by a reuse repository, by a
reuser, by an independent organization providing such services, or by a development
organization.

It is important at the onset, that we distinguish between the traditional process of
certifying software for safety critical systems (i.e., flight and avionics systems, nuclear
power systems, etc.) and the type of certification around which we are building our
work products on the CRC project. Rather than confirming that a product meets certain
requirements, CRC provides a certification framework, given a business strategy, a
domain, an asset type, and a quality factor, that defines methods and tools that can be
applied to detect defects and ultimately avoid rework. Prior to CRC, very little work
had been done in certifying software from this perspective of quality and avoidance of
rework.

Likewise, very little work had been done in certification of software for safety critical
systems. To date, the industry has relied on hardware, not software, to achieve
certifications of safety critical software. Just recently, in 1993, the U.S. Nuclear
Regulatory Commission, produced a draft document that initially defines software
certification and begins to address "retrofitting" safety critical nuclear plants with
software systems [NRC93]. The NRC does not certify software itself; rather, a nuclear
power plant is licensed. The plant's licensing includes the software that it contains. As
an aside, the nuclear commissions in foreign countries (e.g., in Europe and Canada) are
seeking formal methods for software assessment.

The MITRE Corporation prepared another document for the Nuclear Regulatory
Commission that provides guidelines for high integrity software [MIT95]. This
document examines the technical basis for candidate guidelines that could be
considered in reviewing and evaluating high integrity computer software used in the
safety systems of nuclear power plants. It describes approximately 200 candidate
guidelines that span the entire range of software life-cycle activities; the assessment of
the technical basis for those candidate guidelines; and the identification, categorization
and prioritization of research needs for improving the technical basis.

With these different uses of certification in mind, it is important to distinguish between
certification in general, software certification as discussed above, and software
certification for reuse. CRC focuses on the later, in that we are providing a framework
to "certify" individual components (i.e., smaller pieces of a system) for a particular

quality, or a group of qualities. These individual components can then be used as
building blocks to devise another system, that is, a system that is composed of reusable
components. The success of systems based upon reusable components may be,
therefore, tied to the quality of its individual components.

Consequently, the application of reusable software is dependent upon developing an
effective, systematic approach to component certification. Devising a framework that
can "certify" a software component for reuse encourages component usage and can
increase the quality of the overall delivered system. Certification also helps to define
criteria that will determine which software components are suitable for reuse.
Certification information helps determine which components to reuse and when to
reuse them. While certification does not guarantee that the reused components will
work as intended by the user, it does suggest the level of difficulty likely to be
encountered and the probability of success of the reuse.

4 The CRC Project

The following sections identify the CRC project team, discuss the project goals and
measures of success, the technical approach, task areas and roles.

4.1 Project Team

CRC began in December 1993 and was staffed with a well-qualified and experienced
team throughout the life of the project until its completion in June 1996. The prime
contractor was Software Productivity Solutions, Inc., Indialantic, FL, with
subcontractors from General Research Corporation, Santa Barbara, CA and VeriQuest,
LLC, Raleigh, NC.

With the downsizing and reorganization within the Government, the pressure is on to
demonstrate transferable, usable technologies. To facilitate technology transfer of
certification technology, RL initiated a Memorandum of Agreement (MOA) with the
Gunter Annex of the Maxwell Air Force Base, AL, through Ms. Judy Roberts, Program
Manager of the Air Force's Reuse Center (RC). Under a separately funded project,
Gunter is planned as a beta test site for trial use of the certification technology
developed under CRC Also, as a separately funded project, RL has an agreement with
UL to provide feedback on the innovations developed under CRC. Underwriters'
Laboratories' (UL) and Gunter's planned participation will validate the underlying
ideas while providing valuable information for enhancement, refinement and continued
exploration.

4.2 Project Goals

The CRC project goal is to make certification usable, practical, cost-effective, and
measurably beneficial. Primary project activities include development of a Certification
Framework, implementation of a prototype automated certification environment, and
demonstration of the framework and prototype environment through application by
pilot users. The framework development was an incremental process, with refinements
based on feedback from pilot users.

To meet the overall goal of usability, practicality, and cost-effectiveness, the program
established specific objectives as follows:

1) Select only a practical, usable, and cost-effective subset of reliability and quality
techniques that can be demonstrated to improve confidence in reusable
software.

To meet this objective, data was collected from an extensive tool survey and
evaluation, studies of faults and testing and analysis techniques, and pilot user
feedback.

2) Synthesize these techniques into a cohesive framework that is sensitive to
different user requirements.

To meet this objective, the framework was designed for adaptation.
Adaptability was demonstrated by deriving processes for certifying the quality
concern of correctness for code assets and then extending the framework to
assess architecture assets.

3) Make certification understandable, practical, and usable for the typical engineer
by hiding the theories and complexities.

To meet this objective, the prototype Automated Certification Environment
(ACE) was designed to guide the user through the selection process, viewing
straightforward cost and benefit assessments and automatically selected lists of
techniques and tools. The environment integrates usable certification tools that
can be readily applied by software engineers of average skill levels.

4) Reduce the cost of reliability and quality improvement techniques.

To meet this objective, the program focused on making costs known and
relating these to quantified benefits. In addition, the prototype environment
integrated certification tools in such a way that the certification process is made
easier and more productive.

5) Design a cost-effective certification process in terms of quantified costs and
benefits.

To meet this objective, the program developed a cost and benefit model which
presents the cumulative costs and benefits of applying automatically suggested
techniques and tools.

6) Refine and demonstrate a piece of the framework that is demonstrably usable,
pragmatic, and cost-effective for near-term application.

To meet this objective, the program conducted an initial certification field trial
and is working with pilot user sites to apply and refine the framework for the
certification criteria of correctness, a key concern for reusers.

4.3 Measures of Success

Early in the project, several measures of success for CRC were defined as appropriate
for a research and development project. Figure 4-1 illustrates how the measures of CRC
success for R&D projects span three areas: Innovation, Experimentation and Validation.

10

Figure 4-1. Measures of success as an R&D project

The innovation "wedge" of this upwardly progressing arrow consists of our
innovations in theoretical developments. Experimentation, the second wedge, is the
application of our theory to a laboratory environment. The third wedge, Validation, is
achieved through application of the innovations to a real-world situation. Assessments
against each of these three measures were performed at the end of the project and are
reported in the conclusions of this document.

In addition, measures of CRC success for technology transfer (both public and
commercial sectors) were also established. The measures of CRC success for technology
transfer span three areas: Awareness, Communication and Application as illustrated in
Figure 4-2.

Awareness includes requests for information from users; communication includes bi-
directional information exchange between RL and users; and application includes pilot
site participation to apply the CF. Assessments against each of these three measures
were performed at the end of the project and are reported in the conclusions of this
document.

11

Figure 4-2. Measures of success for technology transfer

4.4 Technical Approach

Our technical approach to developing the CF had several driving forces:

• Concepts discussed in the CRC proposal

• Lessons learned from the Software Quality Framework (SQF)

• User needs and reuse scenarios

• Cost/benefit of certification

Each of these forces are discussed below.

Our proposed approach to achieve our project goals focused on "a desired level of
confidence in a minimum level of required reliability." To achieve this, we chose to
develop the CF as a tailorable roadmap for identifying certification requirements,
objectives, tools and techniques. We selected techniques and tools based on usability,
practicality, and effectiveness based upon empirical evidence. We integrated available
tools to provide stable, high-quality, automated support.

Another driver in our technical approach was to develop the Certification Framework
having learned from our experience with the Software Quality Framework (SQF). The

12

SQF has a rich, 20-year history from which to learn, and SPS was keenly aware of the
technical obstacles and opportunities in the SQF and the CF. Both the CF and the SQF
address a large, complex and multi-faceted problem with many associated issues. Both
were pioneering projects at their start.

To address these issues, we reviewed a broad range of quality concerns including the
SQF quality factors and identified "correctness, " "completeness," and
"understandability" as fundamental concerns. Correctness was defined as an absence
of defects or non-conformance. For these quality factors, non-conformance was defined
as latent defects, existence defects, and standards violations. Through our experiences
with the Software Quality Framework (SQF), we developed a certification algorithm
using a generic series of simple steps that could be tailored to users and their assets. We
focused the CF on automated solutions that minimize manual activities and hide
complexity to ensure its success. Selecting code as an asset type from the MIS
(Management Information Systems) domain and correctness as our fundamental
concern for our initial field trial, we applied the CF, collected and analyzed the results.
A recommended next step for future funded projects is to identify other assets (e.g.,
architectures) and quality concerns (e.g., robustness) and to develop a plan for
implementing the CF using these new attributes.

Working with potential users to understand their needs and constraints, we refined our
technical approach. We developed an operational concept based on our certification
algorithm to guide the user through the CF and automation tasks. We developed and
refined a practical CF that can be tailored and extended to apply to all types of assets.
We demonstrated automation with incremental, prototype certification demonstrations.
We plan to monitor pilot use of the CF and collect feedback from these experiments to
validate and refine our technical innovations.

The technical approach to developing the CF was also driven by a cost/benefit
perspective. We developed a cost/benefit model to guide the users' selection of
certification techniques. The cost includes incremental investment cost for establishing
the certification process and the incremental cost of executing the certification process.
The benefits are reduction of risk from reuse (i.e., rework avoidance) and an increased
attractiveness of reusable assets. The CF employs activities that are both cost-effective
and valuable to users of assets. The cost/benefit models, together with the CF, support
decision-making.

4.5 Task Areas, Roles and Work Products

CRC's four major task areas, the individuals responsible, and the associated work
products are shown in Figure 4-3. All of the project documents support this document,
Volume 1, Project Summary. It is recommended that Volume 1 - Project Summary be
read first, followed by the supporting documents in their numerical order. However,
the reader may also skip to documents of particular interest, after the Project Summary
is completed.

13

As shown in Figure 4-3, the Certification Framework Development (Versions 1.0,2.0
and 3.0) is found in Volume 2 of the document suite. The Cost/Benefit Plan is Volume
3. The Operational Concept Document (OCD) is Volume 4. The Certification Field Trial
(Procedures Guide and Results) is found in Volume 5. Tools evaluations and the code
defect model, both supporting the development and execution of the field trial, are
found in Volume 6 and Volume 7, respectively. The Automated Certification
Environment Prototype is documented in CRC's OCD, Volume 4.

CRC Program

Deborah Cerinö

Certification Framework
Development

Charlotte Scheper
Pamela Geriner
Karen Dyson
David Card

Cost/Benefit

; Pamela Geriner
David Card

Operational Concept

Sharon Rohde
Tom Strelich

ACE Prototype
Development
Tom Strelich

Volume 2
Certification Framework

V 1.0, 2.0 and 3.0

ACE Prototype

L ^
U

Figure 4-3. CRC's major task areas and products

14

5 Reuse and Certification Technologies

For both reuse and certification technologies, we assessed the state of the art (i.e.,
theory) through a survey of previously published research literature, and we assessed
the state of the practice (i.e., application) through industry interviews. In addition to
these resources for our assessments, the staff of the CRC team has many years of
collective, professional experience in both of these areas.

Our findings indicate that both of these technologies are immature. The results of our
assessments bounded the scope of the CRC project, refined our technical approach, and
ultimately drove our development of the CF. This section begins with a discussion of
the history of reuse (i.e., "where we've been"), continues with a collection of selected
experts' opinions about the state of the art and state of the practice, and ends with an
examination of the trends in reuse and certification.

5.1 History

Reuse is a central principle of science and engineering that dates back at least to the
establishment of the first learned societies and scientific journals in the 17th century
[P0092]. Societies and their journals of those days served to recognize members for
their contributions and to function as quality control for the community. Publishing in
journals established a record of work accomplished and provided an open forum for
public review. The concepts from these reviewed works could be "reused" for the
further advancement of knowledge. For example, when solving a problem, a known
solution is applied to similar new problems. If only some elements of the solution
apply, the solution is adapted to fit the new problem. Proven solutions, used over and
over to solve the same type of problem, become accepted, generalized, and
standardized. Towards the end of the 19th century, records of this type of knowledge
had become so large that most developed disciplines of the time began establishing a
collection of standard information that is now central to the endeavor of most scientific
and engineering disciplines.

Nonetheless, the idea of software reuse is usually credited to Mcllroy in 1968 when he
presented his paper at the now historic NATO Conference [MCI69]. Mcllroy, who
originally coined the term "reuse," wanted to change the "craft" of software
engineering into the "industry" of software engineering. It was not until the early 1980s
that several major advances in the area of software reusability originated in research
groups and industrial reuse projects in Japan (e.g., Hitachi, Toshiba), the U.S. (e.g., the
STARS program) and Europe (e.g., ESPRIT). Several workshops and conferences
focusing on this topic were initiated in 1983, and new thinking began to evolve.

During the early stages of reuse research, much effort was invested in reuse libraries
(i.e., the classification of components, how to navigate in such repositories, how to
compose new software out of predefined components, etc.). In retrospect, some
researchers have pointed out that focusing on repository issues and component

15

collection skirts other important issues that are barriers to reuse. Consequently,
researchers are investigating reuse from the perspectives of process-driven, domain-
specific architectures, improved methods and tools, and economic return-on-investment
rather than reuse libraries. Today, software reuse has now become an independent area
within software engineering, emphasized by special tracks at most software
engineering gatherings within industry and its own annual conferences and symposia.

5.2 State of the Art

Although there have been intensive research attempts and industrial projects in
software reuse for about 15 years, the software industry still suffers from long time-to-
market, low quality, and low productivity. Reuse is still far from being implemented as
an integral part of software engineering. Reuse certification practices vary significantly,
and the state of the art remains immature. Several researchers have recently assessed
the state of the art of reuse and certification and a summary of their findings follows.

Card assessed the state of the art of component certification and discussed the following
findings in a technology report funded by Rome Laboratory of the U.S. Air Force
Materiel Command [SPS94]:

• Methodologies to implement reuse have not been fully developed.

• Tools to support a reuse process are lacking.

• Standards to guide critical software reuse activities have not been established.

• The process of assessing reusable components varies significantly and remains
immature.

• The current state of reuse certification technology can only accommodate source
code assets, even though domain-specific architectures may have the potential
for high pay-off reuse.

• Automated software tools are used without validating their effectiveness.

One area that requires more research is certification criteria. Current reuse programs
have indicated that their main concerns are centered around the criteria of
completeness, correctness, understandability, and modularity.

Gall believes that reuse lacks standards, and future research should be focused on
building these standards to mature the discipline of software engineering [GAL95].
Gall believes that a catalogue of standardized software components will facilitate
incorporating reuse as part of the software development process. He used the analogy
of other classical engineering disciplines such as electrical engineering, where "reuse"
of standard parts is routine and concluded that concentrating on what parts to include

16

in a standard catalogue of a reuse library is more useful than looking at how to
administer the components that the libraries house.

Gall also believes that software engineering lacks formality, and consequently, reuse
suffers. Formal-based approaches and solutions are viewed as too mathematical and
therefore, not accepted by industrial software engineers. However, Gall feels that the
emergence of domain analysis may overcome many of the problems of software reuse.
Domain analysis needs to be both formalized and combined with other software
support areas to become relevant to the software development in industry.

Gall points out another hindrance to reuse is the limited interactions of the reuse
community with other related communities (e.g., maintenance, object-oriented). This
tendency is true with many specialized groups within software engineering. Instead of
openness to other related research areas, the software reuse community tends to be a
"closed" group. Each community has its own conferences and many researchers work
as if their problems were unique. Gall believes that strengthening communication
among related research communities will significantly improve research results in
software reuse, and enhance the integration of reuse into a broad development
methodology.

Prieto-Diaz assessed the current state of the art of reuse and identified areas for future
research [PRI93]. Among those he identified are the need for certification, valid
economic reuse models, and integrated tools and object-oriented methods to span all
development phases.

Samadzadeh created a list of lessons learned from his experiences and serves as an
indirect assessment of the state of the art [SAM95].

1. Reuse is a management decision.

Even though the rewards of reuse are great (i.e., 70% reduction in time to
delivery), the cost of institutionalizing reuse is substantial (i.e., 30-50% increase
in development costs). Therefore, management must be involved in providing
resources and direction to incorporate reuse into an organization's way of doing
business. The major inhibitors to reuse are non-technical and can best be
eliminated with management intervention.

2. The reuse rules of three are true.

Reuse requires domain knowledge in order to recognize "what to make
reusable" and "how to make it reusable." The break-even point for recovering
the additional investment cost turns out to be around three reuses of a particular
component. These are based on Ted Biggerstaff's proposed "Reuse Rules of
Three" and developed by Bob Alanergans's observations at Raytheon.

a) Before you can develop reusable software you need to have developed it
three times.

17

b) Before you can reap the benefits of reuse, you need to reuse it at least three
times.

3. You need to reuse more than just code.

Code reuse is the easiest software artifact to reuse, but in order to achieve large
improvements in software productivity, one must reuse other portions of the
software development life cycle. Pushing reuse earlier and earlier into the
software development life cycle has the highest payoff (i.e., in the requirements
phase). Reuse of domain-specific software architectures has high payoff.

4. The "glue" is the key technology.

Experience has shown the need for common communication protocols and
simple, well-documented integration mechanisms to bring about reuse of
software components. Putting components on the shelf is only part of the
problem, one needs the right glue to put them together with. CORBA (Common
Object Request Broker Architecture) provides an integration mechanism that
shows promise for component reuse.

Samadzadeh feels that the reuse community can benefit from his lessons learned and
should focus future research to address these aspects of reuse.

The overall conclusion of the studies seems to be that the state of the art is still
somewhat immature . The concepts underlying reuse and certification technologies are
still far from being implemented as integral part of software engineering practice.

The underlying premise for certification is that it should increase user confidence in the
quality of reusable assets. Uncertainties about the quality of reusable software present
real risks and, as a result, are serious impediments to increased reuse. All of the
Government-sponsored reuse repositories are applying some certification process in an
effort to reduce risks and increase reuse. However, very little is known about the effect
of these certification processes on reuse or the ability of the processes to assess quality.
Moreover, there are increasing concerns about the cost of certification, which ranges
from one to several person-weeks per asset. Further research is needed in certification
processes, techniques, and tools in order to identify the cost-effective approaches.

5.3 State of the Practice

The Defense Information Systems Agency (DISA) surveyed a group of repository
personnel and experts on reuse [DIS94]. They found that there was very little empirical
data on either code asset or non-code asset reuse. In addition, the findings showed that
70% of the respondents agreed that reuse certification is a necessary activity, 45% were
not aware of any standards or do not use standards in their certification, and 90% did
not know the actual cost of certification. The respondents felt reuse certification should
provide:

18

• a review of a reusable asset to determine its suitability for reuse, what is known
about the asset, and what accompanies the asset

• a check for completeness and reliability of the asset

• a form, fit, and function check and some kind of confidence level that the asset
works in its appropriate context

• a check to ensure the asset complies with standards

• the assurance that the asset has been checked against a series of analysis
techniques and the outcomes have been documented

• the definition of the use and context of the asset (domain) to give correctness to
the asset

• information that will help users decide the closeness of fit

This DISA study recommended several actions; the first being that costs and benefits of
certification be evaluated in order to provide DoD advice on future resource allocations
for certification activities.

Prieto-Diaz assessed the state of the practice of reuse and believes that the problem we
face in software engineering is not a lack of reuse, but a lack of widespread, systematic
reuse [PRI93]. He feels that reuse of code, subroutines, and algorithms, as well as
reverse-engineering, is widely practiced; but it is done informally, and on an ad hoc
basis. This informal practice, in which components are selected from general libraries,
is usually called opportunistic reuse and is very much the state of the practice today.
Reuse is conducted at the individual, not the project level; procedures for reuse don't
exist; and the libraries in use contain components not designed for reuse. Nonetheless,
Prieto-Diaz believes that the near future will see significant progress, and he is hopeful
that reuse will become institutionalized. Reuse, in the end, should come "so naturally
that we do not have to think about it [PRI93]."

Several other studies have investigated the issue of certification for reuse in order to
assess the state of the art and the state of the practice. Development reuse organizations
reported that they wanted the Government "to 'certify' the testing level that a
component has undergone and the reliability of the component so that a contractor does
not have to duplicate similar testing procedures" [BUN94].

Frakes assessed the state of the practice by surveying 113 people from 29 U.S. and
European organizations asking 16 questions about reuse [FRA95]. Frakes admits that
the survey respondents do not form a large random sample of the software engineering
community. However, he believes that indicators of the experience, education, and
background of the respondents suggest that his sample is fairly representative of

19

experienced software engineers and managers at high-technology companies. The
results of his survey are shown in Table 5-1.

Table 5-1. Answers to sixteen reuse questions [FRA95]

Questions Answers

1. How widely reused are common assets? Varies

2. Does programming language affect reuse? No

3. Do CASE tools promote reuse? No

4. Do developers prefer to build from scratch or to reuse? Reuse

5. Does perceived economic feasibility influence reuse? Yes

6. Does reuse education influence reuse? Yes

7. Does software engineering experience influence reuse? No

8. Do recognition rewards increase reuse? No

9. Does a common software process promote reuse? Probably

10. Do legal problems inhibit reuse? No

11. Does having a reuse repository improve code reuse? No

12. Is reuse more common in certain industries? Yes

13. Are company, division, or project sizes predictive or organizational reuse? No

14. Are quality concerns inhibiting reuse? No

15. Are organizations measuring reuse, quality, and productivity? Mostly no

16. Does reuse measurement influence reuse? No

Frakes found that while some common reusable assets, such as the UNIX tools, are
widely used and highly regarded by software engineers, others are not. It was
refreshing to see that most software engineers would prefer to reuse software rather
than build it from scratch. This result contradicts the commonly-held belief that
software engineers prefer developing new code themselves rather than reusing.

Frakes also found that programming languages and CASE tools do not seem to have an
affect on reuse. However, reuse education is important for improving reuse. Survey
results indicate that a common software process promotes reuse.

On the other hand, Frakes' findings indicate that software reuse does not increase with
software engineering experience, nor do legal problems cause a serious reuse
impediment. Reuse levels were significantly higher for life cycle objects in some
domains (such as telecommunications), rather than others (such as aerospace). There
was no relationship between organizational size and levels of reuse. His respondents
were not influenced by concerns about asset quality. Few organizations measure reuse,
quality, and productivity, even though measurement is needed to manage a systematic
reuse program.

20

The immaturity of the state of the practice as shown in these industry assessments was
confirmed by our project surveys through on-site interviews of Government repository
community. Our assessment of the state of the practice of certification for reuse is based
upon interviews with 22 individuals at 6 different sites. We found that certification is
resource-constrained. One to two weeks per asset seems to be the maximum staff-effort
allocated to a certification activity in industry practice. The staff members employed by
repositories in industry have little domain expertise and weak testing expertise. Users
and repository staff like a "level-orientation" for certification activities. Additional
details of the user interviews can be found in CRC's OCD.

In light of all these recent assessments, why isn't reuse where it should be? Researchers
are quick to point the finger at one area and say that reuse is not happening because of
"X." Examples of "X" are lack of components, symptoms of Not Invented Here (NIH),
poor quality, no business strategy that encourages reuse, and lack of domain
architectures. More than likely, reuse is not happening due to a combination of many
factors, and each operating with differing weights for each particular situation.

Polls have been taken to ascertain which areas are the "culprits" and the rationale is to
attack those. These findings are only as good as the population sampled, and it is
nearly impossible to sample all those who are involved in reuse in some way across all
domains (it may not be called reuse). Reuse may be more appropriately called
"working smart" or "good engineering" building on expertise.

5.4 Trends

Today, software reuse is no longer in its infancy, yet it appears that little progress has
been made. However, a report developed by Boeing on the STARS program indicates
that this situation appears to be steadily changing [BOE93b]. The barriers that have
inhibited reuse are gradually diminishing and, due to a downturning and more
competitive economic climate, it is becoming increasingly critical for organizations to
overcome those barriers. The result has been a recent substantial increase in the
number of industry and government initiatives focusing on establishing reuse projects.
Several efforts are now underway to promote reuse of software across these agencies
and within industry.

Hooper feels that reuse concepts are moving from research into practice, and very good
results are being reported [H0091]. An initial investment in reuse (i.e., organizational
changes, initial library development, training, etc.) is required. There has been an
understandable reluctance to make this investment without reasonable assurance of
success. Hooper believes that enough reuse successes are accumulating to allay the
concerns; thus, he expects an increase in the number of organizations undertaking the
practice of software reuse.

21

Increased reuse activity has also built upon advances in the theoretical and practical
foundations for reuse. Among these are domain analysis and domain engineering as
distinct fields of study, reuse library technology, process improvement, and Total
Quality Management (TQM) principles. Some of these are still immature, but their
growth has helped advance the maturity of reuse and certification technologies.

22

6 Reuse Context

Given the state of the art, state of the practice and future trends of reuse and
certification technologies, the CRC team established the conceptual context of our
project work. We defined our technical bounds by group consensus and constructed a
context diagram which describes the realm in which we operate. This realm of
operation, or the reuse context, is the set of circumstances and requirements within
which reuse is carried out.

Since certification is just one part of the overall reuse process, it is necessary to
determine which elements of that context affect certification and which elements are
themselves affected by certification. It is also necessary to determine what role the
context elements play in certification so that the certification process can be designed to
be sensitive to that context and adapt as necessary to its requirements and
circumstances. Figure 6-1 depicts a conceptual diagram of the reuse context in terms of
the elements and processes by which it is defined, i.e., our reuse context for asset
quality certification.

Guidelines, ^ Reuse

Framework

1
1 Certification

| Framework

1

Asset
Production

R
E
U
S
E

L
1
B
R
A
R
Y

Domain
Standards

Classification,

Asset
Selection

Business
Strategies

Measurement

CF Algorithm __ Asset
Certification Asset Type

sllliiliiiillliliiiflliilllllil ljiililiM"i

Figure 6-1. Reuse context for asset quality certification

As seen in Figure 6-1, the elements of Domain, Business Strategies, and Asset Type
drive both the Frameworks for reuse and certification. The term "domain," as used in
our reuse context, can refer to either the application domain for which an asset is
developed or the application domain in which the asset will be reused. To determine
the particular domain for a reuse context, a domain analysis should be performed.

23

As illustrated in Figure 6-1, the Reuse Process is composed of three subprocesses: Asset
Production, Asset Selection, and Asset Certification. Asset Production is the process by
which an asset is developed and made ready for inclusion in a library or repository.
Asset Selection is the process by which a potential reuser searches the library and
selects candidate assets for use in a new system. Asset Certification is the process by
which an asset is evaluated for conformance to the requirements it must satisfy to be
reused. Asset Production, Asset Selection and Asset Certification are basic reuse
activities within the Reuse Process and all may be performed using an associated Reuse
Library.

The specifics of what these processes need to accomplish are largely determined by
environmental elements of Business Strategy of the library and the Domain(s) for which
the library's assets are intended. The details of the processes and the procedures for
performing them are defined by the Reuse Framework through guidelines, standards,
classification schema, measurement, and other necessary mechanisms. The
Certification Framework is a subset of the overall Reuse Framework and defines the
certification process.

Within the reuse context, the focus of CRC was upon a subset of the Reuse Framework
called the Certification Framework (CF) as well as its algorithm for asset certification.
The CF is influenced by some of the same inputs as the Reuse Framework. As an
output, the CF Algorithm is used to certify assets subject to the CF (and the Reuse
Framework). The context diagram helped the CRC team to identify the scope of the
problem and focus our project on a portion of the problem that was doable within
CRC's time and effort. Prior to CRC, very little prior work had been done to establish a
certification framework, yet its development is influenced by the other elements of the
reuse context. Research studies, both theoretical and empirical, related to asset quality
certification are documented in Volume 2, the Certification Framework and Volume 4,
Operational Concept Document.

Yet, we also observed that many of the elements of decomposition within the reuse
context have undergone many years of previous research. Because these elements
established an underlying, technical foundation for our reuse context, a survey of
literature was conducted to provide background information for five areas: domain,
business strategies, asset production, asset selection (asset classification and Schemas)
and reuse frameworks. Through our literature survey, we critically evaluated the past
research in order to focus our work and "do what made the best sense." This survey
provided the technical foundation for our project and its results impacted our
development of the CF. Consequently, we were able to established a clear research
direction for CRC and ensure that we did not duplicate work from prior projects. The
results of this task are an annotated bibliography for each of these five areas which
appears in Appendices A-E of this document.

Table 6-1 tallies the number of articles reviewed in each of these topic areas.

24

Table 6-1. Total research articles in each of the background areas

Topic Number of references

Business Strategies 16

Domain Analysis 27

Asset Production 38

Asset Selection 12

Reuse Frameworks 17

Asset Certification 9

The following subsections discuss the findings in the first five topic areas.

6.1 Business Strategies

As recorded in Table 6-1, a few articles have been written about business strategies for
reuse, but not nearly as many as the other researched areas. Authors have begun to
define business problems associated with reuse and certification and have identified
associated issues. For example, Banker believes managing reuse requires monitoring
the firm's software at the organizational or enterprise level rather than at the traditional
individual software project level [BAN93]. Card suggests that reuse fails because
organizations treat reuse as a technology-acquisition program rather than a technology-
transition problem; organizations fail to approach reuse with a business strategy
[CAR94]. Jones indicates that the most sizable payoffs across types of reuse occur after
36-48 months; organizations must plan for payoffs in the out years [JON95]. Currently,
the aspect of business strategies for reuse is seen as a necessary ingredient in the reuse
context, largely because previous reuse projects have been disappointing or have failed.

Of significant interest to CRC in the area of business strategies was the definition of
business strategy archetypes to support a Software Reuse Business Model [DIS95]. A
software reuse business model (SRBM) was developed by the U.S. Army Space &
Strategic Defense Command to provide a structure to define typical architectures and
implementation plans of organizations within the DoD that are in the software reuse
business. The SRBM supports engineering activities, business planning, and
contracting activities. It details both the perspectives of "practitioners" who are
responsible for reuse and the activity flows in software system acquisition, including
the inputs, outputs, controls, and mechanisms for each activity. The SRBM provides an
acquisition view of libraries of reusable assets rather than an economic view from the
contracting organization or from their developers. The SRBM is designed for reuse and
does not discuss certification. The U.S. Army Space & Strategic Defense Command also
developed detailed procedures to evaluate components for reuse and can be found in a
supporting document to the SRBM [ARM95].

As part of the model, a set of eight generic business strategies, called "archetypes", were
developed:

25

Vendor-owned domain

Government-supported standard

Value-added reseller

Government-owned architecture

Government-owned domain

Reengineering

Public library

Commercial library

These archetypes were defined from the acquisition perspective and vary in the degree
of control that Government and industry have over the definition and implementation
of reusable assets. For example, in the vendor-owned domain, control is completely in the
hands of industry; in the government-supported standard and the value-added reseller, there
are increasing levels of government influence; in the government-owned architecture,
control is shared by government and industry; in the government-owned domain and the
reengineering, control is completely in the hands of government. The public library and
commercial library archetypes provide a repository for assets over which they have
control and for which they have to recover costs, the public library through
independent funding and the commercial library through fees. Additional details on
the SRBM and other published literature in the area of business strategies can be found
in Appendix A.

6.2 Domain

As seen in Table 6-1, much has been written about domain analysis, but experts do not
firmly agree upon how to do domain analysis. As shown in Figure 6-2, research in
domain analysis has been on-going for over 15 years and authors and their methods
have different historical roots. Neighbors investigated domain research topics which
ranged from theoretical to empirical; these research results sparked the other studies
shown in Figure 6-2.

Experts in the field over this 15-year period include Arango, Bailin, Batory, Lübars,
Neighbors, Parnas and Prieto-Diaz. Research projects and company projects include
CAMP, DRACO, GENESIS, IDeA, RLF, NASA, SEI, STARS, GTE, Unisys, CTA, UC-
Irvine and UT-Austin. Hess and his colleagues compiled a significant bibliography of
domain analysis, as of 1990, as part of the Domain Analysis Project at the SEI [HES90].
Appendix B documents these authors and others who have been significant
contributors to this body of work.

26

DA defined

practice

theory

Raytheon

I
1980 1985 1990 1995

Figure 6-2. Time line of research in domain analysis

Four major domain analysis methods exist: the Prieto-Diaz method, Synthesis, Feature-
Oriented Domain Analysis (FODA) and Organization Domain Modeling (ODM). The
first method was developed by Prieto-Diaz and consists of identifying objects and
operations. The Prieto-Diaz method uses abstraction, classification schemes and
taxonomies similar to those of library science and zoology. Synthesis was developed by
the Software Productivity Consortium (SPC) and emphasizes flexible production lines
to drive the development of software. Synthesis leverages commonality among
problems and adapts previous solutions to accommodate differences in new problems.
FODA was developed by the Software Engineering Institute (SEI) and focuses on user
needs and requirements to analyze a domain. And lastly, ODM was developed by
Unisys and Organon Motives under the STARS program. ODM uses the processes of
the Conceptual Framework for Reuse Processes (CFRP) funded by the Software Reuse
Initiative (SRI).

Even though most researchers would not agree on which method to use, they would
agree that domain analysis should be performed prior to developing a reuse program
and reusable assets. In past reuse projects, this critical activity may have been missing
and may have contributed to failures in reuse. The four methods of domain analysis
have emerged in research and are slowly being applied in case studies for validation,
refinement and documentation of lessons learned. Additional details on the topic of
domain analysis can be found in Appendix B.

27

Identifying a domain in a reuse context is one of the important activities of domain
analysis. Domain analysis is a needed activity to plan for reuse within an organization.
Domain analysis will move reuse beyond ad hoc components salvaged from a collected
library. Hess is quoted as saying "Domain analysis is the foundation for establishing a
reuse program within an organization" [HES90].

In an organization's business plan, the software development process must
accommodate both the development of software and the experience factory at the
component level. Both have different objectives and perspectives. A business plan can
augment informal sharing of code and associated experience between developers on a
project. Studies reveal that some domain types are more appropriate for reuse. For
example, computational modules are good candidates for reuse since they perform
standard operations and are easily "plugged and played."

Using domain analysis, software application systems have been analyzed and
categorized into many different sets of domains, but no agreed-upon standard
taxonomy exists. For example, the DSRS categorizes software domains as Finance,
Health, Human Resources, Reserve Components, Materiel Resources, Procurement,
Information Management and Command and Control. Of particular interest to CRC
were the categories for application domains established by the National Software Data
and Information Repository (NSDIR): MIS, Avionics, Command and Control,
Automated Test Equipment, Weapon Systems, Communication, Intelligence, and
Process Control [NAT95]. More than likely, rather than creating an exhaustive list of all
software domains, these categorizations were an outgrowth of the data currently
housed at these agencies.

6.3 Asset Production

As shown by the count of research articles in Table 6-1, much has been published in the
area of Asset Production. This may be due to reuse's initial focus upon source code and
asset production, in an ad hoc or "grass roots" manner. Disappointing results of these
early efforts led to a higher level, or organizational, view of reuse incorporating the
techniques of domain analysis and a structured, tailored reuse business plan. Effective
reuse is now seen as more than producing modules and storing them, in hopes that
another may find them useful.

To produce reusable assets, the software must be designed with that characteristic as a
requirement. Different levels of reuse are possible, ranging from source code to
architectures. Standards groups can provide guidance for production of assets for
reuse. Other artifacts need to be developed (e.g., reuser's guides) to support successful
reuse. Reusers need to be supported in the decision-making process for "make" versus
"buy" (i.e., should the organization invest in producing the asset, or is it more cost-
effective to buy the asset from a commercial-off-the-shelf libraries of existing assets?).
Asset evaluation and selection may be a multi-pass process as shown in Figure 6-3.

28

Selection

Does a set of assets exist that meet
the functional requirements?

Do any assets in the set meet the
quality requirements?or How closely do
they meet the quality requirements? (asset
selection questions)

. Make or Buy Decision
Point

ASSET
TEMPLATE

CERTIFICATION
INFORMATION

LIBRARY
INFORMATION

Figure 6-3. Asset evaluation /selection and the make-versus-buy decision

We must not overlook the simple fact that a component is not reusable unless it is used;
this means that a reusable component should be built out of real needs. Needs include
not only those of the current time, but also those potential future needs. Therefore,
producing reusable assets should be targeted at products that fit the traditional
economic model of supply and demand, that is, the producer-consumer model. An
asset needs to be produced that fits the needs of those using it. Planning for the results
of asset production cannot be made in a vacuum.

In an older reference of 1989, Biggerstaff reported that the productivity of the software
creation process had increased only 3-8% per year for the last 30 years [BIG89].
Experienced software engineers know well the feeling of de ja vu that is so characteristic
of their trade. Several attempts have been made to measure this phenomenon,
however, experimental conditions are difficult to control and quantify. Jones estimates
that less than 15% of new code serves an original purpose [JON95].

From our literature survey of Asset Production, it appears that the technologies to
support reusable asset production are maturing, and in the near future, will be better
able to increase the productivity of developers in the software creation process. For
example, higher-level languages, object-oriented design, and the techniques of
encapsulation and levels of abstraction can enable software reuse. Reuse tends to
increase with the use of program families consisting of building blocks with limited
dependencies. Code templates and automatic code generators based on these design
techniques shows promise for increased reuse. Likewise, a sensitivity to standards and
quality factors makes components more attractive to reusers. Also, the technique of
domain analysis to produce generic, process-driven architectures, together with

29

business planning, can lead to very large scale reuse. Additional details on the topic of
asset production can be found in Appendix C.

6.4 Asset Selection

Not as much research has been done in the area of Asset Selection, since this is
primarily a library science topic, rather than a traditional software engineering topic.
How information is organized and catalogued is part of the science of information
retrieval; experts agree that software staff could learn from the principles already
established outside of their field. Inter-disciplinary communications and collaboration
between software and library science could benefit and accelerate the maturity of reuse.

The World Wide Web (WWW) may be a promising mechanism for providing users a
convenient access for selection of software components from multiple reuse libraries.
Growth in the popularity of the Internet and the WWW, as well as the wide availability
of WWW client and server software, has accelerated the shift from centrally maintained
software repositories to virtual, distributed repositories. Now a "virtual repository"
that catalogues software maintained by other repositories is possible. The main
advantage of distributing a repository is to allow the software to be maintained by those
in the best position to keep it up-to-date. Well-maintained software repositories are
central to software reuse because they can make high-quality software widely available
and easily accessible. Also, copies of popular software packages may be mirrored by a
number of sites to increase availability (e.g., if one site is unreachable, the software may
be retrieved from a different site and to prevent bottlenecks).

One such repository is Netlib, a collection of high-quality publicly available
mathematical software. Netlib, in operation since 1985, currently processes over 300,000
requests a day. Netlib is serving as a prototype for development of the National HPCC
Software Exchange (NHSE), which has the goal of encompassing all High Performance
Computing Consortium (HPCC) software repositories and of promoting reuse of
software components. Netlib was developed by Grand Challenge and other scientific
computing researchers. Additional details about these types of commercial libraries can
be found in CRC's Operational Concept Document.

Even though users can transparently access large volumes of components in multiple
libraries, a critical aspect of the asset selection is related to the producer-consumer
problem of economics. To be successful, software that is produced and put into
libraries is must be useful to consumers; if the user doesn't need it, he won't select it.
The user may ask these questions when selecting an asset:

• Does the asset meet my requirements?

Does it meet the functionality that it was built to meet (i.e., information
supplied by the library)?

30

- Does it meet the functionality for my intended application (requires a
reuser's judgment)?

To what degree does the asset meet my quality requirements (supplied by
certification information)?

What tradeoff can I make among these "degrees" for the set of quality factors
(requires a reuser's judgment based on constraints)?

Has this asset ever been used in a system like I am building?

Who developed the original component (e.g., author, organization and
standards used to develop the asset)?

What is the cost and are there any legal rights restrictions?

What standards were used by the library in certifying the asset (e.g., coding and
style)?

Are there any hardware or environmental dependencies?

Are all the artifacts available?

Assistance in securing this kind of information would be valuable to the potential
reuser. Additional details on the topic of asset selection can be found in Appendix D.

6.5 Reuse Frameworks

A modest amount of research information has been published in the area of Reuse
Frameworks. A Reuse Framework may define the goals, plans and implementation by
which an organization can accomplish reuse. For example, a Reuse Framework may
guide the software developer in embedding reuse into their software engineering
processes. Specifically, a Reuse Framework may provide procedures for capturing
component design information and supporting rationale so that components can be
assessed for future reuses. A Reuse Framework may also provide a reuse librarian with
ways to administer a reuse library to support a project, an engineering group, an
organization, or an agency. In addition, a Reuse Framework may provide a context for
why reuse is or is not working.

However, among researchers and industry practitioners, no clear consensus exists as to
what a Reuse Framework is and its role in the reuse process. The problem with
establishing consistency and commonality with regard to Reuse Frameworks is
complicated by the fact that the term framework can be applied at varying levels (i.e.,
organization, managers, developers, librarian, process groups, etc.).

31

DISA/JIEO/CIM (Defense Information System Agency, Joint Interoperability
Engineering Organization, Center for Information Management), the DoD Software
Reuse Initiative (SRI) and STARS (Software Technology For Adaptable, Reliable
Systems) have provided the bulk of the research on reuse processes which can be
attributed to the generalized category of Reuse Frameworks. This body of work and its
concepts are mainly theoretical. On-going work needs to be conducted to apply these
concepts and report the results as case studies. As these results are reported and the
theoretical concepts refined, standards for Reuse Frameworks may begin to emerge,
maturing reuse technology. The Reuse Interoperability Group (RIG) has been
instrumental in establishing standards for asset certification techniques for reuse
libraries. Additional details on the topic of reuse frameworks can be found in
Appendix E.

6.6 Relationships Among Context Elements

From our research, we observed that relationships and dependencies exist among the
elements of the reuse context as illustrated in Figure 6-4. For example, the domain is
related to the business strategy and asset production. Business strategies are related to
the reuse framework, asset production and asset selection. Asset production and asset
selection are related by underlying principles. These relationships are explored in more
detail in the following paragraphs.

These observations were confirmed by research findings. For example, a report of the
Software Reuse Initiative (SRI) recommends that the development of the conceptual
framework for reuse processes needs to consider the business aspect as well as the
technical challenges to software reuse [DOD94a]. Tracz, in his article about reusability
"coming of age" feels that organizations need to develop reuse programs that cut across
domain, business type, and asset production [TRA87].

1
Domain

I
Business

Strategies

sum '~wk?2$0&w^

Reuse
Framework

r
Certification
Framework

I
Asset

Production

Asset
Selection

Asset
Certification

R
e
u
s
e

L
i
b
r
a
r
y

Figure 6-4. Relationships among elements of the reuse context

32

Likewise, the SRBM establishes a tie between the Domain and the Business Strategy of a
library in their model [DIS95]. The authors state that "There is no single reuse business
strategy that is appropriate to every system acquisition. A Domain Manager must
formulate a strategy appropriate for systems in a given domain." The domain type
influences the business strategy from an acquisition point of view, and a gray area
exists between domain analysis and business strategies. Archetypes, which are derived
from domain analysis, assist the domain manager in formulating business strategies.
His resultant product lines congeal domain analysis and business strategies. Other
underlying dependencies between the business strategy and other reuse context
elements are identified in Table 6-2.

The Domain and Asset Production are related as follows:

• The activity of asset production is defined and planned for within a particular
domain.

• Some domains lend themselves to reuse.

• Design for reuse within a domain architecture; layered abstractions encourage
reuse.

• Asset designs should be useful across domains.

• Inadequate domain knowledge results in overly constrained designs.

Asset Production and Asset Selection are related as follows:

• The maturity of reuse process determines the kinds of assets produced and
selected.

• Reusable building blocks are useless unless the designer knows that they are
available for selection.

• The reuser needs to be able to find existing reusable software.

Asset Selection and Reuse Frameworks are related as follows:

• Even though a large amount of software exists in the files of software
developers, most lack a large catalog to access those usable, reusable objects.

• Reuse efficiency and cost effectiveness requires a reuse framework.

Additional details about each of the five areas of research are found in the annotated
bibliographies in Appendices A-E.

33

Table 6-2. Dependencies of business strategy on other reuse context elements

Element Domain Asset
Production

Asset Selection Reuse
Framework

Business
Strategy

• The domain is
used in
selecting a
reuse business
model.

• The domain
forms basis of
cost and
economic
models.

• Common
functions of a
domain are
reusable in a
business'
product line.

• The activity of
asset production
is defined and
planned for in a
business
strategy.

• Asset production
is best managed
at the project and
organizational
levels for
optimal reuse,
assets are
viewed as a
capital
investment.

• During asset
production,
tradeoffs are
made between
the cost-
effectiveness of
make vs. buy.

• High level reuse
(i.e., design of
architecture) has
highest payoff.

• The process of asset
selection is defined
and planned for in a
business strategy.

• Successful reuse
relies on effective
search mechanisms
to select assets
within a library of
useful assets.

• When looking at a
"used program," the
business entity
"selling" it is
associated with the
product selected.

• Public domain
assets are not free;
the process of asset
selection, cost and
risk of searching the
library for suitable
assets, modifying
the assets to fit the
needs, and verifying
their applicability
may not be trivial.

• The needs of a
reuse
framework are
assessed and
planned for in
the business
strategy.

• The reuse
framework is
part of reuse
business
products and
process.

6.7 Validation of the Reuse Context

At the completion of the literature survey, we observed that this body of research
validated our selection of elements in the context diagram of Figure 6-1. The CRC team
selected the key elements for asset quality certification, and the reuse context diagram is
substantiated by research.

We also discovered from our research that our view of the reuse context is unique, and
therefore, innovative. To date, no other researchers have combined these significant
elements in this way to construct a meaningful reuse context. Identifying the special
aspects of each of these elements and how they influence each other, as part of a whole,
is unrivaled and provides valuable insight into reuse and certification technologies.
Our perspective paints an understandable picture of how certification "fits" within
reuse and its associated elements.

34

7 Impacts of Reuse Context to the Certification Framework

Our established reuse context and the CRC research activities were a conceptual
springboard for the development of the CF. Knowing the influences and dependencies
of the elements within our defined reuse context, we developed the CF with a three-fold
purpose:

1. Define the elements of the reuse context that are important to certification

2. Define the underlying models and methods of certification

3. Define a robust, decision support technique to construct a context-sensitive
process for selecting the techniques and tools and applying them in order to
certify assets

Table 7-1 summarizes the CF by listing the elements that compose it: the software reuse
business model, domain, asset type, quality factor, non-conformance class, certification
techniques, and certification process. For each of these elements, the table lists the
possible attributes it may have in any particular reuse instance. The set of attributes for
the software reuse business model, domain, asset type, and quality factor elements
define the reuse context in which certification is performed. The non-conformance class
and the certification techniques are selected based on this context and are used to tailor
the certification process elements to the needs and requirements of this context.

Within this tabular view, the first four elements, the business model, the domain, the
asset type and the quality factor determine a specific reuse context. A particular context
is defined by the set of attributes chosen for each of these elements. For example, a
specific reuse context could be defined by a software reuse business model of
"Government-Owned Domain," a domain of "C2 "(Command and Control), an asset
type of "Code," and a quality concern of "Correctness." The rationale for populating
the first four elements of the CF with specific attributes is described in the following
sections. Specific examples are included to clarify how the CF can be used for selected
element attributes.

7.1 Software Reuse Business Model

For the element of the Software Reuse Business Model in Table 7-1, the eight archetypes
developed by the U.S. Army Space and Strategic Defense Command were adopted to
populate this element [DIS95]. These archetypes represent variations in the degree of
control that Government and /or industry have over the definition and implementation
of reusable assets, and thus over the decisions affecting certification requirements and
justifiable cost/benefit ratios. The impact that the software reuse business model has on
the certification process is significant, resulting in variations due to changes in
responsibility and demands for quality, ownership of the artifacts used to assess the
quality of the assets, existence of experienced staff, and the ability to pay for a level of
certification commensurate with the certification needs.

