
Hybrid Spectral Transform Diagrams

E. M. Clarke1 M. Fujita'2 W. Heinle 3

June 4, 1997
CMU-CS-97-149

_8?ÄT£MEm R
School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We give a uniform algebraic framework for computing hybrid spectral transforms in an efficient
manner. Based on properties of the Kronecker product, we derive a set of recursive equations,
which leads naturally to an algorithm for computing such transforms efficiently. As a result, many
applications of transforms like the Walsh transform and the Reed-Muller transform, which were
previously impossible because of memory constraints, have now become feasible. The same set
of recursive equations also gives a new way of explaining hybrid transform diagrams, an efficient
data-structure for integer valued boolean functions.

1School of Computer Science. Carnegie Mellon University. Pittsburgh
2F'ujilsu Laboratories of America Inc.. Santa Clara. CA.
3lnstitut für Informatik und angewandte Mathematik. University of Bern. Switzerland
This research was sponsored in part by the National Science Foundation under grant no. CCR-8722633,

by the Semiconductor Research Corporation under contract 92-DJ-294, and by the Wright Laboratory. Aero-
nautical Systems Center. Air Force Materiel Command. USAP. the Advanced Research Projects Agency
(ARPA) under grant F33615-93-l-133U; and the Swiss National Science Foundation within project 20-
45717.95.

USltfltt ^
DTIC QUALITY INSPECTED 4

Keywords: (Multi- Terminal) Binary Decision Diagrams, Hybrid Transform Diagrams,
(Hybrid) Spectral transfomation, Walsh transform, Rccd-Mullcr transform, Spectrum of a
boolean function.

*
1

1 Introduction
Spectral transformations of boolean functions [14, 17], like the Walsh or Rccd-Mullcr trans-
formations, have numerous applications in computer aided design, especially in the synthesis
and testing of combinational circuits. Using a straightforward implementation, the complex-
ity of computing these transformations grows rapidly in the number of variables of the
boolean function. In the past, this has sevcrly limited the usefulness of spectral techniques
for industrial applications. New techniques for computing the spectrum of a boolean function
using binary decision diagrams, have made it possible to compute concise representations
for the transforms of functions with several hundred variables [10].

This has led to a proliferation of similar transforms including MTBDD [6], FDD [5],
BMD [5], OKFDD [11, 12, 18], and others [17]. It is often difficult to understand, how
these transforms arc related. In this paper we consider a class of transforms, called hybrid
spectral transforms [7, 8], which encompasses all of these transforms. Let F be a function,
which maps boolean vectors of length n into some set D. The Q spectrum of F is a linear
transformation Qf of the vector representation /=(F(0,..., 0) ... F(l,..., 1)) of F.
We consider only spectral transformations Q, which arc constructed as Kronccker products
of certain elementary matrices. When we want to emphasize a particular hybrid spectral
transformation Q, we call it a (hybrid) Q transformation. We provide a uniform algebraic
framework for reasoning about such transformations. This framework is based entirely on
properties of the Kronccker product. We derive a set of recursive equations, which lead natu-
rally to an algorithm for evaluating products of the form Qv where Q is given as a Kronccker
product, and v is a vector. Typically the hybrid, spectral transformation is given by a matrix
Q. This matrix maps a vector representation of the original function to the Q spectrum
of F, the vector representation for the Q transform. We show how various spectral trans-
forms like the Walsh transform and the Rccd-Mullcr transform can be computed efficiently
using this algorithm. The same set of recursive equations gives a new way of explaining
hybrid transform diagrams, an efficient data-structure for representing the Q transform for
D valued boolean functions. The methodology developed in this paper also yields a concise
classification of all known applicable spectral transformation diagrams.

This paper is organized as follows: Section 2 describes the notation wc use for boolean
functions. Section 3 introduces the Kronccker product, and gives an efficient algoritm for
computing the product Qv of a matrix Q given as a Kronccker product and the vector v.
Section 4 gives a uniform treatment of hybrid spectral transforms in terms of Kronccker
products. Wc show in section 5, how such transformations can be represented concisely by
using a generalization of the MTBDD. The paper concludes in section 6 with a summary
and some directions for further research.

