
CENTER FOR PURE AND APPLIED MATHEMATICS

UNIVERSITY OF CALIFORNIA, BERKELEY

PAM-554

ACCURATE SINGULAR VALUES AND DIFFERENTIAL qd ALGORITHMS

K. Vince Fernando and Beresford N. Parlett

' »proved tea pupa« ■ tai« University of California
Berkeley, California 94720

19970717 162
"^

July 1992
revised January 1993

m a

This report was done with support from the Center for
Pure and Applied Mathematics. Any conclusions or
opinions expressed in this report represent solely
those of the author(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.

DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
SEATTLE REGIONAL OFFICE

1107 NE 45TH STREET. SUITE 350
SEATTLE WA 98105-4631 IN REPLY REFER TO:

4330
ONR 247
11 Jul97

From: Director, Office of Naval Research, Seattle Regional Office, 1107 NE 45th St., Suite 350.
Seattle, WA 98105

To: Defense Technical Center, Attn: P. Mawby, 8725 John J. Kingman Rd., Suite 0944,
Ft. Belvoir, VA 22060-6218

Subj: RETURNED GRANTEE/CONTRACTOR TECHNICAL REPORTS

1. This confirms our conversations of 27 Feb 97 and 11 Jul 97. Enclosed are a number of
technical reports which were returned to our agency for lack of clear distribution availability
statement. This confirms that all reports are unclassified and are "APPROVED FOR PUBLIC
RELEASE" with no restrictions.

2. Please contact me if you require additional information. My e-mail is silverr@onr.navy.mil
and my phone is (206) 625-3196.

■ / > / /

4/'//// H.k^. -■■-x
ROBERT J. SILVERMAN

Accurate Singular Values and Differential qd Algorithms

K Vince Fernando^1-2-0'6) and Beresford N Parlett<3'6)

W NAG Ltd, Wilkinson House, Jordan Hill, Oxford 0X2 8DR, UK

(2) Division of Computer Science, University of California, Berkeley, CA 94708, USA

(3) Department of Mathematics, University of California, Berkeley, CA 94720, USA

July 11, 1992

revised January 1993

This is dedicated to the memory of
Heinz Rutishauser

(a)Supported by NSF, under grant ASC-9005933
(^Supported by ONR, contract N000014-90-J-1372

Abstract

We have discovered a new implementation of the qd algorithm that has a far wider
domain of stability than Rutishauser's version. Our algorithm was developed from
an examination of the LR-Cholesky transformation and can be adapted to parallel
computation in stark contrast to traditional qd. Our algorithm also yields useful
a posteriori upper and lower bounds on the smallest singular value of a bidiagonal
matrix.

The zero-shift bidiagonal QR of Demmel and Kahan computes the smallest singu-
lar values to maximal relative accuracy and the others to maximal absolute accuracy
with little or no degradation in efficiency when compared with the UNPACK code.
Our algorithm obtains maximal relative accuracy for all the singular values and runs
at least four times faster than the LINPACK code.

Key words: qd, LR algorithm, Cholesky decomposition, singular values, SVD,
bidiagonal matrices

11

Contents

1 Introduction and Summary 1

2 Notation and Normalization 3

2.1 Normalization 4

2.1.1 Superdiagonal 4

2.1.2 Diagonal 4

2.1.3 Signs 4

3 Orthogonal Form of the Cholesky Algorithm 5

4 The Quotient Difference Algorithm 8

5 Incorporation of Shifts 11

5.1 Shifted qd Algorithms 11

5.2 The Two Phase Implementation 13

5.3 Almost Positive Bidiagonals 13

6 Bounds for am,„ 14

6.1 A Posteriori Bounds for the Smallest Singular Value 14

6.2 The Newton shift 17

6.3 The (l,oo) Bound 17

6.4 The Johnson Bound 18

7 Effects of Finite Precision 18

7.1 Error Analysis - Overview 18

7.2 High Relative Accuracy in the Presence of Shifts 19

Ill

8 Convergence 24

8.1 Linear Convergence 24

8.2 Quadratic Convergence 26

8.3 Cubic Convergence 27

9 A Preliminary Implementation 28

9.1 Choice of Shifts 28

9.2 Splitting and Deflation 29

9.3 Performance of a Prototype Implementation 31

10 The Demmel/Kahan Paper 32

10.1 High Relative Accuracy 32

10.2 Bounds for an 32

10.3 A Stopping Criterion 33

10.4 Bidiagonal QR with Zero Shift 33

10.5 The Overall Algorithm 34

10.6 Other Improvements 34

11 Evolution of qd 34

12 The Continued Fraction Connection 37

1 Introduction and Summary

In September 1991 J. W. Demmel and W. M. Kahan were awarded the second SIAM
prize in numerical linear algebra for their paper 'Accurate Singular Values of Bidiagonal
Matrices' [4], referred to as DK hereafter. Among several valuable results was the obser-
vation that the standard bidiagonal QR algorithm used in UNPACK [5], and in many
other SVD programs, can be simplified when the shift is zero and, of greater importance,
no subtractions occur. The last feature permits very small singular values to be found
with (almost) all the accuracy permitted by the data and at no extra cost.

In this paper we show that the DK zero shift algorithm can be further simplified and this
simplicity has several benefits. One is that a new algorithm can be implemented in either
parallel or pipelined format as an 0(log2 n) algorithm. This is pursued in a companion
paper [9].

Our investigations began with the modest goal of showing that it was preferable to
replace the DK zero-shift QR transform by two steps of zero-shift LR implemented in
a qd (quotient-difference) format. Root-free algorithms run considerably faster than
standard ones. The surprise here is that to keep the high relative accuracy property it is
necessary to use a little known variant of qd (the differential form of the progressive qd
algorithm or dqd [25], [24]). The standard qd will not suffice as we show in Section 4.
There are no subtractions in dqd. We suspect that Rutishauser discovered dqd in 1968,
just two years before his death, and we say more about its history in Sections 4 and 11.

What we want to stress here is that, for reasons we may never know, Rutishauser did not
consider the shifted version of dqd. Incidentally this differential qd is not to be confused
with the continuous analogue of qd (see [21]) and more recent work on QR flows. The
trouble with the shifted version of the ordinary qd algorithm is that it cannot recover
from a shift that is too large. Consequently qd algorithms have been shackled with very
conservative shift strategies, such as Newton's method, and earned the reputation of being
slow compared to the QR algorithm. Had Rutishauser considered shifts with differential
qd (dqds hereafter) he would have realized, as we soon did, that the transformation may
be split into two parts. The parts depend on whether the machine is of sequential or
parallel type but, in each case, a shift that is too big reveals itself before the old matrix
is overwritten and so need not be invoked. An unused shift is not wasted because it
gives an improved upper bound on the smallest singular value at a cost less than one qd
transformation as well as contributing to an improved shift.

Our approach frees the algorithm to exploit powerful shift strategies while preserving
high relative accuracy all the time. In contrast the QR algorithm delivers high relative
accuracy only with a zero shift.

Even though our algorithms must find the singular values in order we can use shift
strategies that are at least quadratically convergent. This is better than fourth order
convergence for QR. When only the smallest few singular values are needed this ordering
constraint is a great advantage. Another rather subtle feature is that it is not necessary

to make an extra 0(n) check for splitting of the matrix into a direct sum. The necessary
information is provided by the auxiliary quantities.

In June 1992 we discovered that our dqds algorithm enjoys high relative stability for all
shifts provided that they avoid underflow, overflow or divide by zero. Consequently it can
be used in a variety of applications (eigenvalues of symmetric or unsymmetric tridiago-
nals, zeros of polynomials, poles and zeros of transfer functions and many applications
involving continued fractions) where Rutishauser's qd has been abandoned because of
its instability in the general case.

Our error bounds for singular values are significantly smaller than those in DK and
the approach is quite transparent. It was this analysis that showed us the possibility
of violating positivity while still maintaining maximal relative accuracy for all singular
values, not just the small ones.

It gradually dawned on us as we developed the algorithm that we were breaking away
from the orthogonal paradigm that has dominated the field of matrix computations (called
numerical linear algebra by highbrows) since the 1960's. It seems to be sacrilegious to be
achieving greater accuracy and on average, a four fold speed-up1 by simply abandoning
QR for something equivalent to LR. See Section 9.3 for details. High accuracy comes
from the fact that dqds spends most of its time transforming lower triangular 2 x 2s into
upper triangular 2 X 2s by premultiplication.

Rutishauser gave no direct explanation for the way shifts are introduced into qd. We
have supplied one in terms of matrix factorizations in Section 5.1 and go on to list the
possible choices for a shift in Section 6 and 9.

Section 3 presents the unifying general result which shows that it is possible to implement
the LR-Cholesky algorithm of Rutishauser [22], [26] using orthogonal transformations
only. Perhaps this is the key idea exploited in the paper. Since the term LR-Cholesky
over describes the algorithm we simply refer to it as the Cholesky Algorithm. Our
orthogonal Cholesky algorithm is applicable to dense matrices; this more general case is
studied elsewhere [8].

We want to point out the unusual historical lineage of this algorithm. The qd algorithm
begat the LR algorithm which then gave rise to the QR algorithm of Francis. This in turn
led to the Golub-Kahan and Golub-Reinsch algorithms for singular values of bidiagonal
matrices which lead to the DK zero-shift variant. This inspired our orthogonal algorithm
of which differential qd is the root-free version. We are back to qd again but with a new
implementation.

