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Summary 

The goals of this research program were to 

(i) determine how microstructural factors, especially the architecture of reinforcing 
fibers, control stiffness, strength, strain to failure, work of fracture, notch 
sensitivity, and fatigue life in 3D woven composites; 

(ii) identify mechanisms of failure; 

(iii) model composite stiffness; 

(iv) model strength; and 

(v) model fatigue life. 

A total of eleven different angle and orthogonal interlock woven composites were 
examined. These 3D woven composites possess an extraordinary combination of 
strength, damage tolerance, and notch insensitivity. In many important regards, they far 
outstrip conventional 2D laminates or stitched laminates. 

We have determined the essential mechanisms of failure in monotonic and fatigue 
loading and how they are related to the reinforcement geometry. Composite properties 
depend on the weave architecture, the tow size, and the distributions in space and strength 
of geometrical flaws. Important concepts follow for reliability, design, and manufacture. 

We have developed the simplest possible models for predicting elastic properties, 
strength, and fatigue life. These models can be implemented with minimal numerical 
computation. Other properties, especially relating to damage tolerance, ultimate failure, 

and the detailed effects of weave architecture, require computationally intensive 
stochastic modeling. We have developed a new model, the "Binary Model," to carry out 
such tasks in the most efficient manner. 

This is the final report for task 9 in Space Systems Division contract NAS1- 
19243. It covers all work from January, 1993 up to the conclusion of the program in 
November, 1994. 



1.       Introduction 

Textile composites with three-dimensional (3D) reinforcement possess some 
remarkable mechanical properties. In skin applications, 3D woven or braided composites 
and stitched laminates are invulnerable to failure by delamination and buckling, provided 

the through-thickness reinforcement is not distorted during fabrication [1-13]. The 
through-thickness reinforcement limits delamination and damage extension after impact, 
allowing compressive strength often to remain comparable to that of pristine material. 

Like 3D carbon-carbon composites of earlier years [3], 3D woven polymer composites 

possess exceptionally high strain to failure in either compression or tension [12,13]. In 

work of fracture and notch insensitivity in tension, they far surpass metal alloys and 
conventional polymer laminates [13]. 

Detailed experimental observations on 3D woven composites have revealed that 
the reinforcement geometry has a dominant role in determining mechanisms of failure 
[12-14]. Both the ideal composite geometry, in which in-plane tows are straight, and 
deviations from the ideal are important. In fact, high stress to failure, notch insensitivity, 
and damage tolerance can all be attributed to the presence of geometrical flaws in the 
reinforcement [12-13]. Some geometrical flaws consist of certain local configurations of 
tows, such as sites where through-thickness yarns wrap around nominally straight in- 
plane yams. Other geometrical flaws are segments of in-plane tows that are misaligned to 
an unusually high degree. 

This report deals with predicting the properties of 3D woven composites, 

emphasizing the roles of geometrical flaws and the weave architecture. For predicting 

composite elastic constants and tensile strength, geometrical flaws have a relatively minor 
role. For predicting compressive strength, fatigue life, damage tolerance, and work of 
fracture, geometrical flaws are all important. The reasons for this will be elucidated. 

Many of the theoretical models described in the report have been encoded in 
computer programs. These are detailed in Appendices. Source codes are available in 
electronic form. 



2.      Materials 

Analyses will be presented for the eleven woven interlock composites listed in 
Table 1. Figure 1 shows the three types of weave in this group: layer-to-layer and 
through-the-thickness angle interlock; and orthogonal interlock weaves. "Stuffer" and 

"filler" tows form an orthogonal array suggestive of a course 0°/90° laminate, while 

"warp weaver" tows provide through-thickness reinforcement. Complete specifications of 

weave patterns are given in Appendix A. In the jargon of crystallographers, all the 
weaves are orthorhombic in the absence of any tow distortions. The orthogonal interlock 
weaves are also invariant under certain inversions; but not the angle interlock weaves, as 
contemplation of the detailed drawings in Appendix A will reveal. 

The subject composites can also be classified by the total fiber volume fraction, 
V, achieved in processing: "lightly compacted" composites, with relatively low V, and 
"heavily compacted" composites, with relatively high V. Table 1 reintroduces labels from 
[12] for the 11 composites studied, with the italic letter designating the degree of 
compaction ("/" for light and "h" for heavy). 

The layers in Fig. 1 are much thicker than plies in a conventional 2D laminate, 
because the individual tows are ~ 1 mm2 in cross section. Such coarseness lowers 
manufacturing cost, which rises with the number of yarns to be set up on the loom. 
Fortunately, it also favors damage tolerance and notch insensitivity [12]. 

Nearly all the composites of Table 1 consist of AS4 carbon fibers^ in epoxy resin. 
The exceptions are composites /-L-2 and /-T-2, in which the warp weavers were S-glass 
fibers. All lightly consolidated composites were made with Tactix 138 resin cured with 
H41 hardener*; all heavily compacted composites were made with Shell RSL-1895 resin 
with EPON CURING AGENT® W.** Further processing details appear in [12-14]. 

Table 1 also lists for each composite the weaver's specifications of the linear 
density of yarns in the loom (ends per unit length, e, and picks per unit length, p) and the 
yields (length per unit mass) ya, a = s, f, or w for sniffers, fillers, or warp weavers. (The 
symbol a will be used throughout this report to identify tow type in the weave.) 

t Hercules Inc., Salt Lake City, Utah. 
* Dow Chemical Co., Freeport, Texas. 

Shell Oil Co., Anaheim, California. 
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Figure 1. Sections normal to the filler direction of specimens with three different 
weave types. Stuffers and warp weavers appear as light ribbons. Sections 

of fillers appear as dark patches. 



2.1     Fiber Distributions 

Reliable predictions of engineering properties require accurate knowledge of the 

volume fractions of stuffer, filler, and warp weaver fibers. In principle, these volume 

fractions could be deduced from the weaver's specifications just listed, together with the 

measured thickness of the composite. However, this would assume that the mean 

separation of yarns did not change during manufacture of the composite, which may be 

optimistic.* In this work, the weaver's specifications were used only to deduce the 

fractions by volume fa (a = s, f, or w) of all fibers that lie in stuffers, fillers, and warp 

weavers. All macroscopic elastic properties will be deduced from these fractions, the 

measured total fiber volume fraction, V, and the measured composite thickness, t. 

In a composite with ns layers of sniffers alternating with ns +1 layers of fillers 

through the thickness, nw warp weavers between successive columns of stuffers (see 

Appendix A), and in which all yarns are made of the same fibers 

f _nsecs . f _(ns+ l)pcf  . f _nwecw m 
*s —T „     >  lf —       j > rw — -z  V.JJ Lys Lyf Lyw 

where cs, Cf, and cw are crimp factors; L is chosen to satisfy fs + ff + fw = 1; and yw is an 

appropriately weighted average for composites with warp weavers and surface warp 

weavers of unequal yields (composites A-L-l and h-L-2). The crimp factors are 

customarily determined by measuring the lengths of yarns extracted from a representative 

length of woven preform. Both cs and Cf are very close to unity. Values of cw supplied by 

the weaver are given in Table 1. (For the lightly compacted composites, which were the 

first manufactured [13], crimp factors could not be found in old records. Estimates have 

been substituted. Since the warp weavers constitute a relatively small fraction of all 

reinforcement, the effect on fs and ff and therefore on almost all predicted properties of 

any error in cw is negligible compared to other factors, especially softening due to 

waviness. The single exception is the through-thickness modulus - see Section 3.) The 

only additional measurement required to fix the density of reinforcement in a composite 

containing a single type of fiber is the total fiber volume fraction, V. 

"I" Total fiber volume fractions estimated for the heavily compacted composites from the weaver's 
specifications and the measured composite thickness were found to be consistently higher than measured 
values by up to 5%. 
*** It will be assumed here that stuffers and fillers spread equally during consolidation. This assumption is 
reasonable in manufacturing flat panels. When preforms are deformed to make curved parts, especially 
those involving nondevelopable transformations, tows are likely to thin or consolidate anisotropically. The 
analysis of such cases would be a useful research topic. 



Table 1. Composite and Fiber Data 

Composite 
Label 

Architecture 

Stuffers 
ys (mm/g) 

Tow Yield 

Fillers           Weavers 
yf(mm/g)      y w (mm/g) 

Linear Tow Density 

Stuffers        Fillers 
e (mm"1)*   p (mm''f 

Crimp Factor 
(Warp Weavers) 

cw 

(a) Lightly Compacted 

Z-L-1 
Z-L-2 

Layer-to-Layer 
Angle Interlock 

652 
652 

652 
652 

1525 
1510 

0.51 
0.51 

0.44 
059 

12c 

12c 

/-T-l Through-the-Thickness 652 652 1525 0.47 0.50 1.4C 

/-T-2 Angle Interlock 652 652 1510 0.51 050 1.4C 

/-O Orthogonal Interlock 652 652 1525 0.47 051 3.25c 

(b) Heavily Compacted 

A-L-l 
A-L-2 

Layer-to-Layer 
Angle Interlock 

570 
1140 

1140 
2280 

(2280,13600)d 

(4570,13600)d 

0.55 
0.71 

051 
0.79 

12 
1.03 

h-T-1 
h-T-2 

Through-the-Thickness 
Angle Interlock 

570 
1140 

1140 
2280 

2280 
4570 

035 
0.71 

0.51 
0.79 

1375 
1.25 

h-O-1 
A-O-2 

Orthogonal Interlock 
Orthogonal Interlock 

570 
1140 

1140 
2280 

2280 
4570 

0.55 
0.71 

051 
0.79 

4 
45 

a "ends per cm" = number of columns of stuffers per cm in the weft direction 
b "picks per cm" = number of columns of fillers per cm in the warp direction 
c Estimated, not measured 
d The first figure refers to warp weavers, the second to surface warp weavers (see Appendix A) 

In a composite in which the warp weavers contain different fibers from those in 
the stuffers and fillers (composites l-L-2 and /-T-2), fw is determined by a separate 
experimental measurement of the volume fraction, V, of weaver fibers (S2 glass here): fw 

= V'/(V + V). In this case only fs and ff are defined by Eq. (1), with L chosen to satisfy fs 

+ ff = V/(V + V). 

Table 2 shows values of fs, ff, and fw computed by these rules, along with 
measured values of V and, where appropriate, V. 

In estimating flexural rigidity, information is also required of the distribution of 
stuffers and fillers through the thickness of the composites. Let tf and ts denote the 

thicknesses of filler and sniffer layers, with all filler layers assumed equal and all sniffer 

layers assumed equal (Fig. 2). (Generalization to unequal layers of stuffers or fillers, 



which might be preferred to maximize fiexural rigidity in one direction, follows 

obviously.) Assuming equal degrees of compaction of staffers and fillers, 

k = ^ (2a) tf    ysP (2a) 

while 

(ns + l)tf+nsts = t, (2b) 

where t denotes the measured composite thickness (Table 2). Hence 

(ns+l)ysp + nsyfe 

(ns+ljysp + nsyfe  ' K   } 

In the coordinate system of Fig. 2, the layers of the upper half of the stack have the 

boundaries u0 = 0 and 

f  2*+12*«        (nsiodd) 
ui = ( . (i=l,...,ns+l). (4) 

\ "y^f + 2^ («si even) 

2.2     Tow Waviness 

In contradiction of the ideal geometry prescribed by the weaver and widely 

assumed in prior modeling of textile composites, staffers and fillers are in reality not 

straight. Indication of this for staffers is visible in Fig. 1: the staffers exhibit appreciable 

deflections in the out-of-plane or through-thickness direction (i.e., in X1-X3 planes in 

Fig. 1). Figure 3 shows that such irregularity or waviness can be quite dramatic for fillers. 

It is generally larger for fillers than staffers because the staffers, being warp yarns, are 

held in tension during weaving, whereas the fillers are non-tensioned weft. In the heavily 

compacted composites, filler distortion is probably further exacerbated by the fact that 

fillers are only half as thick as staffers. Waviness in staffers and fillers tends to be greater 

in the lightly compacted composites than in the heavily compacted composites; and 

greater for angle interlock than for orthogonal interlock weaves. 
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Figure 2.   Representative layer sequence of fillers and stuffers through the thickness, 
with the layer thicknesses tf and ts defined. For the case shown, ns=2. 
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Figure 3.   Sections of two specimens normal to the stuffer direction showing typical 

irregularity or waviness of fillers (above: /z-L-1; below: h-L-2). 



Table 2. Composite Volume Fractions and Dimensions 

Composite 
Label 

Fraction by Volume of All Fibers 
that Lie in: 
Sniffers       Fillers          Weavers 
fs                ff                  fw 

Measured Fiber 
Volume Fractiona 

V(V) 

(a) Lightly Compacted 

Z-L-l 
/-L-2 

0.385 
0.347 

0.418 
0.502 

0.197 
0.151 

0.35±0.03 
0.370±0.005b (0.066±0.004c) 

/-T-1 
l-T-2 

0.381 
0.406 

0.504 
0.497 

0.115 
0.097 

0.466±0.003 
0.408±0.020b (0.04410.004°) 

l-O 0.387 0.524 0.090 0.483+0.010 

(b) Heavily Compacted 

A-L-1 
A-L-2 

0.587 
0.580 

0.340 
0.375 

0.073 
0.045 

0.620+0.008 
0.557±0.015 

A-T-l 
h-T-2 

0.571 
0.571 

0.331 
0.369 

0.098 
0.059 

0.613±0.003 
0.59210.014 

h-O-1 
h-O-2 

0.586 
0.545 

0.340 
0.353 

0.073 
0.102 

0.61910.008 
0.59310.014 

a measured by acid digestion following ASTM Standard D3171 
b graphite fibers 
c glass fibers 

Composite 
Thickness 
t(mm) 

12.6 
12.4 

10.2 
9.7 

8.8 

5.61 
6.25 

5.73 
5.77 

5.79 
5.87 

Warp weavers also exhibit waviness; in some cases, they are the most severely 

distorted of all the tows. Warp weaver irregularity is generally more pronounced in angle 

interlock than in orthogonal interlock composites. It is also closely correlated with the 

reduction in thickness of the woven preform during consolidation of the composite [12], 

as should be expected. Some examples of warp weaver crimp appear in Fig. 4. See also 

Fig. 4 of [12]. 

There is also some in-plane misalignment of stuffers and fillers, i.e., in the xi-x2 

plane. However, these fluctuations are considerably smaller than out-of-plane 

misalignments and are neglected in all the following analyses. 
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Figure 4.   Sections normal to the filler direction showing warp weaver crimp in two 
heavily compacted composites. 

Out-of-Plane Waviness of Stuffers and Fillers 

Out-of-plane waviness was quantified by statistical analysis of digitized images of 

cross sections."!" Digital image analysis was used to reduce images of stuffers and fillers 
such as those in Figs. 1 and 3 to one dimensional curves or "tow loci" representative of 
their centers. Typical tow loci are shown superimposed on the fillers of Fig. 3. The 
analysis of elastic properties requires data on the distribution of out-of-plane 
misalignment angles along the entire length of tows. The analysis of strength and fatigue 
life requires distributions of extreme values. 

Considerable effort was expended in finding the best method of generating and 

smoothing tow loci. Details of the procedure finally selected are as follows. Cross 
sectional images were first digitized on 256 x 256 arrays. The size of the area on the 

specimen represented by a single pixel depended on the image magnification. A gray 

"I" Similar analysis of waviness in triaxial braids can be found in [15] and [16]. 
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level threshold was then used to delineate individual tows. The representation of each tow 
identified in this manner was then skeletonized by alternately eliminating pixels from the 
upper and lower boundaries. The coordinates of the centers of mass of the surviving 
pixels in the skeletons were stored for subsequent analysis as the raw tow loci data. 
Subjectivity entered in the procedure to this point only in a small amount of touching up 
to aid in contrast thresholding and the elimination of some spurious features associated 

with fragments of tows caught on the specimen section. 

SC.54244.1I2993 
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Figure 5.   Steps on a digitized tow locus reflecting the size of pixels in the digitized 
image (solid curve); and a smoothing spline function (dashed curve). 

The first step in deducing misalignment data from the raw tow loci data was to 
eliminate noise arising from the digital image processing. The noise consisted of steps 
corresponding to the pixel size (Fig. 5). In such stepped data, the most accurately known 
values are the midpoints of the vertical segments. Smoothing was therefore effected by 
fitting cubic splines to the set of all step midpoints on each locus. The fitting routine 
used* finds splines of minimum curvature such that the root mean square difference 
between the fitted splines and the data points does not exceed some specified amount 8. 
Forcing the splines to pass exactly through the data (8 = 0) results in large oscillations or 
ringing as the splines accommodate noise. Specifying a very large value of 8 results in 
lost information, with the fitted spline tending to a straight line. The optimal choice of 8 

should correspond to the expected error in each datum. The error should be a small 
fraction of the step height, but is difficult to specify a priori. Therefore, the optimal value 
of 8 was determined by comparing fitted splines with the original micrographs by eye. 
Acceptable fits were found when 8 = 0.02 ± 0.01 mm, or about one fifth of the step height 

IMSL (International Mathematical Software Library) routine ICSCSU. 
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(Figs. 3 and 5). The fitted curves were considerably superior to smoothed curves obtained 
by filtering Fourier transforms. 

To check the adequacy of the pixel density, some cross sections were analyzed 
again starting with images of higher magnification. The step size was accordingly 
smaller. With 8 again set to one fifth the average step size, smoothed curves close to 

those obtained from the lower magnification images were generated. 

At least five sections were analyzed for each material. A cumulative probability 
distribution (cpd) was then formed for the out-of-plane misalignment angle, £, of small, 

equal intervals on all smoothed tow loci. Typical cpds are shown in Fig. 6. Although 

there are no obvious physical grounds to expect it, experience shows that each such cpd 

can be fitted quite well by a symmetric normal distribution 

F^) = |lf^')d^', (5a) 

with the density function f^(^) given by 

fEte)=-j=e-S2/2< (5b) 

Typical fitted functions F^) are also shown in Fig. 6. The width, a§, of the distributions 

determines the degree of softening of Young's modulus in the tow direction due to out-of- 
plane tow waviness (see below). Values of G£ determined by maximum likelihood 

estimators are listed in Table 3. 

The influence of uncertainty in the smoothing parameter 8 was assessed by 
reevaluating o^ using the lowest and highest credible values assigned to 8. The resulting 
uncertainty in o^ is also indicated in Table 3. For sniffers, it is typically ~ 30%; for fillers, 

~ 10%. Higher (lower) values of 8 lead to narrower (broader) distributions of £. However, 

as long as 8 is varied consistently for all cases, the net effect is broadening or narrowing 
of all distributions by the same factor. The relative uncertainty in o^ for different 

composites may therefore be much less than the uncertainty shown in Table 3. From 
statistical arguments, it should fall as the square root of the number of data points 
sampled (e.g. [17]). When the data available for the stuffers in each composite were 
analyzed in two halves, the two values of a^ obtained differed typically by 10%. This is a 

better estimate of the relative uncertainty in out-of-plane misalignment angles for 

stuffers. 
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Figure 6. Distributions of the out-of-plane misalignment angle £ for (a) stuffers in 

the composite /-T-2 and (b) fillers in the composite /-L-2. The irregular 
curves are the data; the overlaid smooth curves show symmetric normal 
distributions fitted by maximum likelihood estimators. 

Crimp of Warp Weavers 

The distortion of warp weavers is much more difficult to quantify. Warp weavers 
follow complicated paths and are often much more severely crimped than stuffers or 
fillers (e.g. Fig. 4). Warp weavers, being of lighter denier, also exhibit greater departures 
proportional to their widths from the planes in which they nominally lie. Therefore 

specimen sections rarely display cleanly defined outlines of warp weavers. Warp weavers 
fade in and out of exposed sections and have often been fragmented by the cutting action. 

It was not possible to obtain realistic statistics for warp weaver misalignment 
angles; however these might be defined. Instead, a qualitative assessment of the degree of 
crimp was made by inspecting images of cross sections such as Fig. 4. The degree of 
crimp is manifestly correlated with the extent to which the dry fiber preform was 
squashed in consolidating the composite (Table 3): compare the heavily compacted 
composite of Fig. 4a with the lightly compacted composite of Fig. lb. 
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Table 3. Tow Waviness Parameters 

OF (degrees) Stiffness Knockdown 
Factor T|(a) 

Composite Sniffers Fillers Stuffers Fillers Degree of Warp    Cc imposite Tl 
Label Weaver Crimp       I •reform Thi 

/-L-l .a _a . . severe _b 
/-L-2 4.0±1.0 9.9±0.8 0.8210.07 0.4510.04 severe - 
/-T-l 3.4±0.8 6.0±0.6 0.8610.06 0.6610.04 intermediate - 
l-T-2 3.7±0.7 6.4±0.8 0.8410.05 0.6410.05 intermediate - 
/-0 3.4±0.8 1.211.0 0.86±O.06 0.9810.05 severe - 

h-L-1 1.7±0.5 4.810.7 0.9710.02 0.6910.06 severe 0.79 
Ä-L-2 2.010.6 14.810.8 0.9510.02 0.3210.02 severe 0.75 
A-T-l 1310.5 2.910.7 0.9810.02 0.9110.04 intermediate 0.83 
A-T-2 1.7±0.3 4.211.0 0.9710.02 0.8310.06 slight 0.93 
A-O-l 03±0.1 3.410.7 0.9910.01 0.8910.05 intermediate 0.87 
h-O-2 1.2±0.6 1.811.0 0.9810.02 0.9710.06 slight 0.91 

a This preform was so inhomogeneously distorted that meaningful measurements of F£ could not be made, 

b Not known for lightly compacted composites. 

Out-of-Plane Misalignment Extrema 

Out-of-plane misalignment extrema were defined as the angles of maximum 
magnitude between successive zeros of %. Successive zeros of £ tend to be separated by a 

length commensurate with the tow spacing - misalignment is a product of the 
reinforcement architecture. The misalignment extrema are identified with the tow 
segment misalignment angle £. 

Figure 7 shows cumulative probability distributions (cpd's) F£ of £. The cpd's fall 

clearly into two groups, corresponding to the lightly and heavily compacted composites. 
The lightly compacted composites are the most severely misaligned, a result mainly of 
inferior control of tow regularity during the weaving process. 

The statistics of misalignment extrema are essential in estimating strength and 

fatigue life (Section 5). 
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Figure 7.   Cumulative probability distributions for measured misalignment extrema. 
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3.       Macroscopic Elastic Constants 

Properties related to failure, including strength and the degree of localization of 
damage, are sensitive to flaw statistics, especially the number and spatial distribution of 

extreme flaws. In the elastic regime, on the other hand, the effects of geometrical 

irregularity ought to be more moderate. Elastic constants measure a spatially averaged 
response, in which extremes carry only a small weight. Thus in [13] it was shown that 

Young's modulus in the primary load-bearing direction of 3D woven composites can be 
predicted well by combining rules of mixtures with crude estimates of the effects of 

random tow misalignment or waviness. In fact, the 3D woven composites studied in [12- 

14] behave in the elastic regime much like laminates. The idea of simple models for 

elastic constants is pursued in this section in a complete description of the elastic 

properties of the same class of 3D woven composites. 

The emphasis in this section is on predicting macroscopic composite elastic 
properties, i.e., properties applicable over gauge lengths larger than the characteristic 
scale of the pattern of tows in the reinforcement. Experimental methods have been 
developed for characterizing the waviness of nominally straight tows, which are in 
practice far from straight. Tow waviness leads to reduction of the effective axial modulus 

of a single tow. A simple estimate of this softening is then incorporated in a model of the 
composite, in which spatially averaged composite properties are estimated by averaging 
the properties of constituent tows of different orientations. 

The simple approach espoused in this section follows orientation averaging 
models presented for 3D composites many years ago [18-20]. More recent variants 

appear in [21] and [22]. The primary goal of this paper is to test how well macroscopic 

elastic constants can be predicted by such approximations for the current generation of 
3D woven composite panels, provided tow irregularity is accounted for in an appropriate, 
spatially averaged way. Computationally, the models require nothing more than the 
inversion of a 9 x 9 matrix. Conceptually, they have the immense advantage of 

simplicity, which should be contrasted with the large computations that follow from finite 
element formulations of the same task. 