2 Binary tree indexing of boolean functions
Let F : Bn —> D be a D valued boolean function; assume that F is given in tabular form
{(6, F(b)) | b € Bn). Since the vector 6 = (b0,..., &„_i) is encoded by an integer c(x) where

t'looo u|ooi i'loio v|on t'lioo i'lioi i'liio "Im

Figure 1: Decomposition of a vector using binary tree indexing

x€ {0, 2" 1}, the list of values of F can be represented conveniently as the vector

f=(F(c(Q)) ... F(c(T-l))f .

Alternatively, / may be interpreted as a vector indexed by boolean sequences of length n. A
boolean sequence is cither empty (denoted e), or of the form cO or el, where c is a boolean
sequence. Let v be a vector of dimension 2", and c a boolean sequence of length \c\ < n—l.
Then, wo use the following indexing scheme: v\c is defined such that

and v\. V\cO

«1=1

where u|co and v\ci have the same length. This scheme is called binary tree indexing.
When this scheme is expressed in terms of indices, we obtain:

vL = v

Let v\c = (t>o ... iV-i) where r = n — \c\, then

v\co=(v0 ... tV-i-i)'' ,

V\cl , IV-1
V2'-l) •

Vectors indexed by boolean sequences in this manner can be interpreted as Binary De-
cision Trees, as illustrated in figure 1. The transition to Binary Decision Diagrams [4] then
involves elimination of unnecessary nodes and sharing of common subtrees.

3 Computing Kronecker products efficiently

The Kroncckcr product A® B for a (k X /) matrix A and a (m x n) matrix B is defined as
the following (km X In) matrix:

A®B =

/anB
a21B

a12B ■
a22B ■

• altB\
■ a2lB

\aklB

2

■ auBJ

The Kroncckcr product is associative, but not commutative. Iterated Kroncckcr products

arc defined as usual:
0 n rc—1

<g)Ak = A0 , 04 = 0484 •

The following identity relates the Kroncckcr product and ordinary matrix multiplication.

(Ax ® Z?i) • (A2 0 B2) = A1 ■ A2 ®D1-B2 .

As a consequence, inversion distributes over the Kroncckcr product of nonsingular square

matrices:
(A ® D)-1 = A'1 ® ZT1 .

Next, we derive a recursive algorithm for computing Q ■ /, where matrix Q is given as a

Kroncckcr product

Q = §> Qi
1=0

and binary tree indexing is used for the vector /. The algorithm is efficient because it avoids
the construction of the Kroncckcr product. First, we consider the case where the Qi is always
a (2 X 2) matrix. The elements of Qi arc denoted {Qi)j,k, where j and k take the values 0
and 1. The algorithm is based on the following recursive equations, which will be proved
below. We assume, that the dimension of f\c is 2n~k.
When k = n — 1:

(§0i)-/|6 = Q»-i-/lc ,
3=k

otherwise:
/, n-l

(®Gj)-/|e = («*® /»,*)■

\

J

(<g> Qi) ■ /IcO

. (§ Qi) ■ f\c
V j=k+i

In the proof of these equations, the following abbreviations arc used (/ is the (2 X 2) identity
matrix):

Q = (§> Qi) , In,k =(§>/)•
j=k+l i=h+l

Note that /„ it is an identity matrix which has the same dimension as Q. The case when

k = n - 1 is obvious. The other case is established by the following argument:

(§0i)-/|B = Qk®{n<g) Q,)-fU
j=k 3= k+l

(QkjOO

(Qk)lO

Q (Qk)oi-Q\ //UN
Q (Qk)u-QJ V/|=J

{Qk)oO

{Qk)lO

■Q-f\oo + (Qk)oi-Q-f\ci\

■Q-fU + (Qk)u-Q-fUJ

(Qk)oO ■ In,k ■ Q ■ fUo + (Qk)oi ■ /„,* • Q ■ f\cl

(Qk)lO ■In,k-Q-fU + {Qk)u-In,k-Q-f\cl

{Qk)oO

(QkU ■In,k (Qk)n-In,k)\Q-fU)

-(«"Mit)
Using these equations, Q • f can be computed recursively by setting k = 0 and c = s. We

illustrate how the recursive algorithm works by the following example. Let

/ = (1 0 Ü 1 1 0 1 1)'J ,

and Q = Qo ® Qi ® Q2 where each Q; is the matrix:

(' l

v-i 1

The computation of Q • f starts with the four 2 clement subvectors /|0o, /|oi> /|io and /|n,
which arc transformed sepcratcly by Q2. The results of these transformations arc then
assembled into two 4 clement vectors, which arc in turn transformed by Qt @ 73]1 into the
result Q ■ f.

