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AFIT/DS/ENG/97-01 

Abstract 

The construction of Multi Layer Perceptron (MLP) neural networks for classification 

is explored. A novel algorithm is developed, the MLP Iterative Construction Algorithm 

(MICA), that designs the network architecture as it trains the weights of the hidden layer 

nodes. The architecture can be optimized on training set classification accuracy, whereby 

it always achieves 100% classification accuracies, or it can be optimized for generalization. 

The test results for MICA compare favorably with those of backpropagation on some data 

sets and far surpasses backpropagation on others while requiring less FLOPS to train. Fea- 

ture selection is enhanced by MICA because it affords the opportunity to select a different 

set of features to separate each pair of classes. The particular saliency metric explored is 

based on the effective decision boundary analysis, but it is implemented without having 

to search for the decision boundaries, making it efficient to implement. The same saliency 

metric is adapted for pruning hidden layer nodes to optimize performance. The feature se- 

lection and hidden node pruning techniques are shown to decrease the number of weights 

in the network architecture from one half to two thirds while maintaining classification 

accuracy. 

11 



Dissertation: 

Autonomous Construction of Multi Layer Perceptron 

Neural Networks 

/.   Introduction 

1.1    Historical Background 

Neural Networks were a budding technology in the 1950's and 1960's. Rosenblatt's 

neuron model, the perceptron, provided a fundamental building block for Artificial Neural 

Networks (ANNs) [24]. Minsky, taking into account only a small portion of Rosenblatt's 

research, presented a proof demonstrating that a single layer of perceptrons could not solve 

a problem as simple as the XOR problem [19]. This precipitated a loss of interest in neural 

network research despite Rosenblatt's evidence that multi-layer networks solved the XOR 

problem. Werbos, in his 1974 dissertation, developed a learning algorithm for multi layer 

perceptrons (MLPs) by propagating the errors backward through the network [36]. This 

work went virtually unnoticed until 1985 when Rumelhart reinvented the algorithm, calling 

it backpropagation or just backprop, and utilized it for training MLP neural networks [29]. 

MLPs trained with backprop seemed magical. They could learn weights to estimate 

functions and classify data, but alas, there is no magic. Neural networks have been thor- 

oughly analyzed and their mechanisms are now understood [5,23,26]. What has not been 

discerned is the best network architecture for a given set of data. The variables include the 

number of layers, the quantity of hidden nodes in each layer, and the best features to use. 

Previous attempts to solve the network architecture problem resulted in rules of thumb. 

For example, Wildrow says the number of free weights should not exceed the number of 

training samples divided by ten [37]. The problem with this rule, and others like them, 

is that it defines an architecture that the data can support, not the best architecture to 

separate the data. Presently, MLP architectures are primarily determined by the rules 

of thumb and trial and error. A more methodical approach using statistical regression 

was done by Steppe [32,33]. Also, feature selection techniques are generally applied to an 
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entire problem. This approach handicapped features that were only effective in helping to 

separate a subset of the problem. This dissertation defines an algorithm for constructing 

MLP networks which resolves the questions of network architecture and feature selection. 

1.2    Problem Statement and Scope 

The goal of this research is to determine how to construct a MLP artificial neural 

network layer by layer starting with the first layer of hidden nodes, dynamically select 

features depending on which classes are being separated, and prune the hidden nodes 

to optimize performance. This research determines the number of hidden layers needed; 

generates the number of hidden layer nodes needed for each layer; learns the weights for 

each node; selects the most advantageous features to separate each pair of classes; prunes 

hidden layer nodes for best generalization; proves the ability of the construction algorithm 

to correctly classify the data; proves the quality of the constructed solution; and proves, 

in general, that a framework exists whereby local learning equates to global learning. 

Construction algorithm. Neural networks can be constructed by deciding where to 

place each hyperplane then learning their weights. The construction algorithm incorporates 

localized learning to train these weights. The hyperplanes are placed to optimized the 

separation of the data in the different classes. Hyperplanes are then placed in the hidden 

node output space to isolate each class. A novel algorithm, the MLP Iterative Construction 

Algorithm (MICA), that accomplishes the above with a single hidden layer is introduced 

in Chapter II. Chapter TV introduces a Multi Hidden Layer algorithm, and an algorithm 

that determines if adding more hidden layer nodes or adding multiple layers of nodes is 

best for classification accuracy and generalization. 

Theoretical Basis. Backprop trained MLPs have a rich theoretical basis, but they 

are not guaranteed to always converge to a 100% classification accuracy on the training 

data. However, MICA can make this claim and it is proven in Chapter III for the Single 

Hidden Layer algorithm and in Chapter FV for the Multi Hidden Layer algorithm. The 

same chapters prove that MICA leads to a mean squared error approximation of the Bayes 

optimal discriminant function. 
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Feature Selection. There exist numerous feature saliency metrics and feature selection 

approaches [16,17,21,26,27,34]. The classifier based approaches generally rate features 

based on their proficiency in aiding the separation of the individual classes. This approach 

may unfairly rate a feature that performs well separating some but not all classes. The 

construction algorithm above adds hyperplanes to separate by class pair and thus can also 

rate a feature's ability to separate by class pair. This allows a feature that is superior at 

separating two classes, but inferior in separating the rest, to still be used without adversely 

affecting the classification accuracies for the remainder of the classes. This unique feature 

selection approach is demonstrated with one saliency metric in Chapter V. 

Hidden Node Pruning. Once a network is trained or constructed, there is a set ar- 

chitecture that is based on the training set. The training set may have idiosyncrasies 

not found in the data as a whole. Nevertheless, these idiosyncrasies have influenced the 

weights and the architecture found by the construction algorithm. However, the construc- 

tion algorithm offers a unique metric for determining the importance of each hidden node 

in the network. Thus, some may be removed to discount the idiosyncrasies and increase 

generalization. Chapter II offers a method to prune hidden nodes based on the importance 

metric to maximize generalization. The construction approach may create redundant hid- 

den nodes or superfluous hidden nodes with respect to training a single output layer node. 

Chapter V describes an innovative approach to reduce hidden layer nodes while training 

output layer weights. 

Theoretical Framework. The unique construction approach used herein is predicated 

upon minimizing a set of local errors to minimize the global error. Yet, the results indicate 

this approach not only equals, but often surpasses global minimization attempts. An 

analysis to determine what conditions and assumptions are necessary for local minimization 

to equal or surpass global minimization is located in Chapter VI. This provides the general 

framework which defines the necessary conditions for local optimization to equate to global 

optimization. 
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1.3   Dissertation Organization 

Chapter II develops the Single Hidden Layer MLP Iterative Construction Algorithm 

and produces the basic algorithmic blocks used in the following chapters. Chapter III 

proves the Single Hidden Layer MLP Iterative Construction Algorithm can produce an 

MLP to correctly classify any training set in general position to 100% accuracy. A sepa- 

rate proof affirms that the algorithm is Bayes optimal. Chapter IV introduces the Multiple 

Hidden Layer MLP Iterative Construction Algorithm and its theoretical basis. A unified 

construction algorithm that decides the best network architecture concludes the chapter. 

Feature Selection and Hidden Node Pruning are discussed in Chapter V. The theoretical 

framework is mapped out in Chapter VI. Chapter VII contains conclusions and contribu- 

tions. 
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//.   Constructing Single Hidden Layer MLPs 

2.1    Introduction 

This chapter details a novel algorithm for constructing single hidden layer Multi 

Layer Perceptron (MLP) neural networks for use in classification problems. The Single 

Layer MLP Iterative Construction Algorithm (SL-MICA) realizes a Cybenko-like net, i.e., 

one with a single hidden layer. Cybenko [7] proved that given enough nodes, a single hidden 

layer MLP can classify any training data such that the total measure of the incorrectly 

classified points can be made arbitrarily small. Cybenko, in his closing remarks states, 

"The important questions that remain to be answered deal with feasibility, namely how 

many terms in the summation (or equivalently, how many neural nodes) are required to 

yield an approximation of a given quality [7]." Many researchers have tried to answer 

Cybenko's question simply from the characteristics of the data [1-3,6,30,31,35], but much 

of this research is impractical. For example, Baum's Theorem 1 states, "A one-hidden-layer 

net with \N/d] internal units can compute an arbitrary dichotomy of N ^-dimensional 

vectors in general position [1]." The problem is that one usually wants to compute a 

specific dichotomy not an arbitrary one, and thus \N/d] hidden nodes may be too many 

and adversely effect generalization. Suppose one wishes to solve the two dimensional XOR 

problem with a 1000 data points. Baum's theorem suggests that we need 500 hidden nodes, 

where, in reality, four may suffice. Another well known work is Vapnik's VC dimension or 

capacity [35], which defines the maximum number of data points for which a classifier can 

be implemented on all possible dichotomies. Baum and Haussler have derived bounds on 

the VC dimension in terms of the number of hidden nodes, total nodes, and total number 

of weights [3]. However, these bounds are very conservative and led Jain and Mao to 

state, "The practical applicability of these bounds is questionable [14]." It is apparent 

that the number of hidden nodes needed is data dependent and cannot be gleaned except 

by processing the data. It is impractical to use backprop, and similar techniques, to design 

network architectures, because they can only minimize a global error. This error would be 

unknown if the network architecture is not already established and the weights trained. 

Thus, one is left with trial and error if one wants to use Backprop for learning and network 

selection.   Therefore, a construction approach, where the net is built layer by layer, is 
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the logical choice for architecture selection since it will take the data into account when 

constructing the network. A theory on this subject is presented in a paper by Roy [25]. 

Roy proffers robust and efficient learning theory and states that an intelligent learning 

algorithm should have the following general characteristics: 

1. Perform network design task 

2. Robustness in learning 

3. Quickness in learning 

4. Efficiency in learning 

5. Generalization in learning 

Construction algorithms [4,39] are becoming more prevalent. SL-MICA not only embodies 

the above characteristics, but is unique in that it designs a standard MLP network. More- 

over, SL-MICA can construct a network where the number of missed points is made arbi- 

trarily small. SL-MICA does not reduce the global error, but does minimize local errors. 

This makes SL-MICA an exceptionally powerful construction technique. The remainder 

of this chapter details the construction techniques of SL-MICA and presents comparisons 

to Backprop. 

MLP Iterative Construction Algorithm 

Normalize 
Data 

Data  ^ Train 
HLNs 

HLN fc 
Weights^ 

Train 
OLNs 

OLN w, 
WeightsT 

Relax 
HLNs 

MLP ^ 

)ata Not 

:        i 
i 
t 
i 
i 
i 

i 

HLN 
Separable                           Weights 

Figure 2.1 The principle processing blocks are displayed for SL-MICA. Subsequent to 
the TrainOLNs block, the outcomes are tested for accuracy. Afterwards either 
more HLNs are added or RelaxHLNs block occurs. RelaxHLNs removes HLNs 
until the Test set accuracy declines. 

A high level block diagram of SL-MICA is presented in Figure 2.1. The normalization 

routine simply scales each dimension of the data to a zero mean and standard deviation 
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of one, while also augmenting the data matrix with a column of ones. The Ho-Kashyap 

algorithm is central to training both the hidden layer nodes (TrainHLNs) and output 

layer nodes (TrainOLNs). A brief overview is provided in Section 2.2. The TrainHLNs and 

TrainOLNs blocks are discussed in Sections 2.3 and 2.4 respectively. The iteration training 

of SL-MICA is analyzed in Section 2.5. The relaxation block increases the generalization 

ability of SL-MICA and is explained in Section 2.6. Test results are presented in Section 2.7 

followed by concluding remarks in Section 2.8. 

2.2    Ho-Kashyap Method 

SL-MICA is a hybrid process that exercises both hyperplane placement and error 

minimization to design a MLP. SL-MICA selects an area in the feature space to place a 

hyperplane, then minimizes a local error to maximize the hyperplane's effectiveness for 

separation. The hyperplanes are placed by selecting two sets of opposite class data to 

separate. A hyperplane is trained to fit amidst the data sets by minimizing the mean 

squared error of a discriminant vector. The Ho-Kashyap method fulfills this assignment. 

There are alternative methods for finding a hyperplane to separate linearly separable 

data sets; however, the Ho-Kashyap method has several desirable qualities. Ho-Kashyap's 

method is guaranteed to converge in a finite number of iterations if the data are linearly 

separable [8, pp 161-163], and the method has an indicator if the data are not linearly 

separable. The Ho-Kashyap method is a gradient descent algorithm, whereby it minimizes 

X.W — t , where X is a matrix containing the data and w and t are to be determined. 

If the data are linearly separable, then there exists a w0 and t0 such that 

Xw0     =   f0 (2i) 

to       >    0 

X is a matrix of feature or data vectors augmented with the value one. It is shown 

below for a two-class problem with n data vectors in class 1 and m data vectors in class 

2. The data in the second class are multiplied by —1 so that the least squares solution to 

w, called the discriminant vector, will attempt to place it between the two data sets. The 

vector t must contain all positive elements for this process to succeed. 
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The superscript indicates class. The error is e = Xtu — t. If e contains all positive 

values, then the data sets are separated by the hyperplane defined by w. If e contains 

negative values, then the elements in f that correspond to the elements in e with positive 

values are increased proportionally to their error and w is then recalculated. This has the 

effect of moving w away from data on the wrong side of the discriminant. If all values in e 

are negative then the data is not linearly separable. The Ho-Kashyap method as presently 

described requires w to be recalculated for each iteration from the pseudo-inverse and t. 

However, the equations can be rewritten with an incremental update of w using e. This 

leads to Algorithm 1. 

