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Abstract

An experimental and chemical modeling study of neat and NH,-doped H,/N,O/Ar flames is
conducted in order to understand the fundamental mechanism for NO formation and destruction
and to predict the efficacy of NH, on the rate of conversion of NO to N,. Species concentration
and temperature profiles are measured with molecular-beam-mass spectrometer and thin-wire
thermocouple, respectively. Species profiled include H,,N,0, NH;, N,, NO, and Ar. The
experimental mole fractions are compared to both equilibrium and one-dimensional premixed
laminar flame code (PREMIX) calculations. The PREMIX code employs a chemical mechanism
consisting fo 87 reactions and 20 species with rate constants obtained from a critical literature
review. Equilibrium claculations are in very good agreement with both experimental and
PREMIX calculations for N,O, N,, and H,O in the postflame region of both neat and doped flaes,
but underpredict the H,and NO mole fractions. The PREMIX profiles of the majority species
agree very well with the experiment for the neat flame and reasonably well for the doped flame.
A 55% reduction in the NO mole fraction for 4% dopant is predicted in the post-flame region,
in good agreement with that observed experimentally. The flame calculations overpredict,
however, the NH, mole fractions in the post-flame region, suggesting that refinements in the
model are necessary. Rate and sensitivity analyses reveal that the decrease in NO mole fraction
results from less NO formation by the reactions involving N,O+H and more of its consumption
to N, by reactions involving NO+NH,.
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1. INTRODUCTION

An understanding of the way additives alter the chemical pathways in combustion systems is a
prerequisite for controlling and enhancing system performance. In many systems, NO is a product
of incomplete combustion whose formation prevents full energy release of the system. It is also
known to cause the formation of a dark zone in the burning of solid propellants, which is
undesirable [1], and, as an environmental pollutant, it poses problems in the incineration of aged
propellants. Thus, it is of interest to investigate the incorporation of various additives in
nitrogenous combustion systems for NO reduction. The H,/N,O chemical system was chosen
because it is fairly simple and has important implications in understanding NO, pollutant
formation and nitramine propellant combustion and decomposition. The elementary reactions of
the system are a subset of larger mechanisms needed to understand the nitrogen chemistry of

more complex combustion systems.

This report describes combined experimental and modeling flame-structure studies of neat and
NH,;-doped H,/N,O/Ar flames in order to explore the role of thé additive in converting NO to
final products. NH; was selected as the additive because of its proven use in the thermal deNO,
process to remove NO from effluent streams of industrial furnaces [2]. The experimental mole
fractions are compared with both equilibrium and one-dimensional premixed laminar flame code
(PREMIX) calculations. Rate and sensitivity analyses of the PREMIX calculations reveal the

mechanisms responsible for NO formation and consumption.
2. EXPERIMENTAL

The details of the experimental apparatus used in this study are discussed elsewhere [3, 4].
Briefly, a 30-torr H,/N,O/Ar flame, generated by flowing H,, N,0, and Ar at 1.78, 1.64, and
1.23 slpm, réspectively, was stabilized on a 6-cm diameter flat-flame burner and doped with up to
7% NH;. Profiles of H,, N,O, NH;, HyO, Nj, NO, and Ar were obtained by molecular-beam
mass spectrometry (MBMS), and the species concentrations were determined by direct calibratio_n

at ambient temperature by a procedure previously reported [4]. For H,O, the signals measured in



the flame were quantified by equating the ratio of N/O in the premixed gases to the ratio of N/O
in the burnt gases and by assuming that the mole fractions of the radical species are comparatively
small [5]. The errors associated with the absolute species concentrations were +10%. The OH,
NH,, NH, and O radicals were not measured by MBMS because of the same mass-to-charge ratio
and fragmentation-ionization interferences resulting from the addition of NH;. These species are,
however, presently being measured by laser-induced fluorescence (LIF), and the results will be

presented elsewhere.