As a service to the busy readers we have included a brief account of the origins of qd
and a summary of the DK paper. When reading [25] we regretted that the link between
continued fractions and our matrices was not made explicit. We provide the connection

1A11 our computations are performed on a DECstation 5000/120 using double precision arithmetic
(53-bit mantissa).

in the final section.

2 Notation and Normalization

This paper does not involve vectors very much and so we do not follow Householder
conventions. However capital roman letters denote matrices while lower case Roman and
Greek letters denote scalars. On the rare occasions when a vector is needed it is denoted
by a lower case roman letter in boldface.

As usual the singular values of an n x n matrix C are arranged in monotone decreasing
order and denoted by ait <r2,..., (T„, their union is a\C\.

• We make reference to the QR factorization of a matrix. This is the matrix form of
the Gram-Schmidt orthonormalizing process applied to the columns of the matrix
in natural order. By convention the diagonal entries of the upper triangular factor
R are taken nonnegative. See Golub and Van Loan [11] for details.

• We make reference to the Cholesky factorization of a positive definite matrix into
the product of a lower triangular matrix and its conjugate transpose. The factors
are unique.

• We make references to the LR and QR algorithms. These are defined in the appro-
priate places.

We shall be concerned mainly with bidiagonal matrices which we call B and take them
to be upper bidiagonal. To save space we write the bidiagonal matrix

B =

a2 b2

*n-l K-i
an

as

B = bidiag <
b: b2

a2

bn-2 &n-l

On-1 On

2.1 Normalization

Consider now the effect of a zero value among the parameters ofnxn bidiagonal B.

2.1.1 Superdiagonal

Suppose that 6* = 0, k < n. Then B may be written as a direct (or diagonal) sum of
two bidiagonals J?i and B2. Moreover

a[B] = <r[Bi] U a[B2).

This case makes the calculation of singular values easier. Even more important is the
fact that our algorithms do not suffer from the failure to detect such a split when it
occurs. However, the transition from a linearly convergent shift to a quadratic shift will
not occur if the split lies undetected for too long.

2.1.2 Diagonal

Let a* = 0, k < n. Since | det B\ = TJ"= i I a« l= 117=1 °i & follows that cr„ = 0. However
some work is needed in order to deflate this value, i.e. to find a new B of order n — 1
yielding the remaining singular values of B. In exact arithmetic one iteration of any of
the unshifted algorithms given later is guaranteed to produce the desired B and so this
case does not need special treatment. The zero diagonal entry may be driven to the
closest end of the matrix.

If ak = 0, k < n, at one step of our algorithm and if a„ = 0 at the next step then 6fc_i
will also vanish and so produce a split into two bidiagonals.

2.1.3 Signs

If the matrix is real, then using pre and post multiplication by matrices of the form
diag{±l} any sign pattern may be imposed on the entries of B without changing the
singular values. H the matrix is complex, then it could be transformed to a real matrix
by pre and post multiplication by matrices of the form diag{exj>(iu>)} where i2 = — 1 and
u> is real.

There is little loss of generality in assuming, when necessary, that B is of real positive
type; all its parameters exceed 0. However in Section 5.3 we address the practical question
of when to relax the requirement of positivity.

3 Orthogonal Form of the Cholesky Algorithm

The result given in the theorem below is implicit in proofs that one step of the QR
algorithm is equal to two steps of the Cholesky algorithm. Nevertheless it appears not
to have been stated explicitly before and was not known to several experts whom we
consulted. So for the next few paragraphs we consider full complex matrices. Recall
that the Cholesky factorization of a positive definite Hermitian matrix A(= A*) may be
written as A = LL* where L is lower triangular.

Definition. The Cholesky transform of A = LL* is

i := L*L

The Cholesky algorithm, consisting of successive applications of the Cholesky transfor-
mation, is a special case of the LR algorithm.

We now consider the relation between L and L, the Cholesky factors of A and A, respec-
tively.

Theorem 1 Let A = LL* be the Cholesky factorization of the Cholesky transform of
positive definite A = LL*. Then

L = QL*

is the QR factorization of L.

Some may prefer the formulation
R* = QR

with A = R*R and A = R*R.

Proof. Since A is positive definite all factors mentioned below are unique. By definition
of L

L*L = LL*.

We seek invertible F such that
L = FL*, (1)

L* = LI-1. (2)

Transpose and conjugate (1) and use invertibility of L in (2) to find

F* = L~lL* = F-1.

So F is unitary and since L* is upper triangular with positive diagonal Equation (1)
above gives the QR factorization of L, as claimed. •

The theorem shows that L may be obtained from L by orthogonal transformations with-
out forming A. Moreover just as QR may be performed with column pivoting so can we
obtain the Cholesky factor of a permutation of A. A general application of Theorem 1
is presented in Fernando and Parlett [8] but here we return to the bidiagonal case.

The basic equation LL* = VL guarantees that the Cholesky algorithm preserves band-
width. In particular, bidiagonal B gives rise to tridiagonal A = BtB and a bidiagonal
B. In order to study how B is derived from B, let

(6l B = bidiagi - h • 6n"2 K-1

B = bidiag{ . hl . 'h • S-2 . t"-1 . l.
[ai a2 . an-i a« J

where 5*5 = BBX. By Theorem 1

B* = Q.B.

The matrix Q may be written as a product of (n — 1) plane rotation matrices [11],

Q = G\Gi- • •<?„_!.

Before the annihilation of the subdiagonal element bk, the active part of the matrix is of
the form,

0 äfc_i 6jfe_i

0 äk 0
h a*+i 0

bk+l «it+2

and after the plane rotation Gk, the matrix becomes

0 Ojt_i bk-i

0 äk bk

0 ak+1 0

(3)

(4)

Formally we may set B^ = B1 and, for k = 1,..., n — 1

5« = G^*"1). (5)

Finally B = J9(n-1> and, from (3) and (4), with äi = ax and ck + s\ = 1,

äk = yjäl + b2
k = äk/ck (6)

sk = bk/äk

Cjb = äk/äk (7)

bk = skak+i = bkak+i/ak (8)

ßfc+i = c*a*+i = ö,kak+i/äk.

There is some redundancy in the equations given above but their most important property
is the absence of subtractions. This ensures high relative accuracy in the new entries a,-
and b{. Observe that neither sk nor ck is needed explicitly to compute the new entries.
To the best of our knowledge the algorithm given below is new. For reasons that appear
in the next section we call it the Orthogonal qd-Algorithm or oqd. It is convenient to
use

cabs(x,y) = \Jx2 + y2 (9)

whose name stands for the complex a&solute value of x + iy. In numerical computing
(e.g. Eispack), an alternative name for cabs is pythag.

Algorithm 1 (oqd)

a := ai

fork = l,n — l

at := cabs(ä, bk)

bk := bk * (ak+1/ak)

a := ä * (ajt+i/äfc)

end for

an := a

This algorithm will undergo several transformations in the following pages before we are
ready to implement it. Nevertheless, even at this stage, two applications of it are slightly
better (fewer multiplications) than the DK Zero Shift QR algorithm [4] described briefly
in our Section 10.

The inner loop comparisons given in Table 1 are based on one QR step which is equal
to two LR steps. We have taken into account the common sub-expression ak+1/ak in the
estimation of the complexity of oqd (Algorithm 1).

DK uses six auxiliary variables while oqd needs only one. The memory traffic is es-
sentially determined by the number of variables, arithmetic operations and assignment
statements. In most advanced architectures, memory access is more expensive than
floating-point operations and in such machines the oqd will be very advantageous be-
cause of fewer read and write operations.

DK oqd
cabs 2 1*2

divisions 2 1*2
multiplications 6 2*2

conditionals 1 0
assignments 7 3*2

auxiliary variables 6 1

Table 1: Complexity of Demmel-Kahan and oqd

4 The Quotient Difference Algorithm

It is easy to avoid taking the square roots that appear in oqd (Algorithm 1) . Define
bn := 0 and qk = a\ , ek = bk , k = 1,2,. ..,n . By simply squaring each assignment
in oqd (Algorithm 1) one obtains an algorithm that turns out to be a little known
variant of the quotient difference algorithm. Rutishauser developed his qd algorithm in
several papers from 1953 or 1954 (e.g. [20]) until his early death in 1970 but this variant
appeared in English only in 1990 in [25] which is the translation of the German original
[24] published in 1976. The full list of the papers on qd by Rutishauser can be found in
the above mentioned books which were published posthumously.

In the notes at the end of [20] and at the end of volume 2 of [24] this variant is called
the differential form of the progressive qd algorithm or dqd. These notes were based on
unfinished manuscripts of Rutishauser.

Algorithm 2 (dqd)

d:=qx

fork := l,n — 1

qk := d + ek

ek :— ek *(qk+i/qk)

d := d*(qk+1/qk)

end for

qn := d

The implementation of dqd (Algorithm 2) requires only 1 division, 2 multiplies, and 1
addition in the inner loop. No subtractions occur.

The intermediate variable d may be removed. At step k, d= dk and the trick is to write
it as a difference.

dk+\ = clqk+1 = qk+1 - s\qk+i = qk+1 - ek.