35

Table 7-1. Tabular view of the CF

S/W Reuse
Business Model

Domain Asset Type Quality Factor Non-
Conformance

Class

Certification
Techniques

Certification
Process

Vendor Owned
Domain

MIS Design
Information

Correctness Latent Compilation Process Definition

Gov't Supported
Standard

Avionics Document Completeness Robustness Static Analysis Procedures

Value-Added
Reseller

C2 Test Artifacts Understandability Inspection Tools

Gov't Owned
Architecture

Automated Test
Equip.

Req. Specs Performance Testing Data Collection

Gov't Owned
Domain

Weapon Systems Code Fault Tolerance Formal
Verification

Certification Levels

Reengineering Communication Architecture Functionality Benchmarking

Public Library Intelligence Database
Schema

Maintainability Modeling

Commercial
Library

Process Controls Models

Video

Portability

Reliability

Usability

•

• • Safety Other

Other

Other

Security

Availability

Testability

Survivability

7.2 Domain

For the element of Domain, the categorization of domains listed in Table 7-1 were
selected for the CF because they are typical DoD domains and were adopted by the U.S.
Air Force's National Software Data and Information Repository [NAT95]. Different
domains have different certification requirements. Certain quality factors, such as
performance, correctness, reliability, fault tolerance, etc., are more important in some
domains than in others. Also, domains can have different expectation levels of
importance for each of the quality factors. Domains where life-critical applications are
common require rigorous determination of correctness, reliability, and safety. In such

-9
domains, system failure rates of no greater than 10 are usually expected. Domains

-3
where less critical applications are the norm might expect failure rates of 10 , whereas
some domains might not have any failure requirement at all. In the first case, it is
essential that there be no errors in the system components, whereas in the latter cases,
some level of error could be tolerated.

36

When viewed as an aggregate, these differences in domains essentially specify different
levels of certification, because they require different levels of rigor and thoroughness in
the evaluation processes used in certification. The acceptable level of certification is
generally determined by the intended application or use of the component. Generally,
the more critical the component's correctness to system operation and the more harmful
the effect of system loss or misfunction, the higher the required certification level.

The types of components and corresponding artifacts (supplementary information,
documents, other assets, etc.) can also vary according to domain. For example, in
domains characterized by embedded or parallel applications or by architectures with
special features necessitated by dependability, requirements such as fault tolerance,
documentation and/or models of characteristic hardware components might be
included. Likewise, libraries for domains that are heavily database-dependent might
include characteristic databases.

As an example of domain influences, consider a scenario where hardware and software
for a complex space application is being designed. This application requires large
amounts of numerical processing, large data bases, and iterative approximations to
optimal solutions. It has demanding reliability and throughput requirements which
require fault tolerant distributed or parallel hardware architectures. The mission that
this application addresses requires extremely long system operating life and is divided
into phases ranging from long periods of moderate activity to very short periods of high
activity. The reliability and performance requirements vary with these mission phases.
The system operating environment places demanding weight and power constraints on
the system and subjects it to thermal and mechanical stress and radiation. The part of
the system that this reuse scenario addresses is an algorithm that makes an optimal
assignment of space-based weapons to multiple hostile boosters.

The development context into which the reusable asset is to be inserted is based on an
iterative design process broadly divided into three phases: baseline determination,
initial design, and design refinement. The baseline determination phase determines
resource requirements and allocation for the basic architectural and algorithmic
structures of the system. The initial design phase consists of trade-off studies to select
from the design options being considered. The design refinement phase explores the
selected design option(s) to discover and remove any deficiencies in concepts or
requirements. This scenario addresses the design refinement phase, assuming that the
products of the baseline and initial design phase are available.

During the baseline and initial design phases, a high-level design of an algorithm to
cluster targets and to assign and sequence weapons to the target clusters was created.
Using this high-level design, a performance analysis was conducted. After this
performance analysis, the design was carried to the next level of detail. A second
performance analysis determined that an important factor in improving performance
was the revision of the design to use of an NlogN sort. This identified a candidate
reusable asset. From additional analysis, it was determined that the ratio of processing
workload to communication workload was an important factor in how much speedup

37

was achievable through parallel implementations of the algorithm. This identified
matrix computations as an area of interest and provided another candidate reusable
asset.

The characteristic attributes for this example are described in Table 7-2. The third
column in Table 7-2 indicates the required level of confidence in the certification process
for having successfully evaluated the asset with respect to that attribute or for having
chosen techniques that are effective given that the asset exhibits that particular attribute.
The column labeled "Weight" indicates how important one attribute is relative to all the
others.

As this scenario illustrates, the certification process has to be adaptable to a range of
domain-dependent certification requirements that are established by a domain analysis
that, at a minimum, classifies candidate assets according to criticality and enumerates
the characteristic attributes.

This scenario also illustrates that the certification process should also allow the user to
consider the impact that different domain assumptions would have made on the
certification process and the certification level assigned to an asset. Since a reusable
asset will be used in a different system from the one for which it was developed, it will
very likely be subject to different requirements than those for which it was certified.
Thus, there are potential differences between the certification requirements for a
component from the viewpoint of the developer or library and that of the reuser.

These differences can be described by a distance function which specifies the
transformations required to adapt the asset from one set of requirements to another.
The transformations specify the changes that are necessary to adapt the certification
requirements for the asset to the new requirements; the measure of distance establishes
objective criteria for evaluating the level of effort required to effect the transformation.

A reuser would like to select a component with the "smallest" measure of distance. A
certification process for reusable components should help a reuser assess the
certification distance by providing a means of judging the adequacy of the certification
process for assuring the level of certification required of the component by the new
application. That is, it should allow the reuser to measure the distance between the
certification level of the component as it currently exists and the certification level the
reuser requires.

7.3 Asset Type

For the element of Asset Type, the asset types listed in Table 7-1 were selected for the
CF because they are typical of the types of assets found in the DoD libraries surveyed
during the framework development. Asset type is, of course, the major factor in
determining the types of evaluation methods that can be used as well as the quality
factor(s) relevant to certification. To address the certification needs of a reuse library or
repository, a certification framework has to be able to address the full range of asset

38

types in the library. Thus, the overall schema for defining certification defects, selecting
techniques, and judging the effectiveness of methods for detecting defects has to be
applicable to different asset types. If not, the consistency of the certification process
cannot be maintained across the library.

Table 7-2. Example of domain certification considerations for space application

Domain Specific Attribute
Concern

Descriptor Required Level of
Confidence

Relative Weight

Dependability Reliability High Important

Processing Real-Time, High Workload Moderate Less Important

System/Hardware Architectural
Impact

High Moderate Important

Complexity Moderate Complexity Extremely High Important

Development Formality Informal Development Moderate Important

Software Category Real-Time Moderate Important

Error Detection Presence of Residual Errors Not
Acceptable

Moderate Less Important

Test Comprehensiveness Detect All Possible Errors High Important

Problem Reports No Problem Reports Exist Moderate Important

Usage Attribute Known to Have Been Used, but No
Data on Usage

High Important

7.4 Quality Factor

The quality factor is the specific requirements concern against which an asset is being
evaluated. As such, it determines the defects or non-conformances that could be
exhibited by an asset as shown in Figure 7-1. Not all quality factors are relevant to all
asset types, and, furthermore, a quality factor that is relevant to a particular asset type
in one domain may not be relevant in another domain.

Also, a particular subset of relevant quality factors could be selected for certification
based on the business model of the organization responsible for certification. The
quality factors for the certification framework, previously listed in Table 7-1, were
selected from the Rome Laboratory Software Quality Framework (SQF) [BOW85]
[SPS95], the Guide for Information Technology on asset certification developed by the
Reuse Library Interoperability Group (RIG) [COM96], and the software characteristics
of the ISO/IEC 9126 [INT91]. The certification framework has to be able to differentiate
among the quality factors in defining a certification process while maintaining the
consistency of the certification approach.

39

Software Reuse
Business Strategy

Domain

Asset Production
(standards)

Asset Selection

Asset Type

Asset Certification

Non Conformances
"■ X ■■ ■

Methods

Certification Process

Figure 7-1. Quality factors influence the resulting certification process

7.5 A Thread through the CF

The CF encompasses a broad view of the reuse context, yet a thread can be constructed
through the CF by selecting specific attributes within each reuse context element.
Selecting attributes for each of the elements provides the user a mechanism to apply the
CF to his specific situation. Then, the CF serves as a algorithm for decision-making
based on the user-defined attributes. Using specific attributes for each of the vertical
elements, a particular thread through the tabular view of the CF can be defined as
shown in Table 7-3.

Since most organizations may not have all the information available to exercise our
certification algorithm, we defined a default profile, based on empirical data collected
from studies of industry projects. Our default profile can be used to "get started" and
may be fine-tuned with organizational data, as it becomes available. As illustrated in
Figure 7-2, our default profile for our certification field trial was optimized for a
software reuse business strategy of "Public Library," a domain of "MIS," an asset type
of "Code," and a quality factor of "Correctness."

40

Table 7-3. Thread through the tabular view of the CF

S/W Reuse
Business Model

Domain Asset Type Quality Factor Non-
Conformance

Class

Certification
Techniques

Certification
Process

Vendor Owned
Domain

Gov't Supported
Standard

.MIS.

/Avionics \

Design
Information

Document

Correctness

■ Completeness

Latent , Compilation

Static Analysis

Process Definition

Procedures Robustness

Value-Added
Reseller

/ C2 \ Test Artifacts y Understandability Inspection "> Tools

Gov't Owned
Architecture

Gov't Owned
Domain ,

Reengineering /

/Automated Test
/ Equip.

' Weapon Systems

Communication

\Req. Specs

'Code '

Architecture

Performance

Fault Tolerance

Functionality

Testing Data Collection

Certification Levels Formal
Verification

Benchmarking

Public Library/ Intelligence Database
Schema

Maintainability Modeling

Commercial
Library

Process Controls

Other

Models

Video

Other

Portability

Reliability

Usability

Safety

Security

Availability

Testability

Survivability

Other

A discussion of the elements of "Non-Conformance/' "Techniques," and "Process
Elements/' as well as guidance for selection of other "Quality Factors" and associated
tools and techniques, is found in the Volume 2, the Certification Framework.
Additional details about the certification field trial are found in Volume 5.

41

Certification of Reusable
Components Framework

Asset Type: Code

Quality Factor: Correctness

"Defect": Error in Code
Computational
Logic
Interface
Data
Other

Rework: Effort to find & fix errors

Cost/Benefit of Certification:
Rework Avoidance

Figure 7-2. CF tailored to the quality factor of "Correctness" for "Code" assets

42

8 Project History

The highlights of CRC's thirty-month project history are best captured by the time line
illustrated in Figure 8-1.

GCSS-AF & SBIS
to Trim Costs by
Sharing Code

Air Force Policy on
Rework (Acquisition
Policy 93M-017)

GAO Reports on
Software Reuse

JUN96

APR96

FEB96

DEC 95

JUL95

JUN95

MAY 95

JAN 95

SEP 94

FEB94

DEC 93

JAN 93

ü CF 3.0 Prototype Delivery

l| CF 2.0 Prototype Demonstration

m CF 1.0 Initial Prototype

H Preliminary Field Trial

m Pilot Site: Gunter AFB

M Pilot Site: UL

H Significant Innovations

H DISA's Role Changed

CF Refinement

Program Objectives

CRC Project Begins

Certification of
Reusable Software
Components
[RTI93]

Briefing to RL Research History
Dr. Paul Strassmann and - Testing
Mr. Lloyd Mosemann, - SQF
[Nov91]

Figure 8-1. CRC chronological project history

As shown on the time line during January 1995, DISA's role changed from our initial
plan, and their staff members were no longer able to participate and provide a pilot site

43

to apply the CF. The CRC Team searched for a new pilot site, and in July 1995,
successfully recruited Gunter Annex of the Maxwell AFB and the Global Combat
Support System-Air Force (GCSS-AF) program as a pilot site.1 This activity required
significant time and resources, yet was critical to the success of project's transition of
developed technology. Despite these obstacles, the CRC Team was able to add another
potential pilot site at UL. The CF will be applied and validated at these sites under
separate funding.

Through the life of the project, the CF was developed as an evolvable technology as
required by the CRC Statement of Work. As shown on the time line in Figure 8-1, the
development of the CF 1.0 began at the start of the project and this initial version of the
CF was completed in February of 1996. Review of the Cost/Benefit Plan and the
operational concept, together with the results of the initial field trial, led to expansion
of the CF 1.0 to include scope and rigor, resulting in CF 2.0. Additional development
refined CF 2.0 leading to the final CF 3.0. This approach of the CF as an evolving,
iterative technology is best represented in Figure 8-2.

Figure 8-2. Evolution of the CF

Major CRC work products of the project were a final CF 3.0, a Cost/Benefit Plan, and
OCD, a study of a Certification Toolset, and a Code Defect Model. The CF was applied
in a field trial using the selected certification toolset and guided by the certification
process, procedures, and data collection forms. The results of the field trial were

1 GCSS-AF was previously known as the Base Level Systems Modernization (BLSM) Phase II program.

44

analyzed and documented in Volume 5 - Certification Field Trial. Additional details
about the field trial and each of the other major work products can be found in the
appropriate volumes of the CRC supporting documentation suite.

45/46

9 Project Results

This section discusses the technical results of certification, the important findings and
conclusions for the following areas:

Certification Framework

Cost/Benefit Plan

Operational Concept

Certification Field Trial

Certification Toolset

Code Defect Model

Additional details for each of these task areas are found in the supporting volumes of
the CRC documentation suite.

9.1 Summary of Certification Framework

The Certification Framework is a method for deriving certification processes that help
assure reusable asset quality, using the most cost-effective means available. The
Certification Framework specifies the types of assets that can be certified and the
quality attributes for which each type can be certified. The process by which each type
of asset is certified for each relevant quality attribute includes the techniques and tools
to evaluate the asset as well as precise procedures to be followed.

The quality attributes relevant to a particular asset are often a function of both the
domain in which it was developed and the domain in which it is to be reused.
Furthermore, the desired level of quality can be affected by the business model under
which the repository or library operates because the cost of certifying various levels of
quality has to be balanced against the objectives and resources of the library. Thus, the
framework has been designed to be adaptable to the various reuse contexts. Quality is a
general concept that can be difficult to describe or measure directly. The Certification
Framework manages this difficulty by associating quality with a generic notion of non-
conformance; the fewer non-conformances an asset has, the higher its quality. All non-
conformances are defined by a defect profile that identifies the types and density of
defects (non-conformances) an asset may exhibit. Given this defect profile, an
appropriate set of certification techniques can be selected based on a certification
technique effectiveness profile. This latter profile predicts how effective particular
evaluation techniques will be at detecting the defect types. A cost/benefit model was
developed to select and sequence these certification techniques to optimally detect
defects. The benefit of performing certification is measured by rework avoidance.

47

Rework was selected in order to assess risk and show the economic value of
certification.

The remainder of the discussion in this section presents the base Certification
Framework which covers the latent and robustness non-conformance classes. The "Xs'
in Table 9-1 illustrates the areas that were researched for the Certification Framework.

Table 9-1. Certification Research Areas

Non-Conformance Class

Asset Type Latent Robustness

Software Source Code X X

Software Architectures X —

In order to use this methodology, several steps must be taken to tailor the Certification
Framework for a specific situation. The Certification Framework provides a decision
support mechanism for constructing a context-sensitive certification process, as
illustrated in Figure 9-1. The decision support mechanism is an algorithm that selects
non-conformance classes and certification techniques and tools based upon the software
reuse business model, the domain characteristics, the asset type, and the relevant
quality factor.

First, the reuse context must be identified, including the business model, the domain,
the type of asset and the certification quality factor. Secondly, the types of defects for
the combination of asset and quality concern for each of the non-conformance classes
are determined and the defect density and rework effort associated with each defect
type are derived. Given this information, an appropriate set of certification techniques
or methods are selected to detect the defined defect types. Finally, the cost/benefit of
performing the certification for this scenario is measured by rework avoidance. Table 9-
5 illustrates the data required for the cost benefit optimization and Equation M-2
presents the optimization calculations. The result is a certification process which
produces a higher quality asset that is more likely to be reused.

The set of selected techniques and their order of application form the core of the
certification process comprising an organization's certification policy. In this way, the
Certification Framework operates much like cost modeling tools used in planning
development projects, but instead is applied to planning certification processes.

48

Select Asset Type

I
Select Quality Factor(s)

Identify Risk Level Select Non-conformance Class

Identify Techniques & Tools Techniques Effectiveness

Cost Benefit Optimization

E
Certification Process

Selected Tools
Certification Levels
Process definition
Data collection requirements

I
CERTIFICATION

POLICY

^L

Figure 9-1. Decision support mechanism for the Certification Framework

49

In order to fully utilized this decision support mechanism, the details of the framework
elements must be examined. The Certification Framework is comprised of three types
of elements as shown in Figure 9-2:

• reuse context

• defect model

• process

Reuse Context
Elements

Defect Model
Elements

Process
Elements

r «v*-^^-™ -\ r J^
->i

S/W Reuse
Business

Model
Domain

Asset
Type

i

Quality
Factor

Non-
Conformance

Class

Certification
Techniques

Certification
Process

Figure 9-2. Certification Framework element groups

The Certification Framework is used to construct a certification policy, which is a set of
certification processes that apply to a specific asset type, and that certify specific quality
factors. A certification policy is related to the Certification Framework elements in the
following way:

• reuse context elements specify the circumstances under which the policy is
applicable

• defect model elements define the certification objectives

• process elements describe how to perform the certification

9.1.1 Defect Model Elements

After the reuse context for certification has been established by identifying the business
model, the domain, the asset type, and the quality factor(s), the appropriate defect
model is chosen and used to specify the certification process for that context. The defect
model is comprised of the elements of non-conformance class and certification
techniques as shown in Table 9-2. Non-conformance classes are described by a defect
profile comprised of defect density and defect rework. Likewise, certification
techniques are described by a technique effectiveness profile consisting of removal
effectiveness and cost.

50

Table 9-2. Defect model

Defect Model Elements

Non-conformance class Certification techniques

Defect profile Technique effectiveness profile

Density Rework Removal
effectiveness

Cost

9.1.2 Non-Conformance Class

The Certification Framework defines a model for certification based on quality, where
quality is defined according to an absence of defects (or non-conformances) with respect
to requirements. This is expressed by a set of quality factors each having a defined
defect model. The fewer defects an asset contains, the higher its quality. A hierarchical
model of defects, called a non-conformance model, specifies a partitioning of the defects
into classes. The base Certification Framework addresses non-conformance classes of
latent and robustness. Latent defects are defects relative to an asset's original
requirements that were not found and corrected prior to submission of the asset to the
reuse library. Robustness defects are defects that only arise when reusing an asset in a
different context.

For each non-conformance class, the Certification Framework focuses on developing a
detailed understanding of the types of defects that comprise that class and the
techniques that can detect those defects. This understanding is captured in a defect data
profile which details, for each type of asset and each quality factor, the types of defects,
their density, and associated rework. Table 9-3 provides a conceptual view of a defect
data profile.

Table 9-3. Defect data profile

Defect Type Defect Density Rework Effort

Defect 1 Type 1 Defects/KSLOC El

Defect 2 Type 2 Defects/KSLOC E2

Defect n Type n Defects/KSLOC En

51

A requirements violation of any kind is considered a defect if it must be corrected or
dealt with before the asset can be reused (i.e., its presence requires rework). Defects are
studied in the context of a particular quality factor and type of asset. For example, an
organization concerned with certifying the portability of software components would
identify and study defects that affect source code portability. Specific examples might
include operating system function calls, dependence on a vendor-specific file format, or
the use of a compiler-provided program.

In developing the defect data profile, individual defects are grouped into defect types for
convenience in analysis. Using the example of source code portability, individual
defects might be grouped into the following defect types: external interface, numeric
representation, and language usage. Different densities, rework costs, and detection
techniques are then associated with these different classes.

Density refers to the number of defects per unit size measure (e.g., per thousand lines of
code (KSLOC)). An expected density is estimated for each defect type for uncertified
assets. Using the example of portability defect types, a 10,000 line program with 43
external interface defects would have a defect density of 4.3/KSLOC for the external
interface defect type. The size component used to compute defect density can be any
convenient, countable, well understood, and consistently applied measure. Defect
density is important in selecting certification techniques, determining the order in
which they should be applied, and understanding how they should be applied. Defect
density is also used in calculating the value of avoided rework.

Rework, measured in person-hours per defect, includes all effort associated with
isolating, fixing, retesting, and documenting a defect, on average. Rework effort can be
converted into cost (i.e., dollars) for a particular organization by multiplying by the
organization's average labor rate for a certification engineer. Users benefit from
certification by being able to select high quality assets and avoid rework. Avoided
rework is used to measure risk reduction and place an economic value on certification
activities.

9.1.3 Certification Techniques

In addition to the defect data profile, a profile of certification techniques, their
effectiveness for detecting each of the defect types, and the costs associated with using
these techniques is generated; this is shown in Table 9-4. Effectiveness profiles describe
the number and percentage of defects, by type, that different techniques and tools can
detect and the costs of applying the techniques and tools. These costs of applying
techniques and tools, incremental costs, are measured in person-hours to apply
techniques and use tools, as well as investment costs associated with tools (e.g.,
acquisition, training, and maintenance). This approach takes into account the following
two important findings:

• techniques are not equally effective at finding all types of defects

• techniques vary significantly in their cost of application.

52

These considerations explain why designing a certification process is an exercise in
trading off benefits versus costs.

Table 9-4. Techniques effectiveness profile

Defect Removal Yield for Techniques/Tools

Defect Type Tool
A

Tool
B

Tool. Tool. Tool. ToolN

Defect 1 %1A %1B %1N

Defect 2 %2A %2B %2N

■

•

■

Defect n %nA %nN

Investment Cost IA IB IN

Incremental
Cost

CA CB CN

Like the Nuclear Regulatory Commission's Guidelines for Verification and Validation of
Expert System Software and Conventional Software [MIL95], the Certification Framework
incorporates an approach known as Fault-Specific Verification (FSV), where the choice
of certification methods (i.e., techniques) is based on the types of faults (i.e., defects) that
can occur. Once the defects are identified, the set of methods is chosen based on the
asset type, the methods' effectiveness in identifying the specific defects and the degree
of rigor indicated by the risk class. This is the basis for the Certification Framework
defect models.

The degree of rigor is not only a function of which certification techniques are applied,
but also of the acceptance or exit criteria for each technique. The same technique may
be applicable to more than one risk class, but for the higher risk class, it may have more
stringent acceptance criteria.

The optimal situation is the scenario of unlimited certification budgets and all
techniques and tools could be used. Each technique would act as a filter in a pipeline
through which an asset was passed. Each technique application would remove the

53

defects from the asset that it was equipped to detect and the asset would emerge at the
end of the pipeline purged of all defects. This scenario is represented in Figure 9-3.
However, a more realistic situation is the one where resources are constrained and the
certifier must choose which techniques and tools he can afford to implement. To
facilitate this trade-off process, a cost/benefit model was developed as a key feature of
the Certification Framework. This model assists the certifier in identifying the most
cost-effective subset and ordering of certification techniques within his budget
constraints.

The Certification Framework cost/benefit model combines the data from the defect data
profile and the techniques data profile with the cost data as shown in Table 9-5 in order
to create a tailored certification process.

Defect Removal Effectiveness

Defect Density Profile

Defect Type Delect Density

Defect
Removal

Yield Defect Type
Defect 1 %1A

Defect 2 %2A

.

.
■

Defect n

Asset witl
Defect
"Impurities'i

Certified
Asset with
Fewer
Defect
"Impurities"

t t t 1 t I
ABC D E F

Different Certification Method/Tool "Filters"

Figure 9-3. Certification method filters and effectiveness

54

Table 9-5. Cost/benefit optimization data elements

Certification Method 1 ... Certification Method m

DefectType Defect
Removal

Rework
■■•" '''■■■

Defect
Removal

Rework

Defect 1 %Yieldll SAll/KSLOC %Yieldlm $Alm/KSLOC

Defect 2 %Yield21 SA21/KSLOC %Yield2m $A2m/KSLOC

Defect n %Yieldnl $Anl/KSLOC %Yieldnm $Anm/KSLOC

Investment Cost $11 $lm

Incremental Cost $Dl/KSLOC $Dm/KSLOC

Ideally, the reuse organization would use historical information, such as software
problem report data, to develop the data for the profiles and cost model. However,
industry averages for the defect densities can be used until the organization is able to
institute its own data collection program.

After all of the profile data has been compiled, the Certification Framework cost/benefit
model can be applied to optimize the certification activities.

9.1.4 Process Definition

Every certification process can be located within a 3-dimensional structure, shown in
Figure 9-4, where every process P on the cube represents a particular certification
process to certify an asset type to a given level against a particular non-conformance
class for a particular quality factor. Certification levels may be based on expected
rework and /or other measures of risk. The non-conformance class, quality factor, and
certification level that determine P are also influenced by the corresponding software
reuse business model, the domain, and the asset type. This family of certification
processes constitutes an organization's certification policy.

55

Non-
Conformance

Certification
Level

Quality Factor

Figure 9-4. Family of certification processes for an asset type

The Certification Framework provides a method for deriving certification processes that
help assure reusable asset quality, using the most cost-effective means available to an
organization. Figure 9-5 illustrates the overall operational context of the Certification
Framework within an organization.

Certification Framework

Dofect Density and Impact Profile
(for trio aseet type«, concerns of interest,
and domain typical tor the organization}

Defect Removal Coet-Effectlvenefts
(tor available certification methods/tools)

D«r«c(Typ« D*f*ct D*n»lty Rtwork Effort

D*twt Removal
Yltld

D«i*ct Typ« A B C 0 E

Coil

Types of assets
to be certified

Concerns of Interest

Available methods
and tools

O.t.olT,.. OT..ID.r..lly R.-ortERcrt

Default Defect Removal \
Cost-Effectiveness

Figure 9-5. Certification Framework operational overview

56

The process that results from the activities in Figure 9-5 is that which the certification
engineer follows to certify an asset. The process techniques are identified through the
cost/benefit optimization. This certification process definition also includes the specific
steps and procedures that should be followed during certification activities.

9.1.5 Certification Levels

The base Certification Framework defines multiple certification levels based on two
aspects: non-conformance class and the risk level. The following section presents the
details of selecting a risk level for certification.

The need for certification, and the degree of certification, depends on the risk
classification of the system in which the reusable component will be used. The
Certification Framework has a three-level risk classification adopted from the
verification and validation (V&V) risk classes defined in the Nuclear Regulatory
Commission's (NRC)Guidelines for Verification and Validation of Expert System Software
and Conventional Software [MIL95]. The NRC's classification scheme was designed to
encompass high-reliability, safety-critical systems. Risk Class 1 is the highest risk level
and Class 3 is the lowest; therefore Class 1 requires the most stringent certification. A
primary concern for Class 3 is minimizing the consequences of poor quality for the
project (i.e., rework). On the other hand, the primary concern for Class 1 is damage to
people or the environment.

Determining which risk class a system falls into is a function of two aspects: degree of
required system integrity, and system control/complexity. The degree of required
system integrity is based on the acceptability of the consequences of system failure or
incorrect operation. The economic, legal, environmental, ethical, and business
consequences listed in Table 9-6 are considered.

57

Table 9-6. Consequences Considered for Determining Degree of System Integrity
[MIL95]

Consequences of System Failure or Incorrect
Operation

injury or death to plants and animals

interruption of system service

financial loss

loss of information

inconvenience to people

destruction or pollution of the environment or ecosystem

disruption of the system's mission

impact of the availability or operation of other systems

loss of opportunity

impact on an organization's capability to perform

loss of human lives

human injuries

long-term health problems

discomfort to people

The degree of system integrity required is determined by Table 9-7 below.

Table 9-7. Determining Required Degree of System Integrity [MIL95]

Degree of System
Integrity

Acceptability of Consequences (Table 3-9)

High Unacceptable from any perspective

Medium Somewhere between High and Low

Low Reasonably acceptable from all perspectives

58

System control/complexity characteristics are summarized in Table 9-8.

Table 9-8. Determining System Control/Complexity [MIL95]

System
Contr ol/Compiexity System Characteristics

Quite High System is a safety system, or is specifically designed to support or relate to a safety
system

System directly controls, or provides real-time advice to an operator to control
something

Moderately High System involves at-real-time or near real-time processing or any of the following:

• distributed processing

• embedded processing

• complex reasoning

• interrupt-driven processing

• a large number of complex interacting systems

Low to Moderate System is basically a stand-alone user-driven consulting system

Once both degree of required system integrity and system control/complexity are
known, the risk class is determined from the decision table shown in Table 9-9. The
next table, Table 9-10, provides examples of the different risk classes taken from the
Nuclear Power industry. Similar analysis must be done by any organization
responsible for setting certification policy.

Table 9-9. Risk Classes (1 = Highest Risk)

Degree of Required System Integrity

System
Control/Complexity Low Medium High

Quite High Risk Class 2 Risk Class 2 Risk Class 1

Moderately High Risk Class 2 Risk Class 2 Risk Class 2

Low to Moderate Risk Class 3 Risk Class 3 Risk Class 2

59

Table 9-10. Examples of Risk Classes from Nuclear Power Industry [MIL95]

System Control /

Complexity

Quite High

Embedded

Real-time

Continuous Data-Input
channels

Direct Control Functions

Many have Interrupt
Processing

Degree of Required System Integrity

Low

Risk Class 2

Steam Generator

Blowdown Control
System

Radioactive Waste
Management

Moderately High

Embedded or Attached

No Direct Control functions

Control-Decision Support
functions

At least near real-time

Continuous Data-Input
Channels

Medium High

Risk Class 2

Automatic Control-Rod
Manipulation

Main Feedwater
Control System

Risk Class 2

Thermal Plant Analyzer
(TPA)

Turbine Generator
Diagnostic Monitoring

I

Risk Class 2

Emergency Operating
Procedure Tracking
System (EOPTS)

Reactor Safel
Assessi
(RSAS)
Assessment System %,

Reactor Emergency
Action Level Monitor
(REALM)

Low to Moderate

Stand-Alone

User-Driven

Non Real-time

Advisory Functions

No continuous Data Input

Risk Class 3

Fuel-Rod Reshuffling
Planner

Water Chemistry
Advisor

Risk Class 3

Safety Review Advisor
(SARA)

Plant-Layout

Risk Class 2

Emergency Core
Cooling System (ECCS)

Real-time Monitoring
and Diagnosis

Risk Class 2

In-service ECCS
Inspection Advisor

Emergency Safety
Actuation System
(ESAS) Testing System

60

9.1.6 The Economics of Certification

For the lowest level of risk, Risk Class 3, the cost of certification can be weighed against
the cost of not performing certification—the cost of rework. The certification process
either discovers defects or confirms their absence, and then, the benefit of certification is
avoidance of rework on the part of the consumer of the reusable asset. Selection of
certification techniques is governed by the cost/benefit model described in CRC
Volume 3, Cost/Benefit Plan.

For the higher levels of risk, Risk Class 2 and Risk Class 1, the cost of failure is great.
The cost of failure in these cases is difficult to quantify and it may overshadow the cost
of rework. The objective is to determine which certification techniques achieve the
required level of risk reduction at the lowest total cost. However, other types of risk
besides rework must be considered.

Responsibility for the costs of certification is a function of the software reuse business
strategy, and may largely depend on who bears the risk of failure. The business
strategy dictates whether certification should be performed by the producer of reusable
assets, the consumer of reusable assets, or an independent third party. For example, it
is difficult to imagine a business strategy in which a public reuse library would provide
personnel or funding to certify to Risk Class 1. Given the large investment in
certification and the risk of liability for Risk Class 1, it is more likely that the cost would
be allocated to the development costs of a new system, or would be recouped by
commercial sale or licensing of the certified assets.

From the point of view of the consumer of reusable assets, reuse makes sense if the cost
of reusing an asset is less than the cost to develop it from scratch. Many software
development cost models assume that reused code or modified reused code costs
significantly less to develop than new code. In this scenario, certification can be
substituted for V&V that would have been performed if the asset were developed from
scratch. Therefore, from the consumer's point of view, the level of certification must
meet or exceed the V&V requirements of his development environment. If there is a
shortfall, the consumer is responsible for the cost difference; thus, he is motivated to
acquire assets certified to the highest available risk class. Even if the available assets are
not certified to the risk class he needs, the certification still represents a V&V cost
savings.

9.1.7 Certification Framework Synopsis

Table 9-11 summarizes how the defect model and process elements of the base
Certification Framework are related to the two aspects of certification levels: non-
conformance class and risk class. In general, the certification process for each risk class
incorporates all of the techniques applicable at the next lowest risk class, plus includes
additional techniques and/or requires more stringent exit criteria.

61

Table 9-11. Certification Levels

Non-Conformance
Class Latent Robustness

Description Defects remaining after development Internal defects wrt. use in new context

Quality Factor

Defect Types

Quality Factor,,
Defect Type,
Defect Type2

Defect Typen

Quality Factor2,
Defect Type,
Defect Type2

Defect Typen

Quality Factor, 2

Defect Type,
Defect Type2

Defect Typen

Quality Factor2 2

Defect Type,
Defect Type2

Defect Typen

... ••• ,

Quality Factor, „
Defect Type,
Defect Type2

Defect Typen

Quality Factor2,
Defect Type,
Defect Type2

Defect Typen

Risk Class Certification Process

3

2

1

Technique, +... + Techniquea+n Technique, +...Techniquea+n

Level 3 plus Technique,, +... +
Techniqueb+n

Level 3 plus Technique,, +... + Techniqueb+n

Level 2 plus Technique,. +... +
Techniquec+n

Level 2 plus Technique,. +... + Techniquec+n

Interviews with potential users have revealed that certification is perceived as a labor-
intensive but required activity. Uncertain of the benefits, and with little or no way to
quantify the benefits, most organizations are trying to reduce the cost of current
certification activities. This situation is not too surprising given the general state of
practice in software testing and quality assurance. Testing and quality assurance
activities can consume a significant portion of software development resources, often as
much as 40% or more of the total project budget. Yet many organizations do not have a
basis for measuring the benefit of their testing and assurance efforts or improving the
results. All too often the approach is to "bang on the code" as much as possible with
the time and staff available.

The Certification Framework directly addresses the problem of quantifying the cost and
benefit of certification by providing the following:

• A basis for quantifying, understanding, and comparing the costs and benefits of
using different certification techniques and tools,

62

• A method for deriving certification processes for different types of assets, with
different quality concerns, in different application domains, and

• A method for predicting the cumulative cost and benefit associated with
applying recommended certification techniques and tools.

These capabilities are critical in achieving a major benefit of certification: enabling
reusers to select low risk reusable assets and thereby avoid the costs associated with
reworking low quality assets or developing new ones. Using the Certification
Framework can help organizations answer questions like the following:

• How can different qualities or asset characteristics be certified? How are these
qualities represented in our assets?

• What kinds of defects can we expect in our assets? What qualities do these
defects affect? How expensive are these defects to find and fix?

• Which techniques and tools should we use? Which are the most cost-effective?
What kinds of investments would yield the greatest benefit?

• How efficient and accurate are existing certification processes? How can they be
improved to yield greater benefit for the same or lower cost?

• Given a limited budget, what certification activities can and should be
performed? Who should perform these activities?

• Are process improvements contributing to higher quality? Is certification worth
doing?

The application of the Certification Framework has demonstrated that it can detect
defects in components and that the key to the effectiveness of the framework is the
targeting of techniques to particular types of defects. This ability to target techniques to
defect types provides an underlying rationale for developing certification processes.
Moreover, it maximizes the effectiveness of the process while minimizing its cost. For
this approach to work successfully, however, the organizations that use this framework
must give careful consideration to the types of defects and the relative distribution of
those types in the assets they are certifying. More research into the strengths and
weaknesses of evaluation techniques for different defects is also needed. Although the
focus of this effort has been on reusable components, the approach has potential for
application to the broader area of software V&V. Thus we believe that the payoff from
such research would be lower software V&V costs and higher levels of assurance in the
quality of software.

While the Certification Framework addresses the problem of how to confidently assess
the quality of reusable software components, it does not completely address who
should conduct the required activities. Alternative approaches include all evaluations
conducted by the certifying agency, all evaluations conducted by the developer and

63

reviewed for compliance by the certifying agency, and a mixture of certifying agency
and developer evaluations. This question could be addressed by evolving the
framework into a standard for certification. Developers could then incorporate the
verification activities of the standard into their development process, and certifiers
could certify that a component had been developed according to the standard.

Finally, the Certification Framework recognizes the importance that architecture plays
in the analysis and reuse of software components. It does this in two ways: (1) by using
architectural analysis to assess the quality of software code components and (2) by
providing guidelines for certifying architectures as reusable components. Architectural
analyses are important in understanding how components "work" and evaluating how
they "fit" with other components. Continued development of this field of study could
be the key to effective reuse in the development of verifiable complex systems.

Additional details about the CF can be found in the supporting document titled CRC
Volume 2 - Certification Framework.

9.2 Summary of Cost/Benefit Plan

In developing a cost/benefit plan for the certification of reusable assets it is essential to
distinguish between the costs and benefits of reuse in general, and the costs and benefits of
certification. Figure 9-6 illustrates the problem. The producer of a software system is
envisioned to have three sources from which a software asset may be obtained: 1) it can be
developed new at a cost of Cd, 2) it can be reused without regard to certification at a cost of
Cr, or 3) it can be reused with the benefit of certification at a cost of Crc- One way of
quantifying benefits is to compute cost avoidance. The cost avoidance of reuse is the
difference Cd-Cr. The cost avoidance of certification is Cr-Crc- Other benefits besides cost
avoidance are possible, but are outside the scope of the cost/benefit model proposed in this
plan.

64

Product
Under

Development

Benefit of Reuse in General = C d - C r
Incremental Benefit of Certification = C - C rc

Figure 9-6. Context of Cost/Benefit Models

This plan focuses on determining the marginal cost/benefit effect of adding certification to
an existing reuse program. Unfortunately, an extensive survey of published cost/benefit
models related to reuse identified only one model that specifically addressed certification
issues. That model suffered from several important limitations: it provided inadequate
resolution of investment and operations cost of certification, did not quantify the benefits of
certification, and did not consider the effect of certification on an asset base. The lack of an
appropriate pre-existing model made it necessary to develop a new cost/benefit model
targeted at the effects of certification on reuse.

The first step in developing a cost/benefit model is to identify the costs and benefits to be
captured. The costs of certification include the following:

• cost of acquiring certification tools, training, etc. (investment cost)

• cost of executing the certification process for an asset (incremental cost).

The normal costs of operating a reuse program, such as those associated with a repository
are not specifically considered in the certification cost/benefit model.

The certification of reusable assets offers two benefits distinct from those of reuse in
general. These are as follows:

• reduction of risk in reuse

65

• increase in attractiveness of reuse.

Certification does not, by itself, improve the quality of an asset. The risk of reuse can be
characterized by three major factors of the asset: correctness, understandability, and
completeness. The premise of certification is that if resources are put forward to address or
improve each of these factors, the probability or risk of defects in the asset will be reduced.
In this context, the degree of risk equates with the expected amount of rework encountered
by reusing an asset. In order to decrease the degree of risk, you must increase the degree of
correctness, or understandability, or completeness, or all of these factors by instituting
certification. This will result in a lower average rework level, \ic, and a decrease in the
variability of rework, oc, for the set of certified assets. This relationship is illustrated in
Figure 9-7. The focus of this cost/benefit plan is to increase the degree of correctness in a
cost effective manner in order to achieve a reduction in risk. Rework cost avoidance, Ca,
will be used as the measure of risk reduction. Therefore, if an accurate certification scheme
is applied, reusers are less likely to be surprised by failures and rework. They can select
more reliable assets and avoid less reliable assets.

o

.o
o
L.
a.

Distribution of
Certified Assets

. Distribution of All

Amount of Rework

Figure 9-7. Certification Risk Reduction

Concurrently, the increased quality that is psychologically associated with a certified asset
makes it more attractive to potential reusers. Thus, the level of reuse is likely to increase, in
addition to the reduction of risk already described as a benefit of certification. Early results
from the DISA Reuse Metrics Program [CHU93] support this hypothesis. Repository

66

reports showed that more highly certified assets were more likely to be extracted for
potential reuse [RAT94].

While risk can readily be converted into a cost avoidance, the marketing benefit of
certification is harder to quantify. Consequently, the cost/benefit model proposed in this
plan deals only with risk reduction.

9.2.1 Certification Method Effectiveness by Error Type

The type of error or defect and the ability to detect its presence has an impact on the cost of
rework. In order to produce a more accurate estimate of cost avoidance, a model must be
developed that provides a basis for synthesizing a certification process that provides a
measure of the degree to which a software component is free of various types of defects.
For the more detailed cost/benefit analysis two aspects must be specified: (1) the type of
expected defects and (2) defect detection techniques. In this context, the cost of rework
avoided is shown in Equation M-l.

cm=x™ YSD-•RHi•L/?)•DD,i~lu(Invi+Incj) (M_1)

where

Cak = cost avoidance due to certification of asset k

Di = defect density for defect type i

RHi = number of rework hours for defect type i

LR= hourly labor rate

DDij = percent of defect type i detectable by technique;

Invj = investment cost for technique j

Ina = incremental cost for applying technique j

n = number of defect categories

m = number of certification techniques

An important aspect of Equation M-l is that it provides the cost of rework avoided when
all defect detection techniques are applied in the certification process.

However, due to organizational resource constraints or policies, it may not be possible to
exercise all of the techniques. This in turn requires a model to determine the order in
which methods should be applied in a certification process to maximize benefit, in terms of
reduced risk or rework due to defects, and to minimize cost. This stepwise approach that

67

maximizes rework avoidance with respect to technique defect detection effectiveness,
investment cost, and incremental cost is represented by:

max Co* = 2™ Jl"(Di»RHi»LR)»DDü-^(Invj + Incj) (M-2)

w.r.t ^T m (Invj + Incj) < B

where

B =budget for certification activities

This stepwise approach is similar to the methodology employed in a stepwise regression
algorithm. This stepwise certification cost effectiveness algorithm, shown in Equation M-2,
is used to calculate the costs and benefits associated with defect detection methods and the
order in which the methods should be applied; this is based upon the greatest benefit
received, rework avoided, for the cost incurred, investment cost plus incremental cost. This
is done by a stepwise analysis of cost-effectiveness, where the method with the greatest
marginal cost effectiveness is selected at each step. This analysis continues until the best
subset of methods has been selected for which total cost < total benefit. The result is a
certification process that is optimized for a specific organization's requirements.

9.2.2 Evaluation of Models and Data Collection

In addition to evaluating certification technology, the data collected per this plan should be
used to improve the cost/benefit models and data collection methods defined here. Some
of the issues to be considered in this phase of analysis include the validity of the modeling
approach and the efficiency of the data collection methods. Figure 9-8 below illustrates the
process for Reuse Certification Cost Model validation; the references to reuse cost should
be interpreted as reuse certification costs.

68

Cost Components

Reuse
Experience

Prototype
Equation

Figure 9-8. Reuse Certification Cost Model Construction Process

Identify Reuse Costs and Benefits: Individual components of cost and benefit were
identified. By predicting the cost of the components instead of the whole, the model will
take advantage of certain statistics of aggregation. This results in the partial cancellation of
errors in predicting the cost of one of the components by opposite errors in predicting the
cost of another of the components. The statistics of aggregation work for estimating reuse
costs to the extent that the component costs are not all subject to increase or decrease for the
same reasons, and to the extent that inaccuracy introduced by the decomposition itself does
not outweigh the benefits of the aggregation. Decomposition of the reuse components will
initially result in cost factors for evident components (for example: Software Cost =
Specification Cost + Design Cost + Implementation Cost. . .) and then model these
elements separately.

Data Collection: Support or refutation of the theoretical relationship between an element
of cost and some measurable factor requires collecting data from a sample of projects or
from records of past projects. In order to assure maximum validity, most data to support
the cost theory will have to be collected from new projects.

Formulate Theory of Reuse Costs: Statistical analysis, the most commonly applied
analysis technique for cost predictor models, must follow, not precede, formulation of a
theory of cause. When there is a causal relationship between a cost prediction and an early
observable predictor, there is normally a strong statistical correlation between the two. The
converse is not necessarily true. Statistical correlation does not necessarily imply cause due
to chance correlation between unrelated data items, therefore, it is essential to formulate a
theory of cause with which to identify chance correlations

69

Correlation: Simple linear regression will be used to fit a curve of the basic shape
hypothesized by the theory into the set of data points collected. The best-fit curve is
defined by actual numerical values for each of the factors in the prototype equation.
The resulting equation implies perfect fit, but the actual data points can be expected to
be scattered about the prediction line defined by the equation. The amount of scatter
will be expressed as a standard error of estimation and presented as part of the equation
(i.e., EQUATION ± 10%). The resultant cost model will consist of a set of evaluated
prediction equations useful for projecting a particular component of the total cost with a
known margin of error. The degree of accuracy obtained is an important consideration.
Boehm describes a good model as one that yields an estimate with an 80% likelihood of
being within 20% of the actual.

9.2.3 Cost/Benefit Synopsis

The Cost/Benefit Plan describes a systematic approach to evaluating the costs and
benefits of applying certification technology within a reuse program. The plan focuses
on the benefits of certification in terms of risk reduction; it quantifies the risk reduction
effect in terms of cost avoidance.

The cost model for certification is based on the type of error (or defect) and the ability to
detect its presence as it impacts the cost of rework. Since resources usually prohibit
exercising all possible defect detection techniques, the model determines the order in
which methods should be applied in a certification process to maximize benefit, in
terms of reduced risk or rework due to defects.

Our approach maximizes rework avoidance with respect to a technique's defect
detection effectiveness, investment cost, and incremental cost. Our stepwise
certification cost effectiveness algorithm is used not only to calculate the costs and
benefits associated with defect detection methods, but also the order in which the
methods are applied. The result is a certification algorithm that can be optimized for a
specific organization's requirements.

Since most organizations may not have all the information available to exercise our
certification algorithm, we defined a default profile, based on empirical data collected
from studies of industry projects. Our default profile can be used to "get started" and
can be fine-tuned with organizational data, as it becomes available. Our default profile
is optimized for the quality factor of "Correctness" and the component type of "Code."
If organizations are interested in other quality factors, the CF provides guidance on the
selection of other techniques and tools.

The Cost/Benefit Plan presents a systematic approach to evaluating the cost/benefit of
certification technology, in general, and the CRC team's proposed certification framework,
in particular. The overall approach includes defining formal cost/benefit models,
collecting the corresponding data from the cooperating repository(s), and implementing a
comprehensive program of analysis.

70

The technical approach presented in this plan also helps to mitigate the program risks
identified by the CRC team. Some of these risks and the corresponding mitigation strategy
incorporated in this plan are as follows:

Risk Strategies

Certification benefits not quantifiable or not Consider qualitative effects of certification; conduct
large enough to detect more sensitive field studies

Certification not sufficiently automatable to be Develop a generic approach that can apply to any
cost-effective certification criteria allowing flexibility to change

Inability to collect sufficient data from Conduct field studies; use industry data to parameterize
cooperating repository(s) the cost/benefit models

The methodologies and results presented in this study indicate that the current state of
reuse practice - many assets of low or indeterminate quality - could benefit significantly
from effective certification technology. The implementation of this plan provides
information essential to designers of certification programs and operators of reuse
repositories, while at the same time minimizing program risks.

Additional details about evaluating the tradeoffs between certification's costs and benefits
can be found in the supporting document titled CRC Volume 3 - Cost/Benefit Plan.

9.3 Summary of OCD

The operational concept of the Automated Certification Environment (ACE) can be
illustrated as shown in Figure 9-9. A Component Certifier certifies components
according to an "instantiated" Certification Framework. The chosen instantiation is
driven by the particular needs and issues that can be addressed in reuse and
certification.

The Component Reuser searches the repository for candidate components. Once
identified, he evaluates the certified component and determines if he can reuse the
available component. His decision making is based on information available to him
and other users (Cost Analysts, Managers, Data Analysts, Independent Certification
Organizations) from the ACE as determined by his selected concern(s). Repository
Organizations accept components from Component Suppliers to catalogue and
maintain information about each component. Component Creators provide
components to Component Suppliers. The Certification Framework Providers establish
the instantiated Certification Framework for the user along with training and
consultation services.

