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During the contract period, the following topics were considered: 

1) Incorporation of an absorptive bottom into the study of mode 
energy transfer and decay induced by volume scattering in a 
shallow   channel. 

2) Incorporation of a piecewise linear sound speed profile into the 
study of mode energy transfer and decay induced by volume 
scattering in a shallow channel. 

This work is the continuation of work begun under Contract ONR No. 
N-00014-94-1-0201.  All of the research done under the new AASERT 
grant was conducted by a Ph. D. candidate, Mr. Thomas E. Barnard, under 
the guidance of the principal investigator, Prof. M. J. Beran. Mr. Barnard 
wishes to thank Drs. Shimshon Frankenthal and Mark Mirotznik for many 
helpful   suggestions. 

1.  Incorporation of an absorptive bottom into the study of mode energy 
transfer and decay induced by volume scattering in a shallow channel. 

A summary of the results of this work was presented at the  133rd 
Meeting of the Acoustical Society of America at State College, 
Pennsylvania, June 19,  1997, in the paper "The Effect of an Absorptive 
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Bottom on the Propagation of the Coherence Function in a Shallow-Water 
Channel," by Tom Barnard and Mark J. Beran. The abstract follows: 

When  a  transverse plane  wave  propagates  through  a  shallow-water 
channel  with  random  sound-speed  fluctuations,  the  waveforms  at 
different  transverse  separations  no  longer  correlate perfectly.  The 
associated coherence falls as the in-line propagation distance and the 
transverse  separation increase.  In  the  (lossless)  rigid-bottom case,  when 
the waveforms  are represented as a summation of normal modes, the 
multimodal  coherence  vector  obeys  a  first-order matrix  differential 
equation  with  in-line propagation distance  as  the dependent variable.  The 
scattering matrix in this differential equation is a function of transverse 
separation.  As  the in-line propagation distance  approaches infinity,  the 
coherence vector approaches a constant vector times a scalar Dirac delta 
function centered at zero transverse separation.  If the bottom is 
absorptive rather than rigid,  an additional  diffusion term appears in the 
matrix partial  differential  equation governing  the  coherence.  Diffusion 
along the transverse separation axis then prevents the creation of a Dirac 
delta function as the in-line propagation distance increases without limit. 
This diffusion occurs whenever the imaginary part of the horizontal 
wavenumber component for a particular mode is nonzero. Some graphical 
outputs  depicting the coherence propagation for an  absorptive bottom  are 
presented in this paper.  [This work was supported by ONR Code 321.] 

A copy of this paper will be sent to Dr. Simmen at ONR. 

1.1   Development 

Given a modal solution 

P(x) = I P„(r) Yn(y) 

to the Helmholtz equation 

92 +£+*M dy2    dr2 PM=O, 



where P(x) is the complex amplitude of a monochromatic acoustic pressure 
signal at the frequency co, k(x)  is  the corresponding wavenumber at the 
local sound speed, and the position vector x has  Cartesian components  y 
(vertical distance from the bottom), z (the in-line propagation direction), x 
(the transverse  direction),  and r denotes a vector in the horizontal plane 
(x,z), the vertical mode wave equation becomes 

^! + (k2-ßn
2)Yn(y) = 0 

if the average squared  wavenumber  in  the   shallow-water  channel  is 
constant and corresponds to a constant sound speed there. Here k = co/c is 
the  radian  wavenumber,   ßn is the horizontal wavenumber for mode n, and 
Yn(y) is the pressure for mode n. 

Subject to the zero-pressure boundary condition Yn = 0 at the surface 
and the Newton's law boundary condition 

^L=-ikaYn dy 

at the bottom, where a is the specific acounstic admittance, the resulting 
eigenvalue   equation   becomes 

(ynh)cot(ynh) = i(kh)a, 

where yn is the mode's vertical wavenumber component and h is the 
channel depth. A graphical solution was given in Morse and Ingard, 
Theoretical    Acoustics,  Princeton University Press,   1968, pp. 492-506 
and p. 909. The solution to this eigenvalue equation was implemented on a 
digital computer.  The principal difficulties  were assigning physically 
reasonable values of 7h in the complex plane to specific modes and finding 
a path from the regularly spaced zeroes of the left-hand side to the value 
ynh which  solved the  eigenvalue equation.  (Boundaries between modes 
passed through saddle points of the function on the left-hand side, and the 



saddle point locations for the first twenty modes or so were included in 
the  computer code.) 

