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Introduction

Rum is a theory of the description and structure of applicative, side-effect
free computations over an arbitrary algebraic data structure. This theory goes
beyond a theory of functions computed by programs, providing tools for treating
both intensional and extensional aspects of computation. Properties of powerful
programming tools such as functions as values, streams, object oriented program-
ming, escape mechanisms, and co-routines can be represented. Precise definitions
of informal concepts such as stream and co-routine are given and their mathe-
matical theory is developed. The point is not only to account for programming
practice, but also to improve practice by providing mathematical tools for de-
veloping programs and building programming systems. Among the intensional
properties that can be treated are the number of multiplications executed, the
number of context switches, and the maximum stack depth required in a com-
putation. Among the extensional properties are notions of equality for streams
and co-routines and characterization of functionals implementing strategies for
searching tree-structured spaces. A variety of operations on programs are treated
including program transformations which introduce functional and control abstrac-
tions; a compiling morphism that provides a representation of control abstractions
as functional abstractions; and operations that transform intensional properties to
extensional properties. There is a rich hierarchy of approximation and equivalence
relations on programs ranging from equivalence as descriptions of computation to
equivalence as functions. These relations, combined with the interpretation of pro-
grams using computation structures, provide operations on programs both with
meanings to preserve and meanings to transform.

An important motivation and guide has been the desire to understand the
construction and use of computation systems such as Lisp. We call this body of
work symbolic computation. Our goal is to provide a mathematical context where
diverse aspects of computation can be represented and new ideas can be explored
and developed. A few such aspects are

» functions as values — the value of a lambda expression in an environment is
a closure with the interpretation of free variables of the expression fixed to
be that given by the evaluation environment. Functional abstractions such as
closures can be used to represent structured data such as tuples and streams,
to represent the continuation of a computation, to describe delayed or lazy
evaluation, and to represent objects in the object oriented style of computation




2 Introduction

where objects contain the information about operations that can be applied
o them rather than the usual situation where operations contain information
about the objects to which they apply.

« computation contexts as values — objects called continuations represent com-
putation contexts — the component of computation states that describes how
computations are to continue. Control abstractions such as continuations can
be used to describe computation mechanisms such as non-local jumps (escap-
ing) and co-routining.

. programs as data — programs may operate on other programs to interpret,
compile, optimize, expand macro definitions, and to generate derived pro-
grams that compute intensional properties of a given program

« computation states as data — used in tools for writing and debugging pro-
grams such as program editors, tracing, and in tools for interacting with a
machine during a computation such as single steppers, breakpoints and the
Lisp command baktrace which presents a brief summary of the events leading
to the current computation state.

About Rum.

In the Lisp community, people traditionally speak of vanilla Lisp when refer-
ring to the pure first-order fragment which has a simple interpretation in terms
of partial functions on S-expressions. Following this tradition (and being fond of
rum-raisin ice cream) we have chosen to call our flavor of Lisp rum, and we use
Rum to refer to the theory we have developed about this flavor.

Our work draws on ideas and results from several areas of computer science
and logic. Of particular significance for the present work are (in chronological
order)

Kleene - the basic concepts of recursion theories and their formalization

McCarthy - conditional expressions as recursive descriptions of computation

Landin - closures as interpretation of lambda expressions in an environment

Moschovakis - recursion on abstract structures

Scott - extensional models of the lambda calculus

Morris, Wadsworth - lambda abstraction to represent computation contexts

Feferman - non-extensional theories and inductively presented formal systems
In addition many ideas have come from studying examples of computing with

closures and continuations provided by Burstall, Sussman, Steele, Friedman, Wand
and others.
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In order to facilitate natural representation of diverse aspects of computation,
Rum has a rich ontology with a mixture of syntactic and semantic notions. Sym-
bolic expressions called forms are the basic syntactic entities. A computation is
described by a form closed in an environment that assigns values to the free symbols
of the form. Computation primitives include conditional, application, abstraction
and sequence formation. There are functional abstractions called pfns which are
analogous to partial functions but contain information about how they are to be
computed. There are control abstractions called continuations which represent
computation contexts. In order to treat both functional and context dependent
aspects of computation naturally, we consider two basic structures for representing
computation — trees and sequences. Tree-structured computation is characterized
by two relations: evaluation which relates descriptions to the value returned by
the computation described and subcomputation which provides the tree structure
of computation. An important subrelation of subcomputation is reduces-to which
identifies subcomputations that can simply replace the main computation, rather
than returning a value to a saved context. Sequential computation is carried out
by generating sequences of computation states using the step relation. Computa-
tion states are composed of a continuation and a current subcomputation. The
structure of computation states and the step relation are derived naturally from
tree-structured computation. This has the consequence that many tools for prov-
ing properties of tree-structured computation can be generalized to programs in
which context dependence is localized.

Two basic results about tree-structured computation are the recursion theo-
rem and a computation induction principle. The recursion theorem gives a recur-
sion pfn that computes a computationally least fixed point of pfns which compute
functionals and thus provides a means of definition by recursion. Computation
induction expresses the fact that the subcomputation relation is well-founded for
computations which return a value and thus provides a tool for proving properties
of programs. An important theorem about sequential computation is that the
computation described by a form closed in an environment will, uniformly with
respect to the context, either return a value to any calling context, transfer control
to another context, or not return a value.

A class of comparison relations is defined for tree-structured computation
that includes both approximation and equivalence relations on descriptions. Each
comparison relation corresponds to forgetting selected details of computation while
preserving the evaluation and application structure. Methods are developed for
construction of comparison relations and for proving properties of particular com-
parisons. There is a maximum approximation relation C and a maximum equiv-

alence relation . Two key theorems about these relations are (i) C and = are
extensional and (ii) the recursion pfn computes the least fixed point with respect
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15 . Extensionality of C means that for any pair of pfns, po and 1, Yo approx-
imates ¢, iff po applied to any argument v approximates ¢; applied to v.

woC 1 & (Vo)(po'vE p1'v)

By a similar result for &, pfns describe partial functions on =-equivalence classes of
the computation domain and two pfns are =-equivalent iff they describe the same
partial function. There is a rich hierarchy of comparisons between equality and the
maximal relations. For example, work preserving transforms such as distribution
of conditional over conditional (fo + f; reads “fo transforms to f;”)

if (if (p(x), a(x), r(x)), g(x), h(x)) = if (p(x), if(a(x),f(x), £(x)),f (r(x),f(x), 8(x)))

give rise to comparisons in which related forms describe computation trees with
the same number of nodes of each sort, but different subcomputation structures.
The theory of comparison relations together with the interpretation of descriptions
by rules for generating computation structures provides concepts and tools useful
in developing a theory of program specifications and transformations.

In order to compare computations carried out by different processes, notions of
Rum machine structure and morphism are introduced. This serves as a paradigm
for defining and proving properties of compilers. A machine structure has states
and a step relation, with states naturally generated from a class of symbolic de-
scriptions. A morphism t maps states ¢ of the source machine A to states ¢t of
the target machine 8 in a manner that carries the step relation >— 4 of the source
machine to steps > g of the target machine.

f0o 4 G

! !

§ot B s‘1"

Sequential computation has a natural machine structure R. A richer machine
structure T based on sequentsal descriptions is defined within the tree-structured
computation model. The key characteristic of sequential descriptions is that the
evaluation relation restricted to sequential descriptions is just the reduces-to rela-
tion, making reduces-to a natural step relation. The main result is the existence
of a Rum machine morphism mapping R to T. This morphism corresponds to
the normal form theorem of recursion theory and it makes the relation between
functional and control abstractions precise.

Working in Rum. In addition to developing general tools for reasoning about
computation, a variety of examples have been worked out to illustrate the use of
these tools and to demonstrate the adequacy of the theory. In particular we have
formulated and proved the correctness of the following
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« a program that uses continuations as an escape mechanism to avoid unneces-
sary work in computing the product of the numbers in a tree with numbers at
the leaves. If a zero is encountered it is returned directly to the caller rather
than passing the information back in the normal fashion to be rechecked at
every level. This corresponds to the use of cateh and throw in Lisp.

» a simple co-routine derived from a piece of network software to convert a
stream of bits presented as 36-bit words to a stream of 32-bit words. Contin-
uations are used to implement the co-routine mechanism.

» a pattern matcher that generates a stream consisting of all matches of an
object to a pattern. The pattern matcher uses pfns to remember the current
state of the search and to implement backtracking.

« a derivation map that transforms source programs to derived programs com-
puting properties of the computation described by the source programs.

Plan

The contents of this thesis fall into three major segments. Chapters I-III
contain background and introductory material. The main body of the work is pre-
sented in Chapters IV-VIIL. Chapter VIII contains a summary of the work presented
and together with Appendices A and B fills in some gaps.

In Chapter I we outline the origins of symbolic computation and the basic
goals of a mathematical theory of computation. Examples of programs and oper-
ations on programs are given that help introduce some of the informal concepts
and programming tools we wish to treat. The main concepts and results from
programming language semantics and logic that form the foundation for our work
are surveyed. In the final section the goals of our work are presented. Chapter 1I
is an informal introduction to the structures and concepts of Rum, illustrated by
a series of simple examples. The mathematical tools and notation used in the re-
maining chapters are summarized in Chapter IIl. Tree-structured computation is
described in Chapter IV. The basic objects, operations, and relations are formally
defined and the connection between computation trees and the relations evalua-
tion and subcomputation characterizing these structures is given. Some additional
notation for working in Rum is developed. A small library of pfns and their prop-
erties is begun including algebraic combinators, a recursion pfn, and schemes for
recursion on sequences. The notion of stream is defined as a set of pfns and some
definitions and properties of operations on streams are given. Sequential compu-
tation is described in Chapter V. Additional rules for generating objects are in-
troduced and additional operations and relations are defined, extending the world
of tree-structured computation. A theorem expressing the uniform dependence
on context of sequential computations is proved and relations and theorems for
tree-structured computation are extended to sequential computation. The use of



6 Introduction

. .;.uations to represent co-routines is explained, basic properties of co-routines
are given, and a simple co-routine is defined and proved correct. In Chapter VI
the class of comparison relations is defined and studied. A summary of algebraic
operations (such as union and intersection) on comparisons and of properties of
comparisons preserved by these operations is given. Theorems providing methods
for constructing and extending comparisons are proved. These are applied to prove
extensionality of the maximum approximation and the maximum equivalence re-
lations, to prove the least fixed point theorem for the recursion pfn, to prove that
the computational characterization of recursion uniquely determines the recursion
pfn modulo the maximum equivalence, and to generate a variety of comparisons
corresponding to typical program transformations. Chapter VII treats machine
structures and compiling morphisms. The domains and operations of a machine
structure are given and morphisms are characterized as maps preserving both the
algebraic structure and the computation structure. A machine structure is defined
within the world of tree-structured computation and a morphism from the natural
machine structure for sequential computation is defined and proved correct. In
Chapter VIII the work presented in this thesis is reviewed and the accomplish-
ments are summarized. Some additional remarks are made on the choice of basic
notions and on relations to other work. Further applications and future directions
of research are also discussed. Appendix A is a concise and complete definition of
the underlying algebraic structure and of the basic computation relations of Rum.
In addition, some notions that were treated only informally in the main text are
given precise definitions. Appendix B contains two substantial examples which
illustrate further what we can do in Rum. The first example defines a class of
derived properties of computation trees and a derivation map on forms such that
derived forms compute the derived properties of the computations described by
the original forms. The second example treats tree-structured search spaces where
trees are given by a successor function and an initial position. A pfn generating a
stream of positions according to a given search strategy is defined and key prop-
erties proved. We illustrate the use of these tools to define and prove properties
of pfns that generate streams by searching.

Guide for reading

The contents of Chapter I and their relevance is explained in more detail in
the introduction to that chapter. The reader familiar with Lisp, programming
language semantics, program transformations, or recursion theory may wish to
skip the corresponding parts of this survey of previous work. The final section of
Chapter I should be read as it explains the goals of our work and establishes a
framework for understanding some of the choices of basic notions. The illustrated
informal introduction to Rum (Chapter II) provides a general overview and is
recommended reading for all. The introduction to Chapter III explains which
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parts of the mathematical notation and background presented in that chapter are
needed for which parts of the following presentation.

The work on comparison relations (Chapter VI) and the examples in Ap-
pendix B are carried out in the world of tree-structured computation and depend
only on the definitions and results of Chapter IV. Chapter V extends the world
of tree-structured computation and requires knowledge of the material in Chap-
ter IV. The treatment of abstract machine structures and compiling morphisms
(Chapter VII) involves both tree-structured and sequential computation.

The examples given in Chapter IV and Appendix B can be understood infor-
mally by reading the informal description of the computation primitives (§IV.2)
and becoming familiar with notation conventions (§IV.3). (Assuming the illus-
trated introduction has been read). The work on comparisons and on machines
and morphisms is more technical.

To obtain a general perspective of the goals of Rum the final section of the
background chapter (§1.6) can be read at any time. The review of the work pre-
sented in this thesis and of the accomplishments (§VIIL.1) can also be read at any
time to help the reader form a general picture. For the reader who is puzzled by
our choice of basic notions, the discussions in §1.6 and §VIII.2 may be read when
such questions arise.



Chapter I. Background

Rum brings together a variety of notions and draws from work in several areas
including symbolic computation, program transformations, programming language
semantics, and recursion theory. The purpose of this chapter is to introduce the
programming tools and informal concepts from current programming practice we
wish to treat and to summarize the ideas and results from programming language
semantics and logic that are the foundation for our work. Additional remarks on
related work can be found in §VIIL3.

Two themes recur. One is the role of application and abstraction in de-
scribing computation and in defining functions. The other is the role of program
transformations in understanding computations described by programs, deriving
programs, and proving properties of programs. Some parts of this chapter will
be more meaningful to some people and other parts more meaningful to others,
depending on background and interest. The reader should at least be able to get
a general idea of each of the areas, and be able learn more by reading suggested
references. All of the work discussed went into the consideration and development
of Rum.

In §1 we explain what we mean by symbolic computation, list the goals of
a mathematical theory of computation, and give some basic steps towards these
goals. This is based on ideas of McCarthy [1960, 1963b].

The work in Lisp and related languages lays a foundation for the practice of
symbolic computation and provides many ideas about description of computation,
data structures, control structures, and operations on programs. In §2 example
programs are given illustrating many of these ideas including simple S-expression
recursion, mapping functionals, escape mechanisms, representation of structured
data as higher-order objects, streams and co-routines. Variants of these examples
will reappear in the Rum context where their mathematical properties are stud-
ied. This section concludes with a discussion of choices for representation of the
computation state in some dialects of Lisp. Consequences of these choices related
to the computation primitives provided and the limitations imposed are pointed
out. This is to emphasize that a fuller mathematical understanding of the basic
computation structures and of the underlying model of computation can be of
value in making decisions about the design and implementation of a programming
system.




In §3 we look at work involving operations on programs. This work plays an
important role in the development of programming tools, compilers, and program-
ming systems. A brief summary of a variety of operations on programs is given.
Then the basic ideas underlying systems of program improving transformations
(Burstall and Darlington [1976, 1977], Scherlis [1980]) are outlined. Examples
are given illustrating the use of program transformations for improving programs
and for analyzing improvements by transforming a program into a derived program
which computes properties of the computations described by the original program.
This work is the starting point for work on transformations in Rum. The examples
illustrate basic concepts to be generalized to our richer computational model.

§4 concerns interpretations and uses of a simple lambda-calculus-like language
AE. Many of the basic ideas underlying the Rum model of computation are pre-
sented in this section. We begin with an interpretation of expressions of AE given
by an abstract machine (SECD) for mechanical evaluation of expressions. Ex-
tension of AE to IAE by the addition of imperative constructs and use of IAE
as a tool for semantics and language design is also discussed. This is based on
ideas of Landin {1964, 1965, 1966]. Next a call-by-value variant of the lambda
calculus due to Plotkin [1975] is described. Notions of value and evaluation are
compared to those of normal form and reduction; and operational equivalence, a
natural equivalence relation on expressions based on evaluation, is compared to
lambda equivalence. Further insights concerning application and abstraction as
programming tools are obtained by examining the use of AE to define semantic
meaning functions for general programming languages. The key ideas are due
to Morris and Wadsworth (see Reynolds [1972]). A series of interpreters defined
by AE programs is discussed. These illustrate the options for control structure
in an interpreter; for representation of objects in the semantic domain; and how
these choices affect the relation of the semantics of the defined language to that of
the defining language. Of particular interest is the notion of continuation-passing
style and the existence of machine-like fragments in AE. Interpreters written in
this fragment are “absolute” in the sense that the functions defined by programs
of the defined language are independent of the choice of evaluation rule for the
defining language. The main features of continuation-passing are summarized and
some additional work based on transformations into this fragment is discussed.

In §5 we review work in logic related to the construction and analysis of ap-
plicative structures sufficiently rich to serve as models of lambda calculus laws for
application and abstraction. Of particular interest are theorems expressing key
closure conditions satisfied by classes of functions or computations; methods for
constructing applicative structures uniformly from given abstract structures; and
theorems identifying incompatible sets of requirements for applicative structures.
We begin with a discussion of the basic goals of recursion theory. Notions of a
recursion theory (closure conditions for classes of functions) and of a computation
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theory (closure conditions for classes of computations) are introduced as a context
ior presenting versions of the key theorems — the S}, theorem, the recursion theo-
rem and the normal form theorem. Three constructions of applicative structures
are presented: recursion on abstract structures (Moschovakis [1969]); extensional
models of the lambda calculus (Scott [1976]); and theories of partial operations
and classes (Feferman [1975]). Each construction yields a model satisfying the
conditions for a recursion theory. The Moschovakis construction is a paradigm
for constructing computation theories. Scott models provide independent mathe-
matical constructions of models of the lambda calculus as a language for defining
functions. The rich equational theory of these models has served as a paradigm for
the study of equations in Rum. Feferman’s work illustrates a method of extend-
ing theories of structures (classes of abstract structures) to intensional theories of
partial function on these structures. The extended theories are inconsistent with
extensionality. The proof of this fact identifies an important collection of incom-
patible requirements and suggests that testing for equality on the full computation
domain is what must be given up in order to have computationly meaningful in-
tensionality which is consistent with extensionality.

In §6 the goals of Rum are explained and we indicate how Rum extends and
builds on the work summarized in this chapter.

For this chapter we assume that the reader is familiar with the basic notation
and notions of the lambda calculus. We use the terms “extensional” and “inten-
sional” to distinguish between the “what” and the “how”. For example extensional
properties of programs are determined by what values are returned, while inten-
sional properties depend on how the value is computed. In this framework we
can speak of extensional properties of control abstractions as well as of functional
abstractions. We caution the reader that we will use the term “function” both in
the constructive or intensional sense as a rule for computing a value and in the set
theoretic or extensional sense as a graph or set of pairs. Context should make the
intended sense clear. We use the term “conditional” to refer to if-then-else type
computation primitives which express conditional evaluation based on the value
of a test subcomputation.

The references given are intended to provide useful pointers to key original
papers and to surveys or texts where available. They are not intended as a com-
prehensive bibliography in any of the areas encompassed.
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I.1. About symbolic computation

1.1.1. Symbolic expressions and first-order Lisp

Practical symbolic computation has its origin in the work of McCarthy. The
basic ideas are presented in McCarthy [1960], which is the beginning of the lan-
guage Lisp. Computation is described by symbolic expressions using recursion
and conditional evaluation. The data domain is the S-expression domain which is
generated by a pairing operation from a set of atomic objects including symbols
and numbers. Lists are those S-expressions built from the empty list by pairing an
arbitrary S-expression with a list. There is a special atom NIL that represents the
empty list. Programs are naturally represented as lists and interpretations of the
variable symbols occurring free are represented by a-lists (association lists). An
a-list is a list of pairs interpreted as associating the first element of each pair with
the second. The value of an expression e relative to an interpretation of its free
variables a is defined by a computable function on S-expressions eval(e,a). This
function was later implemented as a Lisp interpreter (McCarthy et. al. {1962]).

As an example, the function that computes the product of the atoms of an
S-expression, using an a-list to interpret symbols is given by the recursive definition

prod(z,a) « if (atom(z),
aval(z, a),
prod(car(z), a) * prod(cdr(z), a))

where atom tests for atomic expressions, car and edr select the first and second
components of a pair, aval(z,a) is the value associated with the atom z by the
a-list a. This definition is represented in (Common) Lisp by the S-expression

(DEFUN PROD (X A)
(IF (ATOM X)
(AVAL X A)
(* (PROD (CAR X) A)(PROD (CDR X) A)))).

S-expressions were designed as a representation of symbolic information that
is easy to read, print, and operate on. Some examples of symbolic information are
programs, mathematical expressions, logical formulae, rules of inference, schedules,
and inventories.

It is important to note that even in full Lisp, the S-expression domain is
treated as an “abstract structure” with primitive operations for creating objects,
selecting and updating components of composite objects, testing for the identity
of two objects and recognizing the different sorts of objects. By abstract structure
here we mean that data objects are treated uniformly and can be part of argument
lists, bound in environments and returned as values. The size of an object is only
of concern when it is necessary to process each sub-object.
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' v 2. Basis for a mathematical theory of computation

McCarthy [1963a,b] introduces the notion of a mathematical theory of com-
putation. As this work is the starting point for much of the work in Rum, we
summarize the main ideas below.

McCarthy [1963b] sets forth goals for a mathematical theory of computation,
presents several formalisms for describing computations, and gives some mathe-
matical properties of the formalisms as steps towards achieving these goals. Mc-
Carthy’s goals are still very relevant and are closely related to the goals of Rum.
They are (in abbreviated form)

1. To develop a universal programming language.

2. To define a theory of equivalence of computation processes. This would be
the basis for a theory of equivalence preserving transformations.

3. To represent algorithms by symbolic expressions in such a way that significant
changes in the behavior represented by the algorithms are represented by
simple changes in the symbolic expressions.

4. To represent computers as well as computations in a formalism that permits
a treatment of the relation between a computation and the computer that
carries out the computation.

5. To give a quantitative theory of computation. For example to find a quanti-
tative measure of the size of a computation analogous to Shannon’s measure
of information.

The key formalism given by McCarthy for describing computations is the
definition of a class of computable functions over a given data domain and a given
set of operations on that domain by systems of recursion equations. A system of
recursion equations has the form

((_ 1) fl(zls"')znl)‘_el
(‘_ k) fk(zl,'-'aznk) — €k

where for 1 < 7 < k, f; is a function symbol of arity n; and e; is an expression
built from the variables zi,...,Zn;, constants for data and given operations, and
the symbols f;, 1 < ¢ < k, using application and conditional (if-then-else). (« j)
is the defining equation for f; and the definitions are used recursively to compute
the value of any such expression relative to an assignment of values in the data
domain to the variable symbols of the expression. The value of an if-then-else
expression is computed by computing the value of the if subexpression. If the
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result is true the then subexpression is evaluated otherwise the else subexpression
is evaluated. In either case the other branch subexpression is not evaluated. Values
of argument expressions must be computed before a given or defined function can
be applied. Defined functions are applied by evaluating the right-hand side of
the defining equation where the values of the argument expressions are assigned
to the variables of the left-hand side. This formalism provides an interpretation
of systems of recursion equations both as rules of computation and as partial
functions. Thus it provides an interpretation of pure Lisp-like programs as partial
functions.

Two key mathematical results given by McCarthy, about the above formalism
for describing computation, are:

= a notion of equivalence for conditional expressions and axioms and rules suf-
ficient for transforming an expression to any equivalent expression

« The principle of recursion snduction for proving equations involving recur-
sively defined functions - let f be a recursively defined function and let g any
function with the same domain of definition as f which satisfies the defining
equation for f. Then g and f are the same partial function.

A further important idea, introduced in McCarthy [1963a] is abstract syntaz.
The abstract syntax of a language specifies the set of expressions and operations
for synthesis and analysis abstractly, independent of any notation. It is defined by
giving a signature and axioms. The signature consists of names for constructors
of expressions (the synthetic part), and for operations recognizing the various
constructions and selecting components (the analytic part). The axioms specify
the relations among the constructors, selectors and recognizers.

Remarks

e The interpretation of systems of recursions equations as rules is used as a
basis for operational reasoning about properties of the partial functions computed.
Recursion induction is an example. This interpretation is not developed to provide
a basis for representing and proving intensional properties.

e The functions computed by a system of recursion equations are the least fixed
points of the corresponding system of functionals <7y ...7x> where

1= A1 fR)A(Z1 -5 20 e

Tk = /\(fl ...fk)A(.’El,...,Ink)ek.

This is a form of inductive definition of partial functions. The principle of recur-
sion induction is a consequence of the minimality of the defined functions. (See
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Moschovakis [1975] for a general treatment of partial functions defined by such
systems of functionals.)

e A modern version of abstract syntax is the notion of initial algebra (Goguen
and Meseguer [1983]) extended by operations for recognizing and selecting.

1.2. Programming examples

Early work on the lambda calculus (Kleene [1936a], Church [1941}) established
the expressive power of abstraction and application, interpreted using lambda re-
duction rules, for defining functions. Central in this work was the use of functions
as values to represent definition mechanisms such as recursion, iteration, and min-
imization, and to represent structured objects such as tuples. Early examples of
programming using function and control abstractions are given in Burstall [1968|
and Burge [1971]. Many more examples can be found in Sussman and Steele [1975],
Friedman et. al. {1984], and Abelson and Sussman [1985]. The examples in this
section illustrate some of the key features of such programs.

1.2.1. Notation

S-expressions will be used as the data domain for examples in this chapter. z,
Y, 2, ...range over S-expressions and we use standard notation for numbers and
arithmetic expressions. S-expression symbol constants are upper case identifiers in
THIS FONT, for example NIL, A, B, and CAR denote symbolic atoms. We use z « y as
infix notation for the pairing operation cons(z,y), <yi1,...,yn> for the multi-ary
list forming operation, and z o y as infix notation for append (list concatenation).
Thus B « NIL and <B> are expressions denoting the list with a single element B and
<<B>> is a list with one element, the list <B>, which in turn has one element, the
symbol B. Using the associativity of append and letting » associate to the right we
have

<A,<<B>>,C> = A« ((B « NIL) « NIL) « C « NIL = <A> 0 <<<B>>> 0 <C>.

In some of the examples we also use the traditional Lisp notation for list con-
stants as illustrated by the S-expression representation of the prod program above.
In general, () represents the empty list. ((B)) = <<B>> and <A,<<B>>,C> =
(A ((B)) C). Use of Lisp list notation for list constants in mathematical expres-
sions may lead to confusion since parentheses might be merely grouping symbols
or they might denote a level of list formation. We will use the Lisp notation only
where such confusion can not arise.

Finite sequences of elements a; are written [ag,...ap]. 0 is the empty se-
quence. [u,v] is the concatenation of sequences u and v. Individual elements are
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also treated as sequences of one element. For conditional expressions, we write
if (€0, €1, €2) rather than if eo then e; else e;.

We use lambda notation for function expressions. For example, A(z)A is the
constant function with value A and A(z, y)z(y) is a function of two arguments that
applies its first argument to its second argument. Braces are often used to enclose
complex expressions in function positions to improve readability. Thus eo applied
to e; may be written {eo}(e1) and we have

{\(z,y)z(y)}(car,(A B)) = A.

We will have occasion to use two notions of substitution of one expression into
another. e|Z denotes the result of substituting e; for free occurrences of z in
e, renaming bound variables of e if necessary to avoid trapping free variables of
e;. This is the usual logical notion of substitution. The other notion is that of
placing an expression into an expression context. An expression context is an
expression e with a hole to be filled (written e{...}). e{eo} is the result of putting
the expression eg in the hole, without any renaming of bound variables in e. (This
is a second use of braces, but should cause no confusion.) One can think of an
expression context as an expression containing a free occurrence of a distinguished
variable symbol marking the hole.

For expressions that may not have a value we write ep ~ e; to mean that
either both eg and e; are undefined or both are defined with the same value. In
case both expressions are known to be defined we may write ep = e;.

1.2.2. Mapping functionals

A common operation in symbolic computation is to “map” through a list or
tree structure, applying a given function at each point and collecting the results -
using an operation such as cons to collect into a list or + to collect into a number.
Such functionals are given by special kinds of schemes for recursion on the ar-
gument structure and are implemented by programs traditionally called mapping
functions in Lisp. For example mapcar takes a function and a list as arguments,
applies the function to each element of the list, and returns a list of the results.
Thus if tack is defined by

tack(z,y) «— mapcar(A(z)cons(z, z),y)
then
tack(z,<...,¥iy...>) ~ <.y (z e wi),.. >

i.e. the S-expression z is tacked to each member of the list y. Mapping functions
are distributive functionals — the mapping operation distributes over suitable op-
erations on the recursion argument. They satisfy a rich collection of algebraic
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}2ws derived from laws for operations on the argument and value structures. For
example for lists y, 2

tack(z,y o z) = tack(z,y) o tack(z, 2).

1.2.3. Escape mechanisms

Escape mechanisms are important programming tools. Error handling is
based on such mechanisms. They also provide a way of pruning unnecessary
computation and allow certain computations to be expressed by more compact
and conceptually manageable programs. The idea is to mark a given point in a
computation and to be able to continue from that point when special conditions
arise in the course of a computation rather than continuing in the normal way. For
example suppose p computes a predicate on S-expressions. We would like to search
an S-expression for a subexpression satisfying the predicate and to terminate the
search as soon as such a subexpression is found. If no such subexpression is found,
NIL is returned. find carries out such a search.

find(z,p) « catch(TAG, findit(z,p))
findit(z,p) — if(p(z),
throw(TAG, z)
if (atom(z),
NIL,
progn|findit(car(z), p),
findit(cdr(z),p)])),

catch, throw, and progn are traditional Lisp names for program constructs.
catch(TAG, o) is used to mark the point at which computation of ey begins with
the symbol TAG. If during the evaluation of ey an expression throw(TAG,e;) is
executed then e; is evaluated and the value of e; is returned as the value of the
catch expression. That is, computation resumes at the point marked by TAG
returning the value of e;. If the evaluation of ¢g returns a value normally then
that value is returned by the catch expression. progn evaluates a sequence of
expressions and returns the value of the last one.

I.2.4. Structured data represented as functions

The representation of structured objects as functions provides a uniform mech-
anism for data representation in terms of well understood concepts of function
application and abstraction. These ideas go back to early work in the lambda
calculus (Kleene [1936], Church {1941]) and were proposed in the context of pro-
gramming by Reynolds [1970]. We will illustrate two representations of a pairing
structure. The basic ideas generalize to a wide class of abstract data structures.
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lcons,lcar,lcdr correspond to the usual representation of a pairing structure
in the lambda calculus.

lcons — A(z,y)A\(2)z(z,y)
lear «— A(z)z(/\(z,y).'_z:)
ledr — A(2)z(A(z,y)y)

Thinking of these as definitions in lambda calculus lcons,lcar,ledr obey the usual
the pairing laws. For example,

lear(lcons(z,y)) = {A(2)2(z,¥)} A (z,¥)z = {A(z,y)z}(z,y) = =.

Thinking of the above definitions as defining objects, lcons(4,D) is an object which
associates A with z and D with y and we have

lcar(lcons(A,D)) ~ A

ocons, ocar, osetcar, opairp represent (part of) a pairing structure in the object
oriented style of programming & la Small-talk (Goldberg and Robson [1983]) or
Actors (Hewitt [1977]). In this style, objects contain the information about the
operations that can be applied and are sent messages naming the operation to be
carried out. An object also may have an internal state which can be updated by
the object. In particular, the object oriented representation extends the notion of
pairing structure to include updating operations.

ocons — A(z,y)A(msg)if (msg = PAIR?), T
if (msg = INTEGER?), NIL
if(msg = CAR), z |
if(msg = CDR), y
if (msg = SETCAR), A(2)[z « 2],
if (msg = SETCDR), A(z)[y « 2],

M))---)
opairp «— A(z)[2(PAIR?)]
ocar «— A(z)[2(CAR)]
osetcar +— A(z,z){z(SETCAR)}(z)

ocons creates pairs, ocar gets the first component, osetcar sets the first component,
and opairp tests for pairs (among a collection of similarly represented data types).
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“wecuting ocons(A,D) creates an object p which has internal state associating A to

s#rc D to y. Executing ocar(p) causes p to be applied to CAR (in object jargon, the
message CAR is sent to p). p responds by returning the value currently associated
to z. If no updating messages have been received by p since its creation, then p
will respond to the message CAR with A. osetcar(p,B) sends p the message SETCAR.
p responds with a function object ¢ with access to the internal state of p. When ¢
is applied to an argument, p’s internal store is updated to associate that argument
to z. Thus if osetcar(p,B) is executed then p will respond to the message CAR
with B. p will always respond to the PAIR? message with T, and to the INTEGER?
message with NIL.

I1.2.5. Streams

Streams are a means of presenting elements of a possibly infinite sequence.
The elements are accessed sequentially by request for the next element. A stream
may be implemented to generate the next element when requested rather than in
advance. Typically a stream s is a O-ary function-like object with internal state.
Request for the next element is application to the empty argument list, s(). The
source of stream elements and whether or not they are computed in advance or
upon request is invisible to the user of the stream.

Streams are an important tool for input and output. Character streams are
a typical example. If a reader or parser has a character stream as a parameter,
then the same program can be used to read from a file, a tape, an array, a list,
or a terminal by constructing the appropriate stream. For example, the program
record.to.char is a character stream that provides an interface to an input device
that produces 80 character records. The device could be a card reader, a disk
file, a terminal, etc. The statement stream{all : 80],n «+ 80} says that what is
created is a stream object with internal store a,n. a is a tuple of length 80 and n
is a number, initially 80. Executing a « read.record() reads the next record from
the device into the tuple a. nth(a,n) is the n-th element of a.

record.to.char —stream{a[l : 80],n « 80}
if(n < 80,
progn[n « n +1,
nth(a,n)),
progn|a < read.record(),
n+—1,

nth(a,n)})

At any stage in processing input from the device, the internal state of record.to.char
is such that a contains the current record and n indexes the last character read.
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When n < 80 the next character is the n + 1-st element of a. When n > 80 the
next character is the first character of the next record.

Another use of streams is to iterate along a sequence of items given by a
sequence of expressions, where the expressions are not to be evaluated until needed.
This idea was introduced by Landin [1965] to interpret certain iteration constructs
of Algol60.

1.2.6. Co-routines

Another useful control mechanism is co-routines. The idea was originally pre-
sented in Conway [1963] as a means of separating a complex compiling program
into a number of small independent procedures. Each procedure is a co-routine
responsible for some phase in the transformation of a source program represented
as a sequence of characters through various intermediate stages to the final stage
— the compiled code. In a system of co-routines control is transferred from one co-
routine to another by resuming rather than calling. When one co-routine resumes
another, it remembers the point where it left off and begins at that point when
control is transferred back to it, i.e. when it is resumed by a partner co-routine.
The classical example (given by Conway) is squasher which transforms a stream
of characters by “squashing” adjacent pairs of * characters (Fortran for exponent)
to a single T character (Algol for exponent). The statement co-routine{z,y}
expresses that squasher is a co-routine with internal state components named by
z,y. There is also an unnamed component of the internal state for remembering
where to resume. The body of squasher is a sequence of instructions. The instruc-
tion z « readch() assigns to z the next character from the input. ifeq(eo,e;);e
executes e only if eo and e; have the same value. user is the partner co-routine.
Each time user wants another character it resumes squasher and will be resumed
by squasher when the next character is determined.

squasher +co-routine{z,y}

SQ : z « readch()

S0 : ifeq(z, *); goto S1
resume(user, )
goto SQ

S1: y « readch()
ifeq(y, *); goto S3
resume(user, z)
resume(user,y)
goto SQ

S3 : resume(user,1)
goto SQ
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Tnitially squasher resumes at the instruction labeled SQ and z is assigned the next
character from the input. If z # # then user is resumed passing it z and when
squasher is next resumed the goto SQ instruction will be executed. If z = * then
y is assigned the next character. If y # * then user is resumed with £ and when
squasher is next resumed it will execute the resume(user,y) instruction. If y = *
then user is resumed with 1 and when squasher is next resumed the goto SQ
instruction will be executed.

1.2.7. Features of Lisp systems

Lisp systems are a means for interactively developing programming tools,
building data structures, and for carrying out computations using the tools devel-
oped. A Lisp system has internal state that assigns values and other information
to symbols. Interaction is carried out by evaluating symbolic expressions. The
values assigned by the internal state provide the initial evaluation environment.
Evaluation may simply return a value (answer a question). It may also modify
the internal state by adding to or updating the information stored there. At any
point in the process of evaluation there are three key components of the com-
putation state: the expression currently being evaluated, the current evaluation
environment, and the evaluation context for the current expression — what is to
be done with its value. We now examine implementation of these features in more
detail for several Lisp systems. We will indicate, for some of the computations dis-
cussed above, how they can be represented in these systems or why they cannot
be represented (directly).

Lisp 1.5

In Lisp 1.5 (McCarthy et. al. [1962]) environments were represented by a-lists
as in McCarthy’s original description of Lisp. Lambda expressions could appear in
the function position of an expression. In such cases they were not evaluated, but
served as a way of temporarily naming the values of argument expressions. The
function construct was introduced to provide a means of lexically fixing the values
of the free variables of lambda expressions used as functional arguments. The value
of function(A(z)e) is a funarg object containing the lambda expression and the
current environment. When a funarg is applied, the environment component is
used to interpret the free variables of the lambda expression. Funargs were first
class objects and provided a means of returning functions as values. For example,
in Lisp 1.5 the definition of lcons is written

lcons «— A(z,y)function()(2)z(z,v)).

However, not much use was made of this feature of Lisp 1.5.
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Error trapping mechanisms were provided in Lisp 1.5 in order to give system
builders control over what happened when an error occurred. These primitives
were discovered to be useful for programming more general escape mechanisms
such as the findit example. To escape with a value using the error mechanism,
it was necessary to use side effects - for example setting the value of some global
parameter.

Maclisp

In Maclisp (Pitman [1983]) the computation state is a stack structure. A
function call pushes control and variable binding information on the stack. When
a value is returned this information is popped (deleted) from the stack and used
to resume computation in the calling context. Maclisp provides funargs, but the
environment component of a funarg object in Maclisp is a “binding pointer” that
refers to the stack position where the binding information is stored. This creates
what is called the “funarg problem” (Moses, [1970]), although in fact it is the
“funval problem”. The problem is that a funarg is not an object with an indepen-
dent existence. It is only meaningful to apply it within the dynamic scope of the
environment (function call) in which it was created. After the computation control
exits that scope the binding pointer of a funarg no longer refers to the intended
variable bindings. Thus funargs can not be used in Maclisp to implement lcons or
ocons.

In order to separate program control mechanisms from error mechanisms,
catch and throw primitives were introduced in Maclisp. The primitives used
in the findit program above are based on the Maclisp primitives. In the simple
case, the catch tag parameter is used to mark the control stack and the throw tag
parameter is used to determine the point where the computation is to be continued
by searching the control stack for the matching mark. Like funargs, catch tags
are only meaningful with in the dynamic scope of their defining context, and a
catch tag cannot be thrown to after popping the control stack beyond the point
where the tag was defined. Thus catch and throw are not adequate to implement
co-routines.

Interlisp spaghetti

In Interlisp, data structures called environment descriptors are used to repre-
sent the state of a computation (Bobrow and Wegbreit [1973]). These structures
are implemented as stack-like objects called “spaghetti stacks” which contain ad-
ditional linkages between stack positions and elements of the stack. [Pointer di-
agrams for these structures look rather like spaghetti.] Environment descriptors
are first class objects which may be assigned to variables, passed as arguments and
returned as values. There are operations for creating and updating environment
descriptors and for selection of control and variable binding components of envi-
ronment descriptors. Environment descriptors can be used to implement function
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abstractions such as funargs and control abstractions such as catch and throw,
and co-routines.

Scheme

Scheme (Sussman and Steele [1975]) is the first dialect of Lisp to take abstrac-
tion and application seriously. The main components of a Scheme computation
state are an expression, an environment and a continuation. A continuation is a
function of one argument representing the calling context for the expression com-
ponent. The function position of an application is evaluated as any other subex-
pression. The value of a lambda-expression is a closure containing the expression
and the evaluation environment (Scheme closures behave like funargs of Lisp 1.5).
The catch construct of Scheme generalizes that of Maclisp by binding the cur-
rent continuation to a variable rather than putting a mark in the continuation.
Closures and continuations are first class objects and give much of the capability
of Interlisp environment descriptors. The Scheme model of computation derives
from work of Landin (see §4).

In addition to Lisp dialects, a number of other programming systems provide
higher level abstractions. Of principal interest to our work are ISWIM (Landin
[1966] and Burge [1981]), Pop-2 (Burstall and Popplestone [1968]), and ML (Milner
[1984]).

For more details on the history and development of Lisp see McCarthy [1978].
The current state of Lisp is described in (Steele [1984]).

1.3. Program transformations

There are a variety of operations on programs carried out for a variety of
purposes —

(i) converting programs annotated with assertions about the computation state
at the annotated points into logical formulae — assertion methods of verifica-
tion (Manna [1969])

(i) annotating programs with information about type, control and data flow, etc.
- as an aid to compiling and program understanding (Steele [1978])

(iii) transforming from one language to another or to a fragment of the given
language — compiling (Steele [1978])

(iv) using automatic deduction to derive defining equations from specifications —
program synthesis (Manna and Waldinger [1980])
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(v) using proof normalization to construct programs and using programs anno-
tated with proofs (obtained from the normalization process) to construct op-
timized programs for special cases (Goad [1980])

(vi) transformations changing the structure of the computation described while
preserving the function computed — program optimization (Burstall and Dar-
lington [1976, 1977], Scherlis {1980])

(vii) transforming a program into a program that computes a property of compu-
tation described by the original program - derived programs (Wegbreit [1975],
McCarthy — private communication)

In the following we will focus on transformations such as (vi) and (vii) and restrict
attention to programs given by systems of recursive definitions over a given data
structure (see §1).

1.3.1. Improving programs

Burstall and Darlington [1976, 1977] studied transformation rules with the
goal of developing systems for automatically improving programs. They iden-
tified four improvements: (i) recursion elimination (transforming recursion into
iteration), common subexpression elimination (abstraction), procedure call elimi-
nation (application), and reuse of storage. The basic idea is to begin with a system
of definitions £ containing exactly one definition for each defined function sym-
bol. New definitions are added according to a set of transformation rules, and a
newly derived definition may be taken as the definition (rule for computation) of
its function symbol. Some typical transformation rules are

» (instantiation) If f(z1,...,Zn,¥,21,...,2m) «+ e is in £ and ! is a constant
term then add f(z,...,Zn,l,21,...,2m) « €’ where € is the result of replac-
ingybyline.

» (unfolding) If fi(z1,...,Zn) < €s and fo(y1,-..,Ym) < €p are in £ and e,
is obtained from e, by replacing an instance of f3(y1,...,¥m) by the corre-
sponding instance of e; then add f,(z1,...,Zn) < e..

» (folding) If fo(z1,...,2Zn) < € and fy(y1,...,Ym) < ep are in £ and e, is
obtained from e, by replacing an instance of e, by the corresponding instance
of fo(y1,...,Ym) then add fo(z1,...,25) « ec.

» (simplification) If fo(z1,...,Zn) < €, and e, simplifies to e, according basic
laws (for data operations, conditional, etc.) then add f.(z1,...,Zn) « €.

o (definition) If fn.w is function symbol not mentioned in £ and the variables -
of e are among z,,...,Z, then add frew(z1,...,2n) — e.
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Tt function computed by a definition in the initial system and the function com-
1uicd by a definition in a system derived by these rules used without restrictions
will agree on their common domain of definition, but they may have different do-
mains of definition.! One problem is that arguments to functions may not be used
in the defining expression, thus an undefined term may disappear upon unfolding.
Another problem is that using folding it is easy to derive trivial definitions such
as f(z1,...2Zn) < f(Z1,...,%n). Thus there is additional work to be done after
an arbitrary sequence of transformations to verify that domains of definition have
been preserved. This is not very satisfactory if the rules are to be used as a formal

system.

1.3.2. Transformations on expression procedures

Various restricted systems of rules have been proposed that give rise to trans-
formations that preserve domains of definition. Such transformation rules are
called safe. Scherlis [1980] describes a transformation system for expression pro-
cedures. In this system transformations are carried out on a system of definitions
of the form F «— F where E and F are expressions. Such definitions are used as
rules for computing by matching the left hand side and replacing it by the corre-
sponding righthand side — thus treating expressions as complex function names.
The key transformation rules are

» (apply) f E — H{F(ey,...,em)} and F(zy,...,zm) « G(z1,...,Zm) are in
€ then add E «— H{G(e1,...,em)}.

» (compose) If E « F is in £ then add H{E} — H{F}.

« (abstract) If E «— H{G(e1,...,€m)} isin £ then add E «— H{f(e1,...,em)}
and f(z1,...,2m) « G(z1,...,Zm) where f is a new function symbol.

« (simplify) like the Burstall and Darlington rule.

where H{...} is an expression context. The composition rule provides a means
of specializing to a particular context and thus to make improvements based on
this additional information that would not be valid in general. Restrictions on
the transformation rules that insure safety are defined by introducing a notion of
computational progress. For a given initial system of definitions, computational
progress is defined by finding a suitable well-founded relation on expressions. A
definition E « F is progressive relative to a system of definitions if computational
progress is made whenever a ground instance of E is replaced by the corresponding

! Burstall and Darlington worked with systems of equations interpreted using a call-by-
name computation rule rather than call-by-value. The general ideas are the same and
the same problems just appear in different guises.
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instance of F. The initial system is progressive, by criteria imposed on the well-
founded relation, and the rules are restricted to a set that preserve progressiveness.
Thus safeness is insured. This system is more expressive than the original system
of Burstall and Darlington and can in fact be used as a theorem proving system
deriving such theorems as associativity of append.

To illustrate these rules we derive an iterative definition of the function that
reverses lists from a simple recursive definition. For this derivation we assume
that the data domain consists of lists and that append is a primitive operation
satisfying the following axioms (simplification rules).

(if.null) (u =NIL — e, =e3) — if(null(u),eq,z) = if (null(u), ep, 2)
(a2pp.if.dist) if(z,y,2z)ov=if(z,yov,z0v)

(app-assoc) (vov)ow=uo(vow)

(app.nil) NILou=uoNIL=1u

(app.one)  cons(u,NIL) o v = cons(u,v)

The derivation begins with a system consisting of the single definition (revr) for
reverse.

(revr) revr(u) « if(null(u),u,revr(cdr(y)) o cons(car(u),NIL))

Using composition, (revr.v) is added, defining the expression procedure revr(u)ov.
Note that the recursive call to revr is an instance of this expression.

(revr.v)  revr(u) ov « (if(null(u),u,revr(cdr(u)) o cons(car(u),NIL))) o v

By the simplification rule (revr.v) is replaced by (revr.v’) using (if.null), (app.if.dist),
(app.nil) and (app.one).

(revr.v')  revr(u) o v « if (null(u),v,revr(cdr(u)) ¢ cons(car(u),v))

Applying abstraction to (revr.v’), (revr.rev) and (rev.revr) are added, introducing
rev as a name for the procedure A(u,v)revr(v) o v.

(revr.rev) revr(u) ov « rev(u,v)

(rev.revr) rev(u,v) « if (null(u),v,revr(cdr(u)) o cons(car(u),v))
Instantiating (revr.rev) with v = NIL and using (app.nil) we obtain (reverse).
(reverse) revr(u) « rev(u,NIL)

Finally using application of (revr.rev) in (rev.revr) we obtain (rev)

(rev) rev(u,v) « if (null(u),v,rev(cdr(u)), cons(car(u),v))

Taking (reverse,rev) as the final system of equations we have the improved defini-
tion of revr.
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1.3.3. Derived programs

Another kind of program transformation is the definition of operations that
change a program into one that computes some property of the computation de-
scribed by the original program. The resulting programs are called derived pro-
grams by McCarthy. The effect of such a derivation is to transform intensional
properties of a given program into extensional properties of the derived program.
For example

cons.rev(z) « if(null(z),0,1 + cons.rev(cdr(z)))

is derived from the definition of revr given above by the system of equations
(reverse, rev) and computes number of cons operations done in reversing a list
using this definition. It is easy to see that

cons.rev(z) = length(z)

Using cons.append(z,y) = length(z), a similar analysis of the definition of revr
given by the equation (revr) above gives

length(z)
cons.revr(z) = (length(z) * (length(z) +1))/2 = Z ¢
$=0
This provides a measure of the improvement produced by the program transfor-
mation.

Wegbreit [1975] gives a system for mechanical analysis of the cost of execut-
ing programs - considering such costs as procedure call, variable references, and
execution of primitive operations. The analysis produces a program for comput-
ing the cost of executing a given program as a function of its input parameters.
Scherlis’s system has been extended to carry out this sort of transformation. This
is accomplished by the addition of rule schemes for each program construct and for
the costs to be measured (Scherlis, private communication). In addition to costs
associated with computations, one may also be interested the maximum amount of
a resource in use at any point in a computation. For example, if we elaborate our
computation model so that cons is a storage allocation primitive, then a derivation
can be defined such the derivation of a program p computes the maximum amount
of storage in use at any point in the computation described by p.

There are more exotic derived programs, for example trace.rev(z,y) computes
a “trace” of the computation of rev(z,y), i.e. a tree of instances of function calls.

trace.rev(z,y) «— <<REV,z,y>,
<NULL, z>,
if (null(z),
NIL,
trace.rev(cdr(z), cons(car(z),y)))>
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For the example,

trace.rev((1 2), NIL) = ((REV (1 2) NIL)
(NULL (1 2))
((REV (2) (1))
(NULL (2))
((REV NIL (2 1))
(NULL NIL))))

I.4. Applicative expressions

I.4.1. Mechanical evaluation of applicative expressions

Landin’s work developing the theory of applicative expressions as rules for
computation and as a place to represent programming concepts is the starting
point of our discussion and the source of several important ideas. Landin [1964]
considers the problem of assigning ‘applicative’ structure to familiar mathematical
expressions in order to be able to infer rules for computation of the values denoted
by such expressions. A lambda-calculus-like language AE (for Applicative Expres-
sions) is defined together with a computation domain and an abstract machine
SECD for “mechanical evaluation” of expressions of AE. Expressions of AE are
built from variable symbols by application eo(e;) and abstraction A(z)e. Objects
called environments assign values in the computation domain to free symbols of
expressionis. The value of A(z)e in an environment £ is a closure {(A(z)e | £), which
is the function determined by A(z)e with the free symbols fixed to be the values
assigned by €. The computation domain (values) consists of given data, primitive
functions, and closures. The rules for computation are uniformly parameterized
by the given data and primitive functions by assuming there is also given a binary
application function ap which interprets the primitive functions. ap(f,v) is the
result of applying the primitive function f to the value v. A primitive function
may be applied to any sort of value - data, another primitive function or a closure,
and may return any sort of value. [This allows conditional to be treated as a
primitive function, and provides for binary primitive functions by currying.]

