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Abstract 

The implicit Cholesky algorithm has been developed by several authors during 
the last 10 years but under different names. We identify the algorithm with a special 
version of Rutishauser's LR algorithm. Intermediate quantities in the transformation 
furnish several attractive approximations to the smallest singular value. 

The paper extols the advantages of using shifts with the algorithm. The non- 
orthogonal transformations improve accuracy. 

Key words: Cholesky decomposition, singular values, Singular value decompo- 
sition, eigenvalues, null spaces, noise spaces, URV factorization, ULV factorization, 
QR algorithm, LR algorithm, Jacobi methods 
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1    Introduction 

We want to recommend a new way to compute singular values and vectors of triangular 
matrices. 

One of the ideas behind our algorithm is not new. The flipping of a triangular matrix 
between upper and lower forms, using orthogonal transformations exclusively, first from 
one side and then from the other has become a popular activity among signal processors 
recently, see [13], [4]. The end product is either the SVD or the updating of a noise 
subspace. Mathias and Stewart in [13], used this see-saw procedure in the refinement 
step of the URV factorization. Chandrasekaran and Ipsen in [2] looked at this flip-flop 
technique as the basic QR algorithm and Ammann in [1] goes so far as to call it the 
transpose QR algorithm. This name is a bit misleading. 

As long ago as 1968 Faddeev et al, in [5] recognized that one such transformation of a 
triangular matrix is equivalent to one step of the Cholesky LR algorithm of Rutishauser: 
L = QR implies VL = R*R. However the way R is produced from L is quite differ- 
ent from Rutishauser's transformation of LV to R}R and this suggests to us that the 
proper name for the triangular flipping procedure is the implicit Cholesky LR algorithm 
or, better, the implicit Cholesky algorithm since LR is a bit redundant. We plan to 
discuss the implicit LR algorithm for nonsymmetric eigenvalue problems in another com- 
munication. Our naming conventions are consistent with past usage; QR factorization is 
the basis for the QR algorithm. Similarly Cholesky factorization leads to the Cholesky 
algorithm. The interesting dissertation [22] adopts this terminology. 

Since two steps of the unshifted Cholesky algorithm are equivalent to one step of the 
unshifted QR algorithm it is clear how QR comes into the picture. 

What seems to be a novel contribution of this paper is to show how to combine the use 
of shifts and the calculation of either right or left singular vectors but not both. In many 
applications this suffices. Our Algorithm 5 only delivers the right singular vectors. 

We discuss convergence to show how easy the argument is in the unshifted case and to 
sharpen the idea of Rutishauser for getting a very accurate shift from a case of late failure 
in the shifted version. 

We do not give a formal error analysis here because the backward stability results for 
the unshifted case extend to our shifted algorithm. In fact our accuracy (absolute, not 
relative) is better than the standard procedures in practice but we have not proved this 
property yet. Our shifted algorithms do not preserve the Frobenius norm they actually 
decrease it. This improves speed and accuracy. 

There is some evidence that the connection between triangular flipping and either QR 
or Cholesky is not widely appreciated. The strongest piece of evidence is the absence of 
shifting. Experts are happily extolling the flip-flop of triangular matrices who would not 
be caught dead using QR or LR algorithms without appropriate shifts. It is as though an 



interdiction has been placed on using anything other than orthogonal transformations for 
SVD calculations. In [7] we showed that for high relative accuracy in treating bidiagonal 
matrices it is advisable to abandon plane rotations. Consequently orthogonal transfor- 
mations are sufficient but by no means necessary for obtaining accurate approximations. 

The numerical results suggest to us that the current triangular flipping algorithms are 
popular because little accuracy is required and the snail like pace of linear convergence 
does not hurt much. With sensible shifts the implicit Cholesky algorithm can be used 
like a LAPACK routine to yield singular values with maximal accuracy in an absolute 
sense (macheps * norm). 

Here we present the implicit Cholesky algorithm with shifts and make a plea for its 
adoption, at least by those who are in a hurry. New results, Theorems 1 and 3, show 
that the intermediate quantities produced by the algorithm yield valuable information 
for shift selection. 

2    Notation 

Householder conventions are followed: capital letters for matrices, Greek letters for 
scalars, lower case Roman for vectors. We use the Euclidean vector norm ||x||2 = x*x and 
the spectral matrix norm ||F|| = <Ti[F] throughout the paper where <r,-[.] denotes the ith 
singular value. Similarly, AJ.] signifies the ith eigenvalue. We use x* for the conjugate 
transpose of x but since most of our quantities are real x* also denotes the transpose. 

The columns of the identity matrix are denoted by e: J = (ei, e2,..., en). 

3    Uses of Triangular Form 

If one wants to compute the SVD of a single matrix, the most efficient and accurate 
method available appears to be the shifted differential qd algorithm of Fernando and 
Parlett which is a special case of the implicit LR algorithm. See [7]. However this 
requires the bidiagonalization of the matrix using orthogonal transformations. There are 
many occasions when this bidiagonalization is not warranted. For example, in signal 
processing applications this reduction is not advised since new data has to be brought in 
and old data has to be removed. Triangular matrices are a convenient form in this case. 
See for example [14] and [20]. 

Although the SVD is the most reliable decomposition to obtain the rank of a matrix, 
it is often an overkill. That is why intermediate non-canonical decompositions such as 
the URV and ULV factorizations of Stewart have many applications, especially in signal 
processing and statistics. If one requires only the smallest singular values or the singular 
vectors corresponding to the smallest singular values, the triangular structure is often 



adequate to obtain these rank revealing properties. In addition the condition number is 
revealed very quickly with our shifted implicit Cholesky algorithm. 