Algorithm 3 (qd)

e0 = 0

fork := l,n — 1

Qk •= (qk - h-i) + e*

ek := ek * qk+i/4k

end for

Qn •= Qn - e„_i

Table 2 compares the complexity of orthogonal, differential and standard qd algorithms.

oqd dqd qd
cabs 1 0 0

divisions 2 1 1
multiplications 4 2 1

additions 1 1 1
subtractions 0 0 1

assignments 3 3 2

auxiliary variables 1 1 0

Table 2: Complexity of oqd, dqd and qd

We hasten to add that Rutishauser did not derive the qd algorithm from our Theorem 1
but from ideas described in Section 11.

For positive B, dqd and qd are stable in the sense that all intermediate quantities are
bounded by ||2?||2. Singular value errors provoked by finite precision arithmetic will be
tiny compared to of. This is satisfactory for many purposes and it was not generally
appreciated until the DK paper appeared that bidiagonal matrices do determine all their
singular values, however small, to the same relative precision enjoyed by the matrix
entries. Since such accuracy can be achieved for little extra cost it seems only right to
do so. These considerations lead us to abandon qd and concentrate on dqd and oqd.

Example 1 Here is a bidiagonal Toeplitz matrix with a,- = 1, 6,- = 256 (g,- = 1, e,- =
65536) for all i. The results of our dqd algorithm are given in Table 3. Note that
y/q£= 1.9093060930437717 x 10~152 » 2"504 gives o64 correct to full machine precision.

The results for qd were identical to dqd except that the crucial element q64 became zero
in both steps. Hence qd is not suitable for computation of small singular values with
high relative accuracy. •

Example 2 We have rerun Example 1 but with a smaller value of (n = 5) and the
results are given in Table 4. For this example, o5 = y^ = 2.3282709094019085 x
10-10 which is correct to full machine precision. For comparison, the answer given by
the UNPACK SVD routine dsvdc (which is based on the Golub-Reinsch algorithm) is
2.3282704794711363 x 10"10 which gets 7 of the 15 digits correct.

10

after the first pass after the second pass

9i
92

«3

94 to q63

964

6.5537000000000000D+04
6.5536000015258556D+04
6.5536000000000233D+04
6.5536000000000000D+04
3.6455053829317361D-304

6.5537999984741444D+04
6.5536000061032595D+04
6.5536000000001397D+04
6.5536000000000000D+04
3.6454497569340717D-304

e2

e3

e4 to e62
ß63

9.9998474144376459D-01
9.9999999976717291D-01
9.9999999999999645D-01
1.0000000000000000D+00
1.0000000000000000D+00

9.9995422572819948D-01
9.9999999883589297D-01
9.9999999999997513D-01
1.0000000000000000D+00
5.5625997664363648D-309

Table 3: Numerical results for Example 1

Using qd we got almost identical results except that q5 is zero in both sweeps. Thus,
er5 is zero according to the qd algorithm. Thus, qd does not deliver as much accuracy
as Golub-Reinsch; in fact it can be shown that qd sometimes delivers zero for singular
values as large as y/macheps * \\B\\. •

after the first pass after the second pass

9i

92

93

94

95

6.5537000000000000D+04
6.5536000015258551D+04
6.5536000000000238D+04
6.5536000000000000D+04
5.4209281443662679D-20

6.5537999984741449D+04
6.5536000061032593D+04
6.5536000000001395D+04
6.5536000000000000D+04
5.4208454275671899D-20

e2

e3

e4

9.9998474144376457D-01
9.9999999976717293D-01
9.9999999999999642D-01
1.0000000000000000D+00

9.9995422572819948D-01
9.9999999883589292D-01
9.9999999999997509D-01
8.2716799077854419D-25

Table 4: Numerical results for Example 2

Some people do not like root free algorithms (e.g. dqd) because they limit the domain of
the matrices to which they can be applied. For example, a bidiagonal B whose singular
values vary from 1030 to 10-30 could be diagonalized in single precision on an IBM
machine by oqd (Algorithm 1) but not by dqd (Algorithm 2) because of overflow and
underflow.

We conclude this section by pointing out that qd (Algorithm 3), the standard qd algo-
rithm, consists of the so-called rhombus rules arranged in computational form and these
rules are a direct consequence of the defining equation

BB* = B'B.

Equate the (k, k) entry on each side to obtain

4 + % = H-i + % (10)

11

qk + ek = ejfc.j + qk.

and equate the (k, k + 1) entry on each side to obtain

bkCk+i = akbk (11)

e*g*+i = 9fcefc.

The rhombus rules can be also derived from B% = QB by noting that orthogonal transfor-
mation Q changes neither the norms nor the inner products of the columns. The reason
for the name rhombus rule is indicated in Figure 3 of Section 11.

5 Incorporation of Shifts

Rutishauser introduced shifts into the qd almost from the beginning and we could sim-
ply quote him. Unfortunately he does not give any explanation of how he derived the
appropriate modification of qd (given in Section 4). So we provide one at the end of
Section 5.1.

5.1 Shifted qd Algorithms

In eigenvalue calculations, shifts are natural and can be easily incorporated since

X(A - T
2
I) = X(A) - T2

where r2 is the shift and A(A) indicates an eigenvalue of A. Thus, by subtracting r2 from
the diagonals of the matrix, we can introduce origin shifts into the Cholesky algorithm.

A shift T can be introduced into oqd (Algorithm 1, Section 3) by modifying statements
involving a and ä.

Algorithm 4 (oqds)

a := ai

fork = l,n — l

ak := yjä2 + b\ - r2

bk := bk * (ak+i/ak)

ä :— Va2 -T2 * (ajb+i/äfc)

end for

an := y/ä2 — r2

12

It may be verified that BXB = BBX - T
2
I. TO keep B real the shift must satisfy

T < <Tn[B] (12)

but this constraint is not formally necessary for dqd (Algorithm 2) which uses

4k := dk + ek- T2.

Algorithm 5 (dqds)

d := qx - T2

fork := l,n — 1

qk := d + ek

ek := ek * (qk+i/qk)

d:= d*(qk+i/qk) - r2

end for

qn :=d

The constraint (12) is also unnecessary for qd.

Algorithm 6 (qds)

e0 = 0

fork := l,n— 1

4k '■= (qk - e*-i) + ek - T2

ek := ek * qk+i/4k

end for

4n := qn - e„_i - r2

All that is lacking is an analogue of the orthogonal connection (Theorem 1)

B% = QB.

For that it is necessary to abandon square matrices and write

B*
0 = Q

B
TI

The new Q is 2n x In and is not unique. However its first n rows are uniquely determined
by B and r for r < cr„[5].

It is at this point that the superiority of the qd formulation becomes clear. DK showed
that the standard Golub-Reinsch bidiagonal QR algorithm may be simplified when the
shift is zero; see Section 10 for the details. Our algorithms (1,2, or 3) are already
simpler than the DK zero shift QR and they also permit use of a non-zero shift with no
impediment to pipelined or parallel implementation or high relative accuracy. See [9] for
details. This is strong evidence that our formulation is the natural one.

13

5.2 The Two Phase Implementation

At first sight the auxiliary quantities dt, i = l,...,n that occur in dqd are seen as
the price to be paid for securing high relative accuracy. On further consideration they
may be seen as an attractive feature that permits an aggressive shift strategy that also
preserves high relative accuracy in the computed singular values. Moreover, as an extra
bonus, we find that the vector d = (d1?..., </„) may be computed in 0(}og2n) steps in a
parallel computer using the technique called parallel prefix operation in computer science
writings, see [3].

Consider next the implementation of dqds. The auxiliary quantities dt may be computed
prior to any modification of q and e since

dk+i = dkqk+i/qk - r2

= dkqk+1/(dk + ek)-T2. (13)

An alternative formulation is

1 + ek/dk
v >

but a division costs more than a multiplication.

It is at this point that one sees the advantage of arithmetic units that conform to the
ANSI/IEEE floating point standard 754: there is no need to test at each instance of (13)
or (14) to prevent division by zero. The occurence of a A; with dk = oo does no harm. It
signals that

al[B) < r2

and the transformation of B to B (Phase 2) should not be completed. The effort in
running (13) is not wasted because it yields a new upper bound on cr2[.B].

Using (13), dk = oo yields dk+1 = oo/oo = NaN (not a number) and then q{ = NaN for
i > k + 1. Using (14), dk = oo yields dk+1 = qk+i - r2 which is a better answer.

5.3 Almost Positive Bidiagonals

The standard qd algorithm is well defined for most shifts but it may not be stable in
an absolute sense; i.e. the new array {q,e} may be far greater than old one {q,e}.
Rutishauser proved stability under the assumption of positivity and took great care in
his implementation to preserve this property.

Our dqds algorithm has the advantage of maintaining relative stability in the positive
case and, fortunately, even beyond. We currently impose the requirement

T2 < ^n-l^-l] + e«-l

14

where Bn-i is the leading principal submatrix of B„ because it ensures that the only
entries in {q, e} that could go negative are e„_! and qn. Our goal is to choose r (actually
r2) to make qn as small as possible and hence

T2 « dn = qn(l - en.i/qn.i).

Notice how strongly dn depends on sign(en_i) and sign(qn) since q„-i, though unknown,
remains positive. There are four possible configurations in the asymptotic regime (r2 <
|d„_i+e„_i) and we designate them by sign pairs: (sign(en_i), sign(qn)). Each time that
dqds is invoked there is no doubt about sign(en_i) but sign(qn) will not be predictable
since the aim is to have qn = 0.