The SECD machine is a set of states together with a set of transition rules. An
SECD machine state is a tuple <o, £,7,6>. o is the value stack (S), a sequence
of intermediate values for the current subcomputation. ~ is the control stack
(C), a sequence of expressions to be evaluated and application marks ap which
serve to group pairs of values which come from an application expression. £ is an
environment (E) used to interpret free variables occurring in expressions on the
control stack. § is a dump (D), which is either empty or a state <o’,¢’,0’,6'>.
The dump describes what is to be done when the control stack is exhausted, i.e.
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when evaluation of the current subexpression is complete. The dump represents
the computation context built up when the current subcomputation was begun.
The set of transition rules for the SECD machine is so short, we list it in entirety.

(var) <o, &, [[z],7], 6> — <[&([z]),0]), & 7, 6>
(lam) <o, &, [[A(2)e],q], 6> — <[(A(z)e | €),0], & v, 6>
(app) <o, &, [[eo(e1)],n], 6> — <o, &, [ﬂelﬂ,HCO]]aaP,'V], 6>

(ap.clos) <[(A(z)e | &o),v,0], &, [ap,q], 6> +—

<o, éo{[z] < v}, [€], <o, &,7,6>>
(ap.prim) <[f,v,0], &, [ap,q], 6> — <[ap(f,v),d], &, 7, 6>
(ret) <[v,0], &, B, <00, £0,70,60> +— <[v,00], {0, 70, 60>

Here, following the conventions of work in semantics, we are using [e] to emphasize
that we are thinking of e as a data structure (in some suitable encoding). £([z])
is the value associated to the variable [z] by the environment ¢ and £o{[z] < v}
is the environment that associates v to [z] and is otherwise like £o.

To compute the value of an expression e in an environment £ the SECD
machine is started in the state <o, ¢, [e],0>. Computation proceeds by repeated
application of the transition rules. The computation returns the value v if a state
<wv, €,0,0> is reached.

Note that the structure of an SECD machine state amounts to using a stack to
implement a simple recursive definition of the value of an expression environment
pair. (See our discussion of Reynolds [1972] below.)

Landin [1965] extends AE to IAE (imperative applicative expressions) by
adding imperative computation primitives. The primitive of interest here is the
[in]famous “Landin J operator”. J(A(z)e) is a program point — it marks a point
in the execution of program. The value of a program point is a program closure
which contains the lambda-expression, the current environment, and the current
dump. Application of a program closure applies the lambda-closure part to the
argument and returns the value at the point where the program closure was made.
The rule for application of a program closure is

<[(J(A(z)e) | £0,60),v,0],&,]ap,7], 6> — <o, €o{[z] < v}, [e], 60>

IAE was used by Landin to interpret Algol60 programs and hence to provide a
simple and computationally meaningful semantics.
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Landin [1966] elaborates IAE, adding “syntactic sugar” which serves to iden-
tify additional important computational structures expressed by IAE. The result-
ing language is called Iswim (If you See What I Mean), which Landin presents as
a framework providing mechanisms for naming things (binding) and for defining
functional relations. The point is to reduce language design to a matter of choosing
primitive data and operations and choosing printed and physical representations.

The fact that in AE, the value of an application eo(e;) depends only on the
values of the component expressions and not on the computations described by
the component expressions suggests that there is an equivalence on expressions
satisfying laws analogous to those of the lambda calculus (and possibly additional
laws). Landin gives some axioms for equivalence of Iswim expressions. Some of
the axioms are “sugar elimination” axioms that serve to define the added syntactic
entities of Iswim in terms of IAE expressions. The more substantial axioms fall
into three categories: substitutivity, naming, and simplifications. Substitutivity
has to do with determining when a subexpression can be replaced by an equivalent
one without changing the equivalence class of the whole expression. For example

eo = €1 — eeo) = e(ey).

Naming has to do with what instances of beta conversion are allowed. In general
such conversions are restricted to AEs since they affect the order of evaluation of
expressions. Simplifications are equivalences related to primitive operations. For
example, axioms for properties of pairing and projection operations would fall in
this category as would axioms about distribution of application over a conditional
operator. No axioms for formation of abstraction are given. Neither are any
criteria for inequivalence given.

Remarks

The initial motivation given by Landin for developing the theory of applicative
expressions is analogous to (and derives from) Church’s motivation for developing
the lambda notation and the lambda calculus as stated in the introduction of
Church [1941]: “to analyze the concept of function as it appears in various branches
of mathematics”. Landin was working with languages for describing computations
to computers while Church was interested in understanding properties of functions
independent of their use in a particular context.

AE is a simple, elegant and powerful language. Landin presents expressions
and other objects as abstract data structures, using abstract syntax, and formu-
lates computation rules independently of the given data and primitive operations.
The function and argument positions in application expressions are treated sym-
metrically. The SECD abstract machine gives a simple interpretation of expres-
sions as rules for computation.
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Tn McCarthy [1963b] a similar separation of data and computation rules is
:nade. This formalism is limited to first-order functions and does not treat func-
tion or control abstractions. Systems of recursive definitions can be viewed as a
fragment of AE by assuming conditional to be among the primitive operations.

No dialect of Lisp provides meaning of programs independent of the S-expression
world; S-expressions are a fundamental part of Lisp. The main Lisp dialects eval-
uate the function position according to special rules — partly because Lisp was
originally conceived as as first-order language with lambda as a notational conve-
nience and partly for reasons of efficiency.

Landin’s environments and closures are data abstractions of the a-lists and
funargs of Lisp 1.5. Program points are more general and mathematically simpler
than the labeling and jumping mechanisms of Algol60 or catch and throw of
Maclisp. Environment descriptors of Interlisp provide capability of implementing
both closures and program points and Scheme continuations are equivalent to
program closures.

1.4.2. Information structures for modeling computation

Wegner [1971] proposed the use of information structures for modeling com-
putation. The idea is to characterize computations by the class of data structures
generated during computation and by the transformations acting on these struc-
tures. An information structure is a triple <I, Iy, F> where I is a set of data
structures, Io is the subset of I consisting of the initial state structures, and F is
a set of transformations on I.

Automata, digital computers, and programming languages can be modeled
uniformly using information structures. By modeling computation using informa-
tion structures one can reduce proving properties of programs to proving properties
of the underlying structures, or of equivalence classes of structures. This paradigm
also provides a framework for formal treatment of compiling since an important
aspect of a compiler correctness proof is proving equivalence of source and target
language interpreters.

Among the examples treated by Wegner are Algol60-like languages, the Bur-
roughs B6500 computer, and Snobol. He does not attempt to treat abstraction
and application as computation primitives.

An important example of the information structure approach is the Vienna
Definition Language (VDL) (Wegner [1972]). This is a programming language for
defining programming languages. The information structures are tree structures.
The leaves are called elementary objects and composite trees are finite sets of
selector tree pairs. Thus components of a composite tree are unordered and a
subtree in given by path which is a sequence of selectors.
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Programs are represented as trees — corresponding directly to the use of ab-
stract syntax to specify the syntax of a programming language (McCarthy [1963a]).
The semantics of a programming language is defined in terms of sequences of trans-
formations on computation states. The key component of a computation state is
the control tree. Transformations fall into two categories (i) macro instructions
and (ii) value returning instructions. A macro instruction causes a leaf of the con-
trol tree to be replaced by a subtree of instructions. No other component of the
computation state is affected. A value returning instruction deletes a leaf of the
control tree having an immediate value and propagates the value to predecessor
nodes. It may also affect other components of the computation state.

An important application of this approach to semantics is the development
of methods for proving equivalence of different representations of computation
state and rules for evaluation for a given language. An example is given proving
equivalence of two semantics for a simple block structured language. VDL is also
defined in VDL.

Remarks

Landin’s SECD machine can easily be formulated in the information structure
framework. The important feature is that the SECD structures are highlevel data
abstractions and naturally derived from the structure of expressions. The Interlisp
environment descriptors can also be thought of as information structures.

The information structure approach seems ideal for treating intensional prop-
erties of programs, but it does not seem to have been used for this purpose.

1.4.3. Call-by-value lambda calculus

Since applicative expressions are just terms of the lambda-calculus, the ques-
tion arises as to how the notions of value and evaluation compare to the notions
of reduction and normal form. In order to make meaningful comparisons it is nec-
essary to distinguish between two basic choices for evaluation rules. According to
the transition rules for the SECD machine, in order to evaluate eo(e;) the value of
e, is computed, then the value of eo is computed, then application is carried out (if
meaningful). The value of the argument must be computed even if it is not used
in computing the value of the application. Thus we say SECD machine evaluation
obeys the call-by-value evaluation rule. An alternative is to first evaluate eg and,
in the case that the value is a closure, substitute the argument expression for the
bound variable rather than evaluating it. This is a call-by-name evaluation rule.
Note that the function given by a lambda-expression using the call-by-name rule
may be defined for some arguments for which computation would not terminate
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using the call-by-value rule. The classical example (derived from Morris [1968]) is
the function defined recursively by

f(z,y) « if(z = 0,1, f(z - 1, f(z,v))).

If evaluated call-by-value f(0) = 1 and for n > O the computation of f(n) does
not terminate. If evaluated call-by-name f(n) = 1 for any natural number n. The
order and number of times that a subexpression is evaluated also depends on the
choice of evaluation rule. Thus in a language, such as IAE, with escape mechanisms
or in which evaluation of expressions may have “side-effects”, the value returned
will in general depend on the choice of evaluation rule.

We will focus on the results for the case of call-by-value evaluation. Plotkin
[1975] defines a call-by-value variant of the lambda calculus, Lambda-v. The
language of Lambda-v is a variant of AE using constant symbols rather than envi-
ronments. There is a constant symbol for each element of the given data domain
and for each primitive function. Thus for every expression-environment pair of
AE there is a corresponding closed term in the extended language obtained by
hereditarily substituting constant or operation symbols for variables bound to
data or primitive operations, and substituting closed lambda terms for variables
bound to closures. For any closed expression of the extended language, there is
an expression-environment pair of AE that corresponds to this expression. If two
expression-environment pairs of AE correspond to the same expression then they
have corresponding values (or both are undefined). Thus for closed e we say e eval-
uates to v if SECD computation of some corresponding expression-environment
pair returns a value corresponding to v. We say e is undefined if SECD computa-
tion of some corresponding expression-environment pair does not return a value.

A value ezpression is a variable, a constant, or an expression of the form
A(z)e. For simplicity, primitive functions are restricted to act only on data but
may return any closed value expression. The reduction rules for Lambda-v are the
usual rules for the lambda calculus (see Church [1941] or Barendregt [1981]) with
two exceptions: (i) the B rule which is replaced by the 8-v rule and (ii) a é-rule
added for primitive application.

(B-v) {A(z)e}es >y elZ, if e; is a value expression

() f(d) >, ap(f,d) if f is a primitive function symbol,
d is a data symbol and ap(f,d) is defined

=y is the symmetric closure of >,. An expression is in value normal form (VNF)
if it has no subexpression to which the (8-v) or (§) rule applies.

The key theorems for Lambda-v and values are




814 Applicative expressions 33

(Substitutivity) If eg =, €; and e is a value expression then eo|? =, €1]7

(Church-Rosser property) If e >, €0 and e >, e; then there is ez such that
€0 >y €2 and e; >y €2

(Evaluation) For closed e

(i) if e evaluates to v then e >, v

(ii) if e =, v’ for some value v’ then e evaluates to v for some value v
Some additional points of interest are

(Non-substitutivity) The value requirement for (Substitutivity) is necessary. A
counter example is eo = {A(z)A(z)z}z, €1 = A(z)z, and e = {A(z)z(z)} A (z)z(z).

(Non-Church-Rosser) If value is replaced by VNF in the $-v rule, the rules no
longer have the Church-Rosser property.

In addition to Lambda-v equivalence, Plotkin defines a natural notion of
equivalence of expressions called operational equsvalence. Intuitively, two expres-
sions are operationally equivalent iff one can replace the other in any closeed term
without changing the “meaning” of the term. More precisely, the operational

equivalence relation =~ is defined by ep = e; iff for any expression context C{...}
such that C{eo} and C{e;} are both closed, either (U) holds or (V) holds.

(U) Both C{eo} and C{e;} are undefined (SECD computation does not return a
value).

(V) There are closed values vg, v; such that C{eo} has value vop and C{e;} has
value v; and if either vg or v; is a data constant then vy = v;.

The relation between operational equivalence and Lambda-v equivalence is
(i) eo =, €; implies eg =~ €;

(ii) The converse of (i) does not hold. A(z)z(A(y)z(y)) is operationally equivalent
to A(z)z(z) but A(z)z(A(y)z(y)) =v» A(z)z(z) can not be derived using the
lambda rules.

I.4.4. Meta-programming

Morris [1970] (see also Reynolds [1972]) proposed using simple applicative
languages such as AE, which have comparatively well-understood semantics, to
define the semantics of more complex languages. This approach makes formal lan-
guage definition a (meta) programming activity — namely programming functions
that compute the meaning of program expressions. Morris outlined a number of
ideas about how this could be accomplished. For example, assuming that the given
primitive operations for AE include conditional and that the given data include
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data structures for expressions, closures, environments, and dumps the evaluation
function determined by the SECD transition rules can be directly described by
an AE program. Alternatively, using application and abstraction, objects of the
semantic domain such as closures, environments and program closures can be rep-
resented as AE functions rather than as data structures. To describe non-lexical
control sequencing constructs such as goto, escape mechanisms such as error ex-
its or catch and throw, or co-routine mechanisms, it is necessary to specify the
continuation of a computation at each point of a program. To define semantics of
languages with updating or non-lexical control, it is also necessary to insure that
evaluation is carried out in the proper order - to maintain control over control.

Reynolds [1972] studies definitional interpreters (programs defining semantic
meaning functions), taking both the defining and defined languages to be variants
of AE. An important question to consider is the affect of the semantics of the
defining language on the semantics implied for the defined language. For example
is the evaluation rule obeyed by the defined language affected by the choice of
evaluation rule for the defining language? Can the defined language be extended
with out major modification of the interpreter? The choice of control structure for
the interpreter is the key for these questions. Another question is what information
is gained about data structures needed to carry out computations. The choice of
semantic domains is important here.

Reynolds defines four interpreters, combining different choices of control struc-
ture and semantic domain. The choices for control structure are meta-circular (Mc)
(terminology due to Reynolds) and continuation-passing (Cp). A meta-circular in-
terpreter interprets constructs of the defined language by using the corresponding
construct of the defining language. This is analogous to the informal use of “and”
and “for all” to define the semantics of the logical connectives A and V. The com-
putation context built up in carrying out the defined computation is represented
by that built up in carrying out the defining computation. A continuation-passing
interpreter represents the context built up in carrying out the defined computa-
tion as an explicit parameter of the interpreter (the continuation). No context is
built up in the defining computation. The choices for representing objects of the
semantic domain are (ho) as functions defined by AEs — making the interpreter
higher-order, and (fo) as abstract data structures — making interpreter first-order.

The four interpreters are related by informal transformations illustrating the
passage from meta-circular to continuation-passing, passage from higher-order to
first-order, and passage from first-order to higher-order.

(Mc.ho) — (Mc.fo) — (Cp.fo) — (Cp.ho)

This provides useful insight into the relations and distinctions between the various
choices.
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To illustrate the issues discussed above we look in more detail at some of
the features of these interpreters. The application and lambda clauses for the
higher-order meta-circular interpreter (Mc.ho) satisfy

eval([eo(e1)], €) ~ {eval([eo], €)}eval([ei], €)
eval([A(z)e], &) ~ A(v)eval([e], é{[z] < v})

€ is an environment - here a function mapping (codes for) variables to values and
§{[z] < v} is the function given by A(a)if (a = [z],v, £(a))

A meta-circular interpreter is concise and elegant, but uninformative in that it
presumes the control constructs are already understood.! Since for a meta-circular
interpreter the meaning of application in the defined language is directly deter-
mined by that of the defined language, the rule obeyed by the defining language
is inherited by the defined language.

The interpreter (Cp.ho) is derived from (Mc.ho) by a transformation to con-
tinuation-passing style. The transformation introduces an additional parameter
which represents the remainder of the computation at each stage and unwinds
complex applications so that computation proceeds by construction of continua-
tions and applying them to results of basic computations guaranteed to terminate.
A continuation-passing interpreter provides a definition that is independent of the
evaluation rule obeyed by the defining language. The key observation is that the
value of an expression only depends on the evaluation rule if, in the course of
evaluation, an application expression is encountered in which evaluation of the
argument causes a function call that does not terminate.

Letting « stand for a continuation, the application and lambda-clauses for the
(Cp.ho) satisfy

eval([eo(e1)], &) ~ eval([eo], & A(f)eval([ea], €, A(v) f (v, 7))

eval([A(z)e], &,7) ~ v(A(v,v0)eval([e], é{[z] < v},70))

By replacing the higher-order objects in the semantic domain such as envi-
ronments, closures, and continuations by data structures, the higher-order inter-
preters can be transformed into first-order interpreters. One distinction between
first-order and higher-order is that higher-order avoids (ugly) details about the

1

The existence of a meta-circular interpreter is a kind of closure condition on the
computation primitives and underlying data domain. It means that the data structure
is adequate to encode the syntax and the control structure is adequate to describe the
computations without further encoding of information as data.
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*4a structures (defining constructors, selectors, ...). Of course, defining a first-
order interpreter gives more information about the data structures generated in
the process of carrying out a computation — precisely those ugly details about
constructors, selectors, ...— and provides a basis for representing intensional prop-
erties.

(Cp.fo), the first-order continuation-passing interpreter, naturally determines
a machine analogous to the SECD machine. Cp-machine states are the argument
triples <[e], £&,7> of (Cp.fo). The clauses in the definition of (Cp.fo) correspond
directly to transition rules. Thus a (Cp.fo) style interpreter is very close to the
information structure approach of modeling computation.

A continuation-passing interpreter is readily extended to imperative con-
structs such as assignment and escape or labeling mechanisms. This is illustrated
by adding expressions escape(z)e to the defined language. Escape expressions are
the natural analog of Landin’s J for the Cp machine. To evaluate escape(z)e the
escape function corresponding to the current continuation is bound to z and eval-
uation of e is carried out in the extended environment. When the escape function
corresponding to a continuation « is applied to a value and another continuation
~o, computation proceeds by returning the value to 4. Thus escaping from the
context 7o to 4. The (Cp.ho) clause for evaluating an escape expression satisfies

eval([escape(z)e], £,7) ~ eval([e], £{[z] < A(v,v0)7(v)},7)

In order to obtain meta-circular a definition of the language with escape added,
it is necessary to extend the defining language as well.

1.4.5. Scott-Strachey semantics

“Scott-Strachey” semantics is a method for defining semantic meaning func-
tions for arbitrary languages based on giving domain equations for syntactic and
semantic domains and giving semantic equations, expressed in an AE-like lan-
guage, for meaning functions. An important goal guiding the choice of seman-
tic domains is that semantic meaning functions should be compositional. That
is, the meaning of an expression should be determined by the meanings of its
sub-expressions, and should not depend on the context in which it is contained.
Wadsworth independently developed similar ideas to those of Morris for handling
non-local jumps using continuations and these ideas were applied by Strachey and
Wadsworth [1974] to extend the basic Scott-Strachey methods.

Typically, in the Scott-Strachey approach, the semantics of the defining lan-
guage is given by interpreting lambda expressions in extensional models' (Scott
models) constructed by solving domain equations using structures that are com-
plete partial orders. The solutions to the semantic equations are functions in the
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extensional sense of being determined by their graph. Higher order interpreters
such as (Mc.ho) or (Cp.ho) will thus assign extensional denotations to higher order
objects of the defined language. First order interpreters such as (Mc.fo) or (Cp.fo)
will however assign “codes” as denotations to higher order objects of the defined
language. By suitable choice of semantic domains, the Scott-Strachey methods
could be used to interpret programs by transitions on information structures in
the sense of Wegner, although we are not aware that this has in fact been done.

In contrast, if the defining language AE is interpreted by the SECD machine,
the functions given by lambda expressions are functions in the intensional sense
of being rules for computation. One can infer equivalence relations for defined
expressions from lambda-v equivalence or operational equivalence relations for
AE.

Scott models will be discussed further in §5. The basics of the Scott-Strachey
approach can be found in Milne and Strachey [1976]. For a presentation of domain
theory (solving domain equations in complete partial orders) we recommend notes
of Plotkin [1978].

1.4.6. More about continuation-passing

The transformation to continuation-passing style can be carried out quite
generally. Using the formulation of AE in terms of purely syntactic expressions
plus environments for interpreting symbols, such transformations can be defined
in a manner independent of the choice of basic data and primitive operations. A
continuation-passing fragment of AE is the image of such a transformation. It has
a number of interesting properties —

(i) the argument component of an application is a primitive expression — a symbol
or a primitive function applied to a list of symbols

(ii) no intermediate values are returned — computation proceeds by constructing
continuations and applying continuations to intermediate results obtained by
evaluation of primitive expressions

(iii) no external state is built up during computation — all information about the
computation state is represented explicitly

We have seen how (i) and (iii) are used to insure that interpreters give defini-
tions independent of the evaluation rule obeyed by the defining language and for
interpreting control abstractions such as program points or escape expressions.

Fischer [1972] used property (ii) to show that any applicative expression can
be transformed to an expression that defines the same function on the data domain,
but which forces the dynamic scope of variable binding to extend over the dynamic
lifetime of any closures generated. Thus a program using functions as values only
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as intermediates can be transformed to one which will behave correctly in systems
such as Maclisp where funarg objects can not be passed out of their dynamic scope.
Fischer proves the following relation between programs and their transformations.

(iv) If p is a program that defines a function on data, p' is the transformation of
p to continuation-passing style, and Id is the identity continuation then for
any continuation ¢ and any element d of the data domain

p'(d,c) ~ c(p(d))  hence  p'(d,Id) ~ p(d).

The Rabbit compiler for Scheme (Steele {1978]) uses a transformation to con-
tinuation-passing style as its core. The point here is that the continuation-passing
fragment can be viewed as an abstract machine represented in the original lan-
guage. The advantage is that the same tools for analysis and optimization can
be used at both ends of compiling process, and compiled code can be directly
interpreted with no added fuss.

I1.5. Applicative structures

1.5.1. Recursion theory

Recursion theory has its roots in the work of Peano and Dedekind and their
studies of the natural numbers and of the definition of functions by induction on
numbers, i.e. by primitive recursion. The goal of early work in recursion theory
was to characterize the class of functions, say on natural numbers, computable by
algorithms. This gave rise to a number of equivalent notions including lambda-
definability (Kleene [1936a], equation calculi (Godel [1934], Kleene [1936b]), and
Turing machines (Turing [1936]). Later work in recursion theory has focused
attention on the presentations and on the structure of classes of functions. Some
of the means of presenting such classes are

(i) equation calculi — using expressions and rules for deducing equations from
systems of defining equations (see Kleene [1952], McCarthy [1963b])

(ii) schemata (comprehension principles) for introducing functions — the schemata
serve as rules for generating a class of functions from a given set of basic
functions (see Kleene [1952] and [1959])

(iii) inductive definability — a class of function(als) given as fixed points of a system
of monotone functionals (see Platek [1966], Kechris and Moschovakis [1977],
Feferman [1977], Moschovakis [1984])
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(iv) invariant definability — for example functions given as solutions to systems of
equations (not the same as (i), which also involves rules for deduction, see
Grzegorczyk, Mostowski and Ryll-Nardzewski [1959])

Of particular interest in the study of the structure of classes of functions
was the study of hierarchies of functions and predicates over the natural numbers.
Additional notions include relative recursion — one function being computable from
another (an oracle), degrees — equivalence classes of functions each computable
from the other, and recursion at higher types. From this work came tools for
studying the fine structure of mathematics and for measuring the strength of
formal systems according to the complexity of functions that can be defined.

The scope of recursion theory has been extended to consider recursion over
structures other than the natural numbers - for example recursion on ordinals and
recursion over arbitrary abstract structures. Principal objectives of this work are
to look for abstractions and axiomatic characterizations of fundamental features of
the class of partial recursive functions on natural numbers and to find meaningful
abstract versions of Church’s thesis.

To present the main ideas and results from recursion theory relevant to Rum,
we introduce informally notions of a recursion theory and a computation theory.
A recursion theory on a domain C is a class F of partial functions and functionals
on C satisfying certain closure conditions such as closure under explicit definition,
definition by cases, fixing of parameters (S theorem), and recursion. The follow-
ing are versions of the S and recursion theorems, which are the key theorems
for our purpose. (The subscript Rt is to distinguish these theorems from the cor-
responding theorems for a computation theory which are labeled by the subscript
Ct.)

e (S theorem)g: If ¢ is an m+n-ary function in F and ¢y, ..., ¢, are elements
of C then A(y1,...,Yn)®(¢1,-++16m,¥1,--.,¥Yn) is an n-ary function in F.

o (Recursion theorem)g: If ®(f,z1,...,2n) is a functional in F with n-ary
function parameter f and ® is monotone in f then the least fixed point
of & with respect to f is in F. ®° satisfies

P =3(®*°) and ¢ =%(¢) » <L ¢.

C denotes the usual partial ordering on partial functions, i.e. the subset order-
ing the graphs. In general the functional ® may have function and individual
parameters not shown above. These parameters will also be parameters of
the least fixed point ®°°.

The partial recursive functions and functionals on natural numbers (see Kleene
[1952], chapter XXII) are perhaps the simplest example of a recursion theory. The
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notion of a suitable class of functionals defined by Kechris and Moschovakis {1977]
or that of a precomputation theory (see Fenstad [1980], Definition 1.1.10) are typical
examples of closure conditions for recursion theories. Recursion theories are often
defined as the least class of functionals containing some base set and closed under
certain operations. The I- recursive functionals for suitable I defined in Kechris
and Moschovakis [1977] and the theories of hereditarily consistent functionals given
by Platek [1966] are examples of such recursion theories. An example of I- recur-
sive functionals of particular interest for computing is given in Moschovakis [1984]
(see §VIIL.3).

A computation theory over a domain C is a set F of codes describing compu-
tations on C together with a ternary application relation {f}(z1,...,2z,) ~ 2z on
F x C* x C, and a well-founded partial ordering < on tuples of the application re-
lation. C* is the set of finite sequence from C and {f}(z1,...,Zn) ~ z means that
the computation coded by f applied to the sequence z,...,Z, returns z.! The
ordering provides information about the structure of the described computations
and is typically induced by a rank function that measures the size of the computa-
tions by assigning ordinals to tuples of the application relation. The class of codes
for a computation theory must also satisfy certain closure conditions analogous to
those for a recursion theory. The following are versions of the S* and recursion
theorems for computation theories.

» (S theorem)c: For each m,n, there is a computable function S such that
for each f € F and z1,...,Zm,¥Y1,---,Yn € C*:

S™(f,215. . Zm) € F,
{SrT(f,zla""zm)}(yla""yn) ~Z e {f}(zl,---,zm,yl,---,yn) ~ z.

and

({fHz1s- oy Zms¥1seeos¥n) ~2) < ({ST(frZ1s- oo sZm)HY1s o Yn) ~ 2)

« (Recursion theorem)c; There is a computable function R such that for f € F
and z;,...,z, € C*

R(f) € F,
{R(HHz1,---,zn) ~2 & {fHR(f),z1,--.,Tn) ~ 2

and

({F}(B(f),215---,2n) ~ 2) < ({R()Hz15.- ., 20) ~ 2)

! Here we are using braces to denote the function computed by a code following Kleene.
We will call these “Kleene braces”. This is in contrast to our usual convention of using
braces simply for grouping. Context will make it make it clear which usage is intended.
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By a suitable encoding of the presentation, many recursion theories are read-
ily transformed into computation theories. For example, the partial recursive
functions and functionals on natural numbers become a computation theory by
assigning Goédel numbers to schemata describing functions and using the natu-
ral partial ordering implicit in the inductive definition of the function described
by the schemata. Prime and search computability over an abstract structure
(Moschovakis [1969], see also below) are examples of computations theories.

A further important theorem in recursion theory is the normal form theorem.
This theorem says that each computable function can be computed by iterating
some function from an “elementary” class of functions (with additional elementary
operations allowed at the beginning and end of the computation.) One version
of this theorem is based on the Kleene T-predicate for partial recursive number
functions (Kleene [1952]).

«» (Normal Form theorem) There is a primitive recursive function U and for each
n a primitive recursive predicate T, such that for each n-ary partial recursive
function ¢ there is number e such that

¢($1,... szn) ~Z & U(u(y)Tn(e’zl""azn’y)) ~z

Here u is the least number operator ~ for any predicate ¥, u(y)¥(y) is least y
such that ¥(y) and u(y)¥(y) is undefined if no such y exists. The proof of the
normal form theorem is based on the notion of stepwise generation of a com-
putation structure which when complete gives the value computed. For example
T.(e,z1,...,Zn,y) says that y codes a completed computation of {e}(z1,...,Zp) ~
z for some z. For such y, U extracts the value, U(y) = 2. The normal form the-
orem is related to the conversion of recursion to iteration-plus-stack (y playing
the role of stack) and hence to the process of compiling. It says that “machine
computations” are represented by a fragment of the given theory in such a way
that all computations of the theory are represented in that fragment.

An important application of recursion theory is the notion of realizability (see
Kleene [1952], §82). This notion was introduced in order to prove a conjecture
that if a closed formula of arithmetic (Vz)(3y)A(z,y) is intuitionistically provable,
say in Heyting arithmetic, then there is a general recursive function ¢ such that
(Vz) A(z, #(y)). The proof of the conjecture shows how to obtain a numeric code for
¢ from a proof of (Vz)(Jy)A(z,y). The code is called a realization of the formula
(Vz)(3y)A(z,y). This was the first of many methods developed for extracting
‘programs’ from proofs.
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Remarks.

e Many of the key ideas in basic recursion theory are due to Kleene. These
include the above theorems, the generalization from total to partial functions, rep-
resentation of the process of computation as one of generating computation trees,
the idea of coding computation structures as data, and the notion of realizability.

e Our formulation of a computation theory is based on that of Moschovakis
[1971] (see also Fenstad [1980]). The notion of a recursion theory is a “code-free”
or extensional version of this notion. A computation theory also determines a class
of computable functions which constitute a recursion theory.

o The S theorem for a computation theory captures the essential aspect of
returning functions as values. It corresponds closely to closure formation a la
Landin (§4). One can think of closure formation as a direct implementation of the
S theorem. ’

o The recursion theorem stated for a recursive function theory is essentially
Kleene’s first recursion theorem (Kleene [1952] Theorem XXVI) while the version
stated for a computation theory corresponds to Kleene’s second recursion theorem
(Kleene [1952] Theorem XXVII). The distinction is that first recursion theorem
concerns functions as fixed points of computable functionals while the second re-
cursion theorem concerns codes describing functions and solutions to equations
expressed in terms of the application relation. In general “minimality” is not a
meaningful notion for codes. Our version of the second recursion theorem is some-
what stronger than is usually stated, although in practice it is often the version
that is proved.

For references to original papers and a history of the development of the main
ideas of recursion theory see Kleene [1979]. For further reading we recommend
Kleene [1952], Fenstad [1980], and the section on recursion theory in Barwise
[1977].

1.5.2. Recursion on abstract structures

Moschovakis [1969] develops a recursion theory constructed uniformly over a
given structure (B, @) with given domain B and given functions ¢. The compu-
tation domain B* is obtained from the B by adding a new element (called 0) and
closing under pairing.? 0* denotes the subset of B* generated from 0. Numbers are

2 The * in B*, following the notation of Moschovakis, is not to be confused with our
normal use as in C* to denote sequences from C.
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represented as elements of 0*. A computable function is assigned to each element
of B* by an inductive definition of the application relation

{e}(z1,...,2n) ~ 2.

As in our description of a computation theory, {e}(z1,...,Zn) ~ 2 means that the
value of the function coded by e at the sequence z;,...,z, is z. There are seven
rules that generate the functions on B* primitive recursive in ¢. The remaining
(8th) rule is that of reflection

{eHz1y.--rZn) ~2 = {<8n+m+1,n>}e,T1,...sZn,Y15---3Ym) ~ 2

which provides for the interpretation of an argument as a code and is the key to
describing general recursions. The class of functions computed in this theory are
called the prime computable functions over the given structure (B, ¢).

Closure under composition, substitution, and projections and the S]* and
recursion theorems are proved by giving codes for the corresponding functionals
as functions of codes for the parameter functions. Although arbitrary elements of
B* may appear in codes the ‘control’ information is coded using only elements of
0* and equality of the control parts of codes is computable.

The presentation of this theory provides not only a recursion theory, but
also a computation theory. The inductive definition of the application relation
naturally determines a set of codes that describe computations. In addition a sub-
computation relation, a tree structure for computations and a process for carrying
out computations can be derived from the inductive definition of the application
relation.

The Moschovakis theory as presented, is not adequate for a theory of sym-
bolic computation. The principal difficulties are the choice of basic computation
primitives, and the ability (in fact necessity) to use operations on codes to describe
computations. More precisely

» the representation of codes as “Godel” numbers in 0* introduces irrelevant
detail. It is the operations constructing codes that are important for defining
the application relation and for defining operations on codes.

» computation is described in terms of codes for functions rather than being
given in terms of expressions and environments.

« the choice of codes and computation primitives does not allow extensional
(code independent) representation of function abstraction or of control struc-
tures such as combinators, iterators, loops, etc.

» this theory cannot admit general meaning preserving operations since in par-
ticular equality of the control parts of codes is computable.
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To illustrate the final point, suppose ¢ is a code and ’ is a transformation such
tnat ¢’ computes the same function as ¢. Suppose further that

0 ife=c¢ 0 ife=¢'

{f}(e,z)~{1 foze ond {f’}(e’z%{l ife s o,

Then the function computed by f is not preserved by the transformation ’.

Remarks

e The class of functions defined by systems of recursion equations over a given
data structure (McCarthy [1963b], see §2) and AE (Landin [1964), §4) are also re-
cursion theories over abstract structures. The recursion theoretic aspects of these
formulations were not developed as the interest was in applications to program-
ming, programming language semantics and proving properties of programs.

e Moschovakis [1984] (see §VIIL.3) presents a recursion theory over abstract
structures in which both recursion theoretic and computation theoretic aspects
are developed.

1.5.3. Extensional models of the lambda calculus

There are now well-developed methods of constructing mathematical models
of the lambda calculus. The basic ideas derive from work of Scott. (See Barendregt
[1981] chapter 18 for details and references). The general construction can be
expressed quite simply in terms of complete partial orderings (c.p.o.s). Fix a
c.p.o. <D,C> with domain D and partial ordering C. Then D has a unique least
element L (bottom) and if X is a non-empty directed subset of D (every pair of
elements of X have an upper bound in X) then X has a least upper bound UX
in D. We read do C d; as dg is less defined than d;. There is a natural topology
on D derived from the partial ordering such that continuous functions are those
which preserve least upper bounds of directed subsets — f(UX) = Lf(X). Let D’
be the space of continuous functions on D. A key fact is that each f in D’ has
a least fixed point fix(f) in D. (fix is in fact continuous.) To define a model of
the lambda calculus it is sufficient to define a continuous function fun from D to
D’ and a continuous function graph from D’ to D such that fun(graph(f)) = f.
fun interprets element of D as codes of continuous functions and graph assigns
to each continuous function a code in D that computes it. Thus there is a natural
binary application operation on D given by do o d; = {fun(do)}(d;1). Using the
graph and fun functions the applicative structure <D, o> can be considered as
a model of the lambda calculus. If it is also the case that graph(fun(d)) = d
then the model is extensional — two elements code the same function iff they are
identical.
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Two important examples are the Do, model (due to Scott) and the graph
model Pw (due independently to Plotkin and Scott). For the graph model D
is the power set of the set of natural numbers Pw partially ordered by subset
inclusion. This model also satisfies d C graph(fun(d)) and thus two elements in
the image of graph code the same function only if they are equal.

The use of the graph model to provide semantics for AE-like languages is
worked out in detail in Scott [1976]. A language LAMBDA is defined for de-
scribing computable functions on D.3 Each LAMBDA expression e is given an
interpretation as an element in D for each assignment of the free variables in e
to elements of D. Many equations and theorems about LAMBDA computable
functions are proved. In addition to the usual laws of the lambda calculus the
laws of extensionality (¢) and (£*) hold in this model.

(€) (Vz)(eo = e1) — A(z)eo = A(z)ey
and
(€) (Vz)(eo T €1) — A(z)eo T Az)es.

The closure conditions for recursion theories are realized by LAMBDA computable
functionals in a uniform manner. The recursion theorem in this model says that the
combinator Y computes the least fixed point on graphs of continuous functionals.

(Y .fix) f € F A d=graph(f) — Y(d) = fix(f)

Extensionality provides an important principle for proving LAMBDA equations
and the recursion theorem provides an induction principle for proving properties
of LAMBDA computable functions.

The graph model provides a rich equational theory for LAMBDA, however it
does not provide an interpretation of expressions as descriptions of computation,
and the only equivalence relation is the (fully extensional) equivalence of equality
as functions.

3 LAMBDA is AE with numbers, the arithmetic operations <+1, —1> and a conditional
operation as the given primitives.
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1.5.4. Non-extensional theories of partial operations

Feferman [1975] describes the construction of a theory T of partial opera-
tions from a given theory T containing a minimal amount of coding power. Here
“theory” means a language L, (constant, function, and relation symbols), a seman-
tics (logical operations and their interpretation in a class of models - for example
first-order logic), and a set of axioms. The goal of this work was to find “conser-
vative extensions” of standard theories in which to formalize fragments of current
mathematics, and in particular to provide natural means of defining the required
functions and classes without introducing unneeded power. The key problems
have to do with extensionality (abandoned by Feferman), and the ability to define
function classes and power classes. The idea of the construction is to add a new
ternary relation symbol ~ to L (for partial function application) and use the cod-
ing power to represent function descriptions as codes. Axioms characterizing the
application relation are added to the initial set of axioms. The unicity axiom (U)
for ~

(U) flz) ~yo A f(Z) ~y1 = Yo=mn

expresses that the application relation is a partial function. A function com-
prehension principle (Co) is added for each formula ® monotonic in ~.4 (Cg)
characterizes the function defined by ®.

(Vz1,... ,zn)((af)(A(I)L(y)Q(:c,y,zl,. ces2n) ~ f)A
(Cs) (Vz)(3ly)®(z,y,21,.--520) — (Fy)fz ~yA
(Vz,y)(fz ~y — ®(z,9,21,...,2n)))

Here it is assumed that the free variables of ® are among {z,y, z1,-..,2n}.
(y)®(z,y,215- .-+ 2n)
is read “the y such that ®(z,y,21,...,2s)".
Az1y- -5 20) M) (¥)®(2, ¥, 21, .-, 2n)

denotes the closed term encoding the formula @, with the list (z,y,21,...,2n)
fixing an order for the free variables of ®.

A2Zit1s- -+ 2n) M) (¥) @ (2, ¥, 21,5- - 5 2Zn)

4 & is monotonic in ~ means that in any model, the set of elements satisfying ® is a
monotonic function of the interpretation of ~.
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abbreviates

{A(z15.. 4, 20)A(2)e(¥) @ (2, ¥, 21, - - - s 20) HZ15 - - - 5 25)

To prove that Tisa conservative extension of T, Feferman gives a method
for constructing a model of T from each model of T. Partial instantiations are
interpreted by closure like objects. If fg is the interpretation of the term

Az1se s 2n)A(Z)e(y)@(2, 5 215+ - 5 20)

and a; interprets z; then the tuple <fg,a1,...,a;> is the interpretation of

AMZit1s- o5 20)A(2)e(¥) B (2,9, 215 - - -, 20).

Monotonicity of @ allows successive approximations of ~ to be constructed begin-
ning with triples << fg,a1,...,a,>,a,b> such that & has no occurrences of ~
and ®(a,b,a,,...,a,) holds. The extended model is the limit of these approxima-
tions (iterated along the ordinals). The usual combinators k, s are definable and a
recursion theorem is provable in the extended theory. Thus the extended theory
naturally provides the functions lambda-definable from the given functions.

In contrast to Scott’s models, there is for T a non-extensionality theorem.
Namely, it is inconsistent to assert that any two terms that code the same total
function are equal.

(non.ext) T+ “(Vf,9)(Tot(f) A fg — f=g)

where Tot(f) abbreviates (Vz)(3y)(fz ~ y), expressing that f codes a total func-
tion and f = g abbreviates (Vz,y)(fz ~ y « gz ~ y) expressing that f and g code
the same function. Although extensionality and the notion of least fixed point are
lost, the expressive power of classical logic (in particular negation) is maintained.
Also, Feferman shows how to form further extensions providing a form of inductive
definitions and notions of partial class, thus further enriching the theory for the
purpose of formalizing parts of mathematics.

Leaving out the requirement of extensionality makes a conservative exten- -
sion within the usual logical framework possible. However, no positive use of
intensionality is made. Indeed, in ordinary mathematical practice, (the intended
application) one is rarely if ever interested in the manner in which a function is
computed, but rather in being able to prove properties relating argument-value
pairs and in defining additional functions having given properties.

In Feferman’s recursion theory it is possible to test for equality of codes.
This is a key point in the proof of (non.ext) and for our purpose a principal
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difficulty with this formulation. The other key point in the proof is the uniform
parameterization of descriptions - the direct implementation of the S)* theorem.
The proof shows that these two features combined other minimal requirements
are incompatible with extensionality. Note that the Moschovakis construction of a
recursion theory over an abstract structure has the two essential features required
for the non-extensionality theorem.

1.6. Towards a theory of symbolic computation

1.6.1. Summary

In this chapter we have examined a variety of aspects of symbolic computa-
tion, including the use of symbolic expressions to describe computation, the use of
functional and control abstractions as programming tools, and the use of program
transformations as a tool for constructing and reasoning about programs. In ad-
dition we discussed a variety of interpretations and applications of the language
AE and key properties of structures modeling application and abstraction.

« Many of the programming examples can be directly expressed as AE programs
and there is a rich literature on programming in languages like AE and its
extensions.

» Program transformations were used informally to obtain definitional inter-
preters with alternative control structures and alternative semantic domains.
Systems of formal transformation rules were used to derive programs with
improved efficiency. Operations transforming intensional properties into ex-
tensional properties were used to analyze efficiency improving transformations
and to represent other intensional properties of programs.

« Expressions of the language AE were interpreted as describing computa-
tions (Landin’s SECD machine), as the language for an equational calculus
(Plotkin’s lambda-v calculus), and as defining functions (the graph model).
Each of these interpretations provides a natural equivalence relation on ex-
pressions, addressing the general question of when it is meaningful to call two
expressions the same. Operational equivalence (Plotkin) means being inter-
changeable in any program context without changing the operational meaning
of the resulting program (as given by the SECD machine). Lambda-v equiv-
alence means provably equivalent in the lambda-v calculus. Denotational
equivalence means having the same denotation in the graph model.

= Two important fragments of AE were presented. One is the first-order frag-
ment in which programs are given by systems of recursion equations and can
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be directly interpreted as partial recursive functions on the given data struc-
ture. The second is the continuation-passing fragment in which control is
made explicit and which can be viewed as representing an abstract machine.

» The use of AE as a meta-programming language to define semantic meaning
functions for general programming languages was also discussed. This includes
Scott-Strachey semantics, extensions based on ideas of Morris and Wadsworth
and Reynold’s definitional interpreters.

» Recursion theories over abstract structures (Moschovakis) and theories of
partial functions and classes (Feferman) illustrate methods for uniform con-
structions of applicative structures over given abstract structures or theories.
The construction of recursion theories serves as a paradigm for construc-
tion of structures with computational content as well. The proof of the non-
extensionality theorem for theories of partial functions and classes identifies
problematic combinations of requirements for such structures — in particular
the conflict between extensionality and the general ability to test for equality.

1.6.2. Symbolic computation systems

The reader may by now have accused us of “arguing from both sides of the
mouth”. On the one side we have said that two important features of Lisp are that
programs are represented as data structures and that it is easy to write programs
that operate on other programs. On the other side we have criticized recursion
theories such as those of Moschovakis and Feferman for providing such capability.

The time has come to resolve this apparent inconsistency. In an underlying
model of computation it is important to maintain the separation of the meaning
of expressions from their representation as data and from the meaning given to
the data operations. We call this separation of control and data. This separa-
tion is a form of abstraction that allows us to formulate and prove properties of
programs and to define and study general operations on programs in a manner in-
dependent of the underlying data structure and of the representation of programs.
Separation of control and data is also crucial for the purpose of defining mean-
ingful equivalence relations on expressions and for defining transformations that
preserve such equivalences. In contrast to a mathematical model of computation,
a symbolic computation system such as Lisp is a dynamic, interactive system. It
is essential for such a system to provide a mechanism for dynamic extension and
tools for system building. This means being able to “discuss” the data structures
used to represent computation and to “use” these structures within the same for-
malism. Thus programs and other components of the computation state must be
represented as data.
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In order to make clear the context in which the work on Rum is to be viewed
znd to show how we can have our cake and eat it too, we propose the notion of a
symbolic computation system. The main components of such a system are:

« an underlying model of computation providing

a computation domain

symbolic descriptions of computation

structures for representing computations

rules for carrying out computations;

« an encoding of the model in a computation theory over a data structure (such
as the S-expressions) so that

— objects of the model are represented as data

— operations and rules for computation are represented by computable func-
tions; and

» reflection principles that provide for
— conversion of computation state and descriptions into data

- conversion of data into computation state and descriptions.

1.6.3. Goals

Rum is a step towards the goals for a mathematical theory of computation
given by McCarthy [1963b]. The main goal of Rum is to provide an intensional,
computationally meaningful interpretation of applicative expressions without pro-
hibiting an extensional interpretation, and further to derive extensional interpre-
tations from the basic computational interpretation. We want to represent proper-
ties of programs ranging from details of the computations described to properties
of the functions computed; to represent naturally a variety of styles of program-
ming; and to build on and extend existing work in logic, semantics, and program
transformations. The main application is to express and prove properties of par-
ticular programs and classes of programs (functionals) and to study mathematical
properties of computation mechanisms. The point is to provide tools both for pro-
gramming and for the design of programming systems. These are rather different
goals than those of work in logic establishing theories to account for mathematical
practice. To make the distinction clearer the following summary compares and
contrasts some of the general goals for work in foundations of mathematics and
computing.
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Goals for foundations of mathematics

« to account for practice — to provide precise definitions of informal concepts so
that formal proofs can be carried out

. » to isolate underlying principles for definition and proof and to determine what
principles are needed for what parts of mathematics

» to isolate the proof theoretic strength of various fragments of mathematics

Goals for foundations of computing

» to account for practice — to provide precise definitions of informal concepts so
that formal proofs can be carried out

» to improve practice — having a clear mathematical theory is important for
making design decisions at all levels.

~ an understanding of the mathematical properties of computation mecha-
nisms and of operations combining various mechanisms is a valuable tool

for writing, debugging, and verifying programs.

— an understanding of the mathematical consequences of combinations of
computation mechanisms and of choices of computation structures and
their representation is important for the design and implementation of
programming systems.

1.6.4. About Rum

Rum provides a model of the applicative aspects of computation over gener-
alized algebraic data structures. Thus it is (a fragment of) an underlying model
of computation for a symbolic computation system. Implicit in the presentation
of Rum is a natural encoding in the S-expression data structure. Addition of
reflection principles will be discussed in §VIII.4.

1.6.4.1. Building on existing work

Rum is a further development of the work started by Landin [1964,1965,1966).

- The basic approach is to view computation as a process of generating structures
such as computation trees or sequences. This is a variation on the information

structure approach of Wegner [1971]. The language for describing computation is

- AE extended by primitives for conditional and manipulation of sequences. Like
AE, definitions are parameterized uniformly by a given data structure. The syntac-

tic and semantic domains are abstract algebraic structures similar to those used by

Reynolds [1972] for the first-order definitional interpreters. The difference is that

computation rules are interpreted as rules for generating computation structures

rather than as simply defining an evaluation relation. We go beyond existing work
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in developing mathematical properties of computations and proving properties of
programs.

Rum is a “code-free” computation theory thus combining the extensional ad-
vantages of a recursion theory and the intensional advantages of a computation
theory. In this light, Rum can be seen as a modification and elaboration of the
construction of recursion theories over abstract structures given by Moschovakis
[1969]. The main modifications are

— construction of B* is replaced by construction of an abstract algebraic struc-
ture with purely syntactic entities (expressions & la AE). Values are con-
structed uniformly from the expressions and the data and operations of the
given abstract structure.

— reflection is replaced by abstraction (closure formation) and application

— operations on codes are not provided as computation primitives - they are no
longer needed

— the inductive definition of an application relation is replaced by a set of com-
putation rules that serve as rules for generating computation trees and to
present the definition of an evaluation relation defining the value of an ex-
pression in an environment

The induction principle and equations of Scott are obtained by defining an
approximation relation on the computation domain, derived from the evaluation
relation, which has the essential properties of C.

1.6.4.2. The multitude of basic notions

The broad scope of Rum is essential for achieving the basic goals of a math-
ematical theory of computation. This entails developing a more complex theory
than required for typical logical applications. In particular there are a variety of
basic notions. (Even so Rum has a small number of primitives compared to prac-
tical programming systems!) Below we indicate briefly the main notions and the
need for introducing them in accordance with the goals outlined above. Further re-

marks about our choice of basic notions will be found throughout the presentation
and also in §VIIL.2.

There are both syntactic and semantic domains in the Rum world. The se-
mantic domains include both the computation domain and computation struc-
tures. The syntactic domain (forms) provides the ability to treat programs as
data (objects to operate on) by providing primitive operations that characterize
the structure of programs and from which general operations can be defined. Se-
mantic domains are needed in order to assign meanings to programs. Having both
a syntactic domain and a variety of semantic domains is needed in order to define
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operations on programs such as compiling, transforming, deriving, and construct-
ing; to talk about the effects of these operations on the computations described;
and to say what is changed and what is preserved.

