
CENTER FOR PURE AND APPLIED MATHEMATICS

UNIVERSITY OF CALIFORNIA, BERKELEY

IMPLICIT CHOLESKY ALGORITHMS FOR
SINGULAR VALUES AND VECTORS

K. Vince Fernando and Beresford N. Parlett

PAN" 587

'^Z^TS^S^^

19970717 159

JMC QUALITY fflSEECTEB 1

This report was done with support from the Center for
Pure and Applied Mathematics. Any conclusions or
opinions expressed in this report represent solely
those of the author(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.

DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
SEATTLE REGIONAL OFFICE

1107 NE 45TH STREET. SUITE 350

SEATTLE WA 98105-4631 IN REPLY REFER

4330
ONR247
11 Jul 97

From: Director, Office of Naval Research, Seattle Regional Office, 1107 NE 45th St., Suite 350.
Seattle, WA 98105

To: Defense Technical Center, Attn: P. Mawby, 8725 John J. Kingman Rd., Suite 0944,
Ft. Belvoir, VA 22060-6218

Subj: RETURNED GRANTEE/CONTRACTOR TECHNICAL REPORTS

1. This confirms our conversations of 27 Feb 97 and 11 Jul 97. Enclosed are a number of
technical reports which were returned to our agency for lack of clear distribution availability
statement. This confirms that all reports are unclassified and are "APPROVED FOR PUBLIC
RELEASE" with no restrictions.

2. Please contact me if you require additional information. My e-mail is silverr@onr.navy.mil
and my phone is (206) 625-3196.

' > /

ROBERT J. SILVERMAN

Implicit Cholesky Algorithms for Singular Values and
Vectors

K Vince Fernando^1'2'0'6) and Beresford N Parlett^3'6)

W NAG Ltd, Jordan HiU, Oxford 0X2 8DR, UK

(2) Division of Computer Science, University of California, Berkeley, CA 94708, USA

(3) Department of Mathematics, University of California, Berkeley, CA 94720, USA

July 29, 1993

("^Supported by NSF, under grant ASC-9005933
(^Supported by ONR, contract N000014-90-J-1372

Abstract

The implicit Cholesky algorithm has been developed by several authors during
the last 10 years but under different names. We identify the algorithm with a special
version of Rutishauser's LR algorithm. Intermediate quantities in the transformation
furnish several attractive approximations to the smallest singular value.

The paper extols the advantages of using shifts with the algorithm. The non-
orthogonal transformations improve accuracy.

Key words: Cholesky decomposition, singular values, Singular value decompo-
sition, eigenvalues, null spaces, noise spaces, URV factorization, ULV factorization,
QR algorithm, LR algorithm, Jacobi methods

11

Contents

1 Introduction 1

2 Notation 2

3 Uses of Triangular Form 2

4 The Implicit Cholesky Algorithm 3

5 The Relation of QR to Implicit Cholesky 5

6 Incorporation of Pivoting 5

7 Bounds for amin 6

8 Incorporating Shifts 8

9 Computation of Singular Vectors Using Shifts 9

10 Choice of Shifts 10

10.1 Johnson Shift 10

10.2 Aggressive Shifts 11

10.3 Response to Failure 11

11 Convergence 12

11.1 Linear Convergence 12

11.2 Quadratic Convergence 14

11.3 Higher Order Convergence 14

12 A Preconditioner for Jacobi 15

m

13 Numerical Examples 17

1 Introduction

We want to recommend a new way to compute singular values and vectors of triangular
matrices.

One of the ideas behind our algorithm is not new. The flipping of a triangular matrix
between upper and lower forms, using orthogonal transformations exclusively, first from
one side and then from the other has become a popular activity among signal processors
recently, see [13], [4]. The end product is either the SVD or the updating of a noise
subspace. Mathias and Stewart in [13], used this see-saw procedure in the refinement
step of the URV factorization. Chandrasekaran and Ipsen in [2] looked at this flip-flop
technique as the basic QR algorithm and Ammann in [1] goes so far as to call it the
transpose QR algorithm. This name is a bit misleading.

As long ago as 1968 Faddeev et al, in [5] recognized that one such transformation of a
triangular matrix is equivalent to one step of the Cholesky LR algorithm of Rutishauser:
L = QR implies VL = R*R. However the way R is produced from L is quite differ-
ent from Rutishauser's transformation of LV to R}R and this suggests to us that the
proper name for the triangular flipping procedure is the implicit Cholesky LR algorithm
or, better, the implicit Cholesky algorithm since LR is a bit redundant. We plan to
discuss the implicit LR algorithm for nonsymmetric eigenvalue problems in another com-
munication. Our naming conventions are consistent with past usage; QR factorization is
the basis for the QR algorithm. Similarly Cholesky factorization leads to the Cholesky
algorithm. The interesting dissertation [22] adopts this terminology.

Since two steps of the unshifted Cholesky algorithm are equivalent to one step of the
unshifted QR algorithm it is clear how QR comes into the picture.

What seems to be a novel contribution of this paper is to show how to combine the use
of shifts and the calculation of either right or left singular vectors but not both. In many
applications this suffices. Our Algorithm 5 only delivers the right singular vectors.

We discuss convergence to show how easy the argument is in the unshifted case and to
sharpen the idea of Rutishauser for getting a very accurate shift from a case of late failure
in the shifted version.

We do not give a formal error analysis here because the backward stability results for
the unshifted case extend to our shifted algorithm. In fact our accuracy (absolute, not
relative) is better than the standard procedures in practice but we have not proved this
property yet. Our shifted algorithms do not preserve the Frobenius norm they actually
decrease it. This improves speed and accuracy.

There is some evidence that the connection between triangular flipping and either QR
or Cholesky is not widely appreciated. The strongest piece of evidence is the absence of
shifting. Experts are happily extolling the flip-flop of triangular matrices who would not
be caught dead using QR or LR algorithms without appropriate shifts. It is as though an

interdiction has been placed on using anything other than orthogonal transformations for
SVD calculations. In [7] we showed that for high relative accuracy in treating bidiagonal
matrices it is advisable to abandon plane rotations. Consequently orthogonal transfor-
mations are sufficient but by no means necessary for obtaining accurate approximations.