A careful study of the last three assignments in dqds shows the following possible paths
the iteration could follow. Since we do not expect more than 2 steps before convergence
(and deflation) some edges may not be traversed.

If r2 < er„

(+,+) — (+,+)
(+.-) —> (-,+)
(-,+) —» (-.-)

(-,-) —•■ (+,+)

If T1 > an

(+,+) —» (+.-)
(+,-) —> (-.-)

(-,+) —» (-.+)
(",-) —»■ (+.-)

6 Bounds for a mm

6.1 A Posteriori Bounds for the Smallest Singular Value

Our oqd(Algorithm 1 in Section 3) transforms B to B by making use of n auxiliary
quantities äk,k = l,n. It is possible to give a nice interpretation of the a* that leads to
useful bounds on <7m,„. This result was also obtained by Rutishauser but his treatment
was not based on orthogonal rotations although he knew the matrix interpretation of qd.

If we think of the matrix B* being transformed into B one column at a time in (n —
1) little steps then at the end of Step (k — 1) row k is a singleton. That is the key
technical observation. To describe the situation we refer back to Section 3 and let Qk —

15

{G\G% .. • Gt-iY be the product of the first (k — 1) plane rotations used in the reduction
process. Thus

BW = QkB
x =

0 a2 62
0 .

0 äjb_i bk-i
0 at

h
0

ak+1 0

bk + l Ojfe+2

0
6„_2 an-i 0

6„_i a„

(15)

Note that Qt-B' coincides with B in rows 1,2,..., k — 1 and with 5* in rows & + 1,..., TO

while orthogonal Qk coincides with /„ in rows k + 1,..., n.

Theorem 2 (Bounds for omin without shifts) Apply the dqd transformation to a
positive bidiagonal B (see Algorithm 1) to produce B and öi, ä2,..., än. Then

1. an < m.ink{äk}

2. [(BB*)-1]*,* = K2

3. (EL1öfc-1)-1<(EL15r2)-1/2<^-

Proof: Since singular values are invariant under orthogonal transformations and trans-
position

<Tn[B] = OnlQkB*] < HQkB'W = äk

where uk is the fcth column of the identity matrix. The fcth row of QkB% is a singleton;

Transposing and rearranging gives

u\QkB
t = aku\.

ä^QkUk = B'^Uk

a? = (B-'B-1)^
as claimed. Note that

*„~2 < IX2 = WB'TF = traced)-1] = Ear2.
«=1 »=1

Finally we get the required result by considering the one and two norms of the vector
(är1, är1,...a"1). •

16

We can compute bounds on crmi„[B] even when the algorithm is used with shifts r pro-
vided that T < amin[B]. Formally the reduction

C)-(i)
requires 2(n — 1) plane rotations (not just n — 1) because the rotation Gi in (i, i + 1)
must be preceded by a rotation Gi in plane (i, n + i) in order to introduce r into position
(n + i, i). Thus the rows 1,..., k — 1 and ra + 1, ...,n + &-lof

*(?) - (fi)
are coincident. Also the rows k + 1,..., n and n + k,..., 2ra of

«•(?) - (T)
are the same. However row k is still a singleton in fact

<Qk (
BQ)= ä"<- (16)

Theorem 3 (Bounds for amin with shifts) If the dqds algorithm with shift r trans-
forms positive bidiagonal B into positive B with auxiliary quantities äi,...,ä„ then

1. an < minima*}

2. KBB*)-1}*,* = 5fc-2|N||2 < K2 ■
\

where, in (16), u\Qk '•= (^hiVl)' an,d x and V each have n entries.

Proof: Since singular values are invariant under orthogonal transformation and transpo-
sition,

an[B] = an Q*(Bo) < KG* (BQ) II = ak.

The last equality uses (16). To establish the second result transpose (16) to obtain

I B 0 Q\uk = Bxk = ukäk.

Since B is invertible,
ä^Xk = B~luk,

K2\W\? = ulB-'B-1^ = [(BB*)-1]^ •

Remark: Since the ak are monotone decreasing in r a successful dqds transformation
produces a better upper bound and a worse lower bound than does dqd. Fortunately it
is the upper bound that plays an active role in our implementation.

17

6.2 The Newton shift

The shift strategy used by Bauer to accelerate the rational QR algorithm RATQR is also
closely related to part 3 of the above theorem. See [1], [19].

We recall that the Newton shift from 0 for the characteristic polynomial of any matrix
A is related to the trace of the inverse. Let

XA(t) = det[tI-A] = l[(t-Xi).
t=i

Then, by logarithmic differentiation

xA(t) {rit-Xi-

In particular

XA(O) ti

because the spectrum of A~l is {A,"1}".

In our case (^äjf2)-1 is the Newton correction from 0 towards a\.

6.3 The (l,oo) Bound

The DK paper also provides lower bounds on er„. Two recurrences (see Section 10 for
details) produce

minAj = \\B
i

- HR-lll-l
oo

and

j-Hi-i min^lliT1!!;-

Then

cr-^ll^ll^minill^H-Ml^llr1}.

Since ||C|| < \/||C||i||C||oo for any square matrix C, we can improve the DK bound to
give,

"n1 = II*"1!! < y/\\B-%\\B-^\\O0<rmn{\\B-TJ,\\B-%1}-

18

6.4 The Johnson Bound

For a general complex matrix C, a Gersgorin-type bound for crmin is given by Johnson
(see [14]),

crmin > max{0,0}

where

0 = min I |cM| - - £ |cfc>i| + \ci>k\ \ .

For a positive bidiagonal B, this simplifies to

6 = min j a,- -(6, + 6j_i) >

and ultimately this becomes

0 = an ~ 26"-1-

7 Effects of Finite Precision

7.1 Error Analysis - Overview

One of the benefits of the simplicity of our algorithms oqd and dqd is that their anal-
ysis is relatively easy. The DK zero shift QR transformation, though simpler than the
Golub/Reinsch transformation, is complicated enough to defy anything but a forward
error analysis. After heroic struggles with innumerable details DK establish the error
bound quoted in Section 10.4.

When discussing this result and our own analyses it is convenient to use the acronym
ulp which stands for units in the fast place held. It is the natural way to refer to relative
differences between numbers. When a result is correctly rounded the error is not more
than half an ulp. In this section we usually omit the ubiquitous phrase 'at most' qualifying
errors and modifications.

Our algorithms still do not admit a pure backward error analysis, the computed output
B is not the exact output from a matrix very close to B. Nevertheless we can use a
hybrid interpretation involving both backward and forward interpretation.

Whereas DK's zero shift guarantees that each computed singular value is in error by no
more than 69n2 ulps our dqds algorithm causes no more than An ulps change using any
properly chosen shift. However the main point is that our analysis is easy to grasp.

The next subsection establishes this strong property of dqds. A similar result holds for
oqds but the square roots and squaring provoke a slightly larger bound.

19

The trick of the proof is to define B so that the computed auxiliary quantities {d,} are
exact outputs of dqds. The difference between B and B is the forward error.

At the beginning of the paper we made much of the fact that algorithms oqd and dqd
required no subtractions. Yet, in the interest of efficiency, we have introduced shifts and
quietly brought back subtraction. The miracle is that the subtraction is in the d's and
does not impair the high relative accuracy property. However qd does not guarantee
high relative accuracy so long as g's are dominated by neighbouring e's.

Since no intermediate quantities exceed ax, it is assumed that the initial data are scaled
so that ox (or a\ for dqds) is close to the overflow threshold. Underflow, though possible,
is then a rare event.

Finally we remind the reader that the symbol = carries its normal mathematical
meaning.

7.2 High Relative Accuracy in the Presence of Shifts

We refer the reader to Section 5.3 where almost positive bidiagonals are introduced.
Rutishauser merges the g's and e's into a single array Z\

% •= {9i,ei,g2,e2,...,en_1,g„}

and this is a convenient notation for the analysis which follows.

Before stating our claim we need more notation because the difficulty in the analysis is one
of interpretation. Given Z the dqds algorithm in finite precision arithmetic produces
representable output Z. We introduce two ideal arrays Z and Z such that Z is the
output of dqds with shift r acting on Z in exact arithmetic. Moreover Z is a small
relative perturbation of Z and Z is a small relative perturbation of Z. See Figure 1.

Our model of arithmetic is that the floating point result of a basic arithmetic operation
o satisfies

fl(x oy) = (xo y)(l + r]) = (xo y)/(l + 6) (17)

where n and 6 depend on i, y, and o, and the arithmetic unit but satisfy

\V\ < e , \8\ < e

for a given e that depends only on the arithmetic unit. We shall choose freely the form
(r/ or 6) that suits the analysis.

A fairly simple result is possible because the only truly sequential part of dqds is the
sequence {d<}". Note that, in exact arithmetic

. _ dkqk+1 2

dk + ek

20

change each
qk by 3 ulps
ek by 1 ulp

dqds

computed

dqds

change each
qk, h by 2 ulps

exact

Figure 1: Effects of roundoff

The trick is to write down the relations governing the computed quantities and then
to discern among them an exact dqds transform whose input is close to Z and whose
output is close to Z.