1
-1 Q2 • /|oo —

Q2-/|oi = (J)

g2-/iio = (_})

«2-/|n = (0

Q\ ® /3,r

Qx ® HA

-1

1

\ 1/

/ 1\
-1

2
V 0/

(2\ (5\
0 -1
0 1
2 3

3 1

-1 -1
1 1

V lj V-i/

Of course, when the algorithm is implemented, the Kroncckcr products (Qj ® In,j) need not
be constructed. (Qj ® In,j) • v can be computed by applying the (2 x 2) matrix Qj to the

blocks v\o and v\i of the vector v. So, instead of matrix multiplication, actually the following
operation is performed:

(Qj ® Inj) ■
(Qj)oo • v\o + (Qj)oi ■ I'll
(Qi)io-v\o + (Qj)u -w|i

This operation only involves computing linear combinations of the vectors t»|o and t>|i with the
scalars (Qj)ki- The original matrix formulation, however, gives a more concise presentation
of the algorithm.

This algorithm is easily generalized to Q transforms over Z<, where the Q transform is
made up from (I X I) matrices Qj. The recursive equations, however, also work for (m X /)
matrices Qj. In this case we have:

3=0 j=k+l

where/"1 is the (m X m) identity matrix. Thus, /„^ is a square matrix of dimension mSn~k\
The appropriate recursive equations arc a natural generalization of the case when / = 2.
When k = n — 1:

(<|>Qi)-/|e = g»-l-/|c
j=h

otherwise:
/ (§> Qi)-fU X

3=h+l

((8)Qi)-/|e=(Q*® /„,*)■
3=k

n-1

((8) Q,) ■ fU
j=k+l

, (<g> Q,) ■ /ki-D
\ i=k+l

These recursive equations can be used to evaluate the Q transforms, as will be explained
below.

4 Hybrid spectral transforms

In the remainder of the paper, we will restrict our attention to functions that map boolean
vectors to D = H-2 or 1L. Such functions F : Dn —> D may be uniformly expressed using the
so-called mintcrm-rcprcscntation. Let • and + be the standard multiplication and addition
operations on 7L2 and Z. Also, let c : {0,... ,2" — 1} -»• Dn be the encoding for boolean
sequences from 2. The mintcrm m(b) for a vector b £ Bn is defined as follows:

m(b) = JJ ti , where t;
Xi if 6j = 1
xj if 6; = 0

The mintcrm representation of F : Dn —> D is given by:
2"-l

F(x0,...,xn-i)= YL m(c(0) • /•' ■
i=0

This sum can be regarded the scalar product m'1 f of the mintcrm-vector

m=(m(c(0)) m(c(l)) ... m(c(2"-l)))J

and
/=(F(c(0)) ... f(c(2»-l)))

The mintcrm vector can be expressed as a Kroncckcr product:

71—1 j-y-

m = (0 (2~i xi))

For example, when n is 3, the mintcrm vector is given by:

m1 =(xfi x0) ® (x{ xi) <g> (x^ x2)

= (xöXl~X~2 XÖX1X2 Xv,X\X~2 ~X$X\X2 SO^T^I XQX\X2 XQX\~X~2 XQ X\ X2) .

The concept of mintcrm representation is easily generalized to get other representations
of the same function F:

F = mrf = mlIf = (m'Q-^iQf)

where / is the appropriate identity matrix, and Q is some non-singular matrix. The vector
Qf is called the Q spectrum of F with respect to the spectral transformation matrix Q. Since
Q is non-singular, the spectrum of a function provides a canonical formiar the function. This
is easy to sec, since Qf\ = Qf% iff f% = fi- In general, any nonsingular matrix Q can be
used for this purpose. However, in practice it is desirable for Q to have a regular structure:

Q = ®Qi ■
i=0

For boolean functions it is useful to restrict spectral transforms to Kroncckcr products of
(2 X 2) matrices over {0,1,-1}. There arc twelve relevant cases, all other non-singular
matrices arc cither scalar multiples or can be obtained by multiplication with a diagonal
matrix.

