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ABSTRACT 

This project has accomplished all the scheduled tasks. Research program on 

feasability of quantum computing in condensed matter systems has been initiated. Spe- 

cific research results for several quantum logic gates, inluding the NOT gate, quantum 

signal splitting, and quantum copying, were obtained and prepared for publication. 

Directions for future work have been identified, including scope, impact, tools and col- 

laborations needed. The first steps towards establishing a collaboration involving Air 

Force, Computer Science, and Physics investigators were taken. 

The views and conclusions contained in this document are those of the author and 

should not be interpreted as necessarily representing the official policies and endorse- 

ments, either expressed or implied, of the Air Force or the U.S. Government. 
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1.0 EXECUTIVE SUMMARY 

This is a general summary and overview of results, ideas, background, and future 

plans. Specific details of the work accomplished, and literature references, are given in 

Sections 2.0, 3.0, 4.0. 

1.1 What is Quantum Computing 

In the seventies and eighties the size of computer components was decreasing nearly 

linearly and if the trend of then would continue, today's computer components would 

be zero size! However, in the nineties the relentless drive of industries and governments 

towards miniaturization of computer circuitry has slowed down. Most of the reasons for 

this have thus far been in manufacturing. Indeed, a recent Scientific American article 

(August 1996, p. 33) projects that the next generation of components (time scale 1-2 

years) will be 0.25/im in dimensions. This size is 2500Ä, i.e., it is still well above the 

atomic dimensions. 

It has become clear, however, that as the miniaturization continues, atomic dimen- 

sions will be reached, perhaps, with technology different from today's semiconductors. 

Then, quantum-mechanical effects will have to be considered in computer operation. A 

"passive" approach driven by this expectation has led some early workers to consider 

how quantum mechanics affects the foundations of computer science. Questions such 

as limitations on "classical" computation due to quantum fluctuations, quantum noise, 

etc., have been investigated. 

A more "active" approach, initiated recently by several research groups which, 

in the USA, have been mainly based in industrial and government research labs (IBM, 
AT&T, Xerox, Los Alamos, etc.), is to attempt to harness the quntum nature of compo- 

nents of atomic dimensions for more efficient computation and design. This ambitious 
program involves many interesting scientific concepts new to both Computer Science 

and Physics communities. It also calls for new, nontraditional collaborations. 

In order to answer whether quantum computation is feasible and useful, several 

issues must be addressed: 

• Is quantum computation faster than classical computation? 

• Can quantum computational elements be built and combined with other quantum 

and/or classical components? 

• What will be the "design" rules for quantum computer components in order to 

perform Boolean logic operations? 



• What are the error correction requirements and methods in quantum computation? 

The answers to some of the questions that result from consideration of these general 

issues are still in the future. However, some definitive results have already been obtained. 

Specifically, on the theoretical side, new fast quantum algorithms have been proposed. 

One of these, due to Shor, allows fast factoring of numbers thus yielding an approach 

to break "unbreakable" cryptographic security codes. Error correction and unitary 

operations corresponding to the simplest logic gates have been explored in the literature. 

On the side of experiment, there are several atomic-scale systems where the simplest 

quantum-gate functions have been recently realized. There are also several promissing 

condensed matter systems in which quantum-coherent processes can be maintained, 

usually controlled by laser radiation. 

1.2 The Scope of the Present and Future Work 

Our aim has been to investigate the feasability of quantum computing in condensed 
matter systems. Condensed matter is the most promissing medium for making small 
computational components. A collaboration involving theoretical physics, experimen- 
tal materials science, and design-oriented computer engineering specialists is needed 

for long-term progress in this program; this has been organized and coordinated by 

Dr. Hotaling at the Rome Air Force Laboratory. 

The effort at Clarkson University, by this PI, has been based on the following 

assumptions. We deem it inevitable that quantum properties of matter on the atomic 
scale will have to be considered in computer component design and use. However, it 
is still a long way to go, with modern technology, to a really "desktop" fully coherent 
quantum computational unit. A more realistic expectation is that technological advances 
will soon allow design and manufacturing of limited-size units, based on several tens of 
atomic two-level systems, operating in a quantum-coherent fashion over a large time 

interval and possibly driven externally by laser beams. These units will then become 
parts of a larger "classical" computer which will not maintain a quantum-coherent 

operation over its macroscopic dimensions. 

Our program consists therefore of the following steps: 

• Study the simplest quantum logic gates in order to identify which Hamiltonians 
are typical for interactions required for their operation. In the present project we 

already made progress in this direction and obtained several specific results to be 

detailed in Sections 2.0, 3.0, 4-0. In a longer run, we will need to collaborate with 

materials-science experimentalists to identify how these interactions can be realized 

in materials. 
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• Design systems of order 20 to 25 two-state atomic "components" with general- 

parameter interactions identified in the earlier step. Then, by using ordinary com- 

puters find those interaction value choices for which the resulting computational 

unit will be useful as part of a computer and will be usable for Boolean logic op- 

erations (this need of numerical calculations limits the number of constituents to 

20-25, i.e., to systems with total of 220 to 225 states that modern computers can 

handle). In this stage, collaboration with computer design engineers will be crucial. 

• Identification of how to incorporate such computational units in actual computer 

design. Here the emphasis shifts to Computer Science. Indeed, presently the ap- 

proach in computer design is to build logical circuits from the simplest logic gates, 

such as NOT, AND, OR, NAND, etc. These usually involve one or two input bits 
and one output bit. Their operation is irreversible (dissipative). On the other hand, 

the quantum-computer components will involve several quantum-bits (qubits) as 

input and output. Their "built-in" Boolean function will be quite complicated. 

Furthermore, the rules of their interconnection with each other and with the rest 
of the "classical" computer will be different from today's devices. Thus, a whole 

new branch of computer design engineering will have to emerge. 

As stated earlier, we are presently in the initial stages of the first step in this 

program. Results achived to date are outlined in Section 1.3 and detailed in Sections 

2.0, 3.0, 4.0. 

1.3 Tasks Accomplished within This Project 

The following specific research results have been obtained in this project. 

• We studied the Hamiltonian for the quantum equivalent of the NOT computer gate. 
Explicit expression was obtained for the interaction parameters. Section 2.0 details 
this study, the results of which were submitted for publication in Physical Review 

A. 