Theorem 4 In the absence of underflow or overflow, the Z diagram given above com-
mutes and qk (ek) differs from qk (ek) by S (1) ulps, qk (ek) differrs from qk (ek) by 2
(2) ulps.

Proof: We write down the exact relations satisfied by the computed quantities Z.

qk = (dk + ek)/(l + e+) (18)

(19) tk = qk+i(i + e/)/qk = ,
«Jfc + Ck

(20)

Ijb+l —
{dktk{l + e*) - r2}

1 + ffc+i

Note the difference between * and *. Of course all the e's obey (17) and depend on k but
we have chosen to single out the one that accounts for the subtraction because it is the
only one where the k dependence must be made explicit. In more detail the last relation
is

(l + e*+i)<4+i = -^(l + e/)(l + e+)(l + e*)-r2

dk + ek

(l + 6t)rftgt+l(l + C/)(l + C+)(! + €») 2

(l + et)dk + (l + eh)eh

This tells us how to define Z. Note that ek arose in the previous step. Moreover

(l + €1)d1 = 9l-r2

Our choice of Z, in general, is not a machine representable array.

For k > 1,

:= (l + ek)dk dk

ek

Qk+i

and by (21),

= gfc+1(l + e/)(l + e+)(l + 0 , ($i = ?i)

7 _ dkqk+i 2
"ib+l = — T

dk + ek

Then, for exact dqds, we must define

qk := dk + ek = (1 + ek)(dk + ek)

- ._ ^*9*+i fit :— ..

Finally gj, and ek must be recast in terms of Z;

qk = ft/(l + €*)(! + «+) . from (18)

e* = (! + €/)(!+ €+)(! + €.) , from (20)
djfc + Cj.

gjfcgt+l (! + €«)

(£ + ?») (! + «*)*

21

(21)

(22)

(23)
(24)

(25)

(26)

(27)

It is (23) that yields ek/(dk + ek) = ek/(dk + ek). Equations (23) and (24) give the change
from Z to Z, and equation (25) fixes the exact dqds transform. •

Recall that, in exact arithmetic, algorithm dqds diminishes all eigenvalues (of LR) by
the shift. For finite precision execution we have the following.

Corollary 1 Algorithm dqds preserves high relative stability. When Z and Z are posi-
tive then the associated bidiagonal matrices B and B (at = y/qj, 6,- = ^/e~, etc.), together
with the associated ideal bidiagonals B and B, satisfy

<ri[B] = ai[B)exp{2(n-l)e1},

ofiB) = am - T\

<Ti[B] = ai[B]exp{(2n-l)e2},

for i = 1,2,..., n, and e\ < e, e2 < £.

22

Proof: For i = 1,..., n - 1

ai+1 = v/^" = ai+iy/(l + e/)(l + e+)(l + e*)

6i = \/^ = 6<\/(l + e,).

By Theorem 2 in DK, the relative change in any singular value in going from B to B is
the product of all the relative changes, namely

n-1

IJ[(1 + €/)(! + £+)(! + e*)(l + £,)]* < exP2(n - l)e.
»=i

Similarly

äi = V¥i = &ilyj0- + e.)(l + €+) , « < n

On = \/d„ = an/yj(l + Cn).

The relative change in any singular value in the transformation from B to B is bounded

by

vT+^nllKi + 6*)/(1 + e*)(1 + ^K1 + €+)l* ^ exp(4n " 3)e/2-
»=i

Since the passage from B to B is exact the singular values diminish by r2. •

Remark: It can be shown by similar means that one dqd transformation cannot alter
any singular value by more than 3(n — 1) ulps.

Theorem 4 is much stronger than the familiar error analysis based on norms because:

1. The perturbed matrices considered here inherit the bidiagonal structure

2. The bounds are very much smaller than those from DK (see Section 10) or the
Golub-Reinsch algorithm (see Chapter 8 of [11]).

For multiple sweeps of dqds, our results can be stated more simply in terms of the
positive sequence {Z{\ where / denotes the sweep with Zx — Z\ = Z. See Figure 2 for the
corresponding commutative diagram. Then by combining Z\ —»■ Zj+i -*■ Zi+X one obtains
that Zi+i is the exact dqds transformation of a perturbed (in relative sense) Z\. Thus
backward stability is present for {£/}.

Similarly it can be shown that the sequence {Zi} is forward stable (in relative sense) with
Zf = Zt where Zr is the final computed result. On exact application of dqds on Z\ we
get Zi+1 instead of Z(+i (see Figure 2) and the error between Zi+1 and Zl+i is small.

Example 3 The following experiment shows vividly the difference between an algorithm
that obtains high relative accuracy (dqds) and one that does not (UNPACK dsvdc

23

Z,

Z,

change each
qk by 3 ulps
ek by 1 ulp

dqds

computed

dqds

change each
4k, h by 2 ulps

W+i
exact

Figure 2: Effects of roundoff for multiple sweeps

based on the Golub-Reinsch algorithm) but which delivers excellent absolute accuracy.
We took the graded matrix B+,

Oi-i = /30i , b{ = a,

with an = 1, n = 8 and ß = 60. We applied both algorithms to B+ and its reversal 5_,

a» -* a.n+1-i , h -* 6n_,-.

We did not allow any flipping of the matrix within the dqds algorithm although such
flipping improves convergence. See next section.

In Tables 5 and 6, the third column shows, absi,

absi .:= (at[B.] - ai[B+])/a1[B+]

the differences between outputs scaled by the 2-norm of the nicer matrix. Recall that
macheps ta 2-53 « 1.1 x 10~16. For dsvdc (see Table 5), it can be seen that the absolute
error is even smaller than absolute stability guarantees.

In Tables 5 and 6, the fourth column shows, re/,-,

reli:=(<ri[B-]-ai[B+])/<Tt[B+]

24

the relative differences in the outputs. For dqds the largest magnitude is less than two
macheps (see Table 5) while for dsvdc (see Table 6), it is very much larger and shows
that dsvdc does not give relative accuracy.

i °i[B+] °i[B.] abst re/,-
1 3.9590303657774160D+12 3.9590303657774155D+12 -1.2D-16 -1.2D-16
2 5.7143240472800255D+10 5.7143240472800247D+10 -1.9D-18 -1.3D-16
3 8.9790986853271568D+08 8.9790986853271568D+08 0.0D+00 0.0D+00
4 1.4489876544914651D+07 1.4489876544914651D+07 0.0D+00 0.0D+00
5 2.3661793507020348D+05 2.3661793507020348D+05 0.0D+00 0.0D+00
6 3.8884661685208386D+03 3.8884661685208386D+03 -1.1D-25 -1.2D-16
7 6.4142972113704085D+01 6.4142972113704109D+01 3.6D-27 2.2D-16
8 3.5351579203702068D-01 3.5351579203702068D-01 0.0D+00 0.0D+00

Table 5: Numerical results using dqds for Example 3

i °i[B+] °i[B-\ absi reli
1 3.9590303657774146D+12 3.9590303657774160D+12 3.7D-16 3.7D-16
2 5.7143240472800224D+10 5.7143240472800278D+10 1.3D-17 9.3D-16
3 8.9790986853271544D+08 8.9790986853271413D+08 -3.3D-19 -1.5D-15
4 1.4489876544914653D+07 1.4489876544914989D+07 8.5D-20 2.3D-14
5 2.3661793507020345D+05 2.3661793507022545D+05 5.6D-21 9.3D-14
6 3.8884661685208386D+03 3.8884661685173243D+03 -8.9D-22 -9.0D-13
7 6.4142972113704073D+01 6.4142972113772929D+01 1.7D-23 1.1D-12
8 3.5351579203702068D-01 3.5351579205582154D-01 4.7D-24 5.3D-11

Table 6: Numerical results using dsvdc for Example 3

8 Convergence

8.1 Linear Convergence

Convergence of the Cholesky algorithm and of the standard qd algorithm for tridiagonal
matrices (in the positive case) have been given by Rutishauser and others (see [22], [27]).
Nevertheless we present here a direct convergence proof for oqd because it is a new
algorithm and the proof is both short and illuminating. We give a brief discussion of the
effects of finite precision on the results of the theorem at the end of the section.

The point is that a computed cosine ck can equal unity even though the corresponding
sine Sk may merely be small.

Our proof makes use of the fact that a symmetric tridiagonal matrix with nonzero super-
diagonal entries (e.g. B*B) cannot have multiple eigenvalues [18], [27]. In other words,
the singular values of a positive bidiagonal B are distinct

<Ti > a2 > ... > cr„. (28)

25

One must bear in mind that distinct cr,- may be equal to working precision.

Theorem 5 (Convergence of oqd) From a positive bidiagonal B\ the unshifted oqd
algorithm produces a sequences {Bi}™ of orthogonally equivalent bidiagonals. As I —► oo,

B, -> S = diag{au...,an)

Furthermore, if an < Oi, then the sequence {Yl"=ibP} is monotone decreasing in I from
the beginning. Each {&f^}J£i converges linearly to 0 with convergence factor oi+i/'a<.

Proof: Consider a typical step of oqd (Algorithm 1). Since there are no subtractions
each B] is positive since B\ is positive.

