NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

BUILDING A DYNAMIC WEB/DATABASE
INTERFACE

by

Julie Cornell

Thesis Advisor: C. Thomas Wu

L —
4
-
-
P
December, 1996 ——
"‘--——
P,
oD
-

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1996 Master’s Thesis
4. TITLE AND SUBTITLE TITLE OF THESIS. BUILDING A DYNAMIC 5. FUNDING NUMBERS
WEB/DATABASE INTERFACE
6. AUTHOR(S) Cornell, Julie L.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

This thesis examines methods for accessing information stored in a relational database from a Web Page.
The stateless and connectionless nature of the Web’s Hypertext Transport Protocol as well as the open nature of the
Internet Protocol pose problems in the areas of database concurrency, security, speed, and performance.

We examined the Common Gateway Interface, Server API, Oracle’s Web/database architecture, and the
Java Database Connectivity interface in terms of performance and flexibility. Oracle’s approach was found to be the
most robust and best performing approach currently in use, although the Java Database Connectivity interface has
not yet been widely implemented.

Based on our research and experience implementing a prototype, we conclude that Web/database technology
is currently only appropriate for read-only type applications such as Decision Support Systems and Information
Delivery Systems. The database access methods presently available cannot support more advanced capabilities of
client/server type applications including client-side data validation, sophisticated user interfaces, and concurrency
among multiple users.

14. SUBJECT TERMS World Wide Web, Database, Internet, Security, Concurrency, 15. NUMBER OF
Performance, Client/Server PAGES 125
16. PRICE CODE
17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- | 20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

i

Approved for public release; distribution is unlimited.

BUILDING A DYNAMIC WEB/DATABASE INTERFACE

Julie Cornell
B.S., Santa Clara University, June 1991

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1996

Juiie Cornell

Author: C/) UL o) CO/LMV/{ //

Approved by:

C. Thomds W u, Thesis Advisor

Deborah Paquette Davis, Second Reader

Theodore Lewis, Chairman
Department of Computer Science

iii

v

ABSTRACT

This thesis examines methods for accessing information stored in a relational
database from a Web Page. The stateless and connectionless nature of the Web’s
Hypertext Transport Protocol as well as the open nature of the Internet Protocol pose
problems in the areas of database concurrency, security, speed, and performance.

We examined the Common Gateway Interface, Server API, Oracle’s
Web/database architecture, and the Java Database Connectivity interface in terms of
performance and flexibility. Oracle’s approach was found to be the most robust and best
performing approach currently in use, although the Java Database Connectivity interface
has not yet been widely implemented.

Based on our research and experience implementing a prototype, we conclude that
Web/database technology is currently only appropriate for read-only type applications
such as Decision Support Systems and Information Delivery Systems. The database
access methods presently available cannot support more advanced capabilities of
client/server type applications including client-side data validation, sophisticated user

interfaces, and concurrency among multiple users.

vi

TABLE OF CONTENTS
L. INTRODUCGTIONocooiiieeeeeeseeieieeteereesestesaesesasssssssessassessssseassesssesssessessesseenssenseensenns 1
A. BACKGROUND ..ottt e see e e ss e sae e e et 1
B. OBJECTIVES AND RESEARCH QUESTIONScovievereemerreemreeeeeceenesseesesnens 2
CLSCOPE ...ttt ettt ettt sttt et et et 3
D. METHODOLOGY ..ttt teresiesiesetesr e et ste st et e st e e s esae e estessaesssessesmees 3
E. MOTIVATION ...ttt ettt se e s s s eereeeeens 4
F. ORGANIZATION OF STUDY ...ottiiriireneiririnreneenesseseeeeseesesssessasesessessssessessenes 4
II. THE FUNDAMENTAL CHARACTERISTICS OF WEB/DATABASE
APPLICATIONS ...ttt ettt e see sttt et e te st sba e st e s e sa e aese s e e stessnos et enessaensensansesens 7
A. BACKGROUND ... eteieeieeieerteete e e seeteseeesaessaestessssses s essasssssaesassssssssensesnens 7
B. ARCHITECTUREcoottieirienteete st teee e seestese s eeseesaeeseasee st enesnesseennesnsons 7
C. ADVANTAGES OF THE WEB APPROACH.......c.cooieietecieeeeeee et 8
D. DISADVANTAGES OF THE WEB APPROACHccoociveeriecreeeeereeeeeee 10
1. Embedding State Information in HTML..........ccoooieiieeiniieeee, e 11
2. HTTP COOKIEScueeemieerieeneeeieee et e ieeaee e te it se st eeae et e st ae s e eseasse s smaasanseenees 13
3. Saving State Information in the Database...........cocceeeievierrereereceneererreeceeeees 14
III. DIFFERENT APPROACHES TO BUILDING A WEB/DATABASE
INTERFACE......oo ottt e ste e s see s teee e ee e aee st esseesaessassasssesseessasssassensensasssessesneen 17
A. BACKGROUND ...ttt ettt et vt e eaeese e et e as e enseneenseensenses 17
B. THE CGI APPROACH ..ottt eae e ene e e sae e e saeas 17
1. WhAt 1S CGI 7ttt vee e e er e ae e saa e eaae s 17
2. HOW D0ES CGI WOTK? ...ttt te s e seeeesssaesessae s aa e e aesnans 18
3. COMMUNICALION.eieuieiieieraeteareesteseteeetesteeseesaeaeseessesseesnssesseessenssesssssssseennes 19
4. Database ACCESS.....ueeeereureererareesieaeraseeereesessresstaessaensessassssessssssnsessessseessesnes 19
5. Advantages of the CGI ApProach..........cceeeeeeueeeeiereeeeieeee e e eeennan 20
6. Disadvantages of the CGI APPIOACHveeervmemereeeeeeeeseeeeeseeeseeeeneenes 20
C. THE SERVER API APPROACHcccotimiiririeieiereeteeetesieete et eee e seeneeseeseenens 21
1. What iS @ Server API?......oov oottt eneeas 21
2. Advantages 0f Server APL....... .o 23.
3. Disadvantages of Server APc.ocooioeioiceeeeeeeeeteee e 24
D. ORACLE’S WEB REQUEST BROKER/PL/SQL SOLUTION.........ccceveevvrueenee 25
1. ATCRITECTUTE. ...ttt ettt as e sns et e e s easeeneas 25
2. Database ACCESS...ueeeueeereeiarierieretreeeereersresteeeeeesseessesseessseesaseeeesseeseseesneesnnes 26
3. Advantages of WRB/PL/SQL......ccooirimimieiiere ettt 27
4. Disadvantages of WRB/PL/SQLc.coooivviuieierieeeeeeeeeeeeees SO 28
E. CLIENT SIDE DATABASE ACCESS VIA JAVA’S IDBC ..o, 28
L. What 1S JAVAT? ..ottt ettt ens s 28
2. What iS IDBC ...ttt ettt eneennon 29

vii

4. Disadvantages of Java/JDBCcocooueuiuieeeeeeeeeeeeeeeeeeeeeeeeeoeeeeeeoeoeeo 31
IV.RELATED ISSUES ..ottt eeee e eeeeeseesesses s e 33
ACOVERVIEW ..ottt es s e 33
B. SPEED AND PERFORMANCE ISSUESooooouemeeteeeee oo 33
C. CONCURRENCY ISSUES.......oioeeeeeeeeeeeeereeeeeseeeern et 35
D. SECURITY ISSUES ...c.ouuvuereeeeeeeeeeeeeeeseeseeeeesseeee e ee e 38
L. AUthentiCatION.veeeiteteieieiete ettt 39
2. EDCTYPHON. ...ttt ee s s e es e 40
3 FITEWALIS ... e, 41
V. CASE STUDY: OHA WEB/DATABASE INTERFACE ... 43
A BACKGROUND ..ottt ettt eve e e e ee e e 43
BUANALYSIS.....ce et e e e e e 44
1. Integration With Existing Web Site...........cocouvimomereeeeeeeeeeeeoeeeeoo 44
2L USETS vttt s st ee e s e ees e s e s 45
3. Speed and Performance...........e.wueueecuerveeceeeee e, 45
4. COMCUITEINCYvvrvretetereiieceecaeee e e et e e e sesee oo e 45
S SEOUIILY oottt ee e es e 46
6. DAtabasecvemiieiieeee e e 46
CoAPPROACH ... e e 46
D.DESIGN oottt ettt ettt e e s s s e eee e e 47
E. IMPLEMENTATION ...ttt e 48
F.INTEGRATING THE PROTOTYPE WITH THE PRODUCTION SYSTEM54
G. ANTICIPATED FUTURE ENHANCEMENTS/MODIFICATIONS ..o 54
VI CONCLUSION ..ottt eeeeeeseeees e e 57
AL SUMMARY ..ottt ee e e e 57
B. FUTURE DIRECTIONS ..ottt e e ee e 58
APPENDIX A. ENTITY-RELATIONSHIP DIAGRAM FOR THE OHA
DATABASE ...ttt s e ee e e eeooe 61
APPENDIX B. DATABASE SCHEMA FOR THE OHA WEB/DATABASE
INTERFACE.......o ettt ee e OO X
APPENDIX C. SCREEN VIEWS OF THE EXISTING OHA WEB SITE....ooo 67
APPENDIX D. SCREEN VIEWS OF THE OHA WEB/DATABASE INTERFACE73
APPENDIX E. PL/SQL CODE FOR THE OHA WEB/DATABASE INTERFACE......77
APPENDIX F. GENERATED HTML FOR THE OHA WEB/DATABASE
INTERFACE...........oetetneee et 91
viii

REFERENCEScccoooiiiinnne.
BIBLIOGRAPHY.cccceeveeee.

INITIAL DISTRIBUTION LIST

...

X

LIST OF FIGURES
1. Client/Server ATCHItECTUTIEcoeoveieieriieenteienteeseetet et eceaesaesseeseesssenessesssenessssnsanans 7
2. Web/Database Interface ArChiteCtUrecceveeeeeereeeeetenertreecee ettt eseee e eenees 8
3. Examples of Embedding State Information in HTMLccccccceoiiiconerceceiinennnncnnes 12
4. HTML with Embedded State Information as Displayed in a BIOWSET c.voreeereereereee. 13
5. Web/Database Access Using CGlL.......coooiiiiiiiiiiiieieec et 18
6. Process Configuration and Communication in CGIccccceveveiiniciivnnicniennncnene 22
7. Process Configuration and Communication in Server APIcccooevevervinvennnccnnne. 23
8. Oracle Web Server 2.0 ATChIteCTUIEeeeveeiereieeeeieeee ettt 26
9. A Web/Database Interface Using Java and JDBC........cccocovevinninnineneceeeeeeneeene 30
10. A Network Firewall Configuration............cceeevereerireeeeeeesenesiesesseressereesessseesseseescssens 42
11. The Implementation Process for the OHA Web/Database Interface..............ccocceuenncee 48
12. How HTML is Generated by PL/SQL Code.....cccvovoieeoiiiiiieieeeireereeee e 50
13. Example of Using the owa_util.tablePrint Utility.........ccoccemeiniiniivinineecreeecineee 53
xi

xii

LIST OF ACRONYMS
API Application Program Interface
CGl Common Gateway Interface
DBMS - Database Management System i
DCD Database Connection Descriptor
DFAS Defense Finance and Accounting Service
DLL Dynamic Link Library
DMDC Defense Manpower Data Center
DTIC Defense Technical Information Center
FTP File Transfer Protocol
GIF Graphics Interchange Format
HTML Hypertext Markup Language
HTF Hypertext Function
HTP Hypertext Procedure
HTTP Hypertext Transport Protocol
IBM International Business Machines
IP Internet Protocol
ISAPI Internet Server Application Program Interface
JDBC Java Database Connectivity
JFTR ' Joint Fedefal Travel Regulation
LAN Local Area Network
MIHA Moving-In Housing Allowance
MIME Multipurpose Internet Mail Extension
NC Network Computer
NCSA National Center for Supercomputing Applications
NSAPI Netscape Server Application Program Interface
ODBC Open Database Connectivity

OHA Overseas Housing Allowance

xiii

OWA Oracle Web Agent

PC Personal Computer
PDTATAC Per Diem, Travel, and Transportation Allowance Committee
PL/SQL Procedural Language / Structured Query Language
SQL Structured Query Language -
SSL Secure Sockets Layer
URL Uniform Resource Locator
VPOS Virtual Point of Sale
WRB Web Request Broker
WRBX Web Request Broker Execution Engine
WWWwW World Wide Web
Xiv

I INTRODUCTION

A. BACKGROUND

During the past several years, the World Wide Web has become increasingly
popular as a means of displaying and accessing information. The Web technology has
the potential for a tremendous impact on many aspects of our everyday lives, but
currently, the technology is still rushing to catch up with the expectations of users.
Although the Web has only been in existence for a relatively brief period of time, it has
already undergone a rapid process of evolution.

Initially, Web pages were used simply to display static information. Hypertext
Markup Language (HTML) files containing formatted text and images were stored on a
Web server, where they could then be viewed by users all over the world. This was an
extremely desirable capability, as the same data could transparently be presented to users
in various locations, running on various platforms, various networks, and using various
browsers. However, large Websites rapidly became unmanageable. The maintenance of
hundreds and even thousands of static files became a monumental task, given the volatile
nature of most data. Any change in the format or presentation of the Web page would
often have to be made by hand in multiple files. Fuﬁhemore, these static Web pages
tended to be lacking in content. Users often desired the ability to obtain more detailed
information which was not made available because of the difficulty of maintaining it.

These factors led to a second stage of evolution for the Web, in which HTML files
were generated by a program. In many cases, the information that companies wanted to
present on the Web was already stored in relational databases. Instead of extracting
information from the database and formatting it by hand, people began to write programs
to automate this process. This prevented a great deal of tedious HTML formatting, and
made maintenance much simpler, as any changes in the presentation or content of the
information would only have to be made in the program. An additional benefit was that

each of the pages would be consistent with one another. However, the HTML files still

had to be stored and maintained on the Web server, and the information had to be updated
from the database frequently in order to stay current. |
Because of the problems of generating and maintaining static HTML files, the
World Wide Web is currently entering a third stage of evolution. In this stage, Web
pages will be dynamically generated upon request, pulling data directly from a database.
The advantages of this approach are clear. Multiple files will no longer have to be stored
on the Web server. Changes in format will not have to be propagated throughout
multiple files. Also, the data presented will always be up to date and accurate, as it will
come directly from the database. The union of Web and database technologies is the next

logical step in this evolution process.

B. OBJECTIVES AND RESEARCH QUESTIONS

The purpose of this study is to examine and analyze methods for accessing
information stored in a relational database from a Web Page. In this thesis, I will discuss
some of the different alternatives for approaching this problem and summarize the
advantages and disadvantages of each approach. I will also explore various issues
involved in building a Web/database interface.

The primary research question to be addressed in this thesis is:

® What methods can be used to access a database from a Web Page and what are

the issues involved?

The subsidiary research questions are:

* Why would one want to incorporate information from a database into a Web

Page?

* What are the basic characteristics of Web/database applications and how do

they differ from traditional client/server database applications?

* What are the advantages and disadvantages of the various approaches?

* How will speed and performance issues be handled?

e What concurrency problems are associated with this method of database
access?
e How will security concerns be addressed?

e What will be the future of this technology?

C. SCOPE

This study will focus primarily on the examination and evaluation of different
approaches to solving the problem of integrating database information with the World
Wide Web. Although there are many database design and normalization issues that are
related to this topic, I will exclude these issues and assume that a relational database
already exists that one would like to access via the Web. In addition, issues relating to
Web server setup and administration will also be excluded.

Furthermore, in the area of security, I will focus on the issues that relate to the
security of the database itself and not cover the other security issues that surround Web

development.

D. METHODOLOGY

This thesis will be written in conjunction with a project that consists of taking an
actual existing database and creating a prototype for a Web Page that will dynamically
display information from the database based on user input. The database to be accessed
is the Overseas Housing Allowance (OHA) database, which is being developed by the
Defense Manpower Data Center (DMDC) on behalf of the Per Diem, Travel and
Transportation Allowance Committee (PDTATAC). I will incorporate the knoWledge
that I gain from working on this project with research of current literature and product

documentation to complete the study.

E. MOTIVATION

The integration of Web and Database technologies is an area that has the potential
to revolutionize the way that we use computers and access information, and in general,
change the way business is conducted. There is a great demand for the capability to
access détabase information through the Web. Many products are now beginning to
come onto the market which claim to easily link a database to a Web application, and in
addition, most major database vendors have begun to deploy their own software to make
their databases accessible to the Web. Because of the rapid evolution of the Web, it is an
extremely volatile environment, with new products and developments occurring almost
daily. As aresult, the field of Web development is surrounded by a great deal of hype
and misinformation. Despite the potential of this field, there are many dangers of rushing
into a technology that has not yet reached maturity. The urgency to develop this
capability may lead to products and procedures that are not well designed and have not
taken all of the issues into consideration. It is worthwhile to carefully consider all of the

issues involved and develop sound methods for connecting a database to a Web Page.

F. ORGANIZATION OF STUDY

This thesis is organized as follows: Chapter II contains a discussion on the basic
characteristics of Web/database applications and how they are fundamentally different ‘
from traditional client/server database applications. The advantages and disadvantages of
the Web approach are also discussed. Chapter III provides an overview of the different
approaches that are currently available, how they work, the advantages and disadvantages
of each, and particular issues relating to each approach. Chapter IV contains discussions
of speed and performance, concurrency, and security issues relating to Web/database
developrﬁent, and how different types of database applications are affected by these
issues. In Chapter V, a summary of the OHA Web/database case study is given. This

includes background information of the project, the tools and methods used to complete

the project, and specific issues and problems that were encountered. Finally, Chapter VI
contains speculation on the future of this technology and general conclusions.

The appendices contain the database definition, program code, generated HTML,
and screen views for the OHA Web/database interface.

II. THE FUNDAMENTAL CHARACTERISTICS OF WEB/DATABASE
APPLICATIONS ’

A. BACKGROUND

C.urrently, the most common method for users to access information in a database
is with a client/server database application, or front end. This is a program, usually
supporting a Graphical User Interface (GUI), that presents an easy-to-use interface to the
user, thus restricting the actions the user is able to perform and circumventing the need
for the casual database user to learn complex database manipulation languages such as
Structured Query Language (SQL). In many cases, these types of applications could be
replaced with a Web/database application. There are substantial advantages to the Web
approach, but there are also serious obstacles that must be overcome before the Web

technology can completely replace the need for client/server applications.