Algorithm 1 Ho-Kashyap Method   

t\   <—  1 {This initial value is arbitrary but must be greater than 0} 
w\  <—  Xtjfi {X is training data, setup according to the problem, f defined below} 

ei   <—  Xü)i   — ti 
i  *-l 
while Si  ^ e do 

ti+i   <—  U  +  p(e{  +  |ej|) {p is an update parameter, 0 < p < 1} 

W{+i   <— Wi + pX) |e»| {X^ =   (X*X)~   X* is the left pseudo-inverse} 

e*j  <—  ~Kwi  — ti 

i <-i + l 
end while  

The X, Xt, and e values are provided as inputs. The Ho-Kashyap algorithm calls 

for e to be close to zero, but larger values can be used. For a complete derivation of the 

algorithm and proof of convergence if given linearly separable data see [8, pp 159-166]. 
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2.3    Training Hidden Layer Nodes 

The TrainHLN block of SL-MICA trains a block of Hidden Layer Nodes (HLNs) such 

that all the data in each class are separated from all data in every other class. The term 

separated is used to mean a hyperplane of the "correct orientation" exists between the 

data. "Correct orientation" is explained below. This is a necessary condition for making 

the data linearly separable when they are projected into the hidden node space. Chapter III 

details the particulars of linear separability. TrainHLN lacks additional stopping criteria, 

so it invariably trains enough HLNs to separate all the data in a class from all the data in 

the other classes. However, a metric of importance is determined for each HLN produced 

so that eventually they may be pruned. This is discussed in Section 2.6. 

MICA trains HLNs in a four step process. First, SL-MICA selects a pair of classes 

to separate. Second, SL-MICA finds the inter-class data pair with the smallest Euclidean 

distance that has not yet been separated by a hyperplane. Third, SL-MICA searches for 

the largest possible group of neighboring points around the inter-class data pair that can 

be separated by a single hyperplane. Fourth, the remaining unseparated inter-class data 

pairs are tested to see if the new hyperplane separates them. Two classes are separated 

when every inter-class data pair is separated. If there are unseparated data pairs, the 

algorithm reverts to step 2, otherwise it returns to step 1. Once all classes are separated, 

the algorithm quits, see Algorithm 2. 

Algorithm 2 TrainHiddenNodes ^  

while more class pairs i and j do 
Classy  <— ClassData {Step 1, Transfer all data pertaining to class i} 
Classj <— ClassData {Step 1, Transfer all data pertaining to class j} 

D <— distance (Class,, Classy) {Step 2, Equation 2.3} 
while D/5m ^ ooVZ,m do 

[row, column] <— min(D) {Step 2} 
Xi <— Class, (row,:) {Step 2, Transfer the data vector} 
X2 «— Classy (column,:) {Step 2, Transfer the data vector} 
Weighty <— Adapt Neighbor hood (Classi, Classj,X.i,~X.2) {Step 3} 
D <- TestForSeparation (D, Weight*,) {Step 4} 

end while 
end while   
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2.3.1 Selecting Class Pairs. MICA separates classes on a pairwise basis. For 

example, in a three-class problem, data from classes one and two are separated, then the 

data from classes one and three, and finally data from classes two and three. Separating 

all classes on a pair-wise basis is effective, but possibly inefficient because of the need for 

redundant nodes. Figure 2.2 illustrates how an HLN that separates classes one and two 

can separate classes one and three. Thus, MICA has an option of reusing HLNs to limit 

the creation of redundant HLN. 

O     Class 1 

x    Class 2 

*    Class 3 

Figure 2.2     Hyperplane reuse is demonstrated when the base class remains the same. 

Reuse can be employed whenever the base class remains the same. The base class is the 

class with the smaller value, and in the previous example would be class one. In a three 

class problem, there is only one chance of reusing HLNs, but in a four class problem this 

expands to three and in a five class problem there are six chances. Equation 2.2 calculates 

this value, 

N-l 

ReuseChances = ^J i — I (2.2) 
i=l 

where N is the number of classes. In larger class problems the number of reuse chances 

becomes significant and leads to large reductions in the number of HLNs needed for sepa- 

rating the data. Each time the base class remains the same, the number of HLNs involved 

in reuse increases. If SL-MICA is separating classes one and three, it is only reusing HLNs 

that separated classes one and two.  Whereas, if SL-MICA is separating classes one and 
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four, it is reusing HLNs that separated classes one and two, and HLNs that separated 

classes one and three. However, when SL-MICA separates classes two and four, it is only 

reusing HLNs that separated classes two and three. This is reasonable since SL-MICA 

adopts the convention that the base class is always on the high side of the hyperplane. 

This allows SL-MICA to more easily keep track of the orientation specific nature of the 

hyperplanes. 

2.3.2 Selecting Inter-class Data Pairs. After the pair of classes are selected for 

separation, a distance matrix is calculated that contains a distance value between every 

pair of points in the two classes. SL-MICA selects the inter-class data pair that are 

the closest together using Euclidean distance. This distance matrix is used to select the 

nearest neighbor inter-class data pairs and keeps track of which pairs have already been 

been separated. Let D denote the distance matrix whose entries are the distances for each 

inter-class data pair. 

D 

lb1! 

\\P12 

P2ll 

P2l\\ 

lb1™ - A! 

lb1! 

Ibx2 

\\p 

All 

All 

All 

II    1 2     II 
\\P  1   -   P ml 

|A P2m\ 

\\P\   ~   P2 

(2.3) 

where p\ is the ith data vector from the kth. class. The indices of the smallest distance 

value in the matrix are used to select the nearest neighbor inter-class data pair. Let (i,j) 

be the location of the smallest value in D. The corresponding points are derived from the 

class data as follows: p1; = Class1,i and p2j = Class2j. A distance value of zero 

indicates an inter-class data pair is not in general position. Each time a selection is made 

it is replaced with a large value equal to the computation infinity. SL-MICA adopts the 

convention that a symbol of oo in D indicates that an inter-class data pair is already 

separated. Thus, two classes are completely separated if Djj  =  oo, V i,j. 

2.3.3    Selecting Class Neighborhoods.       To achieve the best generalization, neigh- 

borhood selection is a crucial aspect of SL-MICA. A neighborhood is a set of homogeneous 
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class vectors. The larger the neighborhood, the better the generalization and the faster the 

algorithm converges. Two neighborhoods are selected, one for each class being separated. 

Figure 2.3 is a snapshot of SL-MICA training. This snapshot is taken as SL-MICA is 

placing the first HLN. The hyperplane must separate the inter-class data pair pointed to 

by the arrow. The ®'s are the class 1 data in the neighborhood of the inter-class data pair 

member from class 1 and the ©'s are the class 2 data in the neighborhood of the inter- 

class data pair member from class 2. The hyperplane is trained using the Ho-Kashyap 

algorithm, see algorithm 1, and utilizes the neighborhood data as input. 

2.5 

2 

1.5 *+■*■++ . 

1 

X            xx 

X 

X    * 
X 

*xx 
XxXx* 

++++ +4+ 
XX 

0.5 X   xx xxx   x x*x?     X 
XXX 

X 
X 

X                x f     »®X X 

xx      Hyperplane Y       0 X 

X       x Jaiii 
-0.5 "   vTT^y ffi   re«te ^-Inter-class DP 

-1 

*       x        x 
X              x 

x   x 

+44-   ffi   „        ®           © -H-    e 

+     +   +J
++     a."1" 

-1.5 *          X 
x      X           * 

+        +   + 

+       + + 

+    +        J. 

x    Class 1 

xxx    x + +#  * +     Class 2 

-2 
X                   X 

X           X    X     X 
+ +

+ + 
0     Neighborhood 

-2.5 
-2 5        -2        -1.5        -1 -0.5          0 0.5          1          1.5          2          2 .5 

X 

Figure 2.3      A snapshot of SL-MICA placing a hyperplane is presented. 

Neighbors are selected by first calculating the distances between the inter-class data 

pair members and the data from their respective classes. The data whose distances are less 

than x number of standard deviations away are designated in the neighborhood. Larger 

neighborhoods are preferred since, in general, they require fewer HLNs and result in less 

complex decision boundaries. However, if the neighborhood size is too large, the data may 

not be linearly separable. Therefore, an adaptable neighborhood size algorithm is used; 

see Algorithm 3. 
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Algorithm 3 AdaptNeighborhoood 
xstd <—  x 
repeat 

xstd <— xstd + Astd 
Neighborhood! <— GetNeighbors(Classi,x\,xstd) 
Neighborhood2 <— GetNeighbors (Class2,X2, xstd) 
X <— [Neighborhood!;-Neighborhood2] {This places the negative of the neigh- 
borhood 2 vectors under the neighborhood 1 vectors} 

Xt«-(X*X)_1X* 
weights  <— HoKashyap (x,X^,ej {Call to Ho-Kashyap Algorithm 1} 

until -^separated (Weights,Neighborhood!,Neighborhood2) 
repeat 

xstd <— xstd — Astd 
Neighborhood! <— GetNeighbors (Classic, xstd) 
Neighborhood2 <— GetNeighbors (Class2,a;2,aistd) 
X   <—    [Neighborhood!; -Neighborhood^   {This   places  the   negative   of the 
Neighborhood2 vectors under the Neighborhood! vectors} 
xt<- (X*X)_1X< 
Weights *- HoKashyap (x,X*,e) {Call to Ho-Kashyap Algorithm 1} 

until separated (weight, Neighborhood!, Neighborhood^  

This algorithm searches to find the largest possible neighborhood size, in terms of 

standard deviations, for a given inter-class data pair. The neighborhood size is initial- 

ized to some value and if all opposite class vectors in the neighborhoods are separated 

by the resulting hyperplane, the neighborhood size grows until the neighborhoods are no 

longer separable. The neighborhood size is then reduced to the previous level where the 

neighborhoods were separable. If the initial neighborhood size is too large, the neighbor- 

hood size is stepped down until the neighborhoods become separable. SL-MICA is able 

to quickly adapt the neighborhood size since it can ascertain whether the neighborhoods 

are separated by the hyperplane from inspection of the error vector from the Ho-Kashyap 

algorithm. Otherwise, considerably more processing time is required to perform separa- 

tion testing on all possible pair combinations from the two neighborhoods. The call to the 

Ho-Kashyap method, see Algorithm 1, is done with a large e value for efficiency reasons. 

The downside is that the neighborhood sizes may be smaller than would otherwise be the 

case, but the increase in efficiency offsets this drawback. 

2-9 



Figure 2.4 shows a series of snapshots as the neighborhood size adapts. In Fig- 

ure 2.4(a) the hyperplane separates the neighborhoods from the initial neighborhood size. 

In Figure 2.4(b) the neighborhood size is larger but the hyperplane still separates the 

neighborhoods. In Figure 2.4(c) the size is too large and the hyperplane cannot separate 

the neighborhoods. In Figure 2.4(d), the neighborhood size is stepped back down and 

thus, they become separable again. 

Also key to generalization is the positioning of the hyperplanes. They should be 

roughly halfway between the two data points in inter-class data pair. If the above neigh- 

borhood selection approach fails to accomplish this goal, then the neighborhood size de- 

faults to a radius around each member of the inter-class data pair that is slightly less 

than the distance between the two data points. If this approach does not result in a good 

hyperplane, then as a fail safe, the vector normal to the line connecting the two inter-class 

data points Pi,P2 are used to define the separating hyperplane, see Eq 2.4, 

(Pi - P2) • (X - Pm) = 0 (2.4) 

where Pm = (Pl+P2) is the midpoint between the inter-class data points Pi and P2. 

2.3.4 Testing for Separability. A hyperbolic tangent activation function makes 

determining separability straight forward. SL-MICA tests for opposite polarity of the 

output of the HLN, using the following equation: 

(2.5) 

where the superscript indicates class and yj is the output from the jth HLN. If the equality 

in Eq. 2.5 is true, then the points are not separated by the hyperplane. Once a hyperplane 

has separated two points it becomes "orientation specific." If a hyperplane separates class 1 

to the positive side and class 2 to the negative side, then that hyperplane can only separate 

other inter-class data pairs if they fall on the correct side of the hyperplane. SL-MICA 

forces the orientation of the hyperplane such that the base class is always on the positive 

side of the hyperplane. The base class is the class with the smaller index number. Thus, 
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Figure 2.4 A series of snapshots is presented as the adaptive neighborhood size algo- 
rithm trains. The hyperplane initially separated the neighborhoods in (a) 
and also after the first increase in (b), but not after the second increase in 
(c). Therefore the size reverts back to the last size where the hyperplane did 
separate in (d). 
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class 1 data are always on the positive side of the hyperplanes from classes 2 and 3 data, 

and class 2 data are always on the positive side of the hyperplanes from class 3 data. 

The process of searching from the minimum value in the D matrix to find the next 

inter-class data pair to separate is inefficient, because the inter-class data pair that has the 

smallest distance may already be separated. Therefore, each time an HLN is produced, 

each inter-class data pair in the D matrix is tested to see if the new HLN separated 

it. Inter-class data pairs already marked "separated" are skipped each successive round 

and processing is expedited for each new HLN produced. There is one shortcut that is 

employed to bypass some of the testing of the inter-class data pairs in the D matrix. When 

a new HLN is produced, it must separate all opposite class data in the two neighborhoods. 

Therefore, all possible inter-class data pair combinations from the two neighborhoods can 

be marked separated without having to test them for verification. Thus, the D matrix can 

be altered in the process of finding the nearest neighbor inter-class data pairs, the process 

of finding the HLNs, and the process of testing for separability. 

2.4    Training Output Layer Weights 

The TrainHLN block produces a set of HLNs with the necessary conditions for linearly 

separable data. To finish the training, the TrainOLN block places hyperplane between the 

data in one class and the data in all other classes. The X matrix contains the data in class 

i and the negative of all other data not in class i as follows, 

X  = 

x *i,i 

X n.,1 

-a; ""2,1 

s 1,2 

Z*2,2 

x\,2 

-X    1,2 

-X     2,2 

x\,k 1 

Xl2,k 1 

i 1 

-*",1i,fc -1 

~X^2,k -1 

~X         mf. -1 X       771,1 X       m£ 

If the data are linearly separable the Ho-Kashyap method will produce a discriminant 

to separate the data in class i.   SL-MICA trains one OLN per class.   The Ho-Kashyap 
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algorithm iterates until the error equals zero. When a solution is found for each OLN, the 

training is completed and the entire set of training data is guaranteed to be classified with 

100 percent accuracy. The TrainOutputNodes algorithm is shown below. 

Algorithm 4 TrainOutputNodes 

X  <—   — [Data, 1*] {1 is a vector of ones to augment the data} 
for i = 1 : NumClasses do 

Xi  <—  —Xi{This makes the data for class i positive and the rest negative} 

Xt-   (X'X)"1^ 

Weights,;   <-  HoKashyap (x,Xt,e) {Call to Ho-Kashyap Algorithm 1} 

end for   

There are two considerations for this. First, the data from TrainHLN block may not 

be linearly separable and secondly, the convergence with a large data set may be slow. 

