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Abstract  

An experimental and chemical modeling study of neat and NH3-doped H2/N20/Ar flames is 
conducted in order to understand the fundamental mechanism for NO formation and destruction 
and to predict the efficacy of NH3 on the rate of conversion of NO to N2. Species concentration 
and temperature profiles are measured with molecular-beam-mass spectrometer and thin-wire 
thermocouple, respectively. Species profiled include H2,N20, NH3, N2, NO, and Ar. The 
experimental mole fractions are compared to both equilibrium and one-dimensional premixed 
laminar flame code (PREMTX) calculations. The PREMIX code employs a chemical mechanism 
consisting fo 87 reactions and 20 species with rate constants obtained from a critical literature 
review. Equilibrium ejaculations are in very good agreement with both experimental and 
PREMIX calculations for N20, N2, and E^O in the postflame region of both neat and doped flaes, 
but underpredict the H2and NO mole fractions. The PREMIX profiles of the majority species 
agree very well with the experiment for the neat flame and reasonably well for the doped flame. 
A 55% reduction in the NO mole fraction for 4% dopant is predicted in the post-flame region, 
in good agreement with that observed experimentally. The flame calculations overpredict, 
however, the NH3 mole fractions in the post-flame region, suggesting that refinements in the 
model are necessary. Rate and sensitivity analyses reveal that the decrease in NO mole fraction 
results from less NO formation by the reactions involving N20+H and more of its consumption 
to N2 by reactions involving NO+NH2. 
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1. INTRODUCTION 

An understanding of the way additives alter the chemical pathways in combustion systems is a 

prerequisite for controlling and enhancing system performance. In many systems, NO is a product 

of incomplete combustion whose formation prevents full energy release of the system. It is also 

known to cause the formation of a dark zone in the burning of solid propellants, which is 

undesirable [1], and, as an environmental pollutant, it poses problems in the incineration of aged 

propellants. Thus, it is of interest to investigate the incorporation of various additives in 

nitrogenous combustion systems for NO reduction. -The H2/N20 chemical system was chosen 

because it is fairly simple and has important implications in understanding NOx pollutant 

formation and nitramine propellant combustion and decomposition. The elementary reactions of 

the system are a subset of larger mechanisms needed to understand the nitrogen chemistry of 

more complex combustion systems. 

This report describes combined experimental and modeling flame-structure studies of neat and 

NH3-doped H2/N20/Ar flames in order to explore the role of the additive in converting NO to 

final products. NH3 was selected as the additive because of its proven use in the thermal deNOx 

process to remove NO from effluent streams of industrial furnaces [2]. The experimental mole 

fractions are compared with both equilibrium and one-dimensional premixed laminar flame code 

(PREMIX) calculations. Rate and sensitivity analyses of the PREMTX calculations reveal the 

mechanisms responsible for NO formation and consumption. 

2. EXPERIMENTAL 

The details of the experimental apparatus used in this study are discussed elsewhere [3,4]. 

Briefly, a 30-torr H2/N20/Ar flame, generated by flowing H2, N20, and Ar at 1.78,1.64, and 

1.23 slpm, respectively, was stabilized on a 6-cm diameter flat-flame burner and doped with up to 

7% NH3. Profiles of H2, N20, NH3, H20, N2, NO, and Ar were obtained by molecular-beam 

mass spectrometry (MBMS), and the species concentrations were determined by direct calibration 

at ambient temperature by a procedure previously reported [4]. For H20, the signals measured in 



the flame were quantified by equating the ratio of N/O in the premixed gases to the ratio of N/O 

in the burnt gases and by assuming that the mole fractions of the radical species are comparatively 

small [5]. The errors associated with the absolute species concentrations were ±10%. The OH, 

NH2, NH, and O radicals were not measured by MBMS because of the same mass-to-charge ratio 

and fragmentation-ionization interferences resulting from the addition of NH3. These species are, 

however, presently being measured by laser-induced fluorescence (LIF), and the results will be 

presented elsewhere. 