B. ARCHITECTURE

Client/server applications and Web/database interfaces may appear essentially the
same to the end user, but there are some very fundamental differences in how they work
that have an important impact on their functionality. In a client/server application, the
application program runs on the end user’s computer (the client) and communicates with
the database (the server) through a network or modem connection. The application
passes SQL statements through an Application Program Interface (API) to the database
and the results are returned to the client machine and displayed to the user. This scenario

is depicted in Figure 1.

- | SQL Statemen

— — [— |0=|e

==

Client running application
program

Database
Server

Network

Figure 1. Client/Server Architecture

Web/database interfaces operate differently from client/server applications.
Although there are several ways in which a database can be accessed through the Web,
they generally have certain characteristiés in common. Like client/server applications,
Web applications also display information in a GUIL. However in a Web interface, the
GUI is provided by the Web browser, which runs on the client machine, as opposed to the
GUI being provided by the particular programming language used in a client/server
application. In this scenario, the Web server provides an additional layer between the
client and the database server. The user specifies a Uniform Resource Locator (URL),
which uniquely identifies a particular Web server to connect to and an HTML file to view
ora program to run on that server. In order to access the database, a program must be
specified. The Web server interprets the URL and dispatches the program, which can
then access the database in a variety of ways (which will be discussed in Chapter III).

The program formats the retrieved data iﬁto HTML, which is then returned to the client

machine to be displayed in the browser. See Figure 2 for a diagram of this configuration.

L containing
7 formatted data—

[=

Client running browser

O L1
Web Server

Figure 2. Web/Database Interface Architecture

C. ADVANTAGES OF THE WEB APPROACH

As many application programmers, project managers, and other information
systems professionals have learned over the past several years, client/server database
applications are inherently difficult to build, deploy, and manage. Billions of dollars
have been invested in client/server technology, and many tools and products have been

developed in support of client/server applications, but it remains an extremely

problematic field. The characteristics of Web technology make it possible to circumvent
many of the problems associated with client/server development.

One of the biggest problems that plagues client/server applications is that of
deployment and maintenance. The application program executables, along with various
other system files that are necessary to run it, must be installed on each end user’s
machine. This usually requires that a setup or installation package be written, which is
then distributed to each of the users. It is often the case that different end users have
different system configurations, which causes conflicts with the client/server software
being installed and makes it necessary for the organization deploying the application to
provide extensive technical support to its end users. In addition, if a system is being
developed for use by end users running on different platforms, the application must be
ported to each of the intended platforms. Once the application has been deployéd, any
software changes require that the system be re-installed on each end user’s machine. All
of these factors make the administration of a client/server application a very tedious and
cumbersome task.

By using a Web application, all of these problems are avoided. The programs to
retrieve and manipulate data are stored in one place: either on the Web server or in the
database itself. This eliminates the need to install software on each end user’s machine
and makes software changes much easier. Furthermore, users running on different
platforms can use the same programs. There is no need to write different versions for
different platforms, as Web browsers are available for a wide variety of platforms and
HTML is machine independent. These advantages make Web technology a very
desirable alternative to client/server development.

Another problem that client/server developers face is that of connectivity.
Client/server applications have to deal with users connecting by modems, Internet
connections, and local network connections as well. Most commercial Database
Management Systems (DBMS) have their own network software, which requires
expensive site licenses for each user. Web/database applications do not have this
problem. The client simply needs to have Internet or modem access to the Web, and the

application developers need only worry about the connectivity between the Web server

and the database. Furthermore, because Web applications do not maintain a persistent
connection to the database, the database server can handle more users at a time.

One final benefit of the Web approach is that all users, no matter what their level
of sophistication, are generally very comfortable using a Web browser. This is part of the
appeal of the World Wide Web that has made it so popular. The fact-that many people
are already familiar with the use of a browser eases part of the learning curve associated
with the deployment of any application. This will make it easier to train end users on the
use of the system being developed. Like any application, a poorly written Web
application will be more difficult to use than a well written one, but the standardized

features of a Web browser provide users with a familiar framework.

D. DISADVANTAGES OF THE WEB APPROACH

While the advantages of the Web approach over client/server development may
seem overwhelming, there remain many obstacles for Web technology to overcome
before it can completely replace client/server technology.

Probably the biggest obstacle that Web developers have encountered is the
stateless nature of the Hypertext Transport Protocol (HTTP) server. Whereas
client/server applications have a program running throughout the various screens of the
application, Web applications consist of completely independent pages and have no
persistent program memory to save user state information. Therefore, it is necessary to
store user state information on the client side. As a simple example of why this is a
problem, suppose a corporate application requires the user to select from a list of
customers on the initial screen in order to display various information about that customer
on the next screen. In a client/server application, the customer name and possibly an
identifier would simply be stored as variables in memory and that information would be
accessible in subsequent screens. In a Web application, however, the information must
be explicitly passed on to the next page, as each Web page has no knowledge of previous
pages. In this example, there is only a small amount of state information to be passed to

the next page, but even in a relatively simple Web application the amount of data that

10

must be stored can quickly escalate to unmanageable levels. There are several methods

currently being employed by developers as workarounds to this problem.

1. Embedding State Information in HTML

One method for passing state information that is commonly used is to embed the
information directly in the HTML. HTML provides mechanisms for passing name-value
pairs of information from one Web page to the next. These name-value pairs are passed
along with the URL in the following format: DATA=123, where DATA is the name of
the identifier and 123 is the value that is to be passed. There are several ways to take
advantage of this feature, which are illustrated the examples in Figures 3 and 4. Figure 3
contains the actual HTML for the examples, and Figure 4 shows how these examples
would actually look to the user when displayed in a browser.

In Example 1, there are three links, each of which have name-value pairs
embedded directly into the URL. If the user clicks on the “Apples” link, the program
progl.pl (in this case, a Perl program), will be invoked, with a value of 1 for argument
DATAIL. Each of the links call the same program, but have different arguments, thus
causing different behavior.

By using form tags, a Web page can capture information that the user enters on
the screen and pass it as parameters to another program. There are a variety of form
controls available in HTML, including check boxes, list boxes, text boxes, and radio
buttons. Each of the form contfols has a NAME attribute and a VALUE attribute, which
constitute the name-value pairs. Example 2 shows a text control. In the case of a text
control, the VALUE attribute is the text that the user types in the text box. The actual
program to be executed is indicated by the ACTION attribute of the FORM tag. When
the user hits the SUBMIT button, the text that has been entered in the text box will be
passed as argument TEXT]1 to the program ‘prog2.pl. Example 3 demonstrates the use of
radio buttons. These operate in a similar manner. When the user clicks on one of the
radio buttons and hits the SUBMIT button, the corresponding value is passed to prog2.pl
as parameter RADIO1.

11

If some information needs to be passed throughout several screens, then hidden
fields can be used, as in Example 4. These fields can not be seen by the user, but they
can contain information that will be needed in subsequent screens. In this case, this
hidden field will generate the name-value pair “DATA3=HELLO”.

These methods are useful for passing small amounts of data between screens, but

for larger and more complex applications, other methods become necessary.

<HTML>

<HEAD>
<TITLE>Examples</TITLE>
</HEAD>

<BODY>

<!Q—Example 1-->

<H4>Embedding state information in the URL</H4>

<A HREF:"http://www.whatever.com/cgi-bin/progl.pl?DATAl=1">Apples

<A HREF:"http://www.whatever.com/cgi-bin/progl.pl?DATA1=2">Oranges

<A HREF:"http://www.whatever.com/cgi~bin/progl.pl?DATA1=3">Pears

<HR>

<H4>Using a form to create name-value pairs</H4>
<FORM METHOD="POST" ACTION:"/cgi—bin/progz.p1">

<!--Example 2: Using a text control to capture information entered--»
<!--by the user-->

Enter data here: <INPUT TYPE="text" NAME="TEXT1">

<!--Example 3: Using a radio buttons to capture information entered--»
<!--by the user-->

<INPUT TYPE="radio" NAME="RADIO1" VALUE="CAW" CHECKED> California

<INPUT TYPE="radio" NAME="RADIOL" VALUE="OR"> Oregon

<INPUT TYPE="radio" NAME="RADIO1" VALUE="WA"> Washington

<!--Example 4: Using a hidden field to pPass name-value pairs-->

<INPUT TYPE="hidden" NAME="DATA3" VALUE="HELLO" >

<!--When the Submit button is hit, the CGI pregram in this example--»>
<!--is invoked with the name-value pairs from the form as arguements-->
<INPUT TYPE="submit" VALUE="SUBMIT"> :
</FORM>

</BODY>

</HTML>

Figure 3. Examples of Embedding State Information in HTML

12

Bookmarks gpins

Directory Window
- v._:;;E@ : 2 Ha T =

‘Location:fie:///CIWORDDATA/THESIS/EXAMPLE HTM
{What's New! || What's Cooll | Handbook || Net Search | Net

Embedding state information in the URL

Apples
Oranges

Pears

Using a form to create name-value pairs

Enter data here: l
@® California
O Oregon

sl DocumentDone - 0 0 SR =7

Figure 4. HTML with Embedded State Information as Displayed in a Browser

2. HTTP Cookies

Another way to save state information on the client side is by the use of HT TP
Cookies. A cookie is simply a small text file that is stored on the user’s computer. A
Web/database application can write state information to a Cookie in the form of name-
value pairs, and then retrieve it on another page. Cookies can also have expiration dates,
so that the state information will expire between sessions.

This approach can be useful when the amount of information to be stored
becomes too large and cumbersome to be passed around in hidden fields or when an
application needs to save state information between user sessions. However, one

disadvantage to this approach is that not all browsers support Cookies. Therefore, if this

13

method is used, it is important to ensure that the end users are using a browser that does
support Cookies, or the application will not function properly. In addition, there are also
security concerns regarding the use of cbokies. It is considered unsafe to allow an
untrusted application to write information to one’s hard disk over the Internet for fear that

the information may somehow contain a virus. -

3. Saving State Information in the Database

One final possibility for solving the statelessness problem is to simply write
information back to the database and then retrieve it in subsequent pages. This method
could be used in instances where the amount of data is too large for either of the
preceding methods. However, this approach requires a great deal of planning in the early
stages of the application development, as the database design must take into account the
types of information that will need to be stored.

Perhaps future versions of the HTTP protocol will solve the problems caused by
statelessness, but in the current state of Web technology, it is up to the programmer to
maintain the user’s state.

Another problem with Web/database development that follows from the stateless
nature of the Web is that Web/database applications are also connectionless. In a
 client/server application, the user connects to the database and remains connected
throughout the session. Web applications, however, must establish a new database
connection with each new page. This problem has performance and concurrency
ramifications which will be discussed in Chapter I'V.

A third difficulty with Web/database interfaces is that the programmer has less
control over the user’s environment. While a client/server application developer has a
great deal of control over the appearance and execution of the application, the appearance
of a Web application is determined by the particular browser and platform that the end
user is running. The same characteristics that provide greater flexibility and portability in
Web applications also lead to a loss in control in the way the application looks and

behaves. A Web page that looks nice on the developer’s screen may have a very

14

different appearance to an end user. This is a tradeoff which must be considered in
deciding whether to choose the Web approach over client/server technology. Any Web
application should be viewed on a variety of browsers and platforms before being
deployed.

In addition to the lack of control over appearance, the Web developer also has less
control over the flow of execution than in a client/server environment. The navigation
capabilities of browsers allow users to go back to the previous screen at any time, start in
the middle of the application, or go halfway through the application and then quit. The
programmer must take all of these possibilities into consideration. ’

There are also significant drawbacks to the Web approach in the area of security.
Issues relating to Web/database security will be discussed in detail in Chapter IV.

One final obstacle to Web/database development, and a very substantial one, is
that although the Web has some powerful capabilities, the current state of Web
technology can not do everything that a client/server application can do. Somevof the
more complex functionality of client/server applications can simply not be replicated in a
Web application. For example, suppose an application design requires that the when a
user clicks a particular radio button, various controls on the screen become disabled.
Because a single Web page can not change dynamically once it is generated, and because
there is no mechanism to enable or disable controls, this behavior can not be duplicated in
the Web environment. Therefore, until Web technology progresses to include such
capabilities, client/server technology will still be necessary for many applications.

However, for relatively simple applications, a Web/database interface is a viable option.

15

T___

III. DIFFERENT APPROACHES TO BUILDING A WEB/DATABASE
INTERFACE

A. BACKGROUND

T‘ilere are currently a variety of approaches available to the problem of connecting
a database to the Web, and undoubtedly, better and faster ways will continue to be
developed. All of the approaches require that a program be run in order to access the
database. The primary factor that distinguishes one approach from another is where the
program is executed. It is possible for the database access program to run on the client,
on the Web server, or on the database server. Some other distinguishing characteristics of
Web/database interface methods include how the program is invoked, how the program is
able to access the database, and how information is returned to the client browser for
display. In this chapter, I will examine examples of different ways to implement a
Web/database interface including the Common Gateway Interface (CGI), Server API,
Oracle’s Web Request Broker/PL/SQL Agent solution, and the Java Database
Connectivity (JDBC) specification.

B. THE CGI APPROACH

1. Whatis CGI?

CGlI is a standard interface that has been developed in order to provide dynamic
content in a Web page including, but not limited to, database access. CGI allows a Web
page to invoke a program on the Web server and get back the results. As such, it is an
example of an approach in which the database access program runs on the Web server.

CGI was the first mechanism developed to allow database access from a Web

page. Hence, it is currently the most widely used and popular approach.

17

2. How Does CGI Work?

A CGI program can be written in a variety of languages, including C, Perl, and
even Unix shell scripts. The compiled program or script resides in the directory structure
of the Web server, usually in a directory called cgi-bin. HTML tags can specify a CGI
program .to run and parameters to be passed in, as shown in the example in Figure 3.
When a user clicks on a button or a link that specifies a CGI program, the browser sends
this request to the HTTP server. The HTTP server then checks to see if the requested
program exists, and if the user has permission to execute it, and initiates execution of the
program as a separate process. The program can then access information in a database.
When the program completes execution, the results are returned to the client browser,

usually in the form of pre-formatted HTML text. Figure 5 illustrates this process.

L Web Browser

1. HTTP Request

Intemnet

6. HTML

L Web Server W

2. cal
Input

5. HTML

l CGl Program ’

3. SQL Query

Iinteret

4. Data

Database Server —l

Figure 5. Web/Database Access Using CGI

18

3. Communication

The HTTP server and the CGI executable must be able to exchange information
so that the program can get input parameters from the client and return output. This
communication is facilitated by the Standard Input and Output data streams, STDIN and
STDOUT. In addition, various environment variables are set by the server that contain
important information that is accessible to the CGI program. This includes information
about the HTTP server itself, the particular request, and the client. For example, the
HTTP_ACCEPT variable contains information indicating what type of output the client’s
browser will accept in response to the request. This information is useful in dealing with
users running a variety of browsers. If a browser is unable to accept a particular type of
output, the CGI program can be set up to obtain this information from the
HTTP_ACCEPT variable and reply in another format. In this way, a Web site can take
advantage of the advanced features of more sophisticated browsers while still sﬁpporting
older or more primitive browsers.

When a CGI program returns output to the client, it must be prefaced with a
Multipurpose Internet Mail Extension (MIME) header followed by a blank line. A
MIME header is simply a line of text that indicates what type of output is being returned.
This tells the browser how to handle the output. Some examples of MIME headers are:

Content-type: text/html

Content-type: image/gif
The first example indicates a simple HTML document, and the second indicates that the

output consists of a Graphics Interchange Format (GIF) image.

4. Database Access

In addition to communicating with the HTTP server, a CGI program must also be
able to communicate with the database in order to perform queries. The type of database
interface to be used depends upon the CGI programming language being used, the

particular DBMS to be accessed, and the Web server platform. Most major DBMS’s

19

provide an API interface that allows a program to include database manipulation
functions. If this is the case, then SQL statements can be submitted directly from the CGI
program, just as in a client/server application.

There are also programming language-specific interfaces which provide a
consistent interface to a variety of DBMS’s. For example, there are libraries available for
accessing various DBMS’s from a Perl script. For accessing a Sybase database from a
Perl CGI script, there is a library called SybPerl. For Oracle, there is OraPerl, and for
Informix, IsqiPerl.

Alternatively, Microsoft’s Open Database Connectivity (ODBC) standard can be

used to manipulate any ODBC-compliant database using a consistent interface.

5. Advantages of the CGI Approach

One advantage of using CGI to access a database is that it is a standard widely
supported by virtually all HTTP servers. This makes CGI programs extremely portable.
In addition, it is an highly flexible interface, in that almost any programming language
supported by the operating system can be used to write a CGI program. F urthermore,
since it is currently the most widely used method to access a database from the Web,
there are more programmers knowledgeable about using CGI and more information
available than some of the newer database access methods. There are also many public
domain CGI programs available and a variety of development tools for developing CGI

applications. CGI is also relatively easy to use.

6. Disadvantages of the CGI Approach

The most serious drawback of the CGI approach is that a new process is spawned
for each incoming CGI request. This method is very inefficient, both in the amount of
time it takes to spawn a new process, and in the overhead required by the server to

manage many concurrent processes. At a busy Web site, the number of concurrent CGI

20

processes can quickly consume system resources, including server memory. Thus, the
CGI approach is not scaleable.

In addition, communication bet\&een the HTTP server and the CGI process via
STDIN and STDOUT is slow. If the CGI program is returning large amounts of data,
this will incur a great deal of overhead. -

The third disadvantage to using CGI is that a new connection to the database must
be established for each request. It is more efficient to maintain an active connection to
the database between requests.

Finally, there are security risks associated with CGI that can make a system
susceptible to hackers. The details of these types of security risks are beyond the scope

of this thesis.

C. THE SERVER API APPROACH

1. What is a Server API?

In response to the performance problems of the CGI approach some of the major
HTTP server software vendors, such as Netscape and Microsoft, have devised an
alternative approach to CGI. This alternative approach consists of a programming
interface that is included with the HTTP server software which allows programs to be run
as part of the HTTP server process, instead of as a separate process as with CGI. Like
CGI, Server API is an example of a Web/database approach in which the program runs on
the Web server. Netscape’s implementation of this concept is called Netscape Server
Application Program Interface (NSAPI), and Microsoft’s is called Internet Server
Application Program Interface (ISAPI). Both companies claim that the Server API
approach offers superior performance to CGI.

In order for a program to run within the HTTP server’s process space, it must be
compiled into a dynamic link library (DLL) so that it can be dynamically linked at run

time. When the program is invoked by a client request, it is loaded into memory in the

21

same process space as the HTTP server. Once the program has completed executing, it
can remain in memory so that it can be quickly accessed when it is needed again. After it
has not been accessed for a certain amount of time, the program will be unloaded from
memory to free up resources. In this way, the most frequently accessed programs will
remain in memory, while those programs which are rarely used will be unloaded.

