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SECTION 1 
INTRODUCTION 

This report documents the numerical algorithms in the EPIC hydrocode. The EPIC code was 

conceived in the early 1970s and has undergone significant development since that time. The 

first two technical publications for the 2D and 3D versions of EPIC are given in References 1 and 

2, and the first two contract reports are given in References 3 and 4. Although most of the 

numerical algorithms in EPIC have been published as technical papers and/or reports, there has 

not been a recent publication that contains all of the important algorithms within a single report. 

In Section 2 of this report there is a description of the structure of the EPIC code. This is 

included to show where and how the numerical algorithms fit into the computational framework. 

Section 3 represents the main portion of this report and contains all of the finite element 

algorithms. This contains several ID, 2D and 3D geometry options, and each of these geometries 

contains multiple element types. The contact, sliding and erosion algorithms are also included in 

this section. 

The SPH (Smooth Particle Hydrodynamics) algorithms are presented in Section 4, and the 

linking together of SPH nodes and standard finite elements is presented in Section 5. 

The report concludes with Section 6, which describes the numerous material models available in 

EPIC. 
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SECTION 2 
EPIC CODE STRUCTURE 

This section provides an overview of the structure of the EPIC code. Figure 1 shows a hierarchy 

chart of some of the key subroutines in the EPIC code. Because there are hundreds of 

subroutines in the code it is not possible to include all of them in a single figure. In general, 

however, the flow of the code can be described by Figure 1. In most instances the calling 

sequence goes from left to right. 

The following provides a brief description of the functions of the subroutines shown in Figure 1: 

EPIC Calls the first layer of subroutines. 

HDATA 

GEOM 

MASS 

NVECT 

START 

HEAT 

Reads the input file. 

Generates the initial geometry. 

Computes nodal masses. 

Groups node arrays into blocks to allow for vectorized computational loops. 

Assigns initial velocities and explosive detonation points and times. 

Computes nodal heat conduction quantities from element heat conduction 

parameters. 

WRITEG Writes output file for the Preprocessor and computes initial integration time 

increment. 

CHUNK Computes data (velocity, position, energy, momentum, etc.) for user- 

specified chunks of elements. 

SDATA Computes data (velocity, position, energy, momentum, etc.) for the entire 

system. 
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RECALL 

LOOP 

SAVE 

NLOOP 

MOTION 

MOVE 

SLIDE1 

Reads the restart file for restart runs. 

Calls the three primary subroutines for each computational cycle. 

Writes the restart file for subsequent postprocessing and restart runs. 

Calls the subroutines that govern the velocities and positions of the nodes. 

This is the first of three primary subroutines/functions in the computational 

cycle. 

Updates the velocities of the nodes through the equations of motion. 

Updates the displacements of the nodes through the equations of motion. 

Calls subroutines to update the velocities and displacements of the nodes for 

ID contact interfaces. 

SLIDE2 

SLIDE3 

ELOOP 

EGET 

VOLUME 

GMCON 

Calls subroutines to update the velocities and displacements of the nodes for 

2D sliding interfaces. 

Calls the subroutines to update the velocities and displacements of the nodes 

for 3D sliding interfaces. 

Calls the subroutines that compute the element quantities. This is achieved 

by computing with blocks of elements that have the same material and 

element type. This is the second of the primary subroutines/functions in the 

computational cycle. 

Gathers nodal data (velocities and displacements) and transforms it into 

element data such that the element computations can be vectorized. 

Computes volumetric strains and strain rates. 

Computes geometry factors that are used for strain rate, force and heat 

conduction computations. 
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STRAIN 

STRESS 

SOLID 

SHELLS 

MEGRU 

ARTVIS 

HEBURN 

CRUSH 

BRITLE 

REACT 

DAMAGE 

FAIL 

CORANT 

Computes normal and shear strain rates. 

Calls the subroutines that compute the stresses in the elements. 

Computes the maximum allowable Von Mises stress for most of the 

material models that exhibit strength. Also calls some additional 

subroutines for more complicated strength models. 

Performs iterative strain rate and stress computations for shells with bending 

capability. 

Computes pressure, internal energy and sound velocity for solids (metals). 

Computes artificial viscosity. 

Computes pressure, internal energy and sound velocity for explosives that 

use a programmed burn algorithm. 

Computes pressure, internal energy and sound velocity for crushable 

(concrete) materials. 

Computes pressure, internal energy and sound velocity for brittle (ceramic) 

materials. 

Calls subroutines to compute burn fractions, pressure and sound velocity for 

reactive explosives. 

Computes damage for fracture. 

Totally fails highly distorted elements that have exceeded a user-specified 

strain. 

Computes the allowable integration time increment for the next 

computational cycle. 
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FORCE 

CDUCT1 

EPUT 

CDUCT2 

NALOOP 

Computes nodal forces that result from the stresses in the elements. 

Computes heat flow across the elements for the heat conduction option. 

Scatters the element forces to the corresponding nodes. 

Redefines element temperatures and internal energies based on temperatures 
and internal energies of the nodes. Used only for the heat conduction 

option. 

Calls the subroutines that compute SPH nodal quantities. This is the third of 

the primary subroutines/functions in the computational cycle. The 
subroutines called by NALOOP are similar to those called by ELOOP. 
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SECTION 3 
FINITE ELEMENT ALGORITHMS 

This section provides a description of the algorithms for the finite elements in the EPIC Code. 
For ID geometry, the algorithm for Cartesian geometry is presented in detail. The other ID 
options for cylindrical and spherical geometry only include descriptions of those features that are 
different from the Cartesian geometry. 

The baseline 2D geometry is the axisymmetric case, and this is presented in detail. The other 2D 

geometries (axisymmetric with spin, plane strain and plane stress) only include descriptions of 
those features that are different from the axisymmetric geometry. There is only one geometric 
option for 3D geometry and it is presented in detail. The material models to determine stresses 
are not presented in this section, but are presented in Section 6. 

An attempt has been made to keep the nomenclature consistent for the various algorithms, but 
this is not always possible because this work has been performed by several different people over 
the course of many years. The general philosophy is to have the nomenclature in this report be 
similar to that which exists in the code. 

A final comment is that the numbering of the equations begins with Equation 1 at the beginning 
of each subsection. 

3.1  1D CARTESIAN GEOMETRY 

A description of the ID Cartesian geometry is shown in Figure 2. The z coordinate is the 
coordinate of interest and the element is defined by nodes i and j, with node i having a higher z 
coordinate than node j (ZJ > Zj). The algorithm is for ID uniaxial strain (not uniaxial stress); 
therefore the cross-sectional area is always A = 1.0. 

The mass at node i, for an individual element, is 

M;=P0V0/2 (1) 
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where p0 is the initial density of the material and the initial volume is 

V0 = A(zi-zj) = zi-zj (2) 

forA= 1.0. 

When element C is incorporated into an assemblage of elements, as shown in Figure 2, then the 

total mass at node i contains the individual element masses from both elements B and C. The 

total mass at node i is 

M^JX (3) 

3.1.1 Equations of Motion 

The acceleration, velocity and position of node i are determined as follows: 

z| = Fz
i/Mi (1) 

z,,+ =zr + z;Är (2) 

z|+A'=z|+Z;+At (3) 

In Equation 1 the acceleration is z\ at time = t. Fz' is the net z direction force on node i, and this 

is the sum of the individual element forces on node i. These forces are obtained from the 

element computations in the previous cycle of integration. This will be explained in greater 
detail in subsection 3.1.3.  Mj is the total mass at node i, as given in Equation 3 of subsection 

3.1. 

The updated velocity in Equation 2 is constant for the interval between time = t and time = t + At. 

The constant velocity for the previous time increment is z\~ and At is the average of the two 

integration time increments about time = t. 

The integration time increment is limited to 

At = Ct[h/(VgT + Vg2+c^)] (4) 
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where g2 = CQQ/p, h = zs - Zj is the height of the element and cs is the sound velocity of the 

material (References 1 and 5). Q is the artificial viscosity and CQ is a constant for the artificial 

viscosity. These are described in Section 6. The Courant sound speed fraction, Q, must be less 

than unity (Q < 1.0) to ensure numerical stability. Q = 0.9 is a typical value. 

3.1.2 Contact Interfaces 

Contact interfaces can be handled in a straightforward manner in ID. The user must specify two 

nodes for each interface. Node s is designated as the slave node and it is the node above (higher 

z coordinate) master node m. The slave and master designations are used for convenience and do 

not cause a bias in the results. 

After the equations of motion have been applied, a check is made to determine if there is 
interference (zm > zs). If there is no interference, then there is no contact and the surfaces are 

free. 

If there is contact, it is necessary to adjust the positions and velocities of the two nodes. The 

center of mass of the two nodes is 

z = (Mszs + Mmzm)/(Ms + Mm) (1) 

where Ms and Mm are the masses of the interface nodes, and zs and zm are the corresponding z 

coordinates. 

The movements of the two nodes, to the center of mass are 

Azs = z-zs (2) 

Az„=z-zm 0) -"m m 

and the corresponding velocity changes are 

Azs=Azs/At (4) 

Az   =Az  /At (5) m m 

A t19616.doc 12 



The updated positions and velocities then become 

znew=zold+ÄZs (6) 

z"ew=zÜd+Azm (7) m m 

•new = .o.d+A^s (g) 

iT=ztd+Azm (9) 

This formulation conserves momentum and provides consistency between the velocities and 

positions. If there was contact during the previous cycle, then the velocities of the two contact 

nodes are identical. If there was a gap during the previous cycle then there will continue to be a 

closing velocity (but only for one cycle). 

3.1.3 1D Cartesian Elements 

There are three primary features to all of the element algorithms. The first is to obtain the strains, 

strain rates and rotational rates. From these, the stresses and pressures are obtained through a 

variety of material models. Then, equivalent nodal forces must be determined from the stresses. 

The volumetric strain and the volumetric strain rate are as follows: 

ev=V/V0-l (1) 

ev=(e<;*-e'v)/At (2) 

In Equation 1, V and V0 are the current and initial element volumes; and in Equation 2, el*At and 

e[ are the volumetric strains at time = t + At and time = t. The volumetric strains and strain rates 

are based on the initial configuration, as opposed to the shear and deviator strain rates which are 

based on the current configuration. 
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A more common notation is to represent the z velocity by v, instead of z. The z velocities in 

the element are then assumed to vary in a linear manner, such that 

v = 0Cj+a2z (3) 

where ai and ci2 are geometry and velocity constants. 

Substituting the two nodal velocities (vs and Vj J and the two nodal positions (ZJ and Zj) into 

Equation 3 gives two equations and two unknowns (ai and 012). The strain rate in the z direction 

can then be determined from 

£z=|^ = «2=(vi-vJ)/(zi-zj) (4) 

All of the other strain rate components are zero. 

ex=ey=Yxy=Yxz=Yyz=o (5) 

where ex and ey are the other two normal strain rates and yxy, y^ and yyz are the three shear 

strain rates. 

Some of the constitutive models require an equivalent strain rate, and this is expressed as 

(6) Hi (ex -ey)
2 +(ex -ej +(äy ~äJ +^fe + YL + Yyz) 

which reduces to e = 2ez / 3 for the special case of ID Cartesian geometry. 

The constitutive models also require deviator strain rates, which are expressed as 

ex = ex-eave (7) 

ey 
= £y 

— 8ave v / 

ez=ez-eave (9) 
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where eav(. = (ev + £„ + e,) / 3. Note that the sum of the deviator strain rates is e„ + ev + e7 = 0. Hvc \    x y z / \ y £. 

The stresses in the elements are determined from the strains, strain rates, temperatures, pressures, 

internal energies, and material constants. The three normal stresses are generally expressed as 

°x=sx-(P + Q) (10) 

cy=sy-(P+Q) (11) 

CZ = SZ-(P + Q) (12) 

where sx, sy and sz are the normal deviator stresses, P is the hydrostatic pressure and Q is the 

artificial viscosity. These are described in detail in Section 6. The shear stresses are xxy = ixz = 

Tyz = 0 for ID geometry. 

Trial values of the deviator stresses at time = t + At are 

sx
+A,=sx+2GexAt (13) 

sy
+A,=sy+2GeyAt (14) 

sz
+A,=sz+2GezAt (15) 

In Equation 13, the first term (sx) is the deviator stress at the previous time and the second term 

(2GexAt) is the incremental stress due to the incremental strain (exAt) during that time 

increment, where G is the elastic shear modulus. 

Equations 13-15 assume an elastic response of the material. If the strength of the material is 

exceeded, then plastic flow (or fracture) will occur. The Von Mises yield criterion is used to 

determine an equivalent stress, ö, that can be compared to the uniaxial tensile (or compressive) 

strength of the material. The general form of the equivalent stress is 

HI fax -<*y)2 +(<*x -Sz)' +K -tfj +6(x2
xy +Xl +X2

yz) (16) 
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Using deviator stresses (instead of total stresses) and setting the shear stresses to zero (for ID 

response), the equivalent stress can be simplified to 

Hf(s-+s>+s') (,7) 

If c is not greater than the equivalent tensile strength of the material, a, the final deviator and 

shear stresses are as given in Equations 13-15. If ö is greater than a, then the stresses in 

Equations 13-15 are multiplied by the factor (o/ö). When the reduced deviator and shear 

stresses are put into Equation 17, the result is always a = c. This is known as the radial return 

algorithm. The various material strength models for a are presented in Section 6. 

During plastic flow it is sometimes necessary to determine the equivalent plastic strain for strain 

hardening effects on the strength of the material, or to determine if the material has failed. The 

first step in this process is to adjust the total strain rates to plastic strain rates by subtracting out 

the elastic portion of the strain rates. 

^=ex-(sr-<)/2GAt (18) 

eP = ey-(s;+A,-s^)/2GAt (19) 

^=ez-(srAt-sl)/2GAt (20) 

Again, the plastic shear strain rates are zero for ID geometry. The expression for the ID 

equivalent plastic strain rate is 

£P=' ■■£[(z-shte-*Ms-*T] (21) 

The equivalent plastic strain, ep, is then obtained by integrating ep with respect to time: 

ep
+At=8p+IpAt (22) 

After the element stresses are obtained, it is necessary to determine concentrated forces to act on 

the concentrated masses at the nodes. These nodal forces are used in the equations of motion for 
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the subsequent integration cycle. The net z forces on nodes i and j, for an individual element, are 

simply 

Fz=-czA = -oz (23) 

Fz
j=azA = az (24) 

for A = 1.0. Note that Fz + Fz
j = 0 for each element, and this ensures equilibrium for the system. 

This results in conservation of momentum if there are no external forces or restraints. The final 

net force on node i is 

Fz
f=SFz (25) 

It is also possible to add external forces through applied pressures. 

The heat conduction algorithm assumes the temperature varies linearly between nodes such that 

T = cc3+a4z (26) 

where T is the temperature in the element, and oc3 and oc4 are geometry and nodal temperature 

constants. 

Substituting the two nodal temperatures (Tj and Tj) and the two nodal positions (ZJ and Zj) into 
Equation 26 gives two equations and two unknowns (a3 and oc4). The temperature gradient is 

then 

9T 
= a4=(Ti-Tj)/(zi-zj) (27) 

The instantaneous heat flow is 

qz=-kf = -k(Ti-Ti)/(Z'-Z
J) 

(28) 

where k is the thermal conductivity of the element material. 
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The incremental increase in thermal energy at the nodes can be obtained by integrating the heat 

flow with respect to area and time. 

AQi=qzAAt + AQe/2 (29) 

where A = 1.0 is the area, At is the integration time increment, and AQe is the internal energy 

generated in the element during the previous time increment. 

After Equations 26-29 have been applied to all elements, the updated temperatures of the nodes 

have the form 

X+" =Ti
,+lAQi/Micpi (30) 

where Tj,+At and T- are the temperature of the nodes at times t+At and t, X AQ; is the sum of the 

incremental heat contributed by all elements that contain node i, M; is the total mass of node i, 

and cpi is the specific heat of node i. 

The internal energy in an element can be used to compute element pressures. To account for the 

flow of internal energy through the grid, the element temperature is assumed to be the average of 

the nodal temperatures. 

T = (Ti+Tj)/2 (31) 

The internal energy (per initial volume) is given by 

ES=(T-T0)p0cp (32) 

where T0 is the initial temperature (where Es = 0), p0 is the initial density and cp is the specific 

heat of the element material. 

The integration time increment must also be bounded to ensure that the computations remain 

stable for heat conduction (References 6 and 7). The heat conduction portion requires 

At<pcph
2/4k (33) 
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where h = Zj - Zj is the length of the element and the other terms recently have been defined. This 

is analogous to the time increment restriction for wave propagation in Equation 4 of subsection 

3.1.1. Unless h is very small, the wave propagation restriction is much more severe than the heat 

conduction restriction. 

3.1.4 Nonrefiective Boundary Elements 

Nonreflective boundary elements have been available for many years (References 8 and 9), and 

have been used to provide nonreflective damping for the modeling of infinite bodies such as soil 

or water. They are intended primarily to absorb elastic waves, but they are also effective for 

other applications (Reference 10). The nonreflective boundary elements are incorporated as 

single-node, infinitely-thin, massless elements. The damping force at node i resists the velocity 
and is expressed as 

E|=-adAzi=-p0cfAzi (1) 

where the damping stress on the boundary is ad = p0cs, A = 1.0 is the area and z{ is the nodal 

velocity. The initial density is p0 and the longitudinal sound velocity is 

c. = V(K,+4G/3)/p0 (2) 

where Ki is the elastic bulk modulus and G is the elastic shear modulus. 

3.2 1D CYLINDRICAL GEOMETRY 

The element for ID cylindrical geometry is shown in Figure 3. Again, the z coordinate is the 

coordinate of interest and the element is defined by nodes i and j, with z; > Zj. Only a A9 segment 

of the element is shown in Figure 3, such that the effect of the hoop stress, CT6, can be illustrated. 

The nodal masses for the ID cylindrical geometry are different from the ID Cartesian geometry. 

Mi=aip0V0 (1) 

M
J=(XJPOVO (2) 
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1D Cylindrical Element 

Nodei 

Figure 3. Description of the 1D Cylindrical Element 

where p0 is the initial density of the material and the initial volume is 

V0=7t(zf-z])Ax (3) 

where Ax = 1.0 is a unit thickness normal to the plane of the element in Figure 3. 

The distribution of the total element mass is determined by on and CXJ. The larger radius of node i 

requires a larger mass on node i to conserve the CG position of the element. 

ai=(2zi/3 + zj/3)/(zi+zj) 

(Xj = 1.0-0^ 

(4) 

(5) 
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The strain rate in the z direction is identical to that of the ID Cartesian element in Equation 4 of 
subsection 3.1.3. Also, the through-thickness strain rate remains ex = 0. The hoop strain rate 

for this geometry is dependent on the z velocities. 

ee=z/z = (zi+zj)/(zi+zj) (6) 

This hoop strain rate, ee, can be substituted for ey in the ID Cartesian strain rate equations in 

subsection 3.1.3. Also, the hoop stress, GQ, can be substituted for ay, for the ID Cartesian 

stresses. 

The nodal forces depend on both GZ and GQ. 

E|=-2jtozz-icOe(zi-zj) (7) 

Fz
j = 27tazz-7üae(zi-zj) (8) 

The forces on nodes i and j are not equal and opposite as they are for the ID Cartesian geometry, 

and this is due to the hoop stress, GQ, that acts in the same direction on both nodes. The area for 

the GZ stresses is taken at the center of the element at z = (z; + Zj J / 2, and this provides equal 

and opposite forces from the GZ stress. 

The heat conduction formulation and nonreflective boundary elements are very similar to those 

of the ID Cartesian geometry. The primary difference is that the area, A, is a function of z for 

the ID cylindrical geometry. 

3.3 1D SPHERICAL GEOMETRY 

The element for ID spherical geometry is similar to that of ID cylindrical geometry shown in 

Figure 3. The difference is that the spherical geometry does not have a unit thickness normal to 

the figure, but rather has a A0 and a GQ acting in the two directions normal to the z axis. 

The nodal masses are 

M^cx^Y, (1) 
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M-a^X, (2) 

where p0 is the initial density of the material and the initial volume is 

V0=4^-zj)/3 (3) 

The distribution of mass to the nodes (to conserve the CG position of the element) is provided by 

ctj and Oj. 

*-{%<+ 
oc. = ^L (4) 

aj=1.0-ai (5) 

The nodal forces are 

Fz = -47tazz
2 - 47tae z(z; - zy) (6) 

Fz
j = 47tazz

2 - Ana^yzi - zi) (7) 

Again, the area for the az stresses is taken at z = (zs + Zj) / 2. Other features of this geometry are 

analogous to the ID Cartesian and cylindrical geometries. 

3.4 2D AXISYMMETRIC GEOMETRY 

A description of 2D axisymmetric geometry is shown in Figure 4. This figure shows triangular 

elements, but quad elements, bending shell elements, membrane shell elements, and 
nonreflective boundary elements are also available. The early developments of this work are 

reported in References 1,3, and 11. 
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Figure 4. Description of the 2D Axisymmetric Triangular Element 
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3.4.1 Equations of Motion 

The radial (x) and axial (z) accelerations, velocities, and positions of node i are determined as 

follows: 

z|=Fz
i/Mi (2) 

x;+=x;-+x;Ät (3) 

z;+=zr+z;Ät w 

x|+A,=x,+x,+At (5> 

Z;+A,=z;+Z;+At (6) 

Equations 1 and 2 provide the radial and axial accelerations at time = t.  Fx' and Fz' are the net x 

and z direction forces on node i. Looking at the lower portion of Figure 4, these forces would 
come from the four elements that contain node i. The forces are obtained from the element 
computations in the previous cycle of integration. Mt is the total mass at node i, and it contains 

a fraction of the mass of all elements that contain node i. Although Figure 4 shows only 
triangular elements, a node can have various element types attached to it. This means it is 
possible for an individual node to have masses and forces from different element types. The 
specific algorithms for masses and forces are provided in subsections 3.4.4-3.4.8. 

The updated velocities in Equations 3 and 4 are constant for the interval between time = t and 
time = t+At. The constant velocities for the previous time increment are x|~ and z}~, and At is 

the average of the two integration time increments about time = t. 

The integration time increment is limited to 

*-c,[h/(VF+VFi3)] o 
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where g2 = CQQ/P, h is a characteristic length of the element (described later for each element 

type), and cs is the sound velocity of the material (References 1 and 5). Q is the artificial 

viscosity and CQ is a constant for the artificial viscosity. These are described in Section 6. The 

Courant sound speed fraction, Q, must be less than unity (Ct < 1.0) to ensure numerical stability. 

Ct = 0.9 is a typical value. 

For 2D bending shell elements there is also a rotational degree of freedom on each node. The 

rotational velocity of node i is updated in a similar manner as the translational velocities in 

Equations 1-4. The updated acceleration and velocity are as follows: 

6*=My/Iy (8) 

e;+=e;-+e;Ät (9) 

where My is the net moment on node i, Iy is the rotational mass moment of inertia, and At is the 

average integration time increment. The rotational displacement, 0;, is not required. 

3.4.2 Sliding Interfaces 

The 2D sliding algorithm allows the two surfaces (master and slave) to be determined 

automatically, or to be input by the user. This subsection describes the automated approach in 

detail. It is similar to that reported in Reference 12, but it has been improved to eliminate the 

order dependence. There are three primary steps in the automated sliding interface algorithm; the 

interface determination algorithm, the searching algorithm and the contact algorithm. 

Interface Determination Algorithm — After the finite element grid has been assembled (using 

three-node triangles or four-node quads), it is necessary to determine the surface nodes and the 

surface line segments. The surface nodes are designated as slave nodes, and the surface line 

segments are designated as master segments (composed of two master nodes). The left portion 

of Figure 5 shows a simple illustration for an impact problem. The assemblage of master 

segments forms a membrane around the outer surfaces of the bodies through which the slave 

nodes cannot pass. As the slave nodes contact the master segments, momentum is transferred 

from the slave nodes to the master nodes. Note that every surface node is both a slave node and a 

master segment node. This is different from the earlier sliding algorithms, and therefore requires 

special treatment. 
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The right portion of Figure 5 shows how the number of slave nodes and master segments can be 

significantly reduced by the user, if the user has some knowledge about the region of interaction. 

Although this is not required, it can often be a simple way to reduce the number of slave nodes 

and master segments in a problem. This, in turn, leads to reduced CPU time. 

•   •    • •••••• 

Interior Grid Not Shown 

M.vsd 
T19616 

\ All surface nodes designated 
as slave nodes 

All surface segment lines (2 nodes) 
designated as master segments 

mm •   •   • 

\ 

*■ 

Numbers of slave nodes 
and master segments 
reduced by including 
only those in a user- 
specified region 

Figure 5. Determination of the 2D External Interfaces 

The master segments can be obtained by comparing every line segment of every element with 

every line segment of every other element. If there is no matching line segment (with the same 

two nodes), then that segment is on the surface and is designed a master segment. Likewise, 

every node that forms a master segment is also a slave node. The final description of the 

interfaces consists of a list of slave nodes and a list of master segments that are defined by two 

master nodes. The pairs of master nodes (Mi, M2) are ordered such that the exterior surface is to 

the left, and the interior is to the right, when viewing node Mi from node M2. 

Searching Algorithm — After the nodal equations of motion (velocities and positions) have 

been updated, it is necessary to check all of the slave nodes to determine if they have interacted 

with any of the master segments that form the master surface. A summary of the searching 

algorithm is shown in Figure 6. The master nodes are Mi and M2, and the slave node is Ns. The 

first check for each slave node is to determine which master segment (or segments) are 

candidates for interaction. A bucket sort algorithm (Reference 13) is used to limit the number of 
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master segments that must be considered for each slave node. If one of the two master nodes on 
a segment is also the slave node, then that master segment is no longer considered for that slave 
node. The box test in Figure 6 indicates that slave node Ns can be associated with master 

segment M1-M2 only if it is contained within a rectangular box that extends a distance, 8ref, 

beyond the master segment, M1-M2. 

Box Test 
"ref 
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Figure 6. Description of the 2D Sliding Interface Searching Algorithm 

The reference distance is simply 

Sref=VrefAt (1) 

where Vref is the maximum relative velocity (between a slave node and a master segment) that 
can be experienced during the course of the problem, and At is the integration time increment. 

Vref can be specified by the user or it can be computed by the preprocessor based on the 
maximum relative velocity for the initial condition. It can generally be set to about 1.5 times the 
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maximum relative velocity in the initial condition. For explosives it can generally be set to the 

detonation velocity. 

If the slave node passes the box test, it is then subjected to the cross-over test. This test is 

performed to determine if the slave node has crossed over the master segment. The distance 

between the slave node and the master segment is given by 

8 = -(AXS + BZS + C) (2) 

where A = (z2-z,)/*, B = (x,-x2)/f, C = (x2z1-x,z2)/£, and £ = >/(x1-x2)
2 + (z1-z2)

2 . 