Rame temperatures were measured with a Pt/Pt-Rh(10%) fine-wire thermocouple coated with 

a beryllium oxide (15%)/yttrium oxide mixture [6] and corrected for temperature-radiation losses 

using OH LIF [7]. The overall uncertainty of temperature measurements is ±100 K in the region 

of the peak temperature. 

The temperature data for both neat and NH3-doped H2/N20/Ar flames, measured near the 

quartz sampler and fit to a sigmoid-type function, are shown in Figure 1. The peak in the 

temperature profiles near the burner surface is an artifact produced by the quartz sampler since it 

is not present when the sampler is removed. (Temperature profiles without sampler are not 

shown.) Doping the neat flame with 4% of NH3 results in approximately a 2-mm displacement of 

the temperature profile away from the burner surface, and approximately a 44-K drop in the peak 

temperature. The small drop in peak temperature is consistent with NASA-Lewis equilibrium 

calculations [8], which yield a difference in the adiabatic flame temperatures of only 9 K. In the 

post-flame region, the measured flame temperatures are nearly identical, approximately 1,822 K at 

13.75 mm. 

3. MODELING/CHEMICAL MECHANISM 

The computations utilized the Sandia Laboratories PREMDC code (ver.2.5b) [9], which 

employs the CHEMKIN-II (ver. 3.0) library [10]. The calculations were performed with the 

fitted- temperature profiles used as input to PREMEX, the inclusion of both thermal diffusion and 

multicomponent transport package option, and with normal boundary conditions (i.e., no 
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Figure 1. Temperatore profiles of a neat (A) and 4% NH3-doped (6). 30-torr H2/N2Q/Ar 
flame. The solid line is a best fit of the data using a sigmoid-type function. 

recombination of H atoms to H2 via burner surface reaction was included). Prior work under 

conditions similar to those used here indicates that inclusion of this recombination effect only 

results in a minor change to the H and H2 profiles very close to the burner surface [3]. Gridding 

parameters and calculational domain were checked to ensure that numerical errors due to 

resolution and hot boundary conditions were negligible. Transport and thermochemical databases 

[11,12] developed at Sandia were used for these calculations with the exception of a few of the 

species' heats of formation. Values of (AH°f)298 for HNO, NH2, and NH were updated to 25.4, 

45.2, and 85.3 kcal/mole, respectively [13,14]. The program THERM [15] was used to refit 

these species' thermal data to the form used in CHEMKIN codes. Rate and sensitivity analyses 

were performed using an interactive postprocessing code written in-house. 

The chemical mechanism and rate constants used for the flame calculations are presented in 

Table 1. The bulk of the reactions was obtained from the benchmark review of nitrogen 

chemistry in combustion by Miller and Bowman [16], which were updated for the H2/N20 system 

[3,4]. More recent updates include both rate constant [25] and efficiency factor 



Table 1. Reaction Mechanism Employed for Modeling Both Neat and NH3-Doped H2/N20 
Flames (The Rate Coefficients Are in the Form k=ATBe("E/RT\ Where A and E Have 
Units of cm-mol-s-K and cal/mol, Respectively) 

REACTIONS 
REF. 

