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1    Introduction 

Specialization is a growing area of interest in the operating systems community. OS components 

specialized to some particular circumstance can offer enhanced performance, functionality, or both. 

Complimentary partial evaluation techniques for automatically specializing programs are also reach- 

ing maturity. However, the problem of managing specialization remains: how to specify a special- 

ization, when to apply it, and when to remove it. This problem is particularly important for long- 

running programs such as operating systems, where specializations are likely to be temporary. 

This paper presents an object-oriented framework for specifying specializations in long-running 

programs such as operating systems. This model is based on the following concepts: 

• Inheritance allows replacement implementations of of member functions. We thus use a graph 

of sub-classes to specify a set of potential specializations of a given facility by replacing 

generic implementations with specialized implementations. 

• Specializations in long-running programs are temporary, because the particular circumstances 
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that permit the use of a specialized implementation are likely to change eventually. We thus 

support temporary and even optimistic specializations [16]. 

• Ensuring that it is valid to use a specialized implementation can be more difficult than cre- 

ating the specialized implementation [16]. We thus use a formal method to specify when a 

specialization is valid. This lets us automatically detect when specialization circumstances 

have changed [8], and also automatically generate specialized implementations using partial 

evaluation [6, 5]. 

Section 2 describes our specialization model, which is applicable both in OO operating systems 

and in legacy kernels. Section 3 describes compilation techniques for this model. Section 4 briefly 

describes some closely related work, and Section 5 concludes this position paper. 

2   Specialization Classes 

We first describe our model using an example, and then explain some details. Figure 1 illustrates 

specialization of a file system: the open file object FS, which understands the operations read () 

and write (), is said to be the target of the specialization. 

Following modern usage [1, 14], we use the term type to refer to the interface exposed by an 

object and the term class to refer to the method code and the instance variables that implement that 

interface. Hence, the type of the file describes the fact that it can be read and written; in an OO 

system the type is merely the type of the FS object, and in a legacy OS coded in a non-00 language 

it is the type signature of the set of procedures that provides the file system functionality. 

The specialization plan is a definition of all the ways in which the file system can be special- 

ized. In each specialization, some of the methods of the target are replaced by various specialized 

implementations. The methods specialized by the specialization plan are the set of specializable 

functions that are replaced by various specialized implementations. Thus the specialization plan 

encapsulates the specializations to be applied to the system, independent of the degree of encapsu- 

lation provided by the system's source language. 

The various specialization options within a plan are organized into a partial order of specializa- 

tion classes according to the relation "more specialized than." Each specialization class adds some 

degree of specialization to the classes it inherits from, e.g. NFS is a specialization of generic, and 

NFS/exclusive is a specialization of both NFS and exclusive. Each specialization class describes a 
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Figure 1: Example: Specialization of a File Object 

specialization state that the specialized facility can achieve. The "generic" -specialized state is the 

unique top of the partial order of specialization classes. 

Each specialization class specifies the conditions that make the specialization applicable, and 

a subset of the members in the specialization plan to be replaced with specialized methods. The 

conditions of a specialization class imply the conditions of each of its parents. The truth of the 

conditions can change over time, and thus must be monitored as described in Section 2.1. 

Specialization plans are compiled into specialized object generators, which when new'd create 

specialized objects as shown in Figure 1. A specialized object is a wrapper around the object being 

specialized. The specialized object represents the state of an instance of a specialization plan, i.e., 

bindings from the values in the conditions to data in the target, and bindings from the specializable 

functions to the specialized methods. We view the type of the target object as being unchanged by 

the specialization; from the point of view of the client, the same set of messages is understood, and 

they have the same effects. Thus, the type of the specialization object is statically determined by 

the type of the target. 

In contrast, the class of the object changes dynamically according to the truth of the conditions, 

and causes changes in the method code bound to the specializable functions. Looking a little more 

closely, it may in fact the the case that the type changes: for example, if the conditions indicate 



that a certain message will never be sent, we might create a specialized object that eliminates that 

method altogether! However, our methodology guarantees that any such changes in type will be 

invisible to the client. 

