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Abstract 

This work is intended to provide a semantics for a fragment of a programming language described 
by György Revesz in [Rev88], for which no model was known. We begin with a brief presentation 
of the syntax of the lambda calculus and some relevant extensions. We then describe a class 
of complete lattices and use them as models for the lambda calculus. We then find specialized 
sublattices which we use as models for the extensions of the lambda calculus, thus achieving the 
original goal of finding a semantics for Revesz's language. 
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1    A List-oriented Extension of the Lambda Calculus 

In this section, three lambda calculi will he presented. The first is the standard untyped lambda 
calculus, and is presented to standardize notation and provide the reader with a review. The second 
is the lambda calculus with "applicative lists", an extension of the untyped lambda calculus and 
a substantial fragment of a programming language presented by Gryörgy Revesz in [Rev88]. The 
third is another extension of the untyped lambda calculus — the lambda calculus with "explicit 
products", another invention of Revesz, presented in [Rev95] — which will ease the transition from 
finding a model for the lambda calculus to finding a model for the Revesz's language in subsequent 
sections. 

1.1    The Lambda Calculus 

In this section we briefly review the definition of the lambda calculus and the axioms for converta- 
bility between terms, following the presentation in [Bar84]. 

Definition 1.1.1  The set A of terms is defined inductively as follows: 

(i) If x is a variable then x £ A; 

(ii) // x is a variable and P G A then (Xx.P) e A; 

(iii) IfP,QeA thenP{Q)eA. 

To simplify notation, we omit the parentheses around lambda expressions when there is no ambi- 
guity; e.g., (Xx.P) is written Xx.P. 

If a term P e A is an exact symbol-by-symbol copy of a term Q G A, we write P = Q. The 
relation =, intended to denote semantic equivalence, is axiomatized by the following rules: For all 
terms P, Q, R, S, and all variables x, 

(R) P = P; 

(S) P = Q implies Q = P; 

(T) P = Q and Q = R implies P = R; 

(C) P = Q and R = S implies P(R) = Q(S); 

(f) p = Q implies Xx.P = Xx.Q; 

(a) Xx.P = Xz.{z/x}P, for any z which is neither free nor bound in P;1 

(/?) (Xx.P)(Q) = {Q/x}P? 

We will denote the resulting equational theory "A/?". This theory can be strengthened to a theory 
Xßrj by addition of the following rule: 

(rj) Xx.P(x) — P when x is not free in P. 
1Here the. notation {z/x}P is defined to mean "z replaces all free occurrences of x in P". We assume here that the 

reader is familiar -with the notion of a "free occurrence" a variable and "replacement" of an expression for a variable; 
for an excellent discussion of the subject, see [Bar84, Appendix C]. Note that this presentation of the (a) rule is 
slightly different from the standard presentation, but in the presence of the (£) and (C) rules it is equivalent. 

2 Care must be taken when substituting Q for x in P so that free variables in Q do not become captured in P. 
This problem can be avoided by judicious use of the (a) rule on subterms of P. Henceforth we assume that free 
variables of Q will not become captured in {Q/x}P. 



1.2    The Lambda Calculus with Applicative Lists 

What follows is the syntax for a list-oriented extension of the Lambda Calculus, following [Rev88]. 
For the purposes of this paper, we will restrict it to the essential elements being studied, i.e., 
the lambda calculus along with nlist creation and manipulation primitives. We will denote this 
elementary programming language AAL. 

Definition 1.2.1  The set of terms AAL of ^AL is defined inductively as follows: 

(i)  The atoms head, tail, cons, nil, null, true, false, and cond are in AAL; 

(ii) If x is a variable then x 6 AAL>' 

(iii) If x is a variable and P g AAL then (Xx.P) g AAL; 

(iv) IfP,Qe AAL then P{Q) g AAL. 

To simplify notation, we often use some syntactic sugar by writing composites of the list functions 
in standard list notation. That is, () := nil and for n > 1 and terms Ei,... ,En, 

(Si,...,K>:=cons(B1)((^,...,K». 

Convertibility in AAL, denoted =, is axiomtized by the rules (R), (S), (T), (C), (£), (a), and (/?) 
of the lambda calculus, plus: 

(7) (Applicative List Property) For all n > 0, variables x, and terms M, Eu ... , En g AAL1 

(71) (EU... ,En)(M) = (EtiM),... ,En(M)}, 

(72) \x.{Ex,... ,En) = (Xx.Eu... ,\x.En); 

(5) For n > 1 and terms M, AT, Et,... , En, 

head(()) = (>, head((S1,... ,En))=E1, 
tail(()) = (), tail«^,... ,En)) = (E2,... ,En), 
null(()) = true, null((^i,... ,En)) = false, 
cond(true)(M)(AT) = M, cond(false) (M)(iV) = N. 

These rules provide AAL with interesting functional properties, which are explored in [Rev88]. 
They are also reminiscient of Backus' FP construction in [Bac78]. 

It should be noted that if we assume the (r)) rule as well, then (72) becomes superfluous. In 
fact, the models that we will be building for AAL in this work do satisfy the (?;) rule, although it 
is not specifically required by the definition. 

Although lists can be encoded in pure lambda calculus terms (for example, see [Rev88] and 
encodings for pairing in [Bar84]), it is not known whether there is an encoding that yields the 
applicative list property (the 7 rule) while still satisfying (S) rules. Given the unlikelihood of such 
an encoding, it is worthwhile to consider models in which the list manipulation primitives are 
represented directly. 

This turns out to be a nontrivial problem, and it is easier to go by way of finding a model for 
a slightly simpler extension of the lambda calculus, described in the next section. 



1.3    The Lambda Calculus with Explicit Products 

It is quite common in programming language design to implement lists via pairing with a distin- 
guished end-of-list element such as nil. In particular, one sees that given a pairing operator (•, •) 
and element nil, one can encode the list (Eu ... ,En) as [Eu (E2, (• • • ,{En,nil)))). Given projec- 
tion functions for depairing, it is easy to imagine encodings for head and tail. Furthermore, if the 
pairing has the applicative property ((F, G)(X) = (F(X), G(X)) and nil(X) = nil) then the lists, 
which are encoded as cascading pairs, inherit the applicative property. 

This is the motivation for studying the next system, the Lambda Calculus with Explicit Prod- 
ucts. Although it is weaker than AAL, it retains the applicative property. We will find a model for 
this system, and with appropriate choices for the list atoms and an encoding for lists (which, as it 
turns out, is more complicated than the example above), we will be able to enrich this model to 
yield a model for AAL. 

Definition 1.3.1  The set of terms AEP of XEP is defined inductively as follows: 

(i)  The atoms fst and snd are in AEP. 

(ii) If x is a variable then x 6 AEP . 

(iii) If x is a variable and P e AEP then (Xx.P) 6 AEP- 

(iv) IfP,Qe AEP then P(Q) e AEp. 

(v) IfP,Qe AEP then (P, Q) e AEP. 

Convertibility in AEP, denoted =, follows the rules (R), (S), (T), (C), (£), («), and (/?) of the 
lambda calculus, plus: 

(7) (Applicative Pair Property) For all P,Q,Re AEp and variables x, 

(71) (P,Q)(ß) = (P(ß),Q(Ä)), 

(T2) Xx.(P,Q) = {Xx.P,Xx.Q). 

(£) (Projections) For all P, Q e AEp, fst((P, Q)) = P, and snd((P, Q)) = Q. 

Notice that AEP is merely the untyped lambda calculus with pairing and the 7 and S rules. As 
with the comments in the last section, it is not known whether there is an encoding of pairing in 
the lambda calculus that satisfies these rules. Hence, the approach taken in this work is to build a 
model that represents pairing directly. 

This pairing required above differs from the usual definition of pairing in that it need not be 
surjective. That is, a stronger version of pairing satisfies the following rule: 

(SP) (Surjective Pairing) P = (fst(P),snd(P)) for all terms P. 