The x and z coordinates of master nodes Mi and M2 are xi, x2, zi, z2, and the coordinates of slave 

node Ns are xs and zs. A and B are the direction cosines normal to the master segment and I is 

the length of the segment. If 0 < 8 < 8ref, then the slave node has touched or crossed over the 

master segment line (or the extension of the line), and it remains a candidate for interaction with 

that master segment. If the slave node fails either the box test or the cross-over test, then it 

cannot interact with that master segment. 

If the slave node passes both the box test and the cross-over test, then it must be determined if it 

falls within the normal projection of master segment Mi-M2 (Region A), or if it falls within the 

extended region of the master segment (Region B). Even after a slave node has found a master 

segment (by passing both the box test and the cross-over test), the search must continue for the 

remaining master segments, because it is possible for a slave node to find multiple candidate 

master segments. 

It is also necessary to check if the slave node has not crossed over the master segment, but is 

within Region C (-8ref < 8 < 0), as shown in Figure 6. This condition can be used to offset a 

Region A condition for an adjacent segment, as will be shown later. 

After the slave node has searched for all the master segments, there are the following 

possibilities: 

. If the slave node is within Region A for only one master segment and is not within 

Region C for an adjacent segment, then it interacts with master segment Mb-Mc, as 

shown in the lower portion of Figure 6. 
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• If a slave node is within Region A for only one master segment and is within Region C 

for an adjacent segment, then it may or may not be in contact with the master surface. 

This condition occurs in the shaded area near node Md, as shown in the lower portion of 

Figure 6. If the slave node passed through segment Mc-Md, then it is designated to 

interact with that segment. If it did not pass through segment Mc-Md, then it is not in 

contact with the master surface. 

• If the slave node is within Region A for two adjacent master segments, then it interacts 

with whichever segment it crossed to arrive at its current position. This possibility is 

illustrated in the shaded area near node Mc, in the lower portion of Figure 6. If it passed 

through line Mb-Mc to reach its position in the shaded area, then it interacts with master 

segment Mb-Mc. Likewise, if it passed through line Mc-Md, then it interacts with that 

segment. 

• If the slave node is within Region B for only one segment, then it does not interact with 

any master segment. This condition can exist at a convex corner on the master surface. 

The node can be crossed over the extension of a master segment (Region B), but it may 

not be crossed over the adjacent master segment. 

• If the slave node is within Region B for two adjacent master segments, then it interacts 

only with the single node that is common for those two segments. This possibility is 

illustrated in the shaded area near node Mb, in the lower portion of Figure 6. 

• Another situation can exist that is not illustrated in Figure 6. Under some 

circumstances, where three or more distinct bodies meet at a corner, it is possible for a 

slave node to pass through two or more master segments that are not attached to one 

another. When this occurs, the slave node is associated with the master segment that 

has the greatest crossover. If the crossover with other master segments is significant 

(5 > 0.1 5ref) then the complete searching and contact procedure is repeated for that 

cycle, with the result being that the secondary crossover now becomes the primary 

crossover and is adjusted accordingly. 
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After the searching is completed, there are three possibilities for each slave node: 

. The slave node has found a master segment Mi-M2 with which it must interact. 

. The slave node has found a single master node with which it must interact. 

. The slave node has not crossed over any portion of the master surface, and therefore has 

no interaction with the master surface. 

The searching algorithm is applied every cycle. In some instances, the CPU searching time can 

be reduced by performing the bucket sort algorithm every N cycles instead of every cycle. This 

requires the buckets to be expanded in size such that all the candidate master segments are 
available to the slave node for all N cycles. This is accomplished by using the reference velocity 

concept of Equation 1. This approach provides greater CPU savings for lower reference 
velocities because the buckets do not need to be expanded as much as they are for higher 
reference velocities. This approach cannot be used with erosion, however, because the lists of 

slave nodes and master segments change from cycle to cycle during erosion. 

Contact Algorithm — The contact algorithm adjusts the positions and velocities of the slave 
nodes and the master surface nodes. This is done after the equations of motion have been 
updated in the standard manner, and after the searching has been completed. Conservation of 
momentum can be attained by considering each slave node to interact with its master segment (or 
single master node) in a single pass (without subsequent interactions). However, subsequent 
interactions generally will be required to have each slave node placed exactly on the master 
surface, and to have the normal velocity of the slave node equal to the normal velocity of the 

master surface at the slave node position. 

A summary of the contact algorithm is shown in Figure 7. The general approach is to have each 

slave node interact with its master segment (Mi - M2) or master node (if it is in a concave 
corner). The velocity and position changes for the master and slave nodes are performed during 
the course of several iterations. Multiple iterations are required to achieve a good velocity and 
position match of the slave node with the master segment. For a single slave node on a single 

master segment, it is possible to obtain an exact match in one iteration. However, when 
subsequent slave nodes interact with the same master segment, or an adjacent segment, then the 

match of the previous slave node is altered. 
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Figure 7. Description of the 2D Sliding Interface Contact Algorithm 

Furthermore, only a portion of the required velocity and position changes are made during each 
iteration. If the entire position movement would be made during the first iteration, then it would 
be possible for some slave nodes to be separated from the master segment after the first iteration. 
Because the contact algorithm is exercised only when there is interference, if the slave node is 
free from the surface, then it will not be considered for subsequent iterations. 

An alternative approach would be to consider the slave node (and the corresponding master 
segment) to be adjusted for all subsequent iterations, if it was in contact for the first iteration. 
The problem with this approach is that this would not allow a slave node to be released from the 
master surface if it is in contact during the first iteration. For some complex contact interfaces, a 
slave node needs to be free to separate from the master surface, even if it was in contact during 
the first iteration. 

The following algorithm considers a contact/sliding interface with no friction, although frictional 
effects can be added straightforwardly using the general approach described in Reference 14, and 
presented in subsection 3.8.2. The basic approach is to consider each slave node interacting with 
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its master segment. The normal velocities of the slave node and the two master nodes are Vs
n, 

V,n, and V2
n, where the superscript n indicates the iteration number. The objective of the 

algorithm is to adjust these normal velocities by conserving linear momentum, conserving 
angular momentum, and equating the normal velocity of the slave node to the normal velocity of 

the master segment at the slave node location. 

The relationship between the normal velocity changes (based on conservation of linear and 

angular momentum) is as follows: 

AVT=-R1MsAXl/MM1 (3> 

AVr=-R,M,AV"/M M2 
(4) 

where AV," and AV2
n are the normal velocity changes to master nodes Mi and M2 during the n 

iteration; Ri and R2 are the fractions of momentum transferred from the slave node to the master 
nodes; Ms, MMi, and MM2 are the masses at the slave node and the two master nodes; and AVs

n is 

the normal velocity change to the slave node during the n  iteration. 

Ri and R2 are simply: 

R^^-x.r+^-z.)2/^ (5) 

R2=1.0-R, (6) 

where xsm = xs + AS and zsm = zs + B6 are the coordinates of the slave node when projected back 

to the master segment. 

Now, if the normal velocity of the slave node is equated to the normal velocity of the master 
segment (at the slave node location), and the relationships of Equations 3 and 4 are substituted, 

the normal velocity change to the slave node is: 

Avs
n+1 = 

q(v° -X) (7) 
(l + R?Ms/MM1+R^Ms/MM2) 
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where a = 1.0 for an exact match and V^ = V2
n + R, (v,n - V") is the master normal velocity at 

the projected slave node location. 

In Equation 7, it is possible to substitute 

8/At = (v^-Vs") (8) 

which gives 

n+l                          <x(5/At) 
AVs

n+1=7 ; r (9) 

where 8 is the normal deflection from Equation 2 and At is the integration time increment. The 

use of Equations 8 and 9, instead of Equation 7, allows the algorithm to be self-correcting when 

the previous cycle does not provide a perfect velocity and position match. 

As was noted previously, it is necessary to perform only a fraction of the velocity and position 

change during each iteration. This generally keeps the slave node in a crossed-over position for 

intermediate iterations, as shown in Figure 7, such that subsequent iterations can gradually move 

it toward the master segment. However, if the slave node moves free during an intermediate 

iteration, then it is not adjusted during the next iteration. The expression used for a is taken as 

a = 0CiCc2 (10) 

The first factor is based on the iteration number. 

«,=  i*     , (ID VN-n+1 

where N is the total number of iterations and n is the current iteration number. Note that ai = 1 

when n = N. 

The second factor is based on the number of slave nodes that act on node Ns, when it (Ns) is a 

master node. This is expressed as 
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a, = -.lR^_ (12) "2 
lRm+lRs 

where ERS is the sum of Ri and R2 (from Equations 5 and 6) that node s receives from other slave 

nodes when it (Ns) is acting as a master node. IRm is a similar sum on the master surface. This 

is required to keep nodes from being adjusted too much when they are both a slave and a master. 

Note that if slave node Ns is never a master node, then ZRS = 0 and a2 = 1.0. This means that the 

basic algorithm can be used for the following three categories: 

• Automatic 

• Symmetric 

• Nonsymmetric. 

For automatic sliding all of the surfaces are automatically designated as slave nodes and master 

surfaces and the user does not need to specify the interfaces. This is the recommended option. 

For symmetric sliding both sides of the interface are designated as master surfaces and slave 

nodes. This gives a symmetric interface that is not order dependent and is not dependent on 

which side is master or slave. This option provides the same results as the automatic option if all 

of the interacting surfaces are designated as master surfaces and slave nodes. 

The nonsymmetric option is the traditional option where one side is the master surface and the 

other side is slave nodes. Generally, the master surface should have the denser and stronger 

material, an equal or greater node spacing than the slave nodes, and should not have a convex 

surface toward the slave nodes. This is the condition that exists for an SPH node, or a standard 

node whose elements have eroded, that interacts with a master surface. 

After the slave velocity change has been determined from Equation 9, then the x and z velocity 

changes to the slave node are then transferred back into the system coordinates 

Au:+1=AAVs
n+1 (13) 

Avf1 = BAVs
n+1 (14) 
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The velocity changes (Aü"
+1
, AV"

+1
, Aü"

+1
, Av"+1) to the master nodes are performed in a 

manner similar to that of Equations 13 and 14, where AV", and AV2
n are obtained by substituting 

AV" into Equations 3 and 4. 

After the velocity changes have been made to all nodes on the sliding interface, then the positions 

of the nodes must be updated in a manner that is consistent with the velocity changes. The 

updated nodal positions for all nodes on the sliding interface are 

x,n+1=x^+ZAü:+1At (15) 

z:+,=zf+lAvf+1At (16) 

where £ Auf+I and £ Av,n+1 are the sum of all master and slave velocity changes made to node i. 

During this process there is no arbitrary movement of nodes, but rather total consistency between 

the velocity changes and position changes. Because the velocity and position changes are made 

after all the interface nodes are processed, there is no order dependence. 

The application of the preceding algorithm, for all slave nodes, completes a single iteration. 

Subsequent iterations are performed in a similar manner. The number of iterations has little 

effect on the CPU time because the iterations require much less time than the searching. 

3.4.3 Erosion 

For many problems it is necessary to allow highly distorted material to be eroded away. This is 

done to simulate the actual phenomenon that occurs for erosion problems, and to delete the 

highly distorted elements from the computation. This algorithm is reported in References 15 and 

16. It is only available for triangular elements. 

The algorithm which follows should be applied only to problems where erosion is the primary 

mode of penetration. Figure 8 shows a master surface defined as a set of consecutively linked 

nodes (Ml, M2 ... M15, M16). The slave nodes are always to the left of the master surface when 

moving from the beginning of the master surface (node Ml) to the end of the master surface 

(node Ml6). The slave nodes can be randomly ordered and are not allowed to penetrate through 

the master surface. 
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The master surface is allowed to erode by totally failing triangular elements which have one, two 

or three sides on the master surface. Totally failed elements cannot develop any stresses or 

pressures; they essentially disappear except that mass is retained at the nodes. 

The procedure begins by putting a flag on the nodes which are on the master surface. Then the 

three nodes of each element are examined to determine if the element is on the master surface. If 

two or three of the nodes on the specific element are flagged, then that element is on the master 

surface and it may be totally failed if it meets one of the failure criteria. 

The five elements in Figure 8 (elements A, B, C, D, E) have two or three consecutive nodes on 

the master surface, and have one, two or three sides on the master surface. The following 

describes the criteria necessary to totally fail these elements and to redefine the master surface 

and the slave nodes. 

. Element A has one side (M1-M2) on the master surface and one side (Ml-Nl) on the 

rotational axis of symmetry. If the equivalent plastic strain or volumetric strain of 

element A exceeds a specified eroding strain, the element is totally failed. The previous 

master surface (Ml, M2, M3 ...) is then replaced by an updated master surface (Nl, 

M2, M3 ...). Also, node Ml is designated as a slave node to the updated master 

surface. 

. Element B has one side (M3-M4) on the master surface. If the equivalent plastic strain 

or volumetric strain of element B exceeds a specified eroding strain, the element is 

totally failed. The previous master surface (... M2, M3, M4, M5 ...) is then replaced 

by an updated master surface (... M2, M3, N2, M4, M5 ...) There are no new slave 

nodes to be designated for this case. 

. Element C has two sides (M5-M6, M6-M7) on the master surface. If the equivalent 

plastic strain or volumetric strain of element C exceeds a specified eroding strain, the 

element is totally failed. The previous master surface (... M4, M5, M6, M7, M8 ...) is 

then replaced by an updated master surface (... M4, M5, M7, M8 ...). Also, node M6 

is designated as a slave node to the updated master surface. 
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Figure 8. Description of the 2D Erosion Algorithm 

Element D also has two sides (M8-M9, M9-M10) on the master surface. If the angle 
a, defined by the two master sides, is less than a specified angle, the element is totally 
failed. The previous master surface (... M7, M8, M9, MIO, Ml 1 ...) is then replaced 
by an updated master surface (... M7, M8, MIO, Ml 1 ...). Also, node M9 is designated 
as a slave node to the updated master surface. This criterion tends to give a smoothed 
master surface, by eliminating intruding elements which have not exceeded the previous 

eroding strain criterion. 

Element E has three sides (Ml 1-M12, M12-M13, M13-M14) on the master surface. 

This conditions exists because node Ml 1 is identical to node Ml4. Under these 
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conditions, element E is always totally failed. The previous master surface (... MIO, 

Mil, M12, M13, M14, M15 ...) is replaced by an updated master surface (... MIO, 

Ml 1, M15 .. .)• Also, nodes M12 and M13 are designated as slave nodes to the updated 

master surface. This criterion also tends to give a smoothed master surface. 

For axisymmetric geometry, when the master nodes are deleted from the master surface and 

designated as slave nodes, the outward radial velocity of the slave node is redefined to be a 

fraction of the axial velocity ofthat node. This is done to move the slave nodes initially on the 

axis of symmetry, away from the axis, as would be expected during an actual eroding penetration 

process. 

To ensure that there is no cross-over of material between the two surfaces (such as a projectile 

and a target), a two-step approach (two separate sliding interfaces) is used with the standard (not 

automatic) sliding algorithm. For the first interface, all of the projectile nodes and the eroded 

target nodes are slave to the master surface in the target. For the second interface, all of the 

nodes in the center of the target, and the eroded projectile nodes, are slave to the master surface 

on the projectile. The eroded nodes are therefore restrained from passing through either the 

projectile or the target. The automatic sliding algorithm handles both surfaces automatically. 

3.4.4 Triangular Elements 

The axisymmetric triangular element algorithm follows the same sequence as the ID Cartesian 

element. The element is geometrically defined by nodes i, j, and m (counterclockwise) as shown 

in Figure 4. This algorithm is reported in References 1,3, and 11. The coordinates of node i are 
designated x; and Zj, and the corresponding velocities are designated üj and vs (which are 

identical to xs and z; used previously). 

The algorithm that follows is for a single triangular element. The arrangement of the elements, 

however, can have a significant effect on the computed response (References 16,17, and 18). 

The crossed triangle arrangement (four triangles within a quad), in the lower portion of Figure 4, 

generally provides good accuracy. A slashed triangle arrangement (two triangles within a quad) 

can produce significant inaccuracies. There are also some mixed (average volumetric strain, or 

average pressure) algorithms that provide improved accuracy for various arrangements of 

elements (Reference 16). 
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The mass at node i, for an individual element, is 

M^OiP.y, (i) 

where p0 is the initial density of the material and V0 is the initial volume of the element. The 
fraction of the element mass that is assigned to node i is 

1    4    I2UJ (2) 

where the average radial coordinate is 

x = (Xi+Xj+xm)/3 (3) 

The initial volume is 

V0=2TCXA0 (4) 

where A<> is the initial cross-sectional area. 

When element A is incorporated into an assemblage of elements, as shown in Figure 4, then the 
total mass at node i contains individual element masses from all elements that contain that node. 
The total mass at node i is 

Mi=SMi (5) 

The volumetric strain and strain rate are obtained in the same manner as used for the ID 
Cartesian element. 

ev=V/V0-l (6) 

ev =(<*-<)/At (7) 

In Equation 6, V and V0 are the current and initial element volumes; and in Equation 7, El*M and 
8^ are the volumetric strains at time = t + At and time = t. The volumetric strains and strain rates 
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are based on the initial configuration, as opposed to the shear and deviator strain rates which are 

based on the current configuration. 

The strain rates are obtained from the current geometry of the element and the velocities of the 

nodes. If it is assumed that the lines connecting the nodes remain straight, the displacements and 

velocities within each element must vary in a linear manner. Then the velocities within the 

element can be expressed as 

ü = a,+a2x+a3z ^ ' 

(9) v = a4+a5x+oc6z 
v > 

where ai ... a6 are geometry and velocity-dependent constants. It is possible to solve for on, a2, 

a3 by substituting the radial velocities and coordinates of nodes i, j, m into Equation 8. This 

gives three equations and three unknowns such that Equation 8 can be expressed in terms of the 

element geometry and nodal velocities. 

ü = — [(ai+bix + ciz)üi+(aj+bjx+cjz)üj + (am+bmx+cmz)ümJ (10) 

where a, = Xjzm - xmZj, b, = i, - zm, c, = xm - Xj, and A is the cross-sectional area of the 

element in the x-z plane. The axial velocities are identical to Equation 10 except the radial 

velocities are replaced by the axial velocities. Another geometry constant for triangular elements 

is the minimum altitude of the triangle, h. This is used for the integration time increment in 

Equation 7 of subsection 3.4.1. 

After the velocities are obtained, it is possible to determine the normal strain rates (ex,ez,e9), 

the shear strain rate (y„) and the localized rotational spin rate of the element in the x-z plane 

= ^ = ^[b'Üi+b^+Mm] 

3v     1 r   ■ 1 (ID p = —cv +cv +c v ^   ' 
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ee=^ = (üi+üj + üm)/(xi+xj+xm) (13) 
A. 

du   dv .... 

^=fe+ä^ (14) 

ö>xz~2Ux"az; 
(15) 

It can be seen that Equations 11,12,14, and 15 are derivatives of linear functions and are 

therefore constant within the element. Equation 13 involves averages of the nodal velocities and 

the three radii (ü and x), so it is not necessarily constant. 

The other two shear strain rate components are zero (yxe = Yz9 = o) for axisymmetric geometry 

with no spin about the z axis of rotation. These become nonzero when spin is included, and this 

is described in subsection 3.5. 

The equivalent strain rate (e) and deviator strain rates (ex,ez,e9) are determined in an identical 

manner as shown previously for ID geometry. 

Hi (ex-ej2+(K-£e)2+{K-i«)2
+T(YL+Y

2
X9+YL) (16) 

ex=ex-eave (17> 

ez = ez-eave (18) 

where e    = (ev + E, + e0) / 3. Note that the sum of the deviator strain rates is ex + ez + e9 = 0. 

The stresses in the elements are determined from the strains, strain rates, temperatures, pressures, 

internal energies, and material constants. This is identical to the ID algorithm, except that a 

shear stress is also present. The three normal stresses are generally expressed as 

A t19616.doc 41 



GX=SX-(P + Q) (20) 

GZ = SZ-(P + Q) (2D 

CTe=se-(P + Q) (22) 

where sx, sz, and se are the normal deviator stresses, P is the hydrostatic pressure and Q is the 

artificial viscosity. These are described in detail in Section 6. The nonzero shear stress is x« and 

the two zero shear stresses for this geometry are xxe and Tze. 

Trial values of the deviator stresses at time = t + At are 

sx
+At =sx + 2GexAt-2T,

xzcoxzAt (23) 

sz
+At=sz + 2GezAt+2TxzcoxzAt (24) 

S;
+A,=s;+2GeeAt (25) 

In Equation 23 the first term (sx) is the radial stress at the previous time and the second term 

(2GexAt) is the incremental stress due to the incremental strain (exAt) during that time 

increment, where G is the elastic shear modulus. The third term (2TxzcoxzAt) is due to shear 

stresses from the previous time increment, which now act as normal stresses due to the new 

orientation of the element caused by an incremental rotation (co^At) during the time increment. 

The axial stress has the same form as the radial stress, and the tangential (hoop) stress is also 

similar except there is no contribution from rotated shear stresses. 

The trial value of the shear stress is formulated in similar manner. 

O =<+GYxzAt + (ax-az)(DxzAt (26) 

Equations 23-26 assume an elastic response of the material. If the strength of the material is 
exceeded, then plastic flow (or fracture) will occur. The Von Mises yield criterion is used to 
determine an equivalent stress, ö, that can be compared to the uniaxial tensile (or compressive) 

strength of the material. The general form of the equivalent stress is 
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ä = ^[(cx -oj +(cx-c6)
2+{Gz-a6f+6{xxz

2 +xj +xz9
2)] (27) 

Using deviator stresses (instead of total stresses), Equation 27 can be rewritten as 

*•§ Sx+s2
z + s^)+3fe + <e+T2

z9) (28) 

If a is not greater than the equivalent tensile strength of the material, a, the final deviator and 

shear stresses are as given in Equations 23-26. If c is greater than a, then the stresses in 

Equations 23-26 are multiplied by the factor (a/a). When the reduced deviator and shear 

stresses are put into Equation 28, the result is always G = c. This is known as the radial return 

algorithm. The various material strength models for a are presented in Section 6. 

During plastic flow, it is sometimes necessary to determine the equivalent plastic strain for strain 

hardening effects on the strength of the material or to determine if the material has failed. The 

first step in this process is to adjust the total strain rates to plastic strain rates by subtracting out 

the elastic portion of the strain rates. 

K = ex -(sr s[ +2coxz<At)/2GAt (29) 

ez = ez - (sz
+At - sz - 20>„T!BAt) / 2GAt (30) 

eS=e8-(sr,-s,
9)/2GAt (31) 

YL = Yxz ~[<At ~< -cU< -sz)At]/GAt (32) 

Again, the other two plastic strain rates (y£9 and y^) are zero for this geometry. The general 

expression for the equivalent plastic strain rate is 

^vf k-^fA^-^fAK-^f+^irJ+rJ+rJ) (33) 
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The equivalent plastic strain, ep, is then obtained by integrating ep with respect to time. 

ep
+A«=ep+IpAt (34) 

After the element stresses are obtained, it is necessary to determine concentrated forces to act on 
the concentrated mass at the nodes. This is done by obtaining the concentrated forces which are 
statically equivalent to the distributed stresses in the elements. The radial and axial forces acting 

on node i of an element are 

2 
Fj = -Jtxfoa, +cixxz]--7üAGe (35) 

F^-TcxJc^+b.xJ (36) 

Note that Fz + Fz
j + Fz

m = 0 for each element, and this ensures equilibrium for the system. This 

results in conservation of momentum if there are no external forces or restraints. The final net 

forces on node i are 

Ü-ZU (37) 

F„'=5>' (38) 

It is also possible to add external forces through applied pressures. 

The heat conduction algorithm can be obtained straightforwardly from the ID heat conduction 
algorithm (subsection 3.1.3) and the strain rate equations in this subsection. It is reported in 

Reference 7. Substituting temperatures for velocities in Equation 10 gives 

T = ^-[(ai+bjx + ciz)Ti+(aj+bjx + cjz)Tj + (am+bmx+cmz)Tm] (39) 

The instantaneous heat flows in the x and z directions can then be obtained from 

qx =-k|^ = -k(biTi+bjTj+bmTin)/2A (40) 
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qz = -k— = -k^T, + c ^ + cmTm) / 2A (41) 

The incremental increase in thermal energy at the nodes can be obtained by integrating the heat 
flow with respect to area and time. 

AQi = Ttxfq^ + qzcf )At + cc, AQe (42) 

AQj = TCxfq.bj + qzcj)At + ccjAQe (43) 

AQm =7tx(qxbm+qzcm)At + amAQe (44) 

Note that the internal energy generated in the element during the previous time increment, AQe, is 
distributed to the nodes through ctj, ctj, am as defined by Equation 2. The energy is distributed to 
the nodes in the same manner as the mass is distributed. 

After Equations 39-44 have been applied to all elements, the updated temperatures of the nodes 
have the form 

TrM=X+lAQi/Micpi (45) 

where T;,+At and T/ are the temperatures of the nodes at times t+At and t, ZAQi is the sum of the 
incremental heat contributed by all elements that contain node i, M; is the total mass of node i, 

and cPi is the specific heat of node i. 

The internal energy in an element can be used to compute element pressures. To account for the 
flow of internal energy through the grid, the element temperature is assumed to be the average of 
the nodal temperatures. 

T = (Ti+Tj+Tm)/3 (46) 

The internal energy (per initial volume) is given by 

Es = (T-T0)pocp (47) 
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where T0 is the initial temperature (where Es = 0), p0 is the initial density and cp is the specific 

heat of the element material. 

The integration time increment must also be bounded to ensure that the computations remain 

stable for heat conduction (References 6 and 7). The heat conduction portion requires 

At<pcph
2

mi„/4k (48) 

where hmin is the minimum altitude of the element and the other terms recently have been 
defined. This is analogous to the time increment restriction for wave propagation in Equation 4 

of subsection 3.4.1. Unless hmin is very small, the wave propagation restriction is much more 

severe than the heat conduction restriction. 

3.4.5 Quad Elements 

The quad element algorithm is summarized in Figure 9. It is simply an average of the 

components of two quads composed of two triangles each. 

The mass at node i is half the mass of node i from triangular elements ijm, imp, and ijp. 

Mi=p0[arv^ra+a|mpv:,np+afPXJip]/2 (1) 

where p0 is the initial density of the material in the quad element, o^"1 is the fraction of the mass 
of triangle ijm that is distributed to node i, and Vf" is the initial volume of triangle ijm. Refer to 

Equations 1-4 in subsection 3.4.4. 
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Figure 9. Description of the 2D Quad Element 
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The strain rate in the x direction is 

ex=^[zjp(üi-üm)+zmi(üj-üp)] (2) 

where A is the area of the quad element, Zjm = Zj - zm, zmj = zm - zJ5 and ü;, üj, üm, üp are the x 

velocities of the nodes. This result is obtained by determining the x strain rates of triangles ijm 
and imp (per Equation 11 of subsection 3.4.4) and then weighting the individual triangle strain 

rates by the areas of the individual triangles. The same result is obtained by considering the 

alternate arrangement of triangles ijp and jmp. 