The users of the ACE are Component Creators, Component Suppliers, Component
Reusers, Cost Analysts, Repository Organizations, Component Certifiers, Managers,
Data Analysts Independent Certification Organizations and CF Technology Providers.

71

^

Certification
Procedures

r

Certification engineer
certifies components

according to an
instantiated CF

^

Certification
Framework

(CF)
r

Component
Information.

User

Software engineer
searches repository
for candidate
components

Once identified,
software engineer

evaluates component
certification

User

Figure 9-9. ACE operational concept

Representative user scenarios were developed illustrate how users employ the ACE
capabilities to accomplish the various activities associated with certification. Scenarios
for the ACE can be envisioned within two enterprise settings; a Reuse Library
Organization and a general Software Development Organization. As illustrated in
Figure 9-10, a Reuse Library Organization may be a Government Repository or a
Contractor Repository. A Software Development Organization may be a member in the
Commercial Reuse Industry.

In both scenarios, the data needed to drive the CF is part of the overall measurement
program of the enterprise. Within each enterprise, a Certification Analyst is responsible
for building and maintaining default profiles for different domain application areas and
different asset types. The output from the CF is one of many inputs to the creation of
the certification policy for each enterprise.

72

// /

Rome Lab
Certification
Framework

/

Government
Repositories

Certification*
Engineer

H

Contractor
Repositories

Certification^
-Engineer

Commercial
Reuse Industry
:: f Certification1

A ^ngineer

*

Figure 9-10. ACE scenarios of use

The Certification Analysts, as "players" in these scenarios, may consist of the following
kinds of users:

• Librarians and catalog administrators responsible for the quality of an asset
collection

• Software developers seeking to provide reusable assets

• Software developers seeking to reuse existing assets

• Test and quality assurance engineers involved in certifying and validating the
quality of software

In the usage scenario at a Reuse Library Organization, Government Repositories supply
assets for external reuse while Contractor Repositories create and supply reusable assets
for their own internal use. This scenario addresses these questions:

• Is it is cost-effective to raise the certification level of my asset?

• Is it worthwhile to continue testing my asset for a specific area of concern?

• Shall I reuse and modify a certified asset or construct a new one for my specific
domain and application?

73

By focusing on defects, the CF and the Cost/Benefit Model provide a straightforward
way to quantify the cost of these activities and compare it to the benefit gained.

This scenario describes a representative application of the ACE for certifying a reusable
software component. First, the component is assessed and assigned a certification level
as defined by the Reuse Library Organization. Areas of concern are identified and the
associated methods, techniques and tools are chosen to address the desired areas of
concern. A profile of the asset's defects and predicted density is determined across
parameters of the kinds of defects (Computational, Data, Interface, Logic, Other).

The cost impacts of measuring each kind of defect is determined using values of such as
defect distribution, rework hours, rework cost and rework density. A profile of
certification methods/techniques and their predicted effectiveness in detecting defects
is determined. After applying all the necessary methods and techniques, a final value
of "rework avoided" is computed. Then, a total cost of investing in all methods and
techniques is tallied. To complete the scenario, the user is automatically provided with
data about his asset to assist in his analysis, and finally, make his decision.

This scenario demonstrates the ACE's features of profiling defects, predicting defect
density and cost impacts across a range of defect types. The following events outline
the "plot" of this scenario:

1. The user identifies the kind of asset to be certified (source code, architecture,
etc.)

2. He picks a user concern(s).

3. He picks a default set of tools and data that is compatible with his current
operating environment.

4. He acquires the CF and the Cost Benefit Model.

5. He provides his own data, if available, to the ACE.

6. He applies the Cost/Benefit Model.

7. He collects the computed data.

8. He makes a economic decision based on technical data.

9. He performs defect detection.

10. He customizes, tailors, and updates his CF and his cost model. Each
customization may result in different certification solutions.

74

The CF can be used in this scenario to make project-specific decisions about certifying
one or more assets. This scenario can be in the absence of a certification or to replace
and/or enhance an existing policy.

The scenario at a Software Development Organization takes place at enterprises that
independently certify software and at enterprises that create software (with or without
the objective of reuse). This scenario addresses these questions:

• How do I measure compliance with standards in the setting of the certification
laboratory?

• Does this asset meet the mandated standards and requirements for the system in
which it resides (e.g., consumer safety of goods, transportation safety, flight
safety avionics, high reliability of spacecraft, environmental constraints, etc.)?

• How confident am I with the laboratory measurements, estimates and
predictions?

Even though these issues are complex, a wealth of theoretical and empirical data about
different software measurement and testing techniques exists and can be synthesized to
assemble appropriate certification procedures.

This scenario describes a representative application of the ACE for certifying a software
component. The component may be part of a system upon which stringent
requirements are levied; the component must meet these requirements, otherwise, the
system fails approval (i.e., Underwriters Laboratories). Failures must be strictly
documented so that components can be redesigned, reworked and resubmitted for
certification.

This scenario demonstrates the ACE's features of integrating a process, standards, a CF
and a Cost/Benefit Model to establish a desired level of confidence for a minimum level of
required reliability. The problem is analogous to filtering impurities out of a fluid in
pipe, as shown in Figure 9-11.

Measure
apriori

"impurities"

I
Measure in-process "impurity" removal

t I + *

t M t
Different "filters" for different "impurities"

Figure 9-11. Desired level of confidence with a minimum level of required reliability

75

The first step is a priori measurement of the fluid to gain a sense for the nature and
concentration of the impurities. If one cannot precisely measure the impurities, one
looks to predictive indicators or perhaps considers the source of the fluid or the process
that produced it. Based on this prediction of the initial impurities, a set of custom filters
and measurement devices are assembled to achieve a desired level of confidence in a
minimum level of purity at the completion of the process. Different filters address
different types of impurities. Measurements in-process may further guide or adapt the
process.

The following events outline the "plot" of this scenario:

1. The user analyzes high quality components to determine predictive product and
process attributes that can be used to determine the a priori characterization of
faults.

2. The user analyzes empirical fault detection data for various testing methods and
tools to determine the fault detection profiles of different certification methods.

3. The user defines the certification toolset requirements as those collections of
measurement (i.e., fault "prediction") and testing (i.e., fault "filtering") elements
that can be cost-effectively applied in different combinations to meet different
certification requirements of the candidate domains.

4. The user evaluates available certification tools against the requirements to
identify a set of candidate tools for further evaluation.

The CF can be used in this scenario to make product-specific decisions about
certification compliance.

Additional details about the operational concept can be found in the supporting document
titled CRC Volume 4 - Operational Concept Document.

9.4 Summary of the Certification Toolset

This study of the certification toolset accomplished the following:

• Defined certification tool requirements based on empirical data and identified
tool capabilities providing the greatest certification benefit for the range of
candidate domains

• Evaluated tools based on requirements, mapped tool capabilities to
requirements and assessed their level of support for requirements

• Selected tools based on evaluation - identifying the tools that most cost-
effectively provide the required functionality

76

The tool selection process is well defined and repeatable and can be used to evaluate
and select new tools and technologies as they are introduced. The selection criteria
were focused on software certification in the reuse context; however, they can be
customized as suggested by Figure 9-12 to accommodate:

• Additional contexts such as development, maintenance, and reengineering

• Differences in user environment (e.g., tools, personnel, charter)

• Differences in certification objectives (e.g., reliability, maintainability)

aoeia
iOOQIQI

^Certification Toolset

Context-Specifl
Selection Criteria

ific ^^"""v
eria ^y

Certification Toolset

a&aa
Figure 9-12. Certification tool selection process customization

We derived a "best bet" list of candidate tools that could be effectively used for
certification based on the best value in terms of functionality, ease of use, price,
performance and integration. From this "best bet" list, the following tool environment
was selected for the field trial of an Ada component:

• AdaWise - provides static analysis of alias usage, elaboration order and order
dependencies

• Logiscope - provides static and dynamic analysis of control flow diagrams, and
structural testing support

• AdaQuest - provides static analysis of style guidelines, size and complexity

77

The Rational APEX environment supplied the compiler, debugger and code manager
while executing on a Sun SPARCstation with the Solaris 2.4 operating system.

Our study of candidate tools for a certification toolset resulted in the following
recommendations with respect to Logiscope, AdaCAST, and Ada Wise. While
Logiscope supports a documented data import capability, it lacks a data export
capability. This can probably be worked around by writing filters to strip certification
data out of existing tools text reports.

AdaCAST lacks a data export capability. This also can probably be worked around by
writing filters to strip certification data out of existing tools text reports.

Ada Wise reports identify error locations by source file line number but require the user
to manually refer to source code. The output reports could be either modified, or report
filters written, to support hypertext traversal to the source code automatically upon
termination of the AdaWise program.

With respect to near-term tool requirements, Section 2.1.3 of CRC Volume 6 -
Certification Toolset identifies Mutation Testing and Symbolic Execution as
technology/technique risks due to their failure to migrate out of the academic and
research arena into mainstream software engineering practice. However, the promise
and potential value of these techniques to certification warrants additional investigation
into ways to facilitate their transition into common use.

Additional details about the certification toolset can be found in the supporting document
titled CRC Volume 6 - Certification Toolset.

9.5 Summary of the Certification Field Trial

Given the CRC CF and the Cost/Benefit Plan, we constructed a generic, context-
sensitive default certification process. The default certification process consists of four
main steps: Readiness Assessment, Static Analysis, Code Inspection and Testing. The
default process certifies code components (as opposed to other types of reusable
components) and addresses the certification concerns of Completeness, Correctness and
Understandability. We developed detailed procedures, data collection forms and
guidelines to support the successful execution of the default certification process in our
field trials.

The objectives of the certification field trial performed by SPS were as follows:

• Perform all of the steps in the default certification process

• Use all of the tools in the certification tool set

• Assess the accuracy and understandability of the procedures guidance

• Collect effort and technique effectiveness data

78

• Select a single asset to certify sized for a 2 staff-week certification effort

The field trial was a "hands-on" test of the default certification process as applied to a
component. Results of the trial helped assess the accuracy and understandability of the
procedures to conduct certification, the effort required to collect data, and the
effectiveness of techniques in detecting defects in components.

We initiated the field trial by selecting a component to certify, sized at a two staff-week
effort (i.e., employing one Certification Analyst and one Certification Engineer). We
selected component #157, the ProGen utility, from the ASSET (Asset Source for
Software Engineering Technology) repository distributed on the Walnut Creek Ada CD-
ROM.

The ProGen component is 1,543 logical lines of code (Ada semicolons), or 4,387 physical
lines of code (non-blank lines). It consists of 10 Ada packages. The component was
large enough to not be trivial, and small enough to be certified within a two staff-week
effort. ProGen is a utility program that automatically generates prologues for Ada code
files. It extracts information such as pragmas, types and representation clauses to
construct a prologue. The component includes a main procedure to generate a single
executable. It had no recorded defect history and no specification from the component
was available.

The Certification Analyst reviewed the ProGen source code by desk-checking and
found 2 major defects and 11 minor defects. Therefore, the Certification Analyst
seeded 5 additional major defects into the component to provide a significant number of
major defects known to her in advance of the field trial. No minor defects were added.
The seeded defects were not created in an attempt to duplicate a particular defect
profile (i.e., distribution of defect types). The known defects were not shown to the
Certification Engineer prior to conducting his tests. While technique effectiveness data
was collected, the field trial was not intended to be an experiment to determine the
effectiveness of the techniques that comprise the default certification process. The
design and implementation of an experiment of that type is quite involved and is
significantly beyond the scope of the CRC contract. The effort and technique
effectiveness data was collected in order to compare the actual results with comparable
values culled from other research studies.

All of our objectives were satisfied by the field trial with the following exceptions. The
original test coverage stopping criterion of 100% decision-to-decision path (DDP)
coverage was not met for two reasons:

• Logiscope errors led to incorrect display of results in the Logiscope GUI tool.

• It was very difficult to achieve 100% coverage in some units.

One of the originally selected tools, AdaCAST, was not compatible with the Rational
Apex Ada environment, and was not used at all in the field trial. The purpose of this
tool is to automate creation of test drivers and stubs. The lack of such a tool did not

79

hamper the field trial because the certified asset contained a main procedure, and test
drivers were not needed.

In reference to the asset certified, the resources allocated to the field trial task allowed
for certification of a single asset. The asset to certify was selected based on two major
considerations: size and defect history. Since the default certification process was
derived for Ada code assets, it was understood that the asset must be Ada code.
Ideally, the asset should be found in an existing reuse repository.

Size. It was estimated that an asset of about 1000 logical lines of code would be large
enough to not be trivial and yet small enough to be certified in a 2 staff-week effort.
The effort constraint was developed based on extensive interviews of reuse library
personnel performed early in the CRC contract [see CRC's Volume 4 - Operational
Concept Document], which indicated that 2 staff-weeks were about the right amount to
devote to certifying a single asset.

Defect history. In order to assess the effectiveness of the certification process at finding
defects, it was necessary to have an asset with defects known in advance. We were
unable to locate suitable Ada code with enough error reports in the configuration
managed libraries of in-house Ada development programs. Therefore we selected an
asset from the ASSET2 repository distributed on the Walnut Creek Ada CD-ROM.

Selected Asset

The selected asset was ASSET_A_157, the ProGen utility. This single executable utility
program automatically generates comment prologues in Ada code files. It parses the
code and extracts information such as pragmas, type and representation clauses used.
It had no recorded defect history.

Size of Asset

Logical lines of code 1500 semicolons

Physical lines of code 4300 non-blank lines

Number of packages approx. 10

Number of files 10 specs, 10 bodies

An informal desk check type code review turned up 2 major defects and 11 minor
defects. Therefore we decided to seed in 5 additional major defects in order to have a
significant number of major defects known in advance of the field trial. The seeded
defects are summarized in the table below. All seeded defects, as well as those found

2 Asset Source for Software Engineering Technology (ASSET), a division of SAIC. ASSET is now a
commercial organization and its assets are available for downloading at the URL
http://source.asset.com/WSRD/asset.html.

80

in the desk check, are documented in Appendix C of CRC Volume 5 - Certification Field
Trial and have an identifier starting with "KD_". These known defects were not shown
to the certification engineer prior to or during the field trial.

Seeded Defects (all major)

Defect
Type

Package Name Description

Data ada_scanner Change Ada reserved word "elsif" to "elseif"

Logic ada_parser.parse_compilation_unit Change "if not Done" to "if Done" then exit

Logic progen_data_structures insert off-by-one error in for loop

Logic progen_data_structures remove reset of counter "Line_Number"

Logic user_interface delete loop exit

The seeded defects were not created in an attempt to duplicate a particular defect
profile (i.e., distribution of defect types). There are more logic defects than other types
simply because these are the easiest type to invent. It turned out to be rather more
difficult than we anticipated to create defects that were not caught by the compiler, nor
caused immediate catastrophic failure on execution.

Data collection forms described in Section 2.7 of CRC Volume 5 - Certification Field
Trial were completed during the field trial. All certification defect reports are in
Appendix C of CRC Volume 5 - Certification Field Trial, and the other completed forms
are contained in this subsection under the appropriate topic.

Two SPS personnel were involved in the field trial. Their completed Certifier Profile
Worksheets follow.

CERTIFIER PROFILE WORKSHEET

CERTIFIER NAME OR ID NUMBER Joe Tallet

Number of years of programming experience 11

Number of years of programming experience in
asset's language

8 . 5 in Ada

Education (list degrees) BS/MS Computer Science

Experience with Certification Tools (hours with
each tool before starting certification process)

Rational APEX Environment 2 hrs est.

AdaWise 1 hrs

Logiscope 8 hrs

AdaQuest 1 hrs

81

CERTIFIER PROFILE WORKSHEET

CERTIFIER NAME OR ID NUMBER Karen Dyson

Number of years of programming experience 8

Number of years of programming experience in
asset's language

4 in Ada

Education (list degrees) BS Civil Engineering

Experience with Certification Tools (hours with
each tool before starting certification process)

Rational APEX Environment 4 hrs

AdaWise 0.5 hrs

Logiscope 24 hrs

AdaQuest >40 hrs

82

Asset Description

The information contained on this worksheet is also discussed in subsection 3.2 of CRC
Volume 5 - Certification Field Trial.

ASSET DESCRIPTION WORKSHEET

ASSET NAME ProGen, Ada Prologue Generation Program

Origin of asset ASSET Repository ASSET_A_157 with seeded
defects

Application domain software engineering utility

Purpose of asset automatically generates comment headers
(prologues) for Ada code files

reports pragmas and representation
clauses used

Language Ada

Number distinct "packages"
contained in the asset

10

Physical lines of code (non-blank
lines)

4387

Logical lines of code (semicolons) 1543

Age of asset current date 3/17/89

Version number of asset 1.0

Previous inspection and testing
activities

unknown

Additional documentation short readme file

Effort

Effort to apply the techniques for each step of the certification process was reported on
the Overall Process Data Worksheet. Included in the reported effort is the effort to
record defects, but not the effort learn how to use the tool. The graph in Figure 9-13
compares the actual effort to apply the techniques to the predicted, or default, effort.
Default effort data is taken from CRC's Volume 3 - Cost Benefit Plan.

83

Technique Effort Comparison

Testing

3 Code Inspection
a-

Field Trials

■ Default
ü
0) Static Analysis

Readiness No default data available
for Readiness

10 20 30

Hours/KSLOC (Logical)

Total effort for ProGen
asset certification =
81.5 hours.

40

Figure 9-13. Comparison of actual effort to predicted

In general, the actual effort was close to the prediction. However, it must be noted that
the testing step was not completed to the point of achieving 100% DDP coverage in all
components. It is difficult to estimate how much more effort would be required to
achieve this coverage goal.

It seemed to become progressively more difficult to create structural test cases as the
coverage increased. This indicates that the effort to achieve additional coverage may
have a shape such as is shown in Figure 9-14.

Figure 9-14. Effort to achieve additional test coverage

84

OVERALL PROCESS DATA WORKSHEET

ASSET:

ProGen

Certification Step

ASSET READINESS STATIC ANALYSIS CODE INSPECTION TESTING

Certif ier ID Joe Joe & Karen* Joe & Karen* Joe & Karen

Level of

Effort (hrs)

1 hr 6.5 hrs Joe

6 hrs Karen

16 hrs est. Joe

4 hrs Karen

8 hrs est. Joe

40 hrs Karen

Problems in

Applying

Techniques

some questions
not appropriate
for Ada

can't determine
defect category

Problems in

Using Tools

Apex: assembler
not in path

AdaQuest: ASIS
internal error
message

AdaWise: one
analysis "def"
does not work;
another has ASIS
errors

Logiscope:
insufficient
documentation,
requires
analysis of Ada
runtime

all:
conflicting
license manager
versions

Logiscope:
generated trace
file error
messages;
results
inconsistent

AdaCAST: not
compatible with
Apex
environment--not
used

Problems
with Process

Guidance

some duplication
with AdaQuest
audit

Other

Problems

for these steps, the Certification Analyst recorded defects on defect report forms

Defects

Many more natural defects were found in the asset during the field trial than were
known prior to the start. All are recorded on defect report forms in Appendix C of
Volume 5 - Certification Field Trial. Each report has an identifier that indicates the
source of the report using the following codes. (No defects were found during the
Readiness step.)

85

Defect Report Identifier Codes

Code Source

SA Static Analysis

CI Code Inspection

TE Testing

KD Dyson's Code Review or Seeded Defect

In terms of certification, the asset passed the certification concern of Completeness, and
failed in the other two concerns of Correctness and Understandability. In practice, the
certifier would face the following choices:

• Reject the asset

• Report the asset as uncertified and record all known defects

• Return the asset to the donor and request repair of known defects; repeat the
certification process after repairs

• Repair the defects; repeat the certification process after repairs

Some certifiers may choose to include defect repair as part of their certification process.
There is some debate as to whether it would be necessary to repeat the certification
process after repairs have been effected, depending on the nature and the number of the
defects found. The purpose of repeating the certification would not only be to insure
that the defects were repaired, but also to catch any new defects inserted as a result of
the repair activity.

Counting Defects. In the following graphs and tables, unless otherwise noted, defects are
counted as unique defect reports. The uniqueness criterion means that if the same
defect was detected by more than one technique, it is counted only once and credited to
the first technique to detect it. In filling out the defect reports, each report is limited to a
single package or separately compilable file. All occurrences of the same type of error,
such as a style guideline violation, in a package are recorded on the same report, with
all defective lines of code noted on the form.

Figure 9-15 shows how many defects were found by the steps in the certification
process versus how many are known to exist at completion of the field trial. Defects
categorized as not found must be, by definition, either seeded defects or those found by
informal code review.

86

ProGen Certification Results
Defect Detection

90 :

80 ! ̂ £:i^^^;„-^^^^ 8 1»|

,« 70 i (0 +*
i_

° 60 1
® oc _„

50
o 1 H|^|
& 40 ;

0) ^^^^ ■ Found
Q

. 30
O
z

20
_1 — ^^H

10 M
0 ■

Major Minor

Defect Severity

Figure 9-15. Defect detection

Summary of Defect Reports. The following table summarizes the defect reports logged
during the certification process steps and the informal code review and seeding activity.
Duplicate reports are listed in the "prior step" and "other step" shaded rows.

Defect Report Summary

Defect Type

Step When Found Comp. Data l/F Logic Other Total

Readiness This Step First - - - - 0

Static
Analysis

This Step First 0 14 10 24 0 48

Code

Inspection

This Step First

Prior Step

1

0

15

0

13

2

3 3

■■■■:. 6-■-,,. .0

35

8

Testing This Step First

Prior Step : _ .^

2 9

0

Seeding &

Review

This Step Only

Other Step

0

0

3

3

2

3

3 1

3 0

9

9

87

Asset's Defect Profile. Figure 9-16 shows the defect profile of the asset in terms of the
known defects. Note that there are seven uncategorized defects that were found during
testing. It is important to understand that defects reported during testing are actually
failures, and it is not until a failure is debugged that it can be attributed to specific units
and lines of code. Debugging was not done as part of the field trial.

Total Known Defects in ProGen Asset

30
30 n H 28

R
ep

o
rt

s

O

 O
l 1 23

1 1 Major

■ Minor H

D
ef

ec
t

O

 U
l 1 1 1 wS^^^^^^pi

6 | z 5 1
o *~

0 1
2 H 1

1
ü
c

1 *^^^^5 1111
'■ •

1 » 3= N

O
O)
S (3
o
c

c
o

§
a.
E
o
Ü

IS
'S
Q

u
a>
o
-j

Defect Category

Figure 9-16. Asset's defect profile

The defect density of the asset's major defects, including the seeded defects, is about
average for Ada [see CRC Volume 3 - Cost Benefit Plan]. Indeed major defects as we've
defined them for the field trial are equivalent to what are typically reported as defects.
The number of minor defects was surprising; however, most of these were style
guideline violations. The large number of such violations is an indication of the effort
that would be needed to take an asset that was not developed subject to these
guidelines and make it conform.

Defect Density

Defect

Defect Density

(defeets^liOOO^physicaJ lines)

Severity Asset's Average for Ada
Major 4 5

Minor 19 N/A

88

Figure 9-17 compares the asset's defect profile, including both major and minor, seeded
and natural defects, to the default profile [see CRC Volume 3 - Cost Benefit Plan]. One
notable difference is that there is a much lower proportion of computational defects.
This fact could have two interpretations:

• the techniques used are not effective at finding computational defects

• the asset does not have computational defects

The second explanation is more likely, since the asset is not computational in nature,
and one would be hard pressed to find any mathematical expressions in it (other than
loop indices). This then indicates that we cannot assess the effectiveness of the
techniques at finding computational defects based on the field trial.

In certification, it will typically be the case that an individual asset's defect profile is
different from the default profile of any given group of assets. The more that is known
about the expected defect profile of assets to be certified, the more cost effective a
process can be designed to certify them. For example, if a group of assets to be certified
is known not to be computational, then you would not need to include a technique that
is effective at detecting computational defects.

89

Defect Profile Comparison

50%

40%
w #•* u
0)

Q 30% I H Default

2 I Hi aProGen o
H 20%

o

10%

0% ■■"
§ I 8 * | 'S
1 Q € 5 § g
■•3 IB 8.

I |
Defect Category

I

Figure 9-17. Comparison of asset's defect profile to default profile

Technique Effectiveness

As Figure 9-15 shows, all but one of the known major defects was found, and the one
not found was a seeded defect. Effectiveness of the default certification process at
finding defects is better represented by the proportion of the total seeded defects found
than by the proportion of known defects found. This is because there are probably
additional natural major defects in the asset, so the total number defects in the asset is
unknown.

Effectiveness at Detecting Seeded Defects

Found Known Effectiveness
4 5 80%

Figure 9-18 shows the cumulative effectiveness of the steps in the certification process
where effectiveness is defined as the proportion of known defects found. From this we
can draw several important conclusions. We cannot, however, claim that the combined
effectiveness of the default certification process is 90%. As discussed previously in the
paragraphs under Asset's Defect Profile, we do not know the total number of defects in

90

the asset. Furthermore, based on the effectiveness at finding seeded defects, we have
reason to believe that more natural defects exist.

Readiness step. There were no defects found during the Readiness step, which means
that all code needed to create an executable was available and compiled without error.

The Readiness step is intended to address the certification concern of Completeness.
One of the minor defects found during the informal code review (KD_001) was related
to Completeness, and it was not found during the field trial. A package specification
was included with the asset, but was never withheld by any of the code. In other
words, extraneous code was included as part of the asset.

Static Analysis step. As Figure 9-18 shows, only minor defects were found by this step,
not major defects. The 55% effectiveness rating for minor defects shown on the graph
may be misleading, however. The automated tools used in this step are virtually 100%
effective at finding the defects that they are designed to find. The effectiveness rating
indicates that what the tools are designed to find were only about half of the known
minor defects in the asset.

There were no major defects in the asset that are detectable by AdaWise. The type of
defects that AdaWise detects are typically designated as major. Thus it is possible to find
major defects with static analysis tools; it just so happens that there were none in this
particular asset. In considering the effectiveness of static analysis in general, is also
important to note that many of the major defects that can be found by an Ada compiler
would require additional static analysis tools for other languages such as C and C++.

One of the minor defects found during the informal code review (KD_008), but not
found during the field trial, deals with an unhandled raised exception. This type of
problem was supposed to be detected during this step by browsing the Logiscope
control flow diagrams. Since no exception handling problems were detected by this
step, we conclude that browsing with Logiscope may not be an effective technique for
novice Logiscope users.

91

Cumulative Effectiveness at each Certification Step

o%
% Known Defects Detected

20% 40% 60% 80%

a
cu *-»
tn

c
o
CO o

Readiness

Static Analysis

100%

Major
i Minor
\ Both

S Code Inspection
0)
u

Testing

Figure 9-18. Cumulative effectiveness of certification steps

Code Inspection step. As Figure 9-18 shows, this step found about one third of the major
errors. This was disappointing, and likely explanations are as follows:

• highly effective inspections reported in the literature are multi-person
techniques and the certification process uses a single inspector technique

• the checklist approach focuses too much attention on the checklist at the expense
of a deeper understanding of the code

• the inspection technique may be weak at finding logic defects

Using the initial version of the checklist, defects that had been found by the Static
Analysis step were found and reported again in the Code Inspection step. The checklist
in Section 2 of Volume 5 - Certification Field Trial has been edited to remove
duplications, because automated static analysis is a much more cost effective way to
find a defect.

Two of the minor defects found during the informal code review but not found in this
step relate to variables that are declared but never referenced. Even though this is an
inspection checklist item (D.01.C) that resulted in two other defect reports, it did not
catch all occurrences. This is a perfect example of the type of analysis that could better
be done with an automated static analysis tool.

92

Testing step. About two-thirds of the major defects were found in the testing step, as can
be seen by subtracting the effectiveness of the code inspection step from that of the
testing step in Figure 9-18. All defects found during the testing step were, by definition,
considered major defects. As discussed previously under the Asset's Defect Profile
paragraphs, we were unable to categorize most of the defects found during testing.

By removing the seeded defects one at a time, and reapplying the test cases, the
Certification Analyst was able to attribute two of the nine defect reports resulting from
testing to seeded defects. The remaining test failures may or may not be attributed to
defects reported in other steps, or by more than one defect in combination. Without
debugging these test failures, it is impossible to attribute them to defective lines of code.
Therefore, the unattributed testing defect reports are counted as newly discovered
natural defects.

Additional details about the certification field trial can be found in the supporting
document titled CRC Volume 5 - Certification Field Trial.

9.6 Summary of the Code Defect Model

In the study of code defects, an empirically-based source code defect model was
developed. The model is a predictive model of latent defects in software components. It
describes the types of defects that are to be expected and can be detected and predicts
the relative distribution and relative density of each type. The model also describes
standard detection methods and for each method, predicts its effectiveness at finding
each type of defect. Combined with estimates of the costs of applying the detection
methods and removing defects, the model can be used in a cost/benefit analysis to
determine the order in which methods should be applied in a certification process to
maximize benefit, in terms of reduced risk of rework due to defects, and to minimize
cost.

The source code defect model was developed using data extracted from the existing
literature on software error studies. The studies from which data for the model was
extracted fall into two general classes marked by whether or not all of the known
defects were equally available to be detected by each method used in the study. In those
cases where not all of the defects were available to all of the methods, it is possible that
the percentage of defects detected by a particular method could have been higher if it
had been applied against the full set of defects. In the other cases, it is not known what
the overlap is between defects found by one method and those found by another since
the same defect could have been found by more than one method. This is not
necessarily important when comparing the effectiveness of one method to that of
another method. It becomes important, however, when deciding how to select and
sequence a range of methods based on how effective each is against certain types of
defects and how frequently those types of defects occur.

The overlap uncertainty also complicates combining metrics for methods that are
actually submethods or alternative techniques of a general class of methods into an
aggregate metric for the general class. Thus, computing a metric for a general class of

93

methods like "testing" is more subject to error than computing a metric for a particular
structural testing method like "data flow coverage". On the other hand, there is a more
substantial base of data for the general classes of methods than there is for the particular
types of techniques in those classes. This is due to a tendency for the studies to have
focused either on one (or a few) methods or to have reported the combined results of all
the activities of a whole development phase such as "testing". For this model, no
metrics were aggregated from submethods for general classes of methods; the metrics
given for general classes were computed directly from study data.

The source code defect model provides a starting point for selecting detection methods
for a software certification process. Once the certification process is in place and being
applied, data from that process should be collected and used to refine the model. Two
areas of refinement are particularly recommended: (1) the defect classification schema
should be expanded to include robustness defects, i.e., defects that result from reuse in
a different context, and (2) data relevant to any overlap in the defects detected by the
various methods should be collected, analyzed, and, if necessary, be used to adjust the
detection method effectiveness ratings.

Additional details about the operational concept can be found in the supporting
document titled CRC Volume 7 - Code Defect Model.

94

10 Lessons Learned

Several lessons were learned during the certification field trial. The lessons are
categorized and described as follows:

• Installation and use of tools

• Evaluating certification techniques

• Certifier skills

• Effectiveness of techniques

• Modifications to the process guidance

Installation and Use of Tools

Installation of the tools was more difficult than expected, mainly because the tools were
received from different vendors. Each licensed tool used the Flex license manager, but
required different versions. Therefore we recognize the necessity of providing tool
installation support for any certification pilot sites.

The AdaCAST tool was not compatible with the Rational Apex Ada environment and
therefore could not be used in the field trial. The static analyzer AdaWise tool
contained four analyses, and only two of four worked without error. The third analysis
generated ASIS error messages and the fourth did not execute at all.

Logiscope. The Logiscope documentation was contained in four separate manuals, none
of which was a user's guide. It was difficult to learn how to use because there was no
step-by-step guidance. Therefore we recommend vendor training for any certification
pilot sites that will use Logiscope. We also added an Appendix B to Volume 5 -
Certification Field Trials, titled "Using Logiscope" to the field trial procedures guide to
supplement the vendor documentation.

Logiscope generated error messages during archival and displayed incorrect and
inconsistent results with its GUI tool. The vendor's technical support staff was unable
to diagnose the problem via telephone consultation, and did not seem knowledgeable
about the Ada language. This made it very difficult to determine how to increase test
coverage and was one of the reasons the testing step did not achieve the 100% DDP
coverage goal. We recommend investigating other dynamic analysis tools.

Evaluating Certification Techniques

In designing this certification process, we found it difficult to compare the effectiveness
of techniques at detecting defects in published studies. Much data is published, but the
studies are not very comparable because of variations in the application of techniques,
implementation languages, size of asset, seeded vs. natural defects, incomplete

95

information, etc. See the CRC Volume 7 - Code Defect Model for more detailed
information about the synthesis of published studies.

There is a need for a certification benchmark or test bed of assets with well documented
defects against which techniques may be applied and their effectiveness established.
Ideally, the test bed would be a rich source of defects of all types, with a known defect
profile. The ProGen asset with seeded defects can contribute to this test bed if the
uncategorized defects found in the testing step are debugged.

We found seeding defects to be more difficult than was originally anticipated, and were
concerned that seeded defects might not typify natural defects, or might be trivial and
thus more easily detected than natural defects.

Certifier Skills

The suite of certification techniques that comprise the default certification process
includes two techniques whose effectiveness is highly dependent upon the training and
experience of the certification engineer applying the technique: code inspection and
testing. These techniques are also less automated and require more human
involvement than the readiness and static analysis steps. This implies that the results
may not be repeatable when comparing different certification engineers. To reduce the
variability among different engineers, and to maximize the effectiveness of the
techniques, training is essential.

The default process steps are intentionally ordered in terms of increasing skill level as
well as increasing investment of effort, so that, for example, a failure in an early step
could save wasted effort in later steps. In general, we would like the automated static
analysis tools to detect as much as possible, and we view enhancements in static
analysis capabilities as a valuable contribution to certification.

Effectiveness of Techniques

The combined effectiveness of all of the steps in the certification process is impressive
because each step tends to find different types of defects. We had originally considered
the following certification level scheme:

Certification Level Certification Step
0 Readiness

1 Static Analysis

2 Code Inspection

3 Testing

As Figure 9-19 shows, for example, that all of the major defects would have been missed
if we had only done a Level 1 certification. It also indicates that we would not have

96

wanted to jump into testing without having performed the preceding 3 steps. We now
believe that a single-technique-per-level certification policy, which is typical of many
reuse repositories, may not make sense. Instead, we believe that the techniques should
be applied in combination.

This idea has affected our thinking about certification levels in the Certification
Framework. The final version of the Certification Framework [see CRC Volume 2 -
Certification Framework] proposes a two-dimensional view of certification levels:
scope and rigor. Increased rigor of a testing technique, for example, would correspond
to more stringent coverage criteria.

Modifications to the Process Guidance

General. We have specified both physical and logical lines of code on the asset size. We
have clarified the instructions on how to report defects, so that defects can be counted
more consistently, as follows:

• no more than one package per defect report

• all occurrences of the same defect, such as a style guideline violation or
inspection checklist item, are recorded on the same defect report

Instructions in the procedures guidance of Section 2 of Volume 5 - Certification Field
Trial were modified as described below.

Readiness step. Added instructions to check for superfluous files.

Static Analysis step. Removed reference to the AdaWise analysis that is currently not
working.

Code Inspection step. Removed 10 checklist items that are automatically checked by
AdaQuest in the Static Analysis step. Modified the wording of a few questions to be
more Ada-specific.

Testing step. Added an appendix with instructions in using Logiscope. Removed
references to the AdaCAST tool. Relaxed the test coverage goal to 90% DDP coverage
and described potential exceptions (see subsection 2.6 of Volume 5 - Certification Field
Trial). A coverage goal of 100% branch coverage is appropriate for unit testing, but may
be impractical when testing a larger aggregate of software.

97/98

11 Conclusions
Whereas separate conclusions in each of the areas were discussed in the previous
section, overall conclusions for the project are discussed in this section. These
conclusions are an integration of the overall findings of the total effort.

Overall, much has been accomplished under the CRC project:

• An assessment of the state of the practice for reuse and certification and their
supporting technologies.

• A Certification Framework that is adaptable to a wide variety of domains,
business strategies and asset types.

• A Cost/Benefit Plan that uses rework to asses risk and show the economic value
of certification in a reuse program.

• A certification cost model that optimizes certification benefits with respect to
costs, tailored to an organization's requirements.

• A certification algorithm that defines the processes and tasks to isolate and
analyze defects by type and severity.

• An evaluation of static analysis and testing techniques that can be used to create
a certification environment that is site-specific.

• Results from initial certification field trial and detailed procedures and
guidelines to perform succeeding certification field trials at different sites.

• Selected team members participated in the Reuse Library Interoperability Group
(RIG) to develop an IEEE Standard for a method to specify certification policies.

These accomplishments of the CRC project have greatly advanced certification
technology. For example, the CF provides a structure of elements to consider in a
certification environment. The Cost/Benefit Plan provides a systematic approach for
evaluating the cost and benefits of applying certification technology within a reuse
program. Our approach maximizes rework avoidance with respect to a technique's
defect detection effectiveness, investment cost, and incremental cost. The Operational
Concept provides a user's perspective of a certification environment. The Certification
Field Trail document provides a process to apply the CF, procedures, and collection
forms. The field trial provided results and lessons learned.

In light of the CRC accomplishments, we performed assessments against each of the
success measures for R&D projects and technology transition previously identified. For
both these sets of measures, our assessment of our project accomplishments is very
positive. As illustrated in Table 11-1, CRC has contributed to each of the R&D areas of

99

innovation, experimentation and validation. Likewise, CRC has contributed to each of
the areas of technology transfer of awareness, communication and application as
illustrated in Table 11-2. Examples of the activities that were accomplished in the area of
awareness of CRC technology are listed in Table 11-3.

Table 11-1. Assessment of CRC measures of R&D success

R&D Measures Certification
Algorithms

Evaluation of Testing and
Static Analysis Techniques

RIG Activities

Validation

Experimentation

Innovation X

X

X

X

X

Table 11-2. Assessment of CRC measures of technology transfer success

Technology
Transfer
Measures

AF
CARDS

ASSET Navy
DSRS

ELSA COSMIC UL AF
DSRS-
Gunter
BLSM

Application

Communication

Awareness

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

100

Table 11-3. Examples of CRC technology awareness

Date Activity

25 May 94 IEEE/SUNY College of Technology Dual Use Conference

23Jun94 DISA/CIM Certification Guidelines Workshop

07Jul94 DoD Joint Program Review (CARDS Facility)

21 Jul 94 Col. Garretson, Army Reuse Focal Point, Pentagon

8-llAug94 3rd Annual Reuse Education & Training Workshop

17-19 Oct 94 USC Focused Workshop on Reuse (Affiliates of Dr. Boehm)

16 Nov 94 DISA/CIM Project Briefing

22Nov94 Lt. Col. Pait, Air Force Reuse Focal Point, Pentagon

23 May 95 IEEE/SUNY College of Technology Dual Use Conference

13-14 June 95 ECS Architecture Technical Interchange Meeting (TIM)

30 Oct-2 Nov 95 Applications of Software Measurement

14-15 Nov 95 U. S. Army CECOM Technical Interchange Meeting (TFM)

5-8 May 96 Institute of Operations Research and Management Science,
Analysis to Support Public Sector Decision Making

101/102

12 Implications for Future Research

All of these conclusions, achievements and their lessons learned, however, should be
viewed within the context of the phases and milestones of technology maturation as
illustrated in Figure 12-1 [RED93]. Redwine investigated the growth and propagation
of many software engineering technologies to characterize the conditions that facilitate
their transfer to industry. His characterization can be applied to certification
technologies and has implications for future research.

For example, during the Basic Research Phase, ideas and concepts are investigated that
later prove fundamental, and there is a general recognition of problem and discussion
of its scope/nature. In the Concepts Formulation Phase, informal ideas circulate and
there is a convergence on a compatible set of ideas with a general publication of
solutions to parts of the problem. The Development and Extension Phase has trial,
preliminary use of the technology, clarification of the underlying ideas and an extension
of the general approach to a broader solution. The Enhancement and Exploration
(Internal) Phase brings a major extension of the general approach to other problem
domains, the use of the technology to solve real problems, stabilization and porting of
the technology, development of training materials and derivations of results indicting
value.

The Enhancement and Exploration (External) Phase has the same activities as in Internal
above, but the activities are carried out by a broader group, including people outside
the development group. The Popularization (40%) Phase has the appearance of
production-quality, supported versions, commercialization and marketing of the
technology and propagation of the technology throughout community of users. And
finally, the Popularization (70%) Phase has the same activities as in Popularization
(40%) Phase, only with a larger following.

103

Basic Research Phase
Mi lestone 0 is marked by the appearance of a key idea underlying the

technology or a clear articulation of the problem.

Concepts Formulation Phase
Milestone 1 is marked by a clear definition of a solution approach via a

seminal paperordemonstration system.

Development and Extension Phase

Milestone 2 is marked by availability of usable capabilities.

Enhancement and Exploration (Internal) Phase
Milestone 3 is marked by a shift to usage outside of the

development g roup.

Enhancement and Exploration (External) Phase

Milestone 4 is marked by substantial evidence of value and applicability.

Popularization (40%) Phase
Milestone 4a is is the point at which the technology has been propagated

throughout 40% of the community.

Popularization (70%) Phase
Milestone 4b is the point at which the technology has been propagated

throughout 70% of the community.

Figure 12-1. Phases and milestones for technology maturity [RED93]

104

Milestones within these stages can be marked by the occurrence of the following events:

1. Basic research - The recognition of a problem, an assessment of its scope, and the
investigation of ideas and concept that may lead to a solution.

2. Concepts formation - The convergence toward a compatible set of ideas and the
publication of solutions to parts of the problem.

3. Development and extension - The clarification and extension of the ideas, and
the trial and preliminary use of the technology.

4. Enhancement and exploration - The portage, development of training materials
and use of the technology to solve real problems.

5. Popularization - The appearance of production-quality, supported versions, and
commercialization and marketing.

Redwine also found that the average timeframe for a technology to mature from
Milestone 0 to Milestone 4a is approximately 15-20 years. Widespread use can take
another decade.

We can apply Redwine's maturity profile to certification technology. We are of the
opinion that certifying reusable software components was clearly in the Basic Research
Phase prior to Milestone 0 at the initiation of the CRC project, even though some
supporting reuse technologies were more mature (e.g., domain analysis, asset
production, asset selection, and reuse libraries). We believe the products of CRC have
helped advance certification technology into the phases of Concept Formulation and
Development and Extension.

Within this roadmap to technology maturation, a plan for certification is feasible.
Moving toward the Popularization Phase and beyond is achievable, but will require
considerable time and effort. Therefore, those planning for reuse and certification must
be sensitive to this proposed profile of technology maturity and the time required to
achieve each milestone and transition through all phases.

Our recommendations for future certification programs are to extend our existing
research by investigating a number of possible areas. For example, exploration of
certification techniques for the remaining quality concerns is a natural progression of
our initial work, as shown in Figure 12-2. Applying the CF to other quality concerns
(such as robustness) and other asset types (such as architectures) appears promising. A
study of the implication of business models, domains, asset types and quality factors on
certification methods could further enhance our CF. An envisioned next step for future
funded projects is to develop a plan for applying and validating the CF using different
attributes for the elements of the reuse context.

105

Certification of Reusable
Components Framework

Asset Type:

Quality Factor:

"Defect":

Rework:

Cost/Benefit of Certification:
Rework Avoidance

Figure 12-2. Extension of the CF to other quality concerns

Another area of future research is certification of fault tolerant systems, the methods
and tools available, and their effectiveness with respect to required rigor levels.
Valuable research could be conducted by investigating how certification methods can
lead to standards for the development of reusable assets. Also, programmatic research
could be performed by applying certification to a specific program. Likewise,
additional pilot studies in varying domains could advance the maturation of
certification technology. These possible extensions of our existing CF research and
development could potentially influence not only DoD practices, but also national and
international commercial practices through standardization of methods, tools and
techniques.

106

References
[ANS94] ANSI/ASQC Q9000-1-1994, American National Standard, Quality

Management and Quality Assurance Standards - Guidelines for Selection
and Use, American Society for Quality Control, Milwaukee, Wisconsin,
August 1,1994.

[ARM95] U.S. Army Space and Strategic Defense Command Software Engineering
Division, "Component Evaluation Procedure (Phase II) Technical Report,
January 31,1995.

[BAN93] Banker, Rajiv D., Robert J. Kauffman, Dani Zweig, "Repository Evaluation
of Software Reuse," IEEE Transactions on Software Engineering, Vol. 19, No.
4, April 1993.

[BOE93b] Boeing Company, Defense & Space Group, "STARS Conceptual
Framework for Reuse Processes (CFRP)," Volume I: Definition, Version
3.0, STARS-VC-A018/001/00, Seattle, WA, October 25,1993.

[BOW85] Bowen, T.P., et. al. "Specification of Software Quality Attributes,"
Technical Report, RADC-TR-85-37, Rome Laboratory, February 1985.

[BUN94] Bundy,G.N.., W.W. Agresti and W.R. Stewart, "Software Tool Support
for Reuse Certification," The MITRE Corporation MTR94W0000109,
September 1994.

[CAR94] Card, David N. and Edward Comer, "Why Do So Many Reuse Programs
Fail?" IEEE Software, September 1994, p. 114-115.

[CHU93] Chubin, Sherrie and David Eichmann, David Card, Duane Hybertson,
"Software Reuse Program, Software Metrics Plan," Defense Information
Systems Agency, Joint Interoperability Engineering Organization, Center
for Information Management, DISA/JIEO/CIM, Version 4.1, August 4,
1993.

[COM96] Comer, Edward R., P1420.1 A/D6, Guide for Information Technology -
Software Reuse - Asset Certification Framework, Technical Committee 4:
Asset Evaluation and Certification of the Reuse Library Interoperability
Group (RIG) January 1996.

[DIS94] Defense Information Systems Agency Center for Software, "Methods of
Certifying Non-Code Reusable Assets," Detailed Report DCA 100-93-D-
0066, December 1994.

[DIS95] Defense Information Systems Agency Center for Software, DoD Software
Reuse Initiative, "Software Reuse Business Model (SRBM)," Technical
Report, January 31,1995.

107

[DOD94a] DoD Software Reuse Initiative (SRI), Technology Roadmap, Version 2.0,
Volume 1: Technology Assessment, October 4,1994.

[DUN92] Dunn, Michael F., John C. Knight, "Certification of Reusable Software
Parts," Department of Computer Science, University of Virginia,
Charlottesville, VA, and the Software Productivity Consortium (SPC),
INF-92-001, August 31,1992.

[FRA95] Frakes, William B., and Christopher J. Fox, "Sixteen Questions About
Software Reuse," Communications of the ACM, June 1995, Vol. 38, No 6, pp.
75-87.

[GA093] General Accounting Office. "Software Reuse: Major Issues Need to Be
Resolved Before Benefits Can Be Achieved." GAO/IMTEC-93-16, January
1993.

[HES90] Hess, James A., William E. Novak, Patrick C. Carroll, Sholom G. Cohen,
Robert R. Hollbaugh, Kyo C. Kang, A. Spencer Peterson, "A Domain
Analysis Bibliography," Carnegie-Mellon University and the Software
Engineering Institute, Special Report, CMU/SEI-90-SR-3,1990.

[H0091] Hooper, James W. and Rowena O. Chester, "Software Reuse, Guidelines and
Methods," Plenum Press, New York, NY, 1991.

[INT91] International Standard ISO/IEC 9126, Information Technology - Software
Product Evaluation - Quality Characteristics and Guidelines for the Use,
International Organization for Standardization, International
Electrotechnical Commission, 1991.

[JON95] Jones, Capers, "Return on Investment in Software Measurement,"
Proceedings of the 6th International Conference on Applications of
Software Measurement (ASM), October 30-November 2,1995, Orlando,
FL.

[MCI69] Mcllroy, M.D., "Mass -Produced Software Components," Software
Engineering Concept and Techniques: 1968 NATO Conference on
Software Engineering, J.M. Buxton, P. Naur, and B. Randell, eds.,
Petrocelli/Charter, New York, 1969, pp. 88-98.