Equation (7) can be written in the form,

äk = Cfc_iofc/cjfe for k = l,...,n (29)

provided that we set c0 = c„ = 1 . Take the product of the first k instances of (29) to
find

k k k

na<=(n°«)/cfc>na<. (30)

The sequence {üLi a^} 1S bounded above, by ||2?||*, and monotone increasing by (30)
and thus convergent. The limit may be written n«=i Pi *° reveal that, as / —► oo,

a|° - m (31)
cj° - 1 (32)
4° - 0. (33)

By (8) and (33), as / -+ oo,

r) = «i-0,i=l »-1 (34)

Thus Bi converges to diagonal form and each /z* is a singular value. To identify //,• use
the product rhombus rule to find

»M-0 = 4+iV4° - M*+I/M*- (35)
Since {&* } is bounded (by ||.Bi||) the limit in (35) cannot exceed 1. By (28) the limit is
not 1 and thus fik+i < //*, k = 1,.. . ,n — 1, and we may identify fik as o~k- Thus, (35)
proves that b[' —► 0 linearly with convergence factor c^+i/a*, as claimed, and Bt —► S.

Finally consider n?^1 fy . Apply (8) and (6) in turn to find

i i. u u ffl2 • • •fl»

Ol C\ C2 C„_2

Ci C2 C3 C„_!
= Oi...on_i ... a„

= &l---&n-l (— j C„.

< &i...6„_i,

26

if an < ai. Since B may be flipped about its antidiagonal without altering the singular
values there is no loss of generality in assuming that a„ < «i. In this case nrJi1 ^« 1S

monotone decreasing with / from the start. •

It is worth mentioning that Rutishauser's proof of convergence for qd (Algorithm 3), is
based on the observation that ||5(jt)||/- > H-BüSHF and ||U_fc||.F < ||-B_J;||F, k = 1,2,
Here M{±k} is the submatrix of M containing the first (last) k columns.

n.

By taking the product of the final n — k instances of (29) one finds that {J\"-k a-l'} is
monotone decreasing in / for k = n — l,n — 2,.. .,2,1. In particular a\' increases and
a$ decreases so that a flipping of B is needed at most once.

The assertions of Theorem 5 bear up quite well in finite precision arithmetic. The se-
quence {nLi a¥*} 1S monotone nondecreasing and so c-' —► 1 as / -» oo. Thus in
considering a sequence of computed trigonometric values we do not wish to infer s[' -*■ 0
from ,<0 1. So the first casualty is the conclusion that s\ * —► 0. Instead we find that
b\' becomes negligible relative to a-^ and a-\ Even so, in the absence of underflow,
the diagonal entries eventually rearrange themselves in (almost) monotone nonincreasing
order. Though distinct, by (28), some singular values may be equal to working accuracy
and diagonal monotonicity may actually fail by one or two ulps (units in the last place
held) because the ratio, though exceeding 1 might be too small to cause the neighbouring
b-value to grow at all. All in all the practical oqd performs as closely to exact oqd as it
is reasonable to expect.

8.2 Quadratic Convergence

Consider the last few steps in dqds with shift r:

g„_i = d„_i + en_j

e„-i = e„_iWg„_i

dn = rf„_ig„/g„_i - r2

qn = d„.

Hence

en-i9n =
«n-lgn

9n-l L
en-lgn

Qn-1

~ -~) ~ *
Qn-1

2 Qnen—1

qn-i J
(36)

In exact arithmetic, as r —► <r„[J3n] we have qn —► 0, e„_! —► 0, q„-i —► o"'_x[5„] —
<r2[5„] := gap > 0 because the singular values are distinct if the initial B is of positive
type. Thus convergence will be quadratic with respect to this gap.

27

Expression (36) shows that if

0 < qn - T2 < 2^± (37)
Qn-l

then

and so, by (36),

Qn-1 Qn-1

\en-An\ < 1 J_ >0>
(e„_ig„)2 ql-i gap2

as r —»• crn[Bn]. Thus (37) shows a (theoretical) interval for those r that deliver quadratic
convergence. Next we seek a usable expression that will ultimately lie in that interval.

The perfect shift is

T2 = ?„(1 - ~)
Qn-1

so that the natural strategy is to estimate qn„i from

9„_i = (1 -)?„_i - r" - e„_!
9n-2

« (1-^1)^,
9n-2

when e„_2 and e„_i are small enough. We may assume that n > 2 and so may use

r2 = qn *(l-en-i/9n-i*max{-,l-en_2/g„_2}) (38)

provided that 0 < <2n_i = mini<,-<n_i rf,- and dn < d„_i.

8.3 Cubic Convergence

The assertion in Section 8.2 that the shift r2 = qn yields quadratic convergence for qds
and dqds appears to contradict the result of Rutishauser [23] that this choice yields cubic
convergence. See also Rutishauser and Schwarz [26] and Chapter 8 of Wilkinson [29].
Actually, there is no anomaly because the shift strategies are not quite the same. In our
terminology what Rutishauser suggests is that the qd transform with r2 = qn should not
be formed explicitly. The only item wanted from it is q„ and it is assumed to be the only
negative qt. Then it is shown that qn + qn is a fourth order approximation to a2 from
below. A qd transform of {q, e} with shift r2 = qn + qn will yield cubic convergence.

The point that is stressed by neither Rutishauser nor Wilkinson is that the computation
of q„ costs 0(n) operations, very close to 1 step of qds. From another perspective
Rutishauser's analysis is a disguised derivation of the cubic convergence of the tridiagonal
QR algorithm with the Rayleigh quotient shift.

28

For our algorithm dqds Rutishauser's (late failure) shift strategy described above is more
appealing. Only the first phrase of our algorithm is needed to compute q„ and the cost
is about | of a dqds step. Moreover the positive form is preserved a little longer.

For the sake of completeness we indicate why qn + q„ is a fourth order lower bound when
qn is second order in qnen-i- The relevant tridiagonal matrix is BB* and its leading
principal (n - 1) x (n - 1) submatrix is called V. Recall that Uj is column j of I.

Fact 1: Provided (V - a\I) is invertible qn may be written as

Fact 2: With shift r2 = qn,

qn = -(%en-i?K-i(v ~ <lnl)~lun-i

Conclusion,

qn + qn = °l + (?„e„_i)2<-i [(V - a» J)"1 - (V - <?„ J)"1] «„_!.

By Hilbert's second resolvent law,

qn + qn = °l + (5„e».i)2(^ - ?»K-i(V - all)~\V - ff«/)"1«».!.

Using Fact 1 again,

qn + qn = o* - (qnen-xy «.^V - aliy'u^u^V - qnI)~\V - ^)-1«„_1} .

The gap conditions ensure that the quantity in { } is 0(1/gap).

In contrast to Rutishauser and Wilkinson, we have made no approximations in our deriva-
tion. The result is valid so long as the inverse matrices exist.

9 A Preliminary Implementation

9.1 Choice of Shifts

The standard singular value codes in LINPACK and LAPACK need about 2 QR steps
per singular value, in most cases, and that provides a hard target to beat. Moreover one
of our qd transformations needs only 0(n) flops and no square roots so we are reluctant
to spend 0(n) flops on shift selection.

A strategy used to generate the numerical tests in this paper may not be the best but it
is based on the following somewhat surprising observation. The upper bound

dk = min d,-

29

is an increasingly good estimate for ^,„[5], Moreover, at each step, we will know the
index k from the previous step. This index points to the largest diagonal entry oi(BiB)~1

and helps tell us whether <7^,n has yet migrated to the bottom of BtB. If k > n — 1
we expect the trailing 2x2 principal submatrix of BB* to give a good approximation
to o^in' When k < n — 1 the matrix is not yet in asymptotic form and the situation is
more difficult. However we do know that y/qk + ek is the smallest (leftmost) centre of all
the Johnson discs for the matrix of equation (15). If this disc were separated from the
rest of the discs then it would certainly contain cm,n. Even if it were not isolated this
disc might still contain ami„ so we use it.

Strictly speaking we need

(ak - ~(h + 6*_!))2 > (ak-yft)2

> Qk - 2\/qk~e + e

(39)

where e = max{efc,e*_i}. When this disc is isolated then the lower bound is definitely
too small. A more cautious formula is

min fa — yfq^e. + e, 0.96 * sup}
k

Since our estimates may exceed amin we must face the possibility of rejection of a shift
r2. How should the new shift be chosen ? On one hand it is not efficient to panic and
simply bisect, r2 <— |(in/ + r2); on the other hand we must avoid being trapped close to
a large overestimate of <rm,„. Our compromise is to multiply the previous gap between
sup and r2 by 4 to yield

T2 *- T2 — min {4 * (sup — r2), -r2}.

9.2 Splitting and Deflation

In Section 2 it was noted that if e,- = 0 (i.e. bt = 0), for i < n, then the bidiagonal B
splits into two complementary sub diagonals. Consider now the case when e{ (or 6.) is
small enough to permit such a splitting without making a relative change in any singular
value exceeding a given tolerance r\. Our situation is a little more complicated than the
one studied in DK because of the non-restoring shift. Let a2 denote the cumulative sum
of all shifts used on the given matrix in the qd algorithm (which computes the squared
singular values).

