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Abstract 

We have discovered a new implementation of the qd algorithm that has a far wider 
domain of stability than Rutishauser's version. Our algorithm was developed from 
an examination of the LR-Cholesky transformation and can be adapted to parallel 
computation in stark contrast to traditional qd. Our algorithm also yields useful 
a posteriori upper and lower bounds on the smallest singular value of a bidiagonal 
matrix. 

The zero-shift bidiagonal QR of Demmel and Kahan computes the smallest singu- 
lar values to maximal relative accuracy and the others to maximal absolute accuracy 
with little or no degradation in efficiency when compared with the UNPACK code. 
Our algorithm obtains maximal relative accuracy for all the singular values and runs 
at least four times faster than the LINPACK code. 

Key words: qd, LR algorithm, Cholesky decomposition, singular values, SVD, 
bidiagonal matrices 
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1    Introduction and Summary 

In September 1991 J. W. Demmel and W. M. Kahan were awarded the second SIAM 
prize in numerical linear algebra for their paper 'Accurate Singular Values of Bidiagonal 
Matrices' [4], referred to as DK hereafter. Among several valuable results was the obser- 
vation that the standard bidiagonal QR algorithm used in UNPACK [5], and in many 
other SVD programs, can be simplified when the shift is zero and, of greater importance, 
no subtractions occur. The last feature permits very small singular values to be found 
with (almost) all the accuracy permitted by the data and at no extra cost. 

In this paper we show that the DK zero shift algorithm can be further simplified and this 
simplicity has several benefits. One is that a new algorithm can be implemented in either 
parallel or pipelined format as an 0(log2 n) algorithm. This is pursued in a companion 
paper [9]. 

Our investigations began with the modest goal of showing that it was preferable to 
replace the DK zero-shift QR transform by two steps of zero-shift LR implemented in 
a qd (quotient-difference) format. Root-free algorithms run considerably faster than 
standard ones. The surprise here is that to keep the high relative accuracy property it is 
necessary to use a little known variant of qd (the differential form of the progressive qd 
algorithm or dqd [25], [24]). The standard qd will not suffice as we show in Section 4. 
There are no subtractions in dqd. We suspect that Rutishauser discovered dqd in 1968, 
just two years before his death, and we say more about its history in Sections 4 and 11. 

What we want to stress here is that, for reasons we may never know, Rutishauser did not 
consider the shifted version of dqd. Incidentally this differential qd is not to be confused 
with the continuous analogue of qd (see [21]) and more recent work on QR flows. The 
trouble with the shifted version of the ordinary qd algorithm is that it cannot recover 
from a shift that is too large. Consequently qd algorithms have been shackled with very 
conservative shift strategies, such as Newton's method, and earned the reputation of being 
slow compared to the QR algorithm. Had Rutishauser considered shifts with differential 
qd (dqds hereafter) he would have realized, as we soon did, that the transformation may 
be split into two parts. The parts depend on whether the machine is of sequential or 
parallel type but, in each case, a shift that is too big reveals itself before the old matrix 
is overwritten and so need not be invoked. An unused shift is not wasted because it 
gives an improved upper bound on the smallest singular value at a cost less than one qd 
transformation as well as contributing to an improved shift. 

Our approach frees the algorithm to exploit powerful shift strategies while preserving 
high relative accuracy all the time. In contrast the QR algorithm delivers high relative 
accuracy only with a zero shift. 

Even though our algorithms must find the singular values in order we can use shift 
strategies that are at least quadratically convergent. This is better than fourth order 
convergence for QR. When only the smallest few singular values are needed this ordering 
constraint is a great advantage. Another rather subtle feature is that it is not necessary 



to make an extra 0(n) check for splitting of the matrix into a direct sum. The necessary 
information is provided by the auxiliary quantities. 

In June 1992 we discovered that our dqds algorithm enjoys high relative stability for all 
shifts provided that they avoid underflow, overflow or divide by zero. Consequently it can 
be used in a variety of applications (eigenvalues of symmetric or unsymmetric tridiago- 
nals, zeros of polynomials, poles and zeros of transfer functions and many applications 
involving continued fractions) where Rutishauser's qd has been abandoned because of 
its instability in the general case. 

Our error bounds for singular values are significantly smaller than those in DK and 
the approach is quite transparent. It was this analysis that showed us the possibility 
of violating positivity while still maintaining maximal relative accuracy for all singular 
values, not just the small ones. 

It gradually dawned on us as we developed the algorithm that we were breaking away 
from the orthogonal paradigm that has dominated the field of matrix computations (called 
numerical linear algebra by highbrows) since the 1960's. It seems to be sacrilegious to be 
achieving greater accuracy and on average, a four fold speed-up1 by simply abandoning 
QR for something equivalent to LR. See Section 9.3 for details. High accuracy comes 
from the fact that dqds spends most of its time transforming lower triangular 2 x 2s into 
upper triangular 2 X 2s by premultiplication. 

Rutishauser gave no direct explanation for the way shifts are introduced into qd. We 
have supplied one in terms of matrix factorizations in Section 5.1 and go on to list the 
possible choices for a shift in Section 6 and 9. 

Section 3 presents the unifying general result which shows that it is possible to implement 
the LR-Cholesky algorithm of Rutishauser [22], [26] using orthogonal transformations 
only. Perhaps this is the key idea exploited in the paper. Since the term LR-Cholesky 
over describes the algorithm we simply refer to it as the Cholesky Algorithm. Our 
orthogonal Cholesky algorithm is applicable to dense matrices; this more general case is 
studied elsewhere [8]. 

We want to point out the unusual historical lineage of this algorithm. The qd algorithm 
begat the LR algorithm which then gave rise to the QR algorithm of Francis. This in turn 
led to the Golub-Kahan and Golub-Reinsch algorithms for singular values of bidiagonal 
matrices which lead to the DK zero-shift variant. This inspired our orthogonal algorithm 
of which differential qd is the root-free version. We are back to qd again but with a new 
implementation. 

As a service to the busy readers we have included a brief account of the origins of qd 
and a summary of the DK paper. When reading [25] we regretted that the link between 
continued fractions and our matrices was not made explicit. We provide the connection 

1A11 our computations are performed on a DECstation 5000/120 using double precision arithmetic 
(53-bit mantissa). 



in the final section. 

2    Notation and Normalization 

This paper does not involve vectors very much and so we do not follow Householder 
conventions. However capital roman letters denote matrices while lower case Roman and 
Greek letters denote scalars. On the rare occasions when a vector is needed it is denoted 
by a lower case roman letter in boldface. 

As usual the singular values of an n x n matrix C are arranged in monotone decreasing 
order and denoted by ait <r2,..., (T„, their union is a\C\. 

• We make reference to the QR factorization of a matrix. This is the matrix form of 
the Gram-Schmidt orthonormalizing process applied to the columns of the matrix 
in natural order. By convention the diagonal entries of the upper triangular factor 
R are taken nonnegative. See Golub and Van Loan [11] for details. 

• We make reference to the Cholesky factorization of a positive definite matrix into 
the product of a lower triangular matrix and its conjugate transpose. The factors 
are unique. 

• We make references to the LR and QR algorithms. These are defined in the appro- 
priate places. 

We shall be concerned mainly with bidiagonal matrices which we call B and take them 
to be upper bidiagonal. To save space we write the bidiagonal matrix 

B = 

a2   b2 

*n-l K-i 
an 

as 

B = bidiag < 
b: b2 

a2 

bn-2 &n-l 

On-1 On 



2.1     Normalization 

Consider now the effect of a zero value among the parameters ofnxn bidiagonal B. 

2.1.1     Superdiagonal 

Suppose that 6* = 0, k < n. Then B may be written as a direct (or diagonal) sum of 
two bidiagonals J?i and B2. Moreover 

a[B] = <r[Bi] U a[B2). 

This case makes the calculation of singular values easier. Even more important is the 
fact that our algorithms do not suffer from the failure to detect such a split when it 
occurs. However, the transition from a linearly convergent shift to a quadratic shift will 
not occur if the split lies undetected for too long. 

2.1.2    Diagonal 

Let a* = 0, k < n. Since | det B\ = TJ"= i I a« l= 117=1 °i & follows that cr„ = 0. However 
some work is needed in order to deflate this value, i.e. to find a new B of order n — 1 
yielding the remaining singular values of B. In exact arithmetic one iteration of any of 
the unshifted algorithms given later is guaranteed to produce the desired B and so this 
case does not need special treatment. The zero diagonal entry may be driven to the 
closest end of the matrix. 

If ak = 0, k < n, at one step of our algorithm and if a„ = 0 at the next step then 6fc_i 
will also vanish and so produce a split into two bidiagonals. 