[MIL95] Miller, L.A., J.E. Hayes, and S. Mirsky, Guidelines for Verification and
Validation of Expert System Soßware and Conventional Software, NUREG/CR-
6316, U.S. Nuclear Regulatory Commission, March 1995.

[MIT95] MITRE Corporation, "High Integrity Software for Nuclear Power Plants:
Candidate Guidelines, Technical Basis and Research Needs,"
NUREG/CR-6263, MTR 94W0000114, Volumes 1 & 2, June 1995.

108

[NAT95] National Software Data & Information Repository (NSDIR), "Metrics
Collection and Submission Guide, " Volume I - General Instructions,
Volume II - Repository Information Request, Volume III - Recurring Data
Form, Deputy Assistant Secretary for Communications, Computers, and
Logistics, Office of the Assistant Secretary of the Air Force for Acquisition,
Version 2.0,16 June 1995.

[NRC93] Nuclear Regulatory Commission (NRC), "Operating Reactors Digital
Retrofits, Digital System Review Procedures," Version 1, Digital Systems
Reliability and Nuclear Safety Workshop, 1993.

[P0092] Poore, J.H., Theresa Pepin, Murali Sitaraman, Frances L. Van Scoy,
"Criteria & Implementation Procedures for Evaluation of Reusable
Software Engineering Assets," Software Technology For Adaptable,
Reliable Systems (STARS) Program, Task/Subtask IT00.19, CDRL
Sequence 04014-002B, July 16,1992.

[PRI93] Prieto-Diaz, Ruben, "Status Report: Software Reusability," IEEE Software,
May 1993, pp. 61-66.

[RAT94] Rathbun, Robert W. "Software Reuse Metrics," Proceedings of the
Software Technology Conference (STC), Volume 1, Salt Lake City, UT,
1994.

[RED93] Redwine, S.T. and M.M. Eward, "Software Engineering Technology
Transfer Practices," International Perspectives in Software Engineering,
January 1993, pp. 18-22.

[SAM95] Samadzadeh, Mansur and Mansour Zand edited the proceedings
Confessions of a Used-Program Salesman: Lessons Learned, Proceedings of
the Symposium on Software Reusability, SSR'95" Seattle, WA, April 28-30,
1995.

[SPS94] Software Productivity Solutions, Inc. "Component Certification: State-of-
the-Art Technology Report," Subcontract No. P48124 under Prime
Contract No. F30602-92-C-0158, U. S. Air Force Rome Laboratory,
RL/C3CB, Rome, NY, November 1,1994.

[TRA87] Tracz, Will, "Reusability Comes of Age, IEEE Soßware, July 1987, pp. 6-8.

109 /no

Other Documents Used
[ADE85] Adelson, Beth and Elliot Soloway, "The Role of Domain Experience in

Software Design, IEEE Transactions on Software Engineering, Vol. SE-11, No.
11, November 1985, pp. 1351-1360.

[ARA89] Arango, G. "Domain Analysis - From Art Form to Engineering
Discipline," Proceedings of the 5th International Workshop of Software
Specifications and Design, p. 152-159,1989.

[ARA95] Arango, Guillermo, "Software reusability and the Internet, " Proceedings of
the Symposium on Software Reusability, SSR'95, edited by Mansur
Samadzadeh and Mansour Zand, Seattle, WA, April 28-30,1995.

[BAI88] Bailin, Sidney, "Semi-Automatic Development of Payload Operations
Control Center Software," NASA Goddard Space Flight Center, Computer
Technology Associates, Laurel, MD, October 1988.

[BAI89] Bailin, Sidney, "Generic POCC Architectures," NASA Goddard Space
Flight Center, Computer Technology Associates, Laurel, MD, April 1989.

[BAR91] Barnes, B. and T. Bollinger, "Making Reuse Cost-Effective," IEEE Software,
8(1), p. 13-24.

[BAT88] Batory, Don S., J.R. Barnett, J. Roy, B.C. Twichell and Jorge F. Garza,
"Construction of File Management Systems for Software Components,"
Technical Report TR-88-36, University of Texas, Austin, TX, October 1988.

[BER95] Bergstrom, Deane, "Certification of Reusable Software Components,"
Briefing chart in response to Project Overview, December 12,1995, Rome
Laboratory, NY.

[BIE95] Bieman, James M. and Santhi Karunanithi, "Measurement of Language-
Support Reuse in Object-Oriented and Object-Based Software," Journal of
Systems Software, 1995: 30: pp. 217-293.

[BIG87] Biggerstaff, Ted and Charles Richter, "Reusability Framework Assessment
and Directions," IEEE Software, March 1987.

[BIG88] Biggerstaff, Ted. J., "The Nature of Semi-Formal Information in Domain
Models," Technical Report STP-289-88, Microelectronics and Computer
Technology Corporation, Austin, TX, September 1988.

[BIG89] Biggerstaff and Alan J. Perlis, "Software Reusability, Volume I, Concepts and
Models and Volume II, Applications and Experience," ACM Press New York,
NY, 1989.

Ill

[BOE91] Boeing Company, Defense & Space Group, US40 "STARS Reuse Concept
of Operations," Volume I, Version 0.5, Draft, Informal Technical Data,
STARS-SC-03725/001/00, Seattle, WA, August 27,1991.

[BOE93a] The Boeing Company, "Reuse Strategy Model: Planning Aid for Reuse-
based Projects," Software Technology For Adaptable, Reliable Systems
(STARS) office, 9-5526, F19628-88-D-0028, Task U03, CDRL 5159, July 31,
1993.

[BOR84] Borgida, Alexander, John Mylopoulos and Harry K.T. Wong,
"Generalization/Specialization as a Basis for Software Specifications," On
Conceptual Modeling, pp. 87-117, Springer-Verlag, New York, NY 1984.

[BR092] Brown, Linda, "DOD Software Reuse Initiative, Vision and Strategy,
OASD(C3I)/DDI, July 15,1992.

[BRU88] Bruns, Glen and Colin Potts, "Domain Modeling Approaches to Software
Development, " Technical Report, STP-186-88, Microelectronics and
Computer Technology Corporation, Austin, TX, June 1989.

[CAC95] CACI, Inc. - Federal, "Systems Engineering and Technical Support for
DISA/Center for Software," Procedures for Qualification and
Engineering of Reusable Assets (Final), U.S. Department of Defense,
Defense Information System Agency, Arlington, VA, 1995.

[CAL91] Caldiera, Gianluigi and Victor R. Basili, "Identifying and Qualifying
Reusable Software Components," IEEE Computer, February 1991, pp. 61-
70.

[CAR87] Carle, Rick, "Reusable Software Components for Missile Applications,"
Proceedings of the Tenth Minnowbrook Workshop on Software Reuse, Syracuse
University and University of Maryland, Blue Mountain Lake, NY, July
1987.

[CHA91] Chidamber, Shyam R. and Chris F. Kemerer, "Towards a Metrics Suite for
Object-Oriented Design," OOPSLA '91, pp. 197-211.

[COH89] Cohen, Joel, "Software Reuse for Information Management Systems,"
Position Paper of the Reuse in Practice Workshop, Software Engineering
Institute (SEI), Pittsburgh, PA, July 1989.

[COH92] Cohen, Sholom, Jay L. Stanley, Jr. A. Spencer Peterson, Robert W. Krut,
"Application of a Feature-Oriented Domain Analysis to the Army
Movement Control Domain," Technical Report, CMU/SE 1-91-TR-28 ESD-
TR-91-28, June 1992.

112

[COM95] Comer, Edward Rv P1420.1 /D5, Guide for Information Technology -
Software Reuse - Asset Certification Framework, Technical Committee 4:
Asset Evaluation and Certification of the Reuse Library Interoperability
Group (RIG) September 1995.

[DOD94b] DoD Software Reuse Initiative (SRI), Technology Roadmap, Version 2.0,
Volume 2: Implementation Plan, October 4,1994.

[DOD95a] Department of Defense, "Software Reuse Symposium," March 23,1995,
Huntsville, Alabama.

[DOD95b] Department of Defense, "Domain Scoping Framework", Version 3.1,
Volume 2: Technical Description, 29 September 1995.

[FAC94] Facemire, J. Jeff, Aleisa Petracia and Stephen Riesbech, "Software
Architecture Seminar Report," Software Technology for Adaptable
Reliable Systems (STARS), Central Archive for Reusable Defense Software
(CARDS), Informal Technical Report, Contract No F19628-93-C-0130,
January 29,1994.

[FIS87] Fischer, Gerhard, "Cognitive View of Reuse and Redesign," IEEE Software,
July 1987.

[FOW95] Fowler, Glenn S., David G. Korn and Kiem-Phong Vo, "Principles for
Writing Reusable Libraries," Proceedings of the Symposium on Software
Reusability, SSR'95, " Seattle, WA, April 28-30,1995.

[FRA92] Frakes, William, Ruben Prieto-Diaz and Edward Comer, "Ada Software
Reuse and Domain Analysis Seminar, presented at the Clarion Plaza
Hotel, Orlando, FL, November 16,1992.

[GAL95] Gall, Harald, Mehdi Jazayeri and Rene Blosch, "Research Directions in
Software Reuse: Where to go from here?", Proceedings of the Symposium on
Software Reusability (SSR '95), edited by Mansur Samadzadeh and
Mansour Zand, Seattle, WA, April 28-30,1995.

[GIL89] Gilroy, Kathleen, Edward Comer, J. Kaye Grau, Patrick Merlet, "Impact of
Domain Analysis on Reuse Methods," Final Report CO4-087LD-0001-00,
U. S. Army Communications - Electronics Command, Ft. Monmouth, NJ,
November 1989.

[HUT88] Hutchinson, J.W. and P.G. Hindley, "A Preliminary Study of Large Scale
Software Reuse," Software Engineering Journal, Vol. 3, No. 5, pp. 208-212.
1988.

[ISC88] Iscoe, Neil, "Domain-Specific Reuse: An Object Oriented and Knowledge-
Based Approach" in Will J. Tracz, Software Reuse: Emerging Technology, pp.
299-308, IEEE Computer Society, Washington, DC, 1988.

113

[JAC93] Jackelen, George and Larry McCutchan, PRISM Documentation Library,
1.0, Central Archive for Reusable Defense Software (CARDS)," Software
Technology for Adaptable Reliable Systems (STARS), STARS-VC-
B007/000/01, December 3,1993.

[JAW90] Jaworski, Allan, Fred Hills, Thomas A. Durek, Stuart Faulk, John E.
Gaffney, "A Domain Analysis Process," Interim Report 90001-N (Version
01.00.03), Software Productivity Consortium (SPC), Herndon, VA, January
1990.

[JOH88] Johnson, Ralph E. and Brian Foote, "Designing Reusable Classes," Journal
of Object-Oriented Programming, June/July 1988, Vol. 1, No. 2, pp. 22-35.

[JON84] Jones, T.C. "Reusability in programming: A Survey of the State of the
Art," IEEE Transactions in Software Engineering, pp. 488-494. September
1984.

[KAN89] Kang, Kyo C, "Features Analysis: An Approach to Domain Analysis,"
Position Papers of the Reuse in Practice Workshop, Software Engineering
Institute (SEI), Pittsburgh, PA, July 1989.

[KAN90] Kang, Kyo C, and Sholom G. Cohen, James A. Hess, William E. Novak
and A. Spencer Peterson, "Feature-Oriented Domain Analysis (FODA)
Feasibility Study," Technical Report, CMU/SEI-90-TR-21, ESD-90-TR-222,
November 1990.

[KAT94] Katz, Susan, and Christopher Dabrowski, Kathryn Miles, Margaret Law,
NIST Special Publication 500-222, "Glossary of Software Reuse Terms,"
Computer Systems Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD 20899-0001, December 1994.

[LAT89] Latour, Larry, "Issues Involved in the Content and Organization of
Software Component Information Bases, Interim Report," Technical
Report for the U.S. Army CECOM, prepared by the University of Maine,
Orono, ME, May 1989.

[LEE88] Lee, Kenneth J. et. al., "An OOD Paradigm for Flight Simulators," 2nd
edition, Technical Report CMU/SEI-88-TR-30, Software Engineering
Institute (SEI), Pittsburgh, PA, September 1988.

[LEN87] Lenz, Manfred, Hans Albrecht Schmid and Peter F. Wolf, "Software Reuse
Through Building Blocks," IEEE Software, July 1987.

[LIM94] Lim, Wayne C, "Effects of Reuse on Quality, Productivity, and
Economics," IEEE Soßware, September 1994.

114

[LUB87] Lübars, Mitchell D., "A Knowledge-Based Design Aid for the
Construction of Software Systems," Ph.D. Thesis, University of Illinois at
Urbana, Champaign, IL, 1987.

[LUB88] Lübars, Mitchell D., "Domain Analysis and Domain Engineering in
IDeA," Technical Report STP-295-88, Microelectronics and Computer
Technology Corporation, Austin, TX, September 1988.

[MAT84] Matsumoto, Yoshihiro, "Some Experiences in Promoting Reusable
Software Presentation in Higher Abstract Levels," IEEE Transactions on
Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 502-513.

[MCC85] McCain, Ron, "A Software Development Methodology for Reusable
Components," Proceedings of the Software Technology for Adaptable Reliable
Systems (STARS) Workshop, pp. 361-384, Naval Research Laboratory,
Washington, D.C., April 1985.

[MCN86] McNicholl, Daniel G., et. al. "Common Ada Missile Packages (CAMP) Vol.
1, Overview and Commonality Study Results," Technical Report AFATL-
TR-85-93, McDonnell Douglas Astronautics Company, St. Louis, MO, May
1986.

[MER93] Merritt, Steven, "Framework for Certification of Reusable Software
Components," DISA/CIM Software Reuse Program, February 26,1993.

[MEY87] Meyer, Bertrand, "Reusability: The Case for Object-Oriented Design,"
IEEE Software, March 1987. pp. 50-63.

[MOR89] Moore, John A. and Sidney C Bailin, "Domain Analysis: Framework for
Reuse," Technical Report, Computer Technology Associates, Rockville,
MD, October 1989.

[MOS95] Moseman, Lloyd K., "Software Development: Quo Vadis?" Crosstalk,
November/December 1995, Volume 8, Number 11, p. 2-3.

[MYE88] Myers, Brad, "A Taxonomy of Window Manager User Interfaces," IEEE
Transactions on Computer Graphics and Applications, Vol. 8, No. 5, pp. 65-84.
September 1988.

[NEI80] Neighbors, James, "Software Construction Using Components," Ph.D.
Thesis, University of California at Irvine, CA, 1980.

[NEI83] Neighbors, James, "The DRACO Approach to Constructing Software from
Reusable Components," Proceedings of the Workshop on Reusability in
Programming, TTT Programming, Stratford, CT, September 1983, pp. 167-
178.

115

[PAR76] Parnas, David, "On the Design and Development of Program Families,"
IEEE Transactions on Soßware Engineering, Vol. SE-2, No. 1, March 1976, pp.
1-9.

[PAR79] Parnas, David, "Designing Software for Ease of Extension and
Contraction," IEEE Transactions on Soßware Engineering, Vol. SE-5, No. 2,
March 1979, pp. 128-138.

[PAR85] Parnas, David, Paul C. Clements and David Wise, "The Modular Structure
of Complex Systems," IEEE Transactions on Soßware Engineering, Vol. SE-
11, No. 3, March 1985, pp. 259-266.

[PAY88] Payton, Teri F., "Reusability Library Framework," Presentation at STARS
Foundations Workshop, Unisys Defense Systems, Paoli, PA, April 1988.

[PER89] Perry, James M. and Mary Shaw, "The Role of Domain Independence in
Promoting Software Reuse: Architectural Analysis of Systems," Position
Paper of the Reuse in Practice Workshop, Software Engineering Institute
(SEI), Pittsburgh, PA, July 1989.

[PET93] Petracca, Aleisa, Les Hayhurst and George Jachelen, "Portable, Reusable,
Integrated Software Modules (PRISM) Documentation Library Model,
Document Release 1.0, Central Archive for Reusable Defense Software
(CARDS), Software Technology for Adaptable Reliable Systems (STARS),
STARS-VC-B015/000/00, December 3,1993.

[POU95] Poulin, Jeffrey S. and Keith J. Werkman, "Melding Structure Abstracts and
the World Wide Web for Retrieval of Reusable Components," Proceedings
of the Symposium on Soßware Reusability (SSR'95), edited by Mansur
Samadzadeh and Mansour Zand, Seattle, WA, April 28-30,1995.

[PRI87a] Prieto-Diaz, Ruben, "Domain Analysis for Reusability," Proceedings of the
COMSAC 87: The Eleventh Annual International Computer Software and
Application Conference, pp. 23-29. IEEE Computer Society, Washington,
D.C., October 1987.

[PRI87b] Prieto-Diaz, Ruben, "Faceted Classification and Reuse Across Domains,"
Proceedings of the Workshop on Soßware Reuse, Rocky Mountain Institute of
Software Engineering, Boulder, CO, October, 1987.

[PRI91] Prieto-Diaz, Ruben and Guillermo Arango, Domain Analysis and Soßware
System Modeling, IEEE Computer Society Press, Los Alamitos, CA, 1991,
ISBN 0-8186-8996-X, p. 63-69.

[PYS92] Pyster, Art, "Reuse Adoption Guidebook," Software Productivity
Consortium, SPC-92051-CMC, Version 01.00.03, November 1992.

116

[RTI93] Research Triangle Institute, "Certification of Reusable Software
Components/' U.S. Air Force Rome Laboratory, Contract No. F30602-92-
C-0158, March 1993.

[SIM87] Simos, Mark A., "The Domain-Oriented Software Life Cycle" Towards an
Extended Process Model for Reusability," Proceedings of the Workshop of
Soßware Reuse, Rocky Mountain Institute of Software Engineering,
Boulder, CO, October 1987.

[SIM95a] Simos, Mark and Dick Creps, "ODM (Organization Domain Modeling)
Guidebook Published," STARS Newsletter (Software Technology for
Adaptable, Reliable Systems), March 1995, Issue 12, p. 11.

[SIM95b] Simos, Mark and Dick Creps, Carol Klingler, Larry Levine, "Organization
Domain Modeling (ODM) Guidebook, Version 1.0, STARS-VC-
A023/911/00 Informal Technical Report, Contract No F19628-93-C-0130,
March 17,1995.

[SOL89] Solderitsch, James J., Kurt C. Wallnaw and John A. Thalhamer,
"Constructing Domain-Specific Ada Reuse Libraries," Proceedings of the
Seventh Annual Conference on Ada Technology, U.S. Army CECOM, Ft.
Monmouth, N.J., March 1989, pp. 419-433.

[SPC91a] Software Productivity Consortium (SPC), "Domain Analysis Workshop
Presentations," SPC-91186-MC Version 01.00.00, September 26-27,1991,
Herndon, VA.

[SPC91b] Software Productivity Consortium, "Synthesis Workshop," September 23-
25,1991. Herndon, Virginia.

[SPC92a] Software Productivity Consortium, "Synthesis Guidebook," Volume 1.
SPC-92111-CMC, Version 01.00.00 October 1992.

[SPC92b] Software Productivity Consortium, "Synthesis Guidebook, Volume 2:
Case Studies," SPC-92111-CMC, Version 01.00.00 October 1992.

[SPS95] Software Productivity Solutions, Inc., Task Area: Software Quality
Framework (SQF), Interim Technical Report for the U.S. Air Force Rome
Laboratory, Contract No., F30602-92-C-0158, October 1995.

[TRA93] Trail, Glen and George Jachelen, "Portable, Reusable, Integrated Software
Modules (PRISM) Documentation of Library User's Guide," Release 1.0,
Central Archive for Reusable Defense Software (CARDS), Information
Technical Report from the Software Technology for Adaptable Reliable
Systems (STARS) Program, STARS-VC-B006/001/101, December 3,1993.

[VC093] Virginia Center of Excellence for Software Reuse and Technology Transfer
(VCOE) "Reuse Adoption Guidebook," Software Productivity
Consortium, SPC-92051-CMC, Version 02.00.05, November 1993.

117

[WAR88] Ward, Paul T. and Lloyd G. Williams, "Using the Structured Techniques
to Support Software Reuse," Proceedings of the Structured Development
Forum, San Francisco, CA, August 1989, pp. 211-222.

[WEI88] Weiss, David, "Reuse and Prototyping: A Methodology," Technical
Report SPC TR-88-022, Software Productivity Consortium (SPC), Reston,
VA, March 1988.

118

Appendix A - Annotated Bibliography of Business Strategies

The information gleaned from this literature survey of business strategies was
used to determine the operational context of the Reuse Context for Asset Quality
Certification and to assess the impact of this previous research on the development
of the Certification Framework.

The annotations in this appendix summarize the essence of each of the
referenced publications. Summaries vary in length; those that are longer provide
additional details because the reference appeared to be a flagship among others. The
shorter annotations were still included to serve as a pointer to the complete
reference if more details are of interest.

This annotated bibliography this area is not exhaustive, but gives a flavor of the
previous research that has been accomplished. Some of these references were used
in other appendices.

A-l /A-2

[BAN93] Banker, Rajiv D., Robert J. Kauffman, Dani Zweig, "Repository Evaluation
of Software Reuse," IEEE Transactions on Soßware Engineering, Vol. 19,
No. 4, April 1993.

Banker indicated that reuse, by it nature, is an activity that spans multiple
projects and application systems within and across enterprises. To manage such
reuse requires monitoring software at the level of the organization or enterprise
rather than at the traditional focus of the individual software project control.

Banker found that organizational barriers and disincentives to reusing software
were more serious than technical barriers to reuse. In general, he finds a lack of
formal incentives to reuse objects. Software reuse is encouraged, but not mandated.
Programmers are not rewarded for reuse. In fact, informal incentives exist for a
programmer to prevent others from reusing their code. The creator is seen as the
"owner" and becomes responsible for maintenance, even in applications for which
it was not originally intended.

Programmer to programmer reuse is usually done by templating, as a hidden
form of reuse which is not captured by traditional monitoring mechanisms.
Templating achieves only some of the goals of software reuse; the coding effort and
unit testing are reduced, but the adaptation costs are higher and subsequent life cycle
savings, particularly in the maintenance phase, are not realized.

Banker maintains that the organization needs to maintain its software and
related information in a repository software (i.e., design, history, interactions with
other system elements, etc.). Rathbun believes that successful reuse relies upon
effective repository cataloguing and searching as well as upon formal domain
analysis.

By analyzing software at the repository level, one can cut across multiple
projects to ask such questions as: "What kinds of objects are most likely to be reused
and under what conditions?" He recommends focusing on development and
process-oriented questions rather than a single, isolated product.

[BAR91] Barnes, B. and T. Bollinger, "Making Reuse Cost-Effective," IEEE Soßware,
8(1), p. 13-24.

Barnes writes that the scope of reuse can vary; reuse can be confined to a few
specific methods and libraries of scavenged parts, or it can be broad to include the
entire software development process and its artifacts. Requirements specifications,
designs, code modules, documentation, test data, customized tools, and early work
products are all candidates for reuse. Barnes believes that reuse should not be
restricted to source code, since broad spectrum reuse has a greater potential to reduce
costs. Modules that solve difficult or complex problems are good choices for reuse.

Barnes believes that effective reuse is one of the fundamental paradigms of
development and needs to be better understood. Scavenging is the commonly

A-3

practiced scope of reuse, and is extremely inefficient. Lack of reuse planning
duplicates re-engineering costs. Instead, effective reuse must be built into an
organization's software development process. Barnes feels that industry needs
consistent, broad-spectrum methodologies that integrate reuse analysis and
development methods.

Barnes believes that the defining characteristic of good reuse is not the reuse of
software per se, but the reuse of human problem solving. Human problem solving
is the non-repetitive, non-trivial aspect of software development and maintenance
that cannot be easily formalized or automated. It is a scarce and critical resource, it
cannot be easily multiplied, multiplexed, accelerated or enhanced.

He believes that three techniques can be judiciously used to optimize human
problem solving:

1. Planning

2. Automation

3. Reuse

Planning minimizes redundant and dead-end work while automation relies
upon building tools to support manual tasks. Reuse can increase the effectiveness
of human problem solving by recycling existing work in new contexts. Reuse
should complement automation in tools, not compete with it.

Reuse has the same cost and risk characteristics as any financial investment; it
can be viewed in the context of a consumer - producer model. The producer aspect
of the model represents all the investments made to increase reusability. On the
other hand, the consumer aspect of the model shows the cost benefits accrued as a
result of the reuse investments. The consumer aspect of the model is concerned
with the measure of dollars used and how earlier reuse investments have helped or
hurt the final product. Likewise, Barnes believes that the producer and consumer
model and its underlying processes can be applied to developing software reuse.

Reuse investment is cost-effective only when the total reuse investment R is
less than the total cost benefits, B; that is R < B. Barnes proposes that if estimates of
B are small, then R should be small. If estimates of B are large, then R should be
large. The reuse presents a dilemma when organizations are faced with the risk
associated with large investments in reuse without the guarantee of quantifiable
large returns on their investment.

Reuse investments are most likely to pay off when they are applied to high-
value work products. A rule of thumb is to build reusable parts if local expertise
exists; purchase reusable parts if development requires expertise outside the
organization. Moreover, coordinated reuse investments should be encouraged.
Organizations that do not provide management incentives for reuse are likely to
fail.

A-4

Barnes purports that is not a trivial concept; reuse has suffered from an image
problem since it is usually viewed as a process of selecting from a salvage yard of
software components. More appropriately, reuse can be a mechanism for preserving
and guiding the use of expansive resources; that is, human creativity and ingenuity.

[BOE93a] The Boeing Company, "Reuse Strategy Model: Planning Aid for Reuse-
based Projects," Software Technology For Adaptable, Reliable Systems
(STARS) office, 9-5526, F19628-88-D-0028, Task U03, CDRL 5159, July 31,
1993.

The Boeing Company, under the STARS program, published a planning aid for
projects beginning to institute reuse. This document describes a Reuse Strategy
Model (RSM) that consists of a set of dimensions to characterize current reuse
practices, a suggested process for performing the characterization, and a set of goals
that are reasonable to adopt based on the current characterization. A prototype of
the RSM was used by the STARS Demonstration teams and improvements were
made resulting in this current version.

Historically, since the SEI's production of the Capability Maturity Model
(CMM), there has been a growing interest in a similar model for the practice of
reuse. The first broad-brush view of a reuse CMM was made public by the SPC as
"Mount Reuse" in a presentation by K.V. Bourgeois titled "Technology Transfer of
Mature Reuse Practice," found in the Proceedings of the Fifth Annual Workshop on
Software Reuse, in October, 1992. Mount Reuse depicted five increasing stages of
reuse maturity as ledges on a mountain side with "ad hoc" reuse at the bottom and
"systematic" reuse at the top. Each level or ledge was annotated with characteristics
of that stage.

The work at SPC was paralleled by Koltun and Hudson with their Harris Reuse
Maturity Framework (HRMF) published in an article titled "A Reuse Maturity
Model" in the Proceedings of the Fourth Annual Workshop on Software Reuse in
November 1991. This model also had five stages labeled initial /chaotic, monitored,
coordinated, planned and ingrained with ten dimensions across those stages.

The STARS' RSM evolved from work on the development of the Conceptual
Framework for Reuse Processes (CFRP). The CFRP team, with members from
representatives from Boeing, IBM, MITRE, Paramax, SEI and TRW, analyzed the
Mount Reuse concept and concluded that a reuse maturity model would be needed
to complement the CFRP to provide strategy planning guidelines.

In June 1992, a "Reuse Adoption" workshop was sponsored by SPC's DARPA
contract for the Virginia Center of Excellence for Reuse (VCOE). A draft was
presented similar to SEI's CMM concept of identifying key practice areas for each of
five levels of capability maturity. Based on workshop feedback, the SPC rethought
its approach and formulated a Reuse Capability Model (RCM) which is described in
its Reuse Adoption Guidebook, annotated as [PYS92] and [VC093] in this appendix.

A-5

During the development of SPC's RCM, the STARS program developed a
prototype Reuse Strategy Model (RSM) to provide focused guidance to the STARS
Demonstration teams in their reuse planning. The prototype was structured to
support identifying project goals and metrics to be used in developing a reuse-based
strategy that furthers achieves the STARS vision of reuse. The prototype was used
on a trial basis and was improved and extended by adding a description of a process
for applying it.

The resultant RSM document is designed for business and project planners in
organizations who are transitioning to a domain-specific, reuse-based software
development paradigm. The RSM helps planners set goals for achieving a state of
practice compatible with the STARS vision of domain-specific reuse as articulated in
the STARS Conceptual Framework for Reuse Processes.

The RSM identifies areas in which organizational objectives, policies,
procedures, and process definitions can be applied to a project for a cost-effective
reuse strategy. The RSM assesses the elements of reuse being practiced and suggests
goals and metrics for monitoring progress against the goals.

The RSM is a matrix of five dimensions with thirty four indicators. Each
dimension focuses on one aspect of reuse practice. The following five dimensions
and its number of indicators are identified below:

1. Domain stability (5 indicators)

2. Organization readiness (9 indicators)

3. Experience with domain-specific knowledge (6 indicators)

4. Usage of technology for reuse processes (8 indicators)

5. Business climate and reuse management (6 indicators)

The process to apply the RSM begins with the domain of the project and
characterizing the primary project goals with respect to the CFRP. The assessment is
conducted using a Goal-Question-Metrics (GQM) paradigm and a goal is identified
for each indicator. The goals are evaluated and prioritized relative to the project's
context and constraints. The highest priority reuse goals are selected, with the
progress metrics tailored and integrated into the project plans. Detailed descriptions
of the process to apply the RSM are provided with suggested sample worksheets for
every indicator.

[BR092] Brown, Linda, "DOD Software Reuse Initiative, Vision and Strategy,
OASD(C3I)/DDL July 15,1992.

Linda Brown reports that DoD has evidence that software reuse principles,
when integrated into acquisition practices and software engineering processes,
provide a basis for dramatic improvement in the way software-intensive systems
are developed and supported over their life cycle. She describes the vision and

A-6

strategy for a DoD initiative which is designed to make a reuse-based paradigm the
preferred alternative for developing and supporting software. The strategy to realize
this DoD vision is based upon systematic reuse; that is, opportunities are pre-defined
and a process for capitalizing on those opportunities is planned and specified, not ad
hoc. Brown believes that software reuse will eventually happen whether the DoD
takes an active role or not. The challenge is to position the DoD to accelerate its use
and to reap its benefits.

An infrastructure investment to encourage effective reuse includes advancing
technologies that support reuse, incorporating reuse into existing management and
current processes, and creating a generic set of components to use and reuse in new
systems or in software maintenance. Domain analysis, domain models, and generic
architectures are the primary focus of a successful reuse program. Near term cost
savings will be offset by infrastructure investments. Other engineering disciplines
have benefited by standard concepts, processes, and components allowing prior
accomplishments to be leveraged and speed innovation for future systems. A
similar strategy for reuse is proposed by the DoD.

A reuse-based software engineering process is based on four fundamental
principles: domain-specific reuse, process-driven reuse, architecture-centric
investment, and interconnected libraries. The Ada programming language provides
a foundation upon which to base reuse efforts on a code level. However, Brown
emphasizes that reuse is a process, not an end-product.

Brown describes the DoD reuse strategy as consisting of the following activities:

1. Establish domains.

2. Define reuse products (e.g., domain model, software architecture,
product design, implementation components).

3. Establish criteria for deciding ownership.

4. Integrate reuse into the development and maintenance process.

5. Define the model for business decisions.

6. Define metrics to evaluate reuse success.

7. Define component guidelines for different reuse products.

8. Identify technology-based investment strategy (i.e., use of tools,
knowledge representation, information systems security, etc.).

9. Conduct education and training.

10. Provide near term product and services (i.e., reuse maturity model).

The most important step in the DoD reuse strategy is the first step - to establish
domains by defining boundaries. Domain analysis focuses on "areas of business" for
initial domain decomposition.

A-7

Brown concludes that there is no singular approach to software reuse. Libraries
facilitate, but do not enable reuse. This initial report has been recently updated in
January 1995 as a working draft.

[CAR94] Card, David N. and Edward Comer, "Why Do So Many Reuse Programs
Fail?" IEEE Software, September 1994, p. 114-115.

Card and Comer suggest that two fundamental mistakes contribute to the
failure of reuse programs:

1. Organizations treat reuse as a technology-acquisition problem rather
than a technology-transition problem (i.e., buying technology usually
does not lead to extensive reuse).

2. Organizations fail to approach reuse with a business strategy.

The authors' experiences as promoters and supporters of reuse and as
measurers of its effectiveness have lead them to believe that the overriding
obstacles to reuse are economic and cultural, not technological.

Card views the reuse process in terms of an economic model of supply and
demand. The model includes producers, consumers, and a distribution mechanism.
Both producers and consumers develop software to meet specific, yet different,
needs. To date, however, more emphasis has been on distribution mechanisms (i.e.,
classification schemes and repositories) rather than meeting consumer needs.

Within an economic model of reuse, reuse-oriented business goals should
maximize the amount of software that goes from a producer's project to a
consumer's project. The amount of software that producers are able to transfer
depends upon the distribution mechanism, but more importantly, on how well
their products match what the consumers want. The following factors affect this
match:

• The quality and reusability of the producer's software

• The skill and knowledge of the consumer about reuse and the
reusable software

• The degree of congruence between the producer's and consumer's
requirements

Effective reuse must address all three of these factors, but Card focuses on the
last factor, (i.e., how well the reusable components meets the consumer's
requirements).

Alignment of requirements can be achieved most easily within a domain.
Domain analysis techniques have helped to identify areas for reuse for both the
producer and consumer. Alignment of requirements can also be achieved by
looking beyond the current project, to future projects, anticipating and planning for

A-8

needs (i.e., tools, techniques and training). This approach requires an organization
to develop repeatable processes and products within a market-driven business
strategy.

In addition to the economics of reuse, four cultural issues have an effect on
reuse:

1. Training

2. Incentives

3. Measurement

4. Management

Because reuse is a business strategy, it requires training at higher levels of
management than are customarily involved in new technology adoption.
Monetary or recognition rewards tied to the production and consumption of
reusable assets can actively promote reuse within an organization. Management
must support subsidizing production or other incentives to feed the needed cultural
change that reuse requires. In addition, organizations need a mature, systematic
development process with strong configuration management and quality assurance
in order to effectively leverage reuse. These operations support the requirements
for the Capability Maturity Model, Level 2. Card recommends that reuse should also
be part of an organization's overall process improvement program.

[DIS95] Defense Information Systems Agency Center for Software, DoD Software
Reuse Initiative, "Software Reuse Business Model (SRBM)," Technical
Report, January 31,1995.

This document describes a Software Reuse Business Model (SRBM) that was
developed by the U.S. Army Space and Strategic Defense Command (USASSDC),
Software Engineering Division at Huntsville, AL for the DoD Software Reuse
Initiative, Defense Information Systems Agency, Center for Software. The SRBM is
driven by the DoD Software Reuse Vision and Strategy and leverages previous work
by other Government and commercial organizations. Its thrust is to steer away
from re-inventing software to a new way of constructing software by reusing
domain-specific architectures.

Written from the acquisition perspective, the SRBM incorporates reuse
principles into the acquisition cycle of software-intensive systems within DoD
organizations. The SRBM emphasizes systematic reuse and defines the detailed
steps to apply reuse principles. The SRBM consists of the following components:

1. Specific activities for defined user roles (e.g., User, Domain Manager,
and Program Manager)

2. Information needed for the activities of each role

A-9

3. Required policies, procedures, standards, and guidelines required

4. Tools, techniques and methodologies

The audience for the SRBM is DoD managers and practitioners. The end users
are the Domain Manager (DM), the Program Manager (PM), and Support Staff
(contracting personnel, finance personnel, technical staff and legal counsel). Other
end users are Project Executive Officers (PEO) or the Designated Acquisition
Commander (DAC).

The SRBM provides a formal structure to formulate a reuse business strategy
while considering the viability and applicability of reuse. The DoD developed a
general business model which each service branch will implement in its own way.
There is no single reuse business strategy that is appropriate to every system
acquisition. Using this generic model, an organization can tailor the SRBM and
exploit the benefits of reuse while reducing risks and controlling costs. The SRBM
can be exercised at any time during the system life cycle and provides a process to
support decision-making.

The document describes the SRBM as a top-level model concept and then
provides addition detail with IDEF 0 (Integrated Computer Aided Manufacturing
(ICAM) Definition). Using the IDEF 0 notation, components are defined and
decomposed as inputs into an activity, constrained by controls (policies, procedures
and regulations) and by mechanisms (resources, guidance and tools), resulting in an
output from each activity.

The SRBM provides and organization with the following mechanisms:

• A set of reuse business strategies that can be used to reduce the risk of
implementing reuse

• Step-by-step instructions for performing cost and economic analyses

• A matrix table to determine common functionality among systems

The SRBM supports engineering activities, business planning and contracting
activities related to software. The SRBM introduces a process for reuse-specific
acquisition activities such as developing a domain infrastructure and then
implementing and maintaining the domain. A Domain Manager must formulate a
strategy appropriate for systems in a given domain.

To assist the Domain Manager, the SRBM defines several archetypes, or
recurring patterns, of domains within Government and industry:

• Vendor-owned domain

• Government-support standard

• Value-added reseller

• Government-owned architecture

A-10

• Government-owned domain

• Re-engineering

• Public library

• Commercial library

The eight archetypes vary in the degree of control the Government has over
reusable assets and their suppliers, the amount of reuse that can be expected, and the
cost of exploiting reuse. These archetypes were derived from successful software
reuse strategies and acquisition scenarios of the Reuse Acquisition Action Team
(RAAT), Association of Computing Machinery (ACM) Special Interest Group for
Ada (SIGAda) Reuse Working Group in March 1994.

Characteristics of a particular domain are analyzed by the Domain Analyst to
determine which archetype applies. The SRBM defines selection criteria are used by
the Domain Manager and the Domain Analyst to determine which archetypes are
the most appropriate for the given domain. These selection criteria are budget,
schedule, existing assets, expected uses in the domain life, commonality,
variabilities, standardization and stability. Archetypes can be variants or hybrids
formed from one or more archetypes. To characterize a domain, the Domain
Analyst and Domain Manager must also consider other aspects of a domain such as
programmatic, product, capability, and control.

A domain is evaluated by assigning values to the criterion as characterized by
the organization's situation. Situational values for selection criteria are matched to
those values for pre-defined selection criteria for each of the archetypes. Results are
scored and the "best" fit and "second best" are matched. If criteria are not met, a type
is not eliminated, but suggests risks may exist in those areas.

Selection of archetypes assists the Domain Manager in formulating business
strategies. Organizations vary in the degree of investment, ownership, and control
over domain assets between the Government and industry. Consequently, the
SRBM has pre-defined strategies and preferred values for each of the archetypes to
assist the Domain Analyst and the Domain Manager.

Within the SRBM is a Common Functionalities Table (CFT), a mechanism to
determine common functionality within a domain of interest. The CFT helps to
determine economic viability, implement a domain infrastructure, determine
availability of components, perform reuse requirements analysis, and develop a
reuse strategy. The CFT can also be an indicator for potential reuse. The CFT helps
plan for the following scenarios:

• Which reusable components from one system might be reused in a
system under development?

• Which reusable components from one system might be reused for a
future system?

A-ll

• What investments should be made in developing new reusable
components?

The assessment mechanisms used in the SRBM flow down from many that
exist in the software industry; the Domain Assessment Model, the Reuse Capability
Model of the Software Productivity Consortium, the Reuse Strategy Model of
STARS, the Software Capability Evaluation, and the Capability Maturity Model of
the Software Engineering Institute.

Archetype selection and its associated domain analysis can also identify
business entities involved in the acquisition process within a domain. By
determining the related business roles, an organization can assign responsibilities to
each role and specify the contractual/financial relationships among them. The
following business roles are supported by the reuse archetypes:

• Acquisition Executives

• Acquisition Managers

• Research and Engineering

• Contractors

• Vendors

• Library Operations Organizations

As defined in an accompanying appendix, these business roles have differing
areas of responsibility in Application Engineering, Domain Management, Domain
Analysis, Domain Implementation, and Application Engineering Support (for the
reuser). The latter includes operating libraries and collection and maintaining
assets. The SRBM also considers Contractual/financial relationships between
business entities including source funding (e.g., IR&D, or program dollars), the type
of contract (e.g., Fixed Price or Cost Plus Fixed Fee), and usage rights (e.g., unlimited
or restricted).

Not only can the Domain Manager analyze his domain and plan a business
strategy, but he also can plan for asset production with the SRBM. His plans for
asset production must also consider the cost and benefit of reuse. The SRBM
provides a Cost and Economic Analysis that consists of reuse impact concepts and
techniques. Data for the Cost and Economic Analysis is collected from completing
questions with a domain perspective and domain emphasis. Since reuse is not yet
widespread throughout the industry, the model does not provide benchmarks for
comparisons after the analysis is completed.

In addition to Cost and Economic Analysis methods, the SRBM identified the
following reuse metrics:

• Cost avoidance

• Return on investment (savings/cost)

A-12

• Productivity metrics

• Equivalent new source statements

• Quality metrics

• Schedule metrics

• Product development productivity (PDP) - KSLOC (Thousand source
lines of code) size of product/effort

• New code productivity

• Code reuse productivity

The authors of the SRBM have plans to improve and enhance the current
SRBM. Future work is anticipated in the areas of usability and transfer of the model
into practice.

[DOD94a] DoD Software Reuse Initiative (SRI), Technology Roadmap, Version 2.0,
Volume 1: Technology Assessment, October 4,1994.

This report is in response to the DoD Software Reuse Vision and Strategy
authored by Linda Brown as described above in [BR092]. The DoD Vision and
Strategy calls for "a technology-based investment strategy which identifies, tracks
and transitions appropriate reuse-oriented process and product technologies."
Critical technologies were identified within the context of domain engineering and
application engineering. By evaluating critical technologies and their maturity
profiles, an organization can judge which lagging technologies are recommended
for investment within a ten-year time frame. Investment recommendations need to
determine whether a technology will be accelerated by investment alone. In some
cases, other factors or dependencies may impede progress regardless of funding, so
that the potential return is not worth the investment at a given point in time.

The report identified software reuse as a critical technology and that to reach
maturity, other supporting software reuse technologies will also need to mature.
Two additional critical technologies that facilitate software reuse are reuse-based
application engineering and domain engineering. Enabling technologies for reuse-
based application engineering and domain engineering are representation, process
modeling, composition and generation, language mechanisms, libraries and
repositories, methods, software engineering environments, reengineering, and
measurement and assessment. When software reuse fully matures, it will be an
integral part of software engineering, and will disappear as an independent concept

The DoD technology roadmap was developed in the context of previous work
done by Redwine and Riddle found in "Software Engineering Technology Transfer
Practices, International Perspectives in Software Engineering," January, 1993.
Redwine and Riddle found that the average time frame for an engineering
technology to mature is 15-20 years. Within this time frame, Redwine describes

A-13

Milestone 0 as initially marked by the appearance of a key idea underlying the
technology and a clear articulation of the problem; whereas Milestone 4 is marked
by substantial evidence of value and applicability. Widespread use can require
another decade.

The assessment concluded that software reuse has been developing bottom-up,
consistent with how engineering disciplines have developed in the past. This
development process starts with code modules, then expands to design and
requirements, and architectures in domain analysis. As an engineering discipline
matures, it acquires engineering handbooks, standard notations, objects, tools, and
then it is taught to students of the discipline prior to widespread use.

On March 30,1995, an updated version of this document was published by the
DoD as Version 2.2 and reflects review comments.

[DOD94b] DOD Software Reuse Initiative (SRI), Technology Roadmap, Version 2.0,
Volume 2: Implementation Plan, October 4,1994.

This document presents a strategy and plan for additional DoD investments in
reuse technology and flows down from the SRI's Volume 1: Technology Assessment
described above. Major programs and institutions included in the strategy and plan
include ARPA STARS, DSSA, SEI, SPC and the DISA Software Reuse Program. The
strategy and plan covers a five year time frame from FY 1996 through the year 2000.

Five thrusts were identified in the strategic plan:

1. Mathematical foundation for reuse

2. Framework for Measurement and assessment

3. Domain and application engineering

4. Process Modeling

5. Integrated Environment Testbed

Included in the first thrust of Mathematical foundations for reuse was
component certification using formal methods.

Formal methods use systematic mathematics to specify, develop and verify
systems. A formal method provides notations and processes that enable a
specification to be described rigorously and unambiguously. Software can be
developed from formal specifications and the transformation from specification to
software can be verified mathematically. Formal methods can be applied to safety
critical systems.

Formal methods have potentially significant relevance to software reuse.
Formal methods enable precise and concise specification of software and relations
between components. Formal methods provide proof of the correctness of software

A-14

and consequently, the authors feel, can be useful in the production and validation of
reusable assets.

However, the state of the practice of formal methods is fairly immature. In
general, it is a topic for academia, research and Government. Formal methods are
perceived as not readily scaleable upward from experiments to industrial-size
applications. Formal methods are difficult and time-consuming to apply to an
entire system over its life cycle. Some formal methods support particular phases in
the development life cycle better than others. The methods, themselves, can be
immature and lacking in automated support. Hybrid approaches applied to portions
of a large domain, using both manual and automated tools, are a compromise often
sought. Systems can be partitioned, formal methods used on the partitions, then the
partitions re-integrated later. Formal methods may be used to some degree in the
U.S. private sector, but are more common in Europe, especially in the United
Kingdom.

Some gaps remain in formal methods. The link supporting specifications and
code needs to be strengthened. Formal methods need to accommodate larger
inference steps and the ability to specify non-functional behavior (e.g., reliability,
safety, and performance). Supporting standards need to be developed, as well tools
that adequately scale upward.

Both Volume 1 and Volume 2 of the Technology Roadmap for DoD Software
Reuse Initiative (SRI) were developed by MITRE and the University of Houston
under the direction of Mr. Don Reifer. The staff extracted information from
experience, literature survey, data gathered from software engineering managers
and researchers.

On March 30, 1995, an updated version of Volume 2: Implementation Strategy
was published by the DoD as Version 2.2 and reflects review comments.

[JAW90] Jaworski, Allan, Fred Hills, Thomas A. Durek, Stuart Faulk, John E.
Gaffney, "A Domain Analysis Process," Interim Report 90001-N (Version
01.00.03), Software Productivity Consortium (SPC), Herndon, VA, January
1990.

As part of his domain analysis process, Jaworski established the relationship
between productivity enhancement through reuse versus the cost of reuse. As
illustrated in Figure A-l, he defined the parameters that indicate when reuse pays,
and when it does not.

A-15

PI, Relative Productivity

1.75

Cr, Relative
Cost

of Reuse

Figure A-l. Productivity enhancement through reuse versus cost of reuse
[JAW90]

He also developed a basic software reuse equation as shown in the following
equation:

C = C - (C - C) • R Mas ^un v^un ^-ur' xx

where
Cm = average cost per unit of new software in the product
Sn = amount of new software in the product
Cur = average cost per unit of reused software in the product
Sr = amount of reused software in the product
Cus = average cost per unit of the software product
Ss - size of the software product
R = proportion of code reused = Sr /Ss; 1-R = Sn/Ss

The above equation applies to the software product developed for an

application system. The unit costs, Cun and Cur cover all the activities required to
create the new and reused code in the system. Jaworski ties his software reuse to

A-16

domain analysis by constructing the following equation:

N0 = Cd/(1-Cr).

where

N0 is the required number of uses for an investment in domain engineering to break even

Cd is the ratio of the cost to produce a unit of reusable code to the cost per unit to engineer the code
for a single application

Cr is the ratio of the cost to adapt a unit of reusable code to the cost of implementing a new unit of
code.

Even if C^ is relatively small, a high value of Cr can make domain engineering

unprofitable. However, if we can significantly reduce Cr by automating software
reuse, we can achieve a break even and even higher levels of productivity.
Therefore, effective domain engineering becomes critical to the economics of reuse.