Our criteria are based on Weyl's monotonicity theorem for eigenvalues of symmetric
matrices. Consider a bidiagonal B and the possibility of neglecting 6,- for a given i < n.
Write

30

where A,-,,- is a null matrix except that the (i,j) is unity. There are two cases. Case I:

Case II:

n*„ , ff»r_ I B\Bx + oH a,-6,AM

° ü + a 1 - \ a,6,AM B\B2 + 6?Alfl + a2/

(, /^If 6?AM- + a2I ai+1bt A,-1
BB +aI-{ a,+16,AM B2B\+o2I

The spectral norm of the matrix

CO
is \a\ and it is submatrices of this form that we will remove. Weyl's theorem states that
on subtracting a principal submatrix of the above form, no eigenvalue is changed by more
than |a|. Apply this result to Case I and conclude that if

aibi<2r1(cT2 + (r2min[B1}) (40)

then there are i indices j such that

XjlB'B + a2I] = \j\B\Bt + a2J](l + ejf

with €j < 77. Here X[M] is an eigenvalue of M. Recall that B is not the original matrix
whose singular values are to be found. However the eigenvalues of B%B + a21 are the
squares of the wanted numbers.

Applying Weyl's theorem to Case II shows that if

ai+1bi<2r1(<T2 + a2
min[B2]) (41)

then there are n — i+ 1 indices j such that

XjiB'B + a2I\ = Xj[B2Bl + <r2J](l + erf

with €j < 77.

Since crmin[Bi] and <rm,„[52] are not usually known (unless i = 1,2, or n — l,n) the
criteria given above must be replaced by a more exacting one

bi < r\{a2 + in/)/max{a<,a,+1} (42)

where inf is the best lower bound on «^-„[.B].

The conditions (41) and (42) are more severe than DK's

bi < WminlB] (43)

when a2 < inf since max a*, a,+i > y/inf. However after the tiny eigenvalues are found
it is not fair to compare 6,- with the current B. In principal (42) and (43) can be merged
into

d < T)2 max [inf, 4(<r2 + inf) f-JL±!l—\ \ (44)
L \max{g,-,g,+i)/J

When i z= n — lorn — 2 criterion (40) tells us when to deflate the bottom 1 x 1 or 2 x 2
submatrix from B and be sure that the singular values of 2?j are adequate approximations
to the remaining singular values of B.

31

9.3 Performance of a Prototype Implementation

We have developed and implemented dqds in FORTRAN 77 to exploit and study the
theory we have developed in this paper. This prototype program is built in modular
fashion.

We have run our code on a broad test bed of bidiagonals. Here we report on comparisons
on three interesting classes using our dqds and LINPACK's dsvdc (with reduction to
bidiagonals removed).

Example 4 (nice matrices) We considered the graded matrix B+ defined earlier in Ex-
ample 3 with the parameter ß = 2 and n = 30. Table 7 gives the performance of this
example and other examples in this section. The speedup is the time taken by dsvdc
divided by dqds.

We have also tested this problem with n = 40 and in that case the LINPACK dsvdc
returned with an error flag as it could not compute o-40 within 30 iterations. We were
prevented from comparing with larger values of n because dsvdc reported errors. •

Example 5 (perversely graded) To make conditions artificially difficult for dqds, we also
ran the programs with the reversely graded matrix 1?_ as the input with n = 30 and
ß = 2. See Table 7 for details.

Usually, our dqds will flip 5_ to obtain J3+. If the user does not flip B_ before calling
dsvdc then the time ratio goes up to 18.9.

dsvdc also failed to converge for many combinations of ß and n. •

Example 6 Let Bw be the Wilkinson-type bidiagonal matrix where

Tl

bi = 1 , i = l,...,n— 1

This matrix has close eigenvalues (twins) and our current coding does not fully exploit
this structure. Hence the low performance compared with the previous results. •

Example 7 Doubled Wilkinson-type matrices, B2w,

Oi = \t-- + l\ , 1 = 1,...,-

n
ai+~=ai , i = - + l,...,n

bi = 1 , i = 1,.. .,n — 1

with n — 41. This matrix has close singular values (quads) and some of them are exactly
equal. Table 7 gives the details. •

32

Example 8 Toeplitz matrix Bt,

cii = 1 , b{ = 2.

For n — 100, the matrix has a tiny singular value; others are between 1 and 3. •

Example Matrix n dqd sweeps dsvdc sweeps speedup
4 B+ 30 52 60 10.2
5 B. 30 79 101 12.3
6 Bw 21 78 62 4.8
7 B%w 41 230 120 4.8
8 Bt 100 374 308 11.0

Table 7: Performance comparison

10 The Demmel/Kahan Paper

We summarize the highlights of this impressive contribution [4].

10.1 High Relative Accuracy

Corollary 2 of Theorem 2 of DK. Suppose that (B+6B)ii = a2,_ia,-, (B+SB)iii+i = a2ibt,
a,- ^ 0. Define

. 2n-l

a:= Y[max{|ai|,|oj
1|}.

Let ax > a2 > ... > an be the singular values of B + SB. Then

0-,/ä < er,- < <7,ä , i = 1,2,..., n.

This shows that bidiagonal matrices determine their singular values to high relative
accuracy.

10.2 Bounds for <r„

It is possible to compute \\B 1\\00 and ||£-1|i using 2(n —1) divisions and multiplications.
The algorithm is

Ai := aj(AJ+1/(Ai+1 + &_,)) , j = n - l,n - 2,..., 1 with Xn := an

/*,-+! := aj+^fij/inj + bj)) , j = 1,2, ...,ra- 1 with /*x := ax

||5-1||00 = l/minAj

J

Finally,

33

\\B-% = 1/mm ftj.

and
rmniWB-TJAlB-'V}^^

10.3 A Stopping Criterion

Let 77 << 1 be the desired relative accuracy of the computed singular values. Then if
either

bj/Xj+i < V or bj/fij < n

set bj to zero and the two pieces into which B splits may be processed separately. The
criteria used in LINPACK [5] can sometimes deliver a zero singular value when it should
not and can sometimes fail to suppress a negligible off diagonal entry bj.

10.4 Bidiagonal QR with Zero Shift

The standard Golub/Reinsch algorithm [11], [10] used in LINPACK may be simplified
when no shifts are used. Of more importance is the fact that in this case all round off
errors arise multiplicatively. Moreover for the calculation of tiny singular values zero is
a good shift and it pays to compute them first rather then letting the standard shift
strategy dictate the order in which the singular values are found. The arithmetic effort
in the innermost loop is

Golub/Reinsch: 2 calls to ROT + 12 multiplications + 4 additions

Demmel/Kahan: 2 calls to ROT + 4 multiplications.

The procedure ROT computes the sine and cosine needed for a plane rotation using 2
divisions, 3 multiplications, and 1 square root. Here is the algorithm.

oldcs := cs := 1

for i := l,n - 1

call ROT(a,i* cs,bi,cs,sn,r)

if (i ^ 1) 6,_i := oldsn * r

call ROT(oldcs * r, 6,+1 * sn, oldcs, oldsn, bi)

h := an * cs; 6n_i := h * oldsn; an := h* oldcs

end for (45)

34

In the absence of underflow the error bound on singular values after one zero shift bidi-
agonal QR transform is

Wi -<r'\< z °i * = 1,..., n
1 — w

where
w := 69n2e < 1.

See Theorem 6, p. 906.

10.5 The Overall Algorithm

if (roundoff in any shift exceeds tol * bound on an) then

use zero-shift QR or QL

else

use shifted QR or QL

end if.

10.6 Other Improvements

The new code uses either QL or QR as appropriate according to the way B is graded.

An efficient accurate subroutine is provided to return the singular values and vectors of
2x2 bidiagonal matrices.

Deflation when a diagonal entry a,- vanishes is automatic and occurs at the bottom or
top of B.

11 Evolution of qd

Some of the available presentations of the qd-algorithm, see [22], [27], [12] show its
close connection with factorization of tridiagonal matrices but some do not [13], [28].
Nevertheless its discovery had nothing to do with matrix decompositions and a knowledge
of the origins helps us to understand the somewhat neglected status of the algorithm.
In the next few paragraphs we sketch an earlier paper [17] which described the gradual
evolution of the qd-algorithm.

The story begins with Daniel Bernoulli in 1728 when he showed that the largest and the
smallest roots of an nth degree polynomial can be obtained by iterating an nth degree
difference equation. See [2]. The work of Bernoulli was extended by Euler in 1748. See
Chapter 17 of [7] (English translation [6]).

35

We are given a rational function of a complex variable z,

oo

k=0

assumed to be regular (analytic) at both z = 0 and z = oo. The Taylor series converges to
f(z) only within a circle (in C) centred at z = 0 and extending up to the nearest pole pi.
However, by analytic continuation, the Taylor coefficients {hk} actually define a unique
rational function / on all of C except the poles pi,P2,P3, The problem is to determine
the poles directly from the {hk} without having recourse to analytic continuation.

In 1884 König [16] showed that if pi is a simple pole and smaller than all the others then

lim (/&jb//i)t+i) = pi.
k—nx>

Exactly one hundred years ago (i.e. in 1892), in his dissertation, J. Hadamard showed
that

where

K = det

-♦oo \ H*m J 11«

hk h-k+i • ■ • hk+m-l

hk+\ hk+2 • • • hk+m

lk+m- -i h, k+m lfc+2m-2

The H* are called Hankel determinants. It follows that

«—Jal «/JH., J

The solution is brilliant but does not give us a practical algorithm.