The coherence function is defined as 

(r(x1,y1,X2,y2.zy = (p(xi,yi,z) p*(x2,y2.z)) 

= 11 (rWxi,X2.z]> Y™M Y3(y2)esMft.-fcIN 
m    n 

where 

Pn = PneiRe(ßn)z 

and the self- and cross-modal coherences  are defined by 

(rmn(x1,X2,z)) = (pm(X!,z) pn*(x2,z)). 

In the Beran-Frankenthal scattering model, the self- and cross-modal 
coherences are a function of (1) the normalized sound speed c/(ooh), (2) the 
specific acoustic admittance of the bottom, (3) the strength of the sound 
speed fluctuations, and (4) the (vertical and horizontal) correlation lengths 
of the sound speed fluctuations. They also depend on the specific shapes of 
the correlation functions of the sound speed fluctuations: are they 
Gaussian or symmetrical exponential cusp  shapes, for example? 

The coherence measures the expected similarity of the waveform at 
two different locations and the strength of the waveform. The properties 
of the coherence function determine when it is no longer practical to 
increase the size of an acoustic array or beamforming aperture. Scattering 
can be statistically characterized by the coherence. In the world of signal 
processing,  the coherence is known as the crosspower spectrum between 
the time series at the two different locations. Taking the wavenumber 
Fourier transform of the coherence (resolving  the wavefield into a 
superposition   of  plane   waves)   generates   a  frequency-wavenumber 
spectrum,  which represents  the  strength of angular scattering in the 



transverse  direction.  The wider the coherence peak,  the more narrowly 
confined is the angular scattering. For example, when the process starts 
with a perfectly coherent plane wave, the coherence is constant as a 
function of transverse separation when the in-line range is zero, and the 
wavenumber Fourier transform is a Dirac delta function at zero 
wavenumber:  that means that all the energy is concentrated in a plane 
wave propagating in the in-line direction.  Scattering causes the coherence 
function to form a peak which initially narrows as the in-line range 
increases,  so  that the  wavenumber Fourier transform broadens  out from 
the initial Dirac delta function at zero wavenumber: that means that the 
energy spreads out to a range of wavenumber values  centered at zero 
wavenumber or,  equivalently,  a range of propagation  directions  centered 
about the in-line direction. As long as the energy is confined to the range 
Ikl < co/c, called the visible   region,   the   frequency-wavenumber   spectrum 
forms  a physically meaningful representation of the  scattering. 

Random sound speed fluctuations  are responsible for the volume 
scattering  studied under this  contract.  The random fluctuations  are given 
by   the   representation 

k^x) = k2 [1 + n(x)], 

where   k2 is  the mean wavenumber squared  and (i.(x) is the random 
relative  variation  about  this  mean.   After  mathematical  manipulations 
similar to those in M. J. Beran and S. Frankenthal, "Volume Scattering in a 
Shallow Channel," J.  Acoust.   Soc.  Am.,  91(6), June  1992, pp.  3203-3211, 
we  have   the  coherence  range-evolution  differential  equation 

imß^^2Imßm + Smm)(rmm)+ X smk(rkk) = o, 
ßm ßm 3sx / k*m 

where z is the in-line propagation distance, sx is  the  transverse  separation, 
ßm is the horizontal wavenumber for mode m, Smk is  the  scattering matrix 
element controlling the rate of flow of coherence from mode k to mode m, 
and <rmm> is the coherence between the mode m waveform at position (x,z) 
and the mode m waveform at position (x+sx,z). Smk is a function of the 



transverse   separation   sx, while <rmm) is a function of the transverse 
separation   sx and the in-line propagation distance z. In matrix form, 