• Quantum signal splitting, of relevance to evesdroping on transmission lines, has 

been investigated with emphasis on the way to accomplish a variant of signal split- 

ting without limiting the initial quantum states of the systems in which the copies 

are recorded. Explicit interaction Hamiltonian was obtained. Section 3.0 provides 

the details of this study. The results were submitted for publication in Physical 

Review Letters. 

• Quantum copying, important in error-correction protocols, has been investigated 

with the aim of deriving an explicit Hamiltonian for this process. The results are 

being presently prepared for publication. Section 4.0 details this study. 



In addition to the specific research projects, we have established long-term col- 

laboration with Dr. Hotaling of the Rome Laboratory, with Prof. Pease of Syracuse 

University, and developed contacts with several other researchers in the field. A "vi- 

sion for the future" to define the follow-up research directions has been established and 

presented in the Section 1.2. A graduate student has been identified who is qualified to 

work within the planned research effort. 

1.4 Publications 

The following publications have been written presenting the results of this project: 

Design of gates for quantum computation: the NOT gate, D. Mozyrsky, V. Privman and 

S.P Hotaling, submitted to Physical Review A. 

Quantum signal splitting as entanglement due to three-spin interactions, D. Mozyrsky 

and V. Privman, submitted to Physical Review Letters. 

A Hamiltonian for Quantum Copying, D. Mozyrsky, V. Privman and M. Hillery, in 

preparation, to be submitted to Physics Letters A. 

1.5 Presentations and Educational Impact 

The following presentations have resulted from this project: 

D. Mozyrsky (a graduate student) gave an informal talk on quantum computing to 

Physics faculty and students at Clarkson University on September 13, 1996. 

S.P. Hotaling gave a Physics colloquium at Clarkson University on September 20, 1996 

entitled Introductory Comments on Quantum Computing. 

V. Privman gave a Condensed Matter seminar at SUNY Buffalo on September 27, 1996 

entitled Hamiltonians for Quantum Computing. 

Abstracts will be submitted for 3 presentations at the SPIE conference next Spring. 

The above seminar presentations were attended largely by graduate students, and 

some undergraduates. One of the coauthors of the papers listed in Section 1.4, Mr. Mo- 

zyrsky, is a graduate student at Clarkson University. Thus, the educational impact of 

this project has been mainly at the level of graduate student training and exposure to 

the subject of quantum computing. 



2.0 THE QUANTUM NOT GATE 

We studied interactions needed to operate the quantum-mechanical NOT gate in 

the conventional formulation when the evolution is in time only and also in the case 

of spatially separated Input and Output two-state systems. Explicit expressions for the 

Hamiltonian were derived for the interaction which is time-independent for the duration 

of the gate operation. We developed a general approach which can be used to obtain 

Hamiltonians of this sort for quantum computer gates. We also discussed extensions to 

the case of time-dependent interactions. (This section is self-contained.) 

2.1 Introduction 

Quantum mechanics of computation is a rather active field of study; we provide 

a partial list of a review-type literature [2.1-2.26]. The ultimate goal would be to 
construct a macroscopic quantum system which would function as a programmable cal- 

culational apparatus. However, this goal is elusive [2.16,2.18]. Nevertheless, with the 
relentless drive towards miniaturization of computer components, quantum-mechanical 

behavior will have to be considered [2.14-2.16,2.18] seriously in their design. Experi- 
mental advances have recently been reported [2.25,2.27-2.28] yielding the first functional 

examples of "quantum gates" which can be controlled without loosing quantum coher- 

ence. Quantum computing also has tremendous "basic science" value in offering new 

challenges and experimental connections in the field of theoretical foundations of quan- 
tum mechanics, in understanding the decoherence effects on quantum evolution, e.g., 
[2.16,2.18,2.26,2.29-2.31], and in derivation of inherently quantum-mechanical compu- 

tational algorithms, e.g., [2.29-2.30,2.32-2.35]. 

A typical "classical" computer gate, for instance, in a solid-state device, is struc- 

tured as shown in Figure 1. The Input signal is converted into the Output signal by 
interactions in the connecting "circuitry." There is an internal time scale, At, for the 

gate operation. It is determined by the dynamics of the circuitry which includes the 

dissipation processes in it. Such a gate is therefore irreversible dynamically even though 

it might perform a reversible logical operation such as the NOT function. In fact, it has 
been established that any logical operation sequence can be accomplished reversibly in 

the "logics" sense; see, e.g., [2.36]. However, the dynamical evolution of the underlying 

solid-state device need not be reversible; see, e.g., [2.18,2.26] for general discussion. 

In quantum computation, the "logics" ingredient is supposed to go beyond the 

"classical" case by using the quantum interference, i.e.. by exploiting the fact that a 

quantum-mechanical system can be in a superposition of basic states, such as the up 

and down states of a bit, termed in this context a "qubit." Therefore ideally any source 
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Figure 1:   The "classical" computer gate. 
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Figure 3: Quantum gate with spatially separated Input and Output. Interactions with 

components of the system which are external to this gate are schematically marked 
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of decoherence, such as dissipation processes and other uncontrolled interactions with 

the environment must be avoided. It is presently not clear how far can the modern 

technology go in this direction [2.16,2.18] and how much of the decoherence can be 

repaired by various "error correction" schemes, e.g., [2.26,2.29-2.31]. 

Thus, both the quantum logics and the dynamics of the gate should ideally be fully 

reversible. Implications of this property have biased recent literature on the quantum 

logic gates. Firstly, the distinction between the Input part and the Output part of 

the system has been blurred. A typical configuration is that of Figure 2. The same 

quantum-mechanical system is "programmed" with the Input and then after the time 

interval At it will be in the Output state. We note that the time interval At is fully 
determined by the parameters of the Hamiltonian. Alternatively, we can conclude that 
in order to effect the quantum gate operation, the interaction energies associated with 
both the internal and external-field parts of the Hamiltonian must be of order h/At. 

Secondly, consideration of the full quantum system requires a large number of 

basis states. As a result, there are virtually no explicit examples available of what 

the actual interaction Hamiltonians should look like in simple quantum gates. One 

notable exception is the NOT gate operation in a two-state system [2.10] obtained by 

applying an external magnetic field on a single spin. Then another field is applied, 

oscillating in time, in a direction perpendicular to the constant field component. This 
"paramagnetic resonance" problem is well known solvable "textbook" example of time- 

dependent quantum-mechanical evolution. 