The numerical results suggest to us that the current triangular flipping algorithms are
popular because little accuracy is required and the snail like pace of linear convergence
does not hurt much. With sensible shifts the implicit Cholesky algorithm can be used
like a LAPACK routine to yield singular values with maximal accuracy in an absolute
sense (macheps * norm).

Here we present the implicit Cholesky algorithm with shifts and make a plea for its
adoption, at least by those who are in a hurry. New results, Theorems 1 and 3, show
that the intermediate quantities produced by the algorithm yield valuable information
for shift selection.

2 Notation

Householder conventions are followed: capital letters for matrices, Greek letters for
scalars, lower case Roman for vectors. We use the Euclidean vector norm ||x||2 = x*x and
the spectral matrix norm ||F|| = <Ti[F] throughout the paper where <r,-[.] denotes the ith
singular value. Similarly, AJ.] signifies the ith eigenvalue. We use x* for the conjugate
transpose of x but since most of our quantities are real x* also denotes the transpose.

The columns of the identity matrix are denoted by e: J = (ei, e2,..., en).

3 Uses of Triangular Form

If one wants to compute the SVD of a single matrix, the most efficient and accurate
method available appears to be the shifted differential qd algorithm of Fernando and
Parlett which is a special case of the implicit LR algorithm. See [7]. However this
requires the bidiagonalization of the matrix using orthogonal transformations. There are
many occasions when this bidiagonalization is not warranted. For example, in signal
processing applications this reduction is not advised since new data has to be brought in
and old data has to be removed. Triangular matrices are a convenient form in this case.
See for example [14] and [20].

Although the SVD is the most reliable decomposition to obtain the rank of a matrix,
it is often an overkill. That is why intermediate non-canonical decompositions such as
the URV and ULV factorizations of Stewart have many applications, especially in signal
processing and statistics. If one requires only the smallest singular values or the singular
vectors corresponding to the smallest singular values, the triangular structure is often

adequate to obtain these rank revealing properties. In addition the condition number is
revealed very quickly with our shifted implicit Cholesky algorithm.

The reduction to bidiagonal form may not be needed if the matrix already has small
off-diagonal elements and the diagonal entries are monotone decreasing or nearly so.

The flipping process can be also used as a preconditioner for other SVD algorithms.
Veselic and Hari used one step of the Cholesky algorithm with pivoting as an effective
preconditioner for the one-sided Jacobi algorithm of Hestenes. Lacking the implicit form
of the algorithm they felt obliged to limit themselves to one preconditioning step. How-
ever, by using the nipping process many preconditioning steps can be used.

If the matrix is banded and triangular, then the flipping process preserves bandwidth.
This comes from the well known fact that the LR algorithm preserves the bandwidths
of matrices. Since bidiagonalization of banded matrices is relatively expensive, implicit
Cholesky is a convenient method to find the SVD or the approximate null space of a
banded matrix.

4 The Implicit Cholesky Algorithm

Our goal here is to present neglected implementations of the Cholesky LR algorithm that
avoid the two defining steps of this classical method presented as Algorithm 1.

Algorithm 1 (Standard Cholesky to diagonalize symmetric positive definite A)
A0:=A
For i = 0,1,2,... until converged

(a) Compute the Cholesky factorization LiL* := A{

(b) Ai+l - x-x,

Here X,- is lower triangular and L\ is its conjugate transpose.

In exact arithmetic as i -»■ oo , X, -► E, the diagonal matrix of (often, ordered) singular
values of X0. Moreover, A{ -+ E2, the diagonal matrix of ordered eigenvalues of A. In
floating-point arithmetic, the computed eigenvalues will be accurate in an absolute sense
but the relative accuracy of smaller singular values may be poor.

The overlooked fact is that there is no need to form Ai+1 in order to obtain its Cholesky
factor X,+1. Instead consider the QR factorization of X,-, say

X, = QtRi

where Q\ = Q'1 and R{ is upper triangular with positive diagonal.

Lemma 1

Xi+i = R*

4

Proof: By step (b) of the algorithm

-<4>+i = LtLi = R'iQ'QiRi = R*R{

By step (a)

and the result follows from the uniqueness of the Cholesky factorization. •

There is considerable computational advantage in not forming the matrices A{.

Comment It seems likely that Rutishauser would have discovered Lemma 1 (via the
qd algorithm, see [16], [18], [17], [19]) but we can find no explicit mention of this fact.

A defect of the traditional LR algorithm is that one cannot obtain either eigenvectors
of A or the singular vectors of L0 directly. However the new implementation provides a
natural mechanism for obtaining those vectors, as shown below. To see the idea write
out the relation of L2 to L0,

L-x = L\Qi = Q^LQQI.

Similarly,
LA = LIQs = ... = QlQlUQ.Qs.

We now describe the new implementation formally.

Algorithm 2 (Implicit Cholesky SVD of L)
SetL0 = L,U = I,V = I
For i = 1,2,... until converged

(a) Compute the QR factorization L{ = QiR,,
(b) U *- UQi for odd i, V *- VQt for even i
(c) ij+1 <— R*. (This step is purely formal)

Remark 1 It is not necessary to form Qi explicitly to obtain R{ (= X,*+1).

Remark 2 On exit the squares of i's diagonals give the eigenvalues of L0L*0{= A0).

Remark 3 Also, on exit, U holds the left singular vectors of X, the normalized eigenvectors
of L0LQ. If U is not required, that part of the algorithm may be omitted.

Remark 4 If the right singular vector matrix V is not wanted, that part of the algorithm
may be omitted.

Remark 5 If the matrix A0 is positive semi-definite , then the traditional LR algorithm
could break down. However, the Implicit Cholesky algorithm exists even when L0 is
not full rank. Diagonal pivoting cures the defect. See Section 5.

Remark 6 The identification of the basic algorithm with unshifted QR (see next section)
indicates that the process is rather slow. Nevertheless if L nearly reveals its rank then
only a few steps are needed to obtain a basis for the approximate null space.

Remark 7 Since Cholesky factorization preserves band structure and so does reverse mul-
tiplication of the factors it is clear that Algorithm 1 preserves bandwidth. Consequently
Algorithms 2 and 3 enjoy the same property.