'i ON fi o\ / i ON (\ IN /o r
,o l) \i i) v-i i) u -i; u -i; vi o,

0 1
1 0

(! ?) (-! !) (! -!) C -!) (! I
C I) (J 1) ("! I) (1 i) (11)

The upper six matrices have been assigned names in the literature. They arc (from left to
right): The Shannon-mntrix, Rced-Muller matrix, Arithmetic matrix, Walsh matrix, nega-
tive Davio matrix, and the inverse negative Davio matrix. The Shannon and Rccd-Mullcr
matrices arc usually interpreted over Z2, whereas the arithmetic and Walsh matrix arc de-
fined over the integers [14]. Generally, two important cases of the Q transformation arc
distinguished:

Q = ®h.Qo, the homogeneous transformation [10],

Q = <8>/b Qk, not all Qfc s arc equal: the heterogeneous, or hybrid transformation [7].

Homogeneous transformations formed from the Walsh matrix arc called Walsh-transforma-
tions. Likewise homogeneous transformations formed from the Rccd-Mullcr matrix arc called
Rccd-Mullcr transformations. Similar conventions arc observed for the other matrices.

Choosing Kroncckcr products to define spectral transformation matrices for boolean func-
tions has several advantages. First, using the recursive algorithm given in 3, the spectrum of
any given function can be computed efficiently without actually ever constructing the huge
transformation matrix. Enhancing the representation of the vector from binary tree indexing
to a BDD-rcprcscntation improves efficiency considerably due to massive sharing of subvec-
tors. Second, the utilization of Kroncckcr products of (2 X 2) matrices in the transformations
results in a modular representation of the function, which generalizes the notion of MTDDD
to Q transform diagrams.

Wc illustrate the heterogeneous case with an example. Let F : D2 -» D be given by
the table F(0,1) = 0, and F{hM) = 1, otherwise. In this case, the vector / is given by:
/ = (0 1 1 1). The mintcrm representation of F is

F(xi,x2) = ZTÖ2 • 0 + xTx2 ■ 1 + X1K2 • 1 + X1X2 • 1 .

F is interpreted over the integers (thus x=l-x). The spectrum of F with respect to the
heterogeneous transformation Q = Qo®Qi where Q0 is the Arithmetic matrix and Qi the
Walsh matrix is given as follows:

Qf =
1

-1

(m'Q-'Wf)

(°} / 1 L 0 °\ (0\ (l\

!-D) 1
1 =

1 -1
-1 -1

0 0
1 1

1
1 =

-1
1

\\) V-i 1 1 -1/ \i/ \ 1/

)ovc, the Q transform gives a new term representation f

(x-0xl\
l (-1 -1 0 °\ / l\

/ X0Xi 1-110 0 -1

" E0ET 2 -1 -1 -1 -1 t 1
\XQXI) V-l 1 -1 1/ \ 1/

(l V f l\
1 1 -2xi -1
2 x0 1
\x0(l-2a;1)/ V 1/

= asi + a:0(l - zi)

= «1 + x0 £1

Of course, this representation is equivalent to the mintcrm representation.

5 Hybrid transform diagrams
The term-representation of F using a suitable Q transform may be considerably shorter and
more efficient to evaluate than its equivalent mintcrm representation. We develop BDD-likc
representations for Q transforms, which allow efficient computation and evaluation of such
transforms.

Let FbcaD valued boolean function in the variables Xo,..., x„-i, and

i=0

Then, the Q transform of F is given by

F{xo,...,xn-!) =m'1Q-1f

where / = Qf is the Q spectrum of F. Inserting the definition of Q as well as the decom-
position of m as mentioned earlier we obtain:

»-1

F(x0,...,xn-1) = ((®(xj ^))-<g)g-1)-/
j=0 i=0

3=0

using the distributivity property of Kroncckcr and matrix product. Now, for any given
assignment to the variables, the value of the transform of F can be computed efficiently
using the generalized recursive algorithm from section li. Since (a;,- xi) • Qi is always a
(1x2) matrix, the identity matrices /„^ degenerate into scalars, which makes the recursion
particularly simple. However, in order to compute different values of the same transform,
data-structures arc needed to represent the transform efficiently. The key to this represen-
tation also comes from the recursive equation at the end of section 3. Intuitively, this can
be seen best by unfolding the recursion a few steps:

j=o
(®((5J x3).QT1)).f =

I

\{xl X\\

((xo x0)-Q0
1)-

■Qr1)-

((8>((s7 *i) • QJ1)) • /l<
3=2

((si ^)-Qf)

(®((*7 ^■)-071))-/|oi
3=2 I

'(§(0*7 *3)-Q?))-ho
3=2

3=2 I

Again, the product ((Xj x,) • Qj M • v can be regarded a block operation on u|0 and v\r.