Another approach has been to consider interactions switched on only for the du- 

ration of the gate operation At. If the "gate" is actually the whole computer then 
one can regard the interaction as time-independent. However, for specific operations in 

components with a limited number of basis states, it may be appropriate to view the 
interaction as controlled externally to be switched on and off. While general ideas of 
externally timed computation are not new, see [2.18] for a discussion, actual realiza- 

tions of such a system in quantum computation may be as technologically challenging 

as maintaining coherence, etc. General developments for the latter type of interac- 

tion (time-independent or on/off) have included identification of unitary operators that 

correspond to quantum computer operation and establishment of the existence of the 

appropriate interaction Hamiltonians [2.5,2.21]. 

A useful view of a computer component can be obtained be trying to generalize 

the configuration of Figure 1 to the quantum case. This is shown is Figure 3; what 

we have in mind is a part of the computer that performs a single operation whereby 

the Input state determines the Output state after a time interval A*. The interactions 



must be controlled, i.e., switched on and off, in order for us to be able to consider the 

gate operation during the interval At independent of the interactions with the computer 

parts external (marked E in the figure) to the gate. This control of interaction, i.e., 

external timing of the computer operation already mentioned earlier, can be possibly 

accomplished by the external interactions while the internal interactions be reserved for 

the gate operation. One of our objectives will be to check this expectation. 

The goal of this part of the project is to develop expressions for possible interaction 

Hamiltonians and identify techniques useful in general derivations of this sort. Our 

actual calculations will be for the NOT gate. In Section 2.2, we consider the simplest 

NOT gate of the type described in Figure 2, i.e., a two-state system where the NOT 

operation is accomplished by an external interaction. This system has already been 
studied extensively in the literature, e.g., [2.1,2.3,2.9-2.11,2.21]. However, we believe 

that our main result, equation (12) below, for the interaction Hamiltonian is new. The 

calculations are simple and they are used to set up our notation and exemplify some 

general principles. 

A more complicated, and in our opinion more interesting, NOT gate, viewed as 

a computer component, with spatially separated Input and Output, see Figure 3, is 
studied in Section 2.3. Our main result, equation (21) below, establishes that such 
a NOT gate can be operated by the internal interactions alone so that external-field 

effects can be reserved for the clocking of the internal interactions. Furthermore, it 

suggests the type of local internal interactions to be used in more complicated systems 
where the computer as a whole is treated as a many-body system with time-independent 

interactions. 

Regarding the requirement to control the interactions externally, with the time 

dependence given by the on/off "protocol," in Section 2.4 we extend our approach to 
certain other time-dependent interactions (protocols) which are more smooth than the 

on/off shape. Section 2.4 also offers a summarizing discussion. 

2.2 The Single-Qubit NOT Gate 

In this section we consider the NOT gate based on a two-state system. Such a gate 

has been extensively studied in the literature, e.g., [2.1,2.3,2.9-2.11,2.21], so that part of 

our discussion is a review intended to set up the notation and illustrate methods useful 

in more complicated situations. We label by ( ] and ( j the two basis states. The 

NOT gate corresponds to those interactions which, over the time interval At, accomplish 

the following changes: 

- 10 



o/-e'n?)' (i) 

The phases a and ß are arbitrary.   The unitary matrix U, that corresponds to this 

evolution, is uniquely determined, 

The eigenvalues of U are given by 

Ml = e.-(«+W2        and        M2 = -e''(«+W2   , (4) 

while the (right) eigenvectors, when normalized and regarded as matrix columns, yield 
the following (unitary) transformation matrix T which can be used to diagonalize U: 

j/e.7?/2      eiß/2 
T - —?=  (   via/2      _pia/2   )     • (5) 

Thus, we have 

T*UT = (U'     °   J   . (6) 

Here the dagger superscript denotes Hermitian conjugation. 

We next use the general relation 

U = e-
iHMlh (7) 

to identify the (time-independent) Hamiltonian in the diagonal representation.  Rela- 

tions (4) yield the energy levels: 

Bl = -2Kt{a + ß) + ÄFAr' ■ * = "2Äi(a + « + AT (W2 + 2) '      (8) 
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where Ni and N2 are arbitrary integers.  The Hamiltonian is then obtained from the 

relation 

H Ei     0   .    t 
0     £2 

(9) 

as a certain 2x2 matrix.  The latter is conveniently represented is terms of the unit 

matrix X and the conventional Pauli matrices ax, ay, az. We get 

H = ._(o + ^) + _U + JV2 + - J 

(10) 

7r7i /,_      ..      1 
cos —-— ) crx+ [ sin —-— ] <r„ 

To effect the gate operation, the interaction must be switched on for the time 
interval At. The constant part of the interaction energy (the part proportional to the 
unit matrix I) is essentially arbitrary; it only affects the average phase ^@- of the 
transformation (l)-(2). Thus this term can be disregarded. 

The nontrivial part of (10) depends on the integer N = N± — N2 which is arbitrary, 
and on one arbitrary angular variable 

7 
a-ß 

(11) 

Thus we can use the Hamiltonian in the form 

H 
At 

N ~ \ ) [(cos7) <*X + (sin 7) oy) (12) 

For a spin-| two-state system such an interaction can be obtained by applying a mag- 

netic field oriented in the XY-plane at an angle 7 with the X-axis. The strength of the 

field is inversely proportional to the desired time interval At, and various allowed field 

values are determined by the choice of N. 

We note that during application of the external field the up and down quantum 

states in (l)-(2) are not the eigenstates of the Hamiltonian. If the time interval Atf is 

not short enough, the energy-level splitting \E± — E2\ oc \N — || can result in sponta- 

neous emission which is just one of the undesirable "noise" effects destroying quantum 

12 



coherence. Generally, when implemented in a condensed matter matrix for instance, 

the two states of the qubit may lie within a spectrum of various other energy levels. In 

that case, in order to minimize the number of spontaneous transition modes, the best 

choice of the interaction strength would correspond to minimizing \E\ — E2\, i.e., to 

|iV-I| = I. 

2.3 The Spatially Extended NOT Gate 

In this section we consider the spatially extended NOT gate shown in Figure 3. We 

will describe the two two-state systems (Input and Output) by four-state vectors and 

matrices labeled according to the following self-explanatory convention: 

ai|TT> + a2|U>+a3UT) + a4|U> 

= «1 I   n   I    ® I   n   )      +«2 
(13) 

°jr\°Jo    \°Ji y^o 

"-flV<°)Alo + °3( l ]  ®   0 J   +°4V17   ~Vl 

Here / and O denote Input and Output. In what follows we will omit the direct-product 

symbols ® when multiplying expressions with subscripts / and O. 