Once it is loaded into memory, a Server API program can be executed by more
than one client at a time. Therefore, it is necessary for the application to support multi-
threading and perform garbage collection.

Because the application shares the same process space with the HTTP server,
communication through STDIN and STDOUT is no longer necessary. The HTTP server
communicates with the application through a shared buffer space. In addition, CGI
environment variables are made available to the application through procedure calls.
Figures 6 and 7 illustrate the differences in the way processes and communication are

handled in CGI and in Server APIL.

HTTP Server Process ' CGI Processes

:

STDOUT
__STDIN

program1.pl

HTTP
Server
Code

~STDOUT ____
program2.c
STDIN

Figure 6. Process Configuration and Communication in CGI

22

HTTP Server Process

— >
buffer
«.—_
program1.dll
HTTP - »
Server buffer
Code —
—_—p :
buffer program2.dl!
Env.
Variables
CGl process

Figure 7. Process Configuration and Communication in Server API

A Server API application is invoked in much the same way as a CGI program is.
Parameters are passed as name-value pairs, and the program is referred to with an
extension of .dll (or .so in the case of the Netscape server). Data is returned to the client
in the same way, with a MIME header to indicate what type of output it is. Database

access is also achieved in the same manner as in CGI.

2. Advantages of Server API -

The most significant advantage of the Server API approach over CGI is'in

performance and scalability. The overhead of spawning a new process for each incoming

23

request is eliminated and the Web server will not become burdened with multiple
concurrent processes. In addition, the necessity for using STDIN and STDOUT streams
for communication between the HTTP server and the application is also eliminated, thus
speeding up the process. This is an especially important aspect in database applications,
which may often return large quantities of data. Benchmark tests have indicated that the
Server API approach performs far better than CGI in connections per second, response
time, and throughput [Ref. 1].

An additional performance benefit is that a Server API application can request
information from the client instead of passing all possible information. This eliminates
passing information that is unnecessary and gives the programmer greater control.

Another advantage to this approach is that existing CGI applications can be
converted to Server API applications relatively easily. The application must be made
thread-safe, so that it can be executed by more than one client at a time. This can be
accomplished by using critical regions and semaphores in modifying global variables.
Minor modifications must also be made in the way input and output is handled, but
essentially, the logic contained in existing CGI programs can be retained. This means
that current applications do not need to be completely re-engineered in order to.take
advantage of the performance improvements of the Server API approach.

Finally, because the application is more tightly integrated with the HTTP server, it

is able to access to internal server functions that are not available to CGI programs.

3. Disadvantages of Server API

One disadvantage to this approach is that Server API applications are specific to a
particular HTTP server and operating system. The portability of CGI is not retained in
this approach, and not all HTTP server vendors offer an API, so anyone wishing to take
advantage of this technology must purchase their HTTP server from one of the vendors
that does offer this option.

Another disadvantage is that because Server API programs share the same

memory and process space as the HTTP server, a poorly written application could easily

24

overwrite the memory of another application, or that of the HTTP server itself, causing
the entire server to crash. It is essential that proper care is taken to ensure that the code is

thread safe and performs garbage collection.

D. ORACLE’S WEB REQUEST BROKER/PL/SQL SOLUTION

In response to the demand to access databases through the Web, several of the
major DBMS vendors have begun to develop their own integrated solutions to building a
Web/database interface. These vendors include Sybase, Informix, and Oracle. This
section will focus on Oracle’s solution, as it will be used in the case study presented in
Chapter V.

Oracle Corporation has developed its own Web Server architecture which allows a
user to specify a URL which will invoke a Procedural Language/Structured Query
Language (PL/SQL) stored procedure in an Oracle database. The stored procedure can in
turn perform database queries and return data in an HTML document to the user’s
browser. This is an example of a Web/database interface method in which the database

access takes place on the database server itself.

1. Architecture

Oracle Web Server 2.0 consists of two components; an ordinary HTTP server,
called the Oracle Web Listener, and a dispatch mechanism called the Web Request
Broker (WRB). Incoming requests are received by the Web Listener and immediately
handed off to the Web Request Broker for processing. If the request does not specify a
WRB service then it is returned to the HTTP server to determine if it refers to a static
HTML file or a CGI program. The WRB is configured to map virtual directories to
specific server extensions. These server extensions are similar to the server API
applications discussed in the previous section. They consist of a common Execution
Engine (WRBX) and a shared DLL, which is specific to the particular application. The
DLL programs are referred to as cartridges.‘ Oracle provides an open API to the WRBX

25

engine so that customers and vendors can build custom server extensions. Web Server
2.0 comes with some programmable cartridges already built in. These include a Java
Interpreter cartridge and a PL/SQL agent cartridge which allow for database access. An
example of a system cartridge being developed by an outside vendor is Verifone’s Virtual
Point of Sale (VPOS) cartridge which will allow Web applications to perform electronic

payment transactions. The architecture of Oracle Web Server 2.0 is depicted in F igure 8.

WRB
API
WRBX PL/SQL Agent
Web b WRB
Listener Dispatcher WRBX Java Interpreter
L WRBX Custom Cartridge

Figure 8. Oracle Web Server 2.0 Architecture

2. Database Access

The PL/SQL cartridge that is included with Web Server 2.0 allows a stored
procedure in the database to be invoked. The Web Server administrator defines Database
Connection Descriptors (DCD’s) which map virtual directories to a specific database.

Therefore, if an organization has multiple Oracle databases, different DCD’s can be set

26

up for each database. In this case, separate instances of the PL/SQL agent will exist for
each DCD. The keyword “owa” must appear in the URL to specify the PL/SQL agent,
and it must be preceded by a reference to a particular DCD. What comes after the
keyword owa is interpreted as a PL/SQL program. For example, in the following URL:

http://www.mycompany .com/mydcd/owa/myproc

“www.mycompany.com” specifies the Web server. The keyword “owa” indicates
to the WRB that the PL/SQL agent services are being requested using the DCD “mydcd”.
The stored procedure “myproc” will then be executed in the database specified by
“mydcd”. The PL/SQL agent launches the stored procedures and provides a mechanism
for the stored procedures to return output to the client’s browser in the form of HTML
documents.

Web Server 2.0 also comes with a PL/SQL Web Toolkit which is a collection of
packages, procedures, functions and utilities which allow the PL/SQL programiner to
produce HTML documents as output. Detailed examples on the usage of these tools will

be presented in Chapter V.

3. Advantages of WRB/PL/SQL

There are substantial advantages to this approach. The use of stored procedures
provides a native access to the database. For data-driven applications, it makes sense to
store the programs as part of the database. The PL/SQL language was designed for
database manipulation, so it has many powerful capabilities that are not available in other
languages.

In addition, this method of accessing a database through the Web is much faster
than CGlI, although the server architecture also provides the capability to run CGI

programs for backwards compatibility. The ability to create cartridges also provides a

27

mechanism similar to the server API method for creating custom server extensions, but
without the danger of poorly written code crashing the HTTP server.

The PL/SQL agent remains connected to the database between requests, so a new
connection does not have to be established for each request. This solution is also more
robust and provides greater scalability than the other methods. It is niore appropriate for
industrial-strength applications.

Finally, by choosing this solution, you are not necessarily bound to Oracle’s
HTTP server. With Web Server 2.0, Oracle provides a WRB Adapter, which will allow
the WRB Dispatcher to work with other HTTP servers. Currently, only the National
Center for Supercomputing Applications (N CSA) and Apache servers are supported, but

Oracle plans to provide support for many others in future releases.

4. Disadvantages of WRB/PL/SQL

The primary disadvantage to this approach it is specific to a particular DBMS. If
an organization is not running an Oracle database, then this solution is not available. In

addition, this approach can be more expensive than the other approaches.

E. CLIENT SIDE DATABASE ACCESS VIA JAVA’S JDBC

Another possible approach to building a Web/database interface is to have the
database access occur directly from the client. This can be done in a variety of ways,
including the use of browser-extensions. One of the more promising and intere'sting ways
that client-side database access can occur is through the use of Java applets and the Java

Database Connectivity (JDBC) protocol.

1. What is Java?

Java is a programming language developed by Sun Microsystems primarily for

Internet programming. Sun’s James Gosling ‘[Ref. 2] describes the Java language as a

28

“simple, object oriented, and familiar...robust and secure...architecture-neutral and
portable...high performance...interpreted, threaded and dynamic” language. Javais
similar in syntax and capability to C++, but it is somewhat simplified. Its popularity for
Web programming lies in its platform independence. Java is not compiled like C++; it is
interpreted. A Java program is converted into byfecode, which can then be run on any
machine under any operating system that has a bytecode verifier. The bytecode verifier
simply interprets the bytecode and executes the program. Bytecode verifiers are available
and can be downloaded for most operating systems, and in the future, will probably be
included with many operating systems. This platform independence makes Java a very
powerful language for Web programming.

The Java language can be used to write programs called applets which can be
downloaded as part of a Web page and executed in the client’s browser. These applets

can then be used to access a database directly from the client by using JDBC.

2. What is JDBC?

As Java becomes more and more popular as a Web development language,
developers have begun to look for ways to access a database from a Java applet. In
response, Sun Microsystems has developed an API called JDBC which will provide a
consistent interface for accessing SQL databases from Java programs.

The JDBC interface is based on Microsoft’s ODBC, which is a popular standard
for database access in clienﬂseﬁer applications. For consistency and security reasons,
the JDBC API is written in Java, whereas the ODBC API is written in C.

The JDBC interface will allow programmers to define database connections,
execute SQL statements, and process the results set. The results set can then be displayed
in the client’s browser.

In order to access a particular DBMS, however, a DBMS-specific driver is
required. These drivers are expected to be provided by the DBMS vendors themselves,
since they would like their databases to be accessible from Java applications. The JDBC

specification was released by Sun Microsystems in June of 1996, and currently, there are

29

no DBMS-specific drivers yet available. They are still under development, but are
expected to be on the market soon. There are JDBC-ODBC bridge drivers currently
available, which simply convert JDBC célls to ODBC calls, and use the ODBC drivers to
access the database. This is really only a temporary mechanism which will only be
necessary until the JDBC drivers are available. Once these drivers are made available,
Java and JDBC may become an extremely popular method of accessing a database
through the Web.

In this scenario, the Web is really just a means for delivering an applet to the
client’s desktop, and the browser provides a framework in which to run the applet. The
database access actually takes place directly between the client and the database. This is

much more like a traditional client/server application. F igure 9 shows how a database

can be accessed from a Java applet.

Client running browser

Figure 9. 4 Web/Database Interface Using Java and JDBC

3. Advantages of Java/JDBC

One advantage of this approach is that the database interface provided by JDBC is
independent of the particular DBMS and connectivity mechanism. This means that the
same code can be used to access a database whether it is an Oracle database or Sybase, or
any other DBMS vendor which supports JDBC.

Java’s platform independence is another benefit. The same Applet can be

downloaded and run on almost ahy client. This is an extremely powerful feature.

30

p—
SQL statement —— URL
Database
Server = Network Web page
NCamer——m -
’ —&7
Java Applet

= (LT

faogona
Web Server

In addition, Java has much more sophisticated capabilities for creating user
interfaces. It is possible to display dialog boxes and a variety of other features that are
not possible in any other way. This extehds the capabilities of the Web/database interface
to perform much like a client/server application, but without the difficulties of deploying

and maintaining a client/server application.

4. Disadvantages of Java/JDBC

Because JDBC is a very immature technology, its performance is yet unknown.
However, it is known that Java is much slower than compiled languages, because it must
be interpreted on the client machine.

Currently, the only way to implement a Java/JDBC interface is by using a JDBC-
ODBC bridge, since the DBMS-specific drivers are not yet available. This mechanism
will be slow, as it involves multiple layers of software. ‘

In addition, many people feel that Java has inherent security risks. Although the
developers of the Java language have taken great pains to insure that the language is

secure, there is always a danger in downloading a program onto a client machine and

allowing it to run. -

31

32

IV. RELATED ISSUES

A. OVERVIEW

Along with the vast potential of the Web/database technology comes many new
challenges. The very features that make the Web a flexible and effective platform for
accessing data also pose new problems that have yet to be overcome. Some difficulties
exist in the areas of speed and performance, concurrency, and security. This chapter

discusses the issues relating to each of these areas.

B. SPEED AND PERFORMANCE ISSUES

Speed and performance is a critical area in Web/database applications, because
the success of any application depends heavily on how user-friendly it is. Even if an
application is easy to use in other respects, slow response times will discourage users.
This is particularly true in a Web environment, where an impatient user can easily
abandon the application by clicking the Stop button in the browser or by simply
switching to another Web page. Many of the same rules apply to Web/database
applications as in ordinary database applications, but there are also additional factors to
consider.

The first factor is that in a Web/database interface, there are multiple servers,
network connections, and programs involved. Therefore, performance problems can
occur at various levels, and can be difficult to isolate. Because of this, it is important to
have well-defined interfaces and interactions between the various software components,
and applications should be designed and tested carefully with performance in mind.

The connectionless nature of Web/database interfaces also causes challenges in
the area of performance. In a normal client/server application, the user remains
connected to the database throughout the session. In a Web/database application,
however, each Web page is independent, and a new database connection must be

established for each page. For example, if a Web page allows a user to retrieve some

33

data, view it, and then update it, the application must first cbnnect to the database in order
to retrieve the data, and then re-connect to update it. There is a great deal of overhead
involved in establishing and terminating database connections. In addition, many
DBMS’s perform optimization on a per-session basis. Continually connecting and
disconnecting from the database invalidates this type of optimization.” Some progress has
been made toward a solution to this problem, however. Oracle’s Web Server software
circumvents the need to repeatedly connect to the database by using a daemon (the
PL/SQL Agent) which remains connected to the database and simply passes requests
through.

The third reason why performance is a problem in Web/database applications is
that the type of connection, platform, and even physical proximity of the end users must
be taken into account. While some users may have a high performance Internet
connection and a powerful desktop computer, others may be dialing in by a modem, with
a slow computer, or may be located halfway around the world. The application must be
able to perform adequately for all of its intended users. Therefore, it is important to be
aware of who the target users are, and to test a Web/database application on a variety of
platforms, using different types of connections.

Factors that affect the speed of a Web/database application include the size of the
tables being accessed and the amount of data being fetumed. As in traditional database
applications, it can be extremely time consuming to search a large table. Indices can be
used to improve response time. It is a good idea to partition the Web application such -
that large amounts of data will not need to be returned. Transporting large amounts of
data over the Internet can be a bottleneck.

A third factor influencing the performance of a Web application is the importance
of tuning the SQL queries and using them judiciously. Dwight and Erwin set forth three
rules for optimizing performance in a Web/database interface:

¢ Do as much work as possible per connection to the database server.

® Do as much work as possible per SQL statement.

 Filter the results inside the database server as much as possible.

34

The first point indicates the importance of performing as many queries or updates as
necessary during each connection to the database server. This will minimize the number
of connections that must be made during a session. The second implies that each SQL
statement should be written to do as much data manipulation as possible. If one large
SQL query can produce the same results as two smaller queries, then the larger query
should be used. The third point says that it is a good idea to use SQL’s extensive data
manipulation capabilities to limit the amount of data returned, rather than trying to
manipulate the data in the program. Dwight and Erwin also suggest formulating the SQL
statements to be used and testing them using the command line interface before trying to
incorporate them into the program. [Ref. 3]

The fourth factor is the speed of the database server and the Web server. Both
Web servers and database servers must be able to handle large amounts of I/0
(input/output). Therefore, it is important that they have fast disk drives as well as
adequate memory.

The fifth and final factor that has an impact on the performance of a Web/database
application is the use of graphics. While many popular Web sites make use of graphics to
enhance the user interface, graphics can incur a great deal of overhead. If a Web
application is intended for a wide variety of users, it is important to use them sparingly.

It may even be necessary to maintain a graphics-free version of a Web applicaﬁon in
order to accommodate all users. Although most browsers can be configured to display
text only, Web applications which rely heavily on graphics will be difficult to use without

the graphics.

C. CONCURRENCY ISSUES

In any Web/database interface that allows the users to update the database,
concurrency will be a concern. The absence of a persistent database connection in the
Web environment causes serious concurrency problems. In a client/server application,
the DBMS handles concurrency through the use of atomic transactions and locking

techniques. However, because the user does not remain connected to the database in a

35

Web/database application, these mechanisms can not be relied upon. The HTTP protocol
was simply not designed for transaction processing. Thus, it is up to the programmer to
ensure that database concurrency is maintained.

For example, consider a Web interface to a warehouse inventory database which
allows warehouse employees to check and update the number of a given item in stock.
Suppose two warehouse employees receive orders for a particular computer model.
Employee A’s request is for 15 computers, and Employee B’s request is for 10
computers. Employee A checks the inventory through the Web interface and finds that
there are 20 in stock. While Employee A is editing the number of computers in stock to
reflect that there will only be five computers left, Employee B also checks the inventory
and finds that there are 20 in stock. When Employee A submits the update, Employee
B’s information becomes inconsistent. Now when Employee B tries to submit an update,
Employee A’s changes will be lost. The database will reflect that there are 10 computers
left, when there really are not even enough to satisfy both requests. If both employees
had been connected to the database throughout the transactions, this type of concurrency
conflict would have been prevented, but since they must establish a new database
connection for each interaction, the DBMS’s concurrency control mechanisms can not be
relied upon to prevent such problems. The Web/database application will need to
perform updates in such a way as to keep multiple users from editing the same
information at the same time.

There are various techniques that can be used to handle concurrency in a
Web/database application. The type and complexity of the transactions to be performed
must be evaluated, as well as the likelihood that a concurrency conflict will arise and the
consequences of such a conflict.

Some applications only allow users to perform database inserts. Examples of
such applications are a guest comments log, or an order form. In this type of application,
the use of a unique key should be sufficient to ensure that concurrency conflicts will not
occur. A unique key can be generated by using user information, time and date
information, a sequence number, or some combination thereof. This should prevent users

from overwriting each other’s records.

36

For applications with more complex transactions than a simple insert, more
sophisticated concurrency mechanisms must be employed. One solution is to verify each
value before updating. This means that once a user retrieves some data, edits it, and
submits and update, the program must re-check the original values of each of the fields to
be updated against their current values in the database. If any of the values do not match,
this implies that the data has been updated, and an error message must be returned to the
user. This method works well for editing a small number of fields.