A B E REF. REACTIONS A B E 

1 H2+02=OH+OH 1.70E+13 0.00 47780. .0 [16] 44 NH2+N=N2+H+H 7.20E+13 0.00 0. .0 [16] 
2 H2+OH-H20+H 2.16E+08 1.51 3430. .0 [IV] 45 NH2+02-HNO+OH 4.50E+12 0.00 25000. ,0 [16] 
3 H2+0-H+OH 5.06E+04 2.67 6290. .0 [18] 46 NH2+NH2-N2H2+H2 5.00E+11 0.00 0. .0 [16] 
4 H+H+H2-H2+H2 1.00E+17 -0.60 0, .0 [19] 47 NH2+NH2=NH+NH3 5.00E+13 0.00 10000. .0 [33] 
5 H+H+H20-H2+H2C i  1.00E+19 -1.00 0. .0 [19] 48 NH3+OH-NH2+H20 2.04E+06 2.04 566. .0 [16] 
6 H+H+H-H2+H 3.20E+15 0.00 0. .0 [19] 49 NH3+H=NH2+H2 5.42E+05 2.40 9917, .0 [34] 
7 H+H+AR-H2+AR 7.00E+17 -1.00 0. .0 [19] 50 NH3+0-NH2+OH 9.40E+06 1.94 6460. .0 [35] 
8 H+H+N2-H2+N2 5.40E+18 -1.30 0. .0 [19] 51 NH3+M-NH2+H+M 2.20E+16 0.00 93470. .0 [33] 
9 H+H+M-H2+M 1.00E+18 -1.00 0. .0" [16] 52 NNH+NO=N2+HNO 5.00E+13 0.00 0, .0 [16] 
10 H+02-OH+0 3.52E+16 -0.70 17070, .0 [20] 53 NNH+H=N2+H2 1.00E+14 0.00 0, .0 [16] 
11 02+H+M=H02+M 3.61E+17 -0.72 0. .0" [16] 54 NNH+0H=N2+H20 5.00E+13 0.00 0, .0 [16] 
12 0+0+M=02+M 1.89E+13 0.00 -1788. .0 [16] 55 NNH+NH2=N2+NH3 5.00E+13 0.00 0, .0 [16] 
13 H02+OH=H20+02 7.50E+12 0.00 0. .0 [16] 56 NNH+NH=N2+NH2 5.00E+13 0.00 0, .0 [16] 
14 H02+H=OH+OH 1.69E+14 0.00 874. .0 [21] 57 NNH-N2+H 3.00E+08 0.00 0, .0 [24] 
15 H02+H=H2+02 6.63E+13 0.00 2126. .0 [21] 58 NNH+M-N2+H+M 1.00E13 0.50 3060, .0 [24] 
16 H02+O-OH+O2 1.40E+13 0.00 1073. .0 [16] 59 NNH+0=N2+OH 1.70E16 -1.23 497, .0 [24] 
17 OH+OH=H20+0 6.00E+08 1.30 0. .0 [16] 60 NNH+0=NO+NH 3.30E14 -0.23 -1013, ,0 [24] 
18 H+0H+M-H20+M 2.20E+22 -2.00 0. .0" [22] 61 HN0+0H=N0+H20 1.30E+07 1.88 -960. .0 [36] 
19 H+0+M=OH+M 6.20E+16 -0.60 0. ■°l [16] 62 HNO+NH2=NH3+NO 2.00E+13 0.00 1000. .0 [16] 
20 N20+H-OH+N2 2.53E+10 0.00 4550. ■°l [23] 63 HNO+HNO-N20+H20 3.63E-03 3.98 1190. .0 [37] 

2.23E+14 0.00 16750. .0b [23] 64 HNO+NO-N20+OH 8.51E+12 0.00 29590. .0 [38] 
21 NNH+0-N20+H 1.40E+14 -0.40 477. .0 [24] 65 HNO+0-OH+NO 4.50E11 0.72 656. .0 [32] 
22 N20+M=N2+0+M 5.97E+14 0.00 56640. .0" [25] 66 N2H2+M=NNH+H+M 5.00E+16 0.00 50000. .0" [16] 
23 N20+0-N2+02 1.40E+12 0.00 10800. .0 [26] 67 N2H2+H-NNH+H2 5.00E+13 0.00 1000, ,0 [16] 
24 N20+0-NO+NO 6.90E+13 0.00 26600. •°>, [27] ■ 68 N2H2+0-NH2+NO 1.00E+13 0.00 0. ,0 [16] 
25 NH+NO=N20+H 2.94E+14 -0.40 0. •°b [28] 69 N2H2+0-NNH+OH 2.00E+13 0.00 1000, ,0 [16] 

