
Specialization Classes:
An Object Framework for Specialization

Crispin Cowan, Andrew Black, Charles Krasic,
Calton Pu, and Jonathan Walpole

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

(synthetix-request@cse.ogi.edu)

July 16, 1996

19970716 147
1 Introduction

Specialization is a growing area of interest in the operating systems community. OS components

specialized to some particular circumstance can offer enhanced performance, functionality, or both.

Complimentary partial evaluation techniques for automatically specializing programs are also reach-

ing maturity. However, the problem of managing specialization remains: how to specify a special-

ization, when to apply it, and when to remove it. This problem is particularly important for long-

running programs such as operating systems, where specializations are likely to be temporary.

This paper presents an object-oriented framework for specifying specializations in long-running

programs such as operating systems. This model is based on the following concepts:

• Inheritance allows replacement implementations of of member functions. We thus use a graph

of sub-classes to specify a set of potential specializations of a given facility by replacing

generic implementations with specialized implementations.

• Specializations in long-running programs are temporary, because the particular circumstances

*This research is partially supported by ARPA grants N00014-94-1-0845 and F19628-95-C-0193, NSF grant CCR-
9224375, and grants from the Hewlett-Packard Company and Tektronix.

j PBsaaimeit STATCSEI& 'K' \ i DTIC QUALITY INSPECTED 3
I Approved to: guciic teieowa]

that permit the use of a specialized implementation are likely to change eventually. We thus

support temporary and even optimistic specializations [16].

• Ensuring that it is valid to use a specialized implementation can be more difficult than cre-

ating the specialized implementation [16]. We thus use a formal method to specify when a

specialization is valid. This lets us automatically detect when specialization circumstances

have changed [8], and also automatically generate specialized implementations using partial

evaluation [6, 5].

Section 2 describes our specialization model, which is applicable both in OO operating systems

and in legacy kernels. Section 3 describes compilation techniques for this model. Section 4 briefly

describes some closely related work, and Section 5 concludes this position paper.

2 Specialization Classes

We first describe our model using an example, and then explain some details. Figure 1 illustrates

specialization of a file system: the open file object FS, which understands the operations read ()

and write (), is said to be the target of the specialization.

Following modern usage [1, 14], we use the term type to refer to the interface exposed by an

object and the term class to refer to the method code and the instance variables that implement that

interface. Hence, the type of the file describes the fact that it can be read and written; in an OO

system the type is merely the type of the FS object, and in a legacy OS coded in a non-00 language

it is the type signature of the set of procedures that provides the file system functionality.

The specialization plan is a definition of all the ways in which the file system can be special-

ized. In each specialization, some of the methods of the target are replaced by various specialized

implementations. The methods specialized by the specialization plan are the set of specializable

functions that are replaced by various specialized implementations. Thus the specialization plan

encapsulates the specializations to be applied to the system, independent of the degree of encapsu-

lation provided by the system's source language.

The various specialization options within a plan are organized into a partial order of specializa-

tion classes according to the relation "more specialized than." Each specialization class adds some

degree of specialization to the classes it inherits from, e.g. NFS is a specialization of generic, and

NFS/exclusive is a specialization of both NFS and exclusive. Each specialization class describes a

DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
SEATTLE REGIONAL OFFICE

1107 NE 45TH STREET. SUITE 350
SEATTLE WA 98105-4631 IN REPLY REFER TO:

4330
ONR 247
11 Jul 97

From: Director, Office of Naval Research, Seattle Regional Office, 1107 NE 45th St., Suite 350,
Seattle, WA 98105

To: Defense Technical Center, Attn: P. Mawby, 8725 John J. Kingman Rd., Suite 0944,
Ft. Belvoir,VA 22060-6218

Subj: RETURNED GRANTEE/CONTRACTOR TECHNICAL REPORTS

1. This confirms our conversations of 27 Feb 97 and 11 Jul 97. Enclosed are a number of
technical reports which were returned to our agency for lack of clear distribution availability
statement. This confirms that all reports are unclassified and are "APPROVED FOR PUBLIC
RELEASE" with no restrictions.

2. Please contact me if you require additional information. My e-mail is silverr@onr.navy.mil
and my phone is (206) 625-3196.

ROBERT J. SILVERMAN

All writes to guarded values

Specializes FS

File Systenr
read()
write()

Specialization Plan
forFS O

Specialization Class
Heirarchy

Local

Loc/Excl.