Flame temperatures were measured with a Pt/Pt-Rh(10%) fine-wire thermocouple coated with
a beryllium oxide (15%)/yttrium oxide mixture [6] and corrected for temperature-radiation losses
using OH LIF [7]. The overall uncertainty of temperature measurements is +100 K in the region
of the peak temperature.

The temperature data for both neat and NH,-doped H,/N,O/Ar flames, measured near the
quartz sampler and fit to a sigmoid-type function, are shown in Figure 1. The peak in the
temperature profiles near the burner surface is an artifact produced by the quartz sampler since it
is not present when the sampler is removed. (Temperature profiles without sampler are not
shown.) Doping the neat flame with 4% of NH; results in approximately a 2-mm displacement of
the temperature profile away from the burner surface, and approximately a 44-K drop in the peak
temperature. The small drop in peak temperature is consistent with NASA-Lewis equilibrium
calculations [8], which yield a difference in the adiabatic flame temperatures of only 9 K. In the
post-flame region, the measured flame temperatures are nearly identical, approximately 1,822 K at
13.75 mm.

3. MODELING/CHEMICAL MECHANISM

The computations utilized the Sandia Laboratories PREMIX code (ver.2.5b) [9], which
employs the CHEMKIN-II (ver. 3.0) library [10]. The calculations were performed with the
fitted- temperature profiles used as input to PREMIX, the inclusion of both thermal diffusion and
multicomponent transport package option, and with normal boundary conditions (i.e., no
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Figure 1. Temperature profiles of a neat () and 4% NH,-doped (o), 30-torr H,/N,O/Ar
flame. The solid line is a best fit of the data using a sigmoid-type function.

recombination of H atoms to H, via burner surface reaction was included). Prior work under
conditions similar to those used here indicates that inclusion of this recombination effect only
results in a minor change to the H and H,, profiles very close to the burner surface [3]. Gridding
parameters and calculational domain were checked to ensure that numerical errors due to
resolution and hot boundary conditions were negligible. Transport and thermochemical databases
[11, 12] developed at Sandia were used for these calculations with the exception of a few of the
species’ heats of formation. Values of (AH),qg for HNO, NH,, and NH were updated to 25.4,
45.2, and 85.3 kcal/mole, respectively [13, 14]. The program THERM [15] was used to refit
these species’ thermal data to the form used in CHEMKIN codes. Rate and sensitivity analyses

were performed using an interactive postprocessing code written in-house.

The chemical mechanism and rate constants used for the flame calculations are presented in
Table 1. The bulk of the reactions was obtained from the benchmark review of nitrogen
chemistry in combustion by Miller and Bowman [16], which were updated for the Hy/N,O system
[3, 4]. More recent updates include both rate constant [25] and efficiency factor




Table 1. Reaction Mechanism Employed for Modeling Both Neat and NH,-Doped H,/N,O
Flames (The Rate Coefficients Are in the Form k=AT Be(-

Units of cm-mol-s-K and cal/mol, Respectively)