Often a good solution can be found quickly with the error driven to within an epsilon of 

zero. Algorithm 5 takes advantage of this by checking classification results periodically 

for 100% accuracy. If the accuracy is less than 100%, then the epsilon is lowered and the 

training resumes using the previous w and t vectors. With e initially set to 5 x 10~ this 

algorithm usually converges in one iteration for the data that are linearly separable. If this 

is not the case, then Algorithm 5 still produces its best solution within a few iterations. 

Therefore, Maxlterations can be set to five or less. Section 2.5 deals with data sets that 

are not projected into a linearly separable space by the TrainHiddenNodes algorithm.. 

Algorithm 5 New TrainOutputNodes         

e*-5x 10~3 

Accuracy  <—  0 
while Accuracy  ^ 100 A iterations < Maxlterations do 

iterations <— interations + 1 
weights  <—  TrainOutputNodes (Data, e) {Call to TrainOutputNodes Algorithm 4} 
Accuracy  <— Test For Accuracy (Data,weights) 

e  <-  e/10 
end while   

2.5   Iteration of HLN Training 

If the TrainHiddenNodes algorithm does not project the data into a space where it is 

linearly separable, then the TrainOutputNodes algorithm can not generate hyperplanes to 
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correctly classify all data in the training set. If 100% classification accuracy is the goal in a 

single hidden layer MLP network, there are two aspects to extending the above algorithm. 

The first extension extracts the data points that are misclassified in the current MLP 

architecture and then trains more HLNs to separate those points. Next, combine the two 

sets of HLNs and retrain the OLNs. Figure 2.5 illustrates this approach. Figure 2.5(a) 

using the complete training data produces the first set of HLNs, which results in the 

classification coloring in Figure 2.5(b). Any points not colored correctly are added to 

a training data subset and new HLNs are trained to separate the data in the subsets. 

Figure 2.5(c) illustrates the missed training data subsets and the resulting hyperplanes to 

separate them. The new hyperplane set is unioned with the first hyperplane set and after 

retraining the OLNs results in the coloring in Figure 2.5(d). The processed is repeated 

in Figure 2.5(e) and results in the 100% classification accuracy shown in Figure 2.5(f). A 

problem arises when the newly missed training data subset is the same as the old missed 

training data subset. Since there is no randomness in the placement of the hyperplanes, 

an infinite loop results. This problem is solved in the second extension. 

The second extension adds a set of three hyperplanes for each inter-class data pair 

that is unseparated. If the data are in general position, then Baum's technique [1] can 

isolate any two data vector pairs by using three hyperplanes. The technique calculates the 

weights of a hyperplane that contains the two data vectors. Then that hyperplane is offset 

+e and a parallel duplicate is offset -e. Finally, a third hyperplane is drawn that is normal 

to both of the offset hyperplanes and intersects the midpoint of the line that connects the 

two data vectors. This completes Baum's technique, which is illustrated in Figure 2.6. 

It is complex to calculate the weights for the hyperplanes because the equations 

to solve are under-determined in a linear algebraic sense. Therefore, the weights of the 

hyperplanes are calculated through a weight update equation. If a data vector lies in a 

hyperplane, then the inner product between the weights of the hyperplane and the data 

vector will be zero. Since a hyperplane has one more parameter than dimensions of the 

space, a 1 is appended to the data vector for the inner product to calculate correctly. This 

leads to the following error equation: 
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Figure 2.5 A series of plots illustrates SL-MICA as it iterates during training. Initial 
training adds HLNs to separate all data points in (a) which results in the 
classification coloring in (b). Then SL-MICA only trains on the missed data 
points in (c), which results in a new classification coloring in (d). After one 
more iteration of training in (e) it results in 100% classification accuracy in 

(f). 
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Figure 2.6      Baum's technique for isolating two points by using three hyperplanes if the 
rest of the data are in general position 

(w-pp!,!])2, (w-[p2,i]r 
e = z 1— — (2.6) 

2 2 

where W are the weights of the hyperplane and P; is a data vector in the feature space. 

Driving this equation to zero results in a hyperplane containing the two data vectors. This 

is accomplished with the following weight update equation: 

W+ = W- + AW (2.7) 

where W+ is the updated W, W~ is the current value, and AW means the change in W. 

The change in W is determined by taking the partial derivative of the error with respect 

to W. Then stepping in the negative direction, as follows: 

AW = -V 
de 

ÖW' 
(2.8) 

where t] is the step size and is a positive small number (0.001). The partial derivative of 

the error with respects to the weights is in Equation 2.6 is: 

8W 
= (W • [Pi,!]) [Pi,!] + (W ■ [P2,l]) [P2,l] (2.9) 
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This leads to the complete weight update equation: 

W+ = W- - 77 (W • [Pi, 1]) [Px, 1] + (W • [P2,1]) [P2,1]. (2.10) 

Equation 2.10 calculates a hyperplane containing the two vectors. For the Baum 

technique, the hyperplanes are offset to straddle the points. The weight vector has one 

value for each dimension of the feature space plus one more for a threshold value. Therefore, 

to create the sandwiching hyperplanes, positive e is added to the threshold weight for 

the upper hyperplane while a negative e is added to the threshold weight for the lower 

hyperplane. The normal hyperplane is calculated as in Equation 2.4. This results in the 

following algorithm. 

Algorithm 6 TrainBaumHLNs 
Wo *— random 

repeat 
i<-i + l 
Wi = Wi_i - 77 (Wi_i • Pi) Pi + (Wi_i • P2) P2 

until (Wifill + (Wi^li = 0 
Weight! <- W 
Weightx k <— Weightx k + e {In Weighty the k refers to the last value in the vector} 
Weight2 Vw 
Weight2fc «- Weight2fc + e 
Weight3 <- Pi - P2 

Weight3^-(Pl-P2)
2
(P-+P2)  

The TrainBaumHLNs algorithm takes the place of the AdaptNeighborhood algorithm 

in the TrainHiddenNodes algorithm and TestForSeparation is removed, which results in 

an algorithm for training HLNs with Baum's isolation technique and is presented in Algo- 

rithm 7. 

A simple experiment applying TrainHiddenBaum to the XOR data set demonstrates 

the effectiveness of the algorithm. Figure 2.7(a) shows the hyperplanes generated by Train- 

HiddenNodes and Figure 2.7(b) colors the resulting output space. Compare that to Fig- 

ure 2.7(c) which uses TrainHiddenBaum to calculate the hyperplanes and the resulting 

output coloring in Figure 2.7(d).  There are more hyperplanes in Figure 2.7(c) than can 
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Algorithm 7 TrainHiddenBaum 

while more class pairs i and j do 
Classi   <—  ClassData {Transfer all data pertaining to class i} 
Classj   <—  ClassData {Transfer all data pertaining to class j} 
D   *—  distance (Class-i, Class j) {Equation 2.3} 

while D/)m / oo V7,m do 
[row, column]  <—  mm(D) 
Pi  *— Classi (row,:) {Transfer the data vector} 
P2  <—  Classj (column,:) {Transfer the data vector} 

Wjb  <- TrainBaumHLNs(P1,P2) 
D  <-  Test.ForSeparaizon(D,Wfc) 

end while 
end while 

be seen, because the plus and minus e hyperplane are very close together. Notice how the 

nearest neighbors from opposite classes appear to have a hyperplane through them and the 

presence of a hyperplane normal to the first hyperplane. These instances are circled. In 

the example, four sets of Baum hyperplanes triplets are added and those were enough to 

separate every other inter-class data pair in the data set. The TrainHiddenBaum algorithm 

does not supersede the TrainHiddenNodes algorithm because it is slower and adds more 

HLNs than are necessary for many data sets. Therefore, it is only used when extension 

one above fails to completely separate the data.. 

The SL-MICA algorithm follows the iterative approach described above until the 

missed data vectors from one iteration are the same as the missed data vectors in the 

next iteration. The TrainHiddenBaum algorithm is then used. This algorithm is clarified 

below. Thus, SL-MICA, employing Baum's technique, is guaranteed to correctly classify 

any training set in general position to 100% accuracy. A proof to this effect is presented 

in Section 3.2. 

2.6   Relaxation of HLNs 

MICA optimizes the HLN placements to maximize training set classification accuracy. 

This may hinder test set classification accuracy for data sets with overlapping classes. A 

standard approach in the Backprop world is to start with too many HLNs and prune 

down. A number of pruning techniques are discussed in [22]. However, many construction 
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Figure 2.7 TrainHiddenNodes algorithm generates the HLNs in (a) and resulting clas- 
sification coloring in (b). Then, the same data are trained with TrainHid- 
denBaum which generates the hyperplanes in (c), which results in a new 

classification coloring in (d). 
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Algorithm 8 SL-MICA 

NormData <— Normalize (Data) 
SubData <— NormData 
Accuracy <— 0 
SameData <— False 
while Accuracy ^ 100 A SameData = False do 

Weights1 <- TrainHiddenNodes (SubData) {Call to TrainHiddenNodes Algorithm 

2} , x 
Weights2 <- TrainOutputNodes (Weights1, NormDataj {Call to TramOutputN- 

odes Algorithm 4} 
OldSubData <- SubData 
[Accuracy, SubData] <- TestF or Accuracy (NormData, Weights) 
if OldSubData = SubData then 

Weights1 <— TrainHiddenBaum (SubData) 

Weights2 <- TrainOutputNodes (Weights1, NormDataj 

SameData <— True 
end if 

end while   

algorithms start with smaller networks and grow the network for best results [4,39]. SL- 

MICA does both. First it increases the number of HLNs needed to classify the training set 

to 100% accuracy, then through relaxation, SL-MICA prunes the least important HLNs to 

maximize test set accuracy, see Algorithm 9. 

The pruning is accomplished by removing one HLN at a time starting with the least 

important node and moving towards the more important nodes. The importance of the 

HLNs are measured by the combined size, number of points, of the neighborhoods of the 

inter-class data pairs used to produce the HLNs. This strategy is predicated by the theory 

that HLNs that separate the smallest numbers of points are providing the least benefit and 

that these points are likely in areas of overlapping data. The results show this pruning 

strategy is effective and keeps the added FLOPS to a minimum. 

2.7    Test Results For Single Hidden Layer MLPs (SL-MICA) 

Experiments were run to test SL-MICA's different learning schemes and SL-MICA's 

ability to define an appropriate network architecture for Backprop. There are four data 

sets in the tests that are separable with one iteration. The spiral data are two streams of 
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Algorithm 9 Relaxation 
New Accuracy «— TestAccuracy 
[N umPoints Sorted, Index] <— Sort {NumPoints) {Index is a mapping back to the 

original order of the data} 

i^O 
repeat 

i*-i + l 
ReducedWeights1   +-   Weights1 (:, Index (i + 1 : NumHLNs))  {Transfers HLN 

weight values for all HLN whose importance value ranks higher than i} 

ReducedWeights2 <— FastTrainOutputNodes (ReducedWeights1, TrainDataJ 

{Call to OLN training algorithm 5} 
OldAccuracy <— NewAccuracy 
New Accuracy <— TestFor Accuracy (TestData, ReducedWeights) 

until NewAccuracy < OldAccuracy 

i <— i — 1 
Weights1 <- Weights1 (:, Index (i + 1: NumHLNs)) 

Weights2 <- TrainOLN (ReducedWeights1, Data) 

data spiraling out from the center [10]. The mesh data form a three-class problem with 

blocks of data situated adjacent to each other with some class overlap. Iris data form 

a well known three class problem that attempts to recognize flower types from features 

measured from the flower's petals [11]. The NIST Optical Character Recognition (OCR) 

data set is a 10 class problem of the digits zero through nine, using 27 spectral features. 

There are two data sets that need more than one iteration to separate. The XOR data 

set is a set of data that mimics a logical XOR problem. The Asynchronous Transfer Mode 

(ATM) Access Control data set is a two class problem with a large number of samples [15]. 

The classes are "accept" or "reject" and the features are taken from the statistics of the 

data packets. The non linear and complex statistical characteristics of the network create 

a very difficult and intertwined two class problem. The follow seven experiments are run 

on each data set. 

• SL-MICA - SL-MICA without pruning relaxation or reuse 

• SL-MICA/relax - SL-MICA with pruning relaxation (to reduce number of HLNs) 

• SL-MICA/reuse - SL-MICA without relaxation but with HLN reuse (to prevent 

unnecessary HLNs) 

• Backprop - Backprop using architecture found from SL-MICA (Number of HLNs) 
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• Backprop/fixed - Backprop using a fixed number of hidden nodes 

• Backprop/HLN - Backprop started with the HLN weights found in SL-MICA 

• Backprop/HLN/OLN - Backprop started with the HLN and OLN weights found in 

SL-MICA 

Tables 2.1 through 2.7 contain the results of all the experiments for each data set. 

The results for the Spiral, Mesh, Iris, and XOR data are the average results from 25 test 

runs. In each test run, a random training and test set were selected prior to the algorithms 

being run on the data. The OCR test results are the average of ten test runs, while the 

ATM Access Control is from just one run. 

2.7.1 Spiral. Table 2.1 indicates the spiral test results. This data set is used 

to demonstrate a class of problems where SL-MICA is far superior to that of Backprop. 

Backprop has difficulty training weights for data sets with areas of low Mean Squared Error 

(MSE) [10]. The results show that SL-MICA achieves 100% accuracies on the training data, 

while Backprop's accuracies are approximately 60%, after 300 epochs. Other researcher's 

results indicate that 150,000 to 200,000 epochs were needed for Backprop to solve the spiral 

problem, i.e., get a reasonable classification accuracy [10]. SL-MICA does not perform as 

well on the test set for two reasons. The points in the data set are not very dense and the 

training and test sets are chosen at random. Therefore, it is not likely that every other 

point is split between the two data sets. This allows whole arcs to be in one set or the other. 

