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Abstract
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manner. Based on properties of the Kronecker product, we derive a set of recursive equations,
which leads naturally to an algorithm for computing such transforms efficiently. As a result, many
applications of transforms like the Walsh transform and the Reed-Muller transform, which were
previously impossible because of memory constraints, have now become feasible. The same set
of recursive equations also gives a new way of explaining hybrid transform diagrams, an efficient
data~structure for integer valued boolean functions.
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1 Introduction

Spectral transformations of boolcan functions [14, 17], like the Walsh or Reed-Muller trans-
formations, have numecrous applications in computer aided design, especially in the synthesis
and testing of combinational circuits. Using a straightforward implementation, the complex-
ity of computing thesc transformations grows rapidly in the number of variables of the
boolcan function. In thc past, this has severly limited the uscfulness of spectral techniques
for industrial applications. New techniques for computing the spectrum of a boolcan function
using binary decision diagrams, have made it possible to compute concisc representations
for the transforms of functions with scveral hundred variables [10].

This has led to a proliferation of similar transforms including MTBDD [6], FDD [5],
BMD [5], OKFDD [11, 12, 18], and others [17). It is often difficult to understand, how
these transforms arc related. In this paper we consider a class of transforms, called hybrid
spectral transforms [7, 8], which cncompasscs all of these transforms. Lot I be a function,
which maps boolcan vectors of length n into some sct D. The @ spectrum of [ is a lincar
transformation Qf of the vector representation f = ( F(0,...,0) ... F(1,...,1))" of F.
We consider only spoctral transformations @, which arc constructed as Kronecker products
of certain clementary matrices. When we want to cmphasize a particular hybrid spectral
transformation @, we call it a (hybrid) @ transformation. We provide a uniform algebraic
framework for rcasoning about such transformations. This framework is based cntircly on
propertics of the Kronccker product. We derive a sct of recursive cquations, which lcad natu-
rally to an algorithm for cvaluating products of the form @v where @ is given as a Kronccker
product, and v is a vector. Typically the hybrid spectral transformation is given by a matrix
@. This matrix maps a vector represcntation of the original function to the @ spectrum
of I7, the vector representation for the @ transform. We show how various spectral trans-
forms likc the Walsh transform and the Reed-Muller transform can be computed cfficiently
using this algorithm. The samc sct of rccursive cquations gives a new way of cxplaining
hybrid transform diagrams, an cfficient data-structurc for representing the @ transform for
D valucd boolcan functions. The methodology developed in this paper also yiclds a concisc
classification of all known applicable spcctral transformation diagrams.

This paper is organized as follows: Scction 2 describes the notation we usc for boolcan
functions. Scction 3 introduccs the Kronecker product, and gives an cfficient algoritm for
computing the product Qv of a matrix @ given as a Kronecker product and the vector v.
Scction 4 gives a uniform trcatment of hybrid spectral transforms in terms of Kronecker
products. Wc show in scction 5, how such transformations can be represented conciscly by
using a gencralization of the MTBDD. The paper concludes in section 6 with a summary
and somc dircctions for further rescarch.

2 Binary tree indexing of boolean functions

Let I7 : B — D bc a D valucd boolcan function; assume that I” is given in tabular form
{(b, F(b))| b € B"}. Since the vector b= (bg,...,b,_1) is cncoded by an integer ¢(z) where
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Figure 1: Dccomposition of a vector using binary tree indexing
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z € {0,...,2" — 1}, the list of valucs of I” can be represented conveniently as the vector
F=(F((0) ... Ple(2—1))"

Alternatively, f may be interpreted as a vector indexed by boolean sequences of length n. A
boolean sequence is cither cmpty (denoted €), or of the form €0 or ¢l, where ¢ is a boolcan
sequence. Let v be a vector of dimension 2%, and ¢ a boolcan sequence of length |c] < n—1.
Then, we usc the following indexing scheme: v|, is defined such that

vl.=v, and v|5:(v|c°> ,

vlcl

where v|,0 and v|,; have the same length. This scheme is called binary tree indezing.
When this scheme is expressed in terms of indices, we obtain:

de=v
Let v|o= (B ... ar_1)’ where r =n —|c|, then
vlo= (B0 ... Dyr-14 )T ,
V] = (Bgrmt onn By )!