While the simple approach works very well for predicting the in-plane 

macroscopic properties of flat panel specimens, in other problems a more complete 

description of the stress distribution throughout the composite is required. Important 

problems of this class include modeling the elastic properties of three-dimensionally 
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reinforced parts of complex shape; and analyzing the random distribution of loads in 
individual reinforcing tows when the tows are irregular. For these problems, finite 
element or similarly laborious computations are inevitable. The formulation of a new 
finite element model called the "Binary Model," which is designed to deal most 
efficiently with these and other problems, was presented in [23]. In Section 4, the 
calibration of the Binary Model for elastic problems is described in full and it is used to 
model statistical aspects of the composites studied here. 

3.1     Experimental Data 

Since the warp weavers generally contain a small fraction of the total fibers, the 
reinforcement is dominated by the orthogonal arrays of stuffers and fillers and is 
therefore approximately orthotropic. Detailed modeling confirms orthotropic symmetry 
over gauge lengths exceeding several tow diameters, even in the presence of local 
irregularities in tow positioning (Section 4). Therefore, macroscopic elastic properties are 
given by nine Voigt elastic constants, Qj. With xi lying in the stuffer direction, X2 in the 

filler direction, and X3 in the through-thickness direction, 

<*$ 

T23 

X31 

X12 

C11 C12 C13 0 0 
C21 C22 C23 0 0 
C31 C32 C33 0 0 
0 0 0 C44 0 
0 0 0 0 C55 
0 0 0 0 0 

0 ei 
0 £2 
0 £3 
0 723 
0 Y31 

C66 Y12 

(6) 

The constants Qj are often determined from measurements of Young's modulus and 
Poisson's ratio for uniaxial loading in each of the directions xi, X2, and X3 together with 
measurements of the shear moduli G23, G31, and G12 (e.g., [24]): 

[Sij]=[Qj] 
-1 

(7a) 

[Sij] = 

1/E2 -V12/E1 -V23/E1 0 0 0 
-V12/E1 1/E2 -V23/E2 0 0 0 
-V13/E! -V23/E2 1/E3 0 0 0 

0 0 0 1/G23 0 0 
0 0 0 0 1/G31 0 
0 0 0 0 0 1/G12 

(7b) 
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where Ei is Young's modulus for loading in the direction Xi, vy is Poisson's ratio for the 

concomitant contraction in the direction XJ, and use has been made of the symmetry 
relation 

Vij/Ei = Vji/Ej . (8) 

In this work, the engineering constants Ei, E2, V23, V31, and V12 were determined 

by conducting uniaxial tension tests in the in-plane directions xi and X2. Dog-bone 
specimens were used in these tension tests, with gauge sections approximately 10 mm x 

20 mm x (specimen thickness). The through-thickness modulus E3 was deduced from 

tests in which specimens were loaded in compression in the direction X3 between flat 

platens. Since the in-plane dimensions of the compression specimens far exceeded their 
thicknesses, the in-plane strains in the compression tests remained approximately zero. 
The load-displacement data therefore yielded the stiffness matrix element C33. Young's 

modulus E3 was calculated from this value of C33 and the measured values of Ei, E2, and 
Vy using Eq. (7). Test calculations showed that the uncertainty in E3 due to measurement 

errors in the other engineering elastic constants was typically ~ 5%. Shear moduli were 
not measured. Some values taken from other work will be used to assess predictive 

models below. 

In many of the tension tests, full-field strain maps were obtained by moir6 

interferometry. The moire fringe maps always revealed significant nonuniformity in 

surface strain distributions. Fringes formed by in-plane displacements (i.e., displacements 
on X1-X2 planes) parallel to the load correspond to the pattern formed by warp weaver 
extrema at the surface being observed (e.g., Fig. 8a). The surface is revealed as an 
approximately periodic pattern of relatively soft and hard patches (shown by locally high 
or low fringe densities), with lattice parameters commensurate with the tow spacings. 
However, the pattern is always imperfect: significant, nonperiodic irregularity exists in 
the details of the strain distributions. In-plane displacements transverse to the load were 
almost always very small, leading to very sparse fringe systems and indicating very small 

Poisson's ratios (e.g., Fig. 8b). 

Fringes formed by displacements on through-thickness sections by loads in the 
direction xi are typified by Fig. 9. Displacements in the loading direction reveal fairly 
uniform strain (Fig. 9a); whereas displacements in the through-thickness direction reveal 
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highly nonuniform strain (Fig. 9b). Relatively hard areas in Fig. 9b are directly correlated 
with warp weavers on the surface being examined. 

Taking account of the roughly periodic patterns exemplified by Fig. 8a, in-plane 
Young's moduli representative of macroscopic strains were obtained by averaging strains 
over an area of approximately 10 mm x 10 mm. The in-plane Poisson's ratio was deduced 

from the total displacement across the specimen in the direction of the contraction, 
averaged over a length of approximately 10 mm along the load axis. The through- 
thickness modulus E3 and Poisson's ratio V13 were determined from the total 

displacement in the through-thickness direction. 

The measured elastic constants are reported in Table 4. In a few cases, multiple 
tests were run to establish representative deviances. For all constants, the deviance was 
typically 5-10%. Factors contributing to the deviance will be discussed below. 

SCP.C337T.0gr)te   :: 

(a) 

(b) 
jilpSmis-H 

loading direction "**Xi 

Figure 8. Moire fringe patterns formed on an in-plane surface (xi-x2 plane) of a 
specimen of composite h-O-2 under uniaxial loading in the direction xi. 
(a) Displacement in the direction xi. (b) Displacement in the direction X2- 
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Figure 9. Moire fringe patterns formed on a through-thickness section (X1-X3 plane) 
in a specimen of composite Ä-L-1 under uniaxial loading in the direction 
xi. (a) Displacement in the direction xi. (b) Displacement in the direction 

X3- 

3.2     An Orientation Averaging Model 

Macroscopically averaged elastic constants have been estimated in the past for 
both 2D and 3D composites of stiff, continuous fibers in a soft matrix by simple 
"orientation averaging" models [18-22]. In these models, small volumes in which all 
fibers are aligned are treated as unidirectional composites. The whole composite becomes 
a 3D tessellation of transversely isotropic grains or domains whose orientations depend 
on the reinforcement architecture. Macroscopic properties are evaluated by averaging the 
response of the body to applied loads, usually under the assumption of either uniform 
stresses or, more often and more successfully, uniform strains. Such models are not 
particularly good for polycrystals containing highly anisotropic grains. It is likely that 
they owe their success for the continuous fiber composites studied so far to the high 
degree of long-range order that exists therein among the orientations of small volumes of 

fibers. Whether they will serve well in 3D composites containing short segments of 

multi-oriented tows remains to be assessed. 
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Table 4. Measured and Predicted Composite Elastic Constants 

Composite 
Label 

Ei (GPa) E2 (GPa) E3 (GPa) 

Expt OAa OAWb ExpL OAa OAWb ExpL OAa OAW 
/-L-l 3Q±6 36.8 - 38.7 5.7 9.0 
l-L-2 28.5 34.9 29.4 47.6 22.8 5.9 7.0 6.9 
/-T-l 27 47.3 41.3 59.5 40.1 8.0 9.4 9.4 
/-T-2 39 43.5 37.1 51.6 34.0 7.9 7.0 7.0 
/-0 30±2 51.9 45.4 45.5±1.5    63.9 62.6 7.0±1 13.7 13.7 

h-L-1 85±8 91.5 88.6 43.8 56.2 40.8 16±2 12.1 12.1 
h-L-2 80 81.2 77.6 42.3 55.0 20.9 14.0 10.2 10.1 
A-T-1 79 88.6 87.0 42.5 54.4 50.2 13.8 12.8 12.8 
A-T-2 72 85.1 82.4 45.8 57.6 48.8 13.9 11.2 11.2 
A-O-l 88 93.1 93.0 39.9 56.4 50.8 15.4 17.3 17.3 
A-O-2 69±5 83.8 82.5 41.6 55.9 54.2 22.3 20.4 20.4 

Composite 
Label 

vi2 V23 Vi3 

Expt OAa OAWb ExpL OAa OAWb ExpL OAa OAW 
/-L-l 0.024 0.023 0216 0.22 0.607 
/-L-2 0.11 0.027 .037 0.310 .225 0.50 0.457 .436 
/-T-l 0.048 0.020 .022 0.243 .200 0.375 0.541 .527 
/-T-2 0.21 0.027 .031 0.325 .267 0.37 0.428 .406 
/-0 0.053 0.034 .032 0.183 .180 0.49 0.184 .173 

A-L-l 0.061 0.034 .041 0266 237 0.456 .450 
A-L-2 0.13 0.035 .065 0.298 221 0.451.05   0.425 .411 
A-T-1 0.054 0.033 .035 0.248 .240 0.486 .483 
A-T-2 0.097 0.033 .036 0.280 262 0.443 .437 
A-O-l 0.055 0.051 .054 0.192 .184 0.190 .189 
A-O-2 0.07 0.052 .052 0.158 .156 0.157 .155 

Composite 
Label 

( 3l2(GPa] G23 (GPa) G31 (GPa) 

ExpL OAa OAWb ExpL OAa OAWb ExpL OAa OAW 
/-L-l 2.3 - 2.1 - 6.0 - 
/-L-2 2.4 2.4 2.2 2.2 32 3.2 
/-T-l 3.0 3.0 2.7 2.7 5.6 5.6 
/-T-2 2.6 2.6 2.4 2.4 3.1 3.1 
/-0 3.1 3.1 2.8 2.8 2.7 2.7 

A-L-l 62c 5.4 5.4 4.1 4.1 7.1 7.1 
A-L-2 5.8C 4.6 4.6 3.6 3.6 5.3 5.3 
A-T-1 5.6C 5.3 5.3 4.0 4.0 7.8 7.8 
A-T-2 5.7C 5.0 5.0 3.9 3.9 6.2 6.2 
A-O-l 5.0C 5.4 5.4 4.1 4.1 4.7 4.7 
A-O-2 4.9 4.9 4.0 4.0 4.4 4.4 

aOrientation Averaging Model of Section 32: straight fibers 
bOrientation Averaging Model amended for out-of-plane waviness of staffers and fillers 
cRef. [25] 
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Property Estimates for Individual Tows 

The properties of the individual domains, i.e., of a unidirectional composite, can 
be estimated from the local fiber volume fraction and the fiber and matrix properties. In 
this work, five different closed form approximations were assessed for estimating the 
properties of unidirectional composites, including rules of mixtures and four models from 
the literature which offer more realistic partitioning of stress between fibers and matrix 

[22, 26-28]. Each method offers estimates in terms of the elastic constants of the fibers 
and resin of the five independent elastic constants available for the unidirectional 
composite when it is considered to be a transversely isotropic body. Of the five models, 

only Hashin's composite cylinder model [26] permits transverse isotropy in the fibers 

themselves; all the others treat the fibers as isotropic. 

The resin and fiber properties used in this study are listed in Table 5. The 
properties of the resins were measured in [12] and [13]. The properties of S2 glass fibers, 
which are assumed isotropic, were taken from the literature (e.g., [24]) and 

manufacturer's data sheets*. The properties of AS4 carbon fibers, which are far from 
isotropic, were deduced by Naik [29] from the measured properties of a unidirectional 
AS4/3501-6 composite with V = 0.6 (Herculesf data sheet) using a finite element model 
of a composite of fibers in a square array. (Choosing a square array is hardly ideal, since 
it violates isotropy normal to the fibers. However, ensuing estimates of the properties of 
3D composites will not be noticeably affected by such a minor consideration, as will 
become apparent below.) The value given in parentheses for the axial modulus of AS4 
fibers is that given independently in the manufacturer's data sheets for bare AS4 fibers.* 

Details of a comparison of the different models for the unidirectional composite 
are presented in Appendix B. Young's modulus and Poisson's ratio for loading in the 
fiber direction are essentially the same for all models and well approximated by the rule 

of mixtures. However, the transverse modulus, Poisson's ratio in the plane of isotropy, 
and the shear moduli all change significantly when the fiber anisotropy is taken into 

account. Therefore, Hashin's model with anisotropic fiber properties was used in further 
modeling. 

* Owens Coming Glass Co., Detroit, Michigan. 
t Hercules Inc., Salt Lake City, Utah. 
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Table 5. Fiber and Resin Elastic Constants 

Fibers 
Axial 

Young's 
Modulus 
Ef(GPa) 

Axial 
Poisson's 

Ratio 
Vf 

Axial Shear 
Modulus 
Gf(GPa) 

Transverse 
Young's 
Modulus 
EftCGPa) 

Transverse 
Poisson's 

Ratio3 

Vf 

AS4 carbon 
fibers 
S-2 glass 
fibers 

235 (250) 

85 

0.25 

0.22 

55 

_b 

17 

_b 

0.27 

_b 

Resin 
Young's 
Modulus 
Er(GPa) 

Poisson's 
Ratio 

Vf 

Tactix 138 
Shell 1895 

3 
3.7 

0.3 
0.3 

aPoisson's ratio in planes of isotropy 
bS2 glass assumed isotropic 

Orientation Averaging—Ideal Geometry 

For orientation averaging, each 3D woven composite is divided into stuffer, filler, 
and two warp weaver domains occupying fractions Aa* of the total composite volume (a 
= s, f, wis or W2 for stuffer, filler, or either weaver domain; X A« = 1). 

a 

Each domain is characterized by an orientation along which the fibers within it are 

presumed to lie. Tow waviness does not enter into the definition of these orientations, but 
will be introduced separately. Thus all fibers within the stuffer or filler domains are 
assumed to be parallel to the xi-axis or X2-axis respectively. While warp weavers are 
always assumed to be piecewise straight and lie within xi - X3 planes, their orientations 
are defined differently for angle and orthogonal interlock weaves. For angle interlock 
weaves, the fibers occupying domain wi form an angle of 45° with the xi-axis; while the 
fibers occupying domain W2 form an angle of -45° with the xi-axis. In angle interlock 
weaves, domains wi and W2 are occupied by equal numbers of fibers. For orthogonal 
interlock weaves, domains wi and W2 are assumed to contain fiber segments parallel to 
the xi axis and parallel to the X3 axis respectively in the proportions ai:t in composite h- 

O-l or 2ai:t in composites /-0 or h-O-2, where ai is the center-to-center spacing of fillers 
(ai ~ 1/p). The assignment of orientations for the warp weavers is crude but adequate, 
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because their contribution to overall properties is limited by their relatively low volume 
fraction. 

Let C(°0 denote the stiffness matrix for domain a, i.e. the matrix of stiffness 

constants determined for the appropriate unidirectional composite by Hashin's model in 

the local coordinate system (x, y, z) in which the x-axis lies along the fiber direction. The 

composite stiffness matrix C is approximated by 

Qj=£A«cf (9) 
a 

where C^ denotes C(a) transformed into the composite coordinate system (xi, X2, X3) of 

Fig. 1. This transformation is a well-known result of tensor algebra (e.g. [30]). Equation 
(9) is an exact representation of the composite if all three domains a = s, f, and w = wi u 

W2 suffer equal strains under macroscopically uniform applied loads. Whether domain 
strains are in fact equal depends on the reinforcement architecture and the state of applied 
stress. An assessment of the effect of using other assumptions about the distribution of 
domain strains is deferred to the Discussion. 

Equation (9) and Hashin's model for estimating C(°0 allow the composite elastic 
constants C to be estimated from the properties of the constituent fibers and resin. The 
solutions are closed by specifying the domain volume proportions Aa. In practice, it is 
difficult to specify A« a priori, because of the complex geometry of resin pockets and 

voids between tows. In the following work, Aa was simply equated to the fiber fraction 
fa of Table 2. To justify this assignment, the sensitivity of estimates of composite elastic 
constants to the choice of Aa was assessed by varying As with Aw = fw, X A« = 1, and 

a 

total fiber fractions preserved by setting Va = faV/Aa (with V the measured total fiber 
volume fraction). Within the bounds imposed on As by requiring Va < 0.8 for each 

domain, no composite elastic constant deviated by more than ~ 2%. 

Engineering elastic constants computed via Eq. (9) and using Hashin's model for 

anisotropic fibers are compared with the experimental measurements in Table 4. 
Agreement is excellent for the shear modulus G12 and good for most other entries. 
However, the in-plane Young's moduli Ei and E2 are consistently overestimated by the 
orientation averaging model, while the in-plane Poisson's ratio V12 is underestimated. 
The through-thickness modulus E3 and Poisson's ratio V13 are significantly high in some 

cases and significantly low in others. Nearly all of these variances can be attributed to 

geometrical irregularity. 
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The Influence of Staffer and Filler Waviness 

The most important effect of tow waviness on elastic properties is to reduce the 

axial stiffness of a tow. In the Orientation Averaging model, Young's modulus in the 

fiber direction in domain a is knocked down by a factor T|(a) < 1, which can be estimated 

from the distribution of out-of-plane misalignment angles. Consider an axially loaded 

wavy tow as a sequence of misoriented unidirectional composite segments bearing equal 

stresses in the load direction.t The spatially averaged Young's modulus ($*) of such a 

tow is given by 

\ums)i (10) 

where Epfe) is Young's modulus for a unidirectional composite under a load oriented at 
angle £ to the fiber direction x. A simple and adequate expression for E^a\^) is (e.g., 

[27]). 

E£> Mag? 4a)J 
sin4£ 

(small £) 

(Ha) 

(lib) 
'xy 

where Fx , Ey"', G^", and v£y' are engineering elastic constants for a unidirectional 

composite when load and fibers are both aligned along the x-axis. With the integral in 

Eq. (10) evaluated for % of Eq. (5b), the knockdown factor vf^ is just 

if*)=(e<«^«> (12a) 

«(1 + OB i—2(l+v(a)) ,(o)   T     *y/ .(a) 
*xy 

(small Op) (12b) 

t Detailed simulations of load distributions confirm the validity of assuming uniform stress along an 
individual wavy tow, rather than uniform strain (Section 4.4). However, the differences found in waviness 
effects when Eq. (10) is based on isostrain conditions in a wavy tow are minor (zero to order £2). Appendix 
A of [23] also demonstrated that the highly anisotropic tows in typical polymer composites deflect laterally 
by shear rather than bending; and this is a much more important distinction. Thus the analysis preferred 
here differs from that appropriate to isotropic wavy layers in a soft matrix [31]. 
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The term multiplying o| in Eq. (12b) vanishes if the domain a is isotropic. It takes a 

value near 40 for the composites studied here. Equations (lib) and (12b) fall within 5% 
of Eqs. (5b), (10), and (11a) for 0£ < 10°. For smaller angles, Eq. (12b) can be further 

simplified to 

T|     = 1 - (^ 
E(«) 

x 
G(«) 

L   xy 
i*o (12c) 

Waviness knockdown factors computed for stuffers and fillers without the 

approximations of Eq. (12b) or (12c) are listed in Table 3. The stiffness loss is 2-20% for 

sniffers and 5-50% for fillers. 

Waviness knockdowns for stuffers and fillers are incorporated in the estimates for 
3D woven composite properties by substituting Ex(a) -» Ti(a)Ex(a) and vXy(a) -» 
r((a)vxy(a) in the sniffer and filler domains in the Orientation Averaging Model. The latter 

substitution preserves the symmetry relations between Young's moduli and Poisson's 
ratios. The resulting composite predictions are listed in Table 4 under the heading 
"OAW". The agreement with experimental data is significantly improved. In many cases, 
the remanent discrepancy between prediction and experiment is less than the scatter in the 
experimental data and in data reported by different laboratories for the same materials. 
Nevertheless, in many cases, the predicted in-plane Young's moduli remain higher than 
the experimental data. 

The Influence of Warp Weaver Crimp 

Since warp weaver crimp is so severe, a meaningful lower bound to its effect can 
be found by the extreme assumption that the axial modulus E^ of the warp weavers is 
reduced to the value E^ of their transverse modulus. Symmetry relations are preserved 
by the substitution v^ -» v^?. Some composite elastic constants predicted with these 

conditions are compared in Table 6 with predictions for warp weavers of ideal geometry. 

Young's modulus Ei is only weakly affected by weaver crimp, as is E2 (not shown in 
Table 6). The through-thickness modulus E3, Poisson's ratio V13, and the shear modulus 

G31 are more substantially affected, falling to values near those expected for a 2D 
laminate. Other Poisson's ratios and shear moduli are insignificanüy affected. 
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Table 6. Effects of Warp Weaver Crimp 

Composite Label Ei (GPa) E3(GPa) 
OAWa OAWWb OAWa               C >AW 

/-L-l 36.8 35.7 9.0 5.6 
/-L-2 29.4 28.9 6.9 5.9 
/-T-l 41.3 40.2 9.4 6.7 
/-T-2 37.1 36.8 7.0 6.2 
/-O 45.5 42.1 13.7 6.9 

A-L-l 88.6 87.6 12.1 9.7 
h-L-l 77.6 77.0 10.2 8.8 
h-T-1 87.0 85.7 12.8 9.6 
h-T-1 82.4 81.6 11.2 9.3 
h-T-1 93.0 90.0 17.3 9.6 
h-O-2 82.5 80.0 20.4 9.2 

Composite Label vi3 G31 (GPa) 
OAWa OAWWb OAWa               C >A\\n 

/-L-l 0.607 0.323 6.0 2.2 
/-L-2 0.436 0.320 3.2 2.3 
/-T-l 0.527 0.306 5.6 2.6 
/-T-2 0.406 0.325 3.1 2.4 

Z-O 0.173 0.310 2.7 2.7 

h-L-1 0.450 0.299 7.1 4.7 
h-L-l 0.411 0.313 5.3 4.0 
h-T-1 0.483 0.294 7.8 4.6 
h-T-1 0.437 0.311 6.2 4.3 
h-T-1 0.189 0.317 4.7 4.7 
h-O-2 0.155 0.308 4.4 4.4 

aOrientation Averaging Model amended for out-of-plane waviness of stuffers and 
fillers 
^as for OAW but with extreme softening of warp weavers 

Bending 

For many purposes, it will be accurate enough to represent any of the 3D woven 
composites studied here as orthotropic and homogeneous. However, in bending 
applications, the coarseness of typical tows suggests that account must be taken of the 

sequence in which stuffers and fillers appear through the thickness (e.g. Fig. 2). This 
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effect can be measured as the ratio Xj (j=l,2) of the flexural rigidity estimated for the 

actual layer sequence to that estimated under the assumption of through-thickness 
homogeneity. The required ratio follows easily from the distribution of layer stiffnesses 

and stresses in pure bending.1 For a symmetric through-thickness sequence and bending 
about the Xj-axis (j=l,2), the bending moment Mj is given by 

ftp. 

•f-t/2 

»in 

Mj= Oj(x3)x3dX3. (13) 

Ignoring the modest effect of transverse stresses, the ratio Xj is well approximated by 

31 .=1 o 

n,+l r T 

= s[(ff-(tF]Er/EJ   <Hi) a*) 
1=1 

where Ej is Young's modulus in direction XJ for the composite; and Ej     is Young's 

modulus in direction XJ for the individual layer (or tow domain) oti. The moduli Ej     are 

either the axial or transverse Young's modulus predicted for a unidirectional composite; 
the former knocked down by the factor rf0^ to allow for tow waviness. 

Values computed for Xj by Eq. (14) are summarized for all the composites in 
Table 7. Since fillers are always the outermost plies, X2 exceeds unity (bending about the 
xi - axis) while Xi is less than unity (bending about the X2 - axis). 

Given X\ and %2» the flexural rigidities Efi and Eß that should be used to predict 
the response to pure bending under the assumption that the composite is homogeneous 

can be estimated from the in-plane moduli Ei and E2. Results for Efi are compared in 
Table 7 to values deduced from the linear portions of bending experiments. The 
predictions are consistently higher than the available data. The discrepancy can be 

attributed to overestimates in Ei, since the proportional discrepancies in Ei (Table 4) and 
Efi (Table 7) are nearly the same. Thus, the effects of inhomogeneity are well estimated 
by Eq. (14). 