Thus, the hyperplanes in SL-MICA may be drawn to cut off whole arcs in the test set. The 

Backprop/HLN produces an important result. Backprop, given a good set of separating 

hyperplanes, can successfully learn the output layer weights to separate the data. This 

is the first result of its kind. The Backprop/HLN/OLN algorithm starts Backprop in an 

extremely confined area of the weight search space. This algorithm is unlikely to escape 

its starting valley, but it does act as a local search should there be a smaller minimum to 

find. It is interesting note that although Backprop lowers the MSE of the weights found 

in SL-MICA the classification accuracies did not increase. Figure 2.8 shows the results of 

four of these algorithms on the entire data set. 
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Table 2.1     Average Spiral Data Set Results, 25 Runs 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 22.88 NA 100% 63.75% 81.87% 2.9136 x 107 

SL-MICA/relax 22.24 NA 98.57% 65.42% 81.99% 5.9171 x 107 

SL-MICA/reuse 22.88 NA 100% 63.75% 81.87% 2.9136 x 107 

Backprop 22.88 300 63.39% 52.17% 57.78% 5.0117 x 10' 
Backprop/fixed 25 300 64.08% 49.83% 56.96% 5.4548 x 107 

Backprop/HLN 22.88 100 99.55% 60.50% 80.03% 3.1547 x 107 

Backprop/HLN/OLN 22.88 50 96.61% 62.50% 79.56% 3.6657 x 107 

Each algorithm is trained on the same data. SL-MICA required 27 HLNs to correctly 

classify the data (Figure 2.8(a)). Backprop was also given 27 HLNs (Figure 2.8(b)), but 

after 300 epochs the MSE mostly oscillated and barely changes, see Figure 2.9 top line. 

The Backprop/HLN algorithm (Figure 2.8(c)) classifies the data correctly. In this case, 

Backprop quickly adjusts the output level weights while only slightly modifying the hidden 

layer weights. As expected, this error is smooth and drops quickly, see Figure 2.9 middle 

line. Notice that the random weights initially have a lower MSE than the partially seeded 

weights. The MSE for the fully seeded weights starts at a minimum level and decreases 

slightly, and the output has only minor changes from SL-MICA's, see Figure 2.8(d). 

2.7.2 Mesh. Table 2.2 reports the Mesh test results. The data set is used because 

it favors Backprop. Backprop's strength is defining hyperplanes for data sets that have 

all high areas of MSE. SL-MICA achieves results slightly worst than Backprop for the 

test set. SL-MICA with relaxation achieves the same results as backprop on the test set 

without losing significant accuracy on the training set and achieves an overall accuracy 

higher than Backprop's. Relaxation, on average, reduced the number of HLNs by two 

nodes. In one case it reduced the number of HLNs by 7, see Figure 2.10 to see how the 

output space changes coloring. In contrast to its performance on the spiral data set, the 

Backprop/HLN/OLN algorithm improves upon SL-MICA's performance. 

Figure 2.10 illustrates the decision boundaries before and after relaxation. Before 

relaxation the boundaries are sharper, see figure 2.10(a) and 2.10(b). After relaxation, 

see Figure 2.10(c) and 2.10(d), the boundaries more closely resemble Backprop's, see Fig- 

ure 2.10(e) and 2. 10(f). 
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(a) MICA on Spiral Data - 100% Accuracy (b) Backprop on Spiral Data - 61.2% Accu- 
racy 
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(c) Backprop/HLN on Spiral Data -100% Ac- 
curacy 

(d) Backprop/OLN on Spiral Data -100% Ac- 
curacy 

Figure 2.8 The complete x-y coordinate grid is fed into four different MLP networks 
trained with the complete data set using (a) SL-MICA, (b) Backprop with 
momentum, (c) Backprop/HLN, which seeds Backprop with the HLN weights 
from SL-MICA, and (d) Backprop/OLN which seeds Backprop with all the 
weights from SL-MICA 
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Figure 2.9      Training error for the three Backprop algorithms. 

Table 2.2     Average Mesh Data Set Results, 25 Runs 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 17.24 NA 100% 94.05% 97.02% 1.0436 x 10b 

SL-MICA/relax 15.28 NA 99.88% 94.59% 97.23% 2.4684 x 10s 

SL-MICA/reuse 16.04 NA 100% 94.09% 97.04% 1.0525 x 108 

Backprop 17.24 300 98.42% 94.69% 96.55% 1.7258 x 10s 

Backprop/fixed 15 300 98.37% 94.79% 96.58% 1.5101 x 10" 
Backprop/HLN 17.24 100 99.29% 93.71% 96.5% 1.2104 x 10s 

Backprop/HLN/OLN 17.24 50 100% 94.21% 97.1% 1.3194 x 10s 
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This suggests the the difference in SL-MICA and Backprop is SL-MICA's ability to 

define the HLNs in areas of low MSE. In addition, this figure shows that the test data 

is missed because the data were along the boundaries. Relaxation picks up some of the 

missed points because the new decision boundaries are not as tight to the training data 

with respect to the class data with the misclassified data. 

2.7.3 Iris. Table 2.3 contains the Iris test results. The Iris data highlights the 

SL-MICA/Relax algorithm's ability to generalize. In the Iris data, classes 1 and 2 are 

linearly separable as are classes 1 and 3; but classes 2 and 3 overlap. This information 

is derived for the MICA algorithm. Different choices of the train and test data set can 

cause the test results to vary between 80% to 100% accuracy. Again, SL-MICA's accuracy 

is slightly less than Backprop's for the test data, but SL-MICA with Relaxation is two 

percentage points better than SL-MICA and one percentage point higher than Backprop. 

The relaxation algorithm removes HLNs used to memorize the overlapping data and im- 

proves generalization. In one trial, relaxation reduced the number of HLNs from 10 to 1 

and increased test set accuracy from 96% to 100%. The Backprop/HLN/OLN improves 

upon SL-MICA, but SL-MICA appears to be adept at learning weights near the bottom 

of local extrema where there is little room for Backprop to maneuver. 

Table 2.3      Average Iris Data Set Results, 25 Runs 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 7.08 NA 100% 95.37% 97.69% 1.5462 x 10' 

SL-MICA/relax 3.52 NA 98.99% 97.28% 98.8% 1.8767 x 10' 
SL-MICA/reuse 6.08 NA 100% 95.14% 97.57% 1.4979 x 10' 

Backprop 7.08 300 99.15% 96.16% 97.65% 2.3116 x 107 

Backprop/fixed 8 300 99.23% 95.92% 97.58% 2.5895 x 10' 

Backprop/HLN 7.08 100 100% 95.29% 97.65% 2.1093 x 10' 
Backprop/HLN/OLN 7.08 50 99.96% 95.45% 97.71% 1.9293 x 10' 

2.7.4 OCR. Table 2.4 shows the OCR test results. This data set is used for 

two purposes. With its 10 classes and 3471 vectors, it is a suitable test for stressing 

the algorithm. It is also a good test of the reuse feature which affords 36 opportunities 

for reusing existing HLNs, see Equation 2.2. This data test has been a barometer of 

the evolution of SL-MICA. Originally, the algorithm used a genetic algorithm to find 
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Figure 2.10 The complete x-y coordinate grid is fed into three different MLP networks 
trained using SL-MICA, SL-MICA, and Backprop. These results are over- 
layed with the training data in (a), (c) and (e) and with the test data in 
(b), (d), and (f) 
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the weights for the HLNs. This approach took about 250 HLNs and resulted in test set 

accuracies in the 90% range. Then using the Ho-Kashyap method and a fixed neighborhood 

size, the HLNs reduced to around 160 and test accuracies were around 92%. Finally, with 

the variable size neighborhoods the HLNs reduced further to approximately 60 and the 

test accuracies rose to the 95% range. The HLN reuse further reduced the number of HLNs 

to an average of 55.4, with the test set accuracies just about equal with SL-MICA. The 

relaxation technique is not as effective as reuse in reducing HLNs, but it does achieve a 

higher test set accuracy. The Backprop algorithm has similarly improved its accuracies as 

SL-MICA has improved because Backprop is architecture sensitive. As SL-MICA improved 

its ability to define the upper bound on the number of HLNs needed to shatter the data, 

Backprop improved its performance by training on a better network architecture. There 

appears to be a strong correlation at the macro level between the number of HLNs used 

and the test set accuracies, but only a small correlation at the micro level. That is, nets 

that have grossly too many or too few HLNs perform much worse than nets with the 

appropriate number. However, nets that vary by only a small amount of HLNs perform 

about the same. This is illustrated by the Backprop and Backprop/fixed tests. 

Table 2.4     Average OCR Data Set Results, 10 Runs 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 62.3 NA 100% 95.65% 97.76% 1.4516 x 10iU 

SL-MICA/relax 61.2 NA 100% 95.81% 97.91% 1.8569 x 101U 

SL-MICA/reuse 55.4 NA 100% 95.52% 97.76% 1.7283 x 10iU 

Backprop 62.3 300 99.63% 96.04% 97.83% 1.8038 x 101U 

Backprop/fixed 60 300 99.70% 95.85% 97.77% 1.7379 x 101U 

Backprop/HLN 62.3 100 99.80% 95.98% 97.89% 1.6359 x 101U 

Backprop/HLN/OLN 62.3 50 100% 96.05% 98.02% 1.7568 x 10iU 

2.7.5 XOR. Table 2.5 shows the XOR test results. This data set is used because 

SL-MICA does not solve it with one pass of the TrainHiddenNodes algorithm. This is the 

first time SL-MICA needed to iterate on the HLN training. However, the TrainHidden- 

Baum algorithm was never needed. In a two class problem there are no reuse opportunities, 

so the SL-MICA/Reuse was the same as SL-MICA. The relaxation technique found a slight 

improvement for the test set, but since there is no overlap in the data this was to be ex- 
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pected. This XOR data set was well suited for Backprop which consequently did very well, 

but Backprop did expend an order of magnitude more FLOPS than SL-MICA. The Back- 

prop/HLN/OLN algorithm exhibited a poor performance. Two things may have caused 

this to occur. Backprop may have been reorganizing the Hyperplanes and either did not 

have enough epochs to get a good classification result or may have gotten stuck in a local 

minimum. 

Table 2.5     Average XOR Data Set Results, 25 Runs 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 11.52 NA 100.00% 97.66% 98.83% 3.453 x 10ö 

SL-MICA/relax 11.04 NA 100.00% 97.78% 98.89% 4.663 x 10b 

SL-MICA/Reuse 11.52 NA 100.00% 97.66% 98.83% 3.453 x 10b 

Backprop 11.52 300 100.00% 99.82% 99.91% 4.976 x 107 

Backprop/fixed 8 300 100.00% 95.80% 99.90% 3.549 x 10' 
Backprop/HLN 11.52 100 100.00% 99.18% 99.59% 1.700 x 10' 
Backprop/HLN/OLN 11.52 50 100.00% 72.90% 71.06% 1.143 x 107 

2.7.6   ATM Access Control. Table 2.6 reports the ATM Access Control test 

results. This was a very difficult data set for SL-MICA to classify correctly. After many 

iterations and employing the TrainHiddenBaum algorithm SL-MICA was able to achieve 

the 100% classification accuracy goal. However, this resulted in poor test set classification 

accuracies. Figure 2.11 plots the declining generalization as groups of HLNs are added 

to increase training set performance. The Backprop/HLN/OLN algorithm has very poor 

results. This algorithm also had poor results on the XOR data set which also required 

multiple iterations of training. 

Table 2.6      ATM Access Control ] Data Set '. Results 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 599 NA 100.00% 70.30% 85.15% 4.586 x 10n 

SL-MICA/relax - - - - - - 
SL-MICA/Reuse - - - - - - 
Backprop 599 300 76.63% 74.66% 75.64% 4.483 x 101U 

Backprop/fixed - - - - - - 
Backprop/HLN 599 100 85.82% 78.55% 82.19% 1.482 x 101U 

Backprop/HLN/OLN 599 50 25.08% 22.12% 23.60% 4.659 x 1011 
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Table 2.7 reports the ATM Access Control test results after one iteration of SL- 

MICA. Except for the training result on the SL-MICA algorithm all other results are an 

improvement from the results in Table 2.6. The Backprop/HLN/OLN algorithm performs 

much better than the multiple iteration run and has the highest training set accuracy 

among the algorithms run. 
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Figure 2.11      The classification accuracies increase with additional HLNs for the training 
set but, decrease for the test set. 

2.7.7 Testing Summary. SL-MICA always achieves 100% recognition accuracies 

on the training data. When the data set is favorable to Backprop, SL-MICA achieves 

similar accuracies as Backprop on the test data. When the data set is not favorable to 

Backprop, SL-MICA achieves far better results than Backprop. The relaxation is effective 

in increasing the test set accuracies. The reuse algorithm is capable of reducing the number 

of HLNs needed on larger class data sets. The Backprop/HLN algorithms allows Backprop 
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Table 2.7     ATM Access Control Data Set Results, 1 teration, 2 Runs 
Algorithm Nodes Epochs Training Test Overall Flops 

SL-MICA 103 NA 82.08% 78.10% 80.09% 1.0056 x 109 

SL-MICA/relax - - - - - - 
SL-MICA/Reuse - - - - - - 
Backprop 103 300 81.67% 78.62% 80.14% 7.7241 x 10y 

Backprop/fixed - - - - - - 
Backprop/HLN 103 100 85.54% 77.07% 81.31% 2.9494 x 10y 

Backprop/HLN/OLN 103 50 87.40% 76.18% 81.79% 2.2715 x 109 

to solve a new class of problems, like the spiral set, with a single hidden layer. The 

Backprop/HLN/OLN can achieve modest increases over SL-MICA as it performs a local 

search. 

2.8    Conclusions 

SL-MICA is both effective and efficient as a learning algorithm for classification 

problems using MLP networks. SL-MICA realizes the Cybenko network for classification 

and is particularly well-suited for data sets containing areas of low mean squared error. 

SL-MICA is also a value-added tool for improving the use of Backprop. It can be used to 

determine the number of hidden nodes needed, seed the lower level weights, or seed all the 

weights. In the case of low MSE problems like the spiral data set, SL-MICA is an enabling 

technology for Backprop to be effective. The next Chapter will proves SL-MICA's ability 

to classify any data set and the quality of that solution? 
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III.   Theoretical Basis for MICA 

3.1 Introduction 

Chapter II developed the SL-MICA algorithm for training Single Hidden Layer MLPs. 

