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Executive Summary 

We are creating a new paradigm for building and maintaining complex real-time software systems for 
the control of moving mechanical systems. This objective is being met through the simultaneous 
development of both a powerful software environment and cogent motion planning and control 
capabilities. Our research concentrates on three key areas: 

• Building an innovative, powerful real-time software framework, 

• Implementing new distributed control architectures for intelligent mechanical systems, and 

• Developing distribution architectures and new algorithms for the computationally "hard" 
motion planning and direction problem. 

Perhaps more importantly, we are working on the vertical integration of these technologies into a 
powerful, working system. It is only through this coordinated, cooperative approach that a truly 
revolutionary, usable architecture can result. 

Summary of Progress 

This section highlights some of our achievements for this quarter. During this period, we have: 

• Added distributed-query facility to NDDS. 

• Performed initial design and class-hierachy specification for the new (C++ based) version of 
ControlShell. 

• Developed and implemented control algorithms to enable stable manipulator control through 
kinematic singularities, and cooperative object control. 

• Developed sensor integration approach to achieve robust tracking of objects on the conveyor 
belt. 
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Chapter 1 

Introduction 

The goal of this research project is to build a new paradigm for building and maintaining complex 
real-time software systems for the control of moving mechanical systems. This objective is being 
met through the simultaneous development of both a powerful software environment and cogent 
motion planning and control capabilities. Our research concentrates on three areas: 

• Building an innovative, powerful real-time software development environment, 

• Implementing a new distributed control architecture, and using it to deftly control and coor- 
dinate real mechanical systems, and 

• Developing a computation distribution architecture, and using it to build on-line motion 
planning and direction capabilities. 

We believe that no technology can be successful unless proven experimentally. We are thus vali- 
dating our research by direct application in several disparate, real-world settings. 

This concurrent development of system framework, sophisticated motion planning and control 
software, and real applications insures a high-quality architectural design. It will also embed, in 
reusable components, fundamental new contributions to the science of intelligent motion planning 
and control systems. Researchers from our three organizations, the Stanford Aerospace Robotics 
Laboratory (ARL), the Stanford Computer Science Robotics Laboratory (CSRL), and Real-Time 
Innovations, Inc. (RTI) have teamed to cooperate intimately and directly to achieve this goal. The 
potential for advanced technology transfer represented by this cooperative, vertically-integrated 
approach is unprecedented. 

Framework Development This research builds on an object-oriented tool set for real-time soft- 
ware system programming known as ControlShell, It provides a series of execution and data inter- 
change mechanisms that form a framework for building real-time applications. These mechanisms 



• Defined and implemented a new path planning method (the vector-based planner) to generate 
paths for robots with many degrees of freedom. 

• Partially designed and implemented a new, two-phase path-planning approach, which we call 
the "randomized roadmap planner." 

• Designed and implemented a randomized three-arm manipulation planner for manipulating 
an elongated object in a 3D cluttered environment. 

• Completed development of a powerful multi-mobile-robot simulator to facilitate the develop- 
ment and debugging of programs for multiple interacting mobile robots. 

Our research is progressing according to schedule. 
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are specifically designed to allow a component-based approach to real-time software generation and 
management. By denning a set of interface specifications for inter-module interaction, ControlShell 
provides a common platform that is the basis for real-time code exchange and reuse. 

Our research is adding fundamental new capabilities, including network-extensible dataflow control 
and a graphical CASE environment. 

Distributed Control Architecture This research combines the high-level motion planning 
component developed by the previous effort with a deft control system for a complex multi-armed 
robot. The emphasis of this effort is on building interfaces between modules that permit a complex 
real-time system to run as an interconnected set of distributed modules. To drive this work, we 
are building a dual-arm cooperative robot system that will be able to respond to high-level user 
input, create sophisticated motion and task-level plans, and execute them in real time. The system 
will be able to effect simple assemblies while reacting to changing environmental conditions. It 
combines a world modelling system, real-time vision, task and path planners, an intuitive graphical 
user interface, an on-line simulator, and sophisticated control algorithms. 

Computation Distribution Architecture This research thrust addresses the issues arising 
when computationally complex algorithms are embedded in a real-time framework. To illustrate 
these issues we are considering two particular problem domains: object manipulation by autonomous 
multi-arm robots and navigation of multiple autonomous mobile robots in an incompletely known 
environment. These two problems raise a number of generic issues directly related to the general 
theme of our research: motion planning is provably a computationally hard problem and its out- 
comes, motion plans, are executed in a dynamic world where various sorts of contingencies may 
exist. 

The ultimate goals of our investigation are to both provide real-time controllers with on-line mo- 
tion reactive planning capabilities and to build experimental robotic systems demonstrating such 
capabilities. Moreover, in accomplishing this goal, we expect to identify general guidelines for 
embedding a capability requiring provably complex computations into a real-time framework. 



Chapter 2 

ControlShell Framework 
Development 

This section describes our progress in developing the ControlShell framework and underlying ar- 
chitecture. Two fundamental extensions to ControlShell are being pursued: 

• Distributed information sharing paradigms, by Gerardo Pardo-Castellote and Stan Schneider. 

• Graphical Computer Aided Software Engineering (CASE) environments, by Stan Schneider 
and Vince Chen. 

2.1     Distributed Information Sharing Paradigms: NDDS 

Through customer interaction, we have become aware of the need to provide a "distributed-query" 
facility, certain data doesn't change frequently (ever) or is not consistently required so that despite 
the larger latency, a query is a more appropriate model for the data flow. 

It is not trivial to provide clear semantics for a distributed query facility there there may be multiple 
producers of the same data instance. You issue a query and d several people respond. Which one 
should you choose, how long should you wait for additional data when do you give up if nobody 
responds etc. 

Our approach has been to provide the user with a flexible mechanism that model the physical 
situation so that it may be tailored to the application's needs. Multiple producer conflict resolution 
is achieved through the use of producer strengths and persistence (just as in the subscription case). 
There user can balance the tradeoff between getting data fast and getting the "best" available data 
with the help of two parameters: waitTime and deadline. The user will bet the response received 
by the strongest producer within the wait-time, or the first response after the waitTime before 
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the dead-line. If no response is received by the dead-line the query returns with an error. Setting 
this parameters the user may choose to wait indefinitely(deadline is infinite), get the first response 
(waitTime=0) or any intermediate situation. These times can be altered by the user at any time. 

To support the distributed query, NDDS maintains a replicated database of who is producing what. 
This database has the same characteristics as the "who wants what" database and in fact uses the 
same mechanisms for its maintenance and distribution. In particular, it is fully symmetrically 
distributed, and aged so that productions no longer active are eventually removed. 

2.2    ControlShell CASE Environment 

2.2.1 Object-Oriented Design 

This quarter, we began the redesign of ControlShell to take advantage of the object-oriented features 
of C++. ControlShell's already modular and object-oriented design makes this transition relatively 
easy. 