+ 2Imß + S |(r) = 0, 

where Ap and Im ß are diagonal matrices, S is a square matrix, and <r> is a 

column vector of self-modal coherences. The second and third terms inside 
the parentheses vanish if the bottom is rigid (lossless propagation), and, as 
a result, the solution for the column vector (0 is a matrix exponential 
times the initial column vector at z = 0. Energy is preserved at zero 
transverse  separation,  while  at all  other  transverse  separations,  the 
coherence falls off exponentially with increasing z, the rate of falloff 
increasing with the magnitude of the transverse separation. Thus, with a 
rigid bottom, the self-modal coherence vector approaches a scaled Dirac 
delta function centered at zero transverse  separation times  a constant 
column vector. With an absorptive bottom, the second term is a diffusion 
term. This term prevents the formation of a Dirac delta function at zero 
transverse  separation  as  the  in-line  propagation  distance  increases 
indefinitely.  If there is no scattering, the scattering matrix, which depends 
on  the  transverse  separation,  disappears,  the  second partial  with respect 
to transverse separation is zero,  and each mode decays exponentially with 
no   dependence   on   transverse   separation. 

Graphical results are given in Figures  1  through 13. The controlling 
parameter in the  case  of an absorptive bottom is  the  scattering/absorption 
ratio 

5 = 
_{[i2)k2ah(iY 

Imß0 

where  (u2) is the refractivity fluctuation variance, k = co/c is the radian 
wavenumber,   ah is the standard deviation of the Gaussian horizontal 

refractivity  fluctuation  correlation function,   lv is  the  characteristic  length 
of the  exponential-cusp  vertical  refractivity  fluctuation  correlation 



function, h is the channel depth, and ß0 is  the  (complex-valued)  horizontal 

wavenumber for mode 0. The normalized range in Figures 2 through  13 is 

Iz (jo2) k2 Gh \IY/h) if 5 > 1 (scattering dominant)) 

z Im ß0 if 8 < 1 (absorption dominant) 

where z is the unnormalized in-line range, while the normalized sound 
speed is replaced by c/(fh) to create a rational number. In these figures, a 
"multiscale approximation"  is used to generate the coherence values 
instead of a brute-force numerical solution of the matrix differential 
equation. This approximation is a truncated matrix series  solution to the 
differential  equation:   the   approximation  eventually  becomes  inaccurate  as 
the in-line propagation distance becomes large, but the in-line range 
values are kept small enough that the qualitative characteristics of the 
plots shown are not affected. 

The  absorptive-bottom results to be presented are for two modes. 
We have the capability to generate solutions for up to twenty modes, but 
have not extensively utilized that capability. In the second half of this 
year, we plan to generate further results with more than two modes. 

Figure  1  shows the vertical mode wave equation propagating 
solutions for a scattering/absorption ratio of 0.04 and a normalized  sound 
speed of one. The imaginary parts of the mode solutions are very small, 
but not zero.  The  corresponding  solutions  for scattering/absorption ratios 
of one and 25 are not visibly different, so the mode solutions for those 
values of 8 will be omitted later. 

With all energy initially concentrated in mode 0, Figure 2 gives mode 
energy as a function of normalized range for a scattering/absorption ratio 
of 0.04. No noticeable energy is transferred from mode 0 to mode 1 as in- 
line range increases. Figure 3 is the same as Figure 2 except that it begins 
with all energy concentrated in mode 1. The negligible energy transfer 
from one mode to the other in both these figures reflects the fact that the 
process   is   absorption-dominant. 

In Figures 4 and 5, the energy is initially equal in both modes. Figure 
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Figure 2. Mode Energy Flux as a Function of Range 
for a Scattering/Absorption Ratio of 0.04 

with Energy Initially Concentrated in Mode 0 
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Figure 3. Mode Energy Flux as a Function of Range 
for a Scattering/Absorption Ratio of 0.04 

with Energy Initially Concentrated in Mode  1 
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4 presents mode 0 coherence as a function of transverse separation and 
range for a scattering/absorption ratio of 0.04. Figure 5 is the same thing 
for mode 1. In both figures, each curve represents the coherence as a 
function of transverse separation for one value of range. A careful 
examination of these figures reveals that there is a barely perceptible 
peak at zero transverse separation. The fact that it is so hard to see is due 
to  the  low  scattering/absorption  ratio. 

