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HOLOGRAPHIC PROCESSING OF HIGH-SPEED LIGHTWAVE SIGNALS FOR THE TIME- 
DIVISION MULTIPLEXING 

I. Introduction 

Ultrafast pulses contain a wide bandwidth, with 4 THz for a typical 100 fs pulse duration, 
or 10 nm at a center wavelength of 850 nm (-20 nm at a center wavelength of 1550 nm). The 
successful use of this bandwidth is desirable for high throughput of coded data in fiber optic 
communications channels. One method to achieve this is to combine N parallel channels each with 
bandwidth B into one channel with bandwidth NB, such as through wavelength division 
multiplexing, with the total bandwidth divided into N frequency intervals that are each modulated 
independently over the bandwidth B. Another method is time division multiplexing, with the 
modulation over the entire bandwidth using N time intervals, one for each input channel. 
Unfortunately, no modulator is available that can operate at 4 THz. One technique to shape 
ultrafast pulses over their full bandwidth is to use a Fourier-domain pulse shaper to manipulate the 
pulse in the frequency domain to obtain the desired pulse characteristics [1]. This technique has 
been extensively demonstrated for fixed Fourier masks [2] and programmable liquid crystal 
modulator Fourier masks with phase control [3] and amplitude and phase control [4]. Placement 
of a holographic material in the Fourier plane enables more complex and nonlinear operations, such 
as reversal of a pulse in time [5]. For dynamic pulse shaping, an ideal diffraction material has flat 
amplitude and phase response over the bandwidth of the pulses, and a fast response time for high 
repetition rates. Photorefractive quantum wells are a candidate for the dynamic holographic 
medium in a pulse shaper [6, 7]. Diffraction from quantum wells relies on absorption and index 
gratings with strong wavelength dependence. The chief question investigated in this research is 
whether these strong dispersion effects significantly distort the ultrafast pulse. Photorefractive 
quantum wells are evaluated for use in a pulse shaper by measuring the shape of a diffracted 
femtosecond pulse. 

Previous work in bulk photorefractive crystals with two-wave mixing of femtosecond 
pulses includes pulse characterization [8, 9] and pulse shaping [10, 11]. Bulk ferroelectric 
materials have the advantage of large photorefractive response, but the disadvantage of long grating 
formation times. Also, two-wave mixing is trivially phase-matched, but four-wave mixing 
requires tedious Bragg matching of a third beam in bulk materials. Short pulses can also suffer 
from broadening by dispersion when traversing a long interaction length in a bulk crystal. In 
contrast, photorefractive multiple quantum wells have a short grating formation time, and thin film 
diffraction allows four-wave mixing without a Bragg condition. Quantum wells can also be 
engineered in several material systems. 

In the nondegenerate four-wave mixing geometry described here, femtosecond pulses 
diffract from a grating written by an above-gap CW diode laser. This is in contrast to previous 
work with photorefractive quantum wells where a near gap CW diode laser beam diffracts from a 
grating written by above-gap femtosecond pulses to find the electric-field correlation function. 
This was accomplished both with direct interference [12], and interference in a Fourier-transform 
joint correlator geometry (time-to-space mapping) [13]. In both cases, photorefractive quantum 
wells are used to characterize the shape of femtosecond pulses, but not change their shape, by 
obtaining the square of the electric-field correlation envelope. The conceptual power of time-to- 
space mapping is the correspondence to spatial image processing techniques. These techniques are 
exploited in spectral holography. 



In the following section II presents the theory of diffraction of femtosecond pulses from 
photorefractive quantum wells and section III describes measurement of pulse shapes by two 
different interferometric techniques, electric-field cross correlation and spectral interferometry. 
Section IV describes the photorefractive quantum well optical properties and the experimental 
procedures, and Section V, data and analysis. 