The Lambda Calculus with Explicit Products does not require this condition, but it turns out that 
the models we shall build do indeed satisfy this property. 

In the next section, a class of models for the untyped lambda calculus is introduced. Specific 
properties of these models are used to yield a model for AEP; these models are then further refined 
to achieve the original goal of finding a model for AAL. 



2    Powerset Models of the Lambda Calculus 

Over the years, a number of interesting models for the lambda calculus have been developed. A 
class of models with which it will be particularly convenient for us to work was developed and 
presented by Dana Scott in [Sco96], and is briefly presented again here. 

2.1    Complete Lattices and Fixed Points 

One method used to produce a model for the lambda calculus is to find an object D in a carte- 
sian closed category such that [D -» D] is a retract of D. More precisely, one finds mappings 
$: D -»■ [D -> D] and *: [i)-tfl]->fl such that $ o ^ = id[£>_>D]. However, by Cantor's Theo- 
rem, this is impossible when [D -4 D] is the full function space of D. This difficulty was overcome 
by Scott by restricting [D -> D] to be the continuous maps from D to D, for a proper notion 
of continuity. It turns out that there are notions of continuity expressive enough to capture all 
A-definable terms, and hence all computable functions. 

We will work in the category of complete lattices. In this section we will quickly review a few 
basic definitions and theorems in order to set the stage for the model constructions that follow. 

Definition 2.1.1 A complete lattice is a partially ordered set (P, C) such that every subset 
S C¥ has a least upper bound; that is, there exists ay € P such that 

(i) x C.y for all x 6 S, and 

(ii) x C. z for all x e S implies y C z. 

We denote the unique least upper bound of S by \_\ S. The least upper bound of {x, y} is denoted 
x U y. The greatest lower bound of S is \J {x | x C. s for all s 6 S] and is the unique y e P such 
that 

(i) V ^ x for all x e S, and 

(ii) ?Ci for all x e S implies z C y. 

The greatest lower bound of {x,y} is denoted xf\y. 

Definition 2.1.2 Let (Pi,Ci) and, (P2,C2) be complete lattices. A map f: V\ ->■ P2 is said to 
monotone if x Ct y => f(x) C2 f{y) for all x,y e Pi. 

Theorem 2.1.3 (Tarski's Fixed Point Theorem) Let (P, C) be a complete lattice and let the 
map f: P -> P be monotone. Denote by TV{f) the set of fixed points of f, i.e., 

TT{f) ~ {x e P | x = f{x)} 

Then TVif) is nonempty and forms a complete lattice with respect to C. 

Definition 2.1.4 A subset S C.W of a complete lattice is said to be directed if, for each .T, y g S, 
there is a z G S such that, x C. z and y C z. 

Definition 2.1.5 Let (Pi,Ei) and (P2,E^2) be complete lattices. A map f: Pi ->• P2 is said to 
continuous if, for every directed set S C Pi, 

/(U 5') = U {/w I ^s)- 



Theorem 2.1.6 Every continuous function is monotone. 

Proof: Let x C y. Then {x,y} is directed so f(y) = f(x U y) = /(.T) U f(y), i.e., / (IE) C f(y).     a 

Theorem 2.1.7 ///: Pi —► P2 andg: P2 —► P3 are continuous then g o /: Pi —► P3 j,s continuous. 

Theorem 2.1.8 // /,<;: Pi -> P2 are continuous then x 1-4 /(x) UJ(I) and x i-> /(a;) n (7(3;) are 

Let A be any set. We denote by ?pA the power set of A. It is a well-known result that ppA, C) 
forms a complete lattice, and that [J S = (j S for all S C <pA. The lattice structure on (*pA)n 

is determined by componentwise inclusion, and a map /: ppA)" -4 VßA is said to be continuous 
when / is continuous in each argument. The lattice on fllA —► !pA] is determined pointwise; i.e., 
/ C g if and only if f(X) C g(X) for every X 6 <#h. 

We denote by $X the collection of all finite subsets of X; that is, 

$X~{Y e?ßX\Y is finite}. 

Theorem 2.1.9 A function f: ?pA—)• ?pA is continuous if and only if the following condition 
holds: for all X e ^JA, 

f{X)=    (J   f{X0). 
Xoezx 

Proof: 

(=>) Clearly #X is directed. So if/ is continuous then f{X) = /(Utf^O = Uxne5X /(xo)- 

(<^) Suppose the condition holds. Let a directed X C <pA be given. Observe that for every X e X, 
ICU^soJIC £(U #). Thus 

/(X)=    (J   /(Xo)C      (J      /(*„) =/(U*). 

implying UX€.v /(*) £ /(U*)- Now let V G /flj*) = Ux„e5(U*) /(*o) be given. Choose 
xi,... ,xn e \JX such that y e f({xi,... ,xn}). Then choose Xi,... ,Xn e X such that 
Xi 6 Xi. Since A" is directed we may choose X* £ X such that X\,... ,XnC X„. So 

V 6 /({a*,... , !„}) C     (J    /(*„) = /(*,) C   J /(X). 

So / is continuous. 

Notice that for monotone functions on a powerset, showing continuity reduces to showing that 
for each y e /(X), there are x\,... ,xn e X such that y e /({«l, ■ ■ ■ ,a;«}). Intuitively, this means 
that each piece of information in the output of the computation of / on argument X is the result 
of running / on some finite portion of the input. (See [SHLG94] for a discussion and a proof of 
the Representation Theorem, which proves the equivalence of this and several other notions of 
computation.) 



2.2    Sequential Algebras 

In this section we make a few observations that will be useful when embedding the continuous 
function space ft?A -4 <pA] into <pA. 

Definition 2.2.1 Let A be a set Then An := A x • • • x A is the n-fold Cartesian product of A 
with itself. By convention, A0 is the singleton set {0}, denoted 1. We define A* as the disjoint 
union of all n-fold Cartesian products of A; i.e., 

A* := 1 + A+ A2 + A3 + • • • + A" + • • • 

Theorem 2.2.2 Let A be an infinite set. Then there exists a bisection 

ip: A* = A. 

Proof: Immediate by cardinal arithmetic. ■ 

For a given set A and ip as above, we denote tp(xi,... ,xn) by {x\,... ,xn). Since (p is a 
bijection, we see that to every element a of A there is an associated n > 0 and a\,... ,an such that 
a = (oi,... , an), while to each k > 0 and &i,... , bk in A there is a b in A such that b = (&x,... , bk). 
Hence, A is closed under formation of finite sequences (when the (• • •) operator is applied to the 
sequence), while each member of A can itself be viewed as a finite sequence. 

It turns out that this makes the following embedding of continuous functions convenient. 

2.3    Representing Continuous Functions 

Recall that we are looking for mappings *: «pA -»■ ßJA -> qJA], *: flSA -»■ $A] -> «pA such that 
<& o^ = idjipjv^fpA]. We begin with the definition for ty. The basic idea is that ty produces a "graph" 
of an argument /: qJA -4 ?pA, which, since / is continuous, is small enough to be contained in VßA. 

Definition 2.3.1  The map *: [*pA-> qjA] -+ <pA is de/med by 

*(/) := {"} U {(.Ti,... ,a;n, j/) |n,...,a;„6A and y e /({.TI, ... ,x,n})} 

for all f e fl3A - 

The intuition behind this definition is that ty records the behavior of / on arguments of finite 
cardinality, which, by the continuity of /, completely captures the behavior of /. The presence of 
{0} in the definition may seem arbitrary; this is a technical consideration which will be justified 
later. 

Definition 2.3.2  The map $: «pA->■ [*pA-> qjA] is defined by 

*(P) := X ^ {y e k\3n>0,xu... , xn e X such that (xu... ,xn,y) € F) 

It is not obvious that this mapping is well-defined in the sense of giving a continuous function in 
[q3A ->■ ?PA]. The following theorem proves that is well-defined and gives an additional result that 
will be needed later. 