Veetors indexed by boolcan scquences in this manner can be interpreted as Binary De-
cision Trecs, as illustrated in figure 1. The transition to Binary Decision Diagrams [4] then
involves climination of unnccessary nodces and sharing of common subtrees.

3 Computing Kronecker products efficiently

The Kronecker product A® B for a (k x I} matrix A and a (m X n) matrix B is dcfined as
the following (km X In) matrix:

a11B alzB v lZuB
A ® B = GZ?B az:zB v (IQ:B
apB apB .- eyl
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The Kronecker product is associative, but not commutative. Itcrated Kronecker products

arc dcfined as usual:
0 n n—1

®11k = ./10 3 ®Ak = ®Ak ® 11,1 .

k=0 k=0 k=0
The following identity relates the Kronecker product and ordinary matrix multiplication.

(Al ® Bl) . (Az @ Bz) = 111 . 112 ® Bl . Bz

As a conscquence, inversion distributes over the Kronecker product of nonsingular squarc
matrices:

(A®B)'=A"@B™!

Next, we derive a recursive algorithm for computing @ - f, where matrix @ is given as a

Kronecker product
n—1

QZ@Q:‘

and binary trce indexing is used for the vector f. The algorithm is cfficient because it avoids
the construction of the Kronccker product. First, we consider the casc where the @ is always
a (2 x 2) matrix. The clements of @; arc denoted (@Q);4, where j and k take the values 0
and 1. The algorithm is bascd on the following rccursive cquations, which will be proved
below. We assume, that the dimension of f|, is 277¥.

When k=n-—1: )
(®Q7) f|c = Qn—l flc )
j=k
othcrwisc:

n—1
n—1 ( X QJ) “fleo
(®Q) fle=@oLy-| T
= (® Q) fla
i=k41
In the proof of these cquations, the following abbreviations arc used ([ is the (2 2) identity

matrix):
n—1

Q:(ng)’ I-n,k=(®1)‘

j=k+1 j=k+1

Notc that [, is an identity matrix which has thc samc dimension as Q. The casc when




k= n — 1 is obvious. The other casc is cstablished by the following argument:

n—1

(Q_zZQj) -l

Il

Qe ( ® Q) - fl:
j=k+1

(@r)or - Q) ([ fleo
(@)1~ Q <f|c1>
v 'f|c0+(Qk)01‘Q'f‘cl)
)10 Q- flo+ (Qi)11- Q- fla
) : In,k ’ 6:2 * flco + (Qk)m : I-n,/v *
k)lO : In,k : Q : fIcO + (Qk)ll : In,k :
)
)

k}00 ° In,k (Qk)OI : I-n,k) . (@ .
k)10 ° In,k (Qk)ll " I-n,k

_ ' Q- f|s0)
- (Qk ® In,k) (Q . flcl

Using thesc cquations, @ - f can be computed recursively by sctting k = 0 and ¢ = . We
illustratc how the recursive algorithm works by the following cxample. Lot

kiad
~—r
(=3
(=1

& <.Qz

Il
—~

=
=)
3
&

Or O

*)

(=3

Il
TN TN TN

F=(1 001101 1),

and Q@ = Qo ® @1 ® Q2 where cach @; is the matrix:

(41 1)
-1 1
The computation of @ - f starts with the four 2 clement subvectors floo, flo1, flio and flis,

which arc transformed scpcratcly by @;. The results of these transformations arc then
asscmbled into two 4 clement vectors, which arc in turn transformed by @y ® I3, into the

result @ - f.