The computation domain provides the basic objects used to assign operational
and extensional meanings to programs. It contains data and operations from the
given data structure, function abstractions (pfns), and control abstractions {con-
tinuations). Function and control abstractions are needed to represent naturally
the variety of computation mechanisms that we wish to treat. Function and con-
trol abstractions are distinct from data. This provides the necessary separation of
control and data that allows both intensional and extensional interpretations of
programs. (Clearly, one does not want to prohibit the testing of equality between
data items.)

There are three central notions for assigning intensional meaning to programs:
descriptions, computation rules, and computation structures. Descriptions corre-
spond to programs plus input. They are finite objects that contain information
about how a particular computation is to be carried out. Computation is car-
ried out by generating computation structures according to the computation rules.
These structures provide the intensional interpretation of programs. Computation
structures may be infinite, since computations may not terminate.

There are two basic computation structures — trees and sequences. Tree-
structured computation provides for natural treatment of context independent
computation mechanisms. Sequential computation provides for treatment of mech-
anisms such as escape and co-routining. Although sequential computations contain
the tree-structured computations as a subset, it is important to develop the tree
structured fragment separately. The latter has a much simpler and richer math-
ematical theory. Furthermore, context dependence in sequential computations is
often localized and such computations can be treated essentially as tree-structured
computations.

The computation rules are also interpreted as definitions of computation re-
lations on descriptions. These relations provide a means of expressing extensional
properties and of proving extensional properties by operational reasoning.
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Chapter II.  An illustrated introduction to Rum

This chapter is an informal introduction to Rum. The main concepts are il-
lustrated by simple examples based on the problem of computing the product of
numbers occurring at the leaves of a number tree. We begin with a recursive defi-
nition of the tree product function and then consider the problem of describing the
computation in such a way that if a zero is encountered, it is returned as the value
immediately without processing the remainder of the number tree. The examples
illustrate the use of functional and control abstractions to describe computation;
the process of generating computation trees and sequences; and properties of com-
putations that can be read off completed computation structures or derived from
the rules for generating computation structures. Equations satisfied by function
and control abstractions are illustrated and we show how program transformation
methods can be applied in situations where computations involve the generation
and application of functional and control abstractions.

Rum notation will be used informally to present the examples with enough
explanation, we hope, so that the reader can understand the particular cases, and
also get some idea of the general concepts. Formal definitions will be given in the
following chapters.

First a brief tour of the objects in the Rum world. A data domain and data
operations are assumed given. Programs are expressions called forms. They are
generated by constructions corresponding to the computation primitives in much
the same way that well-formed formulas are generated by constructions corre-
sponding to logical connectives. There are computation rules for each compu-
tation primitive (like deduction rules). To describe a particular computation, a
form is closed in an environment that binds values to the free symbols. We call
this closure a dtree or description tree to emphasize the relation between the tree
structure of a form and that of the local structure of the computation described
by the form. In addition to data, the computation domain contains pfns and con-
tinuations. Pfns are functional abstractions. They can be thought of as partial
functions containing information describing how the value of the function is to be
computed. This information consists of a symbol naming the argument, the pfn
body — a form describing the computation, and the pfn environment — assigning
values to the free symbols of the pfn body other than the argument symbol. Con-
tinuations are control abstractions. They represent computation contexts built up
in the process of carrying out computations. A computation context contains the
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information describing how the computation is to continue when the current sub-
computation returns a value. As objects of the computation domain they provide
a means of remembering and switching contexts, and of suspending and resuming
computations.

For this chapter we fix the data domain to be the S-expression domain built
from atomic objects by pairing, where the set of atomic objects includes numbers.
Number trees are those S-expressions built up from numbers. Thus a number
tree e is either a number, or a pair of number trees eg « €;. For example, 2 and
(2 + 3) « 4 are number trees. We will use n, no, ..., to stand for numbers and e,
€o, ..., to stand for number trees. The given operations on S-expressions include
(using Lisp names ) pairing and projection (Cons, Car, Cdr); tests for atoms and
zero (Atom, ZeroP); and addition and multiplication (+, ).

II.1. Simple recursive computation of the tree product function
The tree product function 7 (e) is defined by induction on number trees.

e if e is an atom
W(g) T Y m(eo) xm(e1) ife=epcer

For example, 7((2 + 3) » 4) = 2 x 3 4. A direct analog to this definition is the
recursive definition of the pfn Tprod.

> Tprod(x) « if(Atom(x),x, Tprod(Car(x)) * Tprod(Cdr(x)))

This definition can be interpreted as a recursive definition in the usual way. To
compute Tprod’e, (read “Tprod applied to €”), first compute Atom’e. If true
return e, otherwise compute Tprod’ Car(e) and Tprod’Cdr(e) (using the definition
of Tprod recursively) and then multiply the results.

The expression “Tprod’e” denotes a dtree — essentially the body of the pfn
Tprod closed in an environment binding the pfn Tprod to the symbol Tprod and
binding e to the argument symbol x. The sign ’ is used to distinguish between
the dtree describing the computation of Tprod applied to a number tree and the
resulting value, for which we use the usual notation Tprod(e). We use identifiers
such as Car and Tprod (beginning with upper case letters) both to denote symbols
and to denote the value we have assigned to that symbol. Values are assigned
either as the name of a data operation as for Car or by a definition such as that
given above for Tprod. Such symbols are said to be globally defined. Context will
make it clear whether we are referring to the symbol or its value.
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17.1.1. Generating a computation tree

The rules for computation are more than just rules for computing a value,
they are also rules for generating computation trees. The value and much more
information can be read off a completed computation tree. As an example we gen-
erate the computation tree for Tprod’(2 « 0). The initial stage, Figure1 (Stage 0),
is a tree with a single node labeled by the description of the computation to be
carried out - Tprod’(2 + 0). This describes the computation of the pfn body in
an environment binding 2 « 0 to x (we omit explicit mention of globally defined
symbols such as Tprod).

(if(Atom(x), x, Tprod(Car(x)) * Tprod(Cdr(x))) | x <2 + 0)

Below the initial node we add a node labeled by the description of test Atom’(2 .
0). This is a primitive computation that returns the empty sequence o - our
representation of false. This is indicated by adding < o to the label at the test
node. Thus we have the situation shown in Figurel (Stage 1). Since the test
returned false, the else branch is selected. A second node is added below the
initial node and labeled 9,pp.

app = (Tprod(Car(x)) * Tprod(Cdr(x)) | x <2 « 0)
This is shown in Figurel (Stage 2). The sign > labeling the arc from the initial

node to the else node is the reduces-to sign and signifies that the value of the
parent node is the value of the else subcomputation.

e Tprod’(2 - 0) Tprod’(2+0)

Atom ‘(2 « 0)
s 0

Stage 0 Stage 1

Figure 1. Initial stages in the computation of Tprod’(2 « 0)
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Below the d,,p node we add a node labeled by * — the function to be applied,
and a node labeled by ¥,z which describes the computation of the argument

sequence.

Varg = ([Tprod(Car(x)), Tprod(Cdr(x))] | x <2 - 0)

Below the d,.g node we generate the computation trees for Tprod’2 and Tprod’0.
These trees may be generated in any order. That is, at each stage an extension
can be made at any node at which a subcomputation can be started or a value
returned. The value at the 3.z node is the sequence of values returned by its two
subcomputations. This is shown in Figure2 (Stage 3). Now we add a third node
below the 9,5, node labeled by *’[2,0] — the actual application of the function
to the argument. This primitive computation returns the value 0. We have now
reached the stage shown in Figure2 (Stage 4).

Figure 2. Stages of the application subcomputation of Tprod’(2 « 0)

At this point, the computation is essentially complete, since there is a chain of
>> branches from the initial node to the node labeled *’[2,0] < 0. What remains
is to add value labels to the nodes along this chain. The complete tree is shown
in Figure3.

We can now elaborate the remark that Tprod corresponds directly to the in-
ductive definition of 7. For inductive definitions of the kind given for 7 there is, for
each tuple in the defined relation, a unique derivation tree for that tuple obtained
by using the clauses of the definition as derivation rules. The correspondence of
Tprod and « is that the derivation tree for m(e) = n has the same structure as the
computation tree for Tprod'e — n.
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Tprod’(2+0) — 0

Atom (2« 0)
“— 0

*[2,0]
— 0
Tprod’2 Tprod’0
— 2 — 0

Figure 3. Computation tree for Tprod’(2 - 0)

I1.1.2. Properties of Tprod

From the completed computation tree for Tprod’(2 « 0) we can read off the
following information

Tprod’(2+0) — 0
% Tprod applied to 2 « O returns value 0
Tprod’2 < Tprod'(2 - 0)
% Tprod’2 is a subcomputation of Tprod’(2 « 0)
Tprod’(2 « 0) > x'[2,0]
% computation of Tprod’(2 « 0) reduces to computation of *[2,0]
count(Tprod’(2 - 0), {Car,Cdr}) = 2
% Car and Cdr are applied two times in the computation of Tprod’(2 « 0)
count(Tprod’(2 + 0),*) =1
% * is applied once in the computation of Tprod’(2 - 0)
The sign % flags remarks within formulas. < is the evaluation relation. In general
? < v means that the computation described by 9 returns the value v. The
evaluation relation can be used to define the function computed by a pfn. < is
the subcomputation relation. 9o < ¥ means that the computation described by
o is a subcomputation (a subtree) of the computation described by 3. >> is the

“reduces-to” relation which characterizes the main subcomputation in the case
of conditional and application. The point is that to carry out the computation,
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one could simply replace the parent conditional or application node by its main
subcomputation once this is determined.! > is analogous to “goto” while < is
analogous to “procedure call”. For a finite set of data operations O, count(d,0O)
is the number of applications of operations in O in the computation of d. For
computation trees, count(d, O) is the number of nodes in the computation tree for -
? labeled by o’ d for some o in O and some argument sequence d.

Using the definition of Tprod, the rules for computation, and induction on
number trees the following general facts can be derived.

Tprod’e — w(e) % Tprod computes the tree product function

€0 <sezp € — Tprod’eg < Tprod'e

count(Tprod'e, *) = cells(e)

count(Tprod’e,{Car,Cdr}) = nodes(e) — 1
where <,.zp is the subtree relation on S-expressions, cells(e) is the number of

conses used in the construction of e and nodes(e) is the number of conses plus the
number of leaves in e. -

We can also derive definitions of pfns computing properties of the computation
tree for Tprod’e as a function of e. For example, MTprod computes the number
of applications of * in the computation of Tprod.
> MTprod(x) — if(Atom(x),0,1 + MTprod(Car(x)) + MTprod(Cdr(x)))

and

MTprod’ e — count(Tprod’e,*)

I1.2. Improvements of Tprod
Using properties of multiplication, we see that if one of the atoms of e is 0
then n(e) = 0. This suggests various possible modifications for improving the

computation of 7(e). One such modification is

(H) look for zeros first and apply Tprod only if the product is non-zero

! We don’t do this replacement because we wish the completed computation tree to be
a complete record of the computation.
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This computation is easy to describe. We define the pfn Inz to check for zeros in
a number tree. Using Inz we define the pfn TprodO to describe the computation

specified by (1).

> Inz(x) « if(Atom(x), Zerop(x),or(Inz(Car(x)), Inz(Cdr(x))))
>  Tprod0(x) « if(Inz(x),0, Tprod(x))

The form or(Inz(Car(x)), Inz(Cdr(x))) computes the disjunction of the two subex-
pressions. Inz(Car(x)) is computed first. If the result is true (a non-empty se-
quence) then true is returned without further computation. Otherwise the value
of the disjunction is the value of Inz(Cdr(x)). From these definitions it is easy to
see that

Tprod0’e — =(e)
n(e) =0 — count(Tprod0’e,x) =0

This modification is an improvement if multiplication is expensive and traversing
the tree is cheap. If no zero is found, the number tree must be processed again.
So, if the cost of traversing the tree is comparable to the cost of multiplication
(for example the tree could be stored on disk, making execution of Car and Cdr
expensive) then alternative improvements should be considered. For example

) traverse the number tree, accumulating the product for completed sub-
trees, but terminate traversal and return zero if a zero 1s encountered.

To make the requirement (1) precise we define pfns Upto and Before. Upto(e) is
the number of nodes visited before a zero is encountered in a left-first traversal of
e. Before(e) is the number of non-atomic subtrees eg of € such that eg to the left
of the left-most zero in e.

> Upto(x) « if(Atom(x),
1,
if (Inz(Car(x)),
1 + Upto(Car(x)),
1 + Upto(Car(x)) + Upto(Cdr(x))))
2 Before(x) « if(Atom(x),
0,
if (Inz(Car(x)),
Before(Car(x)),
Before(Car(x)) + Before(Cdr(x)) + if(Inz(Cdr(x)),0,1)))
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For example Upto(((2 + 3) « 0) » 4) = 6 and Before(((2+3) - 0) - 4) = 1.

A pfn p satisfying (1) should only visit nodes until a zero is encountered and
it should only do multiplications at nodes whose subtrees have been completely
processed. In particular p should satisfy

(15) p'e— m(e)
(f.45)  count(p'e,{Car,Cdr}) = Upto(e) — 1
(1.65¢) count(p’e,*) = Before(e)

We will give two solutions to this problem. For both solutions we define an auxil-
iary pfn p.auz which has an additional parameter used to storz information about
the state of the computation. The idea is to insure that as each node of the num-
ber tree is visited both the initial calling context and the context built up so far in
traversing the number tree are available. Thus computation can continue normally
or return zero immediately to the calling context. A pfn p computing = is defined
by calling p.auz with a suitable initial value for the additional parameter.

I1.2.1. Tprodl — continuation-passing style computation

The first solution Tprod1 is based on continuation-passing style computation.
The auxiliary for Tprod1 is Tprodc which has a continuation pfn as the additional
argument and pfn formation is used to represent the computation context built up
during traversal of a number tree. To continue the computation, the continuation
pfn is applied to the value of the current subcomputation. The external context
is always the calling context, thus a value is returned to the calling context by
simply returning it. Tprodl computes 7 by calling Tprodc with the identity pfn
A(2z)z as the initial continuation pfn.

> Tprodi(x) « Tprodc(x, A(z)z2)

>  Tprodc(x,c) « if(atom(x),
if (zerop(x), 0,¢(x)),
Tprodc(Car(x), A(y)(Tprodc(Cdr(x), z\(z)c(y *2)))))

So far we have only discussed recursive definition as a means of generating pfns.
The basic means of pfn formation is evaluation of a lambda-expression in an envi-
ronment. For example the value of A(z)c(y * z) is a pfn with argument symbol z,
pfn body c(y * z) and pfn environment the evaluation environment. The applica-
tion of a pfn to an argument is the closure of the pfn body in the pfn environment
extended by binding the argument to the argument symbol.
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One way to understand Tprodc is to note that it computes the same par-
1121 function as A(x,c)if(Inz(x),0,c(Tprod(x))). We claim that the computation
described by Tprodc’(e,¥) returns zero immediately if a zero is encountered in
the traversal of e and otherwise reduces to computation of ¥#’7(e). Thus Tprodl
satisfies I.

11.2.1.1. Analysis of the computation of Tprodc.

To verify the claim, we look in more detail at the computation described by
Tprodc’(e,¥). If e = O then O is returned as the value. If e is an atom and not
zero, then computation reduces to application of ¥ to e — Tprodc’(e,¥) > ¥’e.
Otherwise computation reduces to application of Tprodc to Car(e) with continua-
tion pfn given by A(y)(Tprodc(Cdr(x), A(z)c(y * 2)))) in an environment binding ¢
to ¢ and e to x. In symbols

Tprodc’(e,¥) > Tprodc’(Car(e), 32 (e, 9))

where
9. = A(x,c)A(y)(Tprodc(Cdr(x), A(z)c(y * 2)))

If there are no zeros in Car(e), computation will eventually reduce to application
of ¥, (e,¥) to m(Car(e)), which further reduces to application of Tprodc to Cdr(e)
with continuation pfn given by A(z)c(y * z) in an environment binding ¢ to c and
n(Car(e)) to y.

Tprodc’(Car(e), 9a(e,9)) > Pa(e,¥)’ 7(Car(e)) > Tprodc’(Cdr(e), da(m(Car(e)), )

where

4 = Ay, c)A(2)c(y * 2)

If there are no zeros in Cdr(e), computation will eventually reduce to the appli-
cation of d4(m(Car(e)),¥) to m(Cdr(e)) which then reduces to application of ¥ to
7 (e) = m(Car(e)) * m(Cdr(e)).

Tprodc!(Cdr(e), 9a(n(Car(e)),9)) > Ja(m(Car(e)), )’ x(Cdr(e)) > ¢’ (e)

Thus we see that if there is a zero in e then the reduction sequence terminates
when the first one is encountered and zero is returned as the value, and otherwise
Tprodc’(e, ) >~ 9'n(e). Hence Tprodl’e — m(e). (Note that we have implicitly
used induction on number trees in the above argument.)
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I1.2.1.2. Structure of computations in continuation-passing style.

The computation of Tprodc’(e,¥) is a sequence of “reductions to” subcompu-
tations determined by simple side computations. The result of the entire computa-
tion is the result of the final subcomputation. Thus the computation tree described
by Tprodl’e is a sequential tree — a tree with a main (rightmost) branch where
each subtree is connected by a “reduces-to” arc. For example the computation
tree for Tprod1’(2 « 0) has the shape (omitting side computations)

eTprod1’(2 - 0)
»
eTprodc’(2 « 0, A(2)2)
S
e Tprodc’(2,9.(2 « 0, A(2)z))
>
o{9.(2+ 0,7(2)2)}'2
b
e Tprodc’(0,94(2, A(2)2))
».
0

—0
From the computation tree we see that
count(Tprod1’2+0,x) =0 and count(Tprod1’2.0,{Car,Cdr}) =2
More generally by the analysis of Tprodc given above, we can show that
count(Tprod1’e,*) = Before(e) and count(Tprodl’e,{Car,Cdr}) = Upto(e) —1

Thus we have established that the pfn Tprod1 satisfies {.

I1.2.2. Tprod2 — noting the calling context

The second solution Tprod2 uses continuation noting and resumption. The
auxiliary pfn Tprodg has as additional argument a continuation representing the
calling context. A value is returned to the calling context by applying the continu-
ation parameter to that value. Otherwise the computation proceeds in the manner
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described by Tprod. Tprod2 notes its calling context and calls Tprodg with that
continuation as the auxiliary parameter.}

> Tprod2(x) « note(g)Tprodg(x,g)
>  Tprodg(x,g) « if(Atom(x),

if (Zerop(x), g(0), x),
Tprodg(Car(x),g) * Tprodg(Cdr(x),g))

In order to make sense of notions such as noting the current context and resuming a
computation, we fix a definite order of evaluating subexpressions, namely left-most
first. Thus a computation tree is generated by a uniquely determined sequence of
stages. At each stage there is a current node and the context is the surrounding
partial computation tree. The rules for noting and resumption are

(Note) To compute note(g)f with continuation «, compute f with 4 bound to g.

(Resume) If, in the process of carrying out a computation, a continuation = is
applied to a value v, the computation described by « is resumed with v as
the value returned by the subcomputation.

We say that a description returns a value normally if in any context the com-
putation described returns a value to that context. Computations described by
note-forms such as note(g)f and by continuation application forms such as g(fo)
when a continuation bound to g have the following properties.

(i) If f returns a value normally then note(g)f returns a value normally and the
value returned by note(g)f is the value of f.

(i) If, in the process of evaluating f, a sub-expression g(fo) is evaluated and fo
returns a value normally, then note(g)f returns a value normally and the value
of fo is the value of note(g)f.

(iii) More generally, if note(g)f is evaluated with continuation ~, and either f re-
turns the value v normally or, during the computation of f, 4 is applied to v
then note(g)f returns a value normally and v is the value returned by note(g)f.

(iv) If the value of g is a continuation and fo, f; return values normally then the
result of computing f;(g(fo)) is the same as the result of computing g(fo).

In the computation described by Tprodg’(e,~), the continuation # is carried as a
parameter. If no zeros are encountered, the computation described by Tprodg‘(e,~)
is essentially that described by Tprod’(e) and 7 (e) is returned as a value. If a zero
is encountered, zero is returned to ~, i.e. « is applied to zero, which causes the

! note is similar to Reynold’s escape construct and the Scheme catch construct.
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computation to resume in the context represented by 4. Thus we see that Tprod2’e
in any context returns value m(e). This argument will be made more precise below
as we explain the structure of computations such as those described by Tprodg.

I1.2.2.1. Structure for computations noting continuations

Having fixed an order for evaluating subexpressions means that computation
is a process of generating a sequence of computation stages. For sequential compu-
tation, we represent these stages by states which contain only the information from
the corresponding stage needed to carry out the remainder of the computation. A
state is a continuation <, representing the computation context, together with a
current subtask which is either to begin a subcomputation 9 or to return a value
v. In symbols a state has one of the forms v v D (begin computation of 9 with
continuation 4) or 4 4 v (return v to 4). The empty context is represented by the
identity continuation Id. We say a computation sequence returns a value v if the
last state in the sequence is Id 4 v. Continuations are built up from the identity
continuation by composition of segments associated with nodes of the computa-
tion context along the path to the current node. In this sense continuations are
similar to stack frames. Each segment describes the remainder of the computation
at its associated node as a function of the value returned by the subcomputation
in progress. For example Appc(#) is the continuation segment for an application
node where the argument sequence is being computed. We write « o Appc(¥) for
the composition of 4y with Appc(¢#). If v is returned to yo Appc(d¥), ¢ is applied to v
with continuation «. ([fo,f1] | £) describes an argument sequence. (Carti(f,) | €) is
the continuation segment for an argument sequence node where the first argument
(fo | €) is being computed. Cartc(vo) is the continuation segment for an argument
sequence node where the value of first argument is vo and the second argument is
being computed. If vo is returned to o (Carti(f,) | £) then computation of {f; | ¢)
is begun with continuation 4 o Cartc(vo). If v; is returned to ~ o Cartc(vo) then
the sequence [vo, v1] is returned to 4.

The computation described by Tprod2’e with continuation ~ is a sequence
of states beginning with 4 v Tprod2’e. Tprod2’e is note(g) Tprodg(g,x) in an
environment binding e to x. According to the rule for note, the next step is to
begin the computation described by Tprodg’(e,v) with continuation 4. In symbols

v v Tprod’e = ~ v (note(g) Tprodg(g,x) | x< €} > v v Tprodg’(e,~)

where >— is the step relation on states. To compute Tprodg’(e,~) with current
continuation ~vcur there are three cases. If e is zero then Atom(e) and Zerop(e)
are true and the conditional branch selected is g(0). Thus « is applied to zero
and computation resumes at the point represented by ~ with zero as the value
returned.

Yeur V TprOdg'(O"Y) > Yeur ¥ (g(O) I g*‘ﬁ) > Yeur ¥ '7’0 — 72 0
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If e is atomic and non-zero the branch selected is x and e is returned to the current
context.
Yeur v Tprodg’(e,7) > Yeur v (X | X <€) > Yeurs e

If e is non-atomic the branch selected is *(Tprodg(Car(x),g), Tprodg(Cdr(x),g)).
Thus computation of the argument sequence

[Tprodg(Car(x),g), Tprodg(Cdr(x),g)]

is begun with the continuation extended by composition with Appc(*). In symbols,
computation proceeds to the state

Yeur © Appc(x) v ([Tprodg(Car(x),g), Tprodg(Cdr(x),g)] | x < €,g <)

The next state begins computation of the first argument Tprodg(Car(x), g) with the
continuation extended by composition (Carti{Tprodg(Cdr(x),g)) | £). In symbols

Yeur © Appc(*) o (Carti(Tprodg(Cdr(x),g)) 1 &) v (Tprodg(Car(x),g) | £))

I there are no zeros in Car(e), then eventually x(Car(e)) will be returned and
computation of Tprodg(Cdr(x),g) will be begun. The continuation at this point is
~ecur © Appc(*) composed with Cartc(m(Car(e)))

—

~eur © Appc(*) o {Carti(Tprodg(Cdr(x),g)) | £) & n(Car(e))
—

~eur © Appc(*) o Cartc(w(Car(e))) v (Tprodg(Cdr(x),g) | £))

If there are no zeros in Cdr(e), then eventually n(Cdr(e)) will be returned, * will
be applied to the pair of results, and n(e) will be returned to ycur-

—

~eur © Appc(*) o Cartc(m(Car(e))) & n(Cdr(e))
—

Yeur v *'[r(Car(e)), 7(Cdr(e))]

—

Yecur & W(e)
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As an example, the sequence of states for the computation of Tprod2’(2 « 0) with
continuation « is (omitting some details)

~ v Tprod2’(2 « 0)
>— ~ v Tprodg’(2 + 0,7)
>— ~1 v Tprodg’(2,~)
— Y162
>— 72 v Tprodg’(0,7)
> 7294’0
a0

where

~1 = o Appc(#*) o (Carti(Tprodg(Cdr(x),g)) | g <v,x <2+ 0)
~2 =~y o Appc(%) o Cartc(2)
We read from the sequence of states
count(Tprod2’2+0,¥) =0 and count(Tprod2’2.0,{Car,Cdr}) =2
Here count(Tprod2’e, O) is the number of states of the form 4 v o’ d for some o in

O and some data sequence d occurring in the computation sequence for Tprod2’e.

The analysis above verifies our claim that Tprod2 computes the tree product
function. Also we can show

count(Tprod2’e, ) = Before(e) and count(Tprod2’e,{Car,Cdr}) = Upto(e) — 1

Thus we have shown that Tprod2 satisfies 1.

Remarks

e Both tree-structured computation and sequential computation are carried out
as stepwise processes. The difference is that at each stage in the generation of a
computation tree there is in general a frontier of active nodes where extensions
can be made, while in the generation of a computation sequence there is a unique
active node. A computation state can be thought of as the corresponding partial
computation tree pruned and flattened in such a way that the active node is
exposed.

e Tree-structured computations such as those described by Tprod, Inz, and
Tprodl can be carried out as sequential computations. The computation tree
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can be constructed from the completed computation sequence as continuations
«iw essentially paths in the computation tree.

¢ In computations involving context switching, i.e. continuation application,
the relations <, <, >> are not in general meaningful. For pfns such as Tprod2 that
return a value normally, even though context switching may occur in the process
of computation, the expressions Tprod2’e — x(e) does make sense. Namely, it
asserts that Tprod2’e returns 7 (e) in any context.

I1.2.3. Continuation-passing vs continuation-noting

By using continuation pfns, as in the Tprodl example, we can remain within
the world of tree-structured computations where pfns compute functions in the
ordinary sense. On the other hand, using note, as in the Tprod2 example, the
programs describing corresponding computations are much simpler, easier to un-
derstand (given a little practice) and easier to write. They are also more reliable,
since the machine carrying out the computation constructs the continuation me-
chanically instead of the programmer constructing it by hand.

The analysis of the computations described by Tprodc and Tprodg involved
essentially the same arguments applied to different representations of computation
stages. In terms of abstract machines, Tprodl and Tprod2 describe isomorphic
computations, i.e. there is a correspondence between the computation steps. For
example, the steps of Tprodg’2 « 0 correspond to those of Tprodc’2 « 0 as follows.

~ v Tprod2’(2+0) Tprod1’(2 - 0)

— | 5~

~ v Tprodg’(2+0,7) Tprodc’(2 « 0, A(2)2)

>— >~

~1 v Tprodg‘(2,7) Tprodc’(2,9.(2 « 0,(2)2))
— >

71482 Y9a(2+0,A(2)2)'2

> s

~2 v Tprodg’(0,7) Tprodc’(0,94(2,A(2)2))
>— >

720 0]
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I1.3. Equations and transformations

In this section we give some examples of equations and transformations. We
first consider the case of tree-structured computation and begin with equations
based on the value returned by a computation. We then look at some standard
transformations on forms and at the corresponding transformations induced on the
computations described. These tools are combined with program transformation
methods to derive the recursion equation for Tprodc from an explicit definition
given in terms of Tprod and Inz. Finally we show how many of the ideas for
tree-structured computation can be extended to sequential computation. As an
example of using program transformations involving continuations we also derive
the recursion equation for Tprodg from an explicit definition given in terms of
Tprod and Inz.

I1.3.1. Equations for tree-structured computation

A simple characterization of the function computed by Tprodc is given by the
equation

(Tprodc=) Tprode(x,c) = if(Inz(x),0,c(Tprod(x)))

where x ranges over number trees and ¢ ranges over pfns. The meaning of this
equation is that in any environment binding a number tree to x and a pfn to c,
if the computation described by the form on either side of the = sign returns
a value, then both computations return the same value. This is another way of
saying that Tprodc and A(x, c)if(Inz(x),0, c(Tprod(x))) compute the same (partial)
function on number trees and pfns. (Tprodc=) follows easily from the analysis of
Tprodc given above.

One source of equations is recursive definition. For each recursive definition
the equation obtained by replacing <+ by &= holds for all interpretations of the
free symbols. For example

(Tprodv)  Tprod(x) = if(Atom(x), x, Tprod(Car(x)) * Tprod(Cdr(x)))
(Inz>) Inz(x) = if(Atom(x), Zerop(x), or(Inz(Car(x)), Inz(Cdr(x))))
(Tprodev)  Tprode(x,c) = if(atom(x),

if (zerop(x), 0, c(x)),

Tprodc(Car(x), A(y) (Tprodc(Cdr(x), A(z)c(y * 2)))))

+ is an equivalence relation, but not a true equality relation. Substitution of =-
equivalent forms at a position in a given form yields =-equivalent forms iff that
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position is evaluated or discarded in the process of evaluating the entire form. We
call such positions =-substitutable positions. For example we have

(i)  Tprod(x) = if(Inz(x),0, Tprod(x))

(ii)  Tprod(x) *y = if(Inz(x),0, Tprod(x)) *y

(iii)  —(A(y)(Tprod(x) *y) = A(y)(if(Inz(x), 0, Tprod(x)) *y))

(i) is just the assertion that Tprod0 computes the same function as Tprod. (ii)
follows from (i) by substitution. The inequivalence (iii) is because the two form

denote pfns which are the same as functions, but describe different computations
and thus are different pfns.

I1.3.2. Transformations for tree-structured computation

Now we look at some standard transformations on forms and the correspond-
ing transformations induced on the computation trees described. f, fo, ...stand
for forms. fo + f; is read as “fo transforms to f,”.

If transformations

Two transformation rules for if-forms are if-distribution and if-simplification
(introduced in McCarthy [1963b]). If-distribution has the form

(if .if) if (if (fo, f1,f2), f3, fa) — if (fo, if (1,3, F4),if (f2,fa,f4))

for distribution of if over if and

(if.ap) f(if (fo, 1, f2)) — if(fo,f(f1),f(f2))

for distribution of application over if. We call the inverse of a distribution trans-
formation a factoring. If fy, is obtained from f, by application of if-distribution and
factoring transformations at =-substitutable positions then f, = fy. The com-
putation trees described by f. and f, are the same except for rearrangement of
nodes where distribution or factoring has been applied. In particular, the amount
of work in carrying out computations described by related forms is the same. For
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fins — Afrhs
i/ \. fa (f/ if
O’fo/\ f1 «fi fa

flhl = if(if(fo,fl,fz),fs, f‘) frhl = lf(fO’ 'f(fli f3’ f‘r)’ if(fz)f33f4))

Figure 4. The effect of if-distribution on computation structure.

fins — frns
e e

“fi

“h fs

“fo fs

fine = if (fo, 1f (f1,fs, f4), If (f2,fs,f4)) Frna = if (Fo, 1f (F1, s, fs), 1f (f2, fs. o))
where f( = if (fo, fs,fe) ,

Figure 5. The effect of if-simplification on computation structure.

example, if fo is true and f; is false the computations of the left and right side of
(if.if) have the shape shown in Figure4.

A typical if-simplification is to omit redundant computations of a test. For example
if f4 = if (fo,fs,fs) we have the simplification

(if simp) if (fo, if (f1,f3,f4),if (f2, f3,f4)) — if (fo, if (F1,f3,fs5),if (f2,fs,f6))

If f, transforms to f, by applying (if.simp) at =-substitutable positions then f, =
fo and the computations described by f,, are related to those described by f.
by pruning redundant subcomputations. Thus less work will generally be done
computing f,. For example, if fo is true and f; is false then the computations of
the left and right side of (if.simp) have the shape shown in Figure5.
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A final if-simplification which we will need for our examples is (if.or) which elimi-
nates disjunction in the test position.

(if .or) if(or(fo, f1),f2,fa) = if(fo, f2, if(f1,f2,f3))

(if.or) transformations applied at =-substitutable positions preserve =-equivalence.
Let conversions

Application expressions such as {\(y)fi}(fo) describe a special kind of pfn
application which serves to make temporary bindings, i.e. to give a name to the
value of an expression locally. To emphasize this fact, such expressions may be
written let{y < fo}f1 and read “let y be fo in f,”.

We call the substitution of fo for y in f; (with care taken not to trap free
variables of fo) let-elimination.

(let.elim) let{y < fo}f1 — filf,

Let-elimination is analogous to #-reduction but must be restricted depending on
the kind of relation we wish to preserve. For example to preserve definedness
then either fo must be defined, or some occurrence of y in f; must be evaluated in
the computation of f;. Otherwise the transformed expression will be defined and
the original will be undefined. To preserve =, all occurrences of y in f; must be
evaluated or discarded in the course of evaluating f;, i.e. y should not appear in
an abstraction that is returned as a value since the substitution will change the
value.

Forms related by let-eliminations describe computations which are related by
replacing one evaluation of fo, an application and some references to the symbol
y by an evaluation of fo for each reference to the symbol y. If there is only one
reference to y this reduces the work by eliminating the binding. If there are
several references to y, and fo is a non-trivial expression, then the amount of work
is increased by let-elimination. The inverse of let-elimination, let-introduction, is
sometimes called common sub-expression elimination. We use let-conversion to
refer to let-elimination and its inverse.

11.3.3. Derivation of the recursion equation for Tprodc

To illustrate the use of program transformations in Rum we outline the deriva-
tion of the recursion equation (Tprodc>) for Tprodc from the equation (Tprodc=)
defining the function computed by Tprodc. Such derivations can be used in two
ways. If we assume Tprodc is defined by the (Tprodcp) (i.e. by the correspond-
ing recursive definition) the derivation of (Tprodcp) from (Tprodc=2) is a proof
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that Tprodc computes the function defined by (Tprodc=2). Alternatively, if we as-
sume that Tprodc is specified by (Tprodc=) then the derivation is an optimizing
transformation by which the definition (Tprodcp) is obtained. Recall (§1.3) that
unfolding means replacing an instance of lefthand side of an equation by the corre-
sponding instance of the righthand side and folding means replacing an instance of
righthand side of an equation by the corresponding instance of the lefthand side.

The main steps of the derivation follow. (Tprodc.a) is obtained from (Tprodc=)
by unfolding using equations (Inz>) and (Tprod>) and then applying if- and or-
simplifications.

(Tprodc.a) Tprodc(c, x) = if (Atom(x),
if(Zerop(x),0,c(x)),
if (Inz(Car(x)),
0,
if (Inz(Cdr(x)),
0,
c(Tprod(Car(x)) * Tprod(Cdr(x)))))

Using let-conversion the final clause of (Tprodc.a) is expressed as the application
of a pfn to Tprod(Cdr(x)).

(Tprode.b) c(Tprod(Car(x)) * Tprod(Cdr(x))) =
{A(z)c(Tprod(Car(x)) * z)}(Tprod(Cdr(x)))

Thus the final if-clause of (Tprodc.a) has the form of an instance of the right hand
side of (Tprodc=) and by folding (Tprodc.c) is obtained.

(Tprodc.c) Tprodc(c, x) = if (Atom(x),
if(Zerop(x), 0,¢(x)),
if (Inz{Car(x)),
0,
Tprodc(Cdr(x), A(z)c(Tprod(Car(x)) * 2))

Again using let-conversion the final clause of (Tprodc.c) is expressed as an instance
of (Tprodc=)

(Tprode.d) Tprodc(Cdr(x), A(z)c(Tprod(Car(x)) * z))
{A(y) Tprodc(Cdr(x), A(z)c(y * z))}(Tprod(Car(x)))

and (Tprodcp) is obtained from (Tprodc.d) by folding.
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71.3.4. Equations and transformations for sequential computation

Since < is not generally meaningful for sequential computation, neither is the
equivalence = as defined. However, there is a useful notion of equivalence obtained
by replacing evaluation by “returns the same value in all contexts”. This equiv-
alence is denoted by =~. The computation described by Tprodg is characterized
explicitly in terms of Inz and Tprod by

(Tprodg=) Tprodg(x,g) = if(Inz(x),g(0), Tprod(x))

where x ranges over number trees and g ranges over continuations. The meaning of
the equation (Tprodg=) is that for any environment { binding a number tree to x
and a continuation to g, and for any continuation «, if the computation sequence
from the state beginning the computation described by the form on either side
of the ~ sign with continuation 4 terminates with a value then both sequences
terminate with the same value. In symbols

4 v {Tprodg(x,g) | £) > Id 2 v — 4 v (if(Inz(x),g(0), Tprod(x)) 1 £) > lda v

(Tprodg=) follows easily from the analysis of the computation described by Tprodg
given above. Furthermore, using the properties of note we have

Tprod(x) ~ note(g)if(Inz(x),g(0), Tprod(x))

Two expressions that are =-equivalent as descriptions of computation trees
are =~-equivalent as descriptions of computation sequences. In particular, the
equations for = given above hold with = replaced by ~. Recursive definitions
are also a source of ~-equivalences. The equation obtained by replacing « in a
recursive definition by & holds for all interpretations of the free symbols. Thus

(Tprodge) Tprodg(x,g) = if(atom(x),

if (zerop(x), g(0), x),
Tprodg(Car(x), g) * Tprodg(Cdr(x),g)

Substitution of ~-equivalent expressions is limited to positions that are evaluated
or discarded as for =.

Suitably restricted, the =-preserving transformations on forms such as if-
distribution, if-simplification and let-elimination are also =~ preserving. The re-
strictions are basically that subexpressions involved in a change in order of evalu-
ation must return values normally. For (if.if) the expressions fo,f1,f2 must return
values normally; for (if.ap), the function expression f and the test expression fo

)
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must return values normally; and for let-elimination (let.elim) the argument ex-
pression fo must return a value normally.

In addition there are transformations involving continuation application that
preserve ~. If g ranges over continuations and f,f; return values normally then
the context elimination transformation

(ctxt.elim) f(e(f1)) — &(f1)

is an equivalence preserving transformation. It also eliminates the work of com-
puting the value of f. Combining context introduction with if-factoring we have

if (fo, g (f1), f(f2)) = if (o, f(&(f1)), f(F2)) — §(if(fo, &(F1),f2))

is a ~ preserving transformation when f, fo, and f; return values normally.

11.3.5. Derivation of the recursion equation for Tprodg

Now we outline a derivation of the recursion equation (Tprodgp) from the
explicit definition (Tprodga). Since Inz and Tprod return values normally, the
equations (Inz>) and (Tprodp) can be used for substitution and if- and let- trans-
formations involving these pfns as tests and arguments are valid. Thus the basic
ideas used in the derivation of the recursion equation for Tprodc apply to equa-
tions involving Tprodg. (Tprodg.a) is obtained from (Tprodg=) by unfolding using
(Inzp) and (Tprod>) and then applying if-transformations.

(Tprodg.a) Tprodg(x, g) ~ if(Atom(x),
if (Zerop(x),g(0), x),
if(Inz(Car(x)),
g(0),
if (Inz(Cdr(x)),
g(0),
Tprod(Car(x)) * Tprod(Cdr(x)))))

Using the fact that {A(z)f}g(0) ~ g(0) for any expression f (context elimination)
the context of Tprod(Cdr(x)) in the final if-clause of (Tprodg.a) can be factored
out.
(Tprodg.b) if(Inz(Cdr(x)),g(0), Tprod(Car(x)) * Tprod(Cdr(x)))

~ {A(z)(Tprod(Car(x)) * z)}if(Inz(Cdr(x)), g(0), Tprod(Cdr(x)))
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Matching the if-form on the righthand side to (Tprodg~) and folding (Tprodg.c)
is obtained.

(Tprodg.c)  Tprodg(x,g) = if(Atom(x),

‘if (Zerop(x),g(0),x), .
if (Inz(Car(x)),
g(0), *

{\(2) Tprod(Car(x)) * z} Tprodg(Cdr(x), g)))

Repeating these steps the context of Tprod(Car(x)) in the final if-clause of (Tprodg.c)
is factored out and (Tprodg.d) is obtained by folding again with (Tprodg=).

(Tprodg.d) Tprodg(x,g) = if(Atom(x),
if(Zerop(x), g(0), x),

{X(y){A(2)y * z} Tprodg(Cdr(x),g))}
Tprodg(Car(x)),g))

Applying let-conversions we obtain (Tprodgp) as desired.
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Chapter III. The meta-world

In this chapter we review the basic mathematical tools and structures used
in constructing the Rum world and developing its theory. The main tools are
constructions of sequences and finite maps, and inductive generation of domains,
operations, and relations. Three kinds of structures play an important role in our
work: Rum data structures, tree structures and binary relations over a given do-
main. We assume that the basic ideas are familiar ones. The following discussion is
mainly to introduce our notation and conventions, and to point out the basic facts
that we will use, generally implicitly. We have collected all the metamathematics
into one chapter for convenience. It should be treated as reference material and
need not be read in full before proceeding. In §1 the notion of function is discussed
in order to clarify terminology. The material on finite sequences (§2), finite maps
(§3), and finite forms of inductive generation (§4) is used from the beginning and
the reader should be familiar with the notions presented in these sections. The
class of Rum data structures is described in §5 and two examples are given: the
trivial structure and the S-expression structure. Only the basic features of Rum
data structures are used for most of the work in Rum. The S-expression structure
serves as a concrete and typical example. It is the structure used informally in
Chapter II and will be used in examples given in Chapter IV and Appendix B. Tree
structures occur throughout the work in Rum. For the most part we think of tree
structures pictorially as tree-shaped graphs with additional labeling information
associated with some nodes. The point is to provide geometric intuitions about
these objects and certain kinds of operations on them. The material presented
in the section on tree structures as mathematical structures (§6) is used only in
Appendix A and Appendix B. The material presented in the section on binary
relations (§7) is used mainly in Chapter VI

As to general format, references to chapter will be by number (upper case
roman numerals). References to sections within the same chapter are by section
number while references to sections in other chapters contain the chapter number
and the section number. Thus §3 refers to section 3 of the current chapter and
§IV.2 refers to section 2 of chapter IV. Definitions of constants, functions, relations,
etc. are marked by the sign b. For example this is the format of the pfn definitions
given in Chapter II. Facts, lemmas, theorems, etc. are marked by the sign m.
Equations, theorems, and other such items to which we may wish to refer are
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given names. For displayed items, the name appears at the side of the item. This
is the format used for naming transformations in §II.3.

m A fact
Gives the name “a fact” to the fact described by ....

We will mostly work within an informal set-theoretic framework. N denotes
the natural numbers and we will use ¢, j,m,n to range over natural numbers. We
use braces {, } in several different kinds of expressions — in application expressions
for readability, for set formation, substitution into a context, Kleene braces, etc.
Many of these uses have already appeared in Chapter I. They will be pointed out
again when they first arise officially. There should be no confusion, as context will
always determine what use is intended.

Formal theories in which various fragments of our work can be represented
quite naturally are given in Feferman [1979, 1981, 1982]. In particular, the defini-
tions of the domains and basic computation relations of Rum can be carried out
in FMO [Feferman 1982] (a theory of inductive definitions with the proof-theoretic
strength of primitive recursive arithmetic). The entire work of chapters IV, V,
and VII and the examples of Appendix B can be carried out in FM1 [Feferman
1982] (an extension of FMO with proof-theoretic strength of Peano arithmetic).
The work on comparison relations (Chapter VI) requires stronger theories such
as Feferman [1979] or Feferman [1981]. These latter theories treat functions and
classes as intensional objects. It is unclear how far one can go in such theories in
formalizing some aspects of extensionality used in discussing comparisons, however
this is a very small part of the work on comparisons.

We will sometimes use the terms tnformal and formal loosely to distinguish
between ideas presented by picture or example and ideas presented using precisely
defined structures and relations. It will generally be the case that formal in the
sense just explained will be a large step towards formal in the logical sense of
representation within a formal system.

I11.1. What is a function?

As pointed out in Chapter I, there are two interpretations of “function”. Both
involve the idea that a function prescribes a map from its domain A to its range B.
One interpretation (the intensional view) is that a function is a rule for obtaining
a value in B given an argument in A. The other interpretation (the extensional
view) is that a function is a graph, i.e. the set of pairs (a,b) in A X B such that a is
mapped to b by the function. Functions were originally thought of as rules and this
view is maintained in constructive mathematics. In recursion theory and model
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theory the extensional view is generally taken. In computer science literature both
interpretations are found and the term is often used quite ambiguously.

For many purposes, if one maintains a consistent view, it does not matter
which view is taken. The differences become important when one considers such
matters as

(i) when are two functions to be considered equal
(ii) what is the space of functions from A to B for given domains A and B.

While ambiguity is not always a defect, in Rum we must say what we mean, as we
are interested in questions such as (i) and (ii). In order to conform with modern
usage in logic and mathematics we will use “function” in the extensional sense.
We use [A -~ B] to denote the space of total functions from A to B and [A ~> B]
to denote the space of partial functions from A to B. For fo,f1 € [A ~ B,
fo C f1 means that f, is an extension of fo, i.e. the domain of f, is contained in
the domain of f; and fp and f; agree on the domain of fo. In other words, C is
the subset relation graphs of partial functions.

II1.2. Finite sequences

Finite sequences are a means of packaging a finite collection of things in a
given order. For a given domain A, A* is the domain of sequences from A. o is
the empty sequence, it has length 0. If vo and v; are sequences then [vo,v] is
the concatenation of vo and v;. Its length is the sum of the lengths of vy and v;.
The length of a sequence v is denoted by |v|. Formally there is an injection map
from A to the sequences of length one in A*. Informally we will not distinguish
elements from singleton sequences. If @ is an element of A and v is a sequence
then [a,v] is a non-empty sequence; 1* [a, v] is @, the first element; and r* [a, v]
is v, the remainder. 1**0is o and r®* o is 0. For i < |v|, v} is the i** element of
v. In particular, v{o = 1** v and v} ;41 = (r** v)|;. Concatenation is associative
with the empty-sequence as right and left identity. We write [vy, ... ,vy] for the
concatenation of the sequences vy, ... ,vy. a is a member of v (written a € v)
iff v is [vo, @, v;] for some sequences vo,v;. Since A* is generated from the empty
sequence and elements of A by concatenation we may make definitions and proofs
by sequence induction. Figure6 summarizes the facts about sequences.
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' Generation of A* from A

o€EA*, ac€A’, [vo,v1] € A*

Laws for sequences

[[vo, va], v2] = [vo, [v1, v2]] [vo,0] = [B,v0] =0

o =0 la| =1 |[vo, va]l = |vo] + |v4]
1*[a,v]=a 1*o=n [e,0]=v r*o=o
vlo=1%v vlip1 = (r** v)]s a € v « (Juo,v1)v = [vo,a,v]
where @ is an element of A and v,vo ... are elements of A*

Figure 6. About finite sequences

II1.3. Finite maps

Finite maps are functions with finite domains that are presented as finite sets
of argument value pairs called bindings. For domains Ap and Aj, [ARo *> A,] is the
set of finite maps from Ao to A,, generated from the empty map by the binding
operation. The empty map {} is given by the empty set and has an empty domain.
For ap € Ag, a3 € Ay, and £ a finite map from Ao to Ay, £{ao < a1} is the map
obtained from £ by binding a; to ap. The domain of £{a¢ < a,} is obtained from
the domain of ¢ by adding ao. For a in the domain of £{a¢ < a1} we have

oo an)le) = { gty Hog e

Two finite maps are equal just when they are equal as functions. Different con-
structions may give rise to the same functions since old bindings are forgotten.

Given a distinguished (default) element a, of A; each finite map determines a
total function from Ag to A; which maps elements not in the domain of the finite
map to a.. We use [Rg *> Aj]s. to indicate that a distinguished element a, has
been fixed. When A; is a sequence domain we often take the empty sequence as
the distinguished element. -

The rules for generation of finite maps from Ay to A; and for application of
finite maps are summarized in Figure7.
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Generation of [Ap > A,]

{} € [Ro *> A4], &{ao <« a1} € [Ap *> Al]

The domain of a finite map

dom({}) =10 dom(&{ao < a1}) = dom(€&) U {ao}
The function associated with a finite map with default a.
{}(ao) =a.  &{ao<«a1}(a) = {220) :ﬁ . ; Zg

Equality of finite maps with default

§o = &1 « (Va € dom(€o) Udom(€1))(éo(a) = €1(a))

where f,fo,fl € [Ao *> A1] and a,ap € Ag, a1 € A,

Figure 7. About finite maps

ITII.4. Finite inductive generation of objects and relations

Finite inductive generation is our main tool for defining domains, operations
and relations. A finitely generated domain is given by a set of rules for constructing
objects in the domain. The interpretation is that the only objects in the domain
are those obtained by a finite sequence of constructions. The generation of the
finite map domain over domains Ao, A; is an example of our presentation of
finitely generated domains. The rules for constructions are expressions which
implicitly contain the information as to the construction operation and its type.
In addition, rules for equality may given. We assume that objects generated by
different constructions (named by different terms) are different unless they can
be proved equal using the rules for equality. Abstractly the domains we consider
are freely generated algebras modulo an equivalence relation, i.e. they are initial
algebras. The signature of the algebra can be read from the construction rules.
For inductively generated domains we have principles for definition and proof by
induction on the generation of objects in the domain. For example the application
laws for finite maps and the definition of the domain of a finite map are defined
by finite map induction.
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Many of the relations defined in our world are given by inductive definition
as well. In the finitary case we present such definitions by giving a set of rules
(formulas) for determining whether a given tuple is in the relation. Formally the
defined relation is the least relation (set of tuples) satisfying the closure conditions
expressed by the rules. For inductively defined relations there are also correspond-
ing principles of proof by induction.

We refer the reader to Feferman [1982] for a theory of finite inductive def-
initions, to Goguen and Meseguer [1983] for more about initial algebras, and to
Moschovakis [1975] or Aczel [1977] for a general theory of inductive definitions.

I11.5. Rum data structures

We are concerned with computation over data structures belonging to a class
called generalized algebraic data structures. Such structures consist of a data
domain and a set of operations that act on sequences from the domain. It is the
latter that distinguishes these structures from ordinary algebraic structures.