Figures 6 through 9 correspond to Figures 2 through 5, but are for a 
scattering/absorption ratio of one. In Figures 6 and 7, enough energy is 
transferred from the initial mode to the other mode that it is clearly 
visible at the maximum range value. In Figures 8 and 9, the effects of 
scattering are sufficiently strong that the coherence peak at zero 
transverse  separation  is   clearly  visible. 

Figures  10 through  13 are for a scattering/absorption ratio of 25. In 
Figures  10 and 11, the increased energy transfer from the initial mode to 
the other mode (in comparison with Figures 6 and 7 for 8 = 1 and with 
Figures 2 and 3 for 8 = 0.04) is a result of the increased influence of 
scattering. Figures  12 and  13 depict the coherence as a function of 
transverse separation and range for modes 0 and  1, respectively. In both 
figures,  the  diffusion term in  the coherence range-evolution  differential 
equation appears to prevent the creation of a Dirac delta function at zero 
transverse   separation   as   the  normalized  range  increases   indefinitely. 

It is useful to compare the absorptive-bottom results just given with 
the corresponding rigid-bottom results. In the case of a rigid bottom, no 
energy is  dissipated  through  the water-bottom interface.  Likewise,  the 
imaginary part of the vertical mode wave equation eigenfunctions is 
identically zero. Figures  14 and 15 display the mode energy flux as a 
function of normalized range when the energy is initially concentrated in 
mode 0 or in mode  1, respectively. As the normalized range approaches 
infinity, the mode energy flux approaches a value of one half for both 
modes. In Figures  16 and 17, as before, the initial energy is equally 
divided between the two modes.  At zero transverse  separation,  the 
coherence is one for all range values. At all other transverse separations, it 
decreases  exponentially  with range,  so  that the coherence ultimately 
approaches a scaled Dirac delta function centered at zero transverse 
separation as the range goes to infinity. In contrast, for the case of an 
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with Energy Initially Concentrated in Mode 0 

15 



1 

0.9 

0.8 

0.7 

iü 0.6 
ü z 
LU 

o 
O0.4 

MULTISCALE APPROXIMATION 
MODE0 NORMALIZED RANGE 0 

0.3 

0.2 

0.1 

0 

NORMALIZED SOUND SPEED 1 
HORIZONTAL CORRELATION LENGTH 1.333 CHANNEL DEPTHS 
VERTICAL CORRELATION LENGTH 0.06667 CHANNEL DEPTHS 
SCATTERING/ABSORPTION RATIO 1 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
TRANSVERSE SEPARATION IN HORIZONTAL CORRELATION LENGTHS 
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Figure 9. Mode 1 Coherence as a Function of Transverse Separation 
and Range for a Scattering/Absorption Ratio of 1 
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Figure 10. Mode Energy Flux as a Function of Range 
for a Scattering/Absorption Ratio of 25 

with Energy Initially Concentrated in Mode 0 
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Figure 11. Mode Energy Flux as a Function of Range 
for a Scattering/Absorption Ratio of 25 
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Figure 12. Mode 0 Coherence as a Function of Transverse Separation 
and Range for a Scattering/Absorption Ratio of 25 
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Figure 13. Mode 1 Coherence as a Function of Transverse Separation 
and Range for a Scattering/Absorption Ratio of 25 
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Figure 15. Mode Energy Flux as a Function of Range for a Rigid Bottom 
with Energy Initially Concentrated in Mode  1 
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Figure 16. Mode 0 Coherence as a Function of 
Transverse Separation and Range for a Rigid Bottom 
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Figure 17. Mode 1 Coherence as a Function of 
Transverse Separation and Range for a Rigid Bottom 
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absorptive bottom,  the  diffusion term in  the  coherence  range-evolution 
differential  equation prevents  the formation  of infinitely  sharp peaks  as 
the range becomes  arbitrarily large by diffusing those peaks along the 
transverse-separation   axis. 

