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Abstract  

Empirical criteria are presented for selection of uniaxial tensile failure origins that will yield 
valid fracture toughness estimations. Using these criteria, estimations of fracture toughness 
based on fractography of an AIN, two SiCs, a AIN-SiC solid solution and a paniculate 
composite, and a TiB2 were performed. Comparison of the fracture toughness values estimated 
from fractography with fracture toughness measured by the single-edge precracked beam (SEPB) 
method will be shown. Close agreement is observed between estimates made from fractographic 
analysis and measurements made on specimens with large artificially induced flaws if the 
fracture toughness is 4 MPa/m or below. For materials in which the SEPB fracture toughness 
is greater than about 4.8 MPa/m, estimates by fractographic analysis significantly underestimate 
the SEPB fracture toughness. In attempting to rationalize this discrepancy, the importance of 
rigorously applying the empirical criteria was reemphasized. 
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1. Introduction 

Fractography is widely used to identify failure initiating flaws and flaw populations in advanced 

ceramics. However, fractography is seldom used to determine the fracture toughness of ceramics. 

This is surprising, since fractography has long been used to estimate the fracture energy of brittle 

materials, glasses in particular. One such study of the use of fractography to calculate fracture 

surface energy for a wide variety of ceramics and glasses was conducted by Mecholsky et al. [1]. 

They were able to show a good correlation between the size of the outer fracture mirror in bend 

specimens and KIC as measured in a double cantilever beam (DCB) test. Rice [2] presented a 

comprehensive paper on the fractographic determination of KIC in ceramics at the Second Conference 

on the Fractography of Glass and Ceramics in 1990. He showed that, for bend bars with large flaws, 

good agreement was obtained between KIC estimated from fractographic analysis and DCB tests. 

However, as the flaw sizes decreased, there was a marked tendency for an increasing disparity 

between the fracture toughness or fracture energies estimated by fractographic analysis and DCB 

measurements. 

In the past several years, two very useful documents [3, 4] have been prepared by researchers 

at the U.S. Army Research Laboratory (ARL) and the National Institute of Science and Technology, 

which provide handbook-type guidance in the use of fractography and the relationship between 

fractography and fracture toughness, but they provide no specific data correlating KQ and fracture 

origins. Swab and Quinn [4] contains a very useful appendix, which discusses, in detail, various 

circumstances that might cause discrepancies in estimates of fracture origin size predictions from 

fracture mechanics, and fractographically observed flaw sizes. Virtually all examples of the use of 

fracture mechanics to estimate critical flaw sizes or fracture energies/toughness discussed in the 

previously listed references involved bend tests where fracture origins were often associated with 

surface machining damage. 

With the growing use of tensile testing in the determination of strength statistics for advanced 

ceramics, a large number of samples of known uniaxial tensile stress and unambiguous failure 



origins have become avaüable for analysis. Little work has been reported on using fractography of 

uniaxial tensile test specimens to estimate fracture toughness. One early work that used fractography 

of carefully lapped uniaxial tensile specimens of HS130* Si3N4 (an early version of NC132* material) 

[5] yielded an estimated KIC of 2.8 MPa/m. No correlation with measured values was made. Recent 

work by Katz and his coworkers [6] compared KIC estimated by fractographic analysis and those 

measured by a single-edge precracked beam test (SEPB) for an AIN, a 50%/50% AIN-SiC solid 

solution and a 25% SiC paniculate toughened AIN composite. For all three materials, the agreement 

between estimated and measured KIC values was within 10%. In a subsequent study of two SiC 

materials, it was observed that the SiC with a KIC of 4.9 MPaVm showed the largest deviation 

(-12%) from measured SEPB values of any material that we had tested [7]. A study by Oishi et al. 

[8], conducted on Y-TZP material, also compared measured KIC (by SEPB) with estimates from 

fractography. Fractographic estimates were as much as 35% less than the SEPB values. 

The purpose of the work discussed in this report was to extend the range of polycrystalline 

ceramics for which estimates of KIC could be compared to measured values. TiB2, which has a 

moderately high KIC and a moderate tensile strength, was chosen as a material that would likely 

produce a reasonable percentage of internal, as opposed to machining induced, failure origins. 

Discrepancies between estimated and measured values for TiB2 and other "high" KIC ceramics are 

rationalized in terms of subcritical crack growth and/or R-curve behavior. Consideration of the 

consequences of subcritical crack growth reemphasizes the difference between the failure initiating 

flaw and the critical flaw, even though the later contains the former. Fractographs showing a 

hierarchy of concentric flaws in a TiB2 specimen will be presented to emphasize this point. 