2.1.3     Signs 

If the matrix is real, then using pre and post multiplication by matrices of the form 
diag{±l} any sign pattern may be imposed on the entries of B without changing the 
singular values. H the matrix is complex, then it could be transformed to a real matrix 
by pre and post multiplication by matrices of the form diag{exj>(iu>)} where i2 = — 1 and 
u> is real. 

There is little loss of generality in assuming, when necessary, that B is of real positive 
type; all its parameters exceed 0. However in Section 5.3 we address the practical question 
of when to relax the requirement of positivity. 



3    Orthogonal Form of the Cholesky Algorithm 

The result given in the theorem below is implicit in proofs that one step of the QR 
algorithm is equal to two steps of the Cholesky algorithm. Nevertheless it appears not 
to have been stated explicitly before and was not known to several experts whom we 
consulted. So for the next few paragraphs we consider full complex matrices. Recall 
that the Cholesky factorization of a positive definite Hermitian matrix A(= A*) may be 
written as A = LL* where L is lower triangular. 

Definition. The Cholesky transform of A = LL* is 

i := L*L 

The Cholesky algorithm, consisting of successive applications of the Cholesky transfor- 
mation, is a special case of the LR algorithm. 

We now consider the relation between L and L, the Cholesky factors of A and A, respec- 
tively. 

Theorem 1 Let A = LL* be the Cholesky factorization of the Cholesky transform of 
positive definite A = LL*. Then 

L = QL* 

is the QR factorization of L. 

Some may prefer the formulation 
R* = QR 

with A = R*R and A = R*R. 

Proof. Since A is positive definite all factors mentioned below are unique. By definition 
of L 

L*L = LL*. 

We seek invertible F such that 
L = FL*, (1) 

L* = LI-1. (2) 

Transpose and conjugate (1) and use invertibility of L in (2) to find 

F* = L~lL* = F-1. 

So F is unitary and since L* is upper triangular with positive diagonal Equation (1) 
above gives the QR factorization of L, as claimed. • 



The theorem shows that L may be obtained from L by orthogonal transformations with- 
out forming A. Moreover just as QR may be performed with column pivoting so can we 
obtain the Cholesky factor of a permutation of A. A general application of Theorem 1 
is presented in Fernando and Parlett [8] but here we return to the bidiagonal case. 

The basic equation LL* = VL guarantees that the Cholesky algorithm preserves band- 
width. In particular, bidiagonal B gives rise to tridiagonal A = BtB and a bidiagonal 
B. In order to study how B is derived from B, let 

(    6l B = bidiagi - h        •        6n"2 K-1 

B = bidiag{  .     hl    .      'h        •        S-2    . t"-1    .    l. 
[ ai a2 . an-i a« J 

where 5*5 = BBX. By Theorem 1 

B* = Q.B. 

The matrix Q may be written as a product of (n — 1) plane rotation matrices [11], 

Q = G\Gi- • •<?„_!. 

Before the annihilation of the subdiagonal element bk, the active part of the matrix is of 
the form, 

0   äfc_i   6jfe_i 

0       äk        0 
h     a*+i      0 

bk+l      «it+2 

and after the plane rotation Gk, the matrix becomes 

0   Ojt_i    bk-i 

0        äk       bk 

0      ak+1      0 

(3) 

(4) 

Formally we may set B^ = B1 and, for k = 1,..., n — 1 

5« = G^*"1). (5) 



Finally B = J9(n-1> and, from (3) and (4), with äi = ax and ck + s\ = 1, 

äk = yjäl + b2
k = äk/ck                                               (6) 

sk = bk/äk 

Cjb = äk/äk                                                                  (7) 

bk = skak+i = bkak+i/ak                                            (8) 

ßfc+i = c*a*+i = ö,kak+i/äk. 

There is some redundancy in the equations given above but their most important property 
is the absence of subtractions. This ensures high relative accuracy in the new entries a,- 
and b{. Observe that neither sk nor ck is needed explicitly to compute the new entries. 
To the best of our knowledge the algorithm given below is new. For reasons that appear 
in the next section we call it the Orthogonal qd-Algorithm or oqd. It is convenient to 
use 

cabs(x,y) = \Jx2 + y2 (9) 

whose name stands for the complex a&solute value of x + iy. In numerical computing 
(e.g. Eispack), an alternative name for cabs is pythag. 

Algorithm 1 (oqd) 

a := ai 

fork = l,n — l 

at := cabs(ä, bk) 

bk := bk * (ak+1/ak) 

a := ä * (ajt+i/äfc) 

end for 

an := a 

This algorithm will undergo several transformations in the following pages before we are 
ready to implement it. Nevertheless, even at this stage, two applications of it are slightly 
better (fewer multiplications) than the DK Zero Shift QR algorithm [4] described briefly 
in our Section 10. 

The inner loop comparisons given in Table 1 are based on one QR step which is equal 
to two LR steps. We have taken into account the common sub-expression ak+1/ak in the 
estimation of the complexity of oqd (Algorithm 1). 

DK uses six auxiliary variables while oqd needs only one. The memory traffic is es- 
sentially determined by the number of variables, arithmetic operations and assignment 
statements. In most advanced architectures, memory access is more expensive than 
floating-point operations and in such machines the oqd will be very advantageous be- 
cause of fewer read and write operations. 



DK oqd 
cabs 2 1*2 

divisions 2 1*2 
multiplications 6 2*2 

conditionals 1 0 
assignments 7 3*2 

auxiliary variables 6 1 

Table 1: Complexity of Demmel-Kahan and oqd 

4    The Quotient Difference Algorithm 

It is easy to avoid taking the square roots that appear in oqd (Algorithm 1) . Define 
bn := 0 and qk = a\ , ek = bk , k = 1,2,. ..,n . By simply squaring each assignment 
in oqd (Algorithm 1) one obtains an algorithm that turns out to be a little known 
variant of the quotient difference algorithm. Rutishauser developed his qd algorithm in 
several papers from 1953 or 1954 (e.g. [20]) until his early death in 1970 but this variant 
appeared in English only in 1990 in [25] which is the translation of the German original 
[24] published in 1976. The full list of the papers on qd by Rutishauser can be found in 
the above mentioned books which were published posthumously. 

In the notes at the end of [20] and at the end of volume 2 of [24] this variant is called 
the differential form of the progressive qd algorithm or dqd. These notes were based on 
unfinished manuscripts of Rutishauser. 

Algorithm 2 (dqd) 

d:=qx 

fork := l,n — 1 

qk := d + ek 

ek :— ek *(qk+i/qk) 

d := d*(qk+1/qk) 

end for 

qn := d 

The implementation of dqd (Algorithm 2) requires only 1 division, 2 multiplies, and 1 
addition in the inner loop. No subtractions occur. 

The intermediate variable d may be removed. At step k, d= dk and the trick is to write 
it as a difference. 

dk+\ = clqk+1 = qk+1 - s\qk+i = qk+1 - ek. 



Algorithm 3 (qd) 

e0 = 0 

fork := l,n — 1 

Qk •= (qk - h-i) + e* 

ek := ek * qk+i/4k 

end for 

Qn •= Qn - e„_i 

Table 2 compares the complexity of orthogonal, differential and standard qd algorithms. 

oqd dqd qd 
cabs 1 0 0 

divisions 2 1 1 
multiplications 4 2 1 

additions 1 1 1 
subtractions 0 0 1 

assignments 3 3 2 

auxiliary variables 1 1 0 

Table 2: Complexity of oqd, dqd and qd 

We hasten to add that Rutishauser did not derive the qd algorithm from our Theorem 1 
but from ideas described in Section 11. 

For positive B, dqd and qd are stable in the sense that all intermediate quantities are 
bounded by ||2?||2. Singular value errors provoked by finite precision arithmetic will be 
tiny compared to of. This is satisfactory for many purposes and it was not generally 
appreciated until the DK paper appeared that bidiagonal matrices do determine all their 
singular values, however small, to the same relative precision enjoyed by the matrix 
entries. Since such accuracy can be achieved for little extra cost it seems only right to 
do so. These considerations lead us to abandon qd and concentrate on dqd and oqd. 

Example 1 Here is a bidiagonal Toeplitz matrix with a,- = 1, 6,- = 256 (g,- = 1, e,- = 
65536) for all i. The results of our dqd algorithm are given in Table 3. Note that 
y/q£= 1.9093060930437717 x 10~152 » 2"504 gives o64 correct to full machine precision. 