The reduction to bidiagonal form may not be needed if the matrix already has small 
off-diagonal elements and the diagonal entries are monotone decreasing or nearly so. 

The flipping process can be also used as a preconditioner for other SVD algorithms. 
Veselic and Hari used one step of the Cholesky algorithm with pivoting as an effective 
preconditioner for the one-sided Jacobi algorithm of Hestenes. Lacking the implicit form 
of the algorithm they felt obliged to limit themselves to one preconditioning step. How- 
ever, by using the nipping process many preconditioning steps can be used. 

If the matrix is banded and triangular, then the flipping process preserves bandwidth. 
This comes from the well known fact that the LR algorithm preserves the bandwidths 
of matrices. Since bidiagonalization of banded matrices is relatively expensive, implicit 
Cholesky is a convenient method to find the SVD or the approximate null space of a 
banded matrix. 

4    The Implicit Cholesky Algorithm 

Our goal here is to present neglected implementations of the Cholesky LR algorithm that 
avoid the two defining steps of this classical method presented as Algorithm 1. 

Algorithm 1 (Standard Cholesky to diagonalize symmetric positive definite A) 
A0:=A 
For i = 0,1,2,... until converged 

(a) Compute the Cholesky factorization LiL* := A{ 

(b) Ai+l - x-x, 

Here X,- is lower triangular and L\ is its conjugate transpose. 

In exact arithmetic as i -»■ oo , X, -► E, the diagonal matrix of (often, ordered) singular 
values of X0. Moreover, A{ -+ E2, the diagonal matrix of ordered eigenvalues of A. In 
floating-point arithmetic, the computed eigenvalues will be accurate in an absolute sense 
but the relative accuracy of smaller singular values may be poor. 

The overlooked fact is that there is no need to form Ai+1 in order to obtain its Cholesky 
factor X,+1. Instead consider the QR factorization of X,-, say 

X, = QtRi 

where Q\ = Q'1 and R{ is upper triangular with positive diagonal. 

Lemma 1 

Xi+i = R* 
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Proof: By step (b) of the algorithm 

-<4>+i = LtLi = R'iQ'QiRi = R*R{ 

By step (a) 

and the result follows from the uniqueness of the Cholesky factorization. • 

There is considerable computational advantage in not forming the matrices A{. 

Comment It seems likely that Rutishauser would have discovered Lemma 1 (via the 
qd algorithm, see [16], [18], [17], [19]) but we can find no explicit mention of this fact. 

A defect of the traditional LR algorithm is that one cannot obtain either eigenvectors 
of A or the singular vectors of L0 directly. However the new implementation provides a 
natural mechanism for obtaining those vectors, as shown below. To see the idea write 
out the relation of L2 to L0, 

L-x = L\Qi = Q^LQQI. 

Similarly, 
LA = LIQs = ... = QlQlUQ.Qs. 

We now describe the new implementation formally. 

Algorithm 2 (Implicit Cholesky SVD of L) 
SetL0 = L,U = I,V = I 
For i = 1,2,... until converged 

(a) Compute the QR factorization L{ = QiR,, 
(b) U *- UQi for odd i, V *- VQt for even i 
(c) ij+1 <— R*. (This step is purely formal) 

Remark 1 It is not necessary to form Qi explicitly to obtain R{ (= X,*+1). 

Remark 2 On exit the squares of i's diagonals give the eigenvalues of L0L*0{= A0). 

Remark 3 Also, on exit, U holds the left singular vectors of X, the normalized eigenvectors 
of L0LQ. If U is not required, that part of the algorithm may be omitted. 

Remark 4 If the right singular vector matrix V is not wanted, that part of the algorithm 
may be omitted. 

Remark 5 If the matrix A0 is positive semi-definite , then the traditional LR algorithm 
could break down. However, the Implicit Cholesky algorithm exists even when L0 is 
not full rank. Diagonal pivoting cures the defect. See Section 5. 



Remark 6 The identification of the basic algorithm with unshifted QR (see next section) 
indicates that the process is rather slow. Nevertheless if L nearly reveals its rank then 
only a few steps are needed to obtain a basis for the approximate null space. 

Remark 7 Since Cholesky factorization preserves band structure and so does reverse mul- 
tiplication of the factors it is clear that Algorithm 1 preserves bandwidth. Consequently 
Algorithms 2 and 3 enjoy the same property. 

5    The Relation of QR to Implicit Cholesky 

It is well known - to experts - that, for a positive definite Hermitian matrix, two steps of 
the LR algorithm produce the same matrix as one step of the zero-shift QR algorithm. 
For completeness we show this well known relationship which is hard to find in the 
literature. 

Algorithm 3 (Zero-shift QR algorithm for Hermitian M) 
M0 = M. 
For t = 0,l,2,... until converged 

(a) Compute the QR factorization M, = Z.T,, 
(b) Mi+1 «- TiZi ■ 

Theorem 1  One step of the QR algorithm with zero shifts is equivalent to two steps of 
the unshifted Implicit Cholesky. 

Proof: Set M0 = A0 = L0Ll. By Algorithm 2, 

M0 = L0Ll = QoLrLZ. 

By uniqueness of the QR factorization Z0 = Q0 and T0 = L\L\ and so, from proof of 
Lemma 1, 

L2L*7 = Q*0L0L'0Qo = ZQMOZO = Mx. 