ERT) Where A and E Have

REACTIONS A B E REF. REACTIONS A B E
REF.
1 H2+02=0H+OH 1.70E+13 0.00 47780.0 [16] 44 NH2+N=N2+H+H 7.20E+13 0.00 0.0 [16]
2 H2+0H=H20+H 2.16E+08 1.51 3430.0 [17) 45 NH2+02=HNO+OH 4.50E+12 0.00 25000.0 [16]
3 H2+0=H+OH 5.06E+04 2.67 6290.0 [18] 46 NH2+NH2=N2H2+H2 5.00E+11 0.00 0.0 [16]
4 H+H+H2=H2+H2 1.00E+17 -0.60 0.0 [19] 47 NH2+NH2=NH+NH3 5.00E+13 0.00 10000.0 [33]
5 H+H+H20=H2+H20 1.00E+19 -1.00 0.0 [19] 48 NH3+OH=NH2+H20 2.04E+06 2.04 566.0 {16]
6 H+H+H=H2+H 3.20E+15 0.00 0.0 [19] 49 NH3+H=NH2+H2 5.42E+05 2.40 9917.0 [34]
7 H+H+AR=H2+AR 7.00E+17 -1.00 0.0 [19] 50 NH3+0=NH2+0H 9.40E+06 1.94 6460.0 [35]
8 H+H+N2=H2+N2 5.40E+18 -1.30 0.0 [19]) 51 NH3+M=NH2+H+M 2.20E+16 0.00 93470.0 [33]
9 H+H+M=H2+M 1.00E+18 ~-1.00 0.0% [16) 52 NNH+NO=N2+HNO 5.00E+13 0.00 .0 [16]
10 H+02=0H+0 3.52E+16 -0.70 17070.0 [20] 53 NNH+H=N2+H2 1.00E+14 0.00 0.0 [16]
11 02+H+M=HO2+M 3.61E+17 -0.72 0.0% [16] 54 NNH+OH=N2+H20 5.00E+13 0.00 0.0 [16]
12 0+0+M=02+M 1.89E+13 0.00 -1788.0 [16] 55 NNH+NH2=N2+NH3 5.00E+13 0.00 0.0 [16])
13 HO2+OH=H20+02 7.50E+12 0.00 0.0 [16] 56 NNH+NH=N2+NH2 5.00E+13 0.00 0.0 [16]
14 HO2+H=OH+OH 1.69E+14 0.00 874.0 [21)] 57 NNH=N2+H 3.00E+08 0.00 0.0 [24]
15 HO2+H=H2+02 6.63E+13 0.00 2126.0 [21) 58 NNH+M=N2+H+M 1.00E13 0.50 3060.0 [24)]
16 HO2+0=0H+02 1.40E+13 0.00 1073.0 [16] 59 NNH+0O=N2+OH 1.70E16 =-1.23 497.0 [24]
17 OH+OH=H20+0 6.00E+08 1.30 0.0 [16] 60 NNH+O0=NO+NH 3.30E14 -0.23 -1013.0 [24]
18 H+OH+M=H20+M 2.20E+22 -2.00 0.0 [22] 61 HNO+OH=NO+H20 1.30E+07 1.88 -960.0 [36])
19 H+0+M=OH+M 6.20E+16 -0.60 0.0 [16] 62 HNO+NH2=NH3+NO 2.00E+13 0.00 1000.0 [16]
20 N20+H=OH+N2 2.53E+10 0.00 4550.0° (23] 63 HNO+HNO=N20+H20 3.63E-03 3.98 1190.0 [37]
2.23E+14 0.00 16750.0° [23] €4 HNO+NO=N20+0H 8.51E+12 0.00 29590.0 [38]
21 NNE+O=N20+H 1.40E+14 -0.40 477.0 [24] 65 HNO+0=OH+NO 4.50E11 0.72 656.0 {32]