This algorithm first trains as many HLNs as needed to separate all the data in one class 

from all the data in all other classes. However, this only resulted in a necessary condition 

for projecting the data into a linearly separable space. Iteratively applying this technique 

to reduce the missed data vectors, as shown in Section 2.5, still does not guarantee that the 

data will be projected into a linearly separable space. The sufficient condition is achieved 

when the missed data are totally isolated with Baum's technique. The reasons for this 

result will be made clear later in the chapter. 

This chapter proves that MICA can produce single hidden layer MLPs that can 

correctly classify any finite training set, in general position, to 100% accuracy. This proof 

is by induction, which establishes both the necessary and sufficient conditions for projecting 

data into a linearly separable space. Then it is shown that MICA meets these conditions. 

The classification proof is presented in Section 3.2 

An important concern of any training algorithm is the quality of solution. That is, 

how does it compare to the optimal solution. One way to characterize the quality of a 

classifier's solution is to determine how well it estimates the Bayes optimal discriminant 

function. For example, Ruck proved that Backprop does a mean squared error approxi- 

mation of the Bayes optimal discriminant [28]. A similar proof is presented in Section 3.3 

to show that MICA is also a mean squared error approximation of the Bayes optimal dis- 

criminant. Results of a known Bayes bounded data set is presented in Section 3.4. Lastly, 

conclusions are presented in Section 3.5. 

3.2 Separation Proof 

This section contains the proof that MICA can produce an MLP capable of correctly 

classifying any finite training set. The following definitions are provided to aid in the proof. 

Definition 1 (Linearly Separable). A dichotomy {X+, X-} of X C Rd is linearly 

separable if and only if there exists a weight vector w in R   and a scalar t such that 
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x  ■ w   >  t   if xeX+ (3.1) 

x  ■ w   <  t   if a e X-. (3.2) 

Definition 2 (Homogeneously Linearly Separable).  The dichotomy {X+,X~} o/X 

is said to be homogeneously linearly separable if it is linearly separable with t = 0. 

Definition 3. Let Cn denote the n dimensional two unit cube [—1,1]  . 

Definition 4. Let W be a p x d+1 matrix of row weight vectors.  The function $ (E,W) 

is a projection of the vector x G Kd into a new space Rp defined by the hyperplanes in W 

and is defined below 

$(z,W) = (<p(x,wi) ,4>(x,w2) ,■ • ■ ,<j)(x,wp)) eCp (3.3) 

where <f> (x,Wi) = tanh ([x, 1] • u>i). 

The following theorems are provided without proof for aid in the proof. 

Theorem 1 ( [20]). Let M be a linear subspace of a linear space X, and let lm be a linear 

functional defined on M. Then there exists a linear functional I defined on X such that I is 

an extension oflm, that is, I is defined on X and I (x) = lm (x) for all x G M. 

Theorem 2 ( [20]). Let M be a proper subspace of a linear space X, and let x0 be a point 

in X — M. Then there exist a linear functional I on X such that I (x) = 0 if x £ M and 

l(x0) = l. 

This next theorem is used to illustrate that if data in one space are homogeneously 

linearly separable, then by adding one new dimension to the space the data are still ho- 

mogeneously linearly separable with the "same" discriminant function. 

Theorem 3. Let {X+,X-} be an arbitrary dichotomy of X   =   {xi,X2, • • • ,xn} C R 

and let W1 = {w{ ,w\, • ■ ■ ,toj}, where w\ G Hd+1 for all k = 1, ••-,?.  J/{X+,X-} is 

homogeneously linearly separable in the $ -space, i.e.   there exists a nonzero w   G Rp+ 

such that 

S^W1),!]   -w2    >0,    for all x.; G X+ (3.4) 
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$ (xj, W1) , l] • w2    < 0,    for all x,} G X (3.5) 

then by adding an arbitrary new hyperplane so that W1 = W1 U |u>p+i j, then there exists 

w2 such that 

S^W1), 

w f.2 > 0,    for all Xi G X"1 

w2    < 0,    for all Xj G X   . 

(3.6) 

(3.7) 

Moreover, w2 = [w2,0], see Figure 3.1. 

Figure 3.1 Given data that is linearly separable and adding a dimension implies that 
the data is linearly separable in the new space. Moreover, the equation of 
the separating hyperplane remains the same. 

Proof. Let X denote the linear space spanned by W1 and let M denote the linear space 

spanned by W1. By definition, M is a linear subspace of X. Since w2 represents a linear 

functional on M implies there exist a linear functional w2 on X, that is, an extension of 

w2. Furthermore, Theorem 1 implies the two linear functionals are equivalent on M, thus 

w2 = \w2 ,0] D 

The following proof is to show any point in a finite set can be separated from every 

other point in that set by two hyperplanes. 

Theorem 4. Any point x G X C Rd can be made linearly separable in $-space by adding 

two hyperplanes in Rd. 
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Proof. Let W1 = {wiiW^}, were w\ and w\ represent parallel hyperplanes in the d- 

dimensional space Rrf. Let the distance between the two hyperplanes be arbitrarily small. 

Furthermore, let the position of these two hyperplanes be such that they "straddle" the 

point x. There exist an infinite number of pairs of hyperplanes that fit these requirements. 

Since the set X is finite there exists at least one orientation of the two hyperplanes that 

does not "straddle" any another point in X. Therefore, x will be linearly separable from 

every other point in X by either w\ or w\- Thus, in Cd+2, % will be on a unique vertex 

and thus be linearly separable. □ 

The next theorem says that any data in general position can be projected into a lin- 

early separable space with a single hidden layer MLP. This proof will supply the condition 

for the main result. 

Theorem 5. Any arbitrary dichotomy of a finite set X in general position can be projected 

into a space where it is homogeneously linearly separable. 

Proof, by induction. It is obviously true for a set of size two. 

Assume it is possible for a set of size n. Let {X+,X~} be an arbitrary dichotomy 

of X = {xi,x2,---,xn}, where each x.-, G Rd. Let W1 = \w\,w\, ■ • • ,tu£J , where each 

w\ 6 TLd+1 for all k = 1, • • • ,p. Therefore, given W1, assume there exists w2 G Rp+1 such 

that: 

[^(x^W1),!] -w2    >0,    forallxi€X+ (3.8) 

[^(a^W1),!] -w2    <0,   forallXjeX-. (3.9) 

Now show for set of size n + 1. Let X increase by one member such that X = 

X U {xn+\}. Without Loss Of Generality let •JX+,X~ \ be a dichotomy of X such that 

X+ = X+ U {a;„4-i} and X- = X-. Need to show there exists a W1 and w2 such that: 

[$ (xi, W1) , l] • w2    > 0,   for all x{ 6 X+ (3.10) 

[^(a^W1),!] -w2    <0,    forallxjeX'. (3.11) 

3-4 



There are three cases to consider, (i) either the $ (xn+i, W1) is already separable 

using w2 = (w2,0), (ii) there exists a w2 such that <& (a:m+i,WM becomes separable, or 

(iii) no w2 exists such that $ (zn+i, WM becomes separable. Cases (i) and (ii) are trivial. 

Figure 3.2(a) and (b) illustrates the inductive assumption. For case (iii), since there does 

not exist a w2 where $ (avt-ljW1! is separable, it implies xn+i is not separable from 

the members of X~ in the feature space. However, Theorem 4 implies there exists a 

Wp+1 and Wp+2 that separates xn+i from every point in X~. Figure 3.2(c) shows the 

addition of hyperplanes 2 and 3 to separate the new point from every one in the other 

class. Hyperplane 2 is oriented so that points above are on the negative side and points 

below are on the positive side. Hyperplane 3 is oriented oppositely. Figure 3.2(d) shows 

the data projected into the new hidden node output space. The new data vector is now on 

a unique vertex. Let W1 = W1 U jtu£+1,u^+2}. The addition of these two hyperplanes 

creates a new hidden node output space, but Theorem 3 implies original dichotomy is still 

linearly separable and that the equation of the hyperplane that separates the data remains 

the same as shown in the equations below. 

[* (an, W1) , l] • [w2,0, o]    > 0   for all x> G X+ (3.12) 

[^(aSj-.W1),!] • [w2,0,0]    <0   forallxjEX- (3.13) 

Let the area of the space spanned by W1 that is above w2 be called M0 and the 

whole space spanned by W1 be call X. Thus, M0 is a proper subspace of X. The point 

$ (xn+i, W1) is in X — M0. Theorem 2 says there exists a linear function / such that 

I ($ (xn+i, W1) J = 1. This implies there exists a functional that continues to separate 

the data in the subspace and one new point in the whole space. Figure 3.2(e) depicts 

a diagram where the separating hyperplane is tilted so that it continues to separate the 

original data plus one new point on a unique vertex. This implies there exists a W and 

w2 such that: 

$ (xu W1) , l] • w2    > 0,    for all xt G X+ (3.14) 
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Figure 3.2 (a)is an example of linearly separable data, (b) is the linearly separable data 
projected into the hidden node output space. A new point is added in (c) 
with two hyperplanes to separate the new data point, (d) shows the new 
hidden node output space with the two new hyperplanes, (e) shows the new 
data point on a unique vertex and how the hyperplane can be pivoted to 
separate the new data point as well as the original data points. 
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[$ (a;,-, W1) , l] • w2    < 0,    for all Xj G X" (3.15) 

D 

Theorem 6. SL-MICA can correctly classify any data in general position to 100% accu- 

racy. 

Proof. The proof of Theorem 5 provides the basis for this proof. The proof for Theorem 5 

says that if two sets of data of opposite class are projected into a linearly separable space 

and an additional data vector is added to one set that makes the two sets no longer linearly 

separable, then two new hyperplanes can be added to isolate the new data vector and that 

is sufficient to project the two data sets into a linearly separable space. The SL-MICA 

algorithms works by first applying the TrainHiddenNodes algorithm, see Algorithm 2, 

which places hyperplanes between all data in one class and all the data in the other 

classes. This is a necessary condition for projecting the data into a linearly separable space, 

but not sufficient because each point is not isolated. The TrainHiddenNodes algorithm 

essentially accomplishes the inductive assumption of the proof in Theorem 4. Then each 

erroneous datum is isolated using Baum's technique. Therefore, via Theorem 5, the data 

will be projected into a linearly separable space. The Ho-Kashyap algorithm can find 

a discriminant to separate any data that are linearly separable. Therefore, SL-MICA is 

guaranteed to correctly classify any training data in general position to 100% accuracy.    D 

3.3   Bay es Optimal Derivation 

Duda and Hart demonstrated how procedures that minimize MSE have the property 

of approximating the Bayes optimal discriminant function for two class problems [8, pp 

154-155]. Ruck used Duda and Hart's two-class problem derivation and applied it to 

neural networks [26]. Furthermore, Ruck extended Duda and Hart's work and illustrated 

how Backprop, when training MLP's, approximates the Bayes optimal discriminant in 

the multi-class case. This section presents a multi-class derivation that proves that MICA 

produces an MLP that is a minimum MSE approximation of the Bayes optimal discriminant 

function. 
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After MICA trains all the HLNs, the data are projected into a new space where 

the projected data are now linearly separable by class (see proof in Section 3.2). MICA 

then trains the OLNs by solving a series of two-class problem. In general, MICA solves 

the weights for output node i by splitting the data into class i and NOT class i and then 

searching for a discriminant function. By showing that MICA is Bayes optimal in the two 

class case implies MICA is Bayes optimal in the multi-class case. The following derivation 

follows Duda and Hart's with only a few deviations. 

The Bayes discriminant function is given by 

5o(x) = P(o;1|x)-P(a;2|x) (3.16) 

where P (WJ | x) is the probability the true state of nature is Wj given the observation x. 

Data samples are distributed according to the probability 

p (x) = p (x | Ul) P (wi) + p (x | u2) P (u;2) (3.17) 

where P (WJ) is the a priori probability of class u, and p (x | Wj) is the class-conditional 

probability density function. The mean squared approximation error is given by 

e2< (w) = J [wTy - 9o (x)]% (x) dx (3.18) 

where y = yj and y; = tanh (wiT [x, 1]J for all w.t G W. Therefore, the vector w that 

minimizes e2 also approximates the Bayes optimal discriminant. MICA finds w by using 

the Ho-Kashyap algorithm which minimizes ||Yw — t |, where Y is the matrix of data 

vectors,w is the discriminant vector, and t is a vector of threshold values. There is one 

element in t for each row vector in w. Therefore, a criterion function J, may be written 

as 

J,(w)   =    £(wTy-<)2+E (wTy + t)2 (3.19) )2 

yewi y€a>2 
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=   n 
ni 

n    ri\ 
-E(wTy-02 + --1E(wTy+^)2      O.20) 

yewi z ye^2 

where n is the number of total points, n\ is the number of points in class 1, and n2 is the 

number of points in class 2. In the Ho-Kashyap method, t varies individually with each 

y. Thus, t is really t(y). Then using the law of large numbers, as n approaches infinity 

(l/n)Js(w) approaches 

lim Js(w) = J (w) = P (wi) Ei 

with probability one, where 

(wTy-*)' + P (w2) E2 (wTy-t)' 

£2 

(wTy - fej       =     / (wTy - tj  p(x\ wi) dx 

(wTy - 6)       =    f (wTy - i) p (x | w2) <&• 

Equation 3.16 can be rewritten as 

(3.21) 

(3.22) 

(3.23) 

50 (x) = 

Now J(w) can be rewritten as follows 

P(K,UJI)-P(K,UI2) 

p(x) 
(3.24) 

J(w)    =     f(w*y-<) p(x,wi)dx+ / (w*y-<)  p(x,o>2)dx 

=     /" (w'y) 2 P (x) dx-2t I w'y^o (x) p (x) dx + *2 

■/ 
wly - 50 'dx + *2-i 

=    e2(w) + *2-* 

/<?0
2(x)p(x) 

|ffo(x)p(x)dx 

dx 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Since the second term in (3.28) is not a function of w, the w that minimizes J, also 

minimizes e2. The above derivation applies to a two class problem. MICA solves a series 

of two class problems, one for each OLN. If the solution to each OLN is Bayes optimal, 

then the aggregate solution of all OLNs is Bayes optimal. 
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3.4 Bayes Bounding Example 

In the preceding section, the relationship with Bayes was established. In this section, 

an example is presented to demonstrate that relationship. First, a data set with a com- 

putable Bayes bound is presented and compared to the results of the SL-MICA algorithm. 