We use D (plain or subscripted) to denote a data structure. We assume that
D is given as a triple (D, 0, ap) where D is the data domain; O is a set of (codes
for) data operations; and ap is the application operation which applies data oper-
ations to sequences of data. If o is a data operation and [ay,...,ay.] is a sequence
from the data domain, then ap(o,[ai1,...,as]) is the result of applying the oper-
ation coded by o to [a1,...,6n]. We will generally omit explicit mention of the
application operation and use ordinary applicative notation, writing o[ay,..., an]
for ap(o,[a1,...,axn]). We can think of operations having a variable number of
arguments, or as having a single argument which is a sequence of arbitrary finite
length.

111.5.1. The trivial data structure

One data structure of interest is the structure in which the data domain is
empty and the only operation is Triv, which maps the empty sequence to the empty
sequence. We will denote this structure by Dy. Thus

Do = (0, {Triv}, {(Triv,0,0)}).




§II1.5 Rum data structures 83 .

Sort Constructor Constructor Recog- Uncon- Notation
Domain nizer structor
Diero ZeroMk {3 ZeroP ZeroMk(o) =0
Dneg Subl Dneg @ Drero  NegP Addil Sub1(z)=2z-1
Dpoos Addil Dpos © Dyero PosP  Subi Addi(z)==z+1
D, StrMk int StrP StrUn  StrMK[zi,..., z,]
=", 42n"
Dmu MtIMK {} MtiP MtiMk(o) = Mt
Dpair PairMk Diexp ® Deexp PairP  PairUn  PairMk|a,, a;)
=aj-*az
where
z,21, ... Zn ranges over Dint = Dneq © Drero © Dpos
a,a;, ... ap ranges over Dyexp = Dint @ Dstr @ Dmtt © Dpair
Lists: <>; ae*<ay,...,an>=<a,01,...,85>
Figure 8. The S-expression data structure

I11.5.2. The S-expression data structure

The S-expression data structure Dgexp = (Dsexpr Psexps apsexp) is typical of
the data structures we have in mind. It contains a variety of data construction
primitives and provides an abstraction of the algebraic aspects of data structures
commonly used in symbolic computation. S-expression operations and notation
are summarized in Figure8.

The elements of the S-expression domain Dgexp are of four sorts: D1, Dint,
Dstr, and Dpair. Dme1 contains a single object, the empty list; the elements of Din
are the integers; the elements of Dy, are strings of integers; and Dpa;, consists of
pairs of S-expressions. To describe the generation of Dgexp, We split Diy¢ into three
sorts: Dpeg — the negative integers; Djero — the integer 0; and Do — the positive
integers.

The S-expression operations Qgexp are constructors, unconstructors, and rec-
ognizers for each of the sorts. Dgexp is freely generated by the construction opera-
tions applied to suitable sequences of S-expressions. Dgero is generated by ZeroMk
applied to the empty sequence; Dy, is generated by Subl applied to non-positive
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integers; and Dy, is generated by Add1 applied to non-negative integers. Dmt) is
generated by MtIMk applied to the empty sequence; Dgy, is generated by StrMk
applied to sequences of integers; and Dp.i, is generated by PairMk applied to S-
expression sequences of length 2.

An unconstructor applied to an element of the corresponding sort returns the
sequence from which that element was constructed. PairUn is the unconstructor
for pairs and StrUn is the unconstructor for strings. Addl serves as the uncon-
structor for negative integers, and Sub1 as the unconstructor for positive integers.
[Unconstructors for singleton domains are omitted.]

A recognizer applied to an element of the sort that it recognizes returns that
element. The recognizer for Dyeg is NegP; for Dyero is ZeroP; for Dy, is PosP; for
Dir is StrP; for Dy is MtIP; and for for Dpajr is PairP.

A constructor applied to a sequence not in its construction domain and an
unconstructor or recognizer applied to anything other than a data element of the
corresponding sort return the empty sequence.

We use the usual notation for integers, ... — 2,—1,0,1,2, .... We write
"20y...52m" for StrMk[2o,...,2m] and a + b for PairMk[a,b]. The following equa-
tions illustrate the laws for data operations:

Ster[zl""’zn] ="215.. 052" PairP("zl,-.- ,Zn") =n
StrP("21,...,2,") = "21,...,2,"  PairUn("zy,...,2,") =0
StrUn("z1,...,22") = [21,...,20] Add1("z},...,2,") =0

Lists are the subset of S-expressions generated from the empty list by pairing
arbitrary S-expressions with lists. <> is the empty list and we write <a; ... a,>
for a; (... (an * <>)...). Lists are an important data structure for symbolic
computation. They provide a natural encoding for both sequences and tree struc-
tures.

Remarks

e Our version of the S-expressions has usual data domain; what is different is
our presentation and choice of primitive operations.

¢ D,exp is the “standard” encoding domain for the metamathematics of Rum.
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I11.6. Tree structures

Although intuitively we think of tree structures in terms of pictures, it is
useful to provide mathematical structures having the essential properties of these
intuitive structures. We formalize tree structures using tree domains and labeling
functions. A tree domain A is a set of sequences of numbers (called nodes) such
that if [v,7] is in A then v is in A. T is the set of tree domains. A tree domain
may be finite or infinite. |A| is the cardinality of A. A tree structure of type
<Aj,...,Ap>isatuple<A, fi,..., fn> where A is a tree domain and, for 1 <1 < n,
fi is a function with domain contained in A and range A;. T : <A,,...,An> is the
set of tree structures of type <Ay,...,Ax>. Thus we have

T;{ACN*|[V,J']€A—>UEA}

T:<Ay,..., A0 =

{<A 1, > |AETAfLE[A~ A A ... A fa €A~ AL}

For 1 = <A, f1,...,fn>, A is called the domain of 7 and f; the i-th labeling
function.

There is a simple correspondence between tree structures and pictures of trees
such as the computation stages shown in §II.1 (Figures 1, 2, 3). The elements of
the tree domain code paths to nodes in a tree shaped graph, and each labeling
function associates a label to the nodes of its domain.

The main operations and relations on tree structures which are of interest
for our work are the subtree operation, replacement, union of a set of compatible
trees, and the containment relation. In the following, let 7 = <A,..., fi,...>,
70 = <Ao,..., fo,iy...>, ... be tree structures of type <Ay,...,Ay>. It is easy to see
from the definitions that the operations give tree structures of type <A,...,Ay>.

> Subtree. For v in A, the subtree at v in 7 (written 7] ,) is defined by

Tlu=<Alu...fily...>

where

Aly={vo|[v,vo] € A} and ffiv<V°)={£‘;f£Z’ﬁ';°e]§ iftl[ll:rlv/\?i]sf *
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> Replacement. For v in A, the result of replacing the subtree at v by 7o
(written 7{v < 70}) is defined by

{v <1} =<A{v<Ac},...,fi{v < fo,i},...>
where
A{v < Ao} = {[,vo] | vo € Ao} U (A —AL,)

and
fo,{(Vo) if vy = [I/, Vo] A vg € Ao

filv < foiHvi) = { fi{v1) if vi € (A-Aly)

undefined otherwise

> Containment. 7o is contained in 7 (written 7o C 7) if Ag is a subset of A,
and fo; C fi.

> Union. Let T be a set of tree structures of type <Ay,...,Ap>. T is compatible
if for each pair of trees in T, corresponding pairs of labeling functions agree on
their common domain. For such T we define the union (UT) to be the minimal
tree structure containing every element of T.

UT = <AUTa-'-anT,ia'°'>

where

Aur={v|(3<A..., fi,..>€T)(v e A)}

fori(v) = fi(v) if<A...,fi,...>€T and v € dom(f)
uri(v) = undefined if (V<A..., fi,...> € T)(v & dom(f;))

Note that compatibility assures that this definition determines a well defined tree
structure, and 7 € T implies 7 C UT.

II1.7. About binary relations

This section contains a summary of basic notions about binary relations. Let
A be a domain, Ap a subdomain of A. Binary relations on A are subsets of
A x A, and as such, inherit the operations and properties of sets of pairs. We will
generally write ag p a1 for (ao,a1) € p. The following is a summary of definitions
of standard operations and relations on binary relations that we will need for our
work. a, ag, a; range over elements of A; p, po, p1 range over binary relations on
A. T denotes a set of binary relations on A.

> Subrelation: po C py « aop po a1 — ao p1 a1
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> Suprelation: po D p1 < p1Cpo

> Equality: po=p1 < po Cp1 A poDp;

> Restriction: ap p[Aol a1 <> ag €ARo A a1 €ERo A ag p a;
> Inversion: agp~ a1 « aj pap

> Composition: ao(po o p1)a; < (Jaz)(ao po a2 A a2 py1 ay)
> Union: ao(UT)a; < (3 peT)(ao p a1)

> Intersection: ao(NI)ay «+ (V p€T)(ao p a1)

~

> Inversion Closure: p pNp~

af
> Transitive Closure: p7 is the least relation such that

aopar — aopta; and aopTay Aaypay — agptoay

> Transitive Reflexive Closure: p* is the least relation such that

ap*a and aop*a; A aypaz — app’ az

> Transitive Union: T = (ur)*

> Properties and operations on sets of relations: If # is an operation on
binary relations we write 6(T') for {8(p) | p € T} and if © is a property of binary

relations we write ©(T) for (Vp € T)O(p).

87
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Chapter IV. Tree-structured computation

In this chapter we describe the world of tree-structured computation. The ba-
sic computation primitives are: getting a value from the computation environment;
pfn generation; application of a data operation to a data sequence; application of
a pfn to a sequence from the computation domain; conditional based on a test
for the empty sequence; generation of the empty sequence; concatenation of se-
quences; and selection of elements from sequences. Computation is a process of
generating computation trees.

In §1 the underlying algebraic structure for this fragment of Rum is described.
In §2 the rules for computation are given. They are interpreted informally as
rules for generating computation trees, then formally as defining the evaluation,
subcomputation, and reduces-to relations on descriptions. Viewing computation
rules as rules for generating computation trees provides information about the
process of computation and about the structures generated in this process. The
computation relations provide a basis for expressing and proving properties of
computation. Additional relations useful for expressing properties of computation
are also defined. Some basic facts about the computation relations are given,
including a computation induction theorem and theorems expressing the sense in
which the two interpretations of the computation rules are equivalent.

In the remainder of the chapter we begin the work in Rum, defining pfns
and stating some simple properties. We focus mainly on pure pfns, which are
the pfns common to all Rum worlds. In §3 notation and conventions for working
in Rum are given. In §4 we build a small library of pfn definitions. We begin
with a collection of combinatory pfns — pfns defined using only the abstraction
and application computation primitives. These examples illustrate how the stan-
dard sorts of combinators are represented by pfns. They also illustrate additional
properties that can be expressed in Rum and point out differences between Rum
and traditional recursion and computation theories. The main result is the recur-
sion theorem for Rum which gives a recursion pfn that computes computationally
minimal fixed points. Using the recursion pfn and sequence primitives, pfns are
defined that describe some standard computation schemes which are naturally for-
mulated as recursion on sequences. In §5 pfns describing additional operations on
S-expressions are defined. This provides concrete examples of computing in Rum,
illustrates the use of pfns from the pfn library, and sets the stage for further work




§IV.1 The objects of Rum 89

in the S-expression world. In §6 we show how streams can be represented in Rum
and give examples of operations on streams and properties characterizing streams.

The point of these examples is to give the reader experience working in Rum,
to develop some intuitions about Rum computation, and to give a sample of the
variety things to be said about and done with pfns. More substantial examples
are given in Appendix B.

IV.1. The objects of Rum

There are several Rum worlds including the world of tree-structured computa-
tion (t-Rum) and the world of sequential computation (s-Rum). The raw materials
for a Rum world are a set of symbols Sy and a data structure ®. Data structures
were discussed in §II1.5. For the present, symbols are just atomic entities that serve
as identifiers. We assume there are countably many symbols. The objects making
up a Rum world are inductively generated uniformly from the given structures.
The inductive definition has essentially the same form for each world, the differ-
ences being addition or omission of clauses in the definition. The sorts of objects
making up a Rum world are summarized in Figure9. In this section we discuss
those objects needed for tree-structured computation. The remaining objects are
used only in sequential computation and will be discussed in §V.1. To simplify
notation, we fix certain variables to range over most sorts of objects. For example,
f ranges over F, the set of forms. This in indicated in Figure9 by f € F. A variable
with a subscript ranges over the same sort as the unsubscripted variable. Thus fo
and fins also range over F. In logical formulae, quantifiers are to be interpreted as
quantifying over the range of the variables being quantified. Thus (Vf) means “for
all forms §”.

Since constructions are uniformly parameterized by the data structure © and
the set of symbols Sy, we should refer to Rum(p s, F(p,sy), etc. However, we will
generally work with a fixed set of symbols and a fixed data structure and omit
explicit mention of these parameters. In addition, the interpretation of domain
symbols such as F and the range of the variable symbols of that sort depends on
which world we are working in. To refer to a particular world we use a qualifier:
t- for the world of tree-structured computation and s- for the world of sequential
computation. For example elements of t-F are the forms of t-Rum and when
working in t- Rum (Vf) means for all forms in t-F. Generally we work in a fixed world
and the qualifier is omitted. In this chapter, since we are working in the world
of tree-structured computation, Rum is interpreted as t-Rum, F is interpreted as
t-F, etc.
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Name Notation Description
Data D domain of the given data structure
dep’ sequences of data
Operations o€ operations of the given data structure
Symbols sESy for naming values
Forms feF symbolic descriptions of computation
Environments EEE finite maps that bind values to symbols
Dtrees e D descriptions of particular computations
Pins peP descriptions of partial functions
Computation
Domain a€V data, data operations, pfns, continuations
Values u,vEV* sequences from the computation domain
Stages reC partial computation trees
Continuations 7€ Co descriptions of computation contexts
States cES stages of sequential computation
Figure 9. Objects and notation

IV.1.1. Forms for tree-structured computation

Forms are the basic syntactic entities of Rum. They serve as symbolic descrip-
tions of computation and also as terms in a language for expressing properties of
the computation domain. Forms are freely generated over the set of symbols by
the construction rules given in Figure 10. A form is either a symbol or constructed
using A, app, if, mt, cart, fst, rst. Each construction corresponds to a computation
primitive, as indicated in Figure 10.

The construction rules are presented as expressions from which we read off
such information as the official notation, the type, and names of components of
the corresponding construction. The rule (mt) says that mt is a form. From the
rule (app) we see that app(ffun,farg) is the form constructed by applying the app
constructor operation to the forms ffun and farg. We also read from (app) that
app € [F x F - F], the first argument for app is the fun-component, and the
second argument is the arg-component. A form constructed according to the rule
(app) is called an app-form. From the rule (lam) have X € [Sy x F - F].

Two forms are equal exactly when they have the same construction. A is a
binding construct. Bound and free symbols in forms are determined in the usual
manner, with free occurrences of s in f bound by the outer A-construction in A(s)f.
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Rule Form Computation Primitive

(sym) 8 naming values

(lam) A(8arg)fbody pfn generation

(appP) app(frun, farg) application

(if) If (ftest, fthen, felse) conditional choice of subcomputation

(mt) mt empty sequence generation

(cart) cart(fins, frhs) sequence concatenation

(fst) fSt(feeq) selection of first element of a sequence

(rst) rSt(fseq) selection of remainder a sequence
Figure 10. Forms

frees(f) is the set of symbols occurring free in f and fl¢, is the result of replacing
free occurrences of s in f by fo (with renaming of bound symbols in f if necessary
to avoid trapping of free symbols in fo).

IV.1.2. Semantic domains for tree-structured computation

The remaining sorts of objects in t-Rum are dtrees, pfns, environments, the
computation domain, and computation stages. They are semantic entities in the
sense that they are used to provide interpretations of forms. Computation stages
will be discussed in §2. The remaining objects are generated from forms and the
given data and data operations by a mutual inductive definition. The domains
generated are (isomorphic to) the minimal solutions to the following equations,

modulo some additional rules for equality (g) which will be explained below.

(dtree) B: ~ (F xE)s; ® (0 x D)
(pfn) P~ (SyxFxE)s
(environment) E ~ [Sy > V']

(computation domain) V~D&O&P

e Dtrees. The dtree equation

D: = (F XE); & (O x D*)
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says that a dtree is constructed either from a data operation and a data sequence,
or from a form and an environment.

Data application dtrees. We call a dtree constructed from a data operation
and a data sequence a data application dtree. o’d is the data application diree
constructed from the data operation o and the data sequence d.

Closure dtrees. We call a dtree constructed from a form and an environment
a closure dtree. The closure of the form f in the environment ¢ is written (f | £).
The closure operation constructs a finite tree structure in which free symbols of
the form are replaced by value nodes containing the value bound to the symbol in
the environment (the empty sequence, if the symbol is not explicitly bound in the
environment). A-bound symbols are replaced by binding arrows pointing to the
binding node. Thus dtrees contain no symbols. The computation environment of
a dtree is the set of value nodes of the dtree, each such node being associated with
the value occurring at that node.

Closure dtrees are generated freely from value nodes by constructions corre-
sponding to the form constructions and are classified according to these construc-
tions (see Appendix A). For non-binding constructions, the dtree components are
the corresponding form components closed in the same environment. For exam-
ple, (app(frun,farg) | €) is an app-dtree. It has fun-component (frun | £) and
arg-component (farg | £).

Dtree equality. Two dtrees are equal only if they are both data application
dtrees or both closure dtrees. Two data application dtrees are equal iff the corre-.
sponding components are equal. The closures of different form environment pairs
may be equal dtrees. This corresponds to the fact that two form environment pairs
may be different, but still describe the same computation. Two closure dtrees are
equal just when they describe the same computation. The main point of intro-
ducing the closure construction is to capture this notion of equality. For example,
form environment pairs that differ by renaming of environment bound symbols (i)
and (ii), renaming of A- bound symbols (iii), or modifying bindings of symbols not
free in the form (iv) describe the same computation.

B x1&=(y1& if &x) =&y

(i)  (cart(x,x) | &) = {cart(x,y) | &) = {cart(z,z) | £) if &(x) = &(y) = €(2)
(iii)  (A(x)app(f,x) | €&} = (A(y)app(f,y) | £)

(iv) (x1&=(x1&y<v})

The equivalence £ on form-environment pairs is generated by renaming of A and

environment bound symbols and by modifying bindings of symbols not free in the
form and corresponds exactly to closure dtree equality. Thus equality of dtrees
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given as closures can be determined with out knowing the details of dtree structure.
(This equivalence is defined precisely in Appendix A.)

Since only the values of symbols free in f are relevant in a closure dtree we
may replace the environment component by a list of bindings for the free symbols
of f. If there are no free symbols we may forget the environment entirely. For
example, we write {(x | x < £(x)) for (x | £) and A(x)x for (A(x)x | ).

e Pfns. The equation for pfns
P=(SyxF xE)s

says that each pfn is constructed from a symbol, a form and an environment. We
write (A(Sarg)fbody | £) for the pfn constructed from sarg, foody and £. sarg is the
pfn argument symbol, fyody is the pfn body, and ¢ is the pfn environment. We call
this the abstraction of fooay With respect to s,rg in ¢. Structurally, pfns are just
A-dtrees, thus pfn equality is dtree equality restricted to pfns. Note that, as for
dtrees, the same pfn may be given by many different symbol, form, environment
triples.

We extend the application notation to pfns by defining
MO 18" = (F1 & <))

We say that an expression vs’v, is well-formed if vs is a data operation and v, is
a data sequence or if vs is a pfn.

Although structurally pfns and dtrees are the same, they play different roles
as descriptions of computation. The dtree (A(sarg)fboay | €) describes the prim-
itive computation which returns the pfn (A(sarg)fbody | £) as a value. The pfn
{A(sarg)fbody | €) describes a family of computations (A(sarg)fbody | €)'v. In
general the context determines which interpretation is intended. The need for a
formal distinction will become clearer when we discuss machine structures and
morphisms in Chapter VII.

¢ Environments. The equation for environments

E=[Sy*> V']

says that environments are the set of finite maps from symbols to values with
default the empty sequence. Thus environments are generated according to the
rules for finite maps given in §IIL.3. Note that the empty environment {} maps
each symbol to the empty sequence.
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+ The computation domain. The equation for the computation domain
V=D OoP

says that the computation domain V consists disjointly of data, data operations,
and pfns. Finite sequences from the computation domain (elements of V*) are
called values. They are generated according to the rules for finite sequences given
in §II1.2.

IV.2. Rules for tree-structured computation

IV.2.1. Computation primitives

Each sort of form corresponds to a basic computation primitive. The com-
putation described by a form relative to a computation environment applies the
corresponding primitive using results of subcomputations as parameters. A sym-
bol s describes looking up its value in the computation environment. A lam-form
A(5arg)fbody describes generation of the pfn given by the symbol sarg, the form
fvody and the computation environment. An app-form app(fsun, farg) describes
the application of the result of the fun-subcomputation. to the result of the arg-
subcomputation. If the fun-subcomputation, described by ftun, Teturns value vyn
and the arg-subcomputation, described by farg, returns value varg then the com-
putation proceeds by carrying out the computation described by Vfun ' Varg (if
well-formed), returning the value returned by this subcomputation, (if any). An
if-form if (fsest, fthen,felse) describes a test fiest and two branch subcomputations.
The test-subcomputation is carried out first. If the value returned by the test-
subcomputation is a non-empty sequence (resp. the empty sequence) then compu-
tation proceeds by carrying out the then- (resp. else-) subcomputation, returning
the value returned by this subcomputation, (if any). The form mt generates the
empty sequence. A cart-form cart(fins, frns) describes concatenation of results of
the lhs- and rhs-subcomputations. (Think of carrying around a collection of things
lined up in a “cart”.) A fst-form fst(fseq) describes selecting the first element of
the sequence returned by fseq and a rst-form rst(fseq) describes selecting the rest
of the sequence returned by fseq-

IV.2.2. Generation of computation trees

Figure 11 gives the rules for tree-structured computation. These rules make
precise the informal description of computation given above. The rules are pre-
sented as logical formulae and can be interpreted as clauses of an inductive defini-
tion of the relation symbols <, <,, and >~,. This interpretation will be elaborated
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Return Rules / The Evaluation Relation: < € [Dt ~~ V*]
(sym) o1 €) = £(s)
(lam)  (A(s)f 1 &) = (A(s)f I &)
(dapp) o’d < o(d)
(mt) mt <0
(cart)  (fins | &) < vine A (fens | €) — vene — (cart(fins, frns) | €) < [vins, Vrns]
(fst) (fsea | £) = veeq — (fSt(fseq) | £} — 1°* (Vseq)
(rst) (fseq | €) = veeq = (rst(faca) | §) = r** (vaeq)

(ret) > WAV —v—>D—v

Reduces-to Rules: >, € [Dt ~> D]
(app)  (frun | €) = veun A (farg | £) == varg — (@PP(frun,farg) 1 £) > "fun"’tws't
(if) (frest | €) — u — (if (fiest, fthen, feise) | €) >>. { g::nllef)) :g :Z‘:
Begin Rules / The Subcomputation Relation: <, C [Dt x Dx]

(if test) (feest | €) <o (if(fientsfehen, ferse) | €)

(appfun)  {frun I €) <. (@aPP(frun, farg) | £)

(app-arg)  (farg | £) <. (aPP(frun,farg) | £}

(cart.lhs)  (fins | &) <. {cart(fins, frns) 1 &)

(cart.rhs)  {frns | €) <. {(cart(fins,fns) | €)

(fst.seq) (f-eg I €) <. (fst(fseq) | £)

(rst.seq) (fseq | £) <. (rst(fseq) 1 €)

(redt.beg) ¥ >>,00 — Vo <. D

tif veun 'vgrg is well-formed — vgun € @ A varg € D* or veun € P.

Figure 11. Rules for tree-structured computation
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below. First we explain briefly the interpretation of the computation rules as rules
for generating computation trees and give pictures for two simple examples. Our
intent is simply to provide geometric intuition for the structure computation trees
and for intensional properties of computations carried out by generating compu-
tation trees. The mathematical structures representing computations trees and
operations on these structures are defined in Appendix A.

e ? e ? e D o o« Dy

Ia T VRN
e

Initial stage Return value

Begin subcomputation Doy

(a) 00 <. 0
(b) ()

Figure 12. Generating computation trees

Computation trees are generated by stepwise extensions of partial computa-
tion trees, called computation stages. A computation stage is a finite tree struc-
ture. Each node is labeled by the dtree describing the subtree below that node.
The root of a completed subtree is also labeled by the value returned by that
subcomputation. The initial stage of the computation described by 0 is a single
node with dtree label, ® — Figure12 (a). There are two sorts of steps — begin a
subcomputation (apply a begin rule) and return a value (apply a return rule).!
A begin rule 9y <, 0 applies at a node labeled 9 if the rule has not been used at
that node. The subcomputation is begun by adding a new successor node below
the given node. The new node is labeled by the dtree 9o — Figure12 (b). A return
rule with conclusion ¥ < v applies at a node labeled 9 if the immediate subcom-
putations mentioned in the rule premiss have returned values matching those in
the premiss. A value is returned at a node by adding it as the value label of that
node — Figure12 (c). Each reduces-to rule combines with the rule (redt.beg) to

! This is analogous to the classification of instructions given by Wegner [1972] (see
§1.4) for transformations on VDL computation states. Begin rules correspond to macro
instructions and return rules correspond to value instructions.
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give a begin rule and with (redt.ret) to give a return rule (transitivity of impli-
cation). The arc leading to a reduced-to subcomputation may be labeled by with
the reduces-to sign > for emphasis.

The computation tree for a dtree d is the limit of the stages reachable from
the initial stage by extensions according to the computation rules. At any stage
where more than one rule applies, the corresponding extensions may be made in
any order with the same result. Thus the limit is well defined. Since the process
of computation may not terminate in finitely many steps, computation trees may
be infinite, although stages and descriptions are finite. The computation tree
described by a dtree d returns a value v if the root of the computation tree for ?
has value label v. A computation tree which returns a value is finite and all nodes
have a value label.

[1)

p —+ K(u)
{K»
Orst — ‘ll\. K'u

— K(u)
0, — v
where
Difv: (if(z,cart(fst(z),app(A(X)A(Y)X,rst(z))),mt) | z < v)
Veart = (cart(fst(z),app(A(X)A(y)x,rst(z))) | z < v)
st = (fst(z) | z < v) Vapp = (2PP(A(X)A(Y)X,rst(z)) | Z < v)
=(zlz<v) Vet = (rst(2) | z< v) v = [a,u]
D = A(X)A(y)x K = A(X)A(y)x K(u) = (A(Y)Xx | X « u)

Figure 13. Computation tree for D¢
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Dlc» ing
/I \»
o0r — Lose 0 — Lose osing

bt
0 — Lose\o Dlosing

o0 — Lose

where  Djosing = LOse’Lose and 0y = {f | f < Lose)

Figure 14. A losing computation

Example: A finite computation tree. Figure 13 shows the computation
tree described by the dtree 9;s.

Vit = (if (z, cart(fst(z), app(A(x) A (y)x, rst(z))), mt) | z< v)

The description reads: if z is a non-empty sequence then return the sequence
containing the first element of z and the result of applying A(x)A(y)x to the rest
of z, otherwise return the empty sequence. We use K to denote the pfn A(x)A(y)x
in analogy to the “K” combinator. K(u) is the pfn {(A(y)x | x < u), the result of
applying K to u. From the computation tree for dis we can read off facts about
the computation structure such as

(i) the value returned by ;¢ is [a, K(u)]
(ii) O¢st is an immediate subcomputation of dcart
(iii) computation of 9, reduces-to computation of K’ u

We can also read off other information about the computation such as the rule
(sym) was applied three times, the rule (lam) two times, the rule (cart) one time,
there was one pfn application, and the depth of the tree is four.

Example: An infinite computation tree. As a second example we de-
scribe what is perhaps the simplest non-terminating computation. Let Lose =
A(f)app(f,f). Then Lose is a pfn that applies any argument to itself. Applying
Lose to itself we obtain the dtree Ojosing

Vlosing = Lose’ Lose = (app(f,f) | f <- Lose)

which reads “apply f to f where f is bound to Lose.” The computation tree
described by 0josing is shown in Figure 14.




§IV.2 Rules for tree-structured computation 99

IV.2.3. Computation relations

We now interpret the computation rules as clauses of an inductive definition.
Thus <, <,, and >, are the least relations on B¢ x V*, Dt x D¢, and D¢ x
D, respectively, satisfying the closure conditions (implications) expressed by the
computation rules. The following basic facts follow easily.

®  Evaluation and immediately reduces-to are partial functions.

(evalfun) ¥ vg A D> v; — vy = v;

(redt.fun) Vo>, 01 AV >,02 = 0, =09

Remark. The conditional if tests for equality to the empty sequence. Equal-
ity between arbitrary elements of the computation domain is not computable in
Rum. In §5 it is shown that equality on the S-expression domain is computable.
In general, equality between elements of the data domain may or may not be
computable, depending on the given data operations.

IV.2.3.1. Computation trees vs. computation relations

The two interpretations given for the computation rules are essentially the
same. By expressing the rules for generating computation trees in terms of oper-
ations on tree structures it is easy to show the following. (See Appendix A for a
precise formulation.)

= Evaluation (<) is the relation on dtrees and values that gives the value returned
by the described computation (if any). ? < v iff the computation described by ?
returns the value v.

®  Immediate subcomputation (<,) is the relation on dtrees that corresponds to
the immediate subtree relation on computation trees. 9o <, d iff the computation
tree described by 9 has an immediate successor node with dtree label 9.

® Immediately reduces-to (>>,) is a subrelation of immediate subcomputation.
0 >>, 0, when D is an if- dtree and 9, is the branch determined by the result of
the test-subcomputation, or when 9 is an app-dtree and 9, is the application of
the results of the fun- and arg-subcomputations.

Using the correspondence between computation trees and computation rela-
tions we can also read off instances of computation relations from a computation
tree. For example from the tree for 0;s we have

(i) it — [a,K(u)]
(11) Dfst‘. =< acart

(iii) Dapp > K'u
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TV.2.3.2. More computation relations and facts

Some additional relations useful in formulating properties of computation are
defined below.

> Subcomputation. The subcomputation relation (<) is the transitive closure
of the immediate subcomputation relation.

> Reduces-to. The reduces-to relation (>>) is the transitive closure of the im-
mediately reduces-to relation.

> Definedness. A dtree is defined iff the computation described by that dtree
returns a value.

o = () — v

> Computation tree equivalence. Two dtrees are computation tree equivalent
(abbreviated ctree equivalent) iff both are undefined or both are defined with the
same value.?

=0 = (Vo) — v & 0, > v)

&l

~ The following are some additional useful facts about tree-structured compu-
tation. They follow easily from the definitions.

®m  If a computation returns a value then all subcomputations return values.

(def.subc) 01 A 0o <03 — {0

m  If 0g reduces-to 9; then 0p is weakly equal to 9;
(redt.ctree.eq) VW>0; = V=0,

m  Completed computation trees are well-founded. Thus for any dtree property
Q@ we have the computation tnduction formula

(1) (V) (V00 <2)Q(%) — Q(2)) = (W)Y — Q(2))

m A simple consequence of computation induction is that a dtree which is a
subcomputation of itself is not defined.

(loop) <0 — =0

An immediate corollary is —{}(Lose’Lose) which was asserted informally in the
example of a “losing” computation.

? Computation tree equivalence is analogous to Kleene’s complete equality, = (Kleene
[1952]).
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IV.3. Notation and conventions

IV.3.1. The global context

While working in Rum, we imagine that we are working in a global contezt.
This context determines a set of global symbols o, and a global environment £,
assigning values to the global symbols. We say an environment ¢ is compatible
with the global environment if it agrees with the global environment on global
symbols - (Vs € 0.)(£(s) = €+(s)). A symbol definition adds a new symbol to the
set of global symbols and extends the global environment by binding the defining
value to the defined symbol. For example

> | & A(x)x

defines | to be the identity pfn, A(x)x. In general, symbol definitions have the
format

af
> < symbol > «— < form >

where < symbol > is the symbol whose value is being defined, and < form > is a
form that has a value in the global environment. The definition extends the global
environment by binding the value of < form > (in £,) to < symbol >. To help
keep track of global symbols, we use identifiers such as I, K, and Rec, beginning
with upper-case letters for global symbols. To simplify notation, we use a global
symbol constant in a context where a value is expected to denote the value of that
symbol in the global environment. For example we write |’v < v rather than

() v > v.

IV.3.2. Satisfaction in the global context

Many of the properties of computation that we study are properties of tuples
of dtrees ({f1 | £),...,(fa | £)) which hold for all environments ¢ compatible with
the global environment. For example (I(x) | £) > (x | £) is such a property. To
express such properties naturally, we define a notion of satisfaction which allows
us to interpret dtree properties as properties of forms.

> Satisfaction by the global context. For any n-ary dtree relation ©, the
global context satisfies O(fi,...,f.) (written =, ©(fy,...,f)) iff © holds for each
tuple of closures with respect to an environment extending the the global environ-
ment.

s O(f1,.-.,fa) = (VE)(Vs € 0.)(E(s) = £4(s) = O((f1 1€),...,{fa 1 £}))

&
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Recall that o, is the set of global symbols and £, is the global environment. We
include as dtree properties logical formulae built from the basic dtree relations
having only dtree variables free. We will generally omit the sign =, and write
©(f1,...,fa) for =+ ©(f1,...,fa). For example, the basic facts about subcompu-
tation and reduces-to can be expressed by

(def.subc) Uf1 A fo <f1 — Yo

(redt.subc) fo>=f1 — fo<h

(redt.ctree.eq) fo >>f1 — fo = f1

By our convention partitioning symbols into global and non-global symbols we
avoid the possibility that at some point in the development the global context

satisfies a given formula and at some other point the global context does not
satisfy this formula.

IV.3.3. Notations for sequences and multiple arguments

Cart-forms may be written with any number of arguments using the usual
conventions for associative binary operations.

cart() = mt, cart(f) = f, and cart(fi,f2 ... ,fn) = cart(fy,cart(f2 ... ,fa))

and we write [f;, ... ,fa] for cart(fs, ... ,fz).

There are two natural notions of multiple argument abstraction and applica-
tion. The first is analogous to the usual extension of lambda notation by currying.

A, o sea)f = As) oo Asa)f
fo(fl, ,fn) = aPP( app(fo,fl), fn)

df

The second means of expressing multiple arguments is to match a sequence
of symbols to elements of an argument sequence. For example, A[s1, 82, 53]f binds
the first element of an argument to s;, the second element to s; and the second
remainder to s3. In general,

Aslf = A@F
A[Sl,.‘.»‘z, ,sn]f ;1;1’ A(Sl)({A(Sl)A[Sz, ,sn]f}(fst(sl),rst(sl))).

Combining the two modes of expressing multiple arguments, we may write expres-
sions such as A(...,b;,...)f where b; is either a symbol or a sequence of symbols.
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We define the corresponding notion of binding a sequence of symbols [s; ... sn]
to a value v in an environment £ by

€{[51,625-.,8a] < v} b £{s1 < 1% v,[s2,...,80] < T** v}

Thus we have
(A[sth"-'asn]f I 6),0 > (f l f{[81,82, 1sn]“*‘”)

IV.3.4. Dtree expressions

To provide a richer language for expressing facts about the evaluation relation
and pfn application, we form expressions by repeated use of the dtree application
operation and sequence operations. We call such expressions dtree expressions.
Thus value variables and constants are dtree expressions and if A, Ag, 4;...,4,
are dtree expressions then so are Ao’ A1, [4o,..., 4], 1% (4), r** (4), Al, etc.
The evaluation relation is extended to dtree expressions by first evaluating subex-
pressions. Some example expressions and evaluations are

U v o u=v
(9" uo) uy = v o (39)(F uo — o A Fo' uy — v)

(W' uo)'(¥1'¥1) = v & (3% u)(Po 'uo = A us = uAd u—v)
(W' uo)’ uy,u] = v & (3vg)((9'uo) u1 — vo A v =vo,u])

1% (9" uo) ' u1) — v « (Jvo)((9' uo) u1 = vo A v =1% )

The definitions of definedness and weak equality extend naturally to dtree expres-
sions. For dtree expressions A and B,

b4 = (@0)(4 = v)

A+=B i (Vv)(A > v & B < v)
To parallel the currying of multiple arguments in forms we write ¥ ’(uy, ... ,up) for
(... (9"u1) ...)" uy and when ¥'(uy, ... ,uy) is defined, we write 9(uy, ... ,uys)

for the value.
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IV.3.5. n-ary pfns and pfnls

It is useful to give names to classes of “higher order” pfns. The most frequently
used notion is that of pfnl, named in analogy to functional. More generally we
can talk about n-ary pfns - pfns that can meaningfully be applied to a list of n
arguments.

> Pfnl. A pfn is called a pfnl if it maps any argument to a pfn. We use Pfnl to
denote the set of pfns that are pfnls.

© € Pfnl = (Vo) (Fe1)p' v — 01

> n-ary Pfn. Any pfn is a l-ary pfn. For n > 1, p is an n-ary pfn if ¢’ v is
defined with value an n — 1-ary pfn for all values v.

s Pfnls are just the 2-ary pfns

= (A(x1,...,xn)f | £) is an n-ary pfn for any form f and environment £.

IV.3.6. Derived forms

In order to make definitions more compact and readable, we introduce some
abbreviations for forms. ifmt expresses the test for the empty sequence positively.
and, or, and not describe boolean operations. The pfn A(x)mt is chosen as the
canonical non-empty sequence, to represent “true”. Any pfn would do.

ifmt(ftest, fmt ’ fnmt) ; if (ftest ’ fnmt ’ fmt)
or (flhs ’ frhs) d=f if(flhs ’ A (X) mt, if(frhs 3 A (X) mt, mt))
and(flhs,frhs) ;—; if(flhs: if(frhs, A(X) mt, mt)’ mt)

not(f) = if (f, mt, A(x)mt)

Finally we introduce let which expresses the use of abstraction followed by appli-
cation as a means of temporarily giving a name to the value of an expression. To
evaluate let{s; <f1,52 < f2}fbody in an environment ¢, the arguments f; and f,
are each evaluated in £. If f; returns value v; for ¢ = 1,2 then fpoqy is evaluated
in £ extended by binding v; to s; and vz to s2. In general we have

let{..., b; <—fi ,---}fbody d=f {)«(..., by ,---)fbody}(---, fi ,)
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where b; is a symbol or a sequence of symbols. As illustrated above, and continuing
the convention introduced in Chapter I, we will often use {...} to set off the func-
tion part of an application form when the function part is a complex expression.
This is merely to try to improve readability.

To illustrate the added notation we have the following simple and useful con-
sequence of the definition of the closure formation operation.

m Forgetting lemma. For x not free in f,

Yfo — let{x <« fo}f: = fi.

In terms of basic Rum concepts this fact is expressed by

(VE)(U{fo 1 &) — (app(A(x)f1,fo) | €) = (f1 | £))

IV.4. A library of pfn definitions

IV.4.1. Algebraic combinators

Algebraic combinators are those whose functional behavior is given explicitly
by algebraic equations. Following the notation of Barendregt [1981] we define

> 1 & A(x)x

> K & A(x,y)x

> €1 S, x)f(x)

> B &, g x)f(g(x)

> S S A(fLe 2 (D))

| is the identity pfn, K is the constant maker, B is the composition pfn, C1 the
Church numeral one (also the application pfn) and S is the substitution pfn. These
pins are characterized computationally by the following properties which are easily
proved using the definitions and rules for computation.

= Computational behavior of algebraic combinator pfns
(Lredt)  I{x) > x

(K.redt) K(x,y) > x

(Cl.redt) Ci(f,x) > f(x)

(B.redt)  B(f,g,x) >~ f(g(x))

(S.redt)  S(f,g,z) > f(z,g(2))
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By (redt.ctree.eq) we can replace > by = in the above theorem. Thus the al-
zevraic combinator pfns satisfy the usual equations and more. Note that K, Ci,
B and S are pfnls and for all u,v B(u,v) and S(u,v) are pfns. We use the infix
notation u o v for B(u, v).

® The S™ theorem. Foreach m >0, n >0 let S;* be defined by
S;;n ; /\(f))\(x1,...,xm)z\(y1,...,yn)f(xl,...,xm,y1,...,yn)

then for any (n + m)-ary pfn ¢
US™ (S, uy...um) and ST(F,ur...vm) (vi...vs) >0 (v um,vr.. vp)

The S theorem for Rum is a trivial consequence of the definitions of n-ary pfn and
pfn application. We have stated it to emphasize the connection between closure
formation and parameter fixing.

IV.4.2. Recursion

* The Rum recursion theorem says that for each pfnl ¥ there is a pfn that is the
computationally minimal fixed point of ¥ and that these fixed points are computed
uniformly by the recursion pfn Rec.

> Recl <5 A(g)A(h)A(x)g(h(h),x)
b Rec <5 A(f)Rec(f, Reci(f))

Rec is defined in terms of the auxiliary Recl simply to make the definition more
readable. Recl is also a useful intermediary in writing out the proof of the recursion
theorem.

® Recursion Theorem.

(rec.pfnl)  Rec € Pfnl

(rec.subc) (V9 € Pfnl)(9'(Rec(¥)) < Rec(d)’v)

(rec.redt) (V9 € Pfnl)(Rec(d)’ v > 9(Rec(¥))’ v)

Computational minimality is expressed by (rec.redt). (rec.subc) says that the
application of a pfnl to its fixed point is a subcomputation of every application of

the fixed point to an argument. The recursion theorem is an easy consequence of
the computation rules and the definition of Rec.
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®= Recursion Corollary. The usual fixed point property is an immediate corol-
lary of (rec.redt). This can be expressed in terms of pfns and values (rec.fix.a) or
in terms of forms (rec.fix.e).

(rec.fix.a) Rec(9)’v = d(Rec(d))'v
(rec.ﬁx.e) f= ReC(A(f)A(X1 geoe xn)fbody) - f(xi AR Xn) = fbody

= Non Recursion. If f is not free in fyoay then
(rec.noop)  {Rec(A(f)A(x)fboay)}(X) = fbody

This follows from the recursion corollary and the forgetting lemma.

Parameterized Recursion. Consider the equation

f(g, x) = if(p(x), h(x),f(g,8(x))
Since g is a parameter — is not changed in the recursive call — this equation can
be solved in two ways using Rec. One way is to pass g explicitly as an argument
at each recursive call

(param.pass) = Rec(A(f)A(g, x)if (p(x), h(x),f(g,g(x))))
the other way is to treat g as a parameter of the recursion
(param.fix) f = A(g)Rec(A(fF)A(x)if (p(x), h(x), fF(g(x))))

Extensionally the two definitions are the same.
{Rec(A()A(g, x)if(p(x), h(x), f(e, &(x)))) } (g, x)
= {A(g)Rec(A(F)A(x)if (p(x), h(x), f(g(x)))) } (g, x)

Computationally the two solutions differ in the amount of work done in argument
passing (binding of symbols to extend environments). In the (param.pass) case g
is rebound in each recursive call, while in (param.fix) case g is bound initially and
carried in the environment.

Why not Church’s Y? The algebraic combinatory pfns are direct analogs of
the corresponding lambda calculus combinators, but Rec differs from the direct
analogue to Church’s Y-combinator, ChurchY (see Barendregt [1981] p.127).

b Y1 &5 A(O)A(M)F(h(h))

> ChurchY <5 A(f)Y1(f)(Y1(f))

This is necessary as the following theorem shows. The reason is the difference
between Rum evaluation, which is call-by-value and lambda calculus reduction
which is call-by-name.

®  ChurchY is everywhere undefined.

Proof: For any v, ChurchY’v > Y1(v)'Y1(v) and Y1(v)’ Yi(v) < Y1(v)'Y1(v).
Hence by (loop) we have -~{(Y'v).
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IV.4.3. Recursion on sequences

Collection, tupling, bounded search and iteration along a sequence are exam-
ples of computation schemes based on recursion on finite sequences. These schemes
are total in the sense that when instantiated using total functions for the function
parameters, the function defined is total. Such schemes are represented uniformly
- in Rum by pfnls which when applied to pfns computing the function parameters
give a pfn computing the corresponding instance of the scheme.

Collection. The collection scheme has a unary function parameter. The pa-
rameter is applied to each element of the argument sequence. The results are
collected in a sequence and returned as the value. The pfnl Collect describes the
collection scheme

> Collect &5 A(f)Rec(A(co)A[x, ylifmt(x, mt, [f(x),co(y)]))

and satisfies
Collect(9)’[ay,...,an] = [¢'a1,...,9 ay].

Tupling. Tuplingis the “dual” to collecting. The tupling scheme has a sequence
of unary functions as a parameter. Each element of the parameter sequence is
applied to the given argument and the collected results are returned as the value.
In Rum tupling is explicitly definable from collection.

> Tuple & A(funs)A(x)Collect(A(h) (h(x)), funs)

Tuple satisfies
Tuple[dy,..., 9] v = [91 u,..., 9, u].

Bounded search. The bounded search scheme has two unary function param-
eters. The first function computes a predicate. It is applied to each element of
an argument sequence until an element is found that satisfies the predicate. Then
the second parameter is applied to that element and the result returned. If no
such element exists then the empty sequence is returned. We use Some to describe
bounded search.

> Some &5 A(p,f)Rec(A(s0) Alx, y]ifmt(x, mt,if (p(x), f(x),so(y))))
Some satisfies

(Va € u)¥,"a — o — Some(dp,9¢) u <0

(Va € u)§9,"a A (Ja € u)d,(a) #o — (3a € u)Some(Fp,9;) u > d;'a
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In the definitions of Collect and Some we have used A[z,y] to name the first and
remainder of the argument at the beginning of the computation, and used the fact
that 1% v =0 <= v=no

Iteration along a sequence. This scheme has a binary function and an initial
value as parameters. If applied to an empty argument sequence the initial value
is returned. If applied to a non-empty argument sequence the function is applied
to the first element of the argument and the result of iterating along the rest of
the argument sequence. Seqlt describes iteration along a sequence.

b Seqlt <5 A(f, z)Rec(A(si)A(x)ifmt(x, z, f(fst(x), si(rst(x)))))
Seqlt satisfies

Seqlt’(d, u,[a1,...an]) = ¢'(a1,...,9"'(am,u)...)

Exercise 1. Tuple was defined using Collect to illustrate the expressive power of
collection in the presence of pfns. Derive an equation for Tuple that does not use
Collect and prove that the solution of the derived equation using Rec computes
the tupling pfn. (This is even simpler than the TprodC derivation §I1.3 as there is
no need to introduce added parameters.)

IV.4.4. Remarks

o The computational facts for the algebraic combinator pfns, the computational
minimality of the recursion pfn, and computation induction illustrate some of the
features of Rum in contrast to those of computation theories based on codes as ele-
ments of the computation domain or recursion theories based on lambda reduction
(see §1.5). In a nutshell, we have the strong form of the closure conditions required
for a computation theory and at the same time the corresponding functionals are
defined extensionally using abstraction.

o (rec.redt) is stronger than (rec.fix). Combined with computation induction,
(rec.redt) is an important tool for proving properties of recursively defined pfns.
Recursion induction (McCarthy [1963]), subgoal induction (Morris and Wegbreit
[1976]), McCarthy’s minimization schema (a scheme formalizing Kleene’s first re-
cursion theorem — see Cartwright and McCarthy [1979]), and many other instances
of “Scott induction” follow from (rec.redt) and (CI). “Scott induction” is an in-
duction principle derived from the least fixed point theorem for extensional models
of the lambda-calculus (Scott [1976]).

e The example of alternative descriptions of parameterized recursion relies on
the fact that the pfnl has the form of an ordinary well typed functional. Intuitively
it would seem that moving parameters across the recursion boundary should in
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general preserve the function computed. We will see in §VI.2 that this is indeed
the case.

e Seqlt is so named in analogy to a functional /it defining iteration along a list
and studied by Gordon [1973].

e Collection, tupling and iteration along sequences correspond to the constructs
apply-to-all, construct, and snsert in functional programming (Backus [1978]). Col-
lection also corresponds to the finite collection schema use to formalize fragments
of arithmetic and is a finitary analog to the collection principle of set theory.

IV.5. Computing with S-expressions

Now we fix the data structure to be the S-expression structure described in
§II1.5 and define some additional data operations and constants. Many of these
are basic definitions that will be used in later examples. In addition they serve to
illustrate further the use of sequences and of the library of pfns built in §4.

The global S-expression context associates each S-expression operation to the
corresponding S-expression operation symbol. The same identifier will be used
to denote both an S-expression operation and its corresponding symbol. Thus
PairMk denotes both the pairing operation and the symbol whose value is the
pairing operation.

IV.5.1. Standard S-expression operations and constants

The Lisp name for the empty list in Nil. The projection operations for pairs,
Car and Cdr, are defined from PairUn using fst and rst and Atom is the opposite
of PairP (on the S-expression domain Dgexp).

> 0% ZeroMk(]
b Nil 25 MtMK]]
> Car & A(x)fst(PairUn(x))
> cdr & A(x)rst(PairUn(x))

> Atom & A(x)if(PairP(x), mt, x)

For S-expressions a,a;,a; we have

Car(PairMk[a;, a2]) = a1, Cdr(PairMk[a1, az]) = a2
Atom(PairMk|[ay, a2]) = o, PairUn’(a) = Tuple(|[Car, Cdr], a)
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Exercise 1. Since Dgexp is finitely and freely generated, and tests for the various
sorts are provided, equality between S-expressions SexpEq is computable. Define
pfns that test for equality of S-expressions of each sort: IntEq for integers, StrEq
for strings, and PairEq for pairs. The test pfns should return the empty sequence if
the arguments are not of the correct sort or are not equal. Otherwise they should
return one of the arguments. SexpEq satisfies

SexpEq[x,y] = or(IntEq|x, y], StrEq[x, y], PairEq[x, y])

SexpEq is not specified for non-S-expression arguments.

Exercise 2. The computable functions on integers are definable as Rum pfns
in the usual way using Rec to solve recursion equations. Define addition (+),
multiplication (*), less-than (Lessp), and the function that returns the maximum
of two integers (Max).

IV.5.2. Using multi-ary operations

StrConc is string concatenation. It is defined using sequence concatenation
and the operations StrUn and StrMk for interconversion of strings and sequences.

b StrConc <> Alx,y|StrMk[StrUn(x), StrUn(y)]
For integers z; we have
StrConc[™z1, ..., Zm™, "Zmt1s- -1 Zm4n"] = "21y .0 s Zmgn”

Using Seqlt we define a pfn ListMk, analogous to the StrMk data operation, that
maps sequences of S-expressions to lists. The inverse of ListMk is ListUn, defined
by a simple recursive definition.