2. Experimental Technique 

The tensile specimens used in this work were right circular cylinders, measuring between 100 

and 120 mm in length and 8.8-9.2 mm in diameter. 40 mm on each end of the test specimen were 

* Norton Co., Worcester, MA 01606. 



inserted into a steel piston and adhesively bonded in place with high-strength epoxy* [9-11]. The 

adhesively bonded specimen-piston assembly is inserted into the pressure chamber of an ASCERA 

Hydraulic Tensile Tester.1 Pressure is applied via a hydraulic fluid and increased at a rate of 

approximately 3 MPa per second until the specimen is broken apart by the hydraulic pressure acting 

against the piston faces. Figure 1 shows a schematic of the pressure chamber with the adhesively 

bonded specimen-piston assembly in place. The tensile fracture stress is calculated using the 

pressure at the instant of failure and the geometric parameters of the specimen-piston assembly 

[9-11]. Although this tensile testing method is inherently self-aligning, a small amount of 

eccentricity may occur, arising from either the specimen being slightly curved or the epoxy bonding 

being slightly off-center in the pistons. Procedures to correct for this source of error exist and have 

been described by several investigators [9-12]. Where required, such corrections have been applied 

to all tensile data used in estimating fracture toughness discussed in this report. Typically, these 

corrections are in the 3-5% range and in no case exceeded 10%. The stress is related to the pressure 

and test geometry by the following equation: 

a = oNOM + Ao = (A-As)/As-P + Ao, (D 

where oN0M is the nominal fracture stress, Ao is the correction for eccentricity which is equal to 

oNOM x/(fracture origin location, specimen eccentricity and diameter), A is the cross-sectional area 

of the piston, \ is the cross-sectional area of the specimen, and P is the pressure at failure, 

respectively. 

SEPB tests [13] were performed to measure the fracture toughness of materials from the same 

lots of materials used for tensile testing. At least six valid [14] SEPB tests and more usually 10-14 

valid tests were performed for each material using 3- x 4- x 25-mm beams. Precracking was 

accomplished by indenting the 3-mm face of each specimen with a Vickers diamond indenter (with 

the diagonals parallel to the edges of the beam) and loaded in a double anvil configuration to 

* ARALDITE AV 118, Ciba Geigy Corp., Madison Heights, MI 48071. 
f ASCERA Hydraulic Tensile Tester, Robertsfors, Sweden. 
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a = GN0M + AG = (A-As)/AsxP+ Aa, 
where Aa = f(r,e,d) X aN0M 

Figure 1.  Hydraulic Pressure Chamber With Specimen-Piston Assembly. 

"pop-in" a straight crack [15]. "Pop-in" and fracture toughness measurements were carried out on 

Ihstron model 8502 and 4201 testing machines,* respectively. Detailed descriptions of the SEPB test 

procedure are available in Bar-On et al. and Quinn et al. [15,16]. 

Fractographic examination of the fracture surfaces of the tensile bars was carried out in a JEOL 

840A SEM.* Fracture surfaces were cleaned with acetone and coated with Au-Pd or carbon prior 

to SEM examination. Fractographic analysis of the tensile failures are conducted prior to carrying 

out KIC measurements by SEPB. This avoids any subconscious bias in the measurement of the 

critical flaw size for the KIC estimate. 

*Instrom Corp., Canton, MA 02021. 
tJEOLUSA,Inc.,Peabody,MA 01961. 



The materials data and their source used in this work are listed in Table 1. The methodology 

used to estimate fracture toughness from the fractography of failed uniaxial tensile bars is presented 

in the following section. 

Table 1. Materials and Property Data Used in This Study 

Material Source T     °CHAR m AGSa 

(pm) 
Reference 

HPTiB2 Cercom 275 14.9 15 This study 

HPAIN Dow 234 12.7 1.9 Katz et al. 

HP 50AIN/50SiC Dow 361 26.4 0.5 Katz et al. 

HP 75AIN/25SiC Dow 371 9.9 2b and 5C Katz et al. 

HP SiC Pad B Cercom 304" 9.6d 4.0 Cho, Katz, and Bar-On 

HPSiCPadN Cercom 347d 9.6d 4.0 Cho, Katz, and Bar-On 

Note: HP - hot pressed; T - o,^ - tensile characteristic strength; m - Weibull Modulus; and 
AGS - average grain size. 

a Based on the company product literature. 
"AGSofAIN. 
c AGS of SiC. 
d Combined test data obtained from specimens machined by two vendors. 