-2.16E+13 -0.23 0. ,ob [28] 70 N2H2+OH-NNH+H20 1.00E+13 0.00 1000, ,0 [16] 
26 NH+NO-N2+OH 2.16E+13 -0.23 0. .0 [28] 71 N2H2+NH-NNH+NH2 1.00E+13 0.00 1000. ,0 [16] 
27 NH+02-NO+OH 7.60E+10 0.00 1530. .0 [29] 72 N2H2+NH2-NH3+NNH 1.00E+13 0.00 1000, .0 [16] 
28 NH+02-HNO+0 3.89E+13 0.00 17885. .0 [29] 73 HNO+H-H2+NO 4.46E+11 0.72 655, ,0 [39] 
29 NH+OH-HNO+H 2.00E+13 0.00 0. .0 [16] 74 NO+N-N2+0 3.27E+12 0.30 0. ,0 [16] 
30 NH+OH-N+H20 5.00E+11 0.50 2000. .0 [16] 75 NO+M-N+O+M 1.40E+15 0.00 148430. ,0 [40] 
31 NH+N-N2+H 3.00E+13 0.00 0. .0 [16] 76 NO+H+M-HNO+M 9.00E+19 -1.30 735. ,0 [40] 
32 N+H2-NH+H 1.60E+14 0.00 25140. .0 [30] 77 NO+H-N+OH 1.70E+14 0.00 48801. ,0 [27] 
33 NH+O-NO+H 5.50E+13 0.00 0. .0 [29] 78 NO+O-N+02 3.80E+09 1.00 41370. ,0 [40] 
34 NH+O-N+OH 3.72E+13 0.00 0. .0 [29] 79 NH2+NH2-N2H3+H 1.79E+13 -0.35 11320. .0 [32] 
35 NH+NH-N2+2H 5.10E+13 0.00 0. .0 [31] 80 NH2+NH2+M-N2H4+M 2.98E+47 -9.44 9680. .0 [32] 
36 NH+M-N+H+M 2.65E+14 0.00 75514. .0 [31] 81 N2H4+H-N2H3+H2 7.05E+12 0.00 2500. ,0 [41] 
37 NH2+0-HNO+H 4.60E+13 0.00 0. .0 [32] 82 N2H4+OH-N2H3+H20 3.00E+10 0.68 1290. ,0 [42] 
38 NH2+0-NH+OH 7.00E+12 0.00 0. .0 [32] 83 N2H4+0=N2H3+0H 2.00E+13 0.00 1000. ,0 [42] 
39 NH2+OH-NH+H20 4.00E+06 2.00 1000. .0 [16] 84 N2H3+M=N2H2+H+M 1.20E+13 0.00 58000. ,0 [42] 
40 NH2+H=NH+H2 4.00E+13 0.00 3650. .0 [33] 85 N2H3+H=N2H2+H2 1.00E+12 0.50 2000. ,0 [42] 
41 NH2+NO-NNH+OH 6.40E+15 -1.25 0. .0 [16] 86 N2H3+0H-N2H2+H20 3.00E+10 0.68 1290. ,0 [42] 
42 NH2+NO-N2+H20 6.20E+15 -1.25 0. .0 [16] 87 N2H3+0-N2H2+OH 2.00E+13 0.00 1000, ,0 [42] 
43 NH2+NH-N2H2+H 1.50E+15 -0.50 0. .0 [33] 

Third body efficiencies. 
R9. H2A)iVH2CVa(VHA).0/ArA).0/N2/0.0 
Ml. NJ/13/HJO/18.6ÄI2/2.9 
R18.AT/038/HJO/63 
RW.KJO/SJO 
R22. N2CV5.«VH20/7^/N2/lfl/02/.82/ArA).67 
R66. Kf)l\SS>IOJ2,0mj2.Smj2Ji 

For the indicated reactions the rate coefficient is computed as the sum of the two exponential expressions given for each. 



(M=H20) [43] for the sensitive reaction N20+M=N2+0+M (R22). Recent results of Hanson and 

coworkers for many important reactions involving NHX species that were previously poorly 

quantified have also been incorporated [29-31,33]. Finally, the reaction OH+N20=H02+N2 was 

not included in the mechanism since recent experimental [3,43,44] and theoretical [45] studies 

indicate it is too slow to be of importance. 

