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Abstract 
Turquoise is an intelligent browser and editor for the World Wide Web (WWW) that 
allows users to create dynamic pages by demonstration rather than by writing program 
code. With Turquoise, users without programming experience can create scripts that 
combine data from several Web pages, automate repetitive browsing or editing tasks, 
convert other data formats into Hypertext Markup Language (HTML), and process 
submitted forms. Scripts are demonstrated by familiar browsing and editing actions, which 
Turquoise records and generalizes into a program In order to generalize the locations of 
the user's actions on a page, Turquoise includes a novel pattern matcher that finds 
locations within an HTML document. Turquoise infers patterns automatically by picking 
from a knowledge base of pattern templates, heuristically chosen to be robust and 
comprehensible to the user. With a good pattern knowledge base, Turquoise can often 
infer the correct script after only a single demonstration. 
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1. INTRODUCTION 

The World Wide Web's enormous popularity shows that almost anyone can publish 

documents on the Web. Would-be publishers do not even need to learn HTML, thanks to 

what-you-see-is-what-you-get (WYSIWYG) editors like Netscape Navigator Gold, 

Adobe PageMUl, and AOLpress. These editors make publishing static documents on the 

Web as easy as ordinary word processing. 

Unfortunately, end-users get far less help with creating dynamic pages. Dynamic pages 

are documents generated on-the-fly, typically by running a script through the Common 

Gateway Interface (CGI) protocol [13]. Dynamic pages enable the Web to be used as a 

medium for database access, commercial transactions, gateways to other information 
systems, and even chat forums. 

Automating repetitive tasks is another area where end-users get little help from today's 

Web tools. Web document maintainers often face tedious, repetitive chores. Existing 

tools can help with the most typical chores, like finding broken links in a Web site, but 

specialized tasks are beyond their reach. End-users often need some kind of personal 

assistant to help them browse and edit the Web. 

Creating dynamic pages and personal assistants is a major challenge for most end-users, 

requiring intimate knowledge of both HTML and a programming language, such as Perl, 

Tel, Java, or C. Consider a typical Web user with no programming experience. How can 

such a user do any of the following: 

• create a customized newspaper, showing the weather forecast, news headlines, and a 

favorite cartoon, all on a single Web page for easy reading? 

• maintain a history of a stock portfolio by automatically retrieving new stock quotes 

from a Web site each day and appending them to a table? 

• provide colleagues with a Web-based form that collects orders for lunch, combining 

them into a single list for easy ordering and delivery? 

Typical users are unable to automate any of these tasks, without an appropriate existing 

script or a programmer to help them. For these users, the World Wide Web must be 

manually operated, with no way to retrieve, process, or generate data automatically. 

There is an alternative to traditional scripting languages: creating the script by 

demonstration. In programming-by-demonstration [11], the user describes a program by 



operating on example data, while the system watches and attempts to infer the intent of 

the user's actions. The end result of the demonstration is an abstract, executable program. 

Turquoise is a WWW browsing and editing system that supports the creation of dynamic 

pages and personal assistants by demonstration. With Turquoise, a user demonstrates a 

script like the customized newspaper by browsing to the desired news sources and using 

cut-and-paste to construct an example of the newspaper. From this single example, 

Turquoise can infer a script that regenerates the newspaper automatically, reflecting the 

latest information from its sources. 

The Web documents used by a script are liable to change from time to time - in fact, the 

customized newspaper's sources change every day. In order to handle changes gracefully, 

Turquoise includes a pattern matcher designed to find portions of an HTML document. 

A Turquoise pattern is an abstract description of a region of interest on a page, in terms of 

HTML markup elements and text. For instance, the pattern "Bulleted List after Heading 

containing 'Headlines'" might describe how news headlines are presented by a particular 

Web site. Like Halbert's data descriptions [7], patterns are used to describe the 

parameters of every command in a script. For the copy-and-paste commands used to build 

the customized newspaper, both the copied region and the paste location are described by 

patterns. Patterns are the essential abstractions that allow Turquoise scripts to be 

generalized beyond the specific examples used in a demonstration. 

Although Turquoise patterns could be written by the user (after some exposure to the 

grammar and vocabulary), the challenge for Turquoise is to infer patterns automatically 

from the user's demonstration. A huge number of patterns might describe a selected 

region, but few of them will be useful. To reduce the search space, we use a heuristic 

knowledge base of pattern templates, which are patterns containing placeholders, like 

"<HTML element> after Heading containing <text>". When Turquoise needs a pattern 

to describe a region, it tests the pattern templates against the selected region and 

instantiates the placeholders as needed to make a matching pattern. If several matching 

patterns are found in the template knowledge base, then Turquoise presents the 

possibilities to the user for a final decision. If none of the guesses are appropriate, then 

the user can edit the pattern directly to fix it. 

The remainder of this paper is organized as follows. First we describe the system 

architecture, which motivates a discussion of the kinds of scripts that Web users write, in 

order to delimit the subset that can be usefully demonstrated. To illustrate, we give two 

examples of demonstrating scripts with Turquoise. Next, we present the pattern language 

used to describe regions of an HTML page, followed by the inference mechanism that 



Figure 1. Turquoise system architecture. 

Turquoise uses to guess patterns automatically.   Finally, we survey related work and 

present some conclusions. 

2. SYSTEM ARCHITECTURE 

The Turquoise system is shown inFigure 1. It consists of the following components: 

• a Web browser/editor, 

• an inference engine, which watches the user's actions and infers script commands; 

• a pattern knowledge base, which provides the pattern templates that are used for 

guessing what the user meant by a selection; 

• a script interpreter, which replays scripts on demand, either for the local user or for 

a remote Web user; and 

• the scripts that the user has developed. 

The Web browser/editor in the prototype system is AOLpress1, which is freely available 

from America Onlinefl]. AOLpress is a WYSIWYG editor, enabling users to create and 

edit pages without learning HTML, including pages containing forms and tables. Our 

version of AOLpress has been specially instrumented to report the user's browsing and 

editing actions to an external program, in this case the inference engine. 

1 AOLpress was originally known as NaviPress, and then GNNpress.  It was one of the 
first WYSIWYG editors for HTML. 



The inference engine receives the stream of user actions, watching for actions which 

affect a browser window containing a Turquoise script. These actions are assumed to be 

part of a demonstration. For each demonstrated action, the inference engine generalizes 

the action's parameters by searching for them in the pattern knowledge base. For 

instance, when the user pastes text into a script window, the inference engine attempts to 

find patterns describing the origin of the pasted text and the location where it is inserted. 

After generalizing the action, the inference engine adds it as a command to the script. 

The script interpreter runs the scripts that have been demonstrated and saved. Like 

other Web resources, Turquoise scripts are identified by a uniform resource locator 

(URL), so the local user can run a script simply by opening its URL in the Web browser. 

The script interpreter also includes a small Hypertext Transfer Protocol (HTTP) server 

that can run scripts for remote users, as long as the local user has identified those scripts 

as publicly accessible. Scripts might also be invoked automatically, either at regular 

intervals (such as hourly, daily, or weekly) or by events within the Web browser/editor. 

For example, a script that updates a page's last-modified date might be invoked whenever 
the user saves an HTML document to disk. 

The Turquoise prototype is written primarily in Java (with some C++ code at the 

interface with AOLpress). The prototype currently runs on Windows 95 and NT, but it 

could be ported readily to Macintosh or Unix, since its off-the-shelf components are also 
portable to those platforms. 

3. APPLICATION DOMAIN 

The Turquoise architecture is well-suited for scripts that access, create, or modify 

HTML or flat text documents, since such scripts can be readily demonstrated in a Web 

browser/editor. In an informal survey of 50 existing CGI scripts whose source code was 

publicly available, we found that the scripts available on the Web can be broken down into 

seven categories (with significant overlap): composite pages, assistants, filters, form 

processors, active pages, gateways, and applets. These categories are described next, and 

most of them are suitable to be demonstrated to Turquoise. 

Composite page scripts extract information from one or more dynamic sources to 

produce a page of HTML. A typical example might be a customized newspaper which 

retrieves news headlines from Yahoo/Reuters, sports scores from ESPN, and a weather 

report from the National Oceanic and Atmospheric Administration, then reformats all the 

retrieved information into a single page. Another example might be a meta-search which 

submits a search phrase to several Web search engines simultaneously. 



Assistants perform chores that the user encounters while browsing the Web or editing 

HTML pages. Examples of typical chores include updating your stock portfolio history, 

updating the last-modified date on an edited page, validating links, and downloading or 
prefetching a set of links. 

Filter scripts translate data between other textual formats and HTML, or from one 

HTML layout into another. Examples of filters include converting Unix man pages to 

HTML, converting Emacs info files to HTML, and generating a table-of-contents for a 
page from its section headings. 

Form processors accept a form as input and use the supplied information to access other 

resources, invoke external processes, record some information, or otherwise change the 

state of the Web. Examples include merchandise order forms, comment solicitation forms, 
guest books, and Web-based bulletin boards. 

Active pages contain scripting code embedded in the HTML that is executed by the 

browser. The popular languages for active pages are JavaScript and VB Script. Active 

pages are typically used for form validation, simple calculations, and eye-catching visual 
effects. 

Gateways translate non-HTML information sources or services into HTML. For 

instance, there are gateways that allow Web users to browse other hypertext systems, like 

HyperG, or retrieve information via the finger or whois services. Most Web browsers 
include built-in gateways for FTP, Gopher, the local filesystem, and Usenet news. 

Finally, applets contain an embedded user interface which is downloaded and run by the 
Web browser. The latest hot tools for developing applets are Java and ActiveX. 

The Turquoise architecture is capable of creating composite pages, assistants, filters, 

form processors, and active pages (insofar as its Web browser/editor supports a client-side 
scripting language like JavaScript or VB Script). These types of scripts are alike in that 
they operate on HTML or plain text. 

Applets and gateways, however, are beyond the scope of the architecture. Creating an 
applet is tantamount to creating a graphical user interface, which cannot be done in a Web 

browser/editor because it lacks the tools for drawing it. Even automating an interaction 

with an applet is difficult for Turquoise, since it involves interpreting and controlling the 

state of an arbitrary, unconstrained user interface. Likewise, most gateways are beyond 

the ability of Turquoise to create, because the protocol on the other side of the gateway is 

unconstrained, and usually involves access mechanisms that are not accessible to the Web 
browser. 



On the other hand, if the gateway already exists (either out on the Web or built into the 

browser), then a Turquoise script can interact with it as it would any other WWW-based 

information source. In order to extend the range of Turquoise, we plan to augment the 

prototype system with several built-in gateways not normally found in Web browsers: a 

calculator for numerical computation, a command line for executing external programs, 

and an OLE interface for exchanging information with other Microsoft Windows 

applications. These gateways will enable Turquoise scripts to do a wider variety of useful 
processing. 

4. DEMONSTRATING SCRIPTS 

We present two examples to show how Turquoise might be used. The first creates a 

composite page script for a customized newspaper. The second example is a form 
processor for lunch orders submitted over the Web. 

4.1  Creating a Customized Newspaper 

Suppose Lucy wants to demonstrate to Turquoise how to assemble a customized 

newspaper containing a weather report and news headlines (Figure 2). The demonstration 

begins with Lucy opening a new script window within the Web browser. Initially the 

script window is empty, indicating that the script has no output yet. 

Lucy types "Weather" in the new script window and changes it to section heading style. 

Since these actions were performed directly on the script window, Turquoise records them 

as constant text in the script. Then, in a separate browser window, Lucy navigates to a 

weather page, highlights the region of the page containing her local three-day weather 

forecast, and copies it into the script window after "Weather" (Figure 2a). 

Next, Lucy types in a section heading for "News" in the script window. She navigates 

to a news page and copies the region containing the day's headlines to the script window 
just after "News" (Figure 2b). 

Finally, Lucy saves the script, calling it "newspaper," and runs it to check that it works 

as expected. Running the script is simply a matter of reloading it into the browser. When 

the script runs, it retrieves the weather page and the news page, extracts the regions of the 

page that match the patterns, and inserts them after 'Weather" and "News", respectively. 

The result is a page that looks the same as the demonstration. When Lucy comes back and 

runs her newspaper script the next day, however, the script retrieves the latest weather 

and news and displays an updated page figure 2c). 
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Figure 2. Demonstrating a customized newspaper script. In (a), the user copies the 
forecast from a weather page, on the left, and pastes it into a new script window, on the 
right. A similar operation copies the list of headlines from a news page (b). From these 
actions, Turquoise infers a script that can produce a new version of the newspaper on 
another day (c). 