Using this same approach, the other strain rates and rotational rate can be determined. 

ez=^hP(vm-vi)+xmi(vp-vj)] (3) 

Yxz=^[xjp(üm-ü1)+xmi(üp-üJ)+zjp(vi-vj)+zmi(vj-vp)] (4) 

ee = (ü; +üj +üm +üp)/(Xi +Xj +xm +xp) (5) 

ö)xz=^[zjp(vi-vm)+zm,(zJ-zp)-xjp(üm-üi)-xrai(üp-üj)] (6) 

The forces are determined in the same manner as the masses. The forces at node i are half the 

forces at node i from triangles ijm, imp, and ijp. 

K ="§ [xijm(zjmcyx + xmjTxz) + ximp(zmpcx +xpmTxz) +xijp(zjpox +xpjxxz)-aeAJ     (7) 

Fi = -f [xijm(xmjaz +zjmxxz) + ximp(xpraa2 + zmpxxz) +xijp(xpjcz +zjpTxz)] (8) 

where x    is the average x coordinate of triangle ijm, and the other terms are as defined 

previously. 
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There is an additional force required for quad elements that is not required for triangular 
elements. The lower half of Figure 9 shows how hourglassing can occur in a quad element. This 
mode of deformation can occur without inducing any normal or shear strain rates. It is detected 
by evaluating the difference in the rotational rates of the opposite sides of the quad. 

The rotational rates of the four sides are 

G>mP = [(vm " vp Km + (üp - K )zpm \t pm (9) 

«>pi =[(vp - Vjjxpi +(üj -üp)zpi]j?pi (10) 

®» =[(vj-viK+(üi-üj)zij]fji (11) 

<ömj = [(vm - vjxjm +(Uj -üm)zjm]£mj (12) 

where £{i is the length of side ij and the other terms are as defined previously. 

A viscous stress is used to resist the hourglassing (Reference 19) as shown in Figure 9. The 
stress varies from ± qmax on each of the opposite sides. For sides ij and mp 

qr^CHC.ph^^co^+Q),) (13) 

where CH is an input hourglass viscosity coefficient, cs is the second velocity of the material, p is 
the density of the material and hmin is a characteristic minimum length (area/largest diagonal). 
For the other two sides 

qimax"pi=CHcsphmin(tDpi+a)mj) (14) 

These stresses are then converted to equivalent nodal forces using the form 

F(hg) = -7Cx(qLmpz;j + qJl-% ) / 3 (15) 

4g)=-rtx(q!irPx,+qt:pixpi)/3 (16) 
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Both the hourglass forces and the internal stress forces of Equations 7 and 8 are then added to the 

appropriate nodes. 

The heat conduction algorithm for quad elements is derived from the triangular element 

algorithm in a similar manner. The heat flow in the two directions is 

qI=k£ = -k[zJp(T,-T„)+z„,(Tj-Tp)]/2A (17) 

q. =kg = -k[xjp(T„ -T,)+xmi(Tp -Tj)]/2A (18) 

and the incremental increase in thermal energy at node i is 

AQ;=| [xijm(zjn,qx +xmjqz)+ximp(zmpqx + xpmqz)+xijp(zjpqx +xpjqz)]At + CCiAQe (19) 

where xjjm ,zjm ,xmj, etc., are as defined in Equation 7, At is the integration time increment, AQe 

is the internal energy generated by the element during the previous time increment, and a, is the 
fraction of AQe distributed to node i. The temperature and internal energy update are similar to 

those described for the triangular elements in subsection 3.4.4. 

3.4.6 Bending Shell Elements 

A 2D axisymmetric bending shell element is shown in Figures 10 and 11. The concepts for this 
element are provided in Reference 20. The approach taken is to consider the bending shell to be 
represented by three or five layered elements that share the same two nodes. This subsection 
provides the algorithm for the three layer shell, and the five layer algorithm is similar. 

Bending moments about the two end nodes are induced by allowing the in-plane stresses in the 
outer layers to be different from one another. This is accomplished by allowing the in-plane 
strain rates in the outer layers to be different from one another. These strain rates are dependent 
on the nodal velocities, as well as the nodal rotational rates and the offset from the center layer. 

This algorithm is valid for small volumetric strains and thin shells (where the thickness is much 
less than the length). These assumptions lead to approximately equal lengths (L, = L2 = L3 ~ Lj, 
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thicknesses (TJ = T2 « T3 ~ T / 3), and offsets (H, = H2 = H = T / 3) for each of the three layers. 

Note that T is the total thickness of all three layers and that Ti, T2, and T3 are the thicknesses of 

the individual layers. 

The shell element at the top of Figure 10 is in a general orientation at an angle § from the x axis. 

The algorithm is performed in the x' - z' coordinate system as shown in the lower portions of 

Figure 10. 

The masses at nodes i and j are 

M-cc^X, (1) 

Mj=ajPoV0 (2) 

where p0 in the initial density of the element and V0 is the initial volume of the composite 

element (all three layers). The fractions of the initial mass that are assigned to nodes i and j are 

ai=(2xj+xj)/3(xi+xj) (3) 

a^LO-oCj (4) 

The initial volume is 

V0=2TCXA0=2TCXL0T0 (5) 

where x is the average initial x coordinate of nodes i and j, Ao is the initial area, L0 is the initial 

length, and T0 is the initial total thickness. 

The mass moment of rotational inertia is required, and it is expressed as 

ry=Mi(L2+T2)/24 (6) 

Note that the current (not initial) values of the length and thickness (L and T) are used, and this 
requires Iy to be updated every cycle. 
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Figure 10. Description of the 2D Bending Shell Element 
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The offset of the center of layer 2 (above the center of layer 1), as well as the offset of layer 3 

below layer 1, is expressed as 

H = V0/6rcxL (7) 

where V0 is the initial volume of the composite element, x is the average x coordinate of the 

nodes, and L is the current length of the element (distance between nodes). This is a good 
approximation if the volumetric strains are small and the offsets are small (Ax'2, Ax-2, Ax'3, 

Ax-3 in Figure lo). H is also the thickness of each of the layers. 

The rigid body rate of rotation (clockwise positive) of the composite element is 

<j) = (z;-z;)/L (8) 

where the in-plane (x- and Xj) and normal (z' and z-J velocity components of the center layer 

are 

x[ = Z; sin <(> + X; cos <|) (9) 

Xj =zjsin(|) + xjcos(|) (*0) 

z^ZjCos^-XjSincj) (H) 

Zj =zjcos(|)-xjsin(|) 02) 

The nodal velocities at nodes i and j are x;, z;, Xj, and zi. 

The in-plane velocities of the top and bottom layers can now be determined. 

x;2=x[ + H(ei+(j)) (13> 

x;3 = x;-H(ei+(i)) (14) 

x^x^ + H^-Kt)) (15) 
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x;3 = x;-H(ej+<i>) (16) 

where the in-plane (x') velocities at node i are x[, x'2, and x'i3, the rotational velocity of node i 
is 0j, and the rigid body rotational velocity of the element is <j). For nomenclature consistency, 
the nodal x velocities will be designated üf,ü[2, and u[3, and the z velocities will be designated 
\', v'i2, and v[3. The velocities at node j have similar notations. 

The normal velocities of the three layers are equal at node i (v[ = v'2 = v'3) and at node j 

(v;=v;2=v;3). 

The in-plane strain rates in the x' direction are 

e^=(ü;-ü;)/L 

^=(ü;2-ü;2)/L 

ex3=(ü;3-ü;3)/L 

(17) 

(18) 

(19) 

The hoop strain rates are 

eei = u, / x (20) 

e92 = ü2 / x (21) 

Ee3 = U3 / X (22) 

where ii{, ü2, ü3 are the average x velocities of the two ends of the three shell layers, and x is 

the average x coordinate of the composite element. 

The shear strain rates for all three layers are identical 

ifdV    , \    lfv'-vf    es+6; 
Yxz,"2Ux,+eyJ    2 

J L (23) 
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Jxz3        Ixzl 

where vf = z' and v- = z • are from Equations 11 and 12. 

After the in-plane strain rate, e'x, the hoop strain rate ee, and the shear strain rate, y'^, have 

been determined, the through-thickness strain rate, ez, must be determined. The plane stress 

condition of the shell requires the through-thickness stress to be Gz = 0. Therefore, it is 

necessary to iterate to find the strain rate that produces the correct stress (G'Z = Oj. 

The iteration algorithm is shown in Figure 12. The initial through-thickness strain rate and stress 

[ez(l) and az(l)] come from assuming incompressible flow during the previous cycle. The two 

in-plane normal strain rates (e^ and ee) are obtained in the standard manner, and then the 

through-thickness strain rate is set to 

which results in incompressible flow for the cycle (e^ + ez + ee = Oj. 

From the current strain rates, the previous stresses, and the previous volumetric strain, the net 

through-thickness stress is 

G'=S'-P <27) 

where sz is the deviator stress, determined from the current strain rates and the previous stresses. 

The pressure is determined from P = -Kev where K is the bulk modulus and sv is the previous 

volumetric strain. The strain rate and stress for the incompressible condition are represented by 

ez(l) and Gz(l) in Figure 12. 
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Figure 12.    Normal Stress Iteration Algorithm for 2D and 3D Bending Shells, and 
Plane Stress Geometry 

The next step is to determine e'z(2) and o'z(2), as shown in Figure 12. This condition is 

assumed to be that which would result from a compressible elastic strain rate of 

e^(2) = -v(8;+89)/(l-v) (28) 

where v is Poissons ratio, and e^ and ee are identical to those of Equation 26. 

Using the new strain rate it is possible to determine a new normal stress from Equation 27. Both 
the deviator stress and the pressure are different from the incompressible step. The pressure is 
different because the volumetric strain has been modified to: 

ev(2) = ev(l) + [e;(2)-e;(l)]At (29) 

where At is the integration time increment. 
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Now by linear interpolation it is possible to determine iz(3) for o'z = 0. The new computed 
value of o'2(3) will generally be close to a[ = 0, but an additional iteration may be required. 
This is represented by ez(4), and it is the average £z computed from interpolation/extrapolation 

of points 1 and 3, and 2 and 3. 

The resulting stresses are shown on the upper half of Figure 11. These stresses are integrated 

over the appropriate areas to obtain the forces on the lower half of Figure 11. 

For layer 1, the in-plane force, the shear force, and the bending moment are given by 

F;=F,
J=271x110;;, (3°) 

v; = v; = 27txHx^ (31) 

Mf =-V,L/2 (32> 

Mj=V,L/2 (33) 

where x is the average x coordinate of nodes i and j, H is the thickness of the individual element 
layer from Equation 7, and L is the current length. These forces do not include the force due to 
the hoop stress. The in-plane forces, the shear forces, and the bending moments for layers 2 and 
3 are determined in a similar manner. The moment component (M; and M\) is included to keep 

the element in equilibrium. 

The net forces and moments on nodes i and j (from all three layers) are as follows: 

£=FJ=FI+F2+F3 (34) 

Fi =Fj,=(Vl+V2+V3) (35) 

Ms =M! +Mj +M' +F2H-F3H (36) 

Mj = Mj+Mj+Mj+F,H-F3H (37) 
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These are per the sign convention at the top of Figure 11, and in the element (local) coordinate 

system. 

The net forces on node i, in the system coordinate system, are 

Fj = -F,;, cos(j) + F^, sin <|> - TCA(G81 + ae2 + a63) (38) 

F^=-F;,sin<|)-F^cos<|) (39) 

where A is the cross-sectional area of each individual shell layer and aei, ae2, and c93 are the 

hoop stresses for each of the three layers. The net nodal force on node j is determined in a 

similar manner. 

An assessment of the accuracy of the three and five layer shell algorithms is shown in Figure 13. 

The errors are 11 percent for the three layer algorithm and 4 percent for the five layer algorithm. 

The heat conduction algorithm is similar to the ID algorithms, except the cross-sectional area (in 

the x' direction) is 

A = 2TCXH (40) 

where x is the average x coordinate of the nodes and H is the thickness of the individual layer. 

For the heat conduction option all three layers will have equal temperatures because all layers are 

attached to the same nodes. 

3.4.7 Membrane Shell Elements 

The 2D membrane shell elements are a simplified form of the bending shell elements presented 

in subsection 3.4.6 and shown in Figure 10. The membrane shell element has only in-plane 

stresses and is composed of only a single layer. It cannot produce bending or transverse shear 

stresses. Furthermore it is assumed to be incompressible, and this eliminates the need to iterate 

to obtain the through-thickness stress. This algorithm is presented in Reference 21 for plane 

stress geometry. 
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Figure 13. Accuracy Assessment for Bending Shells 

Referring back to Equation 23 of subsection 3.4.6, the through-thickness strain rate for 

incompressible deformation is 

e^-fe + O (1) 

where £x is the in-plane strain rate and ee is the hoop strain rate. 

The deviator stresses (s'x,s'z,se) can then be determined from e'x, i'z, ee, which give the net 

stresses 
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<=<-P (2) 

G'z = s'z-P (3) 

a;=s;-p (4) 

In Equation 3, setting cz = 0 gives P = sz, and this provides an explicit determination of the 

stresses in Equations 2-4. 

3.4.8 Nonreflective Boundary Elements 

Nonreflective boundary elements (References 8 and 9) have been available historically to provide 

nonreflective damping for the modeling of large infinite bodies such as soil or water. They are 

intended primarily to absorb elastic waves, but they are also effective for other applications 

(Reference 10). The 2D nonreflective boundary elements are incorporated as two-node, 

infinitely-thin, massless elements, as shown in Figure 14. 

N 

(0 o 
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Nodej 

Nonreflective 
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Figure 14. Description of the 2D Nonreflective Boundary Element 
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The average velocity normal to the boundary element is 

VM =ü sinG -v" cos 9 0) 'N 

where ü = (üi+üi)/2 is the average velocity in the x direction, v is the average velocity in the 

z direction, and 0 is the angle between the element and the x axis. 

The average velocity parallel to the element (from node i to node j) is 

Vp =ücos6 + Vsin0 (2) 

The total normal and parallel forces are 

FN=-p0csAVN (3) 

Fp=-p0cshearAVP (4) 

where p0 is the initial density of the material, A = 2rcx is the surface area of the element, and VN 

and VP are the velocities. The longitudinal and shear velocities are 

cs=>/(K1+4G/3)/p0 (5) 

shear = VG7?7 (6) 

where K, is the bulk modulus and G is the shear modulus. 

Now the total forces must be aligned with the two principal axes and distributed to the two nodes 

F< = Fx
j = (FN sin 6 + FP cos e) / 2 (7) 

F< = Fz
j = (FN cos6 + FP sin e) / 2 (8) 
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3.5 2D AXISYMMETRIC GEOMETRY WITH SPIN 

The 2D axisymmetric geometry with spin is identical to the 2D axisymmetry geometry described 

previously in subsection 3.4, except that this geometry allows the nodes to experience rotations 

(or spin) about the axis of revolution, as shown in Figure 15. 
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Figure 15. Description of the 2D Axisymmetric Triangular Element with Spin 

For this geometry the concentrated masses at the nodes can be visualized as concentric circular 
rings contained in planes that are perpendicular to the axis of revolution. These rings can move 
up and down along the axial direction, they can expand and contract in the radial direction, and 
they can rotate about the axis of revolution. This additional spinning degree of freedom 
introduces centrifugal forces, and also allows for two additional shear strain rates and shear 
stresses. The algorithm is reported in References 3 and 11. 
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The three normal strain rates (ex,ez,ee) and the shear strain rate in the x-z plane (jj) for a 

triangular element are identical to those described in subsection 3.4. The two addition shear 

strain rates are 

Yx9  — 
dw    w 
dx     x 

(1) 

Y2e = 
dw 
äz~ 

(2) 

where w = Xjfy is the tangential velocity of node i under a rotational rate 6j. The derivatives 

—and—   are obtained in the same manner as the other derivatives were obtained in 
dx       dz ) 

subsection 3.4. In Equation 1, w" is the average tangential velocity of the three nodes and x is 

the average x coordinate. 

The shear strain rates in Equations 1 and 2 lead to two new shear stresses (xxeandTze), that are 

obtained in the same manner as described in subsection 3.4. The resulting tangential force is 

F;=-7tx 
^ 

x. 
b^e+c.X i fcz8 

vAiy 

(3) 

where b; = Zj - zm and c; = xm - Xj, as defined previously. The factor 

equilibrium in the 0 direction. 

^ 

VXi>' 

is required to maintain 

The equations of motion are modified and expanded for this geometry. The radial acceleration 
(given previously in subsection 3.4.1) is expanded to include centrifugal force due to spin. 

x^F'/Mi+xKe'-)2 (4) 

where Fx' and M; are the force and mass described in subsection 3.4.1, x\ is the radial 

coordinate at time = t and 6'" is the rotation velocity before it is updated at time = t. 
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The updated radial velocity is 

xr=(*r+*!ät)(i-cDÄt/x;) (5) 

where xj~ is the constant velocity for the previous time increment and At is the average of the 

two integration time increments about time = t. The expression in the second set of parentheses 

can be used to damp out the radial velocities to give steady-state solutions for spinning bodies. If 

the constant, CD, is set equal to twice the sound velocity of the material, the system will be 

approximately critically damped and the steady-state solution will be rapidly attained. 

For the rotational equations of motion it is necessary to consider the angular momentum, H, of 
each concentrated mass. This gives 

Hr=Hr+x|FJÄT (6) 

By substituting Hf = 0; xf M; into Equation (6), it is possible to determine the updated rotation 

velocity. 

er"er^l+ö£w. <7> 

It should be noted that even if the net circumferential force, Fe' is equal to zero, it is possible for 

the spin to change if the radius changes between times t and t+At. It is therefore necessary to 
obtain the new radial position at t+At before obtaining the new rotation velocity at t+At. 

3.6 2D PLANE STRAIN GEOMETRY 

The 2D plane strain geometry is a simplified form of the 2D axisymmetric geometry. The 
primary difference is that the plane strain geometry is for a unit thickness and has no hoop strains 
or strain rates. 

Referring back to subsection 3.4.4 and Figure 4 for 2D axisymmetric triangular elements, some 
of the revised equations are as follows: 
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The mass at node i is 

M-p^/3 (1) 

where p0 is the initial density of the material and V0 is the initial volume of the element. The 

initial volume is 

V0=A0Ay (2) 

where Ao is the initial area and Ay = 1.0 is the unchanging unit thickness. 

The strain rates and rotational rate for ex, ez, yM, and ©„ are identical to those of Equations 

11,12,14, and 15 of subsection 3.4.4. The hoop strain rate (ee) in Equation 13 of subsection 

3.4.4 is replaced by the through-thickness strain rate, which is 

Ey-° (3) 

After the stresses have been determined, the forces in node i are 

F>-(biall+ciT11)/2 (4) 

Fi=-(ci°z + tvO/2 (5) 

where b; = Zj - zm, a = xm - xj; and ox, az, and Txz are the two normal stresses and shear stress. 

3.7 2D PLANE STRESS GEOMETRY 

The 2D plane stress geometry is similar to the 2D plane strain geometry. The difference is that 
for plane strain geometry all of the strain is in the x-z plane and there is no strain normal to the 
plane (e = ey = 01. For plane stress geometry, all the stress is in the x-z plane and there is no 
stress normal to the plane [cy =0). The initial plane stress geometry has an initial thickness of 
Ay0 = 1.0, but the thickness can change as the grid is deformed. The original algorithm was for 
incompressible flow (Reference 21), but the current algorithm includes compressibility. 
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The plane stress algorithm is identical to the plane strain algorithm, except for the determination 
of the through-thickness strain rate, and the determination of the forces. Because the through- 
thickness stress must be ay = 0 it is necessary to iterate ey to determine this stress. This is 
accomplished by using the iteration algorithm described in subsection 3.4.6 and shown in 
Figure 12. For bending shells the known strain rates are ex and ee, and the through-thickness 

strain rate (to be determined) is z'z. For plane stress geometry, the known strain rates are ex and 
ez, and the through-thickness strain rate (to be determined) is ey. Other than the change in 
nomenclature, the algorithms for the two cases are identical. 

The forces are slightly modified from those of the plane strain geometry 

I^-Ayfoc. + cvO^ (1) 

Fi=-Ay(ciax+bitX2)/2 (2) 

where Ay is the current thickness and the other terms are identical to those of the plane strain 
geometry given in Equations 4 and 5 of subsection 3.6. The current thickness is 

Ay = V/A = V0(l + ev)/A (3) 

where V is the current volume, A is the current area, V0 is the initial volume, and ev is the current 
volumetric strain. 

3.8 3D GEOMETRY 

A description of 3D geometry is shown in Figure 16. This figure shows a tetrahedral element, 
but brick elements, bar elements, bending shell elements, membrane shell elements, and 
nonreflective boundary elements are also available. The early developments of this work are 
reported in References 2,4,14, and 22-24. 
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Figure 16. Description of the 3D Tetrahedral Element 

3.8.1  Equations of Motion 

The accelerations, velocities, and positions are determined as follows: 

x!=E|/M: 

y|=F;/Mi 

x|+=x;-+x;Ät 

y-=yr+y|At 

zJ+=z|-+z|At 

r«"   =X!+X'+At 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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yr=y!+yrAt (8) 

z,t+At =z*+z;+At (9) 

Equations 1-3 provide the x, y, and z accelerations at time = t.  Fx', Fy', and Fz' are the net x, y, 

and z direction forces on node i. These forces are contributed to by all of the elements that 

contain node i, and are obtained from the element computations in the previous cycle of 
integration.  M; is the total mass at node i, and it contains a fraction of the mass of all elements 

that contain node i. Although Figure 16 shows only a tetrahedral element, a node can have 

various element types attached to it. This means it is possible for an individual node to have 
masses and forces from different element types. The specific algorithms for masses and forces 
are provided in subsections 3.8.4-3.8.9. 

The updated velocities in Equations 4-6 are constant for the interval between time = t and time = 
t+At. The constant velocities for the previous time increment are x'~, y ■", and zj", and At is 

the average of the two integration time increments about time = t. 

The integration time increment is limited to 

At = Ct[h/(VgT + Vg2+c^)] (10) 

where g2 = CQQ/P, h is a characteristic length (described later for each element type), and cs is 
the sound velocity of the material (References 2 and 5). Q is the artificial viscosity, and CQ is a 
constant for the artificial viscosity. These are described in Section 6. The Courant sound speed 
fraction, Ct, must be less than unity (Ct < 1.0) to ensure numerical stability. Ct = 0.9 is a typical 
value. 

For 3D bending shell elements there are also rotational degrees of freedom on each node. The 
rotational velocities of node i are updated in the same general manner as the translational 
velocities in Equations 1-6, except that they are coupled, and therefore more complex 
(Reference 25). The system of equations to be solved is as follows: 
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yx 

-, 

xy I» ex 

hy lyz Öy 
>= 

h IzzJ kJ 

MX+(iw -I.&Ö.+M. -i«e>«+Iyz(e^2 _e2
y) 

My+(iB -iJeA+(i«A -ixAK+Ixz(ö2x -ö2
Z) 

MZ+(i„ -iw)eA ^Jy-^h^M-^). 
(ii) 

The rotational accelerations (öx, 9y, 8Z), the moments of inertia (Ixx ••• U and the net moments 

(MX, M , Mz) are acting on node i at time = t. The rotational velocities (6X, 6y, 9Z) are for the 

time increment prior to time = t. 

The updated accelerations are determined from Equation 11 and are designated 0X, 6y, 0Z. The 

updated velocities for the next time increment are 

ex
+ = ex-+exAt 

ey
+ = e'y-+eyAt 

e«+=er+etAt 

(12) 

(13) 

(14) 

The rotational displacements (ex, 6y, 6Z) are not required. 

3.8.2 Sliding Interfaces 

The 3D sliding interface algorithm is similar to the 2D sliding algorithm described in subsection 
3.4.2, but it does not have the order independent algorithm for automatic sliding. Although an 
automatic sliding algorithm is available in 3D, the searching time can be excessive and it is 
usually more computationally efficient for the user to specify the master and slave regions. 
Although the 3D sliding algorithm has been improved in recent years, the early algorithms are 

reported in References 14 and 22-24. 

The interface determination algorithm and the search algorithm will not be described herein, 
except to note that they are analogous to the 2D algorithms described in subsection 3.4.2. 

Figure 17 shows a slave node in contact with a triangular master surface defined by nodes i, j, 
and k. The normal velocities of the slave node and the three master nodes are adjusted first. 
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Three of the four conditions required to determine these new velocities involve conservation of 

linear momentum normal to the master plane and conservation of angular momenta about the two 

axes in the plane. These conditions define the fractions (Rj, Rj, Rk) of linear momenta transferred 

from the slave node to the three master nodes. The resulting momenta-conserving relationships 

between the instantaneous normal velocity changes of the slave node (AVS
N
) and the master 

nodes (AVS
N
, AVf, AVk

N) have the form 

AV;
N=-R;M„AVC

N/M; (1) 

where Ms and M; represent the mass of the slave node and the master node i. 

Nodek 
Vector Normal to 
Master Plane 

Nodei 
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Figure 17. Description of the 3D Sliding Interface Contact Algorithm 
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The final condition involves equating the normal velocities of the slave node and the master 
surface at the slave node position. For this case, it is necessary to determine the velocity of the 
master surface at the slave node location. Here the velocity is determined within a two- 
dimensional triangle. The resulting master surface velocity in the x direction, at the slave node 

position, is 

üm=qiüi+qjüj+qkük (2) 

The other velocity components (vm and wm) have similar form to Equation 2 and the geometry 

constants (qi, qj, qk), have the form 

q* =^_[xjyk-xkyj+(yj-yk)xs + (xk-xj)ys] (3) 

where Axy is the projected cross-sectional area of the triangular master surface on the x-y plane, 
and the other terms represent the coordinates of the master and slave nodes. The projections 
could also be on the x-z or y-z plane depending on the orientation of the master plane. 

By equating the normal velocities and substituting the relationships of Equation 1, the normal 

velocity change imposed on the slave node is defined as 

VN-VN 

AVN = —  (4) s      l + qiRiM,/Mi+qjRjMi/Mj+qkRkMI/Mk 

where the slave node velocity normal to the master surface is 

VS
N =Aus + Bvs + Cws (5) 

where A, B, C are direction cosines of the vector normal to the master surface. The normal 
velocity of the master surface, V*, has the same form as Equation 5 and the velocity changes to 

the three master nodes can be defined from Equation 1. The specific velocity changes in the x, y, 
and z directions are obtained by multiplying AV by the appropriate direction cosines. 
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Frictional effects are constrained to the plane of the master surface and the direction opposes the 

relative motion. The net magnitude of the frictional velocity change to the slave node is 

proportional to the normal velocity change to the slave node, or 

AVP = f.AV.N (6) 

where fs is the coefficient of friction. 