II. Femtosecond Pulses and Photorefractive Multiple Quantum Wells 

In this section, the temporal shape of a femtosecond pulse will be theoretically calculated 
for pulses transmitted through and diffracted from a photorefractive quantum well. The most 
convenient method is to Fourier transform the input pulse into the frequency domain. The 
transmission or diffraction of a pulse is represented by a filter function, which is multiplied by the 
input electric field and then inverse Fourier transformed to obtain the temporal shape of the output 
pulse. 

Femtosecond pulses are emitted from a modelocked laser in a train with repetition time 
TREp, and a pulse duration is given as the full-width half-maximum (FWHM) tp. The center 

frequency is coc, the center wavelength is Xc = 2TüC/CüC, the propagation vector is k and the unit 

propagation vector is k. The electric field for one pulse is 

e(x,t) = eE0f(t-k-x/c)expUk-x-(Dctj\ (1) 

where e is the polarization vector, E0 is the electric field amplitude, and/(0 is the pulse shape 
function. Note the sign convention in the exponential. In what follows, the polarization and 
position are known and fixed, so the polarization vector is dropped, and x is set to 0. The electric 
field simplifies to 

e(t)=E0f(t)cxV(-mct) (2) 

and the intensity is 

I(t) = jz\e(t)\2 = IAVGTREP\f(t)\2 (3) 

where Z is the wave impedance, and the normalization of the pulse shape function is chosen to be 

j~\f(t)\2dt=l (4) 

so that 

-±-[~ I{t)dt = IAVG (5) 

The function fit) is typically a hyperbolic secant or a gaussian function for modelocked pulses. 
For a gaussian, 



/(0-exp(-21n2|^V (6) 

where tp is the FWHM duration. 

Transformations between the time and frequency domains are accomplished with the 
Fourier transforms 

£(co) = F{e(0} =      e(t)exp (im)dt 

?(t) = F-
1
{E(IO)} = ^- f   £(co)exp {-i(üt)da 

,^     Fourier    P/,^ e(t) 0        £(co) 

which, for gaussian pulses, yields the relationships 
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(8) 

The time bandwidth product for a gaussian is t A\ = t p4\n2 / 2nt p = 2\n2 In-0.441 .    If a 
varying phase is added to the pulse, the pulse may become distorted. Generally, the phase can be 
expanded in a power series of the frequency. The constant term is trivial. The linear term is also 
trivial, since it only causes a shift in the conjugate variable. The lowest nontrivial term is the 
quadratic term, which causes chirp. There may also be higher order terms. Chirp may be caused 
by dispersion of a pulse transmitted through a material. In this case, the relationships are 

exp 

IT 
e(t)oc 

exp 

-41n2f/ 
\'P 

-21n2(l+/ß)[-^-]2-/cocr' 

Fourier 

| E(co) I  <* 
( 

exp 41n2 
tp((0-(Oc)\2 

IT 
£((o) o 

exp 

; 

81n2 I1-*) 
(. t,~   ,.^\2^ 

V 

rp(co-coc) 

vTTß^ 

(9) 



where ß is a parameter characterizing the amount of chirp. The sign of ß is chosen so that ß > 0 
corresponds to positive chirp (low frequencies ahead of high frequencies), and normal dispersion 
(dn/d(o > 0).  If the chirp is caused by dispersion, then the bandwidth remains constant, that is 

t  I s/l + ß2   is constant, so larger dispersion results in a longer pulse duration.   The time 

bandwidth product for a chirped gaussian pulse is tpAv = 21n2 \J \ +ß2/K■ Transform limited 
pulses are the shortest possible pulse for a given power spectrum. Therefore, increasing 
dispersion causes longer pulses. 

The transmission or diffraction of a pulse can be represented by a complex filter function 
H((a) in the frequency domain. For transmission, 

E1i(ü)=EIN((£i)HT((ü). (10) 

Neglecting Fresnel reflection at the surfaces of the thin film and the associated Fabry-Perot effects, 
the filter function for transmission is 

HT(co) = exp f zn(co) kLj (11) 

where n(co) = n(co) + z'a(co) / 2k is the complex refractive index, k is the propagation constant in 
free space, and L is the sample thickness. The transmission spectrum is 

r(co) = |//r(co)|2=exp(-a(co)L), (12) 

which can be measured. 