Jaworksi cites Gaffney in his work in the late 80's as supporting his premise.
Gaffney provides a mathematical formulation of the issues associated with
amortizing the costs of domain analysis, design and implementation efforts across
multiple projects. Jaworksi provides an appendix to his report that consists of a
detailed checklist of questions that can be used to determine the feasibility of
domain analysis within an organization.

[JON95] Jones, Capers, "Return on Investment in Software Measurement/'
Proceedings of the 6th International Conference on Applications of
Software Measurement (ASM), October 30-November 2,1995, Orlando, FL,
pp. 349-427.

Capers Jones identified the following top five technologies in terms of Return
On Investment (ROI):

1. Full software reusability

2. Fully integrated I-CASE tool suites

3. Winning a Baldridge award

4. Software quality measurement

5. Software cost and quality estimation tools

Using some of these technologies can quickly result in a return on investment
within 3, 6, 12, or 24 months. However, the most significant returns on reuse
usually result in a longer time frame (i.e., 36 months). Jones points out that
software reuse can include architectures, estimates, plans, requirements, designs,
code, user document, human interfaces, data and test cases.

A-17

Jones has approximated the return for each dollar invested in reuse over
varying time periods as shown in the Table A-l below.

Table A-l. Approximate return for each dollar invested in reuse

Types of reuse 12 months 24 months 36 months 48 months

Full Software $1.00 $3.00 $15.00 $30.00

Reusability

Reusable $0.00 $0.20 $0.75 $1.50

Architectures

Reusable $0.20 $0.30 $2.00 $3.00

Estimates

Reusable Plans $0.15 $0.25 $1.00 $2.00

Reusable $0.10 $0.40 $1.50 $3.00
Requirements

Reusable Designs $0.10 $0.40 $2.50 $5.00

Reusable Code $0.15 $0.50 $2.50 $6.00

Reusable User $0.05 $0.10 $0.75 $1.50
Documents

Reusable Human $0.00 $0.15 $0.50 $1.00

Interfaces

Reusable Data $0.20 $0.30 $1.75 $3.50

Reusable Test $0.05 $0.40 $1.75 $3.50

Cases

Naturally, cumulative reuse across multiple types of reuse is the most
beneficial; however, the most sizable payoffs across types occur after 36 and 48
months. Reusing designs and code are worthy of investment, but an organization
must be aware that these types of reuse have their best payoffs in the out years. If a
near term return is desired, it may be useful to plan investments in other types of
"non-traditional" reuse.

[LIM94] Lim, Wayne C, "Effects of Reuse on Quality, Productivity, and
Economics," IEEE Soßware, September 1994.

Wayne Lim documents metrics from two case studies at Hewlett-Packard (HP)
that demonstrate improved quality, increased productivity and reduced time-to-
market. He applied his metric models to case studies in the area of Manufacturing
Productivity in the Software Technology Division and in the San Diego Technical
Graphics Division, both of HP.

A-18

Lim points out that increased productivity from reuse does not necessarily
shorten the time-to-market. To reduce the time-to-market, reuse must be used
effectively on the critical path of a development project, that is, the chain of
activities that determine the total project duration.

By conducting a reuse assessment, he cites the following findings:

1. Quality - Because work products are used multiple times, the defect
fixes from each reuse accumulates, resulting in higher quality. Reuse
provides incentives to prevent and remove defects earlier in the life
cycle because the cost of prevention and debugging can be amortized
over a greater number of uses.

2. Productivity - Reuse improves productivity because the life cycle now
requires less input to obtain the same output. Reuse can also
improve a product's maintainability and reliability, thereby reducing
maintenance labor costs.

3. Time-to-market - A reduction of up to 42% of calendar months was
shown in Lim's case studies.

He cautioned, however, that software reuse is not free. Reuse requires
resources to create and maintain reusable work products, a reuse library and reuse
tools. He found that the relative cost of creating a reusable code components is
about twice that of creating a non-reusable version. The cost to integrate reused
components into new products ranged from 10-20% of the cost of creating a non-
reusable version. Lim used the well-established net-present-value method of
economic analysis and variations across projects were due to domain differences.

The most significant increase in labor cost for reuse occurs in the investigation
and external design phases. This is because the producer of the work product
requires a greater amount of time to understand the multiple contexts in which the
work product will be reused. Nonetheless, Lim believes that the results of economic
cost-benefit analyses indicate reuse can provide a substantial return on investment
in the long term.

[MOS95] Moseman, Lloyd Kv "Software Development: Quo Vadis?" Crosstalk,
November/December 1995, Volume 8, Number 11, p. 2-3.

In his farewell address, Mr. Lloyd Moseman, Deputy Assistant to the Secretary
of the Air Force, provides a perspective of where we've been and where we're going
in software development. In 1990, he said that if the 1990s reveal a silver bullet, that
bullet will be reuse. Now in 1995, he feels that his statement may have been naive.
To date, reuse has not been practiced on any major scale, and he feels that the
foundation of software engineering practice and software process maturity were
prerequisites to reuse on a major scale. He believes that before the year 2000, the
potential for major benefits from reuse will arise.

A-19

Moseman believes that architecture-based product lines show the greatest
promise for reuse. He believes that for each functional domain, there must be an
architecture with engineered qualifications, stature, and the role of the software
architect. These architects should not be in the Government, but the Government
will need to play a role by fostering the establishment of product lines from these
architectures.

Product lines go beyond software technology in that management must plan
for capital investment. Investments must be made in hiring the architect,
architecture creation, reusable component development, and pre-certification of
Commercial-Off-The-Shelf (COTS) components. The product line paradigm moves
away from traditional development that focuses on specific requirements with
funding and management that is oriented to single systems or projects. The
contractor with an effective project line will win competitions because of lower cost,
higher quality, quicker delivery, and predictable performance.

[PYS92] Pyster, Art, "Reuse Adoption Guidebook," Software Productivity
Consortium, SPC-92051-CMC, Version 01.00.03, November 1992.

Pyster defines a reuse adoption process as a set of activities to incorporate the
practice of software reuse as a permanent part of an organization's culture and way
of doing business. More simply, the reuse adoption process is a way to
institutionalize reuse. The reuse adoption process is derived from a broad base of
experience and research in the areas of reuse, technology transfer, planning, risk
management, process improvement, and economics. Generally, it is a technology
transfer process for an organization, but specialized for transferring reuse
technologies (i.e., processes, methods, and tools). The defined process can also be
used to improve an organization's current reuse practices to obtain better results.

Pyster's guidebook uses SADT (Structured Analysis and Design Technique)
diagrams to define the reuse adoption process. Detailed activities are identified with
inputs, outputs, controls, mechanisms, and roles. Pyster defines the following top
level activities:

1. Initiate Reuse Program Development

2. Define Reuse Program

3. Analyze Reuse Adoption Strategies

4. Develop Reuse Action Plan

5. Implement and Monitor Reuse Program

Each of these high level activities are further decomposed into their lowest
level of tasks. Some of the roles performing these tasks (i.e., sponsor, reuse
champion, reuse agent, user) may be found in the existing organizational structure
in the persons comprising Software Engineering Process Groups. To support the

A-20

reuse process, these roles must be fully integrated into the activities of software
definition.

Planning through assessment is a key concept that runs through the reuse
adoption process. Both reuse capabilities and business area potentials need to be
assessed and a reuse plan developed around them. If the potentials for both are
high, then an organization can justify the investment necessary to improve its reuse
capability to maximize this high potential. However, if the potential is limited, then
it may not be cost-effective to greatly improve an organization's reuse capability in a
chosen business area.

Pyster points out that reuse is often narrowly viewed as a technique that, if
applied, will reduce cost, neglecting the fact that adopting and performing reuse is
not free. The costs associated with reuse are an investment and the benefits gained
from reuse are the return on this investment.

[RAT94] Rathbun, Robert W. "Software Reuse Metrics/' Proceedings of the
Software Technology Conference (STC), Volume 1, Salt Lake City, UT,
1994.

Rathbun believes the only true reuse issue is the way the project manager or
technical lead plans for and manages reuse within a project's software development
and maintenance. Within the software reuse process, he measures reuse activity for
the following reasons:

1. It enables understanding of the reuse process.

2. Software reuse in projects can be planned and controlled.

3. The best application of effort and resources can be determined.

4. The quality of the artifacts of development and maintenance can be
evaluated.

5. The benefits of software reuse can be evaluated.

6. The software reuse program can be improved.

Rathbun recommends formalizing a measurement plan and applying it to pilot
projects. He constructed a mathematical model for project-based cost avoidance and
return on investment and demonstrated their use with sample data.

Rathbun's work is based the DoD Software Technology Strategy published in
1991 and the DoD Vision and Strategy for Software Reuse of 1992 [BR092] and has
these high level goals:

• Reduce equivalent software life cycle cost by a factor of two.

• Reduce software problem rates by a factor of 10.

A-21

• Achieve new levels of DoD mission capability and interoperability
via software.

These high level goals resulted in the current move away from reinventing
software to a process-driven, domain- specific, architecture-centric, library-based way
of constructing software.

These goals drove the creation of a ten-point strategy to reach these goals, one
of which is devoted to the collection of software reuse metrics. The plan establishes
procedures to collect metrics to measure the payoff from the reuse initiatives. It also
aids the developers in the selection of reusable components. Rathbun cautions that
reuse measurement is very immature, much more than the immature area of
measurement, in general.

[SPC91a] Software Productivity Consortium (SPC), "Domain Analysis Workshop
Presentations/' SPC-91186-MC Version 01.00.00, September 26-27,1991,
Herndon, VA.

Sidney Bailin, in his presentation at the Domain Analysis Workshop in 1991,
identified the following indicators that an organization needs to perform domain
analysis:

1. A pressing need to streamline the development process by
standardizing engineering practice

2. A perceived opportunity to reuse more than is being reused

3. A problem of attrition of expertise due to development personnel
turnover

Bailin, like Jaworksi, shows a close tie between domain analysis and an
organization's business strategies.

[VC093] Virginia Center of Excellence for Software Reuse and Technology Transfer
(VCOE) "Reuse Adoption Guidebook," Software Productivity
Consortium, SPC-92051-CMC, Version 02.00.05, November 1993.

This Reuse Adoption Guidebook issued by the Virginia Center of Excellence for
Software Reuse and Technology Transfer (VCOE) is an update to [PYS92] annotated
above. In addition to including the definition and decomposition of the reuse
adoption process, the updated guidebook provides assistance in performing domain
assessment, reuse capability assessment, reuse adoption, and strategy development.
The guidebook also has appendices describing reuse adoption risks, and assessment
of legal and contractual reuse issues. Similar to the reuse adoption process, each of
these assessment techniques are defined by SADT analysis.

A-22

The domain assessment method supports the definition of a reuse program by
understanding the reuse context and assessing the reuse potential. The purpose of
the SPC's domain assessment is to understand the potential for reuse in an
organization and to help determine how much to invest in reuse and where to
focus the investment. Prior to performing a domain assessment, the organization
must commit the resources required to perform the domain assessment. The
following tasks are included in the domain assessment:

1. Organize the domain assessment team.

2. Identify specific product domains to assess.

3. Assess domain factors.

4. Develop assessment findings.

5. Develop supporting material.

6. Report domain assessment findings.

The inputs to the process of domain assessment are the organizational profile,
current reuse situations, product plans, marketing information, existing assets,
product family requirements, domain history, technology trends, and standards.
The outputs are domain assessment findings, supporting material, findings
presentation and a domain assessment report. Controls are an organization's reuse
adoption objectives. The mechanisms needed to implement the domain
assessment are the domain assessment model and domain experts. The exit
criterion is the review and approval of the domain assessment findings and
supporting material by the sponsor.

In addition to the domain assessment method, the reuse capability assessment
method also supports the definition of a reuse program by understanding the reuse
context and assessing the reuse potential. The purpose of the reuse capability
assessment is to gain an understanding of an organization's process with respect to
reuse sufficient for planning improvements (i.e., identifying process strengths and
improvement opportunities). Prior to performing a reuse capability assessment, the
organization must commit the resources required to perform the reuse capability
assessment. The following tasks are included in the reuse capability assessment:

1. Organize the reuse capability assessment team.

2. Identify the process to assess.

3. Assess the organization's process.

4. Develop assessment findings.

5. Report reuse capability assessment findings.

The inputs to the process of reuse capability assessment are the organizational
profile, the current reuse situation, the organization's process, methods, tools,
structure, and skills. The outputs reuse capability assessment findings, findings

A-23

presentation and a reuse capability assessment report. Controls are an
organization's reuse adoption objectives. The mechanisms needed to implement
the reuse capability assessment are the reuse capability model and the reuse
capability assessment team. The exit criterion is the review and approval of the
reuse capability assessment findings and supporting material by the sponsor.

As part of the reuse adoption process, the SPC provides a guide to developing a
reuse adoption strategy. The purpose of the reuse adoption strategy development is
develop a strategy to meet the established reuse adoption goals and objectives. Prior
to developing a reuse adoption strategy, an organization must establish reuse
adoption goals. The following tasks are included in the reuse adoption strategy
development:

1. Develop the product approach.

2. Develop the business model.

3. Develop the process approach.

4. Development the organizational approach.

5. Develop the environment approach.

6. Develop the transition approach.

The inputs to the process of reuse adoption strategy development are the
organizational profile and supporting materials. The output is the reuse adoption
strategy. Controls are an organization's reuse adoption objectives, reuse adoption
goals, and constraints. The mechanisms needed to implement the reuse adoption
strategy development are reuse agents. The exit criterion is demonstration that the
reuse adoption strategy addresses all strategy components.

For all of these three processes (e.g., the reuse adoption process, the reuse
capability assessment process and the process for reuse adoption strategy
development), this updated guidebook provides very detailed descriptions as to how
to perform each. In addition to providing a textual descriptions, the guidebook
provides diagrammatic views of the techniques, annotated outlines, and
worksheets.

A-24

Appendix B - Annotated Bibliography for Domain Analysis

The information gleaned from this literature survey of domain analysis was
used to determine the operational context of the Reuse Context for Asset Quality
Certification and to assess the impact of this previous research on the development
of the Certification Framework.

The annotations in this appendix summarize the essence of each of the
referenced publications. Summaries vary in length; those that are longer provide
additional details because the reference appeared to be a flagship among others. The
shorter annotations were still included to serve as a pointer to the complete
reference if more details are of interest.

This annotated bibliography this area is not exhaustive, but gives a flavor of the
previous research that has been accomplished. Some of these references were used
in other appendices.

B-l /B-2

[ARA89] Arango, G. "Domain Analysis - From Art Form to Engineering
Discipline/' Proceedings of the 5th International Workshop of Soßware
Specifications and Design, p. 152-159,1989.

Arango proposes a different approach to domain analysis called "practical
domain analysis." He maintains that pure domain analysis is a theoretical problem
associated with scientists and systems analysts and feels the need to further develop
domain analysis into a practical activity. Practical domain analysis methods are
based on a view of reusers as learning systems.

He has written this paper to advance a conceptual framework for practical
domain analysis that is at a meta-level rather than another particular method for
domain analysis. Arango believes that different domain analysis methods may not
be comparable; each has been designed for reuse in different situations.

Arango believes that for domain analysis to become a practical technology, the
following three activities need to happen:

1. Understand the conceptual foundations of the process.

2. Produce an unambiguous definition using specification techniques.

3. Provide adequate support tools.

Completing these activities moves reuse away from an "art form" and toward
and engineering discipline.

Arango's view for practical domain analysis is seen as a systematic evolution of
a reuser's model of the domain, attaining and maintaining a desired level of
performance. Practical domain analysis answers the question of how to model a
domain that is incrementally constructed and evolved to achieve a specified level of
performance with a given target reuser. Arango explains that the number of
specifications covered by a reuser is potentially infinite. In practice, performance
properties are measured over a selected set of sample specifications, and a set of
benchmarks result. Reuse benchmarks are designed to reflect patterns of reuse in
the environment of a system, based on such properties as how recently the
component was reused, frequency of reuse over some period of time, or some
measure deemed relevant to the purpose of the study.

The goal of practical domain analysis is to find a systematic method to identify
information in the problem domain which, if available to the reuser in an
appropriate form, would attain a specified level of performance. The analyst
captures the information identified as relevant and evolves the acquired
information to enhance or maintain the performance of a reuser. Arango applies
his concept to an example, the GTE Assets Library System, at GTE Data Services.

B-3

[BIG88] Biggerstaff, Ted. J., "The Nature of Semi-Formal Information in Domain
Models/' Technical Report STP-289-88, Microelectronics and Computer
Technology Corporation, Austin, TX, September 1988.

In his discussion of semi-formal information in domain models, Biggerstaff
describes several levels of components, spanning code to conceptual abstractions:

• Code-execution of instructions - Is implementation-specific and
constrained by programming language, formal objects and
operational form.

• Software engineering design - Weakly related to informal concepts, is
implementation-specific, constrained by language and application
domain, has semi-formal objects, is abstractly operational and
presents system in reduced detail, abstract away detail.

• Generalized software engineering design - Weakly related to informal
concepts, provides widely reusable designs

• Conceptual abstraction - Strongly related to informal concepts, not
implementation-specific, has object-like structure, has non-
operational or prescriptive form.

These differing levels of abstraction are listed from lowest to highest and can be
applied to constructing domain models during domain analysis.

[BOR84] Borgida, Alexander, John Mylopoulos and Harry K.T. Wong,
"Generalization/Specialization as a Basis for Software Specifications," On
Conceptual Modeling, pp. 87-117, Springer-Verlag, New York, NY 1984.

Borgida believes that in conceptual modeling, generalization should be used as
the cornerstone in designing data-intensive applications. He suggests that the best
path for success is to create systematic and structured descriptions of highly detailed
world models where each concept has variations.

[BRU88] Bruns, Glen and Colin Potts, "Domain Modeling Approaches to Software
Development, " Technical Report, STP-186-88, Microelectronics and
Computer Technology Corporation, Austin, TX, June 1989.

Bruns purports that domain modeling is a pervasive activity that includes
domain analysis. He shows the relationship between five design approaches and
domain modeling. He evaluated each of the design approaches with respect to
modeling primitives, domain analysis, analysis/validation of the domain model,
and its specification and implementation.

[COH89] Cohen, Joel, "Software Reuse for Information Management Systems,"
Position Paper of the Reuse in Practice Workshop, Software Engineering
Institute (SEI), Pittsburgh, PA, July 1989.

B-4

Cohen wrote a position paper motivated by the goal to reduce the cost of
building a complex imagery information management system. For these systems, a
domain model was constructed, a generic architecture was developed, a
classification scheme for string reusable components was defined, and a library was
populated. Cohen used the domain analysis method of Prieto-Diaz and Gish.

[COH92] Cohen, Sholom, Jay L. Stanley, Jr. A. Spencer Peterson, Robert W. Krut,
"Application of a Feature-Oriented Domain Analysis to the Army
Movement Control Domain," Technical Report, CMU/SE 1-91-TR-28
ESD-TR-91-28, June 1992.

Cohen applied the Feature-Oriented Domain Analysis (FODA) method to the
window manager domain to validate the approach for its future use. During his
application, he operated under constraints since commonalities in the domain were
neither well-understood nor well-documented at the time of his study. No domain
expertise existed before the analysis, and no user was available to test the results.

Cohen learned that the following activities must be performed for successful
domain analysis.

• Clearly define the users - address needs, elicit requirements for
software implementation and system interfacing

• Identify domain experts early in the process

• Construct an enactable model

• Establish a community of interest

• Provide support for domain experts

Cohen also found that domain analysis can be used to improve
communications.

POD95a] Department of Defense, "Software Reuse Symposium," March 23,1995,
Huntsville, Alabama.

Two papers at the Software Reuse Symposium discussed domain analysis; one
addresses domain modeling, the other a tool for domain modeling. First, the
Organization Domain Modeling (ODM) method of domain analysis was developed
by Unisys and Organon Motives under the STARS program. ODM is a prescriptive
domain analysis method which directly relates to the STARS Conceptual
Framework for Reuse Processes (CFRP).

ODM consists of a process and work product model that can be instantiated in a
variety of sequences and project structures. Using process trees, ODM integrates the
business and technical aspects of domain modeling. ODM guides the selection of
strategically appropriate domains. Within the domain of focus, ODM guides the
analysis of existing and envisioned domain capabilities culminating in a

B-5

specification for a set of reusable assets. Consequently, ODM directly supports reuse
planning and domain selection. This paper documents the ODM method as applied
at several sites; Hewlett-Packard, Unisys and to the AF Comprehensive Approach to
Reusable Defense Software (CARDS), and the Tomahawk missiles program.

KAPTUR, a domain engineering tool, was also presented at the Software Reuse
Symposium. This public domain tool was developed by CTA and was primarily
funded by NASA. KAPTUR supports side-by-side analysis of multiple systems in a
domain by using different views of the same information. It runs on a Sun
SPARCstation and commercialization is planned.

[DOD95b] Department of Defense, "Domain Scoping Framework", Version 3.1,
Volume 2: Technical Description, 29 September 1995.

The DoD published this document describing a framework that addresses issues
associated with how to define domains and product lines, how domains relate to
each other, how to identify all DoD domains, how to establish product lines, and
how to exploit the commonality among software systems within these domains and
across domains.

The purpose of the framework and accompanying usage guidelines is to
provide a basis for finding and exploiting maximum commonality among software
systems as a means of improving the engineering of DoD software. Volume 2 of
this two part set provides details of the framework for technical users; whereas,
Volume 1 is a shorter document, intended for executives and managers, that briefly
explains the framework and elaborates more on its broader context and its benefits.
An appendix to Volume 2 identifies outstanding issues that will be addressed in
future versions.

Volume 2 assumes that a domain-specific approach to software engineering is a
foundation for good engineering practice and promotes natural reuse,
standardization, increased quality, and reduced cost. Related to a domain-specific
approach is the establishment of product lines as a business area within an
enterprise as a means of exploiting its knowledge and experience.

Elements of the framework include common definitions and a set of factors for
characterizing domains and making decisions. The following terms and their
definitions were chosen from standards in the industry:

• Business area - A coherent market characterized by (potential)
customers possessing similar needs.

Domain - A distinct functional area that can be supported by a class of
software systems with similar requirements and capabilities. A
domain may exist before there are software systems to support it.

Domain boundary - A frame of reference for an analysis (i.e., the set
of constraints that represent what is part of the analysis and what is

B-6

outside the analysis). The domain boundary may change as more
knowledge about the domain is gathered.

• Product line - A collection of products (existing and potential) that
address a designated business area.

• Framework - A structure for supporting or enclosing something,
especially, a skeletal support used as the basis in something being
constructed; a basic arrangement, form, or system.

This document defines eight factors for characterizing domains and making
decisions and organizes these eight factors into two groups:

Domain Profile Factors

Domain Identify - High-level or defining characteristics of the
domain, and location in domain taxonomy

Functional System Requirements - Dominant functions or
features of systems in the domain

System Characteristics - Dominant subsystems, characteristics,
constraints, and nonfunctional requirements of systems in the
domain

Software Characteristics - Dominant characteristics of software
subsystems that support the domain

System Deployment - Where systems in the domain are deployed

Decision Support Factors

Domain and Organization Assessment - Extent to which existing
domain knowledge and experience, software assets, homogeneity,
maturity provide reuse opportunities

Market Assessment - Potential for making profitable use of
domain knowledge

Resource Constraints - Organization or enterprise limits on extent
of analysis and engineering possible

The framework and these factors can be applied within an organization or
across organizations. A Goal-Question-Metric (GQM) approach is used to specify the
information to be collected about the factors. A common set of scenarios and their
relation to MIL-STD-498 is described relating the framework to an understood
process. The framework was applied to two example domains, the Joint C4I Global
Command and Control System (GCCS) and a Navy Program Executive Office (PEO).

B-7

[FAC94] Facemire, J. Jeff, Aleisa Petracia, and Stephen Riesbech, "Software
Architecture Seminar Report," Software Technology for Adaptable
Reliable Systems (STARS), Central Archive for Reusable Defense Software
(CARDS), Informal Technical Report, Contract No F19628-93-C-0130,
January 29,1994.

Facemire defines domain engineering as the systematic identification of
commonalities among a group of related software systems. Domain engineering is
composed of domain analysis, domain design and domain implementation.
Facemire defines domain engineering products as a domain model, domain specific
software architectures, and domain design classification terms. Facemire feels that
by using these products, asset production can be focused on reuse.

[GIL89] Gilroy, Kathleen, Edward Comer, J. Kaye Grau, Patrick Merlet, "Impact of
Domain Analysis on Reuse Methods," Final Report CO4-087LD-0001-00, U.
S. Army Communications - Electronics Command, Ft. Monmouth, NJ,
November 1989.

Gilroy introduced an object-oriented concept of adaptation analysis, that is, the
identification of differences among application systems. She proposed that the
activities of successful domain analysis are modeling the domain, architecting the
domain, and developing software component assets.

[HES90] Hess, James A., William E. Novak, Patrick C. Carroll, Sholom G. Cohen,
Robert R. Hollbaugh, Kyo C. Kang, A. Spencer Peterson, "A Domain
Analysis Bibliography," Carnegie-Mellon University and the Software
Engineering Institute, Special Report, CMU/SEI-90-SR-3,1990.

Hess and his colleagues compiled a significant bibliography of references on
domain analysis. Hess' bibliography was developed as part of the Domain Analysis
Project at the Software Engineering Institute (SEI) and provides a historical
perspective and background for further research.

Domain analysis literature has grown in the last 20 years and continues to
grow. Entries in bibliography start in 1975, showing an initial growth spurt in 1985
and increased proliferation in 1988-1989. Those authors that can be considered
experts in the field (i.e., publishing three or more articles during this period) are
Arango, Bailin, Batory, Lübars, Neighbors, Parnas, Prieto-Diaz. The following
projects or companies were referenced in three or more listings: CAMP, CTA,
DRACO, GENESIS, GTE, IDeA MCC, NASA, RLF, SEI, STARS, UC-Irvine, Unisys,
UT-Austin.

Hess defines a domain as a set of systems which share common capabilities.
Domain analysis as a process to identify and represent the relevant information in a
domain. To perform domain analysis, information is derived from a study of

B-8

existing systems, knowledge is captured, with underlying theory and emerging
technologies. Hess points out that gray areas exist within domain analysis; there is
overlap into the disciplines of formal specification and representation of knowledge.
Hess believes that domain analysis is the foundation for establishing a reuse
program within an organization.

[HUT88] Hutchinson, J.W. and P.G. Hindley, "A Preliminary Study of Large Scale
Software Reuse," Software Engineering Journal, Vol. 3, No. 5,1988, pp.
208-212.

Hutchinson performed a domain analysis study of existing software using a
method called commonality. His approach is to determine if components were
reusable either as is, with modification, or not at all. He used a catalogue scheme to
organize and retrieve components. His study consisted of a small number of
components, yet served to test his ideas. A lesson learned was that he had
inadequate cataloguing schemes and developing these proved to be more time-
intensive than planned.

[ISC88] Iscoe, Neil, "Domain-Specific Reuse: An Object Oriented and Knowledge-
Based Approach" in Will J. Tracz, Soßware Reuse: Emerging Technology,
pp. 299-308, IEEE Computer Society, Washington, D.C., 1988.

Neil Iscoe's approach to domain-specific reuse is based upon object-oriented
and knowledge-based technologies. He defined the following nine steps for
prototyping using domain analysis techniques:

1. Create a domain model.

2. Implement the model.

3. Instantiate the system for the library domain.

4. Specify and generate programs within the domain.

5. Instantiate the system for another related domain.

6. Refine the model.

7. Compare the instantiations.

8. Identify the characteristics and traits that generalize across
domains.

9. Identify the algorithms and techniques that can be used across a
class of domains.

Using these techniques, he prototypes two systems; one for reconfigurable
databases and another for microcomputer screens. His overall approach used an
object-oriented style of structuring, a visually-oriented end-user interface, and a
knowledge-based mechanism for transforming requirements into primitive

B-9

functions. Domain modeling and domain analysis played an important part on the
success of his research.

[JAW90] Jaworski, Allan, Fred Hills, Thomas A. Durek, Stuart Faulk, John E.
Gaffney, "A Domain Analysis Process," Interim Report 90001-N (Version
01.00.03), Software Productivity Consortium (SPC), Herndon, VA, January
1990.

Jaworski believes that domain analysis is the critical front-end activity
associated with the SPC's Synthesis methodology. The Synthesis method of domain
analysis is rooted in the prior work of Neighbors in 1984, Arango in 1988, Prieto-
Diaz in 1987-1988, and Bailin in 1989. His thesis is that if standard high-level designs
for software systems are developed, then they are not likely to change from
implementation to implementation. These high-level designs can be routinely
used as frameworks for structuring requirements and lower-level design
knowledge. Over time, an infrastructure that supports reuse of software can be
built. He sees that Synthesis is a process for software development that emphasizes
the automated generation of software systems from software components and
models designed for reuse. These artifacts and their relationships can be housed and
best preserved as a reusable library of components.

Jaworski defines domain analysis as the software systems engineering
discipline that identifies, organizes and models information in a problem domain to
produce software requirements for a class of problems. He maintains that domain
analysis is a subdiscipline of domain engineering which develops a stable
requirements framework, serving as the basis of domain engineering efforts.

Jaworksi describes four steps in the domain analysis process using the Synthesis
method:

1. Domain description - defines the scope, functional boundaries and
terminology.

2. Domain qualification - analyzes the economic and technical feasibility
of a cost-effective domain solution determined by the pre-defined
boundaries.

3. Knowledge base creation - collects information into a series of
modules to produce descriptions of what is necessary for
implementation.

4. Canonical requirement development - creates a framework for
requirements common to instances of the domain and applicable to
potential variations.

The domain qualification of step 2 determines if there is a business case for
performing domain analysis and other associated activities (i.e., sales forecast,
economics tradeoff, and risk evaluation).

B-10

The knowledge base creation of step 3 consists of developing the following
work products:

• Glossary

• Taxonomy

• Specification sheets from engineering data

• User manuals and scenarios

• Technical articles

• Mathematical relationships

• Basic engineering data

• Descriptions of the domain

• Relevant information from other fields

Jaworski's reference documents these work products from the domain analysis
of the Satellite Operations Control Centers (SOCC) and could be used as a guide for
other applications.

Jaworski believes that formalization of practices done in requirements and
design activities is the principle subject matter of domain analysis. He defines a
domain as a set of problems with similar requirements for which a common
solution can be developed. Software domains are domains for which software
systems are appropriate solutions and for which the appropriate solution may be a
common family of software programs. Domain analysis can be thought of as part of
the DoD 2167A System Requirements Analysis and Software Requirements
Analysis. Reusable software components are produced in design and code phases
after domain analysis.

The short term benefit of the Synthesis method is that software engineering
becomes a repeatable discipline. The long term benefit is the building up of the
knowledge and capability to automate the software engineering process and
achieving large increases in software productivity. The goal of Synthesis is to reuse
software requirements, design, code, test information, etc. across a domain in
families of similar projects.

Domain analysis requires domain experts, system engineers and software
engineers to understand the problem and its changes. The products of a domain
analysis are a domain definition, a taxonomy, a feasibility analysis (i.e., "go/no-go"),
a domain knowledge base, and a canonical requirements model. Domain analysis
requires a team approach to the problem for successful products.

The development team's familiarity with the application domain is a
significant factor in the success of reuse. The requirements and design phase
accounts for 80% of the work; it is also the most difficult and cost costly to repair, as
supported by Brooks and Boehm in separate works.

B-ll

The SPC, the funding agency of the Synthesis method, has member companies
in three application domains; control systems, signal processing and command and
control. As such, these domains strongly influenced the direction of the examples
and case studies used for the development of the Synthesis methodology. Jaworski's
initial work in Synthesis was validated using data from the domain SOCC at NASA
Goddard Space Flight Center (GSFC), Space Telescope and GOES I-M Control
Centers.

[KAN90] Kang, Kyo C, and Sholom G. Cohen, James A. Hess, William E. Novak
and A. Spencer Peterson, "Feature-Oriented Domain Analysis (FODA)
Feasibility Study," Technical Report, CMU/SEI-90-TR-21, ESD-90-TR-222,
November 1990.

Kang documents a feasibility study of Feature-Oriented Domain Analysis
(FODA) as applied to a window management system. The study was performed by
the Software Engineering Institute (SEI) in 1990 in this realistic domain, but was not
considered exhaustive.

Kang describes FODA as a domain analysis method that represents
commonalities among related software systems by identifying user-specific features
of software systems in a domain. The method defines mandatory, optional and
alternative system characteristics and describes products and processes and their
associated technical issues. The range of features determines the customizable
requirements.

FODA is based upon other domain analysis methods and helps to establish the
proper scope to a problem, a critical component to success. FODA uses features,
parameters, composition rules, behavior and functional views, rationale and
issues/decisions.

FODA supports reuse at the functional and architectural levels of system
development. Using FODA, a system can be modeled and its differences can be
"abstracted away" from existing systems within the domain. FODA provides a
generic perspective to developing new systems and results in a set of products that
define a system within a domain, both its differences and similarities.

In addition to analyzing particular domains, the method can be used in
communication, training, tool development and software specification and design.
FODA provides additional value since it captures the thought processes used to
develop software systems of a related class (i.e., domain expertise). A summary of
the phases of the FODA method is shown in Table B-l.

B-12

Table B-l. A summary of the FODA method [KAN90]

Phase Inputs Process Product Description

Context
Analysis

Operating
environments,
Standards

Context
analysis

Context model Environments in
which the
applications will
be used and
operated

Domain
modeling

Features, Context model Features
analysis

Features model End-user's
perspective of the
capabilities of
the applications
in a domain

Application domain
knowledge

Entity-
relationship
modeling

Entity-
relationship
model

Developers'
understanding of
the domain
entities (objects)
and their
relationships

Domain technology,
Context model, Features
model, entity-relation
model, Requirements

Functional
analysis

Data flow model

Finite state
machine model

Requirements
analyst's
perspective of the
functionality of
the applications

Architectural
modeling

Implementation
technology, Context
model, Features model,
Entity-relation model,
Design information

Architectural
modeling

Process
interaction model

Module structure
charts

Designer's
perspective of the
high-level
structure
(architecture) of
the application

The third phase, architectural modeling was not applied in this feasibility
study.

In this feasibility study, Kang indicates that FODA provides support for the
decision-making process associated with cost assessment and performance estimates.
FODA also provides a natural organization for a software reuse library. Features
and functional models define the structure for organizing and populating a library
and can provide insight into possible solutions to domain-specific problems.

However, Kang believes that the method is limited due to lack of
representations or tools to support the method's concepts. The method is not
formal, and is textual only. Issues across phases cannot be related. The benefits are
theoretical, and metrics need to be collected to validate the method for future
widespread use.

Kang describes FODA and the feasibility study within the general context of
domain analysis. The concept of domain analysis was conceived in 1980, yet it

B-13

remains a research topic and is relatively new to the practice of software
engineering. There is still no agreement on the best method, representation or the
resulting products of domain analysis.

Kang establishes a set of definitions that are commonly used in domain
analysis. For example, a domain is a set of current and future applications which
share a set of common capabilities and data. Domain analysis is the process of
identifying, collecting, organizing, and representing the relevant information in a
domain. This process is based upon the study of existing systems and their
development histories, knowledge captured from domain experts, underlying
theory, and emerging technology within the domain. The domain analysis process
consists of context analysis, domain modeling, and architecture modeling. Domain
analysis provides a reference model for describing a class of systems and is usually a
manual activity.

A domain model is a definition of the functions, objects, data, and
relationships in a domain. A context is the circumstances, situation, or
environment in which a particular system exists.

Domain engineering is an encompassing discipline which includes not only
the domain analysis process, but also the subsequent construction of components,
methods, and tools that address the problems of system/subsystem development.

Kang believes that domain analysis helps implement reuse. The intuitive
justification for domain analysis is the same for reuse, i.e., quality improvement
and cost reduction. Domain analysis is a necessary first step in establishing the
requirements for software reuse.

Domain analysis can provide guidance in determining what to build to support
reuse and how to build it. A common model in a domain can lead to a pool of
reusable resources that can be tested and measured solutions to specific sub-
problems in a given application area. Reusable software developers will know what
to build and how to parameterize their products for varied use across the domain,
rather than overgeneralizing them for all possible contexts. Figure B-l illustrates
how domain analysis supports software development.

The maturity of an engineering field can be measured by the level of
standardization of the design of products in the field. For example, in today's
markets, no cars are designed from scratch; design frameworks have been
standardized over time, and new features are added to an existing design framework
to develop a new model. Software development, like other engineering fields, can
benefit from the development and reuse of "product frameworks" in an application
domain (i.e., a product line or a product family).

B-14

Context Analysis (scope of domain)

Implement
Applications in"
Domain

New Application

"1 Domain
Analysis

Domain Model
(representation of

problems in
domain)

I
I I

Architectures
(representation of

solutions in
domain)

.Tools and Training
Support

Create reusable resources
(designs, components, etc.)

New Application

r
i i -4--
□

1 1

.— ^r~

Figure B-l. Domain analysis supports software development [KAN90]

The product frameworks in the context of software are abstractions of
functionalities and design (i.e., architecture) of the applications in an application
domain. The modeling concept used to develop these product frameworks are
aggregation/decomposition, generalization/specialization, and parameterization.

In 1990, Prieto-Diaz said that domain analysis, a systematic discovery and
exploitation of commonality across related software systems, is a technical
requirement for achieving successful software reuse. Domain analysis can propose
a set of architectural approaches for implementing new and successful systems.

[KAT94] Katz, Susan, and Christopher Dabrowski, Kathryn Miles, Margaret Law,
NIST Special Publication 500-222, "Glossary of Software Reuse Terms,"
Computer Systems Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD 20899-0001, December 1994.

B-15

Katz defines a glossary of software reuse terms in a National Institute of
Standards and Technology (NIST) document and selected entries are included here
to establish consistency of meaning within the reuse context.

Asset - Any product of the software life cycle that can potentially be reused.
This includes the domain model, domain architecture, requirements, code,
databases, database Schemas, documentation, user manuals, test suites, etc.

Asset Evaluation - The process of determining whether a particular asset fits
requirements and constraints of a particular software system. The definition of this
standard term impacts and feeds into the area of asset selection.

Cataloguing - The process of placing information about an asset into a software
reuse library. The asset plus its catalog information becomes a reusable software
asset. The definition of this standard term impacts and feeds into the area of asset
selection and asset classification Schemas.

Domain - A distinct functional area that can be supported by a class of software
systems with similar requirements and capabilities. A domain may exist before
there are software systems to support it. The definition of this standard term impacts
and feeds into the area of domains.

Domain Analysis - The analysis of systems within a domain to discover
commonalities and differences among them. The process by which information
used in developing software systems is identified, captured, and organized so that it
can be reused to create new systems within a domain. The definition of this
standard term impacts and feeds into the area of domains.

Domain Definition - The process of determining the scope and boundaries of a
domain. The definition of this standard term impacts and feeds into the area of
domain.

Domain Engineering - A reuse-based approach to defining the scope (i.e.,
domain definition), specifying the structure (i.e., domain architecture), and building
the assets (e.g., requirements, designs, software code, documentation) for a class of
systems, subsystems, or applications. Domain engineering can include domain
definition, domain analysis, domain architecture and domain implementation. The
definition of this standard term impacts and feeds into the area of domain.

Domain Expert - Individual who is intimately familiar with the domain and
can provide detailed information to domain analysts. The definition of this
standard term impacts and feeds into the area of domain.

Domain implementation - The process of creating adaptable assets that can be
reused in the development of software systems within a domain. Domain
implementation may also include the specification of a software development
process that describes how software systems in the domain are developed through
reuse of assets. The definition of this standard term impacts and feeds into the area
of domain and asset production.

B-16

Domain Manager - Individual or organization responsible for managing the
definition, use, evaluation, and evolution of assets within the domain. The
definition of this standard term impacts and feeds into the area of domain, business
strategies and asset production.

Domain Models - A product of domain analysis which provides a
representation of the requirements of the domain. The domain model identifies
and describes the structure of data, flow of information, functions, constraints, and
controls that are included in the software systems. The domain model describes
commonalities and variabilities among requirements for software systems in the
domain. The definition of this standard term impacts and feeds into the area of
domain.

Faceted Classification - A method derived from the field of library science
which can be used to provide multiple access routes to reusable software assets in a
reuse library. The definition of this standard term impacts and feeds into the area of
asset selection and asset classification schema.

Horizontal Domain - A domain that provides information or services to more
than one domain. Examples of horizontal domains include communications,
graphical user interfaces and databases. The definition of this standard term impacts
and feeds into the area of domain.

Opportunistic Reuse - The ad hoc reuse of assets in the development of
software systems using a software development process that has not be altered to
accommodate systematic reuse. In opportunistic reuse, the developer determines
where reuse can be applied to develop a software system without the organized use
of domain engineering products during successive stages of a software engineering
process. The definition of this standard term is impacts and feeds into the area of
business strategies.

Reusability - The degree to which an asset can be used in more than one
software system, or in building other assets, with little or no adaptation. In a reuse
library, reusability is the characterization of a reusable software asset that make it
easy to use in different contexts. The definition of this standard term impacts and
feeds into the area of reuse frameworks.

Reusable Software - Software designed and implemented for the specific
purpose of being reused. Reusable software is a broad term applied to assets,
applications, or software systems. The definition of this standard term impacts and
feeds into the area of asset production.

Reusable Software Asset (RSA) - An asset that has been catalogued and is stored
in a reuse library. The definition of this standard term impacts and feeds into the
area of asset production, asset selection and reuse framework.

Reuse - to use again. The process of implementing or updating software
systems using existing software assets. The definition of this standard term impacts
and feeds into the area of asset production and reuse framework.

B-17

Reuse-Based Development - The use of a disciplined, systematic, quantifiable
approach to the development, operation, and maintenance of software (where reuse
is a primary consideration in the approach). The definition of this standard term
impacts and feeds into the area of asset production.

Reuse Library - A controlled collection of reusable software assets, together with
the procedures and support functions required to provide the reusable software
assets for reuse. The procedure and support functions may be automated via a reuse
library system. If this is the case, then the reuse library contains both the reusable
software asset and the reuse library system. The definition of this standard term
impacts and feeds into the area of reuse framework.

Reverse Engineering - The process of finding and reengineering an existing
components so that it may potentially be reused in subsequent applications,
developments, or maintenance. The definition of this standard term impacts and
feeds into the area of asset production.

Salvage - The process of finding and reengineering an existing components so
that it may potentially be reused in subsequent applications, developments, or
maintenance. The definition of this standard term impacts and feeds into the area of
asset production.

[LUB88] Lübars, Mitchell D., "Domain Analysis and Domain Engineering in IDeA/'
Technical Report STP-295-88, Microelectronics and Computer Technology
Corporation, Austin, TX, September 1988.

Lübars describes a domain analysis process based on the information contained
in the IDeA (Intelligent Design Aid) knowledge bases. The information is organized
into six categories:

1. Properties - attributes describing objects in the domain, arranged in a
tree structure which has the more abstract objects appearing higher in
the tree. Relations between the properties are derived from the
context of the domain.

2. Data types - descriptions of properties organized into a type lattice,
used in classifying and selecting design Schemas.

3. Design Schemas - abstract solutions for a class of related design
problems, arranged in a abstraction hierarchy.

4. Schema specialization rules - mappings between a design schema and
a data flow design that represents a refinement or implementation.

5. Type constraints - propagate property assignments of data types to
other data types that share the same abstract property class.

Information to populate these categories is derived by domain analysis.

B-18

[MYE88] Myers, Brad, "A Taxonomy of Window Manager User Interfaces," IEEE
Transactions on Computer Graphics and Applications, Vol. 8, No. 5, pp.
65-84. September 1988.

Myers developed a taxonomy for window managers and analyzed the
differences in applications across domains. He showed that domain analysis can be
useful for guidance in software evaluations and design.

[PER89] Perry, James M. and Mary Shaw, 'The Role of Domain Independence in
Promoting Software Reuse: Architectural Analysis of Systems," Position
Paper of the Reuse in Practice Workshop, Software Engineering Institute
(SEI), Pittsburgh, PA, July 1989.

Previous work-to-date has stressed the importance of application dependencies
through domain analysis. Perry proposes the concept of "architectural analysis"
which attempts to raise the abstraction level of design elements and thereby
emphasizes domain independence. Both domain analysis and architectural analysis
are related and support one another even though each has different goals and
processes.

[PRI87a] Prieto-Diaz, Ruben, "Domain Analysis for Reusability," Proceedings of the
COMSAC 87: The Eleventh Annual International Computer Software and
Application Conference, pp. 23-29. IEEE Computer Society, Washington,
D.C., October 1987.

Prieto-Diaz proposed a domain analysis method that consists of pre-domain
analysis activities, domain analysis and post domain analysis activities. Pre-domain
analysis activities consist of defining and scoping the domain, identifying sources of
knowledge and information about the domain, and defining an approach to the
next step of domain analysis. Post-domain analysis activities include identification
and implementation of reusable components and production of software reuse
guidelines.

Prieto-Diaz defines the domain analysis context as a group of inputs and
outputs. The inputs are domain analysis guidelines from the domain analyst,
domain knowledge from the domain expert, and standard examples from existing
systems. Outputs are reusable components and domain standards. Prieto-Diaz uses
proven classification techniques from library science and examples from biological
sciences to illustrate his concepts. This author is well-published with journal
articles and books that describe his method in further detail.

[PRI91] Prieto-Diaz, Ruben and Guillermo Arango, Domain Analysis and
Soßware System Modeling, IEEE Computer Society Press, Los Alamitos,
CA, 1991, ISBN 0-8186-8996-X, p. 63-69.

B-19

Ruben Prieto-Diaz and Guillermo Arango, two well-known experts in domain
analysis, published this book of selected technical papers as a tutorial on domain
analysis and software system modeling. The authors discuss an overview of
domain analysis concepts and research directions as follows.

Domain analysis addresses the questions of how to identify, capture, and
evolve reusable information within restricted problem areas. The basic problem in
domain analysis is the definition of boundaries. As defined by Neighbors, domain
analysis is an attempt to identify the object, operations, and relationships between
what domain experts perceived to be important about the domain. Neighbors also
emphasized that the key to reusable software is captured by domain analysis in its
broader focus (i.e., reusing analysis and design, not just code).

Domain analysis is a fundamental step in the creation of a reusable component.
Domain analysis is performed prior to system analysis and results in a proposed a
model and alternatives for automation and improvement. Consequently, the
output of domain analysis is a common model across applications, with objects and
their operations.

The authors believe that the most powerful sort of reuse is the reuse of analysis
of information. Other areas related to domain analysis are knowledge acquisition,
knowledge bases and classification schemes.

The Prieto-Diaz's method for domain analysis has three basic activities:

1. Identify objects and operations

2. Abstraction

3. Classification

Prieto-Diaz uses data flow diagrams to capture the domain analysis process. In
order to perform domain analysis, the domain information is prepared, the domain
is analyzed and reusable work products are produced. Out of these activities, results
a requirements document, a domain taxonomy and domain frames. Modeling the
thinking of this process leads to production of reusable work products using
standards from the domain.

The user context of the Prieto-Diaz method is the domain analyst, the domain
expert, the library and the software engineer. For Prieto-Diaz, the domain analysis
process and method is formalized and experiments are needed to validate and refine
it.

As for the state of the art in domain engineering, domain analysis and
engineering are still undergoing states of basic research and concept formation. As
of 1991, depending on industry's commitment of resources, three to five years may
pass before the first domain-engineering environments consisting of methods and
integrated tools and training can be expected from developing organizations and
transferred to external users.

B-20

[SIM95a] Simos, Mark and Dick Creps, "ODM (Organization Domain Modeling)
Guidebook Published," STARS Newsletter (Software Technology for
Adaptable, Reliable Systems), March 1995, Issue 12, p. 11.

This newsletter articles announces the initial publication of a guidebook by the
Unisys STARS team that documents how to use the domain analysis method called
ODM (Organization Domain Modeling). ODM was developed by Mark Simos with
sponsorship from STARS program (on behalf of the U.S. Department of Defense
(DoD) Advanced Research Projects Agency (ARPA)) and the Hewlett-Packard
Company (HP).