1 ¢ ¢
Q2 floo = < ) — ! 2 2 5
-1 -1 0 0 -1
1 @1 ® LIy . = 0 —_— 0 .
Q2 flo = (1> E— 1 9 9 3
1 1 gy @®hLol 7]
Q2 flo = <_1> | 1 _1 1 _1
9 Q18 Ly 2 - 1 - 1 1
Q- flu = (5) — '\ 1 1 -1

Of course, when the algorithm is implemented, the Kronecker products (@ & ;) need not
be constructed. (@Q; @ I, ;) - v can be computed by applying the (2 X 2) matrix @; to the
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blocks v]o and v|; of the vector v. So, instcad of matrix multiplication, actually the following
opcration is performed:

@ron (1) = (@ ém i)

This opcration only involves computing lincar combinations of the vectors v|o and v]; with the
scalars (Q;)s. The original matrix formulation, howcver, gives a morc concisc presentation
of the algorithm.

This algorithm is casily gencralized to @ transforms over Z;, where the @ transform is
madec up from (! x [) matrices @;. The recursive cquations, however, also work for (m X [)
matrices @;. In this casc we have:

n—1 n—1
0=(®), Li=(Q I1").
=0 F=k+1

where I™ is the (m X m) identity matrix. Thus, I, 4 is a squarc matrix of dimension m®=*).

The appropriate recursive cquations arc a natural gencralization of the case when [ = 2.
When k=n—1:
n—1
(®Q1) 'flczQ-n-—l f|$ 3
g=k

otherwisc:
n—1

(® @) flo

j=k+1

n—1
(®@5) fl- = Q& L) - (j?ile)'flcl

3
|
-

[
1]
o

n—1

( X Qj) * flo-1y

j=k+1
Thesc recursive cquations can be used to cvaluate the @ transforms, as will be explained
bclow.

4 Hybrid spectral transforms

In the remainder of the paper, we will restrict our attention to functions that map boolcan
vectors to D = Z; or Z. Such functions I : B* — D may be uniformly cxpressed using the
so-called minterm-representation. Let - and + be the standard multiplication and addition
opcrations on Zy and Z. Also, Iet ¢: {0,...,2" — 1} — B” be the cncoding for boolcan
sequences from 2. The minterm m(b) for a vector b € B is defined as follows:

n—1 .
N T if b; =1
m(b) = Ej t;, where t; = {1_1 i£h =0




The minterm representation of I' : B™ — D is given by:
2m—1

I(zoy. .. Zp-1) = z m(c(z)) - fi -

i=0

This sum can be regarded the scalar product m?! f of the minterm-vector

m=(m(e(0)) m(c(1)) ... m(e(2-1)))"
and v
f=(Fe0)) ... Fle(2r—1)))
The minterm vector can be cxpressed as a Kronecker product:

n—1

m= (®(m_; m,-))’[

5=0
For cxamplc, when 7 is 3, the minterm vector is given by:
m! =(T5 2)® (T 21)® (T3 2)
=(Z0T1T2 ToZi%: ToL1Tz ToTi1%z 2oT1Zz LoTi%2 Bo1T3 Loy 2z)
The concept of minterm representation is casily generalized to get other representations
of the samc function I™:

F=m'f=mlIf= (mTQ_l)(Qf)
where [ is the appropriate identity matrix, and @ is some non-singular matrix. The vector
Qf is called the @ spectrum of I7 with respect to the spectral transformation matriz Q. Since
@ is non-singular, the spectrum of a function provides a canonical form for the function. This
is casy to scc, since @fy = Qf2 iff fi = f>. In general, any nonsingular matrix ¢ can be
uscd for this purposc. Ilowcver, in practice it is desirable for @ to have a regular structure:

n—1
R=Q0Q: .
i=0
For boolcan functions it is uscful to restrict spectral transforms to Kronccker products of
(2 x 2) matrices over {0,1,—1}. There arc twelve relevant cascs, all other non-singular
matrices arc cither scalar multiples or can be obtained by multiplication with a diagonal

e e e e e e
CHENEN N EYE

The upper six matrices have been assigned names in the literature. They arc (from left to
right): Thc Shannon-matrix, Reed-Muller matrix, Arithmetic matrix, Walsh matrix, necga-
tive Davio matrix, and the inverse negative Davio matrix. The Shannon and Recd-Muller
matrices arc usually interpreted over Zy, whercas the arithmetic and Walsh matrix arc de-

fincd over the integers [14]. Generally, two important cascs of the @ transformation arc
distinguished:



Q = ®;. Qo, the homogencous transformation [10],
Q = ®; Q, not all @ s arc cqual: the hcterogencous, or hybrid transformation [7].