2.1 Conditions: Quasi-Invariants 

Conditions specify invariants. A true invariant is a classical invariant: a property of the system 

that is guaranteed to be true at all times, stated as an expression using system variables that must 

evaluate to "true." A quasi-invariant is a property that is likely to remain true, but may become 

false at some future time. Specifying conditions using invariants allows the following key steps in 

the specialization process to be automated. 

Invariants can be used by partial evaluators to automatically prepare a specialized implemen- 

tation that has been optimized using the invariants. Our use of invariants for specialization was 

originally inspired by the invariant input specification for Tempo [6, 5], a powerful partial evalu- 

ator for C. Partial evaluation to exploit specialization gives us a formal relationship between the 

conditions and the optimized implementation. 

Partial evaluation is independent of whether a condition is an invariant or a quasi-invariant. 

However, specializations that depend on quasi-invariants are not always valid, but instead depend 

on some temporary circumstance that begins when the quasi-invariants become true, and ends when 

the quasi-invariants become false. For instance, file system access can be optimized using a quasi- 

invariant that the file is not shared [16], but this condition can change unexpectedly if a separate 

process opens the file. 

Our hand-specialization experiments showed that locating all components of the kernel that af- 

fect the state of quasi-invariants can be more difficult than the task of crafting specialized implemen- 

tations. We have thus developed tools for locating kernel components that can potentially invalidate 

quasi-invariants, described in the following section. 

2.2 Guarding for Changes in Quasi-invariants 

We have developed two ways to locate kernel components that can potentially alter quasi-invariant 

state. One is based on type-checking the kernel source code, and the other is based on fine-grained 

virtual memory protection. These techniques are discussed at length in [8], but what they produce 

is a list of kernel source code statements that may violate quasi-invariant state. These writes to 

quasi-invariant state must be guarded. 



However, frequently such statements are accessing heap-allocated data structures, and only 

a few of many of these structures actually control a specialization, e.g. the quasi-invariant 

inode. ref count == 1 may be true of some particular inode, but there are thousands of in- 

stances of the inode struct in the running kernel. The guards placed around writes decide whether 

the write is to an actual quasi-invariant, or only a write to a value of the same type as a quasi- 

invariant. 
We distinguish among structs of the same type between those that contain quasi-invariant terms 

and those that do not by inserting a Specialization IDentifier field (SID). In the case that the inode 

struct is the instance referred to in the quasi-invariant expression, the SID field points to the special- 

ized object that depends on that quasi-invariant.1 The specialized object then performs the guarded 

write. For example, consider this update to inode. ref count: 

inode.refcount  =  some_value; 

A guarded update of the inode. ref count would be written as: 

inode_set_refcount(some_value, SID); 

The inode_set.ref count function writes the inode. ref count field in any case, but also 

atomically adjusts any specialized components that depend on quasi-invariant expressions that de- 

pend on this inode . ref count value. 

2.3    Responding to Quasi-Invariant Changes: Replugging 

When a quasi-invariant is violated, the specialized object must adapt its specialized implementation 

of the facility to the new circumstance without relying on the quasi-invariant. One very common 

action to be taken by the specialized object is to replace the dependent specialized components with 

other, differently specialized components, or with generic components. This replacement is called 

replugging, and requires fast, safe, concurrent dynamic linking. The problem is to facilitate very 

low latency execution of a function via an indirect function pointer, while concurrently allowing 

the pointer to be changed. Locks could be used, but locks may also substantially degrade perfor- 

mance. In [7], we describe a portable algorithm that supports low-latency invocation of replaceable 

functions while allowing concurrent update of pointers to those functions. 

!A more complex scheme is used when struct instances are shared among multiple specializations, which we 
omit for simplicity. 



3   Translation and Specialization 

Our previous efforts have manually applied our various specialization tools [7, 8, 16, 17]. Auto- 

matic translation of specialization plans should convert the high level specification of how to spe- 

cialize the system into running code that integrates the various components. 