5 The Relation of QR to Implicit Cholesky

It is well known - to experts - that, for a positive definite Hermitian matrix, two steps of
the LR algorithm produce the same matrix as one step of the zero-shift QR algorithm.
For completeness we show this well known relationship which is hard to find in the
literature.

Algorithm 3 (Zero-shift QR algorithm for Hermitian M)
M0 = M.
For t = 0,l,2,... until converged

(a) Compute the QR factorization M, = Z.T,,
(b) Mi+1 «- TiZi ■

Theorem 1 One step of the QR algorithm with zero shifts is equivalent to two steps of
the unshifted Implicit Cholesky.

Proof: Set M0 = A0 = L0Ll. By Algorithm 2,

M0 = L0Ll = QoLrLZ.

By uniqueness of the QR factorization Z0 = Q0 and T0 = L\L\ and so, from proof of
Lemma 1,

L2L*7 = Q*0L0L'0Qo = ZQMOZO = Mx.

Similarly,
A2j+2 = L2j+iL*2i+2 = Q'2jL2jL2jQ2j = Z'MjZj = Mj+1»

6 Incorporation of Pivoting

It is recognized that pivoting is useful for improving convergence of the basic LR algorithm
[18], [17]. In the case of the classical LR algorithm pivoting is used to bring the large
diagonal elements to the top of the matrix and the small diagonal values to the bottom
of the matrix.

For Algorithm 2, we can accomplish this by using the pivoted QR factorization with
column interchanges,

U = QtRiP,

where P,- is a permutation matrix. Any rank revealing Pi could be used.

The relations are then
LiPt' = QiL"i+1

We note that pivoting is difficult in many modern machines and in some novel architec-
tures this could be prohibitively expensive. However, we do not expect pivoting to be
needed except in the first or the second sweep of the algorithm for most matrix problems.

7 Bounds for a min

Useful bounds may be attained at little cost by exploiting intermediate quantities that
occur in one step of the unshifted implicit Cholesky transform, L = QL*.

Consider an intermediate stage in the transformation of L to L where Q'L = L*. Al-
though Q is unique it may be obtained as a product in many different ways. However
the choice narrows down when it is desirable to take advantage of the triangular nature
of L.

The first stage of the reduction L to L" is typical. Apply a sequence of (n — 1) plane
rotations in the planes (l,j) , j = 2,...,n to map column 1 of L into a multiple of
ex = (1,0,..., 0)*. Call the product of these rotations <?J, then

G\L = INI W
o z<2>

When the plane rotations are taken in the natural order indicated above then the "reduced
matrix" i(2^ must be lower triangular and may be transformed the same way. Note that
use of a Householder reflector instead of G\ would destroy the triangular form of L^2\

Definition The (1,1) entry of the reduced matrix L^ is denoted by d*. Note that

Consider an intermediate stage in the reduction.

/ x x x
x x

G*k-i-..G\L =

V

x
X

X

dk

x
x

X

X

X

X

X

X

X

x)

(1)

Note that row k of the matrix is a singleton.

Theorem 1 Transform nxn invertible lower triangular L to upper triangular L* by the
triangle preserving algorithm indicated in equation (1). Then

(a) an\L) < min* dk ,

(b) [(Z'Z)-i]M = d? ,

(c) (H.1O-1 < (H.iO"* < *»[L] .

Proof: The key fact is that, for each k,

ekG'k_l...G\L = dke'k. (2)

Since singular values are invariant under unitary equivalences

crn[L} = on[Gk_1...G\L]<\\e*kG_l...G\L\\ = dk,

yielding (a). Next transpose (2) and rearrange:

Gi. ..Gk-ie^l1 = L~*ek,

dk
2 = d^elGU . ..GIG:... G^erf1 = cJI'^-c*,

yielding (b). Finally summing the last equation over k gives

°Z* < X>f2 = \\L-
X
\?F = traceid*!)-1] = j^d?,

»=i *=i

which is the last inequality in (3). The first inequality holds for any set of positive
numbers: \\v\\\ < \\v\\l. •

Remark By Theorem 2 we may use r = (£jt=i dk *)-* as a shift with no fear of breakdown.
r2 is the Newton shift from 0 towards a^in[L]. The reason is well known.

Theorem 2 Let A be symmetric positive definite. The Newton approximation to Xmin[A]
from 0 is 1 / trace(A~l).

Proof: If x(t) is -4's characteristic polynomial then

-X'(0)/X(0) = £ri = traced1) ,

where x'(<) denotes the derivative of x(t) with respect to t. •

8 Incorporating Shifts

Given X and r < amin[L] one seeks X, lower triangular with positive diagonal, such that

X*X-r2/ = XX*.

Take the shift to the other side and observe that it is equivalent to compute an orthogonal
2n x 2n matrix Q such that

Q
L
0

X*
rl

Let m.j denote column j of M. In describing the algorithm fij denotes the current value
of the (t, j) entry of F, not the original one. Imagine that a square array F is initialized
to contain X and ends up holding X*.

Algorithm 4 (The Implicit Cholesky Transform with Shift)
For j = 1,2,..., n — 1 repeat

(a) Overwrite the current (j,j) entry fjj with dj := \lfji — T2

(b) Acting on rows j through n find an orthogonal triangle preserving
matrix Hj such that Hjf.j = ej||/»j|| and apply Ej to those rows.

fn,n '•= dn := yjfnn — T .

Remark 1 An efficient way to apply Hj is to use fast Givens rotations. In this case F is
held as two arrays A2 and F where F is unit triangular and L = AX.

Remark 2 The transformation alters the singular values and the left singular vectors but
the right singular vectors of X are preserved as the left singular vectors of X.

Remark 3 Note that the In x 2n matrices are introduced to display the mathematical
relationships. In practice the code resembles the program for Algorithm 2 except for
the non-orthogonal modification of the diagonal entries. It is preferable to use triangle
preserving rotations.

Remark 4 When shifts are used conclusion (b) in Theorem 1 fails but the other two
results still hold.