2.2.2 Module Classes 

CSModules The ControlShell run-time architecture is based on a simple concept: the CSModule. 
A CSModule is a named routine with pointers to data already bound to it. The system can find 
and execute any CSModule at any time without needing to supply the CSModule with its data. 

The CSModuleClass is the abstract base class of all ControlShell execution modules. It binds a 
name to an execution routine (pure virtual function). Instance classes are expected to define the 
actual execution code as well as any data it needs for execution. 

CSSampleModules A CSSampleModule extends upon the CSModule by binding multiple rou- 
tines, each of which is executed at well-defined times. Additionally, each CSSampleModule contains 
lists of input and output signal dependencies allowing CSSampleModules to be sorted to determine 
the order of execution. 

CSSampleModuleClass is also an abstract base class derived from CSModuleClass. It binds other 
execution routines that can be expected of a module that executes on a sample list. These additional 
methods include stateUpdate,enable, disable, startup, shutdown, timingChanged,terminate, 
and reset. Instance classes only need to define and implement the methods it needs. If not defined, 
they default to null routines. 

Component Classes CSComponents are yet again derived from CSSampleModules, providing 
methods to print the data structure bound to the component—in formats for human or machine 
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consumption. The CSComponentClass, derived from CSSampleModuleClass, serves as the base 
class for all ControlShell components. 

Each component is implemented as a separate derived class. The derived class definition is auto- 
matically generated from the Component Editor's description of the component's data flow require- 
ments. Thus, the data structure and skeleton code for the required methods for the component 
is automatically built for the user. The generated code also includes methods to parse data-flow 
description files (generated by the DFE editor) and to instance new objects that implement com- 
ponents. 

2.2.2.1     Execution List Classes 

CSSampleLists ControlShell uses CSSampleListsto manage the execution of CSSampleModules. 
A CSSampleList contains a list of registered CSSampleModules that are to be sequentially executed. 
Based on the trigger that starts the execution sequence, the CSSampleList determines which of the 
CSSampleModule's routines to run. For example, at "Sample" time, every (enabled) module's 
execute routine is executed, then every module's stateUpdate routine is executed. This design 
was detailed in last quarter's report, and in the attached DFE user's manual. 

CSSampleListClass is the base class that provides facilities for registering CSSampleModules and 
methods that can be called at these "well-defined" times to execute the proper module routines. 
The CSSampleListClass and its subclasses are internal to ControlShell and are not meant to be 
directly manipulated by the user. 

CSSampleHabitats Finally, a CSSampleHabitat is derived from CSSampleList to provide a 
named sampled-data environment. A CSSampleHabitat encapsulates all the information and de- 
fines all the interfaces required for sampled-data programs to co-exist. It also contains routines to 
control the sampling process and timing source. For example, a module installed into a sample 
habitat can query its clock source and sample rate, start and stop the sampling process, etc. 

Each sample habitat contains an independent task that executes the sample code. The task is 
clocked by the periodic source (such as a timer interrupt). Additionally, the execution order in a 
CSSampleHabitatClass is automatically determined by sorting the CSSampleModules (and their 
derived Component classes) according to their input and output dependencies. 

The ControlShell structure described here becomes quite amenable for implementation using C++. 
The ControlShell class structure consists of a fairly shallow tree to allow users to develop Control- 
Shell components quickly and painlessly, without having to dig through the inheritance tree. More- 
over, the automatic code generation of the ControlShell Component Editor further shortens devel- 
opment time. 
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2.2.3    Configuration Management 

During this quarter, we also made good progress in designing the configuration management capa- 
bilities of ControlShell. 

Complex real-time systems often have to operate under many different conditions. The changing 
sets of conditions may require drastic changes in execution patterns. For example, a robotic system 
coming into contact with a hard surface may have to switch in a force control algorithm, along with 
its attendant sensor set, estimators, trajectory control routines, etc. 

ControlShell's configuration manager directly supports this type of radical behavior change; it 
allows entire groups of modules to be quickly exchanged. Thus, different system personalities 
can be easily interchanged during execution. This is a great boon during development, when an 
application programmer may wish, for example, to quickly compare controllers (See Figure 2.1). It 
is also of great utility in producing a multi-mode system design. By activating these changes from 
the state-machine facility (see previous reports), the system is able to handle easily external events 
that cause major changes in system behavior. 

Configuration Hierarchy The configuration manager essentially creates a four-level hierarchy 
of module groupings. Individual sample modules form the lowest level. These usually implement a 
single well-defined function. Sets of modules, called module groups, combine the simple functions 
implemented by single modules into complete executable subsystems. 

Each module group is assigned to a category. One group in each installed category is said to be 
active, meaning its modules will be executed. Finally, a configuration is simply a specification of 
which group is active in each category. 

Example As a simple example, consider a system with two controllers: a proportional-plus- 
derivative controller named "PD", and an optimal controller known as "LQG". Suppose the PD 
controller requires filtered inputs, and thus consists of two sample modules: an instance of the 
PDControl component and a filter component. These two components would comprise the "PD" 
module group. The "LQG" controller module group may also be made up of several components. 
Both of these groups would be assigned to the category "controllers". 

The user (or application code) can then easily switch controllers by changing the active module 
group in the "controller" category. 

Now suppose further that the controllers require a more sophisticated sensor set. A category named 
"sensors" may also be defined, perhaps with module groups named "endpoint" and "joint". The 
highest level of the hierarchy allows the user to select an active group from each category, and name 
these selections as a configuration. Thus, the "JointPD" configuration might consist of the "joint" 
sensors and the "PD" controller. The "endptLQG" configuration could be the "endpoint" sensors 
and the "LQG" controller. 
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Figure 2.1: Configuration Manager 

Configurations can be swapped in or out under program or menu control. This provides ßexible 
run-time reconfiguration of the execution structure. 

Category and Group Specification This subdivision may seem complex in these simple cases. 
However, it is quite powerful in more realistic systems. It has been shown to be quite natural in 
our experimental applications. Our work this quarter has focused on implementing this structure 
within the new graphical editing tools. 

Assigning modules to groups and groups to categories is made quite simple with the ControlShell 
graphical DFE editor's "configuration definition" window, shown in Figure 2.2. New categories are 
added with the click of a button. To create a module group, the user simply names a group, and 
then clicks on the modules in the data-flow diagram that should belong to that group. The blocks 
are color-coded to relate the selections back to the user. 

2.2.3.1     Configuration Class Design 

ControlShell uses three classes, CSModuleGroups, CSCategory's, and CSConf igurations to manage 
groups of CSSampleModules. 

A CSModuleGroup contains a group of closely-coupled modules that must work together, and a 
CSCategory defines a set of CSModuleGroups, only one of which can be active at any one time. A 
CSConf igur at ion is defined as the set of active CSModuleGroups—one from each CSCategory. 

The top-level construct, CSConfiguration, defines a complete set of modules in the system that 
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Figure 2.2: Configuration Definition 

Configurations are easily defined within the DFE graphical interface. 

is to be enabled to implement an operational mode. A configuration consists of the selection of 
one active module group from each category. Changing CSConfigurations changes the operational 
mode of the entire system. 