22 N20+M=N2+0+M 5.97E+14 0.00 56640.0% [25] 66 N2H2+M=NNH+H+M 5.00E+16 0.00 50000.0* [16]
23 N20+0=N2+02 1.40E+12 0.00 10800.0 [26] 67 N2H2+H=NNH+H2 5.00E+13 0.00 1000.0 [16]
24 N20+0=NO+NO 6.90E+13 0.00 26600. 0 [27] - 68 N2H2+O0=NH2+NO 1.00E+13 0.00 0.0 [16]
25 NH+NO=N20+H 2.94E+14 -0.40 0.0° [28] 69 N2H2+0=NNH+OH 2.00E+13 0.00 1000.0 [16]
-2.16E+13 -0.23 0.0° (28] 70 N2H2+OH~NNH+H20 1.00E+13 0.00 1000.0 [1l6]
26 NH+NO=N2+OH 2.16E+13 -0.23 0.0 [28) 71 N2H2+NH=NNH+NH2 1.00E+13 0.00 1000.0 [16}
27 NH+02=NO+OH 7.60E+10 0.00 1530.0 [29] 72 N2H2+NH2=NH3+NNH 1.00E+13 0.00 1000.0 [16}
28 NH+02=HNO+O 3.89E+13 0.00 17885.0 [29] 73 HNO+H=H2+NO 4.46E+11 0.72 655.0 [39]
29 NH+OH=HNO+H 2.00E+13 0.00 0.0 [16] 74 NO+N=N2+0 3.27E+12 0.30 0.0 [16}
30 NH+OH=N+H20 5.00E+11 0.50 2000.0 [16] 75 NO+M=N+O+M 1.40E+15 0.00 148430.0 [40}
31 NH+N=N2+H 3.00E+13 0.00 0. [16] 76 NO+H+M=HNO+M 9.00E+19 ~1.30 735.0 [40}
32 N+H2=NH+H 1.60E+14 0.00 25140.0 [30] 77 NO+H=N+OH 1.70E+14 0.00 48801.0 [27]
33 NH+O=NO+H 5.50E+13 0.00 0.0 [29]) 78 NO+0=N+02 3.80E+09 1.00 41370.0 [40]
34 NH+O=N+OH 3.72E+13 0.00 0.0 [29] 79 NH2+NH2=N2H3+H 1.79E+13 -0.35 11320.0 [32}
35 NH+NH=N2+2H 5.10E+13 0.00 0.0 [31) 80 NH2+NH2+M=N2H4+M 2.98E+47 -9.44 9680.0 [32]
36 NH+M=N+H+M 2.65E+14 0.00 75514.0 [31] 81 N2H4+H=N2H3+H2 7.05E+12 0.00 2500.0 [41]
37 NH2+O=HNO+H 4.60E+13 0.00 0.0 [32] 82 N2H4+OH=N2H3+H20 3.00E+10 0.68 1290.0 [42]
38 NH2+0=NH+OH 7.00E+12 0.00 0.0 [32] 83 N2H4+0=N2H3+OH 2.00E+13 0.00 1000.0 [42]
39 NH2+OH=NH+H20 4.00E+06 2.00 1000.0 [16] 84 N2H3+M=N2H2+H+M 1.20E+13 0.00 58000.0 [42]
40 NH2+H=NH+H2 4.00E+13 0€.00 3650.0 [33] 85 N2H3+H=N2H2+H2 1.00E+12 0.50 2000.0 [42]
41 NH2+NO=NNH+OH 6.40E+15 -1.25 0.0 [16] 86 N2H3+OH=N2H2+H20 3.00E+10 0.68 1290.0 [42]
42 NH2+NO=N2+H20 6.20E+15 -1.25 0.0 {16} 87 N2H3+0=~N2H2+0OH 2.00E+13 0.00 1000.0 [42]
43 NH2+NH=N2H2+H 1.50E+15 -0.50 0.0 {33}