New

Class is
dynamic

Type of functional interface is static

Specialization Object
Guarded Write Interface ZA

/ violated quasi-invariants

\f H Replugging Interface

change Class

Indirection Table of

Specialized Functions

def. by current Class

FS

■o

read()

write()

Figure 1: Example: Specialization of a File Object

specialization state that the specialized facility can achieve. The "generic" -specialized state is the

unique top of the partial order of specialization classes.

Each specialization class specifies the conditions that make the specialization applicable, and

a subset of the members in the specialization plan to be replaced with specialized methods. The

conditions of a specialization class imply the conditions of each of its parents. The truth of the

conditions can change over time, and thus must be monitored as described in Section 2.1.

Specialization plans are compiled into specialized object generators, which when new'd create

specialized objects as shown in Figure 1. A specialized object is a wrapper around the object being

specialized. The specialized object represents the state of an instance of a specialization plan, i.e.,

bindings from the values in the conditions to data in the target, and bindings from the specializable

functions to the specialized methods. We view the type of the target object as being unchanged by

the specialization; from the point of view of the client, the same set of messages is understood, and

they have the same effects. Thus, the type of the specialization object is statically determined by

the type of the target.

In contrast, the class of the object changes dynamically according to the truth of the conditions,

and causes changes in the method code bound to the specializable functions. Looking a little more

closely, it may in fact the the case that the type changes: for example, if the conditions indicate

that a certain message will never be sent, we might create a specialized object that eliminates that

method altogether! However, our methodology guarantees that any such changes in type will be

invisible to the client.

2.1 Conditions: Quasi-Invariants

Conditions specify invariants. A true invariant is a classical invariant: a property of the system

that is guaranteed to be true at all times, stated as an expression using system variables that must

evaluate to "true." A quasi-invariant is a property that is likely to remain true, but may become

false at some future time. Specifying conditions using invariants allows the following key steps in

the specialization process to be automated.

Invariants can be used by partial evaluators to automatically prepare a specialized implemen-

tation that has been optimized using the invariants. Our use of invariants for specialization was

originally inspired by the invariant input specification for Tempo [6, 5], a powerful partial evalu-

ator for C. Partial evaluation to exploit specialization gives us a formal relationship between the

conditions and the optimized implementation.

Partial evaluation is independent of whether a condition is an invariant or a quasi-invariant.

However, specializations that depend on quasi-invariants are not always valid, but instead depend

on some temporary circumstance that begins when the quasi-invariants become true, and ends when

the quasi-invariants become false. For instance, file system access can be optimized using a quasi-

invariant that the file is not shared [16], but this condition can change unexpectedly if a separate

process opens the file.

Our hand-specialization experiments showed that locating all components of the kernel that af-

fect the state of quasi-invariants can be more difficult than the task of crafting specialized implemen-

tations. We have thus developed tools for locating kernel components that can potentially invalidate

quasi-invariants, described in the following section.

2.2 Guarding for Changes in Quasi-invariants

We have developed two ways to locate kernel components that can potentially alter quasi-invariant

state. One is based on type-checking the kernel source code, and the other is based on fine-grained

virtual memory protection. These techniques are discussed at length in [8], but what they produce

is a list of kernel source code statements that may violate quasi-invariant state. These writes to

quasi-invariant state must be guarded.

However, frequently such statements are accessing heap-allocated data structures, and only

a few of many of these structures actually control a specialization, e.g. the quasi-invariant

inode. ref count == 1 may be true of some particular inode, but there are thousands of in-

stances of the inode struct in the running kernel. The guards placed around writes decide whether

the write is to an actual quasi-invariant, or only a write to a value of the same type as a quasi-

invariant.
We distinguish among structs of the same type between those that contain quasi-invariant terms

and those that do not by inserting a Specialization IDentifier field (SID). In the case that the inode

struct is the instance referred to in the quasi-invariant expression, the SID field points to the special-

ized object that depends on that quasi-invariant.1 The specialized object then performs the guarded

write. For example, consider this update to inode. ref count:

inode.refcount = some_value;

A guarded update of the inode. ref count would be written as:

inode_set_refcount(some_value, SID);

The inode_set.ref count function writes the inode. ref count field in any case, but also

atomically adjusts any specialized components that depend on quasi-invariant expressions that de-

pend on this inode . ref count value.