Theorem 2.3.3 The map App: ($A)2 -> VßA defined by 

App(F,X) = ^(F)(X) 

is continuous in each argument In particular, this implies that for any F G !pA, $(F) is continuous 
(hence $ is well-defined.) 

Proof: It is immediate from the definition that App(F,X) is monotone in each argument. Fix 
F,X e SpAandleti/ G <&(F)(X) be given. We may choose »i,... ,xn G X such that (r,i,... ,xn,y) € 
F. Define Fa to be the singleton {(xi,... ,xn,y)} and Xn to be the set {x,\,... ,xn}. Then 

ye$({(ii,... ,xn,y)}){{xx,... ,xn}) =App(Fo,Xn) 

which is in turn a subset of both App(Fa,X) and App(F,Xo) by monotonicity.   Hence App is 
continuous in both arguments and $ is well-defined. ■ 

In order to use these mappings to give a continuous model of the lambda calculus we must 
confirm that they are continuous lattice operations. We have just shown that <& is continuous. 

Theorem 2.3.4 The map *: flSA -»?pA] -> <pA is continuous. 

Proof:   Let {fi \ i G /} be a directed set in ft?A -► $A].   We aim to show that ^fljjg/ fi) = 

Let z G Uig7 *(/i) be given. Choose i G / and xi,... , s;„, i/ G ?pA such that z = {x\,... , xn, y) G 
*(/;). Then 

V € fi({xu... ,xn}) c(\Jfi) ({si,... ,*„}), 

implying z = {xu ... , xn, y) G *(|Jjg/ /<)• Since z was arbitrary, \JieI *(/,•) C *(UIS/ /*)• 
Now let z 6 ^(Ujgi fi) ^e given and choose x\,... , xn, y G ?PA such that z = («i,... , «n, 2/) G 

*(U/0- Then V e (Ue7/i)({*!,... ,*n}) = Ug//«({^1>"- .«n». So y G /i({a;i,... ,*„}) for 
some particular i G /, implying z = (rci,... ,xn,y) G ^(/i) C Uigj^C/s)' Since z was arbitrary, 
*(Ue//0cUig/*(/0- Hence 

U*(/«) = *(U/«). 
iei iei 

i.e., ^ is continuous. ■ 

Lastly, we wish to show that this is a retract. 

Theorem 2.3.5 

$oiJ/ = id[<pA-KpA]- 

Proof: Let / G [tyk -+ ?PA] and X G ?PA be given. Let 1/ G f(X) be given. Since / is continuous, 
we may choose x\,... , xn G X such that y G f({xi,... , xn}). Then (xi,... ,xn, y) G *(/)■ But 
by definition of $, we then have 1/ G $(*(/))(X). Since j/ was arbitrary, f(X) C $(*(/))(X). 

Now let z G $(*(/))(X) be given. Choose xu... ,xn G X such that (a;i,... ,.i;n,i/) G *(/). 
But by definition of >?, we have z G / ({xi,... , rcn}). Since {.«i,... , xn} C X is finite, by continuity 
of /, z G f{X). Since z was arbitrary, $(#(/))(X) C /(X). 

So $(*(/))(X) = f[X). Since X was arbitrary, $(*(/)) = /. Thus * o * = idppA_><pA;|.        ■ 

For the rest of this work, A is assumed to be any infinite set with the a sequential algebra 
structure determined by (•••}, and mappings $ and $ are as above. 



2.4    Modeling the Lambda Calculus 

At this point, we have all that is required for a model for the lambda calculus. 

Definition 2.4.1 Let p be a ma.p from variables to tyA. We define interpretation map [-}p: A -> $pA 
inductively as follows: 

(i) [x]p = p(x), 

(ii) [P(Q)]P = H[P\P)([QU 

(iii)   [(Xx.P)]p = ^{A -► [P],(*:=A))- 

It must be shown that rule (iii) is well-defined. 

Theorem 2.4.2 For all P 6 A, the function A H4 [PI^—A) ** continuous. 

Proof: We proceed by induction on P. If P = x, then A i-4 [PI^—A) = A\-+ A = idtp,, which is 
clearly continuous. If P = y for some y / x, then A H-> \P\p^X:=A) = -A >->• p{y)i a constant map, 
which is also continuous. 

Now suppose P = M(N) for some terms M, N for which the inductive hypothesis holds. Let 
ACBe 5pAbe given. By the inductive hypothesis, \M\^X.-A) C {M\p(x.-B) (similarly for N). So 
by the monotonicity of App in each argument, [PJ^X^A) C {P]p(x:=B)- Now let c 6 [PJp(.T,:=A) = 

AppdMJ^^—A), [JV]/j(3!:=A)) t>e given. Since App is continuous in each argument we may choose 
a finite Fa C lM}p(x.=A) and a finite Xa C IN}P(X--A) such that c e App(Fa,Xa). Then by the 
inductive hypothesis we may find a finite AQ such that Fa C [MJ^—An) and Xa C \M\p<x.=Any 
By the monotonicity of App this implies c e App{lM}p(x.=Aa),{N]p(x.=Aa)) = IPJ^-Ao)- Hence 
.4 I-> IP1/7(.T,:=A) is continuous. 

Now suppose P = As.M for some term M. Then 

[P],(„=A) = *(S ^ [M]^:=A)(3::=B)) = ¥(B .4 [M1,(.T,=B)) 

which does not depend on A (so A t-4 [P]^(X:=A) is a constant, hence continuous, function). 
Lastly, suppose P = Xy.M for some term M and some variable y ^ .r. Let A C B € ?ßA be 

given. By the inductive hypothesis, lMJp^x.=A^y.=C) C lMl^x.=B^y.-C) for all (7 € qjA. This 
imphes 

lP}P{r,=A)    =    *(C ^ lM}p(r,=A)(y:=C)) 
=   {0} U {(ci,... , c„, z) | cj,... , d S A and z e [M]^,.^,,.^,...^)} 

C   {0}U{(ci,... ,c„,z) |ci,... ,c„e AandzG [M]^(X.=B)(!/.={C1]...ä})} 

=   *(CH+[M1,(«=B)(»:=C)) 

=     P%(x:=B)- 

So A t-i- [P]^(x:=A) is monotone. 
Now fix A and let w 6 [PJ^—A) be given. If w — 0 then w 6 [P]/,(.T.:=fl)- Otherwise choose 

ci,... ,c„,z such that 1« = (ci,... ,c„,z) and z £ [Af|p(S!:=A)(!/:={ci,...>c„})- Bv the inductive hy- 
pothesis we may find AQ G $A such that z e [•W]p(a!:=Ao)(y:={ei,...,cn})- Thus 

1« = (ci,... , Cn, z) S ^(C M- [M]p(a..=A0)(j/:=c)) = [P]^(x:=A„)- 

So 4 H4 [PJ^—A) is continuous. ■ 



Theorem 2.4.3 (qjA, HP) is a model for Xß. 

Proof: The axioms (R), (S), (T), and (C) follow immediately. We treat the remaining ones below. 

(£) Let the terms P, Q be given and suppose {P]p = {Q]p for all p.   Then for all A £ q3A, 

IP],(*:=A) = [Q],(„=A)- Thus 

A H- IPl^-A) = ^ ^ {Q}p(x:=A), 

implying 

[Ax.PJ, = *(A •-► [P]„(*:=A)) = *(i* I-+ IQ],(*:=A)) = l**-Q]/> 

for all p. 

(a) If z is neither bound nor free in P, 

[XZ.{Z/X}F\P   =   MA^[{z/x}P}p{z:=A)) 

= 9{A •-»■ [Pl^:=[,],(s:=A))(,:=A)) 

= tf(A h+ [P],,(z:=A)(z:=A)) 
= *(A K> IPJP{X:=A)) 

= [A.r.P]p 

for all p. 