> ListMk <% A(x)Seqlt(PairMKk, Nil, x)
> ListUn <5 Rec(A(ListUn)A(x)if (MtIP(x), Nil, [Car(x), ListUn(Cdr(x))]))

This definition of the list making operation is a direct implementation of the
informal notation we gave for lists in our presentation of the S-expression data
structure (§II1.5) and we have for S-expressions a;

ListMk'[a1,...,a5] < <a1,...a5>
ListMk’(ListUn(<ay,...ay>)) = <ay,...ay>

ListUn’(ListMk([a1,...axs])) = [ai1,...ax]
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For lists lp, I; we will use lp ¢!; to denote the concatenation. Thus
lo o l; = ListMK]|ListUn(lo), ListUn(l;)]

Two additional interesting operations that combine lists and multi-ary operations
are ListExtend and its inverse ListAfter. ListExtend takes a sequence and a list and
extends the list, adding the elements of the sequence to the list. ListAfter takes a
sequence and a list and, if the sequence corresponds to an initial segment of the
list the remaining tail of the list is returned. Otherwise the empty sequence is
returned.

b ListExtend & A(x,y)Seqlt(PairMk, y, x)

> ListAfter <> Rec(A(ListAfter)A(x,y)
ifmt(x, y,
if (MtIP(y), mt,

if (SexpEq(fst(x), Car(y)), ListAfter(rst(x), Cdr(y)), mt))))
Note that ListMk is just ListExtend with the list parameter fixed to be Nil. For
S-expressions a; and lists [ we have
ListExtend([a1,. - . an], 1) = ListMk’([ay,... ay, ListUn(l)]))

ListAfter’([a1,. .. an], ListExtend([ay,... an], 1)) = !

IV.5.3. Tprod revisited

We have now defined most of the concepts needed to give precise interpretation
to the definitions and statements regarding tree-structured computation in the
tree product examples of Chapter II. What remains is to explain the recursive
definitions of the pfns as used there. Definitions of the form f(x1 ...xn) < fbody
define f to be the pfn which is the minimal fixed point of the corresponding pfnl
A(f)A(x1..xn)fbody. For example,

>  Tprod(x) « if(Atom(x),x, Tprod(Car(x)) x Tprod(Cdr(x)))

is an abbreviation for

> Tprod & Rec(A(Tprod) A(x)if (Atom(x), x, x| Tprod(Car(x)), Tprod(Cdr(x))]))
In the examples we used infix notation for operations such as for + and *. For the

official work in Rum we have not bothered to introduce infix notations.

At this point the reader should be able to fill in all the details for definitions
and extensional statements about the pfns describing tree-structured computation.
Using the informal description of computation trees the intensional statements
can also be understood intuitively. The definitions of Appendix A and the further
examples in Appendix B show how these statements can be made precise.
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IV.6. Streams and stream operations

Streams were described in §1.2 as O-ary function-like objects with internal
state that present possibly infinite sequences. In Rum there is no notion of internal
state, so we must explicitly keep track of the information about the rest of a stream.
Thus a stream is a pfn ¢ that when queried (applied to the empty sequence) either
returns the empty sequence or an element and a stream. We call this the stream
condstion. In the first case, ¥ is the empty stream, and the empty sequence is the
end-of-stream signal. In the second case, ¢ is a non-empty stream, the element
returned is the first element of the stream, and the stream returned is the rest of
the stream. Two examples of streams are: the pfn MtStream which is an empty
stream and the pfn Streamify that turns a sequence into a stream of its elements.

> MtStream A()mt

b Streamify <> Rec(A(s)Alx,y]A()ifmt(x, mt, [x,s(y)]))

We used A()f in the above definitions as an abbreviation for A(s)f where s is some
symbol not appearing free in f, for example z in the above cases.

We let Stream denote the set of pfns that satisfy the stream condition given
above. More precisely a stream set is any set of pfns ® that satisfies (Sc).

(Sc) d€P® « do—oV (Ja,9; € )9 0 [a,0]

Since the right hand side of (Sc) is monotone in ® there is a least stream set
Stream® — the set inductively generated by the corresponding monotone oper-
ation. Stream consists of the finite streams and contains all empty streams
and Streamify(u) for any u. The union of any non-empty set of stream sets is a
stream set. Hence there is a maximum stream set. This is what we called Stream.
Stream can also be given by a shrinking induction [Moschovakis 1975], i.e. as the
compliment of an inductively defined set of pfns.

IV.6.1. Stream elements, tails, length, and equality

There are two sequences associated with each stream — the sequence of stream
elements and the sequence of stream remainders. These are given by the n-th
element and n-th tail operations on streams. We call the pair [n-th element, n-th
tail] the n-th iterate. The length of a stream is the number of elements — possibly
infinite. Two streams are equal (as streams) if they have the same n-th elements
for all n. These notions are made precise by the following definitions.
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n-th iterate, element, and tail. The n-th iterate operation is computed by
the pfn Nthltr and the n-th element and n-th tail operations are computed by the
pfns NthElt and NthTail.

> Nthitr <> Rec(A(Nthitr)A(s, n)
let{[x,t] < s[]}
if(Zerop(n), [x, t], Nthitr(t,Sub1(n))))
> NthElt < A(s,n)let{[x,t] < Nthitr(s,n)}x

> NthTail <5 A(s,n)let{[x, t] < Nthltr(s, n)}t
For a stream ¢ and a number n we write
g = NthElt(d,n) and ¢>" = NthTail(9,n)
Note that for any stream ¢ and any number n Nthltr is defined and we have

[0(0)’0>0] — 19(13) and [0(n+1),0>n+1] — {19>"’(D) if 19(") 75 o
o if 9(?) =n

> Stream length. The length of a stream |¥|, is the least number n such that
¥(") = o if such a number exists. Otherwise the length is defined to be oco.
9], = {u(nw(") =0 if (In)9™ =0
00 otherwise
> Stream equality. Two streams ¥, ¥; are stream-equal (written d¢ = ¥y) if
they have the same n-th element for all n.

S0 = (vn)9{™ = 9{™

= About stream elements, tails, length and equality. For streams 9, 9o,
% :

(Vrn < lul)(Streamify (u)™ = ul,)

n< |9, = 9™ eV A 9>" € Stream
n>|d), - M=o A" =0

n+k< |9, - 9nthtD) — (y>n)(k)
|[MtStream|, =0 and |Streamify(v)|, = |v]
do = ¥ — wola = |!91]a

B0 =9, A n<l|dols = ()" = (91)"

These properties are easy to check from the definitions.
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IV.6.2. Stream combination operations

New streams can be made from given streams by stream combination opera-
tions. Some examples are concatenation, filtering, merging, and mapping.

Concatenation

The concatenation of two streams is a stream that generates elements from
the first stream until the end is reached, then generates elements from the second
stream. StreamConc describes the concatenation operation.

b StreamConc Rec(A(StreamConc)A(s0,s1)
A()let{[x, s0] < sO[]}if (x, [x, StreamConc(s0,s1)],s1]])

We will write 9o o ¢; for StreamConc(¥o,¥;). Clearly if ¥o and ¢, are streams
then 9o 0 ¥, is a stream.

= Properties of stream concatenation. The following facts show that stream
concatenation has the same properties as concatenation of other sequence like
objects. For streams ¥, ¥#;, ¥2 we have

[90]s =no A |91]s =n1 — |[F00¥1]s =no+n,

[9ols =00 V |91]s =00 — |Jpo 1|, =00

n < [Bols = (Po091)™ =8 A (9009:)>" =830,

Wols=m Am<n = ($o09;)™ =9{""™ A (9509,)>" =9>""™
9o = MtStream o 9 = 9o © MtStream

(Foo0¥1) 092 Z dp o (¥ 0 92)

Streamify(u) o Streamify(v) = Streamify([u, v])

Filtering

A filter takes a test and a stream and produces a stream in which the elements
failing the test are filtered out. The pfn Filter describes the filter operation.

> Filter <5 X(p)Rec(A(fil)A(s)A()
let{[x, s] < s{]}ifmt(x, mt,if (p(x), [x, fil(s)], fil(s){])))
The key computational facts for a stream ¥ filtered by a test ¢ are

>> Filter(p,9,)’0  if 9’0 [a,9;] and p’a—o0o
Filter(p,9)'0 4 < [a,Filter(p,9;)] if 9’0 [a,9;] and p’a— v#o

0 if 'o—o
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= Filter distributes over concatenation. For streams 9o, ¥;
Filter(i0, 90 ¢ 91) = Filter(ip, ¥o) ¢ Filter(p, 1)

We can further characterize the filter operation by defining the index of the n-th
element of a stream ¢ satisfying a predicate ®. Iz(®,9,n), is defined by induction
on numbers

Iz(9,9,0) = p(n)q)(,a(n))
Iz(®,8,m + 1) = p(n)(n > Iz(®,9)™ A &™)

If & is computed by pg then

Filter(goq,, '(9) (n) = 1’(13(0:‘9’”))

Exercise 1. Define a pfn describing a merge operation on streams. The 2n-th
element of the the merge is the n-th element of the first stream, the (2rn + 1)-th
element of the merge is the n-th element of the second stream.

Exercise 2. Define pfns StreamMap1, StreamMap2, and StreamMapS describing
mapping operations on streams. For pfns ¢ defined on V and streams ¢, the n-
th element of StreamMap1(p,¥) is the result of applying ¢ to the n-th element
of 9. For pfns ¢ defined on [V x V] and streams ¥, ¥, the n-th element of
StreamMap2(p, ¥o, 1) is the result of applying ¢ to the n-th element of ¥y and
the n-th element of ¥#;. For pfns ¢ defined on V* and any sequence of streams
[90 ... k], the n-th element of StreamMapS(p, [¥o ... 9k]) is the result of applying
@ to the sequence of n-th elements of [¥¢...0k].

Exercise 3. Show that unary mapping distributes over concatenation. What
about binary and multi-ary mapping?

IV.6.3. Remarks

e Other work A representation of streams similar to the Rum representation
was first used by Landin [1965] where streams were introduced to represent control
lists of Algol. A control list is a list of expressions that describes a list of items to
iterate through. Items of a control list should be computed as needed, not all at
once. Landin treated only finite streams and gave operators analogous to normal
list operations for construction and selection. Burge [1970] extends this idea to
possibly infinite streams. He presents sequences as functions that return a pair
consisting of the next element of the sequence and a function giving the rest of the
sequence. Examples of programs computing a variety of operations involving such
sequences are given. Burge does not give a formal definition of the set of streams
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(sequences in his terminology) nor does he state any mathematical properties of
streams or the operations on streams. Both Landin and Burge remark on analogy
of streams to Conway’s notion of co-routine, but the connection is not elaborated.

e Elaborations and generalizations There are many ways to extend the basic
ideas underlying the notion of stream in Rum. For example, one could allow partial
streams rather than requiring that application of a stream to the empty sequence
be defined. One could also allow arbitrary sequences to be produced as stream
elements. A more substantial generalization arises when we relax the restriction
that the behavior of a stream be completely determined by repeated application to
the empty sequence. We say a pfn ¢ is a parameterized stream if for any element
a of the computation domain ¥ applied to a returns either the empty sequence
(signifying the end) or the next stream element and a parameterized stream (the
remainder of the stream). A parameterized stream can be thought of as presenting
a function from sequences to sequences. To see this we generalize the n-th element
and n-th tail operations. For a parameterized stream ¢ and a function h mapping
numbers to elements of the computation domain (the input sequence) define ¥{*"),
the n-th element of ¥ for input sequence ¢, and #(*>")_ the n-th tail of ¢ for input
sequence h, by induction on numbers as follows.

[+, 8*>9)) = 8(k(0))

[0(h,n+l)’ 0(h,>n+1)] — {0(h,>n)(h(n + 1)) if 9(him) #a
D if 9(hm) — g

Then A(h,n)d9{*") is the function from sequences to sequences presented by 9.
This gives a small taste of the many possibilities for generalizing streams.
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Chapter V. Sequential computation in Rum

Now we turn our attention to sequential computation in Rum. Such compu-
tations are carried out by a process of generating sequences of computation states.
A computation state consists of a continuation and a current task. The compu-
tation primitives are those for tree-structured computation together with a new
primitive for noting (binding) the current continuation. Application is the mech-
anism for resuming a noted continuation. The structure of computation states
and the rules for generating computation sequences are derived naturally from the
structure of computation stages and the rules for generating computation trees.
The tree structure of t-Rum computations is preserved in the computation se-
quences and many of the notions used in expressing properties of tree-structured
computation can be interpreted as properties of sequential computation. In §1
the additional objects used to describe and carry out sequential computations are
defined. In §2 the rules for generating computation sequences are presented. Basic
theorems about sequential computation and the relation of sequential computa-
tion to tree-structured computation are given in §3. The remaining two sections
give examples of programming and proving using continuations. In §4 continua-
tions are used to construct an until loop from a do-forever loop. This is proved
equivalent to the usual recursive definition of the until loop. In §5 we show how
co-routine mechanisms can be represented in Rum, give some basic properties of
co-routine resumption, and prove a simple co-routine correct.

The world of sequential computation is denoted by s-Rum. In this chapter
we will be mainly working in the world of sequential computation and variables
and domain symbols are to be interpreted in this world. Thus F is interpreted as
s-F, f ranges over forms in s-F, etc. The qualifier s- will be omitted except when
comparing the features of t-Rum with those of s-Rum.

V.1. Objects for sequential computation

The objects of the s-Rum world include those of the t-Rum world. In addition,
there are two new semantic domains — continuations and states. There is a new sort
of form for noting continuations, a new sort of dtree for continuation application,
and continuations are added to the computation domain. The objects of s-Rum
are generated by adding appropriate clauses to the rules for generating the objects
of t-Rum.
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V.1.1. Forms describing sequential computation

As for tree-structured computation, the forms describing sequential compu-
tation are generated freely from the given set of symbols by constructions corre-
sponding to the computation primitives. The construction rules are those given
in Figure10 (§IV.1) together with the note- construction

(note) note(scont )fbody note the calling context

note is a binding construct analogous to the A construct. Free occurrences of s in
f are bound by the outer note-construct in note(s)f.

V.1.2. Semantic domains for sequential computation

The semantic domains for sequential computation are dtrees, pfns, environ-
ments, the computation domain, continuations, and states. These domains are
generated from the given data and data operations and forms for sequential com-
putation by a mutual inductive definition and are (isomorphic to) the minimal

solutions to the following equations modulo the additional rules for equality (i).

(dtree) D ~ (F xE)s ® (0 xD*) @ (Co x V")
(pfn) P~(§nyxE)i
(environment) E ~ [Sy +> V7]

(computation domain) V~DoOaPaCo
(continuation) Co~{ld}®... Y%see Figurel5
(computation state) St~ (Co x Dt) ® (Co x V*)

The equations for dtrees, pfns, environments, and values are discussed below.
States and continuations are discussed in the next subsection.

e Dtrees. The three summands in the equation for dtrees correspond to clo-
sure formation, data operation application, and continuation application. Closure
formation and data operation application were discussed in §IV.1. For each contin-
uation v and each value v, 4’ v is a continuation application dtree. v’ v describes
resuming computation in the context represented by v with v the value returned.
As before two dtrees are equal only if they are of the same sort. Two continuation
application dtrees are equal iff the corresponding components are equal.

e Pfns, environments and values. Pfns and environments for sequential
computation are generated in the same manner as in t-Rum. The computation
domain for s-Rum contains continuations as well as data, data operations and pfns.
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We say that an expression v¢’ v, is well-formed if vs is a data operation and v,
is a data sequence or if v¢ is pfn or continuation. This extends the definition of well-
formed given in §IV.1 to allow continuation application. Recall that (A(s)f | €)' v
is defined as (f | £¢{s < v}).

V.1.3. Transforming computation stages into computation states

The structure of computation states and the rules for sequential computation
are obtained by transforming the process of generating computation trees into
one of generating computation sequences. The idea is to chose a strategy for
generating computation trees which at each stage uniquely determines the node at
which an extension can be made and the rule to apply (if any). The strategy we
have chosen for generating computation trees corresponds to completing leftmost
subcomputations first. This strategy can be built into the rules for generating
computation trees by modifying the rules so that at any stage there is at most
one node where a rule can be applied, and at most one rule that applies. All
that is needed is to force the fun-subcomputation of an app-dtree to be completed
before the arg-subcomputation is begun and to force the lhs-subcomputation of a
cart-dtree to be completed before the rhs-subcomputation is begun. For example,
the rule (app.arg) becomes

(app.arg)* (ffun | 6) “— Ufun — (farg | 5) < (app(ffun,farg) I 6)

e States. Computation stages are represented by computation states. Using
the modified rules, at each stage in a computation there is a current node and a
current context — the tree surrounding the current node. The current context is
represented by a continuation. If the rule that applies at the current node is a
begin rule then the state representing this stage is the begin state 4 v 9 (read begin
computation of ¥ with continuation ) where « is the continuation representing
the current context and 9 is the dtree label at the current node. If the rule that
applies at the current node is a return rule then the state representing this stage
is the return state 4 & v (read return v to qco!) where 4 is the continuation
representing the current context and v the value to be returned.

States are generated freely from continuations, dtrees and values by begin
and return constructions corresponding to the two summands in the equation for
states.

St = (Co x Bt) @ (Co x V*)

The sign v in 4 v 0 is intended to suggest going down in the computation tree
while the sign 2 in v & v is intended to suggest going up in the computation tree.
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e Continuations. Continuations are generated from forms, environments, and
values according to the constructions shown in Figure15. The continuation rep-
resenting the current context of a computation stage generated by the modified
rules represents that portion of the context that must be remembered in order
to complete the computation when a value is returned. The identity continua-
tion Id represents the empty context — the context of an initial or final stage.
v o {Ifi(fshen,feise) | €)) is the continuation representing the context of the test-
subcomputation (fiest | £) of (if(frest,fthen,feise) | £) computed in a context rep-
resented by 7. v o (Appi(farg) | £) is the continuation for the fun-subcomputation
(frun | €) of (app(frun,farg) | £) With continuation 4 and, if the fun-subcomputation
returns veun, 7 © Appc(viun) is the continuation for the arg-subcomputation (farg |
¢). The continuation for the lhs-subcomputation {fins | &) of {cart(fins,frns) | €)
with continuation « is y o (Carti(f;ns) | £) and, if the lhs-subcomputation returns
Vihs, the continuation for the rhs-subcomputation (frns | £) is 4 o Cartc(vins)-
~ o Fstc is the continuation for the seq-subcomputation (fseq | £) of (fst(fseq) | &)
with continuation «, and < o Rstc is the continuation for the seq-subcomputation
of (rst(feeq) | €) with continuation ~.

Continuation Context for Corresponding pfn!

Id initial stage

7 o {Ifi(fthen, feise) | £€) test-subc of if-node {A(8new)if(8new, fthen, feise) | €)
~ o {Appi(farg) | €) fun-subc of app-node  {A(8new)aPP(8new,farg) | £)

~ o Appc(vfun) arg-subc of app-node  (A(x)app(f,x) | f < veun)

v o {Carti(frns) | £) lhs-subc of cart-node  {A(8new)Cart(snew, frns) | £)

~ o Cartc(vins) rhs-subc of cart-node  {A(y)app(X,y) | X < vihs)
v o Fstc seq-subc of fst-node  A(x)fst(x)
4 o Rstc seg-subc of rst-node  A(x)rst(x)

¥ 8new is & symbol not free in any of the given forms

Figure 15. Continuations
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The notation chosen for continuations reflects the view that a non-identity
continuation is the composition of a continuation segment for the parent of the
current node and the continuation representing the context of the parent node.
Thus a continuation is essentially a sequence of continuation segments, one for
each node along the path to the current node. We think of expressions such as
(Appi(farg) | &) and Appc(viun) as denoting continuation segments and y o048 as the
composition of the continuation 4 and the continuation segment §. A continuation
segment for the parent of a node describes the remaining computation at the parent
node as a function of the value returned at the child node (the subcomputation
currently in progress).

Each continuation segment corresponds naturally to a pfn which is the ab-
straction of a dtree with respect to an immediate subcomputation. For exam-
ple, abstracting the fun-subcomputation of an app-dtree, the pfn corresponding to
(Appi(farg) | £} is {A(Snew )apP(snew,farg) | €). Abstracting the arg-subcomputation
of an app-dtree where the fun- subcomputation has been completed, the pfn corre-
sponding to Appc(viun) is (A(x)app(f,x) | f < veun). The correspondence between
continuation segments and pfns is also shown in Figure15. Two continuations are
equal iff they have the same number of segments and corresponding segments have
equal corresponding pfns.

e Concatenation of continuations. Given the view of continuations as com-
positions, there is a natural notion of concatenation of continuations which is
associative and for which Id is the left and right identity. We write o ¢ 1 for the
concatenation of 4o and ~;. For example,

(v o {Carti(frns) | €)) o1d = 4 o (Carti(frns) | €) = Ido (y o (Carti(frns) | €))
(7 o {Carti(frns) | £)) © (Id o FstC) = ~ o (Carti(frns) | £) o FstC

A continuation is concatenated (on the left) to a state by concatenation to the
continuation component of the state.

Yoo (Y 9d) =(00q9)vd and qoo(yav)=(yo0q)av

A continuation is concatenated to a sequence of states by concatenating it to each
element of the sequence. For example

’70[5‘0,5‘1,{2] = [’7°§0,'Y°§1,’7°§2]
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V.1.4. Remarks

e On the representation of stages as states. Computation stages could
serve directly as computation states, however we have chosen a more compact rep-
resentation that corresponds more directly to the structures that might be used in
mechanically carrying out sequential computations. The current node of a com-
putation stage is exposed (accessed by single elementary operation). Completed
subcomputation trees are pruned, leaving only the value. In the case of reduces-to,
subcomputations are replaced by those to which they reduce. Thus continuations
contain only the information about the context which is needed in order to continue
the computation. This is a strong form of tatl-recursion, in which “procedure call”
(begin a subcomputation) is replaced by “goto” (reduce-to) whenever the result
of the called procedure is to be returned as the result of the current computation.

Other choices for the representation of computation contexts may be appro-
priate for some purposes. For example, to provide the basis for an interpreter in
an interactive system where the interpreter is expected to explain to the user what
it has done at any stage of a computation (as a debugging tool) the entire compu-
tation tree context could be represented in the continuation. This would require
only minor modifications in the step relation and in the theorems relating com-
putation trees to computation sequences. In this case tail-recursiveness and hence
some efficiency would be sacrificed in order to have more complete information
available at each stage of a computation.

e Determinism vs non-determinism. An alternative to choosing a determin-
istic strategy for generating computation trees is to maintain the original rules for
computation and to take continuations to be stages with a hole (a distinguished
leaf with no label). This would result in a non-deterministic model of computation
in which different choices for the next stage would in general give different results.
We prefer to focus on the deterministic model for the present and to study prop-
erties of function and control abstraction in this mathematically simpler context.
Non-determinism is introduced naturally when asynchronous computation prim-
itives are introduced, for example, to model Actors (Hewitt [1977]). This seems
like the appropriate framework in which to treat non-determinism.

V.2. Generating computation sequences

Figure 16 gives the rules for sequential computation. These rules define a
single step relation (>—,) on states, namely the least relation closed under the
set of rules.
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(sym) v (sl&) > v2E(s)

(dapp) v vo'd >, v o(d)

(lam) 7 9 {A(8)fboay | €) >—. v 2 (A(8)fboay | €)

(app-fun) v v (app(frun,farg) | §) > v 0 (APPI(farg) | €) v (frun | £)
(app.arg) 7o (Appi(farg) | €) & veun > (70 APPC(vtun)) ¥ {frun | €)
(app.app) 7 © APPC(Vrun) A Varg >+ 7 ¥ (Vtun’ Varg)

% if Yeun’ Varg is well-formed!

(if'teSt) ahv (if(ftest,fthen,felse) ! €) >, Yo (lﬁ(fthen,felu) | f) v (fte;t | e)
Gbr) 70 (ifnen o) 1€) & e s 79 {ffoon ) S Do 22
(mt) '7vmt>—>‘qu

(cart.lhs) v v {cart(fins,frns) | €} >0 vo (Carti(fens) | €) v (fins 1 €)
(cart.rhs) v o {(Carti(frhe) | £) & vine >, 7o Cartc(vrns) v (frns 1 £)

(cart.ret) o Cartc(vrhs) & vrhse >+ ¥ & [Vihs, Urhs)

(fst.seq) 4 9 (fst(faeq) | €} >—. YO FStC ¥ (fseq | €)
(fst.ret) o FSLC 2 veeq ™ 7 28 1% (v4eq)

(rst.seq) 49 {rStfaca) | £) > 70 RSLE  {fueq | £)
(rst.ret) o RSLC A vgeq >, ¥ & 1* (V4eq)

(note) v (note(s)f | £} >—. v v {f | £{s «7})
(capp) v v > Yoavw

t

vfun'varg is well-formed iff veun € @ A varg € D* or vrun € P or veun € Co.

Figure 16. Rules for stepping
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» Functionality of the single step relation. It is easy to see, since there is
at most one step rule that applies to any computation state, that the single step
relation is functional.

> ASC>™ 6 = =41

The modified rules for generating computation trees translate naturally into
step rules. If a computation stage is represented by ¢ and the next stage is rep-
resented by ¢; then ¢o >—, ¢1. For example, the step rule (app.fun) for beginning
computation described by an app-dtree is derived from the begin rule (app.fun)
(see §IV.2 Figurell) using the construction of the continuation representing the
context of the fun-subcomputation (given in §1).

(app,fun) av (app(ffun,farg) [ E) —* Yo (Appi(farg) l f) v (ffun I E)

The step rule (app.arg) for returning the value of the fun-subcomputation is de-
rived from the modified begin rule (app.arg)* given above using the construction
of the context for the arg-subcomputation.

(app.a.rg) 7o (Appi(farg) I f) & Utyn >, YO Appc(vfun) v (fa.rg ] f)

The step rule (app.app) for returning the value of the arg-subcomputation is de-
rived from the reduces-to rule (app) combined with the begin rule (redt.beg).

(app-app) qo Appc(”fun) A VUsrg >3, TV viun’ Varg
Note that the app-node disappears. Thus the return rule obtained by combining
the rules (app) and (redt.ret) has no corresponding step rule.

The states not accounted for by this translation are those corresponding to
noting and applying continuations. The step rule for beginning computation of
(note(scont)fbody | €) with continuation 4 says to bind 4 to scont in € and begin
computation of the body.

(n°te) 0 4 (nOte(scont)fbody | f) e B4 (fbody | f{scont +'7})

The step rule for beginning computation of a continuation application dtree vo’v
says to return v to «o.

(capp) ' Yyvq0'v >, Yoo v
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V.2.1. Computation sequences.

Now we define the notion of computation sequence and related notions useful
for expressing properties of sequential computation.

> Step Relation. The step relation on computation states >— is the transitive

. . . + . .
reflexive closure of the single step relation. >—,. >— is the transitive closure of
.

> = (>>,)* and s = (—.)*

> Terminal states. A final state is a return state with identity continuation,
Id 2 v. A hung state is a state v o Appc(vsyn) & varg such that the application
Vfun’ Varg is not well-formed. A terminal state is a state that is either final or
hung.

®m A computation state is terminal iff no step rule applies to it.

> Computation sequence. A non-empty (possibly infinite) sequence of states
T is a computation sequence if for each state in the sequence, the next state is
obtained by appling a step rule.

(Vi < I1Z1 = 1)(2]: > Zlit1)

p>)
We write ¢, >— ¢ if L is a computation sequence of length n + 1 with X{o = ¢
and | p, = ¢- ’

> The computation sequence for a state or dtree. Using the functionality
of the single step relation, we define £(¢), the computation sequence from the state
¢, to be the limit of the computation sequences beginning with ¢. Thus X(¢) is the
unique computation sequence which has as an initial segment each computation

sequence beginning with ¢. The computation sequence £ () for a dtree D is defined
by £(2) = B(id v 2).

Figure17 shows the computation sequence for ;s (defined in §IV.2). The
dtrees in the left margin mark the beginning (v ?) and (2 ?) end of the sub-
sequences corresponding to the subcomputation described by 9. This shows the
preservation of the tree structure in the computation sequence (see Figure13 in
§IV.2). Note that returning a value along any chain of reduces-to subcomputations
of a computation tree is accomplished in a single step in a computation sequence.
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v Di¢
v 0,
a0,
v Dcart
v tat
v,
av,
A Vgt
v Vapp
v 0k
a0y

 Orat

A Dpse
v Vnu
A anpA aku
A DifA acm't

where

feart = cart(fest,fapp)

fapp = aPP(fk, frst)

Id v (if(2,fcart, mt) | Z < v)
b

Id o (Hfi(fcart, Mt) | Z<v) v (Z | Z< v)
b

Id o (Ifi(fcart,Mt) | Z<v) & v
b d?

Id v {cart(fest,fapp) | Z < v)
b

Id o (Carti(fapp) | Z< v) v (fst(z) | z < v)
b

Id o {(Carti(fapp) | Z< v) o Fstc v (z | Z < v)
b

Id o (Carti(fapp) | Z< v)oFstc a v
b

Id o (Carti(fapp) | Z<v) 2 a
—

Id o Cartc(a) v (app(fi, frst) | Z< v)
b

I1d o Cartc(a) o (ApPi(frst) | Z< v) v A(X)A(y)x
bt

Id o Cartc(a) o {(Appi(frst) | Z< v} & A(X)A(y)x
b’

Id o Cartc(a) o Appc(K) v (rst(z) | z<«v)
band

Id o Cartc(a) o Appc(K) o RstC v (z | z < v)
—* .

Id o Cartc(e) o Appc(K)oRstC a v
—

Id o Cartc(a) o Appc(K) 2 u
-

IdoCartc(a) vK’u
bt

Id o Cartc(a) & K(u)
.

Id & [a, K(u)]

ffst = fSt(Z)

feat = rst(z)

v =a,u]

fie = A(x)A(y)x

Figure 17. Computation sequence for D¢
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V.3. Context insensitivity and context independence

Although the computation described by a dtree in general depends on the
context in which the computation is carried out, this dependence is uniformly
determined by the dtree and in many cases a dtree or pfn has context independent
behavior, although continuations may be noted or applied within the computation
sequence. In this section we introduce some additional dtree properties in order to
express the “context insensitivity” of dtrees and to identify a fragment of s-Rum
in which tools for reasoning about context independent computation can be used.

V.3.1. Classification of dtrees

We begin by defining a sequential equivalence relation (x) on dtrees of s-Rum
analogous to the ctree equivalence relation on dtrees of t-Rum.

> Sequential equivalence. Two dtrees are equivalent with respect to sequential
computation (abbreviated c-seq equivalent) iff in any given context, if computation
described by one dtree reaches a final state then computation described by the
other dtree reaches the same final state.

(Vy,v)(y v > ldav & yvd; > Idav)

&

By context insensitivity we mean that the computation described by a dtree
either returns a value to the calling continuation, escapes to the top level, or
diverges. Which case holds depends only on the dtree, not on the context in which
the computation is carried out. This is made precise by the following definitions
and the dtree classification theorem.

> Return to caller. 9 returns a value to the calling continuation (|9) is defined

by .
10 = (¥)@0)r v >y

=}

1

> Escape to top. 0 escapes to the top level (1)) is defined by

di1d = (Vy)Fv)yvd >—= ldaw

o7

f

> Diverge. 0 diverges (19) is defined by

10 = ~(3v)(ld vd > Id 2 v)

&
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® Dtree classification theorem. The three classes of dtrees defined above are
a partition of D:.

wWvdoav 1o and (10 — =M00) A (]2 - =19) A (10 = =1D)

This will be proved at the end of this section. Some additional simple facts are

m  If ® diverges then either ¥ () is infinite or ¥(0) terminates in a hung state.
Thus if 0 diverges the computation described by 0 in any context never reaches a

final state.
10— Gy, v)(yvd > Idav)

m  Sequential equivalence respects the classification of dtrees — if two dtrees are
c-seq equivalent then they belong to the same classification.

Vord — [0« [0 A1, & 1D, A 10 & 19y

Remark. A dtree that always returns a value to the calling continuation may
not always return the same value. For example the dtree note(g)g returns the
calling continuation to the calling continuation — v v note(g)g >— ~ 2 4. However
the proof of the dtree classification theorem will also show that the value returned
is itself uniformly parameterized by the calling continuation.

V.3.2. Preservation of tree structure in sequential computation

The close correspondence between the structure of the computation tree for
0ir (Figurel3 in §IV.2) and the computation sequence for d;; (Figurel7 in §2)
holds for dtrees of t-Rum in general. The next three facts express the sense in
which the structure of computation trees is preserved in computation sequences
for t-Rum dtrees.

m Preservation of evaluation. A dtree D of t-Rum has value v iff the compu-
tation sequence for 0 reaches a final state with the value v iff ® returns v in any
context.

Z(v) 7oL (?)
VeEtDt - Vo v o ldvd>oldav & (V)yvd >—> ~av

= Dtrees of t-Rum can’t escape. The sequential computation described by a
dtree d of t-Rum must return a value to the caller or diverge. It cannot escape.

detD — [V 1D
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» Preservation of reduces-to. For t-Rum dtrees 9o reduces-to ¥ iff there is a
non-trivial computation sequence from 9, to ;.

+
VetDt — (V0>>01 « (V)79 > N v 1))

» Preservation of subcomputation. For a defined dtree of t-Rum each sub-
computation corresponds to a subsequence of the computation sequence.

VEL-DEABDo UV AD <D — (3’1,20,21)(2[3] = {20,102[00],)31])

In the case d > 09 X; will in fact be the empty sequence. Otherwise it will be a
proper computation sequence.

V.3.3. Context independence

We extend the notions of evaluation, reduces-to, definedness, and ctree equiv-
alence to s-Rum and introduce the notion of local dtree (1/9). The computation
described by a local dtree either diverges or returns the same value to any calling
context. The notion of subcomputation does not in general make sense in s-Rum,
even for local dtrees, so we do not attempt to extend this notion.

> Evaluation. ¥ — v = (VY)(7 90 > yav)

> Reduces-to. 0 > 0; = (V)7 v % s N v )

> Definedness. {0 = (Bv)o—v

> Local. 1[d = JoVv1o

> Ctree equivalence. 39, =0, = 100 A 1101 A (V0)(B0 = v « By < v)
> Pfnl. ¢ € Pfnl = (Vo)(Bep1)e’ v — 1

(]

Note that the definitions of definedness and pfnl have the same form as before.
It follows easily from the facts expressing the preservation of tree structure in
sequential computation that the new definitions of <, <, >, |, and = agree
with the original definitions when restricted to t-Rum.

Some simple properties of locality and the computation relations are expressed
by the following facts which follow easily from the definitions

s  Dtrees of t-Rum are local.

0 €t-Rum — 1|0
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m IfDis defined then d returns a value (the same value) to any calling continuation.
o — |0
The note(g)g example shows that the converse is not true.

Inote(g)g and -{note(g)g

B If 9y reduces-to 9; then ¥g is local iff 9, is local.
0 =01 = (1130 « 1)
m  If 3y reduces-to 9, then 9y and 9; are c-seq equivalent.
Vo0 — V=0,
m  If 9y are ctree equivalent 9, then 9y and 9; are c-seq equivalent.
Do = Dl - ao ~ 01
m  For local dtrees reduces-to implies ctree equivalence.

V>0 Aflog = 0o=10y

V.3.4. Lifting theorems from t-Rum

Local dtrees have many of the properties of t-Rum dtrees. This allows us
to lift many of the basic theorems of t-Rum to s-Rum. The following are some
examples.

®  The computation rules hold in Rum for the extended definitions of evaluation
and reduces-to. For example,

(redt.ret) 3>V AV —v - VD> v

(if) (fte“ | f) —u - (if(ftest,fthen,felse) | f) > {g:l:en“fs)) g Z i‘;
(app) (ffun | E) — 0fun A (farg | f) “—* Varg —* (ffun (fa.rg) | 6) . vfun'Uarg

% if vfun’ varg is well-formed




132 Sequential computation in Rum §V.3

Since the notion of subcomputation does not extend usefully to s-Rum com-
sutaiion induction as formulated in §IV.2 is limited to t-Rum. However, if sub-
computation is replaced by reduces-to the computation induction formula remains
valid and is a useful special case.

s For any dtree property Q

(s-CD (V) ((V30) (2 > 30 — Q(20)) — Q) — (W)Y — Q(2))

®  The reduces-to laws (Lredt), (K.redt), (Cl.redt), (B.redt), and (S.redt) given
for the algebraic combinator pfns in §IV.4 hold in s-Rum.

s For any pfnl ¢ the following properties of the recursion pfn hold in s-Rum

(rec.pfnl) Rec € Pfnl
(rec.redt) Rec(9)’v > ¥(Rec(¥))v
(rec.fix.s) Rec(¥)’v =~ #(Rec(d))’'v

(rec.subc) is omitted as it only makes sense in t-Rum.

In s-Rum the properties stated for the sequence recursion pfnls hold when
restricted to the local cases.

m  Collect and Tuple satisfy

1¢'a1, A ..., Afl9 ay — Collect(¥)’[ay,...,an] = [¢'a1,...,9  ay)
and

917a, A ey ATl9n"a — Tuple[dy,..., 0] u= (91 u,...,0," u]

®  The characterization of Some is valid in s-Rum as stated.
®  For pfns ¢ and domains A,U such that A C V and U C V*, Seqlt satisfies
(Va € A)(Vu € U)(Jv € U)(9'(a,u) — v)

(V{a1, ... am}C A)(Vu € U)
Seqlt/(¢, u,[ay,...am]) = ¥'(a1,...,9'(am,u)...)
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V.3.5. Proof of the dtree classification theorem

We outline the proof of the dtree classification theorem as it uses a trick which
may have useful applications in other situations. The trick is to work with objects
parameterized by a single continuation parameter and to analyze the properties
of parameterized computation sequences. The continuation parameter provides a
way of tagging a continuation and identifying continuations within a computation
sequence that are generated from a tagged continuation. For the non-divergent
cases we will prove stronger statements of the form “there exists a parameterized
value such that for all continuations ...” rather than “for all continuations there
exists a parameterized value such that ...”.

Parameterized objects are generated just as the objects of s-Rum except that
in addition to the primitive continuation Id, there is a continuation parameter #.
We will refer to these objects as p-Rum objects and we use the same variables
to range over the various sorts of p-Rum objects as for t-Rum and s-Rum. Note
that the s-Rum objects are a subset of the p-Rum objects. For a parameterized
object x and a continuation 4y we write x{~} for the object obtained by replacing
all occurrences of # in x by 4.! If 4 is an s-Rum continuation then x{7} is an
s-Rum object. The rules for sequential computation have exactly the same form
for p-Rum as for s-Rum. In p-Rum there is a new kind of terminal computation
state # 2 v — which corresponds to return to caller.

The following facts are easy to establish:

m Substitution lemma. The result of replacing the parameter in a computation
sequence by a continuation « is a computation sequence.

p> Z{~}
o = ¢1 = {7} >— a{v}

! This is a use of braces to express a form of substitution. Context will readily distinguish
this use from other uses such as for readability or Kleene braces.
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& Classification of parameterized states. For any parameterized state ¢
exactly one of the following holds:

i) The computation sequence beginning with ¢ terminates with a state # a v for
p
some v.
(av)g — #aov

(ii) The computation sequence beginning with ¢ terminates with a state Id a v
for some v.

(3v)¢ >— lda v
(i) The computation sequence beginning with ¢ hangs.

(37, YtunVarg) (Vun ’ varg not well-formed A ¢ >— ~ 0 Appc(vsun) 2 Varg)

(iv) The computation sequence beginning with ¢ is infinite.

Note that in (i), (ii), and (iii) the values will in general be parameterized. Taking
¢ to be # v 0, collapsing the latter two cases into the divergent case, and using the
substitution lemma we have

® Uniform dtree classification. For 9 and ~ in s-Rum exactly one of the
following holds

i) (Bov)(vV)y v >—= yav{y}
(i) (3)(V9)y v > Id a v{~}
(i) -(3v)(ldvd > Idav)

The dtree classification theorem now follows easily.

V.4. Looping and escaping

As our first example of programming and proving with continuations, we prove
the equivalence of two pfnls Until and DoUntil that construct an until loop from
a test and an action. The until loop is typical of the looping constructs used in
programming. Given a test ¥eqt and an action ¥,.¢, the until loop for (Viest, Pact)
repeatedly applies #,.¢ to an argument u until u satisfies ¥¢est, at which point
u is returned as the result. Until is a t-Rum pfn defined by a simple recursive
definition.

> Until & A(p,f)Rec(A(un)A(s)if(p(s),s,un(f(s))))
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m Until lemma. The key computational properties of Until are

(until.done) WYiest’ u < [a,v] — Until(Pyest, Fact)’' 4 <> u
(until.loop) Giest '8 DO A Fact'u o v —
Uht“(l’tegt, l’act) Ty > Unt"("test, ’9act) "v

DoUntil is based on the do-forever loop. A do-forever loop has a pfn parameter
which is repeatedly applied to the loop argument. The pfn Do describes a do-
forever loop. DoUntil notes the calling continuation and constructs a do-forever
loop with a pfn parameter that contains the test pfn, the action pfn, and the
calling continuation. This pfn applies the test pfn to the loop argument and then
applies the calling continuation (to return to the caller) or it applies the action
pfn (to continue looping) according to whether the test succeeds or fails. DoU is a
variant of DoUntil used to formulate properties of DoUntil. DoU has an additional
parameter intended to be the calling continuation.

b Do & A(f)Rec(A(Do)A(z) Do(f(2)))

> DoUntil <= X(p,f)A(z)note(g)Do(A(x)if(p(x),g(x),f(x)),2)

b DoU &5 A(p,f,g)A(z) Do(A(x)if (p(x), g(x), (), 2)

m DoUntil lemma. The key computational facts about DoUntil are
(do.note) 4 v DoUntil(Psest, Fact)’ v > v v DoU(Piest, Facts7) ' v
(do.done) Wiest’v < [a,u] — DoU(Ptest, Fact,¥) v y'v
(do.loop) Wiest’v =0 A Fat’veru —

Dou("tests "act, '7) ! v > Dou(”tesh 19acta '7) ! u

From the basic facts about Until and DoUntil (and computation induction) it is
clear that they describe essentially the same computations. More precisely we
have the following equivalences.

s t-Rum equivalence of Until and DoUntil. For $¥;est, #act and v in t-Rum

DOUﬂt"(‘l’test, t’act) 'y = Until(:?test, 193(;1;) )

= s-Rum equivalence of Until and DoUntil. For U C V*

(Vu € U)(Uﬂtest'u A (3!) € U)‘,act,u — v) —
(Vu € U)(DoUntil(F¢est, Fact) ' v = Until(Ftest, Fact)’ u)
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Remarks
e Note that Do(¥) is everywhere undefined for any ¢ in t-Rum.

e We have now provided all the tools needed to interpret and verify the state-
ments about sequential computation in the tree product examples (Chapter II).
In particular the equations for Tprod2 and the derivation of Tprodg can now be
verified. We leave this as an exercise for the reader.

Exercise 1. Proving equations with continuations: define Find, FFind as follows

df

> Find < X(p,x)note(g)Finder(p,g)(x)
> Finder < A(p,g)Rec(A(fnd)A(x)
if(p(x),
g(x),
if (Atom(x), mt, [fnd(Car(x)), fnd(Cdr(x))])))
> FFind <> A(p,f, x)note(g) FFinder(p, f, g)(x)
> FFinder o A(p,f,g)Rec(A(ffnd) A(x)

if(p(x),
g(f(x)),
if (Atom(x), mt, [ffnd(Car(x)), ffnd(Cdr(x))])))

Prove that the following equation holds for x ranging over S-expressions and f and
p ranging over pfns which are local on S-expressions.

Ffind(p,f,x) = let{y < Find(p, x) }if(y,f(y), mt)

V.5. Co-routines in Rum

As a further example of programming with continuations, we show how the
co-routine mechanism can be represented in Rum. Recall (§1.2) that a system
of co-routines is a set of programs that interact by resuming one another rather
than by the usual function calling (application) mechanism. A given co-routine
when resumed will continue computation where it last left off, carry out the next
portion of its computation, and then resume some other co-routine. Typically
information is passed between co-routines by updating shared data structures and
each co-routine has internal state that keeps track of where to begin when it is
resumed. In Rum the shared data and resumption points must be passed explicitly
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as parameters and a co-routine is continuation satisfying certain conditions. Here
we consider co-routines characterized by the sequences they generate, and to avoid
irrelevant details we will assume the sequences are infinite, i.e. functions on the
natural numbers. For simplicity in discussing co-routines we define a step relation
on continuation application dtrees.

Yo vo > 11'vy = ¥ @Fv2)(Y v Y0 vo > 2 v 41’ v

> Co-routine generating a sequence. Let o be a sequence of elements from
the computation domain. We say that a continuation 7, is a co-routine generating
the sequence o if there is a sequence of continuations I such that

T'(0) =4c and T(:)'y > 4'[T(i+1),0()]

for any 4 and number 1.

Co-routine resumption is based on continuation application. The pfn Resume
describes resumption for the case of simple pairwise interaction among co-routines.
Resume splits its argument into a continuation g and remaining information x. g
is the resumption point of the co-routine being resumed. Resume notes the current
continuation g0, which is the next resumption point of the resuming co-routine,
and and passes g0 together with x to the resumed co-routine.

> Resume <5 Alg, x]note(g0)g|g0, x|

As a particular example, we adapt a segment of network code that uses co-
routining (Weening - private communication). This code deals with a situation
where one gets data in a stream of 36-bit words, but would like to see it as 8-
bit bytes. There is a co-routine INBYTE responsible for getting the next byte
(8-bits) from the 36-bit word stream. Another co-routine which uses the 8-bit
bytes, for example to generate a 32-bit word stream, resumes INBYTE each time
another byte is needed. INBYTE has nine segments of code, one for each of the
nine 8-bit bytes contained in two consecutive 36-bit words. In order to focus on
the properties of the co-routine mechanism, we simplify the problem by defining a
Rum co-routine ThreeTwoC(~i,) which transforms a sequence of strings of length
three generated by the co-routine ~i, into a sequence of strings of length two with
the same characters. If o is a sequence of strings of length three then ¢(3:2), the
sequence of strings of length two with the same characters as o, is defined by

[StrUn(c®2) (31)), StrUn(c®?) (31 + 1)), StrUn(c®? (3 + 2))]
= [StrUn(o(2¢)), StrUn(o (21 + 1))]
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for all numbers 1. Using the notions defined above, we can specify the co-routine
i hreeTwoC(7in) as follows.

If o is a sequences of strings of length three and «iy is a co-routine
(1(32))  generating o then ThreeTwoC(vin) is a co-routine generating the
sequence o(32),

To define ThreeTwoC we first define the pfn ThreeTwo that describes the com-
putation to be carried out. ThreeTwo has two arguments, an input co-routine
in and an output co-routine out. Initially ThreeTwo reads a string, stores the
three characters as [x0,x1,x2], and resumes out, passing the string with elements
[x0,x1]. When next resumed, ThreeTwo gets a second string from in, stores the
three characters as [x3,x4,x5], and resumes out, passing the string with elements
[x2,x3]. When resumed a third time, ThreeTwo simply resumes out, passing the
string with elements [x4,x5]. When resumed a fourth time, ThreeTwo repeats its
initial computation with the current values of in, out.

> ThreeTwo Rec(A(Co)A(in)A(out)

let{[in, w] < Resume[in]}

let{[x0, x1,x2] < StrUn(w)}

let{[out] < Resume[out, StrMk[x0, x1]]}
let{[in, w] < Resume[in]}

let{[x3, x4, x5] < StrUn(w)}

let{[out] < Resume[out, StrMk[x2,x3)]}
let{[out] < Resume[out, StrMk[x4, x5]]}

Co(in,out)

ThreeTwoC is a pfn which when applied to an input co-routine <, generates a
co-routine initialized to apply its resumer to Three Two(~in)-

> ThreeTwoC &> A(in) ThreeTwo(in, note(g)g)
In particular
~ v ThreeTwoC’~in > 7 & v o Appc(ThreeTwo(vin))

Since the context in which ThreeTwoC is initialized does not effect the behavior
of resulting co-routine, we let ThreeTwoC(~in) denote Ido Appc(ThreeTwo(vix)) in
the following.

Proof of correctness of ThreeTwoC.  We outline the proof that ThreeTwoC
satisfies (1'(3’2)) to illustrate basic properties of resumption, and the general idea
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of such proofs. Let o be as sequence of strings of length three and let «;, be a
co-routine generating 0. Let In be the sequence of continuations corresponding to
the generation of o by 7ix. Thus In(0) = ~i, and In(i)'y > ~'[In(f + 1),0(7)]
for any 4 and number 1. Now we need only define a sequence of continuations T’
such that

I'(0) = Id o Appc(ThreeTwo(In(0)))
T(i)'y > '[(i +1),0®2(5)]

If s is a string we write s] ; for the j-th character of s — s ; = StrUn(s)!] ;. Let ch

be the sequence of characters from 0. Then ch(3¢{+ 5) = o(t)|; for 0 < 5 < 2 and
ch(2i + j) = 032 (4) | for 0 < j < 1. We define T to be the sequence satisfying
I'(3¢) = Id o Appc(ThreeTwo(In(21)))
I'(3i + 1) = Id o Appc(ThreeTwol(In(2: + 1), ch(6: + 2)))
T'(31 + 2) = Id o Appc(ThreeTwo2(In(2: + 2),ch(6: + 4), ch(6i + 5)))

where

ThreeTwol = A(in,x2)A(out)
let{[in, w] < Resume]in]}
let{[x3, x4, x5] < StrUn(w)}
let{{out] < Resume|out, StrMk|[x2,x3)]}
let{[out] < Resume[out, StrMk([x4, x5]|}
ThreeTwo(in, out)
ThreeTwo2 = A(in,x4, x5) A (out)
let{[out] < Resume|out, StrMk[x4, x5]]}
ThreeTwo(in, out)

Using the equations relating ck, o, and (32, and the properties of let and Resume
given below it is easy to show that

I'(3i)'y > ~'[0(3i +1),032)(31)]
T(3i+1)'vy > 4'[[(3 +2),032 (31 + 1))
T(3i+2)'v > 4'[[(3(i +1)),0¢®? (3i + 2).]