4.2 Collecting Lunch Orders 

Harry's workgroup likes to order lunch from a local sandwich shop, and they fmd it 

convenient to send one person out every day with the entire group's order. To automate 

the process of collecting the sandwich orders, Harry wants to demonstrate a script that 

accepts order forms over the Weh and collates them into a single report? 

Harry starts hy designing a form using the Web editor (Figure 3 a). The form contains 

fields for the person's name, sandwich choice, and any special requests. Creating the form 

requires a uniform resource locator (URL) to which it should be submitted, so Harry 

creates a new Turquoise script "lunch" and uses its URL. Harry also designs a template 

for the final report (Figure 3b), which will list the sandwich orders on one page for easy 
ordering and delivery. 

To begin the demonstration, Harry fills out the form with an example order, and 

attempts to submit it. Since the "lunch" script is currently empty, the result is just an 

empty window. In this window, Harry proceeds with the demonstration by loading the 

report file. Since the load action occurs in the script window, Turquoise adds it as a 

command to the script. Then, using copy-and-paste operations, Harry copies the order 

form field-by-field to the end of the report, and saves the modified report back to disk. 

Next, Harry wants to show how to construct a result page, which should be sent to the 

form submitter to confirm that the sandwich order has been recorded (Figure 3c). He uses 

the browser's Back button to return to the script output page, which is still empty, and 

designs a page that repeats the information in the form again using cut-and-paste 
operations. 

By default, Turquoise scripts can be run only by the local user. In order to make the 

lunch-ordering script accessible to his colleagues, Harry must mark the script as public, 

which specifies that Turquoise should run the script in response to remote requests for it. 

Every remote request runs the script on Harry's machine, which is appropriate for a small 

workgroup application like ordering lunch. Scripts which are frequently run or resource- 

hungry should be translated to a conventional language, like Perl, C, or Java, and made 

available on a high-speed Web server. We plan to extend Turquoise to perform these 
translations automatically wherever possible. 

This example does not yet work in the prototype, because AOLpress is not yet 
instrumented to report user actions that occur in form controls. 
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Figure 3. Demonstrating a lunch ordering script. After 
designing a form for the lunch order (a), the user 
demonstrates how to process an example order - loading a 
report file (b), copying fields from the form and saving the 
file back to disk. The user also demonstrates the script 
output (c), which is returned to the form submitter to 
confirm that the order has been received 



5. PATTERN MATCHING 

As the examples show, Turquoise scripts operate on HTML documents - copying, 

inserting, and deleting text and markup elements. These operations require a way to 

identify locations within an HTML document. Although HTML provides a few 

mechanisms for marking locations in a document (the most standard being the anchor tag, 

<A>), this is not sufficient, because the documents we want to manipulate may not have 

the markers we need. 

Turquoise solves this problem by providing a pattern language for HTML figure 4). 

5.1  Pattern Language 

A Turquoise pattern matches a region, which is a contiguous, possibly empty range of 

characters and HTML markup. The primitive patterns are HTML elements, regular 

expressions, and literal text. For the benefit of users who do not know HTML, patterns 

pattern —> 
HTML-element  (e.g. Paragraph, Bulleted List, Image) 
"literal-text" 
/regular-expression/ 
pattern identifier   (e.g. Date, Number) 
region identifier    (e.g., Current Page, Selection) 
URL 
point (a cursor position) 
everything 
the only pattern 
the first pattern 
the last pattern 
the «th pattern 
pattern^ containing pattern^ 
patterni [just] after pattern^ 
patterni [just] before pattern^ 
patterni in pattern^ 
patterni at start of pattern^ 
pattern! at end »(pattern? 
from patterni to pattern^ 

Examples 
the first Image in "http://www.cs.cmu.edu/-rcm/" 

(a picture of the first author) 
the only Date in Address at end of Current Page 

(the last-modified date on a page) 
the 3rd List Item in Bulleted List in "http://www.yahoo.com/" 

(a category in the Yahoo! Index of the Web) 

Figure 4. The Turquoise pattern language. 



refer to HTML elements by human-readable names like "Link" and "Paragraph", rather 

than their HTML tags. 

A central feature of the Turquoise pattern language is its ability to represent 

relationships between regions, using the operators in, containing, before, and after. For 

instance, the pattern "Link in Address in http://..." would find only links (HTML element 

<A>) appearing in the address (HTML element <ADDRESS>). 

If a pattern might match more than once, the language can express assertions about the 

particular occurrence desired. For instance, "the first Paragraph after the only 

Horizontal Rule in http://..." asserts that only one horizontal rule (<HR>) will appear on 

the page, and the pattern should match the first paragraph (<P>) appearing after it. 

Patterns may be named and reused in other patterns. Turquoise will include a library of 

predefined patterns, including commonly-used regular expressions, like Character, Word, 

Sentence, Number, Date, and URL. 

A pattern may also refer to a named region. Web pages are the simplest form of named 

region, where the name is just the page's URL. Turquoise also defines Current Page and 

Selection to represent regions that the user has selected interactively, and Output to 

represent the page returned by a script. 

Finally, Turquoise patterns may contain placeholders of certain types: <literal text>, 

<HTML element>, and <named region>. Patterns containing placeholders can be 

instantiated by substituting a pattern of the same type. Thus, "<HTML element> in 
<named region>" can be instantiated to 'Table in http://...". A pattern with placeholders 

is called a pattern template. Pattern templates are used to infer patterns automatically 

from examples, which will be explained later. 

5.2 Implementation 

To search for a pattern in an HTML document, Turquoise parses the document into an 

explicit parse tree and walks over the tree trying to match the pattern. The prototype 

pattern matcher uses a straightforward recursive implementation, which backtracks when a 

subpattern fails. In the worst case, this implementation may take exponential time. In 

practice its performance is acceptable for searching a typical Web page, which is less than 

10 kilobytes long [3]. For searching larger documents, we are considering adapting one of 

the algorithms devised by Kilpeläinen f ] for searching structured text databases. 



command -» 
insert patterni atpattem2 
replace patterni with pattern^ 
delete pattern 
go to pattern 
save pattern [to pattern] 

Figure 5. Turquoise script commands. 

6. INFERENCE 

When the user demonstrates some actions, such as clicking on a link or pasting some 

text, Turquoise must infer a command that would perform the same actions in the script. 

Part of the Turquoise command language is shown in Figure 5. User actions are 

translated into these commands by a fixed mapping. For example, the user might select an 

picture on a Web page, copy it, and paste it into the script window. This sequence of 

actions is always translated into the same script command, insert pattern^ atpattem2. The 

challenge for Turquoise is to Met patterni mipattern2, which describe the copied picture 

and the location to which it was copied, respectively. 

An inferred pattern should satisfy four criteria. It should be: 

• Correct: the pattern should correctly describe the region the user specified in the 

demonstration, otherwise it is not a proper generalization of the user's action. 

• Eager, the inference engine should strive to guess the right pattern from only one 

example. 

• Robust: the pattern should continue to work if the world changes in irrelevant ways. 

For instance, a pattern intended to describe the last-modified date from the bottom 

of a page should not be affected by modifications to the rest of the page. 

• Comprehensible: the pattern should be understandable by the user, so that an 

incorrect inference can be detected and corrected. A comprehensible pattern should 

be easily verified, so patterns involving large numbers or invisible HTML elements, 

like 'the 87th Word after Comment," are not desirable. 

The inference mechanism in Turquoise attempts to meet all these goals by using a 

knowledge base of pattern templates. These templates are heuristically chosen to be 

robust and comprehensible. 



In order to infer a pattern for a specific region, Turquoise searches the pattern 

knowledge hase for patterns that match the region, instantiating placeholders as needed. 

All the patterns that match are presented as possibilities to the user, but Turquoise 

chooses one pattern as its best guess. In the prototype system the knowledge base is 

statically sorted, with the most robust and most frequently-used patterns first, so the 

prototype inference engine just uses the first match as its best guess. In the future, we will 

explore more sophisticated evaluation functions for determining the best pattern. 

This inference mechanism guarantees correctness because only patterns that match the 

example region are considered. It also attempts to be eager, by making its best guess 

about the user's intention and using it by default. 

Advanced users can improve the inference mechanism by adding new pattern templates 

to the knowledge base using a text editor. We may also experiment with providing 

different knowledge bases for demonstrating different kinds of scripts. The user may 

explicitly indicate which kind of script is being demonstrated, or Turquoise may use some 

heuristics to guess which knowledge base is appropriate. 

7. RELATED WORK 

Turquoise is similar to other programming-by-demonstration systems. SmallStar [7], a 

system for demonstrating macros in Xerox Star, introduced the notion of data 

descriptions, which are like Turquoise patterns. TELS [16] infers programs for text 

editing tasks, such as reformatting a bibliography. Like Turquoise, it abstracts the user's 

actions into abstract commands like insert and delete, but its data descriptions are limited 

to flat text divided into words, lines, and paragraphs. Eager [5] infers repetitive tasks in 

HyperCard. Eager includes a pattern language for data descriptions which is similar to the 

Turquoise pattern language, but Eager never shows its patterns to the user. As a result, 

Eager typically requires at least three examples to infer a program. By displaying the 

possible patterns and allowing the user to verify or fix them Turquoise can often infer 
from only one example. 

Other systems give end-users the ability to develop CGI scripts, though not by 

demonstration. Several systems, like Zelig [15], represent a dynamic page as an HTML 

template with variable fields, which are computed at runtime by database queries or script 

code. Unlike Turquoise, these systems generally require knowledge of HTML. 

WebWriter [4] allows users to create the templates without knowing HTML, in a 

WYSIWYG editor. Since WebWriter is a CGI application itself, however, its editing 

interface is limited to form fill-out, which can be tedious. 



The Turquoise pattern language, which identifies locations in HTML, is similar to other 

languages for representing transformations or doing searches in structured text. 

Bonhomme and Roison [2] described a language for specifying HTML editing 

transformations which allows an HTML editor to be extended with new transformations, 

but this language can only match a local area of the HTML tree - a few nodes and their 

immediate neighbors and children. Pattern matching of this kind has been called the 

classic "tree matching problem" [8]. The Turquoise pattern language is more general, 

however, permitting arbitrary intervening neighbors and descendants in its in, before, and 

after patterns. Kilpeläinen [9] studied this general tree matching problem in the context of 

searching large structured-text databases, and found algorithms that solve it in polynomial 

time. Turquoise also draws ideas from p-strings [6], another language for searching 

structured-text databases. 

8. STATUS AND FUTURE WORK 

The prototype system uses copy-and-paste events to infer composite page scripts. It 

needs further development before it can be used to demonstrate a broader class of scripts. 

One important area of future development is inferring conditional branches and iteration, 

which are needed by many scripts. Much of the ease of using Turquoise stems from its 

ability to infer from a single example, but conditions and iterations generally require 

multiple examples to demonstrate. The prototype could be augmented to generalize from 

multiple examples, possibly using hints from the user, as in Gamut JO]. 

More work is needed to develop good pattern knowledge bases for the kinds of scripts 

we identified as demonstrable. We also want to explore different evaluation functions that 

Turquoise can use to pick out a good pattern from all the matches in the knowledge base. 

To extend the scope of Turquoise scripts, we plan to add a number of built-in gateways 

to the prototype, including a calculator, a command shell, and an OLE interface. In 

addition, a future version of the prototype will be capable of translating Turquoise scripts 

into a traditional Web scripting language, such as Perl, Tel, or Java. 

We also plan to user-test the pattern language to determine whether users can read and 

write patterns, and whether the system's inferred patterns are comprehensible. 

9. CONCLUSION 

The Turquoise architecture is suitable for demonstrating a broad range of Web scripts, 

including composite pages, assistants, filters, form processors, and active pages.   With 



Turquoise, Web users only need their familiar browsing and editing skills to create 

dynamic pages and automate repetitive tasks on the Web. 

The Turquoise pattern language satisfies the need for identifying locations in HTML 

documents. Unlike HTML anchors, which must be explicitly inserted in a document by its 

author, Turquoise patterns allow an arbitrary user to identify regions of a page for 

extraction, reformatting, or other processing, without needing to change the original 

document. By inferring patterns from example, Turquoise puts these capabilities in the 
hands of users who do not know HTML. 
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INTRODUCTION   The Importance of 
RAIDframe to the 
Research and Development 
Communities 

The demand for high-capacity, high-performance, and highly available data storage has 
increased as information systems have grown to critical importance in business opera- 
tions. Given how rapidly the market for Redundant Arrays of Independent Disks 
(RAID) [Patterson88] is growing [DISK7TREND94], these architectures are clearly the 
storage technology of choice for meeting this demand. 