^The ratio %j is to be applied as a correction factor to the OAM, which already contains estimates of the 
effects of warp weavers. The influence of warp weavers on the correction factor itself must be negligible. 
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Composite 
Label 

Table 7. Flexural Rigidity 

Factor for Inhomogeneity 

3d' 

/-L-1 0.79 
/-L-2 0.78 
/-T-l 0.78 
/-T-2 0.79 
/-0 0.78 

h-L-1 0.85 
h-L-2 0.89 
h-T-1 0.85 
h-T-2 0.89 
h-O-1 0.84 
h-O-2 0.89 

abending about the X2-axis 
bbending about the xi-axis 
cEquation (14) 

X2Ü 

1.19 
1.15 
1.17 
1.18 
1.17 

1.24 
1.14 
1.25 
1.16 
1.25 
1.16 

Flexural Rigidity 

Efla(MPa) 

expt. 

20 

72 

63 
63 
60 

prediction0 

29 
23 
32 
29 
35 

75 
69 
74 
73 
78 
73 

3.3     Discussion of Macroscopic Elastic Constants 

3.3.1   In-Plane Properties 

The in-plane elastic properties are essentially those of a 0/90° laminate, with 
relatively minor modifications due to the through-thickness reinforcement and tow 
irregularity. Thus Poisson's ratio V12 is very small, because the fillers resist transverse 
contraction when loading is parallel to the stuffers; and V12 and the in-plane Young's 

moduli Ei and E2 are dominated by the axial stiffness of the stuffers and fillers. 
Consequently, using rules of mixtures rather than Hashin's model for tow domain 
properties leads to very similar predictions of the composite elastic constants Ei, E2, and 
V12 (Appendix B). On the other hand, the in-plane shear modulus G12 is matrix 

dominated: it is very nearly equal to the axial shear modulus predicted for the staffers and 
fillers. The rule of mixtures leads to an underestimate for G12 (Appendix B). 

The in-plane elastic constants Ei, E2, and V12 are influenced significantly by 

waviness in staffers and fillers, but negligibly by waviness in the warp weavers. 
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3.3.2 Other Elastic Constants 

The orientation of the warp weavers and any crimp in them is much more 
significant for the through-thickness composite modulus E3, Poisson's ratios V13 and V23, 

and the shear modulus G31. As tow orientations would suggest, the highest values of E3 
are found for orthogonal interlock weaves. Similarly, V13 and V23 are less than Poisson's 

ratio for the matrix for orthogonal interlock weaves, but are quite high in angle interlock 

weaves. The warp weavers resist through-thickness contraction in the former architecture, 

but abet it in the latter. Of the shear moduli, only G31 depends on the warp weavers: no 
axial strains arise in any segments of warp weavers under shear strains 712 or 723- 

3.3.3 Unresolved Discrepancies Between Theory and Experiment 

When out-of-plane stuffer and filler waviness and warp weaver crimp are 
accounted for, predicted and measured composite elastic constants agree in most cases to 
within experimental error. However, the tendency is still for predicted in-plane Young's 

moduli to be too high, especially for composites /-T-l, /-0, and h-O-2; while experiment 
and theory occasionally disagree significantly in either direction for the through thickness 
modulus E3 and Poisson's ratio V13. 

The remaining overestimate of in-plane moduli is very likely to arise from 
unaccounted irregularity in stuffers and fillers. Only out-of-plane waviness was measured 

and modeled, yet other forms of distortions can also be found. Many consist of 

inconstancy in the aspect ratios of tow cross-sections. In some composites, especially 
layer-to-layer angle interlocks, this was manifested as tapering, oscillating skirts along 
the sides of stuffers or fillers, giving them a shape reminiscent of long flatworms. In all 
composites, aspect ratios are also disrupted by "pinching," i.e., locations where a tow is 
flattened by lateral loads during processing. Other possible irregularities include yarn 
twist, which is assumed zero in accord with the weaver's specifications; and in-plane 
waviness. Unfortunately, it is virtually impossible to measure all such irregularities, or 
even to identify them clearly in specimens. Indeed there will very likely always be some 
uncertainty in the degree of irregularity existing in textile composites. It is consequently 
unrealistic to expect to predict even in-plane elastic constants to within better than ~ 10%. 

While a 10% uncertainty will usually be deemed quite acceptable in a prediction 
based on constituent properties, the situation for out-of-plane properties is more 
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challenging. Three distinct problems exist, (i) The isostrain assumption is wrong in the 
through-thickness direction, as clearly borne out by moire" data such as Fig. 9b. Model 
calculations that allow a natural partitioning of loads between warp weavers and the rest 
of the composite appear in Section 4. They demonstrate that the isostrain assumption 
exaggerates the influence of warp weavers, by not allowing the rest of the composite to 
relax around them, (ii) The volume fraction, fwV, of warp weavers depends on the crimp 
factor, cw, of Table 1 via Eq. (1). The crimp factor can be measured quite well on 

average, but it may fluctuate throughout the material to a degree determined by the 

consistency of the weaving process. The local values of cw are the most likely cause of 
measured values of E3 being higher than predictions in several instances in Table 4. 
(iii) Waviness and other distortions are relatively severe for warp weavers. Knockdowns 
of the effective axial stiffness of warp weavers to values near the transverse tow stiffness 
are implied in several cases studied. 

Unfortunately, it is difficult even to categorize the forms of distortion exhibited by 
warp weavers, let alone to measure them all. However, rough estimates show that the 
effects of warp weaver irregularity on E3, V13, and G31 are of similar magnitude to the 

effects of relaxing the isostrain condition. Thus, when through-thickness property 
estimates are required in composite design, the simple Orientation Averaging Model with 
isostrain conditions might just as well be used, with suitably stated levels of uncertainty. 
Table 4 suggests that an uncertainty of ~ 20% is typical for current 3D woven 

composites. 
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4.       Details of Stress Distributions via the Binary Model 

In Section 3, it was shown that the macroscopic elastic properties of flat panels of 

woven composites with three-dimensional (3D) reinforcement can be successfully 
modeled by simply formulated, computationally trivial models. The term macroscopic 
here refers to a length scale X that is much larger than the characteristic dimensions of the 

reinforcement; e.g. center-to-center tow spacings. In typical woven or braided 
composites, X ~ 1-10 mm. For macroscopic properties, the influence of the reinforcement 

architecture can be dealt with by orientation averaging, a method with a long history 

[18-21,32]. Further, if the through-thickness fibers are much less numerous than the in- 

plane fibers, as preferred in many skin or sheet applications [33,34], the woven 

composites behave macroscopically in the elastic regime essentially as laminates. 

However, some important problems concerning 3D composites in the elastic 
regime cannot be solved by simple models. One such problem is the question of how 
irregularity in tow alignment might affect the distribution of loads throughout the 
composite. Random tow waviness will cause soft spots where tows are highly misaligned. 
Neighboring tows will be excessively stressed. The question then arises of the extent to 
which uneven load distribution can affect the onset of tow failure. 

A second problem concerns the treatment of reinforcement architectures that are 
much more complicated than those in the flat panels studied here. Indeed, one of the great 

promises of woven and braided textiles is the formation of integral structures to near net 
shape. Typical examples from weaving technology include hollow box beams, in which 

the upper and lower faces are rich in longitudinal tows for tensile and compressive 
strength, while the side faces contain mainly ±45° tows for shear [35]; and integrally 
woven skin/stiffener panels for airframes (e.g., [36]). In such structures, tows pass 
continuously from one part to another, e.g. from face to face in the box beam or from skin 
to stiffener in the airframe panel. At the critical junctions between parts, tows follow 
complicated, interlocking paths with no semblance of laminae. The isostrain assumption 
underlying the orientation averaging method may be invalid here. Nor can the material be 
modeled as elastically homogeneous. The scale over which critical stress variations occur 

is no longer significantly greater than the tow separation. A new model is needed to 
predict the stress distributions in all tows in such junctions and in other regions of 
geometrical complexity. 
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An appropriate model was formulated in a prior contract [37] to deal not only 
with such complex problems in the elastic regime but also with the problems of damage 

tolerance, localization/nonlocalization transitions, and fatigue damage accumulation. 
Based on extensive, detailed observations of failure mechanisms in [12,13,14], a new 
model containing two types of constitutive elements, called the "Binary Model," was 
proposed. A numerical solution based on the finite element method was outlined. 

The Binary Model contains various parameters describing the physical properties 
of fibers and resin and the reinforcement geometry, both ideal and irregular. Some 
parameters may be specified a priori, using independently acquired data; others must be 
evaluated by calibrating the Binary Model against experimental data. This section deals 
in detail with the calibration process for 3D woven composites in the elastic regime. It 
also deals with the statistics of load distribution in randomly wavy tows. The effect of 
load unevenness on first tow failure is assessed. 

The calibration procedure is based on the flat panel interlock weaves studied 
under this contract. All calculations presented here are for those eleven composites, 
which are identified by the composite labels shown in Table 1. 

4.1.    The Binary Model of Interlock Weaves 

In the Binary Model, the axial properties of tows are represented by two-noded 

line elements, while the transverse stiffness, shear stiffness, and Poisson's effects of the 
composite are represented by solid "effective medium" elements. The element size is 
chosen to be the largest that preserves a one-to-one correspondence between the 
positioning of tows in the composite and in the model; the topology of the tow pattern is 
preserved with the minimum degrees of freedom. Calculations with the Binary Model 
usually involve hundreds or thousands of effective medium and tow elements. When 
dealing with realistic, irregular tow geometry, the volume modeled is usually 
considerably greater than the minimum repeating unit or "unit cell" from which the ideal 
tow geometry could be generated by translation operations. 

A typical fragment of a composite as it is represented by the Binary Model is 
shown in Fig. 10. The example illustrated is an orthogonal interlock weave. While the 
composite remains elastic, the nodes of stuffer and filler tow elements coincide with those 
of the effective medium elements, indicated in Figure 10 by black dots. In modeling 
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progressive failure, tow nodes near a site of tow failure are allowed to displace relative to 
effective medium nodes to mimic tow sliding [37]. 

The warp weavers in an interlock weave are modeled here very simply. Warp 

weaver tow elements are coupled to the rest of the composite solely via springs that 
connect them to fillers (Fig. 10). The coupling springs allow relative displacement in the 
X3 direction only. 

Node patterns have been generated for all eleven angle interlock weaves. 

Complete details are provided in Appendix A. The node patterns can be regarded as 
defining the weave architecture. They reflect the specifications provided by the 
manufacturer. 

SO.1086E.0920« 

fillers 

effective medium 
element 

Figure 10. Modeling elements, dimensions, and coordinate system for the Binary 

Model. The illustrative case is a fragment of a through-the-thickness 
angle interlock composite. 

The mechanical response of the assemblage of effective medium elements, tow 
elements, and springs exemplified by Fig. 10 is computed by the finite element method. 
The virtual work principle can be expressed as 
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I g:8edV + ZQ»8/= I S:5edV + 2Q»8/=    T^SUdS (15) 

where e and a are the strain and stress tensors of the effective medium and V is its 
volume. The second term on the left hand side of Equation (15) is the virtual work 
pertaining to all the tow elements and springs. The vector / denotes the length and 
orientation of a tow or spring element, while Q denotes the force acting along it The 

displacements u are given on Su and the tractions T are given on ST, where Su and Sj are 
subregions of the external surface S satisfying Su n Sj = 0 and Su u Sj = S. 

In the current formulation, all effective medium elements are represented as eight 
noded isoparametric solid elements. An updated Lagrangian formulation allows effective 
treatment of the large deformations expected in later modeling of composite failure. 
Details of the updated Lagrangian formulation will be given when that work is presented. 

4.1.1   Composite Dimensions for Modeling 

In modeling macroscopic elastic properties, it is paramount to get the right count 
of fibers in each orientation. In Section 2, it was argued that the total count is estimated 
most reliably from the total fiber volume fraction, V, and the proportions by volume fs, ff, 
and fw of all fibers that belong to stuffers, fillers, and warp weavers (fs+ ff+ fw = 1). The 

fraction V can be measured experimentally. The proportions fs, ff, and fw are assumed not 
to change during consolidation and are calculated from the weaver's specifications. 
Details of these calculations and values for V, fs, ff, and fw for the subject composites are 
to be found in Section 2 and Tables 1 and 2. 

For predicting macroscopic elastic properties by orientation averaging methods, 
the only information required about tow spacing is the distribution of sniffers and fillers 
through the thickness, which affects the flexural rigidity. However, when composites are 
analyzed by the Binary Model, the average tow spacings in all directions must be 
specified. The required dimensions ai, a2, &$, and a*3 are illustrated in Fig. 10. They 
define the separations of the centers of gravity of tows in a composite of ideal geometry. 
The in-plane separations must be consistent with the measured total volume fraction V 

and the fractions fs and ff. Thus 
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ffVytpft 

and 

a2 = 7T7k-r (16b) fsVyspst 

where ns is the number of layers of stuffers, ys and yf are the yields (length per unit mass) 
of the stuffer and filler yarns, ps and pf are densities of the fibers in the stuffers and fillers 

(both 1800 kg/m3 for AS4 graphite), and t is the measured composite thickness. The 

through-thickness dimensions a3 and a*3 fix the separations of layers of fillers or stuffers, 

which are important mainly in bending applications. They are determined via estimates of 

the average thicknesses ts and tf of stuffers and fillers in the through-thickness direction, 
where tf = 2a*3 and tf +fc = 2a3. If the stuffers and fillers are compacted in processing to 

equal degrees, then 

k = I* (17a) 
tf   ysp 

where e and p are the numbers of ends (stuffers) or picks (fillers) per unit length 

measured normal to the tow direction; while 

(ns+l)tf + nsts = t   . (17b) 

Hence, 

a3 = X        Pys + eyf  (18a) 
2(ns+l)pys + nseyf 

and 

*3=± J?h  (l8b) 
2 (ns + 1) pys + nseyf 

For the eleven composites studied in here, values of all the quantities appearing 

on the right hand sides of Eqs. (16) and (18) have been tabulated in Section 2. The 
resulting values of ai, a2, a3, and a*3 are listed here in Table 8. 
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The separations of stuffers and fillers and the composite thickness are the only 
spatial scales required in modeling the eleven subject composites: the warp weavers are 
assigned loci midway between columns of stuffers. See Appendix A. 

4.1.2 Elastic Constants 

The elastic constants of tow and effective medium elements can be estimated from 
the properties of individual tows, which in turn can be modeled as unidirectional 
composites. Suitable approximations for the elastic constants of unidirectional 
composites are available in the literature. Following assessment of their merits in Section 

3, two models will be used here: Hashin's model [26], which alone deals adequately with 
the pronounced anisotropy of graphite fibers; and rules of mixtures, which are the 
simplest model available and treat the fibers as isotropic. Since unidirectional material is 
transversely isotropic, the models provide estimates for five independent elastic 
constants. In the local coordinate system (x, y, z), with the x-axis the fiber direction in 
any tow, the constants may be chosen to be Young's modulus E^ and Poisson's ratio 
v£*°* for loading along the fibers, the axial shear modulus G^, and the shear modulus 

G^D) and Poisson's ratio v^ in planes of isotropy. The superscript UD signifies 

"unidirectional composite." 

Effective Medium Elements 

When the axial stiffness of tows has been removed to tow elements in the Binary 
Model, it remains for the effective medium elements to represent transverse stiffness, 
Poisson's effect, and shear stiffness. The interlock weaves of Table 9 are dominated in 
their elastic properties by the stuffers and fillers, which behave elastically much like a 

0790° laminate (Section 3). For such reinforcement geometry, the effective medium 
elements account almost entirely for the in-plane composite shear modulus G12 and for a 
large part of the through-thickness composite modulus E3 and the composite Poisson's 
ratios V13 and V23. Other composite elastic constants are determined by the effective 

medium elements and tow elements acting in combination. 

Therefore, effective medium properties should be selected to give good values for 
the composite elastic constants G12, E3, V13, and V23. Ignoring warp weavers, a typical 

effective medium element contains one region occupied by part of a sniffer and another 
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occupied by part of a filler (Fig. 11). Since the fibers in stuffers and fillers lie parallel to 
the xi-axis or the X2-axis, the in-plane composite shear modulus, G12, should be very 
near the axial shear modulus, G)^\ computed for the unidirectional composite. Thus 

Gg> = GgD> (19) 

with the superscript m denoting the effective medium. Through-thickness loads applied to 
the composite act transversely to the sniffers and fillers. Thus 

g(m) _ gjUD) 
(20) 

SC. 1037.120993 

Figure 11.   A typical effective medium element contains portions of filler and 
stuffers tows, within which the fiber direction is as shown. 

Poisson's effect for an element such as Fig. 11 might be thought to be more complex. 
However, there is only a modest difference between v^D) and v^; and Poisson's ratios 

vi3 and v23 hi the composite are influenced to some extent by the tow elements. 

Therefore, it is expedient and adequate simply to assign 
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vg^vg^vg0) .. (21) 

For an orthotropic body assembled from elements such as that in Fig. 11, there are 
nine independent elastic constants. However, most of this symmetry is imposed on the 
scale of the composite by the tow elements. It is superfluous to require orthotropy in the 
effective medium. Equations (19) to (21) can be implemented instead by assuming that 
the effective medium is transversely isotropic, filling out the remaining degrees of 
freedom by the assignments 

vff-vg» (22) 

and Gg^Gg^Gg0) ; (23) 

with Eg)=Eg) = 2(l+vg))Gg) . (24) 

Whether Eqs. (19) to (24) are optimal should be tested by comparing the 
predictions of the Binary Model against experiment. This will be done below. Given the 
dominant role of tow elements, one might guess in advance that an even simpler approach 
might suffice. Therefore, assignments for an isotropic effective medium following rules 
of mixtures were also assessed, viz. 

E(.m)=E£n)=E(m)=E(UD) (25) 

v(m) (m)       (m) _   (UD) n~ 
v12        v31       v23   ~ vxy • I/O) 

When irregular geometry is modeled, effective medium elements are no longer 
perfect cuboids. Nevertheless, the assignments of Eqs. (19) to (26) are retained, with 
subscripts referring to the global coordinate system. 

Tow Elements 

Tow elements, being one dimensional, are defined in the Binary Model by a 
spring constant, k£p: 

F« = ]4i)e« (a = s,f,orw;i = l, ,N) (27) 
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where a = s, f, or w denotes stuffer, filler, or warp weaver, the superscript i refers to one 
of a total of N tow elements; and F and e are force and strain. For an ideal geometry, k£p 

is independent of i. In the presence of tow irregularity, k£p may be a random variable. 

Table 8. Tow Spacing Dimensions 

Composite 

Label Architecture ai (mm)     a2 (mm)     a% (mm)      a'3 (mm) 

(a) Lightly Compacted 

/-L-l Layer-to-Layer 2.31 2.01 1.41 0.66 
/-L-2 Angle Interlock 1.57 1.81 1.37 0.73 

/-T-1 Through-the Thickness 1.78 1.88 1.13 0.58 
/-T-2 Angle Interlock 1.96 1.91 1.08 0.53 

/-0 Orthogonal Interlock 1.91 2.07 0.97 0.51 

(b) Heavily Compacted 

h-L-1 Layer-to-Layer 2.06 1.91 0.65 0.21 
h-L-2 Angle Interlock 1.30 1.45 0.49 0.18 

h-T-1 Through-the Thickness 2.10 1.95 0.66 0.21 
h-T-2 Angle Interlock 1.35 1.50 0.45 0.16 

h-O-l Orthogonal Interlock 2.00 1.86 0.67 0.21 
h-O-2 Orthogonal Interlock 1.39 1.54 0.46 0.17 

The stiffnesses ks and kf are prescribed so as to ensure reasonable contributions of 
stuffers and fillers to the composite Young's moduli, Ei and E2. Loads along the xi - axis 
are aligned with the stuf fers, transverse to the fillers, and either transverse or at 
intermediate angles to the warp weavers. Thus to a good approximation 
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EirfsE^ + O-fjEf» .. (28) 

Now there are ns stuffer tow elements through the thickness, t, of the composite; and l/a2 

per unit length in the direction X2. The stiffness in the xi direction in the Binary Model is 
the sum of the effects of the stuffer tow elements and the effective medium elements. 
Since the latter fill all space, ks must satisfy 

^ks + Eim) = &$"» + (l-fs) Ef» (29a) 
a# l y 

or ks=^(E0JD).^JD)) (29b) 

Simüarly        kf = MJL(EJ
JD

)-EJ
JD

>) . (30) 

These expressions were derived by ascribing the fractions fs and ff of the whole 
composite volume to stuffers and fillers. The correct total fiber count in each class of tow 
will be preserved as long as the unidirectional composite properties appearing in Eqs. 
(29) and (30) are evaluated for a composite of volume fraction equal to V, the measured 
total fiber volume fraction. 

The multiplicative factors on the right hand sides of Eqs. (29b) and (30) can be 
viewed as estimates of the cross-sectional area of a single stuffer or filler. The subtraction 
of the term 'E^JD^ multiplied by this area avoids double counting of the contribution of the 
effective medium, which occupies all space. This interpretation suggests the alternative 
prescription for ka (a = s, f, or w) 

ka = Da(EfJD)-EjJD>) , (31) 

where D« is the cross-sectional area estimated by any means. Figure 10 suggests writing 

tsa2 and tfai for the cross-sectional areas of stuffers and fillers, leading to 

ks = tsa2(EfD)-Ef))) (32a) 

and kf = tfa1(E(x
UD)-Ef))) . (32b) 
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Because of the way various quantities have been defined, the total fractions of the 
composite volume occupied by staffers and fillers with cross-sections tsa2 and tfai are 
fs/(l-fw) and ff/(l-fw). Therefore, if Eq. (31) is preferred, the unidirectional composite 

properties should be evaluated for a composite of volume fraction (l-fw)V, to conserve 
total fiber counts. With this adjustment, the difference between Eq. (31) and Eqs. (29) and 
(30) is very small. 

The tow cross-sectional area can also be estimated from the fiber volume fraction, 
the tow yield, and the fiber density fa for the fibers in tows of kind a (a = f, s, or w): 

Da = ^— • (33) 
yaVpa 

This estimate in conjunction with Eq. (31) is the most practical if the tows are not 
nominally straight, i.e., for warp weavers. To conserve total fiber counts, the same fiber 
volume fraction must be used in Eq. (33) and in calculating the unidirectional composite 
properties in Eq. (31). The measured total fiber volume fraction V is the obvious choice. 

Coupling Spring Constants 

The stiffness, kwf, of the coupling springs between fillers and warp weavers (Fig. 
10) is defined as 

kwf = aihwFfD) , (34) 

where hw is the width of the warp weaver where it comes into contact with the filler, and 
aihw approximates the contact area. Most composite properties are very insensitive to the 

value of kwf (see below). Therefore, a crude but effective estimate of hw is 

hw = /x/ 1 
ywVp, 

(35) 

Similarly, the unidirectional composite modulus E^0* used in Eq. (34) could be that 

computed for either filler or warp weaver. Since E^1^ is matrix dominated, the end effect 

on composite properties is barely detectable. 
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4.2.    Calibration of the Binary Model 

4.2.1   Ideal Geometry 

The effectiveness of the Binary Model was assessed by comparing its predictions 
of macroscopic elastic constants with experiment and with the predictions of the 
Orientation Averaging Model of Section 3. This was done first for ideal geometry. 
Macroscopic properties were computed with the Binary Model for a simulated slab of 
material whose dimensions were somewhat greater than the largest period of any of the 
tow patterns shown in Appendix A. The slab contained twelve effective medium elements 
in the xi direction, 10 in the X2 direction, and 2(ns +1) in the X3 direction. Thus it also 

contained 60 ns staffer elements representing 5ns staffers and 130 (ns + 1) filler elements 
representing 13 (ns + 1) fillers. The number of warp weaver elements depended on the 

architecture, as indicated by Table A.l and Figure A.2. Because warp weavers only have 
nodes where they turn, many warp weavers do not have a node on one or both end plane. 
The load (or force) in any partial warp weaver element left hanging in such cases was 
equated to that in the same tow at the other end plane.1 This device maintains reasonable 
force balance at all warp weaver nodes. 