Similarly, 
A2j+2 = L2j+iL*2i+2 = Q'2jL2jL2jQ2j = Z'MjZj = Mj+1» 

6    Incorporation of Pivoting 

It is recognized that pivoting is useful for improving convergence of the basic LR algorithm 
[18], [17]. In the case of the classical LR algorithm pivoting is used to bring the large 
diagonal elements to the top of the matrix and the small diagonal values to the bottom 
of the matrix. 



For Algorithm 2, we can accomplish this by using the pivoted QR factorization with 
column interchanges, 

U = QtRiP, 

where P,- is a permutation matrix. Any rank revealing Pi could be used. 

The relations are then 
LiPt' = QiL"i+1 

We note that pivoting is difficult in many modern machines and in some novel architec- 
tures this could be prohibitively expensive. However, we do not expect pivoting to be 
needed except in the first or the second sweep of the algorithm for most matrix problems. 

7    Bounds for a min 

Useful bounds may be attained at little cost by exploiting intermediate quantities that 
occur in one step of the unshifted implicit Cholesky transform, L = QL*. 

Consider an intermediate stage in the transformation of L to L where Q'L = L*. Al- 
though Q is unique it may be obtained as a product in many different ways. However 
the choice narrows down when it is desirable to take advantage of the triangular nature 
of L. 

The first stage of the reduction L to L" is typical. Apply a sequence of (n — 1) plane 
rotations in the planes (l,j) , j = 2,...,n to map column 1 of L into a multiple of 
ex = (1,0,..., 0)*. Call the product of these rotations <?J, then 

G\L = INI  W 
o    z<2> 

When the plane rotations are taken in the natural order indicated above then the "reduced 
matrix" i(2^ must be lower triangular and may be transformed the same way. Note that 
use of a Householder reflector instead of G\ would destroy the triangular form of L^2\ 

Definition The (1,1) entry of the reduced matrix L^ is denoted by d*.    Note that 

Consider an intermediate stage in the reduction. 

/ x    x    x 
x    x 

G*k-i-..G\L = 

V 

x 
X 

X 

dk 

x 
x 

X 

X 

X 

X 

X 

X 

X 

x ) 

(1) 

Note that row k of the matrix is a singleton. 



Theorem 1  Transform nxn invertible lower triangular L to upper triangular L* by the 
triangle preserving algorithm indicated in equation (1). Then 

(a) an\L) < min* dk , 

(b) [(Z'Z)-i]M = d? , 

(c) (H.1O-1 < (H.iO"* < *»[L] . 

Proof: The key fact is that, for each k, 

ekG'k_l...G\L = dke'k. (2) 

Since singular values are invariant under unitary equivalences 

crn[L} = on[Gk_1...G\L]<\\e*kG\_l...G\L\\ = dk, 

yielding (a). Next transpose (2) and rearrange: 

Gi. ..Gk-ie^l1 = L~*ek, 

dk
2 = d^elGU . ..GIG:... G^erf1 = cJI'^-c*, 

yielding (b). Finally summing the last equation over k gives 

°Z* < X>f2 = \\L-
X
\?F = traceid*!)-1] = j^d?, 

»=i *=i 

which is the last inequality in (3).   The first inequality holds for any set of positive 
numbers: \\v\\\ < \\v\\l. • 

Remark By Theorem 2 we may use r = (£jt=i dk *)-* as a shift with no fear of breakdown. 
r2 is the Newton shift from 0 towards a^in[L]. The reason is well known. 

Theorem 2 Let A be symmetric positive definite. The Newton approximation to Xmin[A] 
from 0 is 1 / trace(A~l). 

Proof: If x(t) is -4's characteristic polynomial then 

-X'(0)/X(0) = £ri = traced1) , 

where x'(<) denotes the derivative of x(t) with respect to t. • 



8    Incorporating Shifts 

Given X and r < amin[L] one seeks X, lower triangular with positive diagonal, such that 

X*X-r2/ = XX*. 

Take the shift to the other side and observe that it is equivalent to compute an orthogonal 
2n x 2n matrix Q such that 

Q 
L 
0 

X* 
rl 

Let m.j denote column j of M. In describing the algorithm fij denotes the current value 
of the (t, j) entry of F, not the original one. Imagine that a square array F is initialized 
to contain X and ends up holding X*. 

Algorithm 4 (The Implicit Cholesky Transform with Shift) 
For j = 1,2,..., n — 1 repeat 

(a) Overwrite the current (j,j) entry fjj with dj := \lfji — T2 

(b) Acting on rows j through n find an orthogonal triangle preserving 
matrix Hj such that Hjf.j = ej||/»j|| and apply Ej to those rows. 

fn,n '•= dn := yjfnn — T . 

Remark 1 An efficient way to apply Hj is to use fast Givens rotations. In this case F is 
held as two arrays A2 and F where F is unit triangular and L = AX. 

Remark 2 The transformation alters the singular values and the left singular vectors but 
the right singular vectors of X are preserved as the left singular vectors of X. 

Remark 3 Note that the In x 2n matrices are introduced to display the mathematical 
relationships. In practice the code resembles the program for Algorithm 2 except for 
the non-orthogonal modification of the diagonal entries. It is preferable to use triangle 
preserving rotations. 

Remark 4 When shifts are used conclusion (b) in Theorem 1 fails but the other two 
results still hold. 

