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Abstract 

A hydrostatic,primitive equation model with frontogenetical deformation forcing is used to simulate 
the passage of cold fronts over a two-dimensional ridge. The model includes a K-theory boundary layer 
(PBL) parameterization with implicitly defined diffusion coefficients. Relative to the inviscid results, the 
PBL simulations produced reduced frontolysis on the upwind slope and reduced frontogenesis on the lee 
slope, resulting in significantly smaller frontogenetic variations over the mountain. This is caused by 
convergence forcing in the well-mixed layer offsetting the overall frontolytical forcing on the upwind slope, 
and greatly reduced lee side convergence forcing due to the PBL. In contrast to the inviscid results, the 
final downstream front is weaker in the mountain simulations than in the flat-topography control case when 
PBL effects are included. 

1. Introduction 

Mountainous topography introduces dynamical 
complications to meteorological phenomena on all scales, 
from sub-mesoscale systems to the global circulation. For 
example, forecasters have long known that fronts tend to 
weaken as they move up the windward slope of a mountain 
range and often intensify on the lee slope. This effect has 
been documented in quantitative observational studies, for 
example in the analyses of high-resolution Alpine 
Experiment (ALPEX) data of Hartsough and Blumen 
(1990) and Radinovic (1986). While important realistic 
effects can be resolved by simplified analytical treatments, 
the full dynamics of frontal interaction with topography are 
analytically intractable. Numerical simulation provides a 
means to investigate the dynamics of flows without 
analytical solutions. Important analytic and numerical 
studies in the past decade were reviewed in Williams et al. 
(1992). They perform numerical simulations to study the 
effect of mountain on fronts using a two-dimensional 
primitive equation (PE) Boussinesq model. The mountain- 
forced divergence weakens the front on the upwind slope 
and convergence on the leeside intensifies the front. The 
final intensity in the mountain case is similar to that of the 
flat topography case. 

Most of previous studies consider inviscid flows only. 
Keyser and Anthes (1982) investigate PBL effects on 
frontogenesis using a two- dimensional hydrostatic PE 
model incorporating a mult-layer, first-order K-theory PBL 
parameterization.    Detailed realistic frontal features not 
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produced in inviscid simulations are evident in the PBL 
model results. Dunst and Rhodin (1990) obtain similar 
detail in their frontal simulations using a high-resolution 
first-order parameterization similar to the one used by 
Keyser and Anthes (1982), but with a different diffusion 
coefficient formulation. 

This study seeks to improve the physical accuracy of 
previous numerical studies on frontal interaction with 
topography by including a realistic PBL parameterization. 
The basic model is the two-dimensional Boussinesq PE 
model of Williams et al. (1992, denoted W92) with the 
inclusion of a first order K-theory PBL parameterization 
following Keyser and Anthes (1982, denoted KA82). 

2.   Boundary Layer Formulation 

The boundary layer parameterization employed KA82, 
which is based on the high-resolution nocturnal PBL 
parameterization of Blackadar (1978). Turbulent fluxes are 
represented in K theory by 

/   / u w ■■ 
du 
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The diffusion coefficient Kmz is calculated implicitly from 
model shear and stability fields to minimize a priori 
assumptions about the boundary layer structure. The 
coefficients are broken down into a small, constant diffusive 
part KzO and a variable part: 
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where ko is the von Karman constant, and the critical 
Richardson number Ric = 0.25 (Blackadar, 1978). Note 
that the vertical shear dependence is included in Ri. The 
fourth-order diffusion coefficients are defined following 
KA82as 
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Vertical and horizontal diffusion coefficients for the 
momentum and mass fields are given equal values within 
each model. Finite differencing tends to give systematically 
greater values of Ri than the mean Ri within the layer 
(Blackadar, 1978), so Ric = 1.0 vice the theoretical value of 
0.25 to account for the finite grid resolution (following 
KA82). The surface layer fluxes are modelled after Monin- 
Obukov similarity theory. 

The model domain extends 3600 km in the east-west 
(x) direction and 12 km vertically. Horizontal grid spacing 
is 40 km and there are 50 vertical levels uniformly spaced in 
z, corresponding to 240 m spacing over flat topography. 
The time increment is 90 s. The surface topography is 
defined by 

z =hcos 
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The mountain height h is held constant while the width e 
(the fraction of the horizontal domain occupied by the 
mountain) is varied between 0.6 and 0.2. Fourth-order 
diffusion constants in the inviscid model are given the value 
K0 at the surface and increase linearly in the vertical to a 
factor of 10 at the upper boundary. A hyperbolic sponge 
layer is also included near the top of the domain. 