Theorem 3 Let X denote the implicit Cholesky transform of X with shift r(< amin[X]).
Let d{, i = 1,..., n be the intermediate diagonal entries described in Algorithm 4. Then

(IX2)"1 ~ r2 < crlin[L) < min dl
Jb=l

Proof: Part (a) in each step of Algorithm 4 cannot increase any singular value but may
decrease some of them. If F denotes the square array that holds X initially and X* finally

then Part (a) is equivalent to reducing the (j,j) entry of FF* by r2. At the end of Part
(a) of Step j the array F has the form (shown with n = 6, j = 4)

/ x

F(4) =

V

X X X X \

X X X X

X X X X

dk

X X

X X X /

F(1) = L , F{n) = r

Part (b) preserves singular values.

<Tn[L] < <rn[F(j)} < ||e;JXJ)|| = H^e'll = dj.

To derive the first inequality return to the 2n x n arrays and exact orthogonal transforms.

Denote by Qk the product of all the orthogonal transformations that deliver F(k), More-
over let (ij yl) denote row k of Qk. Then ||xt||

2 = 1 - \\yk\\2 < 1 and

xlL = (x'k yl)l ^ \=e'kF(k) = dkel

Invert and transpose to find
dk
lxk = L~*uk,

d-k
2\\xk\\2 = [(L*L)-i]k,k.

Thus

E^"2 * E^'lktir = tracefCX-i)-1].
i=l *=1

By Theorem 2, the Newton approximation from 0 to cr^in[X] exceeds (]C£=1 rf^
2)-1.

Subtract r2 to obtain a lower bound on ^.„[X]. •

Repetition of Algorithm 4 will not deliver singular vectors because after two applications
both right and left singular vectors have been lost. Algorithm 4 is an efficient way to
find a few small singular values when reduction to bidiagonal form is not warranted. The
next section shows one way to find singular vectors and use shifts.

9 Computation of Singular Vectors Using Shifts

Let R be upper triangular with positive diagonal. The goal is to compute some or all of
.ß's singular values and the corresponding right singular vectors v1,v2,...,vn; R'RVJ =

10

Vjtjj. If any matrix M is multiplied on the right by an orthogonal matrix J then Jl/'s
right singular vectors are transformed by J* since

MJ = WEVJ = UZ(J*V)\

Each step in Algorithm 5 makes two transformations; one of them modifies the vectors
but makes no shift, the other preserves the (right) vectors but reduces the singular values.

Algorithm 5 (Implicit Shifted Cholesky for Singular Vectors of R)
Set V = J; j := n
While j > 0 do

Repeat until the matrix is singular,
(a) Transform R into lower triangular form L by plane rotations on the right,
(b) Apply the transpose of each rotation to V.
(c) Select a shift.
(d) Transform L into R by plane rotations on the left with shift r, as in Algorithm 4-
(the right singular vectors are unchanged)

Comment If the initial matrix is lower triangular then begin the algorithm with a (d)
transformation.

10 Choice of Shifts

Choosing a useful shift in LR and qd type algorithms is not an easy task. One would like
the shift to be no larger than am,-„ but too much caution begets sluggish convergence. If
a shift is too large then one or more entries in the new matrix become pure imaginary
and at the next step entries become complex. To deal with this situation appears to be
more trouble than it is worth. So, at present, we only record a Cholesky transform when
it is real. Aggressive shifts that result in late failure do yield excellent new shifts; see
Sections 10.3 and 11.3.

10.1 Johnson Shift

A lower bound for smallest singular value of R is given by

ffm«n[Ä]>max[0,min{ril-ii--(J2|r<ii|+ £ |rilt|)}].
<=i k=j+i

See [12]. In practice we may confine the search for min,- over a few j values surrounding
TO where dm = min* d*,. This heuristic often gives a good result but it does not guarantee
a lower bound for the smallest singular value.

11

10.2 Aggressive Shifts

We expect the shift strategy for these algorithms to evolve with experience. It is safe to
always use the lower bound in Theorem 3 but it seems a shame to make no use of the
increasingly accurate upper bound. Failures are expensive but not disastrous.

Our rather simple strategy is to let lo = (£t=1 d* 2)~1/2 - r2, hi = mini dk and set

T = lo + a * (hi - lo)

after the change in hi is less than 5%. A shift that avoids the cost of the Newton shift
(when the bandwidth is small, perhaps) is to save the previous value of hi as oldhi and
set

r := 2 * hi - oldhi.

10.3 Response to Failure

Suppose that the shift r > amin[L) and that the Implicit Cholesky algorithm fails at step
k with l\k < 0. Let us write the relevant matrices in partitioned form

L*L - T
2
I = A F

F* M

where A is (A; -1) x (k -1) and positive definite. The failure at step k of implicit Cholesky
shows that the Schur complement of A

W = M - F'A-'F

has WM = l\A < 0. Consequently W has negative eigenvalues. In [23] Wilkinson showed
that

new r := ^/T* + \min[W]

is a safe, and accurate, shift for L. When k = n and W is 1 x 1 we recover Rutishauser's
late failure result. For the analysis of this case see Section 11.3.

An alternative response to failure at step k (especially when k is small) is to use the fact
that y/r'2 + Whl < T is a safe shift for the leading k x k submatrix of L*L - T

2
I. An

application of the implicit Cholesky transform with the new shift will fail, if at all, at
some step after k. This shift is less work than the one Wilkinson suggested (especially
when k ts n/2) but is not guaranteed to give success.

The cautious response to early failure is to abandon r and use a lower bound on amin as
the next shift. At present we do not have comparisons of the effectiveness of these two
alternatives. For late, or almost late failure (when W is of small order) Wilkinson's safe
shift seems preferable.