In nondegenerate four-wave mixing, femtosecond pulses diffract from a grating written in 
the semiconductor thin-film by a CW laser with a photon energy above the bandgap of the 
semiconductor, as shown in Fig. 1. Photorefractive quantum wells operate by the 
photogeneration, transport and trapping of charge at deep level defects, and an electro-optic effect. 
The interference of the two writing beams creates a periodic intensity pattern I(x) which induces a 
refractive index pattern 

n(x,&) = n(co) + M(ai)f(Kx + <])) (13) 

through the photorefractive effect, where An(co) = An(cü) + iAa(co) / 2k is the complex change in 
refractive index caused by the electro-optic effect, which implicitly depends on the applied electric 
field as well as beam ratio, fringe spacing, and material parameters involving transport. The 
grating vector is K, and <j) is the phase offset between the intensity pattern and the index pattern. 
The function f(Kx + (()) is a periodic function with period 2n, and is generally not a sinusoid due to 
the nonlinearities in the transport and the electro-optic effect. The writing beams completely 
determine the refractive index in Eq. 13, where the frequency co is for the probe beam. The 
spectral dependence in Eq 13 is determined by the transmission and electro-optic spectra of the 
thin-film structure. The photon energy of the writing beams is implicitly included in K. 

In the thin grating limit, the spatially varying phase shift diffracts the incident pulse into 
many orders without requiring phase-matching.   The strongest diffraction is from the lowest 



harmonic (fundamental) grating, so f(Kx + <|)) is taken to be cos(Kx + §) [14]. The total electric- 
field at the exit face of the material is 

EALL(0)) = EIN((ü)txp (zn(co) fcLJexp An(co) kLcos [KX + $)} . 

Using the relation 

exp izcos (S) ] =   X TO /
m7m(z)exp (z'raö) 

and the previous definition for Hj{(xi), 

oo t 

EALL(a>) = EIN((ö)HJ{(ü)    X ^ /m/m(An((o) fcLJexp im[Kx + <|>) 

which contains all diffracted orders. The first-order diffracted electric-field is for m = 1, 

Zsfl((ö) = EIN((ö)HT((i)) i'/jf A«(Gö) fcLJexp  I[äJC + <!>)• 

(14) 

(15) 

(16) 

(17) 

Using the approximation Jm[z) ~zm I2mm\  for small z, and neglecting the phases, which are 

unimportant, the electric field is written in terms of a filter function ED((ü) = EIN(G))HD(G}) , where 

(18) 
HD(co) = HT((£>)±{M(w) kL 

■ HT(oS)M An(co) kL + z'Aa(co) If 

and the power spectrum for the diffracted pulse is 

£D(co)   = EIN«o)    HD(a>) 

2 |2l T 
Em((ß)     HT(oS) | jr An(co) kL + /Aa(co) ^ (19) 

EINi(o)\   T(co)i (An(co) ä:L)
2
 + Aa(co) ^ 

2 2 2 
and the input diffraction efficiency is r\ IN(&) = £D(co)    I EIN{aS)    = HD(ca)     and the output 

2 2 2 
diffraction efficiency is r\ Of/T(co) = £D(co)    I E^co)    = HD{(a)    I HT((ü) 

In the time domain, the electric field is eD(t) = F~l{ED((o)} .   The shape of the pulse is 

ID(t) = ^^(co)! / 2Z . Unfortunately, it is difficult to directly measure the temporal profile of an 
ultrashort pulse. Therefore, several indirect techniques must be used, including linear electric-field 
interference of the signal pulse with a reference pulse, and nonlinear correlation of the intensity 



profile with a reference pulse.   With a known reference pulse, the signal pulse can be fully 
characterized. 