Uniaxial tension or shear loads were imposed by requiring one component of 
displacement to be uniform on one pair of opposing sides of the slab. All other boundary 
displacements were allowed to relax to make all other boundary stresses zero. Young's 
moduli and shear moduli follow trivially from this procedure. However, Poisson's effect 
is more complex. When uniaxial tension is applied in the staffer direction, the lateral 
boundaries of the slab displace nonuniformly. On the sides normal to the fillers, the 
magnitude of the displacements is much larger at nodes which are not shared by fillers 
than at nodes which are. The fillers resist lateral contraction very effectively. This 
boundary effect influenced lateral displacement even in the middle of the slab. Poisson's 
ratio V12 should in fact be calculated by constraining the sides of the slab normal to the 

fillers to displace as planes when the average normal stress is zero. Since the fillers 
would dominate the displacement in such a calculation, V12 was defined by the 

displacement of the nodes shared by fillers when the sides were locally stress-free. 

1 This periodic condition applies to some warp weavers only. The simulated slab overall is not periodic. 
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Poisson's ratio V13, on the other hand, involves lateral displacements in the 

thickness direction. These are nonuniform in reality. For comparison with the orientation 
averaging model, V13 was defined by averaging the displacements on the upper and lower 

surfaces of the slab. 

Calculations were performed for all eleven architectures of Table 8. Fiber and 
resin properties used were those of Table 5; Hashin's model was used to estimate the 
domain elastic constants 'E^D\ etc.; effective medium elements were defined by Eqs. 
(20)-(25); and tow elements were defined by Eqs. (29) and (30) for stuffers and fillers and 

Eqs. (31) and (33) for warp weavers. 

Selected composite constants calculated by the Binary Model and the Orientation 
Averaging Model (from Table 4) are compared with experimental data in Table 9. 

The in-plane constants Ei, E2, and V12 predicted by the two models are in close 

agreement. The slight differences can be attributed to the larger differences that arise in 
through-thickness properties. The shear modulus G12 is not shown in Table 9: it remains 
identical to G^ and to the value found in the Orientation Averaging Model (see 

Table 4). 

Experimental values for in-plane Young's moduli tend to be significantly lower 
than predicted by either model. This is due to tow waviness. Estimates of waviness 
effects have already been incorporated in the Orientation Averaging Model, and bring 

predictions reasonably close to data (Section 3). Waviness effects in the Binary Model are 

dealt with below. 

The through-thickness modulus E3 is generally lower in the Binary Model than in 
the Orientation Averaging Model. The difference can be explained by considering the 
strains in warp weavers, which are the main load-bearing tows in the direction X3. In the 

Binary Model, the axial strains in the warp weavers can be reduced by shearing strains 
between warp weavers and the softer, surrounding composite, which lowers E3. In 
orientation averaging, isostrain conditions are assumed: the strain in the warp weavers 
must remain the same as that in the surrounding composite. This leads to a suffer 

structure. The predictions of the Binary Model should be regarded in principle as superior 
to those of the Orientation Averaging Model. 
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Table 9. Comparison of Orientation Averaging and Binary Models 

Composite 
Label 

Ei (GPa) E2 (GPa) E3 (GPa) 

Expt OAa BMb Expt OAa BMb Expt OAa BMb OAWW0 

Z-L-l 30* 36.8 36.0 38.7 38.5 6 9.0 6.8 5.6 

Z-L-2 29 34.9 36.3 47.6 50.1 6 7.0 6.7 5.9 

Z-T-l 27 47.3 46.4 59.5 59.4 8 9.4 8.4 6.7 

Z-T-2 39 43.5 44.8 51.6 53.5 8 7.0 7.8 6.3 

Z-0 30 51.9 48.9 46 63.9 63.7 7 13.7 9.4 6.9 

Zz-L-1 85 91.5 92.0 44 56.2 56.3 16 12.1 11.5 9.7 

A-L-2 80 81.2 81.2 42 55.0 55.1 14 102 10.2 8.9 

A-T-l 79 88.6 88.7 43 54.4 54.5 14 12.8 11.5 9.6 

A-T-2 72 85.1 85.3 46 57.6 57.8 14 112 11.3 9.3 

A-O-l 88 93.1 90.2 40 56.4 56.3 15 17.3 12.5 9.6 

A-O-2 69 83.8 81.3 42 55.9 55.9 22 20.4 13.8 9.2 

Composite 
Label 

V12 V13 G31 (GPa) 

Expt OAa BMb Expt OAa BMb OAWW0 OAa BMb OAWWc 

Z-L-l 0.02 0.023 0.029 0.22 0.607 0.481 0.323 6.0 2.1 2.2 

Z-L-2 0.11 0.027 0.022 0.50 0.457 0.476 0.320 3.2 1.9 2.3 

Z-T-l 0.05 0.020 0.024 0.38 0.541 0.477 0.306 5.6 2.6 2.6 

Z-T-2 0.21 0.027 0.025 0.37 0.428 0.493 0.325 3.1 2.4 2.4 

Z-O 0.05 0.034 0.027 0.49 0.184 0.428 0.310 2.7 2.5 2.7 

A-L-l 0.06 0.034 0.038 0.456 0.463 0.299 7.1 3.8 4.7 

A-L-2 0.13 0.035 0.037 0.45 0.425 0.463 0.313 5.3 3.8 4.0 

A-T-l 0.05 0.033 0.037 0.486 0.480 0.294 7.8 4.2 4.6 

A-T-2 0.10 0.033 0.036 0.443 0.48 0.311 6.2 3.3 4.3 

ZJ-O-1 0.06 0.051 0.040 0.190 0.407 0.317 4.7 4.2 4.7 

A-O-2 0.07 0.052 0.043 0.157 0.375 0.308 4.4 4.0 4.4 

a Orientation Averaging Model of [1]. 
b Binary Model (engineering strain = 0.001). 
c Orientation Averaging Model of [1] with highly softened warp weavers. 
d Measurement scatter typically ~ 10% [1]. 
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Experimental values of E3 are sometimes lower than the predictions of even the 
Binary Model. This is the effect of warp weaver distortion, which is often quite severe 
(Section 2). Lower limits to E3 can be found by reducing the axial modulus of warp 
weavers to the transverse modulus. The effects in the Orientation Averaging Model are 

listed in Table 9 under the heading OAWW (taken directly from Table 6). Similar 

numbers can be obtained in the Binary Model by setting the axial modulus of warp 
weavers to zero; in which case E3 for the composite becomes identical to E^tJD) via Eq. 

(3). Unfortunately, as discussed in Section 3, it is exceedingly difficult even to measure 
all forms of warp weaver distortion in current 3D interlock weaves. 

Other experimental values of E3 are higher then predicted values. Some of this 

discrepancy might be experimental error. The through-thickness modulus is relatively 

difficult to measure. It is also influenced more strongly by the volume fraction of warp 

weavers, which is more prone to measurement error than the volume fractions of stuffers 
or fillers. Warp weaver volume fractions depend on a "crimp" or "take-up" factor, which 
defines the total length of yarn in a unit length of composite. For warp weavers, the crimp 
factor is large (~ 1-3 for angle interlock and ~ 4 for orthogonal interlock composites - 

Table 1) and probably subject to substantial variance over lengths comparable to the size 
of specimens used in this work. Variations in the warp weaver crimp factor would be 
caused by inconstancy of tension or beating up during weaving. The difficult of 
measuring warp weaver distortions and crimp factors preempt more accurate agreement 
of experiment and theory on the value of E3. 

Some significant discrepancies between the two models for V13 and G31 can also 

be accounted for by expected differences in internal load distribution. For example, the 
Orientation Averaging Model gives high values for V13 for composites /-L-l and /-T-l, 

and low values for composites /-0, h-0-1, and h-0-2. The first two values are high because 
of a trellis or scissor effect: the warp weavers lie at 45° to the load axis. The last three are 
low because the warp weavers lie parallel to the X3 axis and strongly resist through- 

thickness contraction. In the Binary Model, both of these effects are moderated by 
nonuniform strain distributions. The values of V13 tend away from the extremes implied 

by the warp weaver geometry and back towards the intermediate values expected for the 
rest of composite. The same principle is clearly at work in the shear modulus G31. 
Agreement of the Binary Model with experimental values of V13 is fair. Discrepancies 

can be attributed largely to warp weaver distortion. 
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In summary, comparison with experiment shows that the Binary Model predicts 
the in-plane macroscopic elastic properties of 3D woven sheets with acceptable accuracy 
without the use of adjustable parameters. Comparison with measured out-of-plane elastic 
constants is made more difficult by warp weaver distortion, which is often severe and 

difficult to measure, and likely variance in the warp weaver volume fraction. With this 
caveat, predictions of out-of-plane constants are also very reasonable. 

4.2.2 The Effects of Effective Medium and Coupling Spring Assignments 

For graphite fibers in epoxy resin at volume fractions typical of textile 
composites, Hashin's formulae accounting for fiber anisotropy and rules of mixtures 
assuming isotropic fibers give very similar values for the single tow properties &*, etc. 
The sole exception is the axial shear modulus, G^P% which the rule of mixtures 

underestimates by approximately 30%. Since most composite properties in the Binary 
Model are dominated by tow elements, which reflect the axial Young's modulus of tows, 
the simplified prescriptions of Eq. (26) for the effective medium, based on rules of 
mixtures and assumed isotropy in the effective medium, ought to work quite well. To 
bear this out, Binary Model predictions based on Eq. (26) were compared with those 
based on Eqs. (20)-(25), i-e. those listed in Table 9. Of the engineering elastic constants, 
all Young's moduli and Poisson's ratios differed by a few per cent at most, differences 
that are well beneath experimental resolution. The composite shear moduli differed by 
10-30%. The in-plane modulus G12 is the most affected, since it alone is entirely 
determined by the effective medium. In a reinforcement architecture with in-plane tows 
aligned in more than two directions, G12 would also be dominated by the axial properties 
of tows and crude treatment of the effective medium would be even more accurate. 

The role of the coupling spring constant kwf was tested by arbitrarily doubling its 
value over that prescribed by Eq. (34). The changes in all composite engineering elastic 
constants were insignificant. 

Thus in the Binary Model, the most important consideration by far is the proper 
definition of the elastic properties of the tow elements. In other words, macroscopic 
elastic properties of 3D weaves are dominated by the axial stiffness of tows. The details 
of the prescription of matrix dominated elements, i.e. the effective medium elements and 

coupling springs, are relatively unimportant. The same should be true of other 
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architectures, including 2D and 3D braids, 2D weaves, and the more complex tow 
arrangements found in integral structures. 

4.3     The Effects of Tow Waviness 

For the composites studied here, the main irregularity affecting in-plane elastic 
constants is out-of-plane waviness of nominally straight in-plane tows. In the Binary 
Model, reinforcement irregularity is introduced by offsetting nodes in the initial, stress- 
free configuration. 

Out-of-plane waviness was modeled by offsetting all sniffer and filler nodes in the 
X3 direction only. The amplitude of the offset of the i* such node was 

8i = ßigcca3 (36) 

where ßi is a random variable; ga is a dimensionless amplitude parameter, with a = s or f 

depending on whether the node lies on a stuffer or filler; and a3 is defined in Fig. 10. The 
random variable ßi is distributed according to a symmetric normal distribution with 

second moment equal to unity. Thus the average magnitude of the nodal offset was 
V2/7C • ga a3 (a = s or f). The influence of tow waviness was assessed by varying the 

parameters gs or gf. The statistics of composite properties were computed by the Monte 
Carlo method. For each pair (gs, gf), 20 simulations were executed. In each simulation, 
values of ßi were assigned by invoking a pseudo-random number generator and then 
applying Eq. (36) to obtain {Si}. 

No correlation was imposed between the offsets on neighboring nodes. However, 

if two neighboring nodes had offsets so large that they exchanged places, the simulation 
was not executed. This filtering sets the practical limit ga < 0.2 to the values of the 

amplitude parameters. 

Composite elastic constants were computed by averaging over the ensemble of all 
simulations. The most significant impact of stuffer and filler waviness is on the in-plane 
Young's moduli. Representative results are shown in Fig. 12, where the relative 
magnitude of Ei is plotted against the stuffer offset amplitude parameter gs. In Fig. 12a, 

the plot symbols show computed values found for one architecture for various values of 
the filler offset parameter gf. As might be expected, filler offset has very little effect on 
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Ei, since the fillers are transverse to the load. The continuous curve shows a fitted 
Lorentzian function, which has the correct functional form at gs = 0 and a physically 
reasonable form for high gs. 

1.1 

(a) 

SC.0959C.092094 

0.1 0.2 
stutter offset amplitude parameter, gs 

(b) 

I 

e-L-i 
 ft-O-1 
 H-T-1 
 Eqs. (23c) and (24) 

5 10 
stuffer misalignment parameter, 

^ = -^QsV3! (de9rees) 

Figure 12. Diminution of the composite Young's modulus El with increasing out- 

of-plane tow waviness. (a) Binary Model results for composite /-L-l. (b) 
Heavy curves: Binary Model results for composites /-L-l, Ä-L-1, and h- 

0-1, with the abscissa normalized as in Eq. (37); fine curve: orientation 
averaging estimate of Eqs. (38c) and (39). 

It is useful in comparing the effects of waviness in composites with different 
proportions ai:a2:a3 to relate the parameter gs to a distribution of misalignment angles. 
Given offsets 8j and 8j+i on successive nodes, the misalignment of the intervening tow 
element with respect to the applied load axis may be trivially deduced (Fig. 13). If 8j 
follows a symmetric normal distribution of second moment JJ. = gs a3, then 8i+i-8i follows 

a symmetric normal distribution with second moment V2gsa3; and the misalignment angle 
£, if it is small, follows the same distribution with second moment 

<% = V2gsa3/ai (37) 
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Softening in the staffer direction is shown as a function of C£ for three composites in Fig. 

12b (heavy curves). The curves shown are Lorentzian functions fitted to Monte Carlo 
results for five values of o^ (or gg) in each case. The curves show a high degree of 

consistency, considering the range of total fiber volume fractions and reinforcement 
architectures represented. 

SC.3431T.030494 

tow elements with 
offset nodes 

tow elements in 
ideal geometry 

Figure 13.    Schematic of misalignment angle implied by specified nodal offsets. 

From Eq. (10), the axial modulus of a wavy tow with such normally distributed 
misalignment angles falls by the factor 

i-i 

l.Tlt=l._i_||   c*W    ^ (38a) 

using the notation of this section, where E^© is Young's modulus for a unidirectional 
composite under a load oriented at angle £ to the fiber direction, x. Using Eq. (11), this 
gives for small £ 

1-T]t«(l + o? 
"E?JD) 

-2(1 +vx^>) (<Jj:<10O) (38b) 
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1-Tlt-l-O^ 
E(UD) 

GT 
2(l+v£D>) (G^<3°). (38C) 

The restrictions on C£ shown in Eqs. (38b) and (38c) apply for the degree of anisotropy 

typical of graphite/epoxy composites. The composite modulus Ei should fall 
approximately by the factor 

fsE^> + (l-fs)Ef>> 
(39) 

The "orientation averaging" estimate of Eqs. (38b) and (39) has been added to Fig. 12b as 
a fine curve. The agreement with the results of the Binary Model is very good. 

Measurements of typical 3D woven composites show misalignment parameters 
for stuffers ranging up to o^ ~ 5°. Figure 12b implies concomitant reductions of up to 

~ 15% in Ei. When the estimates of in-plane Young's moduli are reduced using values of 
<j£ measured for each composite, agreement with experiment becomes significantly 

improved. Since estimates of waviness effects are the same in the Orientation Averaging 
Model and the Binary Model (Section 3), further details are superfluous. 

4.4     The Problem of a Single Wavy Tow 

To explore distortions of local stresses due to tow waviness, some calculations 
were performed for a simplified composite containing a single wavy tow. The composite 
contained 25 stuffers in a 5 x 5 array with no filler or warp weaver tows. The nodes of the 
central stuffer in the array were given offsets that followed a cosine curve of amplitude d 
and wavelength X, (Fig. 14a). Each stuffer was 12 elements long. The spacing of the 

stuffers and the length of each stuffer element were chosen to be the same as in 
simulations of composite /-L-l. Because of symmetry, the entire body could be loaded 
uniaxially in the direction xi by specifying uniform displacement in that direction over 

the end planes. 

As expected, the stress computed in the elements of the wavy tow varied 
sinusoidally, being maximum at the ends and center of the specimen, where the element 
misalignment is least, and minimum in between, where the element misalignment is 
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greatest. However, the amplitude, ax,, of the stress variation was remarkably small 
compared to the average drop in stress along the tow, 8at. This is shown in Fig. 14b, 
where ox/Ot(0) and 8at/ot(0) are plotted against the amplitude d/a3 of the initial nodal 

offset, with Ot(0) the load in the tow when it is straight. Thus the load along the tow 

remains very nearly uniform. Inequality in the effective stiffness of successive tow 
segments because of their different misalignments is evidently accommodated by easy 
shear of the effective medium elements. This reflects the high anisotropy of the tows. 

(a) SC.0960C.092094 

2a, 

SC.09S8C.091694 

0.2 0.3 0.4 0.5 0.6 

Amplitude of wave d/a3 

0.7        0.8 

Figure 14. (a) Central section of a simulated composite containing a single wavy 
tow. (b) Dependence of the average drop, 8ot, of the stress in the wavy 
tow and the amplitude, öx, of the variation in stress along the wavy tow 

with the amplitude of the initial offset. Stresses normalized by the stress 
in the tow when it is straight. All calculations at fixed applied strain. 
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Analytical estimates of knockdown factors for the axial tow modulus due to 
waviness should therefore be based on isostress rather than isostrain conditions in the 
wavy tow. Isostress conditions were assumed in deriving Eq. (38). However, the 
approximation of Eq. (38c) turns out also to be correct for isostrain conditions along the 
wavy tow; and therefore whether isostress or isostrain conditions are assumed for the 
purpose of estimating the effects of tow waviness is inconsequential unless 0£ is large. 

4.5     Distribution of Loads in Tow Elements - Effect on Strength 

4.5.1   Results from the Binary Model 

Under in-plane loading along the stuffers, ultimate failure is the result of stuffer 
failure either by kink band formation in compression or rupture in tension [12,37]. The 
onset of such local failure events depends in part on the distribution of loads in short 
segments of the sniffers - the stuffer elements in a Binary Model simulation. The effect of 
tow waviness on the statistics of load distribution was assessed by analyzing the output of 
Monte Carlo simulations similar to those described in Section 4.3. 

Figure 15(a) shows cumulative probability distributions (cpd's), denoted FQ, for 
the forces |Qj| in stuffer elements for selected values of G£, the width of the distribution of 
stuffer misalignment angles (related to gs by (Eq. (37)), with the filler waviness 
parameter gf = 0. The axial stress o^ in the ith stuffer element (in coordinates aligned 
with the stuffer element) is related to Qi by the simple proportionality 

<i = 5^oP (40) 

following Eq. (16b). Each cpd contains 4800 data points (20 simulations; 240 stuffer 
elements). Results for gf > 0 are very close to those shown for gf = 0: filler waviness has 
little effect on stuffer loads. The forces are normalized against the average value in each 
case; and simulations for different values of o^ are further normalized so that the total 
axial load in the composite was the same in all cases. When G| = 0, there is a very slight 
dispersion in the stuffer element forces, induced by the symmetry-breaking presence of 
the warp weavers. As G£ increases, the distribution broadens, as expected, and becomes 
increasingly skewed. Values of G£ between 1° and 5° are found for stuffers in current 3D 
woven composites (Section 2). 
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SC.54321.071994 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 

Normalized Force in Stuffer Element 

SC.M16C.0615W 

<^ = ^2 gg a3/a1 (degrees) 

Figure 15. Results of the Monte Carlo simulations for composite h-L-1. (a) 
Cumulative probability distributions of normalized tow element forces 
for various values of sx, which is related to the stuffer waviness 
parameter gs by Eq. (37). (b) Variation of the 90th percentile of tow 
element forces with sx. The points show results of Monte Carlo 
simulations for the filler waviness parameter gf = 0, 0.05, 0.1, 0.15, and 
0.2. The smooth curve is a fitted parabola. 

Analytical approximations to the distributions of Fig. 15(a) will be presented 
elsewhere. They are based on shear lag analysis of stress redistribution around a 

misaligned tow segment, and take advantage of the high degree of anisotropy present in 
typical graphite/epoxy tows. The analytical models confirm that the size of the slab used 
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in the Monte Carlo simulations reported here should be sufficient to make boundary 
errors negligible. 

The peak load bearing capacity of a typical 3D woven composite specimen is 

reached when only a few localized tow failures have occurred, which would be 

represented in Binary Model simulations by just a small fraction of all tow elements. 
Thus the upper extremity of the cpd of tow element forces is most relevant to strength. 
The 90th percentile or 0.9 quantile, FQ(0.9), will be taken here as representative of these 

high values. It rises approximately as the square of <J£, as shown in Fig. 15(b). 

Whether uneven load distribution is significant in determining strength depends 
on how FQ(0.9)/<Q> (Fig. 15b) compares with the width of the distribution of intrinsic 

flaws. For failure in tension, statistics of intrinsic flaws in tows have not yet been 
measured. Tow rupture strength in a 3D composite is probably influenced by waviness 
and damage to fibers during weaving, among other things [12,37]. Since the strength of 
3D woven composites is ~ 30% lower than values estimated from tape properties [12,37], 
one might guess that intrinsic flaws for tensile failure are quite broadly distributed; and 
therefore that the effects of uneven load distribution are relatively minor. Discussion of 
the case of compressive failure follows. 

4.5.2 The Distribution of Critical Loads for Kink Band Formation 

Kink band formation under compressive loading occurs at the critical axial stress 
GC given by Argon's law [38] 

ac= | (41) 

where T0 is the shear flow stress for the matrix. Values of ~ 75 MPa are found for x0 in 
the composites studied here [12,37]. The stress GC can be regarded as a random variable 
taking a specific value for each tow segment according to its misalignment angle 2;.1 If t, 

1 In Section 2 and [9], which dealt with experimental measurements of waviness, the symbol % was used to 
represent a continuously varying misalignment angle along a smooth, wavy tow; while £ represented 
extreme values of % between successive locations of zeroes of %. The reduction in stiffness due to waviness 
depended on the distribution of %. Strength depended on the distribution of £. In this section, {; and C, 
become identical because of the piecewise linear representation of tows in the Binary Model. 
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is normally distributed with zero mean and second moment G£, then the density function 
fc for cc must be 

= ^o. 1/X JLe-^of oi (42) 
G2 V 7C a^ 

The corresponding cpd Fc is 

f Fc(Gc) =      fc(u)du 

= erfc To 
V2~a^ac 

(43) 

where erfc is the complementary error function. Statistical aspects of kink band failure 
will be governed by the lowest values of <yc; or equivalently, low values of Fc. The 10th 

percentile Fö^O.l) can be taken as representative of extreme flaws in specimens of the 
size tested here. The density fc has an unbounded mean - the mean is dominated by the 
very large values of oc predicted by Eq. (41) when |q -» 0.2 However, the dispersion of 

flaw strengths can be gauged by comparing Fö^O.l) to the median flaw strength F^CO^): 

FeH0.l)_erfc-i[0.5]„01l 

FöHO.5)    erfcHO.l] 

Thus, independently of o~£ and %0, flaws for compressive failure by kinking are always 

broadly distributed in relative strength when misalignment angles are normally 
distributed. The spread in flaw strength implied for normally distributed \ by the law Eq. 

(41) is much greater than the spread in loads because of elastic inhomogeneity (Fig. 15), 
unless (J£ is relatively large (>10°). Recall that G£ is less than ~ 5° for all the composites 

studied here. 

2 If <yc is regarded as the strength of a tow element then other failure modes such as fiber collapse would 
intervene as ac rises; and <ov> would be bounded. 
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4.5.3 The Distribution of Shear Stresses 

The tow elements in the Binary Model support no shear stresses - they are line 

elements. However, the shear stress in any real tow segment can be estimated from the 
shear stresses in the effective medium elements surrounding the corresponding tow 
element in a simulation. For example, in this work each stuffer element is surrounded by 
four eight-noded effective medium elements. The axial shear stresses X12 and X13 can be 

evaluated by averaging the values of these stress components at the two integration points 
in each of the effective medium elements that share nodes with the stuffer element in 

question; i.e. an average over eight integration points in all. 