The results for qd were identical to dqd except that the crucial element q64 became zero 
in both steps. Hence qd is not suitable for computation of small singular values with 
high relative accuracy. • 

Example 2 We have rerun Example 1 but with a smaller value of (n = 5) and the 
results are given in Table 4. For this example, o5 = y^ = 2.3282709094019085 x 
10-10 which is correct to full machine precision. For comparison, the answer given by 
the UNPACK SVD routine dsvdc (which is based on the Golub-Reinsch algorithm) is 
2.3282704794711363 x 10"10 which gets 7 of the 15 digits correct. 
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after the first pass after the second pass 

9i 
92 

«3 

94 to q63 

964 

6.5537000000000000D+04 
6.5536000015258556D+04 
6.5536000000000233D+04 
6.5536000000000000D+04 
3.6455053829317361D-304 

6.5537999984741444D+04 
6.5536000061032595D+04 
6.5536000000001397D+04 
6.5536000000000000D+04 
3.6454497569340717D-304 

e2 

e3 

e4 to e62 
ß63 

9.9998474144376459D-01 
9.9999999976717291D-01 
9.9999999999999645D-01 
1.0000000000000000D+00 
1.0000000000000000D+00 

9.9995422572819948D-01 
9.9999999883589297D-01 
9.9999999999997513D-01 
1.0000000000000000D+00 
5.5625997664363648D-309 

Table 3: Numerical results for Example 1 

Using qd we got almost identical results except that q5 is zero in both sweeps. Thus, 
er5 is zero according to the qd algorithm. Thus, qd does not deliver as much accuracy 
as Golub-Reinsch; in fact it can be shown that qd sometimes delivers zero for singular 
values as large as y/macheps * \\B\\. • 

after the first pass after the second pass 

9i 

92 

93 

94 

95 

6.5537000000000000D+04 
6.5536000015258551D+04 
6.5536000000000238D+04 
6.5536000000000000D+04 
5.4209281443662679D-20 

6.5537999984741449D+04 
6.5536000061032593D+04 
6.5536000000001395D+04 
6.5536000000000000D+04 
5.4208454275671899D-20 

e2 

e3 

e4 

9.9998474144376457D-01 
9.9999999976717293D-01 
9.9999999999999642D-01 
1.0000000000000000D+00 

9.9995422572819948D-01 
9.9999999883589292D-01 
9.9999999999997509D-01 
8.2716799077854419D-25 

Table 4: Numerical results for Example 2 

Some people do not like root free algorithms (e.g. dqd) because they limit the domain of 
the matrices to which they can be applied. For example, a bidiagonal B whose singular 
values vary from 1030 to 10-30 could be diagonalized in single precision on an IBM 
machine by oqd (Algorithm 1) but not by dqd (Algorithm 2) because of overflow and 
underflow. 

We conclude this section by pointing out that qd (Algorithm 3), the standard qd algo- 
rithm, consists of the so-called rhombus rules arranged in computational form and these 
rules are a direct consequence of the defining equation 

BB* = B'B. 

Equate the (k, k) entry on each side to obtain 

4 + % = H-i + % (10) 
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qk + ek = ejfc.j + qk. 

and equate the (k, k + 1) entry on each side to obtain 

bkCk+i = akbk (11) 

e*g*+i = 9fcefc. 

The rhombus rules can be also derived from B% = QB by noting that orthogonal transfor- 
mation Q changes neither the norms nor the inner products of the columns. The reason 
for the name rhombus rule is indicated in Figure 3 of Section 11. 

5    Incorporation of Shifts 

Rutishauser introduced shifts into the qd almost from the beginning and we could sim- 
ply quote him. Unfortunately he does not give any explanation of how he derived the 
appropriate modification of qd (given in Section 4). So we provide one at the end of 
Section 5.1. 

5.1    Shifted qd Algorithms 

In eigenvalue calculations, shifts are natural and can be easily incorporated since 

X(A - T
2
I) = X(A) - T2 

where r2 is the shift and A( A) indicates an eigenvalue of A. Thus, by subtracting r2 from 
the diagonals of the matrix, we can introduce origin shifts into the Cholesky algorithm. 

A shift T can be introduced into oqd (Algorithm 1, Section 3) by modifying statements 
involving a and ä. 

Algorithm 4 (oqds) 

a := ai 

fork = l,n — l 

ak := yjä2 + b\ - r2 

bk := bk * (ak+i/ak) 

ä :— Va2 -T2 * (ajb+i/äfc) 

end for 

an := y/ä2 — r2 



12 

It may be verified that BXB = BBX - T
2
I. TO keep B real the shift must satisfy 

T < <Tn[B] (12) 

but this constraint is not formally necessary for dqd (Algorithm 2) which uses 

4k := dk + ek- T2. 

Algorithm 5 (dqds) 

d := qx - T2 

fork := l,n — 1 

qk := d + ek 

ek := ek * (qk+i/qk) 

d:= d*(qk+i/qk) - r2 

end for 

qn :=d 

The constraint (12) is also unnecessary for qd. 

Algorithm 6 (qds) 

e0 = 0 

fork := l,n— 1 

4k '■= (qk - e*-i) + ek - T2 

ek := ek * qk+i/4k 

end for 

4n := qn - e„_i - r2 

All that is lacking is an analogue of the orthogonal connection (Theorem 1) 

B% = QB. 

For that it is necessary to abandon square matrices and write 

B* 
0 = Q 

B 
TI 

The new Q is 2n x In and is not unique. However its first n rows are uniquely determined 
by B and r for r < cr„[5]. 

It is at this point that the superiority of the qd formulation becomes clear. DK showed 
that the standard Golub-Reinsch bidiagonal QR algorithm may be simplified when the 
shift is zero; see Section 10 for the details. Our algorithms (1,2, or 3) are already 
simpler than the DK zero shift QR and they also permit use of a non-zero shift with no 
impediment to pipelined or parallel implementation or high relative accuracy. See [9] for 
details. This is strong evidence that our formulation is the natural one. 
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5.2    The Two Phase Implementation 

At first sight the auxiliary quantities dt, i = l,...,n that occur in dqd are seen as 
the price to be paid for securing high relative accuracy. On further consideration they 
may be seen as an attractive feature that permits an aggressive shift strategy that also 
preserves high relative accuracy in the computed singular values. Moreover, as an extra 
bonus, we find that the vector d = (d1?..., </„) may be computed in 0(}og2n) steps in a 
parallel computer using the technique called parallel prefix operation in computer science 
writings, see [3]. 

Consider next the implementation of dqds. The auxiliary quantities dt may be computed 
prior to any modification of q and e since 

dk+i    =    dkqk+i/qk - r2 

=   dkqk+1/(dk + ek)-T2. (13) 

An alternative formulation is 

1 + ek/dk 
v    > 

but a division costs more than a multiplication. 

It is at this point that one sees the advantage of arithmetic units that conform to the 
ANSI/IEEE floating point standard 754: there is no need to test at each instance of (13) 
or (14) to prevent division by zero. The occurence of a A; with dk = oo does no harm. It 
signals that 

al[B) < r2 

and the transformation of B to B (Phase 2) should not be completed. The effort in 
running (13) is not wasted because it yields a new upper bound on cr2[.B]. 

Using (13), dk = oo yields dk+1 = oo/oo = NaN (not a number) and then q{ = NaN for 
i > k + 1. Using (14), dk = oo yields dk+1 = qk+i - r2 which is a better answer. 

5.3    Almost Positive Bidiagonals 

The standard qd algorithm is well defined for most shifts but it may not be stable in 
an absolute sense; i.e. the new array {q,e} may be far greater than old one {q,e}. 
Rutishauser proved stability under the assumption of positivity and took great care in 
his implementation to preserve this property. 

Our dqds algorithm has the advantage of maintaining relative stability in the positive 
case and, fortunately, even beyond. We currently impose the requirement 

T2 <  ^n-l^-l] + e«-l 
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where Bn-i is the leading principal submatrix of B„ because it ensures that the only 
entries in {q, e} that could go negative are e„_! and qn. Our goal is to choose r (actually 
r2) to make qn as small as possible and hence 

T2 « dn = qn(l - en.i/qn.i). 

Notice how strongly dn depends on sign(en_i) and sign(qn) since q„-i, though unknown, 
remains positive. There are four possible configurations in the asymptotic regime (r2 < 
|d„_i+e„_i) and we designate them by sign pairs: (sign(en_i), sign(qn)). Each time that 
dqds is invoked there is no doubt about sign(en_i) but sign(qn) will not be predictable 
since the aim is to have qn = 0. 

A careful study of the last three assignments in dqds shows the following possible paths 
the iteration could follow. Since we do not expect more than 2 steps before convergence 
(and deflation) some edges may not be traversed. 

If r2 < er„ 

(+,+) — (+,+) 
(+.-) —> (-,+) 
(-,+) —» (-.-) 

(-,-) —•■ (+,+) 

If T1 > an 

(+,+) —» (+.-) 
(+,-) —> (-.-) 

(-,+) —» (-.+) 
(",-) —»■ (+.-) 

6    Bounds for a mm 

6.1     A Posteriori Bounds for the Smallest Singular Value 

Our oqd(Algorithm 1 in Section 3) transforms B to B by making use of n auxiliary 
quantities äk,k = l,n. It is possible to give a nice interpretation of the a* that leads to 
useful bounds on <7m,„. This result was also obtained by Rutishauser but his treatment 
was not based on orthogonal rotations although he knew the matrix interpretation of qd. 