In the case of a two-dimensional problem, the diffusion term in the 
coherence  range-evolution  differential  equation  disappears,   and  there  is 
no transverse axis. Figure 18 plots the lowest and highest modes of a 
twenty-propagating-mode  system for a normalized  sound  speed of 0.1   and 
a scattering/absorption ratio of 3.508. The mode solutions  are sinusoids 
with one quarter cycle (mode 0) to 9.75 cycles (mode 19), increasing by 
one half cycle as the mode index increments by one. The imaginary parts 
of these mode solutions are close to zero. For a two-dimensional system 
with energy initially concentrated in mode 0, Figure  19 graphs the mode 
energy flux as a function of range for a scattering/absorption ratio of 
3.508. 

2. Incorporation of a piecewise linear sound speed profile into the study of 
mode energy transfer and decay induced by volume scattering in a 
shallow   channel. 

When the sound speed is a linear function of depth, the vertical 
mode  wave  equation  becomes 

32Yn(y) 
3y2 + oy 

_(c0 + gyj2 "ßn: Yn(y) = o, 

where  c0 is the sound speed at the bottom (y = 0), g is the sound speed 
gradient, and y is the vertical distance from the bottom. The distance from 
the bottom to the surface is h. The general solution to this equation is 
given  by 

\l/2 
Yo(y)/(l+^yr = 

Ci Re i X IV iftfc+y] + C2Im iJivißJ^ + y 
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Figure 18. Lowest and Highest Modes for a Normalized Sound Speed of 0.1 
and a Scattering/Absorption Ratio of 3.508 
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Figure 19. Mode Energy Flux as a Function of Range 
for a Scattering/Absorption Ratio of 3.508 

with Energy Initially Concentrated in Mode 0 
in the Two-Dimensional Case with No Diffusion Term 
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where  iv = i [(co/g)2 -   l/4]1/2is the pure imaginary order of the complex- 
valued Bessel function Jiv. The real and imaginary parts of i Jiv are  closely 
related to the Airy functions Ai and Bi, respectively. The choice of Re (i Jiv) 

and Im (i Jiv) for the two independent solutions instead of Iiv and Kjv 

produces   independent  solutions   with   comparable  envelope  magnitudes. 
The  general solution to the differential equation has been given previously 
in the literature by A. O. Williams, Jr. and Douglas R. MacAyeal, "Acoustic 
reflection from a sea bottom with linearly increasing sound speed," J. 
Acoust.   Soc.   Am., vol. 66, no. 6, Dec 1979, pp. 1836-1841, Leonid M. 
Brekhovskikh,  Waves   in   Layered   Media, Academic Press, New York, 
1960, p.449, and S. M. Rytov and F. S. Yudkevich, "Electromagnetic wave 
reflection from a layer with a negative dielectric constant," Journal   of 
Experimental    and    Theoretical    Physics [U.S.S.R.], vol. 10, p. 285, 
[1946]. 

The boundary conditions  for this  problem are the zero-pressure 
condition at the surface (y = h) and the general bottom impedance 
condition 

dYn/dy      . w , 
"      = -i k(y) 
1 n 

=0 a = -i ^ a 

at y = 0, where a = \ - ia is the specific acoustic admittance, £ is the specific 
conductance,  and a is the specific susceptance. These boundary conditions 
lead  to  the  eigenvalue  equation 

0 = {h-i-Re 
dy 

i Jiv i 
ßnC0 . (oo/c0)        1 /   g   \ 

ßn 2   ßn Co 
Re i JivU 

ßnC0 

g    I 
Im i Jiv i IV 

ßn_Cs 
g 

[h^-Im 
dy 

iJJiM]+ri(^o)a+i/_g 
1      g    /J     I       ßn 2   ßn< ßn Coj 

Im i Jiv i 
ßnC0 

g   l 
Re i Jiv i 

ßn_Cs 
g 

where  cs is the surface sound speed. Solutions exist only for a discrete set 
of complex values of the normalized horizontal wavenumber values ßnh. 
The corresponding mode solutions are given by 
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Yn(y)/(l+|-y)I/2 