In the example above, enabling a CSConfiguration may bring in a new controller, sensor set, es- 
timator, trajectory control routines, safety modules, etc.—everything required for the new mode 
of operation. For instance, suppose a user has defined CSCategories named "Controller", "Esti- 
mator", "Filter", and "Sensor". CSModuleGroups with the "Controller" CSCategory may include 
"PDControl", "PIDControl", and "LQRegulator", each of which contains the CSSampleModules 
needed to perform that function. The "LQ" CSConfiguration, therefore, might be defined as: 

• LQRegulator module group from the "Controller" category 

• LQEstimator module group from the "Estimator" category 

• JointSensors module group from the "Sensors" category 

• And no (empty) module group from the "Filter" category 

We should note here that CSModuleGroups may contain overlapping individual modules. This 
allows arbitrary configurations of modules to be active in any CSConfiguration, a powerful and 
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useful concept. For instance, the JointSensors module group above may contain the actual Analog- 
to-Digital device driver module; that module could also be a part of every other module group in 
the "Sensors" category. 
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Chapter 3 

Distributed Control Architectures 
and Interfaces 

This section covers our research in software architectures, communication protocols and inter- 
faces that will advance the state-of-the-art in the prototyping-development-testing cycle of high- 
performance distributed control systems. These interfaces will be implemented within the frame- 
work described in Chapter 2. The results of this research will be applied to the vertical integration 
of planning and control and demonstrated by executing a set of challenging tasks on our two-armed 
robot system. 

There are three main thrusts to this research: 

• Development of inter-module interfaces for distributed control systems, by Gerardo Pardo- 
Castellote. 

• Development of a control methodology capable of executing high-level commands, by Gerardo 
Pardo-Castellote, Tsai-Yen Li, and Yotto Koga. 

• Hardware development and experimental verification, by Gerardo Pardo-Castellote and Gad 
Shelef. 

This quarter, we devoted considerable attention to the manipulator control issues, specifically 
control though a kinematic singularity and cooperative object control. 

3.1     Inter-Module Interfaces 

The inter-module interfaces have remained unchanged during this quarter. 

13 
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3.2    Control Methodology Development 

During this quarter we have achieved the following tasks: 

• Arm control through a singularity. 

• Cooperative object control. 

• Robust tracking of objects on the conveyor. 

3.2.1    Arm control through a singularity 

The control achieved at the joint-level allows the arm-control above it to treat the manipulator as 
if it had ideal motors and the commanded torques were delivered perfectly to the rigid links. 

Ultimately any arm controller must generate joint torque commands based on the manipulator's 
desired state; however, different controllers differ in two related but somewhat decoupled issues: 

• The error law or control policy: selection of the space in which errors are computed and 
specification of reference behavior when reacting to external disturbances. Typical choices 
include position and velocity errors in Cartesian or joint space, impedance relationships and 
hybrid position/force control schemes. 

• The implementation of the policy. The type of controller used to enforce the error law. 
Typical choices are inverse dynamics (also referred as computed-torque) methods, kinematic 
controllers and independent-joint-space controllers. 

Inverse dynamics controllers, which are the highest performance control schemes, require a good 
kinematic and dynamic model of the manipulator. The following sections describe the control 
scheme used for the workcell manipulators. 

The arm controller used in the Manufacturing Workcell combines two controllers: a high-performance 
inverse-dynamics controller used for manipulator-configurations away from kinematic singularities 
and a low-performance (yet robust) joint-space PID controller used near singularities.  These two 
controllers are blended in a transition region. 

The high-performance controller implements an impedance relationship at an operational point lo- 
cated at the center of the tool (gripper), and uses an inverse dynamics (computed-torque) approach 
to enforce this relationship. This particular choice of control law (policy) and implementation is 
usually referred as "arm impedance control." The advantages of arm-impedance control in the con- 
text of flexible drive-train robots and object manipulation have been described in previous research 

by Schneider and Pfeffer. 
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Symbol Dimension Meaning 

Mimp 4x4 Desired virtual mass (diagonal matrix). 
X,X, X 4x 1 Actual Cartesian position, velocity and acceleration of 

the operational point. 
xref > xref' xref 4x 1 Reference Cartesian position, velocity and acceleration 

of the operational point. 
Kp ,KV 4x4 Desired virtual stiffness and damping (diagonal). 

fext 4x 1 External force acting on the operational point. 

q>q,q 4x 1 Vector of generalized coordinates and time derivatives. 
M(q) 4x4 Configuration-dependent mass matrix. 

B(q) 4x3 Configuration-dependent matrix of Coriolis term. 

C(q) 4x4 Configuration-dependent matrix of centripetal terms. 

g(q) 4x 1 Configuration-dependent gravity vector. 

J(q) 4x 1 Jacobian   relating   joint-rates   to   operational-point 
velocities. 

T 4x 1 Torque vector. 

Table 3.1: Notation for arm-impedance controller derivation. 

The above sizes apply to a 4-DOF SCARA manipulator. The cartesian vector x contains the position 
and rotation about the vertical axis of the operational point. 
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The structure of the arm-impedance controller is described below for the simpler case of a SCARA 
manipulator. Table 3.1 summarizes the meaning of the different symbols used in the description. 

First, the error law specifies that the manipulator operational point (normally the end-effector or 
tool) must obey the following impedance relationship: 

Mimp x = Mimp xref + Kp (xref - x) + Kv (xref - A) + fext (3.1) 

Second, given that the actual equation of motions of the manipulator: 

M (q) q + B (q) [q, q] + C (q) [q2] + g(q) + J*(q) fext = (3.2) 

And that the cartesian coordinates of the operational-point are related to the configuration-space 
coordinates through the manipulator Jacobian: 

x = J(q)q X = J(q) q + J(q) q =>     q = J(q)      (x - J(q) q) (3-3) 

'■ref 

<ref 

^ref 

Impedance xcmd Kinematic qcmd Equations Xref 

Equation Transf. . of motion 

■'-ext 

. 
qq 
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f ex : qq 
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Sensor processing and World Modeling 

_ _J 

Joint 
Controller 

Figure 3.1: Block diagram for the computed torque impedance controller. 

The arm controller enforces an impedance relationship at the arm operational point (OP). Given 
the cartesian error between the reference (desired) and actual states for the OP, the impedance 
relationship specifies the commanded acceleration xCom for the OP (i.e. the acceleration that 
will satisfy the impedance relationship). This acceleration is transformed into the equivalent 
joint-accelerations qcm(j using the manipulator kinematics. Given qcmci , the manipulator 
dynamics are used to determine the reference joint torques Tref that will achieve this joint- 
acceleration. These joint torques become the reference command for the joint-control layer 
below. 

The impedance relationship (3.1) can be enforced if actuator torques are chosen in (3.2) such that 
the resulting acceleration q (equation (3.3)) results in operational-point accelerations x which verify 
the impedance relationship. This scheme is illustrated in Figure 3.1. 