Modelocked 
Ti-Sapphire 

Laser 

Si 
Photodetector 

Above Gap 
Spectrometer 

Electric-Field 
Correlation 

Spectra and 
Spectral Interference 

Fig. 1. Experimental geometry for diffracting pulses from the photorefractive quantum wells. The 
shape of the diffracted pulses is inferred from electric-field cross-correlation as well as spectral and 
spectral interferometry methods. An above-gap CW diode laser writes the grating for 
nondegenerate four-wave mixing. The CW beam is shown as the dashed line. 

III. Pulse Shape Measurements 

Three linear techniques can be used to determine the shape of the diffracted pulse, as 
shown in Fig. 1. These techniques include finding the electric-field cross-correlation of the 
diffracted pulses with the reference pulse, finding the spectra of the diffracted and reference pulses, 
and finding the spectral interference of the diffracted pulse and the reference pulse. The 
interference of the signal pulse (the transmitted pulse or the diffracted pulse) and the reference 
pulse (the input pulse) result in a total electric field 

= Esfs(t)exp (- i(ost) + ERfR{t - T)exp (- ia>R(t -1)) 
(20) 

where x is the delay of the reference pulse relative to the signal pulse. The reference pulse is the 
input pulse, and the intensity of the interference is 

1TOTAD (t,X) = 2Z E TOTAD (t,X) 

= ^L|Es(t)|2 + ^|ER(t-x)\2 +lRe (Es(t)E*R(t-x)) (21) 

= Is(t) + IR{t - x) + 2^/7/^Re fs{f)fR(t - T)exp (- iAcof)exp (- i(öcx) 



where Aco = cos - coR.   In the following, the frequency difference is incorporated into fc and 
^n=i on f STudaVf slh

f
cion Photodf tector cannot respond faster than 10 ns, which is much longer 

than 100 fs. Therefore, the detected intensity is averaged S 

hoTAL^) = I    hoTAiit^dt 

= Is + IR + 2sfT^Re  exp (-icocx) f   fs(t)fR{t-x)dt 
J— °o . 

= 1 TOTAL 1+, mRe exp (-/COCT)Y^(X) 

= / TOTAL 1 +m JsAi) cos ar 

V 

rg(y^(T)) cocx 

(22) 

where m = 2»JlsIR I (Is + IR) is the modulation depth of the interference, and 

YW?C0 = j_ fs(t)fR(t - x)dt (23) 

is the correlation function, which contains all the useful information about the interference  For a 
gaussian signal and a gaussian reference pulse, when both are transform limited, 

ysM exp 
f 
-41n2 i t2S + tR) 

(24) 

which has a width T^ = ^2^ + ^) , and reduces to xRJi = 2tR for an autocorrelation. The 
correlation function can also be found for the case where the signal pulse is a chirped gaussian but 
the analytic expression is complicated, and therefore not directly useful. Generally the width of 
he correlation will be smaller than expected for a transform limited pulse of the same duration due 

to the reduced coherence between the signal and reference pulses. In the special case where signal 
is a chirped gaussian with the same power spectrum as the reference, the duration of the signal 

pulse is ts = Wl+ß2 and the correlation width is xSJi = 2tRJl+$/2)2 . This is the case 
where the pulse is transmitted through a transparent material with dispersion. 

A connection between the time domain and the frequency domain can be made through the 
Fourier transform of the correlation function s 

YS.*(T)      
F°™er     F^Ffa) <=> (25) 

and in the case of autocorrelation reduces to 

Y*,/?(T) 
Fourier 

\FR((o)\  OC \ER((O)\ (26) 



which is just the power spectrum. This is useful for checking consistency between time domain 
electric-field autocorrelation and the power spectrum. 