Initial fields are the same as those used in W92. The 
non-frontal mountain initial flow is defined by 
semigeostrophic solutions (following Merkine, 1975). In 
frontal simulations, a perturbation is added to these basic 
fields. Initial u, v and w fields are derived using the thermal 
wind, quasigeostrophic circulation, and continuity 
equations. 

3.    Numerical Solutions 

a) Frontal solutions with no topography 

The model is run first with no topography to serve as a 
control case for the mountain simulations. Figure 1 
contains the frontal solutions after 48 hours of integration. 
Only the lower part of the atmosphere is shown to highlight 
near-surface effects. The front has intensified and all fields 
have been advected downstream with the background 
current. 
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Figure  1.     (a) Along-front wind  component and  (b) 
potential temperature for inviscid front at t = 48h. 

These fields clearly show the maximum thermal gradient 
and associated vorticity maxima at the surface, decreasing 
rapidly with height. The corresponding PBL solutions are 
shown in Fig. 2. Strong vertical mixing is evident in the 
near-vertical potential temperature contours throughout the 
1.0 to 1.2 km well-mixed layer. The frontal zone is weaker 
than that shown in Fig. 1, and the thermal gradient is 
constant throughout the PBL. Here the cross-front and 
along-front wind maxima are elevated jets near the top of 
the PBL as winds are frictionally forced to zero at the 
surface. A major finding here is that the simulated fronts 
are always weaker when PBL effects are included, due 
primarily to vertical mixing. The turbulent mixing of the 
weaker-gradient upper PBL air reduces the potential 
temperature gradient at the surface. 



Vatt = 48 the PBL results in a slower translation speed and a different 
vertical tilt. 
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Figure 2. Same as in Fig. 1 except with PBL. 

To  quantify  the  strength   of the  frontal   zone,   the 
parameter d is defined as 
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where A 9 is the maximum horizontal potential temperature 
variation on the lowest numerical level. The temporal 
evolution of the d-value for the flat topography simulations 
is shown in Figure 3. After an initial period of reduced 
frontogenesis, the PBL front undergoes frontogenesis at a 
rate nearly equal to that of the inviscid front (indicated by 
the slopes of the curves in Figure 3) until about 36 h, when 
it reaches maximum intensity. At this point the 
frontogenetical forcing is matched by the diffusive forcing 
and the front is in steady-state. 

The front in the PBL case also translates slower than the 
frictionless front, which is over 200 km further downstream 
at t = 48 h. The increase in the distance that the PBL front 
lags behind is correlated to the difference in maximum 
cross-frontal velocities (figures not shown). It appears that 
the reduction of the cross-frontal wind velocity caused by 

Figure 3. Frontal strength measured by the d-value for 
the inviscid case (solid line) and PBL case (dashed line). 

b)    Non-frontal solutions with topography 

Before investigating topographic effects on the fronts, 
the effects of the PBL on the basic flow over the ridge must 
be examined. For the e = 0.6 ridge, the t = 48 h fields show 
only a slight departure from the semigeostrophic solutions 
as weak wave activity is generated and the cross-ridge 
velocity maximum shifts slightly toward the lee slope. The 
PBL solutions for t = 48 h (Fig. 4) are more'^asymmetrical in 
the lower layers in this respect as the elevated cross-frontal 
jet is displaced significantly over the lee slope. No gravity 
waves are evident in the figure, however. The e = 0.4 ridge 
produces similar t = 48 h solutions, but with stronger 
mountain-forced wind fields and larger amplitude gravity 
waves, which begin to appear in the PBL case. The e = 0.2 
mountain inviscid solution exhibits a dramatic departure 
from the semigeostrophic solution. As the mountain slope 
becomes steeper, the cross-mountain flow is accelerated 
more strongly and advected over the lee slope. In the 
inviscid simulations, the maximum winds are at the surface 
and an evident hydraulic jump is generated when the high 
speed winds reach the base of the slope. This causes the 
well-mixed area at the base of the lee slope and the flow 
reversal above the lee slope u and v maxima. Large 
amplitude, upward propagating gravity waves also result 
from the hydraulic jump (W92). In contrast, the PBL 
solution at t = 48 h (Fig. 5) shows no such abrupt effects. 
Lee slope winds are enhanced, creating gravity waves, but 
the elevated jet is "insulated" from the topography by the 
PBL, so the topographic slope changes do not force the 
abrupt changes in momentum exhibited in the inviscid 
simulation. 
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Figure 4. Mountain solution for e = 0.6 profile at t = 48 h 
with PBL. 
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Figure 5. Same as in Fig. 4 except for e = 0.2 mountain 
profile. 