4. RESULTS/DISCUSSION 

The experimental and predicted mole fractions of H2, N2, H20, and N20 for the neat 

H2/N20/Ar flame are presented in Figure 2. Also presented are species profiles generated by 

increasing the temperature profile by a factor of 1.05, the experimental uncertainty. The 

computed profiles accurately model the experimental results throughout the entire flame for the 

neat flame. Quantitatively, the calculated mole fractions agree well with those measured 

experimentally, particularly in the post-flame region. NASA-Lewis calculations performed using 

a temperature of 1,822 K yield equihbrium mole-fraction values of 0.351 for N2 and H20 and 0.0 

for N20, which are also in good agreement with the experimental mole fractions at 13.75 mm. 

The calculated H2 equilibrium value of 0.0313 is, however, a factor of 2 smaller than the 

experimental value, indicating incomplete reaction. 

Figure 3 shows the experimental and calculated mole-fraction profiles of the major species for 

the NH3-doped flame. Species profiles generated by increasing the experimental temperature 

profile by the experimental uncertainty are also presented. Both the experimental and modeled 

profiles are shifted away from the burner compared to their positions in the neat flame. The result 

follows the trend in temperature profiles (Figure 1). For the doped flame, the modeled profiles 

are shifted approximately 2 mm further away from the burner surface compared to those 

measured, indicating that the overall chemical reaction rates in the model are too slow. The 

experimental and calculated mole-fraction values for H2, H20, and N2 agree reasonably well, 

while the N20 profile is overpredicted by the model. As in the neat flame, equilibrium mole- 
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Figure 2. Calculated (-) and experimental H2 (•). N2Q (o). H2Q Q. and N2 O species 
profiles for a 30-torr H2/N2Q/Ar flame. The dashed curves are calculated 
profiles generated by increasing the temperature profile by a factor of 1.05, the 
experimental uncertainty. 
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Figure 3. Calculated (-) and experimental H2 (•). N2Q (o). H2Q O. and N2 (M) species 
profiles for a 30-torr H2/N2Q/Ar flame doped with 4% NH3. The dashed curves are 
calculated profiles generated by increasing the temperature profile by a factor of 1.05, 
the experimental uncertainty. 



fraction values for N2, H20, and N20 are in good agreement with the experimental values at 

13.75 mm. The equilibrium H2 mole fraction is, however, a factor of 1.4 lower than the 

experimental value. 

The calculated and experimental NO mole-fraction profiles for both the neat and NH3-doped 

flames are shown in Figure 4. Quantitatively, excellent agreement between model and experiment 

is obtained in the post-flame region. The addition of 4% NH3 reduces the NO concentration by 

approximately 45%, an effect predicted well by the model. Also, a leveling-off of the reduction 

efficiency was observed experimentally for NH3 concentrations greater than approximately 6%. 

A 5% increase in the temperature profile inputted to the model resulted in approximately a 15 and 

20% increase in the calculated NO mole fraction for neat and doped flames, respectively. As 

shown in Figure 4, the model and experimental NO profile shapes are similar. However, the 

modeled NO profile for the doped flame peaks at 9 mm and gradually decreases thereafter, in 

contrast to the experimental profile that plateaus at 9-10 mm. This discrepancy is related to an 

overprediction of NH3 in the post-flame region by the model, which will be discussed in the 

following paragraph. Results of equilibrium calculations for NO at 13.75 mm are three orders of 

magnitude lower than both PREMDC and experimental values, indicating that NO in the post- 

flame region is well above its equilibrium concentration. 

Also presented in Figure 4 are the experimental and calculated mole-fraction profiles of NH3 

for the doped flame. (The NH3 mole fraction in the neat flame is negligibly small.) The modeled 

profile represented by the solid line strongly overpredicts the NH3 mole fraction in the burnt 

gases. Equilibrium calculations predict the NH3 mole fraction to be negligible at 13.75 mm, as 

observed experimentally. Also shown in Figure 4 are modeled profiles of NH3 for (1) a 5% 

increase in the entire temperature profile, and (2) an assumed area expansion coefficient of 0.25 

cm"* as well as a 5% increase in the temperature profile. The profile generated with the latter 

conditions is in close agreement with the experimental profile in the lower part of the flame, but 

still overpredicts the experimental profile at distances greater than 6 mm. Although visual 

inspection indicated the expansion coefficient was no larger than 0.25 cm"1, values of 0.50 and 