A variation on this method is the use of timestamps. Timestamps are more
applicable when a larger number of fields must be updated, and it would not be easy to
verify the values of each field. This method requires that the database includes a
timestamp field. Each time a record is updated, the associated timestamp must also be
updated to the current time. Then, when a user retrieves a record, the timestamp is also
retrieved. When an update is submitted, ﬁe timestamp that was retrieved is compared
against the current timestamp. If they are different, then the record has been updated
since the data was originally retrieved, and again, an error message must be displayed.
This method has the same effect as the double-checking method, but the checking is
isolated to one field instead of many.

One other way to prevent concurrency problems in a Web/database application is

by including a checkout field in the database. This would be a Boolean type of field with

values true or false. When a user attempts to retrieve a record, the checkout field is first

checked to see if it is false. If so, it is set to true and the record is returned to thé user for
editing. Then, when another user attempts to download the same data, the checkout field
will indicate that the record is already in use and an error message can be displayed
before the user has already made changes. This prevents the scenario in which a user
makes changes to some data, only to find out that the data has since been updated. The
user is notified ahead of time that the data is in use. However, it does pose other
problems. For example a user could download some data, and then go to lunch, leaving
the record locked for a long period of time.

All of these solutions are less than ideal. While they may be adequate for simple

applications, they are not sufficient to address the requirements of complex transaction

37

processing systems. DBMS manufacturers have gone to great efforts to provide
sophisticated concurrency control mechanisms with their software, but Web applications
are unable to take advantage of these capabilities. It is expected that these problems will
eventually be solved with future versions of the HTTP protocol and other software, but
for now, it is up to the Web developer to compensate for the absence of a persistent

connection.

D. SECURITY ISSUES

Security has become an extremely complex and critical issue in light of the rapid
growth in Internet technology. The Internet was designed to be an open, flexible system;
it does not provide any privacy or security in itself. However, with the expansion of the
World Wide Web and its increasing use as a business tool, Internet security has become a
necessity. When an organization connects its internal Local Area Network (LAN) to the
Internet, it opens itself up to a variety of risks such as viruses, hackers, and eavésdroppers
who intercept Internet transmissions. By connecting its corporate database to the Web,
an organization risks exposing critical information. The challenge is to tightly control
what information is made available and specify the desired users, as well as preventing
individuals from intercepting valuable information as it is transmitted over the Internet.

Data stored in a database is inherently more secure than data stored in flatfiles.
While static HTML files on a Web server rely on the security of the operating system and
the HTTP server, information in a database is protected by the security mechanisms of
the DBMS. There are risks, however. The most serious risk is that a hacker may
somehow gain access to the database passwords and break into the database to alter,
destroy, or download unauthorized data. Another risk is that an unauthorized user may
gain access to database through the Web/database interface. It is necessary to control
what users are allowed to access the Web interface. Finally, because of the insecure
nature of Internet data transmissions, it is possible for an individual to intercept data from
the database as it is transmitted from the Web server to the client or userid and password

information as it is transmitted from the client to the Web server.

38

A combination of security mechanisms are used to protect data from these types
of intrusions. Of course, the first line of defense is the built-in security features of the
database. It is important that the userid(é) that clients will be connecting to the database
as are low-privilege accounts, with only the capability to read and write the necessary
database objects. For a Web/database interface that is read-only, the userid should be
limited to read privileges on only the tables that are referenced in the application. This is
accomplished by using the SQL “GRANT” statement. For update privileges, it is
possible to specify an even finer granularity, such as a particular column. Some DBMS’s
allow privileges to be granted to groups or classes of users, as in Oracle’s User Roles
mechanism.

In addition to the DBMS’s native security features, there are other methods of

protecting a database. These include authentication, encryption, and the use of firewalls.

1. Authentication

Authentication refers to the process of ensuring that both the user and the server
are who they claim to be. This prevents unauthorized users from gaining access to the
database through the Web/database interface, and additionally prevents Internet Protocol
(IP) address spoofing in which an IP address is falsely mapped to a impostor server, so
that information such as userids and passwords can be collected from individuals.

Authentication of the client is usually accomplished by way of a userid and
password combination, but other mechanisms can be used, including hardware solutions
such as Smart Cards, which uniquely identify an individual. Authentication can be used
to specify which users have access to a particular Web page. It can also be used to
specify different levels of access. For example, some users may only have read access to
a Web/database interface, while others may have update capabilities. The level of
complexit’y necessary depends upon how sensitive the data is, who the intended users are,
and whether or not updates are allowed. Some applications do not require any -

authentication at all, but for many applications, authentication is critical.

39

Userids and password schemes can be implemented through the HTTP server, the
Web server file system, or the database itself. Most HTTP servers come with an |
authentication scheme which allows the Web server administrator to define individual
users as well as groups of users with various levels of access. The userid and password
files must be stored in a protected directory. In this case, the client would have to supply
the a correct userid and password to even access the Web page, and all users would then
log into the database under the same userid. Another alternative is to use the DBMS’s
userid and password scheme and create an account in the database for each user. In this
way, any user could access the Web page, but only those who could supply the correct
password and userid could connect to the database. This method requires more
maintenance, however. A new userid must be created for each user or group of users, and

the appropriate privileges must be granted.

2. Encryption

Another technique used to provide security in a Web/database application is
encryption. Encryption is used to make data and passwords unreadable as they traverse
the Internet. This is important if the data in the database is sensitive or confidential. It is
also essential that password and userid information are encrypted as they are transmitted
from the client to the Web server. The information is encrypted prior to transmission
using a numeric key such that it can only be decrypted by the intended receiver. There
are tWo general types of encryption: symmetric and asymmetric. -

With symmetric encryption, also known as private key encryption, the same
numeric key is used to encrypt and to decrypt a message. In order for this to work, the
sender and the receiver must agree on the secret key in advance. This turns out to be
logistically difficult. To solve this problem, asymmetric, or public key, encryption was
developed. In public key encryption, each host has its own secret key, as well as a public
key, which is made available in a public directory. When one host wants to send an
encrypted message to another host, the send;r uses the receiver’s public key to encrypt

the message. Because a user’s public key and private key are related mathematically, the

40

receiver is able to decrypt the message using his/her private key. In this way, a message
can be encrypted such that it can only be read by the intended user.

Standards for secure data transmission are beginning to emerge as Internet
software vendors such as Netscape, Microsoft, and Oracle are now including encryption
capabilities with their products. Netscape’s Secure Sockets Layer (SSL) encrypts HTML
documents using secure HTTP, as well as providing authentication and ensuring data
integrity. The federal government, however, has mandated the use of Fortezza, a more

robust encryption and authentication mechanism.

3. Firewalls

Firewalls are used to keep outsiders out of an organization’s internal network.

The term firewall does not refer to a particular technology or capability, but rather to
software that employs a set of general principles and techniques to prevent intrusions
from unauthorized users. The firewall forms a perimeter around an organization’s
network by creating a central point of entry to the network and by restricting the users
that are allowed access and the types of services they are allowed to use.

Generally, an organization’s public Web server sits outside of the firewall and
accepts incoming requests. These requests must then be passed through the firewall to
the internal network, where the database resides. This configuration is illustrated in
Figure 10.

There are two basic cateéories of firewalls. The first is referred to as a packet
filter. A packet filter is a type of router that filters out traffic from all hosts except those
that are known to be trusted. This filtering is based upon the IP addresses of the sender.
By using this method, and organization can ensure that only trusted hosts will have access
to its internal network.

The second basic type of firewall is known as a proxy server or application
gateway. Proxy server firewalls generally use a dual-homed host in which the host
machine is configured to have two network interfaces; one to the internal network and

one to the Internet. This creates a barrier between the inside and the outside. The proxy

41

server is configured to only allow certain services. Incoming packets are evaluated
individually and either discarded or allowed to pass through. For legitimate requests, the
proxy acts as an intermediary betweeﬁ the Internet interface and the internal network
interface. Firewall software also traces all incoming and outgoing requests and keeps log
files of these requests. These log files should be analyzed on a regular basis for unusual

Or suspicious patterns.

Database

Figure 10. A Network Firewall Configuration

4

V. CASE STUDY: OHA WEB/DATABASE INTERFACE

A. BACKGROUND

The Overseas Housing Allowance (OHA) is an allowance paid to military
members who are stationed overseas in order to supplement their housing costs. The
particular country, location within a country, rank, and dependency status (with or
without dependents) determines the amount a member is eligible for. The Per Diem,
Travel and Transportation Allowance Committee (PDTATAC) is responsible for setting
these rates.

- The Defense Manpower Data Center (DMDC) currently maintains a legacy OHA
database system on the Naval Postgraduate School’s International Business Machines
(IBM) mainframe in support of this program. The purpose of this system is to make
OHA rates and related information available to Defense Finance and Accounting Service
(DFAS) centers so that military members eligible for the allowance can be paid, as well
as to produce quarterly reports for PDTATAC which provide information used to set new
rates, and maintain historical archives of this data. PDTATAC maintains their own
database and sends bi-weekly updates to DMDC’s database in the form of a transaction
file.

In order to eliminate the redundancy of maintaining two separate databases and to
modernize the system and add functionality, DMDC has been tasked with the
development of a new OHA database system which would combine the capabilities of
DMDC’s and PDTATAC s existing databases. The proposed system will consist of an
Oracle 7 database with a user interface written in Visual Basic 4.0. It will have built in
reporting and publishing capabilities developed using Visual Basic’s report tool, as well
as an artificial intelligence component written in AionDS that will be used to apply
heuristic rules to the process of setting rates. This new system is scheduled to begin beta

testing late in 1996. The current system will be run in parallel for several quarters to

43

ensure that the new system is working smoothly. The Entity-Relationship diagram and
schema for this database are illustrated in Appendices A and B.

In addition to the existing databaée, PDTATAC currently maintains a Web site
that makes OHA rates and various other information available to military members. This
Web site resides on the Defense Technical Information Center (DTIC) Web server. In
order to make OHA information available on this Web site, PDTATAC downloads the
current rates from DMDC’s database bi-weekly, reformats it, and transfers it to the DTIC
server, where it is accessed by a CGI Perl program.

Once the new database is operational, it would make sense to eliminate these steps
and tie the Web page directly into the Oracle database. This way, the data would not
have to be stored in two different places in two different formats, and maintenance would
be much simpler. In addition, the most current information would always be available.
This is important, because the rates change frequently due to currency fluctuation.

This case study will consist of building and documenting a prototype of the
Web/database interface to the new OHA database.

B. ANALYSIS

There are several important aspects of this application to consider before deciding

on an approach and designing the interface.

1. Integration With Existing Web Site

One important factor is that the Web page that is developed must eventually be
integrated into PDTATAC s existing Web site. Viewing OHA data is one of several
menu options available on PDTATAC’s Web site, and while the newly developed
Web/database interface will replace this ménu option, the rest of the existing Web page
will remain intact. Therefore it is important when designing the new OHA Web page to

maintain a look and feel that is consistent with the existing Web site. This means using

44

the same background and graphics, the same style for titles, and the same type of form

controls.

2. Users

Another important factor to consider is who the users of the Web page will be.
The primary users of this Web page will be military members who are or will be stationed
overseas. Their level of sophistication will most likely vary from experienced computer

users to the extremely inexperienced.

3. Speed and Performance

The size of the tables to be accessed and the quantity of data returned must also be
considered. The tables in this case are relatively small. The largest table is under 1000
rows. These tables will change in size as locations are added and deleted, but they are not
likely to change drastically in size. Therefore, the queries should not take a substantially
long time to run. In addition, the amount of data to be returned is not especially large.
This is important because it can take a long time to return a large amount of data over the

Internet.

4. Concurrency -

This Web site will be view-only. There will be no updates through the Web
interface. The Oracle database will be updated through the client/server interface
described in Section A. This means that concurrency is not a problem for this Web site.

Multiple users can view the information without causing a conflict.

45

5. Security

The information contained in the Web page is public information. Security
measures such as authentication and encryption are not necessary for this system. A

firewall will, however, be necessary to protect the database itself.

6. Database

Finally, the Oracle database has already been designed and is already in place. No
new database will have to be created for the Web interface. Although the database was
designed with a client/server application in mind, the tables can be accessed through the

Web without any modifications and without the necessity of duplicating any information.

C. APPROACH

Because the database is in Oracle, Oracle’s WRB/PL/ SQL solution will be used
for this Web/database interface. The following is a list of tools that will be used to
develop the interface:

e Oracle Web Server 2.0

e Oracle PL/SQL Web Toolkit

e Oracle Developer 2000 Procedure Builder

. Oracle SQL Plus for Windows

¢ Oracle SQL Loader Utility

e Netscape Navigator 2.0

¢ Novell LAN Workplace Host Presenter (Telnet Utility)

* Novell LAN Workplace Rapid Filer (FTP Utility)

46

D. DESIGN

The first step in designing the interface is to examine the existing OHA Web page
and determine what aspects should be retained and what areas can be improved upon. The
screen views of the existing OHA web page are shown in Appendix C. While the new
Web pagé should conform aesthetically to the standards of the existing page, there is
some flexibility in the design of the interface.

One area which can be improved is in the way the information is presented. In the
existing system, the user selects a location, rank, and dependéncy status, and is then
presented with the OHA rates based upon these selections. It would be useful to display
all bf the rates for a particular location in a table format, by rank and dependency status.
In this way, a user could compare the rates for various ranks and for both dependency
statuses, without having to perform the query repeatedly.

Another improvement can be made in the way the user selects a location to view.
In the current implementation, the user must first select a location by name, look up a
location code, and then re-enter the location code so that the query can be executed. This
is a cumbersome interface, and is unnecessary in the new database. The location code
should be transparent to the user.

One area that will be retained from the existing system is the use of select list
boxes to display menu selections. This is an effective way to present a list of locations
for the user to choose from. It is easy to use and understand.

Based upon these observations, the new OHA Web page will consist of three
screens. On the first screen, the user will select a country by name. On the second, the
user will select a location within the selected country, again by name, and on the final
screen, the OHA rates for that location will be displayed in a table format by rank and
dependency status, along with other associated information including the effective date
for the rates, Moving-In Housing Allowance (MIHA) and climate information. These

screens are shown in Appendix D.

47

E. IMPLEMENTATION

Several steps are involved in the implementation of the OHA Web/database
interface. These steps are outlined in Figure 11. The first step is to re-create the
necessary tables in a test instance on the Web server. The new OHA database is being
developea in a development instance on another database server, but because a firewall is
not yet in place, the Web server does not yet have connectivity to the other database
servers on DMDC’s LAN. Therefore, the prototype will be developed with the HTTP
server and the database on the same server machine. The tables were re-created and
populated by running the SQL create statements and SQL Loader statements in the test

instance.

Step 1. Re-create tables in a test
instance on the Web server

Step 2. Establish a DCD mapping to the
database and a virtual directory
mapping for static files

Step 3. Write PL/SQL code

Figure 11. The Implementation Process for the OHA Web/Database Interface

48

The second step is to establish a DCD mapping to the test database. This will
enable the WRB dispatcher to direct incoming URL’s to the stored procedures in the
database. The information needed to esfablish a DCD is a userid, password, and database
instance. In addition to the DCD, a virtual directory mapping must also be established for
static files on the Web server. This is necessary for the background GIF and other
graphic files which will not be stored in the database. The Web server administrator
establishes these mappings. The URL’s are as follows:

http://206.39.184.1/cha/ for static files

http://206.39.184.1/cha/owa/ for PL/SQL procedures

The GIF files for the graphics files, which were copied from the existing OHA
Web page, are then transferred to the corresponding directory on the Web server using the
Rapid Filer File Transfer Protocol (FTP) utility.

Once the database is established aﬁd the graphics files are in place, the third step
is to begin writing the PL/SQL code. The programs are written using Oracle’s Procedure
Builder, which is an editor that allows you to write and compile PL/SQL stored
procedures in the database.

PL/SQL is very similar in syntax and structure to Ada. The program modules
consist of procedures and packages. For this application, one package will be needed.

This package will contain three procedures; one for each of the screens. Appeﬁdix E

contains a listing of this PL/SQL package.

The first procedure generates HTML to display a select list of country names and
prompt the user to make a selection. HTML is produced by using the hypertext
procedures (HTP) and hypertext functions (HTF) that come with the Oracle PL/SQL Web
Toolkit. These procedures and functions correspond one-to-one with HTML tags. They
are essentially a programmatic interface to HTML coding. They take arguments and
generate HTML tags. For example, the procedure call

htp.center (*This text is centered’);

will generate the following HTML.:
<CENTER>This text is centered</CENTER>

49

This HTML will be sent directly to the client browser. This functionality is further
illustrated in Figure 12.

PL/SQL Code Generated HTML

htp.htmlOpen;

<HTML>
htp.headOpen; <HEAD>
htp.title('OHA); <TITLE>OHA</TITLE>
htp.headClose; </HEAD>
htp.htmiClose; </HTML>

Figure 12. How HTML is Generated by PL/SOL Code

For every HTP procedure, there is also a corresponding HTF function. The
difference between the hypertext procedures and hypertext functions is that the
procedures send the output directly to the client browser, while the functions return the
output to the calling program for further manipulation.

The corresponding HTF function call

ctext := htf.center('This text is centered’) ;
generates the same HTML tags as the HTP version, but returns it to the variable ctext.
This is useful for nesting HTML tags within other HTML tags. This method is used in

the country selection procedure to create an image as an anchor as follows:

htp.anchor (‘index.html’,
htf.img(curl=surl ||'/oha/earthico.gif’));

50

The HTP and HTF packages are used extensively throughout the country selection
procedure to generate HTML header tags, body tags, and form tags. The HTML |
generated by the PL/SQL package is listed in Appendix F.

Database access is achieved by the use of a cursor. A cursor is a pointer to an area
in memory containing rows from the database. The declaration for the cursor specifies
the SQL select statement that is to be executed. In this case, a join between the country
name table and the OHA rates table is used to select only those countries with valid OHA
rates. The country name, country code, currency name, and currency code are the
columns selected.

A cursor in PL/SQL is generally loaded by using a “fetch into” statement in which
a variable or structure is specified as the target for the data. The variable or structure
must be declared. One simple way to do this is to use the %rowtype attribute. If a cursor
is declared called cntry_cursor, the target record structure can be declared as:

cntry rec cntry cursorsrowtype;
the resulting structure will correspond to the columns in the select statement. In the
country selection procedure, however, an implicit fetch and implicit structure declaration
are used. The cursor is referenced as the control for a loop, as follows:

for cntry rec in cntry cursor

loop

éﬁé loop;

In this case, the cursor does not need to be explicitly loaded, and the structure cntry_rec
does not need to be explicitly declared.