® Third body efficiencies.
R9. H,/0.0/H,0/0.0/H/0.0/Ar/0.0/N,/0.0
R11. N/1.3/H,07184
R18. Ar/0.38/H,0/63
R19.H,0/5.0
R22. N,0/5.0/H,0/7.5/N,/1.0/0,/.82/A1/0.67
R66. H,0/15.0/0,/2.0/N,/2.0/1,/2.0

b For the indicated reactions the rate coefficient is computed as the sum of the two exponeatial expressions given for cach.



(M=H,0) [43] for the sensitive reaction NyO+M=N,+0+M (R22). Recent results of Hanson and
coworkers for many important reactions involving NH, species that were previously poorly
quantified have also been incorporated [29-31, 33]. Finally, the reaction OH+N,0=HO,+N, was
not included in the mechanism since recent experimental [3, 43, 44] and theoretical [45] studies

indicate it is too slow to be of importance.
4. RESULTS/DISCUSSION

The experimental and predicted mole fractions of H,, N,, H,0, and N,O for the neat
H,/N,O/Ar flame are presented in Figure 2. Also presented are species profiles generated by
increasing the temperature profile by a factor of 1.05, the experimental uncertainty. The
computed profiles accurately model the experimental results throughout the entire flame for the
neat flame. Quantitatively, the calculated mole fractions agree well with those measured
experimentally, particularly in the post-flame région. NASA-Lewis calculations performed using
a temperature of 1,822 K yield equilibrium mole-fraction values of 0.351 for N, and H,O and 0.0
for N,O, which are also in good agreement with the experimental mole fractions at 13.75 mm.
The calculated H, equilibrium value of 0.0313 is, however, a factor of 2 smaller than the

experimental value, indicating incomplete reaction.

Figure 3 shows the experimental and calculated mole-fraction profiles of the major species for
the NH;-doped flame. Species profiles generated by increasing the experimental temperature
profile by the experimental uncertainty are also presented. Both the experimental and modeled
profiles are shifted away from the burner compared to their positions in the neat flame. The result
follows the trend in temperature profiles (Figure 1). For the doped flame, the modeled profiles
are shifted approximately 2 mm further away from the burner surface compared to those
measured, indicating that the overall chemical reaction rates in the model are too slow. The
experimental and calculated mole-fraction values for H,, H,0, and N, agree reasonably well,
while the N,O profile is overpredicted by the model. As in the neat flame, equilibrium mole-
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Figure 2. Calculated (=) and experimental H, (®). N,O (o), H,0 (M), and N, (C]) species
profiles for a 30-torr Hy/N,O/Ar flame. The dashed curves are calculated
profiles generated by increasing the temperature profile by a factor of 1.05, the

experimental uncertainty.
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Figure 3. Calculated (-) and experimental H, (®), N,O (o), H,O (C1), and N, (M) species
profiles for a 30-torr H,/N,O/Ar flame doped with 4% NH;. The dashed curves are

calculated profiles generated by increasing the temperature profile by a factor of 1.05,
the experimental uncertainty.



fraction values for N,, H,0, and N,O are in good agreement with the experimental values at
13.75 mm. The equilibrium H, mole fraction is, however, a factor of 1.4 lower than the

experimental value.

The calculated and experimental NO mole-fraction profiles for both the neat and NH;-doped
flames are shown in Figure 4. Quantitatively, excellent agreement between model and experiment
is obtained in the post-flame region. The addition of 4% NH, reduces the NO concentration by
approximately 45%, an effect predicted well by the model. Also, a leveling-off of the reduction
efficiency was observed experimentally for NH; concentrations greater than approximately 6%.

A 5% increase in the temperature profile inputted to the model resulted in approximately a 15 and
20% increase in the calculated NO mole fraction for neat and doped flames, respectively. As
shown in Figure 4, the model and experimental NO profile shapes are similar. However, the
modeled NO profile for the doped flame peaks at 9 mm and gradually decreases thereafter, in
contrast to the experimental profile that plateaus at 9-10 mm. This discrepancy is related to an
overprediction of NH; in the post-flame region by the model, which will be discussed in the
following paragraph. Results of equilibrium calculations for NO at 13.75 mm are three orders of
magnitude lower than both PREMIX and experimental values, indicating that NO in the post-

flame region is well above its equilibrium concentration.