If we think of the matrix B* being transformed into B one column at a time in (n — 
1) little steps then at the end of Step (k — 1) row k is a singleton. That is the key 
technical observation. To describe the situation we refer back to Section 3 and let Qk — 
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{G\G% .. • Gt-iY be the product of the first (k — 1) plane rotations used in the reduction 
process. Thus 

BW = QkB
x = 

0    a2   62 
0     . 

0    äjb_i   bk-i 
0       at 

h 
0 

ak+1      0 

bk + l      Ojfe+2 

0 
6„_2   an-i    0 

6„_i    a„ 

(15) 

Note that Qt-B' coincides with B in rows 1,2,..., k — 1 and with 5* in rows & + 1,..., TO 

while orthogonal Qk coincides with /„ in rows k + 1,..., n. 

Theorem 2 (Bounds for omin without shifts) Apply the dqd transformation to a 
positive bidiagonal B (see Algorithm 1) to produce B and öi, ä2,..., än. Then 

1. an < m.ink{äk} 

2. [(BB*)-1]*,* = K2 

3. (EL1öfc-1)-1<(EL15r2)-1/2<^- 

Proof: Since singular values are invariant under orthogonal transformations and trans- 
position 

<Tn[B] = OnlQkB*] < HQkB'W = äk 

where uk is the fcth column of the identity matrix. The fcth row of QkB% is a singleton; 

Transposing and rearranging gives 

u\QkB
t = aku\. 

ä^QkUk = B'^Uk 

a? = (B-'B-1)^ 
as claimed. Note that 

*„~2 < IX2 = WB'TF = traced)-1] = Ear2. 
«=1 »=1 

Finally we get the required result by considering the one and two norms of the vector 
(är1, är1,...a"1). • 
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We can compute bounds on crmi„[B] even when the algorithm is used with shifts r pro- 
vided that T < amin[B]. Formally the reduction 

C)-(i) 
requires 2(n — 1) plane rotations (not just n — 1) because the rotation Gi in (i, i + 1) 
must be preceded by a rotation Gi in plane (i, n + i) in order to introduce r into position 
(n + i, i). Thus the rows 1,..., k — 1 and ra + 1, ...,n + &-lof 

*(?) - (fi) 
are coincident. Also the rows k + 1,..., n and n + k,..., 2ra of 

«•(?) - (T) 
are the same. However row k is still a singleton in fact 

<Qk (
BQ)= ä"<- (16) 

Theorem 3 (Bounds for amin with shifts) If the dqds algorithm with shift r trans- 
forms positive bidiagonal B into positive B with auxiliary quantities äi,...,ä„ then 

1. an < minima*} 

2. KBB*)-1}*,* = 5fc-2|N||2 < K2 ■ 
\ 

where, in (16), u\Qk '•= (^hiVl)' an,d x and V each have n entries. 

Proof: Since singular values are invariant under orthogonal transformation and transpo- 
sition, 

an[B] = an Q*(Bo)  < KG* ( BQ ) II = ak. 

The last equality uses (16). To establish the second result transpose (16) to obtain 

I B   0    Q\uk = Bxk = ukäk. 

Since B is invertible, 
ä^Xk = B~luk, 

K2\W\? = ulB-'B-1^ = [(BB*)-1]^    • 

Remark: Since the ak are monotone decreasing in r a successful dqds transformation 
produces a better upper bound and a worse lower bound than does dqd. Fortunately it 
is the upper bound that plays an active role in our implementation. 
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6.2    The Newton shift 

The shift strategy used by Bauer to accelerate the rational QR algorithm RATQR is also 
closely related to part 3 of the above theorem. See [1], [19]. 

We recall that the Newton shift from 0 for the characteristic polynomial of any matrix 
A is related to the trace of the inverse. Let 

XA(t) = det[tI-A] = l[(t-Xi). 
t=i 

Then, by logarithmic differentiation 

xA(t)    {rit-Xi- 

In particular 

XA(O)    ti 

because the spectrum of A~l is {A,"1}". 

In our case (^äjf2)-1 is the Newton correction from 0 towards a\. 

6.3    The (l,oo) Bound 

The DK paper also provides lower bounds on er„. Two recurrences (see Section 10 for 
details) produce 

minAj = \\B 
i 

- HR-lll-l 
oo 

and 

j-Hi-i min^lliT1!!;- 

Then 

cr-^ll^ll^minill^H-Ml^llr1}. 

Since ||C|| < \/||C||i||C||oo for any square matrix C, we can improve the DK bound to 
give, 

"n1 = II*"1!! < y/\\B-%\\B-^\\O0<rmn{\\B-TJ,\\B-%1}- 
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6.4    The Johnson Bound 

For a general complex matrix C, a Gersgorin-type bound for crmin is given by Johnson 
(see [14]), 

crmin > max{0,0} 

where 

0 = min I |cM| - - £ |cfc>i| + \ci>k\ \ . 

For a positive bidiagonal B, this simplifies to 

6 = min j a,- -(6, + 6j_i) > 

and ultimately this becomes 

0 = an ~ 26"-1- 

7    Effects of Finite Precision 

7.1    Error Analysis - Overview 

One of the benefits of the simplicity of our algorithms oqd and dqd is that their anal- 
ysis is relatively easy. The DK zero shift QR transformation, though simpler than the 
Golub/Reinsch transformation, is complicated enough to defy anything but a forward 
error analysis. After heroic struggles with innumerable details DK establish the error 
bound quoted in Section 10.4. 

When discussing this result and our own analyses it is convenient to use the acronym 
ulp which stands for units in the fast place held. It is the natural way to refer to relative 
differences between numbers. When a result is correctly rounded the error is not more 
than half an ulp. In this section we usually omit the ubiquitous phrase 'at most' qualifying 
errors and modifications. 

Our algorithms still do not admit a pure backward error analysis, the computed output 
B is not the exact output from a matrix very close to B. Nevertheless we can use a 
hybrid interpretation involving both backward and forward interpretation. 

Whereas DK's zero shift guarantees that each computed singular value is in error by no 
more than 69n2 ulps our dqds algorithm causes no more than An ulps change using any 
properly chosen shift. However the main point is that our analysis is easy to grasp. 

The next subsection establishes this strong property of dqds. A similar result holds for 
oqds but the square roots and squaring provoke a slightly larger bound. 
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The trick of the proof is to define B so that the computed auxiliary quantities {d,} are 
exact outputs of dqds. The difference between B and B is the forward error. 

At the beginning of the paper we made much of the fact that algorithms oqd and dqd 
required no subtractions. Yet, in the interest of efficiency, we have introduced shifts and 
quietly brought back subtraction. The miracle is that the subtraction is in the d's and 
does not impair the high relative accuracy property. However qd does not guarantee 
high relative accuracy so long as g's are dominated by neighbouring e's. 

Since no intermediate quantities exceed ax, it is assumed that the initial data are scaled 
so that ox (or a\ for dqds) is close to the overflow threshold. Underflow, though possible, 
is then a rare event. 

Finally we remind the reader that the symbol = carries its normal mathematical 
meaning. 

7.2    High Relative Accuracy in the Presence of Shifts 

We refer the reader to Section 5.3 where almost positive bidiagonals are introduced. 
Rutishauser merges the g's and e's into a single array Z\ 

% •= {9i,ei,g2,e2,...,en_1,g„} 

and this is a convenient notation for the analysis which follows. 

Before stating our claim we need more notation because the difficulty in the analysis is one 
of interpretation. Given Z the dqds algorithm in finite precision arithmetic produces 
representable output Z. We introduce two ideal arrays Z and Z such that Z is the 
output of dqds with shift r acting on Z in exact arithmetic. Moreover Z is a small 
relative perturbation of Z and Z is a small relative perturbation of Z. See Figure 1. 

Our model of arithmetic is that the floating point result of a basic arithmetic operation 
o satisfies 

fl(x oy) = (xo y)(l + r]) = (xo y)/(l + 6) (17) 

where n and 6 depend on i, y, and o, and the arithmetic unit but satisfy 

\V\ < e ,   \8\ < e 

for a given e that depends only on the arithmetic unit. We shall choose freely the form 
(r/ or 6) that suits the analysis. 

A fairly simple result is possible because the only truly sequential part of dqds is the 
sequence {d<}". Note that, in exact arithmetic 

.      _ dkqk+1        2 

dk + ek 
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change each 
qk by 3 ulps 
ek by 1 ulp 

dqds 

computed 

dqds 

change each 
qk, h by 2 ulps 

exact 

Figure 1: Effects of roundoff 

The trick is to write down the relations governing the computed quantities and then 
to discern among them an exact dqds transform whose input is close to Z and whose 
output is close to Z. 