The increasing importance of RAID systems has led to a number of proposals for new 
architectures and algorithms, for example, designs emphasizing improved write perfor- 
mance [Menon92, Mogi94, Polyzois93, Solworth91, Stodolsky94]. While many of 
these proposals are promising, they have been largely evaluated by simulation or ana- 
lytic modeling. To understand the advantages and limitations of these new designs, it is 
essential for RAID architects to experiment with concrete implementations. 

However, evaluating new designs by introducing them into the marketplace is expen- 
sive, slow, and too often unenlightening. Using traditional approaches, implementing 
redundant disk arrays has been a difficult, manual process. This is evidenced by an 
inabilty to generate code which is reusable, extensible, and easily verifiable as correct. 
While these problems prevent RAID researchers and developers from exploring the 
design space, they also lead to long development times and uncertain product reliability 
for RAID vendors. 

In developing RAIDframe, our primary goal was to decrease design-cycle time by sim- 
plifying the process of implementation without sacrificing performance (measured in 
terms of storage access and response time). We developed a simple programming 
abstraction from which distinct RAID operations (and therefore, architectures) may be 
easily implemented in RAIDframe. Once the basic instructions (fewer than a dozen) are 
implemented, the time required to implement a new RAID operation is simply the time 
required to write a new program. Error recovery is then mechanized without diminish- 
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ing performance or increasing overhead—in contrast to traditional approaches which 
were manual and prone to error [Courtright94]. 

The programming abstraction RAIDframe uses is based on directed acyclic graphs 
(DAGs). A designer wishing to introduce a new architecture or optimize an existing 
architecture will be able to achieve this goal by modifying the library of graphs and 
graph-invocation rules implemented in RAIDframe. While graphs and the binding of 
graphs to requests varies widely, the majority of the code in RAIDframe is found in the 
unchanging DAG interpretation-engine. In this way, designers are encouraged to experi- 
ment with and extend various RAID architectures because they can ignore the majority 
of the code, which is devoted to device-manipulation details. 

A particularly powerful feature of RAIDframe is that it separates error recovery from 
array architecture. The mechanism used to recover from failed primitive operations 
(such as a disk read) during the execution of an array operation is a part of RAIDframe's 
internal infrastructure. To do this, RAIDframe uses a two-phase approach to error recov- 
ery which we call roll-away error recovery. RAIDframe's architecture-independent 
DAG interpreter handles errors by identifying those nodes in a DAG which commit data 
to disk and by specifying the direction of recovery based on when errors occur in rela- 
tion to this commit point. 

Specifically, if an error occurs before any data has been committed to disk, then the sys- 
tem rolls back, releasing resources, and retries the operation with a more appropriate 
graph. On the other hand, if an error occurs after data has been committed, the system 
rolls forward through the remainder of the graph, giving later requests the impression 
that this graph completed instantaneously before the error. In either case, this process is 
hidden from the user and performed without regard to array architecture. Graph commit 
points can be specified so that roll-back is inexpensive (that is, it does not induce addi- 
tional device work in preparing for or executing roll-back) and so that roll-forward does 
not need to execute any device operation not already coded in the in-progress graph. By 
eliminating the need for architecture-specific code for handling errors, roll-away error 
recovery further simplifies the process of building new RAID architectures: there is no 
need to create or alter thousands of lines of error-recovery code. 

Currently, RAIDframe acts as a software-only RAID controller for Alpha-based OSF/1 
machines. To emphasize our intent to enable real designers to experiment with and use 
RAIDframe, we have implemented the software so that it can be configured to execute 
as an event-driven simulator, as a stand-alone application managing disks through the 
UNIX raw-disk-interface, or as an OSF/1 device driver through which standard UNIX 
file systems can be mounted and accessed. 

RAIDframe's library of architectures includes RAID levels 0 (nonredundant), 1 (mirror- 
ing with shortest-queue selection), 4 (centralized parity), 5 (rotated parity), 6 (Reed- 
Solomon double-failure protection), declustered parity, interleaved declustering, and 
chained declustering; additionally, variants of some of these support distributed, on-line 
spare-disk capacity. Preliminary performance analysis shows that RAIDframe's RAID 
level 0 can keep an array as busy as a much-more-limited direct implementation of disk 
striping without substantially increasing response time, although RAIDframe requires 
more processing power to achieve this goal [Gibson, 1995]. Moreover, beginning with 
the RAID level 0 graphs in its library, well over 90% and frequently 99% of the lines of 
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code in RAIDframe are unchanged by the modifications necessary to implement the 
architectures listed above. Finally, the roll-away error recovery is fully functional, 
requiring only that a graph's commit nodes be marked. 

This content in this document can be roughly divided into two categories: background 
and using RAIDframe. Background chapters are Chapter One: Redundant Disk Arrays; 
Chapter Two: Theory of Operation; and Chapter Three: RAIDframe: A Framework for 
Implementing New Designs. Together, these chapters provide a basic understanding of 
RAID technology, explain the programmatic abstraction RAIDframe uses for modeling 
RAID operations, and detail RAIDframe's features, internal architecture, and support- 
ing libraries. The remaining chapters are Chapter Four: Installing, Configuring, and 
Using RAIDframe; and Chapter Five: Extending RAIDframe. These last two chapters 
help provide designers and developers with the necessary information for using RAID- 
frame. 

This document, along with the RAIDframe code, will be continually revised and 
updated. These updates will be made available on the Parallel Data Laboratory Web 
pages at the URL http://www.cs.cmu.edu/afs/cs/project/pdlAVWW/Index.html. To be 
notified when updates are made available, send mail to pdl-webmaster@cs.cmu.edu. 
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CHAPTER 1 Redundant Disk Arrays: 
A Brief Overview 

In Chapter 1, we will present a brief overview of redundant disk arrays. The text for this 
chapter was excerpted from Chapter 2 of Mark Holland's thesis, "On-line Data Recon- 
struction in Redundant Disk Arrays," published in 1994 by Carnegie Mellon University. 
The text has been edited and updated in minor ways to allow it to fit into the RAIDframe 
documentation. For a more thorough description of RAID technology, we recommend 
The RAIDbook: A Source Book for Disk Array Technology [RAID96]. 

1.1 

1.1.1 

The Need for Improved Availability in the Storage 
Subsystem 

There exist several trends in the computer industry that are driving the design of storage 
subsystems toward higher levels of parallelism. This means that current and future sys- 
tems will achieve better I/O performance by increasing the number, rather than the per- 
formance, of the individual disks used [Patterson88, Gibson92]. This distinction is 
important in that, as will be seen, it implies directly the need for improved data avail- 
ability. This section briefly describes these trends (Sections 1.1.1 through 1.1.3), and 
shows why they lead to the need for improved availability in the storage subsystem 
(Section 1.1.4). 

The Widening Access Gap 

First and foremost, processors are increasing in performance at a much faster rate than 
disks. Microprocessors are increasing in computational power at between 25 and 30% 
per year [Myers86, Gelsinger89], and projections for future performance increases 
range even higher. Gelsinger et. al. [Gelsinger 89] predicts that the huge transistor bud- 
gets projected for microprocessors in the 1990s will allow on-chip multiprocessing, 
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yielding a further 20% annual growth rate for microprocessors. Bell [Bell89] projects 
supercomputer growth rates of about 150% per year. 

Disk drives, by way of contrast, have been increasing in performance at a much slower 
rate. Comparing the state of the art in 1981 [Harker81] to that in 1993 [Wood93] shows 
that the average seek time for a disk drive improved from about 16 ms to about 10 ms, 
rotational latency from about 8.5 ms to about 5 ms, and data transfer rate from about 3 
MB/sec. (which was achieved only in the largest and most expensive disks) to about 5 
MB/sec. Combining these, the time taken to perform an average 8 KB access improved 
from 27.1 ms to 15.0 ms, or by about 45%, in the twelve-year period. This corresponds 
to an annual rate of improvement of less than 5%. 

Increased processor performance leads directly to increased demand for I/O bandwidth 
[Gibson92, Kung86, Patterson88]. Since disk technology is not keeping pace with pro- 
cessor technology, it is necessary to use parallelism in the storage subsystem to meet the 
increasing demands for I/O bandwidth. This has been, and continues to be, the primary 
motivation behind disk-array technology. 

1.1.2   The Downsizing Trend in Disk Drives 

Prior to the early 1980s, storage technology was driven by the large-diameter (14-inch) 
drives [IBM3380, IBM3390] used by mainframes in large-scale computing environ- 
ments such as banks, insurance companies, and airlines. These were the only drives that 
offered sufficient capacity to meet the requirements of these applications [Wood93], 
This changed dramatically with the growth of the personal computer market. The enor- 
mous demand for small-form-factor, relatively inexpensive disks produced an industry 
trend toward downsizing, which is defined as the technique of re-implementing existing 
disk-drive technology in smaller form factors. This trend was enabled primarily by the 
rapid increase in storage density achieved during this period, which allowed the capacity 
of small-form-factor drives to increase from a few tens of megabytes when first intro- 
duced to over two gigabytes today [IBM0664]. It was also facilitated by the rapid 
growth in "VLSI integration levels during this period, which allowed increasingly sophis- 
ticated drive-control electronics to be implemented in smaller packages. Further impe- 
tus for this trend derived from the fact that smaller-form-factor drives have several 
inherent advantages over large disks: 

• smaller disk platters and smaller, lighter disk arms yield faster seek operations, 

• less mass on each disk platter allows faster rotation, 

• smaller platters can be made smoother, allowing the heads to fly lower, which 
improves storage density, 

• lower overall power consumption reduces noise problems. 

These advantages, coupled with very aggressive development efforts necessitated by the 
highly competitive personal computer market, have caused the gradual demise of the 
larger drives. In 1994, the best price/performance ratio was achieved using 3-1/2-inch 
disks, and the 14-inch form factor has all but disappeared. The trend is toward even 

1. Seek time, rotational latency, and transfer rate are defined hi Section 1.2.1. 
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smaller form factors: 2-1/2-inch drives are common in laptop computers [ST9096], and 
1.3-inch drives are available [HPC3013]. One-inch-diameter disks should appear on the 
market by 1995 and should be common by about 1998. At a (conservative) projected 
recording density in excess of 1-2 GB per square inch [Wood93], one such disk should 
hold well over 2 GB of data. 

These tiny disks will enable very large-scale arrays. For example, a one-inch disk might 
be fabricated for surface-mount, rather than using cables for interconnection as is cur- 
rently the norm, and thus a single, printed circuit board could easily hold an 80-disk 
array. Several such boards could be mounted in a single rack to produce an array con- 
taining on the order of 250 disks. Such an array would store at least 500 GB, and even if 
disk performance does not improve at all between now and 1998, could service either 
12,500 concurrent I/O operations or deliver 1.25-GB-per-second aggregate bandwidth. 
The entire system (disks, controller hardware, power supplies, etc.) would fit in a vol- 
ume the size of a filing cabinet. 

To summarize, the inherent advantages of small disks, coupled with their ability to pro- 
vide very high I/O performance through disk-array technology, leads to the conclusion 
that storage subsystems are, and will continue to be, constructed from a large number of 
small disks, rather than from a small number of powerful disks. Many trends in the stor- 
age industry substantiate this claim. For example, DISK/TREND predicts that the 
redundant-disk-array market will exceed thirteen billion dollars by 1997 [DISK/ 
TREND94]. Storage Technology Corporation, traditionally a maker of large-form-fac- 
tor IBM-compatible disk drives, has stopped developing disks altogether and is replac- 
ing this product line by one based on disk arrays [Rudeseal92]. 

1.1.3 The Advent of New, l/O-lntensive Applications 

Finally, increases in on-line storage capacity and commensurate decreases in cost per 
megabyte enable new technologies that demand even higher levels of I/O performance. 
The most visible example of this is in the emergence of digital audio and video applica- 
tions such as video-on-demand [Rangan93]. Others include scientific visualization and 
large-object servers such as spatial databases [McKeown83, Stonebraker92]. These 
applications are all characterized by the fact that, if implemented on a large scale, their 
demands for storage and I/O bandwidth will far exceed the ability of current data stor- 
age subsystems to supply them. These applications will drive storage technologies by 
consuming as much capacity and bandwidth as can be supplied and hence necessitate 
higher levels of parallelism in storage subsystems. 