Also presented in Figure 4 are the experimental and calculated mole-fraction profiles of NH;
for the doped flame. (The NH; mole fraction in the neat flame is negligibly small.) The modeled
profile represented by the solid line strongly overpredicts the NH; mole fraction in the burnt
gases. Equilibrium calculations predict the NH; mole fraction to be negligible at 13.75 mm, as
observed experimentally. Also shown in Figure 4 are modeled profiles of NH; for (1) a 5%
increase in the entire temperature profile, and (2) an assumed area expansion coefficient of 0.25
cm™! as well as a 5% increase in the temperature profile. The profile generated with the latter
conditions is in close agreement with the experimental profile in the lower part of the flame, but
still overpredicts the experimental profile at distances greater than 6 mm. Although visual
inspection indicated the expansion coefficient was no larger than 0.25 cm™ 1, values of 0.50 and

1.00 cm™! were also tried in the model. In all cases, the predicted NH; concentration in
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Figure 4.

flame. The experimental NH, profile is normalized to that which is calculated. Also
shown are NH; PREMIX profiles generated by (a) increasing the measured
temperature profile by 5% (---) and (b) increasing the temperature profile by 5% and
using A = 1 + 0.25x for the area expansion term, where x is the distance from the
burner surface (...). The pressure was maintained at 30 torr.

the burnt gases was far above that permitted by experimental limits. A factor of 10 reduction in
the NH; mole fraction was obtained, however, by altering simultaneously the rate coefficients of
the ten most sensitive reactions for NH; (see Table 2) by a factor of two in the direction that the
analysis indicated would reduce the predicted NH; burnt gas mole fraction. However, making
these changes simultaneously is rather drastic and quite unlikely to be correct since the resulting
rate constants are close to or exceed the error limits for most of the reactions. The result is still
far higher than the experimental limits will allow, particularly at 12-14 mm. Reaction flux
analysis in the burnt gases (not shown) demonstrates conclusively that this overpredicted NH;
mole fraction is the cause of the predicted NO profile decay in the burnt gases, which, as
mentioned previously, disagrees with the experiment. In the model, NH; in this region reacts to

8



Table 2. Sensitivity Coefficients for NH; in NH,;-Doped Flame at 3.75 mm

Above the Burner Surface
REACTION SENSITIVITY COEFFICIENTS (Rel.)

Sign Doped?®

22 N20+M=N2+0+M (-) 100.0
20 N20+H=0H+N2 (+) 62.6
43 NH2+NH=N2H2+H (-) 36.2
48  NH3+OH=NH2+H20 (-) 32.7
2 H2+OH=H20+H (+) 22.1
41 NH2+NO=NNH+OH (-) 16.0
25 NH+NO=N20+H (-) 14.7
60  NNH+O=NO+NH (-) 12.9
32 N+H2=NH+H (+) 11.6
29 NH+OH=HNO+H (+) 10.7
40 NH2+H=NH+H2 (-) 8.8
66 N2H2+M=NNH+H+M () 8.7
49 NH3+H=NH2+H2 (+) 7.9
44 NH2+N=N2+H+H (-) 7.3
67 N2H2+H=NNH+H2 (+) 6.7
77 NO+H=N+OH (+) 6.4
37  NH2+O=HNO+H (+) 4.2
26  NH+NO=N2+OH (+) 4.1
76 NO+H+M=HNO+M (-) 4.0

a Logarithmically normalized [3] to 100 for the sensitivity coefficient of reaction 22 (-0.6993).

produce NH, molecules (primarily NH,) that continue to reduce the NO resulting in the decaying

trend seen in Figure 4.

It should be noted that the choice of branching ratio for the NH,+NO reaction (R41 and 42),
a well-known subject of controversy, has little effect on the computed profiles. Tests have
conclusively proven that the computed profiles are sensitive only to the total rate coefficient, not
to the ratio. The tests were performed by adding the two rate coefficient expressions and then
using the resulting rate coefficient for one of the two channels while removing the other. Under
the current high-temperature conditions, N,O+M (R22) is the primary radical source and

NH,+NO provides comparatively few radicals. In contrast, under the lower temperature thermal




deNO, conditions, the chain-branching reaction R41 must be included to provide a radical source’

to sustain the overall reaction [16].