(/?) Observe 

[(Aa;.P)(Q)]„   = *{[\x.F\p)(lQ]P) 
= $(*(A^[Pl,(x;=A)))([Q]/)) 

= (A H» [P],(*:=A))([QW 

= I-Pl^-IQ],) 

for all p. 

2.5    Generalized Application and Abstraction 

In the last section we constructed an interpretation of application and abstraction for lambda terms. 
In this section, we generalize these notions to arbitrary continuous functions and elements of $?A. 

The definition of App in Section 2.3 gives a natural interpretation of application between arbi- 
trary elements of ^JA. 

Definition 2.5.1 For F,G e ?PA, 

J?(G):=App(F,G) = *(F)(G). 

A generalized version of lambda abstraction is slightly trickier. We define it as follows. 

10 



Definition 2.5.2 // the map f: (!pA)n —► VßA. is continuous then we define for n > 1, 

(XXl.f(X1,X2,... ,Xn)) ■- (X2, ...,Xn)n *(Jfx i-f f{XuX2,... ,Xn)). 

When n = 1 we say 

(AXi./pfi)) :=*(/). 

Some care must, be taken to ensure that when an argument is "abstracted away" that we are 
left with a continuous function of the remaining arguments. 

Theorem 2.5.3 If f: (<pA)n -> <pA is continuous and n > 1, then the map g: (qjA)""1 -»■ <pA 
defined by 

g(X2,...,Xn)--(XX1.f(X1 Xn)). 

is continuous in each argument. 

Proof: We will show this for n = 2. The proof is similar (but considerably more tedious) for n > 2. 
Let a continuous /: PPA)2 —> ipA be given and define 

g(Y)~(XX.f(X,Y)). 

Let z 6 g{Y) be given. Obviously 0 e p(Y) = $>{X i-4 /(X,Y)). So suppose z ^ 0. Choose 
si,... ,i„,jeA such that (.Ti,... ,xn,y) = z. Then J/ 6 / ({»i,... 1 rcn}, Y). Since / is continuous 
in each argument, we may choose YQ S #Y such that y 6 /({••KI, ... , xn}, Yo). So (aii,... , 3;«!!/) 6 
^(X i-4 /(X, Yfl)) = g(Y(i). Since j/ was arbitrary, 

g(Y)C   (J   p(Y„). 
vbesr 

Now let Ya e W and z e g{Ya) = *(X H4 /(X, Y0)) be given. If z - 0 then we have immediately 
that z = 0 £ g(Y). Otherwise, choose x\,... ,xn,y € A such that (.11,... ,xnty) = z. Then 
So V S /({-^l!--- !-^n}iio)- Since / is continuous and Y0 C Y, y G /({xi,... ,x„},Y). Thus 
z = (.Tl,... , a;n, y) e 5(Y). Since 2! was arbitrary, 

U g(Ya)cg(Y). 
vbesr 

So g is continuous. ■ 

The use of the same abstraction and application notation as the syntax suggests that the 
conversion rules are satisfied. Obviously (R), (S), (T), and (C) are satisfied. If f,g e [qJA -> «ßA] 
and / = g then XX.f{X) = *(/) = V(g) = XX.g(X), so (£) is satisfied. The (a) rule is purely 
a syntactic property, and is trivially satisfied under this notation — XX.f(X) and XZ.f(Z) are 
two ways of writing ^(/), and hence are equal. The (/?) rule is a consequence of the following: if 
/ e [qJA -»■ <PA] and Y e ?pA then 

(AX/(X))(Y) = $(M/(/))(Y)=/(Y). 

In particular, all of these rules hold when / = X H-> F(X) for some F G !pA; for instance, the (/?) 
rule then says that 

{XX.F{X))(Y) = F(Y). 
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Example 2.5.4 Since {X,Y) HIUF is continuous, we may define 

u -.= XX.\Y.(XUY) eyk. 

However, there is no known lambda term U € A such that [UJ^ = U for all p. 

Example 2.5.5 Notice that $(X) = 0 and A(X) = A for all X 6 qJA. 

This next theorem says that App is completely additive in its first argument. 

Theorem 2.5.6 Let {Fi \ i e 1} G tyk be given. Then 

\jFA(X) = [JFi(X) 
iei    I iei 

for all X e <PA. 

Proof: Observe 

lyFfJ(X)   =   ly €A\ 3xu... ,xneXs\Kh that (xu...,:nn,y)e{jFi\ 

=   {y G A | 3i e I,xi,... ,xn £l suchthat {x\t... ,xn,y) e Fi] 

=   (J {v G C | 3KI, ... , xn e X such that {xu ... , xn, y) € Fj} 
iei 

= U^w- 

2.6    Combinators 

This section defines a few combinators in the model and proves some useful results about them 
that we will need later. 

Definition 2.6.1   We define 

FoG:=XX.F(G(X)), 

I := XX.X, 

Y := XF.{XX.F(X(X)))(XX.F(X(X))), 

H := XF.XX.F(X) 

It is worth taking a moment and describing what some of these sets look like.  For instance, 
I := XX.X is seen to be 

I = {0} U {(xu ... ,xn,y) \ xu... ,xn 6 A and y e {xu... ,xn}} 

while for any X e ^JA, 

U(X) = XY.X U Y = {0} U {{xu... , xn} y)\xu..., xn e A and ye{xu... , xn} U X). 
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Theorem 2.6.2 For all F e q3A, F(Y(F)) = Y(F). 

Proof: This is a consequence of the fact that the model satisfies the (/?) rule. We verify 

Y(F) = (XX.F(X(X)))(XX.F{X(X))) = F{(XX.F(X(X)))(XX.F(X(X)))) = F(Y(F)), 

i.e., Y is a fixed-point combinator. a 

Theorem 2.6.3 H de.fi.ned as above satisfies H = H o H, and H(F) = XX.F(X) is the maximum 
set G such that 

vxeqjA G(X) = F(X). 

Furthermore, the lattice of fixed points of H, ordered by inclusion, is isomorphic to the lattice 
PPA —> !pA] of continuous functions, ordered pointwise. 

Proof: Notice that H(F) = (XX.F(X)) = #($(F)). So for any F e <pA, 

H(H(F)) = ¥($(¥(*(*■)))) = y($(F)) = H(F). 

It follows then that 

H o H = (XF.H(H(F))) = (XF.H(F)) = H. 

Obviously H(F)(X) = F(X) for iJlIe «pA. Now let a set G E «PA be given satisfying 

VX G ?pA G(X) = F(X). 

Claim: GCH(F). Let g e G be given. If 5 = 0, then jeH(F) = AX.F(X) trivially. Otherwise, 
we may choose xu ... , .■£„, 1/ e A such that («i,... , xn, y) = p. Then So y e G({xu ... , xn}) = 
i^fai,... ,*„}). So g = (si,... ,a;mj/> e (XX.F(X)) = H(F). So G C H(F). Hence H(F) is 
maximal. 

Now we wish to show that the lattice of fixed points of H is isomorphic to [<pA -> «pA]. Notice 
that for / e [qjA -    " " 

H(*(/)) =*(*(*(/))) = *(/). 

So Rng* C FP(H). Now let F e FP{H) be given and define / := X M- F(X). Then 

^(X M- F(X)) = tf ($(F)) = H(F) = F. 

So .F7>(H) C Rng*. Hence TP{H) = Rng*. 
Now let f,g€ [«pA ->■ *pA] be given and suppose / C g (i.e., for all X € qJA, /(X) C g(X).) 

Let a 6 *(/) be given. If a = 0 then a = 0 e *(ff). Otherwise, choose .TI, ... ,xn,y g A such 
that a = («!,... ,»„,3/). So 3/ € /({«1,... ,a;n}). But f H g, implying y 6 f({xu... ,xn}) C 
ff({.-Bl,... ,a;n}). So a € tffo). Thus <£(/) C y(g). So * is monotonic. 