1.1.4 Why These Trends Necessitate Higher Availability 

The preceding discussion demonstrated that higher degrees of I/O parallelism (an 
increased number of disks in a storage subsystem) are increasingly necessary to meet 
the storage demands of current and future systems. The discussion deliberately avoided 
identifying the specific organizations to be used in future storage systems but made the 
case that such systems will be composed of a relatively large number of independent 
disks. However, constructing a storage subsystem from a large number of disks has one 
significant drawback: the reliability of such a system will be worse than that of a system 
constructed from a small number of disks because the disk array has a much higher 
component count. 
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As the number of disks comprising a system increases, the reliability of that system 
falls. Specifically, assuming the failure rates for a set of disks to be identical, indepen- 
dent, exponentially distributed random variables, a simple reliability calculation shows 
that the mean time to data loss for a group of N disks is only VN times as long as that of 
a single disk [Patterson88]. Gibson analyzed a set of disk-lifetime data to investigate the 
accuracy of the assumptions behind this calculation and found "reasonable evidence to 
indicate that the lifetimes of the more mature of these products can be modeled by an 
exponential distribution" [Gibson92, p. 113]. Working from this assumption, a 100-disk 
array composed of disks with a 300,000-hour mean-time-to-failure (typical for current 
disks) will experience a failure every 3000 hours, or about once every 125 days. As 
disks get smaller and array sizes grow, the problem gets worse: a 600-disk array experi- 
ences a failure approximately once every three weeks. 

Disk arrays typically incorporate some form of redundancy in order to protect against 
data loss when these failures occur. This is generally achieved either by disk mirroring 
[Katzman77, Bitton88, Copeland89, Hsiao91], oibyparity encoding [Arulpragasam80, 
Kim86, Park86, Patterson88, Gibson93]. In the former, one or more duplicate copies of 
each user data unit are stored on separate disks. In the latter, commonly known as 
Redundant Arrays of Inexpensive1 Disks (RAID) [Patterson88], a portion of the array's 
physical capacity is used to store an error-correcting code computed over the data stored 
in the array. Section 1.2.2 describes both of these approaches in detail. Studies have 
shown that, due to superior performance on small read and write operations, a mirrored 
array, also known as RAID Level 1, may deliver higher performance to many important 
workloads than can a parity-based array [Chen90a, Gray90]. Unfortunately, mirroring is 
substantially more expensive—its storage overhead for redundancy is 100%, whereas 
the overhead in a parity-encoded array is generally less than 25% and may be less than 
10%. Furthermore, several recent studies [Rosenblum91, Menon92a, Stodolsky94] 
demonstrated techniques that allow the small-write performance of parity-based arrays 
to approach and sometimes exceed that of mirroring. 

1.2 Technology Background 

This section describes the structure and organization of modern disk drives and disk 
arrays; the subsection on disk technology has been kept to a minimum. Product manuals 
such as Digital Equipment Corporation's Mass Storage Handbook [DEC86] provide 
more thorough descriptions of disk-drive technology. This section describes disk-array 
structure and functionality in more detail because this information is essential to under- 
standing the RAIDframe prototyping tool. 

1. Because of industrial interest in using the RAID acronym and because of their concerns about 
the restrictiveness of its "Inexpensive" component, RAID is often reported as an acronym for 
Redundant Arrays of Independent Disks [RAID96]. 
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FIGURE 1 Physical Components of a Disk Drive 

Arm 

Actuator 

Read/Write Head 

Surfaces 
(Media) 

Platter 

Spindle 

Positioning Motor 
(Voice Coil) 

Drive Motor 
(Constant RPM) 

1.2.1   Disk Technology 

Figure 1 shows the primary components of a typical disk drive. A disk consists of a 
stack of platters coated with magnetic media with data stored on all surfaces. The plat- 
ters rotate on a common spindle at constant velocity past the read/write heads (one per 
surface), each of which is fixed on the end of a disk arm. The arms are connected to a 
common shaft called an actuator. Applying a directional current to a positioning motor 
causes the actuator to rotate small distances in either direction. Rotating the actuator 
causes the disk heads to move, in unison, radially along the platters, thereby allowing 
access to a band spanning most of the coated surface of each platter. 

Figure 2 illustrates how data is typically organized on a disk. Part (a) shows how a block 
of sequential user data (almost always 512 bytes) is collected together and stored in a 
sector. A sector is the minimum-sized unit that can be read from or written to a disk 
drive. A header area in front of each sector contains sector identification and clock syn- 
chronization information, and a trailer area contains an error correcting code computed 
over the header and data. The set of sectors on a single surface at constant radial dis- 
tance from the spindle is called a track, and the set of all tracks at constant radial offset 
is called a cylinder. At current densities, a typical 3-1/2-inch diskhas 50-100 sectors per 
track, 1000-3000 cylinders, and 4-20 surfaces. 
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FIGURE 2 Data Layout on a Disk Drive 

(a) Grouping data into sectors, tracks, and cylinders 
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(b) Sequential sector layout 

In order to access a block of data, the drive-control electronics moves the actuator to 
position the disk heads over the correct cylinder, waits for the desired data to rotate 
under the heads, and then reads or writes the indicated sectors. Moving the actuator is 
called seeking and takes 1-20 ms depending on the seek distance. Current disks rotate at 
between 3600 and 7200 RPM, making the expected rotational latency (one half of one 
revolution) between 4.2 and 8.3 ms. Thus, for each access the disk must first seek to the 
indicated cylinder and then rotate to the start of the requested data. The combination of 
these two operations is referred to as positioning the disk heads. 

If a user access requests a full track's worth of data, the rotational latency can be elimi- 
nated by reading or writing the data in the order that the requested sectors pass under the 
heads, rather than waiting until the first sector rotates under the heads to commence the 
operation. This is called zero-latency operation or full-track I/O and can be extended to 
include the case where the access spans only part of a track. 

Note that the tracks near the outside of each surface have greater circumference than 
those near the spindle. A technique called zoned bit recording (ZBR) takes advantage of 
this and stores more sectors per track in the outer cylinders. This approach groups sets 
of 50-200 adjacent cylinders into zones with the number of sectors per track being con- 
stant within each zone but successively larger in the outer zones than the inner. 

Figure 2b illustrates the assignment of sequential data to sectors, tracks, and cylinders. 
Nearly all disks read or write only one head at time, that is, they do not access multiple 
heads in parallel, and so sequential user data is sequential in any given sector. Thus, as 
shown in the figure, sequential data starts at sector zero, proceeds around to the end of 
the track, moves to the next track (which is actually on the underside of the first platter), 

1. This is because the disk heads cannot be positioned independently, and thermal variations in 
the rigidity of the actuator, platters, and spindle make it difficult or impossible to keep all the disk 
heads simultaneously positioned over (heir respective tracks. There do exist a few disks that access 
multiple heads in parallel by careful management of head alignment [Fujitsu2360], but these are 
not commodity products and typically have lower density and higher cost per megabyte than stan- 
dard disks. 
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continues this way to the end of the cylinder, and then moves to the next cylinder and 
starts again. Note that in this example a rotational distance equal to one sector is skipped 
upon crossing a track boundary (moving from sector 7 to 8), and two sectors are skipped 
upon crossing a cylinder boundary (moving from sector 23 to 24). These gaps are called 
the track skew and cylinder skew. The data is laid out in this manner to assure that the 
drive-control electronics will have time to reposition the actuator when a user access 
spans a track or cylinder boundary. The track skew is shorter than the cylinder skew 
because only fine adjustments are necessary when switching to a new track within one 
cylinder, whereas switching to a new cylinder requires the actuator to be moved one full 
cylinder width and then fine-adjusted over the new track. Typical values for track and 
cylinder skew in current technology are about 0.5 and 1.5 ms, respectively. 

The interface electronics in a disk drive typically contain a buffer memory, varying in 
size from about 32 KB to about 1 MB, which serves two purposes. First, several disks 
may share a single path to the CPU, and the memory serves to speed-match the disks to 
the bus. In order to avoid holding the bus for long periods of time, a disk will typically 
read data into the buffer and then burst-transfer it to the CPU. The buffer serves the 
same purpose on a write operation: the CPU burst-transfers the data to the drive's buffer, 
and the drive writes it to the media at its own rate. Reading and writing to and from the 
buffer, instead of directly between the media and the bus, also eliminates rotational- 
position-sensing (RPS) misses [Buzen87], which occur in bufferless disks when the 
transfer path to the CPU is not available at the time the data arrives under the disk heads. 
The second purpose served by the buffer is as a cache memory [IBM0661, Maxtor89]. 
Applications typically access files sequentially, and so the disks comprising a storage 
subsystem typically observe a sequential access pattern as well. Thus after each read 
operation, the disk controller will continue to read sequential data from the media into 
the buffer. If the next block of requested data is sequential with respect to the previous 
block, the disk can often service it directly from the buffer instead of accessing the 
media. This yields both higher throughput and lower latency. Many disks generalize this 
reaaahead function so that the buffer becomes a full-fledged cache memory. 

1.2.2   Disk-Array Technology 

This section describes the structure and operation of disk arrays in detail. 

FIGURE 3 Disk-Array Architectures 

Port(s) to host computer(s) 
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1.2.2.1 Disk-Array Architecture 

Figure 3 illustrates two possible disk-array-subsystem architectures. Today's systems 
use the architecture of Figure 3 a in which the disks are connected via inexpensive, low- 
bandwidth (e.g., SCSI [ANSI86]) links to an array controller, which is connected via 
one or more high-bandwidth parallel buses (e.g., HIPPI [ANSI91]) to one or more host 
computers. Array controllers and disk buses are often duplicated (indicated by the dot- 
ted lines in the figure) so that they do not represent a single point of failure [Katzman77, 
Menon93]. The controller functionality can also be distributed amongst the disks of the 
array [Cao93]. 

As disks get smaller [Gibson92], the large cables used by SCSI and other bus interfaces 
become increasingly unattractive. The system sketched in Figure 3b offers an alterna- 
tive. It uses high-bandwidth, bidirectional serial links for disk interconnection. This 
architecture scales to large arrays more easily because it eliminates the need for the 
array controller to incorporate a large number of string controllers. Further, by making 
each link bidirectional, it provides two paths to each disk without duplicating buses. 
Standards for serial-interface disks have emerged (P1394 [IEEE93], Fibre Channel 
Fibre91], DQDB [IEEE89]) and Seagate has begun shipping drives with serial inter- 
faces. As the cost of high-bandwidth serial connectivity is reduced, architectures similar 
to that of Figure 3b may supplant today's short, parallel bus-based arrays. 

In both organizations, the array controller is responsible for all system-related activity: 
controlling individual disks, maintaining redundant information, executing requested 
transfers, and recovering from disk or link failures. The functionality of an array con- 
troller can also be implemented in software executing on the subsystem's host or hosts. 

1.2.2.2 Defining the RAID Levels: Data Layout and ECC 
An array controller implements the abstraction of a linear address space. The array 
appears to the host as a linear sequence of data units, numbered 0 through N-B -1, 
where N is the number of disks in the array and B is the number of units of user data on 
a disk. Units holding ECC do not appear in the address space exported by the array con- 
troller; they are not addressable by the application program. The array controller trans- 
lates addresses in this linear space into physical disk locations (disk identifiers and disk 
offsets) as it performs requested accesses. It is also responsible for performing the 
redundancy-maintenance accesses implied by application write operations. We refer to 
the mapping of an application's logical unit of stored data to physical disk locations and 
associated ECC locations as the disk array's layout. 

Fundamental to all disk arrays is the concept of striping consecutive units of user data 
across the disks of the array [Kim86, Livny87, Patterson88, Gibson92, Merchant92]. 
Striping is defined as breaking up the linear address space exported by the array control- 
ler into blocks of some size and assigning the consecutive blocks to consecutive disks 
rather than filling each disk with consecutive data before switching to the next. The 
striping unit (or stripe unit) [Chen90b] is the maximum amount of consecutive data 
assigned to a single disk. The array controller has the freedom to set the striping unit 
arbitrarily; the unit can be as small as a single bit or byte, or as large as an entire disk. 
Striping has two benefits: automatic load balancing in concurrent workloads and high 
bandwidth for large sequential transfers by a single process. 
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Disk arrays achieve load balance in concurrent workloads (those that have many pro- 
cesses concurrently accessing the stored data) by selecting the stripe unit to be large 
enough that most small accesses are serviced by a single disk. This allows the indepen- 
dent processes to perform small accesses concurrently in the array, and as long as the 
processes' access patterns are not pathologically regular with respect to the striping unit, 
it assures that the load will be approximately evenly balanced over the disks. Thus, an 
iV-disk coarse-grain striped array can service N I/O requests in parallel, but each of them 
occurs at the bandwidth of a single disk. 