The disadvantage of this inverse-dynamics controller is that it cannot be used to transition the 
arm through a kinematic singularity (which occurs whenever the elbow is fully extended). At the 



3.2.   CONTROL METHODOLOGY DEVELOPMENT 17 

det( J) | 

Joint-Space 
trajectory Joint-Space 

Error Law 

it« 
<jPid 

min   max 

|det(J) | 

Operational-Space 
trajectory 

Operational-Spaca 
Error Law 

<3os 

f 

1 

0 / 

fr 

min max 

Joint  torque 
coiwiwnn 

Figure 3.2:  Merging a cartesian-space computed-torque controller with a joint-space 
PID controller. 

The strategic module is required to specify both the cartesian-space and the corresponding 
joint-space trajectories for any arm motion. These trajectories are run in parallel through a 
cartesian-space error law (see Figure 3.1 and a joint-space error law. The commanded joint 
accelerations q from the two controllers are combined to generate the actual joint-acceleration 
command qcmd for the inverse dynamics controller. The combination is a weighted sum with 
weights that depend on how close the manipulator is to a singularity as measured by the value 
of the determinant. The transition interval corresponds to relative elbow angles \qei\ between 
0.1 and 0.2 radians 
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kinematic singularity, the Jacobian matrix becomes singular and its inverse cannot be computed 
as required in equation (3.3). The inverse-dynamics controller was modified so it would be stable 
even at the singularity by using a Jacobian pseudo-inverse in equation (3.3) (i.e. whenever the 
determinant of the Jacobian is below a threshold, the pseudo-inverse is used instead of the Jacobian 
inverse). Although this modified controller works well in regulation, it cannot be used to follow 
reference trajectories which cross the singularity because these trajectories cannot be specified 
exclusively in operational-space. In essence, the workcell manipulators are redundant. There are 
two arm configurations ("elbow in" and "elbow out") which result on the same cartesian location of 
the operational point. Two different (joint-space) trajectories that start from the same initial state, 
go through the singularity, and come out with opposite elbow configurations are indistinguishable 
to the operational space controller. 

It is important to be able to cross the singularity under control to take full advantage of the arm 
workspace. For this reason a hybrid approach was developed: Commanding an arm trajectory 
requires both the operational-space trajectory and the corresponding joint-space trajectory to be 
simultaneously specified. The controller monitors the proximity of the arm to a singularity (by eval- 
uating the determinant of the Jacobian matrix). Away from the singularity the inverse-dynamics 
controller is used. Near the singularity, a pure joint-PID controller is used. In the transition region, 
a weighted combination of the reference commands from both controllers is used. In either case, 
the commanded joint-space accelerations are fed to the inverse-dynamics controller as illustrated 
in Figure 3.2. 

A word on the selection of impedances and virtual masses: Note that for fext = 0 only the ratios 
Kp/Mimp and Kv/Mimp are relevant. In view of this, these ratios were chosen (through an 
iterative process) close to the stability limit (for maximum performance), but leaving the system 
slightly over-damped (overshooting can cause collisions). When the arm is in contact with the 
environment, the force/torque sensors measure fext and the operational point is commanded to 
respond with the same acceleration as a mass of value Mimp . For this reason, larger Mimp results 
in more stable, yet "slower" contact behavior. The value finally chosen was a compromise for the 
required tasks. Gains for joint-space error law were selected such that they produced commanded 
accelerations of similar magnitude as the operational-space error law for small joint errors at the 
singularity boundary. In other words, Kg1 = J(q) Kp /Mimp and K?1 = J(q) Kv /Mimp at 
this boundary. 

Figure 3.3 illustrates the implementation of the arm-level controller in terms of reusable software 
components. The full inverse-dynamics computed-torque controller for both arms was run at 200 
Hz on a dedicated processor board1. Experimental results are presented in section 3.3. 

This research does not make the claim that the approach followed here to achieve stable perfor- 
mance through the singularity is valid in general. Merging a singularity-free (yet low performance) 
controller with a high-performance controller in such a way that the singularity-free controller is 
used in proximity to the singularity is simple and intuitively appealing (in fact is an approach 
commonly followed by so called fuzzy controllers).   However, there are a multitude of issues to 

*A VME-based single-processor computer containing a 33 MHz m68040 processor 
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Figure 3.3: Arm-control layer data-flow. 
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be addressed more formally for this approach to be rigorous. It is not even clear under which 
circumstances a weighted (configuration-dependent) average of two controllers results in a stable 
controller. This investigation could be the topic of continuing research. 

3.2.2     Cooperative Object Control 

The purpose of the object-control layer is to allow the workcell to manipulate objects either single- 
handedly or cooperatively using both manipulators. In this section, the term cooperative control is 
used in contrast with coordinated control. In either case an object reference trajectory is specified, 
but in coordinated control, that trajectory is transformed (through the grasp kinematics) into ref- 
erence arm trajectories, and each individual arm is controlled from its own trajectory (regardless of 
what the other arm, or the object are doing). In cooperative control no individual-arm trajectories 

are computed. Rather, the arm commands are computed directly from the object trajectory and 

error. This closes another control loop on the object state. Figure 3.4 contrasts these approaches. 
True cooperative object control often requires force sensing at the arm end-effectors so that the 

interaction forces can be accurately controlled. 

There have been many approaches to cooperative object control. This experiment uses the Object 

Impedance Control (OIC) approach originally developed by Schneider. This approach draws from 
Hogan's impedance control concept and the work of Nakamura. OIC was originally developed for 
fixed manipulators handling a rigid object. This work was later extended to manipulators on a 
mobile base by Vasquez, Ullman and Dickson and manipulation of objects with internal dynamics by 
Meer (all these researchers are at the Stanford Aerospace Robotics Laboratory). These researchers 
have demonstrated the utility of the OIC approach to cooperative-object manipulation. 

The OIC is a model reference controller which enforces an impedance relationship on the state 
(position, velocity, and acceleration) of a certain point in the object (the object's Remote Center 
of Compliance or RCC)2: 

M: :imp x = Mimp xref + Kp (xref - x) + Kv (xref - x) + fext (3.4) 

The above equation can be interpreted as representing the equations of motion of a virtual object 
which is affected both by the forces applied to the object fext and a virtual force which makes it 
behave as if it were attached to the reference trajectory by a spring and dash-pot on each degree 

of freedom. 

The data-flow of the OIC is illustrated in Figure 3.5. First the RCC and a reference "state" for the 
RCC, (xref , xref, xref) are specified. Given the the actual object state (x,x), and the rigid-body 
transformation to the RCC, the impedance relationship of equation (3.4) can be used to determine x 

2This point does not have to be physically in the body.   It is sufficient that it remains fixed in any body-fixed 
reference frame. That is, it is related through a rigid-body transformation to the object's position. 
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Figure 3.4: Comparison of cooperative object control with coordinated object control 

In coordinated object control the reference trajectory for the object is transformed using the 
grasp kinematics into reference trajectories for each arm. Each arm is then controlled inde- 
pendently from its own trajectory. Cooperative object control generates no arm trajectories 
directly. Instead, arm commands are generated from the reference object trajectory and the 
error between the trajectory and the actual object state. Cooperative object control closes 
another control loop on the object state. 
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i i i 

Figure 3.5: Data-flow of the object-impedance controller. 