ITomogencous transformations formed from the Walsh matrix are called Walsh-transforma-
tions. Likewisc homogencous transformations formed from the Reed-Muller matrix are called
Rocd-Muller transformations. Similar conventions arc obscrved for the other matrices.

Choosing Kronccker products to define spectral transformation matriccs for boolcan func-
tions has scveral advantages. First, using the recursive algorithm given in 3, the spectrum of
any given function can be computed cfficiently without actually cver constructing the huge
transformation matrix. Enhancing the representation of the vector from binary tree indezing
to a BDD-rcpresentation improves cfficiency considerably duc to massive sharing of subvec-
tors. Sccond, the utilization of Kronccker products of (2% 2) matrices in the transformations
results in a modular representation of the function, which gencralizes the notion of MTBDD
to @ transform diagrams.

We illustrate the heterogencous casc with an cxample. Let I : B? — D be given by
the table 7(0,1) = 0, and F(b;,by) = 1, otherwisc. In this casc, the vector f is given by:
f=(0 1 1 1). The minterm representation of I” is

[(21,22) = 7133 0+ Trep - L+ 21T - L tzqze - 1

I is intcrpreted over the integers (thus Z = 1 — z). The spectrum of I" with respect to the
heterogencous transformation @ = Qo ® Q1 where Qo is the Arithmetic matrix and @1 the
Walsh matrix is given as follows:

0 1 1 0 0\ /0 1
(10 1onf] 1 -1 0 o] [
Qf_((——l 1)®( 1 —1)) 1= -1 1 1T 1
1 1 1 1 -1/ \1 1

According to the dofinition above, the @ transform gives a new torm representation for I:

T\ (-1 -1 0 0 1
- AN B N -1
ToZ1 -1 1 -1 1 1
1 ‘

_ l 1- 2$1 -1

- 2 Zo 1
zo(1 — 224) 1

=2 + 160(1 — $1)

= 21 + ZoT1

Of coursc, this representation is cquivalent to the minterm representation.




5 Hybrid transform diagrams

The term-representation of 7 using a suitablc @ transform may be considerably shorter and
morc cficicnt to cvaluate than its cquivalent minterm representation. We develop BDD-like
representations for @ transforms, which allow cfficient computation and cvaluation of such
transforms.

Let I be a D valucd boolcan function in the variables zq,. .., 251, and
n—1
Q=QQ;
i=0

Then, the @ transform of I7 is given by
F(‘”Oa (X mn—-l) = 777"1'@—1.]?

where f = Qf is the @ spectrum of 7. Inscrting the dcfinition of @ as well as the decom-
position of m as mentioned carlicr we obtain:

n—1 n—1

F(zo,...,2p-1) = ((@)(TJ ma))@Ql_l)f

n—1

= (®Uz =) @) f

=0

using the distributivity property of Kronccker and matrix product. Now, for any given
assignment to thc variables, the valuc of the transform of I can be computed cfficiently
using the gencralized recursive algorithm from scction 3. Since (z; %) - Q7! is always a
(1 x 2) matrix, the identity matrices I, & degencrate into scalars, which makes the recursion
particularly simple. ITowcver, in order to compute different valucs of the same transform,
data-structurcs arc nceded to represent the transform cfficiently. The key to this represen-
tation also comcs from the recursive cquation at the end of scction 3. Intuitively, this can
be scen best by unfolding the recursion a fow steps:

n—1

(R =)-0)-F=

(®((7 =)-") Flm
(7 an-ai)-| :
(®(@F ) @™M) fla
(75 =0)-a5) - ~
) (®((= 25)-Q7) - Fho

((z1 21)- Q7 -
(®U= 2)¢") Fin




Again, the product ((':L—] zj)- Qj'l) - v can be regarded a block opcration on v|o and vy

(7 =) Q}l) v = Li(eg) - vlo +7i(e) - vh

where

i) = dcthj ‘ ((Qj)ll$j - (Qj)mf})
5 = gy - (@7 = @iJos)