Arrays achieve high data rates in low-concurrency workloads by striping at a finer grain, 
for example, one byte or one sector. Such arrays are used when the expected workload is 
a single process requesting data in very large blocks. Fine-grain striping assures that 
each access uses all the disks in the array, which maximizes performance when the 
workload concurrency (number of processes) is one1. After the initial seek and rota- 
tional delay penalties associated with each access, a fine-grain-striped array transfers 
data to or from the CPU at N times the rate of a single disk. Therefore, a fine-grain- 
striped array can service only one I/O at any one time but is capable of reading or writ- 
ing the data at a very high rate. 

Patterson, Gibson, and Katz [Patterson88] classified redundant disk arrays into five 
types, called RAID Levels 1 through 5, based on the organization of redundant informa- 
tion and the layout of user data on the disks. This terminology has gained wide accep- 
tance [RAID93] and is used throughout this dissertation. The term "RAID Level 0" has 
since entered common usage to indicate a non-redundant array. Figure 4 illustrates the 
layout of data and redundant information for the six RAID levels. The remainder of this 
section briefly introduces each of the levels, and subsequent sections provide additional 
details. 

RAID Level 1, also called mirroring or shadowing, is the standard technique used to 
achieve fault-tolerance in traditional data-storage subsystems [Katzman77, Bitton88]. 
The disks are grouped into mirror pairs, and one copy of each data block is stored on 
each of the disks in the pair. To unify the taxonomy, RAID Level 1 defines the user data 
to be block-striped across the mirror pairs, but traditional mirrored systems instead fill 
each disk with consecutive user data before switching to the next. This can be thought of 
as setting the stripe unit to the size of one disk. RAID Level 1 is a highly reliable organi- 
zation since the system can tolerate multiple disk failures (up to N/2) without losing 
data, so long as no two disks in a mirror pair fail. It can be generalized to provide multi- 
ple-failure tolerance by maintaining more than two copies of each data unit. Its draw- 
back is that its cost per megabyte of storage is at least double that of RAID Level 0. 

1. Since the host views (he array as one large disk, it never attempts to read or write less than one 
sector, and hence every user access uses all the disks in the array. Note (hat one sector is the mini- 
mum unit that can be read from or written to an individual disk, and so a fine-grain-striped array 
typically disallows accesses (hat are smaller than N times the size of one sector, where N is (he 
number of disks in the array. This rarely poses a problem since fine-grain striped arrays are typi- 
cally used in applications where the average request size is very large. 
2. Editor's Note: Mark Holland's thesis did not include a description of RAID Level 6, a level 
which offers protection from two disk failures. 
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RAID Level 2 provides high availability at lower cost per megabyte by utilizing well- 
known techniques used to protect main memory against transient data loss. The disks 
comprising the array are divided into data disks and check disks. User data is bit- or 
byte-striped across the data disks, and the check disks hold a Hamming error correcting 
code [Peterson72, Gibson92] computed over the data in the corresponding bits or bytes 
on the data disks. This reduces the storage overhead for redundancy from 100% in mir- 
roring to a value in the approximate range of 25-40% (depending on the number of data 
disks) in RAID Level 2 but reduces the number of failures that can be tolerated without 
data loss. As will be seen, the reliability and performance of such a system can still be 
very high. It can be extended to support multiple-failure toleration by using an n-failure- 
tolerating Hamming code, which of course increases the capacity overhead for redun- 
dancy and the computational overhead for computing the codes. 

Thinking Machines Corporation's Data Vault storage subsystem [TMC87] employed 
RAID Level 2, but this organization ignores an important fact about failure modes in 
disk drives. Since disks contain extensive error-detection and -correction functionality, 
and since they communicate with the outside world via complex protocols, the array 
controller can directly identify failed disks from their status information or by their fail- 
ure to adhere to the communications protocol. A system in which failed components are 
self-identifying is called an erasure channel, to distinguish it from an error channel, in 
which the locations of the errors are not known. An n-failure-detecting code for an error 
channel becomes an «-failure-correcting code when applied to an erasure channel 
[Gibson89, Peterson72]. RAID Level 3 takes advantage of this fact to reduce the storage 
overhead for redundancy still further. 

In RAID Level 3, user data is bit- or byte-striped across the data disks, and a simple par- 
ity code is used to protect against data loss. A single check disk (called the parity disk) 
stores the parity (cumulative exclusive-or) over the corresponding bits on the data disks. 
This reduces the capacity overhead for redundancy to 1/N. When the controller identi- 
fies a disk as failed, it can recover any unit of lost data by reading the corresponding 
units from all the surviving disks, including the parity disk and XORing them together. 
To see this, assume that disk 2 in the RAID Level 3 diagram within Figure 4 has failed, 
and note that 

(P0_4 = d0®dl®d2®d3®d4)=*(d2 = d0®dl®p0_4@di®d4) 

Multiple-failure tolerance can be achieved in RAID Level 3 by using more than one 
check disk and a more complex error-detecting/correcting code such as a Reed-Solomon 
[Peterson72] or MDS code [Burkhard93, Blaum94]. RAID Level 3 has very low storage 
overhead and provides very high data-transfer rates. Since user data is striped on a fine 
grain, each user access uses all the disks in the array, and hence only one access can be 
serviced at any one time. Thus this organization is best suited for applications such as 
scientific computation, in which a single process requests a large amount of sequential 
data from the array. 

Because all accesses use all disks in RAID Level 3, the disk heads move in unison, and 
so the cylinder over which the heads are currently located is always the same for all 
disks in the array. This assures that the seek time for an access will be the same on all 
disks, which avoids the condition in which some disks are idle waiting for others to fin- 
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ish their portion of an access. In order to assure that rotational latency is also the same 
for each access on each disk, systems using RAID Level 3 typically use phase-locked 
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FIGURE 4 Data and Redundancy Organization in RAID Levels 0 through 5 
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RAID Level 3: Byte-Interleaved Parity 

The figure shows the first few units on each disk in each of the RAID levels. 
"D" represents a block of user data (of unspecified size, but some multiple of 
one sector), "d" a bit or byte of user data, "hx-y" a Hamming code computed 
over user data bits/bytes x through y, "px-y" a parity (exclusive-or) bit/byte 
computed over data blocks x through y, and "Px-y" a parity block over user 
data blocks x through y. Note from these definitions that the number of bytes 
represented by each individual box and label in the above diagrams varies with 
the RAID level. The numbers on the left indicate the offset into the disk, 
expressed in stripe units. Shaded blocks represent redundant information, and 
non-shaded blocks represent user data. 
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FIGURE 4 Cont. Data and Redundancy Organization in RAID Levels 0 through 5 
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(Left-Symmetric) 

Level 0 is non-redundant and therefore not fault-tolerant. Level 1 is simple mirror- 
ing in which two copies of each data block are maintained. Level 2 uses a Hamming 
error-correction code to achieve fault tolerance at a lower capacity overhead than 
Level 1. Levels 3 through 5 exploit the fact that failed disks are self-identifying. 
Thus Levels 3 through 5 achieve fault tolerance using a simple parity (exclusive-or) 
code, lowering the capacity overhead to only one disk out of six in this example. 
Levels 3 and 4 are distinguished only by the size of the striping unit: one bit or one 
byte in Level 3 and one block in Level 4. In Level 5, the parity blocks rotate through 
the array rather than being concentrated on a single disk to avoid throughput loss 
due to contention for the parity drive. 

loop circuitry to synchronize the rotation of the spindles of the disks comprising the 
array. Many disks currently on the market support this spindle synchronization. 

RAID Level 4 is identical to Level 3 except that the striping unit is relatively coarse- 
grained (perhaps 32KB or larger [Chen90b]), rather than a single bit or byte. The block 
of parity that protects a set of data units is called a parity unit. A set of data units and 
their corresponding parity unit is called a parity stripe. RAID Level 4 is targeted at 
applications like on-line transaction processing (OLTP), in which a large number of 
independent processes concurrently request relatively small units of data from the array. 
Since the striping unit is large, the probability that a single small access will use more 
than one disk is low, and hence the array can service a large number of accesses concur- 
rently. This organization is also effective for workloads that are predominantly small 
accesses but contain some fraction of larger accesses. The array services concurrent 
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small accesses in parallel but achieves a high data rate on the occasional large access by 
utilizing many disk arms. 

In RAID Level 4, each disk typically services a different access, and so, unless the 
workload applied contains a significant fraction of large accesses, the heads do not 
remain synchronized. Consequently, there is no compelling reason to synchronize the 
spindles either. However, spindle synchronization never degrades performance and can 
improve it on large accesses; disks arrays typically use it whenever the component disks 
support it. 

The problem with RAID Level 4 is that the parity disk can be a bottleneck in workloads 
containing a significant fraction of small write operations. Each update to a unit of user 
data implies that the corresponding parity unit must be updated to reflect the change. 
Thus the parity disk sees one update operation for every update to every data disk, and 
its utilization due to write operations is N-l times larger than that of the data disks. This 
does not occur in RAID Level 3, since every access uses every disk. To solve this prob- 
lem, RAID Level 5 distributes the parity across the disks of the array. This assures that 
the parity-update workload is as well balanced across the disks as the data-update work- 
load. 

In RAID Level 5, there are a variety of ways to lay out data and parity such that parity is 
evenly distributed over the disks [Lee91]. The structure shown in Figure 4 is called the 
left-symmetric organization and is formed by first placing the parity units along the 
diagonal and then placing the consecutive user data units on consecutive disks at the 
lowest available offset on each disk. This method for assigning data units to disks 
assures that, if there are any accesses in the workload large enough to span many stripe 
units, the maximum possible number of disks will be used to service them. 

RAID Levels 2 and 4 are of less interest than the others because levels 3 and 5 provide 
better solutions, respectively. We omit Levels 2 and 4 from the remaining discussion. 

1.2.2.3   Reading and Writing Data in the Different RAID Levels 
This section describes the techniques used to read and write data in the different RAID 
levels, both when the array is fault-free ("fault-free mode") and when it contains a single 
failed disk ("degraded mode"). The focus is on the techniques used to maintain parity 
and to continue operation in the presence of failure. This section uses the terms "read 
throughput" and "write throughput" to indicate the maximum rates at which data can be 
read from or written to the array. 

In all cases, the array controller maps the linear array address and access type supplied 
by the host (the "user" read or write) to the indicated set of operations on physical disks 
(the corresponding "disk" reads and/or writes). In RAID Level 0, the set of reads or 
writes so generated can be immediately and concurrently initiated since there is no par- 
ity to maintain and no possibility of continuing operation in the presence of failure. 
Thus the read throughput and write throughput of a RAID Level 0 array are both N 
times the throughput of a single disk. In Levels 1, 3, and 5, the disk operations triggered 
by a user read or write operation are more complex, especially in the presence of a disk 
failure, and often must be sequenced appropriately. 
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1.2.2.3.1 RAID Level 1 

Figure 5 illustrates the different read and write operations in RAID Level 1. In fault-free 
mode, the controller must send user write operations to both disks. This reduces the 
maximum possible write throughput to 50% of that of RAID Level 0. The two write 
operations can, in general, occur concurrently, but some systems perform them sequen- 
tially in order to guarantee that the old data will be recoverable should the first write fail. 

FIGURE S Read and Write Operations in RAID Level 1 (mirroring) 
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Typically, read requests are sent to only one of the two disks in the pair so that the other 
will be free to service other read operations. The controller can service user reads in 
fault-free mode from either copy of the data. This flexibility allows the controller to 
improve throughput by selecting, for each user read operation, the disk that will incur 
the least positioning overhead [Bitton88, Bitton89]. This is frequently called the short- 
est-seek optimization and can improve read throughput by up to about 15% over RAID 
Level 0 [Chen90a]. 