The select list on the country selection screen is created by using an HTML select
list form control. HTP form procedures are used to produce the necessary HTML. The

procedure call

htp.FormOpen (curl => ‘OHA PKG1l.TSTOHA2',
cmethod => ‘POST’);

generates the HTML form tag which specifies what program to execute when the form is

submitted. Another form procedure call,

htp.FormSelectOpen (CC,null,4) ;

51

specifies the Select list control, and the variable to be passed to the next procedure. The
select list is populated with country names from the database by using the
htp.formSelectOption procedure call within the cursor loop. Elements of the cntry rec
structure are used to indicate the text to appear in the select list, as well as the values
associated with them. It is the value that is submitted as a parameter to the next
procedure when the user clicks on the Submit button. In this case, the data from several
columns are concatenated together so that it can be passed to the next procedure as one
string. This is necessary as only one value can be associated with each menu item.

The second procedure takes this parameter and parses it back into the individual
values of country code, currency code, and currency name. This is accomplished by
using the PL/SQL substr() function. This second procedure displays a list of locations
within the selected country. It does this in a similar manner as the first procedure, using a
cursor to select location name and other infonnation from the JFTR location table and the
OHA rates table. Again, a select list is used to display the menu. One interesting
difference in this procedure is that it uses hidden fields to pass on information that was

collected in the first procedure such as the currency code and the currency name. This is

|
done by using the htp.formHidden procedure. When the user clicks on the submit button,
the values in the hidden fields are passed to the next procedure along with any other

values specified in form controls. By passing this information on in hidden fields, it t

saves the third procedure from having to do an additional select. This is an exainple of |

saving state information on the client side. '
The third screen takes three input parameters; one from the select list, and two i

from the hidden fields. This procedure performs several select statements based upon |

data that was entered in the first two screens. The cursors in this procedure are explicitly

loaded using “fetch into™ statements, and the record structures are explicitly declared

using the %rowtype attribute. The data that is retrieved is displayed in a table format

using HTP table procedure calls such as htp.tableRowOpen, htp.tableHeader, and

htp.tableData. These procedure calls are used to specify table column headings, row

titles, and populate the cells of the table with data.

52

HTML table, but it does provide an easy mechanism for displaying database information
on a Web page with very little effort. An example the use of this utility is shown in

Figure 13. The table in this example is generated by the following statement:

rc := owa_util.tablePrint ('KEY JTR_OHA RATE',
'"BORDER=2 WIDTH=90%',
OWA UTIL.HTML TABLE,
'JTR_NUM,El,E2,E3,E4,E5,E6,E7,E8,E9"',
'"WHERE CC = ''' || cc || "''");

) A

| Help

828 861 (993
1351 11391 1391 11739
1828 ‘

1861 1003

s 703

B 762
999 ‘ 762

sl DocumentDone oo T T T T Ty

Figure 13. Example of Using the owa_util.tablePrint Utility

In addition to the HTP and HTF packages, the Oracle PL/SQL Web Toolkit also
provides various utilities for performing useful functions. These utilities were very useful
in the development of this interface. Thé owa_util.tablePrint utility allows for rapid

A prototyping by automatically generating an HTML table based on the database table
name, column names, and a where clause. With one simple statement, a basic HTML
table is generated. This utility does not provide much flexibility in the layout of the

53

Another useful utility is the owa_util.signature procedure. This utility creates a
signature line at the bottom of the HTML document that provides a hypertext link to the
source code that generated the screen. This is a useful feature during the development
phase, particularly if multiple developers are working on a Web application.

Other utilities include pattern matching facilities, the ability to retrieve CGI
environment variables, image map handling capabilities, and mechanisms for

manipulating HTTP Cookies.

F. INTEGRATING THE PROTOTYPE WITH THE PRODUCTION SYSTEM

Once the OHA database is operational, it will be relatively simple to integrate the
prototype Web interface with the production system. The database will ultimatély reside
in a transaction processing instance. By this time, the firewall will be in place, with the
Web server outside of the firewall, and the database servers inside the firewall. The
PL/SQL code must be copied to the new database instance and recompiled. A userid will
be created specifically for Web access, and it will be granted limited privileges? so that
only the necessary tables and views can be accessed. Then, the DCD on the Web server
must be modified to point to the new database instance and the new userid. There may be
some minor changes to the PL/SQL code, such as referencing a view instead of a table,

but essentially, the application is ready to go online.

G. ANTICIPATED FUTURE ENHANCEMENTS/MODIFICATIONS

There are already some areas in which changes or additions are anticipated for this
Web/database interface. One area that will require modifications is in the transition to
local currency. Currently, the OHA rates are prescribed in US dollars. This means that
every time the exchange rate changes for a particular currency, the rates must change for
all of the locations that use that currency. In order to separate changes based on currency
fluctuation and changes based on actual changing housing costs, the rates will be

prescribed in local currency. The OHA rates table will then have two views; one in local

54

currency and one in US dollars. The implications for the Web interface are that the user
should have a choice of whether to view the rates in the local currency for a location, or
in US dollars. In cases where the local éurrency 1s US dollars, this will not apply. This
choice can be implemented by placing an icon or button on the final screen which will
allow the user to toggle between local currency display and US dollars. When the button
is clicked, the procedure will be re-executed and the Web page will be re-loaded with the
opposite data. State information will have to be embedded in the button to indicate which
state the user is currently in.

Another area in which the interface can be expanded upon is by displaying
historical data. In many locations the rates change frequently, and it would be desirable
to allow the user to view the changes in these rates over a period of time. The OHA rates
table will contain historical information, as indicated by effective date. A view will be
used to indicate the current rates for each location. By drawing information from the
historical table, a Web page could display the changes in rates for a location over a period
of time. This would have to be another menu item on the Web page, and it would
probably require the user to specify a rank and dependency status, as it would be too
much information to try to display historical rates data for all combinations of rank and
dependency status on one Web page.

One final area of expansion for this Web interface is in the download capability
for DFAS centers. Currently, the DFAS centers download updated information twice a
month from the mainframe OHA system. Once the new database is deployed, they will
need a way to access the information so that they can pay military members accurately.
The file formats for these download files have been specified, but the method of access
has not yet been determined. If all of the DFAS centers have Internet connectivity, then
this would be a prime candidate for adding to the Web interface. Again, this would be a
separate menu option, and it would require some type of authentication or user
identification, as log files need to be kept to track which services have downloaded. The
data to be downloaded is selected based upon criteria such as effective date or location.
These selections could be implemented in a Web page as form controls such as list select

boxes and text boxes. Clicking the form submit button would initiate the building of the

55

files and download via FTP. This would be an excellent way to facilitate users who are
spread out all over the country accessing a centrally located database, without having to

develop and deploy a client server interface.

56

V1. CONCLUSION

A. SUMMARY

Although the World Wide Web began simply as a means of displaying static data
and images, it is rapidly evolving into a powerful environment for delivering dynamic
content. With this rapid growth, the union of Web and database technology is inevitable.
The capability to access a database through the Web is valuable for both business and
entertainment applications. According to Julia Vowler [Ref.4], as of February 1996, only
one percent of the world’s approximately 300,000 Web sites were connected to a
database. Both the number of Web sites in existence and the percentage which access a
database have grown over the past year and will undoubtedly grow even more rapidly in
the future. _

Over the past decade, the information technology industry has spent a great deal
of effort on building client/server database applications. These companies have found
that developing, deploying, and maintaining client/server applications is inherently
difficult due to a variety of factors. Web/database technology offers an alternative to
client/server database applications with many advantages. Companies are now beginning
to focus their efforts on developing Web/database abplications. However, the Web is still
an immature technology, and currently, Web implementations are best suited for simpler
database applications. Currently, more complex functionality is best implemented as a -
client/server application. The OHA Web/database interface case study presented in
Chapter V is an example of an appropriate application for the Web, as it involves
information that is freely available to the public, no updates are necessary, and the tables
involved are relatively small.

There are a variety of methods currently available for accessing a database
through the Web, and new products and methods are being developed. While the list of
options presented in Chapter III is not exhaustive, it provides a good sampling of the

most popular methods being used today. Each of the methods described has advantages

57

and disadvantages. The right solution for any given application ultimately depends upon
the characteristics of the application itself. It is also possible to combine components of
the various methods. For example, it is possible to use a Java application as a CGI
program, or to invoke a CGI program with Oracle’s Web Server.

Despite the many advantages of Web/database interfaces, thete are many issues
yet to be resolved. The Web environment presents new challenges in areas such as speed
and performance, concurrency, and security. Many of these challenges are due to the
stateless and connectionless nature of the HTTP protocol, as well as the inherently
insecure nature of the Internet. While these problems are substantial, the computer
industry is focusing a great deal of effort on their solutions. It is expected that many of
these problems will be resolved in a future release of the HTTP protocol which will
allow for stateful transactions and make it possible to maintain a connection to the
database. Security is an issue that is receiving a great deal of attention. Some of the
proposed solutions to security problems include authentication of both the client and the

server, as well as the use of encryption and firewalls.

B. FUTURE DIRECTIONS

Web technology is undergoing change at an extremely rapid pace. According to
Oracle’s Magnus Lonroth [Ref. 5], Web product life cycle is reduced to months instead of
years. This is due to the great demand to use the Web as a business tool. The
combination of fully transactional Web/database interfaces with online commerce has the
potential to revolutionize the business world. Once security obstacles have been
overcome, companies will be able to offer a wide variety of services over the Web, such
as online banking, shopping, booking travel, and much more. In addition, corporate
Intranets will allow organizations to build internal networks and make internal
applications such as payroll available through the Web without allowing outside users to
access these internal functions.

Software vendors are rushing to solve these problems so that such services can be

made available. However, it is important that they take the time to develop sound

58

solutions and deliver quality products if individuals, corporations, and government
agencies will be depending upon them for mission critical functions.

The Web has had a tremendous impact upon the computer industry. It is opening
up new markets and product categories. Some of the areas that are expected to continue
to grow along with the Web include web development tools and languages. Simple
HTML coding is being replaced with visual and programmatic interfaces that make Web
development easier. In addition, languages such as Java and Active X, which are well-
suited for Web development, will become increasingly popular. The object-oriented
nature of these languages as well as the desire to store multi-media objects are likely to
increase the popularity of object-oriented databases. In anticipation of this, the next
releases of Oracle and Informix DBMS’s will include object-oriented capabilities.
Finally, new types of low cost hardware devices are being developed, such as the
Network Computer (NC), which is a low-cost, low maintenance alternative to the
Personal Computer (PC) with only simple capabilities such as word processing, e-mail,
and Web browsing. This device will have minimal persistent storage; all of the programs
will be downloaded through the Internet or a LAN and all of the files will be stored on the
network, most likely in a database. This technology is also being combined with the
popularity of television to produce a Web-TV product which allows people to access the
Web through their television sets. All of this will make Web access more widely
available to casual users, and it will become increasingly important to be able to manage
all of this data in a secure and well organized manner. The role of database systems
becomes extremely important in this scenario. Oracle Corporation’s Ray Lane [Ref. 6]
states:

If a device like the NC allows you more access, then you have
many more users and you will have many more databases by definition.
The need to have more data, more databases, basically creates more and
more back end systems in order to serve all of these devices.

Thus, databases and the ability to access them through the Web are central to this new
computing paradigm. Web/database integration is critical to the success of the Network

Computing architecture. The combination of the two will not only open up new

59

applications and capabilities, but it will also make them available to a much wider

audience.

60

APPENDIX A. ENTITY-RELATIONSHIP DIAGRAM FOR THE OHA

DATABASE

This Entity-Relationship diagram represents a simplified model of the OHA
database described in Chapter V. Only the tables that are relevant tothe Web/database

interface are included.

CLI_CD_DSCR
CLI_CD

o DSCRP

o CMNT

MIHA

CC

JTR_NUM
BG_DT

TXN_DT =
TYPE

o ANA_ID
o SUP_ID
o AMT

o TXN_CD
o CMNT

—

rOHA_XCHNG

CRC

TXN_DT
BG_DT
o SUP_ID
o ANA_ID
PDNUM
XCHNG
TXN_CD
CMNT

©O0O0O0

~\

JTR
CC
JTR_NUM
BG_DT
TXN_DT
o SUP_ID
o ANA_ID
o PDNUM
* KEY_JTR_CC

* KEY_JTR_NUM
o NAME
o}

-
KEY_JTR_OHA_RATE

CC

JTR_NUM

TXN_DT

BG_DT

o SUP_ID

ANA_ID

PDNUM

E1

[.
CNTRY_NME

CC

BG_DT

TXN_DT

o PDNUM
CRCY_NAME
CRC
LCRC
NAME
PROGRAM
ACTV_FLG
TXN_CD
ANA_ID
SUP_ID

OO0 O0O0O0O0O0OO0OO0

E2

E3

E4

E5

E6

E7

E8

E9

W1

w2

W3

w4

W5

O1E

O2E

O3E

01

02

o3

04

05

06

o7

08

09

010
KEY_JTR_FLG
INVRSN_FLG
o SMPOP_FLG
o WODIMBAL_FLG
o TXN_CD

o CMNT

OO0000D0000O00D0O0O0DO0DO0DO0DO0DODOODO0OO0DODOOOOOOO

61

\——

~

Legend

Attributes

. Unique Identifier
* Mandatory

o Optional

(
Relationships
Optionality
........ Optional
Mandatory
Cardinality
Single
>———— Multiple
N

62

APPENDIX B. DATABASE SCHEMA FOR THE OHA WEB/DATABASE
INTERFACE '

This database schema corresponds to the Entity-Relationship diagram shown in
Appendix A. It represents a simplified model of the OHA database described in Chapter
V. Only the tables that are relevant to the Web/database interface are included.

CREATE TABLE CLI_CD DSCRP

(CLI_CD NUMBER (1)

CONSTRAINT C NN CC CLI CD NOT NULL,
DSCRP VARCHAR?2 (30) ,
CMNT LONG,

CONSTRAINT C_PK _CCD PRIMARY KEY (CLI_CD)
USING INDEX TABLESPACE OHA INDEX)
STORAGE (INITIAL 1K
NEXT 1K
PCTINCREASE 0);

CREATE TABLE CNTRY_ NME

(cc VARCHAR?2 (2)
CONSTRAINT C_NN_CN_CC NOT NULL,
BG DT DATE
CONSTRAINT C_NN_CN_BG_DT NOT NULL,
TXN DT DATE
CONSTRAINT C_NN CN_TXN DT NOT NULL,
PDNUM NUMBER (5) ,
CRCY NAME VARCHAR2 (30) ,
CRC VARCHAR2 (2) ,
LCRC VARCHAR2 (2) ,
NAME VARCHAR?2 (40) ,
PROGRAM NUMBER (1) ,
ACTV_FLG NUMBER (1) ,
TXN_CD NUMBER (2) ,
ANA ID NUMBER (1),
SUP_ID NUMBER (1) ,

CONSTRAINT C_PK_CNME PRIMARY KEY (CC,BG_DT,TXN DT)
USING INDEX TABLESPACE OHA INDEX)
STORAGE (INITIAL 5K
NEXT 5K |
PCTINCREASE 0) ;

63

CREATE TABLE JTR
(cc

JTR_NUM
BG_DT
" TXN DT

SUP_ID
ANA ID
PDNUM
KEY_JTR_CC
KEY_JTR_NUM
NAME

CLI_CD
SEC_CD
TXN_CD

CMNT

VARCHAR?2 (2)

CONSTRAINT C NN _J CC NOT NULL,
NUMBER (3) ‘
CONSTRAINT C_NN_J JTR_NUM NOT NULL,
DATE

CONSTRAINT C NN _J_BG BT NOT NULL,
DATE

CONSTRAINT C_NN_J TXN DT NOT NULL,
NUMBER (1) ,

NUMBER (1),

NUMBER (5) ,

VARCHAR2 (2),

NUMBER (3),

VARCHAR (40) ,

NUMBER (1
NUMBER (1
NUMBER (2
LONG,

14

)
)
)
)

I

CONSTRAINT C_PK JTR PRIMARY KEY
(CC,JTR_NUM,BG_DT,TXN_DT)
USING INDEX TABLESPACE OHA_INDEX)

STORAGE (INITIAL 20K
NEXT 20K

PCTINCREASE 0) ;

CREATE TABLE OHA XCHNG
(CRC

TXN_DT
BG_DT

SUP_ID
ANA ID
PDNUM
XCHNG
TXN_CD
CMNT

VARCHAR?2 (2)
CONSTRAINT C NN OX CRC NOT NULL,
DATE

CONSTRAINT C_NN_OX_TXN DT NOT NULL,
DATE

CONSTRAINT C_NN_OX BG DT NOT NULL,
NUMBER (1) ,

NUMBER (1) ,

NUMBER (5) ,

FLOAT,

NUMBER (2) , {
LONG,

CONSTRAINT C_PK _OXCH PRIMARY KEY (CRC,TXN~DT,BG_DT)
USING INDEX TABLESPACE OHA._INDEX)

STORAGE (INITIAL 1M
NEXT 1M

PCTINCREASE O0) ;

64

CREATE TABLE KEY JTR OHA RATE

(cc
JTR_NUM
TXN DT
" BG_DT

SUP_ID
ANA ID
PDNUM

El

E2

E3

E4

ES5

E6

E7

ES8

E9

W1

w2

W3

W4

W5

O1E

O2E

O3E

01

02

03

04

05

06

07

08

09

010

KEY JTR FLG
INVRSN FLG
SMPOP_FLG
WODIMBAL FLG
TXN CD
CMNT

VARCHAR?2 (2)

CONSTRAINT C NN KJOR _CC NOT NULL,
NUMBER (3)

CONSTRAINT C_NN_KJOR_JTR _NUM NOT NULL,
DATE

CONSTRAINT C NN KJOR TXN DT NOT NULL,
DATE

CONSTRAINT C_NN_KJOR BG DT NOT NULL,
NUMBER (1),

NUMBER (1) ,

NUMBER (5) ,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

FLOAT,

NUMBER (1),

NUMBER (1),

NUMBER (1),
NUMBER (1) ,
NUMBER (2) ,
LONG,

65

CONSTRAINT C_PK_KJOR PRIMARY KEY
USING INDEX TABLESPACE OHA INDEX)

STORAGE (INITIAL 1M

NEXT 1M

PCTINCREASE 0) ;

CREATE TABLE MIHA
(cc

JTR_NUM
BG_DT
TXN DT
TYPE
ANA ID
SUP_ID
AMT

TXN CD
CMNT

(CC,JTR_NUM, TXN DT,BG DT

VARCHAR?2 (2)

CONSTRAINT
NUMRER (3)
CONSTRAINT
DATE
CONSTRAINT
DATE
CONSTRAINT
NUMBER (1)
CONSTRAINT
NUMBER (1),
NUMBER (1) ,
NUMBER (5) ,
NUMBER (2)
LONG,

7

C_NN_M _CC NOT NULL,
C_NN_M_JTR_NUM NOT NULL,
C_NN_M BG DT NOT NULL,
C_NN_M_TXN DT NOT NULL,

C_NN_M_TYPE NOT NULL,

CONSTRAINT C_PK MIHA PRIMARY KEY
(CC,JTR_NUM,BG_DT,TXN_DT,TYPE)
USING INDEX TABLESPACE OHA INDEX)

STORAGE (INITIAL 1K

NEXT 1K

PCTINCREASE 0) ;

66

APPENDIX C. SCREEN VIEWS OF THE EXISTING OHA WEB SITE

This appendix contains the screen views of the existing OHA Web site currently
maintained on the DTIC Web server by PDTATAC. Screens that do not fit on one page

are shown in printout form.