Im !i J; IV ißnlf+ h Re i Jv IV ißn(^ + y 

- Re i J IV iß„(t+hj Im li J IV iW%+y 

For the case of a linear sound speed profile, the only other important 
difference from the case of a constant sound speed medium occurs in 
determining   the   quadruply-subscripted   quantities 

<Wr',r") = (Rij(r') M*m(r")) = 

h -h 

kV) Yi(y') Yj(y') o(x',x") Yk(y") Ym(y") k2(y") dy" dy 

needed in evaluating the scattering matrix elements. Here c(x',x") is the 
refractivity-fluctuation  covariance  between  the  two  positions x' and x". 
Since  the  squared  wavenumber k2 is no longer constant, the double 
integral must be evaluated numerically.  Because of symmetries in the 
integrand,  the numerical computations  are only slightly more difficult than 
for a single integral. At the same time, since a numerical integration must 
be performed, considerably more flexibility is possible in the choice of the 
refractivity-fluctuation   covariance   function. 

Figure  20  portrays  the  twenty  propagating  vertical  mode  functions 
for a rigid-bottom case (a = 0) when the normalized bottom speed is   • 
c0/(fh) = 0.0975 and the normalized surface speed is cs/(fh) = 0.1025. Note 
that a few of the lower mode functions decay exponentially as the distance 
from the bottom increases. For the same case, with all energy initially 
concentrated in mode 0, Figure 21 presents mode energy flux as a function 
of normalized range. Eventually, as range increases indefinitely, all modes 
approach identically equal energy flux. In Figures 22 and 23, all twenty 
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Figure 20. Rigid-Bottom Vertical Mode Functions 
for a Normalized Bottom Speed of 0.0975 

and a Normalized Surface Speed of 0.1025 
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Figure 21. Mode Energy Flux as a Function of Range for a Rigid Bottom, 
a Normalized Bottom Speed of 0.0975, 

and a Normalized Surface Speed of 0.1023 
with Energy Initially Concentrated in Mode 0 
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Figure 22. Mode 0 Coherence 
as a Function of Transverse Separation and Range for a Rigid Bottom, 

a Normalized Bottom Speed of 0.0975, 
and a Normalized Surface Speed of 0.1025 
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Figure 23. Mode 19 Coherence 
as a Function of Transverse Separation and Range for a Rigid Bottom, 

a Normalized Bottom Speed of 0.0975, 
and a Normalized Surface Speed of 0.1025 
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modes start with equal energy flux at zero in-line propagation distance. 
Figure 22 shows mode 0 coherence as a function of transverse separation 
and in-line range. Normalized in-line range values run from 0 to 7 at 
increments of 0.5. Figure 23 is the corresponding set of plots for mode 19. 
The coherence falls off far more rapidly with range for mode 0 than for 
mode 19. In the coherence results of Figures 21 through 23, the shape of 
the  horizontal refractivity  fluctuation  correlation function is  a  symmetrical 
exponential  cusp.  Accordingly,  in the  scattering/absorption ratio  and 
normalized range  definitions,  the  standard  deviation ah is replaced by the 

characteristic  length  £,h. 