In degraded mode, the controller sends user write operations that target a unit with one 
copy on the failed disk only to the surviving disk in the pair instead of to both. This does 
not affect the utilization on the surviving disk because it does not absorb any write traf- 
fic that it would not otherwise encounter. However, in the presence of a disk failure, the 
surviving disk must absorb, in addition to its regular workload, all the read traffic tar- 
geted at the failed drive in fault-free mode. In read-intensive workloads, this can cause 
the utilization on the surviving disk to double. User reads and writes that do not target 
any units on the failed disk occur as if the array were fault-free. 
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FIGURE 6 Read and Write Operations in RAID Level 3 (bit-interleaved parity) 
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The diagonal lines in the figure indicate that when the host accesses (reads or writes) a 
block of data consisting of bits 0 through n-1, disk 0 services bits 0, 3, 6, ..., n-3, disk 
1 services bits 1, 4, 7 n-2, and disk 2 services bits 2, 5, 8, ..., n-1. The array con- 
troller arranges for the correct bits to read from or write to the correct drive. On a write 
operation, the controller writes to disk 3 a block containing the following bits: 
(0ffil©2), (3©4©5), (6©7©8), ..., ((n-3)©(n-2)ffi(n-l)). Note that the controller 
implements this bit-level parity operation using only sector-sized accesses on the 
disks; so n must be a multiple of 8-N-S, where N is the number of disks in the array and 
S is the number of bytes in a sector. The controller typically enforces this condition 
since the only alternative is to use read-modify-write operations on the individual disks 
which drastically reduces efficiency. 

1.2.2.3.2 RAID Level 3 

Figure 6 illustrates reads and writes in RAID Level 3. The following discussion assumes 
that each user access is some multiple of (N-l)-S in size, where N is the number of disks 
in the array and S is the number of bytes in a sector (almost always 512). This is because 
each access uses all data disks, and the minimum sized unit that can be read from or 
written to a disk is one sector. If the array is to support accesses that are not a multiple of 
this size, the controller must handle any partial-sector updates via read-modify-write 
operations, which can degrade write performance. 

In fault-free mode, user write operations update the old data in place. The controller 
updates the parity disk by computing the cumulative XOR of the data being written to 
each drive and writing the result to the parity disk concurrently with the write of the user 
data to the data disks. The controller may perform this XOR operation before the write 
is initiated or as the data flows down to the disks [Katz93]. Because the XOR happens at 
electronic speeds (a few microseconds per complete user access) but the disk runs at 
mechanical speeds (milliseconds per access), this computation typically has no measur- 

28 

Version 1.0 

RAIDframe: A Rapid Prototyping Tool for RAID Systems 

6/24/96 



Technology Background 

able effect on the performance of the array. User read operations simply stream the data 
into the controller; the parity disk remains idle during this time. 

A degraded-mode user write operation in RAID Level 3 occurs in exactly the same 
manner as in fault-free mode except that the controller suppresses the write to the failed 
disk. A degraded-mode user read is serviced by reading the parity and the surviving data 
and XORing them together to reconstruct the data on the failed drive. Disk arrays that 
stripe data on a fine grain (a bit or a byte) have the property that their performance in 
degraded mode is not significantly different than their performance in fault-free mode. 
This is because the controller accesses all disks during every access in any case, and so 
supporting degraded-mode operation simply amounts to modifying the bit streams sent 
to and from each drive. The XOR operations that occur in degraded mode are typically 
performed as the data streams into or out of the controller, and so they do not signifi- 
cantly increase access times. 

1.2.2.3.3 RAID Level 5 
Figure 7 illustrates the various translations of user accesses to disk accesses in RAID 
Level 5. User write operations in fault-free mode are handled in one of three ways, 
depending on the number of units being updated. In all cases, the update mechanisms 
are designed to guarantee the property that after the write completes, the parity unit 
holds the cumulative XOR over the corresponding data units, or 

new        1        2       3 N-l 

If the update affects only one data unit, the prior content of that unit is read and XORed 
with the new data about to be written. This produces a map of the bit positions that need 
to be toggled in the parity unit in order that the parity unit should reflect the new data. 
These changes are applied to the parity unit by reading its old contents, XORing in the 
previously generated map, and writing the result back to the parity unit. The correctness 
of this transformation is shown as follows where a new data block V>2 nm is being writ- 
ten to a unit on disk number 2 in an N-disk array: 

new       old    y   2, old       2, new' 

=> P       = ZX. ©(£>,,    ,.®D0    ;j)®D-> ©D~ ©...©!>,, new       1     v   2, old       2, old'       2, new       3 N 

new        1        2, new       3 N 

This parity-update operation is called a read-modify-write and is easily generalized to 
the case where the user access targets more than one data unit. In this case, the control- 
ler reads the previous contents of all data units to be updated and then XORs them 
together with the new data prior to reading, XORing, and re-writing the parity unit. 
Read-modify-write updates are used for all fault-free user write operations in which the 
number of data units being updated is less than half the number of data units in a parity 
stripe. 
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FIGURE 7 Read and Write Operations in RAID Level 5 (rotated parity) 
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The preread-and-then-write operation performed on the data unit is typically done atom- 
ically to minimize the positioning overhead incurred by the access [Stodolsky94]. This 
is also true for the parity unit. Since the old data must be available to perform the parity 
update, the data preread-and-write is typically allowed to complete (atomically) before 
the parity preread-and-write is started. 

In applications that tend to read blocks of data shortly before writing them, the perfor- 
mance of the read-modify-write operation can be improved by acquiring the old con- 
tents of the data unit to be updated from the system's buffer cache rather than reading it 
from disk. This reduces the number of disk operations required from four to three. This 
situation is very common in OLTP environments [TPCA89, Menon92c]. 

When the number of data units being updated exceeds half of one parity stripe, there is a 
more efficient mechanism for updating the parity. In this case, the controller writes the 
new data without pre-reading the old contents of the written unit, reads and XORs 
together all of the data units in the parity stripe that are not being updated, XORs in to 
this result each of the new data units to be written, and writes the result to the parity 
unit. The new parity that is written is therefore the cumulative XOR of the new data 
units and the data units not being updated, which is correct. This is called a reconstmct- 
write operation because of its similarity to the way failed data is recovered. 
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The final mechanism used to update parity in a fault-free RAID Level 5 array is the 
degenerate case of the reconstruct-write that occurs when a user access updates all data 
units in a parity stripe. In this case, the controller does not need to read any old data but 
instead simply updates each data unit in place and then XORs together all the new data 
units in buffer memory and writes the result to the parity unit. This is often called a 
large write and is the most efficient form of update. 

In degraded mode, a user read requesting data on the failed disk is serviced by reading 
all the units in the parity stripe, including the parity unit, and XORing them together to 
reconstruct the requested data unit(s). User reads that do not request data on the failed 
disk are serviced normally. User write requests updating data on the failed drive are ser- 
viced via reconstruct-writes, independently of the number of units being updated, with 
the write to the failed disk suppressed. Since the data cannot be written, this method of 
update causes the new data to be reflected in the parity so that the next read will return 
the correct data. User write requests not updating data on the failed drive are serviced 
normally except in the reconstruct-write case where the parity needs to be read. When a 
user write request updates data for which the parity has failed, the data is simply written 
in place since no parity-maintenance operations are possible. 

1.2.2.4 Comparing the Performance of the RAID Levels 

Table 1, adapted from Patterson, Gibson, and Katz [Patterson88], compares the fault- 
free performance and capacity overhead of the RAID levels. The values are all first- 
order approximations since there are a wide variety of effects related to seek distance, 
head synchronization, access patterns, etc., that influence performance, but the table 
provides a baseline comparison. It's clear that RAID Level 1 offers better performance 
on concurrent, small-access workloads but does so at a high cost in capacity overhead. 

1.2.2.5 On-line Reconstruction 

The preceding has shown how a disk array operates, and how it may continue to operate 
in the presence of a single disk failure. The next step to take is that the array should have 
the ability to recover from the failure, that is, restore itself to the fault-free state.1 Fur- 
ther, a disk array should be able to effect this recovery without taking the system off- 
line. This is implemented by maintaining one or more on-line spare disks in the array. 
When a disk fails, the array switches to degraded mode as described above but also 
invokes a background reconstruction process to recover from the failure. This process 
successively reconstructs the data and parity units that were lost when the disk failed 
and stores them on the spare disk. The mechanism by which this is accomplished is 
called the reconstruction algorithm. Once all the units have been recovered, the array 

1. Editor's Note: The term "recovery" traditionally encompasses more than the process of the 
array restoring itself to the fault-free state following a single disk failure: it also includes the pro- 
cess by which the array controller handles software errors during operation. Mark Holland limited 
the term here, however, to the specific case of reconstructing data lost on a failed disk. To clarify 
this distinction further: recovering from the physical loss of a disk can take the array anywhere 
from several minutes to several hours. Handling errors, on the other hand, will take the array milli- 
seconds, occurring transparently to the host or user. Automating error recovery is central to our 
design of RATDframe and is covered in greater detail in Chapter 2. To lessen confusion, we will 
use the term "recovery" in its broader sense throughout the rest of the document 
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returns to normal performance and is once again single-failure tolerant, and so the 
recovery is complete. 
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TABLE 1. First-Order Comparison Between the RAID Levels for an W-disk Array 

Large Accesses 
RAID 
Level     Read      Write      RMW 

Small Accesses 

Read      Write     RMW 

Capacity 
Overhead 
(%) 

Max 
Concurrency 

0            100         100         100 100         100         100 0 N 

1            100+      50           66 100+        50           66 100 N 

3 100 100 100        n/a n/a n/a 100/N 1 

5 100        100 100        100 25 33 100/N N 

The table reports performance numbers as percentages of RAID Level 0 performance. 
The "RMW" column gives (he performance of the array when the application reads each 
data unit before writing it, which eliminates the need for the data preread. The capacity 
overheads are expressed as a percentage of the user data capacity of the array. The concur- 
rency figures indicate the maximum number of user I/Os that can be simultaneously exe- 
cuted. The table reports the maximum concurrency numbers for Levels 1 and 5 as N 
because such arrays can support N concurrent reads but writes involve multiple I/O opera- 
tions, and this reduces the maximum supportable concurrency. 

1.2.2.6   Related Work: Variations on These Organizations 

This section summarizes industrial and academic research on disk arrays. It defines nine 
categories of investigation and presents brief summaries of some papers in each. These 
studies serve as background in the area of redundant disk arrays. 

1.2.2.6.1 Multiple-Failure Toleration 

Each of the RAID levels defined above is only single-failure tolerant; in each organiza- 
tion there exist pairs of disks such that the simultaneous failure of both disks results in 
irretrievable data loss. This is adequate in most environments because the reliability of 
the component disks is high enough that the probability of incurring a second failure 
before a first is repaired is low. There are, however, three reasons why single-failure tol- 
erance may not be adequate for all systems. First, recalling that the reliability of the 
array falls as the number of disks increases, the reliability of very large single-failure 
tolerating arrays may be unacceptable [Burkhard93]. Second, applications in which data 
loss has catastrophic consequences may mandate a higher degree of reliability than can 
be delivered using the RAID architectures described above. Finally, disk drives some- 
times exhibit latent sector failures in which the contents of a sector or group of sectors 
are irretrievably lost, but the failure is not detected because the data is never accessed. 
The rate at which this occurs is very low, but if a latent sector failure is detected on a 
surviving disk during the process of reconstructing the contents of a failed disk, the cor- 
responding data becomes unrecoverable. Multiple-failure toleration allows recovery 
even in the presence of latent sector failures. 

The drawback of multiple-failure toleration is that it degrades write performance: in an 
«-failure-tolerating array, every write operation must update at least n+1 disks so that 
some record of the write will remain should n of those n+1 disks fail [Gibson89]. Thus 
the write performance of the array decreases in proportion to any increase in n. 

Gibson et. al. [Gibson89] treated multiple-failure tolerance as an error-control coding 
problem [Peterson72]. They restricted consideration to the class of codes that (1) do not 
encode user data but instead simply store additional "check" information in each parity 
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stripe, (2) use only parity operations (modulo-2 arithmetic) in the computation of the 
check information, and (3) incur exactly n+1 disk writes per user write. They defined 
three primary figures of merit on the codes used to protect against data loss: the mean- 
time-to-data-loss, which is the expected time until unrecoverable failure in an array 
using the indicated code, the check-disk overhead, which is the ratio of disks containing 
ECC to disks containing user data, and the group size, which is the number of units in a 
parity stripe, including check units, supportable by the code. They demonstrated codes 
for double- and triple-error toleration based on three primary techniques, which they 
call N-dimensional parity, full-n codes, and the additive-3 code. Bach of these is a tech- 
nique for defining the equations that relate each check bit to a set of information bits. In 
comparing the techniques according to the figures of merit, they show multiple-order- 
of-magnitude reliability enhancements in moving from single- to multiple-failure toler- 
ation and achieve this using relatively low check-disk overheads ranging from 2% to 
30%. 