12

11 Convergence

11.1 Linear Convergence

We have stressed the fact that all the algorithms that flip triangular matrices using
one sided orthogonal transformations are mathematically equivalent to the unshifted
LR Cholesky algorithm introduced by Rutishauser in [16]. Consequently his proofs of
convergence suffice to cover all these variations and they are more elegant than the ones
provided in these more recent studies. We cannot resist the temptation to show how
simple the arguments can be. A little notation is needed. Let

R* = ~ „ , R =

be block upper triangular, S is k x k, and let

R' = QR

with Q* = Q~l. There is no need to partition Q. Since premultiplication by an orthogonal
preserves inner products between columns we obtain three fundamental relations:

SS* + HH* = S'S (3)

EE* = H'H + E'E (4)

HE* = S*H. (5)

Since HH* and H'H are positive semi-definite it follows that

Oi[S\<Oi[Sf\ , i = l,...,fc (6)

(7i[E}>ai[E] , i=l,...,n-k (7)

and

||£|| < ||£|| II5-1!! \\H\\. (8)

From (6)
ws-'^^sr^^isr^ws-'w (9)

and thus
|| j|| < \\E\\ WS-'W \\H\\. (10)

These results hold for any partition of R, i.e. any admissible choice of k. Provided that
R is undecomposable, e.g. no H block vanishes, then as the algorithm proceeds the (1,1)
blocks must increase and (2,2) blocks must decrease when measured by the Frobenius
norm. It follows that the large singular values must migrate to the (1,1) block and the
small ones must descend to the (2,2) block. So if all the singular values are distinct then
the matrix must converge to E = diag(ai,.. .,<r„). However in the presence of multiple
singular values, and finite precision arithmetic too, the algorithm need not converge.

13

Equations (8) and (10) allow us to estimate the rate of convergence. If the partition size
k is chosen so that there is a gap, ak » <7t+i, then at some point in the process

||£|| US"1!! * Vk+i/0k < 1 (although ||£|| US^H > ak+1/ak)

and then the (1,2) blocks diminish monotonically in norm. Nevertheless convergence of
11 if 11 is linear.

Mathias and Stewart give a sufficient condition for monotonicity to set in. In our notation
their condition is that

pr|| + p:|| <**[*].

To see why this suffices consider the matrix

(11)

M :=

(0 5 0 0 \
S* 0 H 0
0 H* 0 E

V 0 0 E* 0 J

whose eigenvalues are ±<r,[Ä], i = 1,..., n.

By the Wielandt-Hoffmann theorem applied to M the singular values of R may be paired
with those of S and E in such a way that the difference of any pair is at most \\H\\. By
(11)

ak[R] - <7,.[£] > ak[R] - \\E\\ > \\H\\ (12)

and so the largest k singular values of R cannot be paired with any from E. Thus for
some j < k

°k[S]><rj[R]-\\H\\>ak[R]-\\H\\

and by (11) and (13),

l|£|| ll^1!! <
\E\

^fc[Ä] - ||J5T|

(13)

(14)

When this stage is reached, and (11) holds, then £'s singular values approximate the
small singular values of R to 0(\\H\\7).

To see this consider the symmetric indefinite matrix M given above and consider the
subspace

/0 0\
p ° ° Range 7 Q

K0 I)

The projection of M onto this subspace is represented by

(" E) \ E' 0

14

and the matrix residual F is given by

F = M

/o ON (° °\
0 0 0 0
/ 0 I 0

\0 I) i,0 I)

(° 0 \
0
0 0

V o 0/
Thus ||F|| = ||iT||. If 7 is the gap between £?'s singular values and the largest k singular
values of R, i.e. 7 = ak[R] - \\E\\ then, by Chap. 11 of [15],

|a,[£]-ai+1-[Ä]|<||F||2/7 = |W/7 , i = l,...,n-*.

11.2 Quadratic Convergence

Sections 7 and 8 show that the Newton approximation r2 to cr^in(X) from 0 is easily
computed at the end of the LR transform. By the monotonicity of Newton's iteration
from outside the zero set we know that r is a safe shift. By Theorem 3, the same formula
(]C^*2)~^> when used at the end of a shifted Cholesky step, still provides a lower bound
on amin[L] but a poorer one than Newton's. However, shifts are non-restoring in the
implicit Cholesky process and consequently the shifts will tend to 0 and the shift formula
will degrade only a little. Nevertheless we have not proved quadratic convergence for this
shift formula in Algorithm 4.

On the other hand Algorithm 5 does use Newton's shift and convergence is quadratic but
each step costs twice as much as a step of Algorithm 4. However the goals of these two
algorithms are not the same.

11.3 Higher Order Convergence

Rutishauser observed that when the matrix has nearly revealed the smallest singular value
in the (ra, n) position then there is a shift strategy that generates cubic convergence. The
key requirement is what he calls late breakdown. Suppose that r = lnn exceeds crmin[L}
by so little that a negative pivot d2 occurs only at the last step. It turns out that
A//

2
 n + d\ is a safe and accurate shift for L. So the strategy consists of making a copy

of i, transforming with shift lnn and then discarding intermediate quantities except for

cPn. Then transform L with shift 1V/2,n + d2(< 'n,n)-

Neither Rutishauser nor Wilkinson [23] emphasize that to employ this strategy it is
necessary to save L and discard all the intermediate quantities arising from using the
shift /„,„. Thus the cost of finding the good shift is one whole iteration. Perhaps that is
why this shift is more talked about than used. In fact there is a small interval of shifts
r(< Jn,n) which produce a rate of convergence at least as good as from /„„.

We present here the simple derivation in the case where the initial shift r is taken as /„„,
because the proof of the more general result is messier.

15

Write L in partitioned form as

L =
L 0
b' L„

The assumption is that amin = anin[L] < <rmin[L]. Consequently the last pivot in the
triangular factorization of L*L — a^inI must vanish. This gives

Fact 1. ll>n - alin - llnb*[V - a^J^b = 0

where V := L*L + bb*.

When the shift r = /„,„ is used the late failure assumption says that the last pivot is the
only negative one. This gives

Fact 2. dl := 0 - ^{V - llj^b < 0.

Hence

ll>n + dl = aL„ + l2n,n{b'{V - a^In-J^b -b'[V- llJn-r]-^}

By Hilbert's first resolvent identity (see p 90 of [3])

Now use Fact 1 again to find that

tin + d2
n = a*min - l<>nb*[V - aL„/„-i]-16{6-[^ ~ ^n/n-i]"1^ - llJu-i}-^}.

It is more informative to write 6 = ||6||6 so that

'n,n + dl = <£,.„ - (/n,„||&||)4&*[V - o^nh-i^kkV - ^„/»-i]"1^ - /^J^]"1*}.

The quantities involving b are bounded by l/O^.jZ] - <7^[X])3 as /„,„||6|| -»■ 0. ■

Although this result is interesting we doubt that the /„,„ trial shift is cost effective in the
full triangular case. Wilkinson and Rutishauser did not know the bounds on crn[L] given
by Theorem 3, and so we can use more refined strategies than they did.