ODM has the following four features:

1. Emphasizes domain planning and domain selection

2. Focuses on comparative feature models derived from domain legacy
knowledge and products

3. Has a clear distinction between descriptive models of the domain as it
currently exists

4. Uses prescriptive models for the reusable assets to be developed
addressing future customer needs in the domain

ODM uses an IDEF 0 process model and a set of process trees to summarize the
hierarchy of the ODM process. The guidebook provides detailed process sets as
inputs and outputs, each with entrance and exit criteria. The guidebook also
provides example work products and templates.

ODM is at the core of the Unisys STARS reuse technology strategy. ODM is the
domain engineering approach that is being developed and applied on the Army
STARS Demonstration Project.

[SIM95b] Simos, Mark and Dick Creps, Carol Klingler, Larry Levine, "Organization
Domain Modeling (ODM) Guidebook, Version 1.0, STARS-VC-
A023/911/00 Informal Technical Report, Contract No F19628-93-C-0130,
March 17,1995.

The purpose of this guidebook is to provide a definitive ODM reference
document which promotes public understanding of the method and provide
practical guidance for its use and tailoring. The audience for the guidebook consists
of the Program/Project Planner, the Reuse Advocate, the Process Engineer and the
Domain Engineer.

The ODM is part of the Unisys STARS "Reuse Whole Product." The Reuse
Whole Product includes a set of reuse support technologies that the Unisys STARS
team has developed, integrated, and used. The Reuse Whole Product supports the
STARS vision of mega-programming which integrates process-driven, domain-

B-21

specific reuse-based software engineering with modern tools and environments.
These technologies include the following concepts:

• STARS Conceptual Framework for Reuse Processes (CFRP) -
conceptual foundation and framework for understanding domain-
specific reuse in terms of the processes involved.

• Reuse-Oriented Software Evolution (ROSE) process model - a CFRP-
based life cycle process model that partitions software development
into domain engineering, asset management and application
engineering and emphasizes the role of reuse in software evolution.

• Reuse Library Framework (RFL) domain modeling toolset - a toolset
which supports taxonomic domain modeling by semantic network
and rule-based formalisms, features graphical and outline-based
browsers.

• Capture domain modeling and legacy management toolset - a toolset
which graphically supports comparative modeling of system artifacts
and domain assets.

• ReEngineer - a toolset to support the reengineering of legacy systems
by fine-grained analysis and abstraction of system structure.

The ODM Guidebook provides a detailed decomposition of domain
engineering into process trees and IDEF 0 diagrams that define the activities and
work products required for each step.

The ODM Guidebook highlights three key challenges that need to be considered
when putting ODM into practice:

1. Handling anxiety concerning deferred decisions

2. Dealing with complexity and formality in the process

3. Integrating diverse skills

Decisions should be made only if it points to a project constraint, is associated
with a risk or uncertainty, or a long lead-time is required. Adopting formality
incrementally, or only as required, may help cope with the burden of ODM's formal
process. Team modeling and training may help to integrate diverse skills, as does
treating domain engineering as a personal and professional discipline.

The ODM has been applied on a small scale by a variety of organizations,
including Unisys, CARDS, and the SEI. Major ODM applications at Hewlett-Packard
and the Army STARS Demonstration Project have produced good results. The
Reuse Whole Product effort will continue through early 1996.

B-22

[SPC91a] Software Productivity Consortium (SPC), "Domain Analysis Workshop
Presentations," SPC-91186-MC Version 01.00.00, September 26-27,1991,
Herndon, VA.

The workshop was a forum for exchanging of ideas in the current research area
of domain analysis. The workshop was attended by representatives from the
following companies: Harris Corporation, Rockwell, Hughes, United Technologies
and General Dynamics. Presenters began by introducing a definition of domain
analysis published by Jim Neighbors in 1980; domain analysis is the activity of
identifying objects and operations of a class of similar systems in a particular
problem domain.

The current practice of domain analysis is ad hoc. A practitioner gains
experience by constructing several of the "same kind" systems, using experience to
identify and isolate recurring operations for encapsulation and standardization.

Mitch Lubar briefed the attendees on his use of Reuse-Oriented Software
Evolution (ROSE), a tool to support domain analysis. Lubar defines domain
analysis as the analysis of an application domain that leads to the construction of a
domain model for the purpose of solving problems in the domain. Domain
analysis can be considered as an activity that analyzes an application domain for
reusability. Domain analysis requires expertise in the application domain; that is,
knowing what to look for and knowing how to interpret and abstract the
commonalities and differences. Domain analysis is time consuming and tedious
and requires mature and stable domains.

Sidney Bailin presented his experience with KAPTUR, a tool to support
domain analysis. Bailin believes that bounding the domain is the key to solving the
analysis problem. Too broad of a domain can lead to a superficial model which is
not very useful. He provided examples of domains and discussed how he
established their bounds.

Grady Campbell, Jr. presented a case study to substantiate his belief that the
purpose of domain analysis is to characterize the problems, solutions and
production processes appropriate to a domain.

Neil Burkhard briefed the attendees on his case study of domain analysis using
the ATD/CWM data set.

Kyo Kang presented a feasibility study using the FODA method of domain
analysis. Kang believes that domain analysis is the systematic exploration of related
software systems to discover and exploit commonality. He defines a feature as a
prominent or distinctive user-visible aspect, quality, or characteristics of a software
system or systems. Attributes of a feature are rationales, composition rules, issues
and binding time.

Ruben Prieto-Diaz presented a domain analysis process model. His model is
procedural and based on a methodology for deriving specialized classification
schemes. He feels that domain analysis is similar to deriving faceted classification

B-23

schemes since both are aimed at finding generic characterizations and standard
models. Prieto-Diaz defined the following steps in a domain analysis process:

1. Select representative samples from a collection of titles.

2. Identify common terms.

3. Abstract, classify and give structure to make a model.

4. Use the model as a classification standard.

5. Update structure as the collection grows.

Prieto-Diaz presented examples of faceted classification using Booch
components and components from Command and Control Systems.

The workshop concluded with presentations of case studies of domain analysis
by Dan Benson of the ADGE System Architecture for the Air Defense Ground
Environment and by Patty Franck of the Avionics Display domain.

[SPC91b] Software Productivity Consortium, "Synthesis Workshop," September 23-
25,1991. Herndon, Virginia.

Synthesis, a domain analysis method developed by the Software Productivity
Consortium (SPC), uses the paradigm of flexible production lines as a model for the
process of creating and developing software. In other engineering disciplines, the
production process has evolved from handcrafting, to repeatable engineering, to
production lines, and finally, to flexible production lines that leverage commonality
across variations. To establish and evolve a production line, a product family is
defined; concurrent engineering of product and process is performed; the needs of
the customer are matched to the product and process; and adjustments are made for
optimization.

Because software development is an intellectually, non-deterministic process
and the product is invisible, complex, non-uniform and changes repeatedly, F.
Brooks claims there are "No-Silver Bullets" to success. However, by combining an
analysis of a particular domain and defined business objectives, an organization can
define a product family and flexible production lines to produce successful family
members that can be produced and modified in response to customer feedback.

By reorganizing the development process to follow a production line model, an
evolving family of products is created, requirements refinements are separated from
implementation, and the requirements refinement process is optimized to the
organizational and customer needs. This evolving family of products positions an
organization to create a flexible production line and defines a decision model, a
standard engineering decision process, and mechanically adaptable design
components. By linking decisions to components, adaptation and integration
flexibility in products and their production is provided.

B-24

Synthesis is an approach for developing similar software applications based on
systematic reuse and knowledge and products. It is based upon families of systems
and components, abstraction and adaptation. Abstraction leverages commonalities
across families of similar systems or across the life cycle of a large single system.
Adaptation distinguishes decisions needed to identify a particular member of the
family. Figure B-2 illustrates the Synthesis process.

The Synthesis method of domain analysis results in a high level model of a
system and systematic reuse of domain and software engineering knowledge and
products. In addition, Synthesis supports a cycle of rapid requirements refinements.
Synthesis combines the disciplines of domain engineering and application
engineering (i.e., generating a product in a budgeted time for a pre-defined cost).

Synthesis benefits customers and the development organization. Customers
profit from rapid handling of changes to requirements, better matching of the
product to their needs, improved communication, reduced cost and schedule and
consistent product quality. The organization profits by capture and leverage of
product area expertise and software design knowledge and improved risk
management. The principles of Synthesis are families of systems, model-based
specification and analysis, large scale, systematic reuse and mechanical product
generation.

Synthesis can also be seen as an approach for systematic and effective reuse.
Synthesis is a way to put assets to work, (i.e., technical knowledge, business
knowledge, engineering experience and problem solutions). Synthesis addresses
requirements, verification, integrated methods and toolset, prediction and
measurement, as well as reuse. The process to create a domain definition results in
a domain synopsis, a glossary, assumptions, viability analysis and domain status.

The Synthesis Workshop demonstrated the Synthesis method as applied to the
Host-At-Sea (HAS) Buoy System. Lessons learned when applying the Synthesis
method to realistic examples are the following:

• Disagreement on bounds and interpretation of domain was
prevalent.

• It was difficult to determine when activities were completed.

• Variations and iterations were unclear.

• Heuristics were needed.

B-25

Synthesis Process

Domain
Knowledge

I

Business
Objectives

I

i ±
Define Family and Develop

Production Capabilities

I
s

Flexible
Production Line

Requirements

I

\

Feedback
(new customer &

production needs)

•

Specific Customer(s) *—t
& Contract(s)

Produce Family Members

T V

KEY:

i PrnHi irt)
Product Flow

Information
Activity

Figure B-2. The Synthesis process [SPC91b]

Produced at a later date through the work at SPC and the Synthesis Workshop,
the Synthesis Guidebook [SPC92a] defines the method and the Case Studies [SPC92b]
documents an initial validation of the method. In 1991, SPC had plans to evolve
existing application generator tools to support the Synthesis method.

[SPC92a] Software Productivity Consortium, "Synthesis Guidebook, Volume 1:
Methodology Definition." SPC-92111-CMC, Version 01.00.00 October 1992.

Synthesis is a methodology for constructing software systems as instances of a
family of systems that have similar descriptions. Synthesis encompasses application
engineering and domain engineering. Application engineering is how a group (or
project) in an organization creates a product to meet customer requirements.

B-26

Domain engineering is how an organization improves productivity by creating an
application engineering process, tailored for a project in a particular business area
and supporting standardized, reusable products.

The context for the Synthesis methodology is determined by three concerns:

1. Business objectives

2. System engineering practices

3. Software engineering processes

The first consideration of the Synthesis method is to establish business
objectives, working in conjunction with an organization's management philosophy.
Business objectives should consider the expertise in the organization, the
customers' future needs and changing technology. Business objectives are based on
a family of systems and understanding their similarities, leveraging production of
high quality, providing reliable systems at a lower cost. An organization's business
areas and product lines help to determine its business objectives. Business
objectives help to define the domain of an organization.

Another consideration in the Synthesis method is system engineering
practices, specifically, partitioning a system problem into manageable subsystems.
System engineering maintains a "big picture" view, and as such, is needed for
domain engineering and application engineering within Synthesis.

The last consideration in the Synthesis method is software engineering
processes. Software engineering processes are derived by analysis, synthesis,
evaluation and management. The Synthesis method supports family-oriented
software development and abstraction-based reuse which is a part of software
engineering processes.

The Synthesis Methodology Reference Model was developed by Campbell in
1990 as a canonical definition of the processes, products and activities of Synthesis.
The Synthesis Guidebook defines the following hierarchy of domain engineering
activities within the Synthesis methodology:

B-27

Domain Engineering

Domain Management

Domain Analysis

Domain Definition

Domain Specification

Domain Model

Product Requirements

Process Requirements

Product Design

Product Architecture

Component Design

Generation Design

Domain Verification

Domain Implementation

Product Implementation

Component Implementation

Generation Implementation

Process Support Development

Project Support

Synthesis and these activities are based upon the following key principles:
Program families, iterative processes, specification and abstraction-based reuse.
Abstraction of similarities support a form of standardization that enables systematic
adaptation to meet the specific needs of a particular customer. Synthesis also
identifies decisions that must be deferred until a particular system is needed.
Synthesis parameterizes a work product to show how it varies as a result of those
decisions; consequently, the work product is made adaptable.

One major advantage of Synthesis lies in its emphasis on long term objectives
for business and technology development. Synthesis exploits similarities,
eliminates redundant work, focuses on resolving variations to satisfy needs of an
organization and its customers. Synthesis focuses on quality products that are
profitable.

Along with the guidebook documents, SPC requires training to use the
Synthesis method and to apply the method to pilot projects. The current guidebook
applies to exploratory stages of software development and reuse. In the future, SPC
plans to develop additional guidebooks for the developmental, functional and
production stages of software development and reuse.

B-28

[SPC92b] Software Productivity Consortium, "Synthesis Guidebook, Volume 2:
Case Studies/' SPC-92111-CMC, Version 01.00.00 October 1992.

This second volume of a two part series documents a case study of applying the
Synthesis method to the ATD/CWM (Air Traffic Display/Collision Warning
Monitor) from the ADARTS program. The guidebook was developed from the
Synthesis Workshop [SPC92a] and the Synthesis method of domain analysis was
applied to the communications and control and management systems domain at
Rockwell International Communication and Control (RICC).

B-29/B-30

Appendix C - Annotated Bibliography of Asset Production

The information gleaned from this literature survey of asset production was
used to determine the operational context of the Reuse Context for Asset Quality
Certification and to assess the impact of this previous research on the development
of the Certification Framework.

The annotations in this appendix summarize the essence of each of the
referenced publications. Summaries vary in length; those that are longer provide
additional details because the reference appeared to be a flagship among others. The
shorter annotations were still included to serve as a pointer to the complete
reference if more details are of interest.

This annotated bibliography this area is not exhaustive, but gives a flavor of the
previous research that has been accomplished. Some of these references were used
in other appendices.

C-l/C-2

[ADE85] Adelson, Beth and Elliot Soloway, "The Role of Domain Experience in
Software Design, IEEE Transactions on Soßware Engineering, Vol. SE-11,
No. 11, November 1985, pp. 1351-1360.

Adelson showed in her case study that designers with inadequate domain
knowledge were quick to constrain their designs to secure sufficiently specific
models for their simulations. Designers with previous experience in their assigned
domain used existing plans rather than formulating new ones. The techniques of
note-taking and simulation were used when the designers had prior knowledge of
the domain.

[ARA89] Arango, Guillermo F., "Domain Analysis - From Art to Engineering
Discipline," Proceedings of the Fifth International Workshop on Software
Specification and Design, IEEE Computer Society, Washington, D.C., May
1989, pp. 152-159.

Arango feels that within the reuse community, there is a well-founded belief
that domain analysis will facilitate the identification and capture of reusable
abstractions for restricted classes of applications. These reusable abstractions aid in
the production of reusable assets.

[BAI88] Bailin, Sidney, "Semi-Automatic Development of Payload Operations
Control Center Software," NASA Goddard Space Flight Center, Computer
Technology Associates, Laurel, MD, October 1988.

Bailin applied domain analysis to the software of a Payload Operations Control
Center (POCC), and proposed an approach for semi-automatic development of
software for an application processor software based upon his results. In his
example, he abstracted typical components and identified patterns for
commonalities and differences to facilitate reuse. He used a mix of constructive and
generative technologies as driven by the different parts of the application processor.

[BAI89] Bailin, Sidney, "Generic POCC Architectures," NASA Goddard Space
Flight Center, Computer Technology Associates, Laurel, MD, April 1989.

Bailin developed a generic architecture for the POCC based on abstraction and
object-oriented design principles to form the basis of engineering a rapid synthesis
environment. The generic architecture can be used as a specification for assets and
their production.

C-3

[BAN93] Banker, Rajiv D., Robert J. Kauffman, Dani Zweig, "Repository Evaluation
of Software Reuse," IEEE Transactions on Soßware Engineering, Vol. 19,
No. 4, April 1993.

Banker evaluated repositories and their impact on software reuse and provided
the following insights. Some application domains are more conducive to reuse.
The success of guiding a user through the repository's cataloguing scheme
determines the reuse opportunities that are visible to the user. The reuse of
specialized components are constrained by adaptation costs.

[BAT88] Batory, Don S., J.R. Barnett, J. Roy, B.C. Twichell and Jorge F. Garza,
"Construction of File Management Systems for Software Components,"
Technical Report TR-88-36, University of Texas, Austin, TX, October 1988.

Batory used domain analysis of existing file management systems to discern a
generic architecture. Based upon published algorithms and accepted data structures,
his generic architecture served as a template into which building block components
can be plugged. The architecture facilitated standard interfaces making components
interchangeable. His in-depth study showed the assembly of simple systems from
pre-written components, demonstrating savings in cost and schedule.

[BIE95] Bieman, James M. and Santhi Karunanithi, "Measurement of Language-
Support Reuse in Object-Oriented and Object-Based Software," Journal of
Systems Software, 1995:30: pp. 217-293.

Bieman points out that measures and measurement tools to quantify language-
supported reuse have been lacking. Even though emerging object-oriented software
development techniques and languages have the potential for improved reuse, little
work has been to validate the benefits. Reuse measurement will help users gain
insights to develop software that is easily reused.

Reuse is not simple to classify and measure. Many perspectives can be used.
Reuse can be measured from the perspective of the client, server, or from the system
perspective. Many of the attributes can be quantified with simple counts such as the
number of direct or indirect servers, the number of server class instances, the
number of object instances, the number of calls to a method in the server, the
number of library units that are visible to a unit, and the number of library units
imported explicitly in a unit.

Empirical results can help determine the amount of reuse in existing systems
and identify the most frequently reused software components. Tools that measure
attributes related to reuse in software systems can identify properties that make
software more reusable. Bieman developed a prototype tool called Ada Reuse
Measurement Analyzer (ARMA). He performed an initial empirical evaluation of

C-4

the tool using data from a commercial software system. He provides the following
insights:

1. Having a single, visible data type per package increases the reusability
of that package.

2. Too many levels of nesting of units lowers reusability.

Multiple nesting levels requires developers to be knowledgeable of all levels in
order to use the nested unit.

[BIG87] Biggerstaff, Ted and Charles Richter, "Reusability Framework Assessment
and Directions," IEEE Soßware, March 1987.

Biggerstaff notes limited success stories with reuse of code, but points out that
numerical computation routines are highly reusable. This difference is due to the
characteristics of this domain. The numerical computation domain is unique in
several ways:

1. The domain is very narrow and contains only a small number of data
types.

2. The domain is well-understood since the mathematical framework
has evolved over hundreds of years.

3. The underlying technology is quite static, growing and evolving very
slowly. It evolves so existing parts of the technology remain
unchanged with upward compatibility within the technology.

All three of these characteristics lead to establishment of standards and
components that have a high probability of reuse.

A mature domain positively affects understanding of the problem domain and
reduces the long term investment in a reuse library. Narrowness of a domain
makes reuse manageable, and the cost of developing parts is small since only a few
data types exist. A library can consist of stable parts and the investment can be
amortized over a long period of time. Unlike the numerical computation domain,
the worst kind of domain for reusability is one where the underlying technology is
rapidly changing.

[BIG89] Biggerstaff and Alan J. Perlis, "Software Reusability, Volume I, Concepts
and Models and Volume II, Applications and Experience," ACM Press
New York, NY, 1989.

Biggerstaff coins the acronym of VLSR (Very Large Scale Reuse) as the best
course of action to realize the full potential of reuse. His rationale for this expansive
view of reuse is that the more narrowly defined views of reuse have not shown a
very large return on investment (i.e., replication of code, reuse of subroutine or

C-5

object libraries, reuse of Ada packages). Usually these types of reusable components
have a high degree of specificity and tend to be small in size. Building systems out
of these small components requires designing the architecture that binds the
components into the whole system. The cost to build this superstructure is typically
much larger than the savings of reusing a set of small components.

Making components larger to offset this problem, produces yet another
problem. As code components become larger and larger, they are less likely to be
used. The specialized nature of these components reduces the opportunity that they
will be reused. Very large components also require a significant effort to understand
and adapt to a new system. Biggerstaff contends that code-oriented reuse should be a
standard operating procedure, yet reuser should be ever cognizant that this type of
reuse has limited gains. It is the VLSR that holds the full potential of maximum
benefits of reuse.

Using VLSR, the representation of a component is sufficiently general to allow
reuse over a broad range of target systems. Representations should allow a large-
grain component structure to be described precisely while leaving many of the
small, relatively unimportant details uncommitted. Representations should allow
a broader range of information to be specified than source code (i.e., design
structures, domain knowledge, design decisions, etc.).

Biggerstaff strongly believes that the greatest potential payoff is in
representational breakthroughs that solve the problems of factored forms, partial
specification, the coupling of instances and their interpretations, and controlled
degrees of abstraction. He believes that the key to solving these types of problems is
the notion of semantic binding, or binding by analogy. This form of binding,
applying a design from one context to a new and different context, will provide the
most general method for reuse.

Biggerstaff also advises those creating libraries of reusable code components.
Once assets are produced, the storage library should be based on a standard for the
domain-specific types of the data consumed and produced by the components in that
library. If none exists, then the level of reuse is likely to be low. He discourages
"finding" and "throwing together" a bunch of components that have functions that
more or less cover the needs of the using organization. A library of components
needs to be designed according to a common architectural guidelines that reflect
both the nature of the problem domain as well as the computational needs of the
organization.

Biggerstaff agrees with Parnas' early design organizing principles, that is,
information hiding or encapsulation. This principle enhances the reusability of
components because of the isolating effect of information hiding; it allows the
components to be reuse in a black box mode. Even if modifications must be made,
they are easier to make because all of the information pertaining to a specific
module is hidden or organized within the module rather than being randomly
scattered about the overall design.

C-6

Biggerstaff believes Parnas' work is significant in that it applied a theory to a
large-scale problem, an accomplishment that few other researchers can claim.
Parnas and his colleagues have spent nearly ten years redesigning the avionics
software for the A-7E fighter aircraft according to the principles of information
hiding.

[CAL91] Caldiera, Gianluigi and Victor R. Basili, "Identifying and Qualifying
Reusable Software Components," IEEE Computer, February 1991, pp. 61-70.

Caldiera maintains that software production using reusable components will
probably be crucial to the software industry's evolution to higher levels of maturity.
Caldiera points out that the development experience along with the software objects
produced holds the most value for cost-effective and efficient reuse.

One of the difficulties in reusing software arises from the nature of the objects
to be reused. With software, it is difficult to separate the object apart from its
context. Programs and parts of programs, specifications, requirements, architectures,
designs, test plans, test cases are all related to each other. The reuse of each software
object implies the concurrent reuse of other objects and associated information.
More than just the code is reused. All these objects have a history and may carry a
large amount of expertise. It is this experience that is critical to reuse software of
objects.

Another difficulty in reuse is the lack of a set of reusable components, despite
the large amount of software that already exists in the files of software developers.
Reuse efficiency and cost effectiveness require a large catalog of available, yet useful,
reusable objects. Attempts to construct reuse libraries have fallen short of the mark.

Caldiera's model for reusing software components splits the traditional life
cycle into two parts. One part, the project, delivers software systems, while the other
part, the factory, supplies reusable software objects to the project. If reuse does occur,
it usually is at the project development level, where reuse is difficult because a
project's focus is the delivery of the system. Packaging reusable experience is a
secondary concern, if at all. Moreover, project personnel cannot recognize the pieces
of experience appropriate for other projects to reuse. Traditionally, existing
processes of development do not include both these aspects of reuse; reuse is usually
an informal sharing of techniques and project among people working on the same
or similar projects.

Using Caldiera's model, the component factory supports the project
development with the object and its packaged experience. It is the component
factory that develops and packages software components rather than the project. It
supplies code components to the project upon demand, creates, and maintains a
repository of components for future use. The component factory understands the
project context and can deliver components that fit since the component factory
gathers the experience-base from the project.

C-7

When software project engineers have identified the system components,
usually after preliminary design, they request components from the component
factory and integrate them into the project. The project engineers may also request a
list of components from the component factory that satisfy their given specification.

When the component factory receives a request from the software developers
on a project, it searches its catalog of components to find a software component that
satisfies that request, with or without tailoring. If no component approximates the
request, or if modification of an existing component is too costly, the component
factory develops the requested component from scratch or generates it from more
elementary components.

To produce software components without specific requests from the project
organization, the component factory needs to develop a component production
plan. The plan can be constructed from the extractions of reusable components
from existing systems or from generalizations from previously produced
components by the software developers. A typical component production plan
would contain common data structures and the main operations on them,
implemented in desirable languages.

A component factory can develop an application-oriented component
production plan by analyzing an application domain to identify the most commonly
used functions. Then, it can implement these functions into reusable components
to be used by the software developers. On the other hand, the factory can generalize
a pre-existing components into new ones by adding more functionality or
parameterizing it. Caldiera believes that this is the best model to follow for
successful asset production.

[CAR87] Carle, Rick, "Reusable Software Components for Missile Applications,"
Proceedings of the Tenth Minnowbrook Workshop on Software Reuse,
Syracuse University and University of Maryland, Blue Mountain Lake,
NY, July 1987.

Using domain analysis, Carle developed and modeled the requirements of a
software composition system based on reusable components in his case study of the
Raytheon Missile Systems Division. Then, a reusable software library was seeded
with components that complied with his generic requirements. He built library
access tools to demonstrate his concept.

[CHA91] Chidamber, Shyam R. and Chris F. Kemerer, "Towards a Metrics Suite for
Object-Oriented Design," OOPSLA '91, pp. 197-211.

Metrics designed for object-oriented technology are emerging and may provide
indicators of whether or not a software code module is produced with a goal of
reusability. For example, CBO (Coupling Between Objects) and WMC (Weighted

C-8

Methods Per Class) are candidate metrics that be can be used to imply the reusability
of object-oriented source code. CBO for a class is a count of the number of non-
inheritance related couples with other classes. CBO indicates how much data within
a class is available to other objects. In order to improve modularity and promote
encapsulation, inter-object couples should be kept to a minimum. The larger the
number of couples, the higher the sensitivity to changes in other parts of the design;
consequently, reuse and maintenance are more difficult. WMC is the number of
methods implemented within a class (not all methods are accessible within the class
hierarchy). Classes with many methods are usually specific to one application and
may be difficult to reuse in other applications. Both these object-oriented metrics
show promise to determine the reusability of produced code. Using these software
engineering principles of loose coupling and generic methods for classes enables
design for reuse.

[DIS95] Defense Information Systems Agency Center for Software, DoD Software
Reuse Initiative, "Software Reuse Business Model (SRBM)/' Technical
Report, January 31,1995.

Asset production is a significant part of the Software Reuse Business Model
(SRBM) discussed in [DIS95], Appendix B, Business Strategies. In the SRBM, the
following activities of Domain Management lead asset production:

1. Plan for asset production.

a) Identify programs, end products, mission needs, etc. that the assets
will be developed to support.

b) Identify and resolve programmatic issues related to development,
use and transfer of assets

I) Identify need dates, integrate development schedules, identify
the nature of the work product that will be transferred.

2. Specify asset development process standards.

a) Identify process criteria that a mature practice of asset
development should meet for domain management, analysis and
implementation.

3. Specify domain/asset requirements by identifying commonalities and
variabilities in needs and/or functional requirements.

4. Specify domain architecture and asset interfaces by identifying
standard architectural designs for systems in the domain.

a) Include variabilities in the design to meet variability in the
domain requirements.

5. Categorize assets by identifying support for assets.

C-9

a) Categorize according to structure identified in the domain model
(i.e., domain requirements, architecture or a generic schema for a
domain-independent library).

6. Specify asset usage support.

a) Include tools and process guidance.

7. Implement/buy assets by identifying and applying quality and
support criteria for assets submitted to the library.

a) Develop, procure, license, etc. the assets.

8. Maintain assets.

a) Include upgrades and modifications.

By using this process for domain management, the Software Reuse Business
Model uses both domain analysis and business strategies to drive the production of
reusable assets.

[DOD95a] Department of Defense, "Software Reuse Symposium/' March 23,1995,
Huntsville, Alabama.

GenVoca, an architecture specification and instantiation method, was
developed by Don Batory at University of Texas, Austin, TX, and presented at the
Software Reuse Symposium in 1995. GenVoca consists of an architecture
representation in the form of a language specification. For each architectural
building block, Batory defines a set of interface specifications for that realm or
component. For each implementation of the component, he defines a set of design
rules that controls the integration of components.

GenVoca has been used in several different domains; in the Intelligence-
Electronic Warfare (IEW) domain on the Army Demonstration Project; in the
avionics domain at Loral/DSSA, and in the domains of databases, data structures
and network protocols in academic research projects.

EDGE (ELPA1 Domain Generation Environment), is a tool developed by Unisys
working for the Army in support of the STARS program. EDGE provides
automated support for the development of architectures and assets. EDGE supports
the GenVoca architecture specification method within an Ada context. It uses a
component composer/system generator and produces Ada packages in GenVoca's
layout editor.

1 ELPA is an acronym for the Emitter Location Processing & Analysis system, a subdomain of the
IEW (Intelligence-Electronic Warfare).

C-10

[FAC94] Facemire, J. Jeff, Aleisa Petracia, and Stephen Riesbech, "Software
Architecture Seminar Report," Software Technology for Adaptable
Reliable Systems (STARS), Central Archive for Reusable Defense Software
(CARDS), Informal Technical Report, Contract No F19628-93-C-0130,
January 29,1994.

Jeff Facemire reports that the goals of this STARS-sponsored seminar and
workshop were to understand the various meanings of software architectures,
current research in the field of architectures, and current efforts in applying software
architectures. STARS is directed by one of the key components of the DoD Vision &
Strategy, that is, to develop architecture-centric reuse by defining reusable-oriented
flexible architectures for DoD domains. These domains should be well-supported by
industry and the R&D community. STARS members feel that this emphasis would
spur the investment in generic software components and tooling as well as facilitate
developing systems that comply with approved architectures.

The IEEE Standard Glossary of Software Engineering Terminology defines an
architecture as the organizational structure of a system or asset. An architecture can
include the structure of components, their interrelationships, and principles and
guidelines governing their design and evolution over time. It is recommended that
more specific terms be used when describing architectures. Examples of specific
terms are domain architecture, software system design, strategic architecture,
enterprise architecture, standards architecture, logical and physical architecture, and
hardware and software architecture. Each term has unique characteristics and may
have unique applications. Descriptions of architectures should include issues of
standards, procurement, business, and reuse.

Even though the terms may not be used, the concept of architectures and reuse
are commonly practiced in more mature disciplines such as chemical engineering.
Handbooks, published processes or architectures are available within this domain,
and many chemical engineering corporations have standard designs. Chemical
engineering is field based upon empirical observations, scientific theory and
economics. Table C-l characterizes the differences between chemical engineering
and software engineering and points to potential software engineering areas that
need maturation.

C-ll

Table C-l. A comparison of chemical engineering and software engineering

Chemical Engineering

One main handbook for the entire field

Comprehensive coverage of unit operations

Patterns of unit operations

Numerous heuristics

Over 100 authors

Emphasis on economics

Common language within chemistry

Software lingine-

Fragmented set of handbooks
&'•..:':»*

Incomplete coverage of component/algorithms

Few patterns

Some heuristics

One or few authors

Emphasis on processing and memory

Proliferation of languages and design notations
(i.e., Ada, C, C++, Booch)

An architecture can serve as a common reference point, or a way to
communicate the elements of a system. Architectures help bound the problem by
defining the problem space and therefore, the solution space. Development of
architectures relies upon creation of a domain model. Architectures assist users to
pick out constraints and create specific applications. With architectures, fatal
combinations of components within an architecture can be identified prior to
implementation. The following guidelines can be used to define an architecture:

1. Describe the basic elements that make up the architecture.

2. Define the rules for how the elements interact with each.

3. Describe how these basic elements make up the system design and
operate within its context.

Architectures are a framework, a behavior description, and the basis for
extension and customization. Currently, reuse is a scavenging process, or a parts-
oriented approach. Reuse is really about generalization, layering, connectivity,
collective behavior, and non-point solutions. Architectures deal with generality
and its costs, modularity and it costs, shifting complexity by layering (abstraction)
and generalization.

Architectures must also address the non-functional requirements of a system
(e.g., interoperability, ability to tolerate change, cost to build, use of COTS). A
requirement of openness gives rise to issues of compatibility and interOperation
among differing standards. Resolution of architectural design issues can be
demonstrated through a prototype.

In very general terms, architectures consist of elements, form and rationale.
Architectures can have several common characteristics; for example, identifiable
design elements, patterns, style, context and adaptable form, physical ties, and
ontological structuring. The following categories of architectures were identified:

1. Data flow systems - batch, sequential, pipes and filters

C-12

2. Call and return systems - main program and subroutines, object-
oriented systems, hierarchical layers

3. Independent components - communicating processes, event systems

4. Data-centered systems - transactional database, blackboard of shared
systems, representation and opportunistic execution

Some work has been done to date with developing domain-specific software
architectures (DSSA) to deal with a set of related problems, but not equivalent
solutions. DSSA is a bottom-up approach, whereas common architectures need to
span across applications. While architectures have been in the software
development community for some time, the current emphasis is on their
formalism. With formalism, each separate piece of an architecture becomes better
defined and standards can begin to emerge.

Why is developing generic software architectures and their formalisms a
difficult problem? One obstacle is that many diverse applications and languages
exist (e.g., real-time, information systems, Ada, C, C++, Assembly). Each system is
unique and lacks overriding standards. Diverse design approaches abound and
structured design or object-oriented design is needed provide abstraction. Reuse and
software using large-scale existing components (e.g., architectures) promises to
significantly reduce development costs; however, the savings have been historically
difficult to achieve.

Commonality among solutions is also difficult since software companies have
different business goals. Establishing generic software architectures is confounded
by the fact that software engineering has very few guiding engineering principles as
compared with other more mature disciplines. Achieving generic architectures
requires a shift in the thinking paradigm for possible solutions. The following
technologies have emerged as applicable to development of software architectures:

1. Application composition (i.e., formalism, infrastructure)

2. Techniques for reusable components

3. Legacy system/software (i.e., extraction, reuse in current form)

Supporting these emerging technologies are those that are considered "low
hanging fruit," that is, easily attained and useful. Low hanging fruit have been
identified as object-oriented development and re-engineering, formalisms for
composition, interconnection techniques, programming with parameters,
consensus definition of architecture, inductive analysis of current examples, and
Very High Level Definition Languages (VHDLs).

Why do we need software architectures? As shown in Figure C-l, many factors
in today's industry point to the need to reuse and how generic architectures might
provide a mechanism for reuse.

C-13

Greater
Cost

Savings

Life-cycle
Maintenance

Issues

Increased
Emphasis on
Standards

Systems/Hardware
js/V Issues

Reuse Analysis
and Design

Need for
Adaptability

Difficulties in
Implementing Reuse

Need for
Long-lived
Systems

Figure C-l. Factors pointing toward reuse

A significant relationship exists between architecture and software reuse. High
level analyses and designs are accompanied by context information and this
information can be reused. Architectures provide a partitioning strategy and
abstraction mechanisms. The higher level at which artifacts are reused, the greater
the payoff. Since architectures should include a high level description of data and
process views, they are optimal for reuse. A small domain is more vulnerable to
external architectural constraints while a large domain is fed by a large number of
resources. A generic architecture may require trade-offs since most systems are
specialized and designed for optimization.

Generic architectures can promote reuse, but similar to the concept of software
process improvement, this type of reuse may require a change in the way an
organization does its business. Software and its architecture must be understood
and become an item of capital investment that is managed. Many making these
decisions have little software background to understand its problems and issues.
Organizations need to manage architectures as part of their business process.

The Government and the acquisition process can make use of these generic
architectures. Architectural models can be specified in Statements of Work (SOWs)
as long as a specific product is not specified. The Government cannot specify a single
system, only its requirements. The contractor says how they will fulfill the
requirements in their architectural solution and their ultimate product.

Pioneers in the architecture-based reuse tools were DRACO and ROSE-2 (Reuse
Oriented Software Evolution Model). Currently, LaSSIE, Kapture, UNS A and

C-14

Technology Book are under development. Emerging architecture-based reuse tools
are LILEANNA and jxRapide both featuring integrated tools and libraries. Facemire
defines the "money test" as "if it doesn't attract investment beyond a single project
or system, it isn't an architecture for reuse."

The Association for Information and Image Management (AHM) states that an
architecture with a mixture of object-oriented and event system characteristics is best
suited for supporting reuse of architectural design and code. The rationale
supporting this claim is that object-oriented design of classes and methods spawn
events which are loosely coupled. Current trends are toward intersection of object
orientation and event systems. Consequently, the maximum reuse potential
appears to exist within the CORBA (Common Object Request Broker Architecture)
and its intersection among object-oriented design and event-based transactions. The
disadvantage of event systems is that indirection overhead may be high, special
purpose languages may be limited, components have loose control. A component
does not know who is responding to each event making it difficult to reason about
correctness.

The creation of generic architectural components may be independent of the
development of fielded production systems. STARS feels that developing reuse
processes and standards can facilitate development of reuse conventions. Using the
command center domain, the goal of CARDS is to transfer domain-specific software
reuse into mainstream DoD procurements. Another demonstration project may be
emerging for real-time systems, but it is still immature since the domain definitions
are currently problematic.

[FOW95] Fowler, Glenn S., David G. Korn and Kiem-Phong Vo, "Principles for
Writing Reusable Libraries/' Proceedings of the Symposium on Soßware
Reusability, SSR'95, " Seattle, WA, April 28-30,1995.

Fowler writes from his experience over the last ten years with the reuse
program at the Software Engineering Research Department at AT&T. The primary
goals in building reusable components are applicability, efficiency, ease of use, and
ease of maintenance. However, there is no simple set of rules that guarantees the
simultaneous achievement of these goals. Often the goals conflict and decisions
have to be made to trade off constraints. As a result of his work, Fowler deemed
following design characteristics as important and should be used as guidelines in
producing assets:

• Necessity

• Generality

• Variability

• Efficiency

• Robustness

C-15

• Modularity

• Minimality

• Portability

• Evolvability

• Naming conventions

• Architectural conventions

The reuse library at AT&T has proved to be a good base for building powerfully
efficient and portable applications. The libraries are written in a subset of C that is
compatible with all variants of the C language. Fowler's years of experience have
shown him that there is no simple road to building reusable software.

[FRA92] Frakes, William, Ruben Prieto-Diaz, and Edward Comer, "Ada Software
Reuse and Domain Analysis," Seminar Briefing, Clarion Plaza Hotel,
Orlando, FL, November 16,1992.

Frakes feels that reusability is a design issue. Designing for reusability must
address the scope of potential applications. Frakes proposes that the following
criteria should be used in designing new assets and in selecting assets:

Understandability

Completeness

Independence

Adaptability

Reliability

Robustness

Efficiency

Portability

Understandability of code rests more with naming conventions and code
structure than with comments. Consistent capitalization, underscores, naming
conventions make an object's or entity's intended use clear. Application-
independent naming with no abbreviations is recommended. Standard headers or
prologues are helpful as well as statement comments when additional explanations
are necessary. If a life cycle view of assets is taken (e.g., requirements, models,
architectures, designs, algorithms, tests), understandability of code assets improves
dramatically.

Completeness indicates the reusable software asset provides necessary and
sufficient functionality. Values are created, initialized, and default values are

C-16

provided. Format conversion and type conversions are supplied. When a state
changes, an object's assignment is updated. For composite objects, operations for
adding, deleting, iterating, finding, and querying are available. Exceptions are well-
formed and test functions exist for every exception that can be raised.

Independence is an indicator of the degree of coupling of modules. Low
coupling reduces inter-unit dependencies. High cohesion is permissible with a
single function and single abstract data types or objects.

Adaptability must be engineering without sacrificing usability. A reusable
component should be sufficiently flexible to promote its reuse, but should not be so
extensive as to limit its use. Fewer, simpler interfaces are easier to understand,
making a module easier to adapt for other uses. Interfaces should be limited to
those specifically required to support the intended degree of reuse. Different
mechanism support different degrees of adaptation. Listing lower levels of
adaptation to higher levels, they are "as-is," with modification, part families,
data/table driven parts, parameterization, generic parts, classes, subsystems,
generators constructors, and domain languages.

Reliability is another criteria for designing reusable assets and should answer
the following questions:

• What process was applied to the asset (i.e., audits, review, inspections,
independent assessments, test or certification)?

• What artifacts of that process would build confidence (i.e., certified
algorithms, test procedures, scripts, data, test reports, SPR data)?

• What measurable characteristics of the asset would indicate good
reliability (i.e., metrics, reliability models)?

• What else would build confidence in reliability i.e., other usage,
particularly in deployed applications, reputation/experience with
developing of certifying organizations)?

Robustness is the ability of a component to properly perform in different
environments. Reusable components should be designed to query, adapt and
conform to its environment or context. The number of environment or contextual
assumptions made by a component should be minimized. It is recommended that a
component does not explicitly or implicitly interfere with its environment in an
unexpected manner.

Efficiency, as well as performance, must be a major design criteria. However,
many design and implementation practices that encourage reusability may
adversely affect performance and resource utilization. Greater investments in
optimization can be made in reusable assets. Understanding of compiler
optimizations can ease the tradeoff decisions between reusability and performance.

Portability encapsulates hardware, operating systems, interface software and
other implementation dependencies. Design approaches that support reusability are

C-17

abstractions, models, layered architectures, and object-based and object-oriented
designs.

The qualities that make a component reusable must be engineered into the
software. Good software engineering practices alone do not guarantee that the
software is reusable. Using the characteristics discussed above will help produce
more reusable software.

[H0091] Hooper, James W. and Rowena O. Chester, "Soßware Reuse, Guidelines
and Methods," Plenum Press, New York, NY, 1991.

The U.S. Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS) initiated and supported a
study that led to the compilation of this book by James Hooper. AIRMICS
recognized that effective programs for reuse and its supporting technology would be
difficult to develop without a book of principles, lessons learned and case studies to
guide managers and engineering.

The book provides historical background and introductory information about
the problems associated with reuse, its concepts and definitions, research activities,
and status of reuse practice. Hooper believes that reuse concepts are moving from
research into practice, and very, good results are being reported, even with ad hoc
processes.

He points out that an initial investment in reuse (i.e., organizational changes,
initial library development, training, etc.) is required, and there has been an
understandable reluctance to make this investment without reasonable assurance of
success. Enough reuse successes are accumulating to allay the concerns; thus he
expects an increase in the number of organizations undertaking the practice of
software reuse. A number of successes have been based on informal approaches,
and may indicate that technical breakthroughs may not be necessary to achieve
success in software reuse, although productivity can certainly be further improved.

Hooper notes that there are additional costs when preparing software
components for reuse because of the necessary effort to generalize the components,
to conduct extra testing, to document the components, and to classify and store them
for reuse. An organization must develop a business case to justify the additional
cost of developing reusable software. A careful assessment must be made of the
likely payoff of such extra costs.

Hooper's book addresses both the managerial aspects and technical aspects of
reuse. The final section, "Getting Started," provides guidelines for beginning a
reuse program within an organization. Besides the managerial guidelines and the
technical guidelines, another important consideration in initiating a reuse program
is whether the organization is making use of effective software practices. If would
be of little use to attempt a software reuse program without having in place a
systematic, consistent process for software development and maintenance. He cites

C-18

the SEI's CMM for software as the best-known instrument for such assessments.
The software process should be remedied for the organization's inherent benefit and
to improve the basis for reuse. He advocates a phased approach for introducing a
reuse program to lower its risk of failure. He provides detailed steps and guidelines
for this bootstrap process.

[JAC93] Jackelen, George and Larry McCutchan, PRISM Documentation Library,
1.0, Central Archive for Reusable Defense Software (CARDS) /' Software
Technology for Adaptable Reliable Systems (STARS), STARS-VC-
B007/000/01, December 3,1993.

This Version Description Document (VDD) describes the long term mission of
CARDS as providing operational reusable software libraries designed to support
multiple domains. CARDS is also designed to serve as a model or "knowledge
blueprint" for the construction of other domain-specific reuse libraries. CARDS
consists of the Reuse Library Framework (RLF) and a distributed file system.

0OH88] Johnson, Ralph E. and Brian Foote, "Designing Reusable Classes/' Journal
of Object-Oriented Programming, June/July 1988, Vol. 1, No. 2, pp. 22-35.

Ralph Johnson believes that even though object-oriented programming is
touted as promoting software reuse, it is not necessarily a panacea. For effective
reuse, he feels program components must be designed for reusability. He provides a
tutorial-like article that describes and organizes a set of design techniques that makes
object-oriented software more reusable. Moreover, he feels that as with any design
task, designing reusable classes requires judgment, experience and taste.

Polymorphism and inheritance are two features of object-oriented languages
that distinguish them from other languages that are based upon abstract data types.
Polymorphism increases the likelihood that a given component will be usable in
new context. Inheritance promotes the emergence of standard protocols, and allows
existing components to be customized.

Frameworks support reuse at a larger level of granularity than classes and
allow a collection of objects to serve as a template solution to a class of problems.
Johnson defines a framework as a set of classes that embodies an abstract design for
solutions to a family of related problems. A framework can be thought of as an
object-oriented abstract design for a particular kind of application, and usually
consists of a number of classes that may be housed in a library. As a framework
becomes more refined, it leads to "black box" components that can be reused
without knowing their implementations. Frameworks can be built upon other
frameworks.

The product of an object-oriented design is a list of class definitions. Each class
has a list of operations that it defines and a list of objects with which its instances

C-19

communicate. In addition, each operation has a list of other operations that it will
invoke. In order for software developers to rapidly build complicated applications,
they must be able to reuse software components and abstract designs that were
deigned for reuse.

[KAN89] Kang, Kyo C, "Features Analysis: An Approach to Domain Analysis,"
Position Papers of the Reuse in Practice Workshop, Software Engineering
Institute (SEI), Pittsburgh, PA, July 1989.

Kang suggests that an analysis of the functional features of a system can serve
as an approach to domain analysis. The goal of a features analysis is to identify and
represent a generalized functional system model from which software requirements
can be derived. The generalized model drives the production of software assets and
their reuse. His model is also the basis for classification of components and
evaluation of their reusability.

His study concluded that there is no adequate mechanism for representing a
domain model to support reuse through the requirements phase. Even though no
formal approach was followed to arrive at his findings, it appears that future
research is needed in this area.

[LEE88] Lee, Kenneth J. et. alv "An OOD Paradigm for Flight Simulators," 2nd
edition, Technical Report CMU/SEI-88-TR-30, Software Engineering
Institute (SEI), Pittsburgh, PA, September 1988.

Under the Ada Simulator Validation Program (ASVP), a jet engine flight
simulator was developed based on theoretical, object-oriented engineering models.
Using this paradigm, Lee produced a domain analysis for jet engines. From this,
reusable code templates were used to standardize the object interfaces. The
templates contained general features of the object while maintaining placeholders
for specific object features.

[LEN87] Lenz, Manfred, Hans Albrecht Schmid and Peter F. Wolf, "Software Reuse
Through Building Blocks," IEEE Soßware, July 1987.

Lenz cites a quote from T. A. Standish in "Software Reuse," in the Proceedings
of the Workshop of Reusability in Programming, ITT, Stratford, Connecticut, 1983,
"reusability conditions exist when an application has reached a certain degree of
maturity and common abstractions and concept become apparent." Common
concepts identify the entities to be reused; when common concepts are not known, a
domain analysis is required to identify them.

Even when a concept of a domain has been identified and implemented, it is
not necessarily accepted as reusable by its intended users. Several conditions must

C-20

be fulfilled before a part qualifies as reusable. It must represent a good
modularization with well-selected and usable interface. It must also provide the
right degree of functionality. It must provide functional completeness without
excessive generality. It must result from good software engineering practices as well
as exhibit reusability specific characteristics.

[LUB87] Lübars, Mitchell D., "A Knowledge-Based Design Aid for the Construction
of Software Systems," Ph.D. Thesis, University of Illinois at Urbana,
Champaign, IL, 1987.