Figure 16 shows cpd's Fr12 and FTl3 for the two components of axial shear stress 
X12 and ti3 in stuffer segments for the architecture Ä-L-1 and five levels of the stuffer 
misalignment distribution parameter <j£. The data of Fig. 16 are from the same 20 

simulations used to generate Fig. 15. The shear stresses are normalized with respect to the 
average axial stress in stuffer elements, <Qi>, for each value of G£. Since the stuffers 
have only out-of-plane misalignments, in keeping with experimental observations, X13 is 
much greater than X12. Unlike Fig. 15, Fig. 16 shows significant dispersion in X12 and X13 
even when <j£ = 0 (ideal geometry). This is the effect of the through-thickness 

reinforcement (warp weavers). 

Both X12 and X13 can be decomposed into components XJJ and x^ (j = 2,3), the 

former arising from the effects of warp weavers and the latter, a function of c*£, from 

stuffer misalignment. A simple estimate of zff is the shear stress found when C£ = 0, i.e., 

for perfect stuffer alignment. The function %\-;(0£) can be found from Monte Carlo 

simulations in which warp weavers have been omitted (or their stiffness set to zero). 
Numerical checks show that, to a good approximation, 

Xij(^)=xiJ
w) + x5l)(o^) (45) 

for each stuffer element when identical sets of pseudo-random element misalignments are 
used for the simulations with and without warp weavers. If F$J? and F^ denote the 

cumulative probability distributions of XjJ and x^ , then from Eq. (45) 
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i.e., the distribution of the shear contributions t^ for any C£ > 0 can be obtained from 

Fig. 16 by subtracting the inverse of the distribution for o*£ = 0 from that for C£. Thus 
Figure 16 shows that for C| > 2°, which is typical of current woven composites, the shear 

stresses induced by the symmetry-breaking effects of warp weavers are much smaller 

than those due to stuff er misalignment. This conclusion is reinforced by the observation 
that the computed axial shear stress X13 is strongly correlated with the misalignment 
angle, £, of any sniffer segment, with T13 = t, oy*; and therefore with the knockdown in 
the axial stress cs due to waviness. 

The criterion Eq. (41) for kink band formation is based on an estimate of the axial 

shear stress caused by misalignment. For out-of-plane misalignments, 

h£l~<%H • (47) 

The criterion simply states that kink instability occurs when 

Vn\ = *c , (48a) 

the critical stress for shear flow. The additional axial shear stress due to warp weavers, 
Tj3, lowers the threshold for kinking, which now occurs when 

Ir^ + xg^Tc . (48b) 

When Tj3 and xg have the same sign, this and Eq. (47) give 

qk=    ,',13' (49) 

instead of Eq. (41). The same knockdown is found with the simplest assumptions of kink 
geometry when v$ is regarded as a remotely applied field [39]. 
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Figure 16. Cumulative probability distributions for shear stresses in stuffers 
inferred from Monte Carlo simulations of composite h-L-1: (a) tl3 and 
(b) tl2. Shear stresses normalized against average axial stress in stuffer 
elements. The stuffer misalignment parameter sx is defined by Eq. (37). 

In the presence of warp weavers, Eq. (49) could be substituted for Eq. (41) in 
estimating compressive strength. However, since x(^ « x^ for realistic degrees of 

misalignment, the stress effects of the warp weavers on the kink formation criterion are 

probably beneath the resolution of experiments. (This is not to say warp weavers have no 
effect on kinking. They have an essential role in determining £, played out mainly during 

the weaving process - see Section 2.) 
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5.       Fatigue under Compressive Loading 

This section pursues the description of the mechanisms of failure of 3D woven 

interlock composites to compression - compression fatigue. As for monotonic 

compression (refs. [12,37]; summary below), kink band formation is found to be the 
principal mechanism. It is influenced by the same geometrical flaws that govern failure in 
monotonic loading. A formula for the elapsed cycles to first kink band formation is 
proposed based on the micromechanics of kink formation. Under load control, this leads 

at once to a formula for fatigue life. 

5.1.    Summary of Prior Observations in Monotonic Compression 

Monotonie failure mechanisms were studied and reported under a prior contract 

[37]. This summary revises the essential points for understanding fatigue experiments. 

Under monotonic compression aligned with the stuffers, several forms of 
reversible nonlinearity and irreversible damage usually precede formation of the first kink 

band [12,13]. Some degree of delamination between layers of stuffers and fillers nearly 
always occurs. If the through-thickness reinforcement is insufficiently stiff (too heavily 
deformed during consolidation), delamination cracks can grow unstably and premature 
failure ensues by Euler buckling of delaminated layers. However, in the preferable case 
of sufficiently stiff (undeformed) warp weavers, all delaminations remain relatively short, 

and failure by Euler buckling is avoided [12,37]. 

As long as large scale delamination and Euler buckling are suppressed, as should 
always be the case in a well manufactured 3D composite, the principal mechanism of 
compressive failure is kink band formation. The kink bands form in individual stuffers. 
They nearly always span the entire stuffer, but do not generally propagate into 
neighboring stuffers. There is a strong correlation between sites of kink band formation 
and the misalignment of the affected tow segment with the applied load. Thus local 

misalignment acts as a geometrical flaw. According to micromechanical models of kink 
band formation, for the simplest assumptions of kink band geometry the critical axial 
stress, Ok, in the affected tow follows Argon's Law [38,40] 

loJ = 5t (50) 
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where xc is the critical shear stress for shear flow in the matrix and £ is the local 

misalignment angle.1 Shear flow in these materials is mediated by myriad microcracks, 

each < l|im long, arrayed between adjacent fibers (e.g. Fig. 17). The distribution of 

strengths of geometrical flaws is related via Eq. (50) to the distribution F^ of £. 

Figure 17. A linear array of microcracks in the resin of a ±45° AS4/1895 laminate, 

the source of the "plasticity" in Fig. A-l. The array follows the local 

fiber orientation. 

The criterion Eq. (50) was. derived for infinite, uniformly misaligned composites. 

Significant errors could arise in applying it to irregular finite tows in a 3D composite. Yet 

measured strengths correlate remarkably well with predictions based on Eq. (50), using 
values for x0 and £ obtained from independent measurements [12,37]. Further details of 

this agreement will be given below. 

If finite tow size has no obvious effect on the kinking criterion, it should be 

inferred that kink instability occurs more or less uniformly over the cross-section of the 

1 Equation (51) introduces slightly different notation from Eq. (41). In fatigue, o* and xc will change with 
elapsed cycles and are therefore distinguished from ac and xm which are their initial values; while t, refers, 
as in Section 2, to an extremum of a continuously varying misalignment angle %. 
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tow, rather than being triggered by some kind of flaw on the tow's surface. This view is 
also implied by Eq. (50), which is based on the paradigm that compares most favorably 

with data for laminates [38,40]. 

The critical stress Gk can also be knocked down by shear loads induced, even in 

perfecdy aligned tows, by the symmetry breaking effects of warp weavers. However, 
calculations of stress distributions in the elastic regime show that, in the subject materials, 
such shear stresses are small compared to those due to misalignment, which are reflected 

in Eq. (50) as it stands (Section 4). Delamination microcracks between layers of stuffers 

and fillers permit some degree of barreling in the through-thickness direction, depending 

on the composite type and the loading configuration [12,37], which might exacerbate the 

shear stress generated by warp weavers. However, the barreling occurs at strains above 
that of peak load and therefore cannot influence strength, only strain to failure. 

As well as delamination microcracks, shear microcracks are seen in angle 
interlock composites prior to peak load along the inclined boundaries of warp weavers 
where they are exposed to view on a machined specimen surface. These shear 
microcracks also initiate delaminating microcracks along the boundaries of stuffers 
(aligned tows). The latter are weakly correlated with microbuckling of short segments of 
stuffers at loads near the proportional limit. The microcracking appears to free the stuffers 
to buckle out of the surface, inducing kinking. However, this local failure sequence does 
not occur away from cut surfaces. It involves buckling and kinking deflections in the 
filler direction, which are evidently suppressed by the fillers' axial stiffness elsewhere. 
All kink bands revealed in the body of composites by post-mortem sectioning have 

deflections in the through-thickness direction, normal to the fillers. These are the kink 

bands that cause failure. 

These remarks and the empirical success of Eq. (50) support the simple idea that 

kinking is essentially determined by a tow segment's misalignment, the axial load it 
bears, and the material property xc. 

The statistics of geometrical flaws are also a primary factor in determining 
compressive strain to ultimate failure, 6f. Geometrical flaws that are broadly distributed in 
both strength and space favor noncatastrophic, ductile failure. Thus, values of £f 

measured for lightly compacted composites, which are relatively irregular, have exceeded 

15%. In the heavily compacted composites, misalignment angles are much lower and 
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failure is more brittle, with ef never exceeding a few percent.4 Predicting this transition in 

ductility requires detailed computational modeling, in which the distribution of 
geometrical flaws in strength and space, the redistribution of load around a failed tow, 
and the finite size of the specimen are all considered [23,37]. 

5.2     Fatigue Experiments and Observations 

Dog-bone specimens of the dimensions shown in Fig. 18 were cut by water jet 
from panels of the eleven materials of Table 1. With this specimen shape, most failure 

events in both monotonic loading [12,37] and fatigue are confined to the gauge section. 
Fully unloaded uniaxial compression-compression fatigue (load ratio R = Caan/omax = - 

oo) was imposed at 1 Hz under load control using a 200 KIP test frame with self aligning 
hydraulic grips. All experiments were conducted in laboratory air of relative humidity 
50%. In all tests, the sniffers were nominally aligned with the load axis. Stress/strain data 
were recorded continuously by a computer controlled acquisition system, reading strain 
values from a single 1/2 in. (12.7 mm) clip gauge attached to the specimen. 

Both the external surfaces and interiors of specimens revealed by sectioning 
exhibit considerably less microcracking late in fatigue life than is observed under 
monotonic loading by the attainment of peak load. Notably absent are the greater or lesser 
delamination cracks found near peak monotonic load between layers of stuffers and 
fillers. However, some small matrix cracks aligned normal to the load are observed on 
specimen surfaces. These cracks are open at zero load and close under compression, 
which suggests that they have relieved tensile residual stresses in the resin. However, 
they do not appear to penetrate any deeper than the first layer of stuffers and have no 
apparent role in failure. They should have only a slight effect on Young's modulus, 
which is dominated by the stuffers. 

Stuffers fail in fatigue as in monotonic compression by kink band formation. 
Figure 19(a) shows a kink band revealed by sectioning an angle interlock specimen. This 
particular fatigue test ended in run-out after 106 cycles, with little hysteresis broadening, 
suggesting minimal global damage. The low level of global damage has left the kink band 
in photogenic condition. Microscopy revealed almost no microcracking in its vicinity. 
The only cracks seen ran along the failed stuffer from both ends of the kink band, but in 

4 Without contradicting the brittle to ductile transition in going from heavily to lightly compacted materials, 
strains to ultimate failure also depend on the specimen configuration. See [12]. 
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one direction only at each end. Thus the kink band probably caused the microcracking, 
rather than vice versa. 
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Figure 18.    Specimen dimensions, coordinates, and reinforcement orientation. 

The kink band in Fig. 19(a) has occurred at a site of high stuffer misalignment. 

The misalignment is associated with a common configuration of tows (Fig. 19(b)): a warp 

weaver just beneath the surface in Fig. 19(a) wraps around a filler and presses it into the 
stuffer, resulting in stuffer crimp. This distortion can arise during either the weaving of 
the dry fiber preform or from compaction pressure used in consolidating it with resin 
[12,37]. Figure 19 is one example of a common case. In both monotonic and cyclic 
loading, the majority of all kink bands have been found at similar sites in all composite 

types. 

Figure 20 shows kink bands found on specimens sectioned just prior to failure. 
(Failure was presumed to be imminent because of changes in specimen compliance - see 
next paragraph.) These kink bands are much more complex than that of Fig. 19, 

suggesting successive waves of kink instability under the high strains achieved at 

ultimate failure. (See also [37], esp. Appendix D.) 
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Figure 19. (a) A kink band in a stuffier of a specimen of type 1-T-l. (b) Schematic 

of the tow configuration associated with the stuffer misalignment around 

the site of the kink band. 

Stress-strain hysteresis records taken from the clip gauge show that the loading 
and unloading elastic moduli remain nearly constant over 80-90% of the fatigue life. 
Only over the last 10-20% of fatigue life do softening and pronounced hysteresis develop. 
It is likely that the onset of softening and hysteresis is a manifestation of kink band 

formation (see below). 

Load-life data are shown in Fig. 21 in the form load amplitude Ac vs. cycles to 

failure N. Data for monotonic loading (N=l) are reproduced from [37]. 
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5.3     Modeling Fatigue Life 

5.3.1   Fatigue Damage Accumulation Leading to Kinking 

Here a law is sought to predict the onset of kink band formation. While the data of 
this program, which will be used to test the law, are for loading aligned with the stuffers, 
the law should work equally well for kink band formation in fillers when they are the 

aligned tows. It may also serve in composites with different reinforcement architectures, 

such as 2D weaves, braids, or even laminates. 

The absence of evidence that microcracking around tows precedes kinking in 

fatigue suggests that Eq. (50) remains a valid criterion for kink band formation. In fatigue 

the criterion becomes 

(min)     tr ,,,. 
<*s     1 = 7^ (51) 

where G       is the maximum local axial stress and £ is the misalignment angle for any 

stuffer segment. Equation (51) describes an instability driven by axial shear stresses 
within the tow, whose magnitude under nominally aligned loads is proportional to £. The 
value of t, does not change during fatigue, except perhaps when damage is very advanced. 

Neither does a       change significantly, at least until some other kink band forms and 

load redistribution affects the reference stuffer segment. Fatigue damage accumulation is 
therefore conjectured to consist of continuous lowering of the value taken locally by %c. 

Physically, falling TC is conjectured to correspond to microcracking of the resin 

within the affected tow segment. The idea of accumulating resin damage as a fatigue 

mechanism was first put forward by Piggott and Lam, who reported fatigue induced resin 
damage in unidirectional tape laminates [41]. As yet, similar microcracking has not been 
observed prior to kink band formation in textile composites. It would presumably consist 
of submicron cracks between pairs of neighboring fibers (diameter ~7 um; spacing ~ 1 
|im); or the debonding of fiber/resin interfaces. Direct confirmation of its existence will 
require tedious sectioning and inspection of many specimens. 

The rate of resin damage is assumed to increase with the axial shear stresses 
induced by misalignment. By speculation, the law of degradation of Tc is written 
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^ = -A(Axs)   -AJäC.C) (52) 

where A and m are material constants; and Aos and Axs are the cyclic ranges of the local 

axial stress and the local axial shear stress in the tow.1 The applied load amplitude Aa 
may be substituted for Aos via 

Aa=Aa-£ , (53) 

where Es and Ei are Young's moduli for a single staffer and the whole composite. The 
former is well approximated by Hashin's model [26]; the latter by isostrain volume 
averaging models (Section 3). The values used here are taken from Section 3. They are 
listed in Table 10. Variations from composite to composite are due to differences in fiber 
volume fractions. The relation between Acs for any staffer segment and Aa is also 

influenced to some extent by random misalignment of neighboring staffer segments, 
which makes load distribution uneven. However, this effect is small compared to the 
dependence of xs on the value of t, for the subject segment (Section 4) and it is therefore 

neglected. 

Equations (51)-(53) imply a relation between the applied load Aa and the cycles, 
Nk, to kink band failure, given £; i.e., the cycles required for xc to be reduced sufficiently 

for Eq. (51) to be satisfied on the next compressive loading: 

CIAG/Q/R-IIIE/E.+X 
Nk = r    

J   '     l   ° +1 • (54) 

where XQ is the pristine value of xc and the load ratio R = cmin/0"max- For fully unloaded 

compression-compression fatigue, R = -«>. 

1 Whether it is appropriate to represent all stress effects by the stress range ACTS will be assessed in more 
detail in Section 6. 
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Table 10. Young's Moduli for Composite, E-i, and Stuffers, Es 

Composite Ei Es Composite Ei Es 

Label (GPA) (GPA) Label (GPA) (GPA) 
1-L-l 35.7 84.2 Ä-L-1 88.6 142.3 

l-L-2 34.5 88.8 Ä-T-1 87.0 142.6 

1-T-l 46.3 111.1 h-T-2 82.4 135.9 

l-T-2 43.2 97.7 h-O-1 93.0 147.0 

5.3.2 The Fatigue Life of a Composite 

Equation (54) predicts that Nk falls with increasing misalignment angle, £,, as 

expected. The incidence of kink bands throughout any specimen will accordingly depend 
on the statistical distribution of £,. As each successive kink band forms during fatigue, the 

axial stress in the affected stuffer segment will fall close to zero. The failed tow will then 
debond from the surrounding composite (Fig. 19a and [12,37]) over some characteristic 
slip length /s from the failure site. Along the slip zone, axial load is restored from the 

surrounding composite to the failed tow by friction, until beyond the zone it regains its 
far field value. Since /$ is generally much larger than the. tow diameter, the frictional load 

transfer is well described by the shear lag approximation. A complete description of 

fatigue failure requires simulating the stochastic process of kink formation, while 
computing redistributed loads in the entire composite sample (most simply by shear lag 
modeling) following each kink band event. Eventually so many stuffers will be softened 
by kink bands that complete failure will occur on a single cycle. A finite element 
formulation of this problem, the Binary Model, was described in [37] and above. 

While the Binary Model can reveal details of the effects of misalignment 
distribution, load redistribution, stress concentrators, etc., rough estimates of fatigue life 

under load control can be deduced from Eq. (54) much more simply. Hysteresis 

observations indicate that fatigue life does not extend greatly beyond the first few kink 
bands. Consistently, peak load in monotonic compression is associated with the formation 
of two or three kink bands in specimens of the same size [12,37]. Therefore, fatigue life 
can be estimated by interpreting t, in Eq. (54) as a value representative of the extremes of 

the distribution F(\ Equation. (54) becomes a law for constant load amplitude fatigue life: 

for R = - °° 
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Nf =      r 
5   \m ° +1 s nAo,C,A,m). (55) 

AfcAo] 

Further remarks on the value of £ to be used in Eq. (55) appear below. 

5.3.3 Fitting the Fatigue Law to Data 

The fatigue life data of Fig. 21 were first analyzed by treating the representative 
misalignment angle L, for each composite as an unknown quantity to be determined by 

(i) 
curve fitting. The fitted value for the i"1 composite will be denoted £fi . It takes a different 

value for each material because the degree of irregularity varies from one composite to 
another. 

To fit load-life data, values are also needed for the initial shear flow stress x and 

the material constants A and m. For AS4/Shell 1895 composites (corresponding to the 
heavily compacted composites), tests on ± 45° laminates yield x0 ~ 75 MPa [12,37]. 

Following [12,37], the same value is assumed for AS4/Tactix 138 composites (the lightly 
compacted composites), since Shell 1895 and Tactix 138 have similar properties in 
tension and compression. Possible dependence of x on fiber volume fraction is assumed 
weak and neglected. Since x is the same for the two resins used, A and m are also 

assumed to be the same for all composites. 

Denote the load-life data for the i* composite {(N.., AG..), j=l,...,m.}, where N« 

is elapsed cycles to failure; AGJJ is the corresponding value of AG; and mi is the number 

of data points. The load-life data were fitted by minimizing 

s=??[fW^Nt 11 (56) 

where f" (N. ,£,A,m) is the inverse of the function f defined in Eq. (55). Numerical 

methods for the fitting problem are outlined in the Appendix C. 

The fitted load-life relations are shown in Fig. 21. The fit is satisfactory, although, 

of course, this does not of itself prove the correctness of Eq. (55) or the mechanics 
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underlying it. For large N, the load-life curve is nearly linear on the log-log plot shown, 
with slope = -1/m. This limit is evident from Eq. (55). The fatigue exponent m is an 

indicator of fatigue sensitivity. It has the value m = 30 ± 4. Values and error bars for C. 

are shown in Fig. 22, which is described more fully in the next Section. The procedure for 
(i) 

estimating the uncertainty in m or £fit is given in Appendix C. 
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Figure 20.    Kink bands found in heavily compacted composites after failure. 

5.3.4  Measured Distributions of Misalignment Angles 

Misalignment angles were measured for all the subject composites by methods 
described in Section 2. The largest misalignments are those in the out-of-plane direction. 
In-plane misalignments are small enough to be ignored. 

Distributions of out-of-plane misalignment extrema were shown in Fig. 7. Fatigue 
life under load control in the test specimens is observed to be nearly exhausted when 
two or three kink bands have formed. The values of t, for the corresponding tow segments 

ought to fall in the last 10% or so of the measured cpd. Thus the 0.9 quantile of the cpd, 

C0 9=F3 (0.9), where Fl is the inverse of F^, should be a representative measure for 

substitution into the fatigue law Eq. (55) for specimens tested. 
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Values of £o.9 are compared in Fig. 22 with the misalignment angles, C. , found 

for several composites by minimizing Eq. (56). The error bars shown for £0.9 arise from 

noise in the tow loci deduced from photographs and partly from sampling errors. Their 
computation has been described in [12,37].5 Figure 22 broadly confirms the expected 

equality of £0.9 and £fit. The most significant variations in £0.9 and L. are between the 

groups of lightly and heavily compacted composites. The values inferred from fatigue 
data and the measured misalignments vary proportionately from one group to the other. 

(i) 
However, within each group, the uncertainties in £o.9 and Cfit and the limits of the simple 

assumptions underlying Eq. (55) obscure any trends. 

5.4     Discussion 

5.4.1   Fitting Load Life Data 

There is insufficient information in the data of Fig. 21 to test the validity of the 
model for fatigue life. Nevertheless, some characteristics of the predictions appear to be 
confirmed. 

The experimental data are consistent with the prediction that the different load life 
curves should be parallel to one another, (i) This confirms that all fitted material 
properties, x0, A, and m are the same for all composites. Only the misalignment angle 
statistic, £, varies from curve to curve. Since t, appears in Eq. (55) only in the product 
C,Aa, changing t, simply shifts the predicted curve along the stress axis, (ii) The product 
£AG is proportional to the axial shear stress in the tow segment whose misalignment is £. 
Thus the data falling on parallel curves also confirms that dXc/dN is a function of the axial 

shear stress only. 

Equation (55) predicts load-life curves that are not quite straight on log-log plots, 
as close inspection of Fig. 21 bears out. However, the departure from linearity is less than 
the noise in the life data. The data would be fitted equally well by a Basquin law, 

log Nf = -m log Ac + constant (57) 

5 For reasons detailed in [12,37], the error in Co.9 that arises from noise in images is systematic; i.e., it 
amounts to an uncertainty factor in the scale of the abscissa of Fig. 22. 
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Figure 21.    Load-life data and fitted curves based on estimates of the cycles to the 

formation of the first few kink bands. 

Only the modeling steps leading to Eq. (55) argue for a nonlinear curve. Nevertheless, the 
near uniform slopes of the fitted curves and the data confirms the feature of the 
conjecture in Eq. (52) that dvdN varies as a fixed power of the axial shear stress, AG£. 

Given £, Eqs. (54) and (55) yield 

As. 
1/R-l 

x  E. _   o     1 (58) 

(where the left hand side is just |o_J) for failure on the first cycle. This prediction was 

compared with measurements of monotonic strength in [12,37], with a degree of 
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agreement similar to that of Fig. 22. In both cases, values of £ implied by test data 

(strength or fatigue life) were slightly higher than those measured on specimen cross 
sections. However, the discrepancy is not significant given measurement errors and 
modeling uncertainties. 
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Figure 22. Measures of misalignment extrema: Cfit deduced from fitting Eq. (55) to 
load-life data; and £o.9> me 0.9 quantile of the measured distribution of 

maximum out-of-plane misalignment angles in tow segments. 