The velocity components in the plane of the master surface are obtained by subtracting the 

velocity components normal to the master plane, from the total velocity components. These 

velocity components for the slave node are expressed as 

üp=ü -AVN (7) 

v? = v - BVN (8) 

wp=w -CV,N (9) 

The in-plane velocities of the master surface (up, vp, wp) are obtained in a similar manner. 

The relative velocity components (up,, vp,, wp,) are then obtained in the form of 

• p      • p     • p u , = u   —u rel m s 
(10) 

Finally, the friction induced velocity changes (Aü
P
 ,AV

P
 ,AW

P
 ) to the slave node have the form 

Aup = 
u rel 

#C)2+(vL)2+(wL)2] 
AVF 

(11) 

The momentum change of the master nodes, due to the frictional force, gives in-plane velocity 

changes to master node i(Aüf, Avf, Awf) of the form 

Auf =-RiMsAus
p/Mi (12) 
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For the standard (not automatic) sliding algorithm the slave nodes cannot also be master nodes 

(for a given interface). Here the velocity changes are collected after all slave nodes have been 

processed and there is no order dependence. 

For the automatic sliding algorithm the slave and master node velocities are updated as they are 

processed, and this results in some order dependence. 

Future plans are to incorporate a new 3D algorithm that is analogous to the current 2D algorithm. 

3.8.3 Erosion 

The three-dimensional algorithm that follows should be applied only to problems in which 

erosion is the primary mode of penetration. It is reported in Reference 16. It is only available for 

tetrahedral elements. For many problems, the master surface is initially on the top (or any other 

side) of a plate and it cannot involve other sides (except as special cases) during erosion. The 

precise restriction for the general algorithm to follow is that no element with a free surface can be 

eroded unless that free surface was initially designated as a master surface. The two exceptions 

are for a free surface on the y = 0 plane of symmetry, and for a free surface on the bottom of the 

plate. 

Figure 18 shows a partially eroded master surface defined as a set of adjacent triangles. The 

initial master surface included the entire top surface of the plate. The slave nodes are essentially 

above the master surface and must always view the associated master triangles so that the nodes 

of the triangles (Ml, M2, M3) are in a counterclockwise order. The slave nodes can be randomly 

ordered and are not allowed to penetrate through the master surface. The master surface is 

allowed to erode by totally failing tetrahedral elements which have one, two, three or four sides 

on the master surface. Totally failed elements do not develop stresses or pressures; they 

essentially disappear except that mass is retained at the nodes. 
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Figure 18. Description of the 3D Erosion Algorithm 

Before the computations begin, the preprocessor must store the groups of three nodes defining 

the individual triangular master planes. It must also permanently mark each node contained on 

the master surface, and it must count and store the number of elements attached to each node. If 

three or four nodes of an element are marked, then the element is on the master surface and is 

eligible for failure if it exceeds the specified erosion strain. When an element is totally failed, the 

element count for each of the four nodes is decremented, so that the count reflects the number of 

unfailed elements attached to the node. When the count reaches zero, the node is made a slave 

node because it is no longer associated with the master surface. This new slave node (which 

continues to have mass, momentum, and kinetic energy) can then interact with the master surface 

but cannot pass through it. 

The six elements in Figure 18 (elements, A, B, C, D, E, F) have three or four nodes on the master 

surface and have one, two, three or four sides on the master surface. The following describes the 

changes necessary to redefine the master surface and the slave nodes: 

. Element A has one side (M1-M2-M3) on the master surface. All four nodes (Ml, M2, 

M3, and M4) are marked. Because only one side (M1-M2-M3) is contained in the list 

of master triangles, it is known that the other three sides are not on the master surface. 

If the equivalent plastic strain or volumetric strain of element A exceeds the erosion 

strain, the element is totally failed. The updated master surface has one triangular side 

(M1-M2-M3) removed and three triangular sides of adjacent elements (M1-M2-M4, 
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M1-M4-M3, M2-M3-M4) added. The nodes of the new sides must be given in the 

proper order so that the slave nodes see a counterclockwise ordering. The element 

counts of nodes Ml, M2, M3, M4 are decremented, but all four nodes remain on the 

master surface because none of the element counts goes to zero. 

. Element B has two sides (M5-M6-M7, M6-M8-M7) on the master surface. The four 

nodes M5, M6, M7, and M8 are marked. If the equivalent plastic strain or volumetric 

strain of element B exceeds the erosion strain, the element is totally failed. The 

previous master surface has two sides (M5-M6-M7, M6-M8-M7) removed and two 

other surfaces (M5-M6-M8, M5-M8-M7) added. The element counts of nodes M5, 

M6, M7 and M8 are decremented, but none of the counts goes to zero. 

. Element C has three sides (M9-M10-M11, M9-M11-M12, M9-M12-M10) on the 

master surface. The four nodes M9, MIO, Ml 1, and M12 are marked. If the equivalent 

plastic strain or volumetric strain of element C exceeds the erosion strain, the element is 

totally failed. The previous master surface has three sides (M9-M10-M11, M9-M11- 

M12, M9M12-M10) removed and one other surface (MIO-MI 1-M12) added. The 

element counts of nodes M9, MIO, Mil, and M12 are decremented, but none of the 

counts goes to zero. 

. Element D has four sides (M13-M14-M15, M13-M16-M14, M14-M16-M15, M13- 

M15-M16) on the master surface. The four nodes M13, M14, M15, and M16 are 

marked. If the equivalent plastic strain or volumetric strain of element D exceeds the 

erosion strain, the element is totally failed. The previous master surface has all four 

sides removed and none added. The element count of nodes M13, M14, M15, and M16 

are decremented. The element counts of nodes M13, M15, and M16 do not go to zero 

and therefore remain on the master surface. The element count on node M14 does go to 

zero, however, so it is designated to be a slave node. 

. Element E is a special case because it has one side (Ml8, Ml9, M20) on a plane of 

symmetry at y = 0, which was not initially designated as a master surface. The general 

algorithm would indicate one side (M17-M18-M19) to be deleted and three sides to be 

added (M17-M18-M20, M17-M20, M19, M18-M19-M20). The side on the plane of 

symmetry at y = 0 (M18-M19-M20) should not be added, however. This side is readily 

identified and deleted by noting that y = 0 for nodes Ml8, Ml9, and M20. For this case 

the element counts of nodes Ml 7, Ml 8, Ml 9, and M20 are again decremented. Node 
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M20 was not previously marked and must therefore be marked to identify it as a part of 

the updated master surface. It should be noted that the general algorithm would handle 

this special case if the triangular element sides on the plane of symmetry would initially 

be designated as part of the master surface. Because this would significantly increase 

the size of the master surface (and the associated searching time), it is instead treated as 

a special case. 

. Element F is another special case because it is eroded through a free surface (bottom of 

the plate) which was not initially designated as a master surface. Here the general 

algorithm would remove two sides (M21-M22-M23, M21-M23-M24) and add two new 

sides (M21-M22-M24, M22-M23-M24). The side on the bottom of the plate (M22- 

M23-M24) should not be added, however. This side can be readily identified if the 

nodal numbering system proceeds downward by layers, thus placing the highest node 

numbers on the bottom surface of the plate. Under these conditions, node numbers 

M22, M23, and M24 would all be greater than (or equal to) the lowest node number on 

the bottom of the plate, and that triangle would therefore not be added to the list of 

master triangles. Other approaches could be used for different nodal numbering 

systems. Again it should be noted that the general algorithm would handle this special 

case if the element sides on the bottom of the plate would initially be designated as part 

of the master surface. 

To ensure that there is no cross-over of material between the two surfaces (such as a projectile 

and a target), a two-step approach (two separate sliding interfaces) is used with the standard (not 

automatic) sliding algorithm. For the first interface, all of the projectile nodes and the eroded 

target nodes are slave to the master surface in the target. For the second interface, all of the 

nodes in the center of the target, and the eroded projectile nodes, are slave to the master surface 

on the projectile. The eroded nodes are therefore restrained from passing through either the 

projectile or the target. The automatic sliding algorithm handles both surfaces automatically. 

3.8.4 Tetrahedral Elements 

A typical tetrahedral element is shown in Figure 16. It is geometrically defined by nodes i, j, m, 

and p. The formulation is based on nodes i, j, and m being positioned in a counterclockwise 

manner when viewed from node p. The coordinates of node i are designated Xj, yi, Zj, and the 
corresponding velocities are designated u^v^Wj (which are identical to x^y^Zj used 

previously). This algorithm is reported in References 2,4,14, and 23. 
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The algorithm that follows is for a single tetrahedral element. The arrangement of the elements, 

however, can have a significant effect on the computed response (References 16 and 18). There 

are also some mixed (average volumetric strain, or average pressure) algorithms that provide 

improved accuracy for various arrangements of elements (Reference 16). 

The mass at node i, for an individual tetrahedral element, is simply 

Mi=p0V0/4 (1) 

where p0 is the initial density of the material and V0 is the initial volume of the element. The 

general expression for the volume is 

V = - 

1 X; yf 

1 Xj Yj 
1 xm ym 

1 x„ v„ 

(2) 

When the elements are incorporated into an assemblage of elements, then the total mass at node i 

contains individual element masses from all elements that contain that node. 

Mä=2Mi (3) 

The volumetric strain and strain rate are obtained in the same manner as used for the ID and 2D 

elements. 

E =V/V-1 (4) 

ev =(<*-<)/At (5) 

In Equation 4, V and V0 are the current and initial element volumes; and in Equation 5, e^+At and 

e[ are the volumetric strains at time t + At and time = t. The volumetric strains and strain rates 

are based on the initial configuration, as opposed to the shear and deviator strain rates which are 

based on the current configuration. 
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The strain rates are obtained from the current geometry of the element and the velocities of the 

nodes. If it is assumed the velocities vary linearly between the nodes, the x, y, and z velocities 

(u,v,w) within each element can be expressed as 

ü = a,+a2x+a3y+a4z 

v = a5 + a6x+a7y+0CgZ 

w = a9+a10x+oc11y+a12z 

(6) 

(7) 

(8) 

where ai ... an are geometry and velocity-dependent constants for each element. It is possible 

to solve for ai ... ct4 by substituting the x velocities and coordinates of the four nodes into 

Equation 6. This gives four equations and four unknowns so that the constants (ai ... 04) can be 

evaluated. 

Equation 6 can then be expressed in terms of element geometry and nodal velocities. 

xx = —[{a,+bix+ciy+diz)üi+(ai + bix+ciy+diz)üi 

+ (am +bmx+cmy+dmz)üm +(ap +bpx+cpy+dpz)üp] 
(9) 

where V is the volume from Equation 2 and the geometry constants have the form 

X
J yj 

Z
J 

ai = xm ym Zm 

XP yP 
ZP 

1 yj Zi 

b, = — 1 ym 
Zm 

1 yP 
ZP 

1 X
J ZJ 

ci = 1 Xm Zm 

1 XP ZP 

(10) 

(11) 

(12) 
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d;=- 

1 XJ yj 
1 xm ym 

1 XP yP 

(13) 

The remaining geometry-dependent constants (aJ5 bj, Cj, dj, etc.) are obtained by a systematic 

interchange of signs and subscripts. The y and z velocities in Equations 7 and 8 are obtained in a 

similar manner and are identical to Equation 6 except the x velocities at the four nodes are 

replaced by the y and z velocities. 

Another geometry constant is the altitude of the tetrahedral element. The altitude from node i to 

the plane defined by the other three nodes of the tetrahedron is 

h; = 
6V 

'    Vbl+cf+df 
(14) 

The other altitudes (hj, hm, hp) are obtained by appropriately changing the subscripts of the 

geometry-dependent constants. The minimum of the four altitudes is designated as h, and it is 

used for the characteristic length in Equation 10 of subsection 3.8.1, for the integration time 

increment. 

After the velocities are obtained, it is possible to determine the normal strain rates (ex, ey, ez j, 

the shear strain rates (yxy, y^, yj and the spin rates (cox,(Dy,(Oz) of the element. 

K = 3x"= 6v(bjÜi +bjÜj +bmÜm +bpÜp) 
(15) 

dv      1 ov       1  /   . . .  \ 

'y     9y    6V 
(16) 

9w      1 
= 37 = "^(d^ + dj*j + dm*m + dpwp) dz     6V 

(17) 

9ü   9v 
Yxy = ;ty + äx" 

(18) 
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ixz 

3ü 
~dz 

dw 

i yz 

3v 
~dz 

dw 

»x ■K- 
dw    dv 

dy    dz, 

(19) 

(20) 

(21) 

t0y"2Uz~3x, 
(22) 

lfdv    du 
(23) 

It can be seen that Equations 15-23 are derivatives of linear functions and therefore give constant 

values within the element. 

The equivalent strain rate (e) and deviator strain rates (ex, ey, ez) are determined in an identical 

manner as shown previously for ID and 2D geometry. 

H 2        3 
(ex-ey) +(ex-ez)

2+(ey-ez) +-(yxy + y2„+y2
yz) (24) 

The constitutive models also require deviator strain rates, which are expressed as 

e   = F   — £ x x       ^ave 

e   = p    £ 
y y ave 

(25) 

(26) 

ez — £z      £ave (27) 

where eave = (£x+£y+£z)/3. Note that the sum of the deviator strain rates is ex + ey + ez = 0. 
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The stresses in the elements are determined from the strains, strain rates, temperatures, pressures, 
internal energies, and material constants. This is identical to the ID and 2D algorithms for solid 
elements, except that all three shear stresses are present. The three normal stresses are generally 

expressed as 

ax=sx-(P + Q) (28) 

ay=Sy-(P + Q) (29) 

CZ=SZ-(P + Q) (30) 

where sx, xy, and sz are the normal deviator stresses, P is the hydrostatic pressure and Q is the 

artificial viscosity. These are described in detail in Section 6. 

Trial values of the deviator stresses and shear stresses at time = t + At are 

sx
+A,=sx+2GexAt + Asx (31) 

sy
+At =sy+2GeyAt + Asy (32) 

sz
+At=sz + 2GezAt + Asz (33) 

<r=<y+GTxyAt + Axxy (34) 

<A,=<+GtxzAt + Axxz (35) 

'C^z+Gty.At + A^ (36> 

In Equation 31 the first term (sx) is the normal stress at the previous time and the second term 

(2GexAt) is the incremental stress due to the incremental strain (exAt) during that time 

increment, where G is the elastic shear modulus and At is the integration time increment. The 
third term (Asx) is due to shear stresses from the previous time increment, which now act as 

normal stresses due to the new orientation of the element caused by an incremental rotation 

(co At, co zAt) during the time increment. The remaining normal stresses and shear stresses have 

a similar form. 
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The correction terms for element rotations are 

Asx=2(coyT^-coz<y)At (37) 

Asy=2(a>Xy-o>xT;z)
At (38) 

Asz = 2(coxTyz-aycxz)At (39) 

Axxy =[a)z(<-sy) + o)yTyz-a)xTlz]At (40) 

Ax„ = [coy (sz -sx) + coxxxy -CDzTyz] At (41) 

Axyz = [tox (sy -s;) + (flX -a)y<y]At (42) 

Equations 31-36 assume an elastic response of the material. If the strength of the material is 
exceeded, then plastic flow (or fracture) will occur. The Von Mises yield criterion is used to 
determine an equivalent stress, a, that can be compared to the uniaxial tensile (or compressive) 
strength of the material. The general form of the equivalent stress is 

<J = -j|[(ax -Gy)2 +(ax -az)
2 +(ay -az)

2 +6(xxy
2 + x„2 +xyz

2)_ 

Using deviator stresses (instead of total stresses), Equation 43 can be rewritten as 

(43) 

°=vf(s*+8'+s')+3(<+<+<) (44) 

If a is not greater than the equivalent tensile strength of the material, a, the final deviator and 
shear stresses are as given in Equations 31-36. If ö is greater than a, then the stresses in 
Equations 31-36 are multiplied by the factor (a / a). When the reduced deviator and shear 

stresses are put into Equation 44, the result is always c = a. This is known as the radial return 

algorithm. The various material strength models for a are presented in Section 6. 
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During plastic flow, it is sometimes necessary to determine the equivalent plastic strain for strain 

hardening effects on the strength of the material or to determine if the material has failed. The 
first step in this process is to adjust the total strain rates to plastic strain rates by subtracting out 

the elastic portion of the strain rates. 

^=ex-(sr-<-Asx)/2GAt (45) 

e?=ey-(s;+At-s;-Asy)/2GAt (46) 

ez
p=ez-(sr-4-Asz)/2GAt 

Y^=Yxy-(C-<y-A^)/GAt 

YL=Yxz-feAt-<-ATxz)/GAt 

Y?z=Yyz-(Ct-'cyZ-
Äv)/GAt 

(47) 

(48) 

(49) 

(50) 

The general expression for the equivalent plastic strain rate is 

£'=V9 (eP_eP)2
+(ex-e02

+(ep-eO+|(YP
y
2+YL2+n2) (51) 

The equivalent plastic strain, e , is then obtained by integrating ep with respect to time. 

ep
+A,=ep+epAt (52) 

After the element stresses are determined, the concentrated nodal forces can be obtained. These 
forces are statically equivalent to the distributed stresses within the element. They are dependent 
on the displaced element geometry and the magnitude of the stresses. The forces in the x, y and z 

directions at node i of an element are given by 

Fx=_fi(b^+c^+diT") 
(53) 
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n=-^y+h^y+d^) (54) 

F^-^d^+C^+b^) (55) 

The geometry-dependent constants (bj, Cj, dj) are again identical to those used for calculation of 

the strain rates and altitudes. The forces at the other nodes are readily obtained by changing 

subscripts. 

Note that Fx + Fx
j + Fx

m + Fx
p = 0 for each element, and this ensures equilibrium in the system. A 

similar equilibrium exists in the y and z directions. This results in conservation of momentum if 

there are no external forces or restraints. The final net forces on node i are 

K=J.K (56) 

F,'=2>; (57) 

F^XF, (58) 

It is also possible to add external forces through applied pressures. 

The heat conduction algorithm can be obtained straightforwardly from the ID heat conduction 
algorithm (subsection 3.1.3) and the strain rate equations in this subsection. The 2D algorithm is 
reported in Reference 7. Substituting temperatures for velocities in Equation 9 gives 

T=6v[(a'+biX+C,y + diZ'Ti+(aj + bjX+Cjy+djZ)Tj 

+ (am+bmx + cmy + dmz)Tm+(ap + bpx + cpy+dpz)Tp] 

Other than the nodal temperatures (Tj, Tj, Tm, Tp) all of the other terms are as described for 

Equation 9. 

The instantaneous heat flows in the x, y, z directions can then be obtained from 

B t19616.doc 85 



8T 
qx=-k—= -k(biTi+bjTj+bmTm+bpTp)/6V (60) 

qy=-k^ = -k(ciTi+cjTj+cmTm+cpTp)/6V (61) 

qz=-k—= -k(diTi+djTj + dmTm+dpTp)/6V (62) 

The incremental increase in thermal energy at the nodes can be obtained by integrating the heat 

flow with respect to area and time. 

AQ; =^(qxbs +qyc, +qzdi)At +AQe IA (63) 

Note that the internal energy generated in the element during the previous time increment, AQe, is 
distributed equally (AQe/4) to all four nodes. 

The remaining equations are similar to those in ID and 2D. The updated temperatures of the 
nodes have the form 

1i,+A,=t+lAQi/Micpi (64) 

where Tj,+At and T/ are the temperatures of the nodes at times t+At and t, ÜAQj is the sum of the 
incremental heat contributed by all elements that contain node i, M; is the total mass of node i, 

and cPi is the specific heat of node i. 

The internal energy in an element can be used to compute element pressures. To account for the 
flow of internal energy through the grid, the element temperature is assumed to be the average of 

the nodal temperatures. 

T = (Ti+Tj + Tm+Tp)/4 (65) 

The internal energy (per initial volume) is given by 

ES = (T-T0)p0cp (66) 
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where T0 is the initial temperature (where Es = 0), p0 is the initial density, and cp is the specific 

heat of the element material. 

The integration time increment must also be bounded to ensure that the computations remain 

stable for heat conduction (References 6 and 7). The heat conduction portion requires 

At<pcph
2

m,„/4k (67) 

where hmjn is the minimum altitude of the element (as provided in Equation 14) and the other 

terms recently have been defined. This is analogous to the time increment restriction for wave 

propagation in Equation 10 of subsection 3.8.1. Unless hmin is very small, the wave propagation 

restriction is much more severe than the heat conduction restriction. 

3.8.5 Brick Elements 

The 3D brick element is shown in Figure 19. This element was developed by Flanagan and 

Belytschko (Reference 26) and the nodal numbering in Figure 19 is as used in their paper. The 

EPIC code uses a different nodal numbering arrangement for the user, and the transformation is 

made within the code. In Figure 19, nodes 5, 6, 7, and 8 are clockwise when viewed from node 
1. The coordinates of node 1 are xi, yi, z\, and the corresponding velocities are u,, v,, w, 

(which are identical to x{, y,, z,). 

The mass at node i, for an individual brick element, is simply 

Mi=p0V0/8 (1) 

where p0 is the initial density of the material and V0 is the initial volume of the element. The 

volume is a complex expression that is presented later. 

The strain rates are obtained from the current geometry of the element and the velocities of the 

nodes. Note that the geometry is expressed in a reference domain coordinate system as a unit 

cube, as shown in the upper right portion of Figure 19. The velocity in the x direction is 

ü = t^u, + (|)2ü2 + <t>3ü3 + <|)4ü4 + (|>5ü5 + ())6ü6 + <j>7ü7 + (|)gü8 (2) 
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Figure 19. Description of the 3D Brick Element 
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where the shape functions are 

♦> =\-\^ + \^-\^\^-\^ + ^ (3a) 

** =\ + \^-\^-\^-\^ + \^-^ (3b) 

♦3 =H$+^+ic+!nC+}ß+!en+W (3c) 

<t>< =i-^+^+ic+jTiC-^-^-M (3d) 

11.1       1 1 

*> =-%—^—^—^2^+2^+2^-^ 
(3e) 

1     1 1       1 
>6 =- + -§--Tl--C + -TlC-^-^ +W V1 

2SS    2 
(3f) 

^ =|+^-^+ic-^+}K-}§n-^ (3g) 

♦•=\-\t-\^-\rt-\^+\^+w (3h) 

where £, %, and t| are the coordinates of the reference domain as shown in Figure 19. The y and z 

velocities (v and w) have the same form as Equation 2. The x nodal velocities (u, ... u8) are 

simply replaced by the y nodal velocities (v,... v8) and the z nodal velocities (v^ ... w8). 

For the physical domain it is necessary to determine the [B] matrix for the geometry constants. 

[B] = 

B„,    B„,    B„    B..    Bv<   Bvfi    Bv7    B. 'xl 'x2       "x3 'x4 x5      "x6       "x7       "xS 

B„,    B„,    B„,    B„,    Bv,    Bvfi    B B„ yl      °y2       Dy3       "y4       "y5      "y6       "y7       "yi 

B„    B„    B„    BTd    B„    B7fi    B 'z\       "z2       "zi       **z4 z6 z7 B z8. 

(4) 
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where 

Bxl=y2[(z6-Z3) + (z5-Z4)] + y3(z2-Z4) + y4[(z3-Z8) + (z2-Z5)] 

+y5[(z8-z6)+(z4-z2)]+y6(z5-z2)+y8(z4-z5) 

Bx2=y3[(z1-z4)+(z6-zl)]+y4(z3-z1)+yl[(zA-z5)+{z3-z6)] 

+ y6[(z5-z7)+(z1-z3)]+y7(z6-z3)+y5(z1-z6) 

Bx3=y4[(z8-z1)+(z7-z2)]+y1(z4-z2)+y2[(z1-z6)+(z2-z7)] 

+ y7[(z6-z8)+(z2-z4)]+yg(z7-z4)+y6(z2-z7) 

Bx4 = yi[(z5 -z2)+(z8 -z3)]+y2(z, -z3)+y3[(z2 -z7)+(z, -z8)] 

+ y8[(z7-z5)+(z3-z,)]+y5(zg-z1)+y7(z3-zg) 

BX5=y8[(z4-z5)+(z1-z6)]+y7(z8-z6)+y6[(z7-z2)+(z8-z1)] 

+ y1[(z2-z4)+(z6-z8)]+y4(z1-z8)+y2(z6-z1) 

BX6 = y5[(zi-z8)+(z2-z7)]+y8(z5-z7)+y7[(z8-z3)+(z5-z2)] 

+ y2[(z3-z1)+(z7-z5)]+y1(z2-z5)+y3(z7-z2) 

Bx7=y6[(z2-z5)+(z3-z8)]+y5(z6-z8)+y8[(z5-z4)+(z6-z3)] 

+ y3[(Z4-Z2)+(Z8-Z6)] + y2(Z3-Z6)+y4(Z8-Z3) 

Bx8=y7[(Z3-Z6) + (Z4-Z5)]+y6(Z7-Z5)+y5[(Z6-Zl) + (z7-Z4)] 

+ y4[(z1-z3)+(z5-z7)]+y3(z4-z7)+y1(z5-z4) 

For Byl... By8 replace y and z with z and x, and for Bzl... Bz8 replace y and z with x and y. 

The volume can now be determined using any of the following three expressions. 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

(5g) 

(5h) 
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V = ^{BX1X, + Bx2x2 + Bx3x3 + Bx4x4 + Bx5x5 + Bx6x6 + Bx7x7 + Bx8x8} (6a) 

V = ^{Byly, + By2y2 + By3y3 + By4y4 + By5y5 + By6y6 + By7y7 + By8y8} (6b) 

V = ^-{BrfZ, + Bz2z2 + Bz3z3 + Bz4z4 + Bz5z5 + Bz6z6 + Bz7z7 + Bz8z8} (6c) 

The final geometric term is the characteristic element length, h, that is used for the artificial 

viscosity and the integration time increment. 

h = .2vU- (7) 
V xyz 

where V is the element volume and 

Bxyz = BxI
2 + Bx2

2 + Bx3
2 + Bx4

2 + Bx5
2 + Bx6

2 + Bx7
2 + Bx8

2 

+ Byl
2 + By2

2 + By3
2 + By4

2 + By5
2 + By6

2 + By7
2 + By8

2 (8) 

+ Bzl
2 + Bz2

2 + Bz3
2 + Bz4

2 + Bz5
2 + Bz6

2 + Bz7
2 + Bz8

2 

The three normal strain rates (ex , £y, ez j are obtained by taking derivatives of the velocity 

fields in the physical domain. 

ex = -^ = ^IBxiu. + Bx2Ü2 + Bx3ü3 + Bx4ü4 + Bx5ü5 + Bx6ü6 + Bx7ü7 + Bxgü8 ]     (9) 

.   _3v 1_ 
ey"3y"l2V 

[Bylv, + By2v2 +By3v3 +By4v4 + By5v5 +By6v6 +By7v7 +By8vg]    (10) 

3 w      1 
äz = ~äz~ = 12VtBzl *' + Bz2^2 + Bz3^3 + Bz4™4 + Bz5™5 + Bz6^6 (11) 

+ Bz7w7+Bz8w8] 
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The x velocity in Equation 9 is expressed as a function of the reference domain coordinates in 

Equation 2. The derivatives of the terms in Equation 2   —    — 

physical domain geometry constants in Equation 9 

dx '" dx 

12V"*12VJ 

8    are replaced by the 

. For the y direction, 

<tyi     d<t>8 B.„      B <ty\     <%t ... ^    are replaced by ——... —— in Equation 10 and for the z direction, -r-1...-r-8- are 
dy      ay 12V     12V oz      oz 

B B 
replaced by —^-. ••TTT^ in Equation 11. 