3. Criteria for Estimation of KIC by Fractographic Analysis 

Only a fraction of the fracture surfaces resulting from uniaxial tensile failures are suitable for 

estimating KIC. Not all samples have an obvious failure origin; this is often the case for samples 

failing from surface "defects." In a previous report [6], the authors and their coworkers defined a 

set of empirical conditions, which restrict those samples to be used for KIC estimation. Later, this 

report will show that, in fact, these restrictions are necessary for close estimation of KIC (within 

approximately 10%), and if they are relaxed, the difference between the estimated values and the 

values measured by SEPB tests increases significantly. The criteria for selecting samples for fracture 

toughness estimates are: 



(1) The failure must be from an internal flaw. 

(2) Fracture origins must exhibit fully developed "mirror," mist, and hackle regions. 

(3) The mirror has to be "essentially" circular (samples with ellipsoidal mirrors are occasionally 

encountered and are not used). 

(4) The mirror, mist, and hackle regions must be close to normal to the specimen axis. (This 

ensures that the onset of unstable fracture occurred under a pure uniaxial stress field.) 

(5) The largest linear dimension of the failure initiating flaw at the center of the mirror is used 

as the crack length in the KIC calculation. 

The toughness, KIC, is calculated using the Sneddon closed-form solution for a penny-shaped 

crack [17]: 
KIC = 2oc(ac/7t)1/2, (2) 

where oc is the failure stress and ac is one-half the principal flaw dimension. It is worth noting that 

criteria (1) and (4) address issues raised by Rice with regard to improving the accuracy of 

fractographic estimation of KIC [2]. 

Figure 2 shows a specimen of AIN which exhibits a well-defined mirror, mist, and hackle, as 

well as a circular mirror. This typifies an acceptable specimen for KIC estimation. Figure 3 shows 

a specimen of an AIN-SiC solid solution that has an elliptical mirror and is therefore unacceptable 

for use in estimation of KK. Figure 4 shows a specimen of TiB2 which has what we refer to as a 

"pseudo mirror." In this case, there is a circular area which suggests a mirror, but upon close 

examination, it can be seen that no mirror, mist, and hackle regions are truly present, only mist and 

hackle. It will be shown later that such fracture origins are associated with significant 

underestimation of KIC. 
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Figure 2. Circular Fracture Mirror in AIN. 

Figure 3. Elliptical Fracture Mirror in AIN-SiC Solid Solution Unacceptable for Analysis. 
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Figure 4. "Pseudo" Mirror in TiB2 Shows Mist and Hackle But No Mirror. 

Whether or not a given material has a mirror associated with the fracture origin can be a function 

of the chemistry, phase content, and processing history. For example, we have examined the fracture 

origins in three different SiCs. A Dow experimental SiC* did not exhibit a mirror or mist region. 

Cercom Pad Bf material did exhibit mirror, mist, and hackle (Figure 5), whereas Cercom Pad Nf 

material exhibited no mirror but only mist and hackle (Figure 6). 

4. Estimation of KIC 

Using the previous criteria, estimates of KIC were made for the six materials listed in Table 1. 

SEPB KIC measurements were also made on these six materials. Figure 7 presents a plot of the 

fractographic estimations vs. the measured SEPB values.   Very good agreement between the 

Dow Chemical Co., Midland, MI 48674. 
f Cercom, Inc., Vista, CA 92083. 
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Figure 5. SiC Pad B Shows Mirror, Mist, and Hackle. 

Figure 6. SiC Pad N Shows Only Mist and Hackle. 

9 



Iß 
©    6 

E 
* 
(0 

I5 
c 
o 
1   4 
E 

LU 3 - 
ü 

ü 
S  2 a 
(0 
ra 

o 
(0 

o 
D 
A 
V 

▲ 
T 

AIN RefI6] 
50AIN/50SiC SS Ref[6] 
75AIN/25SiC PTC Ref[6] 
SiC/B Ref[7] 

SiC/N Ref[7] 

TiB2 This Study 
Y-TZP Ref[8] 
Y-TZP Ref[8] 

^ 
/ 

/ 

/ 

/ 
/ 

/ 

~A 

£ 
/ 

jo 
/u 

Z. 
/ 

/ 

/ 

/    ^Transitj0n 

Measured K|C (SEPB, MPa*m0-5) 

Figure 7. Fracture toughness comparison between fractographic estimates and SEPB 
measurements. 

estimated and measured values is obtained for KIC values determined by SEPB of less than 

-4.5 MPaVm. Around this value, the estimates of KIC by fractography begin to substantially 

underestimate the measured values. 

This behavior led us to reexamine the fracture surfaces and calculations that we had used in 

estimating KK. Upon reexamination, it became apparent that we had "relaxed" criterion (2) and used 

specimens exhibiting "pseudo mirrors." This clearly emphasized the importance of rigorously 

applying all of the empirical criteria listed previously, in estimating KjC using fractography. 