With this notation, the recursive cvaluation of the @ transform of I” can be written in
the following manncr (z = (2o, ..., Tn-1) ):
(@) - fla + (@) fla if e =n — 1
eval(z, f|.) = ;
ha(z) - eval(z, fle) + 71 (2) - cval(z, fla) otherwise

The valuc of I7 at 2 can be computed via I(z) = oval(z, f]c). The structurc of this recursion
obviously follows a binary trce-pattern, so, the natural choice to represent the @ transform
is an annotated binary tree, which we call the @ transform tree. The leaves of a ) transform
trec contain the clements of the @ spectrum, whercas the branches on level j arc labeled
with {;(z) on thc left branch and r;(x) on the right branch.

An cxample best illustrates the situation. We compute the @ transform trec for

f=(1 -1 1 -1 2 -4 2 =2)" |

where = Qo ® @1 ® @2, with the matrices

1 1 01 10
QO'_(l _1) ’ Ql_(_l 1) Q? ( 1) .
The @ spectrum @ f can be computed as described in scction 3:
Qf=(3 00 2 -1 0 0 —-2)"

The cvaluation of the @ transform follows an analoguous recursive scheme. This scheme is
displaycd bclow with the products (z; 2;) - Q;l alrcady cvaluated.

3
(1—2z, 2)
(1 1) ( g)
(1—)232 :Zz)( :.4)
F(z1,25,23) = (5 3(220—1)) 1
(122 ( 0)
(]. !C]_-—-].) 0
(-2 =) (L)

=14 20— 220 — 42022 — 22122 — 2202122

The recursive scheme can be represented convenicntly by a trece. We call such a trec a
@ transform trcc. Figurc 2 shows the @ transform trec for the example above.

9
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Figurc 2: @ transform trce for I

Morc formally, we define the @ transform trec T for f, where the spectral transformation
@ is given by a Kronccker product of (2 X 2) matrices

n—1

Q=QRQ: ,
i=0

and the vector f is of dimension 2. For any k < n — 1, and boolcan scquence ¢ of length
less than n — 1, the k, ¢ subtree T of T is dcfined as follows.

the left subtree of T is Tkt1,c0, the branch leading to it is labeled with [x(2);

the right subtrce of Tk is Th41,e1, the branch leading to it is labeled with rg(2);
Ty-1,c is dofined by:

the loft subtree of Ty,—1 . is the leaf f, the branch leading to it is labeled with 4, (2);

the right subtrec of T;,_1 . is the leaf fi1, the branch lcading to it is labeled with rp,—g (2);

T itsclf is its own subtree To..

In the casc of the Shannon-transformation, a decomposition of the function I itsclf along
these lines is known as the Shannon-czpansion w.r.t. the variable z;:

_ T
I'=(z; 2;)(Fle=0 Flej=1)
For arbitrary ¢ transformations we dcfine the ¢ cxpansion with respect to z;:
F=((5 2)Q")(@i(Fly=o Flo=)")

Thesc cxpansions just describe the nodc-operations on the ) transform trees. Thus, cach
level of a @ transform tree can be regarded as a kind of @; cxpansion with respect to the
variablc z;.
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ITomogencous Shannon transform trees arc an interesting special case. Since the Shannon
transformation matrix is the (2 X 2) identity matrix, the labeling on the branches becomes
particularly simple:

li(x) =75, ri(z)==;.
Thus, at cvery nodc in such a tree, onc of the two branches starting at that node is labcled
0 and the other 1. So, these trocs actually arc decision trees; this is not necessarily the case
for other transforms.