The desired transformation should take any state with a3 = a4 = 0 into a state 
with components 1 and 3 equal zero, i.e., Input up yields Output down. Similarly, any 
state with ai = a2 = 0 should evolve into a state with components 2 and 4 equal zero, 
corresponding to Input down giving Output up. The general evolution operator must 

therefore be of the form 

U 

o o Ul3 U14\ 
u2l U22 0 0 

0 0 U33 C/34 
.C/41 u42 0 0 / 

(14) 

which depends on 16 real parameters. However, one can show that the requirement 

of unitarity, WU = 1, imposes 8 conditions so that the number of real parameters is 

reduced to 8. A lengthy but straightforward algebraic calculation then shows that the 

following parametrization covers all such unitary matrices: 

- 13- 



u = 
/             0 0 e1'* sin ft ei/3cosQ 
_ei(a+p-7?)sinT eipcosy         o 0 ■              n_. 

0 0 ei6cosQ -e^+'-^sinfi ■    '         {    } 

\       eiacosT ei7?sinT          0 0 

Here all the angular variables are unrestricted although we could limit Q and T to the 

range [0, f ] without loss of generality. 

In order to make the calculation analytically tractable, we will restrict the number 

of free parameters to four by considering the case 

0 0 0 eiß 

0 etp 0 0 
0 0 eiS 0 

eta 0 0 0 

U=      "      „      "s     "        . (16) 

This form has been favored for the following reasons. Firstly, the structure of a single 

phase-factor in each column is similar to that of the two-dimensional matrix encountered 

in Section 2.2. Secondly, the form (16) contains Hermitian-U cases (ß = -a, p = 0 or 

7T, 6 = 0 or 7r). Therefore, the eigenvalues, which are generally on the unit circle for any 

unitary matrix, may be positioned more symmetrically with respect to the real axis, as 

functions of the parameters. These observations suggest that an analytical calculation 

may be possible. 

Indeed, the eigenvalues of U turn out to be quite simple: 

Ul = ei(a+0)/2 ;    U2 = _ei(a+ß)/2 ?    ^ = £ip ?    ^ = J6 (1?) 

The (unitary) diagonalizing matrix T made up of the normalized (right) eigenvectors 

as columns is 

T=^\       Un n V     .)ö\     ■ (18) 

The next step in the calculation is to identify the energy levels. We chose the 

notation such that the energies Elj2 are identical to (8). The other two energies are 

given by 

- 14- 

eiß/2 eiß/2 0 0 
0 0 V2 0 
0 0 0 y/2 

gia/2 _eia/2 0 0 



& = "At" + ÄFA3' E4 = "At4 + AT*4' (19) 

The Hamiltonian is then obtained as in Section 2.2. It is convenient to avoid cumbersome 

expressions by expressing it in terms of the energies; the latter will be replaced by explicit 

expressions (8), (19) when needed. The resulting 4x4 matrix has been expressed in 

terms of the direct products involving the unit matrices and the Pauli matrices of the 

Input and Output two-state systems. This calculation is straightforward but rather 

lengthy. We only report the result: 

H=\ (2£i + 2E2 + E3 + Ei) + - (E3 - E4) (azI - az0) 

+ 1 (2Ei + 2E2 -E3- E4) azIaz0 

(20) 

+ - {Ei - E2) ( cos —-— J (crxiax0 - oyiOyo) 

+ - (Ei - E2) (sin  ) (<7xI(TyO + VylVxo)    ■ 

As in Section 2.2, we note that the constant part of the Hamiltonian can be changed 
independently of the other coupling constants and it can be discarded. Recall that we 

can generally vary the integers Ari,2,3,4 and the variables a, ß, p, S. The "constant" 
part is in fact proportional to J/ ® Jo- However, we avoid this cumbersome notation 

and present the terms in the Hamiltonian in a more physically transparent form. 

The Hamiltonian in (20) has also terms linear in the Pauli matrices (in the spin 

components for spin systems). These correspond to interactions with externally applied 

fields which in fact must be of opposite direction for the Input and Output spins. As 
explained in the introduction, we try to avoid such interactions: hopefully, external 

fields will only be used for "clocking" of the computation, i.e., for controlling the internal 

interactions via some intermediary part of the system connecting the Input and Output 

two-state systems; see Figure 3. Thus, we will assume that £3 = E4 so that there are 

no terms linear is the spin components, in the Hamiltonian. 

Among the remaining interaction terms, the term involving the ^-components in 

the product form azIaz0 (= ozi <g) az0), has an arbitrary coefficient, say, -£.   The 
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terms of order two in the x and y components have free parameters similar to those in 

(11)-(12) in Section 2.2. The final expression is 

H -EazIazö + -^ IN - - j    (cos 7) {axIax0 - cryI<Jyo) 

(21) 

+ (sin7) {pxioyo + OyiVxo) 

Here N = Nx - N2 must be integer. In order to minimize the spread of the energies 

Ei and E2 we could choose |iV - \\ = § as in Section 2.2. Recall that we already have 

£3 = £4. Actually, the energy levels of the Hamiltonian in the notation (21) are 

Thus further degeneracy (of three levels but not all four) can be achieved by varying 

the parameters. 

2.4 Time-Dependent Interactions. Discussion 

The form of the interactions in (21) is quite unusual as compared to the traditional 

spin-spin interactions in condensed matter models. The latter usually are based on the 

uniaxial (Ising) interaction proportional to azaz, or the planar XY-mode\ interaction 
proportional to axax + oyoyi or the isotropic (scalar-product) Heisenberg interaction. 

The spin components here are those of two different spins (not marked). The interac- 

tion (21) involves an unusually high degree of anisotropy in the system. The x and y 

components are coupled in a tensor form which presumably will have to be realized in 

a medium with well-defined directionality, possibly, a crystal. 

All the interaction Hamiltonians considered thus far were constant for the duration 

of the gate operation. They must be externally controlled. However, we note that the 
application of the interaction need not be limited to the time-dependence which is an 
abrupt on/off switching. Indeed, we can modify the time dependence according to 

H(t) = f(t)H , (23) 

where we use the same symbol H for both the original time-independent interaction 

Hamiltonian such as (21) and the new, time-dependent one, H(t). The latter involves 

the "protocol" function f(t). The shape of this function, nonzero during the operation 

of the gate from time t to time t + At, can be smooth. 
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For Hamiltonians involving externally applied fields, such as (12), it may be im- 

portant to have a constant plus an oscillatory components (corresponding to constant 

and electromagnetic-wave magnetic fields, for instance). However, the protocol function 

must satisfy 

t+At 

J f(t')dt' = At , (24) 
t 

and therefore it cannot be purely oscillatory; it must have a constant or other contri- 

bution to integrate to a nonzero value in accordance with (24). 