In order to investigate the dynamical effects of the 
mountain-forced circulations on frontogenesis, the 
divergence fields are examined. The divergence fields of 
the e= 0.6 mountain solutions at t = 24 h are shown in Fig. 
6. The mountain circulations are well-developed by 24 h, 
and this roughly corresponds to the time that the fronts cross 
the ridge in the frontal simulations. In the inviscid case 
(Fig. 6a), the flow is divergent on the upwind slope as the 
air accelerates over the ridge. Strong convergence is shown 
on the lee slope, caused by the rapid decrease in velocity 
downstream of the cross-ridge jet velocity maximum. The 
horizontal divergence field is complicated in the PBL case 
(Fig. 6b) because the wind decreases to zero at the surface, 
producing significant convergence in the PBL on the 
upwind slope overridden by a divergent area as the winds 
above the PBL accelerate over the ridge. Conversely, the 
lee slope is characterized by divergence within the PBL 
overridden by an area of convergence. There is less 
convergence on the lee slope in the PBL case because the 
winds do not decrease so rapidly near the base. The weaker 
elevated jet does not enhance the lee side convergence 
surface as much as in the frictionless case. 
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Figure 6.  Divergence field at t = 24 h for; a) the inviscid 
mountain and b) the mountain with PBL. 

The boundary layer also forces a horizontal temperature 
gradient within the PBL due to vertical mixing on the 
mountain slope. Vertical mixing reaches a higher potential 
temperature level near the top of the ridge than near the 



base because the stability increases over the ridge. The PBL 
is therefore mixed with air at a higher potential temperature 
near the top of the ridge. This produces a positive 
temperature gradient on the upwind slope and a negative 
temperature gradient on the lee slope, as shown in Fig. 7 at t 
= 24 h. The thermal pattern advects downstream 
somewhat, but is nearly at steady-state by t = 24 h. The 
effect is unique to the mountain PBL cases because mixing 
to differing e-levels is required to produce a horizontal 
temperature gradient. The strength of the gradient 
produced is also highly dependent on the vertical thermal 
structure, as will be demonstrated in the frontal simulations. 
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c) Frontal, solutions with topography 

In these simulations, the frontal forcing is applied to 
the model over the mountain domain. Fig. 8 contains the 
time evolution of the potential temperature field at 6 h 
intervals for both the inviscid and PBL frontal simulations 
over the e = 0.6 mountain. By t '= 6 h, a well-mixed layer is 
already developed in the PBL case. The vertical mixing has 
produced a significant strengthening of the surface potential 
temperature gradient compared to the frictionless potential 
temperature field. Here the mixing has a greater effect in 
the thermal gradient than in the non-frontal case because the 
initial temperature perturbation increases the differential 
potential temperature level mixing effect described in the 
previous section. The trend continues through t = 12 h 
(Fig. 8a) as the well-mixed layer continues to develop and 
deepen. 

Figure 7. Potential temperature for mountain with PBL at 
t = 24 h. 
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Figure 8. Frontal evolutions over mountain at 12 h 
interval. The left panels are for the inviscid case and the 
right panels are for the case with PBL. 



Theta (Inviscid) at t = 24 Theta (PBL) at t = 24 

1800 
X(km) 

2700 3600 900   1800  2700  3600 
X(km) 

Theta (Inviscid) at t = 36 Theta (PBL) at t = 36 

900 1800       2700       3600 
X(km) 

Theta (Inviscid) at t = 48 

900   1800  2700   3600 
X(km) 

900   1800   2700 
X(km) 

Theta (PBL) at t = 48 

3600 

900   1800   2700   3600 
X (km) 

Figure 8. Continued. 