2.3 Responding to Quasi-Invariant Changes: Replugging

When a quasi-invariant is violated, the specialized object must adapt its specialized implementation

of the facility to the new circumstance without relying on the quasi-invariant. One very common

action to be taken by the specialized object is to replace the dependent specialized components with

other, differently specialized components, or with generic components. This replacement is called

replugging, and requires fast, safe, concurrent dynamic linking. The problem is to facilitate very

low latency execution of a function via an indirect function pointer, while concurrently allowing

the pointer to be changed. Locks could be used, but locks may also substantially degrade perfor-

mance. In [7], we describe a portable algorithm that supports low-latency invocation of replaceable

functions while allowing concurrent update of pointers to those functions.

!A more complex scheme is used when struct instances are shared among multiple specializations, which we
omit for simplicity.

3 Translation and Specialization

Our previous efforts have manually applied our various specialization tools [7, 8, 16, 17]. Auto-

matic translation of specialization plans should convert the high level specification of how to spe-

cialize the system into running code that integrates the various components.

3.1 Specialization Plans

The specialization plan describes all possible ways in which the facility can be specialized. Given a

list of quasi-invariants, there is an exponential number of combinations of such invariants, resulting

in an exponential number of specialized functions. Specialization classes allow the programmer to

specify which combinations are important, and thus should be exploited.

The specialization plan is translated into a code template for a specialized object, and two lists.

The code manages the data structures described in Figure 1. The lists describe each specialization

class, and are fed to other specialization tools as follows:

specializable functions The list of specializable functions is taken from the specializa-

tion plan and built into the specialized object, and is fed to the

Tempo partial evaluator (see Section 3.2).

quasi-invariants The list of quasi-invariants is fed to the guarding tools, and to

Tempo.

3.2 Partial Evaluation

A specialization class declares an opportunity for specialization, and is described by a list of

(quasi-)invariants. If all the predicate conditions are of the form variable = const.value

or struct. f ield_name = const_value, the specialized implementations can be automat-

ically derived by a partial evaluator. Notice that such an automatic tool could be extended to deal

with other classes of predicate conditions, e.g. of the form variable < cons t_value. If the

complexity of the predicates is beyond the current capabilities of the partial evaluator, the program-

mer can still provide a hand-written implementation.

We are using Tempo, a partial evaluator for C programs developed at IRIS A, [5, 6, 4]. Given

a program and part of its inputs, it generates a specialized version of the program in which all the

computations depending on the known inputs are performed. Tempo processes a program in two
phases.

First, an analysis is performed, to decide which parts of the program are to be reduced (elimi-

nated), and which other are to be left in the specialized program. Note that the analysis phase doesn't

need the concrete values, it just propagates the known/unknown information. The interface to this

first phase is the analysis context, which contains:

• a list of the known inputs, which can be either variables or struct field names

• a list of the functions to be specialized

In a second phase, the program is specialized, based on the annotations produced by the first

phase and some concrete values for each known input previously declared. The interface to this

second phase is the specialization context, binding an actual value to each invariant variable.

4 Related Work

Object-oriented OS research has advanced the state of the art in the interface provided to applica-

tions, and advanced the ability of operating systems to be dynamically configured. In particular,

Choices [2, 11], AL-l/D [15], and Apertos [18] have investigated ways in which object-orientation

can be used for OS re-configuration. Kiczales has been exploring the general question of how ob-

jects can be used as a meta-interface [13].

OS customization has also been studied outside the 00 community. The SPIN project allows

replacement OS components to be loaded into the kernel. SPIN uses a combination of static type

checking and run-time checks to bound the damage potential of replacement components, but leaves

the correctness of applying a specialization up to the application. The Aegis project provides more

customizability by placing most OS functionality in a user-level library attached to user applica-

tions [10]. We discuss some of these approaches in [9].

At the language level, specialization classes are similar to Chambers' predicate classes [3],

which allow, for example, the class of a buffer object to depend on whether the buffer is full,

partially-full, or empty. Specialization classes can be thought of as an implementation of predicate

classes in which guarding is used to change the class of an object in response to independent, con-

current events; this idea is hinted at in reference [3], but was not fully worked out or implemented.

Specialization classes can also be applied to systems written in a language such as C, in which the

objects are more conceptual than real.

Specialization plans are similar to the Aster distributed application configuration language [12].