The possibility of the modification (23) follows from the fact that the general rela- 

tion 

U = 
-ift

+^H{t')dt'lh (25) 
time-ordered 

does not actually require time ordering as long as the Hamiltonian commutes with itself 

at different times. This condition is satisfied by (23). Furthermore, if the Hamiltonian 

can be written as a sum of commuting terms then each term can be multiplied by its own 
protocol function. Interestingly, the Hamiltonian of the "paramagnetic resonance" NOT 

gate [2.10] mentioned in the Introduction, is not of this form. It contains a constant 
part and an oscillatory part but they do not commute. Note that the term proportional 
to E in (21) commutes with the rest of that Hamiltonian. The terms proportional to 
cos 7 and sin 7 do not commute with each other though. Rather, they anticommute, in 

(21), as such terms do in (12). 

In summary, we have derived expressions for the interaction Hamiltonians appro- 

priate for the NOT gate operation in two-state systems. The expressions obtained will 

be useful in identifying materials where there is hope of actually realizing such gates, in 

writing down model Hamiltonians for more complicated, multi-gate configurations, and 

in studying these gates as individual components, for instance, with dissipation added. 
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3.0 QUANTUM SIGNAL SPLITTING 

The classical signal splitting and copying are not possible in quantum mechanics. 

Specifically, one cannot copy the basis up and down states of the input (I) two-state 

system into the copy (C) and duplicate-copy (D) two-state systems if the latter systems 

are initially in an arbitrary state. We consider instead a quantum evolution in which 

the basis states of I at time t are duplicated in at least two of the systems /, C, D, 

at time t + At. For possible applications in quantum computing, we derive an explicit 

Hamiltonian to accomplish this process; it turns out to involve only three-spin x,y- 

component interactions. (This section is self-contained.) 

3.1 Introduction 

Recent interest in quantum computing [3.1-3.27] has led to consideration of quan- 

tum dynamical processes mimicing computer gate operation, i.e., those processes that 

involve "binary" states constructed from the up and down states of two-state sys- 
tems (qubits). The goal of making coherent quantum computational units is elusive 
[3.16,3.18]. However, miniaturization of computer components suggests that quantum- 
mechanical effects will have to be considered eventually [3.14-3.16,3.18] in their design. 
Experiments have recently been reported [3.25,3.28-3.29] realizing the simplest "quan- 
tum gates" which can be controlled without loosing quantum coherence. Understand- 
ing the decoherence effects, e.g., [3.16,3.18,3.26,3.30-3.32], and derivation of inherently 
quantum-mechanical computational algorithms, e.g., [3.30-3.31,3.33-3.36], are of great 

"basic science" value. 

The "classical" signal-copying process starts from the input value I and after some 

time At results in the same value at the copy C and, if needed, duplicate-copy D. We 

assume that the value of i" is unchanged. This is the case when a signal is copied, for 
instance, by connecting wires and forcing the voltage in one of them to the value 0 

or 1. This input-wire voltage, and the equilibrium state, will be established in all the 

connected wires, after a time At determined by the speed of light and relaxation time 

of the charge-carrier distribution in the wires. The important point to note is that this 
"classical" copying/duplicating of a signal is not governed by reversible dynamics; there 

are inevitably some irreversible dissipation processes involved. 

Quantum-mechanical copying from i" to C, for instance, has been discussed in 

the literature [3.37-3.40], as were more complicated, multi-copy processes. Generally, 

one cannot copy an arbitrary quantum state. However, one can duplicate a set of basis 

states of I, for instance, the qubit states up and down (|1) and |0)). One can also discuss 
an approximate, optimized copying of the linear combinations of the basis states of I 
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[3.39,3.40]. A major limitation of these copying procedures has been that the initial 

state of C (or more generally, of the systems which are imprinted with the copies) must 

be fixed. This feature makes it unlikely that any interesting interference effects will be 

involved in the process. 

Here we explore those quantum-mechanical processes that retain some of the "clas- 

sical" copying features but do not involve any restriction on the initial state of the 

system C, even though the property of making copies will be meaningful only for the 

basis states of the input system I. 

If we require that the basis states of I at time it be copied in such a way that both 

i" and C, and if needed, another copy D, are all in that basis state at time t + At 

for an arbitrary initial state of C (and D), then one can easily verify that no unitary 

transformation can accomplish the desired mapping. Such quantum copying is not 

possible. 

Our approach is to consider instead the process in which an initial state of /, from 

the basis set |1), |0), is duplicated in at least two of the three final states I, C, D. Thus, 
we consider three two-state systems. The initial state of i", as long as it is one of the 

qubit states, will be "multiplied" in such a way that at time t + At two or three of the 
systems /, C, D, are in that state, but we do not know if it is two or three, and in the 

case of two, which two are in that state. A unitary quantum evolution is possible that 

satisfies these conditions; we provide an explicit example. 

3.2 A Quantum Signal-Splitting Hamiltonian 

Let us label the states of the combined systeml+C+D by Jill), |110), |101), |100), 
|011), |010), |001), |000), where the order of the systems is \ICD). One can then check 

that unitary 8x8 matrices can be found that accomplish the desired transformation. In 
fact, the requirement is that any linear combination of the states \ICD) is mapped onto 
a linear combination of (111), j 110), 1101) and |011), while any linear combination of the 

states \0CD) is mapped onto a linear combination of |100), |010), |001) and |000). The 

general unitary transformation actually has many free parameters; it is by no means 

limited or special. Many different quantum evolutions accomplish the task. 

For our explicit calculations we choose the simplest root to the desired copying: we 

consider a unitary transformation that flips (and possibly changes phases of) the basis 

states only in the subspace of j 100), |011). The 8x8 unitary evolution matrix U can 

then be represented as follows: 
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(1) 

Here J are unit matrices. The subscripts indicate matrix dimensions while all the 

undisplayed elements are zero. The most general form of the matrix U is 

j   . (2) 

Our aim is to calculate the Hamiltonian H according to 

u = e-iHAt/H   m (3) 

We adopt the usual approach in the quantum-computing literature [3.1-3.27] of assuming 
that the (constant) Hamiltonian H "acts" during the time interval A*, i.e., we only 
consider evolution from t to t + At. The dynamics can be externally timed, with H 
being switched on at t and off at t + At. The time interval At is then related to the 

strength of couplings in H which are of order fi/At. 