Hence, T is the required sequence of continuations verifying that ThreeTwoC(~ip)
is a co-routine generating o(32), Ot2))
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» Properties of let and Resume. Unwinding the definitions and applying the
step rules we have

(1) {(fol&) = vo — v v (let{s<fo}fs | &) > vv {f1 | {{s<«fo})
2) (fol &) = vo — '
v v (let{[sco, sv] < Resume[sco,fo]}f1 1 €)
> v €(sco) |7 0 Appc({A[sco, svlfi | €)), vo]
(3) {fo 1 &) = vo A (Fv1,v1)(¥0)(€(5c0) [v0, v0] ™ vo'[y1,v1]) —
v v {let{[sco, v] < Resume[sco,fo]}f1 | &)
> 4 v {f1 | €{5c0 <71,8v < v1})

Exercise 1. Streams and co-routines are two mechanisms for generating se-
quences. These mechanisms are interconvertible. Define pfns Str2Co and Co2Str
such that for any infinite sequence o from the computation domain, if ¢ is a stream
generating o (i.e. (*) = o(i)) then Id o Appc(Str2Co(#)) is a co-routine generating
o and if 4., is a co-routine generating o then Co2Str(y.,) is a stream generating
o. Prove that

® Str2Co is correct. There is a sequence of continuations I' such that I'(0) =
Id o Appc(Str2Co(¥)) and for all numbers 1, T'(s) '[y] > ~'[T(¢ +1),0(3)].

m Co2Str is correct. Co2Str(#)(*) = o(s) for all numbers s.

{See §IV.6 for the definition of streams and related concepts.]
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Chapter VI. Comparison relations

We now return to the world of tree-structured computation to study a class
of relations called comparison relations. These allow one to compare one pfn to
another or, more generally, to compare dtrees or forms, selectively forgetting some
details of the computations described while preserving the applicative structure
and the evaluation relation. In particular, comparable dtrees, when defined, have
comparable values, and comparable pfns applied to comparable values are compa-
rable dtrees.

There are several reasons for developing a theory of comparison relations.
One reason is to satisfy a purely mathematical curiosity as to what meaningful
notions of comparison exist, what the structure of this class of relations is, and
what ‘equations’ and ‘approximations’ hold for particular comparison relations. A
paradigm for this work is the elegant equational theory developed for LAMBDA
by Scott [1976]. Another reason for studying comparisons is to develop a richer
language and more powerful tools for stating and proving properties of pfns, and
to build a foundation on which to develop a theory of program specifications and
transformations in Rum. For more specific motivations, consider the following
questions.

= In what useful senses can equations such as F(x) = f characterize a pfn F in
the case that F does not appear free in f? Recall that such equations hold for
the algebraic combinator pfns.

=« Are there equivalence relations closed under substitution? Note that for =,
substitution is limited to positions that are evaluated or eliminated in the
course of a computation, since otherwise substituted forms may return sub-
stituted, non-equal values.

» Are there comparisons closed under abstraction? If fo ~ f; and s is a free-
variable then A(s)fo ~ A(s)f1?

» The Rum recursion theorem (§IV.4) together with computation induction
allows us to prove many induction schemes derived from the least fixed point
theorem for the graph model of the lambda calculus, but does not capture
the full power of this theorem. Is there a partial ordering on pfns such that
Rec computes the least fixed point with respect to this ordering?

» What characterizes the recursion pfn? Are there other recursion pfns?
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» Can parameters be moved across the recursion boundary in general? (see
§IV.4)

» Intuitively Rum pfns are extensional in the sense that they can only be applied,
bound in environments or returned as values. Further, we have claimed that
pfns are descriptions of partial functions. If pfns describe partial functions,
then there must be an equivalence relation ~ on the computation domain
satisfying (Vv)(po’v ~ ¢1'v) — o ~ 1. As demonstrated by the non-
extensional theories of Feferman [1975] (see §1.5), such equivalence relations
may not exist in general.

« Note that there are pfns ¢ that satisfy the self property, p’v < . One
example is the pfn Self = Rec(K). Do all pfns that satisfy the self property
compute the same function?

The comparison relations on dtrees are defined in §1 and additional conditions
characterizing special kinds of comparisons are defined. Each comparison on dtrees
induces a natural comparison on values and environments. In general comparison
relations are approximation relations — since undefined dtrees may be compared
to defined dtrees and hence for comparable pfns, the domain of definition of one
pfn may be a proper subset of the domain of definition of the other. An important
subclass of comparisons are the invertible relations for which comparable dtrees
are equi-defined and comparable pfns have the same domain of definition. Basic
results about the structure of the set of comparisons relations are given including
results about the preservation of operations on and properties of comparisons by
algebraic operations such as intersection and transitive closure.

Comparison relations form a rich hierarchy. At the extremes are equality and
the maximum comparison C. Equality in Rum is the finest grained comparison,
and corresponds to forgetting nothing. C corresponds to forgetting all the details
of computation and is analogous to the partial ordering induced by the graph model
on expressions of LAMBDA (Scott [1976]). The intersection of C with its inverse
is =2, the maximum symmetric comparison. In §2 we study the relations C and .
The main results are the extensionality of C and =%, a characterization of recursion
pfns, and the C-minimality of the fixed point computed by Rec. Some laws for =
expressed in the language of forms are given together with an example derivation
using these laws. This is a small step towards developing a Rum-calculus. In §3
an operation extending a comparison to contain a given pfn relation is defined and
conditions are given under which the extension is guaranteed to be a comparison.
The main application of this extension operation is to prove that a given pfn
relation is contained in the maximum comparison or the maximum equivalence.
We use this technique to prove the extensionality and fixed point theorems stated
in §2. In §4 an operation extending a comparison to contain a given dtree relation
is defined and conditions are given under which the extension is guaranteed to be
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a comparison. Use of this operation is illustrated by defining a several classes of
comparisons including comparisons generated by partial evaluation, let-conversion,
and normalizing operations on nested if- and cart- forms.

VI1.1. Comparisons and closure conditions

The work on comparisons is carried out in t-Rum. Thus D¢ means t-D¢ and
D ranges over t-D¢, etc. For this chapter “dtree relation” means a binary relation
on closure dtrees, and unless otherwise mentioned, dtree will mean closure dtree.
p and x range over dtree relations and I' ranges over non-empty sets of dtree
relations. p— will be used to denote the equality relation on closure dtrees. We
use standard notions and operations for binary relations as summarized in §IIL.7.
For the readers convenience we recall two not so standard operations that we will
make frequent use of: transitive union (wI') and inversion closure (p~). Transitive
union of a set of relations is the transitive reflexive closure of the union over the
set, and inversion closure of a relation is the intersection of the relation with its
inverse.

Before proceeding we introduce some additional notation for closure dtrees
that will simplify discussion of dtree relations. Full details are given in Appendix A.
For non-binding constructs, we use dtree construction notation paralleling the
form construction notation. For example, if 9o = (fo | £€) and 9; = (f; | £) then
app(00,91) = (app(fo,f1) | £). Value dtrees (x | x < v) are abbreviated as <v. To
express abstraction and substitution we extend the construction of closure dtrees
to include dtree contexts. A dtree context is a closure dtree with some holes — some
nodes where there are place holders rather than dtrees. We write 3{...} to indicate
a dtree context. The substitution of 3o in a context d{...}, (written 9{0o}), is the
dtree obtained by putting 9o in each of the holes. The abstraction of a context
9{...}, (written Ad{...}), is the dtree obtained by replacing the holes with binding
pointers to the outer A. An n-ary dtree context is a dtree context where the holes
have been partitioned into n classes - say by labeling them with numbers from
1 to n. Substitution and abstraction generalize in the obvious manner to n-ary
dtree contexts, with abstraction referring to the first class of holes, the second
class becoming the first remaining class, etc. One can think of dtree contexts as
being given by a form, an environment and a list of variables to be held free. Only
free symbols in the form which are not in the free list will become value nodes.
The symbols held free can be thought of as marking the holes and partitioning
them into classes, one for each symbol with the ordering given by the list.
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VT.1.1. Dtree comparisons

The basic comparisons are dtree comparisons. Everything else is derived
naturally from this class of relations. We begin by defining the extension of a dtree
relation to values and environments and the evaluation closure operations on dtree
relations. These are useful operations for expressing properties of dtree relations.
We then define the general notions of comparison and invertible comparison.

> The extension of a dtree relation to values and environments. Since
we view pfns as A-dtrees, each dtree relation determines a natural relation on pfns,
namely the restriction to pfns. We write p[P] for the restriction of p to pfns.

0 p[P] 0y ;:‘fboeP/\DleP/\Dole

Since we are interested in the structure of computation and wish to maintain
uniformity over the given data structure, we require that value comparisons restrict
to equality on data and data operations and that sequences and environments are
compared component wise. Thus, a dtree relation p has a unique extension to
values and environments, which we also denote by p.

€op &1 = (Vs)(€o(s) p €1(s))

daf

> Evaluation closure operations. Evaluation closure of a dtree relation re-
lates two dtrees when they are both defined and have related values. There are
two possibilities for the case that the first dtree is undefined. For approximation
relations the evaluation closure relates an undefined dtree to any other. For in-
vertible relations we require that the second dtree be undefined also. For a dtree
relation p, the evaluation closure of p, (written p), and the invertible evaluation

closure of p, (written 7)'), are defined as follows.

0op 0y ubo — (Evo,vl)(vo pvy A0g— vg AD; = Ul)

at

%7 O = 00 < 401 A D07,

[l

> Dtree comparison relations. A dtree comparison is a reflexive transitive
dtree relation that is a subrelation of its evaluation closure (C¢(p)) and closed
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under application (C*(p)). C is the set of dtree comparisons.

peEC = p=p" AC%p) A C%p)

&1

where
C*(p)

C%(p)

pCp

&l

(Y20, 01, Y0, v1){0 p 1 A vo pv1 = (o’ vo) p (1" v1))

&

= Substitution of values. The point of requiring closure under application in
the definition of comparison relation is to insure that a comparison is closed under
substitutions of comparable values. For any n-ary dtree context 9{...}

pEC A Uo1 pUs 1 A ... Atign p iy — D{Quo,l ...<IUQ,n} pb{cul,l --'qul,n}

Expressed in terms of forms closed in related environments this becomes.

pECAEpér — (flé)p(flér)

> Invertible comparisons. An tnvertible comparison is a comparison whose
inverse is also a comparison. C; denotes the set of invertible comparisons.

Examples. = Two familiar dtree relations, dtree equality (p=) and ctree equiva-
lence (=) are easily seen to be comparisons. In fact both are symmetric and hence

invertible. Since comparisons are reflexive, dtree equality is a subrelation of every

. . oy » . . . —1
comparison, i.e. it is the minimal comparison. Note also that = = p_— .

VI.1.2. About evaluation closure

The following are simple but useful consequences of the definitions of the
extension of dtree relations to values, the evaluation closure operations, and com-
parisons. We will refer to these facts as “basic properties of evaluation closure”.

®  The evaluation closure operations are monotonic and fix the pfn component of
a relation.

—_— i —
PoCp1 = poCp1Apo Cpy

5IP] =5 [P] = p[P]
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»  The [invertible] evaluation closure of a relation is determined by its restriction
o pfns and hence the evaluation closure operations are idempotent.

)

5=plP] and 7 =p[P]
p=p and p =p

m  The invertible evaluation closure of a relation is the intersection of the evalua-
tion closure of the relation with the inverse of the evaluation closure of its inverse.

p=5n(p)"

m  The [invertible] evaluation closure of a[n invertible] comparison p is a[n invert-
ible] comparison. It is the maximum [invertible] comparison whose restriction to
pfns is the restriction of p to pfns.

peEC - peC and péCi—-»FiECi
po €C A pr €C A po[P] = pi [P] — p1 Cho

po € Ci A p1 € Ci A po[P) =p1 [P] — py Cro

VI1.1.3. Closure conditions for comparisons

We now define three closure conditions for dtree relations: evaluation-closed,
extensionally-closed, and substitution-closed. These closure conditions serve to
identify additional interesting sets of dtree comparisons. We give four simple com-
parisons to demonstrate that for each closure condition there are comparisons
which satisfy it and comparisons which fail to satisfy it. We show that the evalua-
tion closure operation on comparisons is (as the name implies) a closure operation
for the evaluation closure condition — the evaluation closure of a comparison is
the least evaluation-closed comparison containing the given comparison. We will
see later that there are also closure operations for the dtree substitution and ex-
tensional closure conditions. Finally we show that the evaluation closure together
with extensional closure imply substitution closure.

> Evaluation-closed. A dtree relation p is [invertible] evaluation-closed if it
contains its [invertible| evaluation closure.

Cley (p)

i

pCop

A

f

Clieu(P) ;lz; ;’ Cp
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> Extensionally-closed. A dtree relation is extensionally-closed if two pfns that
give related dtrees when applied to any value are related

Clezt(p) = (Y0, 01)((V0)(0o’v p 01" ) = 0o p 1)

af

> Substitution-closed. A dtree relation is substitution-closed if substitution of
related dtrees into a dtree context gives related dtrees.

Clasubst(p) = (VO{...},00,01) (%0 p 01 — 3{Bo} p 0{0:1})

= Examples of closure and non-closure. Let po = p=, p; = ;):' and p; =
p=U{({x | x<v),(I(x) | x<v))}. Then p=, po, p1, and p, are comparisons and
we have

ﬁClcv(l’:) Cley (PO) _‘Clev(pl) —‘Clcv(l’2)
=Cliev(p=) ~Cliev(po) Cliev(p1) ~Cliev(p2)
Clasubst(p=) ~Clagubst(pPo) ~Clgsubst(p1) ~Clisubst(p2)
Clczt(P:) —Clezt (PO) =Cl,zt (Pl) —‘Clczt(P2)

® The evaluation closure is evaluation-closed. From the basic evaluation
closure properties we see that if p is a comparison then the evaluation closure
is the least evaluation-closed comparison containing p. Similarly for invertible
comparisons and invertible evaluation closure.

pEC - pEC ACly(p) and pCpo€C A Cley(po) — P C po
pECi — 7 €Ci A Cliy(p') and pCpo€Ci A Clicu(po’) = 5 C po
] Non-independence for closure conditions. A dtree comparison that is

evaluation-closed and extensionally-closed is also substitution-closed. Similarly
for the invertible case.

pPE C A Cleu(p) A Clezt(p) - Cldau.bat(p)
peEC A Cls'cv(P) A Clezt(P) — Cldaubst(p)

Proof: by induction on the structure of dtree contexts, using the definitions of
evaluation, comparison and of the closure conditions.
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VI.1.4. Algebraic operations on comparison relations

We will make frequent use of algebraic operations on relations and sets of rela-
tions. Of particular interest are transitive union, intersection over non-empty sets,
inversion, and inversion closure. Note that p* = W{p} so the transitive reflexive
closure operation is also covered. Figure18 contains a summary of operations on
dtree relations that are preserved by (commute with) the algebraic operations and
a summary of properties of dtree relations that are preserved by these operations.
For the laws concerning transitive union to hold we must restrict the domain to
non-empty sets of reflexive relations p satisfying C°. This is not a serious re-
striction as it includes the intended domains of application. The commuting and
preservation laws are mainly a direct consequence of the definitions involved. We
will prove some of the laws for transitive union to illustrate how the proofs go in
general.

Operation Preserved by! Remarks
plP] w,N,~,"~
3 ¥, N @~ =)
— -~
p w’ n’ b
Property Preserved by Remarks
p=r" w,N,~,"~ C* not needed
e | ~ - —*
C*(p) W, N, pCPp— p~Cp
pPCP w,n,~,"
C%(p) W,N,,"
pEC W,N,"~ pEC — p~ €Ci
PE Ci w,N,~,"~
CIGU(p) w) n)N Cl"’(p) - Cl‘.ﬂl(pN)
CI“” (P) wa ﬂ, —’ ~
Cl.zt (P) n,-, ~
Claeubst(p) W,N,","~ C°® not needed
' I' non-empty; W restricted to I' such that p €T — p= C p A C%(p)
Figure 18. Preservation of comparison operations and properties
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First, to make the content of this summary clear we give the reading of the
entries for evaluation closure and for comparisons. The entry for evaluation closure
is an abbreviation for the following three statements.

(Vp €T)(p= C p A C°(p) — &T = &T)

AT =Nl '

— ~ —t\

(#)~ = ()

The entry for comparisons is an abbreviation for the following three statements.

'cC - uwl'e(C
'cC - nrec
pEC — p~ €C(;

Proofs for transitive union.

The proofs generally have the form of a chain of equivalences or implications.
The justification for a step is given in small print to the side or below the deduced
formula and is preceded by the sign %.

We first prove the commuting laws for transitive union. The key is commuting
with the restriction to pfns. The requirement that T satisfy p € T — C¢(p) is
essential here. Commuting with the restriction to pfns and requirement that T'
satisfy p € T —  p— C p are needed to prove commuting with the extension to
values. In turn commuting with the restriction to pfns and the extension to values
are essential in proving the remaining preservation laws.

= Commuting laws for transitive union. Let I’ be a non-empty set of reflexive
relations that satisfy C¢. Then

(i) (¢D)[P] =w(TIP])
(if) wvoWI vy « (Ik)(3{p1...px} CT)(Juo...ux)(vo = uo p1 ... px ux = v1)
(iii) &l =T

(iv) &I =wT
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Proof(i):
0, (Hﬂr) (P9
—+ 0, EPABLEPA
(3k)(3{po..-px} CT)(F00 =Va... 01 = )(Vi < k)(0i pi Dit1)

% definition of transitive union and restriction to pfns
o (3K)(3{po...px} CT) (Vo = Da...Bpp1 = ) (Vi < k) (3 pi [P] Digy)
% since po and p; satisfy C* we have o po ¥ p1 1 — (3)(0 Po © p1 ¥1)
« 0, Y(T[P]) 0, % definition of transitive union
Ch
Proof(ii):
vo WI' vy
« lvol = lvil A (Vi< lvol)(voli=v1li V voli (WT)IP] val)
% definition of canonical extension to values
o fvol = lvil A (Vi< lvgl)(voli=vili V voli&(TIP]) v1ly)
% by (i)
« (3k)(3{p1...px} CT)(Fuo...ux)(vo = 4o p1 ... px ux = v1)
% reflexivity
Chi
Proof(iii):
2.uT ¥y
o (3K)(3{po ... px} C T)(Io = a... Vpeq1 = 0p)(Vi < k)(Di 71 Dis1)
% definition of transitive union
o 0, vy — (3k)(3{po...px} CT)(3vo = va...Vk41)
(@b = vit1 A (Vi < k)(vi pi vit1))

% definition of evaluation closure
“ 0, v, = (vp)(va WL vy A Oy > vp) % using (ii)
« 9, WL, % definition of evaluation closure

i
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Proof(iv):

e (3K)(3H{po...px} € T)(@o = Ds...Dups = ) (Vi < k)(®; 7i' Dig1)
% definition of transitive union
o (3K)(3{po...px} CT)( o =0a...0k41 =0p)
(($0a « {03) A (Vi < k)(Di 53 0i41))
% definition of invertible evaluation closure
o (§0, < UO) AD,wT D, % definition of transitive union
o (U0, o Ydp) AV, 6T, % by (iii)

—_—
« 0, W' 0y % definition of invertible evaluation closure

Div

Now we are ready to prove the preservation laws. We will consider only those
laws leading up to the preservation of comparisons and evaluation closure. The
corresponding results for the invertible case are proved by replacing evaluation
closure by invertible evaluation closure. Preservation of substitution-closure by
transitive union (of any non-empty set of relations) is a trivial consequence of the
definitions. Here we will be briefer, omitting justifications such as “ by definition
of transitive union”.

®= Preservation laws for transitive union. Let I' be a non-empty set of
reflexive relations satisfying C¢. Then

(v) @I cel

(vi) C%(T) — C°(wT)
(vi) TcC —-wleC
(viii) Cly(T) — Cl.y(wT)
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Proof(v):

0, Wl 0y
— (3k)(3{po...px} C T)(Fo = Bp... Diey1 = Bp)(Vi < k)(Ds pi V1)
— (3K)3{po...px} CT)(Fo = Va... Vprs = Bp)(Vi < K)(i 7 Dig1)
%since peT — pCp.
— 0,
— 0. 8T 3, % by (iii)

Oy

Proof(vi): Assume C*(T)

wa Wl op A uy BT uy
— (Fk)(3{po---Px+m+1} CT)
(3o = @a .- Pk+1 = PbU0 = Ya... Um41 = Ub)
(V¢ < k) (i’ uo pi Pi+1’ u0) A
(Vi < m)(ox+1’ 4i Pitk+1 Px+1 dig1))
% by (i),(ii), and C*(T")

- ‘Pa.’ua. Wl ‘Pb'ub
Ovs

Proof(vii): by (v) and (vi) since the transitive union of a set is by definition
reflexive and transitive.

Proof(viii): Assume Cl.,(T)

2. wT 0y
-V, W % by (ii)
— (3K)(3{po...px} CT)(Fo = Vs ... Vpeys = ) (Vi < k)(0 77 Diz1)
— (3k)(3{po...px} CT)(Io = Va...Vpy1 = ) (Vi < k)(D; pi Vis1)
% evaluation closure of T
— 0, W 0y

DOviii
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VI1.2. The maximum comparisons

An important consequence of the closure of comparison relations under tran-
sitive union is the existence of maximum comparisons. We define three relations:
C, the maximum element of C, 3, the inverse of C, and =, the intersection of C
and its inverse. :

> The maximum comparisons.

Ir
i

&

19}

]

IR

=LCnd

The following are a few facts about the maximum comparisons.

= Maximality. By the preservation laws for algebraic operations (Figure18) C

is the maximum comparison and £ is the maximum invertible comparison.
CelC and pelC — pCLC

=€ and =Z==" and pel; = pC

= Evaluation closure. By basic properties of evaluation closure C is evaluation-
closed and £ is invertible evaluation-closed.

R

M

IR

=LC and

The next two facts illustrate that the maximum comparisons are non-trivial
in the sense that they do not relate too many pfns.

= Non-triviality 1. Let Bot be Rec(A(f,x)f(x)) a pfn that is everywhere unde-
fined. Then Bot C-approximates every pfn, and no pfn with non-empty domain
C-approximates Bot.

BotC o and (3v)({p'v) — o Z Bot

Hence Bot is not =-equivalent to any pfn with a non-empty domain of definition.

m Non-triviality 2. Define the numeral sequence Nu(n) by Nu(0) = o and
Nu(n + 1) = K(Nu(n)). Then no element of the sequence Nu is =-equivalent to
any other element.

m <n — Nu(m) % Nu(n)
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We prove this to give an idea of one sort of argument used to prove non-equivalence.
The proof is by induction on m. For n > 0, Nu(n) ¥ Nu(0) since Nu(n) is a
pfn and, by definition of the extension of dtree relation to values, no pfn is =-
equivalent to the empty sequence. For 0 < m < n assume N(m—1) 2 Nu(n—1).
If Nu(m) & Nu(n) then Nu(m)'c = Nu(n)’c by definition of comparison. But
Nu(m)'o— Nu(m—1) and Nu(n)’c < Nu(n—1) so by definition of comparison
N(m—1)= Nu(n—-1) 0.

m Extensionality Theorem C and £ are extensionally closed.

(ext.C) (Yv)(po'vEp1’v) < o T 1)
(ext.=) (Vv)(po'v=p1'v) « po = p1)
(ext.C) is proved in §3 after some general tools are developed. (ext.=) is an

immediate consequence of (ext.C), the preservation laws, and the definition of =
as the intersection of C and its inverse.

» Corollary. By the non-independence lemma T and = are substitution-closed.

Cldaubat (_l:.) and Cldeubat (g)

VI1.2.1. Pfns as partial functions

Since 2 is extensional, pfns can be interpreted as partial functions on the
computation domain modulo =. For any Rum domain A and any element a of A,
|A]e denotes the set of equivalence classes of A modulo = and |a]~ denotes the
equivalence class containing a. For each pfn ¢ we define a partial function {p}
on |V*]u.!

(fun) {PYa(lv)a) ~ lu]e = (Buo = u)(p" v = o)

[

Using properties of symmetric comparisons it is easy to see that (fun) does indeed
determine a partial function on [V*|~. We call {¢}« the function computed by
©. Extensionality of & implies that two pfns compute the same function iff they
are =-equivalent. Thus |P |« is a subset of |[V* |« which is isomorphic to a partial
function space on |V*|~. Furthermore |V* |~ contains an isomorphic copy of the
given data structure ®, and |P |~ has all the closure properties needed for a theory
of computable partial functions over D, including computable functions of higher

types.

1 Here we are again using braces according to the notation of Kleene [1952]. Context will
distinguish between the use of braces in this sense and our normal use as readability
braces around function expressions.
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This interpretation of pfns justifies the description of pfns as partial functions
that contain information about how they are to be computed. It also allows us
to use the usual tools for reasoning about partial functions (i.e. about functional
binary relations) when working modulo =. Two simple examples are the laws for
identity and composition, and the uniqueness of the “bottom” pfn.

= Laws for identity and composition. The laws for | and o given in §IV.4
show that | computes the identity function and that o computes the composition
functional.? It follows that | and o satisfy the laws for a monoid. Namely, | is the
right and left identity for composition and composition is associative.
lod=d=dol
(190 o 191) o 192 = 190 o (191 (o) t’z)

m Uniqueness of the bottom pfn. There is a unique partial function L (bot-
tom) on V* that is everywhere undefined. The pfn Bot (Rec(A(f,x)f(x))) is ev-
erywhere undefined and hence computes L. Thus, a pfn computes L iff it is
=-equivalent to Bot.

{p}o =1 & = Bot

VI1.2.2. The recursion theorem revisited

Using the maximum comparison we give a strengthened version of the recur-
sion theorem and two consequences — uniqueness of the recursion pfn and a general
result for recursion with parameters.

> Recursion pfns. We say that a pfn e is a recursion pfn if it satisfies the
following computational laws. :

(rec.pfnl)  ©rec € Pfnl
(rec.subc) (V9 € Pfnl)(9'(prec(9)) < prec(?)’v)
(rec.redt) (V9 € Pfnl)(prec(¥)’ v 5> 9(prec(¥))’ v)

Note that these are just the laws given for Rec in §IV.4, hence Rec is a recursion
pin.

m Improved Recursion theorem. If .. is a recursion pfn then for any pfnl
¥, prec computes the least fixed point of ¥.

(rec-ﬁx) Prec (1’) = 0(‘Prec (19))
(rec.min) 9(p) C @ — @rec(9) E o

2 Recall, | is defined as A(x)x and o is infix notation for B which defined as A(f, g, x)f(g(x)).
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By the definition of recursion pfn ©rec(¥) = #(prec(¥)) and (rec.fix) follows by
...:inality of =. (rec.min) is a consequence of maximality and will be proved in
§3. To see that in general the least fixed point of a pfnl is not the only fixed point
consider the pfn A(f,x)f(x). Every pfn satisfies A(f, x)f(x) () = @, but the least
fixed point Bot is everywhere undefined.

» Uniqueness of Rec. If prec is a recursion pfn, rec is =-equivalent to Rec on
pinls.
¢ € Pfnl — Rec(¥) = prec(9)

This follows from the improved recursion theorem. More generally for any pfns ¢ o
and ¢ satisfying (rec.fix) and (rec.min) and any pfnl ¥ we have ¥(pr;(¥)) =
©r;(9) for j = 0,1 by (rec.fix). ¢r1(¥9) E oro(#) by (rec.min) for ¢,,; and

©r,0(9) C ©r,1(F) by (rec.min) for ;0. Hence pr,0(9) = ¢r,1(¥) as required.

s Parameterized Recursion. In §IV.4 weshowed how certain forms of recursion
with parameters can described by treating the parameter as an argument or by
carrying the parameter in the environment of a recursively defined pfn. This fact
is an instance of a general result about the equivalence of alternative descriptions
of recursion with parameters.

(param) Rec(A(h, x,2)g(x,h(x),z)) = A(x)Rec(A(f,2)g(x,f,2))

(param) is the Rum analog of equation (2.28) Scott [1976] and is proved in the same
manner using the improved recursion theorem and the extensionality theorem.

Alternative description of recursion.

Our definition of Rec was derived by unwinding (i.e. extracting the lambda
expression implicit in) Kleene’s proof of the 2nd recursion theorem (Kleene [1952]:
Theorem XXVII). An alternative “call-by-value” version of the Y combinator CbvY
is given in Reynolds [1970].

df

> Y2 & A(h)A(x)h(h,x)
> Y1 & AHAR)F(Y2(h)

b ChvY &5 A(f)Y1(f, Y1(f))

= For pfnls ¢, CbvY’¥ and CbvY(d#) = Rec(d).

Proof: We show that CbvY is essentially a recursion pfn. Assume ¢ is a pfnl.
We claim (i) CbvY’d — 9(Y2(Y1(¥))) and (ii) A(f)Y2(Y1(f)) is a recursion pfn.
Then by the improved recursion theorem and evaluation closure of =

CbvY(9) = 9(Y2(Y1(9))) = Y2(Y1(¥)) = Rec(d)

as required. (i) and (ii) follow directly from the definitions with a little computa-
tion. O
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VI1.2.3. Towards a Rum calculus

The maximum equivalence satisfies many laws expressed as an equational
theory in the language of forms. These include the laws of the Lambda-v calculus
(Plotkin [1975]). We list some of the laws for = below and illustrate their use
in proving equations by proving the equivalence of alternative descriptions of the
until-loop functional.

» Laws for =.

(if.if) if (if (fo, 1, f2), f3, fa) = if (fo, if (f1,fa,f4), if (F2,fa,f4))
(if.app) f(if (fo, f1,£2)) = if (fo, f(f1), §(f2))

(if.or) if (or (fo, f1), f2, fa) = if (fo, f2, if (f1, 2, f3))

(let.cnv) (Ufl, — Ufo) — let{s <fo}f =fs,

(let.perm) let{so < let{s1 < fi1}fo}f = let{ss < f1}let{so < fo}f

% 81 not free in f

(cart.id) cart(f, mt) = cart(mt,f) = f
(cart.assoc) cart(cart(fo,f1),f2) = cart(fo, cart(f1,f2))
(subst) fo=f1 — flf, =flf,

(abstract) fo=fi — A(s)fo = A(s)fi % For s not a global symbol
(rec.def) 81 = Rec(A(s1)A(81 ... 8n)fbody) — 81(51-..6n) = fbody
% For s1,... sx not global symbols

(param) Rec(A(h,x,2)g(x,h(x),z)) = A(x)Rec(A(f, 2)g(x,f,z))

The laws involving the recursion pfn have already been discussed. (abstract) is
just an alternative form of (ext). The remaining laws are consequences of general
closure properties of = which will be proved in §4. We call the use of (let.cnv)
to replace an instance of the left-hand side by an instance of the right-hand side
let-elimination. Use of (let.cnv) in the opposite sense is called let-introduction.

Alternative until-loop constructions.

To illustrate the use of the parameterization law we derive the equivalence of
alternative descriptions of the until-loop functional Until and Un.

> Until & X(p,f)Rec(A(un)A(s)if(p(s), s, un(f(s))))

N Un < Rec(A(Un)A(p,f,s)if(p(s), s, Un(p,f,f(s))))
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Beginning with the definition of Un, let-introduction is used to put the body of
the definition in a format that matches the (param) law. The (param) law is then
applied followed by let-elimination to recover the original definition of Until.

Rec(A(Un)A(p,f, x)if (p(x), x, Un(p,f,f(x))))
= Rec(A(Un)\(p,, ) {A(p, > b, x)if(p(x), %, h(p, F(x)))}(p, f, Un(p, ), )
% let introduction
= A(p,f)Rec(A(h)A(x){A(p,f, h, x)if (p(x), x, h(f(x)))} (p,f, h, x))
% (param) with g = A(p, f,h, x)if(p(x),x, h(p,f(x)))
= A(p,f)Rec(A(un)A(x)if (p(x), x,un(f(x))))

% let elimination

The laws for = (with some additional laws for if-simplification and conditional
substitution) can also be used to formalize the derivation of the equation for Tprodc
(see §II.3).

VI1.2.4. Remarks

Towards a theory of program transformations. With respect to develop-
ing a theory of program transformations, the laws for = give rise to a rich collection
of transformation rules. What is needed is to develop further principles such as
laws for safe introduction of recursion. One approach is to try to extend the notion
of computational progress (Scherlis [1980]) to Rum in order to obtain safe systems
of rules for deriving recursive definitions.

Another direction of work is to look for extensions of the Lambda-v calcu-
lus (Plotkin [1975]) by adding laws for if, mt, cart, fst, rst. Such added laws
should preserve the Church-Rosser property and reflect adequately the intended
interpretation of these additional primitives. This would provide a richer base of
“syntactically” generated equivalence relations and be a step toward mechanizing
transformations or the checking of validity of transformation steps.

A third direction of work is to explore the use of comparisons other than C
and = to formulate soundness of transformations as well as to express forms of
improvement made by transformations.

Open Questions. We have really just exposed the tip of the iceberg. There
are a number of questions still to be answered about the maximum comparisons.
Some of the open questions are:

« What is the logical complexity of C (or =)?
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« Is C the least comparison satisfying extensionality?

« Are the fixed points computed by Rec the only uniformly computable fixed
points of pfnls in Rum? That is, is there a pfnl g4 such that for any pfnl §
vhx(9) = F(pnx(9)) but for some pfnl ¥ we have pgy(9) Z Rec(¥)).

« C is defined as the maximum approximation for a fixed but arbitrary data
structure ©. Let Cy be the restriction of C to the pure dtrees - dtrees that
have no occurrences of data or data operations. Is this relation the same for
all choices of D? If not, how does it depend on D?

V1.3. Pfn extensions of comparisons

Pfn extensions provide a method of extending a given comparison to a com-
parison containing a given pfn relation. This in turn provides a method of proving
that a given pfn relation is contained in the maximum approximation. Since for
these purposes only the restriction to pfns of a dtree relation is relevant, we in-
troduce the notion of pfn comparison. This characterizes the relations obtained
by restricting dtree comparisons to pfns. We define a pfn ezxtension operation
and a pfn ezxtension condition which guarantees that the pfn extension of a pfn
comparison is a pfn comparison. These tools are used to prove the extensionality
and improved recursion theorems stated in §2. We also prove the uniqueness of
Self, thus answering one of the questions asked at the beginning of this chapter.
Originally, these and other theorems of similar form were proved individually. It
then became clear that these proofs were all based on the same extension con-
struction and that the proofs amounted to verifying the pfn extension condition.
We shall not make further attempt to motivate the definitions. The proof of the
pfn extension theorem should help make the technical reasons for the definitions
clearer.

VI1.3.1. Pfn comparisons

> Pfn comparison. A pfn comparison is a dtree relation that is reflexive, tran-
sitive and is evaluation closed under application (satisfies C?). Cp is the set of pfn
comparisons.

Note that for a pfn comparison, there are no requirements for dtrees other than
pfns. In fact, pfn comparisons are essentially dtree comparisons with non-pfn
dtrees forgotten. This is expressed by the pfn comparison lemma.
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= Pfn comparison lemma. Each dtree comparison is a pfn comparison and
the evaluation closure of a pfn comparison is a (dtree) comparison containing the
restriction to pfns of the given pfn comparison.

peEC — p€Cp

pECp — plPl CpeC

VI1.3.2. The pfn extension theorem

The pfn extension of a pfn comparison by a pfn relation is the least transitive
reflexive relation containing the union of the given relations and closed under value
substitution. For technical reasons we construct the extension in two stages.

b Value closure. The value closure x! of a relation x is the least reflexive
relation such that!

() x[P] c x!
(1) Uo,1 xu i1 A ... A Uon xﬂ Ui — (p{dﬂo,l e <Iu0,n} xu go{dul,l .. .<1u1,n}

> Pfn extension. The pfn extension of p by x, (written ptx), is the transitive
union of p and the value closure of x.

iy = o "
pix = {p,x*}

In order to state the pfn extension condition we introduce two more definitions:
relative pfn comparison and the dtree relation induced by the value closure of a
pin relation.

> Relative pfn comparison. We say that x is a pfn comparison relative to p
if (x,p) satisfies CP where

CP(x,p) = (Yo, P1)(Yuo, u1)(po X P1 Ao X 41 = (o' uo) X 07 (1’ u1))
df

Recall that o is the composition operation and 9 po 0 p1 91 < (30) (o pd 0 p10;).
The interest in relative pfn comparisons is explained by the following lemma.

! The requirement that x! be reflexive amounts to adding a further clause p=[P] C x*.
Since this clause corresponds to a trivial case in the arguments based on the definition
of x* we have not listed it explicitly.
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= Relative pfn comparison lemma. If p is a pfn comparison and x is a pfn
comparison relative to p then W{p, x} is a pfn comparison.

pECp A CE(x,p) — W{p,x} ECp
This follows from CP(p) A CP(x,p) — CP(¥{p,x}) which is easy to check by
unwinding the definitions.
> Value closure on dtrees. The dtree relation x#¢ induced by the value closure
of a relation x is the least dtree relation such that
(0) o x[P1d; — B x"? 2,
(1) uo, x* 31 A ... Aoy X 10 — 0{qug1...<9uo} xe O{quy1...9u;}

¥ #

(2) vox' o1 Auoxtur = (vo’uo) xM? (1’ u1)

We are now ready to define the pfn extension condition ©P and to prove the
pin extension theorem.

> Pfn extension condition.

0(x,p) = (Y0, ®1,u0,41)(0 X ©1 A o X" ur A O (X, 9,00 uo)
= (po'uo) x* 07 (p1"u1))
where
eiyp(X’p7DO) (—iz_f (vaa < ao)(‘v’bb)(ba xu’d 0 — aa xu op ab)

u Pfn extension theorem. If pis a pfn comparison and (x, p) satisfies the pfn
extension condition then the pfn extension of p by x is a pfn comparison.

pECp A OF(x,p) — pix € Cp

Before proving the pfn extension theorem we prove two lemmas. The theorem will
then follow easily.

a Lemma.l. If pis a pfn comparison, G)’,';yp(x,p,Do), uoi X! uyifor 1 <1< n,
and 9; = 0{<u;,1...9u;n} for § = 0,1 then dp x'op 9.
Proof: Lemma.l. Assume 0y < vg and show

(Eivg,vl)(vo Xﬂ v pvs A0y — v1)

. We consider cases according to the dtree context construction.
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ase(D; = Mt): let vo = v; = vz =0
se{dy = qu;): let vo = up, v1 = vz = u;.
e( = pa): let vo =0p, v = vy =0;.
Case(d; = app(D 5:9b3)): By definition of x*¢ we have 9,0 x"¢ 95,1 and dp,0 xM¢

9,1. By O} p and properties of evaluation and subcomputation, there are u,;
and uy for t =0,1,2 such that

’
0.0 a0 and Vo — upo and wuzp Upo — vo,

Da,l “* Ua 1 and Db,l — Up,1,

Uao X Ua2pua; and upp X' up 2 p Up1.

Since the application is defined we know that u,0 € ® A upo € BD* or u,0 € P.
In the case u, 0 € O, by definition of the extension of a dtree relation to values,
Ua0 = Ua2 = Ua1 and up o = tp2 = up,1 and we let vz = v; = vo. In the case
ua 0 € P we have

(ta,0” ub0) X' (ua2’ ub,2) P (¥a,1 ' ub,1)

so by G)hyp there are v, and vz such that vo x! vs p vz and uag Up2 —* v3.
Since p is a comparison there is v; such that vz p vy and u,;’up,; < vy. The
if-, cart-, fst-, and rst- cases are similar. iemma.1

® Lemma.2.

©P(x,p) A PECp — (B0 X" 0y — % x" 07 )

Proof: Lemma.2. We use computation induction on 9o, with induction hy-
pothesis © hyp(x, p,00) and consider cases according to the definition of x%e,

Case.0: Do x[P] 3;. Then o x* 9; since ;< ;.

Case.l: 0j = 0{<uj,1...9u;n}, for 5 = 0,1 where ug; x* uy,i for 1 < ¢ < n. This
follows from Lemma.l using the induction hypothesis.

Case.2: ¥y = o’ up and ¥; = ;' u; where o x* 1 and uo x! u;. Using the
definition of x*, there are two subcases.

Case.2.0: o x ¢1- This follows from ©F using the induction hypothesis.

Case.2.1: p; = p{qu;,1...9uja} for y = 0,1 with ug; x* uy i for 1 < ¢ < n. This
is just Case.l. Oiemma.2

Proof: Pfn extension theorem. As a special case of lemma.2 we have

p€Cp A OF(x,p) — CE(x",p)

Using the relative pfn comparison lemma and p t x= tﬂ{p,xu} it follows that
plix € Cp as required. Op ..t
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V1.3.3. Using the pfn extension theorem

Our applications of the pfn comparison theorem will be to show that certain
pfn relations are contained in the maximum comparisons. These are based on the
following corollary.

m Pfn extension corollary. To prove that a pfn relation x is contained in C or
to prove that a symmetric pfn relation x is contained in = it suffices to show that
©r(x,C).

oP(x,C) — x[P1 cC

OF(x,C) A x=x" — x[PlC=

Proof: By the pfn comparison lemma and the pfn extension theorem and
maximality of C, if ©7(x,C) then x[P] € CH#x C C and by definition of £,
(xnx7)IPl Cc=

o Proof of the extensionality theorem. For the first application, we prove

" the extensionality of C.

(ext.C) (Vo)(po’v E 91"v) © 0o C 1)

Let x = {{vo,%1) | (Vv)po’v C p1’v}. Since C € C the (only-if) direction of
(ext.C) is trivial, so we need only show the (if) direction — x C E. By the pfn
extension corollary it suffices to show ©P(x,C). To see this assume po x ¥1 and

uo x' u; and Gf‘yp(x,{;,wo' o). Then by definition of x and of value closure,

(o’ uo) x* (po’u1) T (p1’u1). By lemma.l (po’uo) x* o E (p1'u1), as
required. [zt

e Proof of the improved recursion theorem. Our second application of
the pfn comparison theorem is to prove the main part of the improved recursion
theorem

(rec.min) )T — or(F) Cop

where @, is a recursion pfn (see §2) and ¢ is a pfnl. Assume ¥#(p) C ¢ and let
x = {(er(9),p)}. By the pfn extension corollary to show ¢:(¥4) E ©. we need
only verify ©7(x,C). Assume @o X ©1, %o X' u1 and Giyp(x,g,goo'uo). By
definition of x, Yo = ¢r(¥) and 1 = . Assume po’ up — vo, then by properties
of recursion pfns, 9’ po < wo’uo and po’uo > ¥(po)’ uo. By 9£yp and the
assumptions on ¢ we find vz with 9(po) x* w2 C 9(p1) C o1 thus

(o0’ uo) = (9(p0)’ o) xM? (v2'u1) C (1 u1)
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and by Giw we have

(%(w0)’ ©o) ;u-o C (p2’u1) C (p1'u1)

as required. O¢rec.min)

e Proof of the uniqueness of self. To answer the question raised at the
beginning of this chapter we prove that if ¢’ v < ¢ for all v then ¢ = Self. Let

x = {(po, 1) | (v0)(o"v = po A p1"v = p1)}.

By the pfn extension corollary, since x is symmetric, to show x C = we need only
verify ©P(x,C). Assume o x ¥1 and uo x! u;. By definition of x, ©o’ 4o < ©o

and o1’ u; < 1 thus (po’ vo) X' (p1’v1). Deety

Exercise: Stream equivalence. Define the restriction operation on streams
StrR which restricts the inputs to a stream to be the empty sequence

> SR & A(s)A(2)let{[x, s] < s()}ifmt(x, mt, [x, StrR(s)])

Prove that if two streams 9o, ¥#; are equal as streams then the restrictions of the
two streams are =-equivalent. For streams 4,9,

do = 9; — StrR(do) = StrR(¢,)

(See §IV.6 for definitions and properties of streams)

Hint: Define the pfn extension of = by
{(%0,9)}U{(93™,937) | m < [9o]s}

and use the pfn extension theorem.

Remark: We need to work with the restriction here because we have been
discussing streams in terms of repeated application to the empty sequence. Thus
it is really the restriction that we are interested in.
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VI1.4. Dtree extensions of comparisons

Dtree extensions provide a means of extending a given comparison to a com-
parison containing a given dtree relation. The main interest is in obtaining rela-
tions that contain sets of program transformations. Thus we focus on substitution-
closed relations. The basic plan is similar to that for pfn extensions. We define
a diree extension operation and a dtree extension condition which guarantees that
the dtree extension of a comparison is a comparison. The dtree extension oper-
ation is used to construct comparisons satisfying laws such as those given for =
given in §2. These constructions also serve to prove the corresponding laws for
=, A one step extensionality closure operation is defined which provides a means
of obtaining comparisons approximating extensionality to any desired level. This
also serves as an alternative proof of the extensionality theorem. As for pfn ex-
tensions, the basic definitions were derived by abstracting on a collection of proofs
based on the dtree extension construction and which amounted to verifying the
dtree extension condition.

VI1.4.1. The dtree extension operation

The dtree extension of a relation p by a relation x is constructed in two stages.
First form the dtree substitution closure of x, then take the transitive union with

p.

> Substitution closure. The substitution closure x% of x is the least reflexive
dtree relation such that

0 xcx"
(1) "o xhI u; — dug xh duy
(2) ao,l xh 31,1 .o .ao,n xh Dl,n - D{Do,l .o .bo,n} Xh 3{31,1 .o -Dl,n}

In clause (2) we may assume with out loss that 9{...} is not a trivial context i.e.
that 9{...} is not simply a hole.

> Dtree extension. The dtree extension phty of p by x is defined by
b = w{p, x"
pix = w{p,x'}

mDtree extension lemma. The substitution closure of a relation p is substitution-
closed and dtree extension commutes with inversion.

Cldau.bat(ph) and (phX)_ =(p_hx“)

This is an easy consequences of the definitions and properties of substitution-
closure.
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VI1.4.2. The dtree extension theorem

We now define the dtree extension condition for relations (x,p) and prove
that it guarantees that the dtree extension of a comparison p by a relation x is a
comparison. As for pfn extensions, the dtree extension condition is expressed in
terms of relative comparisons. ‘

> Relative comparison. We say that x is a comparison relative to p if (x,p)

satisfy Cf and C? where
C:(X,P) 3 (w09al)(bo Xal — ao 7 o} 'ﬁbl)

Cl(x,p) = (Yo, 01)(Yuo, u1)(po X P1 A uo X 1 — (o uo) x © p (1" u1))

The key fact about relative comparisons is the following.

= Relative Comparison Lemma. If p is a comparison and x is a comparison
relative to p then W{p, x} is a comparison.

pEC ACIx,p) AClx.p) = W{p,x} EC

This follows from

C%(p) A Ci(x,p) — C(¥{p,x})
C%(p) A CE(x,p) — C*(¥{p,x})

which are easy to check by unwinding the definitions.

> Dtree extension condition. The dtree extension condition ©(x, p) for (x,p)
is defined by

O(x,p) = ©°(x,r) A ©%(x,0)

0°%(x,p) = (¥00,01)(d0 X D1 A ©5,,(x,£,90) — B0 x" 05 )

O5yp (X, 2:00) = (Wa < 0)(Wp)(Pa x" Wy = 2a x* 07 D)

©%(x, p) = (Yoo, 01, o, 41){wo X ©1 A o X u1 — (po’ o) x* o p (p1"u1))

s Dtree extension theorem. If pis a comparison and (), p) satisfies the dtree
extension condition then the dtree extension of p by x is a comparison.

peEC AO(x,p) = pixeC
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Proof: Dtree extension theorem. We show

(claim.a) @%(x,p) — CH(x"»)
and
(claim.e) O(x,p) Npel — C:(Xhap)

then ©(x,p) A p € C — ptix € C follows from the relative comparison lemma and
the definition of phy.

Proof (claim.a.):  Assume ©°%(x,p), vo X" 1, and uo x" u; and show

(Po'uo) Xh °p (Pl 'ul)-
According to the definition of x? there are three cases.

(Case.0): wo x w1. Here (o’ uo) x% o p (1 u1) follows from ©°(x, p).
(Case.1): ;j = <uj. This case is impossible as a value dtree can not be a pfn.
(Case.2): 5 = go{ .95,i ...} where do; x" 9;,;. Here (<po uo) x* (p1'uy) by the
definition of x! since p{...j;...} u; = p{au;...0:...}  u;.

Octaim.a

Proof (claim.e.): Assume ©%(x,p) and p € C and show by computation induc-
tion on 0o that .

% x"01 — % x"op U
Note that the induction hypothesis is ©F (X, p,00). By the definition of x¥, there
are three cases.

(Case.0): 9o x 0;. Here 0o ;(_E o p 0; follows from ©¢(x,p) using the induction
hypothesis.

(Case.1): 9; = <u; where uo x% u;. Here 9o xh 0;.

(Case.2): 9; =0{...0;,;...} where ¥ x" 91,;. We consider cases on the construc-
tion of the dtree context d (assuming d not a hole). The cases ¥; = Mt, 9; = <u;,
and 9; = AD,j are trivial.

In the case ?; = app(?aj,db,;) We have 9.0 x¥ Da;1 and dp0 X% Vp,1. By definition

of evaluation and the induction hypothesis there are u,; and up; for ¢+ = 0,1,2
such that

0,0 a0 and Vpo < upo and uz0 Ubo — Vo,

V.1 ua1 and p,1 — up1.

b

Uao X! a2 pta and upo X7 Ub2 P Ub1,
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Since the application is defined we know that u,0 € @ A upo € D* or uao € P.
L'he case ua0 € O is trivial. If u,0 € P then by the definition of uap X! Ua,2
there are two non-trivial cases: (0) ua0 X a2 and (2) uaj = va{...9j;...} with
90,i X% 91,;. In the case (0), by ©2, (ua,0’ ub,0) x" 0 p (ua2’ubz2). In case (2),
by definition of x¥, (ua,0’tb0) X* (va2’ub2). In either case by the induction
hypothesis and p € C we have (20’ ubo) X? 07 (ua,1’up,1). The if-, cart-, fst-,
and rst- cases are similar. Ociaim.e

VI1.4.3. Corollaries of the dtree extension theorem

The following corollaries of the dtree extension theorem are the basis for the
examples to be constructed. The first corollary shows how the dtree extension
condition provides criteria for constructing invertible comparisons.

m Corollary 1. Invertible extension. If p is an invertible comparison and the
dtree extension condition is satisfied by both (x,p) and (x~,p~) then the dtree
extension of p by x is an invertible comparison.