Burkhard and Menon [Burkhard93] described two multiple-failure tolerating schemes 
as examples of maximum-distance-separable (MDS) codes [MacWilliams78]. The first 
uses ^file-dispersal matrix to distribute a block of data (a,file in their terminology) into 
n fragments such that any m < n of them suffice to reconstruct the entire file. An array 
constructed using such a code can tolerate (n-m) concurrent failures without losing data. 
The second, described fully by Blaum et. al. [Blaum94], clusters together sets of iV-1 
parity stripes where N is the number of disks in the array and stores two parity units per 
parity stripe. The first parity unit holds the same information as in RAID Level 5, and 
the second holds parity computed using one data unit from each of the parity stripes in 
the cluster. Blaum et. al. showed that this scheme tolerates two simultaneous failures, is 
optimal with respect to check-disk overhead and update penalty, and uses only XOR 
operations in the computation of the parity units. 

1.2.2.6.2 Addressing the Small-Write Problem 

Recall from Section 1.2.2.3.3 that small write operations in RAID Level 5 incur up to 
four disk operations: data preread, data write, parity preread, and parity write. This 
degrades the performance of small write operations by a factor of four when compared 
to RAID Level 0. Several organizations have been proposed to address this problem. 

Menon and Kasson [Menon89, Menon92a] proposed a technique based on floating the 
data and/or parity units to different disk locations upon each update. Normally, the con- 
troller services a small write operation by pre-reading the old data, waiting for the disk 
to spin through one revolution, writing the new data back to the original location, and 
then repeating this process for the parity unit. In the floating data/parity scheme, the 
controller reserves (leaves unoccupied) some number of data units on each track of each 
disk. After each preread operation, the array controller writes the new data to a rotation- 
ally convenient free location rather than writing it in place. This saves up to one full 
rotation (10-17 milliseconds of disk time) per preread-write pair. An analytical model in 
the paper shows that a free unit can typically be found within about two units of the 
location of the old data. This makes each preread/write pair take only slightly longer 
than a single access and thus can potentially nearly double the small-write performance 
of the array. Menon and Kasson concluded that the best capacity-performance tradeoff 
is achieved by applying this floating only to the parity unit rather than to both data and 
parity. A potential problem with this approach is that the array controller must be inti- 
mately familiar with the geometry and performance characteristics of the component 
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disks as well as the latencies involved in communicating with them. This requires a high 
degree of predictability from the disks and makes the design difficult to verify, tune, and 
maintain. 

Another technique proposed to address the small-write problem is to eliminate them 
from the workload. The Log-Structured File System (LFS) [Rosenblum91, Seltzer93] 
has the potential to achieve this by organizing the file system as an append-only log. The 
motivation behind this file system is that a disk drive is able to service sequential 
accesses at about twenty times the bandwidth of random accesses. All user writes are 
held in memory until enough have accumulated to allow them to be written to disk using 
a single large update. Over time, this causes the disk to fill with dead data, and so a 
cleaner process periodically sweeps through the disk, compacts live files into sequential 
extents, and reclaims dead space. This technique improves write performance by caus- 
ing all writes to be sequential and can potentially improve read performance by causing 
files written contiguously to end up contiguous on the disk. When the underlying stor- 
age mechanism is a disk array, the only writes that are encountered are large enough to 
span entire parity stripes, and thus the large-write optimization always applies. 

Stodolsky et. al. [Stodolsky94] adapted the ideas behind LFS to the problem of parity 
maintenance and proposed an approach based on logging the parity changes generated 
by each write operation rather than immediately updating the parity upon each user 
write. In this scheme, the controller reads the old data (or acquires it from the buffer 
cache) and writes the new data as before. It then XORs together the old and new data to 
produce & parity-update record, which it appends to a write-only buff er rather XORing 
it with the old parity. The controller spills the entire buffer to disk when it becomes full. 
No parity operations are performed for each user write, but some of the array's capacity 
(about one disks' worth) must be reserved to hold the parity update logs. Eventually the 
log space in the array becomes full, at which time the controller empties it by reading 
the log records and the corresponding parity units, XORing them together, and writing 
the result back out to the parity locations. Note that the controller buffers only parity 
information and so is not vulnerable to data loss due to power failure. While in RAID 
Level 5 parity is updated using a large number of small, random accesses, in parity log- 
ging it is updated using a smaller number of large, sequential accesses. The paper 
showed simulation results indicating that this technique can allow the performance of 
RAID Level 5 arrays to approach, or under certain conditions even exceed, that of mir- 
roring. 

Menon and Cortney [Menon93] described the architecture of a controller that improves 
small-write performance by deferring the actual update operations for some period of 
time after the application performs the write. In this approach, the controller stores the 
data associated with a write in a nonvolatile, fault-tolerant cache memory in the array 
controller. Immediately upon storing the data in the cache, the host computer is told that 
the write is complete even though the data has not yet been sent to disk. The controller 
maintains the data block in the cache until another block replaces it, at which time it is 
written ("destaged") to disk using the four-operation RAID Level 5 update. This 
improves write performance in two ways. First, if the host performs another write to the 
same unit prior to destage, the new data can simply replace the old in the cache, and the 
first write need not occur at all. Second, if the host writes several units in the same track, 
they are all destaged at the same time, which greatly improves disk efficiency. This is an 
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expensive solution, suitable only for large-scale systems because of the necessity of 
incorporating the large, nonvolatile, fault-tolerant cache. 

1.2.2.6.3 Spare-Space Organizations 

RAID Level 5 arrays typically maintain one or more on-line spare disks so that recon- 
struction can be immediately initiated should one of the primary disks fail. This spare 
disk can be viewed as a system resource that is grossly underutilized; the throughput of 
the array could be increased if this disk is used to service user requests. 

Menon and Kasson [Menon92b] described and evaluated three alternatives for organiz- 
ing the spare space in a RAID Level 5 disk array. The first, dedicated sparing, is the 
default approach of dedicating a single disk as the spare. In the second, called distrib- 
uted sparing, the spare space is distributed amongst the disks of the array, much in the 
same manner as parity is distributed in RAID Level 5. In the third technique, parity 
sparing, the array is divided into at least two independent groups, and when a failure 
occurs the affected group is merged into another with the parity space in the surviving 
group serving as the spare space for the group containing the failure. In the latter two 
organizations, the completion of reconstruction returns the array to fault-free mode, but 
in a different configuration than before the failure. For this reason, they require a sepa- 
rate copyback phase in the reconstruction process to restore the array to the original con- 
figuration when the failed disk has been physically replaced. The paper concluded that 
distributed sparing was preferable to parity sparing due to improved reconstruction- 
mode performance. 

1.2.2.6.4 Distributing the Functionality of the Array Controller 

The existence of a centralized array controller in both of the architectures shown in 
Figure 2 has two disadvantages: it constitutes either a single point of failure or an 
expensive system resource that must be duplicated, and its performance and connectiv- 
ity limit the scalability of the array to larger numbers of disks. Cao et. al. [Cao93] 
described a disk-array architecture they call TickerTAIP that distributes the controller 
functionality amongst several loosely coupled controller nodes. Each node controls a 
relatively small set of disks (one SCSI string, for example) and communicates with the 
other nodes via a small, dedicated interconnect network. Under the direction of the dis- 
tributed controllers, data and parity units as well as control information pass through the 
interconnect to effect the RAID read and write algorithms. The paper demonstrated the 
elimination of several performance bottlenecks through the use of the distributed-con- 
trol architecture. 

1.2.2.6.5 Striping Studies 

A variety of studies have looked at how to select the striping unit in a redundant disk 
array. The choice is always made based on the characteristics of the expected workload. 

Gray, Horst, and Walker [Gray90] objected to the notion of striping the data across the 
disks comprising an array, arguing that fine-grain striping is inappropriate for transac- 
tion processing systems because it causes more than one arm to be used per disk request 
and that coarse-grain striping has several drawbacks when compared to non-striped 
arrays. These drawbacks stem primarily from the inability to address individual disks 
directly from software. They include the inability to archive and restore a single disk, 
the software problems inherent in re-coding existing device drivers to enable them to 
handle the abstraction of one very large, highly concurrent disk, the problem of design- 
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ing single channels fast enough to absorb all bandwidth produced by the array, etc. They 
proposed instead an organization in which the parity is striped across the array in large 
contiguous extents at the end each disk. The data is not striped at all; the controller allo- 
cates sequential user data sequentially on each disk and fills each disk with data before 
using the next. This is essentially equivalent to RAID Level 5 with a very large striping 
unit, but it allows each disk to be addressed individually. The paper conceded that none 
of these problems are insurmountable in RAID arrays but asserted that designers cannot 
ignore the problem of retrofitting existing systems to use disk arrays. 

Chen and Patterson [Chen90b] developed simple rules of thumb for selecting the strip- 
ing unit in a nonredundant disk array. They expect that these rules will hold, perhaps 
with some modification, for redundant arrays as well. The study used simulation to eval- 
uate the performance of a block-striped RAID Level 0 on many different, synthetically 
generated workloads and then investigated choices of the striping unit that maximize the 
minimum observed throughput across all these workloads. They found that a good rule 
of thumb is to select the striping unit according to the formula 

Size = S ■ avg positioning time ■ disk xfer rate ■ (concu rrency -1) + 1 sector 

where S is a constant typically around 1/4. Note that the stripe-unit size takes on its min- 
imum value (one sector) at concurrency one in order to assure that the single requesting 
process is able to utilize all the disks. The size of the striping unit increases as the con- 
currency rises in order to gradually reduce the probability that any particular access will 
use more than one disk arm. 

Lee and Katz [Lee91] described several different strategies for placing the parity units 
amongst the striped data units. They found that the most significant performance effect 
of varying parity placement was the number of disks used for large reads and writes; 
some placement strategies caused fewer than the maximum number of possible disks to 
be used on large accesses, and these suffered in performance. The left-symmetric parity 
placement illustrated in the RAID Level 5 case of Figure 4 was among the best of the 
options. 

Merchant and Yu [Merchant92] noted that it is common for a database workload to con- 
sist of two components: transactions and ad hoc, read-only queries into the database. 
Transactions generate small, randomly distributed accesses into the array, whereas the 
ad hoc queries often scan significant portions of the database. To efficiently handle this 
workload combination, they proposed a dual striping strategy for mirrored arrays where 
the size of the stripe unit is small in one copy (4 KB) and large in the other (32 KB). The 
authors note that using a large stripe unit is efficient for relatively large accesses because 
it reduces the number of actuators used, but under a small-access model it can cause 
workload imbalance amongst the disks. They assert that the converse is true as well: a 
small stripe unit achieves good workload balance but causes too many actuators to be 
used per large access. Thus they service the transactions using the small-stripe-unit copy 
of the data and the ad hoc queries with the large-stripe-unit copy. Merchant and Yu eval- 
uated this organization, using both analytical modeling and simulation, with a syntheti- 
cally generated workload that adhered to the assumptions made in designing the striping 
strategy. They found substantial benefits to this approach. 
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1.2.2.6.6 Disk-Array Performance Evaluation 

Chen et. al. [Chen90a] tackled the thorny problem of comparing RAID Level 5 to RAID 
Level 1. The comparison is difficult to make because equating the number of actuators 
causes the array capacities to differ and vice versa. The authors addressed this problem 
by choosing to equate user data capacity and reporting two metrics: throughput at a 
fixed 90th-percentile response time and throughput per disk at a fixed 90th-percentile 
response time. Their motivation for this was the assumption that systems will dictate a 
minimum acceptable capacity and level of responsiveness and will desire the maximum 
possible throughput subject to these constraints. The authors evaluated the architectures 
by implementing them in real hardware and applying synthetically generated workloads 
that varied in the parameters of interest. The results largely validated the simple model 
of Patterson et. al. [Patterson88], which is approximated in Table 1. They further 
showed that due to the shortest-seek optimization, the RAID Level 1 outperformed the 
RAID Level 5 on small-access dominated-workloads, whereas the reverse was true on 
large-access workloads due to more efficient write operations in RAID Level 5. 

1.2.2.6.7 Reliability Modeling 

Patterson et. al. [Patterson88] derived a simple expression for the mean-time-to-data- 
loss (MTTDL) in a redundant disk array: 

WTTFdis/ MTTF 
RAID     N N.   , (N , -V\MTTR 

groups   diskspergroup^   diskspergroup     ' disk 

where MTTFji^ is the mean time to failure of a component disk; Ngroups is the number 
of independent groups in the array, each of which contains N'diskspergroup disks, includ- 
ing the (possibly distributed) parity disk; and MTTR^isk ls tne mean time to repair 
(reconstruct) a disk failure. This model assumes that disk failure rates are identical, 
independent, exponentially distributed random variables. In arrays that maintain one or 
more on-line spare disks, the repair time can be very short, a few minutes to half an 
hour, and so the mean time to data loss can be very long. 