The space required to represent boolcan functions by ¢ transform trees can be greatly
reduced in certain situations. Obviously, space can be saved by converting these trees to
dirccted acyclic graphs, where identical subtrces arc shared. Additional reduction in space
ariscs from the climination of unnccessary nodes. A node in a trec is unnccessary, if both its
subtrees arc identical. Such a nodc can be climinated, after an adjustment is made to the
label of the branch preceding this node. Without loss of gencrality consider a trec where one
nodc on the first level has identical subtrecs. This tree is represented by the term:
(lina(2ia1)  risaleisn)) - (BB/>
(Li(25) rifz5))- :

A
(Uilosn) risatzsn)) ()

Ilcre, A, B and B’ arc the subtrces, where A occurs twice as a subtree of the same node.
This cxpression can be simplified as follows:

(Lpi(@ie1)  ria(zian) ) - (g,)

(ha(esn) rimalein) (5)
(aalessn) mma(ess)- ()

Liva(zje1)A + rjpa(z51)A

(oisn) rialeinn)- ()

(la(i41) + risa(2i41))A

(Li(z5) ri(=3))-

= (1b62) - (Usnos1) rosa@)) - () + 73 Gaei) + i ogaa))A

(Lirr(zin) ripa(zi)) - (g:)

= (lizs) rile)Uin(zin) +risa(zin)) -
A
Elimination of unnccessary nodes can be expressed graphically as shown in figurce 3. The
unrcduced trec on the left corresponds to the original formula in the derivation. The tree
on the right corresponds to the last formula in the derivation and shows the cffect of the
reduction.

11
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Figurc 3: Elimination of unnccessary nodes

The ordering of the variables for @ transform trees has not been considered so far. The
variable ordering determines which reductions can be made, and can have a dramatic cffect
on the size of the final dirccted acyclic graph. Since this topic has been discussed extensively
in the litcraturc [13, 16], we will not discuss it further in this paper.

Now, for any hybrid @ transformation, we dcfinc the corresponding hybrid @ transform
diagram to be the Q transform trec together with the additional operations of nodc climi-
nation, sharing of common subdiagrams and variable ordcring. Various transform diagrams,
that appcar in the litcrature, can be classificd using this terminology. Ior cxample, MTB-
DDs can be understood as homogencous Shannon transform diagrams. Somc of the most
commonly uscd diagrams arc listed in the table below.

w |G G0 D DG

Name Shannon Reed-Muller Arithmetic Walsh
Positive Davio Negalive Davio

Expansion: 7 @)v Few z)v Vo slo b S
(I{z) r(z))v (= ) ( ) (1 %) (1 Ju o (1 )

Homogeneous | BDD [1,4]  FDD [5, 15} — BMD [5]  wWDD [18]
Diagrams MIBDD [6] ACDD [18]
Hetlerogeneous | +———KDD [12] ————

Diagrams 4———————Hybrid transform diagrams [{} ————

6 Summary and directions for future research

In this paper we provide a uniform algebraic framework for computing spectral transforms
[10] and hybrid transform-diagrams [7, 8] in an cfficicnt manncr. The entire discussion is
bascd on propertics of the Kronecker product. We derive a sct of recursive cquations, which
lcads naturally to an algorithm for cvaluating products of the form Qv where @ is given
as a Kronccker product, and v is a vector. We show how various spectral transforms like
thc Walsh transform and the Rocd-Muller transform can be computed cfficiently using this
algorithm. Many applications of thesc transforms in digital design which were impossible
because of memory constraints, have now becomc feasible [10]. The same sct of recursive
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cquations also gives a new way of cxplaining hybrid transform diagrams, an cfficient data-
structurc for D valucd boolcan functions. Thc usc of such diagrams has resulted in the
devclopment of new verification mcthods for computer arithmetic, like word level model
checking [9).

It is clcar that thesc idcas arc not confined to applications in digital circuit design. D
valucd boolcan functions, cxpressed in terms of hybrid transform diagrams (in particular
MTBDDs) can be usced to represent large matrices [6]. The arguments of these functions are
the binary representations of the row and column indices of the matrices. The applications of
such mcthods in numecrical analysis and lincar algcbra arc obvious. Gaussian Ilimination /
LU dccomposition with pivoting and itcrative methods for solving systems of lincar cquations
arc typical cxamples[2, 6]. Many problems in graph theory like the all pairs shortest path
problem for large graphs with weighted cdges can also be formulated in terms of matrices and
then solved by the methods presented in [2, 6]. Finally, Markov analysis and probabilistic

modcl checking involve huge matrices, and may ultimatcly benefit from these techniques
(2, 3].
k]
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