Implementation of the object-control layer using ControlShellA.x components. This diagram il- 
lustrates the control loop for the "barWM" object. The reference trajectory barWMDesState can 
originate from a planned via-point trajectory (VIP.Generate component, or a locally generated 
intercept (f iithOrderStateTrajectoryj or a tracking (WMJTrackConveyorObjectJ trajectory. 
The Obj ImpControl components combine the reference state, actual state, and (estimated) ex- 
ternal force on the object to generate reference states and applied forces for each one of the 
arms. The Ob j ImpControl component, uses the specific grasp transforms, mass properties, and 
virtual object behavior set by the strategic-layer (using the private world-model interface) to 
implement the desired impedance relationship. 
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(the acceleration that the RCC should have to satisfy the impedance relationship). The acceleration 
of the RCC x can now be transformed back to obtain the required object acceleration xCOm- Since 
the actual EOM of the body and the grasp transforms are known, the required manipulator end- 
effector forces and accelerations can be computed. These required end-effector accelerations/torques 
then become commands for the arm-level controller. In case there is redundancy solving the required 
manipulator forces on the object, the redundancy can be used to control the internal forces the 
object is subject to. 

The above OIC formulation is restricted to situations where the manipulator arms holding the 
object are not at a singular configuration. This restriction is enforced by the strategic-control 
layer. 

A nice feature of the OIC approach is that the EOM of the object decouple the arms so that, 
assuming each arm can compute locally its own required reference end-effector state and applied 
forces3, each arm would only need to know about its own dynamics to control itself. This makes 
the algorithm easily parallelizable and extensible to multiple independent robots which cooperate 
in the manipulation. The work of Dickson addresses these issues. 

3.2.3    Robust Tracking of Objects on the Conveyor 

For the workcell to operate properly, it must predict and/or sense the object motions on the 
conveyor accurately. As previously mentioned, the object is often lost during the capture maneuver 
because the arm obstructs the camera view of the object's LEDs. This problem is solved by adding 
LED's to the conveyor (so its location can be determined) and an incremental encoder to the 
motor driving the conveyor belt (so that belt displacement can be measured)4. The World Modeler 
uses a dedicated sensor-integration software-component per conveyor/object pair. The position 
and size of the conveyor and various objects is used by the component to determine whether a 
specific object is on top of that conveyor. If an object is on the conveyor, vision information is used 
whenever available, otherwise, the object's position and velocity are estimated from the last vision 
update and the conveyor measurements. This estimation uses the measured conveyor orientation 
(determined by the vision system) and the relative displacement of the conveyor-belt from the time 
visual tracking was lost. Object velocity is simply deduced from conveyor speed and orientation. 
This scheme is illustrated in Figure 3.6. Experimental results are presented in section 3.3 

3.3     Hardware Development and Experiments 

Figures 3.7 and 3.8, illustrate control system performance when the arm traverses a kinematic 
singularity. The hybrid controller is able to control the arm motion smoothly through the transition. 

3This computation transforms the required object acceleration through the known grasp transforms and distributes 
the required force/torque on the object among the two arms. 

4 The procedure described here can be applied to any number of conveyors present in the workcell. 
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Figure 3.6: Sensor integration scheme for objects on a conveyor 

A dedicated component exists for each object-conveyor pair. The component uses the vision- 
sensed position of the conveyor and object to determine whether the object is on the conveyor 
by modelling the area the conveyor covers and figuring out whether the center of gravity of the 
object lies on this area. The vision measurements are used whenever available. When vision- 
tracking is lost, the position of the object is extrapolated from the last visible position using 
the relative conveyor displacement and its orientation. 
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Figure 3.7: Experimental tracking performance: path through kinematic singularity. 

Tracking performance on X, Y, yaw position and velocities. The above plots illustrate reference 
and actual trajectories (top line), the tracking error (second line), the reference and actual 
velocities (third line), and velocity tracking error (fourth line). The vertical lines indicate the 
region where the arm is at a kinematic singularity. In the center band between the innermost 
vertical lines, the arm is under pure joint-based control, in the adjacent bands, cartesian and 
joint control commands are averaged (see Figure 3.2), away from the singularity pure cartesian 
control is used. 
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Figure 3.8: Animation of trajectory through kinematic singularity. 

This figure animates the data collected during the trajectory shown in Figure 3.7. 



3.3.   HARDWARE DEVELOPMENT AND EXPERIMENTS 27 

position tracking (x and y) position tracking (rotation) 

4 
seconds 

velocity tracking (x and y) velocity tracking (rotation) 

"2     1 

2      0 

0.04 

■o   0.02 

£ -0.02 

-0.04 

2 4 6 
seconds 

velocity tracking error (x and y) 

-0.5 

■a   0.1 

2 4 
seconds 

velocity tracking error (rotation) 

Figure 3.9: Experimental tracking performance of the object-impedance controller 

Tracking performance on X, Y, yaw position and velocities. The above plots illustrate reference 
and actual trajectories (top line), the tracking error (second line), the reference and actual 
velocities (third line), and velocity tracking error (fourth line), for the object trajectory shown 
in Figure 3.10. 
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Figure 3.10: Animation of trajectory followed by the object under cooperative control 

This figure animates the data collected during the trajectory shown in Figure 3.9. 
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Figure 3.9 illustrates the tracking performance of the OIC for a cooperative object motion in 
free space animated in Figure 3.10. Comparisons with other object-level controllers and contact 
experiments have been documented extensively by Schneider and Pfeffer. 

Figures 3.11 and 3.12 illustrate the performance of this algorithm to track objects on a conveyor. 
In all cases the accumulated error is smaller than the accuracy required for a successful capture 
(about 1 cm). 
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Figure 3.11: Tracking performance of objects on the conveyor at 5 cm/sec 

The above figures show the performance of the sensor-integration algorithm for the nominal 
conveyor speed of 5 cm/s. At time t=0, the sensor-integration software was misled into believing 
that the vision had lost track of the object, so that the difference between the actual vision 
state and the one derived from the conveyor sensors can be compared. The position discrepancy 
is on the order of 1 cm even after 0.5 m travel without vision information, this is the limit on 
the gripper tolerance for a successful capture. The plots on the right illustrate positions and 
velocities for the X and Y coordinates. 
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Figure 3.12: Tracking performance of objects on the conveyor at 10 and 20 cm/s 

The above figures show the performance of the sensor-integration algorithm for faster conveyor 
speeds: 10 cm/s and 20 cm/s. The approach used is the same explained in Figure 3.11: the 
sensor-integration algorithm believes the vision has lost track of the object at time t=0. As 
in 3.11, the the position discrepancy is on the order of 1 cm after 0.5 m displacement. This is 
mostly due to the error in the orientation of the conveyor as measured by the vision system. 
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Chapter 4 

On-Line Computation Distribution 
Architectures 

Our research addresses technical issues arising when computationally complex algorithms are em- 
bedded in a real-time framework. To illustrate these issues we consider two particular problem do- 
mains: object manipulation by autonomous multi-arm robots and navigation of multiple autonomous 
mobile robots in an incompletely known environment. These two problems raise a number of generic 
issues directly related to the general theme of our research: motion planning is provably a compu- 
tationally hard problem and its outcomes, motion plans, are executed in a dynamic world where 
various sorts of contingencies may happen. 