To obtain an expression for H, we calculate the "logarithm" of U in its diagonal 

representation. One can verify that the diagonalizing matrix T, such that TWT is 
diagonal, is of the same structure as U in (1), with the nontrivial part U replaced by 

T, where 

1     /eW2        eiß/2   \ 

71 Via'2    -eia/2J   ' l ' 
In the diagonal representation, the Hamiltonian is the diagonal 8x8 matrix -HA/At, 

where Ahas diagonal elements2^^, 2KN2, 2KN^ ±(a+ß)+2irN4, ^(a+ß)+ir+2irN5, 

2TVN6, 2TTN7, 27riV8. Here Nj are arbitrary integers. 

The Hamiltonian is then obtained as H = -hTAT^/At, and it depends on the two 

(real) parameters a and ß and on the integers Nj. We restrict the number of parameters 

to obtain a specific example. In fact, we seek a Hamiltonian with few energy gaps [3.27]. 
However, we would also like to have a symmetric energy level structure. The following 

choice leads to a particularly elegant result for H. We put Nj = 0 for j = 1,2,3,6,7,8, 
and also a + ß + ir + 2x{N4 + N5) = 0 and iV5 - iV4 = N. This corresponds to the 

following energies: £1>2,3 = 0, E4 = irk (N + f) /A«, E5 = -EA, £6)7,8 = 0. 

-22- 



The resulting Hamiltonian depends only on one real parameter, 

7 = (a - ß)/2 , (5) 

and on one arbitrary integer, N. All the diagonal elements of the Hamiltonian will be 

zero with these choices of parameters. Indeed, calculation of H yields the result that 

this 8x8 matrix with elements Hmn, where m labels the rows and n the columns, has 

only two nonzero entries, 

■^(^ö^'^-SH)''1-     {6) 

Any matrix in a space with a multiple-qubit basis can be expanded in terms of 

the direct products of the four "basis" 2x2 matrices for each of the two-level systems 

involved: the unit matrix J, and the standard Pauli matrices ax, ay, oz. The latter are 

proportional to spin components for two-state systems which are the spin states of spin- 

| particles. We will use the spin-component nomenclature, and their representation 

in terms of the Pauli matrices. We report here the result of such an expansion for 

the Hamiltonian H. While its matrix form is simple and only contains two nonzero 

elements, the spin-component representation is surprisingly complicated, 

X    (cOS^){axi(Jxc<JxD-VxlVyCVyD + VylVxCVyD + VylVyCVxD) ^> 

- (sin 7) {OyiOyCOyD - Pyl&xC&xD + ^xI^yC^xD + ^xI^xC^yD) 

3.3 Discussion 

The fact that the Hamiltonian involves three-spin interactions suggests some in- 

teresting observations. The triplet x, y-component products are essential in the GHZ- 

paradox in quantum mechanics [3.41,3.42]. However, in that case these operators are 

measured. In fact, the need for multispin interactions in the Hamiltonian is a short- 

coming as far as actual realizations, for instance, in the field of quantum computing, 

are concerned. Indeed, two-spin interactions are much more common and better under- 
stood theoretically and experimentally in solid-state and other systems, than three-spin 

interactions. 
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As mentioned earlier, our choice of the Hamiltonian is not unique. Its simplicity in 

the matrix form has allowed exact analytical result (7) be obtained. -We have explored 

unitary transformation choices more general than (1). However, presently we cannot 

answer the question whether quantum signal splitting can be accomplished with two- 

spin interactions only. 

The fact that "switching" is required, i.e., the interaction must be applied for a 

fixed duration of time, is also a difficulty, shared by all realistic proposals [3.1-3.27] for 

quantum-computing gates. Actually, time-variation of the form f(t)H is possible [3.27] 

during the time-interval At. Here the "protocol function" /(*) must average to 1 over 

the time interval: 

t+At 

(At)'1  J f(t')dt' = 1 , (8) 
t 

and vanish outside the time-interval. 

Finally, we comment that entanglement of one input spin in a general quantum 
state (not limited to the basis qubit states) with the states of two other spins has been 
utilized in quantum-computational error correction [3.13]. In that application, however, 
the two spins to be "mixed" with the input are initially in fixed states similar to the 

quantum copying procedures mentioned in the introduction. 

In summary, we proposed a variant of the quantum copying/signal splitting in 

which the initial state is multiplied but there is uncertainty in which of the two-state 

systems involved is the multiple copy stored. The advantage of this scheme is that the 

initial copy-system states are not fixed. Explicit interaction Hamiltonian was derived 

for the three-spin case. 

24- 



3.4 Literature Cited (in Section 3.0) 

[3.1 

[3.2 

[3.3 

[3.4 

[3.5 

[3.6 

[3.7; 

[3.8; 

[3.9; 

[3.10; 

[3.11 

[3.12 

[3.13 

[3.14 

[3.15 

[3.16 

[3.17; 

[3.18 

[3.19 

[3.20; 

[3.21 

[3.22 

[3.23 

[3.24 

[3.25 

A. Barenco, Proc. R. Soc. Lond. A 449, 679 (1995). 

A. Barenco, "Quantum Physics and Computers" (preprint). 

A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. 

Sleator, J.A. Smolin and H. Weinfurter, Phys. Rev. A 52, 3457 (1995). 

G. Brassard, "New Trends in Quantum Computing" (preprint). 

P. Benioff, J. Stat. Phys. 29, 515 (1982). 

C.H. Bennett, Physics Today, October 1995, p. 24. 

J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995). 

D. Deutsch, Physics World, June 1992, p. 57. 

D. Deutsch, A. Barenco and A. Ekert, Proc. R. Soc. Lond. A 449, 669 (1995). 

D.P. DiVincenzo, Science 270, 255 (1995). 

D.P. DiVincenzo, Phys. Rev. A 51, 1015 (1995). 

A. Ekert, "Quantum Computation" (preprint). 

A. Ekert and R. Jozsa, Rev. Mod. Phys. (to appear). 

R. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 

R. Feynman, Optics News 11, 11 (1985). 

S. Haroche and J.-M. Raimond, Physics Today, August 1996, p. 51. 

S.P. Hotaling, "Radix-R > 2 Quantum Computation" (preprint). 