PEC AO(x,0) AO(Xx™,p7) — pix €C;

Proof: This follows from the definition of invertible comparison, two applica-
tions of the dtree extension theorem and the fact that (ptx)™ = (p~tx™). O

m Corollary 2. Evaluation extensions. If pis a comparison and x is contained
in the evaluation closure of p then the dtree extension of p by x is a comparison.

PECiAXCp — pixeC(C

Proof: By the dtree extension theorem we need only verify ©(x,p). ©%(x,p)
follows directly from x C p. To verify ©%(x, p) note that by properties of evaluation
closure po x 1 implies o p @1. Thus by the definition x% and p € C it follows

~that oo x 1 and uo x¥ u; implies (o’ uo) X (w0’ u1) p (1" u1). O

® Corollary 3. Invertible evaluation extension. If p is an invertible com-
parison and x is contained in the invertible evaluation closure of p then the dtree
extension of p by x is an invertible comparison.

pPECiAXCp — pix€e(C

Proof: This follows from corollary 1,2 and Ei =pnN (F)— O
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m A substitution closure operation. If p is a comparison then php is the least
substitution-closed comparison containing p. If p is an invertible comparison then
ptp is the least invertible substitution-closed comparison containing p.

Cldaubst(php)
peC — (pip€C) A (pC po € C A Clasusst(po) — pip C po)
pECi — (ptip € Ci) A pCpo€ Ci A Clasubst(po) — plip C po

Proof: This follows from corollaries 2 and 3, the dtree extension lemma, and
preservation laws for substitution closure using the fact that for comparisons p C

— —
p Cop.
VI1.4.4. Example comparison constructions

We will define a number of comparisons using the dtree extension operation.
We call these comparisons “transforms” as they can be thought of as rules for
transforming programs.

Partial Evaluation transforms.

If ¥ — v then dtrees related by replacing some occurrences of ¥ by value
nodes with value v generate a comparison relation extending dtree equality that
corresponds to partial evaluation. Partial evaluation transforms are tree prun-
ing relations. The computation trees described by related dtrees are related by
replacing some subtrees by references to their value. An example is replacing oc-
currences of Add1(Add1(0)) by 2. Any set of evaluations generates a comparison,
for example, evaluation of all dtrees that correspond to terms built only from data
and data operations. The complete partial evaluation transformation is obtained
by using the set of all evaluations.

> Complete partial evaluation transform.

> = p=tiXev Where xev = {(®,4v) | d — v}

-

®  Since p— € C; and Xev C ;;' we have by Corollary 3 that S oe C.
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Syntactic transforms

Many comparison relations are naturally expressed in terms of relations on
forms. We call these relations syntactic transforms.

> Let X be a set of pairs of forms. We define the dtree extension of p by X

(written ':5’5) as follows.

B = pixx where xx = {({fo | £),(1 1) | (fo.f1) € X, € €E}

m Expressing Corollaries 2 and 3 in terms of forms we have
— X —i X
pECAXCp— S €eC and peCiAXChp — 5 e
As examples we define

Xigif = {if (if (fo, f1,f2), fa, fa), if (o, if (F1,fa,fa), if (F2,Fa,f4a))}
Xif.opp 5 {(F(if (fo, F1,F2)), if(fo,f(F1),F(F2)))}
Xif.or = {(if (or(fo,f1),F2,a), if(fo,F2,if (F1,f2,f3)))}

Xiet.perm = {(let{so < let{sy < f1}fo}f, let{s; < fi}let{so < fo}f)
| 51 & frees(f)}
Xeart.ia = {(cart(f, mt), f}

Xcart.auoc a"'; {(Cart(cart(fO:fl)vb), Cart(fO’cart(fl,f2)))}
Xiet.elim = {(let{s < fo}f, fIf,)}
Xiet.intro = {(flf,» let{s < fo}f) | $(flf,) — Hfo}.

Then taking p to be p— (or any invertible comparison) and X to be one of the sets

Xif.diat, Xif.or, cht.pcrma Xecart.ids OF Xcart.assoc We have X C ;' and ,:,_}*( € Ci.
Furthermore by the preservation properties given in §1 the symmetric closure
Hﬁ{e’—)f, ‘,’_’ff)—} of ¥ is a symmetric comparison. Thus any invertible comparison
can be extended to a symmetric comparison satisfying the (if.if), (if.app), (if.or),
(let.perm) (cart.id), and (cart.assoc) laws for = given in §2. In particular, this
verifies these laws for =.

. . .. — X .

If p is any comparison containing (f_‘;) and X = Xiet.elim then ¥5 is a com-
parison closed under the let-elimination transform. If p is any invertible compar-
. . . X . . . .
ison containing > and X = Xiet.intro then £ is an invertible comparison closed

. . . X X\ .
under let-introduction. Further, if X = Xjet.intro then w{”H , (pf-—») } satisfies the
(let.cnv) law given in §2 and thus we verify this law for =.




§VI4 Dtree extensions of comparisons 171 -

Abstraction transforms

As a final example we define the one step abstraction closure of a comparison. -

. . b .
> One step abstraction closure. The one step abstraction closure P of pis
defined by

g=x ; PiXabs where Xabs = {(‘pOﬂol) | (Vv)((QOO,U) p (‘Pl'v))}

m If p is a comparison then the one step abstraction closure of p is a comparison.

b
p€C—>Pﬁ+8€C.

Proof: By the dtree extension theorem we need only verify ©(xabs,p). For
©°(Xabs, p) note that since xabs is a pfn relation we have 9o xabs 91 implies 9o Xabs
9. For ©%(xabs,p) note that wo Xabs 1 and to X:bs u; implies (po’ uo) ngs
(o’ u1) p (p1"v1). O

m  The one step abstraction closure preserves invertibility and symmetry.
piobs - pabs _ pabs,
pEC = B €C( and p=p" = b =(F)

Remarks.

e Notice that taking p to be C we have an alternative proof of the extensionality
theorem.

e The one step abstraction closure operation is a monotone operation on com-
parisons. Thus it can be iterated along the ordinals to a fixed point which will
be the least extensional comparison containing the initial comparison. (This is
a form of inductive definition — see for example Moschovakis [1975]). This is an
alternative to the construction of the least extensional comparison by intersecting
all of the extensional comparisons containing the given starting relation.
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Chapter VII. Abstract machines and compiling morphisms

Now we return to the world of sequential computation. In this chapter we
generalize the idea of introducing a continuation parameter in order to transform
recursive pfns to sequential pfns. This idea was used in the tree product example
(§I1.2) to transform a recursive computation into a sequential one. We will show
that

()

any s-Rum computation can be described by a sequential diree of
t-Rum and carried out using the reduces-to relation.

Notions of Rum machine structure and machine morphism are introduced infor-
mally in order to provide mechanisms for relating different representations of com-
putation descriptions and to formulate precisely the claim (f). There is a natural
Rum machine structure R on s-Rum. A Rum machine structure T is defined on
t-Rum and a map from R to T is defined and proved to be a morphism. We think
of T as an abstract machine and the morphism as a naive compiler. A simple
example, compiling and optimizing the pfn Car, is given to illustrate how pro-
gram transformations can be combined with naive compiling to produce plausible
results.

VII.1. Rum machine structures

A Rum machine structure over (D,Sy) has a collection of states and a step
relation on these states. In addition, there are forms, environments and dtrees
for describing computations and continuations for describing computation con-
texts. The computation domain contains representations of data, data operations,
pfns and continuations. There are injections (ts,td,t0) mapping Sy to machine
forms, and mapping D and O into the computation domain. Environments are
finite maps from symbols to sequences from the computation domain. There are
construction operations including a closure operation (close) mapping form - envi-
ronment pairs to dtrees; an application operation (appl) mapping data operation
- data sequence pairs and continuation - value pairs to dtrees; an abstraction op-
eration (pfn) mapping symbol - form - environment triples into the computation
domain (the representation of pfns); an injection (note) from continuations into
the computation domain (the representation of continuations); an identity con-
tinuation (¢dcont), a begin operation (begin) mapping continuation - dtree pairs
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to states; and a return operation (return) mapping continuation - value pairs to
states. Finally there is a next state operation (step). The domains and opera-
tions of a Rum machine structure are summarized in Figure 19 using generic Rum
notation for domains.

Domains
<F,E,V,D:, Co, &>

Embedding of (D, &)

te : [Sy > F] % an injection
ta: [ > V] % an injection
Lo :[@ = V] % an injection
E = [to(Sy) #> V7]

Machine Operations

close : [F x E - D

appl : [(O X B*) ® (Cox V*) & D]
pfn Sy X FXE = V]

note : [Co > V]| % an injection
ideont : [0 > Co

begin : [Co X Dt > §]

return: [Co X V* - &]

step : [St ~> §]

Figure 19. Rum machine structure over (D,$y)

The s-Rum world described in Chapter V has a natural machine structure,
R. So far we have imagined that the injection mapping symbols to forms and the
injections mapping data, data operations and continuations into the computation
domain are simply inclusions. When necessary to distinguish objects from their
representations in the computation domain we write d € V, o € V, and v € V.
pfn(s,f, &) = (A(s)f | €) which we write as (A(s)f | £) € V if we need to distinguish
the pfn from the dtree of the same structure.

In order to talk about more than one machine structure we relativize the
notation for a Rum world by adding a superscript denoting the machine. To



174 Abstract machines and compiling morphisms §VIIL.2

avoid notational clutter, superscripts will generally be omitted from operation
ana relation symbols since the interpretation can be determined by the arguments.
For objects of R we omit superscripts (this is the default interpretation) except
for emphasis. For example, f (or f?) is a form of R, and we write FR or just F
for the set of forms of R. More generally, if 4 is a Rum machine structure, f# is a
form of A4 and F# is the set of forms (the interpretation of F) in 4. The image of
s in F# will be denoted by s* and the images of d and o in V# will be denoted
by d*, o®. 4 € V# is the representation of ~* in VA. We will use s-Rum notation
for machine operations. Thus we write (f# | ¢#) for close(f#, €#) and 94/ v# for
appl(t?'“, v#). The application notation is extended to pfns as usual by

(A(s*)FA 1) vf = (F4 1 £4{s" < v*}).

VI1.2. The tree machine T

A tree machine is a machine structure defined on t-Rum. Tree machine states
are sequential dtrees — dtrees that can be evaluated using reduces-to steps with
only limited side computations. The computation trees described by sequential
dtrees look like lists with reductions along the main (rightmost) branch and side
computations as elements of the list. This is illustrated in Figure 20.

e 0g— v
0o > 01 v N >
* e 0 —v
>0 S N\ >
— v * vee

e 00— v

* stands for a side computation.

Figure 20. Sequential dtrees

For example the dtrees formed by application of Tprodl to number trees are se-
quential dtrees (see §I1.2). The key in describing sequential computation of the
tree product function was to make the continuation of the computation an explicit
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parameter (a continuation pfn). In such computations application is used in sev-
eral ways: to apply a data operation to a data sequence, to return a value to a
continuation, and to call a pfn with an argument and a continuation. ’

Generalizing the basic ideas involved in the transformation of the tree product
computation we define the tree machine structure, T. Notation, rules for generat-
ing T -objects, and definitions of T-operations and injections are given in Figure 21.
In order to keep track of the different roles played by pfns in the tree machine and
to distinguish the various uses of application, symbols are partitioned into three
sorts: value symbols, operation symbols, and continuation symbols. There are
just two continuation symbols which we denote by ¢ and c*. Further we fix an
injection from Sy into the value symbols, s ~— s7, and an isomorphism of O with
the operation symbols, 0 < 0.

In addition to the required sorts of machine objects, T has value instructions
fv and state forms §f*. Value instructions are forms describing the primitive com-
putations that generate values: reference to a value bound in the environment
(vsym), pfn formation (pfn), noting (note), application of data operations to data
sequences (dapp), and instructions for sequence manipulation (mt,cart,fst,rst).
State forms are generated by constructions corresponding to returning a value to
a continuation (ret), conditional branching (if), calling a pfn with an argument and
a continuation (call), and making temporary bindings of continuations and values
(cbnd, vbnd). State-forms serve as symbolic descriptions of computation states.
Each state-form contains a free continuation symbol whose intended interpretation
is a pfn representing the current context.

T -environments are environments that bind T-values to value symbols (and
that bind no other symbols). A T-environment extended by binding the continu-
ation symbol ¢ to a T-continuation is called a T-state-environment. For forming
closures in T we will assume we are working in a global context binding data
operations to the corresponding symbols.

The remaining tree machine objects are generated naturally from state-forms
by abstraction and closure. T-forms are obtained by abstraction of T-state-forms
with respect to the continuation symbol c. A T-dtree is either the closure of a
T-form in a T-environment or a continuation application dtree (capp). A T-
continuation is either the identity pfn |, or a pfn with body a T-state-form, argu-
ment symbol a value symbol and environment an T-state-environment. A T -state
is either a terminal state I’v7 or a T-state-form closed in a T -state-environment.

The following facts about T-instructions and T -states follow easily from the
definitions. The key point is that T-states are evaluated by reduces-to steps with
limited side computations and, when defined, T-states return T -values.
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T notation
Variables Range Variables Range
8’ value symbols f¢ value instructions
o operation symbols fe state forms
C, C* continuation symbols
Value instructions State forms
(vsym) &° (mt) mt (ret) c(f*)
(dapp)  3(s") (cart) cart(s’,sr)  (if) if(f, e, fe)
(abs) A(s®, c)f* (fst)  fst(s") (call) &/ (sy,c)
(note) A(s¥,c#)c(s¥) (rst)  rst(s") (cbnd) let{c « A(s")f3}f*

(vbnd) let{s" «{'}f*

T-Forms';' A(o)f

T-Dtrees: (close) (A(c)f*1¢7) (capp) {(M(c*)c(s®) | €T {c<«~T})
T-Continuations: (id) | (cont) (A(s*)f* I ET{C+7;)
T-States: (ter) 1’ v7 (nter) {f* 1 £ {c<~"})
T-Environments [§y7 > V7 ) ET(E)=€"{c<«1T}6) =0
T Injections and Operations

(data) d7 =d

(dop) o7 = A(s",c)c((s"))

(close)  close(fT,€7) = (f" 1€£7)

(appl)  eppl(¥T,vT) =970

(pfn) pin(s”,f7,67) = (A(")fT 1 €7)

(note) AT € VT = (A(s%, c¥)c(s®) l c«~T)

(idcont) |

(begin) A7 w7 =07 '47

(return) 47 v v =477

(step) »—,‘

Figure 21. The Rum Tree Machine
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® Value instruction lemma. When defined, a value instruction closed in a
T -state-environment returns a T -value.

f1ET{c<r" ) ov—ove (VD)

The evaluation of a value instruction in a T-state-environment is of bounded
(small) size independent of the environment. A value instruction is undefined
only in the case of data operation application where the argument is not a data
sequence.

m  T-states are closed under reduces-to.

OOE&T/\DO»DI —)01€§tT

m Ifa T-state is defined then the value is a T-value and the state reduces to the
terminal state returning that value.

Y1 ET{c<rT}) = @I 1 €T {c<T}) == 1"vT)

Remark. We have arranged the definitions so that each state-form has a unique
free continuation symbol c. The additional continuation symbol c* is used only in
the note instruction where it necessary to name both the continuation argument
and the continuation contained in the noted environment. This is consistent with
the single current continuation used in s-Rum computation and, using the note
instruction multiple contexts can be kept in the environment. In practice continu-
ations might be represented as actual host machine state, while the representation
in the computation domain is a data structure with sufficient information to create
the corresponding host machine state. Packaging and unpackaging these contexts
could be expensive operations. Thus having several host machine contexts allows
one to switch contexts more efficiently. It is easy to modify the definitions so that
any number of free continuation symbols may occur.

VII.3. Machine morphisms

A Rum machine morphism (known herein as morphism) maps one machine
structure A to another B. The purpose of such a morphism is to provide a rep-
resentation of the computation descriptions and structures of A as objects of B
and to prescribe how computations of A are carried out in B. As the terminology
suggests, a morphism should preserve the essential features of machine structure.
In particular a morphism is a family of maps — one for each domain — such that
the mapping commutes with the injection mappings, the construction operations
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and with sequence and environment constructions. It also must commute with
stepping.!

Let A and B be machine structures over (D,$y) and let t be a family of maps
from objects of A to objects of B of the corresponding sort. We write 41t for the
image of f# under 1 letting the object sort determine which element of the family
of maps 1 is being applied. The requirements for a morphism listed above are
spelled out by the following items.

e 1 commutes with injection mappings

(sym) (s)T=P
(data) (d%)t = d>
(dop) (o)t =0”

e } acts componentwise on values and environments.

£M1(s?) = (€4(s)! and [af...aH)t = [aft... M)

e 1 commutes with construction operations

(close)  (F* 1 ¢%)t = (fA1 1 ¢*1)
(appl)  (o*'d*)t = (o*1)'(d*T)
(v*' v*)t = (1) '(v*T)
(pfn)  (AGH)FF 1A = (AN 1 eA)
(note) (v* € vAT = (’7”) eVve
(idcont) I1d*T =148
(begin)  (v* v 2%)t = (v1) v (071)
(return) ('7‘ a v")‘r = (7’”) a (v’”)

! We consider here only morphisms that commute with stepping in a very strong sense.
This requirement is adequate for our present purpose, but is too limiting in general.
What is needed is the existence of “derived” stepping relations such that the morphism
carries a derived relation for machine £ to a derived relation for machine 8.
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e 1 commutes with stepping: if g‘({‘ >, ¢f then ¢f >—, ¢{'t and if g(? = ¢t
and ¢& >—, ¢B then ¢d >, s‘f where ¢ = ¢f1. This is summarized in the v
diagram below. ‘

¢f = of

it It

& —. P

= A simple consequence of the morphism requirements is that 1 also commutes
with application of pfns to values.

(A 1 €404t = (A 1 641 (v*1)

VII.4. A morphism from R to T

We say a Rum machine structure £ is a Rum machine if the objects of R can
be represented as objects of A and the computations of R can be carried out in A.
In other words, A is a Rum machine if there is a machine morphism from R to A.
To show that T is a Rum machine we define a morphism t from R to T. From
the requirements for morphisms we see that a morphism from R is determined by
its action on forms and continuations. The basis of the definition of the map t is
a map f from forms to state-forms. t on forms is defined by

ft = e)f*.

The action of 1 on continuations is essentially determined by } and the strong com-
muting requirement for stepping. The maps } on forms and and 1 on continuations
are defined in Figure 22,

A form with an immediate value maps to c(f?), where f* is a value instruction
generating the corresponding value. [Recall that c is the current continuation
symbol.] For example, mt} = c(mt) and we have

4 v mt -, Yao

It It
{c(mt) lc<qt) >, Al'o

The image of a form describing a composite computation is let{c < A(s")f}}fg
where {3 is the image of the form describing the first subcomputation and A(s”)f}
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Mapping forms to state-forms
st =c(s") mt? = c(mt)
(A()fsoay)* = c(A(s”, C)fboay’)
(if (Feest Fenen, feise))¥ = let{c < ifi(fenen®, fetne’) Hreat?
(2PP(frun,fare))* = let{c < apPI(farg*)Hrun?
(cart(fins, frns))* = let{c < carti(fens*)}Hine}
(fst(f)! = let{c < fstc()}f*

(rst(f))} = Iet{c «rstc()}f
(note(s)f)t = let{sT <« A(s",c*)c(s")}f

Mapping continuations to cpfns

d' =1

(7o {Hi(Fenen, ferse) 1 €)' = (ifi(finen’,ferne’) 1 €'{c «'})

(7o (APPi(farg) | €)' = (appi(fare®) | €1{c «7'})

(7o Appc(vun))! = (apPc(sf) | &7 < vrun',c < 7')

(vo (Carti(fens) | €)' = (carti(fens) | €'{c «2'})

(vo Cartc(vins))! = (cartc(s’) | 8 < vins',c«~')

(yo Fste)t = (fstc() | c «4")

(yo Rstc)! = (rstc() | c «~')

where
ifi(f1,f2) = A(siest)(8icot,f1,F2) % sicar not free in (f1,f2)
appi(f) = A(sf)let{c <« appc(sf)}f % s not free in §
carti(f) = A(sY)let{c <« cartc(s’)}f % s’ not free in f
appc(sr) = Alsa)ar (sa,¢)  fste() = A(s*)c(fst(s"))
cartc(s’ ) = A(a )[s’, 8] rstc() = A(s8")c(rst(s"))

Figure 22. Definition of t : [R &> T]
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is a continuation segment corresponding to the context for the begin step for the
composite form. For example

(app(ffun,farg))t = Iet{c - appi(fa.rgi)}ffuni
(70 (Appilfarg) | €)1 = (appi(farg?) | €M{c < '})
(7 0 Appe(viun))' = (appe(s?) | sf < vrunt,c < 41)

where appi and appc are derived form constructions defined in Figure22. For
app-states we have

v (app(ffunafarg') I E) >, 10 (Appi(farg) I f) v (ffun I f)
11 1t
(let{c < appi(farg?) Mrua® | €H{c <"} >0 (fraat | EM{c <1 5:})

where
’Y;rppi = (appi(fﬁl‘g*) ' ff{c*"yf}) = ('7 ° (Appi(fars) I E))T

For appi-states we have
qo (Appi(farg) | f) & Ufun >, WOAPPC(Ufun) v (fa.rg | f)
It I

q;rppi ! Ufunt »-L (fa.rgt I ff {c - ’7pr€})

where
Yaope = (apPpc(sf) | 8¢ < viunt,c < 4T) = (v 0 Appc(vrua))t.

For appc-states such that viy, ! varg is well-formed we have
70 Appc(vfun) AVarg > 7YV VUfun ! Varg

It Lt

'7:ppc ’ vargT >, (vfun ! varg)T "71

If vﬁm'varg is well-formed then vyt is a pfn, with a value argument and a
continuation argument and

('7;rppc"’arg)'r = (5¢ (52,¢) | 8f < vun', ) < vargt:c*")'f)
((vfun ! varg) "YT)T = vfunf I(UargT, '771)

If vfun ! Varg is not well-formed then both ~ o Appc(viun) 2 varg and (1prc "Varg)!
hang.
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= Morphism theorem. It follows from (i-iii) that t is a morphism.

(i) f* is a state-form for each f and ~t is a T continuation for each 4. Hence t
defines a family of maps from R objects to T objects of the correct sort.

(ii) t is an injection of R-forms into T-state-forms and { is an injection of R into
T.

(iii) t commutes with stepping. For the mt- and app-cases this follows from the
- diagrams above using injectiveness of . The remaining cases are similar.

VII.5. Mapping and optimizing Car

Now we resume work in the global S-expression context developed in §IV.5
and apply the morphism t to the pfn Car. Define

> PairunD & A(x,c)c(PairUn(x))

> CarD & A(x,c)let{c < A(y)c(fst(y))}
let{c < A(f)let{c < A(2)f(z,c) }c(x)}
c(PairUnD)

Then we have
PairUn' = PairUnD and Car! = CarD

[D for “dagger”]. The naive “compiling” of Car makes no use of information about
the global context. A natural definition of the tree machine version of Car is

> TmCar < A(x, c)let{x < PairUn(x)}c(fst(x))

and we have CarD = TmCar. A more sophisticated compiler would have informa-
tion about what symbols are bound to data operations in the global environment
and would use the data apply instruction rather than pfn call thus producing
something closer to TmCar. An alternative to modifying the compiler is to use
program transformations to optimize the results of naive compiling. For example
using the laws of §VI.2 we can derive TmCar from CarD as follows.
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(i)

(i)

(iii)

(iv)
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let{c < A(f)let{c < A(z)f(z, ¢) }c(x) } c(PairUnD) = c(PairUn(x))
% see below
let{c < A(y)c(fst(y)) Het{c < A(f)let{c < A(2)f(z,c) }c(x) } c(PairUnD)
= let{c <« A(y)c(fst(y)) }c(PairUn(x))

% abstraction of (i), with respect to ¢, note c is not global, and
% application of both sides to A(y)c(fst(y))

= let{y < PairUn(x)}c(fst(y))
% let-elimination in ii.rhs
CarD =2 TmCar

% abstraction of (iii) with respect to (c,X), using ¢,X non-global

Equation (i) is derived by a sequence of let-eliminations plus unfolding of the
PairUnD definition. '

let{c < A(f)let{c < A(2)f(z,c)}c(x)}c(PairUnD)

=~ let{f < PairUnD}let{c < A(2)f(z,c))}c(x) % let-elimination
= let{c < A(2)PairUnD(z,c)}c(x) % let-elimination '

= let{z < x}PairUnD(z,c) % let-elimination

= PairUnD(x,c) % let-elimination

= {A(x,c)c(PairUn(x))}(x,c) % [unfolding PairUnD]

= c(PairUn(x)) % let-elimination

Note that the let-elimination of step (iii) and most of those in the derivation of (i)
are instances of

let{so < A(s1)f1}s0(fo) = let{s; <fo}f1

or in terms of application

{A(s0)s0(fo)}(A(s1)f1) = {A(s1)f1}fo
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VII.6. Remarks about Rum machine structures and morphisms

¢ The combination of program transformations and machine morphisms in Rum
provides tools for defining compilers and proving properties of compilers in a world
where the computation domain contains computation abstractions such as pfns
and continuations. In this context one can study and relate source to source,
source to target, and target to target transformations. In practice, some of these
transformations will be integrated into the compiler and some will be applied
before and after compiling.

e The notions of abstract machine structure and compiling morphism can be
compared to the algebraic view of structuring compilers (see for example Morris
[1973] and Thatcher, Wagner, and Wright [1980]). Here there is a source language
Lo, a target language L, a semantic domain Dq for Lo, and a semantic domain D,
for L;. A compiler is a map ~ from Lo to L;, a semantics for L; is a map 1; from
L; to D;, and an encoding is a map € from Dy to D;. Compiler correctness with
respect to the semantics and encoding maps is the requirement that the following
diagram commutes

Lo L L,

1 %o 1
Dy — D,

that is, ¢; oy = €0 ¢o. In order to prevent trivial cases such as L; and D; being
one point algebras, further requirements are needed. One possibility is to require
that the encoding morphism be injective.

The initial algebra view is that Lo is an initial G-algebra for some signature
G. Thus the compiler « is uniquely determined by defining a G-algebra structure
on L; and a semantics 1o for Lo is uniquely determined by defining a G-algebra
structure on Dgy. The specification is completed by defining a G-algebra structure
on D, and checking that that ¢; and € are G-morphisms. Then ¢; oy = €0 ¢
since, by initiality, there a unique morphism from Lo to D;.

By definition, there is a machine morphism from R to each Rum machine 4,
and this morphism is determined by its action on forms and continuations. Thus
R is like an initial object and form and continuation constructions determine a
‘signature’. Defining the image of these constructions is analogous to defining
corresponding constructions in the target machine structure. The semantics that
is preserved is the structure of the computations.

e The tree machine T and morphism } constitute a normal form theorem for
Rum (see §1.5 for a discussion of normal form theorems). For most computation
theories, a normal form theorem requires the ability to encode descriptions of
computation and computation states in the underlying data structure. In Rum
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this capability is provided by the uniform abstraction and application computation
primitives. This is a stronger normal form theorem than usually given in the sense
that the transformation to normal form (the morphism) preserves both intensional
and extensional meaning of descriptions.

¢ The tree machine T and morphism t provides a formal connection between
explicit continuations (continuation pfns as an additional argument) and implicit
continuations (continuations as a component of the computation state).

e Similar transformations to a sequential fragment of an AE-like language have
been used by Fischer [1972] to analyze the limitations of a stack based implemen-
tation of closures and by Steele [1978] in a compiler for Scheme. Fischer essentially
ignored computations that returned functions as values. Steele’s treatment is very
informal.
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Chapter VIII. Review and concluding remarks

This chapter contains an assortment of concluding remarks. In §1 the main
achievements of the work in Rum are reviewed. We summarize the features and
what they provide as tools for reasoning about computation, and point out the
main new ideas and results. In §2 we make some further remarks about our
choice of basic notions. The presentation of Rum has been liberally sprinkled with
remarks about relevant related work. However there are some additional points to
be made. This is done in §3. In §4 we conclude with some discussion of applications
and extensions of Rum and of future directions of work.

VIII.1. Review

VIII.1.1. What we can do

A variety of sorts of objects and a mixture of syntactic and semantic notions
have been introduced in Rum in order to express naturally different aspects of
computation. Forms are the basic syntactic entities. The semantic entities include
environments, dtrees, pfns, computation stages, continuations, and states.

Interpretations of forms

Forms constitute a primitive programming language. The work in Rum pro-
vides a variety of interpretations of forms accounting for the different views of
symbolic expressions that occur in practice and including several traditional types
of semantics such as operational and denotational semantics, as well as an inten-
sional semantics. In particular, we have

« Forms and semantic entities as data to be operated on — the underlying alge-
braic structure provides an interpretation of forms and objects of the semantic
domains as data structures. The operations and relations defined (excluding
comparison relations) are Rum computable functions on these data structures.

« Forms as descriptions of computation — viewing computation as a process of
generating computation structures such as computation trees or sequences
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of computation states allows us to represent properties of computations de-
scribed by forms as properties of computation structures and to relate op-
erations on descriptions to operations on the described computations. This
provides an intensional semantics.

« Operational semantics — the evaluation relation provides an operational se-
mantics — a means of determining the value denoted by a form relative to an
interpretation of free symbols in the computation domain.

« Denotational semantics — the maximum equivalence = provides a denotation
of forms f as a partial function [f] from environments to the computation
domain modulo .

(denote) [f1(8) ~- v]e = Bu=v)({f1£) = v)

In other words, we have an interpretation of pfns as partial functions on
computation domain modulo = .

(fun) {p}e(lv]e) ~ |ule = (Buo = u)(p’v = vo)

Loy

» Towards a Rum calculus — the maximum equivalence contains the equations
of a Rum calculus expressed in the language of forms. This calculus contains
the laws of the call-by-value lambda calculus (Plotkin {1975]) and additional
laws for if, mt, cart, fst, and rst. Using the improved recursion theorem we
also have a call-by-value analog of the equational theory for LAMBDA (Scott
[1976]) which contains many equations not provable in the lambda calculus.

Representation of programming tools and styles

Abstraction (pfn formation and continuation noting), application, and se-
quence primitives allow us to represent naturally a variety of programming styles
and computation mechanisms. We have shown how to represent control and data
abstraction mechanisms including systems of recursively defined functions, both
first order and higher order; sequence recursion schemes; streams; tree-structured
objects and tree search schemes; escape mechanisms; and co-routines. We have
even illustrated how to program viewing Rum as a machine language.

Proving properties of programs

The recursion theorem and computation induction allow traditional first or-
der verification methods to be represented and used in Rum. These include as-
sertion methods for flowchart or loop programs (Manna [1969], [1978]); struc-
tural induction for computations over the S-expressions (Burstall [1969], Boyer-
Moore[1979]); subgoal induction (Morris and Wegbreit [1976]); recursion induc-
tion (McCarthy[1963b]); and McCarthy’s minimization scheme (McCarthy and
Cartwright [1979]). The improved recursion theorem allows a version of Scott’s
fixed point induction to be represented in Rum.
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VII1.1.2. What is new

e The reduces-to relation. The reduces-to relation (§IV.2) identifies subcom-
putations which can simply replace the parent computation rather than returning
a value to it. This relates to features of the continuation-passing style (see §I.4)
such as not returning a value, and computation with no buildup of external state.
The reduces-to relation also plays a key role in defining machine structures on
t-Rum.

¢ Context insensitivity for sequential computation. The dtree classifi-
cation theorem (§V.3) says that even computations using context switching have
useful structure. This will be an important tool in further investigations of equa-
tions satisfied by forms and dtrees in s-Rum.

e Context independence for sequential computation. The extension of
computation relations of t-Rum such as evaluation, reduces-to, and ctree equiv-
alence to descriptions of sequential computation (§V.3) provides tools for encap-
sulating context dependence and reasoning about programs as though they de-
scribed tree-structured computation except when looking inside a computation
that involves context noting and switching.

e Comparison relations. The notion of comparison relation (Chapter VI)
seems not to have been formulated previously. In addition to allowing us to account
for important aspects of extensional model’s of the lambda calculus such as the
graph model, there are some new ideas.

« using the notion of comparison relation, eztent is derived naturally from sntent

» the rich hierarchy of comparisons provides a variety of denotations for forms,
dtrees, and pfns

« the pfn extension theorem (§VI.3) and the dtree extension theorem (§VI.4)
provide tools for constructing and proving properties of comparisons.

« the notion of recursion pfn and the improved recursion theorem (§VI1.2) pro-
vide a connection between the computational characterization of recursion
found in computation theories and the topological, extensional characteriza-
tion of recursion given by the least fixed point theorem for the graph model
(see §L.5).

e Foundations for a theory of program transformations. The inter-
pretation of forms as descriptions of computation together with the hierarchy of
denotations for forms based on comparison relations provides both meanings to
preserve and meanings to transform. Thus we have a semantic foundation for a
rich theory of program transformations. In addition, transformations involving
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non-trivial manipulation of pfns and continuations can be treated. This was illus-
trated by the derivations of defining equations for Tprodl and Tprod2 (§11.3) and
by the derivation of alternative descriptions of parameterized recursion (§VI.2).

e Machine structures and compiling morphisms. The notions of Rum
machine structure and morphism (Chapter VII) are a step towards developing an
abstract notion of the machine underlying the Rum model of computation. Com-
bined with program transformations, machines and morphisms provide a paradigm
for defining and proving properties of compilers. What is new here is (i) the idea
that the structure being preserved is the computation structure and (ii) in Rum one
can express both properties preserved by program transformations and properties
transformed. The representation of abstract machines in t-Rum (§VIL.2) allows us
to apply the tools developed for studying computation in t-Rum to problems of
operating on and proving properties of machine programs. In addition, the Rum
machine morphism defined in §VII.3 gives a formal connection between continua-
tions as pfns and continuations as computation contexts.

e Programming and proving with functional and control abstractions.
We have defined and proved correct several pfns describing computations not han-
dled by traditional verification methods.

= using continuation pfns for backtracking — the pattern matcher (Appendix B)

» using continuations for escaping — tree product examples (§II.2) and DoUntil
(5V.4)

» using continuations for co-routining — transforming a sequence of 3-element
strings to a sequence of 2-element strings (§V.5)

We have given definitions of some informal concepts such as streams (§IV.6) and
co-routines (§V.5) and have begun development of the mathematical theory of
these objects. Pfnls were used to describe operations on streams (§IV.6) and to
describe strategies for searching tree structures (Appendix B). General properties
of such pfnls were proved and used to prove properties of pfns constructed from
these pfnls.

e Derived properties and programs. In Appendix B we define a class of
properties of computation trees called derived properties and a derivation map on
forms and other objects of Rum. We show that the derivation of a form computes
the derived property of the computation tree described by the given form. In
general, derivations provide a means of identifying classes of intensional proper-
ties of computations. Derivation maps provide a method with a sound semantic
basis for mechanical transformation of intensional properties to extensional prop-
erties. Thus we may use the same basic tools and principles for reasoning about
both aspects of programs. In particular, derivation maps can be a useful tool for
extending program transformation systems such as [Scherlis 1980]. Derivations
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can also be used to extend mechanical theorem provers such as the Boyer-Moore
theorem prover [Boyer and Moore 1979] to treat intensional as well as extensional
properties of programs.

VIII.2. About the choice of basic notions

Now that we have seen something of what can be done in Rum, we take
another look at some of choice of basic notions.

Why type-free application and abstraction as computation primitives?

Briefly, the reason is that type-free application and abstraction are simple,
natural, and quite general primitives for expressing a wide variety of computation
mechanisms. One disadvantage of such generality is that the fewer restrictions that
are imposed the less you can say about the system. On the other hand there is
no limit on the structured fragments that can be identified and studied within the
general untyped framework. A further advantage is the ability to piece together
substructures and diverse results smoothly, within a single framework. This is
important because in the long run we want a framework suitable for mechanization
and a general language for discussing computing with computers.

The work of Landin and programming examples of Burstall, Burge, Sussman
and Steel, Sussman and Abelson, and Friedman et. al. demonstrates the power
of AE as a programming language and language development tool. The work
in semantics demonstrates the power of AE as a meta programming language
capable of defining a wide variety of computation mechanisms. This provides a
strong argument for AE as the basis of a theory of symbolic computation.

Why have sequences as arguments and values?

Two important reasons for taking both arguments and values to be sequences
from the computation domain are simplicity and increased expressiveness. Hav-
ing sequences built in as part of the basic computation primitives means that we
have the simplicity of needing only a single binary application operation, while
at the same time pfns are vari-ary with respect to arguments and values. This
provides a natural means of expressing message-passing style computation where
the argument type depends on the message type (the first element of the argument
sequence). Among the examples presented in this thesis, sequences as values were
used in formulating the notion of stream and in derived descriptions which return
the value of derived property together with the result of the original computa-
tion. From an operational point of view, the addition of sequence primitives is
like providing the programmer with primitives for accessing and manipulating the
argument stack component of the computation state. In addition, the sequence
primitives allow a natural formulation of bounded iteration and other sequence
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recursion schemes independent of the underlying data structure. Sequence primi-
tives don’t add to the recursion-theoretic power. If both sequence primitives and
conditional are omitted from Rum we still have a call-by-value lambda calculus.
In particular the partial recursive number-theoretic functions are representable in
this fragment.

Why have pfns distinct from data?

More generally, why have forms, environments, dtrees, continuations, etc.
distinct from data? The point is to obtain a balance of intensionality and exten-
sionality and to study computation structures and data structures separately. To
repeat the point made in §1.6, this is essential if a theory is to admit meaningful
operations such as program optimizations, compiling and derivations converting
intensional properties of one program into extensional properties of another. Intu-
itively the balance of intensionality and extensionality obtained in Rum is captured
by the following points.

« From within a computation, pfns are extensional. A pfn can only be passed
around, put into environments, or applied. Two pfns can be distinguished by
another pfn only if application to some argument results in value sequences
of different length or containing different corresponding data elements.

« From without, pfns have structure and computational content. They can be
constructed, taken apart, and transformed. A pfn together with an argument
describes how the computation of the denoted value is to be carried out.

Comparison to logical notions.  The treatment of computation separately
from data is similar to the formulation of first order logic in contrast to a particular
first order theory such as Peano arithmetic. Computation primitives play the role
of logical connectives. Data and data operations play the role of individual and
function constants. An important distinction between first order logic and Peano
arithmetic is that the meaning of successor is determined by its interpretation in
the model of natural numbers while the meaning of logical connectives such as A
or 3 is determined by the notion of satisfaction which is uniformly parameterized
by the interpretation of non-logical symbols in a given model.

The evaluation relation provides a semantics for the form constructions in
much the same way that the notion of satisfaction provides a semantics for logical
operations. Thus we might write

EEfo

for

(F18) —v.
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A more general notion of satisfaction is obtained by thinking of forms as terms
¢ a :anguage for expressing properties of the computation domain with relation
symbols denoting dtree relations. For any set of environments E, and any dtree
property ® define

EkE0fo...fa) = (YE€ E)O({fo | &)...(fa | &)

&

As in a logical system, having the interpretation of expressions uniformly param-
eterized by the given data structure means that we have a uniform method for
combining the theory of computation primitives with that of a given data struc-
ture to obtain a theory of computation over the given structure. For example, we
have Peano arithmetic — a first order theory over natural numbers and Rumzp
— a computation theory over S-expressions.

sexp

Why environments rather than substitution?

Forms and environments correspond to important local components of com-
putation states. This representation of descriptions of computation allows uni-
form separation of syntax and semantics and of control and data. It also reflects
practice. Forms and environments have independent existence as concepts in spec-
ifying, building, and extending programming systems. The separation is crucial
when Rum is extended to a model of computation in which there are objects with
internal state. It is the environment component of a pfn that has internal state.
Forms remain purely static syntactic entities.

Why formulate two computation processes?

The advantage of a language describing tree-structured computations is that
functional abstractions (pfns) can be viewed as functions. Rich equational theories
for such languages exist and ordinary means of reasoning about partial functions
can be used. The value of an expression depends only on the value of (immediate)
subexpressions, and general laws for substitution hold.

The disadvantage is the complexity of the code needed to describe certain com-
putation mechanisms which are inherently context dependent. Recall for example
the difference for such simple programs as the tree product examples (Chapter II).
If limited to tree-structured computation primitives, the programmer must di-
rectly represent and manage the computation state. This is not only unpleasant,
but unreliable.

The introduction of control abstractions provides the best of both worlds
from a programming point of view. Using the context insensitivity and context
independence results for sequential computations we see that we only have to pay
the price (in complexity of reasoning about programs) for control abstractions
when we are really using them.
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The functional interpretation of pfns describing context dependent computa-
tions can be recovered in a number of ways. The basic idea (due to Morris and
Wadsworth) is to provide continuations as part of the semantic domain. To re-
cover directly the functional interpretation, imagine that forms have an unnamed
continuation parameter which is carried along during the process of computation.
Each pfn is assumed to have an additional unnamed continuation argument and
the current continuation is supplied along with the named argument when a pfn is
applied. This is essentially the s-Rum interpretation. The machine morphism from
the s-Rum to t-Rum provides an alternative means of recovering the functional in-
terpretation. By the definition of morphism these two methods are isomorphic.

VIII.3. Other work

VII1.3.1. Combining and contrasting types of semantics

A key feature of Rum is the many views (types of semantics) provided for
forms. Here we will point out other work in which alternative types of semantics
are defined and used. For this purpose we focus on tree-structured computation
and consider four types of semantics which we refer to as intensional, operational,
equational and denotational. An intensional semantics interprets programs as de-
scriptions of computation and provides a basis for representing properties of these
computations. In Rum the intensional semantics is derived from the interpretation
of dtrees by rules for generating computation structures. An operational seman-
tics assigns to each program the value in the computation domain computed by
the program, if any. Nothing is said about how the value is computed. In Rum
the operational semantics is derived from the evaluation relation. An equational
semantics provides axioms and rules for deducing equations between expressions
of the language. This form of semantics is not yet well developed in Rum, but will
consist of axioms and rules characterizing fragments of the maximum equivalence
relation. A denotational semantics provides a semantic domain (a mathemati-
cal structure) and assigns to each program (more generally to each component
expression) a denotation in the semantic domain. Denotations of composite ex-
pressions are functions of the denotations of component expressions. In Rum the
denotational semantics of forms is obtained by interpreting the evaluation relation
modulo the maximum equivalence.!

1 We use the term denotational as that is the term used in the work discussed. A better
term would be extensional, since the distinguishing feature of the denotations in each
case is the extensionality of higher type objects in the semantic domains.
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We have already discussed work relating operational semantics of AE to an
cywational semantics provided by a call-by-value lambda-calculus (Plotkin [1975}).
Other works of relevance are Gordon [1975] treating operational and denotational
semantics of Lisp; Plotkin [1977] treating operational and denotational seman-
tics of a typed variant of AE; and Moschovakis [1984] treating intensional and
denotational semantics of systems of recursive definitions.

Operational and denotational reasoning for Lisp.  Gordon [1975] gives
both operational and denotational semantics of pure Lisp (with dynamic binding). .
The two semantics are shown to be equivalent in the sense that for any Lisp
expression and environment both semantics determine the same S-expression value
or both determine that the value is undefined. Gordon’s reason for defining the
operational semantics was to provide additional tools for proving properties of
programs which reflect reasoning based on operational intuitions. The equivalence
of the two semantics allows one to use the semantics best suited for each given
problem. The operational semantics is based on a reduction (step) relation on
S-expressions coding Lisp expression - environment pairs. From this is derived a
subcomputation relation and a Lisp induction principle similar to the notions of
subcomputation and computation induction in Rum. These are the basic tools for
operational reasoning. The denotational semantics provides denotations of Lisp
expressions in a complete partial order using Scott-Strachey methods.

Operational and denotational equivalence in LCF. Plotkin [1977] gives
operational and denotational semantics for a simple programming language based
on LCF (a logic for a typed fragment of AE — see Gordon et. al. [1979]) and com-
pares notions of operational and denotational equivalence. Programs are ground
terms of LCF, which may of course involve higher type subterms. An evaluator
for programs is defined and denotations are assigned in a standard LCF model (a
typed family of c.p.o.s) and two extensions of this model. The operational and
denotational semantics agree in the sense that they assign the same value to closed
ground terms. However, natural notions of equivalence on programs derived from
the two types of semantics turn out to be different. Two terms (of the same type)
are denotationally equivalent if they have the same denotation in all environments.
Two terms are operationally equivalent if one may be substituted for the other in
any program context without changing the denotation of the program (see discus-
sion of Plotkin [1975] in §1.4). The main results are (i) denotational equivalence
implies operational equivalence, (ii) operational equivalence does not imply deno-
tational equivalence, and (iii) the language can be extended by adding a parallel
construct so that denotational and operational equivalence coincide. This provides
an interesting analysis of the two notions of equivalence and illustrates the use of
denotational semantics to discover additional computation primitives.

The semantic domains used for the denotations all have the property that
they are generated from ground domains by taking domains of type ¢ — 7 to be

e
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the domain of all continuous functions from the domain of type o to the domain
of type 7. It is suggested that by choosing a suitably restricted set of functions
for domains of type 0 — 7 one might obtain a denotational semantics such that
denotational and operational equivalence are the same for the original language.
The problem of finding such domains is left open.

Foundations for a theory of algorithms. Moschovakis [1984] is a study
of the notion of algorithm. The basic questions are: What sort of mathematical
object is an algorithm? How are they defined and constructed?

The proposed answers are based on the idea of interpreting (descriptions of)
certain systems of functionals over a given abstract structure as rules for computing
the least fixed point of the system. These systems of functionals (currently called
recursors) are proposed as the mathematical objects representing algorithms. The
given abstract structures consist of a many sorted domain of individuals and a
set of functionals acting on tuples consisting of individuals and partial functions
on cartesian product spaces of individuals. The given functionals are taken as
primitive recursors, i.e. as computation primitives.

A language is defined for describing algorithms. Individual terms are built
from constants for given data and functionals, variables for individuals, and partial
function terms by constructions including application, tupling, projections, and
recursion. Partial function terms are partial function variables or terms formed
by lambda abstraction from individual terms. Terms of the language are assigned
both a denotation, a computable functional; and an intension, a recursor. Of
course the intension viewed as a functional is the same as the denotation.

The main properties of algorithms, other than the functional computed, seem
to be (i) resources used from the underlying structure and (ii) the stage of com-
pletion — a measure of the time taken to carry out the computation. In contrast
to the intensional semantics provided by Rum the notion of algorithm does not ac-
count directly for structures generated in the process of computation or resources
required to carry out the computation — such as stack. Such properties can be ac-
counted for by transformations of control into data, i.e. by transforms, such as the
compiling morphisms of Rum, to a subclass of programs where control resources
are explicitly represented in the programs. Alternatively, by extending the given
abstract structure to include data representing computation structures, one can
take the algorithm described by a program to be an evaluation function together
with the code for the program.

The notion of algorithm seems to capture a useful degree of intensionality.
Some interesting questions to be answered are: What are useful equivalence rela-
tions for algorithms? What transformations preserve a given equivalence? Several
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<quivalence relations have been defined and studied. The basic ideas are outlined

hr"»low.z

« Algorithmic equivalence - two terms are algorithmically equivalent if they
differ by a permutation of the variables.

= Value equivalence - two terms are value equivalent if in all structures they are
assigned the same functional.

« Resource equivalence - two terms are resource equivalent if the intension of
each term uses the same resources for computation in any structure.

» Resource and stage equivalence - two terms are resource and stage equivalent
if the intension of each term uses the same resources for computation in any
structure and computation is completed at the same stage in any structure.

Algorithmic equivalence serves the same purpose as the equivalence on form -
environment pairs induced by closure dtree formation in Rum. Value equivalence is
similar to the equivalence relation on forms obtained by requiring =-equivalence for
all data structures. An interesting question is whether any of the Rum comparison
relations capture notions of equivalence such as stage or resource equivalence.

VII1.3.2. General semantic methods

The work presented in this thesis treats a particular collection of computation
primitives and structures for representing computation. The constructions of ob-
jects and definitions of relations are for the most part uniformly determined from
rules corresponding the computation primitives. Thus there are some quite gen-
eral principles underlying the presentation of Rum. In §1.5 we mentioned briefly
the Scott-Strachey methods based on solving domain and semantic equations in
the category of complete partial orders. Below we discuss some additional related
work focusing on general methods in program semantics.

Axiomatic Operational Semantics. Plotkin [1981] proposes axiomatic pre-
sentation of operational rules for program language constructs and evaluation
mechanisms as a general methodology and give examples for a variety of con-
structs. Functional abstractions are treated briefly, as arguments but not as values.
Control abstractions are not treated.

Syntactic entities are given by a special form of inductive generation with
corresponding principles of definition and proof by induction. The axioms for op-
erational rules provide deduction systems for both static and dynamic operational

? These relations and results on decidability and other logical matters were presented in
a series of lectures given at the CSLI workshop, Stanford, July 1985.
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semantics. Static operational semantics include typing and operations on expres-
sions such as computing the set of bound or free variables. Dynamic operational
semantics provides an evaluation relation. The advantage of such a presentation by
separate rules for each construct is that new constructs can be defined by adding
new rules generally without modification of rules for existing constructs (assum-
ing the new constructs can be represented using the same underlying computation
structures).

The method of presentation is very similar to that of Rum. The difference is
that Plotkin deals with operational semantics in general while Rum focuses on a
particular system and develops many aspects of this system, including a variety
of semantic notions.

Abstract Semantic Actions. Mosses [1982] proposes semantic entities called
actions as the interpretation of programs. The basic ideas are illustrated by the
presentation of an initial algebra generated from basic actions and operations
constructing actions, together with axioms for equality of actions. Actions have
several largely independent facets: they consume and produce values; they create
and use bindings; they create, access and update store. The notion of facets
captures in an elegant way the independence of various aspects of computation
and should be important in providing useful tools for reasoning about actions.

Actions have rich expressive power, although it seems to require some work
to develop intuitions about properties of actions. The example presented accounts
for application and closure formation, including both static and dynamic binding.
Mosses [1984] shows how mechanism such as non-local goto, labels, etc. can be
treated using escape and trapping actions.

This basic approach has been used to give semantics to simple example lan-
guages and for compiler correctness. Work is in progress on a semantics for Pascal
[Mosses and Watt 1985]. It will be interesting to see further development of math-
ematical properties of actions and how they can be used to study properties of
programs and operations on programs.