At about t = 24 hr, the inviscid front reaches the 
crest of the ridge and moves down the lee slope in the next 
18 h, undergoing rapid frontogenesis. The PBL front lags 
behind by about 12 h, and increases in intensity at a much 
lower rate as it reaches the lee slope (Figure 8d-f) and then 
gradually weakens on the lower half of the lee slope. 
Conversely, the inviscid front continues to strengthen over 
the entire lee slope and weakens slightly as it reaches the 
downwind plane at t - 48 h. By the end of the simulation at 
t = 48 h, the PBL front is much less intense than the inviscid 
front. The frontal strength variations are summarized for the 
T = 0.6 mountain in Fig. 9, which contains the temporal 
evolution of the d-values for both frictionless and PBL 
simulations. The flat topography frontal solutions are 
included in the figure for reference. The corresponding six- 
hourly frontal positions are shown in Figure 10. The d- 
values show that in the frictionless case, the front weakens 
significantly on the upper half of the upwind slope and then 
undergoes strong frontogenesis on the lee slope. This is the 
same effect observed in W92, attributed to the mountain- 
forced divergence field. The weakening near t = 48 h is 
also observed in W92 and is shown to be caused by a small 
area of divergence at the base of the lee slope. The PBL d- 
value curve confirms that the PBL front is stronger on the 
upwind slope and weaker on the lee slope compared to the 
frictionless case. 

Frontal Strength 

a. Frontal Position. Inviscid 

Figure 9. Frontal strength measured by the d-value for 
fronts over inviscid mountain (dash-dotted line) and 
mountain with PBL (dotted line). Curves for flat- 
topography cases shown in Fig. 3 are also included for 
comparison. 
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b. Frontal Position, PBL 

Figure   10.      Frontal   positions   corresponding   to   the 
mountain cases in Fig. 9. 

Comparison of the d-value curves to those of the 
flat topography simulations reveals several interesting 
features. In the flat topography cases, the PBL front is 
weaker than the inviscid front at all times. Note also that 
the inviscid front is weaker in the mountain case than in the 
flat topography case even on the lower half of the upwind 
slope (before the period of frontolysis). The mountain PBL 
front, however, is stronger than both the inviscid mountain 
front and the flat topography PBL front for the first 12 h of 
the simulation. Thus the combination of the mountainous 
topography and the PBL has a frontogenetical effect on the 
upwind slope. The overall effect opposes this upwind 
slope effect, however. The final strength of the fronts in the 
frictionless simulations are similar whether or not 
topography is included (confirmed in W92 by extending the 
integration to t = 60 h). In the PBL simulations, however, 
the front is significantly weaker in the mountain case at t = 
48 h. In contrast to the inviscid results, when PBL effects 
are included, the mountain appears to have a net 
frontolytical effect. 

The e = 0.4 and 0.2 mountain simulation produces 
similar trends 

4. Summary 

The numerical simulations contained in this study 
demonstrate that the PBL plays an important role in frontal 
dynamics over mountainous topography. In the mountain 
simulations, the elevation of the cross-ridge jet to the top of 
the PBL greatly reduces gravity wave generation and 
eliminates hydraulic jump effects in the mountain profiles 
considered. These results are more realistic than those of 
the W92 inviscid study, which generates more wave activity 
than is realistic for smooth, synoptic-scale ridges. The 
weaker elevated jet also results in much weaker lee slope 



convergence, which is the dominant forcing mechanism in 
the inviscid study. Turbulent mixing on the mountain 
slopes is shown to indirectly affect frontal dynamics. The 
PBL reaches higher e-levels on the ridge than on the 
adjacent planes, producing a horizontal temperature 
gradient in the well-mixed layer. This gradient has a large 
effect on frontal forcing because the convergence terms are 
proportional to the horizontal temperature gradient. 

In summary, the front still shows frontolysis on the 
upwind slope and increased frontogenesis on the lee slope 
when PBL effects are included, but the magnitude of the 
variation is less than in the inviscid simulations. On the 
upwind slope, frictional convergence in the PBL due to the 
mountain slope combines with the mixing-enhanced 
horizontal temperature gradient. This produces a stronger 
front on the upwind slope and partially counteracts the 
weakening caused by the divergence associated with the 
accelerating cross-mountain flow above the PBL. On the lee 
slope, convergence forcing is quite small or even negative 
in the PBL simulations because of reduced convergence 
associated with the cross-ridge jet and frictional divergence 
in the PBL near the surface. The result is that the PBL front 
intensifies much more slowly than in the inviscid case and 
begins to weaken over the lower half of the lee slope. In 
contrast to the inviscid simulations, the net effect of the 
front passing over the mountain is frontolytical when PBL 
effects are included. Narrower mountain profiles produce 
slightly different results because the fronts begin forming 
further upstream relative to the mountain, but the results are 
consistent over the ridge itself. 

The study demonstrates the importance of the lower 
atmosphere in mountain dynamics. The vertical mixing of 
the PBL on sloping terrain produces unique effects and it is 
clear that the inclusion of a realistic PBL parameterization 
is even more critical in these frontogenesis simulations than 
in their flat topography counterparts. 
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