1.00 cm"1 were also tried in the model. In all cases, the predicted NH3 concentration in 
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Figured Calculated (-) and experimental NO profiles for both neat (•) and 4% NH3-doped (6) 
H2/N2Q/Ar flames, and experimental (vt and calculated (-} NH3 profiles for doped 
flams. The experimental NH3 profile is normalized to that which is calculated. Also 
shown are NH3 PREMDC profiles generated by (a) increasing the measured 
temperature profile by 5% (—) and (b) increasing the temperature profile by 5% and 
using A = 1 + 0.25x for the area expansion term, where x is the distance from the 
burner surface (...). The pressure was maintained at 30 torr. 

the burnt gases was far above that permitted by experimental limits. A factor of 10 reduction in 

the NH3 mole fraction was obtained, however, by altering simultaneously the rate coefficients of 

the ten most sensitive reactions for NH3 (see Table 2) by a factor of two in the direction that the 

analysis indicated would reduce the predicted NH3 burnt gas mole fraction. However, making 

these changes simultaneously is rather drastic and quite unlikely to be correct since the resulting 

rate constants are close to or exceed the error limits for most of the reactions. The result is still 

far higher than the experimental limits will allow, particularly at 12-14 mm. Reaction flux 

analysis in the burnt gases (not shown) demonstrates conclusively that this overpredicted NH3 

mole fraction is the cause of the predicted NO profile decay in the burnt gases, which, as 

mentioned previously, disagrees with the experiment. In the model, NH3 in this region reacts to 

8 



Table 2. Sensitivity Coefficients for NH3 in NH3-Doped Flame at 3.75 mm 
Above the Burner Surface 

REACTION SENSITIVITY COEFFICIENTS (Rel.) 

Sign DopecT 

22 N20+M=N2+0+M 
20 N20+H=OH+N2 
43 NH2+NH=N2H2+H 
48 NH3+OH=NH2+H20 
2 H2+OH=H20+H 

41 NH2+N0=NNH+0H 
25 NH+NO=N20+H 
60 NNH+0=NO+NH 
32 N+H2=NH+H 
29 NH+OH=HNO+H 
40 NH2+H=NH+H2 
66 N2H2+M=NNH+H+M 
49 NH3+H=NH2+H2 
44 NH2+N=N2+H+H 
67 N2H2+H=NNH+H2 
77 NO+H=N+OH 
37 NH2+0=HNO+H 
26 NH+NO=N2+OH 
76 NO+H+M=HNO+M 

(") 100.0 
( + ) 62.6 
(") 36.2 
(") 32.7 
( + ) 22.1 
(") 16.0 
(") 14.7 
(") 12.9 
( + ) 11.6 
( + ) 10.7 
(") 8.8 
(") 8.7 
( + ) 7.9 
(") 7.3 
( + ) 6.7 
( + ) 6.4 
( + ) 4.2 
( + ) 4.1 
(") 4.0 

a  Logarithmically normalized [3] to 100 for the sensitivity coefficient of reaction 22 (- 0.6993). 

produce NH^ molecules (primarily NH2) ^at continue to reduce the NO resulting in the decaying 

trend seen in Figure 4. 

It should be noted that the choice of branching ratio for the NH2+NO reaction (R41 and 42), 

a well-known subject of controversy, has little effect on the computed profiles. Tests have 

conclusively proven that the computed profiles are sensitive only to the total rate coefficient, not 

to the ratio. The tests were performed by adding the two rate coefficient expressions and then 

using the resulting rate coefficient for one of the two channels while removing the other. Under 

the current high-temperature conditions, N20+M (R22) is the primary radical source and 

NH2+NO provides comparatively few radicals. In contrast, under the lower temperature thermal 



deNOx conditions, the chain-branching reaction R41 must be included to provide a radical source 

to sustain the overall reaction [16]. 