Remark. Neither of the above approaches treat the intensional aspects of
programs, nor are they applied to provide tools to prove properties of particular
programs.

VIII.3.3. Alternative languages and models of computation

An important alternative to the Rum approach and to functional program-
ming in general is the work in logic programming (see for example Lloyd [1984]).
Separation of computation control and data is also an important underlying prin-
ciple of logic programming. In the simplest case there is little or no control pre-
scribed by the programmer. Programs are just axioms about the data structure
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+%4irh are to be used to answer queries and control is implicit in the deduction
mechanism. A key tool in the process of finding answers to queries is the use
of unification as a variable binding mechanism. A variety of ideas for expressing
control over the search for answers have been explored. We will not attempt to
discuss them here. Prolog (see Clocksin and Mellish {1984]) is the best known ex-
ample of a logic programming system. More relevant to the work in Rum is recent
work on a language called Qute (Sato and Sakauri [1984]). Qute is derived from
the Lisp and Prolog traditions of computations described by symbolic expressions
together with an environment. The goal of this work is to synthesize the best
features of both worlds. Objects in the computation domain of Qute are called
patterns. Patterns are constructed from variables and atomic constants by two
different pairing operations and an abstraction operation. This is in contrast to
Rum where free variables do not appear in values. Computations are described by
expression environment pairs. The environment contains constraints on the free
variables which must be satisfied.

With unification as the basic binding mechanism, Qute provides an alternative
view of conditional, application, and abstraction as computation primitives. There
are notions of success and failure (to unify) and conditional branches on success vs.
failure. Abstraction is based on patterns rather than simple variables. Application
causes the parameter pattern to be unified with the argument pattern. Thus
equality a = b can be defined by {\(z,z)z}(a,b).

Qute, like Rum, has the capability of expressing a rich variety of computations.
There will be many points of interest to compare and contrast as the mathematical
properties of this model of computation are developed.

VIII.4. Future directions

Rum is just the beginning, not the end of the approach presented in this
thesis. It is to be extended and applied in a number of ways. Two extensions to
the model of computation are: computations over memory structures (structures
which have updating operations such as rplaca and rplacd of Lisp); and description
of asynchronous computation a la Actors (Hewitt [1977]). Applications (putting
theory into practice) include building computation systems and reasoning systems
based on extensions of the Rum model of computation and the formalization of its
metatheory. There are several directions for further research which are outlined
below.

Formalization.  There are two sorts of formalization to be carried out. One
is formalization of Rum in existing formal theories (for example Feferman [1979)],
[1982]) whose logical complexity is well understood, in order to obtain information
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about the logical complexity of the maximum comparisons. The other is formal-
ization of Rum and of the S-expression data structure in existing mechanical proof
systems such as the Boyer-Moore theorem prover (Boyer and Moore [1979]), FOL
(Weyhrauch [1980]) or EKL (Ketonen [1984]), to provide a basis for mechanical
checking of proofs of properties of programs and of operations on programs. Such
work can also serve as a basis for developing a program transformation checker -
an interactive system for defining and carrying out program transformations.

Reflection — or — having your cake and eating it too.  Excluding the
comparisons, the operations and computation relations we have defined are Rum
computable over any data structure that includes the underlying algebraic struc-
ture of Rum. Working over such a data structure we can extend the computation
primitives to provide reflection principles which convert computation state to data
and convert data to computation state. This allows programs and other objects to
be treated as data within an ordinary computation. Reflection provides a mecha-
nism for switching views within a computation — viewing an argument as data at
one point and as a component of the computation state at another point. Between
switches, an extensional view amenable to transformations and interpretation in-
dependent of representation is maintained, thus combining the best of both worlds.
The are two ways for providing reflection. One corresponds to an isomorphic em-
bedding of the computation theory and is the form of reflection implemented by
Smith [1982]. The other corresponds to a self-reflezive embedding which is the
form of reflection implicit in traditional Lisp systems. Proposals for implemen-
tation of the latter form of reflection have been given by Talcott [1983] and by
Friedman and Wand [1984]. We plan to use Rum as a foundation for studying
properties of reflection principles used as programming tools.

Directions for further development of Rum. The following questions indi-
cate directions for further work in Rum.

« Can the notion of comparison relation be extended to sequential computation?
If so, are there analogs to the extensionality and improved recursion theorems?

« What rules should be added to the rules for call-by-value lambda calculus to
obtain a Rum calculus with reasonable properties? Such a calculus should
have the Church-Rosser property and the usual equations for conditional and
sequences should be derivable. What happens to such a calculus when exten-
sionality or fixed point induction is added? ‘

« Can the notion of computational progress (Scherlis [1980], see §1.3) be ex-
tended to Rum to provide a basis for a formal system of program transforma-
tions? What are additional interesting examples of transformations involving
the use of pfns and continuations? For example, are there systematic methods
for deriving co-routines using program transformations in Rum?
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Appendiz A. Rum reference manual

This appendix contains a description of the underlying algebraic structure of Rum.
Equations are given specifying the domains of t-Rum and of s-Rum, and the basic opera-
tions and computation relations are defined on these domains. Some theorems are stated
to indicate key properties of operations not previously defined precisely and to provide
precise formulations of some remarks made in the main text. It is assumed that the
reader is familiar with the mathematical structures and notation given in Chapter III.

A.1. The domains of Rum

The following table lists the domains of Rum. The name, domain symbol and a brief
description of each domain are given. If there is a set of variables designated to range
over a domain this is indicated in the table by < varsym >€< domsym >. The set of

variables consists of subscripted forms of <varsym>. Thus f, fo, farg, ...range over F.

Name Notation Description
Data D domain of the given data structure

d €D’ sequences of data
Operations o€ ® operations of the given data structure
Symbols 8ESY for naming values
Forms feF symbolic descriptions of computation
Environments E€E finite maps binding values to symbols
Dtrees e description trees

deD” n-ary dtree contexts
Binding Indices X€Ek finite maps associating numbers to symbols
Pfns pEP descriptions of partial functions
Computation
Domain aEV data, data operations, pfns, continuations
Values : u,v € V* sequences from the computation domain
Stages ' TEC. partial computation trees
Nodes veEN® paths or nodes in a tree domain
Continuations 7€ GCo descriptions of computation contexts

Co’ continuation segments

States CES stages of sequential computation
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The domains of Rum are specified by the domain equations given below. The do-
mains are generated freely from N and Sy by constructions appearing in summands of the
corresponding equations. The summands indicate the name and arity of the constructors.
Infix notation is used for the summands if infix notation is used for corresponding terms.
Objects of s-Rum are generated by including summands enclosed in brackets [ .. .] and
objects of t-Rum are generated by omitting these summands.

F ~S o A(Sy,F) ® app(F,F) e if(F,F,F) e mt & cart(F,F) e fst(F) e rst(F)

[® note(Sy, F)]
D" ~<(V*) @ #({j € N | j < n}) ® A(D:"*") @ app(D:", Dx")
@ If(D:", D", Dt") ® mt & cart(D:", B:") o fst(D:") @ rst(D:")
[® note(D:"1)]

Co* ~ Ifi(Dx°, Bx°) @ Appi(D:°) ® Appc(V*)
@ Carti(D:°) @ Cartc(V*) @ Fstc @ Rstc

Co~1d @ (Coo Co°)

S~ (CovDe)o (Coa V*)

D:~D°e0'D" [o Co' V]

P ~ A(D:')

V~DeOeP [oC)

Co~T: <D, V*>

E~[S * V']

L ~ [Sy #> N]

D ~ U{D" | n € N}

Remarks.

e The same names have been used for form and dtree constructors. Context will
always make it clear which construction is meant when it matters.

e Dtree contexts D:“ are based on the lambda calculus notation of deBruijn [1972].

e The Rum domains constitute a many sorted intial algebra (Goguen and Meseguer
[1983]). The only objects are those generated by a finite sequence of constructions —
no junk, and two objects are equal iff they are in the same domain and have the same
construction (modulo rules for equality in the case of finite sequences and finite maps) -
no confusion.

e For a complete data structure we would add operations to serve as recognizers
(characteristic functions) for each construction and operations for selecting components.
These are left implicit in the presentation of Rum.
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§A.3

Summary of operations and relations

The following table lists the operations and relations (other than domain construc-
tion operations) defined in this appendix together with their types.

Name

Notation and arity

Index extension
Indexed Closure

Alpha Equivalence
Substitution

Initial Stage

Begin

Return

Single Step on stages

Steps on stages
Evaluation
Immediate Subcomputation
Immediately Reduces-to
Subcomputation
Reduces-to

" Definedness
Ctree equivalence
Single Step on states

Steps on states
Cseq equivalence
Returns to caller
Escapes to top
Diverges
Locality

A.3.

1€ [k X Sy & kL

(ol ) EFXEXE > DY)
Z € [(F,E, k) x (F,E, k)]

dsub € [Dt* x D° x N - D]
o € [D: > Ci

v €[Co x N* X N x Dt ~> Cs]

A €[CaxXN* X V* ~> G

>+, C [Ce X C]

>—->,>LC[C.><C.]
— € Dt ~ V*]

<, C [Dr x D]

>, € [Dt ~> D

< C [Dx x D]

> C [Dt X D]
ChD

= C D x D]

>, € [& ~ &]

—, s €[S X &
N C (S X §
lche

ldch‘

tCDe

1 CDe

Closure and substitution operations

> Extending index maps. x18 = {80} U {80« x(80) +1 | 80 € dom(x)}

df
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> Indexed closure operation. (f | £;x) is defined by induction on forms.

#(x(s if 8 € dom
(s1&Gx) = {q&(((s)))) otherwi:e )

(A 1 &x) = A(f I &x28))
(app(fo,f1) | &x) = app({fo | &x), {f1 1 &;x))
(if (fo, 1, f2) 1 & x) =1 ({fo 1 & x), {F1 1 & x), (F2 1 &5 %))
(mt|¢&;x)=mt
(cart(fo,f1) 1 & x) = cart({fo | &x), (f | &X))
(fst(f) | &x) =Tst({f | &x))
{rst(f) 1 &x) =rst({f | &x))
(note(s)f | & x) = note((f | & x25))
> Closure. (f1§) = (f1£{})

e Example.
AW)IF(Y, A()%(Y),2) | 2 < v) = A({if (¥, A(X)X(¥),2) | Z< v;y¥ < 0))
= A(F({y | Z < v;¥ < 0), (A(X)X(Y) | Z< v;¥ « 0),(z | Z< v;y < 0)))
= A(if(#0, A(#0(#1)),<v))

> Alpha equivalence. Alpha equivalence is the Rum analog to the equivalence re-
lation generated by a-conversion in the lambda calculus. Alpha equivalence on form -

environment - index triples is the least relation Z such that

80 € dom(xo) A 81 € dom(x1) A Xo(80) = x1(81) = (s0, €0, X0) = (81,1, x1)
80 & dom(xo) A 81 & dom(x1) A €o(80) = €1(81) — (80, €0,X0) = (81, &1, X1)
(mt, &0, x0) = (Mt, £1,x1)
(fo.i €0, x0) = (f1,4,€1,x1),0 < i< 2 —
(if (fo,e, fo,1,fo,2), €0, X0) = (if (f1,0,f0,1,f1,2), €1, 1) A
(app(fo,0,fo,1), €0, x0) = (aPP(f1,0,f0,1), €1,x1) A
(cart(fo,0,fo,1), €0, x0) = (cart(fr,o,fo,1), €1, x1) A
(fst(fo,0), €0, x0) = (fst(f,0), €1, x1) A
(rst(fo,0), €0, x0) = (rst(f1,0), £1,x1)
(fo, €0, X0 2 80) = (f1,€1,x1 181) —
(M(80)fo), €0, x0) = (A(81)f1), €1, x1) A
(note(so)fo), €0, x0) = (note(s1)fr), £1,x1)
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¥ Alpha equivalence is dtree equality.
(fo, €0, x0) = (f1,€1,x1) < {fo | é0;x0) = (f1 | £15x1)

> Substitution of dtrees into dtree contexts. dsub is defined by induction on dtree
contexts.

. ? ifj=n
dsub(#J,D,n) = {#j ot.lzlerwise

dsub(<u,d,n) = qu
dsub(A(D0),0,n) = A(dsub(Do,0,n + 1))
dsub(app(o,91),d,n) = app(dsub(do,d,n),dsub(0;1,d, n))
dsub(if (00,01, d2),0,n) = if (dsub(o,9, n), dsub(0,,9, n),dsub(d2,9, n))
dsub(mt,d,n) = mt
dsub(cart(90,9:1),9,n) = cart(dsub(do,0,n), dsub(9,,9, n))
dsub(fst(0o),9,n) = fst(dsub(do,d,n))
dsub(rst(0),9,n) = rst(dsub(do,d, n))
dsub(note(do),?,n) = note(dsub(o,9,n + 1))
Remark. A more complicated definition is required for substitution of dtree contexts
into dtree contexts. ‘
> Extending application and substitution notation.

A(00)'v = dsub(Do,<v,0)
A(®0)'0 = dsub(2o,2,0)

2{%0,...,0m} = dsub(.....dsub(®,0m, m)...,0,0)

> Well-formed application expression. It is now convenient to think of application
as a binary operation on values. We say that vo’ v, is well-formed iff vo €O A v, € D"
or vo € P or vo € Co.

= About substitution and application.
(A®){...0m}) v =0{av,00...0m}
(flf, 1 €) = dsub((f | & {s < 0}), (fo | £),0)
dsub({f | & x),av,n) = {f | &o; xo0)
where £o=¢€{s«v|x(s)=n} and xo={s<x(s)|s € dom(x) Ax(s) # n}
(Vs € dom(x))x(s) # n — dsub({f | & x),0,n) = (f 1 & x)
(A 16 v=(f1 £{s < v})




§A .4 Generating computation trees 205

A.4. Generating computation trees

> Initial stage. o0 = <{o},{o<«0},{}>

> Extending stages. For a stage 7 = <A, A% AY> and v € A define
(begin) 17 (1,5,9) = <AU {41}, A%, 5] <2}, A%>

(return) 14 (v,v) = <AA A (v < v}

> Step rules. Step.rules = {(#,7,0) € [N* x N x D]} U{(v,v) € [N* x V*]}

> When a step rule applies.! The conditions under which a step rule applies to a
stage <A, A%, AY> are defined by

applies((v,,9),<A,A%A">) > vEA A 1,5l A A

(F0,01)(A%(v) = app(Do,?1) A
(G=0A3=) V([=1A0=0)V (j=2A0=A"(»0))'A"([»,1])))) V

(330,31)(A"(u) If(ao,al,bz) A

((j=0/\3=30) iV (j=1 /\D:{Dl 1fA"([V O])#D)))

v, ifAY([»,0])=0
(300,01)(A%(v) = cart@®0,31) A (=0AVD=D) V(i=1AD=D,))) V
(300)(A%(v) =fst(Do) A =0 AD=0Dp) V
(F0o)(A%(v) = rst(do) A 5 =0 A D=Dy)
and
applies((v, v),<A, A% AY>) « v € Ao A v & dom(AY) A
(3o0,d)(A%(¥) =0'd Av=0(d) V A°()=<v V A°(¥)=mt Av=0V
(Fo)(A%(¥) = A(%0) A v=2A(%0)) V
(00,01)(A%(r) = appP(D0,01) A v=A"([y,2])) V
(300,01,02)(A%(v) = if(D0,01,32) A v=A"([y,1])) V
(00,91)(A%(v) = cart(do,d1) A v =[A*([r,0]),A*([v,1))]) V
(Fo)(A%(v) = fst(do) A v =1% (A"([1,0)))) V
(F00)(A%(v) =rst(do) A v =1 (A"([»,0))))

! Implicit in the definitions are hypotheses that arguments are in the domain of partial
operations. For example, implicit in v = AY([r, 1])) is the assertion that [v,1] € dom(A®).
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> Computation steps. For stages 7;

. (v,5,0) (v,v)
To > T1 dE (3v,7,0)(r0 >— 1) V (3y,v)(r0 > T1)

-

v,J,0
7o (>i-») TM=Mn=10v (v,4,9) A applies((v,5,9),70)

(V:") .
ro — T1 3 71 =10 & (v,v) A applies((v,v),70)

- = (> *
= ()

> The computation tree for ?. Ct(d) = <A0,Ag, Ay> = U{r | ed >— 1}

® Small diamond property.

rl r2 r2 rl
{r1, r2} C Step.rule A 1o >— 71 A 10 > 12 — (Irs)(r1 >— T3 A 72 >— T3)

B Steps increase stages. 79 > 11 — 70 C T}
s Steps in substages lift. 7|, =70 A 1o > 11 — 7 > t{v <11}
® Subtrees. v € Ay A A(v) =00 — Ct(d)l. = Ct(do)

= A computation that returns a value is finite. o0& dom(A3) — 0 >— Ct(?)
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A.5. Computation relations for tree-structured computation

> Evaluation, reduces-to, subcomputation. Evaluation (), immediately reduces-
to (>.), and immediate subcomputation (<.) are the least relations such that

(val) v — v

(lam) A(®) — A(D)

(dapp) o’ d < o(d)

(mt) mt < 0

(cart) V0 — vo A Dy — vy — cart(do,d) — [vo, v1]
(fst) %o < vo — fst(do) — 1** (vo)

(rst) Bo — vo — rst(do) — r** (vo)

(redt.ret) D>, 0 Ao —v = V—v

(app) Vo — vo A 01 — v — app(bo,bl) b al? vo'vl % vo'tu well-formed
(lf) 0o ~* vo — if(ao,bl,bz) > {g: :g :2 zz

(if.test) Do <. If(B0,D1,02)
(app.fun) ¥o <, app(00,01)
(app.arg) 01 <. app(00,01)
(cart.lhs) Vo <, cart(do,?:)
(cart.ths) ¥y <, cart(do,d:)
(fst.seq) Vo <, fst(Do)
(rst.seq) Vo <, rst(do)
(redt.beg) V>,V — V0 <, D

Clend definition of b Py <y

> Additional t-Rum relations

=t < =<7
d daf

[~

$o = (Bv)o—v V=0 = (Vw)(Po— v & ) — v)

ar

&

u Equivalence of computation trees and computation relations.
(eval) ¥ > v « Ay(D)=1v

(subc) Do <D > (3<A,A%A">,0,5) (o0 > <A, A% A"> A A%([y, 5]) =)
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A.8. Sequential computation

> Single step for computation states. The single step relation (>—,) is the least
relation on [$& X $t] satisfying

(val) YOy >, YAy
(lam) ~ v A@D) > vy 2 2A(D)
(depp) Y vo'd >, v 0(d)
(capp) Y9NV > Yo a Y
(mt) yvmt >, y40D

(cart.ret) o Cartc(vo) & v1 >, 4 2 [vo, o)

(fst.ret) yoFstc a v >, & 1* (v)

(rst.ret) yoRstc a v >, v ar*(v)

(app.fun) 4 v app(o,01) >—. vo Appi(d1) v ¥

(app.arg) o Appi(d1) & vo >, vo Appc(vo) v,

(app-app) ~YoAppc(vo) 4 v1 >, Yyvwvo'vy % if vo’v, is well-formed
(if .test) v v if(D0,01,02) >—. yolfi(d1,092) v Vo

(if.br) o ) |fi(31,az) Avo P YV {:: ;g :g :E

(cart.lhs) 4 v cart(do,d;1) >, vo Carti(d;) v 9o
(cart.rhs) o Carti(d;1) & vo >, o Cartc(vo) v,
(fst.beg) v v fst(d) >, yoFstcv?

(rst.beg) v v rst(d) >—, yoRstcvd

(note) ~ v note(d) >—, v v {wy}

Uend definition of >,

> Step relation for states. >~ =(>—,)* and >+—» =(>)"

> Sequential equivalence. Vo ~ 0, = V1, v)(Y 90 > Ida v+ 79D > Id a v)
> Returns to caller. |0 = (V)Bv)yvd > yo v
> Escapes to top. 2 = (VY)3v)yvd >— Idav

> Diverges. 10 = =(3v)(Idvd > Id & v)
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p Evaluation in s-Rum. 0 — v

N

V(v > yav)

> Reduces-to in s-Rum. g > 01 = (VY)(y v 0o > vV 1)

> Definedness in s-Rum. {0 = Bv)d— v

> Locality. 1|0 d_=i PvIo

b Ctree equivalence in s-Rum. ¥ =,

an

100 A 1101 A (Vu)(Do — v + D1 — v)
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Appendiz B. More examples

In this appendix we present two examples to illustrate further what can be
expressed in Rum and to provide applications of the tools developed so far. The
first example gives a more precise formulation of intensional properties of programs
than we have previously given. The second example illustrates a new use of pfnls
and their properties as schemes for defining and proving properties of search pfns.

B.1. Derived computations

In this example a class of properties of computation trees called derived prop-
erties and a derivation map on descriptions are defined. Derived properties are
given by a scheme for recursion on computation trees parameterized by a sequence
of primitive derivations — one for each computation primitive. The derivation map
is parameterized by a sequence of derivation symbols naming the primitive deriva-
tions. Derived descriptions compute the derived properties of the original com-
putation together with (a derivation of) the original value. Examples of specific
derived properties are given, including many of the properties previously discussed
informally. As an application, we show that the derived pfn Mtprod of §II.1 can
be obtained by specializing the derivation of Tprod to the primitive derivations for
counting multiplications.

B.1.1. Derived properties of computation trees
Let Do C D and let V be a sequence from V
V = [Vaym, Vimts Viam, Vif, Vapp, Veart, Vists Vist, Vo | 0 € O]
We say that V is a sequence of primitive derivations if

Vo, €Dy for o€ 0, Vaym € Do, Viem € Do, Vmt € Do
Vif € [DO = Do > DO], Vapp € [Do — Do > Do - DO]
Vecart € [Do > Do = Do], stt € [Do . DO], Vot € [DO - DO]

where for pfns and data operations, ¥ € [Dg - Do - Do) means (Vdo,d; €
Do)(ad € Do)(p'(ao,dl) — d, etc.
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> The computation tree derivation. For computation trees Ct(?) such that
9, the derivation Ct(?)V is defined by induction on the tree structure
(Ct(av))Y = Viym
(Ct(mt))Y = Ve
(Ct(A(2)))Y = Viam
(Ct(o'd))Y =V,
(Ct(if(20,91,22)))Y = Vi ((Ct(20)) 7, d1)

(Ct(21))Y  if ~(0 < 0)
(Ct(22))” if % 0

(Ct(app(0,21))" = Vapp (Ct@)), (Ct01)), (C2(32))7)
where 09— vo A3 v; Adz=v vy

(Ct(cart(d5,21)))Y = Veart ((Ct(20)) ¥, (Ct(31))")

(Ct(fst(0)))¥ = Vst ((C(20))")

(Ct(rst(2)))Y = Vrat((Ct(20))")

where d; = {

B.1.2. Example derivations

Working over Dgexp We give four examples to indicate a few of the properties
of computation trees that can be expressed by the derivation just defined.

Example 1: Counting data operations. Let O be a set of data operations.
In §I1.1 we introduced count(9, O), the number of data operation application nodes
in Ct(d) with dtree label o’d for some o € O and some d € D*. We can define
count as a derived property as follows. Let V be the sequence defined by

Veym = Vmt = Vigm =0
Vapp = A(x,y,2)(x +y +2)
Vit = Veart = A(x,¥)(x +)
Vit = Vst = A(x)x

v - {1 ifo€O
° 0 otherwise

Then count(d,0) = (Ct(d))V for defined dtrees d.
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Example 2: Counting symbol references. Let V be the sequence defined
Ly

Veym =1

Vit =Vigm =0 |

Vapp = A(x,¥,2)(x +y +2)

Vit = Veart = Ax,y)(x +y)

Vist = Vst = A(x)x

V=0
If |3 then (Ct(?))V is the number of symbol (value) nodes in Ct(?). For example,

for the computation tree Ct(is) shown in §IV.2 (Figure 13) we can easily compute
C t(Dif)v = 3.

Example 3: computation tree depth. Let V be the sequence defined by

Veym =Vt =Vigm =1
Vapp = A(x,y,2)(1 + Max|x,y,2])
Vir = Veart = A(x,y)(1 + Max|x,y])
Vit = Vst = A(x)(1 + x)
Vo=1
If §0 then (Ct())V is the depth (maximal path length) of Ct(d). In particular,
we have Ct(0i)V = 5.
Example 4: skeleton trace. Let V be the sequence defined by
Vym = <"sym">
Vmt = <"mt">
Viam = <"lam">
Vapr = A(x,y,2)ListMk["app", x,y, 2]
Vi = A(x, y)ListMk["if", x, y]
Veart = A(x,y)ListMk["cart", x, y]
Vit = A(x)ListMk["fst", x|
Vst = A(x)ListMk["rst", x]

Vo = <pname(0)> % pname(o) is a string — the “print name” of the operation o
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If |0 then (Ct(d))V is a skeleton trace of Ct(d) - a representation of the tree
domain as a list structure with nodes labeled by strings indicating the type of the
dtree labeling that node. For example

Ct(;r)V = <"if" <"sym">
. <Mcart"<nfst" <nsymn>>
<"appn <ll|amll>
<Mrst" <"sym">>
<Mam">>>>

Note the correspondence between the tree structure of Ct(9;;) (Figure13 in §IV.2)
and the list structure of Ct(9i)".

B.1.3. Derivation map for descriptions

We now define a derivation map t on descriptions corresponding to the com-
putation tree derivation defined above. Derived descriptions compute the derived
property and carry out the original computation as well (returning a derived value).
The main work is defining the derivation on forms. The rest follows naturally. The
derivation map is parameterized by a sequence of derivation symbols corresponding
to the sequence of primitive derivations.

[D.sym, D.mt, D.lam, D.if, D.app, D.cart, D.fst, D.rst,D.o | o € O]

We assume these symbols are new. Derived environments will map each derivation
symbol to to the corresponding element of V.

> Derivation for forms. The derivation of a form f (written f!) is defined by
induction on the structure of forms.

st = [D.sym, s]
mt! = [D.mt, mt]
(A(s)f)T = [D.lam, A(s)f]
if(fo,f1,f2) = let{[d0, x0] < fo'}
let{[d1, x1] < if(x0,f;!,f21)}
[D.if(d0, d1), x1]
app(fo,f1)! = let{[d0, x0] < o'}
let{[d1,x1] < f11}
let{[d2, x2] < app(x0,x1)}
[D.app(d0, d1, d2), x2]
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cart(fo, 1)t = let{[d0,x0] < fo'}
let{[d1,x1] < f11}
[D.cart(d0,d1),x0,x1]
fst(fo)! = let{[d0,x0] < fo'}[D.fst(d0), fst(x0)]
rst(fo)! = let{[d0, x0] <- fo! }[D.rst(d0), rst(x0)]

where d0, d1, d2, x0, x1, x2 are new symbols where they occur in the derived forms

> Derivation for dtrees and other objects of t-Rum.

Fret=("1eh

(o'd)t = ol d!

dt=d

o' = (A\(x)[D.o,0(x)] | 0 < o)

(e 1 &) V)t = ()t 1€

[ag ... an]'f = [alt - an’]

£1(s) = (£(s))! % # not a deriving symbol
eH(D.sym) =Vyym ... €E1(D.0) =V,

» Derivation commutes with pfn application. (p’v)t = ot/ vt
= Derivation theorem.
Vv — = [(Ct(d)Y, 0]

This is easily proved by computation induction. A stronger version of this theorem
could be formulated expressing the sense in which the structure of the original
computation is preserved.

m Derived recursion lemma. The following fact about derivations of recur-
sively defined pfns is useful in proving properties of such pfns. It follow directly
(though somewhat tediously) from the definitions using simple let conversions and
permutations.

o = (Rec((A(AX)f1€))" — ¢ = (A(x)let{[d, y] < fT}[D.rec(d), y] 1 €'{f « ©})
where
D.rec = A(d)D.app(D.app(D.sym, D.app(D.sym, D.sym, D.lam), D.lam),
D.sym,
d)
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B.1.4. Applying the universal derivation to Tprod

We now show how to derive the definition of Mtprod from Tprod using the -
derivation map t followed by program transformations to simplify the derived
pfn. We begin with a general derivation for Tprod and then consider the special
case where the basic derivation operations are those of Example 1. For simplicity
we extend the S-expression structure to include Car, Cdr, Atom and * as data
operations.

Define TprodD to be the derivation of Tprod and FstTprodD, RstTprodD to
be the 1°* and r®* projections of the derived computations.
> TprodD & (Rec(A(TprodD.A(x)
if (Atom(x), x, ¥[TprodD(Car(x)), TprodD(Cdr(x))]))))*!

> FstTprodD & A(x)fst(TprodD(x))
b RstTprodD & A(x)rst(TprodD(x))

® Derived Tprod lemmma.
TprodD(x) = if(Atom(x),
[D.rec(D.tpat), x|,
let{{da, za] < TprodD(Car(x))}let{[dd,zd] < TprodD(Cdr(x))}
[D.rec(D.tppr(da, dd)), |za, zd])
FstTprodD(x) = if (Atom(x),
D.rec(D.tpat),
D.rec(D.tppr(FstTprodD(Car(x)), FstTprodD(Cdr(x)))))
RstTprodD(x) = if(Atom(x),
x’
*[RstTprodD(Car(x)), Rst TprodD(Cdr(x))])
RstTprodD(x) = Tprod(x)
where
D.tpat = D.if(D.app(D.sym, D.dsym, D.atom), D.sym)
D.tppr = A(da, dd)D.if(D.app(D.sym, D.dsym, D.atom), D.tpad(da, db))
D.tpad = A(da,dd)D.app(D.sym,
D.cart(D.app(D.sym, D.car, da),
D.app(D.sym, D.cdr,dd)),
D.%)
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¥ Dorived Tprod corollary. For V as in Example 1 with O = {+} and x ranging
... number trees we have

TprodD(x) = if (Atom(x),
[0, x],
let{[da, za] < TprodD(Car(x))}let{[dd, zd] < TprodD(Cdr(x))}
[dd + da + 1, [za, zd]])
FstTprodD(x) = Mtprod(x)

Proof of derived Tprod lemma. The key step for the derivation of the TprodD
equation is to note that by the derived recursion lemma

TprodD = A(x)let{[d, y] < if (Atom(x), x, *[ TprodD(Car(x)), TprodD(Cdr(x))]) '}
[D.rec(d), y]

and by the definition of the derivation map and laws for = (especially let- conver-
sions and permutations)
if (Atom(x), x, *[TprodD(Car(x)), TprodD(Cdr(x))])?
= if (Atom(x),
[D.tpat, x],
let{[da, za] < TprodD(Car(x))}let{[dd,zd] < TprodD(Cdr(x))}
[D.tppr(da, dd), ¥[za, zd]])

A useful trick when working in a fixed global environment such as the S-expression
world is the following lemma.
® Global symbol lemma. If G.sym is a global symbol such that Gsym! =
A(x)[D.Gsym(x), Gsym(x)] for some deriving operation D.Gsym then

Gsym(y)' = [D.app(D.sym, D.sym, D.Gsym(y)), Gsym(y)].

This and similar lemmas make the derivation of the equation for TprodD simpler.

Proof of derived Tprod corollary. To obtain the corollary we compute, using
the derivation operations of Example 1, that

D.rec(d) =d D.tpat =0 D.tppr(da,da) =1+ da + dg
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B.1.5. Possible elaborations

The computation tree derivation defined above accounts for many of the in-
tensional properties of computations that have been discussed. There are several
possible elaborations that would allow even more to be expressed.

One possibility is for primitive derivations to take the value of each subcom-
putation as an argument in addition to the derived property. This would allow
a more complete trace to be defined which includes not only the data operation
names but also the arguments. The derived program trace.rev (§1.3) is an exam-
ple. More generally deriving functions for data operations could make the cost of
the operation depend on the argument.

A further elaboration is to modify the transformation to turn each value into
an object (pfn) that handles messages. For example the follow message response
pairs could be included.

"val" => the transformed object
"type" => "data", "opc", or "pfn"
"name" = an identifying pname

Derivation pfns then have more information about the arguments available. For
example the applications of a pfn with a given name could be counted.

B.2. Searching tree structures

Tree structures are important in practice as well as in theory. Tree-structured
search spaces are one example of their use in practice. A tree-structured search
space is a set P together with a function ¢ from P to P*. P is called the search
space and elements p of P are called positions. ¥ is called the successors function.
¥ determines the sequence of immediate successors of any position in the space
and hence the tree of positions below any given position. (Recall that we grow our
trees from the root downward.) The reason such spaces are called search spaces
is that they are used to organize information to enable a program to search for
solutions to a problem. For example P could be the set of legal board positions
in a game such as chess or checkers. The successors of a position are given by the
legal moves from that position. One is searching for sequences of moves leading
to a winning position. Another example is pattern matching. Here P is a set of
triples (m,¢,u) where 7 is a pattern (containing some pattern variables), ¢ is the
object to be matched and p is a partial match, assigning values to some of the
pattern variables. The successors are triples (,¢,u’) where u’ is an extension of

.
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In the following we assume that the search space P is a subset of the com-
putation domain and that the successors function ¢ is a pfn or data operation.
A search strategy is an ordering on the nodes of a search space — the order in
which nodes are to be visited in the search process. A search pfnl for a particular
search strategy is a pfnl that maps a tree (i.e. a successor and a root position) to
a stream of positions generated in the order prescribed by the strategy. Our idea
is to define search pfnls, prove general properties of the search pfnls and use this
basis to define particular search pfns and prove properties of these pfns. Here we
shall consider a particularly simple strategy called depth-first search. The ideas
generalize to alternative and more complex strategies such as those described in
Burstall [1968]. A depth-first search of a tree goes down the left-most branch,
visiting each node on the way until it reaches a leaf. Then it backtracks to the
nearest previous node having an unvisited successor and does a depth-first search
from the leftmost unvisited successor.

We begin by developing enough of the mathematics of tree-structured spaces
and depth-first search to provide a semantic basis for expressing and proving prop-
erties of search pfnls. The tree structure given by a successor function and a
position and additional related concepts are defined. A depth-first enumeration
function is defined, to make precise the notion of depth-first order, and key prop-
erties of this function are given. Finally we define a depth-first search pfnl and
prove some basic properties. Two applications are given: generating the fringe
of an S-expression and a simple pattern matcher. Definitions of operations on S-
expressions can be found in §IV.5 and definitions and properties related to streams
can be found in §IV.6.

B.2.1. Position trees

Let P C V be a set of positions and fix ¢ : [P =~ P*] a successors operation
for P. p,po,... will range over P.

> The tree given by (J,p). Tree(9,p), the tree given by (¥, p), is the least tree
<A,A> € T : <P> such that

(A) ceaA vEA ANA[)=po A J<[¥po)]| — [v,ilEA

(A) AR =p  A(lv,]]) =¥(po)l;
Note that [v j+ 1] € A — [v,j] € A. In this section we will only consider tree
domains A € T that have this property. (The no-gaps assumption.)

> Degree of a node in a tree domain. We also assume that each node v of
A has a finite number of immediate successors. This number is called the degree
of v in A (written deg(A,v)).

deg(A,v) = [{7|[J] € A}
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Note that by the no-gaps assumption on tree domains,

deg(A,v) = pr)([v,J] € A) and veE A AJ<deg(Awv) — [v,)] €A.

The sequence of immediate successors of ¥ in A is the sequence of nodes [v, 5] in
A. Since nodes themselves are sequences of numbers it is necessary to package the
nodes as elements in order to form the successor sequence. The simplest form of
package is K(v). (Recall K = A(x,y)x.) For readability we define pfns Close and
Open which package and unpackage sequences.

df
> Close «— K

> Open (‘E, A(s)s(mt)

> Immediate successor sequence. The immediate successor sequence ssuc(A,v)
for v € A is defined by

lisuc(A,v)| = deg(A,v) and ¢ < deg(A,v) — ssuc(A,v)]; = Close([v,1])
Note that for Tree(d,p) = <A,A>and v € A

J(A(v)) = Collect(A o Open, tsuc(A,v))

Two additional notions that are useful for talking about enumeration of nodes
in a tree domain are the above and left-of relations on nodes.

> Above relation. A node v, is above another node vy (written vo <apove V1)

if v is on the path to v;.

Vo <above V1 ;=_ (3V2)(Vl = [VO)VZ])

[

> Left-of relation. The node v is to the left of the node vy (written vo <ief: 1)
is defined by

Vo <left V1 (31 < J.)(BV)([V’ z] <above Vo A [V,J'] <above Vl)

df

s Independence. If v is to the left of v; the tree below vg is disjoint from the
tree below v;.

Vo <left V1 — ﬁ(VO <above ¥ A V1 Zabove V)
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B.2.2. Depth-first enumeration

The function df (A, n) enumerates nodes in a tree domain in depth-first order.
o is the least node (the O-th stage). At each stage, the next node is the leftmost
successor in A of the current node unless the current node has no successors.
If the current node has no successors, the next node is the left most unvisited
successor of the nearest ancestor with an unvisited successor. This is found by the
backtracking function back. ! At each stage of enumeration, the remainder of the
tree domain df >(A,n) is a forest (a sequence of subtrees). The sequence of roots
of this forest corresponds to the stack used in backtracking in a depth-first search.
The spanning function span(A,n) gives the sequence of roots (the span) of the
remainder at the n-th stage, leftmost first. Thus every node in df ~ (A, n) is below
2 unique node of stack(A,n) and every node of A below a node of stack(A,n) is
in df ” (A, n).

> Depthfirst enumeration. df (A,n) is defined by induction on n. back(A,v)
is defined by induction on v.

. v,7+1 ifvy,7j+1eA
back(A,0) =o and  back(A, [v,5]) = { gacjk(A,]u) otLer.:vise]

df (A,0) =0

df (A,n)=v A 1,0l € A — df(A,n+1) = [1,0]

df(A,n)=v A[v,0] € A — df(A,n+ 1) = back(A,v)
> Depth-first remainder. df~(A,n) = A - {df(A,5) |j<n}
> Spanning function. span(A,n) is defined by induction on n.

span(A,0) = ssuc(A,n)

span(A,n) = [Close(v),v] — span(A,n + 1) = [isuc(A,v), v]

span(A,n) =o — span(A,n+1) =0
® Backtracking lemma. The key properties of the spanning and backtracking
functions are (left) and (stack). Proof is by induction on n.
(left) ¢ <j <|span(A,n)] — Open(span(A,n)|;) <i.s: Open(span(A,n)|;)
(stack) span(A,n)]; = Close(v) A back(A,v) #o0 —

span(A,n)| j4+1 = Close(back(A,v))

1 By the usual definition, vo is before v; in the depth-first order iff v¢ is above (and not
equal to) or to the left of v;. On a tree domain depth-first enumeration agrees with
depth-first order on any finite initial segment.
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m Depth-first enumeration theorem. The key facts about df and span are
that the nodes df (A, ) for 7 < |A| are distinct elements of A and for 7 +1 < |A|
the first element of spanning sequence of the j-th remainder is the next element
of the depth-first enumeration.

(df.enum) j < |A]| — df(A,J) €A ANI<JF<|A| = df(A,d) #df(A,])
(df.next) j+1<|A] — 1% (span(A,j)) = Close(df (A,5 + 1))

The depth-first enumeration theorem is an immediate consequence of the following
lemma.

m Characterization of depth-first enumeration and remainder. (card)
says that the remainder of A is reduced by one at each step of the enumeration.
(down) says that the remainder at each stage downward closed and thus is a union
of disjoint subtrees. (span) is the characterizon of spanning given above.

(card) n<|A] — |df>(A,n)|=]A|-n-1
(down) n<|A|AvedfZ(A,n) Alv,j]€A — [v,5] €df”(A,n)
(span) Close(v) € span(A,n) — v € df > (A,n) A
n < |A] A v e df”(A,n) — (3vo)Close(vo) € span(A,n) A Vo <above V
(pop) n+1<|A| — 1% (span(A,n)) = Close(df (A,n + 1))

These facts are easily proved by induction on n using the backtracking lemma.

B.2.3. Depth-ﬁrst search pfnl

Dfst is a pfnl that takes a tree (¥,p) and returns a stream that generates
positions labeling nodes of the tree in depth-first order. More generally, Dfst takes
a successor operation s and a sequence of positions [p,z] labeling the roots of a
sequence of trees and returns a stream generating positions labeling the nodes of
the sequence of trees.

> Dfst & A(s)Rec(A(df)A[p, z]A()ifmt(p, mt, [p, df (s(p),2)]))

» Dfst enumerates depthfirst. For Tree(d,p) = <A,A> and n < |A|

Dfst(9,p)™) = A(df (A,n))
Dfst(9,p)>"™ = Dfst(¥, Collect(A o Open, span(A,n)))

Proof is by induction on n using the depth-first enumeration theorem.
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r Dfst corollary. If |A| < w then Filter(o, Dfst(¥, p)) generates

{po | (3v € A)(A(v) = po) A ¥(po) # o}

in depth-first order.

m Dfst enumeration of forests. A further useful fact about the depth-first
enumeration stream is that the depth-first stream for a forest is the concatenation
of streams for individual trees. If Tree(d,p;) = <A, A;> for 0 < ¢ < k then

Dfst(9, [po. .. pk]) = Dfst(9,po) ... o Dfst(d, pi)

Proof is by induction on k using the Dfst forest lemma and properties of stream
concatenation.

m Dfst forest lemma. For Tree(d,p) = <A,A> and n < |A|

Dfst (9, [p, v]) ™ = Dfst(s, )™
Dfst(9, [p,v])>™ = Dfst(#, [Collect(A o Open, span(A, n)),v])

Proof is by induction on n.

B.2.4. The fringe of an S-expression

As our first application of searching, we let P = Dgexp with successor op-
eration PairUn and show how the fringe of an S-expression can be generated by
searching the corresponding tree for atoms. The fringe of an S-expression a is
the sequence of atoms occurring in @ in left to right order. The pfn Fr computes
the fringe (as sequence of atoms) in the standard way by concatenating the fringe
of the components until a non-pair is reached. FrS returns a stream generating
elements of the fringe by searching for atoms in depth first order.

> et Rec(A(Fr)A(x)if (Atom(x), x, [Fr(Car(x)), Fr(Cdr(x))]))
> FrS &5 A(x)Filter(Atom, Dfst(PairUn, x))

m Fringe theorem. For S-expressions a, Fr(a) and FrS have the same length and
corresponding elements are equal.

IFr(a)| = |FrS(a)] and j < |Fr(a)] — Fr(a)|; = FrS(a)®)

This follows easily from the fringe lemma.
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= Fringe lemma. For S-expressions a Streamify composed with Fr gives the same
stream as FrS.

Streamify(Fr(a)) = FrS(a)

Proof of fringe lemma: by S-expression induction using properties of con-
catenation for Streamify, Filter and Dfst. Note that for Tree(PairUn,a) = <A, A>
|A| is finite. The key points for the proof are

Atom(a) # o — Streamify(Fr(a)) = Streamify(a) = A()[a, MtStream] = FrS(a)
Atom(a) =0 —

Streamify(Fr(a)) = Streamify(Fr(Car(a))) ¢ Streamify(Fr(Cdr(a)))
Atom(a) = o — FrS(a) = Filter(Atom, Dfst(PairUn, [Car(a), Cdr(a)]))

= Filter(Atom, Dfst(PairUn, Car(a)) o Dfst(PairUn, Cdr(a)))

= Filter(Atom, Dfst(PairUn, Car(a))) ¢ Filter(Atom, Dfst(PairUn, Cdr(a)))

B.2.5. Pattern matching using tree searching pfnls

In order to illustrate the main points as simply as possible we consider the
simplest notion of pattern where multiple matches are possible. A pattern 7 is a
list of pattern variables, an instance ¢ is a list of integers, and a match p is finite
map associating sequences of constants to pattern variables. The instantiation of
a pattern 7 by a match u is the list made from the sequence obtained by collecting
the sequences of constants associated to the pattern variables of # by u. We say
u matches 7 to ¢ if the domain of u contains the set of pattern variables of 7 and
¢ is the instantiation of 7 by u. As an example let A and B be pattern variables,
m = <A, B, A> and ¢ = <0, 0>. Then {A<0,B <o} and {A<1,B<[0,0]} are
both matches of 7 to ¢.

To represent this in the S-expression world we let pattern variables be strings.

Pat is the set of patterns and Inst is the set of pattern instances.

Pat = ListMk(D},,) and Inst = ListMk(D;,,)

int

T, 7o, ... will range over Pat and ¢, ¢, ...will range over Inst.

> The set of matches. The set of pattern variables Set(r) in a pattern « is
defined by
Set(n) == {a € ListUn(7)}
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We use pfns to represent finite maps corresponding to matches. MtMat is the
iupty match and Bind(u, 2, v) adds the binding z < v to the match u.

> MtMat & A(2)z
> Bind &5 A(m, z,v)A(x)if(StrEq(z,x), v, m(x))

Mat, the set of (partial) matches, is generated from the empty match by the
binding operation. Thus Mat is the least set of pfns satisfying

Mat = MtMat e Bind(Mat, D, D5,,)

K, Ko, -..will range over Mat.

= The domain of a match pfn. The choice of the identity pfn as the empty
match means we can characterize the domain of a match pfn as the set of strings
for which the match pfn returns a non-string.

dom(p) = {z € Detr | p(2) & Detr}

This is convenient for computing extensions.

> Equality of match pfns. u is the same match as u’ (written u ~ u') if they
correspond to the same set of bindings.

p~p' = dom(u) = dom(p') A (Vz € dom(p))u(z) = p'(2)

&

Pattern instantiation is described by Pinst. This corresponds directly to the de-
scription given above.

> Pinst <> A(p, m)ListMk(Collect(m, ListUn(p)))

> The set of matches. The set of matches Matches(r,:) of a pattern 7 to an
instance ¢ is defined by

Matches(r,¢) = {v € Mat | dom(u) = Set(n) A Pinst(m,pu) = 1}

We have restricted the set of matches of 7 to ¢ to maps whose domain is the set
of pattern variables in 7 in order to have a finite set of matches.

To search for all matches of a pattern 7 to an instance ¢ one begins with the
empty match and tries extensions binding the next unbound pattern variable in
7 to initial segments of the unmatched portion of . Pos, the domain of positions
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in the pattern search space is the set of triples (closed sequences of length three)
from |Pat x Inst X Mat)].

Pos = Close[Pat, Inst, Mat|

The successors of a position are determined as follows. A position (7,¢,u) has no
successors if 7 is the empty list. Suppose 7 = z « m; and 2 is in the domain of
p. I ¢ = ListExtend(u(2),¢1) for some ¢; then there is one successor (my,t1,4).
If 4(z) in not an initial segment of ¢ then there are no successors, since x has no
extension matching 7 to ¢. Suppose # = z +» m; and z is not in the domain of .
Then the successors of (m,¢,u) are triples (m1,¢1,41) where ¢ = ListExtend(v,¢;)
and u; = Bind(y, 2, v). Successors of a position are computed by Psuc.

> Psuc o A(pos)let{[p,e,m] < Open(pos)}
if (MtIP(p),
mt,
let{[z, p] < PairUn(p) Het{v < m(z)}
if (StrP(p),
Pss(z,p,m, mt,e),
let{el < ListAfter(v,e)}
if(e1, Close[p, e1, m], mt)))

> Pss A(z, p,m)Rec(A(ps)A(v,e)
[Close]p, e, Bind(m, z, V)],
if (MtIP(e), mt, Pss(z, p, m, [v, Car(e)], Cdr(e)))]

A position is a match if the pattern and instance components are both empty
lists. MatchP tests for matches. Thus matches of 7 to ¢ are generated by searching
the tree of positions below (,¢, MtMat) and filtering out non-matches. This is
described by MatchS.

> MatchP & A(pos)let{|p, e, m] < Open(pos) }and(MtIP(p), MtIP(e))
> MatchS <& A(p, e)Filter(MatchP, Dfst(Psuc, Close[p, e, Mtmat}]))

m MatchS theorem. MatchS(7,t) generates Matches(w,¢).

1 € Matches(m,i) < (3n)(MatchS(m,s)™) ~ p)
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Proof of MatchS theorem. Fix a pattern 7 and an instance ¢ and let
Tree(Psuc)(Close[r,, MtMat]) = <A, A>

Using properties of Dfst we need only show

(i) |Al<w

(i) Matches(r,i) = {u € Mat | (Iv € A, p’ ~ p)(Open(A(v)) = [Nil, Nil, u])}

(i) and (ii) follow from Lemmas 1, 2.

m Lemma 1.

v € A A Open(A(v)) = [m1,01,4] —

(Bmro,e0)(m =moom A t=100L1 A
dom(u) = Set(mo) A |v| = |mo| A Pinst(mo,s) = to)

Proof by inductionon v € A

# Lemma 2.

u € Matches(m L) A m=mpom —

(3eo, L1,V € A, o € Mat)
(Pinst(mo, ) = to A t =190ty A dom(uo) = Set(mo) A
Open(A(v)) = (71,1, 0) A (V2 € dom(uo)) (1(2) = po(2))

Proof: by induction on 7g

To complete the proof of the MatchS theorem, note that by Lemma 1 we have
|Al]<w and v €A A Open(A(v)) = [Nil,Nil,x] — pu € Matches(m,1)
and by Lemma 2 (taking 7o = 7) we have

p € Matches(m,t) — (v € A,p' ~ p)(Open(A(v)) = [Nil, Nil, })

OMatchs
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B.2.6. Trees given by successor streams

A variant on the notion of tree-structured space is to replace successor se-
quence by successor stream. This could be useful if the cost of generating suc-
cessors is large and only a few will generally be needed. It also allows for the
possibility of infinitely branching trees.

Dfirst is a search pfnl for depth-first search using successor streams. It calls
Dfstr with the successor stream, a singleton stream containing the root position,
and the empty stream. Dfstr has a successor pfn parameter sc and uses a current
successor stream s and a continuation stream ¢ which serves as a stack of successor
streams. When s is empty, the continuation stream is used to generate the next
element. Otherwise the first element p of s is returned as the first element of
the stream. The rest of the stream has successor stream the successors of p and
continuation stream the stream with the rest of s as successor stream and c as
continuation stream.

> Dfirst A(sc, pos)Dfstr(sc, A()[pos, Mtstream], Mtstream)
> Dfstr < A(sc)Rec(A(dfs)A(s,c)A()let{[p, ss] < s[|}

ifmt(p, c[], [p, dfs(sc(p), dfs(ss, c))]))
Exercise 1. Prove that

(Vp € P)(Streamify(90(p)) = ¥1(p)) — Dfst(do,p) = Dfirst(¥1,p)
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