The three shear strain rates (yxy, Y^, Yyz) and the three rotational spin rates (d)x, cby, cbz) are 

determined in a similar manner. 

du    9v 
Yxy=ä^+äx" 

(12) 

8ü    3w y _ + 
' xz ~* _ dz     dx 

(13) 

3v    9 w 
yz    3z    9y 

(14) 

co  = — x     2 
'3w_3v> 

,dy    9z, 
(15) 

1 
co  = — y     2 

r3u   3w" 
^3z    8x, 

(16) 

», = 2 
lf8v_9ü 

dx   9y, 
(17) 

The stresses are determined with exactly the same procedures used for the tetrahedral elements in 

subsection 3.8.4. 

The x direction forces on each of the eight nodes are as follows: 
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F.=— Iß ,c +B,x   + B.T   1-F"G (18) xl 19 L    xl     x yl    xy zl    xzj xl V      ' 

FX2 =-^[Bx2Gx+By2Txy+Bz2xxz]-F) 
HG 
x2 (19) 

Fx3 = -fV[B*3CT* + V^y + B.JT«] - FX
H3G (20) 

1 
F   =  x4       12 

1 
F   =- — 

"5       12 

VJ.+B^+B^TJ-F«0 (21) 

B^+B^+B^J-F™ (22) 

Fx6 = -^"[Bx6ax + By6nxy + BrfxJ- Fx* HG 
6 (23) 

Fx7 = -^[Bx7ax +By7xxy +Bz7xxz]-FX
H

7
G (24) 

Fxg =-^[Bx8ax +By8txy +Bz8txz]-Fx
H

g
G (25) 

where Bxl... Bzg are the geometry constants, ax is the normal stress in the x direction and Txy 

and xn are shear stresses. The hourglass forces (F"
G
...FX8

G
) are required to resist hourglassing 

deformations and they are presented later. The y-direction forces (Fyl... Fy8 j are obtained by 

replacing cx, Txy, andx^ by xxy, ay, andTyz respectively, and the z-direction forces 

(FZ1...FZ8) are obtained by replacing ax, Txy, andx^ with xn, Tyz, and az, respectively. 

A 3D brick element can experience hourglass deformations in a manner similar to a 2D quad 

element. In 3D, however, it is much more complex. The lower portion of Figure 19 shows four 

hourglass modes in the x direction. The same four modes occur in the y direction and in the z 

direction, for a total of 12 hourglass modes. 

The following four steps are required for the hourglass algorithm: 
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. Compute the hourglass shape vector (y) 

. Compute the hourglass modal velocity W 

. Compute the hourglass resistance stress (Q) 

. Compute the hourglass resistance force (FHG). 

The hourglass shape vector for mode 1 is 

Y12 = l-^[Bx2x + By2y + Bz2z] (26b) 

Y.3 =-l-^[BX3*+By3y + BZ3z] (26c) 

Yl4=-1"!Iv[Bx4*+By4y+Bz4^ (26d) 

Yl5 =-l-J^lB^+By^+BM (26e) 

Yi6 =-l-^Kx + By6y + B26z] (26f) 

y»=^^v^+^y+M (26g) 

Y»=I-J5V[V
+
V

+M (26h) 

where Bxl... Bz8 are the geometry constants and 

x = x1+x2-x3-x4-x5-x6 + x7+x8 (27) 

y = yi+y2_y3_y4-y5-y6 + y7+y8 (28) 
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z = z, + z2 - z3 - z4 - z5 - z6 + z7 + zg (29) 

The shape vectors (y,,... y 18) in Equation 26 are not related to the shear strain rates 

(txy' Yxz» Yyz) m Equations 10-12. The shape vectors for modes 2, 3, and 4 (721.. .728,731 •. .738, 

and 741.. .74s) are obtained in a similar manner. 

The hourglass modal velocities for the four x modes in Figure 19 are 

4xi =^ [YH
U

I +Yi2Ü2 +Y13ü3 +y14ü4 +y15ü5 +y16ü6 +y17ü7 +y18üg] (30) 

<ix2  =^[Y21U
1+Y22Ü2+Y23Ü3+Y24Ü4+Y25Ü5+Y26Ü6+y27Ü7+y28Ü8] (31) 

qx3 =^[Y3IÜ, +y32ü2 +y33ü3 +y34ü4 +y35ü5 +y36ü6 +y37ü7 +y38üg] (32) 

qx4 =^[Y4iü1+y42ü2+y43ü3+y44ü4+y45ü5+y46ü6+y47ü7+y48ü8] (33) 

The y modal velocities (qyl.. .qy4 J are obtained by replacing ü with v, and the z modal 

velocities (qzl...qz4) are obtained by replacing ü with w. 

The resisting stress for the first x mode is 

Qx,=CHpcsqxlVBx/864 (34) 

where CH is an input hourglass viscosity coefficient, cs is the sound velocity of the material, p is 

the density of the material, and 

Bx =[Bxl +B
2

X2 +BX3 +B
2

X4 +BX5 +B
2

X6 +BX7 +BX8] (35) 

The resistance stresses for the other three x modes (Qx2, Qx3, Qx4) are obtained by replacing 

qxl by the other modal velocities (qx2, qx3, qx4). The y and z modes are obtained in a similar 

manner. 
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Now the forces to resist hourglassing can be determined and substituted into Equations 18-25. 

Fxf =^[QX.YI, +QX2Y2. + QX3Y3, +QX4Y41] (36) 

FX
H2G = ^[Qx. Y,2 + Qx2Y22 + Qx3Y32 + Qx4Y42 ] (37) 

F.? =^[Qx,Y13 +QX2Y23 + QX3Y33 +QX4Y43] (38) 

FX
H

4
G = ^[Qx, Y,4 + Qx2 Y24 + Qx3Y34 + Qx4 Y44 ] (39) 

FX
H

5
G =^[Qx,Y,5 +QX2Y25 +QX3Y35 +Qx4Y45] (4°) 

FXT  =^[QX1Y,6 +QX2Y26 +QX3Y36 +QX4Y46] (41) 

FX
H

7
G  = ^[Qx. Y,7 + Qx2 Y27 + Qx3 Y37 + Qx4 Y47 ] («) 

FX
H

8
G =^[Qx,Y18 +QX2Y28 +QX3Y38 +Qx4Y48] (43) 

For F^.-.Ff replace Qxl...Qx4 with Qyl...Qy4,andfor F™...Ff replace Qxl...Qx4 with 

Qz,-Qz4- 

Both the hourglass forces and the internal stress forces are then added together as shown in 

Equations 18-25. 

The heat conduction algorithm follows the same pattern as used for the other elements. The heat 

flow in the three directions is 
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3x (44) 

= -kk/T, + Bx2T2 + Bx3T3 + Bx4T4 + Bx5T5 + Bx6T6 + Bx7T7 + Bx8Tg]/ 12V 

9T 

= -k[ByIT, + By2T2 + By3T3 + By4T4 + By5T5 + By6T6 + By7T7 + By8T8] / 12 V 

(45) 

dz (46) 

= -k[BzlT, + Bz2T2 + B23T3 + Bz4T4 + Bz5T5 + Bz6T6 + Bz7T7 + Bz8T8] / 12 V 

The increase in thermal energy at node 1 is AQ, = — (Bxlqx + Bylqy + BzlqzjAt + AQe / 8, where 

Bxi, Byi, and Bzi are as described previously, At is the integration time increment, and AQe is the 

internal energy generated by the element during the previous time increment. The temperature 

and internal energy update are similar to those described for the tetrahedral elements in 

subsection 3.8.4. 

3.8.6 Bar Elements 

The 3D bar element is a simple element that is incompressible and carries only axial loads. It is 

described in Reference 27. A summary of the 3D bar element algorithm is shown in Figure 20. 

The bar is geometrically determined by nodes i and j (whose positions define the length, £), and 

the cross-sectional area, A. By assuming the material is incompressible, the area is determined 

from 

A = Vo/£ = AJ0/£ (1) 
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Figure 20. Description of the 3D Bar Element 
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where V0, A„, and £0 are the initial volume, initial cross-sectional area, and initial length, 

respectively. The mass is equally distributed to the two nodes. 

Mi=Mj=p0V0/2 (2) 

where p0 and V0 are the initial density and volume. 

If the z' axis is assumed to coincide with the axis of the bar, the axial strain rate is given by 

^=(V.-VJW <3> 

where V; and Vj are the velocity components of nodes i and j, along the axis of the rod. 

Specifically 

V,=(Vx+Vy+w^z) (4) 

where ü;, vf, and ws are the x, y, and z components of the velocity at node i and £x, £y, £z are 

the direction cosines of the bar. 

Incompressibility requires that 

£x,+i-y, + ez.=0 (5) 

where ex. and ey. are the strain rates normal to the longitudinal axis of the bar. This gives 

ex,=ey,=-ez,/2 (6) 

With the strain rates defined, the deviator stresses can be determined by the standard method. 

The net stresses are a function of both the deviator stresses [sz.,sx,,sy, j and the pressure (P). 

<*z' = sz,-P (7) 

cr,=s,,-P = 0 (8) 
X X 
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Gy, = sy.-P = 0 (9) 

Because the net normal stresses must vanish (cx, = ay< = OJ, the pressure is defined as 

P = sx,=s, (10) 

The net nodal forces act along the axis of the bar and are determined from 

F^F^a^A (11) 

The components in the x, y, and z directions are given by 

F=F;/ (12) X IX 

Fy=F^y (13) 

F'=Ff/, (14) 

where £x, £y, £ z are the direction cosines of the bar. 

The heat conduction algorithm is identical to the ID heat conduction algorithm in subsection 

3.1.3, except the area for the 3D bar is given by Equation 1. 

3.8.7 Bending Shell Elements 

A 3D bending shell element is shown in Figures 21-25. The concepts for the algorithm are 

presented in Reference 20. As was the case for the 2D bending shell element, described in 

subsection 3.4.6, the 3D bending shell is represented by three or five layered elements that share 

the same nodes. Each of the three or five layered elements is a triangle defined by nodes i, j, k. 
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Figure 21. Description of the 3D Bending Shell Element 
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Figure 22. Description of the Geometry and Velocities for the 3D Bending Shell Element 
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Figure 23. Description of the Mass Distribution for the 3D Bending Shell Element 
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Figure 24. Description of the Stresses for the 3D Bending Shell Element 
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Figure 25. Description of the Forces and Moments for the 3D Bending Shell Element 

The first step is to perform a coordinate transformation into a local coordinate system, as shown 
in Figure 21. Each triangle is put into the x' - z' plane at y' = 0, where node i is at 

x' = y' = z' = 0, and node j is on the positive x' axis at y' = z' = 0. The transformations are not 

presented herein. They are partially provided in Reference 27. 

Unless noted otherwise, the remainder of this subsection is presented in the local coordinate 
system, and the x', y', z' coordinates will be represented as x, y, z for simplicity. 
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Bending moments in the shell element are induced by allowing the in-plane stresses in the outer 

layers to be different from one another. This is accomplished by allowing the in-plane strain 

rates to be different from one another. These strain rates are dependent on the nodal velocities, 

as well as the nodal rotational rates and offset from the center layer, as shown in Figure 22. 

The masses at the three nodes of an element are equal. 

M-M^M^p^/3 (1) 

where p0 is the initial density and V0 is the initial volume. The initial volume is simply V0 = 

AoT0, where AQ is the initial area and T0 is the initial total thickness (of all layers). 

The mass moments of inertia are required for the rotational rates at the nodes. Figure 23 shows 

how the mass is distributed to the three nodes for the inertia computations. The mass moments 

of inertia for node i are as follows: 

[23h2    T2] ,„ 

f 69b2 + 69h2 + 84bxk + 69xk
21 ,„ 

I'^pbhT  —  (3) 

4 = pbhT 
(69b2+84bxk+69xk

2)   -f_ 

1116 +72 

_fl4bh + 23hxk 

(4) 

4 = iL=-PbhT|    2592   »J (5) 

r =r =o (6) 
xy yx 

r =r =o (7) yz zy 

where p is the current density, T is the current total thickness of the element (all layers), and b, h, 

and Xk are geometric distances provided in Figure 23. 
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The moments of inertia for node j are 

, [23h2    T21 
(8) 

li=pbhT 
222b2 +69h2 -222bxk + 69xk

J 

7776 
(9) 

4=pbhT 
(222b2-222bxk+69xk

2)   T2 

7776 72 
(10) 

liz=IL=pbhT 
37bh-23hxk 

2592 (11) 

IJ,=IJ,=O 

1^=1^=0 

(12) 

(13) 

and the moments of inertia for node k are 

2       T2 37h/    T 

^-P^WT* 
(14) 

k               46b2+148h2-148bxk+148xk
2 

ij, = pbhT *t- 
5184 

(15) 

4 = pbhT 
(46b2-148bxk+148xk

2)   T2 

5184 72 
(16) 

„      . f37h(b-2xk)1 
(17) 

Ik =Ik =0 xy yx 
(18) 
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Ik =Ik =0 (19) xyz zy 

Note that the current (not initial) geometry must be used and this requires Ixx .. la to be updated 

every cycle. 

In Figure 22 the three corner velocities of layer 1 are identical to the nodal velocities, because the 

nodes are positioned in the plane of layer 1. For nomenclature consistency, the nodal x velocities 
at node i are designated üi5 üj2, üi3, the y velocities are vi5 vi2, vj3, and the z velocities are 

w., wi2, wi3. For layers 2 and 3, the x, y, and z velocities at node i are 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The offset between layers is simply 

H = V0/3A (26) 

where V0 is the initial volume and A is the current area of the triangular element. The x, y, and z 

velocities for nodes j and k can be obtained in a similar manner. 

The in-plane strain rates (ex, ez, Yxz) aie obtained in exactly the same manner as for 2D 

triangular elements. See Equations 11,12, and 14 in subsection 3.4.4. The rotational velocities 

are assumed to vary linearly between the nodes in the same manner as the translational velocities. 

The final strain rates, for the local coordinate system in Figure 21, are as follows: 

i.-f£[(*'+»*0-(*' + >*i)] <27> 
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ui2 =üi+He'z 

üi3 =v -H6L 

vi2 = V; 

VB = Vj 

wi2 = W; -H6'x 

Wi3 = Wj + H6X 



(28) *z = 2Ä~KXk ~Xj) ^ ~y^)-xk(wj -yeij+Xjfw, -ye^)] 

ey = f(K,£y) (29) 

7xZ=^;[(xk-xj)vi-xkvj+xjvk]--(e,
x+ei+0^ 

(30) 

(31) 

The through thickness strain rate, ey, cannot be determined explicitly, but must be iterated to 

provide cry = 0 through the thickness. Also note that for layer 1 (center) y = 0, for layer 2 (top) y 
= H, and for layer 3 (bottom) y = -H. 

The determination of the in-plane shear and deviator stresses is similar to that used for the 2D 
bending shells. Because the stress normal to the plane is ay = 0, an iteration procedure must be 
used. The iteration begins by assuming incompressible flow, which gives 

ey=-(ex+ez) (33) 

Now that all the strain rates are defined (ex,ey,£z,Yxy>Yxz>Yyz) me shear ^d deviator stresses 

can be determined in the standard manner, as provided in subsection 3.8.4. The iteration on the 
volumetric strain, to obtain cry = 0, is almost identical to that presented in subsection 3.4.6 and 
shown in Figure 12. For 2D bending shells the known normal strain rates are ex and £e, and the 

through thickness strain rate (to be determined) is e'z. For 3D bending shells (as well as plane 
stress elements), the known normal strain rates are ex and £z, and the through-thickness strain 
rate (to be determined) is ey. Other than the change in nomenclature, the algorithms for the 

three cases (2D bending shells, plane stress elements, 3D bending shells) are identical. 

The stresses acting on the elements are shown in Figure 24, and the resulting forces are shown in 
Figure 25. The x, y, and z forces on nodes i, j, and k (for each layer) are as follows: 
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H-ykk-iJ-«.*] (34) 

s-fM*-*')-1-*] (35) 

I'.-YIO.K-XJ-TA] <36> 

Fj-f[aA-xA] <37> 

= -rKz»-VzJ (38) FJ 

'     2 

Fj-f[x,A-«»A] <39> 

tf-fM (40) 

e -ffo) (42) 

where the stresses are for the specific layer being considered. 

Because there are shear forces in each layer, it is necessary to have concentrated moments on the 
nodes of each layer to provide equilibrium. Summing moments about the z axes at node i gives 

3AMz + Fy
kxk+Fy

j
Xj=0 (43) 

The resulting concentrated moments are 

AM^-^+F^/S (44) 
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Summing about the x axis at node i gives 

AMx=Fy
kzk/3 (45) 

Again, the concentrated moments for each layer must use the appropriate force for the specific 

layer being considered. 

The next step is to sum the forces and moments from each layer onto the three nodes. 

For node i, the three forces are 

K=Flw + Flm + *lu (46) 

K=KU 
+

 K<» 
+

 KM <47> 

% = ltm + K» + *#) <48) 

In Equation 34, Fx is for a generalized single layer, but in Equation 46 it represents the forces for 
all three layers.  Fx(1) in Equation 46 is Fx from Equation 34 for layer 1. The forces on nodes j 

and k are determined in a similar manner. 

The net moments on node i are 

M'z = AMz(1) + AMz(2) + AMZ(3) + Fx(2)H - Fx(3)H (49) 

Mx = AMx(1) + AMX(2) + AMx(3) - F"(2)H + Fz(3)H (50) 

The net moments on nodes j and k are determined in a similar manner. 

The final step is to convert the forces and moments back to the system coordinates, from the 

local coordinate system. 

The heat conduction algorithm is identical to the 2D heat conduction algorithm for triangular 
elements. For the heat conduction option all three layers will have equal temperatures because 

all layers are attached to the same nodes. 
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3.8.8 Membrane Shell Elements 

The 3D membrane shell elements are a simplified form of the 3D bending shell elements 

presented in subsection 3.8.7 and shown in Figure 21. The membrane shell element has only in- 

plane stresses and is composed of only a single layer. It cannot produce bending or transverse 

shear stresses. Furthermore it is assumed to be incompressible, and this eliminates the need to 

iterate to obtain the through-thickness stress. This algorithm is presented in Reference 21 for 

plane stress geometry. 

Referring back to Equation 29 of subsection 3.8.7, the through-thickness strain rate for 

incompressible deformation is 

where ex and ez are the in-plane strain rates in the local coordinate system. 

The deviator stresses (sx, sy, s2) can then be determined from ex, £y, ez, which gives the net 

stresses 

Cx=sx-P (2) 

oy=sy-P (3) 

cz = sz-P (4) 

In Equation 3, setting cry = 0 gives P = sy, and this provides an explicit determination of the 

stresses in Equations 2—4. 

3.8.9 Nonreflective Boundary Elements 

The 3D nonreflective boundary elements are incorporated as infinitely thin, triangular, massless 

elements as shown in Figure 26. They can be used to absorb elastic waves to represent infinite 

media, and they can also be used to reduce the size of the model for other applications such as for 

penetration problems (References 8-10). 
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Figure 26. Description of the 3D Nonreflective Boundary Element 

The average velocity normal to the triangular face is 

VN=<+v>y + v< 

where ü = (ü, + ü} + ük J / 3 is the average velocity in the x direction, and v" and w" are the 

average velocities in the y and z directions. The direction cosines normal to the surface are 

(1) 

^x=Ax/A 

£y=AyIK 

(2) 

(3) 
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£Z=AJA - <4) 

where Ax, Ay, and Az are the projected areas on the yz, xz, and xy planes when viewed along the 

x, y, and z axes, and A is the total area. 

A.4[(y,-y^-i)-(yk-yiX^-i)] (5) 

Ay4[(Zl-zJ)(xk-xJ)-(zk-zJ)(xi-xj)] (6) 

A.^Kx.-x^-yXx.-^y.-yi)] <7> 

A = VA2
X+A

2
y+A2

z (8) 

In addition to the normal velocity it is necessary to determine two velocities in the plane of the 

element. The first of the in-plane velocities is in the direction along the line connecting nodes j 

andk. 

V,=itfxl + v*yl+w*ri 

where Vi is the in-plane velocity, ü, V, and W are the average nodal velocities as defined 

previously, and the directions cosines are 

(9) 

(10) 
4,=(xk-

xj)/d 

*„«(*-*)" (U) 

M^W (12) 

where d is the distance between nodes j and k. 

The other in-plane velocity is perpendicular to both VN and V,. It is expressed as 
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V2=Wx2 + v^y2+w£z2    ' (13) 

where the direction cosines are 

'rf-V.l-'Al (14) 

^2=V*,-V2, (15) 

^=Vy.-V«l (16) 

The total normal resisting force on the element is 

FN=-pocsAVN (17) 

and the total in-plane forces are 

F.=-PoCshearAV1 (18) 

F2=-poCshearAV2 (19) 

where p0 is the initial density of the material, A is the total area and VN, Vi and V2 are the 
velocities. The longitudinal and shear sound velocities are 

cs = V(K1+4G/3)/p0 (20) 

Cshear =VG/Po (21) 

where Ki is the bulk modulus and G is the shear modulus. 

Now the total forces must be aligned with the three principal axes and distributed equally to the 
three nodes. 

K = Fx
j = Fx

k = (Vx + TV?xl + F2^x2)/3 (22) 
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F;=F; = Fy
k=(F^y + F^yl+F2^y2)/3 

Fz = Fz
j = Fz

k=(FN£z + F/zl+F2fz2)/3 

(23) 

(24) 
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SECTION 4 
SPH ALGORITHMS 

During the past few years SPH (Smooth Particle Hydrodynamics) methods have been developed 

and applied to problems involving high velocity impact. The appeal of SPH for high velocity 

impact is that it is a Lagrangian technique and that it has variable connectivity to allow for severe 

distortions. The Lagrangian feature is desired because it allows the grid to be embedded in the 

material and this reduces some of the material interface and material history problems associated 

with Eulerian codes. Furthermore, the ability to handle severe distortions allows the SPH 

technique to be applied to problems that historically have been reserved for Eulerian approaches. 

Although SPH approaches can be applied to severe distortions, they are generally not as good as 

standard finite elements for structural response applications. These same characteristics are held 

by Eulerian techniques. The important advantage of SPH, however, is that its Lagrangian 

formulation allows it to be straightforwardly linked to standard finite element Lagrangian 

formulations. This means that it is possible for both severe distortions and structural response 

computations to be performed with a single Lagrangian code, and that both severe distortions and 

structural responses can occur in the same problem. A long term objective is to allow the user to 

define almost any impact problem with a standard finite element grid, and then to allow the 

standard elements to be converted to SPH nodes as the standard elements become distorted. 

Although this approach has been demonstrated, more work is required to increase the accuracy 

and robustness for a wider range of problems. The algorithms that follow are reported in 

References 28-31. 

4.1 2D AXISYMMETRIC GEOMETRY 

A schematic overview of the structure of the EPIC code is shown in Figure 27. It is very similar 

for both standard elements and SPH nodes, with the primary differences being the computations 

of the strains, strain rates and nodal forces. The determination of the nodal displacements and 

velocities, as well as the stresses, is identical for both approaches and is not included here. A 

description of the basic 2D axisymmetric finite element algorithm is provided in subsection 3.4. 

Figure 28 represents some features of the SPH technique. Node i is designated as the center node 

and the neighbor nodes are designated as nodes j. The distance between nodes is r^, the 
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diameters of the nodes are dj and dj, and the masses of the nodes are Mj and Mj. The masses 

remain constant throughout the computation, and are obtained from M = p0V0 where p0 and V0 

represent the initial density of the material and the initial volume represented by the node. 

The SPH approach allows for variable nodal connectivity, and this means that it is necessary for 

each center node i to search and find the closest neighbor nodes j. This searching time can be 

significant, especially for larger problems, and several approaches have been tried. The EPIC 

code currently uses a bucket searching algorithm (Reference 13). 

4.1.1 Smoothing Functions 

The smoothing function is an important part of the SPH algorithm. Two smoothing functions 

and their derivatives are shown in Figure 29. These smoothing functions can be used for both 

plane strain and axisymmetric geometries. The B-Spline has been a commonly used smoothing 

function in the past, but the recently introduced Quadratic smoothing function appears to have 

some advantages (Reference 30). 

The B-Spline smoothing function is expressed as 

*'--4 
"I5f2      , H] 

w<%h> U2-^\ 

0 < uy < 1 

1 < uy < 2 

(la) 

(lb) 

where uy = ry/hy, and the smoothing distance is 

h8=o(d,+dj)/2 (2) 

The dimensionless smoothing distance, a, is a user supplied input. It is usually taken as a = 

1.0, but other values can be used (0.8 < cc < 1.2). The diameters, dj and dj, can be obtained (for 

axisymmetric geometry) from 

d = d0-J(l + ev)x0/x (3) 
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where ev is the volumetric strain (defined later), do is the initial node diameter, and x0 and x are 

the initial and current x (radial) coordinates. 

A requirement of the smoothing function is that it exhibits the characteristics of a Dirac delta 

function as hy approaches zero. It will be shown later that it is the derivative, W;-, of the 

smoothing function that actually provides the weighting function for the strain rates and forces. 

The negative value of the B-Spline derivative, - Wj-, is shown in Figure 29 and is expressed as 

30 45 
 1)   H X) 

7    y    14   ,J 0 < uy < 1 (4a) 

W' = 
1 r i5u   v 1 < uy < 2 (4b) 

The interesting feature of the B-Spline derivative is that - W£ exhibits a maximum at uy = 2/3 

and decreases for both smaller and larger values of Uy. For Uy > 2/3 it is logical that -W^ 

decreases because it has less influence as the distance is increased. To have -W~ decrease for 

Oy < 2/3 is not intuitively satisfying because the closer neighbor node j comes to center node i, 

the less influence it has. This can also lead to instabilities in compression (Reference 32). 

The Quadratic smoothing function is also shown in Figure 29. It is expressed as 

W„=- 
ich u <- 

3,3 3 
0 < uy < 2 (5) 

The derivative is 

« 1th' 

3 3 

4 "«"I 0 < Uy < 2 (6) 

For the Quadratic smoothing function derivative, the weighting function, - W~, always increases 

as the nodes move closer together, and always decreases as they move apart. This intuitively 

appears to be more realistic than the B-Spline derivative. It is also more simple than the B- 

Spline and does not have the compressive softening that can lead to compressive instabilities. 
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Based on these arguments alone, it would appear that the newer Quadratic smoothing function is 

an improvement over the traditional B-Spline. 