Now let f,ge [q3A ->• <pA] be given and suppose *(/) C W(5). Let X e <pA and j/ 6 /(X) be 
given. Choose xu... , xn 6 X such that 3/ e /({a^,... , xn}). Then (an,... , a», y) e *(/) C tf (3). 
So y € ^(s)({.i;i,... , xn}) C *(<?)(X). But *(<?)(X) = S(X) so j/ e g(X). Hence / C p pointwise. 
So ^ is order-preserving. 

Since ^ is order-preserving and monotonic onto ^^(H), we have .^(H) = [<pA -4 $pA].        ■ 

Notice that in this proof the 0 element was required in the definition of * in order to guarantee 
the maximality of H(F). 

The following theorem uses the power of the isomorphism constructed above to demonstrate an 
interesting set inclusion. 
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Theorem 2.6.4 I C H. 

Proof: Let F e <pA be given. Clearly H(F)(X) = F{X) for all X 6 <pA. By the first part of 
Theorem 2.6.3, this implies 1(F) = F C H(F). Since F was arbitrary, I C H as functions. By the 
second part of Theorem 2.6.3, this implies I C H as sets in <pA. ■ 

2.7    Types as Closures 

In the last section we found an operation H such that I C H = H o H, the lattice of fixed points of 
which was isomorphic to [?pA -»■ qjA]. It turns out that this is a specific instance of a more general 
notion of embedding mathematical types as sublattices of <pA. 

Definition 2.7.1 An element, C G *pA is called a closure operation if\CC=CoC. 

The range of a closure operation is thought of as the "type" that it represents. There are plenty 
of examples of closure operations — H is a closure operation representing the type ß}A-> *pA], 
while I is a closure operation whose fixed point lattice is all of <pA (and hence represents the 
"universal" type). In fact, a result from [Sco96] is that any algebraic lattice whose set of compact 
elements is bounded above by | A| can be represented as the fixed point lattice of a closure operation. 

We will need a few specific types in order to build a model in the next section. 

Definition 2.7.2 LetC,D be closure operations.  We define 

Co->D:=\F.(DoFoC). 

It is easy to check that this is a closure operation if C and D are. Furthermore, we see that 
F e FViCo+D) precisely when F(X) = D(F(C(X))) for all X 6 <PA. The intuition behind this 
definition is that F makes distinctions only between elements of type C and outputs only elements 
of type D. For example, notice that I o-> I = XF.\X.F(X) = H, as we might expect. An important 
result is the following, proved in [Sco96]. 

Theorem 2.7.3 If C and D are closure operations then 

TViC^D) s* [TV{C) -+ TV{D)\. 

So function spaces between types are easy to embed in $A. It will take a few more definitions 
to embed product spaces. For the following let 1 := (0,0) G ^A. 

Definition 2.7.4 IfX,Ye *PA then we define 

{X,Y) ■- U {Z 6 <PA | Z({0}) = X and Z({1}) = Y}. 

It is easy to check that X H- (X, Y) and Y H4 (X, Y) are continuous, and that (X, Y)({0}) = X 
and (X,y)({l}) = Y. In particular this means that X C (X({0}),X({1})). 

Definition 2.7.5 LetC,D be closure operations.  We define 

C<»D:=*X.{C{X({0})),D(X({1}))) 
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Notice that, C 0 D is a closure operation if C and D are. Fixed points of C 0 D look like pairs 
[X,Y) where X 6 .FP(C) and y 6 FP{D)\ i.e., X({0}) 6 TV{G) and Z({1}) e JV(Z>) if and 
only if X 6 TV{G 0 D). This suggests the following theorem, also proved in [Sco96]: 

Theorem 2.7.6 7/(7 and D are closure operations then 

FP{C®D) * TT{C) x FP{D). 

If C is a closure operation we often wish to define continuous functions /: TV(C) -»• <£A. We 
then run into a problem when trying to lambda abstract an argument from / in that we must 
ensure that / receives only arguments of type C. This motivates the following definition. 

Definition 2.7.7 

XX:C.f(X)~XX.f(C(X)). 

Hence an argument X is "cast" to type C before being sent as an argument to /. 
We finish up this section with the definition of a closure operation whose fixed point set is the 

set of closure operations. 

Definition 2.7.8 For F 6 VßA. we define F^ := I and for n > 0, F^ := F o iX"-1). Then we 
define 

oc 

Clos:= XF. \J(\UF)V>. 
n=a 

Theorem 2.7.9 If F e ?ßA then Clos(F) is a closure operation. Furthermore, If C £ <pA is a 
closure operation then Clos((7) = C. Lastly, Clos = Clos o Clos = Clos(Clos). 

Proof: First assume that I C F 6 qJA. We see that Clos(F) = \Jn=aF{n) = ' u \Jn=iF{n)- So 
I C Clos(F). We must check if Clos(F) o Clos(F) = Clos(F). Let X e Rng(Clos(F)) be given, say 
X = Clos(F)(W). Since I C Clos(F) we have X C C\os{F)(X). Now notice {F^(W) \ n € N} is 
directed since FW(W) C F^+^lw). Then 

oc OC 

F(X) = F(\J F<-n\W)) = U F<n+1\W) C X. 
n=0 n=(\ 

So F(")(X) C X for ah n, implying C\os(F)(X) C X. Hence C\os(F)(X) = X. So Clos^) o 
CIos(F) = Clos(.F). Now if I g F then we simply observe that Clos(F) = Clos(l U F) to get the 
same result. 

Now let C be any closure operation. Observe that (I U C)^ = G for all n > 1, so 
oc 

Clos(C) = U (I U C){n) = I U G = C. 
n=(\ 

Since Clos(.F) is a closure operation for any F, it follows that Clos(Clos(.F)) = Clos(F). Hence 
Clos o Clos = Clos. Plus, it is immediate from the definition that F C Clos(F), so I C Clos and 
hence Clos is itself a closure operation. So Clos(Clos) = Clos. ■ 

We now have all of the tools we need to build a model for the extensions of the lambda calculus. 
We have defined a model and have developed methods embedding continuous functions into the 
model. Furthermore, we have established techniques for embedding types into the model. These 
techniques will be employed in the following sections to find special types that yield a model for 
first AEP then AAL. 
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3    A Model for the Lambda Calculus with Explicit Products 

In this section we shall present a nontrivial model first given by Scott that satisfies the rules listed 
in Section 1.3. 

3.1    A Special Type: D 

Let A be any closure operation in ipA. Define B by 

B := Y(AXCIos(X ® (A ® X))). 

Theorem 3.1.1 

B = B <g> (A ® B). 

Proof: First notice that B is a fixed point of AXCIos(X® (A®X)), so B = Clos(B® (A® B)). So 
Clos(B) = B. Thus A ® B is a closure operation, implying Clos(B ® (A ® B)) = B ® (A ® B). Hence 
B = B ® (A ® B) as desired. a 

Now define 

C:=A®B, 

and observe B = B ® C by Theorem 3.1.1. 

Theorem 3.1.2 (Scott) TV{C) x TT{Q) =.F7>(C). 

This is implied by Theorem 3.1.4, proved below. To give a rough idea of how this isomorphism 
proceeds, we follow: 

J'ViC) x TV{C)   = TV{k ® B) x TV{C) 

<* (;F7>(A) x FP{B)) x TV(Q 

& TV{k) x (FP(B) x TV{C)) 

£ü TT{k)x (.TP(B®C)) 

= JF?(A)x.FP(B) 

= TV{k®B) 

= TV{C) 

We will make this isomorphism more explicit using the following definitions. 