The ultimate goal of our investigation, concerning the two problem domains mentioned above, is 
to both provide real-time controllers with on-line motion reactive planning capabilities and build 
experimental robotic systems demonstrating such capabilities. Moreover, in accomplishing this goal, 
we expect to elaborate general guidelines for embedding a capability requiring provably complex 
computations into a real-time framework. 

This quarterly report covers work done towards this goal during the period of October through 
December 1993. During this period, our work addressed the following areas: 

1. Distribution of Path Planning, by Tsai-Yen Li. 

2. New Methods for Fast Path Planning, by Tsai-Yen Li. 

3. Parallelization of Path Planning, by Lydia Kavraki. 

4. Multi-Arm Manipulation Planning in 3D, by Yotto Koga. 

5. Experiments in Manipulation Planning, by Tsai-Yen Li. 

6. Landmark-Based Mobile Robot Navigation, by Anthony Lazanas, Craig Becker, Byung-Ju 
Kang and Ken Tokusei. 

33 
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7. Mobile Robot Navigation Toolkits and Simulator, by Craig Becker and David Zhu. 

Areas 1 through 5 are mainly related to the first problem domain, i.e., object manipulation by 
autonomous multi-arm robots. 

Areas 6 through 8 are mainly related to the second problem domain, i.e., navigation of multiple 
autonomous mobile robots in an incompletely known environment. 

Participating Ph.D. Students: Craig Becker, Lydia Kavraki, Yotto Koga, Anthony Lazanas, Tsai- 
Yen Li. 

Participating Master Students: Ken Tokusei, Byung-Ju Kang. 

Participating Staff: David Zhu. 

4.1    Distribution of Path Planning 

Conveyer Belt 

ARM2 

Top View 

ARMl ARM2 

Goals       Parts Conveyer Belt 

Side View 

Figure 4.1: Two-arm robotic cell 

During this quarter, we have continued our research in applying the distribution methodology 
described in the previous reports to our demonstrative scenario (see Figure 4.1). Recall that there 
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are two robot arms and multiple moving objects in our scenario. Each arm and object contribute 
some dimensions (or DOF) to the overall search space where the solutions to our problem reside. 
Due to the high dimensionality of the composite search space, we cannot treat the problem on-line 
in a general manner. Instead, we use the distribution principles that we have identified in several 
different levels of planning to achieve on-line planning performance. 

First, at the task level, we distribute the planning over problem approximation by decomposing 
the multi-arm problem into two subproblems each of which considers one arm only. For now, we 
assume that every object only requires one arm to grasp. When there is more than one task to 
plan for, we plan only for one task at a time using the following principle. We first choose one task 
to plan for according to some prescribed criteria and the found path (if there exists one) is sent 
for execution immediately. We then plan for another task under the constraint of the arm that is 
moving along the previously planned path. 

For the one-arm manipulation task identified above, we further distribute the planning over time 
by decomposing it into two subtasks: grasping subtask (catching a moving object), and delivering 
subtask (delivering the caught object to the goal possibly with regrasping). The main reason for 
this decomposition is due to the time constraint associated with the motion of grasping a moving 
object which would leave the work space of the arms in some limited time. 

With these two levels of decompositions mentioned above, we identify four distinct subproblems 
that we will investigate under the distribution: 

- catching a moving object when the other arm is free or available. 

- catching a moving object when the other arm is already moving. 

- delivering an object when the other arm is free. 

- delivering an object when the other arm is not free. 

In the next section about fast path planning algorithms, we will describe the planning primitives 
developed for solving these subproblems. 

4.2     New Methods for Fast Path Planning 

In the previous section we decomposed the overall problem in our scenario into subproblems solvable 
in a space of dimension 3 or less. During this quarter, we have also developed a planning primitive 
to solve the first subproblem: Plan a grasp motion for one arm (ARM 1) to catch a part on a conveyor 
when the other arm (ARM2) is available. 

One approach to plan ARMl's motion is by treating ARM2 as a static obstacle and searching for a 
path in ARMl's C-space (a 2D space under our assumption). However, since the reachable regions 
of the arms overlap, it often happens that ARM2 is in a configuration obstructing ARMl's motion. 
In this case, the planner may fail to find a path for ARMl or, even if a path exists, the length of 
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this path may be too long for ARMI to catch the moving part in time. As a result, the primitive 
using this approach is a rather weak one. A better approach is to make use of the fact that ARM2 
is available and make ARM2 move out of ARMl's way whenever ARM2 is obstructive to ARMI. 

We formalize this problem in the so called Configuration-Time Space (CT-space) where we augment 
C-space with an additional dimension time. Under our assumptions, the C-space for an arm at any 
given time instant is a 2D space whose C-obstacles is a function of the other arm's configuration. 
Therefore, the dimensions of CT-space is three in this case. 

This planning primitive is an iterative two-step process: finding the most efficient motion for ARMl 
to catch the moving part at a predicted goal, finding the necessary motion for ARM2 to move out 
ARMl's way, and then deciding whether this coordinated path is feasible for execution. Since the 
part is moving, the goal configurations for ARMl correspond to a curve segment in ARMI'S CT-space 
(CTi). In the beginning of the iterative process, the last goal point in this curve is used to plan for 
ARMl's motion. In the first step, we plan the most efficient motion (e.g. a straight-line motion in 
ARMl's joint space satisfying some maximum velocity constraint) for ARMl to reach ARM2'S goal 
configuration disregarding the existence of ARM2. In the second step, we map the path of ARMl 
into some forbidden region (called CT-obstacles) in the ARM2'S CT space (CT2). A path for ARM2 
is then planned such that it stays in the free space of its CT space for the duration of the ARMl 
path, i.e., it moves away to accommodate the motion of ARMl. If a path is found and its scheduled 
starting time (ts) is later than the current time (/c) the path is sent for execution immediately. 
However, if the starting time is much greater than the current time, say greater than a threshold, 
the planner will try to improve the plan by choosing an earlier goal and runs the two-step planning 
process again to find a path that can be started earlier. Whenever the current time equals the 
starting time of the current path (if any), this improvement process is abandoned, and the current 
path is immediately sent for execution. 

We have conducted several experiments of this primitive in a simulated environment to verify and 
evaluate the algorithm. The results show that the primitive is very efficient and the primary cost 
for the planning is in the second step of each iteration. A typical planning time for an iteration is 
around 40 ms on a DEC Alpha workstation and it normally takes 2-3 iterations before a satisfactory 
path is found. 