4.1.2 Strain Rates 

For 2D axisymmetric geometry, the three normal strain rates (ex,ez,£e), the shear strain rate, 

y^, the rotational rate, ©«, and the volumetric strain rate, £v, for center node i, are as follows. 

£x=-IßxW^VJ(üj-üiKx/27rxJ (1) 
j 

e^-Xß.WiV^Vv^.^iKj (2) 
j 

e^-Sß.WJV^MiKj (3) 

Y„—SwjVj[ß1(üj-üi>1+ß,(vj-Vi^]/2iDcj (4) 
j 

©„ = XWJTVJIMüJ -ü,K -ß,(vj - v.Kj/4^ (5) 
j 

K=K+K + £e (6) 

where Wj' = dWti 19r is the derivative of the smoothing function, Vj is the current volume of the 

nodej, Ü; and \xy are the x velocities of nodes i and j, v; and iri are the z velocities, £x and £z 

are the direction cosines from node i to nodej, and Xj is the x coordinate of node j. The updated 

volumetric strain is obtained by integrating the volumetric strain rate. 

er=el+elAt(1 + ev) (7) 

where At is the integration time increment, and the factor (l + <) converts the strain rate from 

the current configuration back to the initial configuration. 

The three ß factors are used to normalize the smoothing functions such that they will provide the 

exact strain rates in the three principal directions for states of constant strain rates. They are 
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obtained from Equations 1-3 by setting ui - \x- = exi^x for a constant strain rate in the x 
direction, Vj - vf = kxx^iz for a constant strain rate in the z direction, and üj = £eXj for a constant 

hoop strain rate. The resulting normalizing factors are 

ß= ~\  (8) 

ßz=lw^ (9) 

ße = Vw^/    ,A  (10) 

The effect of using the Normalized Smoothing Function (NSF) algorithm can be significant. 
Figure 30 shows a cross-section of an axisymmetric ring of material represented by 25 SPH 
nodes (5x5). The two cross-sections on the left side are for the Standard Smoothing Functions, 
which means that they do not use the NSF algorithm. The two on the right side do use the NSF 
algorithm. The top two use the B-Spline smoothing function and the bottom two use the 
Quadratic smoothing function. The numbers in the centers of the circular SPH nodes represent 
the equivalent strain rate in the node when the axisymmetric cross-section is subjected to a 
stretching radial velocity of 

Ü-3V2 (11) 

where Xj is the radial coordinate. The resulting uniform strain rates are 

ex=du/ax = 3/2 (12) 

ee=u/x = 3/2 (13) 

ez=Yxz = 0 (14) 
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Uniform Arrangement of SPH Nodes 

The equivalent strain rate is defined as 

H 2        3 
(£x-ez)

2+(ex-Ee) +(ez-e9) +TY (15) 
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Substituting Equations 12-14 into Equation 15 gives 

Is 1.0 (16) 

The upper left cross-section in Figure 30 (B-Spline without NSF) shows good accuracy in the 

center region (e = 1.01), but the side boundaries and corners are significantly low 

(0.43 < e < 0.85). The reason for the low strain rates at the boundaries is that the basic SPH 

algorithm is for an interior node, which assumes there is a full distribution of neighbor nodes. 

When the distribution of neighbor nodes is not full, inaccuracies are introduced. The lower left 

in Figure 30 (Quadratic without NSF) has a similar pattern, but the interior nodes have a lower 

strain rate (e < 0.87). This does not necessarily mean that the B-Spline is more accurate than the 

Quadratic smoothing function, because the results in Figure 30 are specifically for a uniform grid 

with a dimensionless smoothing distance of a = 1.0. For some other conditions (such as a = 0.8) 

the Quadratic smoothing function is more accurate, as will be shown later. At larger smoothing 

distances the interior nodes approach an equivalent strain rate of e = 1.0, and at lower smoothing 

distances (a < 0.8) the strain rates decrease to e = 0 at a = 0.5. This effect is illustrated in 

Figure 31, where the equivalent strain rate of an interior node is shown as a function of the 

dimensionless smoothing distance, a. Note that the B-Spline is more accurate at a = 1.0 and the 

Quadratic is more accurate at a = 0.8. The sharp slope changes for the Quadratic smoothing 

function at a = 0.707,1.000,1.118, etc., occur when the expanding smoothing distance 
encounters additional nodes at uy = 2.0. The Quadratic smoothing function derivative, Wy, has a 

finite slope at Uy = 2.0 (and therefore has a noticeable effect) whereas the slope of Wj- for the B- 

Spline is zero at uy = 2.0. When the NSF algorithm is applied, as shown on the right side of 

Figure 30 and in Figure 31, then the results are much improved. The NSF algorithm is also very 

effective when the nodes are in a non-uniform arrangement, and it is shown to provide excellent 

results for several cylinder impact examples (Reference 30). 

4.1.3 Forces 

After the strain rates, rotational rate, and volumetric strain in Equations 1-7 of subsection 4.1.2 

are determined, it is possible to determine the shear and deviator stresses, the pressure, and the 

nodal artificial viscosity in the standard manner, as provided in subsection 3.4.4. These stresses 

must then be converted to forces as shown in Figure 27. 
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Figure 31.    Equivalent Strain Rate Versus Dimensionless Smoothing Distance for 
an Interior SPH Node in a Radial Stretching Cross-Section 

The nodal force in the x direction on node j, due to the stress of node i, is 

pij _ p'j (plane)   ,  pij (hoop) (1) 

The force due to the in-plane stresses is 

p9 (P'ane) = ^Y)[^(&x - Q^, +^JM]/ 2lKj (2) 

where &x = s^ - (Pj + Qf) is the net normal stress in the x direction, composed of the deviator 

stress, pressure, and nodal artificial viscosity, and T1^ is the shear stress. 

There is also an artificial viscosity, QiJ5 which is dependent on the relative velocities of nodes i 

and j. It is intended to stabilize the grid and keep adjacent nodes from becoming too close to one 

another. This will be designated as a bond viscosity, because it acts on the bond between nodes i 

and j. It can also introduce a significant amount of artificial strength. 
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The force due to the hoop stress is 

pü (hoop) = ß^^V/rgOi / 4raf (3) 

and the force in the z direction is 

PJ =^iVj[ßz(<-Q1JK + ßx^x]/27rxJ (4) 

Equations 2-4 provide the forces only on the neighbor nodes j. The forces on center node i, due 

to the stresses in node i, are equal and opposite to the in-plane forces in the x and z directions. 

P"=-S   Px(Plane) (5) 
j 

Pz=-ZPz (6) 
j 

4.1.4 Artificial Viscosity 

There are two forms of artificial viscosity; the nodal viscosity, Qi, and the bond viscosity, Qy. 

The important distinction between Qi (nodal) and Qy (bond) is that Q\ can only be activated 

during volumetric strain rate, but Qy can be activated even if there is no volumetric strain rate 

(such as pure shear or incompressible flow). The net effect is that Qy can introduce additional 

(artificial) strength into the computed results. 

The nodal viscosity is identical to that used in standard finite element and finite difference 

methods (References 5 and 33): 

Qi=CLpicihi|ev|+CQpihfö (1) 

for £v < 0. CL and CQ are the linear and quadratic coefficients, pi is the density of node i, c; is the 

sound velocity of node i, and hj is the minimum smoothing distance between node i and neighbor 

nodes j. 
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The bond viscosity of Monaghan and Gingold (Reference 34) can be expressed in the following 

form: 

Qij=CLpici|^ij| + CQpi|Llfj (2) 

for fly < 0, and 

h,(y,+♦,«,) 
KlJ r2+eh2- 

where ii{ = üj - ü is the x velocity difference between nodes i and j, and xy = Xj -Xj is the x 

coordinate difference. The analogous terms for the z components are Vy and zy. The distance 

between nodes is ry = Jx? + z\, and 80 is a small number (s0 «0.01) that acts to limit (j.y as ry 

becomes small. 

Equation 2 can be rewritten in the following form (for s0 = 0): 

Qi]=CLpicihü|eü| + CQp1hy82 (4) 

for £r < 0. This looks very similar to the nodal artificial viscosity of Equation 1, except the 

volumetric strain rate, ev, of Equation 1 is replaced with a linear strain rate, ey, in Equation 4. 

This linear strain rate is simply the strain rate along the bond between nodes: 

B9=(w?-V?)/h (5) 

where V;
N is the velocity of node i along the bond from node i to node j, and V* is the velocity 

of node j in the same direction. A similar form of this bond viscosity was developed previously 

for the NABOR particle method algorithm (References 35 and 36). 

It should be noted that most of the SPH literature (Reference 34) describes the bond viscosity 

term as 

n^^cJiiJ + C^äj/pa (6) 
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for uy < 0. Here CL, CQ, and \x\j are as defined previously, cy is the average sound velocity at 

nodes i and j, and py is the average density at nodes i and j. Also, Fly is the viscosity for both 

nodes i and j. In the algorithms of Equations 1-5, Qy is based on the density and sound velocity 

of node i only. The relationship between the two forms is approximated by 

Qy=nypf/2 (7) 

For identical sound velocities and densities at nodes i and j, the relationship of Equation 7 is 

exact. The factor 2 in the denominator occurs because riy is for both nodes whereas Qy is only 

for node i (and there is another Qjj at node j). 

4.1.5 Material Interfaces 

Figure 32 shows a material interface represented by SPH nodes. If the two materials are not 

bonded together, the standard SPH algorithm introduces unacceptably large errors because nodes 

from material A influence the strain rates in nodes from material B, and vice versa. Also, shear 

and tensile stresses are developed between the two materials such that sliding and separation are 

significantly inhibited. If SPH approaches are to be applied to problems involving sliding 

interfaces, then specialized interface algorithms must be developed. 

> Material A 

Figure 32. Material Interface With SPH Nodes 
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4.2 2D PLANE STRAIN GEOMETRY 

The 2D plane strain geometry is a simplified form of the 2D axisymmetric geometry. The 
primary difference is that the plane strain geometry is for a unit thickness and has no hoop strains 

or strain rates. 

Using the same notation as for the axisymmetric geometry in subsection 4.1.2, the two normal 
strain rates (ex, ez),the shear strain rate, y^, and the rotation rate, coxz, for center node i, are as 

follows: 

ex=-SßxWi^j(üj-üi)^x (1) 
j 

e^-Xß.WJV^-Vi)*, (2) 
j 

YxZ=-ZWi^j[ßz(üj-üiK + ßx(vj-vi)/x] (3) 
j 

®« = XwjV^fo -ü^z -ßx(Vj - v^x]/2 (4) 
j 

One of the differences is that the volume of node j is now identical to the area (Vj = Aj) because 
the plane strain geometry is for a unit thickness. Also, the axisymmetric hoop strain rate (E6 ) is 

replaced by the through-thickness strain rate, which is 

ev^0 (5) 

The normalizing factors are also modified. 

-1 
ßx   Iw^ (6) 

ßz=X^;w2
z 

(7) 
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After the stresses have been determined, the forces on node j, due to stresses on node i, are as 

follows: 

P^WJV.V^fa-Q^+ßX^] (8) 

P?=W8'ViVj[ßa(oi-Qfl)/1 + ß8x,
11/ll] (9) 

Here the notation is as provided in subsection 4.1.3. 

4.3 3D GEOMETRY 

There is very little additional complexity in going from 2D to 3D geometry. Again, there is 
similarity between the 3D SPH and the 3D standard element algorithms provided in subsection 

3.8. The B-Spline smoothing function in 3D is 

if,    3   2    3   3 

2   ij    4   ,J 0 < Ujj < 1 (la) 

W«-*2 i(2-^)3 1 < oy < 2 (lb) 

and the derivative is 

"i-Är-^Vi. 0 < uy < 1 (2a) 

ij    nhi -7(2-V2 1 < uy < 2 (2b) 

The 3D B-Spline smoothing function and its derivative are simply 7/1 Ohy times the 
corresponding 2D functions given in Equations 1 and 4 of subsection 4.1.1, and shown in 

Figure 29. 

The 3D form of the Quadratic smoothing function is 
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W»=^I 
5(3 3} 
W'-2V'+~2J 0 < üij <2 (3) 

and the derivative is 

w—L 15H 
16 M 0 < -uSj < 2 (4) 

Here again, the 3D Quadratic smoothing function and its derivative are simply 5/8hy times the 

corresponding 2D functions given in Equations 5 and 6 of subsection 4.1.1, and shown in 

Figure 29. 

The three normal strain rates (ex ,ey ,ez), the three shear strain rates (yxy,Y«, jyz), and the three 

rotational rates (ü)xy ,<*)„ ,coyz) for the center node i, are as follows: 

e^-Iß^V^-ü^, 

ey=-IßyWi;vj(vJ-vJKJ 

e^-Zß.Wj'V^Wj-Wi)*, 

(5) 

(6) 

(7) 

Yxy=-lWi;Vj[ßy(üJ-üiKy+ßx(vj-vi)^x] 

Y, = -?W,' Vjtß,^ - w,)fx +ßz(üj -Ü^J 

Yyz=-SWi;Vj[ßz(vj-viKz+ßy(wj-wi)£y] 

(öxy=X^;Vj[ßy(üj-üi)^y-ßx(vj-vi)^x]/2 

©„ = ?WJ V^ß,^ - w,)/, -ßs(üj -ü,)/,]/2 

(öyz=lWi;Vj[ßz(vj-viKz-ßy(wj-wiVy]/2 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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There is a change in nomenclature for the 3D algorithm when compared to the 2D algorithm. For 
the 2D strain rates and rotational rates in Equations 1-5 of subsection 4.1.2, üj and V; are the 

velocities corresponding to the x (radial) and z (axial) directions, respectively. For the 3D 
algorithm of Equations 5-13, the x, y, and z velocities are represented by üj, v(, and w(, 

respectively. This is consistent with the 3D finite element algorithms of subsection 3.8. 

The three ß factors are obtained in the same manner as the 2D geometry and are expressed as 

ßx = IK v^ (14) 

-1 
ßy = iw; v.ht\ (15) 

ßz = x w; vjr/z 
(16) 

There is an additional complexity in applying the NSF algorithm in 3D geometry. For 2D 
axisymmetric geometry there is only one possible orientation of axes because the z axis 
represents the axis of rotation. For 3D geometry the ß factors are determined along the three 
principal axes. If the axes are changed, then the ß factors may change and the computed results 
may also change. Additional work is required to examine the magnitude of this potential 
problem. 

Finally, the nodal forces are as follows: 

P,'=WJ v^ßM -QüKx+ßy<A+ßz<A] (17) 

P?=K V^tß^-Q^+ß^A+ß^J (18) 

P^WJViVj[ß1(^-Q8)/1+ß,T,
B/]l+ßy^1/y] (19) 
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SECTION 5 
LINKING OF FINITE ELEMENTS AND SPH NODES 

It has been noted previously that a desirable characteristic of the SPH approach is that it can be 

linked to standard finite element grids. This allows highly distorted materials to be considered 
together with structural response materials. Also, as shown in Figure 27, a single material model 

subroutine can be used for both the standard elements and the SPH nodes. This means that a 

material model needs to be incorporated and validated only one time, and that the user can be 
assured that the identical material model is used for both the standard elements and the SPH 

nodes. This work has been reported in References 28,29, and 31. 

Figure 33 shows how SPH nodes can be attached to a standard finite element grid. The broken 
circle around node i represents the effective region (0 < uy < 2) for SPH nodes on node i. The 
size of the SPH interface nodes is equal to the size of the interface elements. The mass of the 
SPH interface nodes comes from the SPH nodes only, and this ensures that the mass on all nodes 

is essentially equal. 

The current approach for this type of linkage is to determine the strain rates for SPH node i only 
from nodes ni,..., n5. The standard nodes in the effective region (n6,..., n9) are not included 
because of the complexity they would introduce into the numerical algorithm. The strain rates 
can be accurately computed on the interface by using the NSF algorithm, but the resulting forces 

appear to be in error. 

The forces on SPH nodes i come from SPH nodes ni,..., n5 and from interface elements B and 
C. There is no direct force contribution from standard nodes n6,..., n9, other than through the 
interface elements. Improvements could include consideration of standard nodes (n6,..., ng) or 

generation of ghost nodes on the standard node side of the interface. 

Figure 34 shows how SPH nodes interact with a standard grid on a sliding interface. The SPH 
nodes are designated as slave nodes and the standard elements form the master surface. As was 
the case for the attached interface, the standard nodes (m2, m3, n6) do not directly affect the strain 
rates in SPH node i, and do not directly affect the forces on node i. The maximum allowable 
overlap of an SPH node and slave node i, with master surface m2 - ni3, is shown as So. When the 

SPH nodes are initially defined as SPH nodes, then 50 = 0. When the SPH nodes are converted 
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Figure 33. SPH Node Attachment to a Standard Grid 

from standard elements, 80 can be a small fraction of the SPH node diameter. The 
approximations for the sliding interface are similar to those of the attached interface, but more 
research is required to evaluate and improve the existing algorithm. The specific equations are 

presented in subsection 3.4.2. 

When slave node i overlaps (8 > 80) master segment m2 - m3, then the three normal velocities of 

nodes i, m2, and m3 are adjusted to (1) conserve linear momentum, (2) conserve angular 
momentum and (3) provide a normal velocity match of node i on master segment m2 -1113. The 
positions of the nodes are adjusted to be consistent with the velocity changes. The specific 

equations are presented in subsection 3.4.2. 
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Figure 34. SPH Node Sliding on a Standard Grid 

It is also possible to generate SPH nodes from a standard finite element grid. Figure 8 shows an 

illustration of a standard erosion algorithm, as described in subsection 3.4.3, and Figure 35 shows 

the SPH node generation algorithm. The standard algorithm removes (erodes) elements from the 

sliding interface when the elements are strained to an equivalent plastic strain of ep = 1.5, and it 

then redefines the master surface and slave nodes. Although the mass is retained at the nodes, 

the volumes of the eroded elements are discarded, and this introduces inaccuracies into the 

algorithm. 

The SPH generation algorithm is similar, except it replaces the highly strained elements on the 

master surface with equivalent SPH nodes. Because the SPH nodes replace both the mass and 

volume of the eroded elements, this is a more accurate algorithm. Here the elements are 

converted to SPH nodes at an equivalent plastic strain of ep = 0.5. 

When a standard triangular element is replaced by a circular SPH node, the circle will extend 

beyond the replaced triangular element by a distance 5o, as shown in Figure 35. For the 

subsequent sliding interface computations, an effective crossover distance is defined as 

8eff = 5 - So, where 8 is the current crossover distance and 5o is the initial crossover distance. 
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Figure 35. Description of the SPH Node Generation Algorithm 

This effective distance is then used to determine contact (5eff > 0), and to adjust the velocities and 

displacements of the master and slave nodes as discussed previously. 

The current SPH generation algorithm has a significant approximation in that the generated SPH 
nodes are allowed to slide along the standard elements, instead of being attached to the elements. 
Future effort is required to develop an interface algorithm that will allow the SPH node to be 

attached to the standard finite element grid after it has been generated. 
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SECTION 6 
MATERIAL MODELS 

This section describes the material models that are available. The basic material types are as 

follows: 

• Solid (metal) materials 

• Explosive materials 
• Crushable/concrete materials 
• Liquid materials 
• Brittle (ceramic) materials 
• Reactive explosive materials 
• RDG solid (metal) materials. 

The solid (metal) material models and algorithms are presented in detail and the unique portions 
of the others are also presented. In some instances, there are many models available for a 
material type, and in other cases there is only a single model. 

6.1 SOLID MATERIALS 

The solid material models are generally used for metals, although some of the models can be 
used for nonmetallic materials. The stress determination algorithms for ID, 2D, and 3D are 
provided in subsections 3.1.3 (ID), 3.4.4 (2D), and 3.8.4 (3D). 

The 3D stresses, as presented previously in subsection 3.8.4, are composed of three normal 

stresses \ax,Gy,Gz] and three shear stresses (T^T^T^J. The three normal stresses are 

expressed as 

sx=sx-(P + Q) (!) 

ay=sy-(P + Q) (2) 

cz = s2-(P + Q) (3) 
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where sx, sy, and sz are the normal deviator stresses, P is the hydrostatic pressure, and Q is the 

artificial viscosity. 

Trial values of the deviator stresses and shear stresses at time = t + At are 

sx
+At=sx+2GexAt + Asx (4) 

sy
+At =sy+2GeyAt + Asy (5) 

s«+* = sz+2GezAt + Asz (6) 

C=<y+GTxyAt + ATxy (7) 

Tr=< + GYxzAt + Axxz (8) 

C,=TyZ
+GtyZ

At + AV (9) 

In Equation 4 the first term (sx) is the normal stress at the previous time and the second term 

(2GexAt) is the incremental stress due to the incremental strain (exAt) during that time 

increment, where G is the elastic shear modulus and At is the integration time increment. The 

third term (Asx) is due to shear stresses from the previous time increment, which now act as 

normal stresses due to the new orientation of the element caused by an incremental rotation 

((OyAt, cozAt) during the time increment. The remaining normal stresses and shear stresses have 

a similar form. 

The correction terms for element rotations are given in Equations 37-42 of subsection 3.8.4. 

Equations 4-9 assume an elastic response of the material. If the strength of the material is 

exceeded, then plastic flow (or fracture) will occur. The Von Mises yield criterion is used to 

determine an equivalent stress, c, that can be compared to the uniaxial tensile (or compressive) 

strength of the material. The general form of the equivalent stress is 

ö = ^[(ax-ay)
2 +(ax -oz)

2 + (cy -czf +6(xxy
2 +xj + Tyz

2)] (10) 
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Using deviator stresses (instead of total stresses), Equation 10 can be rewritten as 

°=vf (s*+s*+s')+3fe+<+<) (11) 

If a is not greater than the equivalent tensile strength of the material, a, the final deviator and 

shear stresses are as given in Equations 4-9. If a is greater than a, then the stresses in 
Equations 4-9 are multiplied by the factor (o / Ö"). When the reduced deviator and shear stresses 

are put into Equation 11, the result is always ö = a. This is known as the radial return 

algorithm. 

In the following subsections, models are presented for the strength of the material (a), the 
pressure (P) and artificial viscosity (Q). Additional subsections address a 2D orthotropic 
algorithm, the internal energy algorithm, fracture models, and a fragmentation model. 

6.1.1 Johnson-Cook Strength Model 

The Johnson-Cook strength model (Reference 37) is expressed as 

G = [ci+C26
N][l + C3lne*][l-T*M] + C4P (1) 

Where e is the equivalent plastic strain, e* = e / e0 is the dimensionless strain rate for 
eo = 1.0s-1, T* is the homologous temperature, and P is the hydrostatic pressure. This model is 

valid only for 0 < T* < 1.0. The material constants are Ci, C2, N, C3, M, and C4. Q and C2 have 
units of stress and the others are dimensionless. The original model did not include the pressure 

term (C4P). 

Although this model is empirical, it is flexible, robust, and contains the effects of the important 
parameters. The strength goes to zero as the temperature approaches melting (T* = 1.0). It is 
also relatively easy to obtain constants for this model (References 37 and 38). 

A constant flow stress (a = Q) can be obtained by setting C2 = C3 = C4 = T*M = 0, a linear strain 

hardening model (<r = C\ + C2 * e) can be obtained by setting C3 = C4 = T*M = 0, and a pressure 
hardening model (a = Q + C4P) can be obtained by setting C2 = C3 = T*M = 0. 
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6.1.2 Modified Johnson-Cook Strength Model 

The modified Johnson-Cook strength model (Reference 38) is expressed as 

a = [ci+C2e
N][e,C5][l-T*M]+C4P (1) 

This is identical to the Johnson-Cook model in subsection 6.1.1, except that the strain rate effect 

[e*C3 ] is different. This model provides an enhanced strain rate effect at high strain rates. 

6.1.3 Zerilli-Armstrong Strength Model for FCC Metals 

The Zerilli-Armstrong strength model (Reference 39) for FCC metals is expressed as 

a = C0+C2e
Nexp(-C3-T+C4Tlne) (1) 

Where e is the equivalent plastic strain, T is the absolute temperature, and e is the equivalent 

strain rate. The material constants are Co, C2, N, C3, and C4. C0 and C2 have units of stress, and 

C3 and C4 have units of (temperature)"1. The grain size is not represented as a variable (as it is in 

Reference 39) but is included in Co. 

6.1.4 Zerilli-Armstrong Strength Model for BCC Metals 

The Zerilli-Armstrong model (Reference 39) for BCC metals is expressed as 

a = C0 + C1exp(-C3T + C4Tlne*)+C5e
N (1) 

This is similar to the Zerilli-Armstrong FCC model in subsection 6.1.3. Co, Q, and C5 have 

units of stress, and C3 and C4 have units of (temperature)"1. 

6.1.5 Bodner-Partom Strength Model 

The Bodner-Partom model (References 40,41, and 42) is expressed as 
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c = Z 
2N 

.N + l 

( KT\ 
>ln 

V2D0J 
Wi 

(1) 

where ep is the equivalent plastic strain rate and Do is an input constant representing the 

maximum allowable plastic strain rate. The other input constants are Zo, Zi, N0, Ni, M0, Mi, and 

a. 

For constants Mi = a = 0 

Z = Z1-(zi-Z0)exp(-M0Wp) (2) 

where Wp is the plastic work per unit volume. 

For constants Mi > 0 and a > 0 an expanded form is used. 

Z = Z1-(zi-Z0)exp(-M0Wp)exp(-(M0+M1-M)/cx) (3) 

where 

M = M0 + M,exp(-aWp) (4) 

For Ni = Tzero 

N = Nn (5) 

andforNl>Tz 

N = N0 + 
(~N -T ^ 1      xzero 

^ T —Tzero y 

(6) 

where T is the absolute temperature and Tzero is the absolute zero temperature. 
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This constitutive model requires an iterative solution because the strength, or, and the plastic 
strain rate, e , are dependent upon one another. This results in increased CPU time. Also, this 

model is more complex than the Johnson-Cook and Zerilli-Armstrong models, and References 

40,41, and 42 should be consulted for more information. 

6.1.6 MTS Strength Model 

The MTS model is presented in References 43 and 44. The following description is an edited 

version provided by P.J. Maudlin of Los Alamos National Laboratory. The material strength is 

<* = 6a + ^~(s<i>° + sth »i °i + SA >s 6.) (1) 

which contains the constants aa (which represents dislocation interactions with long-range 

barriers), dj (which represents dislocation interactions with interstitial atoms, and as (which 

represents dislocation interactions with solute atoms). 

The first product in the equation for a contains a micro-structure evolution variable, i.e., a, 

called the mechanical threshold stress, that is multiplied by a constant-structure deformation 
variable Sth; su, is a function of absolute temperature T and plastic strain-rate ep. The evolution 

equation for a is a differential hardening law representing dislocation-dislocation interaction: 

tanh 

tar 

( °Y a- 

ih(a) 

. 