Definition 3.1.3  The maps 

[v]c: J7>(C)xJ7>(C)-»^(C), 

TT0
C
: FP(C)-> FP(C), 

Tif: J-P(C) -> JT(C) 

are defined as follows: 

[F,G]c 

4(F) 
4(F) 

{F({0}),(F({1}),G)), 

(F({0}),F({1})({0})), 

n{l»({l})- 
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A quick check of the types of each of the components of F and G shows that these function are 
indeed well-defined. For instance, if F 6 .FP(C) then F({0}) £ FV{k) and F({1}) e TV{B). So 
*"({!}) ({0}) 6 ^(B), implying 4(F) = (J?({0}),F({1})({0})) € J7>(A® B) = JT(C). 

The notation used for these fimctions suggests that they are the pairing and projection functions 
that yield the isomorphism TV{C) x FP(Q) £! FP{Q). The following theorem confirms that this 
is the case. 

Theorem 3.1.4 For F,G € TV{C), the following ore satisfied: 

(i) 4([F,G]c) = F, 

(iii) [4(FU$(F)]c = F. 

Proof: 

(i) 

7r0
c([F,G]c)   =   4((F({0}),(F({1}),G))) 

=   F(smw.FeFP{C)); 

(«) 

4([F, G]c) = *f((F({0}), (*■({!}), G))) = G; 

(iii) 

\4(FUHF)]C   =   [(F({0}),i?({l})({0})),uI({l})({l})]c 
= (^({o}),(^({i})({o}),n{i})({i}))) 

=   F. 

So these are the pairing and projection mappings that make TT(C) x TV(C) = TV(C) explicit. 
■ 

Now define 

D:= Y(AXCIos(Xo4C)). 

Observe D = Clos(D o-+ C). So Clos(D) = D, implying that 

D<HC = Clos(D O-4 C) = D. 

Because of the highly specialized construction of D, we find that it satisfies a number of interesting 
properties. 

Theorem 3.1.5 (Scott) TV{D) x FP{D) ^TV{Ü). 
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As in Theorems 3.1.2 and 3.1.4, we start with arough sketch of the isomorphism, then construct 
specific functions that yield the isomorphism. We expect the following to hold: 

TV(D) x JT(D)   = fP(D^C)x FV(D o->C) 

= [.FP(D) -> TT{Q)\ x [.FP(D) ->• TV{C)\ 

s [J-p(D) -> (.FP(C) x .FP(C))] 

= [FV(D)^TT(Q] 

=   ^P(D). 

Informally, this says that elements of type D can be viewed as pairs of elements from type D, 
and vice versa. In order to make this isomorphism explicit, we provide the pairing and impairing 
operations as follows. The pair of elements F, G of type D is denoted [F, G]D and is defined to be 

[F,G}D:=\X:D.[F(X),G(X)]c 

while the projection functions 7TQ (F),7r[)(G) which yield the reverse direction of the isomorphism 
are defined to be 

rf(F) := \X:D.4(F(X)), *?(*■) := XX:D.*${F(X)). 

Observe that when F, G e TV{V) = TV{D o-> C) we have F(X), G(X) e .FP(C) for all X e 
FP(D). So [F(X),G(X)]C e JT'CQ, implying [F,G]D = AI:D.[F(I),G(X)]C e ^(Do->C) = 
.FP(D). So [-,-]D is well-defined. Similarly, typechecking Kg and 7^ confirms that they are well- 
defined. We now verify that these do indeed behave as product and projection mappings. 

Theorem 3.1.6 For F,G € FP{0), the following are satisfied: 

(i)rf([F,G]D) = F, 

(ii)7r1
D([F,G]D) = G; 

(iii) [n%(F),*°(F)]D=F. 

Proof: 

(0 

*°([F,Gb)   = AX:D.7r0
c([F,C?]D(X)) 

= \X:D.4((XY:D.[F(Y),G(Y)}c)(X)) 

= XX:D.4([F(X),G{X)]c) 

= XX:D.F(X) 

= F. 

(ii) A similar argument as (i) is used to show ^([F, G]D) = G. 
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(iii) 

[ir?(n*iD(*")]D   = *X:D.{rf(F){X),ir»(F)(X)]c 
= \X:D.[(\Y:D.4(F(Y))){X), (XY:D.^(F(Y)))(X)]C 

= XX:D.[4(F(X)),^(F(X))]c 
= \X:D.F{X) 
= F. 

Theorem 3.1.7 (Scott) [FV(P) -»■ TV{D)] ^FV{D). 

Functions that give this isomorphism are provided and proved below. The intuition behind this 
isomorphism is as follows: 

[TV{D) -> TT{D)\   =   \TV{D) -> TV{D »+ C)] 

=*   [FV{D) -> \TV{D) -> FP(C)]] 

=*   [{FT(D) x TV{D)) -> ^T(C)] 

S   .FP(Do->C) 
=   JFP(D). 

Reading from bottom to top, this equation says that every element of D can be viewed as a 
function from D to D. In particular, to make this direction of the isomorphism explicit, we define 
the map $D: FV(D) -> [FV{D) ->■ FV{D)\ by 

$D(F)--X^\Y:D.F([X,Y]D), 

while the reverse direction ^D: [TV{Ü) -> TV(Ü)} -> .FP(D) is defined as 

*D(/):=AX:D./(7r0
D(Z))(^D(X)). 

Theorem 3.1.8 ^D and <&D are well-defined. 

Proof: Let F € .FP(D) be given. Claim: $D(F) e [.F7>(D) ->■ .FPp)]. Let X e .F7>(D) be given. 
Let G := $D(F)pQ. Then G = Ar:D.F([Jf, Y]D). So 

CoGoD   =   XZ.C(G(D(Z))) 
= Az.c(Ay.F([x,y]D)(D(z))) 

= \Z.C{F([X,D(Z)]o)) 
= XZ.F([X,D(Z)]D) 

= X2kD.F([X,Z\D) 
= G. 

So G e ^^(Dc^C) = .F7>(D).   Since X was arbitrary, $D(2?) e \TV{Ü) -> .FP(D)].   So <£>D is 
well-defined. 
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Now let / g [FP(D) -> FP(D)] be given and let F := tfD(/). Observe 

CojPoD   =   \Z.C(F(D(Z))) 

=   AZ:D.C(AX/(7r0
D(X))(n

D(X))(Z)) 

=   \Z:D.C(f(ir°(Z))(*?(Z))). 

But for Z g J7>(D), TT0
D
(Z) g JT(D) so /(TT0

D
(Z)) g ^P(D) = .FP(Do-vC). Since ^(Z) g D, it 

follows that f{TT°(Z)){-K?{Z)) £TV{Q. So 

C(/KD(Z))(Wl
D(Z))) = /(^(Z))^)), 

hence 

C o F o D = \Z:D.f(n%(Z))(ir?(Z)) = F. 

So FeFV{Do+C)= FP(P). Hence *D is well-defined. ■ 

Theorem 3.1.9 $D o ^D = id^-pp^-p-p^ and *D o <&D = idj?p(D). 

Proof: Let, X g .FP(D) be given. Observe 

*D(M*"))   = *D(XH4Ay:D.F([X,y]D)) 
= AZ:D.(Ay:D.F(^0

D(X),y]D))(7rf(X)) 

= XX:D.F([^(X),^(X)]D) 

= \X:D.F(X) 

= F. 

So *D o $D = idp-pipy Now let / g \TT{D) -> .FP(D)] be given. Notice 

*D(*D(/))   = $D(XX:D.f(it°(X))(K°(X))) 

= X » Ay:D./(7rQ
D([X,y]D))(7r1

D([X,y]D)) 

= XM-Ay:D./(X)(y) 

= *►+/(*) 

= /• 

Hence $D o *D = id[rp{D)->FV(D)]- ■ 

Since we have an isomorphism between TV{D) and its function space, we actually have an 
extensional model. This will be formalized in Section 3.3. 