Theorem 4 In the absence of underflow or overflow, the Z diagram given above com- 
mutes and qk (ek) differs from qk (ek) by S (1) ulps, qk (ek) differrs from qk (ek) by 2 
(2) ulps. 

Proof: We write down the exact relations satisfied by the computed quantities Z. 

qk    =    (dk + ek)/(l + e+) (18) 

(19) tk   =  qk+i(i + e/)/qk = ,        
«Jfc + Ck 

(20) 

Ijb+l     — 
{dktk{l + e*) - r2} 

1 + ffc+i 

Note the difference between * and *. Of course all the e's obey (17) and depend on k but 
we have chosen to single out the one that accounts for the subtraction because it is the 
only one where the k dependence must be made explicit. In more detail the last relation 
is 

(l + e*+i)<4+i    = -^(l + e/)(l + e+)(l + e*)-r2 

dk + ek 



(l + 6t)rftgt+l(l + C/)(l + C+)(! + €») 2 

(l + et)dk + (l + eh)eh 

This tells us how to define Z. Note that ek arose in the previous step. Moreover 

(l + €1)d1 = 9l-r2 

Our choice of Z, in general, is not a machine representable array. 

For k > 1, 

:=    (l + ek)dk dk 

ek 

Qk+i 

and by (21), 

=   gfc+1(l + e/)(l + e+)(l + 0 ,  ($i = ?i) 

7     _ dkqk+i        2 
"ib+l = — T 

dk + ek 

Then, for exact dqds, we must define 

qk := dk + ek = (1 + ek)(dk + ek) 

-   ._  ^*9*+i fit :—  .. 

Finally gj, and ek must be recast in terms of Z; 

qk = ft/(l + €*)(! + «+)  .  from (18) 

e*    = (! + €/)(!+ €+)(! + €.) ,  from (20) 
djfc + Cj. 

gjfcgt+l     (! + €«) 

(£ + ?») (! + «*)* 
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(21) 

(22) 

(23) 
(24) 

(25) 

(26) 

(27) 

It is (23) that yields ek/(dk + ek) = ek/(dk + ek). Equations (23) and (24) give the change 
from Z to Z, and equation (25) fixes the exact dqds transform. • 

Recall that, in exact arithmetic, algorithm dqds diminishes all eigenvalues (of LR) by 
the shift. For finite precision execution we have the following. 

Corollary 1 Algorithm dqds preserves high relative stability. When Z and Z are posi- 
tive then the associated bidiagonal matrices B and B (at = y/qj, 6,- = ^/e~, etc.), together 
with the associated ideal bidiagonals B and B, satisfy 

<ri[B] = ai[B)exp{2(n-l)e1}, 

ofiB) = am - T\ 

<Ti[B] = ai[B]exp{(2n-l)e2}, 

for i = 1,2,..., n, and e\ < e, e2 < £. 
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Proof: For i = 1,..., n - 1 

ai+1 = v/^" = ai+iy/(l + e/)(l + e+)(l + e*) 

6i = \/^ = 6<\/(l + e,). 

By Theorem 2 in DK, the relative change in any singular value in going from B to B is 
the product of all the relative changes, namely 

n-1 

IJ[(1 + €/)(! + £+)(! + e*)(l + £,)]* < exP2(n - l)e. 
»=i 

Similarly 

äi = V¥i = &ilyj0- + e.)(l + €+) ,  « < n 

On = \/d„ = an/yj(l + Cn). 

The relative change in any singular value in the transformation from B to B is bounded 

by 

vT+^nllKi + 6*)/(1 + e*)(1 + ^K1 + €+)l* ^ exp(4n " 3)e/2- 
»=i 

Since the passage from B to B is exact the singular values diminish by r2. • 

Remark: It can be shown by similar means that one dqd transformation cannot alter 
any singular value by more than 3(n — 1) ulps. 

Theorem 4 is much stronger than the familiar error analysis based on norms because: 

1. The perturbed matrices considered here inherit the bidiagonal structure 

2. The bounds are very much smaller than those from DK (see Section 10) or the 
Golub-Reinsch algorithm (see Chapter 8 of [11]). 

For multiple sweeps of dqds, our results can be stated more simply in terms of the 
positive sequence {Z{\ where / denotes the sweep with Zx — Z\ = Z. See Figure 2 for the 
corresponding commutative diagram. Then by combining Z\ —»■ Zj+i -*■ Zi+X one obtains 
that Zi+i is the exact dqds transformation of a perturbed (in relative sense) Z\. Thus 
backward stability is present for {£/}. 

Similarly it can be shown that the sequence {Zi} is forward stable (in relative sense) with 
Zf = Zt where Zr is the final computed result. On exact application of dqds on Z\ we 
get Zi+1 instead of Z(+i (see Figure 2) and the error between Zi+1 and Zl+i is small. 

Example 3 The following experiment shows vividly the difference between an algorithm 
that obtains high relative accuracy (dqds) and one that does not (UNPACK dsvdc 
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Z, 

Z, 

change each 
qk by 3 ulps 
ek by 1 ulp 

dqds 

computed 

dqds 

change each 
4k, h by 2 ulps 

W+i 
exact 

Figure 2: Effects of roundoff for multiple sweeps 

based on the Golub-Reinsch algorithm) but which delivers excellent absolute accuracy. 
We took the graded matrix B+, 

Oi-i = /30i   ,    b{ = a, 

with an = 1, n = 8 and ß = 60. We applied both algorithms to B+ and its reversal 5_, 

a» -* a.n+1-i   ,    h -* 6n_,-. 

We did not allow any flipping of the matrix within the dqds algorithm although such 
flipping improves convergence. See next section. 

In Tables 5 and 6, the third column shows, absi, 

absi .:= (at[B.] - ai[B+])/a1[B+] 

the differences between outputs scaled by the 2-norm of the nicer matrix. Recall that 
macheps ta 2-53 « 1.1 x 10~16. For dsvdc (see Table 5), it can be seen that the absolute 
error is even smaller than absolute stability guarantees. 

In Tables 5 and 6, the fourth column shows, re/,-, 

reli:=(<ri[B-]-ai[B+])/<Tt[B+] 
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the relative differences in the outputs. For dqds the largest magnitude is less than two 
macheps (see Table 5) while for dsvdc (see Table 6), it is very much larger and shows 
that dsvdc does not give relative accuracy. 

i °i[B+] °i[B.] abst re/,- 
1 3.9590303657774160D+12 3.9590303657774155D+12 -1.2D-16 -1.2D-16 
2 5.7143240472800255D+10 5.7143240472800247D+10 -1.9D-18 -1.3D-16 
3 8.9790986853271568D+08 8.9790986853271568D+08 0.0D+00 0.0D+00 
4 1.4489876544914651D+07 1.4489876544914651D+07 0.0D+00 0.0D+00 
5 2.3661793507020348D+05 2.3661793507020348D+05 0.0D+00 0.0D+00 
6 3.8884661685208386D+03 3.8884661685208386D+03 -1.1D-25 -1.2D-16 
7 6.4142972113704085D+01 6.4142972113704109D+01 3.6D-27 2.2D-16 
8 3.5351579203702068D-01 3.5351579203702068D-01 0.0D+00 0.0D+00 

Table 5: Numerical results using dqds for Example 3 

i °i[B+] °i[B-\ absi reli 
1 3.9590303657774146D+12 3.9590303657774160D+12 3.7D-16 3.7D-16 
2 5.7143240472800224D+10 5.7143240472800278D+10 1.3D-17 9.3D-16 
3 8.9790986853271544D+08 8.9790986853271413D+08 -3.3D-19 -1.5D-15 
4 1.4489876544914653D+07 1.4489876544914989D+07 8.5D-20 2.3D-14 
5 2.3661793507020345D+05 2.3661793507022545D+05 5.6D-21 9.3D-14 
6 3.8884661685208386D+03 3.8884661685173243D+03 -8.9D-22 -9.0D-13 
7 6.4142972113704073D+01 6.4142972113772929D+01 1.7D-23 1.1D-12 
8 3.5351579203702068D-01 3.5351579205582154D-01 4.7D-24 5.3D-11 

Table 6: Numerical results using dsvdc for Example 3 

8    Convergence 

8.1    Linear Convergence 

Convergence of the Cholesky algorithm and of the standard qd algorithm for tridiagonal 
matrices (in the positive case) have been given by Rutishauser and others (see [22], [27]). 
Nevertheless we present here a direct convergence proof for oqd because it is a new 
algorithm and the proof is both short and illuminating. We give a brief discussion of the 
effects of finite precision on the results of the theorem at the end of the section. 

The point is that a computed cosine ck can equal unity even though the corresponding 
sine Sk may merely be small. 