12 A Preconditioner for Jacobi

Jacobi invented his famous eigenvalue algorithm (given in [11]) as a preconditioner for
what we now call the point Jacobi method for solution of linear (symmetric) equations.
See [9], [10]. One might ask the wisdom of designing a preconditioner for another "precon-
ditioner". The answer is that the classical Jacobi method in which the largest off diagonal
element is chosen as the doomed element is no longer the preferred version for computa-
tion of eigenvalues. Instead the row (or column) cyclic annihilations are used in Jacobi

16

algorithms and this strategy does not have good initial convergence properties, see Fer-
nando [6], although asymptotically the convergence is quadratic. Hence the use of a
preconditioner for cyclic Jacobi is not a futile effort.

The flipping algorithm (Algorithm 2) has a non-trivial application in one-sided Jacobi
algorithms belonging to the Hestenes family, see [8]. Veselic and Hari [21] have shown
that one step of the Cholesky algorithm with diagonal pivoting helps the convergence
of Hestenes algorithm for some cases. That is, the Cholesky algorithm can be used to
precondition the Hestenes type SVD algorithms. By recognizing that the LR algorithm
can be implemented using orthogonal or unitary transformations, it is possible to execute
extra preconditioning steps. Jacobi algorithms are more appropriate at the later stages
as they possess quadratic convergence whereas LR algorithms without shifts are linearly
convergent, so only a few preconditioning steps should be used. It is not yet known
whether Jacobi will beat implicit Cholesky with shifts. This preconditioner can be also
used for the Jacobi method due to Kogbetliantz for computation of the SVD. If the
matrix is triangular, the Kogbetliantz method retains that structure while Hestenes does
not. See Fernando [6].

Let us indicate how the preconditioning step may be applied more than once. Let A be
symmetric positive definite. The authors mentioned above perform a Cholesky factoriza-
tion with diagonal pivoting to produce X where

P'AP = LL*.

The one-sided Jacobi algorithm applies a sequence of plane rotations, on the right, to
an array F which is initialized to either X or X*. Each rotation makes the associated
columns of F orthogonal. On exit the norms of F's columns are the singular values of
X and the columns themselves are eigenvectors of A. Veselic and Hari observed that
initializing F to X, instead of X*, is equivalent to performing Jacobi on X*X rather than
XX* = A. In other words the Jacobi process is preconditioned (implicitly) by one LR
transform. This preconditioning sometimes improves convergence dramatically. Why
not do another step of preconditioning ? Veselic and Hari were unwilling to discard the
accuracy inherent in Jacobi by explicitly forming X*X in order to compute the Cholesky
factor X (L*L = LL*) but as explained in this paper, there is no need for explicit multi-
plication. Algorithm 2 yields X, without forming L*L, using plane rotations exclusively.
Now F may be initialized to X instead of L. The process may be repeated and in fact,
should be.

Let us mention a subtle point concerning preconditioning for a right sided Jacobi process
applied to a matrix F. Let A = LL* and let X = ITEV*. H F is initialized to X* then,
on exit, the columns of F when normalized give V. If f is initialized to X then, on
exit, the columns of F yield U. If we do an extra preconditioning step from X to X
then initializing F to X will eventually yield V. Another preconditioning step X —► X
and initializing F to X will eventually yield U and again there is no need to accumulate
rotations and this feature saves both storage and arithmetic operations. However, the
accuracy and especially the orthogonality of the vectors computed this way might be
poorer than for the accumulated vectors. Nevertheless, the moral of the story is that it

17

pays to use an even number of preconditioning steps for one vector set, an odd number
for the other.

For those who are appalled at the thought of preceding a Jacobi process by a non-
orthogonal transformation A -f LL*, there is a remedy. Compute the QR factorization
of Hermitian A, ignoring A 's symmetry but using column pivoting or some other rank
revealing permutation. Then initialize the matrix F to R or R*. In exact arithmetic
this preconditioning is equivalent to using the Cholesky factor of A2. The advantages of
this more expensive preconditioner is that there is no need for A to be positive definite.
Furthermore, the QR step can be done in parallel machines, including systolic arrays,
while the Cholesky step cannot be executed so easily in parallel. If the matrix is not sign
definite, the signs of A's eigenvalues can be recovered on exit by using the eigenvectors
formed in the Jacobi process. Convergence will be much faster than when the precondi-
tioner is a Cholesky factor because the convergence factors are squared as our numerical
examples reveal.

In the above algorithm, we assumed that the matrix is Hermitian. If the matrix is
skew-Hermitian, the same algorithm can be used by noting that now the eigenvalues are
conjugate imaginary pairs whose magnitudes are given by the singular values. So there
is no concern about recovering the signs of the eigenvalues.

Once we have taken the fateful step of contemplating a preconditioner for a Jacobi process
we are lead inexorably to the message of this paper. Why not use the implicit Cholesky
algorithm with shifts as a preconditioner? There is no loss of accuracy. The next question
is: if the shifts are well chosen why switch to Jacobi? Time will tell.

13 Numerical Examples

The goals of this study are (i) to point out the feasibility and the desirability of shifting in
the implicit Cholesky algorithm, (ii) to present new computable upper and lower bounds
on singular values. We are not presenting a particular implementation and so content
ourselves with offering some simple illustrations.

Two types of triangular matrix were used as input. Any symmetric positive definite
matrix A may be decomposed as A = LL* and as A = QR. Thus R is the Cholesky
factor of A2 and its singular values are the squares of those of L*. We present results
on triangular matrices arising from a 10 x 10 reverse Hilbert matrix and from a 20 x 20
Toeplitz matrix (A(i, j) = n - \i - j\, i = 1,..., n, j = 1,..., n).

For each triangular matrix we tried to present the results of 3 shifting strategies: no shift,
Newton shift, and a simple aggressive shift described in Section 10.2.

18

Before commenting on the results we discuss our stopping criterion. Let

be the current matrix. We declare H negligible when

||.ff || < tol * macheps * ||original Ä||.

For the examples given here E was lxl and || • || = || • HCQ. Sometimes convergence
would occur sooner if we allowed E to have larger dimension but when E is 1 x 1 we do
learn the number of steps needed to find the singular values in order.