5.4.2 Variations in Modulus 

Young's modulus in the stuffer direction is dominated by the stuffers. Young's 
modulus of a single stuffer is reduced by tow waviness by a factor that depends on the 
continuously varying misaligned angle \ (of which £ measures extrema), which is 
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approximately normally distributed (Section 2). The reduction factor T) (T| < 1) is given 

approximately by (from Eq. (10)) 

i: 
2      2 

lwJE   d$ , (59) 

where G£ is the width of the distribution of £; while Ex, Gxy and vxy are the axial 

modulus, axial shear modulus, and axial Poisson's ratio of the stuffers in a local 

coordinate system in which the x-axis is aligned with the fibers. Equation (59) is 

essentially an average of axial stiffness along a wavy tow under conditions of uniform 
axial stress. The term Es/Gxy - 2(1+ vxy) in Eq. (59) is a measure of the anisotropy of a 

single tow. For graphite fibers and pristine resin, it is typically ~ 40. 

Equation (59) suggests two mechanisms for softening: an increase in 
misalignment (i.e., in G£); or an increase in the anisotropy factor. Misalignment appeared 

not to change during fatigue, leaving only changes in anisotropy to consider. 

Since Ex for a stuffer is dominated by the graphite fibers, any significant change 
in anisotropy must come from a decline in the axial shear modulus Gxy, which is resin 
dominated. This would be interpreted as another consequence of the resin damage that 
causes the decline in the shear flow stress, TC. TO make some crude estimates, assume that 

Gxy declines according to a law similar to Eq. (52): 

with the same coefficients A and m that were determined for the shear flow stress, xc, but 
with t, replaced by the continuously varying misalignment angle %. (Reductions in Gxy 

and TC do not necessarily go hand in hand. The former, as inferred from the loading 

modulus in hysteresis data, refers to strains ^0.5%. The shear flow stress relevant to kink 
band formation, xc, refers to strains >1%.) Substitution of Eq. (60) into Eq. (59) implies a 

reduction in composite modulus that might accompany softening of the resin prior to kink 
band formation. The computed reductions turn out to be very small (< 10-4). The integral 
in Eq. (59) is dominated by values of t, that are much less than £, which measures 
extrema of %; but, because of the high values of the exponent m found empirically in 
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Section 5.3, dGxy/dN is negligible unless ^ ~ £. Thus, even at the end of life, when xc at a 

location of extrema misalignment has fallen substantially, the spatially averaged stiffness 
of a tow is essentially unchanged. 

Only two credible sources of reduced stiffness remain: microcracking and the 
onset of kink band formation. From the observations reported above, kind bands cause 
most microcracking; and therefore kink bands are inferred to be the source of softening 

late in life. 

5.5     Load Control and Strain Control 

The simple relation between the result in Eq. (54) for kink formation at a single 

site and the fatigue life law in Eq. (55) is suggested for fatigue under load control. It is 
based on the prior observation that, under load controlled monotonic loading, the 
specimen cannot survive the formation of the first few kink bands [12,13,37]. However, 
the equivalence of a few kink bands and ultimate failure does not necessarily follow for 

fatigue. In fatigue, the distribution of the strengths of flaws evolves with cycles (Eq. 
[52]). Especially for high cycle fatigue, it may in principle become quite dissimilar to the 
pristine distribution, and several kink failures may no longer necessarily cause 
catastrophic failure. Yet the experimental evidence presented here is that they do; or at 
least that their occurrence accounts for 80-90% of fatigue life under load control, even for 
high cycle fatigue. 

Under strain control, life prediction may be more difficult. The subject composites 
can exhibit remarkably high strain to failure for monotonic compression under 
displacement control, surviving high densities of kink bands in individual sniffers before 
ultimate failure [12,13,37]. One might consistently expect considerable life following the 
formation of the first kink bands under cyclic loading at constant strain amplitude. 
Ultimate failure will depend on the details of the redistribution of load around individual 
kink bands. A computational model of this process has been formulated, the Binary 
Model of [23,37]. The law Eq. (52) will serve as a local constitutive law within the 
Binary Model, with Aas the computed local axial stress, updated following each kink 

band event. 
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6.      Tension-Compression Fatigue 

Further load-controlled fatigue tests were conducted under fully reversed loading 
(R=-l), using the same specimen configuration used for compression-compression 

fatigue. Tests were limited to one weave architecture, viz. A-T-2. 

Load-life data for the fully-reversed fatigue tests are compared in Fig. 23 with 

data from Fig. 21 for compression-compression fatigue. The ordinate in Fig. 23 is the 
magnitude of the maximum compressive stress on any cycle, | Gmin I • If fatigue life were 

governed by the cyclic load amplitude, then the data for fully-reversed fatigue 
(AG=2 | Gmin I) should be a factor of two lower on the stress axis than the compression- 

compression data (AG= I omm I). However, they are in fact lower by only approximately 

20% at the lives for which fully reversed data are available. The tensile half cycle is 

apparently far less injurious than the compressive half-cycle. 

Because of limited resources, destructive examination of test specimens was not 
performed to probe fatigue mechanisms for fully-reversed loading. However, since 
fatigue life is correlated most strongly with the magnitude of the compressive cycle, the 
fatigue mechanism is very likely to be kink bands similar to those presented in Section 5. 
Following the conjecture of Section 5, fatigue life should be proportional to the cyclic 
range of the local shear stress in misaligned tow segments. Now the shearing 
of a misaligned tow is a nonlinear phenomenon: compressive loading exacerbates 

misalignment, allowing greater shear strain; while tensile loading straightens fibers, 
which minimizes shear strains. This nonlinearity was not incorporated in Eq. (52), which 
includes the linear approximation AG£ for the cyclic range of the local shear stresses. If 

Eq. (52) was corrected to account for nonlinearity, the relative weight of tensile loads as a 
cause of fatigue damage accumulation would be reduced. A physically consistent model 
of fatigue for both compression-compression and tension-compression loading might 

result. Much more data is required to conclude this question. 

The evolution of stress-strain hysteresis during one of the fully-reversed tests is 
shown in Fig. 24. Late in life, softening is evident in both the compressive and tensile 
load cycles. As for compression-compression tests (Section 5), the softening is most 
likely a manifestation of kink band events. Kink bands cause local softening in both 
tension and compression. No other damage observed on the specimens seems capable of 

causing such large changes in tangent stiffness. 
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7.      Work of Fracture and Notch Sensitivity 

Tensile tests of most 3D woven composites in our material matrix were reported 
in a prior contract [12,37]. Those tests showed exceptional strains to peak load and high 

implied work of fracture. However, quantitative analysis was restricted by unexpected 
inadequacy in the method of strain measurement. Damage was so broadly distributed 
along the gauge section (= 25 mm) that, in many cases, it fell outside the 10 mm clip 
gauge used to measure axial strains. Some test data for cases where considerable damage 

happened to fall within the gauge are shown in Fig. 25(a)-(c). However, even in these 

tests it was unclear whether all nonlinearity had been measured; and important details of 

the mechanisms of failure and damage distribution remained undetermined. Additional 

studies were therefore undertaken. 

7.1     Tensile Tests - Preliminary Observations 

The additional tensile tests were performed for several heavily compacted 
composites, again with the dog-bone specimens of Fig. 18 loaded along the stuffer 
direction. The grips were placed a few millimeters away from the gauge section, allowing 

room to attach extensometer rods that measured the displacement, d, over the entire 
gauge section plus a millimeter or so at either end. This displacement was used as the 
control variable for loading. The relative displacement of the grip mountings was also 
recorded for qualitative confirmation of the extensometer data. 

The extensometer displacement also yields an estimate, EQ = d//, of the 

engineering strain in the gauge section, with / the initial separation of the extensometer 

rods. The estimate is a lower bound to the actual strain because the shoulders of the 
specimen are included in the gauge length, /; but analysis shows that the difference is 
inconsequential in what follows. 

Fig. 25(d)-(f) presents stress-strain histories for the new, long gauge length tests. 
With some variation from material to material, key characteristics are consistent. 
Substantial nonlinearity sets in at strains between 0.5% and 1%, usually in the form of 
continuous softening. At high loads, the smooth curve gives way to a series of jagged 

peaks and sharp, small load drops. The global peak load is 0.7-1 GPa. This is 
approximately 70% of the value that would be expected from the strengths of pristine 
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AS4 graphite fibers and the volume fraction of aligned fibers [12,37]. At a critical strain 
that varies from 2.3% to nearly 4%, an unstable, large load drop occurs, which will be 
called the primary load drop. Smaller but significant loads then persist to very large 

displacements, often similar to the initial gauge length. Similar long tails to the stress- 
strain histories would presumably have been recorded in Figs. 25(a)-(c) had the tests not 
been terminated at the primary load drop by operator decision. 

The primary load drop common to all tests conveniently divides the material's 
response into two phases. The phase prior to the primary load drop will be called the 
"hardening phase," since the stress is generally increasing - the small load drops often 
seen near peak load will also be termed part of the hardening phase. The phase after the 
primary load drop will be called the "pullout phase." 

As previously reported, stuffers generally rupture as discrete entities. The rupture 
of one stuffer does not generally cause failure of its neighbors at the same location. 
Instead, matrix cracking around the circumference of the failed tow debonds it from the 
surrounding composite, so that any stress concentration is minimized and neighboring 
aligned tows commonly remain intact. Sliding along circumferential debond cracks 
typically extends several mm from the location of the rupture. By this mechanism, stuffer 
failures develop over a broad damage band, often spanning the entire gauge section. The 
long tail in the load displacement curve corresponds to pullout of failed stuffers. The 
appearance of the pullout is typified by Fig. 26. 

At strains of approximately 1% and generally well before stuffer failures, matrix 
cracks begin to appear between fillers, which were the orthogonally disposed tows in the 
tensile tests. These cracks become widespread after loading to high strains in all the 
heavily compacted composites studied. The layers of resin between fillers are clearly 

much weaker than the fillers themselves, since the fillers are rarely seen to fail internally. 
The interfiller cracks are analogous to the multiple cracks found in the 90° plies of 0/90° 
laminates, except that their spacing is dictated by the filler size rather than the mechanics 
of stress relief. Since graphite/epoxy tows are highly anisotropic and the fillers are loaded 
transversely in the tensile tests, the concomitant fractional change in the composite 
modulus is rather slight: < 5% (Section 3). Interfiller cracking does not contribute 
significantly to the substantial nonlinearity visible in Fig. 25 prior to peak load. 
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As the number of raptured stuffers increases, interfiller cracks on one or more 
planes develop large openings, until, beyond the primary load drop, a macroscopic 
"tension crack" is evident. Such tension cracks may traverse the whole specimen, but 

since stuffer failures are not generally coplanar, they remain bridged by intact stuffers. 
Ultimate failure eventuates when the bridging stuffers are pulled out of the fracture 

surfaces. 

Tension cracks do not always cross the whole specimen. When viewed on a cut 
side of the specimen, they are occasionally seen to terminate at a delamination crack 
running parallel to the load axis between a layer of stuffers and a layer of fillers. Ultimate 
failure may then consist of separation of the specimen along a path comprising the first 

tension crack, the delamination crack, and a second tension crack traversing the rest of 

the specimen. The two tension cracks may be offset from one another by as much as 

10 mm. 
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7.2 The Maximum Strain in the Hardening Phase 

Fig. 27 is a summary of the range of strains to failure measured for AS4 fibers 
formed into unidirectional composites with different thermoset and thermoplastic 
matrices.1 The failure strains are distributed around a median of approximately 1.5%. 
Nearly all values fall below the strain to failure of bare fibers, 1.65%, quoted by the fiber 

manufacturer.2 The composite failure strains are slightly lower because the matrix 
concentrates stress around the first fibers to fail, leading more readily to failure of their 

neighbors. 

The volume fractions of the composites represented in Fig. 27 are similar in many 
cases to those found in the interior of stuffers in the heavily compacted 3D weaves. One 
might therefore infer that the strains to failure of the stuffers, and therefore of the 3D 
woven composites themselves, ought to be similar. In fact, the hardening phase in the 
composite, over which loads are typically = 1 GPa, survives to considerably greater 
strains than this: in the range 2.5-4%. 

The extent of nonlinearity prior to peak load can be highlighted by comparing the 
measured stress-strain data curves with the linear projection of the initial elastic response 
(e.g. Fig. 25d). Stress-strain data for unidirectional materials follow linearity to peak load 
quite closely. Data for 0/90° laminates show some softening due to 90° ply cracking, but 
only of the order of a few percent, since the 0° plies dominate stiffness. Distinct 
mechanisms clearly operate in the 3D woven composites. 

7.3 Damage Mechanisms in the Hardening Phase 

Considerable energy was applied to explaining how the strain at peak load in the 
woven composites can be so much greater than in unidirectional composites. The answer 
lies partly in the effects of geometrical irregularity, especially stuffer waviness, crimp, 
and twist; and partly in the mechanics of load redistribution around sites of stuffer failure. 

For loading along the stuffer direction, xi, the response of the composite is 
dominated by the stuffers themselves. The fillers, which are orthogonal to the load, and 
the warp weavers, which follow oscillating paths mostly at large angles to xi, are 

1 From data compiled by Dr. Norm Johnston and Mr. C.C. Poe, NASA Langley Research Center 
2 Data sheets, Hercules, Inc., Salt Lake City, Utah. 
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relatively compliant for loads along this axis. In the elastic regime, Young's modulus in 
the stuffer direction, Ei, is fairly well approximated by 

E^fsE^ + d-QE^ (61) 

where fs is the fraction of all fibers that lie in stuffers; and E^11^ and E^10^ are the axial 

and transverse Young's moduli for an individual tow considered as a unidirectional 
composite. For the heavily compacted composites, fs ~ 0.58 (Table 2), E^^ = 140 GPa, 
and E^JD) « 8 GPa (Table B.2). The fraction of the total external load borne by the 

stuffers is fs E£
UD)

/EI « 0.96. 

Plastic Tow Straightening 

All of the stress-strain curves show significant nonlinearity setting in when the 
applied load Ga ~ 500 MPa, corresponding to strain EQ = 0.6%. It is very unlikely that any 

stuffers have ruptured at so low a strain. Interfiller cracks begin at this strain level, but 
they can lower Young's modulus only by about 4%, since they do not affect the modulus 
of stuffers. Between strains of 0.6% and 1% (at which strain stuffers have not yet begun 
to fail), the data of Fig. 25 show much larger declines in the tangent modulus. 

This softening is believed to arise from plastic straightening of the stuffers, i.e., 
the reduction under load of the degree of their random waviness. If the straightening were 

an elastic process, Young's modulus should rise with strain, since a one-dimensional 
composite is stiffer when it is better aligned. However, if the straightening is plastic, then 

initially misaligned tow segments can elongate at approximately constant local axial 

loads; and the composite will appear macroscopically to soften. 

The critical applied load for the onset of plastic straightening can be estimated 
from other data. The initial misalignment angle, £, of stuffer segments is approximately 
normally distributed (Section 2), with expectation value < 11, \ > ~ 2° (Table 3) and the 
90th percentile of | % \ lying near 5° (Fig. 22). The shear stress in any stuffer segment is 

given approximately byt 

fci3|-o?l5|«<*Hft (62) 

t Since stuffer waviness is primarily out-of-plane, the axial shear stress component ti3 has the largest 
magnitude. 
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where x3 is the through-thickness direction, a, is the applied stress, and o^ is the axial 
stress in any stuffer. The critical shear stress, tc» for shear "flow"2 inside a tow was 

independently measured in studies of kink band formation during compression (Section 
5; [12]). Its value is approximately 75 MPa. Thus from Eq. (62), tow segments whose 
misalignment ranges from 2° to 5° should straighten plastically for applied stresses 
ranging from 500 to 1250 MPa. This is indeed the range over which softening is seen. 

The lower end of this range is also equal in magnitude to the compressive strength [12], 

which is determined by the occurrence of the first few kink bands. Kink bands are 
mediated by the same shear flow within tows. 

Transition to Stuffer Rupture 

The axial strain required to eliminate waviness from a tow is just cw-l, where Cw 
is the crimp factor, defined as the total initial arc length per unit length along the tow's 
nominal axis. For a tow whose continuously varying misalignment angle % is normally 

distributed with second moment o| (Eq. (5)), 

(63a) 

= 1+|4 (small c§) . (63b) 

Measured values of a§ were listed in Table 3. The corresponding values of c^ lie 

in the range 1.00003-1.0012. Thus the maximum contribution to composite strain from 
plastic straightening of out-of-plane waviness is ~ 0.1%, which is a small part of the 
difference between the failure strain of the carbon fibers (1.5%) and the end of the 
hardening phase (2.5-4%). 

However, both measurements of Young's modulus for the composite and more 
detailed examination of tow irregularity suggest that other significant distortions in 
stuffers need to be accounted for in estimates of tow straightening. Unfortunately, the 
additional distortions are not easy to describe, let alone to quantify - their magnitudes 

2 See [12] and [37] for a description of the microscopic nature of shear flow in these composites. 
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were left undetermined in Section 3. However, they can be inferred indirectly from 
measurements of Young's modulus. Assume that unmeasured distortions may continue to 
be described by a normal distribution of misalignment angles £, but now with an 

enhanced value of the variance o?. According to the Orientation Averaging Model of 

Section 3 (which concurs with the Binary Model of Section 4; see Fig. 12b), Young's 

modulus should be reduced by waviness by the factor 

Ti^jl+ofr)"1 (64) 

where T is an orthotropy factor of value = 40 for graphite/epoxy. The value of o| can thus 

be deduced from the ratio of the measured Young's modulus to that predicted by the 
Orientation Averaging Model for a geometrically ideal composite. Thence ensues a new 

estimate of the crimp factor cw via Eq. 63(b). The results of this procedure are shown in 
Table 11. The inferred values of (J£ are generally somewhat larger than those attributed to 
out-of-plane sniffer waviness alone (cp. c^ of Table 3 with o^ of Table 11). Since Cw<« 

<3t, the implied increase in cw is greater, and the strains implied from tow straightening 

might be as high as 0.25%. 

Table 11. Estimating the Crimp Factor for Stuffers from 
Measured and Predicted Young's Moduli 

Ei (GPa) i Tl af c d 

expta OAb (expt/OA) (radians/degrees) 

Ä-L-1 85 91.5 0.929 0.044/2.5 1.0010 

Ä-L-2 80 81.2 0.985 0.019/1.1 1.0002 

Ä-T-1 79 88.6 0.892 0.055/3.2 1.0015 

Ä-T-2 72 85.1 0.846 0.067/3.9 1.0023 

h-0-\ 88 93.1 0.945 0.038/2.2 1.0007 

h-O-2 69 83.8 0.823 0.073/4.2 1.0027 

a measured in the stuffer direction 
b predicted by the Orientation Averaging Model for ideal geometry (straight stuffers) 
c deduced from TJ via Eq. (64) 
d from c»£ via Eq. (63b) 
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When this strain is added to the strain to failure for an initially straight tow, an 
estimate of the composite strain at which stuffers should fail results. Using the 
unidirectional composite data of Fig. 26 as a guide to the failure strain of a straight tow, 
say 1.65%, stuffers should fail at composite strains just short of 2%. Of course, the 
estimates of strains arising from tow straightening were based on the assumption that all 
tows are wavy to the same degree. In fact, there is considerable variance in the degree of 
waviness from composite to composite, from specimen to specimen, and from tow to tow 
within the same specimen. Furthermore, 1.65% is an upper bound to the failure strain of 
an initially straight tow. Damage during weaving is likely to reduce the strength and 
therefore the failure strain of at least some tows in a typical specimen gauge section. The 
knockdown in strength might be as much as 30% for some tows (see further remarks 
below). Overall it is realistic to expect that stuf fers might fail at applied strains ranging 
from as little as 1% to perhaps 2.25%. 

The stress-strain data of Fig. 25 indeed exhibit small, sharp load drops in the 
hardening phase once the strain exceeds a threshold that varies from 1% to 2%. These are 
believed to correspond to tow rupture events. Their commencement signals the 
attainment or near attainment of peak load. 

:;;       ■'?■"■ ■:•:■'■ .     .    SG.0ÄST0?'!4S 

(b) 

load axis 

pulledout 
stuffers 

Figure 26.    One half of a specimen after failure, showing evidence of extensive tow 
pullout. 
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Lockup 

In most cases, the load remains very near its peak value until the primary load 
drop occurs at strains of 2.5-4%, well above the highest estimates for tow rupture strains. 

Thus some mechanism exists for transferring loads around sites of sniffer failure that are 

approximately equal to the load in the tow at the time it failed. This is a remarkable 
conclusion. It indicates an efficiency of load transfer quite beyond the realm of 
unidirectional composites of cross-plied laminates of any fibers in any kind of matrix. 

The load transfer mechanism is believed to achieve its efficacy via a lockup 

mechanism involving tow waviness. Crimp features are found damaged but not entirely 

straightened on pulled-out tows following tensile failure, implying that they have been 

dragged through the composite during pullout in their crimped condition. Lockup occurs 
during the pullout process when crimp asperities on adjacent tows come into contact. The 
contact forces in 3D woven composites can be especially high because the warp weavers 
prevent contacting stuffers from separating to facilitate sliding. 

Further remarks comparing lockup with frictional effects on smoother 

reinforcement appear below. - 
SC3S74T.02M95 

Strain to Failure (%) 

Figure 27. The distribution of strains to failure of unidirectional composites of AS4 
carbon fibers in various thermoset and thermoplastic matrices. The 
failure of unidirectional composites is generally catastrophic: there is 
negligible load bearing capacity following attainment of peak load. 
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7.4     Flaws and Strength 

The greatest unnotched strength that could ever be achieved in the composite 

would be that for ideally straight, undamaged stuffers. Ignoring the contributions of 
fillers and warp weavers (see below), one has by the rule of mixtures 

Gu = fsVE^c)Ef (65) 

where fsV is the volume fraction of the composite constituted by the fibers in sniffers 
alone; ef is the fiber failure strain; and Ef is the fiber modulus. For a failure strain of 

1.5% for AS4 fibers in sniffers (the median of the data of Fig. 26), fsV = 0.35 (an average 
for all the heavily compacted composites in Table 2), and Ef = 235 GPa (Table 5), Eq. 
(64) gives cu ~ 1.2 GPa. The measured peak loads (Fig. 25) are lower than this by 20- 

40%. 

As previously conjectured [12], factors contributing to strength loss include 
damage to fibers during the weaving process; reduction of strength where stuffers are 

severely distorted in the composite; and the uneven distribution of loads due to random 
stuffer waviness. The first two of these are difficult to estimate a priori. The third, 
however, is amenable to modeling: this was one subject of the Binary Model calculations 
of Section 4. Intuitively, one sees that if one tow segment is relatively straight compared 
to its neighbors, then it is also relatively stiff and bears a disproportionate share of the 
external load. Thus the critical external load for tow failure falls as the degree of tow 
waviness increases. Figure 15b showed how the loads in the most highly stressed stuffer 
segments rise as the square of the deviance o^ of the misalignment angles \, which 

represents tow waviness. Strength falls inversely with o|, following the reciprocal of the 

ordinate in Fig. 15b. 

For the largest values of c^ inferred by comparing measured and predicted 

Young's moduli (Table 11), the strength reduction due to unequal load distributions is = 
10%. This is about a quarter to a half of the reduction in measured peak stress from the 
value implied by fiber volume fractions and the strength of pristine AS4 fibers [12,37]. 
Thus it appears that uneven load distribution can be a significant determinant of strength, 

with effect in some of the tested composites comparable to the distribution of intrinsic 
flaws in stuffers. This conclusion gains further support from the observation that broken, 
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relatively straight segments of staffers and unbroken, relatively wavy segments are often 
found side by side, the more wavy staffer having ruptured elsewhere. 

7.5    The Pullout Phase 

Beyond the primary load drop, the stress falls monotonically and approximately 

linearly with displacement (Figs. 25(d)-25(f))- This is consistent with load transfer by 
uniform friction among staffers whose contact length is decreasing in proportion to the 
separation of the two halves of a ruptured specimen. The friction stress, T, which acts 

along the debonded length, /s, of a broken staffer (Fig. 28), can be related to the applied 
load,Ga, by the shear lag approximation: 

CJa ~ f s os = fc 
ST/S (66) 

where s and A are the circumference and cross-sectional area of a staffer. With s ~ 5.4 
mm, A = 1.5 mm2 (Table 8), fs ~ 0.58 (Table 2), an average pullout length /s = 5 mm, and 
aa = 50-100 MPa (Figs. 25(d)-25(f)), Eq. (65) yields x = 5-10 MPa. 