4.3     Parallelization of Path Planning 

During this quarter we continued working on the implementation of the path planning approach that 
we have developed over the past two quarters. This approach consists of a preprocessing and a path 
planning stage. In the preprocessing stage, which is done only once for a given workspace, a network 
is constructed in the free part of the configuration space (C-space). The network nodes correspond 
to randomly selected collision free configurations and the network edges to simple collision free 
motions between the nodes. In the planning stage, we connect any initial and final configuration of 
the robot to two nodes in the network and compute a path through the network to connect these 
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nodes. We would like to be able to do path planning very fast, after the computationally expensive 
preprocessing step. 

So far, we have concentrated on the generation of a network in the C-space that captures the 
connectivity of the free C-space as well as possible. As described in the previous report, we first 
generate a number of random nodes and then use a simple and fast path planner to connect neigh- 
boring nodes (according to a distance measure in C-space). We compute the connected components 
of the resulting graph. We have observed that for examples that involve 7 to 10 dof robots moving 
in constrained environments a few large components are present at the end of this step, even if 
the free C-space is connected. We would like to obtain one single connected component in the free 
C-space, if the latter is connected. 

In order to connect produced components to a single component in the free C-space we have two 
choices. We can (1) use a more sophisticated path planner to obtain connections between nodes 
in different components or (2) increase the number of generated random nodes (N) and hope that 
the components will get connected with our simple path planning techniques. 

First we tried (1). We used the Randomized Path Planner (RPP) to connect configurations in 
different components that are "close" according to our measure of distance in C-space. In many 
cases we achieved connections in reasonable time. However, there are examples where RPP takes 
long to produce a path. 

Then we experimented with (2) above. Increasing N results in producing one connected component 
in easy cases. But for the examples we were interested in, this did not happen unless N became 
very large. Also, we have noticed repeatedly that there are areas of the workspace where it is 
difficult to add nodes: the number of random nodes created in these areas increases very slowly as 
the total number of node increases. 

We believe that it will be to our advantage to add nodes non-randomly at this stage and try to 
enhance the information we have about these areas. One way to do this is to expand all the 
configurations belonging to small components. By expansion we mean the creation of a random 
node in the neighborhood of the expanded node. This can be done by varying each dof of the robot 
in an interval centered around its current value. Intuitively the expansion of the small components 
leads to an explosion of the area covered by the component. (We consider as small any component 
with less than 30% of the total nodes.) The new nodes created by expansion are tried for connections 
with the previous nodes as before, that is we try to connect each of them to its neighbors using our 
simple path planner. After this, we again compute the connected components of the graph. 

Indeed preliminary experiments have shown that the components computed after the enhancement 
are denser and seem to cover the space better. In many cases we obtained one significant connected 
component in the graph at the end of the preprocessing step. In other cases, where we still needed 
to use RPP, we observed that running times seemed to decrease. 

During next quarter we plan to work more on the enhancement idea outlined above. It may be 
possible to find heuristics that better identify the difficult parts of the C-space and other expansion 
techniques that are more efficient that what we use now.  We believe that enhancement is a key 
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element for the success of our method. 

4.4 Multi-Arm Manipulation Planning in 3D 

Details of our multi-arm manipulation planner for a 3D workspace are given in the first three quar- 
terly reports of '93. The manipulation planner was originally developed for robotics applications 
but we have found that it will apply to any system of linkages that has an inverse kinematics solu- 
tion. We are thus, investigating the full range of applications for our manipulation planner. During 
this quarter we have begun integrating our manipulation planner with a human arm inverse kine- 
matics algorithm. The particular inverse kinematics solution we are considering is the algorithm 
by Kondo, which is based on the sensory-motor transformation model from neurophysiology. The 
goal of this particular line of research is to automatically compute realistic human arm motions to 
complete such high-level task commands as "move the box to the other side of the table". The 
input to the system would be a model of the environment, the movable object, and the forward 
and inverse kinematics of the human arms. The output is the desired motions computed by the 
manipulation planner. We see such a system as being a useful tool for studying the ergonomy of 
tasks and products. 

4.5 Experiments in Manipulation Planning 

During the last quarter, we extended our task planner from handling a single object to handling 
multiple objects with various grasp requirements for the arms. In this quarter, we have finished 
the implementation of basic functionalities for handling multiple objects in the task planner and 
experimented it with the newly developed path planning primitive described in the previous section. 

The task planner plays the role of a decision maker between the robot and the path planning 
modules. The task planner keeps a list of objects reported by the world modeler and a list of goals 
to achieve specified by the user interface. When there are multiple tasks needed to be planned, the 
task planner assigns priorities to the arms and objects according to some prescribed rules and sends 
the task (using which arm to grasp which object) with the highest priority to the path planning 
module to search for a path. For example, when there is a mix of static and moving objects in the 
work space, the task planner first plans for the static objects that were placed on the table but 
haven't reached their goals yet. This is due to the fact that these static objects are already in the 
work space and could be potential obstacles that prevent other moving objects to reach their goals. 
For moving objects, the task planner always plans for the earliest object that would leave the work 
space so that it can accomplish as many tasks as possible. When a moving object is reachable by 
both arms and both arms are available, the task planner always choose the arm which is closer to 
the starting position of the conveyor belt first and uses the other arm as a backup when the first 
trial fails. 

We have conducted extensive experiments on the task planner with the path planning primitive 
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mentioned in Section 3. The results show that the task planner is very robust in handling possible 
disturbances from the outside world (e.g. the on-line changes of the current location or the goal 
location of an object). When the changes in the state of the world are detected, the task planner 
can always come up with a feasible path to achieve the new goals or fail gracefully by notifying the 
user the causes for the failure. 

4.6    Landmark-Based Mobile Robot Navigation 

During the previous quarters we have developed and implemented several efficient algorithms for 
landmark-based mobile robot navigation. Mobile robot navigation is perhaps the most crucial 
problem in mobile robotics. Despite a lot of research effort over the past two decades, the problem 
still has no satisfactory solution. Prior theoretical studies and experiments with implemented 
systems tell us that: 

• One cannot build a truly reliable system without both making clear assumptions bounding 
uncertainty and enforcing these assumptions by appropriately engineering the robot and/or 
its workspace. 

• If assumptions are too mild, the planning subproblem is computationally intractable.   If 
assumptions are too strong, engineering is too costly and/or navigation not flexible enough. 

Our research investigates the tradeoff between "computational complexity" and "physical complex- 
ity" in reliable mobile robot navigation. Our approach consists of: 

1. Defining a formal navigation problem with just enough assumptions to make it possible to 
construct a sound and complete planner that is also computationally efficient. 

2. Designing and implementing such a planner, in order to verify that the planner is actually 
efficient. 

3. Engineering a robot and its workspace to enforce the assumptions in the defined problem, in 
order to verify that the "cost" of such engineering is reasonable. 