File Edit Yiew Go Bookmarks Options Directory Window Help

Per Diem, Travel and Transportation Allowance Commitiee

OCONUS/Overseas Cost of Living Allowance
&
Overseas Housing Allowance

A Location Code is needed to calculate COLA and OHA. Please select the list below to find the
Location Code for the desired city.

Select the desired Country/State of your city: (Dpe the first letter of the country/state to
advance list)

GIBRALTAR :
GREECE *

67

Country/State: GERMANY

Make a note of the LOCATION CODE for your city exactly as shown. Select an
option below the list of locations to proceed.

NOTE: The OTHER location should be used if the city/installation is not listed

LOCATION-CODE CITY-NAME ALLOWANCES
GM999 ALL OTHER LANDSTATES COLA OHA
GM210 ALZEY (RP) coLa OHA
GM101 ASCHAFFENBURG (B) COLA OHA
GM103 AUGSBURG (INCL LANDSBERG) (= CoLa OHA
GM301 BABENHAUSEN (H) COLA OHA
GM162 BAD AIBLING (B) coLa OHA
GM601 BAD KREUZNACH (RP) COLA OHA
GM212 BANN (RP) COLA OHA
GM603 BAUMHOLDER (INCL BOERFINK) RDP) COoLA OHA
GM201 BERLIN (WESTERN SECTORS) coLa OHA
GM511 BIELEFELD (INCL DETMOLD) (X=W) COLA OHA
GM109 BINDLACH (B) COLA OHA
GM605 BIRKENFELD (RP) CoLA OHA
GM501 BONN (INCL KOLN/BONN AIRPOZT) (NRW) COLA OHA
GM503 BORGHOLZHAUSEN (NRW) coLa OHA
GM203 BREMEN (INCL BREMERHAVEN AND NORDHOLTZ) COLA OHA
GM401 BUECKENBURG (LS) COLA OHA
GM307 BUEDINGEN (H) coLa OHA
GM507 BURBACH (NRW) CcoLAa OHA
GM169 COLOGNE (INCL DELLBRUECK, PCRZ-WAHN) (NRW)COLA OHA
GM311 DARMSTADT (H) coLa OHA
GM663 DEXHEIM (RP) COLA OHA
GMO071 DONAUESCHINGEN (BW) COLA OHA
GM111 ECKSTEIN (RIMBACH) (B) coLa OHA
GM609 EINSIDLERHOF (RP) COoLA OHA
GM165 ERDING (B} coLa OHA
GM113 ERLANGEN (B) COLA OHA
GM313 ERLANSEE (H) coLa OHA
GM079 FELDBERG/SCHWARZWALD (BW) coLa OHA
GM317 FRANKFURT AM MAIN (INC RHEIN MATIN AB) (H)COLA OHA
GMO067 FREIBURG (BW) COLA OHA
GM117 FUERTH (B) coLa OHA
GM121 GARMISCH (B) COoLA OHA
GM405 GARTOW (LS) COLA OHA
GM531 GEILENKIRCHEN (NRW) COLA OHA
GM321 GELNHAUSEN (H) COLA OHA
GM123 GIEBELSTADT (B) COLA OHA
GM323 GIESSEN (H) COLA OHA
GM613 GONSENHEIM (RP) coLa OHA
GM224 GOTTINGEN (LS) coLa OHA
GM222 GREDING (B) COLA OHA
GMOQ17 GROSS ENGSTINGEN (BW) COLA OHA
GM327 GROSSAUHEIM (H) coLa OHA
GM125 GROSSENGSTIGEN (B) CoLA OHA
GM523 GUETERSLOH (NRW) COLA OHA

68

GM205
GM329
GM407
GM019
GM409
GM411
GM413
GM021
GM619
GM815
GM415
cM621
GM539
GM025
GM027
GM221
GM335
GM129
GM033
GM629
cM214
GMO039
GM131
GM041
GM635
GM339
GM549
GM639
GM133
GM417
GM641
GM551
GM137
GM139
GM219
GM429
GMO63

'GM153

GM359
GM425
GM573
GM655
GM207
GM703
GM555
GM643
GM723
GM199
GM216
GM349
GM143
GM645
GM4 64
GM145
GM147
GMO55

HAMBURG
HANAU (H)

HANNOVER (INCL WUNSTORF) (LS)
HEIDELBERG (BW)

HELMSTEDT (LS)
HESSICH-OLDENDORF (LS)
HOHNE-BERGEN (LS)

HORMSGRINDE (BW)

IDAR OBERSTEIN (RP)

JENA

JEVER AB (LS)

KAISERSLAUTERN (RP)

KALKAR (NRW)

KALTENBRONN (BW)

KARLSRUHE (INCL ETTLINGEN) (BW)
KIEL (INCL ECKERNFORDE) (SH)
KIRCHGOENS/BUTZBACH (H)
KITZENGEN (INCL WUERZBURG) (B)
KONSTANZ (BW)

LANDSTUHL (RP)

LANGERKOPF (RP)

MANNHEIM (INCL SANDHOFEN) (BW)
MEMMINGEN (B)

MESSETETTEN (BW)

MIESAU (RP)

MUENSTER (H)

MUNCHENGLADBACH (INCL GREFRATH, ETC

MUNCHENWEILER (RP)

MUNICH (B) (INCL OBERPFAFFENHOFEN)

MUNSTER-OERTZE (LS)
NEUBRUECKE (RP)
NOERVENICH (NRW)

NURNBERG (B)

OBERAMMERGAU (B)
OBERAMMERGAU MOD
OLDENBERG (L3)

OTHER BADEN-WUERTEMBERG
OTHER BAVARIA

OTHER HESSE

OTHER LOWER SAXONY

OTHER NORTH RHINE WESTPHALIA
OTHER RHINELAND PALATINATE
OTHER SAARLAND

OTHER SCHLESWIG HOLSTEIN
PADERBORN (NRW)

RAMSTEIN (RP)

RENDSBURG (SH)

RHEINBERG (NRW)
RUPPERTSWEILER (RP)
RUSSELSHEIM (H)

SCHWABACH (B)

SEMBACH AB (RP)

SOEGEL (INCL MEPPEN) (LS)
SONTHOFEN (B)

STEIN (B)

STUTTGART MILITARY COMMUNITY (BW)

69

coLa
CcoLa
cora
COLA
CcoLA
coLa
COLA
CcoLa
coLa
coLa
coLa
COLA
coLa
coLa
coLa
COLA
COLA
COoLA
COLA
coLa
COoLA
coLa
coLa
COLA
COLA
coLa

(NRW) COLA

COLA
COLA
COoLA
COLA
COLA
COLA
COLA
COLA
COLA
COLA
coLa
coLa
COLA
COLA
coLa
COLA
COLA
COLA
COLA
COoLA
COLA
CcoLA
COLA
COLA
COLA
COLA
COLA
COLA
COLA

OHA
OHA
OHA
OHA
OHA
CHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
CHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OHA
OCHA

GM353 TREYSA (H) COLA OHA

GM059 TUBINGEN (BW) coLa OHA
GM599 TWISTEDEN (NRW) CcoLAa OHA
GM061 ULM (INCL NEU ULM) (BW) COLA OHA
GM649 WACKERHEIM (RP) COoLA OHA
GM095 WEINGARTEN (BW) COLA OHA
GM565 WERL (NRW) CcoLa OHA
GM651 WESTERBURG (RP) - - COLA OHA
GM355° WIESBADEN (H) coLa OHA
GM357 WIESBADEN AB (H) COLA OHA
GM469 WILHEMSHAVEN (LS) coLa OHA
GM653 ZWEIBRUECKEN (INCL KREUZBERG KAS) (RP) COLA OHA

FIND Overseas Housing Allowances (OHA)

FIND Cost Of Living Allowance (COLA)

Return to Previous

70

File Edit View Go Bookmarks Options Directory Window Help

' Overseas Housing Allowances (OHA)

Per Diem, Travel and Transportation Allowance Committee

The location code is 5 postions. The first 2 positions in the location code represent the country, the
next 3 positions are numbers. Enter your data below:

Location Code: Rank:[E1 [

| Start OHA Query || Reset]

Don't know the Location Code? Search here.

ocumentDone . oo o 0 T e LT T T T R

71

Bl s it

ﬁokmar
Here is the information that you requested.

GERMANY

Locahon HAMBURG Locatlon Code GMZOS

Optmns Dlrectory Wmdow Help

F or an E-1 with dependents the OHA rental ceﬂmg 1s:$ 1013. 00 “
Average utility/recurring maintenance/miscellanous allowance is: § 221.00
Move-In-Housing Allowance is: $ 419.00

These allowances are effective: 961016

Climate code is: 2.00

Exchange rate is: 1.48999986590001

=8l DocumentDone

72

APPENDIX D. SCREEN VIEWS OF THE OHA WEB/DATABASE INTERFACE

This appendix contains the screen views of the prototype OHA Web/database

interface developed in Chapter V. Screens that do not fit on one page are shown in

printout form. i

_F_ile Edit View Go

Overseas Housing Allowances (OHA)

Per Diem, Travel and Transportation Allowance Committee

Select a country:

(MS Windows Users: Type the first letier of the location to advance kst)
FRANCE ol

SERMARE 2 = ;

GIBRALTOR

GREECE w5l

. <8l ‘Document Done ™

73

File Edit View Go

Per Diem, Travel and Transportation Allowance Committee

Overseas Housing Allowances (OHA)

Select a location:

(MS Windows Users: Type the first letter of the location to advance fist)
GUETERSLOH [N _— _— R4

HANAU [H] —
HANNOVER (INCL WUNSTORF] (LS} +]| Process |

74

Overseas Housing Allowances (OHA)

Per Diem, Travel and Transportation Allowance Committee

OHA Ceilings for Location: GM205
HAMBURG

[Rank | With Dependents | _ Without Dependents__|
[E1]| $1041 | 5937 |
[E2_] $1041] 5937
|_E3 | $1041 | 5937
| _E4_| $1041 | 5937
|_E5 | $1041 T 5937
|_E-6_| $1641 | $1477
| E7 | $1776 | $1598
|_E8 | $1910 1 $1719
| E9 | $2066 l 51859
LWL | $1721 [$1549
L w-2_| $1721 [$1549
| W3 | $1910] $1719
| w4 | $2103 l $1893
| W5 | $2103 l $1893
| 0-1E_| $1721 } $1859
| 02E_| $1910 [$1719
| 03 | $2103 E 1893

0-1_| $1721 ! $1549
| 02| 51721 [$1549
i 03 | $1910 l $1719
ELS?:‘*MI $2103 [$1893
| 05 | $2103 [$1893
|_0-6_| $2103 { $1893
| 07 | $2103 ! $1893
| 08 | $2103 [51893
| o9 | $2103 E $1893

....... 0-10_| $2103 i $1893

75

Effective date for these allowances: 01-SEP-85

The local currency for this area is: Unknown Currency Name
The exchange rate is: .7042

Moving-In Housing Allowance is: $431

The climate in this area is: Warm

This page was produced by the Oracle Web Agent on November 18, 1996 02:03 PM

View PL/SQL source code

76

APPENDIX E. PL/SQL CODE FOR THE OHA WEB/DATABASE INTERFACE

The following is a listing of the PL/SQL package for the prototype OHA

Web/database interface developed in Chapter V.

--package specification
PACKAGE OHA PKG1l IS

--procedure declarations
PROCEDURE TSTOHA;
PROCEDURE TSTOHA2 (CC IN VARCHAR2) ;

PROCEDURE TSTOHA3 (JTRLOC IN VARCHAR2,
IN_CRC IN VARCHAR2Z,

IN CRCNAME IN VARCHAR2) ;

END;

77

--Package body
PACKAGE BODY OHA PKG1 IS

--global variable declaration
url varchar2 (100) := 'http://206.39.184.1"';

--This procedure displays retrieves a list of OHA-eligible

countries
--from the database and displays them in a selection list

PROCEDURE TSTOHA IS

BEGIN

--cursor and local variable declarations

cursor cntry cursor is SELECT distinct cntry nme.cc,
cntry nme.name, cntry nme.crc,
cntry_nme.crcy name
from cntry nme, key_jtr oha rate rate
where cntry nme.cc = rate.cc '
order by name;

selected varchar2 (8);

ctr number := 0;

--generate HTML tags
htp.htmlOpen;

htp.headOpen;

htp.title('Overseas Housing Allowances (OHA) ') ;

htp.headClose;

htp.bodyOpen (cbackground => url | |

' /oha/whtpaper.gif') ; : .
htp.header(1, 'Overseas Housing Allowances (OHA)',
'center');

htp.header (3,

'"Per Diem, Travel and Transportation Allowance
Committee', 'center') ;

htp.para;
htp.line;

--HTML form tags specify the URL for the next
--procedure

htp.formOpen (curl =»> '"OHA PKG1.TSTOHA2', cmethod =>
'POST') ;

htp.para;

htp.header (3, 'Select a country: ');

78

htp.print ('<I>(MS Windows Users: Type the first
letter of the location to advance list)</I>');
htp.nl;

htp.formSelectOpen('CC',null, 4);

--loop through rows from database and display in a
--select list.

--cntry rec is implicitly declared and cursor is
--implicitly loaded.

for cntry rec in cntry cursor

loop

ctr := ctr + 1;

--set the first country to be initially

--selected

if ctr = 1 then selected := 'SELECTED';

else selected := null;

end if;

--insert the country name into the select

--list along

--with associated values to be passed to the

--next screen

htp.formSelectOption(cvalue =>

cntry rec.name,

cselected => selected,
cattributes => 'value="' ||
cntry rec.cc ||
cntry rec.crc ||
cntry rec.crcy name
II llll)’.
end loop;

htp.formSelectClose;

--Submit button
htp.formSubmit (cvalue => 'Process');
htp.formClose;

htp.line;

--display icon to return to PDTATAC home page
htp.anchor ('index.html', htf.img(curl => url ||
' /oha/earthico.gif')) ;

htp.para;
htp.para;

79

END;

htp.para;

htp.bodyClose;
htp.htmlClose;

80

--This procedure retrieves a list of locations within the
--gselected country and displays them in a selection list
PROCEDURE TSTOHAZ2 (CC in Varchar2) IS

BEGIN

--cursor and local variable declarations
in_cc varchar2(2);
in_crc varchar2(2);
in_crcy name varchar2(30); _ -
cursor loc_cursor is SELECT jtr.cc, jtr.jtr num,
name, cli cd
from jtr, key jtr oha rate rate
where jtr.cc = in cc and
jtr.cc = rate.cc and jtr.jtr num =
rate.jtr num
order by name;
selected varchar2(8);
ctr number := 0;

--parse input parameters

in_cc := substr(CC,1,2);
in_crc := substr(CC,3,2);
in _crcy name := substr(CC,5);

--generate HTML tags
htp.htmlOpen;

htp.headOpen;

htp.title('Overseas Housing Allowances (OHA)');

htp.headClose;

htp.bodyOpen (cbackground => url ||

' /oha/whtpaper.gif');

htp.header(1, 'Overseas Housing Allowances (OHA)',
'center') ;

htp.headex (3,

'"Per Diem, Travel and Transportation Allowance

Committee', 'center!') ;
htp.para;
htp.line;

--HTML form tags specify the URL for the next
--procedure

htp.formOpen (curl => 'OHA PKG1.TSTOHA3',cmethod =>
"POST') ;

htp.para;

81

htp.header (3, 'Select a location: ');

htp.print ('<I>(MS Windows Users: Type the first
letter of the location to advance list)</I>");

htp.nl;

htp.formSelectOpen ('JTRLOC' ,null,4) ;

--loop through rows from database and display in a

--select list. '
--loc_rec is implicitly declared and cursor is

--implicitly loaded.
for loc_rec in loc_cursor

loop

ctr := ctr + 1;

--set the first country to be initially

--selected

if ctr = 1 then selected := 'SELECTED' ;

else selected := null;

end if;

--insert the location name into the select

--list along

--with associated values to be passed to the

--next screen

htp.formSelectOption (cvalue => loc_rec.name,

cselected => selected,
cattributes => 'value="' ||

loc_rec.cc ||

lpad(to_char (loc_rec.jtr_num),3,'0') ||
rpad(loc_rec.name,40,' ') ||
loc_rec.cli _cd ||
IIII);

end loop;

htp.formSelectClose;

--Hidden fields to be passed on to the next

--procedure
htp.formHidden('IN_CRC',in_crc);
htp.formHidden ('IN CRCNAME', in_crcy_name) ;

--Submit button
htp.formSubmit (cvalue => 'Process') ;

htp.formClose;

htp.line;

82

--display icon to return to PDTATAC home page
htp.anchor ('index.html', htf.img(curl => url ||
' /oha/earthico.gif'"));

htp.para;

htp.para;

htp.para; -
htp.bodyClose;

htp.htmlClose;

83

--This procedure retrieves OHA rates and associated
--information from the database based upon the country
--and location selections and displays them
--in a table format.
PROCEDURE TSTOHA3 (JTRLOC IN VARCHAR2,
IN_CRC IN VARCHAR2, v -
IN_CRCNAME IN VARCHAR2) IS
--cursor and local variable declarations
in_cc varchar2(2);
in_jtr varchar2(3);
in_name varchar?2 (40);
in_climate varchar2 (1) ;

cursor loc_cursor is SELECT * FROM key_jtr oha rate
WHERE cc = in_cc and jtr_num = in jtr;

--explicit declaration for loc_rec using %rowtype attribute

loc_rec loc_cursor$rowtype;

cursor cli_cursor is SELECT dscrp FROM cli_cd_dscrp
WHERE c¢li_cd = in climate;

cli_dscrp varchar2(30);

cursor xch_cursor is SELECT xchng FROM oha xchng
WHERE crc = IN CRC;

xch_rec xch_cursor%rowtype;

cursor miha_cursor is SELECT sum(amt) FROM miha
WHERE cc = IN _CC and jtr_num = in_ jtr;

miha_amt number;

BEGIN

--parse input parameters

in_cc := substr(JTRLOC,1,2);
in_jtr := substr (JTRLOC, 3, 3) ;

in _name := substr (JTRLOC, 6,40) ;

in climate := substr (JTRLOC, 46,1) ;

--explicitly retrieve data into the cursors
open loc cursor;

fetch loc_cursor into loc_rec;

close loc cursor;

open cli cursor;

fetch cli_cursor into cli_dscrp;
close cli cursor;

84

open xch cursor;
fetch xch cursor into xch rec;
close xch cursor;

open miha_cursor;
fetch miha_cursor into miha_amt;
close miha_cursor; -

--generate HTML tags

htp.htmlOpen;

htp.headOpen;

htp.title('Overseas Housing Allowances (OHA)');

htp.headClose;

htp.bodyOpen (cbackground => url ||

' /oha/whtpaper.gif!') ;

htp.header(1, 'Overseas Housing Allowances (OHA)',

'center') ;

htp.header (3, 'Per Diem, Travel and Transportation
Allowance Committee!', 'center');

htp.para;

htp.line;

htp.para;

htp.centerOpen;- :
htp.header (3, 'OHA Ceilings for Location: '|| in cc
|| in_jtr, 'center');

htp.header(3, in _name, 'center');

htp.nl;

--HTML table tags
htp.tableOpen(cattributes => 'border=2 width=70%') ;

htp.tableRowOpen;

htp.tableHeader ('Rank', cattributes =>

' width=10%"') ;

htp.tableHeader ('With Dependents', cattributes =>

" width=30%") ;

htp.tableHeader ('Without Dependents', cattributes =>
' width=30%"');

htp.tableRowClose;

--display OHA rates in an HTML table by dependency
-- status and rank.