During the 1920s, in Scotland, A. C. Aitken rediscovered for himself a remarkable con-
nection among Hankel matrices that was known to Hadamard but not exploited by him;

(K)2 + K~+\H
k

mt\ = H^+_\. (46)

The relation (46) permits the computation of all the H^ without being drowned in
determinantal equations.

The blemish in (46) is that the H^ are not of direct interest. We want to compute

,k) .= g*+1/g*
"m ' irk+1 I Tjk

•"m-l/-"m-l

36

q[0)

c(0) el

^ ^
e(1) e

2

q{2) «£1}
e
i e2

«ia)
^2)

•

ei

^3)

e(2) e2

e(3) e2

Figure 3: qd in a (modified) difference table

Rutishauser's clever observation was that if one introduces

rrk+l rrk
(Jfc) -"m-l-"m+l

then (46) implies

the additive rhombus rule, while the definitions of q and e give the product rhombus rule

(t+i) (*+i) _ (*) (i)
Hm 1m — 1m+lem •

The rhombus rules were introduced at the end of Section 4. The qs and es are best laid
out in a tableau that is like a difference table. See Figure 3.

This qd table may be built up via the rhombus rules either from column 1 or from the
top diagonal. The first column, {q[^} is at hand, since

q[k) = H'/H*-1 = hk/h,., , k > 1

and
J*) _ „(*+i) _ „(*)

This is far simple than Hadamard's solution but, in finite precision arithmetic, it is
hopelessly unstable because the later e's are (modified) differences of converging values.

Fortunately computation along descending diagonals is stable but here the difficulty is
the calculation of the tcp diagonal. This is not as daunting as it appears at first. If the

37

function /(C) has only n poles then all q (and e) columns beyond the nth vanish. Then
it suffices to build the n x n Hankel matrix H° and compute its triangular factorization

H°n = LnDnVn

where Dn = diag(di,.. .,dn) holds the successive pivots. It turns out that

q<?) = H0
k/H°k.i = dk , * = l,...,n

The ek are found from the pivots of H\. This is the practical way to compute the
poles from the Taylor coefficients. In fact a careful form of row interchanges (not partial
pivoting) may be used to improve the accuracy of the factorization.

Next we relate the qd tableau to the computation of eigenvalues. Given a square matrix
C the appropriate rational function / comes from the resolvent,

f(z) = x\I-zC)-1y,

where x and y are column vectors. A technical assumption is needed to guarantee that
the qd tableau is well defined. In the language of control theory, see [15], the linear
dynamical system S(C, y, x*) must be minimal. If it is not minimal, then we might not
be able to find all the poles of the system.

For this function /,
hk = x'CVx'C*-1?/

as so the {hk} could be computed by the power method. However, it would be preferable
to compute {ft ,ei ,<ß ,c2 >•••} directly from C and we now know that this can be
done by invoking the Lanczos algorithm on C and using the resulting tridiagonal matrix
J. It turns out that the pivots that occur in computing the triangular factorization of J
are the {g£0)} and their reciprocals are the {e^}. The details are given in [17]. In other
words,

J = B(°)
»(»)

(o)
«l

o(0)
V2

*i0)

(0)

We see here how the LR algorithm on tridiagonals was hidden in the qd table.

12 The Continued Fraction Connection

There is an intimate connection between our bidiagonal matrix B, the tridiagonal ma-
trix T = BlB, and a continued fraction associated with them. Properties of continued
fractions influenced the qd algorithm initially and only later did the LR transformation

38

emerge and nearly displace the continued fraction. We can not find any discussion by
Rutishauser of the connection between the continued fraction and B*B so we supply it
here.

Recall the notation from Sections 2, 3, and 4.

B = bidiag <
&i b2

a2

K-2 bn-i 1
On-i an J '

9i = a2i

e- =b] , e0 = e„ = 0

T = tridiag <

Rutishauser associates with T the continued fraction

1 erqx e2q2

y/qiei y/qlei yj<l&% y/qn-\en-i
q\ 92 + ci «3 + e2 ... qn + en_i

y/Ql^l y/Wh y/qleä y/in-lCn-l

F{Q = C-Qi- C-?2-ci- C~Q2-e2-
(47)

It is not obvious how F(Q relates to T. The answer is

F(0 = [(a-T)-i]M

or more generally,
F(C) = x\CI-T)-1y

with x and y as defined near the end of Section 11. The inverse is well defined for all £
with |C| exceeding the spectral radius of T. The particular form of the continued fraction
arises from the triangular factorization of (I — T from the bottom up:

where L is unit triangular and

Then

and

The recurrence for the dj is

(I - T = Vbi

D = diag(d1,d2,...,dn)

& = di(C).

{Ci-T)-1 = L-1r>-1L-t

no = dTi

dn := (~ qn~ e„_i

dj ■= C-qj ~ e,-i - qjej/dj+1 for j = n - 1,..., 2,1. (48)

39

This establishes (47).

There is a simpler continued fraction expansion for F(£). It corresponds to a recurrence
for dj + e,-_i. From (48)

di + Ci-i = C-fc(l+-f*-)

V <W + ei /
= (-^/(l-ej/idj^ + ej)) (49)

Since e0 = 0, (49) gives

TO = IM = i-^-iL g. ^. ...
This form is remarkable for the direct connection of qt and e< to the (1,1) entry of
(C/-T)"1.

References

[1] F. L. Bauer, qd-method with Newton shift. Technical Report 56, Computer Science
Department, Stanford University, 1967.

[2] Daniel Bernoulli. Observationes de seriebus quae formantur ex additione vel sub-
stractione quacunque terminorum su mutuo consequentium, ubi praesertim earun-
dem insignis usus pro inveniendis radicum omnium aequationum algebraicarum os-
tenditur. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 3:85-100,
1732 (1728).

[3] B. Codenotti and M. Leoncini. Parallel Complexity of Linear System Solution. World
Scientific, Singapore, 1991.

[4] James Demmel and W. Kahan. Accurate singular values of bidiagonal matrices.
SIAMJ. Sei. Sta. Comput., 11:873-912, 1990.

[5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. UNPACK User'
Guide. SIAM, Philadelphia, 1979.

[6] Leonard Euler. Introduction to Analysis of the Infinite, volume 1. Springer-Verlag,
New York, 1988.

[7] Leonhardo Eulero. Introductio in Analysin Infinitorum, volume 8 of series 1.
Marcum-Michaelem Bousquet, Lausannae, 1748.

[8] K. Vince Fernando and Beresford N. Parlett. Orthogonal Cholesky algorithm. Tech-
nical Report under preparation, Centre for Pure and Applied Mathematics, Univer-
sity of California at Berkeley, 1992.

40

[9] K. Vince Fernando and Beresford N. Parlett. qd algorithms for advanced architec-
tures. Technical Report under preparation, Centre for Pure and Applied Mathemat-
ics, University of California at Berkeley, 1992.

[10] Gene H. Golub and C. Reinsch. Singular value decomposition and least squares
solutions. Numer. Math., 14:403-420, 1970.

[11] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, 1989.

[12] P. Henrici. The quotient-difference algorithm. Nat. Bur. Standards Appl. Math.
Series, 19:23-46, 1958.

[13] A. S. Householder. The Numerical Treatment of a Single Nonlinear Equation.
McGraw-Hill, New York, 1970.

[14] Charles. R. Johnson. A Gersgorin-type lower bound for the smallest singular value.
Linear Algebra and Its Applications, 112:1-7,1989.

[15] Thomas Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[16] Julius König. Ueber eine Eigenschaft der Potenzreihen. Math. Ann., 23:447-449,
1884.

[17] Beresford. N. Parlett. The development and use of methods of LR type. SIAM
Review, 6:275-295, 1964.

[18] Beresford. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cüffs, NJ, 1980.

[19] C. Reinsch and F. L. Bauer. Rational QR transformation with Newton shift for
symmetric tridiagonal matrices. Numer. Math., 11:264-272,1968.

[20] H. Rutishauser. Der quotienten-differenzen-algorithmus. Z. Angew. Math. Phys.,
5:233-251,1954.

[21] H. Rutishauser. Ein infinitesimales analogon zum quotienten-differenzen-
algorithmus. Arch. Math., 5:132-137,1954.

[22] H. Rutishauser. Solution of eigenvalue problems with the LR-transformation. Nat.
Bur. Standards Appl. Math. Series, 49:47-81,1958.

[23] H. Rutishauser. Über eine kubisch konvergente Variante der LR-Transformation. Z.
Angew. Math. Mech., 11:49-54,1960.

[24] H. Rutishauser. Vorlesungen über numerische Mathematik. Birkhäuser, Basel, 1976.

[25] H. Rutishauser. Lectures on Numerical Mathematics. Birkhäuser, Boston, 1990.

[26] H. Rutishauser and H. R. Schwarz. The LR transformation method for symmetric
matrices. Numer. Math., 5:273-289, 1963.

[27] H. R. Schwarz, H. Rutishauser, and E. Stiefel. Numerical Analysis of Symmetric
Matrices. Prentice-Hall, Englewood Cliffs, NJ, 1973.

[28] G. W. Stewart. On a companion operator for analytic functions. Numer. Math.,
18:26-43,1971.

[29] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

Legal Notice

This report was prepared as an account of work sponsored by the
Center for Pure and Applied Mathematics. Neither the Center nor
the Department of Mathematics makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information or
process disclosed.