3.1 Specialization Plans 

The specialization plan describes all possible ways in which the facility can be specialized. Given a 

list of quasi-invariants, there is an exponential number of combinations of such invariants, resulting 

in an exponential number of specialized functions. Specialization classes allow the programmer to 

specify which combinations are important, and thus should be exploited. 

The specialization plan is translated into a code template for a specialized object, and two lists. 

The code manages the data structures described in Figure 1. The lists describe each specialization 

class, and are fed to other specialization tools as follows: 

specializable functions The list of specializable functions is taken from the specializa- 

tion plan and built into the specialized object, and is fed to the 

Tempo partial evaluator (see Section 3.2). 

quasi-invariants The list of quasi-invariants is fed to the guarding tools, and to 

Tempo. 

3.2 Partial Evaluation 

A specialization class declares an opportunity for specialization, and is described by a list of 

(quasi-)invariants. If all the predicate conditions are of the form variable = const.value 

or struct. f ield_name = const_value, the specialized implementations can be automat- 

ically derived by a partial evaluator. Notice that such an automatic tool could be extended to deal 

with other classes of predicate conditions, e.g. of the form variable < cons t_value. If the 

complexity of the predicates is beyond the current capabilities of the partial evaluator, the program- 

mer can still provide a hand-written implementation. 

We are using Tempo, a partial evaluator for C programs developed at IRIS A, [5, 6, 4]. Given 

a program and part of its inputs, it generates a specialized version of the program in which all the 

computations depending on the known inputs are performed. Tempo processes a program in two 
phases. 



First, an analysis is performed, to decide which parts of the program are to be reduced (elimi- 

nated), and which other are to be left in the specialized program. Note that the analysis phase doesn't 

need the concrete values, it just propagates the known/unknown information. The interface to this 

first phase is the analysis context, which contains: 

• a list of the known inputs, which can be either variables or struct field names 

• a list of the functions to be specialized 

In a second phase, the program is specialized, based on the annotations produced by the first 

phase and some concrete values for each known input previously declared. The interface to this 

second phase is the specialization context, binding an actual value to each invariant variable. 

4    Related Work 

Object-oriented OS research has advanced the state of the art in the interface provided to applica- 

tions, and advanced the ability of operating systems to be dynamically configured. In particular, 

Choices [2, 11], AL-l/D [15], and Apertos [18] have investigated ways in which object-orientation 

can be used for OS re-configuration. Kiczales has been exploring the general question of how ob- 

jects can be used as a meta-interface [13]. 

OS customization has also been studied outside the 00 community. The SPIN project allows 

replacement OS components to be loaded into the kernel. SPIN uses a combination of static type 

checking and run-time checks to bound the damage potential of replacement components, but leaves 

the correctness of applying a specialization up to the application. The Aegis project provides more 

customizability by placing most OS functionality in a user-level library attached to user applica- 

tions [10]. We discuss some of these approaches in [9]. 

At the language level, specialization classes are similar to Chambers' predicate classes [3], 

which allow, for example, the class of a buffer object to depend on whether the buffer is full, 

partially-full, or empty. Specialization classes can be thought of as an implementation of predicate 

classes in which guarding is used to change the class of an object in response to independent, con- 

current events; this idea is hinted at in reference [3], but was not fully worked out or implemented. 

Specialization classes can also be applied to systems written in a language such as C, in which the 

objects are more conceptual than real. 



Specialization plans are similar to the Aster distributed application configuration language [12]. 

Aster operates at a higher level, using predicates that cannot be checked mechanically, but can be 

reasoned about mechanically. 

5    Conclusions and Future Research 

We have proposed an object-oriented, mostly declarative model for specifying specializations in 

long-running programs such as operating systems. In the near term, we expect to demonstrate the 

utility of this programming model for enhancing flexibility and performance in operating systems 

through specialization. Subsequently, we hope that this model will prove itself to be a valuable 

addition to the family of modularity techniques. 
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