Theorem 3 Let X denote the implicit Cholesky transform of X with shift r(< amin[X]). 
Let d{, i = 1,..., n be the intermediate diagonal entries described in Algorithm 4. Then 

(IX2)"1 ~ r2 < crlin[L) < min dl 
Jb=l 

Proof: Part (a) in each step of Algorithm 4 cannot increase any singular value but may 
decrease some of them. If F denotes the square array that holds X initially and X* finally 



then Part (a) is equivalent to reducing the (j,j) entry of FF* by r2. At the end of Part 
(a) of Step j the array F has the form (shown with n = 6, j = 4) 

/ x 

F(4) = 

V 

X      X X X   \ 

X      X X X 

X      X X X 

dk 

X X 

X X X   / 

F(1) = L   ,   F{n) = r 

Part (b) preserves singular values. 

<Tn[L] < <rn[F(j)} < ||e;JXJ)|| = H^e'll = dj. 

To derive the first inequality return to the 2n x n arrays and exact orthogonal transforms. 

Denote by Qk the product of all the orthogonal transformations that deliver F(k), More- 
over let (ij  yl) denote row k of Qk. Then ||xt||

2 = 1 - \\yk\\2 < 1 and 

xlL = (x'k yl)l   ^   \=e'kF(k) = dkel 

Invert and transpose to find 
dk
lxk = L~*uk, 

d-k
2\\xk\\2 = [(L*L)-i]k,k. 

Thus 

E^"2 * E^'lktir = tracefCX-i)-1]. 
i=l *=1 

By Theorem 2, the Newton approximation from 0 to cr^in[X] exceeds (]C£=1 rf^
2)-1. 

Subtract r2 to obtain a lower bound on ^.„[X]. • 

Repetition of Algorithm 4 will not deliver singular vectors because after two applications 
both right and left singular vectors have been lost. Algorithm 4 is an efficient way to 
find a few small singular values when reduction to bidiagonal form is not warranted. The 
next section shows one way to find singular vectors and use shifts. 

9    Computation of Singular Vectors Using Shifts 

Let R be upper triangular with positive diagonal. The goal is to compute some or all of 
.ß's singular values and the corresponding right singular vectors v1,v2,...,vn; R'RVJ = 
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Vjtjj. If any matrix M is multiplied on the right by an orthogonal matrix J then Jl/'s 
right singular vectors are transformed by J* since 

MJ = WEVJ = UZ(J*V)\ 

Each step in Algorithm 5 makes two transformations; one of them modifies the vectors 
but makes no shift, the other preserves the (right) vectors but reduces the singular values. 

Algorithm 5 (Implicit Shifted Cholesky for Singular Vectors of R) 
Set V = J; j := n 
While j > 0 do 

Repeat until the matrix is singular, 
(a) Transform R into lower triangular form L by plane rotations on the right, 
(b) Apply the transpose of each rotation to V. 
(c) Select a shift. 
(d) Transform L into R by plane rotations on the left with shift r, as in Algorithm 4- 
(the right singular vectors are unchanged) 

Comment If the initial matrix is lower triangular then begin the algorithm with a (d) 
transformation. 

10    Choice of Shifts 

Choosing a useful shift in LR and qd type algorithms is not an easy task. One would like 
the shift to be no larger than am,-„ but too much caution begets sluggish convergence. If 
a shift is too large then one or more entries in the new matrix become pure imaginary 
and at the next step entries become complex. To deal with this situation appears to be 
more trouble than it is worth. So, at present, we only record a Cholesky transform when 
it is real. Aggressive shifts that result in late failure do yield excellent new shifts; see 
Sections 10.3 and 11.3. 

10.1    Johnson Shift 

A lower bound for smallest singular value of R is given by 

ffm«n[Ä]>max[0,min{ril-ii--(J2|r<ii|+   £  |rilt|)}]. 
<=i k=j+i 

See [12]. In practice we may confine the search for min,- over a few j values surrounding 
TO where dm = min* d*,. This heuristic often gives a good result but it does not guarantee 
a lower bound for the smallest singular value. 



11 

10.2 Aggressive Shifts 

We expect the shift strategy for these algorithms to evolve with experience. It is safe to 
always use the lower bound in Theorem 3 but it seems a shame to make no use of the 
increasingly accurate upper bound. Failures are expensive but not disastrous. 

Our rather simple strategy is to let lo = (£t=1 d* 2)~1/2 - r2, hi = mini dk and set 

T = lo + a * (hi - lo) 

after the change in hi is less than 5%. A shift that avoids the cost of the Newton shift 
(when the bandwidth is small, perhaps) is to save the previous value of hi as oldhi and 
set 

r := 2 * hi - oldhi. 

10.3 Response to Failure 

Suppose that the shift r > amin[L) and that the Implicit Cholesky algorithm fails at step 
k with l\k < 0. Let us write the relevant matrices in partitioned form 

L*L - T
2
I = A     F 

F*    M 

where A is (A; -1) x (k -1) and positive definite. The failure at step k of implicit Cholesky 
shows that the Schur complement of A 

W = M - F'A-'F 

has WM = l\A < 0. Consequently W has negative eigenvalues. In [23] Wilkinson showed 
that 

new r := ^/T* + \min[W] 

is a safe, and accurate, shift for L. When k = n and W is 1 x 1 we recover Rutishauser's 
late failure result. For the analysis of this case see Section 11.3. 