((~x] Xj)- Qj1) ■ v = lj(xj) ■ v\o + rj(xj) ■ w|i

whe
lj^ = Ä^FV ' {(QAllX' ~ (Qi)***')

((Qj)ooXj - {Qj)oiX,) (*i)

dctQj

dctQj

With this notation, the recursive evaluation of the Q transform of F can be written in
the following manner (x — (xQ,..., £,,_i)):

d(*,f\c)
l\4*)-f* + r\4x)-f* if|c|=n-l
l\c\(x) ■ cval(x, /|co) + r\c\(x) ■ cval(a:, /|ci) otherwise

The value of F at x can be computed via F(x) = cval(x, /|e). The structure of this recursion
obviously follows a binary trcc-pattcrn, so, the natural choice to represent the Q transform
is an annotated binary tree, which we call the Q transform tree. The leaves of a Q transform
tree contain the elements of the Q spectrum, whereas the branches on level j arc labeled
with lj(x) on the left branch and rj(x) on the right branch.

An example best illustrates the situation. We compute the Q transform tree for

/=(1 -1 1 -1 2 -4 2 -'if ,

where Q = Qo ® Q\ ® Q2, with the matrices

*=(! -!)■«-(-: I). *-(!!)•
The Q spectrum Qf can be computed as described in section 3:

Q/=(3002-100 -'if .

The evaluation of the Q transform follows an analoguous recursive scheme. This scheme is
displayed below with the products (x] Xj) • Qj1 already evaluated.

3\\ / /

(1 Xl-1)

F(x1,x2,x3) \\ |(2x0-l))

(1 si-1)

V
= 1 + XQ — 2^2 — ^XQX2 — 'lX\X2 —

;i-2x2 *a)(l)W

(l-'lx2 x2)
0
VI

({\-'lx2 *3)(l^

(1-2^ z2)(_2

iXoXiX2
-VI

The recursive scheme can be represented conveniently by a tree. Wo call such a tree a
Q transform tree. Figure 2 shows the Q transform tree for the example above.

9

i(2a.-o-l)

2-1 0 0 -2

Figure 2: Q transform tree for F

More formally, we define the Q transform tree T for /, where the spectral transformation
Q is given by a Kroncckcr product of (2 X 2) matrices

Q = '<g)Qi ,
i=0

and the vector / is of dimension 2". For any k < n — 1, and boolean sequence c of length
less than n — 1, the k, c subtree T^c of T is defined as follows.

the left subtree of T^c is 2V|_i|0o, the branch leading to it is labeled with lk(x);

the right subtree of T/i)C is Tk+i,ci, the branch leading to it is labeled with rk(x);

r„_i>0 is defined by:

the left subtree of r„_i;C is the leaf /c0, the branch leading to it is labeled with /,l_1(a:);

the right subtree of Tn-\>c is the leaf fc\, the branch leading to it is labeled with r„_i (x);

T itself is its own subtree T0|E.

In the case of the Shannon-transformation, a decomposition of the function F itself along
these lines is known as the Shannon-expansion w.r.t. the variable xf.

F = (x] x3)(F\Xj=0 F\Xj=1)
T

For arbitrary Q transformations we define the Q expansion with respect to Xf

F=((x] xJ)Qf)(Qj(F\Xl=Q F\Xj=1)
r) .

These expansions just describe the node-operations on the Q transform trees. Thus, each
level of a Q transform tree can be regarded as a kind of Qj expansion with respect to the
variable Xj.

10

Homogeneous Shannon transform trees arc an interesting special case. Since the Shannon
transformation matrix is the (2 X 2) identity matrix, the labeling on the branches becomes
particularly simple:

h\x) = xi i rj(x) = xi ■

Thus, at every node in such a tree, one of the two branches starting at that node is labeled
0 and the other 1. So, these trees actually arc decision trees; this is not necessarily the case
for other transforms.