3.4.1 Bayes Bound. The ATM Access Control data set is used for this example 

because it is a two class problem with a lot of data. One technique for Bayes bounding is 

provided by Fukunaga and Hummels [12]. A good explanation of Fukunaga and Hummels 

technique can be found in Martin's Thesis [18, pages 26-35], who also developed the code 

for the following example. Figure 3.3 presents graphically the bounds on the classification 

accuracy of the ATM Access Control data set. K is the number of clusters. In resubsti- 

tution, bottom line, the classifier trains and tests with the same data and hence has an 

overly optimistic estimation of the error. In leave-One-Out, top line, the classifier uses all 

but one sample to train and tests with the left out sample. Every point is systematically 

left out to get a estimate of the error. The Bayes error is bounded by these two lines 

3.4.2 Comparison with SL-MICA. The SL-MICA algorithm in Chapter II adds 

HLNs in groups. Each group contains enough HLNs to separate all the remaining missed 

classified data. After each group is added, SL-MICA decides whether to add more groups 

based upon classification error. Figure 3.4 shows the classification accuracy as SL-MICA 

adds more groups of HLNs. The top line is the classification accuracy of the training data 

as more groups are added and the bottom line is the classification accuracy of the test 

data. SL-MICA can force the classification accuracy of the training data to go to 100%, 

but the classification accuracy of the test data will suffer accordingly. As predicted by the 

Bayes bound, the classification accuracy of the test data was limited to about 80%, and 

SL-MICA achieves about 78.5% accurately. 

3.5 Conclusions 

SL-MICA is a proven algorithm for constructing MLP networks that approximate 

the Bayes optimal discriminate function. It is guaranteed to achieve 100% accuracies on 
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ATM Access Control data set. 
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Figure 3.4     The classification accuracies are plotted of the ATM Access Control data set 
as a function of adding additional HLNs. 

the training data and provides excellent generalization results on the test data which are 

in-line with Bayes Bounding expectations. A widely debated question is: are single or 

multi layer networks better for generalization? Chapter IV addresses this question with 

the development of the Multi Layer MICA algorithm. 
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IV.   Construction of Multiple Hidden-Layer MLPs 

Chapter II developed a robust algorithm for constructing signal hidden layer MLPs. Then 

Chapter III explored the effectiveness of the algorithm and the quality of the solutions it 

produced. The problem with the algorithm, which is demonstrated by the ATM Access 

Control data set, is it could take a lot of HLNs (almost 500) to get the desired classification 

accuracy. An alternative approach is to build multi hidden layer MLPs. This Chapter will 

present a MICA algorithm for constructing a multi hidden layer MLP. 

MLP network architecture has been debated for years. There are rules of thumb of 

deciding how many HLNs can be supported by the data being trained. However, these 

rules don't apply to MICA since it is not reducing a global error. Also debated is the 

number of layers needed to get the best results. The Multi Layer MICA (ML-MICA) 

algorithm builds the network from the ground up. It adds as many HLNs in a layer as 

needed to attempt to separate the classes, then it only adds additional layers if the data 

are not linearly separable. The ML-MICA algorithm is presented in Section 4.1. Proofs on 

classification accuracy and Bayes optimality are in Section 4.2 and Section 4.3 respectively. 

Section 4.4 presents test results for ML-MICA. This is followed by a discussion of when 

to use SL-MICA or ML-MICA, which results in a unified MICA algorithm presented in 

Section 4.5. 

4.1    Multi Layer MICA 

The block diagram of SL-MICA in Figure 2.1 is still applicable to ML-MICA. The 

TrainHLNs block, Algorithm 2, is applied to the data followed by the TrainOLNs block, 

Algorithm 5. If the accuracy of the training data is not 100%, then another hidden layer is 

added. To add another hidden layer, the data is propagated through the prior hidden layer 

nodes to produces a new data set. This data set is used as the inputs to the TrainHLNs 

block and a new layer of HLNs result. The OLNs are retrained and the results are tested. 

The algorithm quits when enough hidden layers are added to reach 100% classification 

accuracy of the training data, see Algorithm 10. 
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Algorithm 10 ML-MICA 

NormData <— Normalize (Data) 
Accuracy *— 0 

while Accuracy 7^ 100 do 
if-i + l 
Weights* *- TrainHiddenNodes (NormData) {Call to TrainHiddenNodes Algo- 

rithm 2} 

Weights'41   <-  TrainOutputNodes (Weights', NormData)   {Call to TrainOut- 

putNodes Algorithm 4} 
[Accuracy, SubData] <— TestForAccuracy (NormData, Weights) 
if Accuracy ^ 100 then 

NormData 

end if 
end while 

Tank (Weights' * NormData') , l] 

The ML-MICA algorithm can also be used with relaxation. After each layer is pro- 

duced, relaxation is applied to eliminate the unimportant nodes. Since the data are going 

to be re-separated the hyperplanes in each hidden layer, it is possible for the relaxation 

to be more aggressive. For example, all HLNs that separate only two data pairs may be 

rejected up front. This approach will prevent over learning in the lower hidden layers. 

4.2    Classification Proof for ML-MICA 

This section proves that ML-MICA can project any training data in general position, 

into a linearly separable space by adding enough hidden layers, where the HLNs in each 

layer are created with the TrainHiddenNodes algorithm. 

Theorem 7. ML-MICA can correctly classify any data in general position to 100% accu- 

racy. 

Proof. The TrainHiddenNodes algorithms puts hyperplanes between every datum in a class 

and all data in every other class. Every HLN added creates a new dimension in the hidden 

node output space, whereby it drives the data in one class towards 1 and data in the other 

class toward —1. This clusters data at the corners of an n dimensional cube. Since the 

hyperplanes are added to force all class one data towards 1 and class two data towards 
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—1, the data will gravitate towards opposite corners of the hypercube. Therefore, given 

enough layers the data will become linearly separable. □ 

4.3   Bay es Optimal Proof for ML-MICA 

The proof for SL-MICA in Section 3.3 said that given a set of separating hyperplanes, 

the training algorithm for the output layer nodes does a mean squared error approximation 

of the Bayes optimal discriminant function. Thus, the Bayes proof for the multi hidden 

layer algorithm is exactly the same, since the hidden layer nodes are also predefined when 

the final layer of output nodes are trained. 

44    Test Results for ML-MICA 

Results are presented for the Iris, Mesh, OCR, XOR, and ATM Access Control data 

sets. Only the last two sets need additional hidden layers to correctly classify 100% of the 

training data. Therefore, the algorithm was force to use additional hidden layers when 

training for the Iris, Mesh, and OCR data sets. The following experiments were run: 

• ML-MICA - Multi Level MICA 

• ML-MICA/Relax - Multi Level MICA with relaxation 

Results are the average of 25 test runs. Each test run randomly creates a training and 

test set and then runs the algorithms. This experiment forces ML-MICA to create a five 

hidden layer MLP, but the intermediate results are saved so the classification accuracies 

can be tracked with the addition of each layer. 

44-1 -f™- Table 4.1 presents the results for the experiments on the Iris data. 

The number of HLNs needed to separate the data decreases with each hidden layer. This 

is because the data are being better organized with each layer and thus the class data are 

being projected to the same area of the hidden layer node output space. The minimum 

number of nodes possible without using relaxation is related to the number of classes and 

is given by Equation 2.2. For a three class problem that number is three because of the 

pair-wise separations. All the accuracy values are very close, and are not statistically 

different. Without relaxation a three hidden layer net gives the best generalization then 
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decreases slightly with each additional layer. With relaxation the best generalization is 

with one hidden layer. It is good that adding unneeded layers does not drastically effect 

generalization, but it is evident that they do change output space slightly. 

Table 4.1      Iris Data Set Results, 25 Runs 
Algorithm Layer Training Test Overall #HLNs 

ML-MICA 1 100.00% 95.41% 97.71% 4.72 
2 100.00% 95.31% 97.65% 4.20 
3 100.00% 95.47% 97.73% 3.76 
4 100.00% 95.36% 97.68% 3.48 
5 100.00% 95.31% 97.65% 3.48 

ML-MICA/Relax 1 99.31% 96.64% 97.97% 2.92 
2 99.15% 96.53% 97.84% 2.64 
3 99.15% 96.43% 97.79% 2.00 
4 99.25% 96.32% 97.79% 1.80 
5 99.52% 96.32% 97.92% 2.16 

44.2 Mesh. Table 4.2 presents the results for the experiments on the Mesh data. 

Again the number of HLNs to separate the data decreases with each hidden layer added. 

This data set reaches the lower bound on the number of HLNs needed to separate the data 

at the third layer. This implies that all the data in each class are projected to a similar 

area in the hidden node output space. The training classification accuracy of less than 

100% is because the number of iterations for training the OLNs was set to one because the 

multiple layers will eventually get to 100%. Without relaxation the five layer net had the 

best results. With relaxation a one hidden layer net has the best generalization, but a two 

layer net has the best overall accuracies. Then the accuracies drop off slightly and remain 

statistically the same. 

Figure 4.1 colors the output space for a one and two hidden layer network to show 

the difference. Even though the one hidden layer net separates the data, a two hidden 

layer net seems better able to produce decision boundaries that adhere to the structure of 

the data. 

4-4-3 OCR. Table 4.3 presents the results for the experiments on the OCR data. 

A strange result occurred in that the number of HLNs per layer increased. A review the 
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Figure 4.1      The color maps indicate the class for each pixel in the output space (a) is for 
a one hidden layer network and (b), is for a two hidden layer network. 
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Table 4.2     Mesh Data Set Results, 25 Runs 
Algorithm Layer Training Test overall #HLNs 

ML-MICA 1 99.97% 93.68% 96.83 14.96 
2 100.00% 93.99% 96.99% 3.20 
3 100.00% 93.97% 96.99% 3.00 
4 100.00% 94.01% 97.01% 3.00 
5 100.00% 94.03% 97.01% 3.00 

ML-MICA/Relax 1 99.88% 94.24% 97.06% 13.8 
2 100.00% 94.21% 97.11% 3.56 
3 100.00% 94.03% 97.01% 3.04 
4 100.00% 94.07% 97.03% 3.00 
5 100.00% 94.12% 97.06% 3.00 

data showed that of the ten test runs, an anomalous event (increased HLNs per layer) 

occurred in two test runs. However, the increase was so large that it effected that average 

in a dramatic way. It is not clear why this happened. Without relaxation the one hidden 

layer net had the best results. Similarly, with relaxation the one hidden layer net had the 

best results. 

Table 4.3      OCR Data Set Results, 10 Runs 
Algorithm Layer Training Test overall #HLNs 

ML-MICA 1 100.00% 95.14% 97.57% 51.9 
2 100.00% 94.83% 97.41% 51.3 
3 100.00% 94.65% 97.33% 51.3 
4 100.00% 94.54% 97.27% 58.5 
5 100.00% 94.52% 97.26% 66.6 

ML-MICA/Relax 1 100.00% 95.22% 97.61% 51.1 
2 100.00% 95.04% 97.52% 50.4 
3 100.00% 94.79% 97.39% 51.1 
4 100.00% 94.64% 97.32% 58.8 
5 100.00% 94.48% 97.24% 66.0 

4.4.4    XOR. Table 4.4 presents the results for the experiments on the XOR 

data. Here the number of HLNs to separate the data decreases with each hidden layer. 

Notice after two hidden layers the data are linearly separable and one HLN is needed to 

separate the data. Without relaxation the three hidden layer net had the best results. With 

relaxation a two hidden layer net has the best generalization. This is the first instance 

where relaxation did not improve the generalization. 
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Ta ble 4.4 XOR Data Set Results 
Algorithm Layer Training Test overall #HLNs 

ML-MICA 1 68.84% 65.32% 67.08% 4.12 
2 100.00% 99.86% 99.93% 2.92 
3 100.00% 99.88% 99.94% 1.00 
4 100.00% 99.88% 99.94% 1.00 
5 100.00% 99.88% 99.94% 1.00 

ML-MICA/Relax 1 69.60% 96.28% 67.94% 3.76 
2 100.00% 99.72% 99.86% 2.64 
3 100.00% 99.72% 99.86% 1.00 
4 100.00% 99.72% 99.86% 1.00 
5 100.00% 99.72% 99.86% 1.00 

Figure 4.2 colors the output space for a one, two, and three hidden layer network 

to show the difference. A one hidden layer net does not separate the data, a two hidden 

layer net produces good decision boundaries that adhere to the structure of the data, and 

a three hidden layer network is almost exactly the same as a two hidden layer net. This 

last result is expected since the data, after two hidden layers, could be separated with one 

HLN. 

44.5 ATM Access Control. Table 4.5 presents the results for the experiments 

on the ATM Access Control data. These results are from one test run, where the data 

was randomly split into a training and test set. This experiment lets ML-MICA decide 

the number of layers needed to obtain 100% classification accuracy on the training data, 

but the intermediate results are saved so the classification accuracies can be tracked with 

the addition of each layer. It takes ten layers for ML-MICA to classify the training set at 

100%, but the test set accuracies decline with each layer. See Figure 4.3 for a plot of the 

accuracies as a function of layers. The decline is not as pronounced using relaxation, but 

the best network for this data set is a single hidden layer MLP. 

4.5   SL-MICA verses ML-MICA 

One goal of training an MLP is for it to generalize well. Good generalization is 

achieved when the test set accuracies rival that of the training set. Figures 2.11 and 4.3 

show the decline in test set accuracies with each iteration of the respective algorithms for 
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Table 4.5      Ar CM Data Set Results », 1 Run 
Algorithm Layer Training Test overall #HLNs 

ML-MICA 1 81.78% 79.50% 80.64% 104 
2 87.78% 68.23% 78.01% 42 
3 90.78% 66.26% 78.52% 32 
4 92.77% 64.84% 78.81% 32 
5 95.58% 69.72% 82.65% 30 
6 96.95% 68.91% 82.93% 29 
7 98.71% 69.07% 83.89% 30 
8 99.68% 69.08% 84.38% 12 
9 99.94% 69.16% 84.55% 4 

10 100.00% 69.05% 84.53% 3 
ML-MICA/Relax 1 81.78% 79.59% 80.69% 103 

2 85.96% 76.77% 81.36% 42 
3 91.84% 74.36% 83.10% 35 
4 94.27% 72.35% 83.31% 30 
5 96.03% 72.24% 84.13% 29 
6 97.43% 72.22% 84.82% 25 
7 98.12% 72.67% 85.39% 23 
8 99.23% 72.40% 85.81% 23 
9 99.60% 72.69% 86.15% 12 

10 99.95% 72.32% 86.14% 7 
11 100.00% 72.43% 86.21% 2 
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the ATM data. Therefore, it would be prudent to stop adding nodes or layers if the test 

set accuracies decrease. To know whether to add more HLNs to the existing hidden layer 

or to add a new layer is determined by trying both and testing for the best generalization. 