Figure 5 is a reaction pathway diagram depicting the nitrogen chemistry occurring in the neat
H,/N,O/Ar flame. The numbers in parentheses are the relative integrated rates (0-13.75 mm) of
the various reactions normalized to 100 (4.428 x 10~ mole/cm? s) for the reaction
NH;+0OH=NH,+H,0 in the doped flame. As seen from Figure 5, the reaction N,O+H=N,+OH
represents the fastest step consuming N,O to generate N,. The reaction NyO+M=N,+O+M is
also important. NO is formed predominantly from the reaction N,O+H=NO+NH. The formation
of NO from NH, via the HNO intermediate, and reaction N+OH=NO+H is also significant. The
partial conversion of NO to N,, directly or indirectly via NNH, occurs predominantly by reactions
involving N and NH. Not surprisingly, the species NH;, NH,, NNH, and N,H, do not play major

roles in the neat flame.

Figure 6 is a reaction pathway diagram for the NH;-doped flame. The addition of 4% NH;
increases the number of reactions and species having major effects on the flame. As expected, the
addition of the dopant causes only a small perturbation in the reactions involving the major
species as compared to those in the neat flame. However, the addition of 4% NH; does
significantly reduce the NO concentration. This results primarily from two effects: (1) a slight
decrease in NO formation from reactions N;O+H=NO+NH and N+OH=NO+H and (2) an
increase in NO consumption by the NH, radical. NH, can convert NO to N, directly, or
indirectly via the NNH intermediate. It should be specifically noted that the lowering of NO
concentration in the doped flame is primarily chemical in origin, rather than due to the slight
change in temperature profiles. This was proven by switching the input temperature profiles in
the calculations. Switching the profiles causes only a slight change in the predicted NO profiles,

particularly in the burnt gas concentrations, for either the neat or doped flame.

Table 3 compares the sensitivities of NO to various reaction rate coefficients for both neat and
NH;-doped H,/N,O/Ar flames. The sensitivity coefficients were calculated at 13.75 mm for both
flames. They are scaled to 100 for reaction R20, N,O+H=OH+N,. Table 3 reveals that for
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Figure 5. Pathway diagram of a 30-torr, neat H,/N,O/Ar flame generated by integrating

the net rate fluxes of individual reactions from the burner surface to 13.75 mm.
For NNH destruction, t + M indicates the total predissociation and collision
assisted decomposition. (100 = 4.428 x 1076 mole/cm?-s).
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Figure 6. Pathway diagram of a 30-torr, 4% NH;-doped H,/N,O/Ar flame generated by

integrating the net rate fluxes of individual reactions from the burner surface to
13.75 mm. For NNH destruction, t© + M indicates the total predissociation and

collision assisted decomposition. (100 = 4.428 x 1076 mole/cm?‘-s).
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Table 3. Sensitivity Coefficients for NO in a Neat and NH3-Doped Flame at 13.75 mm

Above the Burner Surface
REACTION SENSITIVITY COEFFICIENTS (Rel.)

Sign Neat? Doped®
20 N20+H=OH+N2 (-) 100.0 100.0
25 NH+NO=N20+H (+) 60.2 71.4
2  H2+OH=H20+H (-) 25.6 21.0
29  NH+OH=HNO+H (+) 25.5 22.7
74  NO+N=N2+0 (-) 21.5 26.5
77 NO+H=N+OH (+) 20.3 14.1
22  N20+M=N2+0+M (+) 15.0 3.4
26  NH+NO=N2+OH (-) 10.6 19.3
33 NH+0=NO+H (+) 6.4 4.6
35  NH+NH=N2+2H (+) 3.7 11.5
3 H2+0=H+OH (-) 3.4 8.8
24  N20+0=NO+NO (+) 2.7 1.7
32  N+H2=NH+H (-) 2.6 4.7
60  NNH+O=NO+NH (-) 1.7 7.9
37  NH2+O=HNO+H (+) 1.3 10.4
43  NH2+NH=N2H2+H (+) <1 20.4
41  NH2+NO=NNH+OH (-) <1 11.3
42 NH2+NO=N2+H20 (=) <1l 10.9
44 NH2+N=N2+H+H (+) <1 10.3
40 NH2+H=NH+H2 (+) <1 (=) 12.3
39  NH2+OH=NH+H20 (-) <1 4.3
49  NH3+H=NH2+H2 (-) <1 3.1
17  OH+OH=H20+0 (-) <1 (+) 2.3