In the frequency domain, there is interference of the spectra  [15, 16].  Following Ref. 
[16], the electric-field in the frequency domain is 

EjwTAdnrt = EsW + ER((o)^V (H 
= EsFs((0 - (0R) + ERFR((0 - co^exp (/cot) 

(27) 

and the detected intensity from spectral inteferometry is 

ETOTAL^^ 
= |£<J(CO)|

2
+ £tf(a>)exp (Z'COT) 

+ 2Re I Es((0)E*R((0)exv (-icor)J 

(co) I2 +1 ER«o) |2 + 2| Es((0) I ER(co) |cos (A(^(CD) - cox) 

(28) 

= \E. 

where A*ss(«) = arg (ES(»))-arg (£»(»)) = arg (F^-CO«))-arg (F^-J))  is the phase 

interference spectrum 

S(co,t) = ETVTAL(<M) 
2 ~ I £s(<°) I2 ~ I £*(co) I 

= 2Re (£:s(co)£^(co)exp (- im) 

= 2ESER Re (Fs(co - (0R)FR((0 - coR)exp (- im) 

(29) 

which has a functional f^^^ 
an envelope with oscillat,fns, Also both ^^^ d       magnitude and the phase of the 

as the electric field correlation), 



x(x) = 2Re x(x) exp (-/cocx) 

= x(x) exp (-/cocx) + x*(x) exp (/cocx) 

F{X(X)} = X(CO-COC)+X*(-CO-COC) (30) 

6(CO)F{JC(X)}=Z(CO-COC) 

F- 1
(Q((ü)F{X(X)}\ = x(x) exp (-/cocx) 

where 9(co) is the step function that selects the positive frequency values. For a function X(co) 
(such as the spectral interference), 

X(co) = 2Re X(co) exp (/cox) 

= X(co) exp (/cox) + X (co) exp (-/cox) 

F-1{X(co)} = x(/-x) + x*(-f-x) (31) 

Q(t)F-1{X((£>)} = x(t-%) 

FlQ(t)F-! {X(co)}| = X((o) exp (/cox) 

In both cases, the transform of the real function is the sum of the desired function shifted to the 
right and its complex conjugate shifted to the left. The overall operation is valid when the function 
and its conjugate do not overlap at the origin, so that the step function selects all of the desired 
function and none of its conjugate. For the electric-field cross-correlation using Eq. 30, the 
condition is that the bandwidth of the pulse is much smaller than the center frequency. This is 
equivalent to a slowly varying envelope approximation where there are many oscillations under the 
envelope of the function. This is true for 100 fs pulses in the infrared, but breaks down for 10 fs 
pulses. Similarly, for the spectral interference using Eq. 31, the condition is that the delay must be 
much larger than the pulse width, again so that there are many oscillations under the envelope. In 
this case, the delay can be chosen to satisfy this condition. 

Both interferometric techniques depend on the characteristics of the reference pulse. 
Spectral interference of two pulses provides the relative phase of the pulses. If the reference pulse 
is close to transform limited, the phase difference is the phase of the signal pulse. The combination 
of second-harmonic autocorrelation and measurement of the spectrum of the reference pulse can be 
used to estimate how close the pulse is to transform limited. When the reference pulse is not 
transform limited, a technique such as frequency resolved optical gating (FROG) [17] must be 
used to fully characterize the reference pulse. Standard techniques are sufficient for this work 
because the reference pulses are assumed to be well behaved and the frequency difference between 
the signal pulse and the reference pulse is the quantity of interest. 

Second harmonic generation correlation depends on the intensity of the pulse. For 
background free second harmonic correlation, the second harmonic output intensity is 



= (ls(t)IR(t-x) 
(32) 

where <> denotes time average over a repetition period. The interferometric second harmonic 
generation correlation depends on the relative phase of the two pulses. If the amplitudes are taken 
to be equal, the second harmonic intensity (using the total electric field from Eq. 20) is 

CW = {h^,x) 
oc(\E2Jt,'t) 

ETOTAL(t>'1) 

I M*) |4 +1 fR(t - x) |4 + 4| fs(t) \2\ fR(t - x) |2 

+ f2s(t)fR\t-x)exV(-2mcx) 

+ 2f2
s(t)f*s(t)f*R(t - x)exp (- zcocx) 

+ 2fs(t)fR(t - x) f*R\t - x)exp (- /cocx) 

(33) 

The measured intensity at the peak is eight times the value for large pulse separations. When the 
interferometric intensity is averaged over one interference fringe, 

co :[~c' '2^ - *W = (| Mt) \4 + \fR(t- x) |4 + 4| Mt) |2| Mt - x) I 

= 7| +/i + 4/JECc) 
(34) 

which is the background free result with a background due to the second harmonic of each pulse. 
For gaussian pulses, 

lll(x) - exp ■41n2 
r2     \ 

t2 + t2 
(35) 

which has a width of xfF
R = \Jt2s + t2R , and reduces to x^ = JltR for autocorrelation. 