Using a prototypical software design environment, Lübars captured design
knowledge and encoded it into representations that abstracted out the common
design features across related application domains. His work resulted in design
Schemas that represent design families with shared similar constraints. These
design families can be customized and refined to satisfy a user's requirements.
Customization is accomplished by rules for specialization and refinement. Lübars'
schema selection strategy facilitates user selection of design fragments. The schema
designs provide significant potential for design reuse and can drive asset
production.

[MAT84] Matsumoto, Yoshihiro, "Some Experiences in Promoting Reusable
Software Presentation in Higher Abstract Levels," IEEE Transactions on
Soßware Engineering, Vol. SE-10, No. 5, September 1984, pp. 502-513.

Matsumoto believes that to make software modules reusable, they must have
the following characteristics:

1. Generality - the extent to which those who do not know how a
software module was developed can understand that module's
objects, and the relationships between its objects and algorithms.

2. Definiteness - the degree of clarity to which the module's purpose,
capability, constraints, interfaces, and required resources are defined.

3. Transferability - the degree of simplicity in transporting or
transferring software between different types of computers.

4. Retrievability - the degree to which a software modules can be
selected, stored maintained, and customized by users who have no
prior knowledge of its existence.

In order to promote the reuse of existing software modules, Matsumoto
proposes the concept of a "presentation." A presentation is a specification of a
program accompanied by the ranges in which the project descriptions can be
changed when it is reused in another application. Because a presentation describes

C-21

an existing program at the highest level of abstraction, (i.e., the requirements level),
it provides two benefits:

• Clarity of program behavior - The requirements representation is a
direct description of the program's effects.

• Maximization of productivity improvement - The requirements
representation abstracts from a larger number of program modules
and code fragments than other levels. This promotes reuse at a
higher level and may lead to higher levels of productivity.

Matsumoto presents an example of this process as follows. A designer, who
plans to develop a new program, P, searches for a presentation which matches P's
requirements. If presentation Q matches, program Q', which can be traced back to Q,
can be customized to fit P's requirements and will be reused for P.

A requirements description consists of objects, relationships between object,
decision-making, input/output transformations, constraints and given facilities. To
define a requirements specification for a program, the objects external to the
software being developed, and their relationships to the objects internally, are
defined. The types, attributes, and the relationships associated with each external
object are specified. Then, the states of the external object are defined. When an
object in one state moves into a new state, an event occurs. Subsequently, a
decision-making process may be activated in order to select the next action.

After the requirements description, the second level of abstraction or the
data/function or design level, is completed. Data structures, functions, data flows,
and control flows are defined in this phase.

The third level of abstraction is called the program level, the transition from
design to programming-in-the-large domain. The external structure of program
modules are designed. Program configuration, file structures, and package interfaces
are created using data flows, data structure, function, and control flows. Resources
are optimized to satisfy given constraints and obtain the best performance.
Decompositions and integration are repeated until acceptable functional
configurations and file structures are obtained.

Continuing at the program level, the large program structure is planned as a
result of the above processes. Real-time tasks, packages and subprograms are
determined. Package specifications and internal structures for package and data
structures are designed. Traceability is verified by comparing descriptions from the
early phases of this process to the final implementations. In order to increase
reusability of specific packages, they are rewritten in a generalized format.

The entire presentation and all its artifacts are stored and later used when
specifying a new problem and its solution. This method has been highly successful
in software manufacturing applications for real-time process control systems.
Matsumoto's company, Toshiba, averages four million lines of equivalent

C-22

assembler code per month, with 3000 employees in their software factory. The reuse
rate for their software products is about 50%.

[MCC85] McCain, Ron, "A Software Development Methodology for Reusable
Components," Proceedings of the Soßware Technology for Adaptable
Reliable Systems (STARS) Workshop, pp. 361-384, Naval Research
Laboratory, Washington, D.C., April 1985.

Many papers on reusability have focused on the need for reusing software and
a component library as a means for accomplishing reuse. Instead, McCain focuses
on how the component should be constructed for reuse, that is, designing for reuse
during software development. McCain feels that unless the software industry
adequately establishes software development approaches that emphasize the
construction of reusable software components, attempts to reuse components for a
software library will be futile.

McCain states that for components to be reusable, they must be "useful" and
"usable." A reusable component is useful if it is applicable to multiple users.
Potential reuse can be maximized by developing components that have a substantial
domain of applicability. A reusable component must also be usable. Even if a
component has substantial applicability within and across domains, unless it is
usable, it is not a good candidate for reuse. Factors that affect usability are
specification precision, user knowledge proximity, interface abstractness and
functional cohesion.

McCain presents a candidate methodology for the development of reusable
components. His method can be used for customized development as well as
general development and at all stages of software decomposition. McCain's method
uses these steps to develop reusable software components:

1. Define the interfaces - Interfaces must be completely and accurately
specified.

2. Limit dependencies - The component must have minimum
dependency on other components.

3. Perform domain analysis - For the current specification, identify users
and their needs, identify reusability constraints of the specification,
identify commonality across domains, and abstract for maximum
domain reuse and extended domains.

4. Reuse existing software if available - Determine if it is cost-effective to
reuse software to satisfy the requirements. If so, then reuse.
Otherwise, proceed with new development with the goal of
producing reusable software. If only a portion of the software can be
reused, define a new specification that reflects the current
component, specify the requirements not accommodated by reuse,
and then repeat the process.

C-23

5. Define the current specification of the reusable object and its
operations.

6. Define the current specification of reusable abstractions. Layered
abstractions encourage reuse.

7. Define an abstract interface specification and its reusable abstractions.

A formal way to validate the implementation of reusability during
development involves evaluating applicable existing software, a domain analysis
summary, an abstract interface specification, and an abstract constraint analysis
summary. Reusability assessment is recommended as part of the review process
and should include component programmers, domain analysts, software
component engineers, and component users.

In order to dramatically reduce software cost, software developers need to learn
how to reuse existing components. To accomplish this, they must first learn to
develop components to be reused. By examining characteristics of reusable software
components and establishing a method that allows components to be constructed
with these characteristics, an initial step has been taken to influence the production
of reusable software components. McCain's method needs to be validated and
enhanced by applying it to pilot projects. Work production enforcement
mechanisms and support tools must be put in place to make his method a part of
normal software development.

[MEY87] Meyer, Bertrand, "Reusability: The Case for Object-Oriented Design," IEEE
Software, March 1987. pp. 50-63.

Bertrand Meyer maintains that the fundamental goal of software engineering is
reusability, and its companion requirement, extendibility (i.e., the ease with which
software can be modified to reflect changes in specifications.) Progress in one of
these areas usually advances the aims of the other. He feels that object-oriented
design is the most promising technique known for attaining the goals of reusability.

Meyer acknowledges that some reasons why reuse isn't more common can be
categorized as non-technical (e.g., few economic incentives, not-invented-here
complex, lack of libraries or reusable modules and good database search tools so
programmers can find appropriate modules easily). However, he believes that non-
technical issues are only the tip of the iceberg; reuse is limited because designing
reusable software is difficult.

The purpose of his article is to dispel the naive hope that software problems
would just go away if we were more organized in filing program units. One
estimate is that less than 15% of new code serves an original purpose. He contends
that programmers do tend to do the same kinds of thinking time and time again,
but they are not exactly the same things. So many details may change as to render

C-24

moot any simple-minded attempt at capturing commonality. He quotes Gerard de
Nerval, "neither ever quite the same, nor ever quite another."

Even though the patterns for particular algorithms may be standard, the
amount of variable information is considerable. It is difficult to implement a
general purpose module; it is almost as hard to specify such a module so that
dependent modules can rely on it without knowing the implementation. Beyond
the basic problem of factoring out the parts that are common to all implementations
of a function, an even tougher challenge is to capture the commonality without
some conceptual subset. He feels that to write carefully organized libraries of
reusable software elements, we must be able to use commonalties at all levels of
abstraction.

Several approaches have been used to solve the reusability problem. For
example, the classical technique is to build libraries of routines (i.e., procedures,
function, subroutine, or subprograms) that implement a well-defined operation.
This approach has been quite successful in scientific computation, and excellent
libraries exist for numerical applications. The library of routines seems to work well
in areas where a set of individual distinct problems can be identified. These
problems have a small set of parameters and complex data structures are not
involved.

For more complex problems, higher level languages (e.g., Ada) provide higher
structuring than a routine. This approach is rooted in the theory of data abstraction.
The techniques of overloading or genericity allows a module to be defined-with
generic parameters that represent types. Instances of the module are then produced
by supplying different types as actual parameters. This is a definite boost to
reusability because just one generic module is defined, instead of a group of
modules that differ only in the types of objects they manipulate. However, these
techniques alone do not provide enough flexibility and forces programmers to
decide too much too soon.

Meyer views object-oriented design as a software decomposition technique.
Object-oriented design bases the modular decomposition of a software system on the
classes of objects the system manipulates, not on the functions that system performs.
He feels that it is wiser to rely on categories of objects as a basis for decomposition,
but only if these categories are viewed at a sufficiently high level of abstraction.
Object-oriented design differs from a top-down functional approach that solves a
fixed problem once and for all. Object-oriented techniques accommodates a long-
term view for long-lived systems.

Object-oriented design also relies on abstract data types which describe a class of
objects through the external properties of these object instead of their computer
representation. An abstract data type is a class of objects characterized by the
operations available on them and the abstract properties of these operations.
Abstract data types are useful at the design and implementation stage. Object-
oriented design is the construction of software systems as structured collections of
abstract data-type implementations. A single program structure is both a module

C-25

and a type, dubbed as a "class" by the creators of the pioneer object-oriented
language, Simula 67. Instances of classes can inherit generic functions from its
parent, yet can also be specialized to met its particular requirements. These object-
oriented techniques, classes, abstract data types, inheritance, and instances all enable
software reusability and extensibility.

[NEI80] Neighbors, James, "Software Construction Using Components," Ph.D.
Thesis, University of California at Irvine, CA, 1980.

Neighbors asserts that the optimal software reuse is through reuse of analyses,
designs, and code, rather than simply from the reuse of code. He introduced the
concept of domain analysis to describe the activity of identifying objects and
operations of a class of similar systems in a problem domain.

[NEI83] Neighbors, James, "The DRACO Approach to Constructing Software from
Reusable Components," Proceedings of the Workshop on Reusability in
Programming, ITT Programming, Stratford, CT, September 1983, pp. 167-
178.

Neighbors' goal of his DRACO approach to constructing software was to
increase productivity of software specialists in developing similar systems within a
problem domain. The first DRACO prototype was completed in 1979 and the last
major revision of the mechanism was completed in 1983.

The DRACO approach to the construction of software from reusable software
components focuses only on the constructive aspects of software production (i.e.,
analysis, design, implementation). It does not address with the organizational
interactions of development team members or methods for the complete
specification of software systems. Neighbors believes that the reuse of analysis
information is the most powerful kind of reuse. The reuse of design information is
the second most powerful kind of reuse. Consequently, DRACO captures the
expertise of an organization and delivers it in problem-specific terms.

[PAR76] Parnas, David, "On the Design and Development of Program Families,"
IEEE Transactions on Software Engineering, Vol. SE-2, No. 1, March 1976,
pp. 1-9.

Parnas defined program families as sets of programs whose common properties
are so extensive that it is advantageous to study those before analyzing individual
members. His early work paved the way for the development of domain analysis,
reuse and architectures as an asset type for reuse.

C-26

[PAR79] Parnas, David, "Designing Software for Ease of Extension and
Contraction/' IEEE Transactions on Soßware Engineering, Vol. SE-5, No.
2, March 1979, pp. 128-138.

Parnas identified minimal subsets and minimal extensions during software
design which leads to software that can be tailored to the needs of a broad variety of
users.

[PAR85] Parnas, David, Paul C. Clements and David Wise, "The Modular Structure
of Complex Systems," IEEE Transactions on Software Engineering, Vol.
SE-11, No. 3, March 1985, pp. 259-266.

Parnas and his team created a guide to modular structuring using an example
from the domain of the Operational Flight Program (OFP) for the a-7E aircraft. He
found that the software engineering principle of information hiding is practical for
complex systems. Documenting this guide was useful to designers and
programmers in resolving design and communications problems. The guide was
also helpful for training new staff on the project facilitating their understanding of
the structure of the program.

[PET93] Petracca, Aleisa, Les Hayhurst and George Jachelen, "Portable, Reusable,
Integrated Software Modules (PRISM) Documentation Library Model,
Document Release 1.0, Central Archive for Reusable Defense Software
(CARDS), Software Technology for Adaptable Reliable Systems (STARS),
STARS-VC-B015/000/00, December 3,1993.

The CARDS (Central Archive for Reusable Defense Software) program believes
that a formal, systematic integration of reuse into the conventional software
development process yields the greatest reward. Petracca shows how domain
analysis, within the field of Domain Engineering, is a technique that can help
integrate reuse into the conventional software development process. This Informal
Technical Report from CARDS describes modeling concepts and examines the
principles of specialization and aggregation using hierarchies.

Domain analysis describes the requirements for a family of systems (i.e.,
establishes the requirements of a domain). In the field of Domain Engineering,
domain analysis is similar to requirements analysis in the field of Software
Engineering. Likewise, a generic architecture specification in domain engineering is
similar to the activity of system specification in software engineering. The system
implementation in software engineering is analogous to the generic architecture
implementation in domain engineering and forms the foundation for the parts
library. CARDS envisions the parts library as serving to back fill the development of
a specification and its implementation in future systems.

C-27

CARDS is envisioned to house components of many domains, but has initially
been targeted toward command centers. CARDS relies on the program PRISM
(Portable, Reusable, Integrated Software Modules) as its primary source for
information about the domain of command centers. The information consists of its
models, components, evolution, and documentation. Within CARDS, the Reuse
Library Framework (RLF) is the mechanism used to implement modeling. The RLF
has three parts; a knowledge-representation schema called AdaKNET, a rule-based
inferencing engine; and a graphical browser.

The five year plan for PRISM is to serve as a management tool to assist staff in
the activities of identifying and documenting critical project objectives and
associated dates and milestones. PRISM assists in detailed demonstration planning,
resource identification and allocation, and tracking of future technology trends.
This purview should supply CARDS with many components from the domain of
command centers. The document also describes a procedure for qualifying software
components for incorporation into the generic command center and the generation
of product assessment reports.

[SIM87] Simos, Mark A., "The Domain-Oriented Software Life Cycle: Towards an
Extended Process Model for Reusability," Proceedings of the Workshop of
Soßware Reuse, Rocky Mountain Institute of Software Engineering,
Boulder, CO, October 1987.

Simos proposed that reusability needs to be integrated into the conventional
top-down "waterfall" life cycle model of software development. This life cycle
development model, extended for reuse, should have the following components:

1. A perspective centered upon domains or families of related program
or systems that support particular application areas

2. Concentration on application specificity, or narrow-band reuse within
specific application domains

3. Recognition of a set of techniques for reusable software, either
through ad hoc reuse, libraries, code generation techniques, and/or
knowledge-based techniques

His project model can also be used to target resources for productivity increases
as well as identify traceability across projects.

[TRA87] Tracz, Will, "Reusability Comes of Age, IEEE Soßware, July 1987, pp. 6-8.

Tracz answers the question "What will it take to create a successfully used
program?" He uses the analogy that compares used cars to used programs; he
believes that this analogy holds for pungent and practical reasons. People are leery

C-28

about buying a used car for many of the same reasons programmers are reluctant to
reuse someone else's work. He views reuse as a study in sales of used-programs.

Users are interested in the following characteristics:

• Quality parts - Customers should have confidence that what they buy
will perform without error.

• Standard interfaces - Customers should be able to use what they buy
in a manner that complies with standard operation conventions.
Software should be easily integrated into new or existing systems.

• Documentation - Customers should understand what the software
does, how they use it, and how they can modify it if necessary.

• Selection - Customer should have a choice of options available for
what they buy.

Tracz sees reuse as a business with customers to satisfy. Even though it may be
an oversimplification of the problem, his fundamental principles are worthwhile.

[TRA93] Trail, Glen and George Jachelen, "Portable, Reusable, Integrated Software
Modules (PRISM) Documentation of Library User's Guide," Release 1.0,
Central Archive for Reusable Defense Software (CARDS), Information
Technical Report from the Software Technology for Adaptable Reliable
Systems (STARS) Program, STARS-VC-B006/001/101, December 3,1993.

The Generic Command Center (GCC) project, the forerunner of the Portable,
Reusable, Integrated Software Modules (PRISM) project, integrates components for
use in command centers. PRISM succeeded GCC in January 1992, and has the goal of
providing details for a generic architecture for command centers. A program
description language specifies the architecture and initial automated support is
provided through PDL (Program Description Language) Model Release 1.0. This
user guide describes how to access the automated tool for this architectural model.

PRISM proposes to supply users with 80% of the required resources to produce
a new command center as well as the information on acquiring or producing the
remaining 20%. The PDL model can be run remotely through a modem.

[WAR88] Ward, Paul T. and Lloyd G. Williams, "Using the Structured Techniques
to Support Software Reuse," Proceedings of the Structured Development
Forum, San Francisco, CA, August 1989. pp. 211-222.

Ward feels that object-oriented development and domain analysis are two
techniques which offer support for reusable components. Object-oriented
techniques provide structure to components providing the potential for reuse.

C-29

Domain analysis assists in identifying components that should be designed and
produced with reuse as a goal.

[WEI88] Weiss, David, "Reuse and Prototyping: A Methodology/' Technical
Report SPC TR-88-022, Software Productivity Consortium (SPC), Reston,
VA, March 1988.

Weiss proposed a method for software development and maintenance that
encompasses prototyping and reuse. The underlying concept of his method is based
upon information hiding, program families, hierarchical structuring, and
characterization of modules as black boxes. Tools can be built to search through a
collection of program families, adapt family components to create new family
members, and compose new family members from existing components. The tools
can be used to describe, assess, and store families, including information needed to
characterize them for future use.

C-30

Appendix D - Annotated Bibliography of Asset Selection

The information gleaned from this literature survey of asset selection was used
to determine the operational context of the Reuse Context for Asset Quality
Certification and to assess the impact of this previous research on the development
of the Certification Framework.

The annotations in this appendix summarize the essence of each of the
referenced publications. Summaries vary in length; those that are longer provide
additional details because the reference appeared to be a flagship among others. The
shorter annotations were still included to serve as a pointer to the complete
reference if more details are of interest.

This annotated bibliography this area is not exhaustive, but gives a flavor of the
previous research that has been accomplished. Some of these references were used
in other appendices.

D-l/D-2

[ARA95] Arango, Guillermo, "Software reusability and the Internet, " Proceedings
of the Symposium on Software Reusability, SSR'95r edited by Mansur
Samadzadeh and Mansour Zand, Seattle, WA, April 28-30,1995.

In an briefing given by Guillermo Arango at the Software Reusability
Symposium, he maintains that the world-wide communication infrastructure of
the Internet could be the best thing that has happened to the software reusability
community in the past twenty years. He believes the Internet will provide a
megalibrary where people and resources can meet and exchange products and
services.

The scale of resources becoming available to software developers, the ability to
share expertise in a global market, and new business practices are defining a
different environment for software reuse. These changes do not affect the problems
inherent of the past, but it does change the environment in which the problems
reside.

He admits that some may argue that in cases involving industrial software, we
cannot risk reusing "flaky stuff" from the Internet. This is an issue, based on our
experience of the Internet as it works today, but it is a symptom of the lack of
maturity of the legal framework and of the business practices in software electronic
commerce. He does not believe that this is a truth about the potential of the
Internet as a distributed megalibrary.

Standards and processes will be critical for his vision to become practical.
Arango believes that the software industry is better positioned to examine all the
technical and professional issues involved. He believes that the reusability
community has a historic opportunity to take the initiative in making a substantial
contribution to the field of software engineering.

[ARM95] U.S. Army Space and Strategic Defense Command Software Engineering
Division, "Component Evaluation Procedure (Phase II) Technical Report,
January 31,1995.

This technical report states that the DoD software costs are expected to reach $42
Billion in 1995. The DoD Software Reuse Initiative believes that effective reuse can
contribute to the reduction in growth of software costs while providing improved
system performance and reliability. This document describes the Components
Evaluation Procedure (CEP), being developed by the Software Engineering Division
(SED) at the U.S. Army Space and Strategic Defense Command, Huntsville, AL. The
CEP is seen as a way to provide cost-effective, quantitative measurement of the
reusability of existing software components.

The CEP can be applied to all types of software components (e.g., requirements,
designs, documentation, and test data). However, current efforts have concentrated
on applying the CEP to Ada source code components.

D-3

The CEP consists of three principal elements, that is, criteria application, risk
analysis and report generation, as shown in Figure D-l. A model of the CEP is
shown as a process flow diagram with subactivities within each principal element.

Four phases of CEP development were planned and two have been completed
to date:

1. Phase I - resulted in the CEP model and a list of twenty-one proposed
reusability criteria, subdivided into four categories. Late in Phase I,
these were integrated with a list of thirteen reusability criteria from
an ongoing project at the program office.

2. Phase II - applied and validated the set of reusability criteria using
Ada components from the Battle Management/Command, Control,
and Communication (BM/C3) domain. As of January 1995, the CEP
development was in this Phase II.

3. Phase III - plans to develop risk analysis and report generation
elements of CEP.

4. Phase rV - plans to validate the CEP.

The findings of Phase II were identified as follows:

• Interdependency of Ada compilation units (i.e., the number of
"with"s) is a major inhibitor of reuse.

• Domain applicability greatly affects component reusability. This
supports the view that reuse should be domain-specific.

• Measures of component size showed moderate to weak statistical
correlation with reusability.

• It appears to be worthwhile to screen potential reusable components
for good software engineering characteristics using automated tools
(e.g., quality, maintainability). The use of automated tools makes
screening a relatively inexpensive process.

• Based on the results of this activity, no easily measured structural
characteristic of an Ada source code component can be used as an
effective indicator of that component's reusability in a specific
application.

These findings were generated from ratings and measures collected from two
parallel activities of application and validation, those of reuse experts and those of
software engineers.

D-4

r Criteria
Application

Select
Component

I
Select

Criterion

T
Apply

Criterion

Risk Analysis

<100%'

Analyze
Risk

Unacceptable Exit

High

Medium

Low

Identify
Mitigation and

Cost

Consolidate Risk,
Mitigation, and Cost

1
Component
Assessment

Report

Report
Generation

Figure D-l. CEP (Components Evaluation Procedure) Model [ARM95]

D-5

The technical report also cites work related to the CEP. For example, the
DISA/JIEO/CIM's Software Reuse Metric Plan proposed the use of AdaMat to predict
component reusability. If the organization was able to validate this proposed
concept, it would aid reusers in selecting assets. To date, this concept has proven
inconclusive.

Also related to the CEP is the DSRS. DSRS addresses administrative suitability
for reuse, but does not attempt to predict the operational quality or reusability of
components. Instead, the DSRS's certification procedure for software components
evaluates completeness of documentation and conformity of a component's
behavior to its functional description.

Another work related to the CEP is the program called PRISM (Portable,
Reusable, Integrated Software Modules) managed by the U.S. Air Force Electronic
Systems Center (ESC). PRISM is chartered to develop a reusable generic command
center software architecture to reduce time and cost of acquiring command centers.
PRISM has adopted the library concept of the Comprehensive Approach to Reusable
Defense Software (CARDS) as the basis for its domain-specific software repository
(i.e., Command and Control (C2)).

PRISM identified reusability criteria (e.g., adaptability, domain applicability,
documentation, simplicity and readability, complexity) and outlined procedures to
collect, both automatically and manually, quantitative measures for each. The
following findings were reported:

• The levels of reusability were associated with components with fewer
than four "with" statements (i.e., components with eight with
statements scored poorly in reusability).

• Applicability of a component to a domain is highly correlated to
reusability.

• Simplicity and readability impact the ease of understanding which is
a prerequisite to evaluating reusability.

• Complexity, as related to simplicity and readability, is a useful
indicator of reusability.

These findings were collected from a data set of the EVPA (Experimental
Version Performance Assessment), a large, distributed simulation designed to
support the testing and integration of strategy defense software. EVPA has a set of
legacy Ada components that are representative of much of the existing Government
software (i.e., poorly documented and the original authors are no longer available.)

[BAN93] Banker, Rajiv D., Robert J. Kauffman, and Dani Zweig, "Repository
Evaluation of Software Reuse/' IEEE Transactions on Soßware
Engineering, Vol. 19, No. 4, April 1993.

D-6

Rajiv Banker found that the probability that a programmer will reuse an
existing software object rather than write a new one depends upon the availability of
potentially reusable software and upon the programmer's ability to find it.
However, he also found that reuse did not necessarily grow as the pool of reusable
candidates grew. He observed that reuse is also driven by a pool of familiar code
rather than the entire pool of reuse candidates. Familiar objects within the
programmer's domain are more likely to be reused, regardless of the size of the pool
of candidates.

Furthermore, he reports that programmers have individual differences with
regard to their practice of reuse. A small number of outstanding programmers
appear to account for a disproportionate amount of reuse. Some of the same skills
that make some programmers extraordinarily productive also make them
extraordinarily good at reuse. Consequently, he concludes that teaching these skills
could promote reuse.

[BER95] Bergstrom, Deane, "Certification of Reusable Software Components,"
Briefing chart in response to Project Overview, December 12,1995, Rome
Laboratory, NY.

In response to a project overview given by Software Productivity Solutions,
Inc. (SPS), Deane Bergstrom prepared and presented two briefing slides to describe
the context for the project and considerations for the framework as shown in Figure
D-2. This concept flows down from the SOW requirements for the certification
framework.

The context is defined by the expected use and user profile, the range of
capabilities to be provided, the product inventory, and the interfaces to the users and
sustainers of the process and environment.

The certification framework must define the context to be included or account
for those capabilities that are covered in the library. The coupling between the reuse
library and the certification framework may be loose or tight, joined by a template
contained in the user interface for data interchange between the library and the
certification framework.

More importantly, the software developer must be able to perform multi-pass
browsing of the assets to support several phases of survey, examination and
selection. The component selected may be one, few, many or an entire system. The
developer may want existence proof of required artifacts and may need to quantify
relationships of current components in library systems. The framework must also
support resource constraints of schedule, cost, functional capability, performance,
skill levels and size.

D-7

Entre Entre

Connectivity is Loose or Tightly Coupled

Certification Framework
Context

The certification framework must
define the context to be included or
account for those capabilities that

are covered in the library.

UserInterfaceJ^ d]]_J^ser|nterface~__^>

Domain Knowledge^) C^Retrieval Scheme

Audit & Use Data

What are the criteria for
separating reuse candidates?

(Classification)

What are the specifications forA
functional and performance J\

behavior? __-——""^ \

What are the relevant
^combinatorial dependencies?

Figure D-2. Certification of reusable software components [BER95]

The user's needs may be know, not known, or yet to be determined based on
use and experience. The framework must accommodate a steep learning curve for
the user community. "Make/buy" decisions need to be simplified and users may
need data for constructing a justification for their selection. Typical questions that
the reuse library may ask are the following:

• What information and/or data can I get from the context of the reuse
library schemes in use that will assist in defining the certification
process?

• What (if any) is the common subset of reuse library characteristics
and what are the skill levels of the range of users?

These types of questions and the conceptual view of the reuse library and
certification framework helped drive the project development to its completion.

D-8

[DIS95] Defense Information Systems Agency Center for Software, DoD Software
Reuse Initiative, "Software Reuse Business Model (SRBM)," Technical
Report, January 31,1995.

In the public library archetype of the Software Reuse Business Model (SRBM),
assets are considered "free." However, it is not a "no cost" proposition to reusers.
One of the activities in the role of the Program Manager as identified in the SRBM is
to identify the process of reusable asset selection. In addition, the reusers must still
accept the cost and risk of searching the library for suitable assets, modifying the
assets to their needs, if necessary, and verifying their applicability. Both these tasks
may not be trivial.

[FIS87] Fischer, Gerhard, "Cognitive View of Reuse and Redesign," IEEE Soßware,
July 1987.

Fischer maintains that the reuser needs better support in creating new systems
(through reuse) and modifying existing ones (through redesign). He feels that
software environments must support design methods whose main activity is not
only generating new programs but also maintaining, integrating, modifying, and
explaining existing ones. Incremental and evolutionary reuse and redesign must be
efficiently supported for ill-structured problem domains.

New architectures and intelligent support tools are needed to reduce the
cognitive demands that innovative technology has brought. These tools must
support incremental learning and learning on demand, two prerequisites for reuse
and redesign. These intelligent support tools must also be able to volunteer help in
appropriate situations rather than respond solely to explicit requests.

Fischer believes that several cognitive problems prevent users from
successfully exploiting their function-rich systems. Users do not know what
building blocks and support systems exist, when to use these tools, what the tools
do, and how to combine, adapt, and modify tools to their specific needs.

In order to translate the problem of the situation into a previously existing
model, reuse is required to construct the right sequence of operations to yield the
solution. To do this, search strategies must be used. Building blocks are useless
unless the designer knows that they are available and how the right one can be
found. Psychological research has shown great differences exist between the efficient
and successful strategies used by experts and the inefficient and ineffective search
strategies of novices.

Knowing about the existence of components is not trivial, especially as the
number of components grows. And if a reuser does find a potentially useful
component, he must determine how it must be used and combined with the other
components. He must understand its functionality and its properties.

D-9

Fischer's observations of designers is that they do not engage in reuse and
redesign because these methods are not adequately supported. The effort to change a
system or to explore design alternatives is too expensive in most production
environments. If the cost of making changes is cheap enough, users will start to
experiment to gain experience and insights leading to better designs. Fischer
believes that much is wasted because users do not understand how to the use the
software industry's full potential.

[LAT89] Latour, Larry, "Issues Involved in the Content and Organization of
Software Component Information Bases, Interim Report," Technical
Report for the U.S. Army CECOM, prepared by the University of Maine,
Orono, ME, May 1989.

Larry Latour maintains that the primary inhibitor to the reuse of software
components is understanding. He investigated new and innovative techniques for
organizing a database of reusable components. Hypertext was used as a tool to
describe taxonomies of Ada Booch packages to facilitate reuse and asset selection. He
defined a component as an information "web" of attributes containing a
specification, an implementation and usage information.

[MCN86] McNicholl, Daniel G., et. al. "Common Ada Missile Packages (CAMP) Vol.
1, Overview and Commonality Study Results," Technical Report AFATL-
TR-85-93, McDonnell Douglas Astronautics Company, St. Louis, MO, May
1986.

Daniel McNicholl developed an associated parts catalogue schema and parts
composition system to support software parts usage and asset selection. He studied
commonalities within the domain of missile flight software systems to drive the
development of reuse parts for that domain. Two phases of the project were
defined; the concepts were identified in CAMP-1 and then implemented in CAMP-2.
When CAMP-2 was completed, 454 production-quality reusable Ada parts were
coded, tested, and documented in accordance with 2167A. A parts composition tools
was demonstrated which generated Ada code for user-specified subsystems.

[P0092] Poore, J.H., Theresa Pepin, Murali Sitaraman, Frances L. Van Scoy,
"Criteria & Implementation Procedures for Evaluation of Reusable
Software Engineering Assets," Software Technology For Adaptable,
Reliable Systems (STARS) Program, Task/Subtask IT00.19, CDRL Sequence
04014-002B, July 16,1992.

The purpose of this report was to formulate criteria and procedures for the
evaluation of reusable assets in the context of the ASSET reuse library. Four levels
of quality are defined for assets; Level 1 (Documented), Level 2 (Audited), Level 3,

D-10

(Validated), and Level 4 (Certified). Level 4 (Certified) means that ASSET has
conducted an independent, repeatable, formal evaluation according to a
predetermined and published protocol and certifies the asset according to that
protocol. This certification will, in most cases, require expertise beyond ASSETS'
own staff. Evaluation criteria are established with a focus on the quality or an asset,
or how well an asset does what its supplier claims it is supposed to do.

Certification protocols for a code type of assets could be dynamic (based on
testing), or static (based on proof). Dynamic certification would entail the following
activities:

a) Construct a model of intended use of the software.

b) Randomly generate a sufficient number of test cases based on the
usage model to certify at the desired level.

c) Execute the code with the test cases and compare actual behavior and
performance with the specification.

d) If a deviation from the specification is encountered, confirm this with
the supplier and delete the asset from the library.

e) If a sufficient number of tests are passed without failure, the code is
certified at some stated confidence.

Static certification would entail verification by abstracting the behavior of the
code or constructing a written proof that the function computed by the code is
equivalent to the intended function of the code.

In the case of certifying documents, ASSET staff should attempt to
independently duplicate the experience conveyed by the document.

[POU95] Poulin, Jeffrey S. and Keith J. Werkman, "Melding Structure Abstracts and
the World Wide Web for Retrieval of Reusable Components/'
Proceedings of the Symposium on Soßware Reusability (SSR'95), edited by
Mansur Samadzadeh and Mansour Zand, Seattle, WA, April 28-30,1995.

Jeffrey Poulin believes that reusable software libraries have largely failed to
return the reuse benefits promised by their developers because they suffer from poor
interfaces, too many formal standards, high levels of training required for their use,
and most of all, a high cost to build and maintain. Poulin describes an
implementation of a reusable software library at Loral Federal Systems using the
World Wide Web (WWW) browser Mosaic and shows how it meets most user
needs, avoids pitfalls and costs only a fraction of the costs of more traditional
libraries.

Poulin named Loral's software reuse library interface the Federal Reuse
Repository (FRR). The FRR provides three ways to locate a needed component:

D-ll

1. Hierarchical view

2. Subject listing

3. Keyword search

The first way, the hierarchical view, narrows the search based on
implementation language or sublibraries. If language is not important to the user,
or he does not know the component's sublibrary, he can search, by subject, for
components that perform a particular function. And lastly, his keyword search
supports Boolean queries and partial matches while ranking the results to help the
user determine which components must closely meet his needs.

Poulin believes that elaborate classification Schemas with facets and attribute
values do not give the user an intuitive feel for the applicability of a particular
module to a specific situation. He believes that mapping the user's idea of what he
needs to an existing component must happen quickly, efficiently, and painlessly.
The reuser needs to make the most of those first precious seconds and make the best
possible reuse decision. Consequently, he developed a techniques called the
Structured Abstract (SA).

The SA quickly provides the user the most needed reuse information. Using
this natural-language abstract presents the information to the user in a familiar way,
mimicking the manner the user would receive the information from a colleague
over the phone or in a conversation. Poulin feels that his method has been
successful at Loral because it is natural to the user.

The SA contains the following items:

• Computer language and component type

• Domain

• Function

• Data

• Operating System

• Element

• Contact

A template for this information as it appears in the FRR looks like this:

A (Computer Language) (Component Type) for (Domain) that provide (Functions) on (Data) data.
Runs on (Operating System) includes (Element,..., Element) Contact (Contact).

Since 1994, numerous repositories for all types of information have emerged
on the WWW. One of these, GAMS, at the National Institute of Standards and
Technology (NIST), provides an on-line cross-index of available mathematical
modeling and statistical analysis software. GAMS differs from FRR in that its
keyword fields are structured and only provides independent attribute-value pairs

D-12

rather than a coordinated, textual description of a component as in the SA. The SA
and the FRR were developed at 1% of the cost to develop a standard software reuse
library. The FRR has also gained favor due to its intuitive interface and simple, yet
powerful, information retrieval tools.

[PRI87b] Prieto-Diaz, Ruben, "Faceted Classification and Reuse Across Domains,"
Proceedings of the Workshop on Soßware Reuse, Rocky Mountain
Institute of Software Engineering, Boulder, CO, October, 1987.

Ruben Prieto-Diaz proposed an approach to facilitate reuse and asset selection
across domains using domain analysis and faceted classification. Domain analysis
derives faceted classification schemes of domain specific collections, then derives a
global faceted scheme that relates the different domain-specific vocabularies. A
global scheme allows users to identify and select components from different
application domains. Prieto-Diaz believes that using these technologies for asset
selection increases the potential reusability of components.

[TRA87] Tracz, Will, "Reusability Comes of Age, IEEE Soßware, July 1987, pp. 6-8.

Will Tracz uses the analogy that compares used cars to used programs in this
article and others in IEEE Computer of April 1983, June 1986, and May 1987. He
maintains that people are leery about buying a used car for many of the same
reasons programmers are reluctant to reuse someone else's work.

Tracz explores several aspects of asset selection using the "used car" analogy:

1. New or used? - Before deciding on whether to invest in a new or
used car, a prospective buyer first identifies his needs. He must
determine the features, performance, price range, urgency, etc. that
are best for him.

2. Standard features - Does the car meet the user's requirements? The
features, performance, expected maintenance, and the total price all
have their particular tradeoffs.

3. Mileage - A low mileage car may lead to suspicion, whereas in
software, high mileage (i.e., increased users) is desirable. In software,
the number of bugs can decrease with use.

4. Maintenance record - The types of repairs for cars and software may
influence the decision to buy or use it. The prospective user would
do well to examine the history of repairs (i.e., Were repairs performed
early in its life? What type of repairs were made? What was the
severity of the problems?). Such an analysis may avoid a situation
where more problems were introduced with each repair.

D-13

5. Reputation - The character of the manufacturing organization is
usually inherent in its products for both cars and software.

6. Appearance - How does it appear on the exterior and under the hood?

7. Standards - Are there standard seat belts and emission controls on the
car? Likewise, does the software have defined requirements, interface
designs, adequate testing and clear documentation that follow
industry standards?

8. Warranty - Do both products have credibility and viability?

9. Modification and customization - Has the car or software ever been
modified and customized? What were the results of that activity?

10. Options and Associated Risks - What are the options and risks for
each product?

11. Accessibility - Is the producer of the product available for product
support?

12. Price - Options (desired and undesired) may be packaged together and
affect the total price. Will the user need training to operate and
maintain the product as is, and with its available options? How does
this affect the total price?

13. Test drive - This is the "acid" test to determine the suitability of the
product for the user. The test drive should simulate multiple
working conditions that adequately demonstrate suitability (i.e.,
usage scenarios).

14. Intangible inhibitors - What is the reputation of the seller? Is there a
risk of "getting stuck with a lemon?"

By exploring these topics, Tracz discusses how to create a successful used-
program business.

D-14

Appendix E - Annotated Bibliography of Reuse Frameworks

The information gleaned from this literature survey of reuse frameworks was
used to determine the operational context of the Reuse Context for Asset Quality
Certification and to assess the impact of this previous research on the development
of the Certification Framework.

The annotations in this appendix summarize the essence of each of the
referenced publications. Summaries vary in length; those that are longer provide
additional details because the reference appeared to be a flagship among others. The
shorter annotations were still included to serve as a pointer to the complete
reference if more details are of interest.

This annotated bibliography this area is not exhaustive, but gives a flavor of the
previous research that has been accomplished. Some of these references were used
in other appendices.

E-l / E-2

[BIG89] Biggerstaff, Ted. J and Alan J. Perlis, "Soßware Reusability, Volume I,
Concepts and Models and Volume II, Applications and Experience,"
ACM Press New York, NY, 1989.

Biggerstaff and Perlis are the editors of this two volume compendium of work
by distinguished researchers in software reusability. In the first article, Biggerstaff
and Charles Richter define a reusability framework that describes reusability from a
technology point of view. The technologies that are applied to the reusability
problem can be divided into two major groups depending upon the nature of the
components being reused. These groups are composition technologies and
generation technologies. Table E-l shows their framework for classifying the
available technologies.

Table E-l. A framework for reusability technologies [BIG89]

Features Approaches to Reusability

Component
Used

Building Blocks Patterns

Nature of
Component

Atomic and Immutable
Passive

Diffuse and Malleable
Active

Principle of
Reuse

Composition Generation

Emphasis Application
Component
Libraries

Organization &
Composition
Principles

Language
Based
Generators

Application
Generations

Transformation
Systems

Typical
Systems

- Libraries of
Subroutines

- Obj Oriented

- Pipe Archs.

- VHLLs

-POLS

- CRT Fmtrs.

- File Mgmt.

- Language
Transformers

In composition technologies, the components to be reused are largely atomic,
and, ideally, are unchanged for their reuse. Examples of such items are code
skeletons, subroutines, functions, programs, and objects. Using composition, new
programs are derived from building blocks. This software model is the analogous to
the hardware activity of plugging together integrated circuit chips to develop
hardware systems. In generation technologies, components being reused are often
patterns produced by a generator program. The patterns are the seeds from which
new, specialized components are grown. Each resulting instance of such a pattern
may be highly individualistic, and is more difficult to characterize and isolate.

Reusable patterns have two forms; patterns of code and patterns within
transformation rules. In both cases, the effect of the individual reusable

E-3

components within the target program tend to be more global and diffuse than the
effects of building blocks.

In his two book series, Biggerstaff presents an article by L. Peter Deutsch, titled
"Design Reuse and Frameworks in the Smalltalk-80 System/' The Smalltalk-80
supports a type of reuse that is unique to the object-oriented approach, that is, reuse
of design through frameworks of partially completed code. A framework binds
certain choices about state partitioning and control flow. The reuser completes or
extends the framework to produce an actual application. Here, the simplest example
of a framework is a class that is partially abstract. A class supplies a partial
specification and implementation but expects subclasses or parameters to complete
the implementation.

[BOE91] Boeing Company, Defense & Space Group, US40 STARS Reuse Concept of
Operations, Volume I, Version 0.5, Draft, Informal Technical Data,
STARS-SC-03725/001/00, Seattle, WA, August 27,1991.

In this concept of operations document of 1991, STARS identified functions
and processes supporting reuse and organized them into a process framework. As
shown in Figure E-l, this process framework has the following four major processes:

1. Reuse Planning

2. Asset Creation

3. Asset Management

4. Asset Utilization

The bulk of the document provides details for all these processes and
subprocesses as the STARS Reuse Process Framework.

E-4

Market Forces
Assets

Software Systems
Domain Knowledge

Technology
Organizational

Context

I
Reuse Management

Software Systems
Assets

Figure E-l. STARS Conceptual framework for reuse processes

The document concludes with a section about integrating the views of a
framework. STARS envisions that reuse in the future will occur in the context of a
distributed network of heterogeneous domain-specific libraries. It is likely that each
library will focus narrowly on one domain or a small set of vertical or horizontal
domains. These libraries are prone to yield high reuse through greater depth of
focus and better control of variability. This proliferation of multiple, distributed,
domain-specific libraries may be challenging to manage. The STARS document
suggests and characterizes a concept for varying degrees of interoperability among
these libraries.

E-5

[BOE93b] Boeing Company, Defense & Space Group, "STARS Conceptual
Framework for Reuse Processes (CFRP)/' Volume I: Definition, Version
3.0, STARS-VC-A018/001/00, Seattle, WA, October 25,1993.

As an update to the 1991 STARS Concept of Operations discussed above in
[BOE91], the STARS effort defined a conceptual framework for reuse processes titled
the STARS Conceptual Framework for Reuse Processes (CFRP). This document is
Volume I of a two volume set; Volume II provides guidance in how to use the
CFRP.

The CFRP is a reuse process framework whose scope is limited to identifying
the processes involved in reuse and describing, at a high level, how those processes
operate and interact. The document is targeted to the Program/Project Planner, the
Process Engineer and the Reuse Advocate. The CFRP flows down from the STARS
reuse vision and mission. Its authors believe that the CFRP provides a conceptual
foundation, a framework, and a set of high level requirements for the reuse
technology process and supporting tools needed to accomplish the STARS reuse
mission.

These processes are domain-specific in that reusable assets, the development
processes, and the supporting technology are appropriate and tailored for a
particular application domain. This concept is supported by process-driven
engineering, that is, engineering performed in accordance with well-defined
repeatable processes that are subject to continuous measurement and improvement
and enforced through management policies.

The CFRP consists of dual, interconnected "process idioms" called Reuse
Management and Reuse Engineering. The process idioms are further decomposed
into process families and these, in turn, are decomposed into process categories. The
full decomposition follows.

E-6

Reuse Management
Reuse Planning

Assessment
Direction Setting
Scoping
Infrastructure Planning
Project Planning

Reuse Enactment
Project Management
Infrastructure Implementation

Reuse Learning
Project Observation
Project Evaluation
Innovation Exploration
Enhancement Recommendation

Reuse Engineering
Asset Creation

Domain Analysis and Modeling
Domain Architecture and Development
Asset Implementation

Asset Management
Library Operation
Library Data Modeling
Library Usage Support
Asset Brokering
Asset Acquisition
Asset Acceptance
Asset Cataloguing
Asset Certification

Asset Utilization
Asset Criteria Determination
Asset Identification
Asset Selection
Asset Tailoring
Asset Integration

The bulk of the document provides details for all these processes and
subprocesses as the STARS Conceptual Reuse Process Framework. Differing from
the Boeing report published in 1991, this conceptualization of reuse processes
includes a more detailed look at planning and adds enactment and learning as
separate families of processes. This document also discusses the linking, recursion
and overlapping of these processes.

[CAC95] CACI, Inc. - Federal, "Systems Engineering and Technical Support for
DISA/Center for Software," Procedures for Qualification and Engineering
of Reusable Assets (Final), U.S. Department of Defense, Defense
Information System Agency, Arlington, VA., 1995.

Since the inception of the Software Reuse Program (SRP) in July 1992, DISA has
acquired many "lessons learned" which has resulted in re-direction. At the start, the
SRP focused on attaining Ada source code for a reuse library, namely the Defense

E-7

Software Repository System (DSRS). The original effort to re-engineer assets to
make them more generic, and thereby, promote reuse never fully matured as
initially thought. Besides being very costly to re-engineer components, the demand
for these assets did not justify the time and expense. Users generally wanted to
incorporate their own changes to accommodate their own needs. In addition, user
feedback indicated that the SRP was not meeting the reusers' real requirements,
needs that go beyond Ada source code.

One of the results of this re-direction has been to eliminate certification of
assets at Levels 1-4 as reported in [MER93] that follows in this section of the
annotated bibliography. This change has cut the costs incurred with dedicated re-
engineering, allowing more effort to be spent on acquiring a wider range of reusable
assets.

[CAL91] Caldiera, Gianluigi and Victor R. Basili, "Identifying and Qualifying
Reusable Software Components," IEEE Computer, February 1991, pp. 61-70.

Caldiera provides a framework of component attributes to help assess its
reusability. Figure E-2 shows his "fishbone diagram" that represents the reusability
factors and their relationship.

Caldiera associates four metrics to measure these factors and predict the
likelihood of reusability. The four selected metrics are defined as follows:

1. Cyclomatic complexity is defined as the cyclomatic number of the
control-flow graph of the program.

2. Regularity is defined as the economy of a component's
implementation (i.e., the use of correct programming practices).

3. Reuse frequency is the comparison of the number of static calls
addressed to a component versus the number of calls addressed to a
class of components that are assumed reusable.

4. Volume is based on the way a program uses the programming
language.

Each metric has a supporting formula to determine a quantitative value to
measure and predict these factors.

In a series of case studies, Caldiera applied his reuse framework using an
automated tool and collected metrics. His case studies show that volume, regularity,
and reuse-specific frequency have a high degree of independence. Highly reused
components have volume and complexity lower than the average, that is, about one
fourth of the average. His case studies show that, in general, about only 5-10% of the
existing code should be analyzed for possible reuse. Usually, this 5-10% of the code
accounts for a large part of a system's functionality.

E-8

Control

Within a
System

Commonality \
of Function

Extraction

Variety of
Functions

Within a
Domain

Packaging

Retrieval Integration

/ / Use
in new

Systems
Modification

Quality

Performance

Figure E-2. Factors affecting reusability [CAL91]

[CHU93] Chubin, Sherrie and David Eichmann, David Card, Duane Hybertson,
"Software Reuse Program, Software Metrics Plan," Defense Information
Systems Agency, Joint Interoperability Engineering Organization, Center
for Information Management, DISA/JIEO/CIM, Version 4.1, August 4,
1993.

This Reuse Metrics Plan provides a strategy for identifying, collecting and
reporting metrics necessary to assess and improve software reuse processes
developed by DISA/JIEO/CIM reuse activities. These activities are collectively
known as the Software Reuse Plan (SRP) and is in direct response to the strategy to
"define metrics to evaluate success" specified in the DoD Software Reuse Vision and
Strategy document of 1992.