Figure 5 is a reaction pathway diagram depicting the nitrogen chemistry occurring in the neat 

H2/N20/Ar flame. The numbers in parentheses are the relative integrated rates (0-13.75 mm) of 

the various reactions normalized to 100 (4.428 x 10"6 mole/cm2 s) for the reaction 

NH3+OH=NH2+H20 in the doped flame. As seen from Figure 5, the reaction N20+H=N2+OH 

represents the fastest step consuming N20 to generate N2. The reaction N20+M=N2+0+M is 

also important. NO is formed predominantly from the reaction N20+H=NO+NH. The formation 

of NO from NH, via the HNO intermediate, and reaction N+OH=NO+H is also significant. The 

partial conversion of NO to N2, directly or indirectly via NNH, occurs predominantly by reactions 

involving N and NH. Not surprisingly, the species NH3, NH2, NNH, and N2H2 do not play major 

roles in the neat flame. 

Figure 6 is a reaction pathway diagram for the NH3-doped flame. The addition of 4% NH3 

increases the number of reactions and species having major effects on the flame. As expected, the 

addition of the dopant causes only a small perturbation in the reactions involving the major 

species as compared to those in the neat flame. However, the addition of 4% NH3 does 

significantly reduce the NO concentration. This results primarily from two effects: (1) a slight 

decrease in NO formation from reactions N20+H=NO+NH and N+OH=NO+H and (2) an 

increase in NO consumption by the NH2 radical. NH2 can convert NO to N2 directly, or 

indirectly via the NNH intermediate. It should be specifically noted that the lowering of NO 

concentration in the doped flame is primarily chemical in origin, rather than due to the slight 

change in temperature profiles. This was proven by switching the input temperature profiles in 

the calculations. Switching the profiles causes only a slight change in the predicted NO profiles, 

particularly in the burnt gas concentrations, for either the neat or doped flame. 

Table 3 compares the sensitivities of NO to various reaction rate coefficients for both neat and 

NH3-doped H2/N20/Ar flames. The sensitivity coefficients were calculated at 13.75 mm for both 

flames. They are scaled to 100 for reaction R20, N20+H=OH+N2. Table 3 reveals that for 
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Figure 5. Pathway diagram of a 30-torr. neat H2/N20/Ar flame generated bv integrating 
the net rate fluxes of individual reactions from the burner surface to 13.75 mm. 
For NNH destruction, x + M indicates the total predissociation and collision 
assisted decomposition. (100 = 4.428 x 10"6 mole/cm2-s). 
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Figure 6. Pathway diagram of a 30-torr. 4% NH3-doped H2/N20/Ar flame generated by 
integrating the net rate fluxes of individual reactions from the burner surface to 
13.75 mm. For NNH destruction, x + M indicates the total predissociation and 
collision assisted decomposition. (100 = 4.428 x 10"6 mole/cm2-s). 

12 



Table 3. Sensitivity Coefficients for NO in a Neat and NH3-Doped Flame at 13.75 mm 
Above the Burner Surface 

REACTION SENSITIVITY COEFFICIENTS (Rel.) 

Sign Neat0 Doped 

20 N20+H=OH+N2 (- ) 
25 NH+NO=N20+H ( + ) 
2 H2+OH=H20+H (- ) 

29 NH+OH=HNO+H ( + ) 
74 NO+N=N2+0 (- ) 
77 NO+H=N+OH ( + ) 
22 N20+M=N2+0+M ( + ) 
26 NH+NO=N2+OH (- ) 
33 NH+0=NO+H ( + ) 
35 NH+NH=N2+2H ( + ) 
3 H2+0=H+OH (- ) 

24 N20+0=NO+NO ( + ) 
32 N+H2=NH+H (- ) 
60 NNH+0=NO+NH (- ) 
37 NH2+0=HNO+H ( + ) 
43 NH2+NH=N2H2+H ( + ) 
41 NH2+NO=NNH+OH (- ) 
42 NH2+NO=N2+H20 (- ) 
44 NH2+N=N2+H+H ( + ) 
40 NH2+H=NH+H2 
39 NH2+0H=NH+H20 (- ) 
49 NH3+H=NH2+H2 (- ) 
17 0H+0H=H20+0 