An alternative response to failure at step k (especially when k is small) is to use the fact 
that y/r'2 + Whl < T is a safe shift for the leading k x k submatrix of L*L - T

2
I. An 

application of the implicit Cholesky transform with the new shift will fail, if at all, at 
some step after k. This shift is less work than the one Wilkinson suggested (especially 
when k ts n/2) but is not guaranteed to give success. 

The cautious response to early failure is to abandon r and use a lower bound on amin as 
the next shift. At present we do not have comparisons of the effectiveness of these two 
alternatives. For late, or almost late failure (when W is of small order) Wilkinson's safe 
shift seems preferable. 
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11    Convergence 

11.1    Linear Convergence 

We have stressed the fact that all the algorithms that flip triangular matrices using 
one sided orthogonal transformations are mathematically equivalent to the unshifted 
LR Cholesky algorithm introduced by Rutishauser in [16]. Consequently his proofs of 
convergence suffice to cover all these variations and they are more elegant than the ones 
provided in these more recent studies. We cannot resist the temptation to show how 
simple the arguments can be. A little notation is needed. Let 

R* =     ~   „      ,   R = 

be block upper triangular, S is k x k, and let 

R' = QR 

with Q* = Q~l. There is no need to partition Q. Since premultiplication by an orthogonal 
preserves inner products between columns we obtain three fundamental relations: 

SS* + HH* = S'S (3) 

EE* = H'H + E'E (4) 

HE* = S*H. (5) 

Since HH* and H'H are positive semi-definite it follows that 

Oi[S\<Oi[Sf\   ,   i = l,...,fc (6) 

(7i[E}>ai[E]   ,    i=l,...,n-k (7) 

and 

||£|| < ||£|| II5-1!! \\H\\. (8) 

From (6) 
ws-'^^sr^^isr^ws-'w (9) 

and thus 
|| j|| < \\E\\ WS-'W \\H\\. (10) 

These results hold for any partition of R, i.e. any admissible choice of k. Provided that 
R is undecomposable, e.g. no H block vanishes, then as the algorithm proceeds the (1,1) 
blocks must increase and (2,2) blocks must decrease when measured by the Frobenius 
norm. It follows that the large singular values must migrate to the (1,1) block and the 
small ones must descend to the (2,2) block. So if all the singular values are distinct then 
the matrix must converge to E = diag(ai,.. .,<r„). However in the presence of multiple 
singular values, and finite precision arithmetic too, the algorithm need not converge. 
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Equations (8) and (10) allow us to estimate the rate of convergence. If the partition size 
k is chosen so that there is a gap, ak » <7t+i, then at some point in the process 

||£|| US"1!! * Vk+i/0k < 1   (although   ||£|| US^H > ak+1/ak) 

and then the (1,2) blocks diminish monotonically in norm. Nevertheless convergence of 
11 if 11 is linear. 

Mathias and Stewart give a sufficient condition for monotonicity to set in. In our notation 
their condition is that 

pr|| + p:|| <**[*]. 

To see why this suffices consider the matrix 

(11) 

M := 

(  0 5 0 0 \ 
S* 0 H 0 
0 H* 0 E 

V   0 0 E* 0 J 

whose eigenvalues are ±<r,[Ä], i = 1,..., n. 

By the Wielandt-Hoffmann theorem applied to M the singular values of R may be paired 
with those of S and E in such a way that the difference of any pair is at most \\H\\. By 
(11) 

ak[R] - <7,.[£] > ak[R] - \\E\\ > \\H\\ (12) 

and so the largest k singular values of R cannot be paired with any from E. Thus for 
some j < k 

°k[S]><rj[R]-\\H\\>ak[R]-\\H\\ 

and by (11) and (13), 

l|£|| ll^1!! < 
\E\ 

^fc[Ä] - ||J5T| 

(13) 

(14) 

When this stage is reached, and (11) holds, then £'s singular values approximate the 
small singular values of R to 0(\\H\\7). 

To see this consider the symmetric indefinite matrix M given above and consider the 
subspace 

/0   0\ 
p °   ° Range       7   Q 

K0   I ) 

The projection of M onto this subspace is represented by 

( " E) \ E'    0 
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and the matrix residual F is given by 

F = M 

/o  ON (° °\ 
0   0 0   0 
/   0 I   0 

\0   I) i,0   I) 

( ° 0 \ 
# 0 
0 0 

V o 0/ 
Thus ||F|| = ||iT||. If 7 is the gap between £?'s singular values and the largest k singular 
values of R, i.e. 7 = ak[R] - \\E\\ then, by Chap. 11 of [15], 

|a,[£]-ai+1-[Ä]|<||F||2/7 = |W/7   ,    i = l,...,n-*. 

11.2    Quadratic Convergence 

Sections 7 and 8 show that the Newton approximation r2 to cr^in(X) from 0 is easily 
computed at the end of the LR transform. By the monotonicity of Newton's iteration 
from outside the zero set we know that r is a safe shift. By Theorem 3, the same formula 
(]C^*2)~^> when used at the end of a shifted Cholesky step, still provides a lower bound 
on amin[L] but a poorer one than Newton's. However, shifts are non-restoring in the 
implicit Cholesky process and consequently the shifts will tend to 0 and the shift formula 
will degrade only a little. Nevertheless we have not proved quadratic convergence for this 
shift formula in Algorithm 4. 

On the other hand Algorithm 5 does use Newton's shift and convergence is quadratic but 
each step costs twice as much as a step of Algorithm 4. However the goals of these two 
algorithms are not the same. 