TV. Experiment 

The multiple quantum well structure used in our experiment was grown by molecular beam 
epitaxy in a Varian Gen II chamber. The growth began with 0.5 urn GaAs on a semi-insulating 
GaAs substrate, followed by 500 nm of Alo.5Gao.5As, 20 nm of AlAs, and 10 nm of GaAs was 
grown for substrate removal etches. After 250 nm of Alo.1Gao.9As, 85 periods of 7.5 nm GaAs 
wells and 10 nm of A1Q iGao.9As barriers were deposited, followed by 150 nm of Alo.1Gao.9As. 
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After growth, the samples were proton implanted with a dose of 1012 cm-2 at 160 keV and 5 x 
1011 cm-2 at 80 keV to create deep level defects and render the material semi-insulating [18, 19] 
and photorefractive [6, 20]. The implanted wafer was cleaved into 3 mm x 3 mm pieces. To 
remove the substrate for transmission experiments, the substrate was lapped to 100 (im, and then 
etched with a 1:19 ammonium hydroxide/hydrogen peroxide etch to the 50% Al stop etch layer 
[21]. Then an HF acid etch removed the 50% Allayer and the AlAs layer [22]. Gold contacts are 
evaporated directly onto the low bandgap GaAs layer with a 1 mm aperture across which a field is 
applied in the plane of the quantum wells, perpendicular to the growth direction. 

The transmission and electro-optic effect of the photorefractive quantum wells are shown in 
Fig. 2. The data are measured using a 1000 W halogen source filtered by a 0.85 m double 
spectrometer. There is a peak absorption due to the quantum-confined heavy-hole exciton of 
approximately 104 cm-1 for the 1.9 (Xm thickness of the quantum well region. The change in 
absorption and the change in the refractive index spectra due to the electro-optic effect are shown in 
Fig. 2(b). The electro-optic effect with a field applied in the plane of the quantum wells is due to 
the field ionization of the excitons, which broadens both the light-hole exciton absorption feature 
and the heavy-hole absorption feature, resulting in a characteristic double dip. The differential 
transmission is measured by applying a sinusoid that varies between 0 V and 400 V with a 
frequency of 277 Hz. The change in absorption is calculated using 

Aa(F,X) = - iln [^p + 1 ] (36) 

where L is the thickness and F is the applied field. The change in refractive index was calculated 
using the Kramers-Kronig transformation 