100.0 100.0 
60.2 71.4 
25.6 21.0 
25.5 22.7 
21.5 26.5 
20.3 14.1 
15.0 3.4 
10.6 19.3 
6.4 4.6 
3.7 11.5 
3.4 8.8 
2.7 1.7 
2.6 4.7 
1.7 7.9 
1.3 10.4 
<1 20.4 
<1 11.3 
<1 10.9 
<1 10.3 

( + ) <1 (-) 12.3 
<1 4.3 
<1 3.1 

(-) <1 (+)  2.3 

Logarithmically normalized [3] to 100 for the sensitivity coefficient of reaction 20 of neat H2/N20/Ar flame 
(-0.5764). 

logarithmically normalized [3] to 100 for the sensitivity coefficient of reaction 20 of NH3-doped H2/N20/Ar 
flame (-0.6165). 

both the neat and doped flames the NO concentration has a strong negative sensitivity to R20 and 

strong positive sensitivity to the reaction N20+H=NH+NO, -R25. This result is clearly due to 

the competition between the two channels for the NzO+H reaction, one forming NO, the other 

N2. For the neat flame, NO exhibits lesser but still important sensitivities to reactions R2, R29, 

R74, R77, R22, and R26. For most of these reactions the trends are similar for the doped flame. 
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However, one notes that in comparison, the doped flame shows much stronger sensitivities than 

the neat flame to several additional reactions. In particular, note that most of these additional 

reactions involve NH2, NH, or N. This is not surprising since the pathway diagrams indicate that 

these species play key roles in the consumption of NO. The signs of some of the sensitivity 

coefficients may be understood in terms of the competition between NI^+NO reactions, which 

result in the destruction of NO, and NHX+NHL reactions, which ultimately result in conversion of 

the NH3 to N2 without removal of NO. For example, the two NH2+NO reactions, R41 and R42, 

Have negative coefficients because they ultimately convert NO to N2. In contrast the NH2+NH 

and NH+NH reactions, R43 and R35 respectively, merely convert two NHX molecules ultimately 

to N2 without destroying NO, thus, exhibiting a positive NO sensitivity coefficient. It appears 

that this competition for NFL^ molecules is the reason for the leveling off of the effectiveness of 

NH3 in reducing the NO that was observed experimentally. As the concentration of NH3 is 

increased, the importance of NHx+NHy reactions increases. 

5. CONCLUSION 

A combined experimental and modeling flame structure study of neat and NH3-doped 

H2/N20/Ar flames has been performed. Species' mole fractions and temperature profiles were 

recorded using MB/MS and thermocouple techniques, respectively. The modeling studies 

consisted of both equilibrium and PREMTX calculations. A chemical mechanism for the system 

was developed from a critical literature review and employed for modeling the species' profiles. 

The modeled profiles of the majority species agree very well with the experimental profiles for the 

neat flame and reasonably well for the doped flame. Quantitatively, the agreement between the 

modeled and experimental NO profiles is good for both the neat and doped flames. The modeled 

profile shows a 55% reduction in the NO mole fraction in the post-flame region when 4% NH3 is 

added to the neat flame compared to a 45% reduction in the measured profile. The modeled and 

experimental NO profiles for the neat flame and the experimental profile in the doped flame 

exhibit plateaus in the post-flame region. However, the modeled NO profile in the doped flame 

exhibits a post-flame decay. In addition, the model overpredicts the NH3 mole fraction in the 

post-flame region. Rate analysis shows, conclusively, that this overprediction is the primary cause 

14 



of the predicted NO decay. Calculations indicate that these discrepancies are due to the model 

and not the experiment, suggesting that refinements in the chemical mechanism are necessary. 

Rate and sensitivity analyses reveal that the dopant slightly decreases the amount of NO formed 

by the reactions N20+H=NO+NH and N+OH=NO+H and increases its consumption via reaction 

with NH2, which leads to conversion of NO to N2. The efficacy of NH3 in reducing NO is 

stymied at high NH3 concentrations, an effect likely due to the increased role of NHX + NHy 

reactions that convert NH3 to N2. 
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