11.3    Higher Order Convergence 

Rutishauser observed that when the matrix has nearly revealed the smallest singular value 
in the (ra, n) position then there is a shift strategy that generates cubic convergence. The 
key requirement is what he calls late breakdown. Suppose that r = lnn exceeds crmin[L} 
by so little that a negative pivot d2 occurs only at the last step. It turns out that 
A//

2
 n + d\ is a safe and accurate shift for L. So the strategy consists of making a copy 

of i, transforming with shift lnn and then discarding intermediate quantities except for 

cPn. Then transform L with shift 1V/2,n + d2(< 'n,n)- 

Neither Rutishauser nor Wilkinson [23] emphasize that to employ this strategy it is 
necessary to save L and discard all the intermediate quantities arising from using the 
shift /„,„. Thus the cost of finding the good shift is one whole iteration. Perhaps that is 
why this shift is more talked about than used. In fact there is a small interval of shifts 
r(< Jn,n) which produce a rate of convergence at least as good as from /„„. 

We present here the simple derivation in the case where the initial shift r is taken as /„„, 
because the proof of the more general result is messier. 
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Write L in partitioned form as 

L = 
L     0 
b'   L„ 

The assumption is that amin = anin[L] < <rmin[L]. Consequently the last pivot in the 
triangular factorization of L*L — a^inI must vanish. This gives 

Fact 1.   ll>n - alin - llnb*[V - a^J^b = 0 

where V := L*L + bb*. 

When the shift r = /„,„ is used the late failure assumption says that the last pivot is the 
only negative one. This gives 

Fact 2.   dl := 0 - ^{V - llj^b < 0. 

Hence 

ll>n + dl = aL„ + l2n,n{b'{V - a^In-J^b -b'[V- llJn-r]-^} 

By Hilbert's first resolvent identity (see p 90 of [3]) 

Now use Fact 1 again to find that 

tin + d2
n = a*min - l<>nb*[V - aL„/„-i]-16{6-[^ ~ ^n/n-i]"1^ - llJu-i}-^}. 

It is more informative to write 6 = ||6||6 so that 

'n,n + dl = <£,.„ - (/n,„||&||)4&*[V - o^nh-i^kkV - ^„/»-i]"1^ - /^J^]"1*}. 

The quantities involving b are bounded by l/O^.jZ] - <7^[X])3 as /„,„||6|| -»■ 0.   ■ 

Although this result is interesting we doubt that the /„,„ trial shift is cost effective in the 
full triangular case. Wilkinson and Rutishauser did not know the bounds on crn[L] given 
by Theorem 3, and so we can use more refined strategies than they did. 

12    A Preconditioner for Jacobi 

Jacobi invented his famous eigenvalue algorithm (given in [11]) as a preconditioner for 
what we now call the point Jacobi method for solution of linear (symmetric) equations. 
See [9], [10]. One might ask the wisdom of designing a preconditioner for another "precon- 
ditioner". The answer is that the classical Jacobi method in which the largest off diagonal 
element is chosen as the doomed element is no longer the preferred version for computa- 
tion of eigenvalues. Instead the row (or column) cyclic annihilations are used in Jacobi 
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algorithms and this strategy does not have good initial convergence properties, see Fer- 
nando [6], although asymptotically the convergence is quadratic. Hence the use of a 
preconditioner for cyclic Jacobi is not a futile effort. 

The flipping algorithm (Algorithm 2) has a non-trivial application in one-sided Jacobi 
algorithms belonging to the Hestenes family, see [8]. Veselic and Hari [21] have shown 
that one step of the Cholesky algorithm with diagonal pivoting helps the convergence 
of Hestenes algorithm for some cases. That is, the Cholesky algorithm can be used to 
precondition the Hestenes type SVD algorithms. By recognizing that the LR algorithm 
can be implemented using orthogonal or unitary transformations, it is possible to execute 
extra preconditioning steps. Jacobi algorithms are more appropriate at the later stages 
as they possess quadratic convergence whereas LR algorithms without shifts are linearly 
convergent, so only a few preconditioning steps should be used. It is not yet known 
whether Jacobi will beat implicit Cholesky with shifts. This preconditioner can be also 
used for the Jacobi method due to Kogbetliantz for computation of the SVD. If the 
matrix is triangular, the Kogbetliantz method retains that structure while Hestenes does 
not. See Fernando [6]. 

Let us indicate how the preconditioning step may be applied more than once. Let A be 
symmetric positive definite. The authors mentioned above perform a Cholesky factoriza- 
tion with diagonal pivoting to produce X where 

P'AP = LL*. 

The one-sided Jacobi algorithm applies a sequence of plane rotations, on the right, to 
an array F which is initialized to either X or X*. Each rotation makes the associated 
columns of F orthogonal. On exit the norms of F's columns are the singular values of 
X and the columns themselves are eigenvectors of A. Veselic and Hari observed that 
initializing F to X, instead of X*, is equivalent to performing Jacobi on X*X rather than 
XX* = A. In other words the Jacobi process is preconditioned (implicitly) by one LR 
transform. This preconditioning sometimes improves convergence dramatically. Why 
not do another step of preconditioning ? Veselic and Hari were unwilling to discard the 
accuracy inherent in Jacobi by explicitly forming X*X in order to compute the Cholesky 
factor X (L*L = LL*) but as explained in this paper, there is no need for explicit multi- 
plication. Algorithm 2 yields X, without forming L*L, using plane rotations exclusively. 
Now F may be initialized to X instead of L. The process may be repeated and in fact, 
should be. 