R. Landauer, Philos. Trans. R. Soc. London Ser. A 353, 367 (1995). 

S. Lloyd, Science 261, 1563 (1993). 

N. Margolus, "Parallel Quantum Computation" (preprint). 

A. Peres, Phys. Rev. A 32, 3266 (1985). 

D.R. Simon, "On the Power of Quantum Computation" (preprint). 

A. Steane, "The Ion Trap Quantum Information Processor" (preprint). 

B. Schumacher, Phys. Rev. A 51, 2738 (1995). 

B. Schwarzschild, Physics Today, March 1996, p. 21. 

-25- 



[3.26] W.H. Zurek, Phys. Rev. Lett. 53, 391 (1984). 

[3.27] D. Mozyrsky, V. Privman and S.P. Hotaling, "Design of Gates for Quantum Com- 

putation: the NOT Gate" (preprint). 

[3.28] C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano and D.J. Wineland, Phys. Rev. 

Lett. 75, 4714 (1995). 

[3.29] Q. Turchette, C. Hood, W. Lange, H. Mabushi and H.J. Kimble, Phys. Rev. Lett. 

75, 4710 (1995). 

[3.30] I.L. Chuang, R. Laflamme, P.W. Shor and W.H. Zurek, Science 270, 1633 (1995). 

[3.31] E. Knill and R. Laflamme, "A Theory of Quantum Error-Correcting Codes" (preprint). 

[3.32] W.G. Unruh, Phys. Rev. A 51, 992 (1995). 

[3.33] C. Dürr and P. H0yer, "A Quantum Algorithm for Finding the Minimum" (preprint). 

[3.34] R.B. Griffiths and C.-S. Niu, "Semiclassical Fourier Transform for Quantum Com- 

putation" (preprint). 

[3.35] L.K. Grover, "A Fast Quantum Mechanical Algorithm for Estimating the Median" 

(preprint). 

[3.36] P.W. Shor, "Algorithms for Quantum Computation: Discrete Log and Factoring. 

Extended Abstract" (preprint). 

[3.37] W.K. Wooters and W.H. Zurek, Nature 299, 802 (1982). 

[3.38] D. Dieks, Phys. Lett. 92 A, 271 (1982). 

[3.39] V. Buzek and M. Hillery, "Quantum Copying: Beyond the No-Cloning Theorem" 

(preprint). 

[3.40] V. Buzek and M. Hillery, in preparation. 

[3.41] D.M. Greenberger, M. Home and A. Zeilinger, in "Bell's Theorem, Quantum The- 

ory, and Conceptions of the Universe," M. Kafatos, editor (Kluwer, Dordrecht, 

1989), p. 69. 

[3.42] N.D. Mermin, Physics Today, June 1990, p. 9. 

26 



4.0 Quantum Copying and the Controlled-NOT Gate 

We derive an explicit Hamiltonian for copying the basis up and down states of 

a quantum two-state system—a qubit—onto n "copy" qubits (n > 1) initially all 

prepared in the down state. In terms of spin components, for spin-^ particle spin 

states, the resulting Hamiltonian involves n- and (n + l)-spin interactions. The case 

n = 1 also corresponds to a quantum-computing controlled-NOT gate. (This section is 

self-contained.) 

4.1 Introduction 

Interest in quantum computing [4.1-4.27] has boosted studies of quantum mechan- 

ics of two-state systems such as the spin states of spin-j particles. We will use "spin" to 

indicate a two-state system in this section. The "binary" up and down spin states are 
of particular significance and the two-state systems are also termed "qubits" in these 

studies. While macroscopic "desktop" coherent quantum computational units are still 

in the future [4.16,4.18], miniaturization of computer components calls for consideration 

of quantum-mechanical [4.14-4.16,4.18] aspects of their operation. Experiments have re- 

cently been reported [4.25,4.28-4.29] realizing the simplest quantum gates. Decoherence 
effects [4.16,4.18,4.26,4.30-4.32] and inherently quantum-mechanical computational al- 

gorithms [4.30-4.31,4.33-4.36] have been studied. 

Here we consider the signal-copying process in two-state systems. We assume that 

n + 1 spins are involved, where spin 1 is the input which is prepared in the up state, 

|1), or down state, |0), at time t. The aim is to obtain the same state in the n "copy" 
spin states, i.e., for spins 2, 3,..., n + 1, as well as keep the original state of spin 1. 
Generally, one cannot copy an arbitrary [4.37-4.40] quantum state; however, one can 

duplicate a set of basis states such as the qubit states considered here. One can also 
discuss an approximate, optimized copying of the linear combinations of the basis states 

[4.39,4.40]. 

Another limitation of the copying procedure [4.37-4.40] has been that the initial 

state of the n copy spins must be fixed. An attempt to allow for a more general state 

leads to incomplete copying which is also of interest [4.41]. In this work we assume that 

the initial state, at time t, of all the copy spins is down, |0). Our aim is to derive an 

explicit Hamiltonian for the copying process. 

We adopt the approach in the quantum-computing literature [4.1-4.27] of assuming 

that a constant Hamiltonian H acts during the time interval At, i.e., we only consider 

evolution from t to t+At. The dynamics can be externally timed, with H being switched 

on at t and off at t + At. The time interval is then related to the strength of couplings 
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in H which are of order Ti/At. Some time dependence can be allowed [4.27], of the form 

f(t)H, where f(t) averages to 1 over A* and vanishes outside this time interval. 

We will denote the qubit states by quantum numbers qj = 0 (down) and qj = 1 

(up), for spin j. The states of the n + 1 spins will then be expanded in the basis 

\q1Q2 ■ ■ • 9n+i)- The actual copying process only imposes the two conditions 

|100---0> —^ |111---1>  , (1) 

|000 - - • 0) -^ |000 • •• 0)  , (2) 

up to possible phase factors. Therefore, a unitary transformation that corresponds 

to quantum evolution over the time interval At is by no mean unique (and so the 

Hamiltonian is not unique). We will choose a particular transformation that allows 

analytical calculation and, for n = 1, yields a controlled-NOT Hamiltonian, as discussed 

later. 