Also, even if the training set is 100% accurate, more layers may be beneficial for the test 

set. Therefore, additional layers are added until the test set accuracy stops improving. 

This completes the MICA algorithm by combining SL-MICA and ML-MICA in a unified 

algorithm called MICA, see Algorithm 11 

Figure 4.4 plots the classification colorings for intermediate MLPs created by MICA. 

Figure 4.4(a) is the classification coloring after a single pass of TrainHiddenNodes and 

TrainOutputNodes. Then MICA needs to decide if adding more nodes to a layer is bet- 

ter than adding another layer. Figures 4.4(b) and 4.4(c) shows the results of these two 

experiments. MICA selects the architecture used to generated Figure 4.4(b) because is 

had slightly higher classification accuracies. Then the same tests are performed again in 

Figures 4.4(d) and 4.4(e). The architecture used for Figures 4.4(d) wins out and additional 

nodes are added to the same layer instead of growing an additional layer. Since the training 

set is now classified at 100% accuracy, there is not a choice between adding more nodes to 

a layer or adding an additional layer. Therefore, only an additional layer is added, but the 

accuracies of the test set did not improve, so MICA quits. 

4.6    Test Results for MICA 

MICA is run on the XOR, Mesh, OCR, and ATM data sets. Since a test set is used 

to help the algorithm determine when to quit, part of the data set is sequestered in a 

validation set. Each data set is divided into thirds for training, testing, and validating the 

network. Table 4.6 presents the initial and final training accuracies for the three data sets. 

The XOR and Mesh test results are the average of 25 test runs. The OCR result is the 

average of five test runs and the ATM is from 1 test run. The XOR data set demonstrated 

great improvement from initial to final results. In 24 of the runs, MICA found that a two 

hidden layer net was the best solution. The other case resulted in MICA finding a three 

hidden layer net that generated the best results. For the Mesh data, MICA did not find 

a consensus in the network layers. Most test runs resulted in a one or a two hidden layer 
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Algorithm 11 MICA 
TrainData <— Normalize (TrainData) 
TestData <— Normalize (TestData) 
Weights1 <— TrainHiddenNodes (TrainData) {Algorithm 2} 
Weights2 <— TrainOutputNodes [Weights', TrainData) {Algorithm 4} 

[Train Accuracy, SubtrainData] <— Test For Accuracy (TrainData, Weights) 
Test Accuracy <— TestFor Accuracy (TestData, Weights) 
OldTestAccuracy <— 0 
layer <— 1 
while TestAccuracy ^ 100% A TestAccuracy > OldTest Accuracy do 

if TestAccuracy / 100 then 
Wide Weights1 «— TrainHiddenN odes (SubTrainData) 
Wide Weights1 <- Weights'a2,er U Wide Weights1 

Wide Weights2 <— TrainOutputNodes (Wide Weights1, TrainData) 
[WideTrain Accuracy, SubtrainData] <— TestFor Accuracy (TrainData, Wide Weights) 
WideTesiAecuraq/ <— TestFor Accuracy (TestData, WideWeights) 

end if 
TempTrainData <- [Tank (Weights'"^ * TrainData*) , l] 

TempTestData <- Wanh (Weights'0^7- * TestData') , l] 

High Weights1 <— TrainHiddenN odes (TempTrainData) 
High Weights2 <- TrainOutputNodes (Weights'0^, TempTrainData) 
[HighTrainAccuracy, SubtrainData] <— TestFor Accuracy (TempTrainData, HighWeights) 
HighTest Accuracy <— TestFor Accuracy (TempTestData, HighWeights) 
OldTestAccuracy *— TestAccuracy 
if (HighTrainAccuracy > OldTestAccuracy) V (WideTrainAccuracy > OldTestAccuracy) 
then 

if HighTrainAccuracy > WideTestAccuracy then 
/ayer1 <— Zaj/er + 1 
Weights'02"57" <- HighWeights1 

Weights/a3/er+1 «- HighWeights2 

TrainData <— TempTrainData 
TestData <- TempTestData 
TrainAccuracy <— HighTrainAccuracy 
TestAccuracy <— HighTest Accuracy 

else 
Weights'^61" <- Weights^67- U WideWeights1 

Weights'33'6^1 <- WideWeights2 

TrainAccuracy <— W^deTram./4ccuraq/ 
TestAccuracy *— WideTest Accuracy 

end if 
else 

TestAccuracy <— OldTestAccuracy 
end if 

end while 
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(a)   MLP  after initial Network 
Creation 

liilillllllf 

(b)    MLP    after   adding   more 
HLNs to current layer 

(c) MLP after add a second hid- 
den layer 

• ■. ■ 

■ 

(d)    MLP    after   adding   more 
HLNs to current layer 

(e) MLP after add a second hid- 
den layer 

Figure 4.4 The initial training of MICA results in the classification coloring in (a). Then 
MICA experiments with adding nodes to the same layer in (b), and adding a 
new layer of nodes in (c). MICA chooses to add the nodes to the same layer 
and then repeats the experiments in (d) and (e). Again, adding to the same 
layer is deemed the best 
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net, with one case being a four hidden layer net. The change is classification accuracy is 

small, but the larger net is justified since the validation accuracies also improved. Whereas 

in the OCR data, the test set improved from initial to final, but the validation set did not. 

In this case, it may be better to stick with the smaller size network. 

Tab le 4.6      Ml [CA Test Results 
Data Set Layer #HLNs Training Test Validate 

Initial 
XOR 

1 58.23% 56.47% 55.91% 
2.04 6.84 100.00% 99.68% 99.70% 

Initial 
Mesh 

1 100.00% 90.81% 91.96% 
1.48 14.44 100.00% 91.56% 92.12% 

Initial 
OCR 

1 100.00% 94.16% 94.08% 
2 170 100.00% 94.58% 93.98% 

Initial 
ATM 

1 83.00% 76.58% 78.17% 
1 91.4 83.38% 76.71% 78.04% 

4-7    Conclusions 

ML-MICA proved it could generate Bayes optimal MLPs with 100% training set clas- 

sification accuracy. ML-MICA generated good test results and demonstrated how multiple 

layers can improve generalization. Combining the SL-MICA algorithm from Chapter II 

and ML-MICA from this chapter produced the MICA algorithm which dynamically al- 

locates nodes in a layer or add nodes in a new layer, depending upon the training data 

set. The MICA algorithm inherits the characteristics of Bayes optimality from SL-MICA. 

Chapter V will change direction and focus on Feature selection. 
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V.   Feature Selection 

5.1 Introduction 

There are two methods for reducing the number of weights in a network. First, is 

to reduce the number of features. Some features may better separate the data than other 

features, in fact, some features may even hinder separation. Reducing features can not only 

improve classification, but reduce the net size and speed up training [14]. Second, HLNs 

can be pruned. MICA adds enough HLNs to construct the network to achieve a given 

classification accuracy. However, it may be possible to do equally as well with less nodes, 

especially since MICA separated by class and may add redundant HLNs. Pruning HLNs 

may also increase generalization by removing HLNs used to memorize data in overlapping 

areas. 

The construction techniques used in MICA yield a novel approach for feature selec- 

tion. Since MICA trains HLNs to separate class pairs, it can also select features that best 

separate those class pairs. This unique approach afforded by MICA can improve the per- 

formance of many saliency metrics. The feature saliency metric used here is a variation of 

the decision boundary based saliency metric [16,17]. Results show that the saliency of the 

features can change drastically depending on which classes are being separated. Therefore, 

for each pair of classes being separated, only the most salient features are used and the 

weights connecting the rest of the features are set to zero. The theory of this approach 

and algorithms to implement are presented in Section 5.2. 

Section 5.3 presents a similar technique to that of feature selection for use in HLN 

pruning. The outputs of the HLNs are considered the features and their saliency is rated 

in how well they help the OLNs separate the data. Only the most salient HLNs are used 

to train the OLNs with the other weights set to zero. The experimental results for feature 

selection and HLN pruning are in Section 5.4 and concluding remarks are in Section 5.5. 

5.2 Feature Saliency 

5.2.1 Saliency. Feature selection is a well-studied topic [21,26,27,34]. Consider 

two approaches to feature selection.  One approach is to select features by searching for 
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the best combination of the features in terms of how they effect classification accuracy. 

A second approach is to first rate the features and then select based on that rating. The 

process of rating features is known as feature saliency. Ruck's saliency uses the partial 

derivative of the output with respect to each feature [26]. The greatest change implies the 

most salient features. Tarr sums the magnitude of the weights from each feature to each 

HLN [34]. The greater the magnitude the more salient the feature. 

The MICA Feature Selection (MICA-FS) technique uses a saliency metric based on 

decision boundaries [16,17] and a metric by Wilson [38]. Decision boundary analysis implies 

a priori classification of the data. Then one can find the decision boundary between any two 

data vectors of opposite class. The direction of maximum separation at that point along 

the decision boundary is the vector normal to decision boundary. Figure 5.1 illustrates 

this point. 

Decision Boundary 

Normal 

Figure 5.1 The direction of maximum separation is in the direction of the Normal to the 
decision boundary where the line connecting the two points cross the decision 

boundary. 

The saliency metric sums the outer products of the normals, which produces a matrix. The 

outer product matrix can be consider an operator over vectors [9]. Consider Equation 5.1 

v • v (5.1) 
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where v is a normal vector and a; is a vector. The communitive law allows the order of the 

products to change as follows: 

v vt -X (5.2) 

The inner product of two normalized vectors is the cosine of the angle between them, the 

inner product v* ■ x results in a scalar. If v and x are orthogonal the product will be zero 

and if they are parallel the product will be one. Thus, the outer product of a normalized 

vector acts as an operator to project x onto v. An Effective Decision Boundary Feature 

Matrix (EDBFM) is created by averaging all the decision boundary normals together. The 

resulting matrix will hold information about the direction of maximum variance [9]. Cal- 

culating the eigenvectors of the EDBFM yields the orthonormal basis set for the directions 

of maximum separation. The eigenvalues of the EDBFM yield the magnitude of the eigen- 

vectors. Thus, if the maximum direction of separation coincides with an axes of a feature, 

one can surmise that that feature is most important. 

MICA produces unique information that allows MICA-FS to short cut the process of 

creating the EDBFM. Instead of finding and calculating the normal vectors all along the 

decision boundary, the vectors normal to the hyperplanes are used, which are the weights 

of hyperplanes without the bias weight. Then each normal vector is weighted by the 

number of inter-class data pairs it separates. Recall that MICA trains HLNs to separate 

inter-class data pairs and their respective neighborhoods. The number of data vectors in 

the neighborhoods are summed together and used as the weighting for each normal vector. 

Thus, the EDBFM is calculated from: 

W;W 

EDBFM = ttlML (5.3) 

where s is the separation weighting. This process is quick and requires no searching. Let 

A be a 1 by n vector of eigenvalues of the EDBFM, 0 be an n by n matrix of normalized 

eigenvectors of the EDBFM, and 7 is the weighted sum described below [38] 

5-3 



which produces a 1 by n vector of magnitudes representing the saliency of each feature. 

5.2.2 Selection. Once the features are rated, there needs to be a selection algo- 

rithm to pick which features to use. For most data sets, exhaustive search is not a viable 

option due to computational constraints. Thus, less exhaustive search methods such as 

forward or backward selection are used. Forward selection trains a net with each feature 

individually and picks the best feature based on some criteria, usually classification accu- 

racy. Then a classifier is trained with the best feature and each of the remaining features. 

The best feature two pair is picked and nets are trained with the best two pair and all the 

remaining features. This process is repeated until no more features are left. The feature 

set is selected by which one rated the highest. Ties are broken by the combination that 

used the least amount of features. Backward selection is just the opposite where features 

are removed instead of added. These methods are still computationally expensive and do 

not guarantee the best combinations of features are found. 

An alternative selection process first rates the features, then selects them. Ad hoc 

methods simply pick the top x features. Another method is to add a noise feature and 

pick all features that rate better than the noise [13]. A more systematic method trains a 

net with the top-rated feature, then with the top two-rated features, and then with the 

top three-rated features, and so on. This is a rated forward selection which is similar to 

the forward selection, but it only adds them in the order the features were rated. The set 

of features used are the ones with the best performance. Although this method does not 

guarantee the optimal combination, it does coincide with the peaking phenomenon that 

is often observed and sometimes called the "curse of dimensionality." [14, pp 204] The 

observation is that as more features are added, classification accuracy increases to a point, 

where when more features are added accuracies go down. The better the saliency metric 

the more acute the peaking effect. 

MICA-FS selects features by using decision boundary analysis and rated forward 

selection. However, the problem associated with the rating features by directions of sep- 
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aration is that in multi-class problems the averaging of the outer product of the normal 

vectors can yield less than useful results. Consider a two space example. If the maximum 

direction of separation for classes one and two is in the x direction and the maximum di- 

rection of separation for separating classes one and three are in the y direction, then when 

the EDBFM is averaged together the x and y features will be rated equally important. 

However, on a class pair basis the following is possible: 

• Use just feature x to separate classes one and two 

• Use just feature y to separate classes one and three 

• Use features x and y to separate classes two and three 

This approach makes the decision boundary analysis for feature selection more useful. 

Experimental results have shown this to be the case. For example, a feature has been 

observed being rated last when separating one pair of classes and being rated first when 

separating another pair of classes in the same data set. Algorithm 12 shows MICA-FS 

algorithm. 