Let us mention a subtle point concerning preconditioning for a right sided Jacobi process 
applied to a matrix F. Let A = LL* and let X = ITEV*. H F is initialized to X* then, 
on exit, the columns of F when normalized give V. If f is initialized to X then, on 
exit, the columns of F yield U. If we do an extra preconditioning step from X to X 
then initializing F to X will eventually yield V. Another preconditioning step X —► X 
and initializing F to X will eventually yield U and again there is no need to accumulate 
rotations and this feature saves both storage and arithmetic operations. However, the 
accuracy and especially the orthogonality of the vectors computed this way might be 
poorer than for the accumulated vectors. Nevertheless, the moral of the story is that it 
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pays to use an even number of preconditioning steps for one vector set, an odd number 
for the other. 

For those who are appalled at the thought of preceding a Jacobi process by a non- 
orthogonal transformation A -f LL*, there is a remedy. Compute the QR factorization 
of Hermitian A, ignoring A 's symmetry but using column pivoting or some other rank 
revealing permutation. Then initialize the matrix F to R or R*. In exact arithmetic 
this preconditioning is equivalent to using the Cholesky factor of A2. The advantages of 
this more expensive preconditioner is that there is no need for A to be positive definite. 
Furthermore, the QR step can be done in parallel machines, including systolic arrays, 
while the Cholesky step cannot be executed so easily in parallel. If the matrix is not sign 
definite, the signs of A's eigenvalues can be recovered on exit by using the eigenvectors 
formed in the Jacobi process. Convergence will be much faster than when the precondi- 
tioner is a Cholesky factor because the convergence factors are squared as our numerical 
examples reveal. 

In the above algorithm, we assumed that the matrix is Hermitian. If the matrix is 
skew-Hermitian, the same algorithm can be used by noting that now the eigenvalues are 
conjugate imaginary pairs whose magnitudes are given by the singular values. So there 
is no concern about recovering the signs of the eigenvalues. 

Once we have taken the fateful step of contemplating a preconditioner for a Jacobi process 
we are lead inexorably to the message of this paper. Why not use the implicit Cholesky 
algorithm with shifts as a preconditioner? There is no loss of accuracy. The next question 
is: if the shifts are well chosen why switch to Jacobi? Time will tell. 

13    Numerical Examples 

The goals of this study are (i) to point out the feasibility and the desirability of shifting in 
the implicit Cholesky algorithm, (ii) to present new computable upper and lower bounds 
on singular values. We are not presenting a particular implementation and so content 
ourselves with offering some simple illustrations. 

Two types of triangular matrix were used as input. Any symmetric positive definite 
matrix A may be decomposed as A = LL* and as A = QR. Thus R is the Cholesky 
factor of A2 and its singular values are the squares of those of L*. We present results 
on triangular matrices arising from a 10 x 10 reverse Hilbert matrix and from a 20 x 20 
Toeplitz matrix (A(i, j) = n - \i - j\, i = 1,..., n, j = 1,..., n). 

For each triangular matrix we tried to present the results of 3 shifting strategies: no shift, 
Newton shift, and a simple aggressive shift described in Section 10.2. 
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Before commenting on the results we discuss our stopping criterion. Let 

be the current matrix. We declare H negligible when 

||.ff || < tol * macheps * ||original Ä||. 

For the examples given here E was lxl and || • || = || • HCQ. Sometimes convergence 
would occur sooner if we allowed E to have larger dimension but when E is 1 x 1 we do 
learn the number of steps needed to find the singular values in order. 

We began with tol — 1 (i.e. maximal absolute accuracy) and used a Sun Sparc Work- 
station ELC with macheps = 2 x 10~16. With no shift the algorithm failed to converge 
after 2 minutes on the Toeplitz example. It still failed with tol = 106 so we ended up 
using tol = 108 just to get a comparison, see Tables 1 and 2. Even with this value of tol 
the Cholesky factor of the Toeplitz matrix required 1179 steps with no shift as compared 
with 110 for the Newton shift and 84 for the aggressive shift. 

The Toeplitz example, see Tables 1, 2, 3, and 4, shows clearly the potential benefits of 
shifting. The smaller singular values, see Tables 9 and 10, are not very small and their 
ratios o-,+1/<r,- are not very small either. On the other hand the a,- differ in the second 
decimal so that they could not be considered clustered. As is clear from Tables 1 and 2 the 
(19,20) entry is the last to become negligible. In fact, with no shift, the singular values 
converge in the order o~i, o2,..., o2o- However our purpose is to show how shifts can help 
and 465 steps are needed to make the (19,20) entry go below 108 * macheps * norm. 
In contrast the Cholesky factor of the reverse Hilbert segment has much smaller values 
for <T,+i/cr,-, see Tables 13 and 14, and the improvements from shifting are much less 
dramatic, see Tables 7 and 8. Tables 3, 4, 5, and 6 show two things: the potential 
power of good shifts and the slow down caused by the poorer ratios associated with the 
Cholesky triangle, see Tables 9, 10, 11, and 12. 

The quality of our bounds on amin is illustrated in Figs. 1 and 3. Recall that in Algo- 
rithm 5 a shift is only used on alternate flips when singular vectors are requested. The 
lower bound in the shifted flip is poorer than in the unshifted one and that accounts for 
the step like appearance of the lower bound in Fig. 1. 

Note that the upper bound is a much better approximation than the lower one. Finally, 
Figs. 2 and 4, we give a snapshot of the way in which ll-ffJIoo declines under two shift 
strategies. 