4. Implementing a navigation algorithm that makes a real robot execute plans generated by the 
planner, in order to verify that navigation is actually reliable. 

This approach also induces a new role for experimentation in robotics: When robot algorithms are 
proven correct under formal assumptions, the purpose of experimentation shifts from demonstrating 
that they behave as intuitively expected on a sample of tasks, to verifying that the amount of 
engineering induced by the assumptions is acceptable. 
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Our previous quarterly reports describe work on steps 1 and 2 above. In the Spring'93 quarter we 
started dealing with steps 3 and 4. Our work centered on experimentations necessary to implement 
the landmark-based motion planner developed during the previous quarter. We decided to use 
visual landmarks that are to be located on the ceiling in an indoor environment to designate 
the landmark regions, where the mobile robot is assumed to have no uncertainty in sensing. A 
CCD camera module is installed on the top of the robot, pointing upward to detect and identify 
landmarks. 

During the summer quarter '93 we implemented a prototype of the landmark-based planning and 
navigation of a mobile robot in an indoor environment using visual landmarks located on the ceiling. 
We also improved the design of the landmark to allow larger number of landmarks (up to 512) and 
implemented a faster recognition algorithm (approximately 600 milliseconds on an 80386-based 
robot). 

During this quarter, we extended the planner slightly to allow a new kind of landmark, called 
"generalized landmark," that does not require perfect sensing and control anywhere in the landmark 
area induced by this landmark. We also conducted additional experiments. We found out that, 
in some circumstances, being able to control directional uncertainty (a facility embedded in our 
planner) is key to navigation success. One such case when the environment requires us to place 
landmarks far apart; by spending more time in image processing under a landmark (using sub- 
pixel treatment), we were able to reduce directional errors by 3 to 5, allowing the robot to reliably 
navigate in areas sparsely covered by landmarks. 

4.7    Mobile Robot Navigation Toolkits and Simulator 

Over the past quarters we have developed mobile robot navigation toolkits embedding a variety 
of functions, such as potential field computation, navigation in potential fields, path planning, 
landmark-based navigation, static and dynamic localization using environment sensing, etc. We 
also have developed a simulator for one or several mobile robots operating in the same environment. 

Both these toolkits and simulator have been transferred to Nomadic Technology. This company now 
markets this software (it has sold over 50 mobile robots to a variety of universities, organizations, 
and companies in the US and abroad). We consider that our research on this topic has attained 
its objectives. We will not conduct additional research on these topics within this project. 

4.8     Summary of Main Results Obtained So Far 

1. Identification of several axes for distributing path planning software in an on-line architecture. 

2. A documented Randomized Path Planner package has been made available to other research 
institution on the computer network. Several organizations are using it. 
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3. Implementation of parallel versions of RPP on a Silicon Graphics 4D/240 multiprocessor 
machine and on a local-area network of UNIX-based workstations. 

4. Definition of a new, FFT-based method to compute obstacles in configuration space. 

5. Definition and implementation of a new path planning method (the vector-based planner) to 
generate paths for robots with many degrees of freedom. 

6. Integration of several path planners (RPP, vector-based planner with/without potential fields) 
in a package distributed over a network of UNIX-based workstations. 

7. Partial design and implementation of a new, two-phase path-planning approach, which we 
call the "randomized roadmap planner." 

8. Design and implementation of an optimal-time motion planner for closed-loop kinematic 
chains. 

9. Design and implementation of a randomized three-arm manipulation planner for manipulating 
an elongated object in a 3D cluttered environment. 

10. Design and implementation of a new landmark-based mobile robot planning method. Exten- 
sion of this planner to deal with controllable uncertainty. 

11. Definition of the layout of a software toolkit to efficiently develop new navigation systems. 
Implementation of several toolkits. 

12. Development of a powerful multi-mobile-robot simulator to facilitate the development and 
debugging of programs for multiple interacting mobile robots. 

PhD Defenses: 

Anthony Lazanas (Landmark-based navigation planning) successfully passed his PhD orals. 

Others: 

- J.C. Latombe was elected AAAI Fellow for his contributions to the "Theory and Practice of Robot 
Motion Planning." 

- C.Becker was a member (with 3 other students) of the Stanford team that won the first event at 
the AAAI-93 Mobile Robot competition, using our NOMAD 200 robot. 

4.9     Status 

Our research progresses according to schedule. 
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Chapter 5 

Applications and Technology 
Transfer 

It is not possible to develop generic technology without multiple, specific applications to test and 
refine the ideas and implementations. As such, we are actively seeking sites, both internally and 
externally to provide the compelling test beds that will make this project succeed. These driving 
applications span a variety of the most important target users: high-performance control, intelligent 
machine systems, underwater vehicle command and control, and remote teleoperation. Several of 
these projects will reach for new limits in advanced technology and system integration; others will 
address real-world problems in operational systems. 

With the reduced funding levels, we will not have the resources to support all of the originally 
proposed technology evaluation sites. However, we believe these sites are crucial to the development 
of ControlShell into a viable technology for "real-world" use. Thus, we have actively pursued 
alternative means of supporting external sites. We have been successful in securing several new 
test applications. These sites will either function with minimal support, or fund their own support. 

This chapter highlights some of the activities of these projects. 

The currently-active ControlShell applications are: 

• Precision Machining, by The Stanford Quiet Hydraulics Laboratory. 

• Underwater Vehicle Control, a joint project between the ARL and the Monterey Bay Aquar- 
ium Research Institute. 

• Intelligent Machine Architectures, by Lockheed Missiles and Space Corporation. 

• Remote Teleoperation, by Space Systems Loral Corporation. 

• Space-based Mobile Robot Systems, by several ARL students (NASA-sponsored). 
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• High-Performance Control of Flexible Structures, by several ARL students (AFOSR-sponsored). 

• Space-structure assembly, by NASA Langley Research Center. 

• Mobile-robot control by NASA Ames Research Center. 

5.1 NASA sites 

5.2 MBARI Underwater Vehicle 

5.3 Transfer of Planning Technology 

• Part of our mobile robot software (simple planner, simulation, landmark vision software) has 
been ported by Nomadic Technologies, and is part of the software distributed by this company 
with their mobile robot NOMAD 200. 

• J.C. Latombe and L. Kavraki assisted Nova Management, Inc., in building an automated 
route planner for tanks in support of US Government Contract No. DAAE07-C-93-0026. A 
prototype version of this planner was successfully demonstrated to Army representatives. 

• B.Romney (a PhD student) spent the summer at GM Research Labs in Warren, MI, and 
implemented a version of assembly planner there. He connected this planner to the UNI- 
GRAPHICS CAD system. 

• R.H. Wilson (a Ph.D. student, then a Research Associate) was hired as a Research Scientist 
by SANDIA Labs, Albuquerque, NM. 

• A. Lazanas, a Ph.D. student involved in this project, has been hired by Salomon Brothers, 
NY, to apply his expertise in geometric computing to finding good investment strategies. 
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