a Logarithmically normalized [3] to 100 for the sensitivity coefficient of reaction 20 of neat H,/N,O/Ar flame
(-0.5764).

b Logarithmically normalized [3] to 100 for the sensitivity coefficient of reaction 20 of NH;-doped H,/N,O/Ar
flame (-0.6165).

both the neat and doped flames the NO concentration has a strong negative sensitivity to R20 and
strong positive sensitivity to the reaction N,O+H=NH+NO, -R25. This result is clearly due to
the competition between the two channels for the N,O+H reaction, one forming NO, the other
N,. For the neat flame, NO exhibits lesser but still important sensitivities to reactions R2, R29,
R74,R77,R22, and R26. For most of these reactions the trends are similar for the doped flame.
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However, one notes that in comparison, the doped flame shows much stronger sensitivities than
the neat flame to several additional reactions. In particular, note that most of these additional
reactions involve NH,, NH, or N. This is not surprising since the pathway diagrams indicate that
these species play key roles in the consumption of NO. The signs of some of the sensitivity
coefficients may be understood in terms of the competition between NH,+NO reactions, which
result in the destruction of NO, and NHx+NHy reactions, which ultimately result in conversion of
the NH, to N, without removal of NO. For example, the two NH,+NO reactions, R41 and R42,
hiave negative coefficients because they ultimately convert NO to N,. In contrast the NH,+NH
and NH+NH reactions, R43 and R35 respectively, merely convert two NH, molecules ultimately
to N, without destroying NO, thus, exhibiting a positive NO sensitivity coefficient. It appears
that this competition for NH, molecules is the reason for the leveling off of the effectiveness of
NH; in reducing the NO that was observed experimentally. As the concentration of NHj is

increased, the importance of NH,+NH, reactions increases.
5. CONCLUSION

A combined experimental and modeling flame structure study of neat and NH;-doped
H,/N,O/Ar flames has been performed. Species’ mole fractions and temperature profiles were
recorded using MB/MS and thermocouple techniques, respectively. The modeling studies
consisted of both equilibrium and PREMIX calculations. A chemical mechanism for the system
was developed from a critical literature review and employed for modeling the species’ profiles.
The modeled profiles of the majority species agree very well with the experimental profiles for the
neat flame and reasonably well for the doped flame. Quantitatively, the agreement between the
modeled and experimental NO profiles is good for both the neat and doped flames. The modeled
profile shows a 55% reduction in the NO mole fraction in the post-flame region when 4% NH; is
added to the neat flame compared to a 45% reduction in the measured profile. The modeled and
experimental NO profiles for the neat flame and the experimental profile in the doped flame
exhibit plateaus in the post-flame region. However, the modeled NO profile in the doped flame
exhibits a post-flame decay. In addition, the model overpredicts the NH; mole fraction in the

post-flame region. Rate analysis shows, conclusively, that this overprediction is the primary cause

14



of the predicted NO decay. Calculations indicate that these discrepancies are due to the model
and not the experiment, suggesting that refinements in the chemical mechanism are necessary.
Rate and sensitivity analyses reveal that the dopant slightly decreases the amount of NO formed
by the reactions N;O+H=NO+NH and N+OH=NO-+H and increases its consumption via reaction
with NH,, which leads to conversion of NO to N,. The efficacy of NHj; in reducing NO is
stymied at high NH; concentrations, an effect likely due to the increased role of NH, + NH,

reactions that convert NH; to N,
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