SC.3867T.020795 

remote 
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Figure 28.    Cell model of frictional load transfer in the shear lag approximation. 

7.6     Friction Stresses During Lockup 

Staffer rupture is always accompanied by debonding of the ruptured tow from the 

surrounding composite at the moment of rupture. Therefore, load transfer around failed 
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stuffers in the hardening phase might also be described as a frictional process. However, 
the frictional stresses must be very large. The macroscopic stress remains quite near peak 
load throughout the hardening phase, typically 700 MPa - 1 GPa. Taking /s = 1-5 mm as 
representative slip lengths, Eq. (66) yields % ~ 100-500 MPa. This range is one to two 

orders of magnitude greater than during the pullout phase. The friction process is clearly 
controlled by different mechanisms. 

The critical mechanism is conjectured to be lockup: the arrest of sliding by the 
contact of asperities. Fig. 25 implies that the asperity contact persists from applied strains 
near 2% until the primary load drop (strain 2.5-4%). The primary load drop apparently 
corresponds to failed stuffers breaking through the restraints of asperity contact. 

7.7     The Role of Warp Weavers 

Warp weavers, which follow approximately sawtooth paths, fail at significantly 
higher applied strains than the stuffers, which are nominally straight. However, since the 
warp weavers contain 5-10 times fewer fibers than the stuffers (Table 2), they contribute 
only a few percent to Young's modulus and ultimate strength in the stuffer direction 
(Section 3). They are therefore unlikely to contribute significantly in a direct way to the 
nonlinearity prior to peak load. During the hardening phase, the load is borne 
predominanüy by the stuffers. 

The indirect effects of warp weavers, on the other hand, are profound. Then- 
presence is the primary reason stuffers are disturbed during weaving (section 2); resulting 
in stuffer crimp or waviness. Without the geometrical distortion of stuffers, neither plastic 
tow straightening nor lockup would exist. 

Equally importantly, warp weavers play a primary role in the mechanics of 
lockup. Under axial tension in the stuffer direction, warp weavers develop through- 
thickness compression. This aids lockup by increasing the contact forces between 
asperities. Indeed, the rupture of warp weavers has not been observed in any specimen 
prior to the primary load drop; while none or very few survive across the tension crack 
observed in the pullout phase. Therefore, we conjecture that the primary load drop 

occurs exactly when warp weavers fail and permit already ruptured stuffers to spring 

apart and move relatively freely pass another. 
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7.8     Bridging Tractions and the Work of Fracture 

In a large specimen containing a stress concentrator such as a hole, tow rupture 

would be expected to develop as a band of damage that could be described 
macroscopically as a crack (Fig. 29). The nonlinear process of tow straightening, rupture, 
lockup, and pullout would form a cohesive zone behind the crack tip, defined here as the 
point of furthest advance of damage. At sufficiently large crack lengths, traction free 
fracture surfaces will develop in the far crack wake (Fig. 29). 

The fracture mechanics of such a crack are determined by the relation between the 

tractions, p, across the cohesive zone and the displacement discontinuity or crack 

displacement, 2u, that it introduces into the body. It will be seen below that the cohesive 

zone in 3D woven composites is very long; at least an order of magnitude greater than the 
specimen width in the tensile tests. Consistently, damage is essentially uniform in the 
tensile tests, apart from statistical fluctuations deriving from random tow waviness. 

Therefore the tensile test yields a direct measurement of the relation p(u). The bridging 
tractions, p, can be identified with the applied load, oa. The displacement discontinuity, 

2u, is related to the displacement, d, measured over the gauge length, /, by 

2u = d-§M (67) 

where Ec is the composite modulus and the second term represents the displacement that 
would have been measured in the absence of any nonlinearity. 

Bridging traction laws p(u) deduced in this way from the data of Fig. 25(d)-(f) are 
shown in Fig. 30. In the cases where the extensometer gauge length was only 13 mm, 

damage that developed outside the measurement interval prevents meaningful inferences. 

The work of fracture, Wf, is related to p(u) by [42,43] 

f Jo 

Wf = 2     p(u)du , (68) 
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where uc is the critical opening displacement at which p vanishes. This is just the area 
under the curves of Fig. 30. Values for Wf for each of the cases in Fig. 30 are listed in 
Table 12. 

The work of fracture of the 3D woven composites is very large - approximately an 

order of magnitude greater than that of unidirectional or cross-plied graphite/epoxy 

laminates. Indeed, the values of Table 12 appear to exceed those for any other class of 
materials (Fig. 31; [44]). 

SC.3868T.02079S 

tf 

band of tow 
traction    straightening, 

free     rupture, lockup, 
crack      and pullout 

Figure 29.   Conjectured appearance of tow failure near a stress concentrator as a 
propagating band of damage. 

Table 12 also shows a breakdown of Wf into contributions W^ from the 

hardening phase and w[) from the pullout phase: W^ is by far the larger, the 

contributions to W^ from plastic tow straightening and from tow rupture and lockup can 

also be crudely separated. Assume that tow straightening finishes and tow rupture begins 
when the applied strain is 2%. Over the gauge length d the corresponding value 2us of 2u 
is given by 

2us + ^d = 0.02 
Ec 

(69) 

91 



(a) 

(b) 

(c) 

200 
SC3873T.021495 

1 

1000 - A 
0. > 1 

a. 800 7  1                                                     " 
CO i    i 
10 a fion • 

CO 
D) 
c 

400 i 

o . 
200 :    1  

1000 

■  200 

1000 

* 800 

2 4 6 8 
Crack Opening Displacement, 2u (mm) 

10 

0.5       1       1.5       2       15       3 
Crack Opening Displacement, 2u (mm) 

3.5 

12 3 4 
Crack Opening Displacement, 2u (mm) 

Figure 30.      The measured relation between the bridging traction, p, and the 
displacement discontinuity, 2u. 
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Figure 31. The work of fracture of 3D woven composites compared to ranges of 
values compiled for all other classes of structural materials (from [44] by 
kind permission of the author). 

The contribution of tow straightening to W{' is given roughly by the value of the integral 

Eq. (66) when Uc = us, with the remainder of W^) being the contribution from tow rupture 

and lockup. The contribution from tow rupture can be estimated as fsWj , where fs is 

the area fraction of the stuffers and W^ ' is the work of fracture of a unidirectional 

carbon/epoxy composite. From Table 2, fs ~ 0.6; while Wj ~ 100 kJ/m2. These crude 

estimates of the three separate contributions to W^ are listed in Table 12. The 
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contribution from lockup, i.e., the effects of sliding and friction enhanced by asperity 
contact prior to the primary load drop, is generally the greatest but also probably the most 
variable. 

7.9 Tow Waviness Effects in the Pullout-Phase 

Further corroboration of the concept of lockup (or friction greatly enhanced by 
tow irregularity) is found from data in the pullout phase. Close inspection of Fig. 30(a) 
reveals an interesting feature of the pullout phase: the slope of dcTa/du possesses a 

succession of extrema at values of crack opening displacement 2u separated by 

approximately 2 mm. This implies a roughly periodic variation of the friction stress, 

which could be an effect of tow waviness. Indeed, stuffer distortions are often 

commensurate with the separation of fillers, which might be expected as a result of the 

weaving process. The filler separation is approximately 2 mm for the architecture A-L-l 
of Fig. 25(d) (Table 8). 

7.10 Notch Sensitivity 

Notch sensitivity when damage propagates in a band defined by the constitutive 
law p(u) is most generally expressed in terms of the characteristic length, /ch, of the 
nonlinear cohesive zone [45-9]. To order of magnitude 

/ch~^ , (70) 
Pmax 

where pmax is the maximum value of p(u), i.e., the unnotched material strength. If any 
smooth stress concentrator is much larger than /ch, then the strength, ac, of the part will 

be reduced from pmax by the stress concentration factor computed for an elastic body, 

e.g., 1/3 for a circular hole. If the length ao of a sharp notch is much greater than /Ch, then 

JC"C V^ ; ("> 
i.e., strength falls indefinitly as a^1/2. On the other hand, if any stress concentrator or 
sharp notch is much smaller than /Ch, then the strength loss is minimal; the reduction of ac 

from pmax is not far from that implied by net section considerations. Thus /ch 

characterizes the transition from notch sensitivity to notch insensitivity. 
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Values of /ch deduced from the laws p(u) of Fig. 30 are listed in Table 12. 
Commensurate with their high work of fracture, 3D woven composites are exceptionally 

notch insensitive, with /ch = 40 -100 mm. Values of /Ch for unidirectional or cross-plied 
graphite/epoxy composites or for tough alloys are typically just a few mm. 

Table 12. Contributions to the Work of Fracture 

Hardening Phase Pullout Phase 
Work of Cohesive 

Composite      Fracture Plastic Tow        Tow Pmax     Zone Length 
Label       Wf(kJ/m2)   w^fldM2)   Straightening    Rupture Lockup     wfOcJAn2)    (MPa)      l,j,(mm) 

A-L-l 1140 830 -70 -60 -700 310 1000 100 

A-T-l 395 350 -70 -60 -220 45 900 40 

h-T-1 500 460 -70 -60 -330 40 900 50 
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8.    Summary of Results for Textile Modeling 

In the course of this research, we have developed guidelines for modeling textiles 

in general, including 2D and 3D braids and weaves and stitched/woven or stitched/knitted 
materials. We have consistently sought the simplest model for predicting any given 
property that is physically correct and has the fewest unknown parameters. Specifying the 
degree of modeling sophistication necessary in different applications is one of our 

primary accomplishments. 

8.1     Elastic Regime 

Flat or curved panels 

The macroscopic elastic constants of flat or curved panels can be predicted by the 
simplest of all models, viz. orientation averaging calculations based on isostrain or 

isostress conditions. Here, "macroscopic" signifies gauge lengths at least several times 
any scale of the underlying fabric architecture. For most current textile composites, this 
means > 10 mm. We have delivered a computer code (Appendix D) in this program 
which applies orientation averaging to the geometry of 3D interlock weaves. The code 
includes an input parameter for waviness in nominally straight tows. Simple, analytic 
estimates are provided for the extent to which waviness knocks down tow stiffness 
(following Eqs. (10)-(12)) and the concomitant effects on composite elastic constants. 

Analyzing Structures 

Many vital potential applications of textiles involve geometrically complex 
structural parts, e.g. woven or braided beams, ribs, and window belts; and integrally 

woven or stitched skin/stiffener assemblies. To design such internally complex structures 
and predict their reliability, the arrangement of tows must be modeled explicitly. When 
triaxial stress states exist, the isostrain or isostress assumptions of orientation averaging 
are likely to fail. At the same time, a very efficient formulation is necessary to deal with 
significant volumes of material, i.e., one with the fewest degrees of freedom permitted by 
the physics of the problem. Our Binary Model was designed for such applications. 

Calibration tests using flat panels of 3D weaves indicate that for calculations in 
the elastic regime, stiffness parameters in the Binary Model can be specified a priori in 
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terms of fiber and resin properties (Chap. 4). The Binary Model is now being adapted to 
model 3D braided engine mounting structures in ARPA's Affordable Composite 
Technology program1; to model stitched structures in aircraft wings; and to model brittle 

fracture and creep rupture in ceramic and intermetallic matrix composites.2 

Effects of Irregular Geometry 

Tows in textile composites are inevitably irregular. The Binary Model allows 
Monte Carlo simulations of the effects of irregularity by permitting random initial tow 
offsets. Theoretical studies using the Binary Model have shown that stress variations in 
primary load bearing tows due to their own waviness are commonly much greater than 
those caused by local configurations of the ideal tow architecture (Section 4). We infer 
that detailed analysis of local stress distributions based on finite element simulations 
using highly refined grids to represent geometrically ideal unit cells are of questionable 
value in predicting strength. Insofar as such calculations are right, i.e., in their predictions 
of average stresses that are not sensitive to details of the unit cell, they could be replaced 
by simpler models. 

8.2     Modeling Unnotched Strength 

Compression 

We have shown by extensive and detailed experimental analysis that textile 
composites fail in monotonic compression by kink band formation when the external load 
is aligned with one set of tows. Kink band formation follows Argon's law: the critical 
stress is the ratio of the critical shear stress for large shear strains in the tow divided by 
the local tow misalignment angle (Eq. (41)). The keys to predicting compressive strength 
are therefore 1) to measure the distribution of misalignment angles and 2) to predict the 
axial stress in a tow for a given external load. 

The local axial stress can be computed by either the Modified Laminate Model 
(Appendix D) or the Binary Model (Appendix E), depending on whether the part or 
reinforcement geometry implies important triaxial stress distributions (e.g., on whether 

1 Work in collaboration with UC Santa Barbara in a Pratt and Whitney program. 
2 Joint work between Rockwell and UC Santa Barbara (in their ARPA URI) on the design of advanced, 
high temperature engine materials. 
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the part is a nearly laminar skin or a complex shape). The misalignment cannot be 
predicted. It must be measured. Its control in manufacture will always be a critical issue 

for textile composites. 

Tension 

For aligned loads, tensile failure occurs by tow rupture. Tensile failure strains or 
the stresses in aligned fibers at peak load are fairly consistent over different composites of 

the fiber and resin within the same textile class. However, strengths are generally 

substantially reduced from those that might be expected from data for unidirectional tape 

laminates. Textile processing is apparently injurious to fiber tows; and nonuniform load 

distribution due to random tow waviness promotes early failure in relatively straight 

tows. Strength predictions should be based on calculations of tow stresses, e.g. via the 
Modified Laminate Model or the Binary Model, coupled with experimental tensile test 
data to calibrate tow strength and waviness effects. 

8.3     Modeling Fatigue 

Compression - 

Compression-compression cyclic loading results in tow failure by kink band 
formation. A new rule for fatigue damage accumulation has been postulated, extending 
Argon's law by introducing a degradation rate for the critical shear flow stress (Eq. (52)). 

A procedure has been established for deducing unknown fatigue parameters from load- 
life data (Section 5). Given this calibration, fatigue life can be predicted for general tow 

arrangements by computing the local axial tow stress via the Modified Laminate Model 
or the Binary Model, as applicable; and combining this with distributions of measured 
misalignment angles. From these data, the expected number of kink bands in a critical 
structure after N cycles can be predicted. The critical number of kink bands for failure of 
the part should be determined by calibrating experiments. 

Tension-Compression Fatigue 

Experiments of 3D interlock weaves show that most fatigue damage occurs on the 
compressive load cycle. Empirical laws for the moderate but significant effects of the 

tensile load cycle await more test data. 
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8.4     Modeling Notched Strength 

Predictions of ultimate strength when a notch exists should be based on a cohesive 

zone model with the bridging relation p(u) of Section 7.8. If p(u) is known, then damage 

propagation, strength, fracture toughness, and specimen size and shape effects can be 
computed by now standard methods for solving line spring, bridged crack models by 
integral equation formulations (e.g. [50]) or using finite element methods. There are two 
viable approaches to determining the material property p(u). It can be measured directly 
via tensile tests, as in Section 7; or it can be deduced from crack growth and/or notch 
sensitivity data for some set of standard specimens. In the latter method, p(u) could 

conveniently be expressed in parametric form. Key parameters are pmax, the maximum 
value of p, which determines unnotched strength; Wf = 2jpdu, the work of fracture for a 

cohesive zone in the steady state or small scale bridging limit (e.g. [42], [43], [48], [49]); 
and uc, the critical opening displacement at which p vanishes. Other details of the shape 
of p(u) may prove to be of minor significance. 

Section 7 warns of considerable variance in measurements of p(u) for different 
specimens cut from the same composite panel. Randomness in p(u) will be reflected in 
randomness in notched strength. A viable approach would be to establish distributions for 
parameters such as Wf, pmax, and Uc; and then compute distributions for notched strength. 
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Appendix A. Weave Patterns 

This index provides details on the patterns of yams found in the composites of 
Table 1. 

In every composite, the staffers and fillers form a coarse 0/90° array. Staffers and 
fillers alternate in layers through the thickness, with fillers always occupying the 

outermost layers. The through-thickness reinforcement, or warp weavers, traverse the 
thickness of the specimen in planes normal to the fillers. They bind together fillers in 
different layers as they turn around them (e.g. Fig. A.1). The warp weavers also serve to 
hold the staffers roughly in columns standing normal to the filler direction. The number 

of warp weavers between columns of staffers, nw, is usually one or two. 

In angle interlock weaves, the warp weavers follow approximately sawtooth 
paths. Successive segments make angles of approximately 45° to the staffer direction. In 
through-the-thickness angle interlock weaves, warp weavers turn only around fillers in 
the outermost layers (Fig. A.lb). In layer-to-layer angle interlock weaves, most warp 
weavers couple fillers in successive fillers; a few, lighter warp weavers oscillate entirely 
within either of the outermost layers of fillers, passing alternately under and over 
successive fillers (Fig. A. la). 

In orthogonal interlock weaves, the warp weavers pass right through the specimen 
approximately at right angles to the staffer direction (Fig. A.lc). In composite h-O-1, 
they pass around a single filler in the outer layer of fillers before reversing back through 
the thickness. In composites /-O and h-O-2, they pass around two fillers before reversing. 
Thus the warp-weavers in orthogonal interlock weaves follow approximately rectangular 
wave paths of height t, the specimen thickness, and half wavelength either ai (h-O-l and 
h-O-2) or 2ai (/-O), where a i is the center-to-center separation of fillers. 

The grids used in Binary Model simulations can be described conveniently as a 
sequence of planes lying normal to the filler direction. Most of these planes are shown in 
Fig. A.2. Additional grid plane patters are derived from those shown as follows: pattern 
S(6> is similar to S(4); pattern O® is similar to dj4'; and patterns Ty'... Ty' are similar to 

Tj ... Tj , but all with two extra layers of staffers and fillers. The grid and thus the 

reinforcement architecture in any case is defined by the sequence in which planes are 

encountered upon progressing down the filler direction (along with data for spatial scales 
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- see Eqs. (16)-(18) and Chapter 3. The sequences are listed for all composites in Table 
A.l. 

body warp weaver 
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Figure A.l. Schematics of the three 3D weave architectures studied in this work, (a) 
Layer-to-layer angle in interlock, (b) Through-the-thickness angle 
interlock, (c) Orthogonal interlock. The numbers indicate the order in 
which warp weavers are encountered in progressing down the filler 
direction. 
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Figure A.2 Node patterns for models of composites with four or six layers of stuffers. 
Each diagram shows all nodes on a single plane lying normal to the filler 
direction (x2 axis). An open circle indicates a node shared by filler and 
effective medium elements. A solid dot indicates a node shared by 
effective medium elements; and also by stuffer elements if it lies on an 
unbroken horizontal line. Solid triangular elements indicate nodes shared 
by warp weaver elements. 
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Where planes containing warp weavers appear consecutively in any sequence, 

they are assigned the same value of position coordinate X2: the warp weavers are 

generally much lighter than stuffers and fillers and are packed into a thin volume between 

successive columns of stuffers. 

Table A.1 Grid Plane Sequences 

Composite 
Label 

Notes: 1.     A bar specifies a grid plane obtained by inverting the diagram whose label has no bar about a 

horizontal midline (e.g., Oi in Fig. A.1). 

2.     A number before a symbol indicates repetition (e.g., 2S(4> = S(4), S(4)). 
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Appendix B. The Elastic Properties of Unidirectional Fiber Composites 

This appendix provides further details of the use of existing models in the 

literature for estimating the elastic properties of unidirectional fibrous composites. In the 
following, V is the fiber volume fraction; Er and vr are Young's modulus and Poisson's 
ratio for the resin; Ef and vf are Young's modulus and Poisson's ratio for the fibers under 
axial load; p.f is the axial shear modulus of the fibers: Eft is the transverse Young's 
modulus for the fibers; and Vft is Poisson's ratio for the fibers in their plane of isotropy. 

The following five models of unidirectional composites were compared. 

(i)       Rules of Mixtures (e.g.[24]). 

(ii)      Hill's Self-Consistent Method [27]. 

(iii)     Christensen's Modified Self-Consistent Model [28]. 

(iv)     Van Fo Fy's infinite series results for an hexagonal array [51], as 
simplified in [22]. 

(v)      The average of Hashin's bounds for anisotropic fibers in an isotropic 
matrix [26]. 

Each model provides explicit expressions for the unidirectional composite elastic 
constants. In rules of mixtures, any composite property qc is related to the corresponding 

constituent properties qf and Oj by either 

qc = Vqf+(l-V)qr (B.la) 

or        qc = V/qf+(l-V)/qr; (B.lb) 

with Eq (B.la) used for the axial Young's modulus and Poisson's ratios and Eq. (B.lb) 
for the transverse Young's modulus and shear moduli. For models (ii)-(v), the reader is 
referred to the cited references for the relevant formulae, which are straightforward but 
lengthy to write out. A computer program for their evaluation can be obtained from the 

authors. 

Properties estimated using the constituent properties of Table 5 for a 
unidirectional composite of AS4 fibers in Shell 1895 resin are compared as functions of 
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fiber volume fraction for each of the approximations (i)-(iii) and (v) in Fig. B.l. For 
models (i)-(iii), where the fibers are assumed isotropic, only the axial modulus Ef and 
axial Poisson's ratio Vf were used in producing this figure. For Hashin's model, estimates 

were made for both isotropic and anisotropic fibers. Results for model (iv) are not plotted 

because they are very close to those from Christensen's method, except near V=0 and 
V=l, where some accuracy was lost in the simplified expressions given in [22]. 

Among all the cases, no discrepancy is found in the axial modulus, Ex, which was 

therefore not plotted. It is given very accurately by the rule of mixtures. In contrast, some 
significant discrepancies are found in transverse and shear moduli and Poisson's ratio in 

the plane of isotropy. In rules of mixtures, transverse properties and Poisson's ratios are 

estimated by partitioning stresses between the fibers and resin as though they were 

arranged in layers (e.g., [24]). The estimates given by rules of mixtures for transverse 
modulus and shear moduli are consequently less than those in the other models, in which 

the fiber geometry is treated more accurately. All of the approximations give very similar 
results for composites of isotropic fibers at low volume fraction, V. Hill's method gives 
transverse and shear properties that are much too high when V > 0.3 and the fibers are 
much suffer than the matrix, which is almost universally the case for polymer 

composites. Christensen's self-consistent model and Hashin's composite cylinder model 
give similar results for composites with isotropic fibers. However, as the data of Table 5 
show, graphite fibers are highly anisotropic. Thus, the shear and transverse moduli shown 
in Fig. B.l for Hashin's model for anisotropic fibers are much lower than those for 

models (ii) and (iii). Indeed, for 0.4 < V < 0.6 all constants except the axial shear 

modulus are fortuitously rather close to the rule of mixtures predictions. 

Engineering elastic constants were then estimated for each 3D woven composite 
using the constituent properties of Table 5 and all five methods of estimating domain 
properties. Some representative constants computed for composite Ä-L-1 are compared in 
Table B.l. Barring the results from Hill's model, which is clearly wrong for such high 

volume fractions, there are only quite small variations among the different entries for any 
property. The estimates following from rules of mixtures and Hashin's model with 
anisotropic fiber properties are especially close for every engineering constant, including 
those not shown in Table B.l, with the single exception of the in-plane shear modulus 

Gi2, where a 30% difference is found. 
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Figure B.l.   Comparison of the elastic constants predicted for a unidirectional 

AS4/1895 composite using various models from the literature. 
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In the process of computing elastic constants for the composite, fiber volume 
fractions and elastic properties are also found for individual tow domains. These are 
given in Table B.2 for Hashin's model and the composite volume fractions, etc., of 
Tables 1,2, and 5. Table B.2 does not include the effects of tow waviness. 