--Without dependents rates are calculated as 90% of
-- with dependents rates.

85

htp.tableRowOpen;

htp.tableData(htf.strong('E-1'), 'middle');
htp.tableData('$' || loc_rec.El, 'middle');
htp.tableData('$' || round(loc _rec.E1*.9), 'middle’);

htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-2'), 'middle') ;
htp.tableData('$' || loc_rec.E2, 'middle');
htp.tableData('s' || round(loc_rec.E2%.9), 'middle');
htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-3"'), 'middle!) ;
htp.tableData('$' || loc_rec.E3, 'middle');
htp.tableData('$' || round(loc rec.E3*.9), 'middle') ;
htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-4'), 'middle');
htp.tableData('$' || loc_rec.E4, 'middle’) ;
htp.tableData('$' || round(loc rec.E4*.9), 'middle');

htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-5'), 'middle');
htp.tableData('$' || loc_rec.E5, 'middle') ;
htp.tableData('s$' || round(loc_rec.E5%.9), 'middle');
htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-6'), 'middle');
htp.tableData('$' || loc_rec.E6, 'middle') ;
htp.tableData('$' || round(loc_rec.E6%.9), 'middle') ;

htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-7'), 'middle!') ;
htp.tableData('$' || loc_rec.E7, 'middle') ;
htp.tableData ('$' || round(loc_rec.E7+%.9), 'middle') ;
htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('E-8'), 'middle') ;
htp.tableData('$' || loc_rec.E8, 'middle’) ;
htp.tableData('s$' || round(loc_rec.E8*.9), 'middle') ;

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData (htf.strong('E-9'), 'middle?') ;
htp.tableData('s$' || loc_rec.E9, 'middle') ;
htp.tableData ('$' || round (loc_rec.E9%.9), 'middle') ;

htp.tableRowClose;

86

htp.tableRowOpen;
htp.tableData(htf.strong('W-1'), 'middle');
htp.tableData('$' || loc_rec.Wl, 'middle');

htp.tableData('$' || round(loc_rec.Wl*.9), 'middle');

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('W-2'), 'middle');
htp.tableData('$' || loc_rec.W2, 'middle');
htp.tableData('$' || round(loc_rec.W2*.9), 'middle');

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('W-3'), 'middle');
htp.tableData('$' || loc_rec.W3, 'middle');
htp.tableData('$' || round(loc_rec.W3*.9),'middle!');

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('W-4'), 'middle');
htp.tableData('$' || loc_rec.W4, 'middle');
htp.tableData('$' || round(loc_rec.W4*.9), 'middle');

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('W-5'), 'middle');
htp.tableData('$' || loc_rec.W5, 'middle');
htp.tableData('$' || round(loc_rec.W5%*.9),'middle’') ;

htp.tableRowClose;

htp.tableRowOpen;

htp.tableData(htf.strong('0-1E'), 'middle');
htp.tableData('$'|| loc_rec.OlE, 'middle’);

htp.tableData('$'|| round(loc rec.E9*.9), 'middle');

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('0-2E'), 'middle');
htp.tableData('$'|| loc_rec.O2E, 'middle');

htp.tableData('$'|| round(loc_rec.02E*.9), 'middle');

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('0-3E'), 'middle') ;
htp.tableData('$'|| loc_rec.O3E, 'middle!');
htp.tableData('$'|| round(loc rec.O3E*.9), 'middle!') ;

htp.tableRowClose;
htp.tableRowOpen;

htp.tableData(htf.strong('0-1'), 'middle');
htp.tablebData('$' || loc_rec.0l, 'middle');
htp.tableData('$' || round(loc_rec.01%*.9), 'middle');

htp.tableRowClose;

87

htp.
htp.
htp.
htp.
htp.
htp.

htp

htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.

htp

htp.
htp.
htp.
htp.
htp.

htp

htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.
htp.

tableRowOpen;

tableData(htf.strong('0-2'), 'middle') ;
tableData('$' || loc rec.02, 'middle');
tableData('$' || round(loc_rec.02*.9), 'middle') ;
tableRowClose;

tableRowOpen;

.tableData(htf.strong('0-3'), 'middle’');
tableData('$' || loc_rec.03, 'middle’) ;
tableData('$' || round(loc_rec.03*.9), 'middle') ;
tableRowClose;

tableRowOpen;

tableData(htf.strong('0-4'), 'middle!');
tableData('$' || loc rec.04, 'middle');
tableData('$' || round(loc rec.04*.9), 'middle') ;
tableRowClose;

tableRowOpen;

tableData(htf.strong('0-5'), 'middle'):;
tableData('$' || loc rec.05, 'middle');
tableData('$' || round(loc_rec.05*.9), 'middle') ;
tableRowClose;

tableRowOpen;

tableData(htf.strong('0-6'), 'middle!');
tableData('$' || loc_rec.06, 'middle') ;
tableData('$' || round(loc_rec.06*.9), 'middle') ;
tableRowClose;

tableRowOpen; _
-tableData(htf.strong('0-7'), 'middle');
tableData('$' || loc_rec.07,'middle');
tableData('$' || round(loc rec.07*.9), 'middle') ;
tableRowClose;

tableRowOpen;

tableData(htf.strong('0-8"), 'middle') ;
.tableData('$' || loc rec.08, 'middle') ;
tableData('$' || round(loc rec.08*.9),middle');
tableRowClose;

tableRowOpen;

tableData(htf.strong('0-9'), 'middle!) ;
tableData('$' || loc_rec.09, 'middle’) ;

tableData ('$' || round(loc_rec.09*.9), 'middle') ;
tableRowClose;

tableRowOpen;

tableData(htf.strong('0-10'), 'middle’') ;
tableData('$' || loc_rec.010, 'middle’) ;

tableData ('$'|| round(loc_rec.010%.9), 'middle') ;
tableRowClose;

88

htp.tableClose;
htp.para;

htp.centerClose;

--Display associated information
htp.Header (4, 'Effective date for these-allowances: '
| | to_char(loc _rec.bg dt));

htp.Header (4, 'The local currency for this area is: '
| | IN CRCNAME) ;

htp.Header (4, 'The exchange rate is: ' ||
to_char (xch rec.xchng)) ;

htp.Header (4, 'Moving-In Housing Allowance is: $' ||
to_char (miha amt));

htp.Header (4, 'The climate in this area is: ' ||

cli_dscrp);

htp.nl;

--this statement displays the source code of this
-- package... for debugging purposes only
owa_util.signature('OHA PKGl.tstoha2!');

htp.line;

--display icon to return to PDTATAC home page
htp.anchor ('index.html', htf.img(curl => url ||
'/oha/earthico.gif')) ;

htp.para;
htp.para;
htp.para;

htp.bodyClose;
htp.htmlClose;
END;

END;

89

90

APPENDIX F. GENERATED HTML FOR THE OHA WEB/DATABASE
INTERFACE

The following is a listing of the HTML generated by the PL/SQL package shown
in Appendix E. -

<HTML>

<HEAD>

<TITLE>Overseas Housing Allowances (OHA)</TITLE>

</HEAD>

<BODY BACKGROUND="http://206.39.184.1/oha/whtpaper.gif">
<H1 ALIGN="center">Overseas Housing Allowances (OHA)</Hl>
<H3 ALIGN="center"sPer Diem, Travel and Transportation
Allowance Committee</H3>

<P>

<HR>

<FORM ACTION="OHA PKG1l.TSTOHA2" METHOD="POST">

<P>

<H3>Select a country: </H3>

<I>(MS Windows Users: Type the first letter of the location
to advance list)</I>

<SELECT NAME="CC" SIZE="4">

<OPTION SELECTED value="AQAQUnknown Currency Name">AMERICAN
SAMOA

<OPTION value="ACACUnknown Currency Name">ANTIGUA & BARBUDA
<OPTION value="ARARUnknown Currency Name">ARGENTINA
<OPTION value="ASASUnknown Currency Name">AUSTRALIA
<OPTION value="AUAUUnknown Currency Name">AUSTRIA

<OPTION value="BFBFUnknown Currency Name">BAHAMAS THE
<OPTION value="BABAUnknown Currency Name">BAHRAIN

<OPTION value="BBBBUnknown Currency Name">BARBADOS

<OPTION value="BEBEUnknown Currency Name">BELGIUM

<OPTION value="BHBHUnknown Currency Name">BELIZE (BRITISH
HONDURAS)

<OPTION value="BLBLUnknown Currency Name">BOLIVIA

<OPTION value="BRBRUnknown Currency Name">BRAZIL

<OPTION value="CACAUnknown Currency Name">CANADA

<OPTION value="CICIUnknown Currency Name">CHILE

<OPTION value="CHCHUnknown Currency Name">CHINA COMMUNIST

91

<OPTION
<OPTION

value="COCOUnknown
value="CSCSUnknown

<OPTION value="EZEZUnknown
<OPTION value="DADAUnknown
<OPTION value="DRDRUnknown
<OPTION value="ECECUnknown
<OPTION value="EGEGUnknown
<OPTION value="FMFMUnknown
MICRONESTIA

<OPTION value="FJFJUnknown
<OPTION value="FIFIUnknown
<OPTION wvalue="FRFRUnknown

<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION

value="GMGMUnknown
value="GIGIUnknown
value="GRGRUnknown
value="GOGQUnknown
value="HAHAUnknown
value="HOHOUnknown
value="HUHUUnknown
value="IDIDUnknown
value="EIEIUnknown
value="ISISUnknown
value="ITITUnknown
value="JMJIMUnknown
value="JAJAUnknown
value="JSJSUnknown
value="KEKEUnknown
value="KSKSUnknown
value="LULUUnknown
value="MYMYUnknown
value="RMRMUnknown
value="MXMXUnknown
value="MHMHUnknown
value="MOMOUnknown
value="NLNLUnknown
value="NZNZUnknown
value="NONOUnknown
value="PKPKUnknown
value="PMPMUnknown
value="PPPPUnknown
value="PEPEUnknown
value="RPRPUnknown
value="PLPLUnknown
value="POPOUnknown
value="RQORQUnknown

Currency
Currency

Currency

Currency
Currency
Currency
Currency
Currency

Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency

92

Name">COLOMBIA
Name">COSTA RICA
Name">CZECH REPUBLIC
Name " >DENMARK
Name">DOMINICAN REPUBLIC
Name " >ECUADOR
Name">EGYPT

Name">FED STATES OF

Name">FIJI

Name" >FINLAND
Name " >FRANCE
Name " >GERMANY
Name">GIBRALTOR
Name" >GREECE
Name " >GUAM
Name">HAITI
Name " >HONDURAS
Name " >HUNGARY
Name" >INDONESIA
Name " >IRELAND
Name">ISRAEL
Name">ITALY
Name">JAMAICA
Name " >JAPAN

Name" >JERUSALEM
Name">KENYA
Name">KOREA (SOUTH)
Name " >LUXEMBOURG
Name " >MALAYSIA
Name">MARSHALIL ISLANDS
Name">MEXICO
Name" >MONTSERRAT
Name " >sMOROCCO '
Name " >SNETHERLANDS
Name">NEW ZEALAND
Name " >SNORWAY
Name" >PAKISTAN
Name" >PANAMA
Name">PAPUA NEW GUINEA
Name " >PERU
Name">PHILLIPINES
Name " >POLAND
Name " >PORTUGAL
Name" >PUERTO RICO

<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION
<OPTION

value="RWRWUnknown Currency Name">RWANDA
value="SNSNUnknown Currency Name'">SINGAPORE
value="8PSPUnknown Currency Name">SPAIN
value="STUnknown Currency Name">ST. LUCIA
value="SWSWUnknown Currency Name">SWEDEN
value="SZSZUnknown Currency Name'">SWITZERLAND
value="THTHUnknown Currency Name'">THAILAND
value="TSTSUnknown Currency Name'">TUNISIA
value="TUTUUnknown Currency Name">TURKEY
value="TCUnknown Currency Name">UNITED ARAB EMIRATES

<OPTION value="UKUKUnknown Currency Name">UNITED KINGDOM
<OPTION value="VEVEUnknown Currency Name">VENEZUELA

<OPTION value="VMUnknown Currency Name">VIETNAM (FORMERLY VN
& VS)

<OPTION value="VQVQUnknown Currency Name">VIRGIN ISLANDS
<OPTION value="ZIZIUnknown Currency Name">ZIMBABWE (FORMERLY
RHODESIA)

</SELECT> .

<INPUT TYPE="submit" VALUE="Process">

</FORM>

<HR>

<P>

<P>

<P>

</BODY>
</HTML>

93

<HTML:>

<HEAD>

<TITLE>Overseas Housing Allowances (OHA)</TITLE>
</HEAD>

<BODY BACKGROUND="http://206.39.184.1/oha/whtpaper.gif"s
<H1 ALIGN="center">Overseas Housing Allowances (OHA)</H1l>
<H3 ALIGN="center">Per Diem, Travel and Transportation
Allowance Committee</H3>

<P>

<HR>

<FORM ACTION="OHA_PKG1.TSTOHAB" METHOD="POST" >

<P>

<H3>Select a location: </H3>

<I>(MS Windows Users: Type the first letter of the location
to advance list)</I>

<SELECT NAME="JTRLOC" SIZE="4">

<OPTION SELECTED value="GM999ALL OTHER LANDSTATES
2">ALIL, OTHER LANDSTATES

<OPTION value="GM210ALZEY (RP)

2"SATLZEY (RP)

<OPTION value="GM101ASCHAFFENBURG (B)

2">ASCHAFFENBURG (B)

<OPTION value="GM103AUGSBURG (INCL LANDSBERG) (B)
2">AUGSBURG (INCL LANDSRBRERG) (B)

<OPTION value="GM301BABENHAUSEN (H)

2">BABENHAUSEN (H)

<OPTION value="GM162BAD AIBLING (B)

2">BAD AIBLING (B)

<OPTION value="GM601BAD KREUZNACH (RP)

2">BAD KREUZNACH (RP)

<OPTION value="GM212BANN (RP)

2">BANN (RP)

<OPTION value="GM603BAUMHOLDER (INCL BOERFINK) (RP)
2">BAUMHOLDER (INCL BOERFINK) (RP)

<OPTION value="GM201BERLIN (WESTERN SECTORS)

2">BERLIN (WESTERN SECTORS)

<OPTION value="GM511BIELEFELD (INCL DETMOLD) (NRW)
2">BIELEFELD (INCL DETMOLD) (NRW)

<OPTION value="GM109BINDLACH (B)

2">BINDLACH (B)

<OPTION value="GM60S5BIRKENFELD (RP)

2">BIRKENFELD (RP)

<OPTION value="GM501BONN (INCL KOLN/BONN AIRPORT) (NRW)
2">BONN (INCIL KOLN/BONN AIRPORT) (NRW) :

94

<OPTION value="GM503BORGHOLZHAUSEN (NRW)

2" >BORGHOLZHAUSEN (NRW)

<OPTION value="GM203BREMEN (INCL BREMERHAVEN AND NORDHOLTZ)
2">BREMEN (INCL BREMERHAVEN AND NORDHOLTZ)
<OPTION value="GM401BUECKENBURG (LS)
2">BUECKENBURG (LS)

<OPTION value="GM307BUEDINGEN (H) -
2">BUEDINGEN (H)

<OPTION value="GM507BURBACH (NRW)

2">BURBACH (NRW)

<OPTION value="GM169COLOGNE (INCL DELLBRUECK, PORZ-
WAHN) (NRW) 2">COLOGNE (INCL DELLBRUECK, PORZ-WAHN) (NRW)
<OPTION value="GM311DARMSTADT (H)

2">DARMSTADT (H)

<OPTION value="GM663DEXHEIM (RP)

2">DEXHEIM (RP)

<OPTION value="GMO71DONAUESCHINGEN (BW)
2">DONAUESCHINGEN (BW) ‘

<OPTION value="GM111ECKSTEIN (RIMBACH) (B)
2"SECKSTEIN (RIMBACH) (B)

<OPTION value="GM609EINSIDLERHOF (RP)
2">EINSIDLERHOF (RP)

<OPTION value="GM165ERDING (B)

2"SERDING (B)

<OPTION value="GM113ERLANGEN (B) -

2">ERLANGEN (B)

<OPTION value="GM313ERLANSEE (H)

2">ERLANSEE" (H)

<OPTION value="GM079FELDBERG/SCHWARZWALD (BW)

2" >FELDBERG/SCHWARZWALD (BW)

<OPTION value="GM317FRANKFURT AM MAIN (INC RHEIN MAIN
AB) (H) 2">FRANKFURT AM MAIN (INC RHEIN MAIN AB) (H)
<OPTION value="GM067FREIBURG (BW)

2">FREIBURG (BW)

<OPTION value="GM117FUERTH (B)

2"S>FUERTH (B)

<OPTION value="GM121GARMISCH (B)

2">GARMISCH (B)

<OPTION value="GM405GARTOW (LS)

2">GARTOW (LS)

<OPTION value="GM531GEILENKIRCHEN (NRW)
2">GEILENKIRCHEN (NRW)