The space required to represent boolean functions by Q transform trees can be greatly
reduced in certain situations. Obviously, space can be saved by converting these trees to
directed acyclic graphs, where identical subtrees arc shared. Additional reduction in space
arises from the elimination of unnecessary nodes. A node in a tree is unnecessary, if both its
subtrees arc identical. Such a node can be eliminated, after an adjustment is made to the
label of the branch preceding this node. Without loss of generality consider a tree where one
node on the first level has identical subtrees. This tree is represented by the term:

Jj(xj) ^(Xj))-

l (h+i(xJ+i) r3+i(xJ+i))-yB,)

(lj+1(xj+1) rj+1(xj+1))- (^Aj }

Here, A, B and D' arc the subtrees, where A occurs twice as a subtree of the same node.
This expression can be simplified as follows:

/

(h(xj) rj(xj))
'Jj+i(xi+i) rj+iOj+i))- (ß/j

(li(xj) rAxi))-

(h+l(X3+l) r3+l(Xi+i)) ■ [A

l(lj+i(x3+i) rj+1{xj+1)) ■ (ß.

'■3+l(X3+l)A + r3+l(X3+l)A I

B\\
(lj+1(xj+1) rj+1(xj+1)) ■ ,ß,

, (lj+l(x)+l) + r3+l(*)+l))A

= (l3(Xj) rAX3))

= {h(x3) ■ Ci+ifo+i) rj+1(xj+1))) -yDiJ+ rj(xj)(lj+i(xj+1) + rj+1(xj+1))A

= (l3{*3) r,(x,-)(li+i(x,-+1) + ri+i(*i+i)))- f^^1^0 ^+l))-(£)j

Elimination of unnecessary nodes can be expressed graphically as shown in figure 3. The
unreduced tree on the left corresponds to the original formula in the derivation. The tree
on the right corresponds to the last formula in the derivation and shows the effect of the
reduction.

11

B' B A A

Figure 3: Elimination of unnecessary nodes

The ordering of the variables for Q transform trees has not been considered so far. The
variable ordering determines which reductions can be made, and can have a dramatic effect
on the size of the final directed acyclic graph. Since this topic has been discussed extensively
in the literature [13, 16], we will not discuss it further in this paper.

Now, for any hybrid Q transformation, we define the corresponding hybrid Q transform
diagram to be the Q transform tree together with the additional operations of node elimi-
nation, sharing of common sub diagrams and variable ordering. Various transform diagrams,
that appear in the literature, can be classified using this terminology. For example, MTB-
DDs can be understood as homogeneous Shannon transform diagrams. Some of the most
commonly used diagrams arc listed in the table below.

Matrix

Name

Expansion:
(/(*) r(x))v

Homogeneous
Diagrams

Heterogeneous
Diagrams

(ü) CO (!-0 (-1!
Shannon Heed-Muller Arithmetic Walsh

Positive Davio Negative Davio

(x x)v (x-x x)v (1 x)v (1 x)v J(l x — x)v

BDD [1, 4] FDD [5, 15]
MTBDD [6]

< KDD [12]

BMD [0] WDD [18]
ACDD [18]

-Hybrid transform diagrams [7]

6 Summary and directions for future research

In this paper wc provide a uniform algebraic framework for computing spectral transforms
[10] and hybrid transform-diagrams [7, 8] in an efficient manner. The entire discussion is
based on properties of the Kroncckcr product. Wc derive a set of recursive equations, which
leads naturally to an algorithm for evaluating products of the form Qv where Q is given
as a Kroncckcr product, and v is a vector. Wc show how various spectral transforms like
the Walsh transform and the Rccd-Mullcr transform can be computed efficiently using this
algorithm. Many applications of these transforms in digital design which were impossible
because of memory constraints, have now become feasible [10]. The same set of recursive

12

equations also gives a new way of explaining hybrid transform diagrams, an efficient data-
structure for D valued boolean functions. The use of such diagrams has resulted in the
development of new verification methods for computer arithmetic, like word level model
checking [9].