Aster operates at a higher level, using predicates that cannot be checked mechanically, but can be

reasoned about mechanically.

5 Conclusions and Future Research

We have proposed an object-oriented, mostly declarative model for specifying specializations in

long-running programs such as operating systems. In the near term, we expect to demonstrate the

utility of this programming model for enhancing flexibility and performance in operating systems

through specialization. Subsequently, we hope that this model will prove itself to be a valuable

addition to the family of modularity techniques.

References
[1] Andrew Black, Norm Hutchinson, E. Jul, Henry Levy, and L. Carter. Distribution and Abstract

Types in Emerald. IEEE Transactions on Software Engineering, pages 65-76, January 1987.

[2] Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices: Frameworks and Refinement.
Computing Systems, 5(3):217-257,1992.

[3] Craig Chambers. Predicate Classes. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP'93), Kaiserslautern, Germany, July 1993.

[4] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In ACM Symposium on Princi-
ples of Programming Languages, pages 493-501, 1993.

[5] Charles Consel, Luke Hornoff, Jacque Noye, Francois Noel, and Eugen-Nicolae Volanschi. A
Uniform Approach for Compile-Time and Run-Time Specialization. In International Work-
shop on Partial Evaluation, Dagstuhl Castle, Germany, February 1996. Springer-Verlag
LNCS.

[6] Charles Consel and Francois Noel. A general approach to run-time specialization and its ap-
plication to C. In 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL'96), St. Petersburgh Beach, FL, January 1996.

[7] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and Jonathan Walpole. Fast Con-
current Dynamic Linking for an Adaptive Operating System. In International Conference on
Configurable Distributed Systems (ICCDS'96), Annapolis, MD, May 1996.

[8] Crispin Cowan, Andrew Black, Charles Krasic, Calton Pu, and Jonathan Walpole. Automated
Guarding Tools for Adaptive Operating Systems. Submitted for review, May 1996.

[9] Crispin Cowan, Jonathan Walpole, Andrew Black, Jon Inouye, Calton Pu, and Shanwei Cen.
Adaptable Operating Systems. In Roy Campbell and Nayeem Islam, editors, Modern Oper-
ating Systems Research. IEEE Computer Society Press, 1996. To appear.

8

[10] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole Jr. Exokernel: An Operating Sys-
tem Architecture for Application-level Resource Management. In Symposium on Operating
Systems Principles (SOSP), Copper Mountain, Colorado, December 1995.

[11] Ajei Gopal, Nayeem Islam, Beng-Hong Lim, and Bodhi Mukherjee. Structuring Operating
Systems using Adaptive Objects for Improving Performance. In Proceedings of the Fourth
International Workshop on Object-Orientation in Operating Systems (IWOOOS '95), pages
130-133, Lund, Sweden, August 1995.

[12] Valerie Issarny and Christophe Bidan. Aster: A Framework for Sound Customization of Dis-
tributed Runtime Systems. In 16th International Conference on Distributed Computing Sys-
tems (ICDCS'96), pages 586-593, Hong Kong, May 1996.

[13] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

[14] Wilf LaLonde and John Pugh. Subclassing ^ subtyping ^ is-a. Journal of Object-Oriented
Programming, 3(5), January 1991.

[15] Hideaki Okamura, Yutaka Ishikawa, and Mario Tokoro. AL-l/D: A Distributed Programming
System with Multi-Model Reflection Framework. In Akinori Yonezawa and Brian C. Smith,
editors, Proceedings of the International Workshop on New Models for Software Architecture
'92, Reflection and Metalevel Architecture, pages 36-47, Tokoyo, Japan, November 4-7 1992.

[16] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye, Lakshmi
Kethana, Jonathan Walpole, and Ke Zhang. Optimistic Incremental Specialization: Streamlin-
ing a Commercial Operating System. In Symposium on Operating Systems Principles (SOSP),
Copper Mountain, Colorado, December 1995.

[17] Eugen-Nicolae Volanschi, Gilles Muller, and Charles Consel. Safe Operating system Spe-
cialization: The RPC Case Study. In Proceedings of the First Annual Workshop on Compiler
Support for System Software, Tuscon, AZ, February 1996.

[18] Yasuhiko Yokote, Gregor Kiczales, and John Lamping. Separation of Concerns and Operating
Systems for Highly Heterogeneous Distributed Computing. In Proceedings of the European
ACMSIGOPS Workshop, September 1994.