(2) 

where cs is the value of c at large plastic strain and a is a material constant. 

do 
In the equation for -—, 0O represents hardening due to dislocation generation and the stress 

ratio represents softening due to dislocation recovery. The threshold stress at zero strain- 
hardening 6S is called the saturation threshold stress. Relationships for 0O, ds are: 

0o=ao + a1ln(ep)+a2>/^ (3) 
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which contains the dislocation generation material constants aj, &2, and a3. 

Also 

<3=G sO 

/ •     \kT7Gb3A 

(4) 

where cs0 is the saturation stress at zero degrees kelvin, es0 is a reference strain rate, b is the 

magnitude of Burgers vector (inter-atomic slip distance), A is another material constant, and K is 

Boltzmanns constant. 

The shear modulus in these equations is assumed to be a function of the temperature and is 

expressed as 

G = b0-b,/(exp(b2T)-l) (5) 

where bo is the shear modulus at zero degrees Kelvin, and bi and bz are constants. 

For thermal-activation controlled deformation Sth is evaluated via an Arrhenius rate equation: 

s* = 1- 
kTln(e0/ep) 

Gb3g0 
(6) 

where e0 is a reference strain rate, go is the normalized activation energy for a dislocation 

interaction, and p and q are additional constants. 

Expressions for Sth,i and Sth,s are identical to the equation for Sth in form but use the constants e0;, 

go,i, pi, qi (for Sth,i) and e0 s, g0,s, ps, qs (for Sth,s). 

The MTS model is much more complex than the Johnson-Cook and Zerilli-Armstrong models, 

and References 43 and 44 should be consulted for more information. 
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6.1.7 Steinberg-Guinan-Lund Strength Model 

The Steinberg-Guinan-Lund models are described in References 45 and 46. A rate independent 

model is given in Reference 45 and a rate dependent model is provided in Reference 46. In this 

subsection the material strength is represented by Y instead of a. 

The strain-rate dependent form of the SGL model defines the yield stress as 

Y = [YT(.p,T)+YAf(.p)]^ 0) 

where the athermal and thermally activated components YA f (eP) and YT are defined by 

YAf(ep) = YA{l + ß(ep+ei)}n (2) 

and 

£P = c7exp 
21L f    YV 

\ l?J 
+ : 

YT 
(3) 

In these equations, P and T are the pressure and temperature, ep and £p are the equivalent plastic 

strain and equivalent plastic strain rate, YA is the yield strength at the Hugoniot elastic limit 
(HEL) and f(e ) is the work-hardened function with {ß, ei5 and n} as fitting parameters. G0 is 

the initial shear modulus, YP is the Peierls stress, and 2UK is the energy necessary to form a pair 

of kinks in a dislocation segment. The quantities Ci and C2 are defined in terms of various 

dislocation mechanics parameters and are specific to the material being modeled. The shear 

modulus G is defined by 

G(P,T) = GC l+^-B(T-Troom) (4) 

with A and B treated as material constants and r|(p/p0) denoting the compression. Melting is 

modeled using a modified Lindemann law, where the melt temperature Tm is defined as 
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Tm=Tmoexp ^.—1/3) (5) 

Tmo is the melt temperature at constant volume, yo is the initial Gruneisen coefficient, and a is a 
material constant. For any compression r| in which the temperature T exceeds Tm, melting is 
considered to have occurred, resulting in the loss of yield strength and shear strength. In 

addition, there are two limits imposed. 

YAf(ep)£YL (6) 

And 

YT<Yp (7) 

where Y"^ is the work-hardening maximum in the rate-dependent version of the model. The 

rate-dependent form of the SGL model is treated as a special case of the more general form for 
yield stress with YT set to zero. In particular, the rate-independent model assumes the form 

Y = Y0f(ep)G(P,T)/G0 (8) 

where f(ep) and G(P,T) are defined as before. Here, however, the following limit applies: 

Y0f(ep)<Ymax (9) 

These models are more complex than the Johnson-Cook and Zerilli-Armstrong models, and 
References 45 and 46 should be consulted for more information. 

6.1.8 2D Orthotropic Model 

This is a simplified anisotropic model that is anisotropic only in the plastic response. The elastic 
response remains isotropic. It essentially expands and contracts the yield surface in the three 
primary axes and allows for initial orientation of the material axes with the system coordinate 
axes. It is described in detailed in Reference 47. The description that follows is an edited 
version provided by P.J. Maudlin of Los Alamos National Laboratory. 
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The 1948 Hill yield function (Reference 48) written in terms of total stress (ay) is 

f = 2 {F(°22 -°33)
2 +G(c33 -an)2 +H(on -a22)

2 

+ 2Na2
2 + 2Ma2

3 + 2La23} - a2 = 0 

(1) 

where the quantity a is a flow stress that is assumed to be a function of strain, strain rate, and 

temperature invariants. Expressing Hill's Quadratic in terms of deviatoric stress (sy) gives 

f = |{(G + H)s2
1 +(F + H)s2

2 +(F + G)s2
3 -2Hsns22 -2Gsus33 -2Fs22s23 

+ 2Ns2
2 + 2Ms2

3 + 2Ls23} - s2 = 0 

(2) 

The physical interpretation and measurement of the parameters in Equation 2 are discussed by 

Hill in some detail. This function is conveniently analytic and can be used for three-dimensional 

problems. In terms of independent stress components it represents a five-dimensional stress 

space. 

For a two-dimensional problem, recalling that the trace of the deviatoric stress tensor is zero, 

Hill's yield function reduces to 

1 
f = -{(4G + H + F)s2

1+(4F+H + G)s2
2+(4F+4G-2H)s1Is22+2Nss2

2}-G2=0       (3) 

The yield surface actually implemented in EPIC is a u-plane transformation (useful for yield 

surface data fitting) of Equation 3 defined in terms of three new variables (sx, sy, sz) which are 

linear combinations of the deviatoric stress components. 

f   \ 
s 

vs*y 

-V3 
2 

-v 
3 

0 
2 
0 0 

S    o 

0 

■V3 

's,^ 

'22 

K.snJ 

(4) 

J 

These transformed stresses represent an orthogonal reference frame whose sx - sy plane is 

coincident with the Ti-plane in the principle axes space for deviatoric stress. Substituting 
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Equation 4 into Equation 3, assuming that the rotational term sxsy is insignificant, and collecting 
terms, gives the form that is used in EPIC for two-dimensional problems. 

f = As2+Bs2+Cs2-c2=0 (5a) 

Or 

(   V3 r f = A - —-s„ -V3 : 
V 

•22 + B 
V 

2S» 
+ c(-V3s12)

2-a2=0 (5b) 

where the shape factor constants A, B, and C can be constructed from the Hill constants F, G, H, 
and N. For the special case where the shape factors A = B = C = 1, Equation 5 simplifies to the 
von Mises yield function. 

The yield function given by Equation 5 may contain an implied normalization in the quantity a. 

As it appears in Equation 5, a represents a directionally averaged flow stress. If the flow stress is 
constructed solely from uniaxial stress data in a given material direction, such as "1" for 
example, then the flow stress function aus (in equivalent stress units) is conceptually different 
from the quantity appearing in Equation 5 and needs to be renormalized, i.e., 

c = cus/M (6) 

in order to recover the uniaxial stress result: 

Sn=±3°us (7) 

Substitution of Equations 6 and 7 into the yield function given by Equation 5 and solving for the 
normalization constant M under the assumption of uniaxial stress in the "1" direction gives 

_      1 
M = 

VB (8) 

The important point here is that if a flow stress function like Johnson-Cook is used for a in 
Equation 5, where the model coefficients have been characterized from data measured in a 
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certain direction, then renormalization of the flow stress model by some M is necessary. 

Obviously as the yield function tends to isotropy, Equation 8 indicates that M goes to unity. 

The yield function given by Equation 5 is cast in a reference frame that rotates and translates with 

an element of material relative to the laboratory frame. From the point of view of an observer in 

this material frame, the material element experiences only deformation without rigid body 

motion (pure stretch). For two-dimensional problems the rigid body rotations are planar 

occurring in the x-z plane, and are described by the angle 0. An initial value for this angle, i.e., 

6 (t = 0), can be specified that measures the initial orientation difference between the z axis in the 

laboratory frame and the z axis in the material frame. Thus, the material constants for Equation 5 

(i.e., A, B, C) can be measured in a reference frame initially different from the reference frame 

that EPIC uses for some application calculation. 

6.1.9 Internal Energy 

The shear and deviator stresses, together with the shear and deviator strain rates, generate internal 

energy in the material. This energy leads to increased temperatures (that affect the strength 

models) and it is also used in the Equation of State model for the pressures. This incremental 

internal energy (for a cycle of integration) is 

AEd = (sxex + syey + szez +VU + VT«* + yj (v/V0) At (1) 

The bars on the deviator and shear stresses, and the volume, represent averages of these values at 
times t and t + At. The factor V / V0 converts the energy to internal energy per initial volume. 

6.1.10 Artificial Viscosity 

The artificial viscosity is an important term in the representations for the normal stresses, as 

shown in Equations 1-3 in subsection 6.1. It is combined with the normal stresses to damp out 

localized oscillations of the concentrated masses. It tends to eliminate spurious oscillations 

which would otherwise occur for wave propagation problems. This technique was originally 

proposed by Von Neumann and Richtmyer (Reference 33) and has been expanded for use in 

various computer codes (Reference 5). It is expressed in terms of linear and quadratic 

components and is applied only when the volumetric strain rate (ev) is negative. 
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Q = CLpcsh|ev| + CQph2 (ev)
2 forev<0 (1) 

Q = 0 for £v > 0 

where cs is the sound velocity of the material, p is the density, and h is a characteristic dimension 
(such as minimum altitude) of the element. CLand CQ are the linear and quadratic dimensionless 

coefficients. 

6.1.11 Mie-Gruneisen Equation of State 

The Mie-Gruneisen Equation of State (Reference 49) is used to compute the pressure term in 
Equations 1-3 of subsection 6.1. The pressure is a function of the volumetric strain and the 

internal energy. 

p = pv + rEs(i+n) (i) 

where 

Pv=(K1(i + K2n
2+K3^)fl-^il (2) 

V 2 

Substituting Equation 2 into Equation 1 gives the complete expression for the pressure. 

P = (K^ + K2fi
2+K3^)^l-^ + rEs(l + n) (3) 

where u = V,/V-l, Kb K2, and K3 are material-dependent constants and T is the Gruneisen 
coefficient. Vo and V are the initial and current element volumes. 

Since the pressure can be significantly affected by the internal energy Es, it is desirable to solve 

the pressure and energy equations simultaneously. This gives 

KM  = 
E\- sfo + Q)1+$+"+??" evAt + AEd 

1 + .5r(l + ^)evAt 
(4) 

D t19616.doc 151 



where ev is the volumetric strain rate and AEd is the internal energy generated by the deviator 

and shear stresses during the previous cycle. Es is the total internal energy per initial unit 

volume. 

Substituting Equation 4 into Equation 3 gives the pressure at time = t + At for the internal energy 

at time = t + At. 

It is interesting that Equation 3 reduces to P = K,u for small strains and spherical stress (no 

shear). The higher order terms (K2u
2 and K3u

3) go to zero and the internal energy is K,^72. This 

shows that K, is consistent with an elastic bulk modulus. 

Another form of the Mie-Gruneisen Equation of State is 

+ FE. (5) p = JV&f1_lV 
(l-Sn)H      2) 

where p0 is the initial density, t| = 1 - Pc/p, Es is the internal energy per initial unit volume, cs is 

the bulk sound velocity, T is the Gruneisen coefficient, and s is the slope of the Us - Up 

relationship. Us - Up are the sound velocity and particle velocity, respectively. Again the 

pressure-energy equations are solved simultaneously as they are in Equations 1-4. 

6.1.12 Johnson-Cook Fracture Model 

The Johnson-Cook fracture model (Reference 50) is based on accumulated damage. When the 

damage approaches unity (D = 1.0), the element has failed. After the element has failed the 

material essentially behaves as a liquid because it has no strength (no shear and deviator stresses) 

and it cannot develop hydrostatic tension. A failed element can produce only hydrostatic 

compression. It is also possible to soften (weaken) the strength as the damage increases, such 

that the failure is gradual rather than instantaneous. 

The damage to an element is defined as 

fcp 
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where Aep is the increment of equivalent plastic strain which occurs during an integration cycle, 
£p is the equivalent strain to fracture, under the current conditions of strain rate, temperature, 

pressure, and equivalent stress. Fracture is then allowed to occur when D = 1.0. 

To illustrate, assume the fracture strain in Figure 36 is a function of only the pressure-stress ratio, 
CT*, which will be defined later. This assumed relationship indicates the material can be more 

severely strained when it is under hydrostatic compression. The example shows how damage is 

accumulated under compression. When the pressure is released to a* = 0, D = 0.75 even though 
the plastic strain, EP, is greater than efp at a* = 0. The importance of path-dependency is evident 

since a model based only on current conditions would incorrectly predict fracture for these 
conditions. 

Assumed Relationship Example 
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Figure 36. Description of the Johnson-Cook Fracture Model 

The general expression for the strain at fracture is given by 

£{
p = [D, + D2 expD3°* ][l + D4 In £ *][l + D5T *] (2) 

for constant values of the variables (<r*, e *, T*) and for cr* < 1.5. The dimensionless pressure- 
stress ratio is defined as G* = Gm/a where am is the average of the three normal stresses and ö 
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is the von Mises equivalent stress. The dimensionless strain rate, e *, and homologous 

temperature, T*, are identical to those used in the strength models presented in the previous 

subsections. 

The five dimensionless constants are Di ... D5. The expression in the first set of brackets 

follows the form presented by Hancock and Mackenzie (Reference 51). It essentially says that 

the strain to fracture decreases as the hydrostatic tension, am, increases. The expression in the 

second set of brackets represents the effect of strain rate, and that in the third set of brackets 

represents the effect of temperature. For high values of hydrostatic tension (a* > 1.5) a different 

relationship is used. 

It is clear from Figure 36 that less damage is accumulated when the material is in compression 

(a* < 0). At the other extreme, however, when there is significant hydrostatic tension, the strain 

to fracture drops rapidly. Figure 37 shows the relationship which is used for large values of the 

pressure-stress ratio (CT* > 1.5). The fracture strain varies in a linear manner, from <J* = 1.5 to 
CT*pall at £f

min. The model constants are the spall stress, <Tspaii, and the minimum fracture strain, 

e^in. The dimensionless a*pa]1 is computed from aspaii and the current value of the von Mises 

flow stress, c. 

6.1.13 Modified Johnson-Cook Fracture Model 

The modified Johnson-Cook fracture model is similar to the Johnson-Cook fracture model 

(presented in subsection 6.1.12) except the Tuler-Butcher time-dependent spall model (Reference 

52) is used for the high tensile regions. For mean tensile pressures less than <Tm0, the damage and 

fracture strain are determined from Equations 1 and 2 of subsection 6.1.12. For mean tensile 

stresses am > (jmo, the damage is 

D_IK-I)XA' (1) 
K* 

where a' = tf   /a   , At is the integration time increment, and X and K* are material constants. 
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Figure 37.    Description of Fracture Strains at Large Tensile Pressure-Stress Ratios 
for the Johnson-Cook Fracture Model 

6.1.14 Fragmentation Model 

The fragmentation model is presented in Reference 18. The theoretical approach for this work is 
an extension of work developed by Grady (References 53, 54, and 55) on the fragmentation of 
stretching jets and expanding sheets. Fragment sizes for one-dimensional stretching jets and 
two-dimensional expanding sheets were developed using energy principles. These theories are 
based on a ductile mode of failure. Fragment sizes are determined by equating the internal 
kinetic energy of the flowing fragment material with the plastic strain energy used during the 
fragmentation process. The following discussion takes Grady's theory and extends it to three- 
dimensional ductile fragmentation, with considerations being taken to ensure computational 
compatibility. 

Consider, prior to fragmentation, a rapidly flowing mass of material from which a cubical 
fragment of size b will be formed as shown in Figure 38. To simplify the development, assume 
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that the x, y, and z axes correspond to those of the principal strain rates. The theoretical 
approach is to equate the kinetic energy of a fragment's flowing material about its center of mass 
(local kinetic energy), with the plastic work occurring during the fragmentation process. If it is 
assumed that all of the internal kinetic energy is consumed during fragmentation, an equality can 

be developed and solved directly for the fragment size. 

32.vsd 
T19616 

ex + ey + ez = 0 

Figure 38. Fragment Characteristics 

The local kinetic energy for the flowing fragment material can be determined explicitly by 

summing the local kinetic energy in each direction: 

KE = ^J v(x)2dm+-J v(y) dm+-J v(z) dm (1) 

The local kinetic energy in the x-direction, about the fragment's center of mass can be expressed 

as 

(KE)X=-J v(x)dm (2) 
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where the incremental mass is 

dm = b2pdx                                                                                                         (3) 

- and where p is the density of the material. 

For a linear velocity gradient across the fragment, with local face velocities of ± Vx (about the 

CG velocity), the x velocity distribution is 

v(x) = Vx[-^-l]            forO<x<b                                                                     (4) 

The local kinetic energy in the x-direction is then 

pbl   ,      J2x 
(KE)x=J-b2pV2 —-1    dx (5) 

(KE)X=-^V2 (6) 

Since v(x) is linear, the deviator strain rate, ex, is constant within the fragment and can be 

expressed as a function of the velocity 

2V 

*---r (7) 

The local kinetic energy in terms of the deviator strain rate and fragment size is then 

b5P e2
x (KE)X=^^ (8) 

The same approach is used to determine the local kinetic energy in the y and z directions, which 

gives a total local kinetic energy of the fragment of 

KE = 
bjp 
24 

(ex+e2
y+e2) (9) 
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The deviator strain rates can be expressed in terms of an equivalent strain rate 

and the total kinetic energy becomes 

.5-2 b5peJ 

*==-£- (11) 

The plastic work generated for each fragment during the fragmentation process can be expressed 

in the following form: 

PW = b3(sx<+sye;+sze:) (12) 

where sx, sy, and sz are constant deviator stresses and cfx, efy, and efz are the deviator strains 

occurring from void initiation to material separation. 

Equation 12 can be expressed in terms of equivalent stress and strain to obtain the following 

relationship for plastic work: 

PW = b3öef (13) 

Equation 13 represents the total plastic work needed for fragmentation to occur, where ef is 

analogous to the equivalent strain rate of Equation 10, and the von Mises equivalent stress is 

° = Vf(s* + sy + s*) (14) 

Equating Equations 11 and 13 and solving for b, the fragment size is expressed as 

16a ef a „,N b = ,K=A- 15 
V  P£ VPe 
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The dimensionless constant, A = 4^E^ , can be approximated by establishing bounds for ef. 

Grady (Reference 54) estimated that the strains which occur from void initiation to material 
separation are between 0.01 and 0.10. Substituting 0.01 < ef < 0.10 gives 0.40 < A < 1.26. 

Equation 15 is expressed in terms of equivalent strain rate and equivalent stress for 
computational compatibility. As applied numerically, the fragment size calculation takes the 

following form: 

_    SbAe 
b = l^ (16) 

where b is the fragment size computed for the current element condition of c, p, and e from 
Equation 15; and Aep is the increment of plastic strain occurring during an integration cycle. 

The total plastic strain is represented by ep = ZAep. 

This calculation is performed for every element at each integration cycle until the element fails. 
Here the failure does not refer to the fragmentation presented herein, but to fracture due to 
damage or erosion. Under both of these conditions, the equivalent stress is set to ö = 0. 

When an element fails, a fragment of size b is saved in an element array for post-processing. 
The calculated fragment size is an average based on the amount of element strain that occurs for 

each cycle as shown in Equation 16. 

This is a deviation from the theoretical approach that states the calculation should start at the 
initiation of fragmentation and continue until complete separation. Due to the difficulty in 
determining when the initiation of fragmentation begins, the approach here is to calculate an 
average fragment size based on the element history, and to later apply a factor A to the fragment 
size during post-processing. Equation 16 is the only addition to the main routine in EPIC which 
is required to calculate the fragment size, and the increased computational time is negligible. 

The remainder of the fragment computations are performed in the Postprocessor. The final 
fragment size associated with each failed element is obtained by applying the factor A to the 

calculated value determined from Equation 16, during post-processing. 
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The number of fragments for each failed element is determined by dividing the element volume 

by the fragment volume. Mass is conserved, and thus, the number of fragments calculated will 

generally not be a whole number. A velocity vector is defined for the fragments by using an 

average of the nodal velocities associated with the element. All the fragments that are 

determined from a specific failed element will have the same velocity vector. For each failed 

element, a fragment size, velocity, and number of fragments will be known. The fragment mass, 

kinetic energy, and momentum are determined straightforwardly. 

The EPIC Postprocessor can plot, in bar graph form, the number of fragments versus fragment 

mass, momentum, kinetic energy, and size. The advantage of presenting the data in this form is 

that the results are relatively mesh independent. 

6.2 EXPLOSIVE MATERIALS 

The materials identified as Explosive Materials are designated to detonate at a predetermined 

time, based on the point (or points) of detonation and the distance from the initial detonation 

point (Reference 19). There are also Reactive Explosive Materials (described in subsection 6.6) 

that do not detonate at a specified time, but rather are detonated when the proper conditions 

(generally the pressure history) have been experienced. 

6.2.1 Gamma Law Model 

The Gamma law explosives model determines the pressure from 

P = F(Y-I)E/V (1) 

where F is the burn fraction (0 < F < 1.0), y is a material constant, and E is the internal energy per 
initial unit volume. The relative volume is V = V / V0, where V and V0 represent the current and 

initial element volumes, respectively. 

The explosive is effectively initiated with the burn fraction, which is dependent on the time for 

the detonation wave to arrive and travel through the element, or the compressed state of the 

element. The burn fractions for these two conditions are 

D t19616.doc 160 



(t-tb + b/2 
F = - ^Z  (2a) 

F=T^cT (2b) 

In Equation (2a), t is the current time and t, is the time required for the detonation wave to reach 

the center of the element when traveling at the detonation velocity, D. A reference distance, b, is 
used to spread the wave front over a limited number of elements. For ID elements b = Az0 

(where Az0 is the initial length of the element), for 2D triangular elements b = 3JÄ~7 (where Ao o 

1 

is the initial area of the element), and for 3D tetrahedral elements b = 2 V03 (where V0 is the 

initial volume of the element). Equation (2b) gives the burn fraction in terms of the compressed 
state, where VCJ = y/(y + 1) is the Chapman-Jouquet relative volume. This allows a converging 
detonation wave to travel at a velocity greater than D. The maximum value of F from Equations 
(2a) and (2b) is selected, if it is within the limits, 0 < F < 1.0. If F is negative or greater than 
unity, then F is set to 0 or 1.0, respectively. 

Because the pressure, P, is directly proportional to the internal energy, E, the pressure-energy 
equations are solved simultaneously in a manner similar to that used for the Mie-Gruneisen 
Equation of State in subsection 6.1.11. 

It is possible to determine y as a function of the other material parameters. 

y = Vl + D2p0/2E0 (3) 

where D is the detonation velocity, p0 is the initial density, and E0 is the initial internal energy per 
initial unit volume. 

6.2.2 JWL Model 

The JWL explosives model (Reference 56) also is commonly used. Here the pressure is 
expressed as 

P = F[C,(1-C5/C2V) exp (-C2V) + C3(1-C5/C4V) exp (-C4v) + C5E/ v]      (1) 
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where F is the burn fraction from subsection 6.2.1, E is the internal energy per initial unit 
volume, and V = V / V0is the relative volume. C,, C2, C3, C4, and C5 are material constants. 

Again the pressure-energy equations are solved simultaneously. 

6.3 CRUSHABLE/CONCRETE MATERIALS 

There are two models available for crushable/concrete materials. Both models were developed 

for concrete, but they also can be used for other crushable materials. For the solid (metal) 

materials under subsection 6.1, it is possible to use combinations of various strength, pressure, 

and fracture models. For the concrete models, however, the strength, pressure and damage act 

together to form a single model. 

6.3.1 Modified Osborn Model 

The Osborn concrete model (Reference 57) is composed of a pressure-hardening strength model 

and a crushable pressure model. The strength is expressed as 

a = [ci(l-D) + C4P][l + C3ln£*] (1) 

The softening due to damage (1 - D) and the strain rate effect [l + C3 lne *] are modifications 

made to the original Osborn model. It is recommended that the damage model not be used, and it 

is therefore not described herein. 

In Equation 1, D is the damage (not used and set to D = 0), P is the pressure, and e* = e / e0 is 

the dimensionless strain rate for e0 = 1.0 s"1. The three constants are Ci, C4, and C3, where Q 

has units of stress and the other (C4 and C3) are dimensionless. 

The model for the pressure is shown in Figure 39. The constants are Pcrush, Inrush, Ki, K2, K3, 

Kiock, and m0Ck as shown in Figure 39. The maximum hydrostatic tension is Pmin. For increasing 

u the material behaves in a linear elastic manner for u < finish- The transition region is for 

Pcrush < u < (Jjock, where the pressure is expressed as 

P = Pc™sh+K^ + K2jI
2+K3£3 (2) 

where p> M- - |Xcrash. For |x > ui0Ck the pressure is determined from Ki0Ck as shown in Figure 39. 
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Figure 39.    Description of the Pressure-Volume Relationship for the Osborn 
Concrete Model (Specific Data Shown are for a Typical Concrete) 

For decreasing u in the transition region, the pressure unloads along an interpolated bulk 

modulus (between elastic and locked). 

For the pressure model, Pcrush> Ki, K2, K3, Ki0Ck, and Pmjn have units of stress (or pressure), and 

the others (ncruSh and m0Ck) are dimensionless. 
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6.3.2 Holmquist-Johnson-Cook Model 

The Holmquist-Johnson-Cook concrete model (Reference 58) is summarized in Figure 40. The 

strength portion of the model is shown at the top of Figure 40. The normalized equivalent stress 
is defined as a* = a / fc', where a is the actual equivalent stress and fc' is the quasi-static 

uniaxial compressive strength. The specific expression is 

a* = [A(l-D) + BP*N][l + Clne*] (1) 

where D is the damage (0 < D < 1.0), P* = P / fc' is the normalized pressure (where P is the actual 

pressure), and £* = £ / £0 is the dimensionless strain rate (where £ is the actual strain rate and 

£  = 1.0s"1 is the reference strain rate). The normalized maximum tensile hydrostatic pressure is 

T* = T/ fc', where T is the maximum tensile hydrostatic pressure the material can withstand. 

The material constants are A, B, N, C and amax, where A is the a* intercept at P* = 0, B is the 

normalized pressure hardening coefficient, N is the pressure hardening exponent, C is the strain 
rate coefficient, and c^ is the normalized maximum strength that can be developed. 