It is clear that these ideas arc not confined to applications in digital circuit design. D
valued boolean functions, expressed in terms of hybrid transform diagrams (in particular
MTDDDs) can be used to represent large matrices [6]. The arguments of these functions arc
the binary representations of the row and column indices of the matrices. The applications of
such methods in numerical analysis and linear algebra arc obvious. Gaussian Elimination /
LU decomposition with pivoting and iterative methods for solving systems of linear equations
arc typical cxamplcs[2, 6]. Many problems in graph theory like the all pairs shortest path
problem for large graphs with weighted edges can also be formulated in terms of matrices and
then solved by the methods presented in [2, 6]. Finally, Markov analysis and probabilistic
model checking involve huge matrices, and mav ultimately benefit from these techniques
[2, 3].

References

[1] S. B. Akcrs. Binary decision diagrams. IEEE Transactions on Computers, C 27(6):509
516, June 1978.

[2] I. Babhaar, E. Frohm, C. Gaona, G. D. Ilachtcl, E. Macii, A. Pardo, and F. Somcnzi.
Algebraic decision diagrams and their applications. In Proc. IEEE/ACM ICCAD'93,
pages 188 191, November 1993.

[3] C. Baicr, M. Kwiatkowska, M. Ryan, E. Clarke, and V. Ilartonas-Garmhauscn. Symbolic
model checking for probabilistic processes. In Proceedings, ICALP'97,. LNCS, Springer
Verlag, 1997.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677 691, 1986.

[5] R. E. Bryant and Y. A. Chen. Verification of arithmetic functions with binary moment
diagrams. In Proc. 32nd ACM/IEEE DAC, pages 535 541, June 1995.

[6] E. Clarke, M. Fujita, P. McGccr, J. Yang, and X. Zhao. Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix representation. In IWLS ''93:
International Workshop on Logic Synthesis, Tahoe City, May 1993.

[7] E. M. Clarke, M. Füjita, and X. Zhao. Hybrid decision diagrams overcoming the lim-
itations of MTBDDs and BMDs. In Proceedings of the 1995 IEEE International confer-
ence on computer aided design, pages 54 60. IEEE Computer Society Press, November
1995.

[8] E. M. Clarke, M. Füjita, and X. Zhao. Multi-terminal binary decision diagrams and
hybrid decision diagrams. In T. Sasao and M. Füjita, editors, Representations of discrete
functions, chapter 4, pages 93 108. Kluwcr academic publishers, 1996.

13

[9] E. M. Clarke, K. Khaira, and X. Zhao. Word level model checking a new approach for
verifying arithmetic circuits. In Proceedings os the 33rd ACM/IEEE Design Automation
Conference. IEEE Computer society press, June 1993.

[10] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for
large boolean functions with applications to technology mapping. In Proceedings of the
30th ACM/IEEE Design automation Conference, 54 60, June 1993. IEEE Computer
Society Press.

[11] R. Drechsler and B. Becker. OKFDDS algorithms, applications and extensions. In
T. Sasao and M. Fujita, editors, Representations of discrete functions, chapter 7, pages
163 190. Kluwcr academic publishers, 1996.

[12] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Pcrkowski. Efficient rep-
resentation and manipulation of switching functions based on ordered Kroncckcr Func-
tional Decision Diagrams, pages 415 419, June 1994.

[13] M. Füjita, Y. Matsungara, and T. Kakuda. On variable ordering of binary decision
diagrams for the application of multi-level logic synthesis. In Proc. IEEE EDAC'91,
pages 50 54, February 1991.

[14] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Techniques in Digital Logic.
Academic Press, Inc., 1985.

[15] U. Kcbschull, E. Schubert, and W. Roscnsticl. Multilevel logic synthesis basscd on
functional decision diagrams. In IEEE EDAC'92, pages 43 47, march 1992.

[16] R. Rudcll. Dynamic variable ordering for ordered binary decision diagrams. In Proc.
IEEE/ACM ICCAD'93, pages 42 47, November 1993.

[17] T. Sasao and M. Füjita, editors. Representations of discrete functions. Kluwcr academic
publishers, 1996.

[18] R. S. Stankovic, T. Sasao, and C. Moraga. Spectral transform decision diagrams. In
T. Sasao and M. Füjita, editors, Representations of discrete functions, chapter 3, pages
55 92. Kluwcr academic publishers, 1996.

14