An(co) = £P r -^Qjds (37) 
'    Jo   s  -Ctr 

with a maximum absorption change of 1000 cnr1 and a maximum refractive index change of 
0.005. The CW input diffraction efficiency spectrum shown in Fig. 3(a) is calculated directly from 
the transmission and electro-optic spectra using Eq. 19. Since the heavy-hole exciton oscillator 
strength is much larger than light-hole exciton oscillator strength, the peak is almost entirely due to 
the heavy hole exciton, with a maximum input diffraction efficiency of 10~4. The spectrum of the 
diffracted phase shown in Fig. 3(b) is calculated only from the changes in absorption and refractive 
index, and not from the background index spectrum, which is not known in detail. Despite the 
oscillation in the electro-optic spectrum, the phase is relatively flat. That is, the change in refractive 
index spectrum is approximately the same as for the change in absorption, but shifted by a constant 
phase, because of the relationship through the Kramers-Kronig transform. 
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The femtosecond pulse is diffracted from the photorefractive quantum well using non- 
degenerate four-wave mixing, as shown in Fig. 1. The femtosecond pulse source is a Clark NJA- 
4 modelocked Ti-Sapphire laser (with 100 MHz repetition rate), pumped by a Coherent Innova- 
310 Argon Ion laser. A 685 nm diode laser is the source for the writing beams, with a photon 
energy above the bandgap of the quantum well barriers. The fringe spacing of the interference 
pattern is 10 (im, which is far above the resolution limit of 3 |im and below the limit where 
scattered light from the transmitted beam overlaps with the diffraction. The incident intensity from 
the writing beams is 2 mW total with a beam ratio of unity, while there is 2 mW in the probe 
pulsed beam, which results in a total intensity of approximately 40 mW/cm2. To obtain the largest 
diffraction efficiency, the writing beams should be much stronger than the probe, but diffracted 
power is maximized when the ratio of the writing beam power to the probe power is near unity. 
An advantage of photorefractive quantum wells is their ultra-low sensitivity, where the gratings are 
fully developed for a saturation intensity of 10 jiW/cm2. There is a trade-off between response 
time and intensity, with shorter response times for higher intensities. At an intensity of 
40 mW/cm2 the response time is about 10 jis. Over the duration of one 100 fs pulse, the 
photorefractive grating remains essentially static. To obtain diffraction, a field is applied by 
applying 400V DC over a 1 mm gap for an average field of 4 kV/cm, and the writing beams are 
chopped at 1.0 kHz. 

The shape of the pulse is measured using the linear techniques described above, which use 
an undistorted reference pulse. The delay line for the reference pulse uses a hollow retroreflector 
mounted on a stepper-motor driven translation stage with a 0.1 Jim step size. A biased p-i-n 
silicon photodetector is used for electric-field correlation. Spectra are measured with a 0.275 m 
spectrometer with a CCD for capture. Nonlinear correlation is accomplished with 0.5 mm thick 
BBO with a photomultiplier tube to detect the second harmonic. Both field and second-harmonic 
correlation scans are performed by chopping the writing beams and measuring the signal with a 
lockin amplifier For correlation scans, the envelope function can be used to estimate the signal 
pulse shape given the properties of the reference pulse. However, the combination of the 
uncertainty of the translation stage and drift of the relative path lengths as the translation stage is 
scanned makes phase information unreliable for correlation scans. There is no drift between 
adjacent points in the spectra because the CCD captures all points simultaneously. 

V. Data and Analysis 

The characteristics of the reference pulse are important for interferometric and correlation 
techniques Pulses from the laser used in this experiment are typically 100 fs in duration and are 
nearly transform limited gaussian pulses. The reference pulse electric field autocorrelation is 
shown in Fig 4(a), and the interferometric second harmonic autocorrelation is shown in big. 4(b). 
The sign convention is that positive delays correspond to the reference pulse arriving after the 
signal pulse at the detector. Therefore, the leading edge of the pulse is on the left, so the pulse 
appears to be moving from right to left. With a 100 nm step size for the translation stage and 
approximately 850 nm center frequency, there are over four points per interference fringe. The 
heavy line in Fig. 4(a) is the envelope of the correlation function yRjR(x) calculated using Eq. 30, 
which has a width of 213 fs. The power spectrum is shown in Fig. 5(a) with a width of 8 8 nm, 
and the average of the second harmonic autocorrelation is shown in Fig. 5(b) with a width 158 Is. 
Both curves in Fig. 5 are fitted with gaussian functions to show that the pulse is approximately a 
gaussian shape. Electric field autocorrelation of the reference and the Fourier transform of the 
spectrum match well, as shown in Fig. 6. These curves should match according to Eq. 26, which 
verifies that the spectral data is consistent with the correlation data. The time-bandwidth product is 
calculated directly from the spectrum 
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using tpv = tpcAX IX2, where c = 300 nm/fs, and tp is calculated from the second harmonic 
autocorrelation width using Eq. 30. The time-bandwidth product for the reference pulse is 0.41, 
which is consistent with a transform limited gaussian pulse. 