3.2    Lattice structure of .FP(D) 

Before proceeding further we should digress briefly to discuss the structure of FV(D). We have 
not yet confirmed that solution of the domain equations that yielded D is not trivial. That is, if it 
turns out that, the D found above is equal to A then we will have D(X) = A for all X g <pA, i.e., 
TV{0) is a singleton. We confirm that this is not the case. 
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Theorem 3.2.1 

\FP(D)\ > \FV{A)\. 

Specifically, there exists a closure operation E 6 JrP(D o-^ D) such that 

f?(A)^f?(E)Cf?(D). 

Proof: Define 

E := AiaX(D(.F)(A) ({()}), A). 

Notice that, F C D(F) so F(A) ({()}) C D(F)(A) ({()}). Thus 

F(X) C F(A) C (F(A)({0}),F(A)({1})) C (D(F)(A) ({()}), A) = E{F)(X). 

for all X. So F C E(F), implying I C E. 
For any F <= <pA is easy to show that E(E(F)) = E(F) (massive use of the (/?) rule). So 

I C E = E o E. Hence E is a closure operation. Furthermore from the definition we see that 
E(F) = E(D(F)) for aU F, while E(F) 6 FV{Do+C) = TV{D) so D o E o D = E. Thus 
EeFP(Do->D). 

Lastly, the combinators 

AF.E(F)(A)({0})     :     Eo-+A, 

\X.\Y.{A(X),k)      :     Ac^E. 

yield the desired isomorphism TV{E) = ^"^(A). ■ 

So by an appropriate choice of A, we can include in D whatever types we wish. For example, 
notice that if A = I then the entire lattice structure of Vß A is available as a retract of TV (D). 

Definition 3.2.2 

± := D(0), T := D(A) = A 

Theorem 3.2.3 

[±,±]D=-L,        [T,T]D = T. 

Proof: By its construction, [•, -]D is continuous (as are all of the other operations defined in this 
section). Since ± C i${X) and _L C -n\{X) for aUXe TV{D) we have that 

[±,±]DC[^n
D(X),7r1

D(X)]D=X 

for all X e TV{D). So [J-,-L]D is a least, element. But the least, element is unique so J_ = [±,±]D. 
A symmetric argument is employed to show [T, T]D = T. ■ 

For the remainder of this work we will assume that \TV{A)\ > 2, which enforces ± ^ T. 
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3.3    Modeling AEP 

Definition 3.3.1 Let p be a map from variables to .FP(D). We define interpretation map 

H,: AEP-*JT(D) 

inductively as follows: 

(i) [fst], = (AX:D.rf(X)), [snd]„ = (AX:D.n»(X)), 

(ii) [x]p = p(x), 

(iü) lP(Q)b = *D{[F\p)([Q]p), 

(iv) l(\x.P)lp = *D(ßK lP]p{x:=a)), 

(v) [{P,Q)h = [[F\P,[Q}ph. 

Theorem 3.3.2 (FP{D), [■][,,) is a model for XEP + (rj) + (SP). 

Proof: The axioms (R), (S), (T), (C), ((), («), and (/?) follow just as in the proof of Theorem 2.4.3. 
So to get AEP we must verify (7) and (5): 

[{P,Q)(R)]P   = *D([(P,Q)],)([ä]„) 

= (X H4 AY: D.[(P, Q)]p([JT, Y]D))([P]„) 

= \Y:D.l(P,Q)U[[R}p,Y]D) 

= Ay:D.[[P]„[Q],]D([[iJ]„y]D) 

= Ay:D.(U:D.[[P]„(X),[QKX)]c)(p];I,y]D) 

= AY: D.[[P]„([[Ä]„ y]D), [Q]„([[Ä]„ Y]D)]c 

= Ay:D.[$D([Pi/,)([Ä]p)(y),*D([Q]p)([Ä]p)(y)]c 
=   Ay:D.[[P(Ä)]„(y),[Q(Ä)]p(y)]c 

= [[P(R)U[Q(R)UD 

=   [(P(Ä),Q(Ä))]„ 
and 

Also 

l\x.{P,Q)jp    =    *D(a^l{P,Q)}P(r,=a)) 

=     *D(O H+ [[PJp(*:=ffl), [QI„(*:=0,)]D) 

=     ^D-IIPJ^^D^)), IO]^!=11?(y))]DKD00) 

= *Y:D.[lP]pir,=*°(Y))(*?(Y)), lQlp{x:=«oiY))tä(Y))k 
= AY:D.[*D(a ^ [P]p(,,=„))(Y),*D(a ►+ [Olrf^OOk 

= [*D(o H> [P]p(a.!=a)), *D(o M- IQ]P(3;:=„.))]D 

= [lXx.P}p,l\x.Q]p]D 

= [(As.P.Az.Q)!,. 

[fst((P,Q))]p   =   (AX:D.7r0
D(X))[[IP]„[QyD]D 

=   ^([[P^IQIPID) 

=   [Ph 
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and 

[snd((P,Q))]p   =   {AX:D.^(X))[[[F\P,[Q\P]D]D 

=   WI
D
([[P]„[Q],JD) 

=  [Q]P 

We see that this model also satisfies (SP): 

[(fst(P),snd(P))]„ = KD([PU7r?([P],)]D = [P],. 

Now we see that (77) is satisfied: for any term P and variable x that is not free in P, 

l(\x.P(x))]p   =   *D(A»lP(x)}p{x.,=A)) 

=   *D(A n. *D([P],(,,=A))(W^:=A))) 

=   *D(^1H4*D([P]P)(A)) 

=   *D(*D([P]P)) 

= ia 

3.4    Generalized Application and Abstraction 

Just as in Section 2.5 we can define lambda abstraction of arguments for arbitrary continuous 
functions /: (JrV{D))n -> .FP(D) and application between arbitrary elements P, G g TV{D). 

Definition 3.4.1 For f: {TV{D))n -> FV{D), we define for n>\, 

{AX!.f(Xu... ,Xn)) := {Xa,... ,JTn) h+*D(Xi h+/(Jfi,... ,*„)) 

and 

AX/(X):=*D(/). 

For any P, G g .PP(D) we define 

P[G]D:=<MP)(G). 

We will use these notations interchangeably in the sequel. 
Again, it is easy to check that these generalized versions of lambda abstraction and application 

satisfy the axioms for AEP. (R), (S), (T), (C), (£), and (a) are trivial, while the (/?) rule 

(AX.f(X))[Y]D = /(F) 

and the the (7) rule 

[F,G]D[X]D = [F[X]D,G[X]D]D. 

hold by Theorem 3.3.2. 
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4    A Model for the Lambda Calculus with Applicative Lists 

The model for AEP built cm .FP(D) in the last section turns out to have all of the elements needed 
for a model for AAL. In this section, we find interpretations for the atoms of AAL in ^^(D), thus 
finding a model that satisfies the axioms from Section 1.2. 

4.1    Booleans and Conditionals: true, false, and cond 

To begin, we need to find interpretations of true and false in the model (denoted tt and ff, re- 
spectively). The boolean type is traditionally represented as the four-element lattice B (shown 
in Figure 1), with the elements T and ± representing nonterminating computation or an error 
condition. 

Figure 1: The lattice B of boolean values. 

T 

/\ 
tt ff 

\   / 
± 

We wish to choose these elements so that there is continuous function 

cond: B x TT{Ü) x TT[D) -> TV(D) 

satisfying 

cond(W)=       «    "•:_£ (1) 

In particular, it is crucial that tt and ff be incomparable; for example, if ff C tt, then any 
continuous candidate for cond satisfying the above would force 

T = cond(ff, ±, T) C cond(tt, 1, T) = ±, 

which is clearly a contradiction. 
This next result gives us elements of the model and a closure operation corresponding to this 

type. 

Theorem 4.1.1  There exist, elements tt,ff of the model and a closure operation bool such that the 
lattice of fixed points o/bool is B. 