Table B.1 
Comparison of Estimates of 3D Composite Elastic Constants for 
Composite h-L-i Using Different Models for Domain Properties 

Model for El E2 Gl2 V12 E3 
Domain Properties (GPa) (GPa) (GPa) (GPa) 

Rule of Mixtures3 91.6 56.7 3.7 0.037 12.4 

Hill [30]a 102.1 70.3 26.6 0.11 34.5 

Christensen [31]a 93.8 60.2 5.7 0.056 17.9 

VanFoFy[35]c 93.3 59.5 5.7 0.053 17.3 

Hashin [29] Ia 93.7 60.1 5.7 0.056 17.9 
nt> 91.5 56.2 5.4 0.034 12.1 

afor isotropic fibers with Ef and Vf as in Table 4. 
bfor anisotropic fibers. 
cwith simplifications of Gowayed and Pastore [22]. 

Table B.2 
Computed Tow Domain Properties 

Composite 
Label 

Staffers/Fillers Warp Weavers 

(a) Lightly 
Compacted 

Ex 
(GPa) 

Ey 
(GPa) 

vXy Gxz 
(GPa) 

Vyz Ex 
(GPa) 

Ey 
(GPa) 

Vxy Gxz 
(GPa) 

Vyz 

/-L-l 84.2 5.11 0.280 2.32 0.378 5.11 5.11 0.280 2.32 0.378 
£-L-2 88.8 5.25 0.279 2.42 0.375 6.13 6.13 0.264 2.37 0.365 
t-l-\ 111.1 6.04 0.274 3.02 0.362 6.04 6.04 0.274 3.02 0.362 
i-1-2 97.6 5.54 0.277 2.64 0.370 «6.62 6.62 0.261 2.57 0.360 
1-0 115.1 6.19 0.273 3.14 0.360 6.19 6.19 0.273 3.14 0.360 

(b) Heavily 
Compacted 

A-L-l 
A-L-2 
A-T-1 
A-T-2 
A-O-l 
A-O-2 

147.1 
132.5 
145.5 
140.6 
146.9 
140.9 

8.72 
7.98 
8.63 
8.38 
8.71 
8.39 

0.267 
0.270 
0.267 
0.268 
0.267 
0.268 

5.50 
4.62 
5.39 
5.08 
5.48 
5.09 

0.340 
0.349 
0.341 
0.344 
0.340 
0.344 

8.72 
7.98 
8.63 
8.38 
8.71 
8.39 

8.72 
7.98 
8.63 
8.38 
8.71 
8.39 

0.267 
0.270 
0.267 
0.268 
0.267 
0.268 

5.50 
4.62 
5.39 
5.08 
5.48 
5.09 

0.340 
0.349 
0.341 
0.344 
0.340 
0.344 

Note: The axis x lies in fiber direction, with the axes y and z forming planes of isotropy. 
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Appendix C. Numerical Methods for Fatigue Analysis 

Procedure for Maximizing Eq. (56) 

To avoid difficulty with numerical precision, Eq. (55) was written in the 

normalized form 

1-A<rtj 
"f^TZ ^r (CD 

[AAofcJ 

TE 
with c=-^- (C.2) 

~ Un     m'l 
AsA     T0  m . (C.3) 

0) 
Initial estimates of £fit were made from the monotonic loading data: 

.(0 
»fit w--^ (c.4) 

ACTiO 

(i) 
where Aai0 is the load amplitude for failure on the first cycle. Given estimates of {Cflt}> 

A and m were updated by minimizing S of Eq. (56). Given new estimates of A and m, 
(i) 

each £fit could then be updated by minimizing 

S^lff-^cifAm)-^ (C.5) 

i.e. the data for the 1th composite only. Iteration of the last two steps leads quickly to a 
global minimum for S. 

113 



Estimates of Uncertainty in Fitted Parameters 

If the fatigue model Eq. (55) is valid, then departures of the experimental data 
from the fitted curves in Fig. 21 are a measure of experimental noise. The deviance ax in 

(i) 
a fitted parameter x (x = £fit or m) is 

where Ny has been considered the independent variable and Aöy the dependent variable; 
and Aery has been assumed normally distributed with deviance a.   . From the minimum 

value found for S in Eq. (56), a.     « 20 MPa for the data of Fig. 21. The partial 

derivatives in Eq. (C.6) were estimated by altering one datum Aoy at a time and resolving 

the minimization problem. As expected, 3(Cfit) / ^AcTy) is small unless i=j. The calculated 
0) 

deviance in any misalignment angle £fit is only ~ 0.2°; while the deviance in m is am ~ 4. 
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Appendix D. "Weave.f": A Computer Program for Solving an Orientation 
Averaging Model of 3D Woven Composites 

This fortran program finds the macroscopic elastic constants of a 3D woven composite 
similar to the subject materials of this report. It follows the model of Section 3. The 
program has one input file and one output file. The input contains the following variables: 

v = total volume tract, of all kinds of fibers in composite 

fs = fraction by vol. of all fibers that lie in stuffers 
ff = '            fillers 

fw = *    "    "    "        weavers 
as = fraction by volume of composite assigned to stuffers 
af =         fillers 
aw =       " " " weavers 
ef = Young's modulus of fibers in stuffers or fillers 
efw =        "     "     "    warp weavers 
eres =        "     "   resin 
pf = Poisson's ratio of fibers in stuffers or fillers 
pfw =     "      "      "    in warp weavers 
pr =     "      "     resin 
bf = plane strain bulk modulus of fibers 
eaf = axial Young' modulus for fibers in stuff, or fillers 
etf = transverse 
paf = axial Poisson's ratio "     " 
ptf = transverse 
gaf = axial shear modulus   " 
gtf = transverse shear modulus 

it it it  ii  tt   ti 

tt   tt 

tt  it  tt  tt   it 

tt   tt 

tt   it 

other input constants ending in W are for weaver fibers 

weave  =   orth' if orthogonal interlock 
'ltol' if layer-to-layer angle interlock 
'thru' if through-the-thickness angle interlock 

p2s,f ,w =   2nd moment of normal distn of misalignment angles 
for stuffers,fillers,warp weavers. 

sf =   scale factor for p2s,f,w to test sensitivity. 
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ys,f =   yields of stuffers and fillers 
ends, picks = number of (stuffers, fillers) per unit length 
nstuf = number of layers of stuffers through thickness 

nw = number of fillers between turns of weavers (orth only) 
t  = specimen thickness 

data should appear in the following order in input file 'ortho.dat', arranged on four lines as 

shown: 

weave dummy label 
v,fs,ff,as,af,p2s,p2f,p2w,eres,pr 

eaf,etf,gaf,gtf,paf,ptf,eaw,etw,gaw,gtw,paw,ptw 

ys,ends,yf,picks,nstuf,nw,t 

representative input file 'ortho.dat* with data for the 11 composites of Table 1 (11 sets of 

data in one file): 

ltol 1L1 
.35 .385 .418 .385 .418 0.00 0.00 0.00  3  .3 
235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

.652 5.1   .652 4.4 4 0 1.26 

ltol 1L2 
.37 .347 .501.347 .501 4.01 9.86 0.00  3  .3 
235. 17. 55. 6.7 .25 .27   85. 85. 32.7   32.7 .22.22 
.652 5.1   .652 5.9 4  0 1.24 

thru 1T1 
.466.381.504.381.504 3.39 6.05 0.00 3  .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 
.652 4.7   .652 5.0 4  0 1.02 

thru 1T2 
.408.406.496.406.496 3.54 6.42 0.00  3   .3 

235. 17. 55. 6.7 .25 .27   85. 85. 32.7   32.7 .22.22 
.652 5.1   .652 5.0 4  0 0.97 

orth 10 
.483.387.524.387.524 3.401.200.00  3   .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

116 



.652 4.7   .652 5.1 4  2 0.88 

ltol hLl 

.62 .587 .340 .587 .340 1.74 6.38 0.00 3.7 .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

.570 5.5   1.14 5.1 4  0 0.561 

ltol hL2 

.557.580.375.580.375 2.04 14.8 0.00 3.7 .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

1.14 7.1   2.28 7.9 6  0 0.625 

thru hTl 

.613 .571.331.571.331 1.33 2.940.00 3.7 .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

.570 5.5   1.14 5.1 4  0 0.573 

thru hT2 

.592.571.369 .571.369 1.65 4.23 0.00 3.7 .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

1.14 7.2  2.28 7.9 6  0 0.577 

orth hOl 

.619 .586.340.586.340 0.25 3.35 0.00 3.7 .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

.570 5.5   1.14 5.1 4   1 0.579 

orth h02 

.593 .545 .353 .545 .353 0.85 1.96 0.00 3.7 .3 

235. 17. 55. 6.7 .25 .27 235. 17. 55. 6.7 .25 .27 

1.14 7.1   2.28 7.9 6   1 0.587 

resulting output file 'ortho.out' (results shown only for first case in input file): 

r. of m. following Hashin 

oriav method 

sf= 1.00 

vs,vf,vw= 0.350 0.350 0.350 as,af,aw= 0.385 0.418 0.197 

p2= 0.000 e,pf=235.00 0.25e,pr= 3.00 0.30v=0.350 

p2= 0.000 e,pf=235.00 0.25e,pr= 3.00 0.30v=0.350 

p2= 0.000 e,pf=235.00 0.25e,pr= 3.00 0.30v=0.350 
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etas,f,w= 1.0000 1.0000 1.0000 
vs,ef,pf,bf,gaf,gtf,eres,pr,rom= 

0.35235.00 0.25 11.79 55.00 6.70 3.00 0.30 Hashin 
v,fs,ff=0.350 0.385 0.418 as,af= 0.385 0.418 eres,pr*= 3.000.300 weave=ltol 

ef,pf,bf,gaf,gtf= 235.0000  0.2500 11.7899 55.0000  6.7000 

" for weavers= 235.0000 0.2500 11.7899 55.0000 6.7000 

el,2,3= 36.84 38.68 9.00 gl2,23,31= 2.27 2.09 5.95 
pl2,21,23,32,31,13= 0.023 0.025 0.216 0.050 0.148 0.607 
rflexl,2= 0.79449 1.19107 
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Appendix E. The Binary Model of Textile Composites 

The formulation of the Binary Model has been fully described in [23] and [37]. A 
summary may also be found in Section 4. A FORTRAN computer code BINMOD has 
been delivered to NASA Langley Research Center along with this report. Here operating 
instructions are provided. 

Input 

Input is entered in an input file called MOD.INP. It consists of 1) instructions for 
setting up the tow architecture; 2) material properties; and 3) the loading configuration. 
Instructions are included for the elastic case only. Simulations of progressive damage to 
ultimate failure in both monotonic and cyclic loading are now being performed under 
other funding. 

The code solves for all stresses and strains in a cuboidal slab of composite 
containing stuffers in the xi direction, fillers in the X2 direction, and body and surface 
warp weavers. Representative possible architectures may be found in Appendix A. 

Command Summary for Binary Model Input 

In the following commands, I,J, & K refer to planes on Cartesian axes on which all tow 

elements and effective medium faces lie. The discrete space (I,J,K) refers to points at the 
intersection of three planes; the origin has coordinates (1,1,1) and I,J, & K increase in the 
positive axis directions. 

Each (I,J,K) identifies the location of a node shared by two, four, or eight effective 
medium element (depending on whether (I,J,K) is inside the simulated cuboid or on a 
boundary surface or edge. Every stuffer or filler node lies on some (I,J,K), but not all 
(I,J,K) are occupied by a stuffer or filler node. Warp weaver nodes lie just above or 
below some (IJ,K). 

The coordinates (I,J,K) are used to assign a unique number to each node, which 
determines the global degrees of freedom associated with that node in the finite element 
formulation. 
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Since stuffier and filler nodes are a subset of effective medium nodes, the geometry of the 

effective medium CEMGEN) is specified first. 

'*' A COMMENT FOLLOWS AN ASTERISK ENCLOSED BY SINGLE QUOTES 

All keywords are enclosed in single quotes. 

KEYWORD FIELDS COMMANDS 

'*' GEOMETRY: 

' *' generate effective medium elements 
•EMGEN    NINJ NK XE YE ZE ZLT ZLW1 ZLW2 

NI - Number of nodes in the I direction 
NJ - Number of nodes in the J direction 
NK - Number of nodes in the K direction 

XE - Element size in the X direction (al) 
YE - Element size in the Y direction (a2/2) 
ZE - Element size in the Z direction (a3) 
ZLT - Element thickness on the top/bottom of specimen (a3') 
ZLW1 - Body weaver offset from EM node 
ZLW2 - surface weaver offset from EM node 

'STFGEN1   JO KO JM KM JD KD Generate stuffier elements 

JO - J location of first stuffer 
KO - K location of first stuffer 
JM - Maximum J location of staffers 
KM - Maximum K location of staffers 
JD - Delta J increment to next staffer in J direction 

KD - Delta K increment to next staffer in K direction 

TILGEN   IOKOIMKMIDKD Generate filler elements 
10 -1 location of first filler 
KO - K location of first filler 
IM - Maximum I location of fillers 
KM - Maximum K location of fillers 
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ID - Delta I increment to next filler in I direction 
KD - Delta K increment to next filler in K direction 

'BWVGEN1   10 JO KO IM ID KD IAB Generate body weavers 
10 -1 location of first segment of body weaver 
JO - J location of first segment of body weaver 
KO - K location of first segment of body weaver 
IM - Maximum I location of fillers 
KM - Maximum K location of fillers 
ID - Delta I increment to next filler in I direction 
KD - Delta K increment to next filler in K direction 

IAB-+1 Start above node I0,J0,K0 
-1 Start below node I0,J0,K0 
0 Determine start from previous pattern or initial slope (KD/ID) 

'SWVGElSr   10 JO KO IM KM ID KD IAB       Generate surface weavers 
10 -1 location of first segment of body weaver 
JO - J location of first segment of body weaver 
KO - K location of first segment of body weaver 
IM - Maximum I location of fillers 
KM - Maximum K location of fillers 
ID - Delta I increment to next filler in I direction 
KD - Delta K increment to next filler in K direction 
IAB-+1 Start above node I0,J0,K0 

-1 Start below node I0,J0,K0 
0 Determine start from previous pattern or initial slope (KD/ID) 

'RNDGEOS*  GSISEDG Randomize geom. of stuffers 
GS - determines std. dev. of deviation in z axis direction 
ISEDG - random integer seed 

•RNDGEOF  GFISEDF Randomize geom. of fillers 
GF - determnes std. dev. of deviation in z axis direction 

'*' MATERIAL PROPERTIES: 
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•EMMAT    EM VXY VXZ GXY EMYLD Set material prop's of EM 
EM - Young's Modulus of EM 

VXY - Poisson's ratio XY 

VXZ - Poisson's ratio XZ 
GXY - Shear Modulus XY 

'STFMAT   ESTF Set stiffness of Stuffers 

ESTE - Young's modulus of stuffers (Adjusted) 

'FILMAr   EFIL Set stiffness of Fillers 

EFIL - Young's modulus of fillers 

'BWVMAT   EWEA1 Set stiffness of body weaver 

EWEA1 - Young's modulus of body weaver (Adjusted) 

'BWVSPR'   ESPR1 Set stiffness of bwv spring 
ESPR1 - Youngs modulus of spring (Adjusted) 

'SWVMAT   EWEA2 Set stiffness of Surface Weaver 
EWEA2 - Young's modulus of Surface weaver 

'SWVSPR'   ESPR2 Set stiffness of swv spring 
ESPR2 - Young's modulus of spring (Adjusted) 

'*' SET LOADING CONDITIONS 

'STRAIN'    STRAIN IFACEIDIR       Set total eng. strain and direction 

STRAIN - magnitude of total engineering strain desired (> 0) 

IFACE - Axis normal to loading plane (i=l,j=2,k=3) 
IDIR - Direction and axis of loading (+/-1,2, or 3) 

'STRING   STRINC Set starting strain increment 
STRINC - magnitude of strain increment (> 0) 

'STRMIN   STRMIN Set minimum strain increment 

STRMIN - magnitude of minimum strain increment (> 0) 

122 



'STRMAX'   STRMAX Set maximum strain increment 
STRMAX - magnitude of the maximum strain increment (> 0) 

'FORCE    FORCE IFACEIDIR Set desired force loading 
FORCE - magnitude of force on free end (> 0) 

IFACE - Axis normal to loading plane (i=l j=2,k=3) 
IDIR - Direction and axis of loading (+/-1,2, or 3) 

'*' SET CONTROL FLAGS 

'CHECK' Perform check run 

'CRTT     CRTT Set resid/force coverg. ratio 

'EMFAJL' Set EM Fail flag 

'ITERATE' Set iterative sol. flag 

Example - Input File for Linear Loading of Composite /-L-l along Stuffer Direction 
to Prescribed Engineering Strain 

'*' ARCHITECTURE "l-L-2"  DISPLACEMENT CONTROL IN X DIRECTION 

'*' GEOMETRY 

'*'   SET UP EFFECTIVE MEDIUM FIRST 

'*' NL     NW     NT       XE        YE        ZE        ZLT     ZLW1    ZLW2 

•EMGEN      9        9        11     1.5694   0.9081    1.3667   0.7331    1.3667   1.3667 
'*' 

'*' SET UP STUFFERS 

'*' JO       K0      JM     KM     JD      KD 
•STFCEN     2        3 8 9        2        2 
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'*' SET UP FILLERS 
>*> 

>*' 10 K0 IM KM ID KD 

FILGEN 
<*• 

1 2 8 10 1 2 

'*' SET UP BODY WEAVERS 
1*1 

•*' 10 JO K0 IM ID KD IAB 

'BWVGEN 1 3 4 9 2 -2 0 

'BWVGEN 1 3 8 9 2 2 0 

•BWVGEN1 1 5 6 9 2 -2 0 

'BWVGEN 1 5 6 9 2 2 0 

•BWVGEN* 1 7 10 9 2 -2 0 

'BWVGEN 1 7 2 9 2 2 0 

'BWVGEN 1 9 8 9 2 -2 0 

'BWVGEN 
•*> 

1 9 4 9 2 2 0 

'*' SET UP SURFACE WEAVERS 

>*' 10 JO K0 IM ID KD JAB 

•SWVGEN 1 3 2 9 -1 0 

•SWVGEN 1 3 10 9 0 

"SWVGEN 1 5 2 9 -1 0 

'SWVGEN 1 5 10 9 0 

'SWVGEN 1 7 2 9 -1 0 

'SWVGEN 1 7 10 9 0 

"SWVGEN 1 9 2 9 -1 0 

'SWVGEN 1 9 10 9 0 
'*' 

'*' 

'*' SET UP MATERIAL PROPERTIES 

'*' E VXY VXZ GXY YLD 

•EMMAT 5052.8 0.280 0.3789 2275.9 0.02 
'*' 

i*' F 

STRAIN 
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•STFMAT 174295.5 
'FILMAT 174295.9 
•BWVMAT 35893.5 

•SWVMAT 35893.5 
'BWVSPR' 4883.8 
•SWVSPR' 4883.8 
'*• 

'*' SET UP PARAMETERS FOR CONTROLLING EXECUTION 

'*' ENGSTRN IFACE IDIR 
'STRAIN' 0.001 1 1 
•STRINC 0.001 

'*' maximum absolute error in net force at any node. 
'CRTT 0.05 
'ITERATE* 

Example - Output files for above input. 

File MOD.BRK contains: 
A summary of macroscopic behaviour in the simulation. 

ITER  0  STRI 0.0010000000  STRN 0.00000000 
RSDL    0.0000 TFRC       0.0000 TSTRS      0.0000 
ITER   1   STRI 0.0010000000  STRN 0.00100000 
RSDL    0.0023  TFRC    4159.8601  TSTRS     44.8065 

In this file:        ITER is the iteration count (zero prior to loading) 
STRI is the applied strain increment 
STRN is the accumulated applied strain 
RSDL is the maximum computed error in all node forces 
TFRC is the total force acting on the loaded plane 
TSTRS is the average applied stress on the loaded plane 
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The units in MOD.BRK are always those of the data in the input file. Thus, for 
example, if moduli are supplied in GPA and dimensions in mm, then the force 

TFRC will be in GPa.mm2. 

File MOD.GEOM contains: 
The coordinates (I,J,K) of all nodes of all elements, in the order effective medium 
elements, stuffer elements, filler elements, body warp weaver elements, surface 
warp weaver elements, body warp weaver springs, and surface warp weaver 

springs. 

File MOD.STRESS contains: 
1) stress components in order sll, s22, s33, sl2, s23, s31 at each of the eight 

quadrature points in each effective medium element 
2) line forces qs, qf, and qw in the stuffer, filler, and warp weaver tow elements 

File MOD.STRAIN contains: 
1) strain components in order ell, e22, e33, el2, e23, e31 at each of the eight 

quadrature points in each effective medium element 

2) the macroscopic strains ell, el2, and e31 

File MOD>TFORCE: 
LBDCD(I) records the (L)ist of displaced (B)oun (D)ary (C)on (D)ition degrees 

of freedom (DOF), i=l to #disp. For each DOF i, FC(DOF i) records the net force 
acting in the direction of DOF i using the internal units of stress * area. The sum 
of FC(DOF i) in each axis direction is the net force acting on the composite at the 
end of the simulation. This sum is also reported in the file MOD.STA as the total 

force. 
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1990, ed. J. A. Davis, Jr. and H. L. Bohon (NASA Conf. Publ. 3104,1990). 
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M. Neri, and H. L. Bohon (U.S. Dept. Transportation, 1992) pp. 125-138. 
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NASA, 1995. 
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Appendix G. Monotonie Loading Test Data 

Tension 

h-L-1 

p-u test 

h-L-2 

h-T-1 

h-T-2 

h-O-1 

h-O-2 

Peak Stress Strain to Modulus Thickness Width 
pec.# (MPa) Failure (GPa) (mm) (mm) 

1_2 573 0.013 81 5.6 10.34 

1_4 690 0.0104 72 5.6 10.1 
1_6 655 0.03 80.7 5.6 9.3 
1_8 679 0.014 94.5 5.6 9.45 
1_26 827 0.03 66 5.6 10.3 
1_29 992 0.018 
7_5 1000 0.02 91 5.4 9.4 

1_24 
1 25 903 0.025 
1 30 917 0.028 56 

6 10 935 0.04 83 

2_1 840 0.038 78 
2_13 878 .043->.1 58 
2_15 904 .025->.12 58 

3_7 886 0.013 72 
3_8 807 0.011 77 

4_2 1075 0.013 89 
4_3 1103 0.023 87 
4_4 1027 0.015 78 

5_10 856 0.014 66 
9 10 846 0.013 70 5.9 9.4 
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Spec. # Peak Stress 
(MPa) 

Strain to 
Failure 

Modul 
(GPJ 

Compression 

h-L-1 
1_1 416 0.006 72 
1_3 524 0.0074 
1_7 469 0.005 

1_11 455 0.0055 77 
1_20 545 0.007 80 
1_21 634 0.009 81 
7_6 674 0.009 87 

5.6 9.6 

5.4 9.4 

h-L-2 
6 11 700 0.01 80 5.7 9.5 

h-T-1 

h-T-2 

2_2 565 0.008 80 5.7 9.8 
2_9 503 0.005 87 5.8 9.6 

3_3 538 0.01 69 5.7 10.2 
3_12 517 0.0053 81.4 5.7 10.2 

h-O-1 
4 5 634 0.011 70 5.8 10.2 

h-O-2 
5_11              629 0.008 74 5.9 8.9 
9_11              603 0.0084 66 5.9 9.5 

Compression: transverse loading 

h-L-1 
1  35 221 0.01 44 5.7 10.5 

h-T-1 
2 35 318 0.01 43 5.7 10.4 

h-T-2 
3 35 372 0.008 48 5.7 10.4 

h-O-1 
4 35 317 0.016 43 5.7 10.4 
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Compression After Impact 

h-L-1 

Peak Stress   Strain to   Modulus   Thickness     Width 
(MPa) Failure      (GPa) (mm) (mm) 

buckled 
COM 
C01-3 

403 
359 

0.008 
0.006 

74 
76 

h-T-1 
C02-1 507 0.0082 75 

h-T-2 
C03-1 442 0.0083 66 

h-O-1 
C04-1 472 0.01 71 

Open Hole Tension 

h-L-1 
1_5 
1_7 

Ultimate Load      I 
(kip) 

23.2 kip 
26.6 kip 

ultimate Stress 
(MPa) 

923 
1060 

Failure Location 

grip 
hole 

h-T-2 
3 5 18.7 kip 749 hole 
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