4.2 An Explicit Hamiltonian for Quantum Copying 

We consider the following unitary transformation, 

U =ei/3|lll • • • 1)(100 • • ■ 0| + eip|000 • • -0)(000 • • • 0| 

+eia|100---0)(lll---l|+  J2   kl92?3---<Zn+l)(<M293"-gn+l|    • (3) 

Here the first two terms accomplish the desired copying transformation. The third 

term is needed for unitarity (since the quantum evolution is reversible). We allowed 

for general phase factors in these terms. The sum in the fourth term, {qj} , is over 

all the other quantum states of the system, i.e., excluding the three states [111 • ■ • 1), 
1100 ■ ■ • 0), |000 • • • 0). One could maintain analytical tractability while adding phase 
factors for each term in this sum; however, the added terms in the Hamiltonian are not 
interesting. One can check by explicit calculation that U is unitary, U^U = 1. 

To calculate the Hamiltonian H according to 

u = e-iHAt/h  ^ (4) 

we diagonalize U. The diagonalization is simple because we only have to work in 

the subspace of the three special states identified in (3), see the preceding paragraph. 

Furthermore, the part related to the state |000 • • • 0) is diagonal. In the subspace labeled 
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by 1111 ■ ■ • 1), (100 - • -0), J000 - • -0), in that order, the operator U is represented by the 

matrix 

0     eiß     0 
U = [ eia     0      0   |    . (5) 

0       0     eip 

The eigenvalues of U are e^a+/3^2, —e^a+/3^2, elp. Therefore the eigenenergies of 

the Hamiltonian in the selected subspace can be of the form 

Zl = -2Ät(° + ß) + ^- (6) 

„ 7i 27r7i ,r .„. 
fi» = -Ät"+ÄrJV»' (8) 

where Nit2,z are arbitrary integers. 

In order to simplify the expressions, we will limit our consideration to a particular 

set of parameters. We would like to minimize energy gaps of the Hamiltonian [4.27] 
and generally, keep the energy spectrum symmetric. The latter condition yields a more 

elegant answer; actually, analytical calculation is possible with general parameter values. 
Thus, we take p = 0, JV3 = 0, and also impose the condition E\ + E2 = 0. We then 

take the diagonal matrix with £1,2,3 as diagonal elements and apply the inverse of the 
unitary transformation that diagonalizes U. All the calculations are straightforward and 

require no further explanation or presentation of details in the matrix notation. We note, 

however, that one could do all these calculations directly in the qubit-basis notation such 

as in (3); the diagonalization procedure is then the Bogoliubov transformation familiar 

from solid-state physics. 

The result for the Hamiltonian in the three-state subspace is the matrix 

-KTI H) 
e-t7 

0 
0 
0 

At \ 0 0 0 
n = Äi{N~-l Ien   °   ° I ' (9) 

which depends on one real parameter 
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a + ß 
7= —z— (10) 

and on one arbitrary integer 

N = N1-N2  . (H) 

The full Hamiltonian H in the 2n+1-dimensional spin space is 

e-*7 |111 - - -1)<100 - ■ --0| + e'^|100 - - - 0)(111 • • -1|)   • (12) 

In what follows we make the choice N = 1 to simplify the notation. The form of the 
Hamiltonian is misleading in its simplicity. It actually involves n- and (n + l)-spin 
interactions. To see this, we rewrite it in terms of direct products of the unit matrices 
and the standard Pauli matrices for spins 1,..., n + 1, where the spins are indicated by 

superscripts (and N = 1): 

H=At(i+^) (e"7w • • • *?+1)+e<7*(-v-s) • • • *-+1)); (13) 

hevea± = ax±tay;   a+ = lQ    QJ,   cr_ - I 2    Q\. 

Multispin interactions are much less familiar and studied in solid-state and other 
systems than two-spin interactions. Therefore, the fact that for n = 1 only single- and 
two-spin interactions are present is significant. In actual quantum-computing and other 

applications it may be more practical to make copies in stages, generating only one copy 

in each time interval, rather than produce n > 1 copies simultaneously. Let us explore 

the n = 1 case further. The Hamiltonian (with N = 1) is, in terms of spin components 

(or rather the Pauli matrices to which the spin-component operators are proportional), 

Hn^ = ^ (l + a{^) [(cosj)a^ + (sin^f]   . (14) 

This Hamiltonian involves two-spin couplings and also interactions which are linear in 
the x and y spin components. The latter may be due to a magnetic field applied in the 

xy-plane, at an angle 7 with the x axis. 
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4.3 The Controlled-NOT Hamiltonian. Discussion 

We note that the n = 1 "single-copy" Hamiltonian also describes the controlled- 

NOT quantum gate with the same input and output spins. The truth table for the 

classical controlled-NOT can be written as follows in terms of the qubit states: 

|11) -> |10)  , (15) 

110} - |H)  , (16) 

|01) - |01)  , (17) 

|00) - |00)  . (18) 

The "control" spin, 1, being up causes the other spin, 2, to flip. The control being down 

causes the second spin not to change. 

The controlled-NOT unitary transformations have been discussed in the literature 

[4.7,4.13-4.15,4.28,4.42]. It is obvious that in the four-dimensional two-spin space labeled 

by 111), 110), |01), 100), in that order, the most general transformation matrix is of the 

form 

U 

0 eiß 0 0 \ 
eia 0 0 0 
0 0 e?u, 0 
0 0 0 e{p) 

(19) 

Our selected Hamiltonian accomplishes such a transformation (for n = 1 only).   The 

matrix U corresponding to (14) has the following choice of the phase factors, 

0 -ie-l~< 0 0 
-ieli 0 0 0 

0 0 1 0 
0 0 0 1 

Un=i = n n ,    n       • (20) 

Note that the details of this result depend on us setting N = 1. 

In summary, we derived explicit Hamiltonians for n-copy quantum copying. For 

n = 1, the interactions are the most useful because they involve at most two-spin 

couplings. Furthermore, the n = 1 Hamiltonian also corresponds to the controlled- 

NOT gate. 
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5.0 SUMMARY 

We initiated a research program to study the feasability of quantum computing in 

condensed matter systyems. The first step has been to consider the simplest quantum 

logic gates in order to identify which Hamiltonians are typical for interactions required 

for their operation. We have also identified future research directions and collaborations. 

We studied the Hamiltonian for the quantum equivalent of the NOT computer 

gate. Explicit expression was obtained for the interaction parameters. Quantum signal 

splitting, of relevance to evesdroping on transmission lines, has been investigated with 

emphasis on the way to accomplish a variant of signal splitting without limiting the ini- 

tial quantum states of the systems in which the copies are recorded. Explicit interaction 
Hamiltonian was obtained. Quantum copying, important in error-correction protocols, 
has been investigated with the aim of deriving an explicit Hamiltonian for the process. 
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