Proof: Following a suggestion of Scott, we define tt := [T, ±]D and ff := [_L, T]D- Notice that 

± = [±,±]D C [T,±]D = tt C [T,T]D = T 
± = [±,±]D C [±,T]D =ff C [T,T]D = T 

tt=[T,±]Dg[±,T]D=ff 

ff=[±,T]Dg[T,l]D=1t 
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as desired. 
Now let /: TV{D) -> {±, T} be defined by f(±) := ± and f(X) := T for all 1^1, and note 

that X C /(X) for all X. Define bool: JFp(D) -> B by bool(X) := [f{ir%(X)),f{ir?(X))]D. Since 
bool is the composition of continuous functions, it follows that bool is continuous. Furthermore, 
notice that X = [TT£(X), ir?{X)]D C [f{*$(X)),f(ir?(X))]D = bool(X). Let X = [U, V]D be in the 
range of bool. Then U and V are in the range of /; that is, U, V 6 {±, T}. So X 6 B. Lastly, it 
is easy to verify that {±, tt, ff, T} are fixed points of bool. So bool is a closure operation with fixed 
point lattice B. B 

Now that we have introduced boolean», it is only a small step to get an "if-then" construct. 

Theorem 4.1.2 There exists a continuous mapping cond: B x TV(D) x J"P(D) ->• .FP(D) satis- 
fying Equation 1. 

Proof: Let the function bool: TV{D) -^ B be as in Theorem 4.1.1. We define the operator 

cond: B x TV{Ü) x FV{Ü) -> FP(D) 

by 

cond(X,y, Z) := (*n
D(X) n (vrfCX) U Y)) U (^(X) n KD(X) U Y)). 

The continuity of cond follows from the fact that it is the composite of continuous functions. 
To see one case of Equation 1, observe 

cond(ff,Y,Z)   = (in(Tuy))u(Tn(iuz)) 
= (inT)u(Tnz) 
= ±uz 
= z. 

The other cases are equally straightforward. ■ 

We have found interpretations of the booleans and the condition function in the model. We set 
|true]^ := tt and {false],, := ff for all p, and 

for all p. 

Theorem 4.1.3 

Proof: Notice that 

[condj,, := AX.AYAZ.cond(bool(X), Y,Z) 

[cond(true) (P)(Q)]„   =   [PJ„, 

[cond(false) (P)(Q)jp   =   [Q]p. 

[cond(true)(P)(Q)J„   =   [cond],,[[true],,]D[[i*lP]D[lQ],]D 

=   (AX.AYAZ.cond(bool(X), Y, ^))[tt]D[[^ JD[[Q]P]D 

=   cond(tt,[P]p,IQ]p) 

=   U% 
for ah p. The proof for false is similar. 
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4.2    List Construction: nil and cons 

We wish to find interpretations of nil and cons that facilitate the construction of the list manipu- 
lation functions. We define 

[nUlP:=[tt,T|D 

and 

[cons]„:=AXAL.[ff,[X,L]D]D. 

The choice of nil and cons here is crucial in order to get lists that satisfy the applicative 
property (the 7-rule listed in Section 1.2). We verify that this rule holds. 

Theorem 4.2.1 For all n > 0 and terms M,Ei,... ,En, the following equation holds: 

l(Ex,... , En){M)jp = [(Ei(M),.... En(M))]p (2) 

Proof: First note that for aU X e JT'(D), 

tt[X]D = [T,±]D[X]D = [T[X]D,1[X]D]D = [T,±]D =tt, 

and 

ff[X]D = [±,T]D[X]D = [±.[X]D,T[X]D]D = [±,T]D =ff. 

We proceed by induction on n. If n = 0, then 

l(EL,...,En){M)]p   = Inil(M)], 

= [nil][[M],]D 

= [tt,T]D {[M}„] D 

= [tt[[Ml]D,T[[MyD]D 

= [tt,T]D 

= fnT p 

=   l(E1(M),...)En(M))Jp 

for all p. Now assume n > 1. Then 

[{El,...,En){M)\p   = lcons{El){(E2,...,En)){M)}p 

= [*. [[ElU [(&, ■■■,K)]P]D]D[[M\P]D 

= mWiP}D,llEiUlM}P}Dd(E2,... ,En)UlM}phhh 
= [ff.p^M)],,!^,... ,En)(M)jp]D]D 

=   [flF,[[Ä!(M)]p,[(^(AO,... ,En{M))]p]D]D 

=   lcons(E1(M))({E2(M),... ,En(M)))Jp 

=   l(E1(M),...,En(M))]p 

for all p. 

Hence, the applicative property is preserved in this model. 
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4.3    List Manipulation: head, tail, and null 

We now finish up the proof by exhibiting the remaining atoms of AAL and verifying their properties. 

Definition 4.3.1 

[head], := Aj&.cond(bool(ir?(L)), [nil],,»?(*?(£))), 

[tail], := AL.cond(boolKD(L)), [nil],, *?(»?(£))), 

[null], :=AL.bool(7r|?(L)). 

Theorem 4.3.2 The following (S) rules are satisfied: 

[head«))], = [()]„ [head«^,... ,£„»], = [E^, 
[tail(())], = [()]„ [tailed,... ,£„))],= [(E2,... ,En)]p, 
[null(O)], = [true],,        [null«^,... ,#„))], = [false],. 

Proof: 

[head(nil)],   = [head],[[nil],]D 

= [head],[[tt,T]D]D 

= (AL.«>nd(bool(w0
D(L)), [nil],, *?(*?(£))))[[*, T]D]D 

= cond(tt,[nil]„7r0
D(T)) 

= Inil],, 

[head(cons(^)(L))],   =   [head],[[ff, [[A]p, [L],]D]D]D 

=   [A]P; 

[tail(nil)],   =   [tail][[tt,T]D]D 

=    [nil],, 

[tail(cons(^)(L))],   =   [tail],[[ff, [[A]p, [L],]D]D]D 

=   \Hp\ 

[null(nil)l, = booing1 (nil)) = bool(tt) = tt = [true],, 

[null(cons(^)(L))], = bool(7r0
D([ff, [[A]p, [L],]D]D)) = bool(ff) = ff = [false], 

for all p. 
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4.4    Modeling AAL 

Theorem 4.4.1 (rP(D), [•],,) with the interpre.ta.tiom of head, tail, cons, nil, null, true, false, 
and cond defined as above yields a model for \AL+ (77). 

Proof: That (FV(D), [•],) satisfies (R), (S), (T), (C), (£), (a), (/?), and (V) follows from Theo- 
rem 3.3.2. The (7) rule follows from Theorem 4.2.1 and the (ft) rule is shown in Theorems 4.1.3 
and 4.3.2. _ 

5 Conclusions and Future Research 

We have accomplished the main goal of finding a model (a class of models, in fact) for AAL. Along 
the way we discussed models for \ß and AEP, which are interesting in their own right. 

The freedom of choice of A when building up D allows a rich family of types to be embedded in 
these models. It would be interesting to explore semantic models that take advantage of this feature 
to model more complicated languages. Also, the construction of these models embues them with 
specific properties that may be worth studying; for instance, the fact that FV{D) =5P(Do-»C) 
implies that the models for AEP and AAL are extensional. The model for AEP is interesting in 
that it satisfies the surjective pairing property, [TT^(F),TT^(F)]D - F, which is not required by the 
axioms for convertability in AEP. 

The construction of fists for AAL based on the pairing of AEP can be mimicked for a wide 
variety of types, such as trees. Also, it might be worth considering models similar to this one for 
"folding" lists instead of applicative lists. 

There remain several open questions. For example, is there an encoding of pairing in pure- 
lambda calculus terms that has projections and the applicative property? Note that [KI08Ü] shows 
that there is no encoding for surjective pairing in pure lambda calculus terms. If there is an 
encoding for pairing without the (SP)-rule, could encodings for the atoms of AAL be found so that 
the remaining (5)-rules are satisfied? 
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