Algorithm 12 MICA with Feature Selection 

w <— [] {Initialize weight matrix} 
while more class pairs i and j do 

Classi   <—  ClasseData {Transfer all data pertaining to class i} 
Classj   «—  ClasseData {Transfer all data pertaining to class j} 
[u,s] «— TrainHiddenN odes (Clas Si, Class j) {Algorithm 2 slightly modified} 
7 <— FeatureSaliency (u,s) {Combination of Equation 5.3 and Equation 5.4} 
u <— RatedForwardSelection(Classi,Classj,f,size(u)) {Use best features for sep- 

arating class pairs} 
w <— [w; u] {Combine new weights in with weights for separating other class pairs} 

end while   

The Rated Forward Selection algorithm is straight forward, but there are some short 

cuts employed for faster processing. First, when the feature set is limited to one or only a 

few features, it is possible for the data in the two classes to be the same value. Therefore 

the distance matrix, D, will contain zero values. In this case, this feature or combination 

of features will not be the best combination and therefore another feature is added to the 

list without testing. Another speedup leverages MICA's ability to add HLNs on the fly. If 

when using all the features to train the network MICA needs x HLNs, then if a subset of 
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those features needs much more than x HLNs, it is unlikely to result in a better network. 

Therefore, when MICA is training an MLP with a subset of features and it exceeds 2x 

the number of HLNs as needed by the full features set, then training stops and another 

feature is added to the list. Once there are enough features to be within 2x HLNS of the 

entire feature set, MICA trains the MLP to completion and then tests it with the test data 

to get a percent accuracy. The rated forward selection algorithm keeps adding features 

in the order they are rated until all features have been added. Then the best feature set 

is the set with the highest test set classification accuracy. The rated forward selection is 

detailed in Algorithm 13. Note, this approach cannot produce a result worst than using 

the full feature set because in the worst case the full feature set is used. The rated forward 

selection algorithm returns a vector the size of the full feature set, but places a zero in 

the elements of the vector for features that were not used to train the hyperplanes. This 

maintains the standard MLP architecture. A feature can be eliminated entirely if, in the 

resulting weight matrix, there is a column of all zero, meaning no class pairs separated 

using that feature. 

Algorithm 13 Rated Forward Selection  

Test Accuracy <— 0 {Initialize Test accuracy Vector} 
for i = 1 to NumFeatures do 

Featurelndexi <— ^i 

Subclass^   <—  Classes (:,FeatureIndex) {Transfer columns of features being used} 
Subclass2   <—  Classe?(:,FeatureIndex) {Transfer columns of features being used} 
D *— Distance (Subclass^, Subclass?) 

if min (D) ^ 0 then 
[u,s] <— TrainHiddenNodes (Subclass^, Subclass?) {Algorithm 2} 
if size (u) < maxsize then 

[v] «— TrainOutputNodes (u, Subclass^, Subclass?) 
Test Accuracy j <— TestMLP (u; v, TestSublassi,TestSubclass?) 

end if 
end if 

end for 
Index «— find (max (Test Accuracy)) 
BestFeatures <— Featurelndex(l : Index) 
Subclass^ «— Classei(:, BestFeatures) {Transfer columns of features being used} 
Subclass? <— Classe? (:, BestFeatures) {Transfer columns of features being used} 
[u,s] <— TrainHiddenNodes (Subclassi, Subclass?) {Algorithm 2} 
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5.3   Hidden Node Pruning 

HLN pruning can be accomplished in the same manner as feature selection. When 

feature selection is complete, the data are fed through the HLNs. The HLN outputs are 

treated as features for training the next layer. If the next layer is another hidden layer, 

then the algorithm is exactly the same as used for feature selection. If the next layer is the 

output layer then slight changes are made. In this case, there is only one hyperplane trained 

per class. Since the saliency metric only involves one hyperplane, the weighting factor is 

not necessary. The saliency rates the HLNs according to their importance in training an 

OLN, which turns out to be the same as the magnitude of their weights. Often, many 

of the HLNs are not needed to training a particular OLN. In a three class problem, some 

HLNs separate classes one and two, some separate classes one and three, and some separate 

classes two and three. When training the OLN for class one, the HLNs used to separate 

classes two and three may not be needed. The same RatedForwardSelection algorithm for 

the FeatureSelection algorithm is used for the pruning algorithm. However, one additional 

short cut is used. If the number of HLNs is large, it is not likely that only a small portion 

will be needed to separate a given class. Therefore a binary search is used to find the 

transition where x HLNs do not fully separate the class, but x + 1 HLNs do. After this 

point is found, the algorithm precedes as describe in Section 5.2. 

5-4    Results 

Results are presented for the Iris data and the NIST OCR Data for the following 

three experiments: 

• MICA - MICA 

• MICA-FS - MICA with Feature Selection 

• MICA-HLNP - MICA with Feature Selection and Hidden Layer Node Pruning 

Table 5.1 presents the results for the experiments on the Iris data. These results are 

the average of 25 test runs. Each test run randomly creates a training and test set and 

then runs the algorithms. The major result is that the test set accuracy increases and the 

number of weights decreased almost by half compared to MICA without any reductions. 
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The training set accuracies did decline slightly for the MICA-HLNP experiment. This 

is because the algorithm selects the combination of HLNs that have the highest average 

value between the training and the test set accuracies. It is possible to keep the training 

set accuracies at 100% by applying additional constraints. 

Table 5.1     Iris Data Set Results, 25 Runs 
Algorithm Points Training Test # HLN weights # OLN Weights 

MICA 150 100.00% 95.1% 26.6 18.96 

MICA-FS 150 100.00% 96.2% 14.44 16.56 
MICA-HLNP 150 99.80% 96.8% 14.44 9.36 

The results for the OCR data set are reported in Table 5.2. These results are mea- 

sured from 5 test runs. The classification results are very close, but the weight reduction 

is significant. The input weights are reduced by half and the output weights are reduced 

by more than half. 

Table 5.2     OCR ] Data Set Results, 5 Runs 
Algorithm Points Training Test # HLN weights # OLN Weights 

MICA 3471 100.00% 95.4% 1629.6 592 
MICA/FS 3471 100.00% 95.7% 815.8 584 
MICA/FS/HLNP 3471 100.00% 95.6% 815.8 267.4 

5.5    Conclusions 

MICA-FS and MICA-HLNP algorithm are extremely effective at reducing weights 

in an MLP network, while maintaining or increasing classification accuracies. This ability 

is afforded by MICA's unique construction style of adding HLNs to separate class pairs. 

Throughout the development of the MICA algorithm, the Ho-Kashyap method is used 

to minimize local errors and it results in MLPs those MSE is at the global minimums. 

Chapter VI addresses the basis for achieving this result. 
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VI.   Theoretical Framework 

Chapter II developed the TrainHiddenNodes algorithm, see Algorithm 2, where each HLN 

was individually minimized. Yet, these local minimizations were effective at minimizing 

the global error. This chapter analyzes the practicality of performing a series of local 

minimizations to deliver a global minimization. 

6.1    Local Minimization 

The Backprop algorithm reduces a global Mean Squared Error (MSE). The reduction 

in error is caused by the rotation and translation of the hyperplanes from a random start. 

Backprop moves hyperplanes to areas of high MSE, effecting a reduction of the MSE in 

that area. Other hyperplanes are then drawn to areas which with a higher MSE. This 

MSE reduction technique can be remarkable, unfortunately depending on the data set it 

can also be counter productive. The spiral data set has a low uniform MSE and adversely 

effects Backprop ability to learn the weights. MICA resolves the spiral problem and yet 

MICA does not intentionally employ hyperplanes in areas of high MSE. Although dissimilar 

from Backprop in terms of placement, MICA yields comparable or superior results than 

Backprop. Hence, placement is a significant aspect of minimization. There is a degree of 

local minimization in both algorithms ensuing placement. Yet, MICA's learning not only 

minimizes MSE but maximizes separation as well. Thus, the fitness of the minimization 

is also a consideration. After all the local minimizations are accomplished, the results are 

fused to yield a unified result. Consequently, there are three aspects that permit local 

minimizations to combine for the global effect. They are placement, fitness, and fusion. 

6.1.1 Placement. MICA's hyperplane placement algorithm places hyperplanes 

between nearest neighbor data points of opposite class. This strategy has two effects; it 

positions hyperplanes in the locality where there is the greatest potential for effectiveness 

and as well as locating the hyperplanes in areas of low MSE. This strategy is preferable 

to Backprop for two reasons. It separates low MSE data that may not be separable with 

Backprop. Furthermore, the hyperplanes do not incur the problem of local minima as they 

are being translated through the feature space. 
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6.1.2 Fitness. MICA minimizes the MSE of a hyperplane and maximizes the 

number of inter-class data pairs each hyperplane separates. This recasts the problem 

from one of minimization to one of optimization. Consequently, MICA optimizes the 

smallest set of hyperplanes possible to separate all the inter-class data pairs of a data set. 

Unlike MICA, Backprop is strictly a minimization algorithm that inspects all data at once. 

Thus, Backprop has an opportunity to maximize separation indirectly. Backprop is also 

confounded by local minima. 

6.1.3 Fusion. The products of the independent minimization/optimizations are 

bound together for a unified result. Since the problem is recast as an optimization problem, 

the fusing is simply the aggregate of the hyperplanes into a set of lower layer weights. 

The problem is now a sequential one where once the data are separated, a discriminant 

function is needed for classification. The result is one hyperplane per class being globally 

minimized in parallel, whereby the minimization is with respect to separation of classes 

not classification. Backprop's advantage is that it discerns the impact that changes in the 

lower layer weights will have on classification. MICA's implementation makes the training 

of the output layer weights dependent on the training of the lower layer weights, but not 

vice-versa. For the output nodes to be optimized for maximum separation, the hidden 

nodes must first be optimized for maximum separation. 

6.2    Global Minimization 

To attain global minimization necessitates recasting the problem as an optimization 

problem. The local minimizations/optimizations are bounded by the confines of a global 

placement algorithm. Thus, each minimization/optimization is sequential and independent 

in a feed forward manner. Fusion of independent optimizations that are taken in aggregate, 

compel each optimization to achieve 100% accuracy. That is, the optimization to separate 

two sets of data are dependent upon each local optimization achieving 100% separation. 

In general, fusion of sequential events are dependent, but can be optimized independently 

if done in a feed forward flow. Optimal results are achieved if the first stage is optimized, 

followed by optimization of the second, then the third, and so on.  The optimization of 
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parallel events are independent, but must also achieve 100% accuracies to obtain the global 

minimization. 

Now that a global minimization theory is established, it is applicable to other prob- 

lems. For example, suppose one endeavored to train a network for function estimation. 

Then they need an algorithm to situate the hyperplanes in the function space, an algo- 

rithm to minimize the MSE of the difference between the hyperplanes and the function 

data vectors, and finally an algorithm to fuse the hyperplanes together to estimate the 

function. Of these three algorithms, only the placement algorithm would be a challenge. 

6.3    Conclusions 

MICA incorporates the ideas of the framework above, and thus achieves a global MSE 

minimization by minimizing a series of local MSE. The placement algorithm is nominally 

going to the most difficult and requires the most insight to work out. This dissertation 

concludes in Chapter VII with conclusions and contributions. 
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VII.   Conclusions and Contributions 

7.1 Conclusions 

Multiple Layer Perceptrons neural networks serve as a vital tool for engineers and 

scientists alike. Unfortunately, because Backprop mandates a particular savoir-faire, much 

of this power is unharvested. Therefore, a multitude of aspiring MLP users either abandon 

MLPs, or use them and achieve lackluster results. This dissertation presents fundamental 

innovations in the use of MLP's for classification problems. The results in Section 2.7 

substantiate SL-MICA's ability to produce quality results in single hidden layer networks. 

The results furnished in Section 4.4 establishes ML-MICA's ability to produce quality 

results in multi hidden layer networks. Section 4.6 illustrates MICA's success at selecting 

the most advantageous network architecture. The user simply needs to input the data and 

associated labels and MICA will generate an optimized MLP network that best classifies 

the data. 

Moreover, if a non pattern recognition expert attempts to fashion a MLP they will 

encounter difficulty selecting the number of features to employ and discerning those fea- 

tures which will produce prime results. Furthermore, an overzealous MLP user may create 

numerous features with some designed for separating specific classes. The results in Sec- 

tion 5.4 demonstrates MICA's ability to use only the features that optimize performance 

while separating a specific pair of classes. 

In summary, MICA is a great benefit for all users of MLP networks. It will design 

the complete network architecture, select the best features, and prune unneeded hidden 

layer nodes to optimize the MLP generalization. 

7.2 Contributions 

This dissertation introduces a revolutionary MLP construction algorithm that designs 

and trains MLP neural networks layer by layer starting with the first hidden layer. This 

algorithm is efficient in designing MLP networks for an extensive range of data sets. It 

proved itself to be versatile enough to classify any training data to 100% classification 
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accuracy while also optimizing generalization. Additionally, the algorithm designs MLPs 

that are a mean squared error approximation of the Bayes optimal discriminant function. 

This dissertation contributes a feature selection and hidden node pruning technique 

for use with the construction algorithm above. This technique selects features based on 

which classes are being separated. This leads to a whole new generation of features that 

are class-pair separation specific, which when used will not degrade the overall performance 

of the network. The technique is also applicable to pruning hidden layer nodes to create a 

MLP network with the fewest number of weights while increasing classification accuracies. 

This dissertation contributes the idea of performing local minimizations to achieve 

a global minimization. There are three aspects in this realization: placement, fitness, and 

fusion. A framework is development to apply this concept to other problems. 

7.3   Follow on Work 

There are two areas for additional work. The first is to extend the algorithm to 

function approximation problems or remain with classification problems but use different 

separating surfaces . For example, ellipses or hyperbolas can be uses to surround the 

neighborhoods instead of a hyperplane to simply separate them. Also, Guassians can be 

placed on top of the neighborhoods to construct a Radial Basis Function Neural Network. 

The second area is to do more comparison testing with other approaches. The MICA 

algorithm could be compared against other architecture design approaches. For feature 

selection, MICA-FS used one saliency metric, but can improve the use of other saliency 

metrics. These metrics can be testing and compared against the approach in MICA-FS 

and against traditional approaches where the saliency of the features are rated for the 

entire problem set. 
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