The absorption and refractive index spectra distort the transmitted pulse. The electric field 
cross-correlation of the transmitted and reference pulses is shown in Fig. 7(a), and the 
interferometric cross-correlation is shown in Fig. 7(b). The transmitted pulse has a tail on the 
following edge of the pulse. The power spectrum in is shown in Fig. 8(a) and the phase spectrum 
is shown in Fig.8(b), calculated from the spectral interference of the transmitted pulse with the 
reference pulse. The tail is due to either the amplitude or phase of the transmission function 
#7<co). In Fig. 9, the power spectrum data is compared with the power spectrum calculated from 
the product of the transmission in Fig. 2(a) and from the power spectrum of the reference pulse. 
In Fig. 10, the electric-field cross-correlation data is compared with calculations from spectral 
measurements. The calculation using both the amplitude and the phase nearly matches the data, 
while the calculation without the phase fails to produce a tail. Therefore, photorefractive quantum 
wells distort transmitted pulses due to both absorption and refractive index variation over the 
bandwidth of the pulse. 
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The peak of the diffraction efficiency spectrum in Fig. 3(a) broadens the diffracted pulse by 
reducing its bandwidth. The electric-field cross-correlation of the diffracted and reference pulses is 
shown in Fig. 11. The calculated envelope has a width of 433 fs, more than twice as long as the 
reference field autocorrelation width of 213 fs. Assuming the diffracted pulse is a transform 
limited gaussian, Eq. 24 can be used to estimate that the diffracted pulse duration is 

(38) 

which is 285 fs, where the reference pulse duration is the same as used above. The increased 
duration of the diffracted pulse compared to the reference pulse is in general due to a combination 
of the decreased bandwidth of the pulse, and the variation of the refractive index over the 
bandwidth, that is, chirping (or higher order) changes in the phase. In Fig. 12(a), the spectra of 
the reference and diffracted pulse are shown. The diffraction spectrum appears to also be nearly 
gaussian, and the spectrum and the estimate of the pulse length are used to calculate a time- 
bandwidth product of 0.43, also very close the that for a gaussian. The phase in Fig. 12(b) is 
nearly flat, confirming that the pulse is nearly transform limited. 

The spectrum of the diffracted pulse is calculated from the electro-optic data and compared 
with the data in Fig. 13. The difference between the data and the calculation is likely due to the 
difference between the modulation depth of the space-charge field during photorefractive mixing 
and the modulation of the field used for differential transmission. Even with a beam ratio of unity 
in the writing beams, the effective modulation of the space-charge field will be limited by the 
transport. If the effective space-charge modulation were known, then a precise comparison could 
be made. Some error may also be due to nonuniform distribution of the field between the contacts 
[23], but this effect should be small since the incident intensity is high. 

The electric-field correlation of the diffracted and reference pulses is calculated from the 
spectral data using Eq. 18 and compared with the data in Fig. 14. The calculation with and without 
the phase are nearly identical, indicating that the phase variation of the diffracted pulse is small, so 
the pulse is nearly transform limited. 

In conclusion, pulses diffracted from photorefractive quantum wells are broadened, but 
remain nearly transform limited. The broadening is due to the bandwidth of the diffraction 
efficiency spectrum, which is determined by the electro-optic properties of the quantum wells. 
Since the phase of the diffracted pulses remain essentially flat, therefore, the chief limitation to the 
diffracted pulsewidth is the photorefractive bandwidth, not the dispersion of the index gratings. 
This indicates that photorefractive quantum well devices will be useful for pulse shaping. Future 
work includes the design of structures with wider bandwidth through bandgap engineering of the 
quantum well structure [24]. To obtain more diffracted power, asymmetric Fabry-Perot structures 
[25], and perpendicular geometry p-i-n structures [26].are being explored. Finally, photorefractive 
materials that operate at a wavelength of 1.5 um [27] are required for pulse shaping compatible 
with fiber-optic communications technology. 
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