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6    Interim Report 

Ballistic electron spectroscopy of biased superlattices 

In this report we present results on the transport in biased superlattices. This is the 
next step towards the realization of a source based on superlattice transitions. A bundling 
of carriers in a superlattice requires the presence of an electnc field. On the other hand the 
wavefunctions get localized in the electric field. So there is probably just a small window 
where bandtransport in the superlattice is present. To study this situation the current 

transfer ratio a of a biased 10 period superlattice was 
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Figure l: Bandstructure of a three terminal device with a biased superlattice in 

the drift region. 

studied and compared with a self consistent calculation based on the  transfer matrix 

approach. 

A ten period superlattice with barriers of 25Ä thickness and 65Ä well width was 
embedded into the drift region of a three terminal device. We have grown a 1900Ä GaAs 
drift reaion between the base layer and the superlattice, and a 1400Ä drift region between 
the superlattice and the collector. The band structure for typical bias conditions is shown in 

Fig. I. 

The measured transfer ratio a as a function of the normal electron injection energy at 
different collector-base biases is shown in Fig. 2a and Fig. 2b respectively. It can be seen 
that the onset of the transfer ratio, shifts with the applied collector-base bias with the lower 
edae of the first miniband due to the superlattice bias. The observed transfer ratios decrease 
quite dramatically with the applied electric field. Longitudinal optical phonon replicas, 
which are shifted 36meV to higher injection energies can be observed at all biases. 

Enclosure  2 
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Figure 2.   Measured transfer  ratios  at different  collector-base  biases( a)  for  negative  (b) for 
positive vs. injection energy 

In Fig. 3, the calculated positions of the five lowest superlattice states for a 

structure shown in the insert of Fig.3 with respect to the Fermi level of the base are plotted 

versus superlattice voltage. To evaluate the onset of the theoretical transmission for 

different electric fields (transfer ratio), we have to consider the wave functions of each state 

as a function of the applied bias. In the second inset of Fig. 3 
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Figure 3. The energy position of the five lowest superlattice states with respect to the Fermi 
level at the base are plotted against superlattice voltage. The insets show the squared wave 
functions of the corresponding states, and the band structure at USL= 20mV. The solid line 
represents the lowest transparent superlattice state. 
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the extended wave functions of the five lowest states for a superlattice bias of 20mV are 
shown. It clearly evident that the wave functions of the first and second state are strongly 
localized. Consequently these states will not contribute to the transport of ballistic 
electrons. This means that the first transparent state is state 3. The solid line in Fig. 3 
represents the lowest transparent state of the first miniband as a function of superlattice 
bias. It has to be pointed out that this line represents the theoretical onset of the current of 

the biased structure. 
The main question here is up to which bias will band-like transport be present in the 

superlattice. Only the existence of several extended states allows the formation of 
wavepackets , which are an essential requirement for bunching of carriers. 

1 oo 
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Figure 4:  Measured onset  of the  transfer  ratio  vs. 
collector-base bias 

In Fig.4 the position of the experimentally derived onset of the current (transfer 
ratio) is plotted versus collector-base (UCB) bias. The onset is measured at 10 % of the 
maximum transfer ratio. A very linear but asymmetric behavior can be observed. The 
asymmetrv is due to the asymmetry of the structure, since the drift regions on both sides of 
the superlattice are of different lengths. Comparing the slopes of the theoretical derived 
onsets to the slopes of the measured onsets of the heterostructure one gets a relation 
between the applied collector-base voltage to the real voltage drop at the superlattice. 
Consequently it is possible to scale the collector voltage to the voltage at the superlattice 
itself, which is an important requirement for the analysis of the data as a function of the real 

internal field. 
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Figure 5: Measured transfer ratio at peak position vs. 
superlattice electric field 

Fig.5 shows the 
absolute transfer ratio at the 
peak position as a function of 
the superlattice voltage. This 
transfer ratio is a measure of 
the transmittance of the 
superlattice at different biases. 
It can be seen that the 
transmittance is vanishing 
when the applied voltage 
exceeds 40 mV. That means 
that all states are localized for 
voltages higher than 40 mV 
which fits very well with the 
theoretically derived cut off of 
the transmittance. With 
decreasing voltages (below 40 
mV) the superlattice states 
becomes extended  again ( one 

after the other) over the whole superlattice dimension and thus transparent leading to 
current. At zero bias the transfer ratio has its maximum since all states are extended over the 
whole dimension of the superlattice and contribute to current. The peak is highly 
asymmetric, what gives us a confirmation that the positive bias has a different effect on the 
transport through the superlattice than negative bias. The drift region is pinned at the 
collector side for negative collector-base voltages and at the base side for positive voltages. 
It is assumed that the slope of the biased drift regions is about the same as the slope within 
the superlattice. The decay of the current is quite weak for small positive biases. This 
region corresponds to an electric field of about lkV/cm. This behavior has been observed for 
the first time. The full curve is a calculation of the transmittance for negative bias. 

Further detailed studies with changing sample parameters are necessary to make 
some conclusions from this behavior. This is also the field region where Bloch- type 

oscillations are expected 

In summery we have shown the quenching of miniband conduction of a biased 
superlattice using the technique of hot electron spectroscopy. For voltages across the 
superlattice higher than 40 mV ( corresponding to 5kV/cm) the superlattice becomes non 
transparent. A sharp drop of the transmittance even at very small electric fields can be 
observed for negative bias, while constant transmittance is observed up to lkV/cm for 
positive bias which is followed by a sharp drop. This is the first clear indication of electric 
field induced superlattice current which is compensating the field localization. 