Even these preliminary results suggest that implicit Cholesky with good shifts is not just 
a tool for low accuracy applications but can be used in high accuracy, LAPACK style, 
mode as well. It may be the method of choice whenever reduction to bidiagonal form is 
too much trouble. 
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Toeplitz     Triangle: QR     Mode: Vectors 
i 20 19 18 17 16 15 14 13 12 11 
No Shift 455 456 457 458 459 460 461 462 463 464 
Newton 35 36 45 52 58 60 61 66 69 70 
Aggressive 17 18 25 31 37 38 39 45 49 54 

Table 1: Steps needed to find {<rn,... ^eri}, tol — 108. 

Toeplitz     Triangle: QR     Mode: Vectors   (cont.) 
i 10 9 8 7 6 5 4 3 2 1 
No Shift 465 466 467 468 469 470 471 472 473 473 
Newton 71 72 73 74 75 76 77 78 79 79 
Aggressive 57 58 59 60 61 62 63 64 65 65 

Table 2: Steps needed to find {<rn,..., ir*}, tol = 108. 

Toeplitz     Triangle: QR     Mode: Vectors 
i 20 19 18 17 16 15 14 13 12 11 
Newton 39 46 59 72 84 86 97 108 118 124 
Aggressive 19 26 35 44 52 54 61 68 74 79 

Table 3: Steps needed to find {<rn,..., o-j}, tol = 1. 

Toeplitz     Triangle: QR     Mode: Vectors   (cont.) 
i 10 9 8 7 6 5 4 3 2 1 
Newton 130 131 132 133 134 135 136 137 138 138 
Aggressive 84 88 93 94 97 98 99 100 101 101 

Table 4: Steps needed to find {<rn,..., o-j}, tol = 1. 



Toeplitz     Triangle: Cholesky     Mode: Vectors 

i 20 19 18 17 16 15 14 13 12 11 

Newton 54 62 76 88 101 102 116 127 138 148 
Aggressive 20 29 37 44 53 54 62 69 76 82 

Table 5: Steps needed to find {o"„,..., <r<}, tol = 1. 

Toeplitz     Triangle: Cholesky     Mode: Vectors   (cont.) 

i 10 9 8 7 6 5 4 3 2 1 

Newton 158 164 171 172 173 174 175 176 177 177 
Aggressive 89 95 100 102 108 112 115 116 117 117 

Table 6: Steps needed to find {<rn,..., <7i}, tol = 1. 

Reverse Hubert     Triangle: QR     Mode: Vectors 

i 10 9 8 7 6 5 4 3 2 1 

No Shift 3 5 8 11 13 16 19 23 31 31 
Newton 3 5 8 11 13 16 19 23 29 29 
Aggressive 3 5 8 11 13 16 19 23 27 27 

Table 7: Steps needed to find {<rn,..., «r*}, tol = 1. 

Reverse Hubert     Triangle: Cholesky     Mode: Vectors 

i 10 9 8 7 6 5 4 3 2 1 
No Shift 10 14 17 21 25 29 33 40 53 53 
Newton 5 12 17 21 25 29 33 39 46 46 
Aggressive 5 11 16 20 24 28 32 36 41 41 

Table 8: Steps needed to find {<rn,..., tTj}, tol = 1. 



Toeplitz     Triangle: QR 
i 20 19 18 17 16 15 14 13 12 11 
Values 0.503 0.512 0.529 0.552 0.586 0.629 0.688 0.762 0.865 0.995 
Ratio 0.982 0.969 0.957 0.943 0.931 0.915 0.903 0.881 0.869 0.839 

Table 9: Singular Values 

Toeplitz     Triangle: QR    (cont.) 
i 10 9 8 7 6 5 4 3 2 1 
Values 1.19 1.43 1.83 2.38 3.41 5.00 9.17 17.2 81.2 270. 
Ratio 0.827 0.783 0.769 0.697 0.682 0.545 0.532 0.212 0.300 

Table 10: Singular Values 

Toeplitz     Triangle: Cholesky 
i 20 19 18 17 16 15 14 13 12 11 
Values 0.709 0.716 0.727 0.743 0.765 0.793 0.829 0.873 0.930 0.998 
Ratio 0.991 0.984 0.978 0.971 0.965 0.956 0.950 0.939 0.932 0.916 

Table 11: Singular Values 

Toeplitz     Triangle: Cholesky    (cont.) 
i 10 9 8 7 6 5 4 3 2 1 
Values 1.09 1.20 1.35 1.54 1.85 2.24 3.03 4.15 9.01 16.4 
Ratio 0.909 0.885 0.877 0.835 0.826 0.739 0.730 0.461 0.548 

Table 12: Singular Values 



Reverse Hubert     Triangle: QR 

i 10 9 8J 7 6 5 4 3 2 1 

Values .lle-12 .23e-10 .21e-8 .12e-6 .47e-5 .13e-3 .25e-2 .36e-l .34 1.8 
Ratio .48e-02 .lle-01 .17e-l .26e-l .37e-l .51e-l .71e-l .10 .20 

Table 13: Singular Values 

Reverse Hilbert     Triangle: Cholesky 

i 10 9 8 7 6 5 4 3 2 1 
Values .33e-6 .48e-05 .46e-4 .35e-3 .22e-2 .lle-1 .50e-l .19 .59 1.3 
Ratio .69e-l .10 .13 .16 .19 .23 .27 .32 .44 

Table 14: Singular Values 
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Matrix: Toeplitz, Cholesky factor, 20x20, with No Shift 
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