The damage for fracture is shown in the lower left corner of Figure 40. It is accumulated from 

both equivalent plastic strain and plastic volumetric strain, and is expressed as 

A£p+Alip 

» = £^77^ (2) 

where Ä£   and Anp are the equivalent plastic strain and plastic volumetric strain, respectively, 

during a cycle of integration; and efp + H, = f(P) is the plastic strain to fracture under a constant 

pressure, P. The specific expression is 

£p+Hp=Di(P*+T*)D2 (3) 

where Di and D2 are constants and P* and T* are as defined previously. As is evident from 

Equation 3, the concrete material cannot undergo any plastic strain at P* = -T* without 

fracturing, and alternatively, the plastic strain to fracture increases as P* increases. A third 
damage constant, (£p + ^ip)min, is provided to allow for a finite amount of plastic strain to 

fracture the material. This is included to suppress fracture from low magnitude tensile waves. 
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Figure 40. Description of the Holmquist-Johnson-Cook (HJC) Concrete Model 
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Damage due to plastic volumetric strain is included in Equations 2 and 3 because the concrete 

will lose cohesive strength during air void collapse. Under most circumstances, the majority of 

the damage will occur from equivalent plastic strain. 

The hydrostatic pressure-volume relationship is presented in the lower right corner of Figure 40. 

This pressure-volume response is separated into three response regions. The first region is linear 

elastic and occurs at P < PcrUsh, where PcrUsh and ucruSh are the pressure and volumetric strain that 

occur in a uniaxial stress compression test, and T is as previously defined. The elastic bulk 

modulus is Keltic = Pcrush/Ucrush- 

The second region is referred to as the transition region and occurs at PeruSh < P < Piock- In this 

region, the air voids are gradually compressed out of the concrete producing plastic volumetric 

strain. Unloading in this region occurs along a modified path that is interpolated from the 

adjacent regions. 

The third region defines the relationship for fully dense material (all air voids removed from the 

concrete). The air voids are completely removed from the material when the pressure reaches 

Piock and the relationship is expressed as 

P = K,p[+K2p;2 + K3p:3 (4) 

where 

H = 
1 + Hlock 

The modified volumetric strain, \i, is used so that the constants (Ki, K2, and K3) are equivalent 

to those used for material with no voids. The standard volumetric strain for this model is 
JJ, = p / p0 — 1 for current density p and initial density p0. The locking volumetric strain is 
jxlock = p   n / Po -1 where p^ is the grain density. This is identical to the density of the 

material with no air voids. 

For tensile pressure, P = Kelastic^i in the elastic region, P = KJT in the fully dense region, and the 

pressures are interpolated in the transition region. The interpolation factor is 

F = (Umax - ucrUsh)/(Upiock - Hcrush) where umax is the maximum volumetric strain reached prior to 

unloading and unlock is the volumetric strain at Pi0Ck- A similar method is used for compressive 
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unloading except that the higher order terms (K2|j,
2 and K3|i

3) are included. The tensile 

pressure is limited to T (1 - D). 

An addition to the model, subsequent to Reference 58, is that the shear modulus varies in a 
manner proportional to the current bulk modulus, which is identical to using a constant Poisson's 

ratio. 

6.4 LIQUID MATERIALS 

For liquid materials the three normal stress components are expressed as 

CX=2^X-(P + Q) (1) 

ay=2^iey-(P + Q) (2) 

az=2^iez-(P + Q) (3) 

where [i is the viscosity coefficient and ex, ey, and ez are the normal strain rates. P is the 

pressure and Q is the artificial viscosity as described in subsections 6.1.10 and 6.1.11. For 
liquids the pressure is usually limited to compression only. 

The three shear stress are 

fxy=HYxy (4) 

*xz=HYxz (5) 

tyz^Yyz (6) 

where yxy, Yxz > an(* Yyz 
are me snear strain rates. 

6.5 BRITTLE MATERIALS 

There are two models available for brittle/ceramic materials, the original Johnson-Holmquist 
(JH-1) model and the improved Johnson-Holmquist (JH-2) model. Both models were developed 
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for ceramic materials, but they can also be used for other brittle materials such as glass. As was 
the case for the crushable/concrete models under subsection 6.3, the strength, pressure, and 

damage act together to form a single model. 

6.5.1 Johnson-Holmquist JH-1 Model 

The original Johnson-Holmquist brittle/ceramic material model (Reference 59) is summarized in 
Figure 41. The available strength (equivalent stress), a, is dependent on the pressure, P, the 
dimensionless strain rate, e* = e / e0 (for e0 = 1.0 s"1), and the damage, D. For undamaged 

material, D = 0; for partially damaged material, 0 < D < 1.0; and for totally damaged (fractured) 

material, D = 1.0. Note that the strength is significantly reduced for fractured material (D = 1.0). 

T is the maximum tensile hydrostatic pressure the material can experience, and Si and S2 are the 
strengths of the intact material (for e* = 1.0) at the compressive pressures Pi and P2, respectively. 

After the material has fractured (D = 1.0), the slope of the strength is given by C6, and the 
maximum fracture strength is S3 (for e* = 1.0). 

The strain rate constant is C3. If a0 is the available strength at e* = 1.0, then the strength at the 

other strain rates is 

o = a0(l + C3lne*) (1) 

It can be seen that the strength increases significantly with pressure, which is consistent with the 
well-known fact that brittle materials are much stronger in compression than they are in tension. 
The constants, T, Si, and Pi can generally be determined from quasi-static and/or dynamic 
(Hopkinson bar) tension, torsion, or compression tests; and the strain rate constant, C3, can be 
determined from comparable quasi-static and dynamic (Hopkinson bar) tests. 

The higher pressure constants, S2 and P2, generally require plate impact tests. The interpretation 
of these tests can be difficult because generally only the net uniaxial stress can be measured. To 
accurately obtain the constants, it is necessary to determine both the hydrostatic and deviatoric 

components of stress. 
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Figure 41. Description of the Original Johnson-Holmquist (JH-1) Ceramic Model 

The post-fracture constant, C6, can be bounded by two different types of tests. A lower bound 

can be established by axial compression testing of a powdered material which has radial pressure 

confinement, and an upper bound can be established by axial compression testing of intact 

material (using displacement control) with radial pressure confinement. For the latter technique, 
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it is the strength after fracture which is of interest. The maximum strength of the fractured 

material, S3, may sometimes be obtained from these tests, but it usually requires plate impact 

testing. 

The damage for fracture is accumulated in a manner similar to that used in the Johnson-Cook 

fracture model, presented in subsection 6.1.12. It is expressed as 

D = ZAep/£j (2) 

where Aep is the plastic strain during a cycle of integration and e£ = f(P) is the plastic strain to 

fracture under a constant pressure, P. Referring to Figure 41, the material cannot undergo any 
plastic strain at the maximum hydrostatic tension, T, but it increases to efp = e{

maii at a 

compressive pressure of P = DPi. 

The hydrostatic pressure before fracture (D < 1.0) is simply 

P = K1(i + K2^
2+K3n

3 (3) 

where Ki, K2, and K3 are constants (Ki is the bulk modulus); and u = p/p0 - 1 for current density 
p and initial density p0. For tensile pressures (u < 0), Equation 3 is replaced by P = K,p.. 

Energy effects are not included. 

After fracture (D = 1.0), bulking (pressure increase and/or volumetric strain increase) can occur. 

Now an additional incremental pressure, AP, is added, such that 

P = K,n + K2^
2 + K3n

3 + AP (4) 

The pressure increment is determined from energy considerations. Looking back to the strength 

model in Figure 41, there is a drop in strength when the material goes from an intact state (D < 

1.0) to a fractured state (D = 1.0). This represents a loss in the elastic internal energy of the 

deviator and shear stresses. The general expression for this internal energy is 

U = G
2
/6G (5) 

where a is the equivalent plastic flow stress and G is the shear modulus of elasticity. 
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The loss in this elastic internal energy can be expressed as 

AU = Ui-Uf (6) 

where Uj is the elastic energy of the intact material before fracture (D < 1.0) and Uf is the elastic 

energy immediately after fracture (D = 1.0). 

This energy loss (of deviator and shear stresses) can be converted to potential hydrostatic internal 

energy by adding ÄP. An approximate equation for the energy conservation is 

AP^f+AP2/(2K,) = ßAU (7) 

where uf is u at fracture and ß is the fraction (0 < ß < 1.0) of the elastic energy loss converted to 

potential hydrostatic energy. 

The first term (APjxf) is the approximate potential energy for u > 0, and the second term 

[AP2 / (2Kj)] is the corresponding potential energy for u < 0. 

Solving for AP gives 

AP = -K,|if + ^(K.Hf )2 + 2ßK, AU (8) 

Note that AP = 0 for ß = 0, and that AP increases as AU increases and/or Uf decreases. 

Various features of this model can be illustrated by the three examples shown in Figure 42. The 
tensile strength of the material is T = 0.2 GPa, the unconfined compressive strength is Si = S2 = 
2.0 GPa, the modulus of elasticity is E = 220 GPa and Poisson's ratio is v = 0.22. Because the 
height is H = 1.0m and the area is A = 1 .Om2, the deflection is 5 = -sz and the force is F = -az. 
For all three cases, the force, F, is slowly applied until 5 = 0.02m, and then it is slowly released 
until F = 0. The paths are shown for strength versus pressure and for force versus deflection. 
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For Case A, the material cannot develop any plastic strain (ejj = Oj or any strength after fracture 

(<Tf = 0 for C6 = 0). All of the elastic energy loss (of deviator and shear stresses) is converted to 

potential hydrostatic energy (ß = 1.0). Because there is no plastic work, the external work must 

also vanish. This is clearly shown in the force versus deflection relationship for Case A. The 

pressure jump at fracture (AP = 0.56 GPa) provides for this conservation of energy. 

Case B is similar to Case A except that the material is allowed to undergo a small amount of 

plastic strain (ep = 0.005] prior to fracture. Even though the elastic energy loss at fracture, AU, 

is equal to that of Case A, the pressure jump (AP = 0.37 GPa) is less because uf is greater at 

fracture. 

Case C is similar to Case B except that there is strength after the material has fractured (at = 

0.5 P for C6 = 0.5). Here, the pressure jump (AP = 0.15 GPa) is reduced from that of Case B 

because the elastic energy loss at fracture, AU, is less. The loading/unloading path is very 

complex. Of special interest is the elastic unloading between points 5 and 7. Between points 5 

and 6, the axial deviator stress, sz, is in compression; but between points 6 and 7, the same 

deviator stress is in tension. The net stress, oz, which includes the hydrostatic pressure, remains 

in compression. At point 7, the elastic unloading is complete and the material flows plastically 

between points 7 and 8. 

6.5.2 Johnson-Holmquist JH-2 Model 

The improved Johnson-Holmquist brittle/ceramic model (Reference 60) is summarized in 

Figure 43. The original Johnson-Holmquist (JH-1) model for brittle materials includes pressure- 

dependent strength, damage and fracture, significant strength after fracture, bulking, and strain 

rate effects, as presented in subsection 6.5.1. After the model was first reported, it was 

implemented into several codes and applied to a variety of applications. It soon became apparent 

that there were several concerns. 

The JH-1 model does not allow for gradual softening, and some materials clearly show a gradual 

softening during flyer plate impact tests. Also, results for some applications are very sensitive to 

the constants used in the model and there is not a straightforward process available to determine 

accurate constants. Finally, the jump conditions between fractured material (damage = D = 1.0) 

and intact material (D < 1.0) caused some problems for Eulerian codes, whereby the material 

could tend to heal itself after fracture had occurred. 
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The new model was developed to address these concerns. Reference 61 provides a description of 

a procedure to obtain constants for glass, as well as some plate impact and penetration 

computations. 

A general overview of the JH-2 model is shown in Figure 43. Although it is very similar to the 

JH-1 model, there are several differences. 

• The material begins to soften when the damage begins to accumulate (D > 0). This 

allows for gradual softening of the material under increasing plastic strain. (The JH-1 

model does not soften until D = 1.0, and then the softening occurs instantaneously.) 

. The strength and pressure are normalized by the strength and pressure components of 

the Hugoniot Elastic Limit (HEL), which allows for many of the constants to be 

dimensionless. This can be very helpful when comparing different materials, and when 

estimating constants for materials which have an insufficient database to determine 

constants. 

. The strength and damage are analytic functions of the pressure and other variables. 

This allows for parametric variation of the constants in a more systematic manner. (The 

JH-1 model uses multiple linear segments.) 

• The strength generally is a smoothly varying function of the intact strength, fracture 

strength, strain rate, and damage. It is well-suited for implementation into Eulerian 

codes. 

Returning to Figure 43, the normalized equivalent stress is 

o*=a*-D(o*-c*f), (1) 

where a* is the normalized intact equivalent stress, G*{ is the normalized fracture stress, and D is 

the damage (0<D< 1.0). 

The normalized equivalent stresses (a*, a*, a*f) have the general form 

a* = C/CJHEL, (2) 
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Figure 43. Description of the Improved Johnson-Holmquist (JH-2) Ceramic Model 
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where a is the actual equivalent stress and CTHEL is the equivalent stress at the HEL. 

The normalized intact strength is given by 

o;=A(v'+rT(l + Cln?), (3) 

and the normalized fracture strength is given by 

c;=B(P*)M(l+Clne*). (4) 

Note that the normalized fracture strength can be limited by cj < c'{ (max). This optional 

fracture strength parameter is included to provide more flexibility in defining the important 

fracture strength. It also allows the user to use the same fracture strength as used for the JH-1 

model (when M = 1.0). 

The material constants are A, B, C, M, N, and c*f (max). The normalized pressure is P* = 

P/PHEL, where P is the actual pressure and PHEL is the pressure at the HEL. The normalized 

maximum tensile hydrostatic pressure is T* = T/PHEL, where T is the maximum tensile 
hydrostatic pressure the material can withstand. The dimensionless strain rate is e* = e / e0, 

where e is the actual strain rate and e0 = 1.0 s"1 is the reference strain rate. 

The damage for fracture is accumulated in a manner similar to that used in the JH-1 model in 

subsection 6.5.1, and the Johnson-Cook fracture model in subsection 6.1.12. It is expressed as 

D = EAep/e;, (5) 

where AeP is the plastic strain during a cycle of integration and z[ = f(P) is the plastic strain to 

fracture under a constant pressure, P. The specific expression is 

e^D.tP'+T'f (6) 

where Dt and D2 are constants and P* and T* are as defined previously in Equation 3. Again, the 
material cannot undergo any plastic strain at P* = -T*, but ef

p increases as P* increases. 
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A physical explanation of damage and fracture is shown in Figure 44. If the material is held 
under a constant pressure and then subjected to a straining deformation at a constant strain rate, 

the damage begins to accumulate when the material begins to flow plastically (at a = a;). The 

material then begins to soften (relative to the intact strength). This softening could be related to 

the material going from a larger particle size to a smaller particle size under increased plastic 

strain. When the material is completely damaged (D = 1.0), the strength does not decrease with 

increased plastic strain (at cr = crf). 
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Figure 44.   Strength, Damage, and Fracture Under a Constant Pressure and Strain 
Rate for the JH-2 Model 

Unfortunately, it is not generally possible to perform these tests at sufficiently high pressures of 
interest. As a result, the damage functions and fracture strength must be inferred from other data. 

The hydrostatic pressure before fracture begins (D = 0) is simply 

P = K,u, + K2n
2+K3|i

3 
(7) 

where Ki, K2, and K3 are constants (Ki is the bulk modulus); and u = p/p0 - 1 for current density 
p and initial density p0. For tensile pressure (u < 0), Equation 7 is replaced by P = K,}!. Energy 

effects are assumed to be insignificant. 
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After damage begins to accumulate (D > 0), bulking (pressure increase and/or volumetric strain 

increase) can occur. Now an additional incremental pressure, ÄP, is added, such that 

P = K^ + K2^
2 + K3^

3+AP. (8) 

The pressure increment is determined from energy considerations; it varies from ÄP = 0 at D = 0 

to AP = APmax at D = 1.0. Figure 45 shows how AP increases as D increases. The incremental 

internal elastic energy decrease (due to decreased shear and deviator stresses) is converted to 

potential internal energy by incrementally increasing AP. The decrease in the shear and deviator 

stresses occurs because the strength, a, decreases as the damage, D, increases, as shown in 

Figure 43 and Equation 1. 

P = K^ + K2n
2 + K3H3 + AP 

t+At 
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Figure 45. Description of Incremental Bulking Pressure for the JH-2 Model 

The general expression for the elastic internal energy of the shear and deviator stresses is 

U = CT76G (9) 

where CT is the equivalent plastic flow stress and G is the shear modulus of elasticity. 

The incremental energy loss is 
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AU = UD(t)-UD(t+At) (10) 

where U^ and UD(,+AT) are computed from Equation 9 using at+M for both energies. 

If the energy loss, AU, is converted to potential hydrostatic energy through AP, an approximate 

equation for this energy conservation is 

(APt+4t-APtK+At+(APt
2
+At-APt

2)/2K1=ßAU. (11) 

The first term [(APt+At - AP, )\it+M ] is the approximate potential energy for \i > 0 and the second 

term [(AP2
+At - AP2)/2K, ] is the corresponding potential energy for n < 0. 

Solving for the updated AP gives 

APt+At = -K^t+At +>/(K1^+At+APt)
2+2ßK1AU. (12) 

As was the case for the JH-1 model, the JH-2 model also gives AP = 0 when ß = 0, where ß is the 
fraction (0 < ß < 1) of the elastic energy loss converted to potential hydrostatic energy. 

Various features of the JH-2 model can be illustrated by the three examples shown in Figure 46. 
The tensile strength of the material is T = 0.2 GPa, the HEL = 2.79 GPa, the intact strength is 

assumed to be c* = 0.93 (P* + T*)   , the modulus of elasticity is E = 220 GPa, and Poisson's 

ratio is v = 0.22. There is no strain rate effect so that C = 0 in Equations 3 and 4. From the 
preceding constants, the following additional constants can be obtained: 

Kl = 3(i^2vT = 13a95GPa' (B) 

G=   ,E   ,=90.16 GPa, (14) 
2(1+ v) 

PHEL = K^HEL + KÄL + K^ = 1.46 GPa, (15) 

aHEL=|(HEL-PHEL), (16) 
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Figure 46. Examples of Material Responses with the JH-2 Ceramic Model 
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where HEL is the net axial stress for the Hugoniot Elastic Limit, PHEL is the pressure component 

of the HEL, and UHEL = 0.01117 is the corresponding u at PHEL (for K2 = K3 = 0). For a known 

HEL and G, UHEL can be obtained iteratively from 

2 3 4 

HEL = KJUHEL + K2\lWEL + K3\lmt + ~G 
( V HEL 

1 + H 
(17) 

HEL J 

Because the height is H = 1.0m and the area is A = 1 .Om2, the deflection is 5 = -ez and the force 

is F = -az. For all three cases, the force, F, is slowly applied until 8 = 0.05m, and then it is 

slowly released until F = 0. The paths are shown for strength versus pressure and for force 

versus deflection. 

For Case A, the material cannot develop any plastic strain \e{
p = 0) or any strength after fracture 

(af = 0]. All of the elastic energy loss (of deviator and shear stresses) is converted to potential 

hydrostatic energy (ß = 1.0). Because there is no plastic work, the external work must also 

vanish. This is shown in the force versus deflection relationship for Case A. The pressure jump 

(AP = 0.56 GPa) provides for this conservation of energy. 

Case B is similar to Case A except the material is allowed to accumulate some plastic strain 

during fracture. Taking Di = 0.005 and D2 = 1.0 in Equation 6 gives a pressure dependent 
fracture strain, ef

p . It can be seen in Figure 46 that the material gradually softens between point 2 

(where the damage begins to accumulate) and point 3 (where the damage is complete and there is 

no strength). The bulking pressure, AP, is also generated between these two points. 

Case C is similar to Case B except that there is strength in the fractured material 

Of = 0.31 (P*)     . The constants from Equation 4 are assumed to be B = 0.31, m = 0.6, and C = 

0. Here the response is very complex, with the primary regions of interest as follows: 

From Points 1 to 2 the material loads elastically until the intact strength, ai5 is encountered at 

point 2. From Points 2 to 3 the material flows plastically, moving from the intact strength at 

point 2 to the fracture strength at point 3. The damage goes from D = 0 at point 2 to D = 1.0 at 

point 3. Similarly, the bulking pressure goes from AP = 0 at point 2 to AP = 0.65 GPa at point 3. 

From Points 3 to 4 the material continues to flow plastically along the fracture strength envelope, 

<7f. From Points 4 to 5 the loading direction is reversed at point 4 and the material unloads 
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elastically. At point 4, the axial deviator stress is in compression. At point 5, the axial deviator 

stress is completely unloaded such that the resulting stress is due only to the hydrostatic pressure. 

From Points 5 to 6 the elastic unloading continues and the axial deviator stress goes into tension. 

The net axial stress remains in compression, however, because the pressure is greater than the 

deviator stress. The fracture stress, af, is encountered at point 6. From Points 6 to 7 the material 

unloads plastically along the fracture strength envelope. At point 7, both the pressure and the 

axial deviator stress (strength) go to zero. 

6.6 REACTIVE EXPLOSIVE MATERIALS 

For the Reactive Explosive materials the burn fraction is determined as a function of the pressure 

history. For the Explosive Materials (described previously in subsection 6.2) the burn fraction 

could be predetermined based on the detonation velocity and the point of detonation. The 

Reactive Explosive models generally require a very fine grid and significantly more CPU time. 

6.6.1 Tarver Ignition and Growth Model 

The Ignition and Growth model is presented in Reference 62. This reference uses the JWL 

Equation of State (presented previously in subsection 6.2.2) for both the pressure in the solid 

material and the gas products. The burn rate fraction, F, goes from F = 0 (solid only, no reaction) 

to F = 1.0 (complete reaction). The burn rate is 

F = aF/at = l(l-F)B(p/p0-l-A)X+G1(l-F)cFDPY+G2(l-F)EFGPz (1) 

The three basic terms correspond to ignition, growth, and completion. F is the mass fraction of 

the explosive which has reacted, t is the time, p is the current density, p0 is the initial density, and 

P is the pressure. The constants are I, Gl5 G2, A, B, C, D, E, G, X, Y, and Z. The dimensionless 

constant, A, prohibits ignition until (p/p0 - 1 - A) > 0. 

The burn rate, F, is given by Equation 1, and the burn fraction, F, is numerically integrated as 

follows: 

F,+At=F'+Ft+At (2) 
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where At is the integration time increment and Ft+ is based on the volumetric strain at time = t + 

At and the pressure at time = t. F = 0 indicates all solid behavior (no detonation), and F = 1.0 

indicates all gas products behavior (complete detonation). The burn fraction is an element 

variable which must be carried from cycle to cycle. 

There are two other element variables which must also be carried from cycle to cycle. VFg is the 

fraction of the element volume which contains gas products, and ETg is the total internal energy 

which has been added to the gas products. 

ETg = (Eg-E0)V0F (3) 

where Eg is the internal energy per initial volume in the gas products, E0 is the initial internal 

energy per initial volume in the explosive, V0 is the initial volume of the element, and F is the 

burn fraction. 

The initial estimate for VFg is given by 

W.+At = VFg' + [AF / (l - F')] (l - VF^) (4) 

where AF = Ft+At - Fl is the incremental burn fraction between cycles. The quantity AF/(1 - F') 

is simply the fraction of unburned mass which was burned during the past cycle. Similarly, the 

quantity (l - VFg') is the volume fraction of unburned material. This equation essentially 

converts the volume of solid burned during the past cycle to an equivalent volume of gas 

products. Equation 4 is only an estimate and is therefore altered in subsequent iterations. 

The relative volumes for the entire element, solid portion, and gas products portion, are 
designated as V, Vs, and Vg, respectively. The all have the form V = V / V0 where V is the 

current volume and V0 is the initial volume. 

The relative volumes of the solid and gas products portions at time = t, are given by 

V,t=V,(l-VFg
,-AVF)/(l-F,+/tt) (5) 

Vg
l = V1 (w; + AW) / F,+At (6) 
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where AVF = [äF / (l - F* )](l - VFg) is required to represent the volume of material which 

burned during the previous cycle. 

Similarly, the relative volumes at time = t + At, are 

Vs
t+At = V,+At (l - VF,+At) / (l - F,+At) (7) 

yt+At _ yt+At ypt+At i pt+At (g) 

For the first iteration, VFg
t+At is given by Equation 4; but in subsequent iterations, it is varied. 

The corresponding volumetric strain rates are 

es=(vrt-Vs')/At (9) 

£B=(V<+At-V<)/At (10) 

The internal energy distributions must also be determined before the JWL Equation of State 

(EOS) can be applied. 

The total added internal energy is given by 

ET = (E-E0)V0 (11) 

where E is the current internal energy per initial volume and E0 is the initial internal energy per 

initial volume in the explosive. 

The total added energy in the gas products, ETg, is given in Equation 3. The total added energy 

in the solid is then 

ET =ET-ET„ (12) 
g 

As the explosive burns, the internal energy of the mass, which changes from solid to gas products 

during an integration cycle, must be transferred from the solid to the gas products. 
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ETS
,+ =ETS'-AET (13) 

ETg
t+=ET^+AET (14) 

where the energy change is given by 

AET=ETsAF/(l-F') (15) 

Now the internal energies, per initial volume, for the JWL EOS can be determined. 

ES=E:+ETS/[V0- (l-F)] + AEd (16) 

Eg=E0+ETg/(V0-F) (17) 

where E* and E0 are the initial internal energies per initial volume, for the solid and the gas 

products. In Equation 16, AEd is the incremental internal energy, generated during the past cycle, 
due to the material strength (shear and deviator stresses) of the solid material. (As described in 

subsection 6.1.9). 

The JWL EOS is given in subsection 6.2.2. After the pressures for both the solid and gas 
products have been computed, an equilibrium pressure difference is computed by 

IP -P I 
AP = _L_! «!_ (18) 

IP.I + IP.I 

If AP < AP^^d, then equilibrium has been attained. For AP > AP^^, a new value of VFg is 

assumed (using a binary iteration) and the previous process is repeated. Limited experience 
indicates reasonable results are obtained using AP^^,,, = 0.01. 

Although Reference 62 (and the discussion in this subsection) uses the JWL EOS for both the 
solid material and the gas products, it is possible to use other Equations of State with the burn 

rate given in Equation 1. 
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6.6.2 Mader Forest Fire Model 

The Forest Fire model is presented in Reference 63. Here the burn rate is expressed as 

^ = (l-F)-exp (C0+C,P + C2P
2+ ... + C14P

14) (1) 
ot 

where C0.. .CI4 are material constants and P is the pressure. The burn fraction, F, is as defined in 

subsection 6.6.1. F = 0 indicates all solid behavior (no detonation), and F = 1.0 indicates all gas 

products behavior (complete detonation). The numerical implementation is similar to that 

described in subsection 6.6.1. 

6.7 RDG STRENGTH AND FRACTURE MODEL 

The RDG strength and fracture model is described in References 64 and 65. This model uses 

either the Johnson-Cook or Bodner-Partom strength model and the Mie-Gruneisen Equation of 

State. These are coupled together with a void nucleation fracture model. The current strength 

and pressure are determined as a function of the intact material properties and the void volume 

fraction. The specific algorithm is not presented in this report. This is a complex model, and the 

References should be consulted for a detailed description. 
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