For comparison purposes,  a constant-sound-speed case for a rigid 
bottom and a normalized sound speed of 0.1  completes the presentation of 
figures in this report.  Again, the horizontal refractivity fluctuation 
correlation function is a symmetrical exponential cusp.  Figure 24 shows 
the  lowest  and  highest modes  of this  twenty-propagating-mode  system. 
When all energy is initially concentrated in mode 0, Figure 25 graphs 
mode energy flux as a function of range for all twenty propagating modes. 
Eventually, each mode reaches a value of 0.05 as the range approaches 
infinity. When all energy is initially equally distributed among all modes, 
Figures 26 through 29 plot coherence as a function of transverse 
separation and range for modes 0,  1,  10, and  19, respectively. The 
coherence for mode 1 is slightly narrower than for mode 0, then steadily 
broadens until mode  10 is reached,  and then monotonically narrows until 
mode  19, the narrowest, is reached. This result is completely different 
from  the  linear-sound-speed-profile  results  presented  in  Figures   23   and 
24, where mode 0 (with exponential falloff as the distance from the 
bottom increases)  has  the  narrowest coherence function and mode   19 
(essentially a sinusoid of the highest spatial frequency) has the broadest 
coherence   function. 

When the sound speed profile is piecewise linear  rather  than  simply 
linear,  the eigenvalues can be found by starting with the zero-pressure 
boundary condition at the surface. Then the vertical mode wave function 
is  determined except for the horizontal wavenumber ß. Using a specific 
value for the wavenumber permits the vertical mode wave function to be 
extended down to the bottom by matching the function and its first 
derivative  at the boundary levels  where  the  sound  speed gradient 
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Figure 24. Lowest and Highest Modes for a Rigid Bottom 
and a Normalized Sound Speed of 0.1 

36 



1 rMODE 0 NORMALIZED SOUND SPEED 0.1 
HORIZONTAL CORRELATION LENGTH 1.333 CHANNEL DEPTHS 
VERTICAL CORRELATION LENGTH 0.06667 CHANNEL DEPTHS 
EXPONENTIAL CUSP HORIZONTAL CORRELATION FUNCTION 
RIGID BOTTOM 

0 3 4 
NORMALIZED RANGE 

Figure 25. Mode Energy Flux as a Function of Range for a Rigid Bottom 
and a Normalized Sound Speed of 0.1 

with Energy Initially Concentrated in Mode 0 
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Figure 26. Mode 0 Coherence 
as a Function of Transverse Separation and Range 

for a Rigid Bottom and a Normalized Sound Speed of 0.1 
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Figure 27. Mode 1 Coherence 
as a Function of Transverse Separation and Range 

for a Rigid Bottom and a Normalized Sound Speed of 0.1 
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Figure 28. Mode 10 Coherence 
as a Function of Transverse Separation and Range 

for a Rigid Bottom and a Normalized Sound Speed of 0.1 
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Figure 29. Mode 19 Coherence 
as a Function of Transverse Separation and Range 

for a Rigid Bottom and a Normalized Sound Speed of 0.1 
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changes. The method of extension is given in C. Allan Boyles, Acoustic 
Waveguides,   Application   to   Ocean   Science, John Wiley & Sons, New 
York, 1984, pp. 167-171, and Tolstoi and Clay, Ocean   Acoustics,   Theory 
and   Experiment   in   Underwater   Sound, McGraw-Hill, New York, 1966, 
pp.  86-87. At the bottom, the boundary condition for the bottom must be 
satisfied. Solutions exist only for a discrete set ßn of horizontal 
wavenumber  values.   These  can be  determined iteratively  using  methods 
similar to those used for the general bottom impedance condition and for 
the linear sound speed profile. 

SUMMARY 

The objectives of this AASERT grant effort were 1) to incorporate an 
absorptive bottom into the study of mode energy transfer and decay 
induced by volume scattering in a shallow channel and 2) to incorporate a 
piecewise linear sound speed profile into the study of mode energy 
transfer and decay induced by volume  scattering in a shallow channel. 
Both objectives have been achieved. The introduction of an absorptive 
bottom generates  an additional diffusion  term in the  coherence range- 
evolution differential  equation and qualitatively changes  the nature  of the 
solution. The piecewise linear sound speed profile produces vertical mode 
wave equation solutions which are Bessel functions with pure imaginary 
order and pure imaginary argument. These Bessel functions are closely 
related to the Airy functions Ai and Bi, which are used in their 
representation. Final results of this effort will be found in Mr. Barnard's 
doctoral dissertation,  which should appear early in  1998. 
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