Our proof makes use of the fact that a symmetric tridiagonal matrix with nonzero super- 
diagonal entries (e.g. B*B) cannot have multiple eigenvalues [18], [27]. In other words, 
the singular values of a positive bidiagonal B are distinct 

<Ti > a2 > ... > cr„. (28) 
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One must bear in mind that distinct cr,- may be equal to working precision. 

Theorem 5 (Convergence of oqd) From a positive bidiagonal B\ the unshifted oqd 
algorithm produces a sequences {Bi}™ of orthogonally equivalent bidiagonals. As I —► oo, 

B, -> S = diag{au...,an) 

Furthermore, if an < Oi, then the sequence {Yl"=ibP} is monotone decreasing in I from 
the beginning. Each {&f^}J£i converges linearly to 0 with convergence factor oi+i/'a<. 

Proof: Consider a typical step of oqd (Algorithm 1). Since there are no subtractions 
each B] is positive since B\ is positive. 

Equation (7) can be written in the form, 

äk = Cfc_iofc/cjfe for k = l,...,n (29) 

provided that we set c0 = c„ = 1 . Take the product of the first k instances of (29) to 
find 

k k k 

na<=(n°«)/cfc>na<. (30) 

The sequence {üLi a^} 1S bounded above, by ||2?||*, and monotone increasing by (30) 
and thus convergent. The limit may be written n«=i Pi *° reveal that, as / —► oo, 

a|°    -   m (31) 
cj°   -    1 (32) 
4°    -    0. (33) 

By (8) and (33), as / -+ oo, 

r) = «i-0,i=l »-1 (34) 

Thus Bi converges to diagonal form and each /z* is a singular value. To identify //,• use 
the product rhombus rule to find 

»M-0 = 4+iV4° - M*+I/M*- (35) 
Since {&* } is bounded (by ||.Bi||) the limit in (35) cannot exceed 1. By (28) the limit is 
not 1 and thus fik+i < //*, k = 1,.. . ,n — 1, and we may identify fik as o~k- Thus, (35) 
proves that b[' —► 0 linearly with convergence factor c^+i/a*, as claimed, and Bt —► S. 

Finally consider n?^1 fy . Apply (8) and (6) in turn to find 

i       i. u       u        ffl2 • • •fl» 

Ol C\ C2 C„_2 

Ci C2 C3 C„_! 
=    Oi...on_i ... a„ 

=     &l---&n-l ( — j C„. 

<   &i...6„_i, 
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if an < ai. Since B may be flipped about its antidiagonal without altering the singular 
values there is no loss of generality in assuming that a„ < «i. In this case nrJi1 ^« 1S 

monotone decreasing with / from the start. • 

It is worth mentioning that Rutishauser's proof of convergence for qd (Algorithm 3), is 
based on the observation that ||5(jt)||/- > H-BüSHF and ||U_fc||.F < ||-B_J;||F, k = 1,2, 
Here M{±k} is the submatrix of M containing the first (last) k columns. 

n. 

By taking the product of the final n — k instances of (29) one finds that {J\"-k a-l'} is 
monotone decreasing in / for k = n — l,n — 2,.. .,2,1. In particular a\' increases and 
a$ decreases so that a flipping of B is needed at most once. 

The assertions of Theorem 5 bear up quite well in finite precision arithmetic. The se- 
quence {nLi a¥*} 1S monotone nondecreasing and so c-' —► 1 as / -» oo. Thus in 
considering a sequence of computed trigonometric values we do not wish to infer s[' -*■ 0 
from ,<0 1. So the first casualty is the conclusion that s\ * —► 0. Instead we find that 
b\' becomes negligible relative to a-^ and a-\ Even so, in the absence of underflow, 
the diagonal entries eventually rearrange themselves in (almost) monotone nonincreasing 
order. Though distinct, by (28), some singular values may be equal to working accuracy 
and diagonal monotonicity may actually fail by one or two ulps (units in the last place 
held) because the ratio, though exceeding 1 might be too small to cause the neighbouring 
b-value to grow at all. All in all the practical oqd performs as closely to exact oqd as it 
is reasonable to expect. 

8.2    Quadratic Convergence 

Consider the last few steps in dqds with shift r: 

g„_i = d„_i + en_j 

e„-i = e„_iWg„_i 

dn = rf„_ig„/g„_i - r2 

qn = d„. 

Hence 

en-i9n    = 
«n-lgn 

9n-l     L 
en-lgn 

Qn-1 

~ -~ ) ~ * 
Qn-1 

2        Qnen—1 

qn-i J 
(36) 

In exact arithmetic, as r —► <r„[J3n] we have qn —► 0, e„_! —► 0, q„-i —► o"'_x[5„] — 
<r2[5„] := gap > 0 because the singular values are distinct if the initial B is of positive 
type. Thus convergence will be quadratic with respect to this gap. 
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Expression (36) shows that if 

0 < qn - T2 < 2^± (37) 
Qn-l 

then 

and so, by (36), 

Qn-1 Qn-1 

\en-An\   <    1 J_ >0> 
(e„_ig„)2      ql-i       gap2 

as r —»• crn[Bn]. Thus (37) shows a (theoretical) interval for those r that deliver quadratic 
convergence. Next we seek a usable expression that will ultimately lie in that interval. 

The perfect shift is 

T2 = ?„(1 - ~ ) 
Qn-1 

so that the natural strategy is to estimate qn„i from 

9„_i    =    (1 - )?„_i - r" - e„_! 
9n-2 

« (1-^1)^, 
9n-2 

when e„_2 and e„_i are small enough. We may assume that n > 2 and so may use 

r2 = qn *(l-en-i/9n-i*max{-,l-en_2/g„_2}) (38) 

provided that 0 < <2n_i = mini<,-<n_i rf,- and dn < d„_i. 

8.3    Cubic Convergence 

The assertion in Section 8.2 that the shift r2 = qn yields quadratic convergence for qds 
and dqds appears to contradict the result of Rutishauser [23] that this choice yields cubic 
convergence. See also Rutishauser and Schwarz [26] and Chapter 8 of Wilkinson [29]. 
Actually, there is no anomaly because the shift strategies are not quite the same. In our 
terminology what Rutishauser suggests is that the qd transform with r2 = qn should not 
be formed explicitly. The only item wanted from it is q„ and it is assumed to be the only 
negative qt. Then it is shown that qn + qn is a fourth order approximation to a2 from 
below. A qd transform of {q, e} with shift r2 = qn + qn will yield cubic convergence. 

The point that is stressed by neither Rutishauser nor Wilkinson is that the computation 
of q„ costs 0(n) operations, very close to 1 step of qds. From another perspective 
Rutishauser's analysis is a disguised derivation of the cubic convergence of the tridiagonal 
QR algorithm with the Rayleigh quotient shift. 
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For our algorithm dqds Rutishauser's (late failure) shift strategy described above is more 
appealing. Only the first phrase of our algorithm is needed to compute q„ and the cost 
is about | of a dqds step. Moreover the positive form is preserved a little longer. 

For the sake of completeness we indicate why qn + q„ is a fourth order lower bound when 
qn is second order in qnen-i- The relevant tridiagonal matrix is BB* and its leading 
principal (n - 1) x (n - 1) submatrix is called V. Recall that Uj is column j of I. 

Fact 1: Provided (V - a\I) is invertible qn may be written as 

Fact 2: With shift r2 = qn, 

qn = -(%en-i?K-i(v ~ <lnl)~lun-i 

Conclusion, 

qn + qn = °l + (?„e„_i)2<-i [(V - a» J)"1 - (V - <?„ J)"1] «„_!. 

By Hilbert's second resolvent law, 

qn + qn = °l + (5„e».i)2(^ - ?»K-i(V - all)~\V - ff«/)"1«».!. 

Using Fact 1 again, 

qn + qn = o* - (qnen-xy «.^V - aliy'u^u^V - qnI)~\V - ^)-1«„_1} . 

The gap conditions ensure that the quantity in { } is 0(1/gap). 

In contrast to Rutishauser and Wilkinson, we have made no approximations in our deriva- 
tion. The result is valid so long as the inverse matrices exist. 

9    A Preliminary Implementation 

9.1    Choice of Shifts 

The standard singular value codes in LINPACK and LAPACK need about 2 QR steps 
per singular value, in most cases, and that provides a hard target to beat. Moreover one 
of our qd transformations needs only 0(n) flops and no square roots so we are reluctant 
to spend 0(n) flops on shift selection. 