<OPTION value="GM321GELNHAUSEN (H)

2" >GELNHAUSEN (H)

95

<OPTION value="GM123GIEBELSTADT (RB)
2">GIEBELSTADT (B)

<OPTION value="GM323GIESSEN (H)
2">GIESSEN (H)

<OPTION value="GM613GONSENHEIM (RP)
2">GONSENHEIM (RP)

<OPTION value="GM224GOTTINGEN (LS) -
2">GOTTINGEN (LS)

<OPTION value="GM222GREDING (B)
2">GREDING (B)

<OPTION value="GM01l7GROSS ENGSTINGEN (BW)
2">GROSS ENGSTINGEN (BW)

<OPTION value="GM327GROSSAUHEIM (H)
2">GROSSAUHEIM (H)

<OPTION value="GM125GROSSENGSTIGEN (B)
2">GROSSENGSTIGEN (B)

<OPTION value="GM523GUETERSLOH (NRW)
2">GUETERSLOH (NRW)

<OPTION value="GM205HAMBURG

2" >HAMBURG

<OPTION value="GM329HANAU (H)

2"S>HANAU (H)

<OPTION value="GM407HANNOVER (INCL WUNSTORF) (LS)
2">HANNOVER (INCL WUNSTORF) (LS)
<OPTION value="GMO19HEIDELBERG (BW)
2">HEIDELBERG (BW)

<OPTION value="GM409HELMSTEDT (LS)
2">HELMSTEDT (LS)

<OPTION value="GM411HESSICH-OLDENDORF (LS)
2">HESSICH-OLDENDORF (LS)

<OPTION value="GM413HOHNE-BERGEN (LS)
2" >HOHNE-BERGEN (LS)

<OPTION value="GM021HORMSGRINDE (BW)
2">HORMSGRINDE (BW)

<OPTION value="GM619IDAR OBERSTEIN (RP)
2">IDAR OBERSTEIN (RP)

<OPTION value="GM815JENA

2">JENA

<OPTION value="GM415JEVER AB (LS)
2">JEVER AB (LS)

<OPTION value="GM621KAISERSLAUTERN (RP)
2">KAISERSLAUTERN (RP)

<OPTION value="GM539KALKAR (NRW)
2">KALKAR (NRW) ‘

96

<OPTION value="GMO25KALTENBRONN (BW)
2">KALTENBRONN (BW)

<OPTION value="GMO27KARLSRUHE (INCL ETTLINGEN) (BW)
2">KARLSRUHE (INCL ETTLINGEN) (BW)

<OPTION value="GM221KIEL (INCL ECKERNFORDE) (SH)
2"SKIEL (INCL ECKERNFORDE) (SH)

<OPTION value="GM335KIRCHGOENS/BUTZBACH (H) -
2" SKIRCHGOENS/BUTZBACH (H)

<OPTION value="GM129KITZENGEN (INCL WUERZBURG) (B)
2">KITZENGEN (INCL WUERZBURG) (B)

<OPTION value="GMO33KONSTANZ (BW)

2">KONSTANZ (BW)

<OPTION value="GM629LANDSTUHL (RP)

2">LANDSTUHL (RP)

<OPTION value="GM214LANGERKOPF (RP)

2">LANGERKOPF (RP)

<OPTION value="GMO39MANNHEIM (INCL SANDHOFEN) (BW)
2">MANNHEIM (INCL SANDHOFEN) (BW)

<OPTION value="GM131MEMMINGEN (B)

2">MEMMINGEN (B)

<OPTION value="GM041MESSETETTEN (BW)
2">MESSETETTEN (BW)

<OPTION value="GM635MIESAU (RP)

2">MIESAU (RP) :

<OPTION value="GM339MUENSTER (H)

2"SMUENSTER (H)

<OPTION value="GM549MUNCHENGLADBACH (INCL GREFRATH,ETC
(NRW) 2" >MUNCHENGLADBACH (INCL GREFRATH,ETC (NRW)
<OPTION value="GM639MUNCHENWEILER (RP)
2">MUNCHENWEILER (RP)

<OPTION value="GM133MUNICH (B) (INCL OBERPFAFFENHOFEN)
2"SMUNICH (B) (INCL OBERPFAFFENHOFEN)

<OPTION value="GM417MUNSTER-OERTZE (LS)
2">MUNSTER-OERTZE (LS)

<OPTION value="GM641NEUBRUECKE (RP)

2"SNEUBRUECKE (RP)

<OPTION value="GM551NOERVENICH (NRW)
2">NOERVENICH (NRW)

<OPTION value="GM137NURNBERG (B)

2">NURNBERG (B)

<OPTION value="GM1390BERAMMERGAU (B)
2">OBERAMMERGAU (B)

<OPTION value="GM2190BERAMMERGAU MOD

2" >OBERAMMERGAU MOD

97

<OPTION value="GM4290LDENBERG (LS)
2">0LDENBERG (LS)

<OPTION value="GM0630THER BADEN-WUERTEMBERG
2">0THER BADEN-WUERTEMBERG

<OPTION value="GM1530THER BAVARIA

2"SOTHER BAVARIA

<OPTION value="GM3590THER HESSE -
2">OTHER HESSE

<OPTION value="GM4250THER LOWER SAXONY
2">0THER LOWER SAXONY

<OPTION value="GM5730THER NORTH RHINE WESTPHALIA
2">OTHER NORTH RHINE WESTPHALIA

<OPTION value="GM6550THER RHINELAND PALATINATE
2">0THER RHINELAND PALATINATE

<OPTION value="GM2070THER SAARLAND

2">0THER SAARLAND

<OPTION value="GM7030THER SCHLESWIG HOLSTEIN
2">0THER SCHLESWIG HOLSTEIN

<OPTION value="GM555PADERBORN (NRW)
2">PADERBORN (NRW)

<OPTION value="GM643RAMSTEIN (RP)

2"S>RAMSTEIN (RP)

<OPTION value="GM723RENDSBURG (SH)
2">RENDSBURG (SH)

<OPTION value="GM199RHEINBERG (NRW)
2">RHEINBERG (NRW)

<OPTION value="GM216RUPPERTSWEILER (RP)
2">RUPPERTSWEILER (RP)

<OPTION value="GM349RUSSELSHEIM (H)
2">RUSSELSHEIM (H)

<OPTION value="GM143SCHWABACH (B)
2">SCHWABACH (B)

<OPTION value="GM645SEMBACH AB (RP)
2">SEMBACH AB (RP)

<OPTION value="GM464SOEGEL (INCL MEPPEN) (LS)
2">SOEGEL (INCL MEPPEN) (LS)

<OPTION value="GM145SONTHOFEN (B)
2">SONTHOFEN (B)

<OPTION value="GM147STEIN (B)

2"SSTEIN (B)

<OPTION value="GMO55STUTTGART MILITARY COMMUNITY (BW)
2">STUTTGART MILITARY COMMUNITY (BW)

<OPTION value="GM353TREYSA (H)

2">TREYSA (H)

98

<OPTION value="GMOS59TUBINGEN (BW)

2">TUBINGEN (BW)

<OPTION value="GM599TWISTEDEN (NRW)
2"S>TWISTEDEN (NRW)

<OPTION value="GM061ULM (INCL NEU ULM) (BW)
2"sULM (INCL NEU ULM) (BW)

<OPTION value="GM649WACKERHEIM (RP) -
2">WACKERHEIM (RP)

<OPTION value="GMO9SWEINGARTEN (BW)
2"SWEINGARTEN (BW)

<OPTION value="GMS565WERL (NRW)

2"SWERL (NRW)

<OPTION value="GM651WESTERBURG (RP)
2">WESTERBURG (RP)

<OPTION value="GM355WIESBADEN (H)

2"SWIESBADEN (H)

<OPTION value="GM357WIESBADEN AB (H)
2"SWIESBADEN AB (H)

<OPTION value="GM469WILHEMSHAVEN (LS)
2">WILHEMSHAVEN (LS)

<OPTION value="GM653ZWEIBRUECKEN (INCL KREUZBERG KAS) (RP)
2">ZWEIBRUECKEN (INCL KREUZBERG KAS) (RP)
</SELECT>

<INPUT TYPE="hidden" NAME="IN CRC" VALUE="GM">
<INPUT TYPE="hidden" NAME="IN CRCNAME" VALUE="Unknown
Currency Name'">

<INPUT TYPE="submit" VALUE="Process">

</FORM>

<HR>

<P>

<P>

<P>

</BODY>

</HTML>

99

<HTML>

<HEAD>

<TITLE>Overseas Housing Allowances (OHA)</TITLE>
</HEAD>

<BODY BACKGROUND="http://206.39.184.1/oha/whtpaper.gif">
<Hl ALIGN="center">Overseas Housing Allowances (OHA)</H1>
<H3 ALIGN="center">Per Diem, Travel and Transportation
Allowance Committee</H3>

<P>

<HR>

<P>

<CENTER>

<H3 ALIGN="center">OHA Ceilings for Location: GM205</H3>
<H3 ALIGN="center">HAMBURG

</H3>

<TABLE border=2 width=70%>

<TR>

<TH width=10%>Rank</TH>

<TH width=30%>With Dependents</TH>

<TH width=30%>Without Dependents</TH>

</TR>

<TR>

<TD ALIGN="middle">E-1</TD>

<TD ALIGN:"middle">$1041</TD>

<TD ALIGN="middle">$937</TD>

</TR>

<TR>

<TD ALIGN="middle">E—2</TD>

<TD ALIGN="middle">$1041</TD>

<TD ALIGN="middle">$937</TD>

</TR> .

<TR>

<TD ALIGN="middle">E-3</TD>

<TD ALIGN="middle">$1041</TD>

<TD ALIGN="middle">$937</TD>

</TR>

<TR>

<TD ALIGN="middle">E—4</TD>

<TD ALIGN="middle">$1041</TD>

<TD ALIGN="middle">$937</TD>

</TR>

<TR>

<TD ALIGN="middle">E—5</TD>

<TD ALIGN="middle">$lO4l</TD>

100

<TD ALIGN="middle">$937</TD>

</TR>

<TR>

<TD ALIGN="middle">E-6</TD>
<TD ALIGN="middle">$1641</TD>

<TD ALIGN="middle">$1477</TD>

</TR>

<TR>

<TD ALIGN="middle">E-7</TD>
<TD ALIGN="middle">$1776</TD>

<TD ALIGN="middle">$1598</TD>

</TR> :

<TR>

<TD ALIGN="middle" >E-8</TD>
<TD ALIGN="middle">$1910</TD>

<TD ALIGN="middle">$1719</TD>

</TR>

<TR>

<TD ALIGN="middle">E-9</TD>
<TD ALIGN="middle">$2066</TD>

<TD ALIGN="middle">$1859</TD>

</TR>

<TR>

<TD ALIGN="middle">W-1l</TD>
<TD ALIGN="middle">$1721</TD>

<TD ALIGN="middle">$1549</TD>

</TR>

<TR>

<TD ALIGN="middle" >W-2</TD>
<TD ALIGN="middle">$1721</TD>

<TD ALIGN="middle">$1549</TD>

</TR>

<TR>

<TD ALIGN="middle">W-3</TD>
<TD ALIGN="middle">$1910</TD>

<TD ALIGN="middle">$1719</TD>

</TR>

<TR>

<TD ALIGN="middle">W-4</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle">W-5</TD>
<TD ALIGN="middle">$2103</TD>

101

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle">0-1E</TD>
<TD ALIGN="middle">$1721</TD>

<TD ALIGN="middle">$1859</TD>

</TR>

<TR>

<TD ALIGN="middle">O—2E</TD>
<TD ALIGN="middle">$1910</TD>

<TD ALIGN="middle">$1719</TD>

</TR>

<TR>

<TD ALIGN="middle">O—3E</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle">O—1</TD>
<TD ALIGN="middle">3$1721</TD>

<TD ALIGN="middle">$1549</TD>

</TR>

<TR>

<TD ALIGNz“middle">O—2</TD>
<TD ALIGN="middle">$l721</TD>

<TD ALIGN="middle">$1549</TD>

</TR>

<TR>

<TD ALIGN="middle">0-3</TD>
<TD ALIGN="middle">$1910</TD>

<TD ALIGN="middle">$1719</TD>

</TR>

<TR>

<TD ALIGN="middle">O—4</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle">O—5</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle">O—é</TD>
<TD ALIGN="middle">$2103</TD>

102

<TD ALIGN="middle">$1893</TD>

</TR>

<TR> .

<TD ALIGN="middle">0-7</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR> -
<TR>

<TD ALIGN="middle">0-8</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle" >0-9</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

<TR>

<TD ALIGN="middle">0-10</TD>
<TD ALIGN="middle">$2103</TD>

<TD ALIGN="middle">$1893</TD>

</TR>

</TABLE>

<P>

</CENTER>

<H4>Effective date for these allowances: 01-SEP-85</H4>
<H4>The local currency for this area is: Unknown Currency
Name</H4 >

<H4>The exchange rate is: .7042</H4>
<H4>Moving-In Housing Allowance is: $431</H4>
<H4>The climate in this area is: Warm</H4>

<HR>

This page was produced by the

Oracle Web Agent on October 25, 1996 09:11 AM

V
iew PL/SQL source code

<HR>

<P>

<P>

<P>

</BODY>

103

</HTML>

104

REFERENCES

Blakely, Michael and and Karish, Chuck, “Performance Benchmark Test of the
Netcape Fast Track Server”, Mindcraft, Inc., 1996 [document on-line]; available
from http://www.mindcraft.com/services/web/ns01-fasttrack-nt.html; Internet;
accessed on November 18, 1996.

Gosling, James and McGilton, Henry, “The Java Language Environment: A White
Paper”, Sun Microsystems, Inc., 1996.

Dwight, Jeffry and Erwin, Michael, Special Edition Using CGI, Indianapolis, IN: Que
Corporation, 1996.

Vowler, Julia, "Why Databases are Getting Wired”, Computer Weekly, p. 18, Feb.
15, 1996.

Lonroth, Magnus, Oracle Webserver 2.0 Technical Note, Oracle Corporation, 1996.

Gillmor, Dan, “Q&A With Ellison and Lane”, San Jose Mercury News, p. SE,
November 11, 1996.

105

106

BIBLIOGRAPHY

Basiri, Kaveh, “Programming with the NSAPI”, Netscape Internet Developer Conference,
San Francisco, CA, March 5-7, 1996.

Blakely, Michael and and Karish, Chuck, “Performance Benchmark Test of the
Netcape Fast Track Server”, Mindcraft, Inc., 1996 [document on-line]; available
from http://www.mindcraft.com/services/web/ns01-fasttrack-nt.html; Internet;
accessed on November 18, 1996.

Cattell, Rick and Hamilton, Graham, JDBC: 4 Java SQL API, Sun Microsystems, Inc.,
1996.

Chen, Frank, Taher, Elgamal, and Treuhaft, Jeff, “Securing Communications on the
Intranet and Over the Internet”, Netscape Communications Corporation, 1996
[document on-line]; available from
http://home.netscape.com/newsref/ref/128bit.html; Internet; accessed on October
15, 1995.

Date, C. J., An Introduction to Database Systems, Reading, MA: Addison-Wesley
Publishing Company, 1990. '

Dwight, Jeffry and Erwin, Michael, Special Edition Using CGI, Indianapolis, IN: Que
Corporation, 1996.

Gillmor, Dan, “Q&A With Ellison and Lane”, San Jose Mercury News, p- 1E,SE,
November 11, 1996.

Gosling, James and McGilton, Henry, “The Java Language Environment: A White
Paper”, Sun Microsystems, Inc., 1996.

Gruber, Martin and Rossi, Kennan, Oracle Web Server User’s Guide, Oracle
Corporation, 1996.

“The Internet Application Framework: A White Paper”, Netscape Communications
Corporation, 1996 [document on-line]; available from
http://home.netscape.com/comprod/server_central/tech_docs/oif html; Internet;
accessed on September 9, 1996.

Kim, Pyung-Chul, ”A Taxonomy on the Architecture of Database Gateways for the
Web”, Korea: Chungnam University, July 9, 1996.

Lonroth, Magnus, Oracle Webserver 2.0 Technical Note, Oracle Corporation, 1996.

107

Murdock, Michelle, Price, Mark, and Talley, Brooks, “It’s Between You and Them”,
Infoworld, p. 70, July 29, 1996. .

Rowe, Jeff, Building Internet Database Servers with CGI, Indianapolis, IN: New Riders
Publishing, 1996.

Shah, Rawn, “Integrating Databases with Java via JIDBC”, JavaWorld, May 1996
[magazine on-line]; available from http://www.javaworld.com/jw-05-1996/jw-05-
shah.html; Internet; accessed on July 25, 1996.

“A Specification for Writing Internet Server Applications”, Microsoft Corporation, 1996
[document on-line]; available from
http://www.microsoft.com/win32dev/apiext/isapi.htm; Internet; accessed on
August 27, 1996.

Vowler, Julia, ”Why Databases are Getting Wired”, Computer Weekly, p. 18, Feb. 15,
1996. .

Whetzel, John K., “Integrating the World Wide Web and Database Technology”, AT&T
Technical Journal, pp. 38-46, March/April 1996.

108

INITIAL DISTRIBUTION LIST

. Defense Technical INformation CenLET.......ooee e eeeiieeeeeeeeeeeeeeeeeeeeeeeereeeeseseeeeeessesmnnnnees 2
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

. Dudley KnoxX LIDIary.......cceceieeeerieiieeneeieiececesseeestee e evesteee s s eessessssessensesseensenes
Naval Postgraduate School

411 Dyer Rd.

‘Monterey, CA 93943-5101

. Per Diem, Travel, and Transportation Allowance Committee...........ccooevevurvnrevrnveeennen.
Room 836, Hoffman Bldg. 1

2461 Eisenhower Ave.

Alexandria, VA 22331-1300

. Attn: Robert J. Brandewie.......c.cucueuiiuiiciieiiiiiciiiicciteie et cnese e s
Defense Manpower Data Center

DoD Center, Monterey Bay

400 Gigling Rd.

Seaside, CA 93055

5. C. Thomas WU, Code CS/W(....cccviriemireieieritieeiee ettt eseassrssesesseessesens 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5101

109

- Attn: Deborah Paquette Davis.........o.uovueuieeeeeeeeeeeeee oo 1
Defense Manpower Data Center

DoD Center, Monterey Bay -

400 Gigling Rd.

Seaside, CA 93055

- Attn: Julie Cornell.........oueieceiiieieeeeeeee e

Defense Manpower Data Center
DoD Center, Monterey Bay

400 Gigling Rd.

Seaside, CA 93055

110