Rationalizing the observed behavior will be the concern of the balance of the report. 

10 



5. Potential Sources of Discrepancy Between Estimated and 
Measured KIC at "High" KIC 

While the tensile test technique of Oishi et al. [8] differed substantially from those used by the 

present authors and their colleagues, the variation that they found in estimated and measured KIC is 

similar to that observed by other investigators as one goes from "small" flaws to "large" flaws in 

Y-TZP. The increase in fracture toughness as the flaw size increases has been related to "micro 

R-curve behavior" [4]. Rice's data on estimation of KIC as a function of flaw size for TZP and ZTA 

materials also show evidence of "micro R-curve behavior" [2]. It is reasonable that the difference 

in fracture toughness encountered between large artificially induced flaws, such as in an SEPB test, 

and the small naturally occurring flaws used in fractographic estimation would be very sensitive to 

R-curve behavior. Swab and Quinn [4] point out that one cause of observing critical flaws 

significantly smaller than those predicted from macroscopic fracture toughness tests is the presence 

of R-curve behavior. As shown in Table 2, the range of flaws measured on TiB2 tensile fracture 

surfaces is significantly smaller than the average flaw anticipated using the average strength and 

measured fracture toughness. By contrast, in the case of AIN and AIN/SiC solid solution, the 

observed flaw sizes bracket the predicted flaw size, as anticipated. The presence of behavior 

consistent with a given mechanism, however, only means that the mechanism is plausible. Other 

mechanisms may, in fact, be responsible for the observed behavior. 

Table 2. Anticipated vs. Observed Flaw Size 

AIN 50 AIN/50 SiC TiB2 

Average oc 230 MPa 360 MPa 280 MPa 

Average KIC 2.62 MPaVm 3.08 MPaVm 6.25 MPaVm calculated 

Average a,. ~100um ~57pm -390 um 

Observed ranges of a« 42-135 um 5-200 um 170-280 um 

Note: oc - fracture stress; ao - flaw size. 

11 



An alternative mechanism may be subcritical crack growth without R-curve behavior. Normally, 

one associates subcritical crack growth with slow crack growth at high temperatures or in the 

presence of water or other reactive environment. Neither situation prevailed in the tensile testing 

reported in this work. All tests were at room temperature and since the fracture origins were well 

in the volume, not near the surface, no reaction with the hydraulic pressurization fluid was possible. 

Therefore, the most plausible explanation for the existence of subcritical crack growth, in TiB2, is 

R-curve behavior as described by Bennison and Lawn [18]. To settle the issue, an investigation of 

R-curve behavior in TiB2 should be undertaken. 

6. The Fracture Initiating Flaw vs. the Critical Flaw 

In ceramic materials that exhibit subcritical crack growth, whether associated with R-curve 

behavior or some other cause, the fracture initiating flaw will not be the critical flaw for fracture 

mechanics purposes. An interesting example of this was encountered in one TiB2 specimen 

examined in this study. The fracture origin of the specimen shown in Figure 4 is detailed at 

increasing magnifications. Figure 8a shows the large grain at the center of the "pseudo-mirror." 

Figure 8b shows that this grain itself has a true fracture mirror with a small (-20 um) particle at the 

center of the mirror. This inclusion showed traces of W, Co, Fe, and Ni (by EDXS), which are all 

consistent with a fragment of WC grinding media. It is probable that this inclusion was the initiating 

flaw, but it is much too small to be the critical flaw. 

Similarly, the large grain is too small to be the critical flaw predicted by fracture mechanics 

based on the conventional large flaw toughness measurement. Even the various ellipses that one can 

imagine seeing, linking large grains surrounding the very large grain in Figure 8a, are not large 

enough to be the critical flaw. It is evident that care should be taken not to use the terms "fracture 

initiating flaw" and "critical flaw" interchangeably. They may or may not be equal. 

12 



Figure 8a. Large Grain at Origin of Fracture in TiB2 Specimen. 

Figure 8b. Particle in Large Grain at Origin of Fracture in TiB2 Specimen. 

13 



7. Summary 

We have shown that if the empirical criteria presented in this report are applied, excellent 

correlation between fractographically estimated and measured KIC can be attained. It is especially 

critical in applying these criteria to be certain that a true fracture mirror is present. By implication, 

if the estimated KIC lies on the curve in Figure 7, it can be taken as evidence of a lack of R-curve 

behavior. Conversely, if the estimated KK lies substantially below the curve in Figure 7, R-curve 

behavior may be present. It has also been shown that for "tough" ceramics, the terms "failure 

initiating" and "critical flaw" are not synonymous. 

14 
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