We began with tol — 1 (i.e. maximal absolute accuracy) and used a Sun Sparc Work-
station ELC with macheps = 2 x 10~16. With no shift the algorithm failed to converge
after 2 minutes on the Toeplitz example. It still failed with tol = 106 so we ended up
using tol = 108 just to get a comparison, see Tables 1 and 2. Even with this value of tol
the Cholesky factor of the Toeplitz matrix required 1179 steps with no shift as compared
with 110 for the Newton shift and 84 for the aggressive shift.

The Toeplitz example, see Tables 1, 2, 3, and 4, shows clearly the potential benefits of
shifting. The smaller singular values, see Tables 9 and 10, are not very small and their
ratios o-,+1/<r,- are not very small either. On the other hand the a,- differ in the second
decimal so that they could not be considered clustered. As is clear from Tables 1 and 2 the
(19,20) entry is the last to become negligible. In fact, with no shift, the singular values
converge in the order o~i, o2,..., o2o- However our purpose is to show how shifts can help
and 465 steps are needed to make the (19,20) entry go below 108 * macheps * norm.
In contrast the Cholesky factor of the reverse Hilbert segment has much smaller values
for <T,+i/cr,-, see Tables 13 and 14, and the improvements from shifting are much less
dramatic, see Tables 7 and 8. Tables 3, 4, 5, and 6 show two things: the potential
power of good shifts and the slow down caused by the poorer ratios associated with the
Cholesky triangle, see Tables 9, 10, 11, and 12.

The quality of our bounds on amin is illustrated in Figs. 1 and 3. Recall that in Algo-
rithm 5 a shift is only used on alternate flips when singular vectors are requested. The
lower bound in the shifted flip is poorer than in the unshifted one and that accounts for
the step like appearance of the lower bound in Fig. 1.

Note that the upper bound is a much better approximation than the lower one. Finally,
Figs. 2 and 4, we give a snapshot of the way in which ll-ffJIoo declines under two shift
strategies.

Even these preliminary results suggest that implicit Cholesky with good shifts is not just
a tool for low accuracy applications but can be used in high accuracy, LAPACK style,
mode as well. It may be the method of choice whenever reduction to bidiagonal form is
too much trouble.

19

References

[1] L. P. Ammaim. Robust singular value decompositions: A new approach to projection
pursuit. Technical report, Erik Jonsson School of Engineering and Computer Science,
The University of Texas at Dallas, 1992.

[2] S. Chandrasekaran and I.C.F. Ipsen. Analysis of a QR algorithm for computing
singular values. Research Report 917, Department of Computer Science, Yale Uni-
versity, 1992.

[3] Francoise Chatelin. Spectral Approximation of Linear Operators. Academic Press,
New York, 1983.

[4] E. M. Dowling, L. P. Ammann, and R. D. DeGroat. A TQR-iteration based adaptive
SVD for real time angle and frequency tracking. Technical report, Erik Jonsson
School of Engineering and Computer Science, The University of Texas at Dallas,
1992.

[5] D. K. Faddeev, V. N. Kublanovskaya, and V. N. Faddeeva. Sur les systemes
lineaires algebraiques de matrices rectangulaires et mal-conditionnees. Colloq. Int.
du C.N.R.S. Besancon 1966, No. 165:161-70,1968.

[6] K. Vince Fernando. Linear convergence of row cyclic Jacobi and Kogbetliantz meth-
ods. Numer. Math., 56:73-91, 1989.

[7] K. Vince Fernando and Beresford N. Parlett. Accurate singular values and dif-
ferential qd algorithms. Technical Report PAM-554, Centre for Pure and Applied
Mathematics, University of California at Berkeley, 1992.

[8] M. R. Hestenes. Inversion of matrices by biorthogonalization and related results. J.
SIAM, 6:51-90, 1958.

[9] C. G. J. Jacobi. On a new way of solving the linear equations that arise in the method
of least squares (Translated by G. W. Stewart). Technical Report UMIACS-TR-92-
42, CS-TR 2887, Dept. of Computer Science and Institute for Advanced Computer
Studies, University of Maryland, College Park, MD 20742, 1992.

[10] C. J. G. Jacobi. Ueber eine neue Auflösungsart der bei der Methode der klein-
sten Quadrate vorkommenden linearen Gleichungen. Astronomische Nachrichten,
22:297-306,1845.

[11] C. J. G. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen
vorkommenden Gleichungen numerisch aufzulösen. Journal reine angew Mathematik
(Crelle's Journal), 30:51-94, 1846.

[12] Charles. R. Johnson. A Gersgorin-type lower bound for the smallest singular value.
Linear Algebra and Its Applications, 112:1-7, 1989.

[13] R. Mathias and G. W. Stewart. A block QR algorithm and the singular value
decomposition. Technical Report UMIACS-TR-91-38, CS-TR 2626, Dept. of Com-
puter Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, 1991.

20

14] M. Moonen, P. Van Dooren, and F. Vanpoucke. On the QR algorithm and updating
the SVD and URV decompositions in parallel. Technical report, ESAT, Katholieke
Universiteit Leuven, Belgium, 1992.

15] Beresford. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cliffs, NJ, 1980.

16] H. Rutishauser. Solution of eigenvalue problems with the LR-transformation. Nat.
Bur. Standards Appl. Math. Series, 49:47-81,1958.

17] H. Rutishauser. Lectures on Numerical Mathematics. Birkhäuser, Boston, 1990.

18] H. Rutishauser and H. R. Schwarz. The LR transformation method for symmetric
matrices. Numer. Math., 5:273-289,1963.

19] H. R. Schwarz, H. Rutishauser, and E. Stiefel. Numerical Analysis of Symmetric
Matrices. Prentice-Hall, Englewood Cliffs, NJ, 1973.

20] G. W. Stewart. Updating a rank-revealing ulv decomposition. SIAM Journal on
Matrix Analysis and Applications, 14:494-499, 1993.

21] K Veselic and V. Hari. A note on a one-sided Jacobi algorithm. Numer. Math.,
56:627-633,1989.

22] U. von Matt. Large constrained quadratic problems. Ph.d. thesis, Institute for Sci-
entific computing, ETH, Zurich, Switzerland, 1993.

23] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

Toeplitz Triangle: QR Mode: Vectors
i 20 19 18 17 16 15 14 13 12 11
No Shift 455 456 457 458 459 460 461 462 463 464
Newton 35 36 45 52 58 60 61 66 69 70
Aggressive 17 18 25 31 37 38 39 45 49 54

Table 1: Steps needed to find {<rn,... ^eri}, tol — 108.

Toeplitz Triangle: QR Mode: Vectors (cont.)
i 10 9 8 7 6 5 4 3 2 1
No Shift 465 466 467 468 469 470 471 472 473 473
Newton 71 72 73 74 75 76 77 78 79 79
Aggressive 57 58 59 60 61 62 63 64 65 65

Table 2: Steps needed to find {<rn,..., ir*}, tol = 108.

Toeplitz Triangle: QR Mode: Vectors
i 20 19 18 17 16 15 14 13 12 11
Newton 39 46 59 72 84 86 97 108 118 124
Aggressive 19 26 35 44 52 54 61 68 74 79

Table 3: Steps needed to find {<rn,..., o-j}, tol = 1.

Toeplitz Triangle: QR Mode: Vectors (cont.)
i 10 9 8 7 6 5 4 3 2 1
Newton 130 131 132 133 134 135 136 137 138 138
Aggressive 84 88 93 94 97 98 99 100 101 101

Table 4: Steps needed to find {<rn,..., o-j}, tol = 1.

Toeplitz Triangle: Cholesky Mode: Vectors

i 20 19 18 17 16 15 14 13 12 11

Newton 54 62 76 88 101 102 116 127 138 148
Aggressive 20 29 37 44 53 54 62 69 76 82

Table 5: Steps needed to find {o"„,..., <r<}, tol = 1.

Toeplitz Triangle: Cholesky Mode: Vectors (cont.)

i 10 9 8 7 6 5 4 3 2 1

Newton 158 164 171 172 173 174 175 176 177 177
Aggressive 89 95 100 102 108 112 115 116 117 117

Table 6: Steps needed to find {<rn,..., <7i}, tol = 1.

Reverse Hubert Triangle: QR Mode: Vectors

i 10 9 8 7 6 5 4 3 2 1

No Shift 3 5 8 11 13 16 19 23 31 31
Newton 3 5 8 11 13 16 19 23 29 29
Aggressive 3 5 8 11 13 16 19 23 27 27

Table 7: Steps needed to find {<rn,..., «r*}, tol = 1.

Reverse Hubert Triangle: Cholesky Mode: Vectors

i 10 9 8 7 6 5 4 3 2 1
No Shift 10 14 17 21 25 29 33 40 53 53
Newton 5 12 17 21 25 29 33 39 46 46
Aggressive 5 11 16 20 24 28 32 36 41 41

Table 8: Steps needed to find {<rn,..., tTj}, tol = 1.

Toeplitz Triangle: QR
i 20 19 18 17 16 15 14 13 12 11
Values 0.503 0.512 0.529 0.552 0.586 0.629 0.688 0.762 0.865 0.995
Ratio 0.982 0.969 0.957 0.943 0.931 0.915 0.903 0.881 0.869 0.839

Table 9: Singular Values

Toeplitz Triangle: QR (cont.)
i 10 9 8 7 6 5 4 3 2 1
Values 1.19 1.43 1.83 2.38 3.41 5.00 9.17 17.2 81.2 270.
Ratio 0.827 0.783 0.769 0.697 0.682 0.545 0.532 0.212 0.300

Table 10: Singular Values

Toeplitz Triangle: Cholesky
i 20 19 18 17 16 15 14 13 12 11
Values 0.709 0.716 0.727 0.743 0.765 0.793 0.829 0.873 0.930 0.998
Ratio 0.991 0.984 0.978 0.971 0.965 0.956 0.950 0.939 0.932 0.916

Table 11: Singular Values

Toeplitz Triangle: Cholesky (cont.)
i 10 9 8 7 6 5 4 3 2 1
Values 1.09 1.20 1.35 1.54 1.85 2.24 3.03 4.15 9.01 16.4
Ratio 0.909 0.885 0.877 0.835 0.826 0.739 0.730 0.461 0.548

Table 12: Singular Values

Reverse Hubert Triangle: QR

i 10 9 8J 7 6 5 4 3 2 1

Values .lle-12 .23e-10 .21e-8 .12e-6 .47e-5 .13e-3 .25e-2 .36e-l .34 1.8
Ratio .48e-02 .lle-01 .17e-l .26e-l .37e-l .51e-l .71e-l .10 .20

Table 13: Singular Values

Reverse Hilbert Triangle: Cholesky

i 10 9 8 7 6 5 4 3 2 1
Values .33e-6 .48e-05 .46e-4 .35e-3 .22e-2 .lle-1 .50e-l .19 .59 1.3
Ratio .69e-l .10 .13 .16 .19 .23 .27 .32 .44

Table 14: Singular Values

0.6
Matrix: Toeplitz, QR factor, 20x20, with Newton Shift

■ i ■ i 1——— 1 1

0.55

i
i

i

high //

0.5

0.45 /

0.4

ms

I low

 i 1 1 1 1 1— i

10 15 20 25 30 35

Fig.l Bounds for Singular Values, tol = le8

40 45 step 50

0.07

0.06

0.05-

0.04

0.03-

0.02

0.01 -

Matrix: Toeplitz, QR factor, 20x20, with Newton Shift

10 15 20 25 30 35 40

Fig. 2 Decline of max element in last column, tol = le8

45 step 50

0.75
Matrix: Toeplitz, Cholesky factor, 20x20, with No Shift

i i i i

high

0.7 - -

0.65 - -

0.6 -

0.55
/ low

-

0.5 -

0.45 -

0.4

n is < i ,_i i

50 100 150 200

Fig. 3 Bounds for Singular Values, tol = le8

250 step 300

Matrix: Toeplitz, Cholesky factor, 20x20, with No Shift

50 100 150 200

Fig. 4 Decline of max element in last column, tol = le8

250 step 300

Legal Notice

This report was prepared as an account of work sponsored by the
Center for Pure and Applied Mathematics. Neither the Center nor
the Department of Mathematics makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for
the accuracy> completeness or usefulness of any information or
process disclosed.