A strategy used to generate the numerical tests in this paper may not be the best but it 
is based on the following somewhat surprising observation. The upper bound 

dk = min d,- 
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is an increasingly good estimate for ^,„[5], Moreover, at each step, we will know the 
index k from the previous step. This index points to the largest diagonal entry oi(BiB)~1 

and helps tell us whether <7^,n has yet migrated to the bottom of BtB. If k > n — 1 
we expect the trailing 2x2 principal submatrix of BB* to give a good approximation 
to o^in' When k < n — 1 the matrix is not yet in asymptotic form and the situation is 
more difficult. However we do know that y/qk + ek is the smallest (leftmost) centre of all 
the Johnson discs for the matrix of equation (15). If this disc were separated from the 
rest of the discs then it would certainly contain cm,n. Even if it were not isolated this 
disc might still contain ami„ so we use it. 

Strictly speaking we need 

(ak - ~(h + 6*_!))2    >    (ak-yft)2 

>   Qk - 2\/qk~e + e 

(39) 

where e = max{efc,e*_i}. When this disc is isolated then the lower bound is definitely 
too small. A more cautious formula is 

min fa — yfq^e. + e, 0.96 * sup} 
k 

Since our estimates may exceed amin we must face the possibility of rejection of a shift 
r2. How should the new shift be chosen ? On one hand it is not efficient to panic and 
simply bisect, r2 <— |(in/ + r2); on the other hand we must avoid being trapped close to 
a large overestimate of <rm,„. Our compromise is to multiply the previous gap between 
sup and r2 by 4 to yield 

T2 *- T2 — min {4 * (sup — r2), -r2}. 

9.2    Splitting and Deflation 

In Section 2 it was noted that if e,- = 0 (i.e. bt = 0), for i < n, then the bidiagonal B 
splits into two complementary sub diagonals. Consider now the case when e{ (or 6.) is 
small enough to permit such a splitting without making a relative change in any singular 
value exceeding a given tolerance r\. Our situation is a little more complicated than the 
one studied in DK because of the non-restoring shift. Let a2 denote the cumulative sum 
of all shifts used on the given matrix in the qd algorithm (which computes the squared 
singular values). 

Our criteria are based on Weyl's monotonicity theorem for eigenvalues of symmetric 
matrices. Consider a bidiagonal B and the possibility of neglecting 6,- for a given i < n. 
Write 
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where A,-,,- is a null matrix except that the (i,j) is unity. There are two cases. Case I: 

Case II: 

n*„ , ff»r_ I  B\Bx + oH   a,-6,AM 

° ü + a 1 - \        a,6,AM   B\B2 + 6?Alfl + a2/ 

(       ,        /^If 6?AM- + a2I   ai+1bt A,-1 
BB +aI-{ a,+16,AM   B2B\+o2I 

The spectral norm of the matrix 

CO 
is \a\ and it is submatrices of this form that we will remove. Weyl's theorem states that 
on subtracting a principal submatrix of the above form, no eigenvalue is changed by more 
than |a|. Apply this result to Case I and conclude that if 

aibi<2r1(cT2 + (r2min[B1}) (40) 

then there are i indices j such that 

XjlB'B + a2I] = \j\B\Bt + a2J](l + ejf 

with €j < 77. Here X[M] is an eigenvalue of M. Recall that B is not the original matrix 
whose singular values are to be found. However the eigenvalues of B%B + a21 are the 
squares of the wanted numbers. 

Applying Weyl's theorem to Case II shows that if 

ai+1bi<2r1(<T2 + a2
min[B2]) (41) 

then there are n — i+ 1 indices j such that 

XjiB'B + a2I\ = Xj[B2Bl + <r2J](l + erf 

with €j < 77. 

Since crmin[Bi] and <rm,„[52] are not usually known (unless i = 1,2, or n — l,n) the 
criteria given above must be replaced by a more exacting one 

bi < r\{a2 + in/)/max{a<,a,+1} (42) 

where inf is the best lower bound on «^-„[.B]. 

The conditions (41) and (42) are more severe than DK's 

bi < WminlB] (43) 

when a2 < inf since max a*, a,+i > y/inf. However after the tiny eigenvalues are found 
it is not fair to compare 6,- with the current B. In principal (42) and (43) can be merged 
into 

d < T)2 max [inf, 4(<r2 + inf) f-JL±!l—\ \ (44) 
L \max{g,-,g,+i)/J 

When i z= n — lorn — 2 criterion (40) tells us when to deflate the bottom 1 x 1 or 2 x 2 
submatrix from B and be sure that the singular values of 2?j are adequate approximations 
to the remaining singular values of B. 
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9.3    Performance of a Prototype Implementation 

We have developed and implemented dqds in FORTRAN 77 to exploit and study the 
theory we have developed in this paper. This prototype program is built in modular 
fashion. 

We have run our code on a broad test bed of bidiagonals. Here we report on comparisons 
on three interesting classes using our dqds and LINPACK's dsvdc (with reduction to 
bidiagonals removed). 

Example 4 (nice matrices) We considered the graded matrix B+ defined earlier in Ex- 
ample 3 with the parameter ß = 2 and n = 30. Table 7 gives the performance of this 
example and other examples in this section. The speedup is the time taken by dsvdc 
divided by dqds. 

We have also tested this problem with n = 40 and in that case the LINPACK dsvdc 
returned with an error flag as it could not compute o-40 within 30 iterations. We were 
prevented from comparing with larger values of n because dsvdc reported errors. • 

Example 5 (perversely graded) To make conditions artificially difficult for dqds, we also 
ran the programs with the reversely graded matrix 1?_ as the input with n = 30 and 
ß = 2. See Table 7 for details. 

Usually, our dqds will flip 5_ to obtain J3+. If the user does not flip B_ before calling 
dsvdc then the time ratio goes up to 18.9. 

dsvdc also failed to converge for many combinations of ß and n. • 

Example 6 Let Bw be the Wilkinson-type bidiagonal matrix where 

Tl 

bi = 1   ,    i = l,...,n— 1 

This matrix has close eigenvalues (twins) and our current coding does not fully exploit 
this structure. Hence the low performance compared with the previous results. • 

Example 7 Doubled Wilkinson-type matrices, B2w, 

Oi = \t-- + l\    ,     1 = 1,...,- 

n 
ai+~=ai   ,    i = - + l,...,n 

bi = 1   ,    i = 1,.. .,n — 1 

with n — 41. This matrix has close singular values (quads) and some of them are exactly 
equal. Table 7 gives the details. • 
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Example 8 Toeplitz matrix Bt, 

cii = 1   ,    b{ = 2. 

For n — 100, the matrix has a tiny singular value; others are between 1 and 3. • 

Example Matrix n dqd sweeps dsvdc sweeps speedup 
4 B+ 30 52 60 10.2 
5 B. 30 79 101 12.3 
6 Bw 21 78 62 4.8 
7 B%w 41 230 120 4.8 
8 Bt 100 374 308 11.0 

Table 7: Performance comparison 

10    The Demmel/Kahan Paper 

We summarize the highlights of this impressive contribution [4]. 

10.1    High Relative Accuracy 

Corollary 2 of Theorem 2 of DK. Suppose that (B+6B)ii = a2,_ia,-, (B+SB)iii+i = a2ibt, 
a,- ^ 0. Define 

. 2n-l 

a:= Y[ max{|ai|,|oj 
1|}. 

Let ax > a2 > ... > an be the singular values of B + SB. Then 

0-,/ä < er,- < <7,ä ,   i = 1,2,..., n. 

This shows that bidiagonal matrices determine their singular values to high relative 
accuracy. 

10.2    Bounds for <r„ 

It is possible to compute \\B 1\\00 and ||£-1|i using 2(n —1) divisions and multiplications. 
The algorithm is 

Ai := aj(AJ+1/(Ai+1 + &_,)) ,  j = n - l,n - 2,..., 1   with   Xn := an 

/*,-+! := aj+^fij/inj + bj)) ,  j = 1,2, ...,ra- 1   with   /*x := ax 

||5-1||00 = l/minAj 
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Finally, 
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\\B-% = 1/mm ftj. 

and 
rmniWB-TJAlB-'V}^^ 

10.3    A Stopping Criterion 

Let 77 << 1 be the desired relative accuracy of the computed singular values. Then if 
either 

bj/Xj+i < V   or   bj/fij < n 

set bj to zero and the two pieces into which B splits may be processed separately. The 
criteria used in LINPACK [5] can sometimes deliver a zero singular value when it should 
not and can sometimes fail to suppress a negligible off diagonal entry bj. 

10.4    Bidiagonal QR with Zero Shift 

The standard Golub/Reinsch algorithm [11], [10] used in LINPACK may be simplified 
when no shifts are used. Of more importance is the fact that in this case all round off 
errors arise multiplicatively. Moreover for the calculation of tiny singular values zero is 
a good shift and it pays to compute them first rather then letting the standard shift 
strategy dictate the order in which the singular values are found. The arithmetic effort 
in the innermost loop is 

Golub/Reinsch: 2 calls to ROT + 12 multiplications + 4 additions 

Demmel/Kahan: 2 calls to ROT + 4 multiplications. 