Two metrics workshops were held to determine a relevant metrics program.
The Goal/Question/Metric paradigm of Basili was used to develop questions that

E-9

identified what to measure.1 The plan identifies four roles in a reuse metrics plan
and their relationship to the flow of products and services among them:

1. Repository Manager

2. Program/Project Manager

3. Domain Manager

4. DoD Executive

Details of these roles and activities were identified and a metrics plan for
collection and validation was developed in the document. Results can be used in
estimation, decision-making and process /product improvement. To ensure that
metrics are useful and reliable, each metric is reported quarterly.

[COM95] Comer, Edward Rv P1420.1/D5, Guide for Information Technology -
Software Reuse - Asset Certification Framework, Technical Committee 4:
Asset Evaluation and Certification of the Reuse Library Interoperability
Group (RIG) September 1995.

This document describes an Asset Certification Framework that identifies asset
certification techniques for a reuse library. An asset certification framework is
defined as a technique and associated data model for organizing, selecting,
communicating and guiding the process of certifying assets. The certification
framework defines a standard interoperability data model for interchanging asset
certification information.

The Asset Certification Framework is designed to be a annex to the standard
Extended Interoperability Data Model (EIDM) being developed by the Reuse Library
Interoperability Group (RIG). The EIDM adds to the P1420.2 Basic Interoperability
Data Model (BIDM) by way of its provision for systematic extension. The BIDM
defines the minimal set of information about assets that reuse libraries should be
able to exchange to support interoperability.

The class hierarchy of the BIDM begins with a RIG object consisting of an asset,
an element, a library, and an organization. The BIDM is extended by adding an
element type. This element type is related to a certification policy of a library class
object.

Four levels of reuse assessment were defined; unassessed, described, analyzed
and tested. These levels are used in conjunction with an evaluation process. The
software quality evaluation process used in the Asset Certification Framework is
derived from the following two standards:

1 Basili, V.R. and H.D. Romback, "The TAME Project: Towards Improvement-Oriented Software
Environments," IEEE Transactions on Software Engineering, Vol. 14, No. 6, June 1988, pp. 758-773.

E-10

1. ISO/EC 9126:1991, Information Technology - Software Product
Evaluation and Quality Characteristics and supporting guidelines

2. IEEE P1061, the Standard for Software Quality Metrics Methodology

Using a subset of the certification quality factors of those identified in IEEE
P1061, the resulting Asset Certification Framework provides a cohesive structure to
derive a metrics methodology and a communication mechanism for management
and technical personnel.

The document suggests a set of certification quality factors as follows:
completeness, correctness, efficiency, fault tolerance, functionality, maintainability,
portability, presentation, reliability, reusability, usability and domain-specific safety,
precision and survivability.

[COM96] Comer, Edward R., P1420.1A/D6, Guide for Information Technology -
Software Reuse - Asset Certification Framework, Technical Committee 4:
Asset Evaluation and Certification of the Reuse Library Interoperability
Group (RIG) January 1996.

As an update to the previously annotated reference [COM95] in this section, the
September 1995 Guide for Information Technology, Software Reuse and Asset
Certification Framework, was provided in January 1996. The differences were slight
and are identified below:

1. Descriptions for four categories of reuse assessment were
documented.

Unassessed - characterization of an asset by name only.

Described - characterization of an asset's meta data, descriptive
information about the asset and its intended use.

Analyzed - certification of an asset's properties using inspection or
static analysis methods.

Tested - certification of an asset's properties or behavior during
execution.

2. The detailed data model eliminated the "Quality Factor Type" and
was decomposed to only the preceding level of "Certification Quality
Factor." This data element contains an description and can include
the information about the quality factor type.

These minimal changes from industry review indicate that this work product
of the IEEE Standards Project is relatively stable; however, it is still subject to change
until its final approval.

E-ll

[DIS95] Defense Information Systems Agency Center for Software, DoD Software
Reuse Initiative, "Software Reuse Business Model (SRBM) Technical
Report, January 31,1995.

This reference, also used in the previous appendices in the categories of
Business Strategies and Asset Production defines the area of responsibility called
Application Engineering Support. The activities in this area of responsibility
consists of operating the library /distributing assets and supporting asset usage.
These two activities include the following tasks:

• Operate the library/Distribute assets - consists of managing the library
administration, operating and supporting the library and its users,
and installing automation to support asset usage

• Support asset usage - consists of applying the asset
creator/maintainer's expertise to support asset use on programs, train
users in the use of the assets and asset support tools, and support
analysis of asset capabilities to meet program requirements

As such, the SRBM is able to integrate many aspects of the reuse context;
domains, business strategy, the reuse process, and reuse libraries to make an
integrated reuse framework. The SRBM defines a general framework and a
particular instance of that framework is possible dependent upon the chosen
parameters for each of the variables.

[DOD94a] DoD Software Reuse Initiative (SRI), Technology Roadmap, Version 2.0,
Volume 1: Technology Assessment, October 4,1994.

This Software Reuse Initiative report assesses software reuse technology as not
yet matured to the point where a single conceptual framework is accepted by the
software community. Several attempts have been made. For example, Biggerstaff
and Richter characterized software reuse technologies from the systems involved
using a survey of the field.2 Kruger used a similar perspective with a taxonomy
composed of abstraction, selection, specialization and integration. 3 These two
spawned a number of approaches that overlapped one another (e.g., compositional
reuse, software "backplanes," software "mining," and software repositories). This
report provides details on generative approaches, method fusion, model-based,
library-based languages and how they related to the Conceptual Framework for
Reuse Process.

2 Biggerstaff, T., and C. Richter, "Reusability Framework, Assessment and Directions," IEEE
Software, Vol. 4, No. 2, pp. 41-49, March 1987.

3 Fruger, C.W., "Software Reuse," ACM Computing Surveys, Vol. 24, No. 2, pp 131-183, June 1992.

E-12

Recent approaches in software reuse have focused on process and
formalization. Bowles defines the following three dimensions of software reuse:4

1. A shift from horizontal to vertical domains

2. A shift from individual to project to enterprise focus

3. A shift from code to design to concept to abstraction

The SRI believes that navigation through these three dimensions outlines an
assessment mechanism for the maturity of a reuse capability similar to the SEFs
CMM. Capability models for reuse have been proposed in the SPC Reuse Adoption
Guidebook 5 and by the STARS program in 1991 and in 1993.6'7

[DOD95a] Department of Defense, "Software Reuse Symposium/' March 23,1995,
Huntsville, Alabama.

The Software Reuse Symposium not only provided a forum for new concepts
in software reuse, but also provided "tutorial-like" presentations tracing the history
of software reuse and evaluating the current state-of-the-art. The following are
current program and players in reuse:

Major DoD Reuse Programs

ARPA's Software Technology for Adaptable, Reliable Systems
(STARS)

Air Force's Central Archive for Reusable Defense Software (CARDS)

DISA's Software Reuse Program

ARC-Army Reuse Center

Internal Groups

Reuse Executive Steering Committee (RESC)

Management Issues Working Group (MIWG)

Reuse Technical Working Group (RTWG)

4 Bowles, A.J., "The Reality of Software Reuse," Vista, New Science Associates, Westport, CT,
pp 1-3, May 1993.

5 Software Productivity Consortium, "Reuse Adoption Guidebook, SPC-920510CMC, Version
01.00.03, Herdon, VA, November 1992.

6 Software Technology for Adaptable, Reliable System (STARS), "Reuse Library Process Model,"
IBM STARS Technical Report, CDRL 03041-002, STARS Technology Center, Arlington, VA, July 26,
1991.

7 STARS, "The Reuse-Oriented Software Evaluation (ROSE) Process Model, Version 0.5, Unisys
STARS Technical Report, US-05155/00/00, STARS Technology Center, Arlington, VA, 1993.

E-13

External Liaisons

Council of Defense and Space Industry Associations

ACM Special Interest Group on Ada, Reuse Acquisition Action Team
(RAAT)

Reuse Library Interoperability Group (RIG)

Industry Reuse Advisory Group (IRAG)

As defined in the DoD Vision and Strategy document of July 1992, software
reuse is the application of a reusable software asset to more than one application.
Reuse may occur within a system, across similar systems, or in widely different
systems. The Vision and Strategy for the Software Reuse Initiative is to move the
DoD to constructing software in a way that is supported by process-driven, domain-
specific and architecture-centric technologies. The DOD Reuse Strategy has five
major thrusts:

1. Implement a product line approach.

2. Develop a reuse-based software system and engineering paradigm.

3. Remove barriers to reuse.

4. Quicken technology transfer.

5. Make successes apparent.

Driven by these thrusts, two volumes of a technology roadmap were published
in January 1995.

The emphasis on reuse is increasing because of unprecedented downsizing and
movements to reinvent the Government. Defense conversion has included
activities to support software reuse such as the Ada mandate of 1991, commercial
standards adoption, and best commercial practices and benchmarks. Despite these
forces defense software development falls short. The Software Reuse Initiative
strongly feels that the remedy is to successfully leverage previously developed
assets.

To answer this need, the Conceptual Framework for Reuse Processes (CFRP)
was developed by the three STARS prime contractors, MITRE and the SEI. The
CFRP is a reuse process framework that provides the following the functions;
identifies processes involved in reuse; describes how they might operate and
interact; and facilitates managing the transition to reuse. A graphical view of the
CFRP and its components are illustrated in Figure E-3.

The CFRP addresses both the management and engineering perspectives. It
characterizes reuse in terms of producer-broker-consumer activities and can be used
as a checklist in planning a reuse program. It also can be used a way to compare and
contrast detailed processes, methods and tools to determine how they meet the
needs of an organization and/or project.

E-14

Within the CFRP is the Reuse Oriented Software Evolution Model (ROSE).
ROSE was developed by Unisys under the STARS program and provides a process
framework that bridges the gap between the CFRP and detailed methods. Also part
of the CFRP is the Reuse Library Facility (RLF). The RLF is a reuse support tool
developed by Unisys and implemented in Ada. RLF emphasizes a structured,
domain model-based approach and directly supports the ODM (Organization
Domain Modeling), a method for domain modeling. The RLF executes on a
SunSPARC station and has a coarse-grained integration to PCTE (Portable Common
Tool Environment).

At the Software Reuse Symposium, one of the presentations was given by staff
at the Software Engineering Directorate at Fort Monmouth at Army CECOM. This
agency maintains that hardware reuse has been successful because of abundant
"architectural standards" within systems. The role of a reuse library is to facilitate
(not enable) software reuse. The goal is to create software for today's systems that is
designed for reuse. For future systems that are developed, components will be
deposited and withdrawn from the library. The key to a useful library is the
"quality" of the software it contains (i.e., functionality, performance, reliability,
architectural compatibility).

Figure E-3. Conceptual Framework for Reuse Processes [DOD95]

E-15

The early emphasis on libraries within the DoD has now shifted to an
architectural focus since previously reuse libraries contained software from a variety
of sources that has not necessarily been designed for reuse. Current libraries have
resulted in numerous deposits and not many withdrawals.

Consequently, developing common templates is a better approach to improve
the productivity of the software development process. The emergence of domain
engineering helped to establish the concept of an architectural-centric product line.

[DUN92] Dunn, Michael F., John C. Knight, "Certification of Reusable Software
Parts/' Department of Computer Science, University of Virginia,
Charlottesville, VA, and the Software Productivity Consortium (SPC),
INF-92-001, August 31,1992.

Michael Dunn provides a strategy for software component certification and a
method to quantify the benefits of reuse. Dunn's approach is based on following
premise: Having guaranteed that a specific set of quality guidelines have been
adhered to in a set of components, it will then be much easier to verify the quality of
a system composed of those components.

Dunn defined three major certification attributes:

1. Life cycle phases

2. Level of granularity

3. Intended domain

Since certification qualities differ for each organization, a framework for them
needs to be flexible and accommodate differences.

In addition to techniques and guidelines for certification, the document also
established definitions for properties and techniques for domain analysis. Testing
definitions, testing guidelines, properties of systems and the economics of
certification were established. Two case studies were presented that applied the
techniques and guidelines. Dunn's concept was intended for member companies of
the Software Productivity Consortium (SPC).

[FRA92] Frakes, William, Ruben Prieto-Diaz and Edward Comer, "Ada Software
Reuse and Domain Analysis Seminar, presented at the Clarion Plaza
Hotel, Orlando, FL, November 16,1992.

In his presentation at this Orlando seminar, Bill Frakes defined a reuse
maturity model as shown in Table E-2. Frakes' reuse maturity model is an
enhancement of that which Koltun and Hudson developed in 1991. Frakes uses this

E-16

framework to assess reuse on a continuum of maturity levels from initial and
chaotic to ingrained, and across several business and technical dimensions.

Table E-2. Reuse maturity model [FRA92]

Initial, Chaotic Monitored Coordinated Planned Ruse Ingrained
Motivation,
Culture

Reuse
discouraged

Reuse
encouraged

Reuse
incentivized,
re-enforced,
rewarded

Reuse
indoctrinated

Reuse is the way
we do business

Planning for
reuse

None Grassroots
activity

Targets of
opportunity

Business
imperative

Part of strategic
plan

Breadth of
reuse

Individual Work group Department Division Enterprise wide

Responsibility
for making
reuse happen

Individual
initiative

Shared initiative Dedicated
individual

Dedicated group Corporate group
(for visibility not
control) with
division liaisons

Process by
which reuse is
leveraged

Reuse process
chaotic, unclear
how reuse comes
in

Reuse questions
raised at design
reviews (after
the fact)

Design emphasis
is placed on off-
the-shelf parts

Focus on
developing
families of
products

All software
products
genericized for
future reuse

Reuse Assets Salvage yard (no
apparent
structure to
collection)

Catalog
identifies
language and
platform-specific
parts

Catalog
organized along
application-
specific lines

Catalog includes
generic data
processing
functions

Planned activity
to acquire or
develop missing
pieces in catalog

Classification
activity

Informal, on an
individual basis
("in the head," or
"in the desk")

Multiple
independent
schemes for
classifying parts

Single scheme,
catalog
published
periodically

Some domain
analyses done to
determine
categories

Formal, complete,
consistent, timely
classification

Technology
Support

Personal tools, if
any

Many tools (e.g.,
CM), but not
specialized for
reuse

Classification
aids and
synthesis aids

Electronic
library separate
from development
environment

Automated
support
integrated with
development
environment

Metrics No metrics on
reuse level,
payoff, or costs

Number of lines
of code used in
cost models

Manual tracking
of reuse,
occurrences of
catalog parts

Analyses done to
identify expected
payoffs from
developing
reusable parts

All system
utilities,
software tools
and accounting
mechanism are
instrumented to
track reuse

Legal,
Contractual,
Accounting
considerations

Inhibitor to
getting started

Internal
accounting
scheme for
sharing costs and
allocating
benefits

Data rights and
compensation
issues resolved
with customer

Royalty scheme
for all supplies
and customers

Software treated
as a key, capital
asset

[MER93] Merritt, Steven, "Framework for Certification of Reusable Software
Components," DISA/CIM Software Reuse Program, February 26,1993.

This document provides guidelines for the certification of reusable software
components. Specifically, the following multiple levels of certification are
recommended as a practical way of providing a rating of components within a reuse
library:

Level 1 certification identifies the component as approved for
installation.

E-17

Level 2 certification identifies the component as released to users and
verified for completeness (i.e., source code must compile).

Level 3 certification identifies the component as tested with test data
and test results captured and available.

Level 4 certification documents a reuser's manual for the component
which is available for distribution.

The requirements of each level subsumes the requirements of the previous
level. In additional to the defined levels, a detailed process for certifying reusable
software components for installation into a reuse library was modeled using the
IDEF method.

[MOR89] Moore, John A. and Sidney C. Bailin, "Domain Analysis: Framework for
Reuse," Technical Report, Computer Technology Associates, Rockville,
MD, October 1989.

John Moore proposes a life cycle approach to domain analysis and reuse-based
software development. He believes that domain analysis is complementary and
parallels the on-going process of system development. Moore also believes that
reuse-based development relies on the economics of supply and demand. The
developers supply reusable resources which includes their domain analysis and
other associated reusable products.

[PAY88] Payton, Teri F., "Reusability Library Framework," Presentation at STARS
Foundations Workshop, Unisys Defense Systems, Paoli, PA, April 1988.

Unisys' Reusability Library Framework (RLF) project under STARS was
intended to provide a general framework and a set of tools to support the creation
and maintenance of a repository of reusable Ada software components. The RLF is
organized around application domains. Unisys believes the most effective gains in
productivity will be from using libraries of components from specific domains
during software development.

[SOL89] Solderitsch, James J., Kurt C. Wallnaw and John A. Thalhamer,
"Constructing Domain-Specific Ada Reuse Libraries," Proceedings of the
Seventh Annual Conference on Ada Technology, U.S. Army CECOM, Ft.
Monmouth, N.J., March 1989, pp. 419-433.

James Solderitsch believes that high impact reuse is achieved by focusing on
specific application domains as does the RLF. RLF supports domain modeling and
repository management. The domain modeling consists of knowledge
representation components interfaced to the library with varying functionality and
points of view. The repository management includes insertion, classification,
qualification, and retrieval of components.

E-18

Appendix F - Technical Paper

This appendix consists of a technical paper titled "Certification of Reusable
Software Components." SPS submitted this paper for juried review to the
Second IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), held jointly with the 6th Complex System Engineering
Synthesis and Assessment Technology Workshop (CSESAW '96) and the 4th
IEEE Workshop on Real-Time Applications (RTAW'96) on October 21-25,
1996, in Montreal, Quebec, Canada.

The goal of this conference is to bring together industrial, academic, and
Government experts from various disciplines, to determine how the
disciplines' problems and solution techniques interact with the whole system.
Researchers, practitioners, tool developers and users, and technology
transition experts will participate. Tracks are planned in the following areas:

AI and Intelligent Systems
Architecture, Tools, Environments, and Languages
Database and Data Management
Dependable Real-Time Systems
Formal Methods
Heterogeneous Computing
Software Engineering, Re-engineering, Reuse
Standards
Systems Engineering
Virtual Reality, Multimedia, Team-Time Imaging

This paper was submitted for the track discussing software engineering, re-
engineering and reuse. In this track as well as others, long-term research,
near-term complex system requirements and promising tools, and existing
complex systems and commercially available tools will be examined on a
level playing field.

F-l/F-2

Certification of Reusable Software Components

Summary of Work In Progress

Sharon L. Rohde , Karen A. Dyson, and Pamela T. Geriner, Ph.D.
Software Productivity Solutions, Inc., Indialantic, FL, USA

Deborah A. Cerino, USAF Rome Laboratory, Rome, NY, USA

Abstract. This technical paper provides a
synopsis of in-progress research and
development in reuse and certification of
software components at Rome Laboratory of the
Air Force Materiel Command, Rome, NY. A
Certification Framework for software
components has been developed which is
sensitive to varying domains, business strategies
and asset types. A cost benefit plan, an
operational concept, a suite of certification
tools, and a prototype have been defined. Field
trial procedures have been developed, initially
applied, and the results reported. Additional
field trials are planned for Maxwell Air Force
Base, Gunter Annex, Alabama, and
Underwriters' Laboratory, Research Triangle
Park, NC.

Motivations. It has been estimated that the
U.S. Department of Defense (DoD) spends in
excess of $24 billion per year to develop and
maintain software for weapons, command and
control, and other automated information
systems [1]. The increase of software intensive
systems in conjunction with rising software
development and maintenance costs has resulted
in the need to identify methods that will
accelerate development schedules, lower cost,
and improve quality. To address this problem,
the DoD established a program in November
1991, for implementing initiatives in software
and other information technologies. As part of
this program, the Director for Defense
Information proposed a software reuse initiative
to build partnerships among users and suppliers
of reusable components as well as the research
and development community. Developing
certification standards for components was one of
the key elements of the DoD's software reuse
strategy.

The DoD's software technology strategy
also states that the savings from reusing software
assets is estimated to be $11.3 billion in
constant 1992 dollars by the year 2008. The
General Accounting Office reports that "benefits
go beyond cost saving to include substantial

increases in productivity for avoidance of rework,
and added software quality through the use of
tested components [1]." Recognizing that
software will not be reused unless its quality can
be accurately and effectively determined, Rome
Laboratory (RL) of the United States Air Force
Materiel Command, Rome, NY, established a
research program in reusable software asset
certification. Certification is expected to increase
the reduction of software costs by stimulating
component reuse and reducing the amount of
rework required [2].

Project. In January of 1994, RL began an
exploratory development effort entitled
"Certification of Reusable Software Components"
(CRC). The goal of this technology thrust at
RL is to make certification usable, practical and
cost-effective. CRC has the following project
objectives:

Select only the practical, usable, and cost-
effective subset of reliability and quality
techniques that improves the confidence in
reusable software.

• Synthesize these techniques into a cohesive
framework that is sensitive to different user
certification requirements.

• Make certification understandable, practical
and usable for the typical engineer by hiding
the theories and complexities.

• Design a cost-effective certification process
in terms of a return on investment with
quantified costs and benefits.
Refine and demonstrate a piece of a
Certification Framework that is usable,
pragmatic, and cost-effective for near-term
application in Government, contractor and
commercial reuse environments.

RL's 20-year legacy of research in software
quality, measurement, test and verification
provides an excellent foundation for certification
research and development.

The prime contractor for CRC is Software
Productivity Solutions, Inc., Indialantic, FL,
with subcontractors from General Research
Corporation, Santa Barbara, CA and VeriQuest,

F-3

LLC, Raleigh, NC. The distinguished Project
Review Team consists of Ms. Deborah Cerino,
RL's Project Manager and representatives from
Underwriters' Laboratory, Raleigh, NC, and
MITRE, McLean, VA.

With the downsizing and reorganization
within the Government, the pressure is on to
demonstrate transferable, usable technologies. To
facilitate transfer of certification technology, RL
is initiating a Memorandum of Agreement
(MOA) with the Gunter Annex of the Maxwell
Air Force Base, AL, through Ms. Judy Roberts,
Program Manager of the Air Force's Reuse
Center (RC). Gunter is planned as a beta test
site for trial use of the certification technology
developed under CRC. Gunter's planned
participation will validate the underlying ideas
while providing valuable information fa-
enhancement, refinement and continued
exploration.

Measures of Success. Early in the CRC
project, three measures of success were defined as
appropriate for this research and development
effort. Figure F-l illustrates how CRC's
measures of success span three areas: Innovation,
Experimentation and Validation. The
innovation "wedge" of this upwardly progressing
arrow is our theoretical development of new
certification concepts. Experimentation, the
second wedge, is the application of these
theoretical developments in a laboratory
environment. Validation is achieved through
analysis of the results of applying our theories to
real-world situations. A preliminary project
assessment using each of these three measures
concludes this paper.

Definitions. Traditionally, the term
certification has been used to refer to a process
whereby an independent organization confirms
that products meet certain requirements [3].
Within the software reuse community, the term
refers to a variety of activities including
inspection and documentation of reusable assets
as well as quality evaluation and assessment. For
CRC, certification refers to a process in which
inspection, analysis, and testing techniques are
used to achieve assurance of the quality of
reusable assets. This certification process may
be performed by a reuse repository, by a reuser,
by an independent organization providing such
services, or by a development organization.

State of the Practice. The Defense Information
Systems Agency (DISA) surveyed a group of
repository personnel and experts on reuse [4].
DISA found that there was very little empirical

data on either code asset or non-code asset reuse.
In addition, their findings indicated that 70% of
the respondents agreed that reuse certification is a
necessary activity, 45% were not aware of any
standards or do not use standards in their
certification, and 90% did not know the actual
cost of certification. Consequently, this DISA
study recommended that cost and benefits of
certification be evaluated in order to provide the
DoD advice on future resource allocations for
certification activities.

Several other studies have assessed the state-
of-the-practice of certification for reuse.
Development reuse organizations "wanted the
Government to 'certify' the testing level that a
component has undergone and the reliability of
the component so that a contractor does not have
to duplicate similar testing procedures [5]."

One area that requires more research is
certification criteria. Current reuse programs
have indicated that their main concerns are
centered around the criteria of completeness,
correctness, understandability, and modularity
[6]. Overall, the conclusion of studies such as
these is that the state-of-the-practice of
certification is still immature and further research
is needed in certification processes, techniques,
and tools in order to identify the cost-effective
approaches.

Reuse Context. To bound the scope of the
proposed work for this project, we constructed a
diagram of the reuse context to determine our
realm of operation. The reuse context is the set
of circumstances and requirements within which
reuse is carried out. Since certification is a part
of the overall reuse process, it was necessary to
determine which elements of the context affect
certification and which ones are affected by
certification. Figure F-2 illustrates our context,
the Reuse Context for Asset Quality
Certification.

This reuse context consists of several
elements:

Business Strategies
Domain
Asset Type
Reuse Framework
Reuse Library
Asset Production
Asset Selection
Asset Certification

The elements of Business Strategies, Domain,
and Asset Type drive the Frameworks for both
reuse and certification. The Domain refers to
either the application domain for which an asset
is developed or the application domain in which
an asset will be reused. To determine the

F-4

particular domain for a reuse context, a domain
analysis should be performed.

Asset Production, Asset Selection and Asset
Certification are basic reuse activities within the
Reuse Process, and all may be performed using
an associated Reuse Library. Asset Production
is the process by which an asset is developed and
made ready for inclusion in a library or
repository. Asset Selection is the process by
which a potential reuser searches the library and
selects candidate assets for use in a new system.
Asset Certification is the process by which an
asset is evaluated for conformance to the
requirements it must satisfy to be reused. These
activities of the Reuse Process are driven by the
Reuse Framework through guidelines, standards,
classification techniques and measurement.

Within the reuse context, the focus of CRC
is upon a subset of the Reuse Framework called
the Certification Framework (CF) as well as its
algorithm for asset certification. Very little work
has been done in these areas, yet both are
influenced by the other elements of the reuse
context. Using this reuse context, we
documented a literature survey of research in the
areas of domain analysis, business strategies,
asset production, asset selection and reuse
frameworks [7]. This survey provided the
technical foundation for our effort and its results
impacted our development of the CF.

Certification Framework. The purpose of the
CF is three-fold:
1. Define the elements of the reuse context that

are important to certification.
2. Define the underlying models and methods

of certification.
3. Define a robust, decision-support technique

to construct a context-sensitive process for
selecting the techniques and tools and
applying them in order to certify assets [8].

A tabular view of the CF is shown in Table 1
and vertically lists the elements that compose it;
the software reuse business model [9] [10], the
domain [11], asset type, quality factor [12] [13]
[14], non-conformance class, certification
techniques, and the certification process. The
CF provides a broad view of the reuse context.
We are conducting a series of field trials based
upon particular threads through the tabular view
of the CF, using specific attributes in each of the
vertical elements.

Cost/Benefit Plan. During the CRC effort, we
also developed a Cost/Benefit Plan that describes
a systematic approach to evaluating the costs and
benefits of applying certification technology
within a reuse program [15]. The plan focuses

on the benefits of certification in terms of risk
reduction; it quantifies the risk reduction effect in
terms of cost avoidance. The plan includes a
synopsis of general reuse cost/benefit models as
additional supporting materials.

The cost model for certification is based on
the type of error (or defect) and the ability to
detect its presence as it impacts the cost of
rework. Since resources usually prohibit
exercising all possible defect detection
techniques, the model determines the order in
which methods should be applied in a
certification process to maximize benefit, in
terms of reduced risk or rework due to defects.

Our approach maximizes rework avoidance
with respect to a technique's defect detection
effectiveness, investment cost, and incremental
cost. As identified in equation (M-5), our
stepwise certification cost effectiveness algorithm
is used not only to calculate the costs and
benefits associated with defect detection methods,
but also the order in which the methods are
applied. The result is a certification algorithm
that can be optimized for a specific organization's
requirements.

Since most organizations may not have all
the information available to exercise our
certification algorithm, we defined a default
profile, based on empirical data collected from
studies of industry projects. Our default profile
can be used to "get started" and can be fine-tuned
with organizational data, as it becomes available.
Our default profile is optimized for the quality
factor of "Correctness" and the asset type of
"Code." If organizations are interested in other
quality factors, the CF provides guidance on the
selection of other techniques and tools.

Process. Given the CRC CF and the
Cost/Benefit Plan, we constructed a generic,
context-sensitive default certification process, as
shown in Figure F-3. The default certification
process consists of four main steps: Readiness
Assessment, Static Analysis, Code Inspection
and Testing. The default process certifies code
components (as opposed to other types of
reusable assets) and addresses the certification
concerns of Completeness, Correctness and
Understandability. We developed detailed
procedures, data collection forms and guidelines
to support the successful execution of the default
certification process in our field trials.

Tools. Prior to conducting the field trials, we
developed a method for selecting tools based on
certification tool requirements. Using this
method, we derived a "best bet" list of candidate
tools that could be effectively used for

F-5

certification [16]. This list of candidate tools
represented the best value in terms of
functionality, ease of use, price, performance and
integration. The recommended tools are
intended for a non-developmental certification
organization; that is, one that has no existing
tools and does not actively develop software.
The recommended tool list would be quite
different if the organization had existing tools and
was actively engaged in software development.

From this "best bet" list, the following tool
environment was selected for the initial field
trial:

Ada Wise - provides static analysis of alias
usage, elaboration order and order
dependencies

• Logiscope - provides static and dynamic
analysis of control flow diagrams, and
structural testing support

• AdaQuest - provides static analysis of style
guidelines, size and complexity

The Rational APEX environment supplied the
compiler, debugger and code manager while
executing on a Sun SPARCstation with the
Solaris 2.4 operating system.

Field Trials. The field trials are a "hands-on"
test of the default certification process as applied
to an asset. Results of the trials help assess the
accuracy and understandability of the procedures
to conduct certification, the effort required to
collect data, and the effectiveness of techniques in
detecting defects in assets.

We conducted an initial field trial by
selecting an asset to certify, sized at a two staff-
week effort (i.e., employing one Certification
Analyst and one Certification Engineer). We
selected asset #157, the ProGen utility, from the
ASSET (Asset Source for Software Engineering
Technology) repository distributed on the
Walnut Creek Ada CD-ROM.

The ProGen asset is 1,543 logical lines of
code (Ada semicolons), or 4,387 physical lines
of code (non-blank lines). It consists of 10 Ada
packages. The asset was large enough to not
be trivial, and small enough to be certified
within a two staff-week effort. ProGen is a utility
program that automatically generates prologues
for Ada code files. It extracts information such as
pragmas, types and representation clauses to
construct a prologue. The asset includes a main
procedure to generate a single executable. It had
no recorded defect history.

The Certification Analyst reviewed the
ProGen source code by desk-checking and found

2 major defects and 11 minor defects.1

Therefore, the Certification Analyst seeded 5
additional major defects into the asset to provide
a significant number of major defects known to
her in advance of the field trial. No minor defects
were added. The seeded defects were not created
in an attempt to duplicate a particular defect
profile (i.e., distribution of defect types). The
known defects were not shown to the
Certification Engineer prior to conducting his
tests.

Results. The results of the initial field trial and
its data analysis reported here describe the defect
detection, the asset's defect profile, and the
effectiveness of the techniques used. Additional
details regarding secondary findings are available
[17].

Many more natural defects were found in the
asset during the field trial than were known prior
to the start. Figure F-4 shows how many defects
were found versus how many are known to exist
at completion of the field trial. Defects are
counted as unique defect reports (i.e., if the same
defect was detected by more than one technique,
it was counted only once). Defects categorized as
not found must be, by definition, either seeded
defects or those found by the Certification
Analyst during her desk-check code review.

Figure F-5 indicates the defect profile of the
asset in terms of the known defects. Note that
there are seven uncategorized defects that were
found during testing. It is important to
understand that defects reported during testing are
actually failures, and it is not until a failure is
debugged that it can be attributed to specific
units and lines of code. Debugging was not
done as part of the field trial.

As shown in Table 2, the defect density of
the asset's major defects, including the seeded
defects, is about average for Ada code [15].
Major defects, as defined for the field trials, are
equivalent to what are typically reported as
defects (or errors) in industry. The number of
minor defects was surprising; however, most of
these were style guideline violations.

Figure F-6 compares the asset's defect
profile, including both major and minor, seeded
and natural defects, to the default profile. One
notable difference is that there is a much lower
proportion of computational defects. A likely
explanation for this difference is that this
particular asset is not computational in nature.

1 A major defect is defined as an error that prevents
completion of a certification step or results in a
failure during testing, whereas a minor defect may be
non-conformance to a style guideline.

F-6

This finding indicates that we cannot assess the
effectiveness of our default process in detecting
computational defects based on this initial field
trial.

In certification, it will typically be the case
that an individual asset defect profile is different
from the default profile of any given group of
assets. The more that is known about the
expected defect profile of assets to be certified, the
more cost-effective a process can be designed to
certify them. For example, if a group of assets to
be certified is known not to be computational,
then one would not need to include a technique
that is effective at detecting computational
defects.

Another aspect of technique effectiveness can
be derived from Figure F-4, previously
described. All but one of the known major
defects was found, and the one not found was a
seeded defect. Effectiveness of the default
certification process at finding defects is better
represented by the proportion of the total seeded
defects found than by the proportion of known
defects found. This is because there are probably
additional natural major defects in the asset, so
the total number of defects in the asset is
unknown. Therefore, this field trial resulted in
80% effectiveness at detecting seeded defects, as
shown in Table 3.

Figure F-7 indicates the cumulative
effectiveness of the steps in the certification
process where effectiveness is defined as the
proportion of known defects found. From this
we can draw several important conclusions. We
cannot, however, claim that the combined
effectiveness of the default certification process is
90%. As discussed previously, we do not know
the total number of defects in the asset.
Furthermore, based on the effectiveness at finding
seeded defects, we have reason to believe that
more natural defects exist.

Again looking at Figure F-7 and the first
certification step, Readiness Assessment, there
were no defects found. This result indicates that
all code needed to create an executable was
available and compiled without error. Readiness
Assessment was intended to address the
certification concern of Completeness.

As for the Static Analysis step, only minor
defects, and no major defects, were found in the
asset. However, the 55% effectiveness rating
shown on the graph may be misleading. The
automated tools used in this step are virtually
100% effective at finding the defects that they are
designed to find. The effectiveness rating
indicates that what the tools are designed to find
were only about half of the known minor defects
in the asset.

The Code Inspection step found only one-
third of the major errors. This was
disappointing, and likely explanations are as
follows:

Highly effective inspections reported in the
literature are usually multi-person techniques
and our certification process used a single
inspector technique (i.e., the Certification
Engineer).
Our checklist approach for data collection
may focus too much attention on the
checklist at the expense of a deeper
understanding of the code.
The inspection technique may be weak at
finding logic defects.

And lastly, the Testing step, excluding the
cumulative effects of techniques from other steps,
found two-thirds of the major defects. This value
can be calculated by subtracting the effectiveness
of the Code Inspection step from that of the
Testing step. All defects found during the
Testing step were, by definition, considered
major defects.

In terms of certification, the asset failed in
two certification concerns, that is, Correctness,
and Understandability; the asset passed
Completeness. In practice, the Certification
Engineer would face the following choices with a
failure:

Reject the asset.
• Report the assert as uncertified and record all

known defects.
Return the asset to the donor and request
repair of known defects; repeat the
certification process after repairs.

• Repair the defects; repeat the certification
process after repairs.

Some certifiers may choose to include defect
repair as part of their certification process and
recertify after repairs have been effected,
depending upon the nature and the number of the
defects found. Repeating the certification process
ensures that the defects were repaired and detects
any new defects inserted as a result of the repair
activity.

Lessons Learned. An unexpected lesson
learned from this initial field trial was that
combining all of the steps in our certification
process was highly effective in detecting defects.
Each certification step tended to find different
types of defects. For example, Figure F-7 shows
that all of the major defects would have been
missed if we had performed only Readiness
Assessment and Static Analysis. The results
also indicate that we would not have wanted to
jump into the Testing step without having
performed the preceding three steps.

F-7

Because of this finding, we now believe that
a "single-technique-per-step" certification policy,
which is typical of many existing reuse
repositories, may not make sense. Instead, we
believe that techniques should be applied and
evaluated, in combination.

Our initial field trial provided valuable data
for future experimentation, as well as validation
and refinement of the certification process, the
tools, and techniques. These refinements will be
applied to the succeeding field trials planned for
Gunter and UL.

Prototype. A computer-based prototype that
automates many of the aspects of the CF is under
development and is planned for delivery to RL in
June 1996 at the end of the CRC contract. The
prototype can be accessed through the World
Wide Web through a CRC home page and
demonstrates features of the CF.

Conclusion. Much has been accomplished
under the CRC effort to date:
• An assessment of the state-of-the-practice for

reuse and certification and their supporting
technologies.

• A Certification Framework that is adaptable
to a wide variety of domains, business
strategies and asset types.

• A Cost /Benefit Plan that uses probable
rework as a measure of risk and shows the
economic value of certification in a reuse
program.

• A certification cost model that is tailorable
to an organization's requirements and
provides a method to tradeoff certification
benefits and costs.

• A certification algorithm that defines the
processes and tasks to isolate and analyze
defects by type and severity.

An evaluation of static analysis and testing
techniques that can be used to create a
certification environment that is site-specific.
Results from initial field trials and detailed
procedures and guidelines to perform
succeeding field trials at different sites.

Using the measures of success previously
defined, a preliminary assessment of our project
accomplishments is positive. Examples of our
innovations in theoretical developments include
the CF itself, the Cost/Benefit Plan and its
associated work products (i.e., the code defect
model and the cost/benefit model).
Experimentation was achieved by initial field
trials and other supporting items to execute the
field trials (i.e., field trial procedures and
guidelines, tools evaluations, user interviews and
operational concepts). Validation is planned
through application of our innovations to real-
world situations at Gunter and UL.

All of these achievements and their lessons
learned, however, should be viewed within the
context of the phases and milestones of
technology maturation as illustrated in Figure
F-8 [18]. Redwine found that the average
timeframe for a technology to mature from
Milestone 0 to Milestone 4 is approximately 15-
20 years. Widespread use can take another
decade. The technology of certifying reusable
software components was clearly in the Basic
Research Phase prior to Milestone 0 at the
initiation of the CRC project, even though some
supporting reuse technologies are more mature
(e.g., domain analysis, asset production, asset
selection, and reuse libraries). The products of
CRC have helped advance certification
technology into the phases of Concept
Formulation and Development and Extension.
Within this roadmap to technology maturation, a
plan for certification is feasible. Moving toward
the Popularization Phase and beyond is
achievable, but will require considerable time
and effort.

F-8

Figure F-l. Measures of success for CRC

71'"'§';'# ^^^^^^^M^piP^^

f-
Guidelines, ^

ifitflltlj

Reuse

Framework

1 Certification

| Framework

1

Asset
Production

R
E
U
S
E

L
1
B
R
A
R
Y

Domain
Standards

Classification,

Asset
Selection

Business
Strategies

Measurement

CF Algorithm ^ Asset
Certification Asset Type

Figure F-2. Reuse Context for Asset Quality Certification

F-9

Table F-l. Tabular view of the Certification Framework

S/W Reuse
Business Model Domain Asset Type Quality Factor

Non-
Conformance Techniques

Certification
Process

Vendor Owned
Domain

MIS Design Info Correctness Latent Compilation Process Definition

Gov't Supported
Standard

Avionics Document Completeness Robustness Static Analysis Procedures

Value-Added
Reseller

C2 Test Artifacts Understandability Validation Inspection Tools

Gov't Owned
Architecture

Automated Test
Equip.

Req. Specs Performance Interoperability Testing Data Collection

Gov't Owned
Domain

Weapon Systems Code Fault Tolerance Operational Formal
Verification

Certification Levels

Reengineering Communication Architecture Functionality • Benchmarking

Public Library Intelligence Database
Schema

Maintainability • Modeling

Commercial Library Process Controls Models Portability Other •

• Video Reliability •

• • Usability •

• • Safety Other

Other

Other

Security

Availability

Testability

Survivability

where

Equation (M-5)

max Cak = £" £"(/),- • RHi • LR) • DDy -]T ™ (Invj + Incj)

w.r.t ^m (Invj + Incj) < B

Cak = cost avoidance due to certification of asset k
Di = defect density for defect type i
RHi = number of rework hours for defect type /
LR = hourly labor rate
DDij = percent of defect type i detectable by technique j
Invj = investment cost for technique j
Ina = incremental cost for applying technique j
n = number of defect categories
m = number of certification techniques
B = budget for certification activities

F-10

Default Certification Process Overview

Readiness

• Pretty Print to standard
format

• Compile, Link, Execute

Fix Defects its]

Static
Analysis

Defects^

• Incorrect elaboration order
• Incorrect order

dependencies
• Erroneous aliasing
• Unreachable code
• SPC style guidelines

Code
Inspection

Single inspector
Code inspection
checklist

Testing

• Functional test cases
• Decision-to-decision

(DD) path coverage
stopping criteria

• DD path test cases

Figure F-3. Default certification process overview

90

80

<o70

| 60
o>
C50

0)
D

30
o
z

20

10

ProGen Certification Results
Defect Detection

Not Found

I Found

Major Minor

Defect Severity

Figure F-4. ProGen certification results of defect detection

F-ll

Total Known Defects in ProGen Asset

30
30 —„ ^m ■ ■ 28

re
Q

Minor

« 25 ;
o ^| Hi ^1 Major
8" 20
cc

o 15
d)
0)
Q 10;

d
Z 5

i 0 1

Defect Category

Figure F-5. Asset's defect profile

Defect Density

Defect

Defect Density

(defects/1000 physical lines)

Severity Asset's Average for Ada

Major 4 5

Minor 19 Data not reported

Table F-2. Asset's defect density

F-12

Defect Profile Comparison

50%

40%
w
o
0)

a 30% H H Default

« H ■■ ■ aProGen
o
•" 20%

^5
10%

0%
I

c o
1

(0
D

0)

1
o

5
'S <D
Q. c
E
o
Ü

Defect Category

o
CD

C

Figure F-6. Comparison of asset's defect profile to default profile

Table F-3. Effectiveness at detecting seeded defects

Found Known Effectiveness

4 5 80%

F-13

Cumulative Effectiveness at each Certification Step

o%
% Known Defects Detected

20% 40% 60% 80% 100%

Readiness
Assessment

« Static Analysis
(/)
c o
*3
«3
Ü
£ Code Inspection
v o

Major
-Minor

■ Both

Testing

Figure F-7. Cumulative effectiveness of certification steps

F-14

Basic Research Phase
Milestone 0 is marked by the appearance of a key idea wdeHying the

technology or a clear articulation of the problem.

Concepts Formulation Phase
Milestone 1 is marked by a clear definition of a solution approach via a

seminal paper or demonstration system.

Development and Extension Phase

Milestone 2 is marked by availability of usable capabiities.

Enhancement and Exploration (Internal) Phase

Milestone 3 is marked by a shift to usage outside of the
development group.

Enhancement and Exploration (External) Phase

Milestone 4 is marked by substantial evidence of value and applicability.

Popularization (40%) Phase
Milestone 4a is is the point at which the technology has been propagated

throughout 40% of the community.

Popularization (70%) Phase
Milestone 4b is the point at which the technology has been propagated

throughout 70% of the community.

Figure F-8. Phases and milestones for technology maturation [18]

F-15

BIBLIOGRAPHY

[1] General Accounting Office, "Software Reuse:
Major Issues Need to Be Resolved Before Benefits
Can Be Achieved," GAO/IMTEC-93-16, January
1993.

[2] Dunn, Michael F. and John C. Knight, Certification
of Reusable Software Parts, Department of
Computer Science Manuscript, University of
Virginia, August 1992.

[3] ANSI/ASQC Q9000-1-1994, American National
Standard, Quality Management and Quality
Assurance Standards - Guidelines for Selection and
Use, American Society for Quality Control,
Milwaukee, Wisconsin, August 1, 1994.

[4] Defense Information Systems Agency Center for
Software, Methods of Certifying Non-code Reusable
Assets, Detailed Report, DCA 1000-93-D-0066,
December 1994.

[5] Bundy, G.N. W. W. Agresti and W.R. Stewart,
Software Tool Support for Reuse Certification, The
MITRE Corporation, MTR940000109, September
1994.

[6] Software Productivity Solutions, Inc., Component
Certification, Interim Technical Report for the U.S.
Air Force Rome Laboratory, Contract No. F30602-
92-C-1058, May 1995.

[7] Software Productivity Solutions, Inc., Certification
of Reusable Software Components (CRC), Volume 1
- Effort Summary, Draft Interim Technical Report
for the U.S. Air Force Rome Laboratory, Contract
No. F30602-94-C-0024, April 1996.

[8] Software Productivity Solutions, Inc., Certification
Framework, Draft Interim Technical Report for the
U.S. Air Force Rome Laboratory, Contract No.
F30602-94-C-0024, February 1996.

[9] Defense Information Systems Agency Center for
Software, DoD Software Reuse Initiative,
"Software Reuse Business Model (SRBM)," U.S.
Army Space & Strategic Defense Command,
Technical Report, January 31, 1995.

[10] U.S. Army Space and Strategic Defense Command
Software Engineering Division, "Component
Evaluation Procedure (Phase II) Technical Report,
January 31, 1995.

[11] National Software Data & Information Repository
(NSDIR), "Metrics Collection and Submission
Guide, " Volume I - General Instructions, Volume
II - Repository Information Request, Volume III -
Recurring Data Form, Deputy Assistant Secretary
for Communications, Computers, and Logistics,
Office of the Assistant Secretary of the Air Force
for Acquisition, Version 2.0, 16 June 1995.

[12] Bowen, T.P., et. al., "Specification of Software
Quality Attributes." Technical Report RADC-TR-
85-37, Rome Laboratory, February 1985.

[13] Software Productivity Solutions, Inc., Task Area:
Software Quality Framework (SQF), Interim
Technical Report for the U.S. Air Force Rome
Laboratory, Contract No., F30602-92-C-0158,
October 1995.

[14] Comer, Edward R., et. al., P1420.1A/D6, Guide for
Information Technology - Software Reuse - Asset
Certification Framework, Technical Committee 4:
Asset Evaluation and Certification of the Reuse
Library Interoperability Group (RIG) January 1996.

[15] Software Productivity Solutions, Inc., Cost/Benefit
Plan, Draft Interim Technical Report for the U.S.
Air Force Rome Laboratory, Contract No. F30602-
94-C-0024, February 1996.

[16] Software Productivity Solutions, Inc., Tool
Evaluation for Certification, Draft Interim Technical
Report for the U.S. Air Force Rome Laboratory,
Contract No. F30602-94-C-0024, April 1996.

[17] Software Productivity Solutions, Inc., Certification
Field Trials, Draft Interim Technical Report for the
U.S. Air Force Rome Laboratory, Contract No.
F30602-94-C-0024, April 1996.

[18] Redwine, S.T. and M.M. Eward, "Software
Engineering Technology Transfer Practices,"
International Perspectives in Software Engineering,
January 1993, pp. 18-22.

AUTHORS' BIOGRAPHIES

Ms. Sharon L. Rohde is a Sr. Software
Engineer at Software Productivity Solutions,
Inc., Indialantic, FL. She is a researcher in
measurement, reuse and certification and its
application to software development.

Ms. Karen A. Dyson is a Sr. Software
Engineer at Software Productivity Solutions,
Inc., with expertise in developing measurement
tools, guidebooks and training to assess the
quality of software. She was responsible for the
development of the CRC field trials and the
analysis of the results.

Dr. Pamela T. Geriner is a Sr. Systems
Engineer at Software Productivity Solutions,
Inc., FL. Her areas of expertise are strategic
planning, economic analyses, business process
re-engineering, and total quality management.
Dr. Geriner was the technical leader and Program
Manager of the CRC effort. Previously, Dr.
Geriner was a departmental manager at MITRE's
Economic and Decision Analysis Center and a
professor at George Mason University.

Ms. Deborah A. Cerino is the Laboratory
Project Manager for CRC at RL in Rome, NY.
She has many years of experience in software
quality, reliability and reuse.

«U.S. GOVERNMENT PRINTING OFFICE: 1997-509-127-47205

F-16

t MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