The procedure ROT computes the sine and cosine needed for a plane rotation using 2 
divisions, 3 multiplications, and 1 square root. Here is the algorithm. 

oldcs := cs := 1 

for i := l,n - 1 

call ROT(a,i* cs,bi,cs,sn,r) 

if (i ^ 1) 6,_i := oldsn * r 

call ROT(oldcs * r, 6,+1 * sn, oldcs, oldsn, bi) 

h := an * cs;   6n_i := h * oldsn;  an := h* oldcs 

end for (45) 
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In the absence of underflow the error bound on singular values after one zero shift bidi- 
agonal QR transform is 

Wi -<r'\< z °i * = 1,..., n 
1 — w 

where 
w := 69n2e < 1. 

See Theorem 6, p. 906. 

10.5    The Overall Algorithm 

if (roundoff in any shift exceeds tol * bound on an)   then 

use zero-shift QR or QL 

else 

use shifted QR or QL 

end if. 

10.6    Other Improvements 

The new code uses either QL or QR as appropriate according to the way B is graded. 

An efficient accurate subroutine is provided to return the singular values and vectors of 
2x2 bidiagonal matrices. 

Deflation when a diagonal entry a,- vanishes is automatic and occurs at the bottom or 
top of B. 

11    Evolution of qd 

Some of the available presentations of the qd-algorithm, see [22], [27], [12] show its 
close connection with factorization of tridiagonal matrices but some do not [13], [28]. 
Nevertheless its discovery had nothing to do with matrix decompositions and a knowledge 
of the origins helps us to understand the somewhat neglected status of the algorithm. 
In the next few paragraphs we sketch an earlier paper [17] which described the gradual 
evolution of the qd-algorithm. 

The story begins with Daniel Bernoulli in 1728 when he showed that the largest and the 
smallest roots of an nth degree polynomial can be obtained by iterating an nth degree 
difference equation. See [2]. The work of Bernoulli was extended by Euler in 1748. See 
Chapter 17 of [7] (English translation [6]). 
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We are given a rational function of a complex variable z, 

oo 

k=0 

assumed to be regular (analytic) at both z = 0 and z = oo. The Taylor series converges to 
f(z) only within a circle (in C) centred at z = 0 and extending up to the nearest pole pi. 
However, by analytic continuation, the Taylor coefficients {hk} actually define a unique 
rational function / on all of C except the poles pi,P2,P3, The problem is to determine 
the poles directly from the {hk} without having recourse to analytic continuation. 

In 1884 König [16] showed that if pi is a simple pole and smaller than all the others then 

lim (/&jb//i)t+i) = pi. 
k—nx> 

Exactly one hundred years ago (i.e. in 1892), in his dissertation, J. Hadamard showed 
that 

where 

K = det 

-♦oo \ H*m J 11« 

hk h-k+i • ■ •      hk+m-l 

hk+\ hk+2 • • •     hk+m 

lk+m- -i   h, k+m lfc+2m-2 

The H* are called Hankel determinants. It follows that 

«—Jal «/JH., J 

The solution is brilliant but does not give us a practical algorithm. 

During the 1920s, in Scotland, A. C. Aitken rediscovered for himself a remarkable con- 
nection among Hankel matrices that was known to Hadamard but not exploited by him; 

(K)2 + K~+\H
k

mt\ = H^+_\. (46) 

The relation (46) permits the computation of all the H^ without being drowned in 
determinantal equations. 

The blemish in (46) is that the H^ are not of direct interest. We want to compute 

,k) .=    g*+1/g* 
"m    '        irk+1  I Tjk 

•"m-l/-"m-l 
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q[0) 

c(0) el 

^ ^ 
e(1) e

2 

q{2) «£1} 
e
i e2 

«ia) 
^2) 

• 

ei 

^3) 

e(2) e2 

e(3) e2 

Figure 3: qd in a (modified) difference table 

Rutishauser's clever observation was that if one introduces 

rrk+l  rrk 
(Jfc) -"m-l-"m+l 

then (46) implies 

the additive rhombus rule, while the definitions of q and e give the product rhombus rule 

(t+i) (*+i) _   (*)    (i) 
Hm        1m — 1m+lem  • 

The rhombus rules were introduced at the end of Section 4. The qs and es are best laid 
out in a tableau that is like a difference table. See Figure 3. 

This qd table may be built up via the rhombus rules either from column 1 or from the 
top diagonal. The first column, {q[ ^} is at hand, since 

q[k) = H'/H*-1 = hk/h,.,  ,   k > 1 

and 
J*) _ „(*+i) _ „(*) 

This is far simple than Hadamard's solution but, in finite precision arithmetic, it is 
hopelessly unstable because the later e's are (modified) differences of converging values. 

Fortunately computation along descending diagonals is stable but here the difficulty is 
the calculation of the tcp diagonal. This is not as daunting as it appears at first. If the 
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function /(C) has only n poles then all q (and e) columns beyond the nth vanish. Then 
it suffices to build the n x n Hankel matrix H° and compute its triangular factorization 

H°n = LnDnVn 

where Dn = diag(di,.. .,dn) holds the successive pivots. It turns out that 

q<?) = H0
k/H°k.i = dk  ,  * = l,...,n 

The ek are found from the pivots of H\. This is the practical way to compute the 
poles from the Taylor coefficients. In fact a careful form of row interchanges (not partial 
pivoting) may be used to improve the accuracy of the factorization. 

Next we relate the qd tableau to the computation of eigenvalues. Given a square matrix 
C the appropriate rational function / comes from the resolvent, 

f(z) = x\I-zC)-1y, 

where x and y are column vectors. A technical assumption is needed to guarantee that 
the qd tableau is well defined. In the language of control theory, see [15], the linear 
dynamical system S(C, y, x*) must be minimal. If it is not minimal, then we might not 
be able to find all the poles of the system. 

For this function /, 
hk = x'CVx'C*-1?/ 

as so the {hk} could be computed by the power method. However, it would be preferable 
to compute {ft ,ei ,<ß ,c2 >•••} directly from C and we now know that this can be 
done by invoking the Lanczos algorithm on C and using the resulting tridiagonal matrix 
J. It turns out that the pivots that occur in computing the triangular factorization of J 
are the {g£0)} and their reciprocals are the {e^}. The details are given in [17]. In other 
words, 

J = B(°) 
»(») 

(o) 
«l 

o(0) 
V2 

*i0) 

(0) 

We see here how the LR algorithm on tridiagonals was hidden in the qd table. 

12    The Continued Fraction Connection 

There is an intimate connection between our bidiagonal matrix B, the tridiagonal ma- 
trix T = BlB, and a continued fraction associated with them. Properties of continued 
fractions influenced the qd algorithm initially and only later did the LR transformation 
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emerge and nearly displace the continued fraction. We can not find any discussion by 
Rutishauser of the connection between the continued fraction and B*B so we supply it 
here. 

Recall the notation from Sections 2, 3, and 4. 

B = bidiag < 
&i b2 

a2 

K-2 bn-i 1 
On-i an J ' 

9i = a2i 

e- =b] ,  e0 = e„ = 0 

T = tridiag < 

Rutishauser associates with T the continued fraction 

1 erqx e2q2 

y/qiei y/qlei yj<l&% y/qn-\en-i 
q\ 92 + ci «3 + e2 ... qn + en_i 

y/Ql^l y/Wh y/qleä y/in-lCn-l 

F{Q = C-Qi-   C-?2-ci-   C~Q2-e2- 
(47) 

It is not obvious how F(Q relates to T. The answer is 

F(0 = [(a-T)-i]M 

or more generally, 
F(C) = x\CI-T)-1y 

with x and y as defined near the end of Section 11. The inverse is well defined for all £ 
with |C| exceeding the spectral radius of T. The particular form of the continued fraction 
arises from the triangular factorization of (I — T from the bottom up: 

where L is unit triangular and 

Then 

and 

The recurrence for the dj is 

(I - T = Vbi 

D = diag(d1,d2,...,dn) 

& = di(C). 

{Ci-T)-1 = L-1r>-1L-t 

no = dTi 

dn    :=   ( ~ qn~ e„_i 

dj    ■=   C-qj ~ e,-i - qjej/dj+1 for j = n - 1,..., 2,1. (48) 
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This establishes (47). 

There is a simpler continued fraction expansion for F(£). It corresponds to a recurrence 
for dj + e,-_i. From (48) 

di + Ci-i   =   C-fc(l+-f*-) 

V  <W + ei   / 
=   (-^/(l-ej/idj^ + ej)) (49) 

Since e0 = 0, (49) gives 

TO = IM = i-^-iL g. ^. ... 
This form is remarkable for the direct connection of qt and e< to the (1,1) entry of 
(C/-T)"1. 
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