Schulze et. al. [Schulze89] noted that the time until data loss due to multiple simulta- 
neous disk failures, which is the only failure mode modeled by the above equation, is 
not an adequate measure of true reliability because the failure of other system compo- 
nents (array controllers, string controllers, cabling, air conditioning, etc.) can equally 
well cause data to be lost or become temporarily inaccessible. This paper estimated the 
reliability of each such component and derived simple techniques for building redun- 
dancy into the controllers, cabling, cooling, etc. so as to maximize the overall system 
reliability. 

Modeling the reliability of disk arrays was the one of the primary topics of Gibson's 
Ph.D. dissertation [Gibson92, Gibson93]. He analyzed all of the assumptions behind the 
simple equation given above, identified the conditions under which they do and do not 
hold, and derived new reliability models for conditions not previously covered. Specifi- 
cally, he investigated whether disk failure rates are truly exponentially distributed, 
derived reliability models for disk arrays with dependent failure modes, extended these 
models to take into account the possibility of spare-pool exhaustion, and investigated 
the reliability implications of both the number and the connectivity of the spare drives. 
He verified the models using Monte Carlo simulation of disk lifetimes and found good 
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agreement between the two. This work theoretically and empirically validated the use of 
the models and disk-array structures described above. 

1.2.2.6.8 Improving the Write-Performance of RAID Level 1 

As shown in Table 1, mirrored systems achieve only 50% of the write performance of 
nonredundant arrays because each write must be sent to two disks. This section 
describes several studies intended to improve this performance. Most of the ideas here 
relate to caching and deferring updates and so apply to parity-encoded arrays as well. 

Solworth and Orji proposed several variations on an organization to improve mirrored- 
array write performance. They first proposed implementing a large, nonvolatile, possi- 
bly fault-tolerant write-only disk cache dedicated exclusively to write operations 
[Solworth90]. In this scheme, the controller defers user write operations by holding the 
corresponding data in the cache until a user read operation moves the disk heads to the 
vicinity of the data to be written at which time it destages the data to disk. In this sense, 
this scheme is similar to the deferred-update techniques described by Menon and Cor- 
ney [Menon93] with the primary difference being that reads are not cached in Solworth 
and Orji's proposal, and the cache replacement policies are adapted to account for this. 
The authors do not address the question of whether some of the memory used for write- 
caching would be better used for read-caching. 

In two follow-on studies, Solworth and Orji proposed distorted mirrors [Solworth91] 
and doubly distorted mirrors [Orji93]. In the former, the controller updates data in place 
on the primary disk in a mirror pair but writes the data to any convenient location on the 
secondary drive. The controller maintains a data structure in memory describing the 
location of each block on the secondary drive. This approach reduces the total disk-arm 
time consumed in servicing a write request. The controller services small reads from 
either copy but services large reads from the primary copy only since consecutive blocks 
on the secondary are not, in general, sequential on the disk. In the latter (doubly dis- 
torted mirrors), the authors combined the ideas of a write-only cache and write-any- 
where semantics on the secondary drive to eliminate the necessity that the cache be 
nonvolatile and fault-tolerant. 

Polyzois, Bhide, and Dias [Polyzois93] proposed a modification to the deferred-write 
technique in which the two disk arms in a mirror pair alternate between reading and 
writing. Deferred writes accumulate in the cache for some period of time, and then the 
controller batches them together and writes them out to one drive. During this period, 
the other drive services all read operations. The two drives then switch roles: the first 
services reads, and the second destages deferred writes. This scheme yields very low 
latency access to data for moderate workloads because there is always one disk arm 
available to service user read requests and write operations incur only the latency 
required to install the data in the cache. 

1.2.2.6.9 Network File Systems Based on RAID 

Several studies have looked at extending the ideas of striping and parity protection to 
network file systems. This allows the file system to operate in the presence of server 
and/or network failures and provides for disaster recovery should all data stored at one 
site be permanently destroyed. It achieves this at lower disk cost that the standard 
approach of file duplication on multiple servers. 
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Stonebraker and Schloss [Stonebraker90] proposed an organization that is essentially 
identical to RAID Level 5 with each disk replaced by a server in a network file system. 
They evaluated the performance, overhead, and reliability of several variations on this 
idea and concluded that distributed RAID has many reliability advantages but performs 
poorly in the presence of failures. Other studies [Cabrera91, Hartman93] have extended 
this idea to network file systems that stripe data for performance. 
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CHAPTER 2        Managing the Complexity 

of Array Software 

In Chapter 1, we described the need for improved availability in the storage subsystem 
due to the widening access gap, the downsizing trend in disk drives, and the advent of 
new I/O-intensive applications. We discussed the structure and operation of disk arrays 
in some detail, explaining the different data layouts and fault tolerance for each of the 
original RAID levels. We also summarized some of the related work done on variations 
of these RAID organizations, most of which looks at improving performance by identi- 
fying the best techniques for laying out and writing data. 

What should be clear from our description of disk arrays in Chapter 1 is the complexity 
of the array software used to control the disks in the array. What may not be clear from 
our discussion is that most of the related work has approached the task of managing this 
complexity on a case-by-case basis. What we mean by this is that researchers have 
looked at specific contexts for using redundant arrays and have proposed ways to opti- 
mize the software based on the specific needs of expected workloads. This ad hoc 
approach to designing and implementing array software means that there is little code 
reused between RAID organizations. It also means that each architecture handles any 
errors that occur during operation in a specific, limited way, adding to the complexity of 
the array software. 

Our goal is to simplify the process of designing and implementing array software that 
performs optimally for a particular situation. To do this, we have aimed to increase the 
amount of code reused between RAID designs, to enable a means for verifying the cor- 
rectness of designs before they are implemented, to generalize an error-recovery mecha- 
nism, and to provide a mechanism for reconstructing data on-line when a disk fails. 
Achieving these four things, we believe, will lead to shorter design-cycle times, soft- 
ware that performs as it was designed to do, mechanized error recovery, and highly 
available and reliable systems. 
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In this chapter, we introduce a structured method for implementing array software, 
based on a graphical programming abstraction, which allows many RAID operations to 
be composed quickly from a relatively small set of primitive operations. We begin by 
looking in more detail at traditional approaches to managing array software in Section 
2.1, then move to the concept underlying our own structured approach in Section 2.2: 
that RAID operations can be viewed as software programs. Next, we describe how to 
compose these RAID operations, or programs, with graphs in Section 2.3 before dis- 
cussing how to execute them in Section 2.4. Finally, in Section 2.5 we discuss an algo- 
rithm for reconstructing data when a disk fails. 

2.1  Traditional Approaches in Managing Array 
Software are Suboptimal 

As we have already said, redundant arrays have typically been designed in an ad hoc 
fashion, each organization developed to address particular needs and each customized to 
handle specific error conditions. It is this customized error recovery that has particularly 
added to the complexity of array software and that has contributed to the difficulty in 
managing array software. Traditionally, array designers have adopted one of two 
approaches to error recovery: forward error recovery and backward error recovery. 

Briefly, forward error recovery requires anticipating all possible errors and manually 
coding actions for completing operations once an error has occurred. This approach 
requires hundreds of thousands of lines of code with the possibility of overlooked 
errors. While custom-designed code from a complete understanding of all error vectors 
allows the software to achieve near-optimal performance, the error-recovery code must 
be re-written to handle a new set of error vectors if the code is to be reused for a similar 
but distinct application. As long as the set of vectors is relatively small, this task is not 
too difficult and, in fact, this approach is the dominant method of error recovery in gen- 
eral-production software. 

Of course, many of the error vectors may be consolidated and treated similarly, reducing 
the number of unique cases which must be handled. For example, if parity has failed in 
the middle of a large write operation, the remaining data writes may continue unaf- 
fected, regardless of their current disk state (old or new). However, this does not elimi- 
nate the problem of extending existing code to support new array operations. This is 
because the remaining error vectors are still a function of error context and as new array 
operations are introduced, that context will change, thereby requiring changes in error- 
recovery code. 

Finally, verifying code constructed in this fashion can be tedious and prone to mistakes. 
To demonstrate that it is correctly implemented, each RAID operation must satisfy a set 
of invariants, rules which are always true for a consistent array. Ensuring correctness 
requires identifying each error scenario and demonstrating that the code correctly han- 
dles each error vector. Automating this process is possible if the code structure is well 
defined, perhaps in the form of a state machine [Clarke82, Clarke94]. However, because 
of the ad hoc nature of code using forward error recovery, hand analysis is required. 
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In an ideal world, redundant-disk-array software would be constructed without regard 
for the context in which errors occur. This implies that when, for example, a disk read 
fails, only the very general process of recording the fact that a disk has failed would 
need to be implemented. The implications of the error (e.g., failure to read non-over- 
write data during a "reconstruct write") would be irrelevant, making the software com- 
pletely independent of array architecture. 

Database systems have achieved this simplicity, allowing programmers to create new 
transactions with little regard for error recovery. This is accomplished by guaranteeing 
that the operations which compose the transaction are atomic and undoable. When an 
error occurs which causes an atomic operation to fail, the programmer is presented with 
the illusion that the operation never occurred. Furthermore, the system undoes the 
effects of the previously completed operations, completely removing all effects of the 
failed transaction. With the burden of detecting and recovering from errors delegated to 
the underlying system, the programmer is left with the relatively straightforward task of 
creating transactions which begin in a consistent system and commit only consistent 
state changes to the system. 

The approach used to achieve this simplicity, backward error recovery, requires a dura- 
ble log which records the effects of operations as they complete. When it is determined 
that a transaction has failed, the contents of the log are used to undo the previously com- 
pleted operations. Unfortunately, maintaining this log may be expensive—in addition to 
the resources required to store the log, additional work may be required to create the 
information which is stored in the log. 

For example, consider a large write operation in a RAID level 5 array which overwrites 
data and parity with new information. To guarantee that each of these write operations is 
undoable, the previous contents of the data and parity must be stored in the log. Instead 
of just overwriting each one, each disk operation must now read and write data and par- 
ity, doubling the total workload of the disks and decreasing the response time and 
throughput of the system. If a disk operation fails, then the saved state is restored; and, 
while the system restores state, processing stops. 

Our strategy is to address the limitations of both forward error recovery and backward 
error recovery and to provide criteria for using each, thereby enabling error recovery to 
be automated, transparent, and verifiably correct. Specifically, forward error recovery is 
easy if no case analysis is required; backward error recovery is easy if there is no state to 
save and restore. We call our approach roll-away error recovery because it is a hybrid 
approach. We will describe how roll-away error recovery works in more detail in 
Section 2.4.3 on page 53. 

2.2 Treating RAID Operations as Programs 

As we discussed in Section 1.2.2.3 on page 26, the array controller—however imple- 
mented—maps user read and write operations (such as small write and degraded-mode 
read) to a relatively small set of corresponding disk operations. These operations, which 
we will refer to as primitive operations throughout the remainder of this document, 
include operations for disk access (such as disk read and exclusive-or), redundancy 
computation, and resource allocation (such as memory buffers). Because primitive oper- 
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ations are the basic actions used by the array software to control disks, they can be 
thought of as instructions or steps, and when constraints upon their sequencing are 
imposed, they can be used to construct RAID operations in a programmatic fashion. 

By treating RAID operations as programs, we are able to minimize the amount of code 
changes required to extend the software. The best-known method to do this is to create 
modular code which isolates functions that are known to change orthogonally with 
architecture [Meyers78]. 

FIGURE 8 Isolating Common Infrastructure 
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Infrastructure code, which provides the primitive operations from which array oper- 
ations are implemented, appears in the lower half. Architecture-specific code, such 
as data encoding, appears in the upper half. When a new architecture is imple- 
mented, the infrastructure is unchanged, restricting changes to modules which con- 
tain array-specific code. 

2.2.0.1 

As Figure 8 shows, the most obvious functions which vary with array architecture are 
data encoding, information layout, and operation structure. For example, recall from 
Chapter One that the only difference between RAID levels 4 and 5 is the manner in 
which information is distributed across the disks in the array. By isolating device-spe- 
cific code from the code which defines the array architecture and by requiring that the 
device software handle all device-specific errors, we are able to provide an infrastruc- 
ture which allows array designers to build a variety of architectures without thinking 
about the underlying device actions. 

In order to understand how primitive operations can be used to compose RAID opera- 
tions, we will first look at the set of primitive operations most commonly used. In 
Section 2.2.1 through Section 2.2.2 we will then describe how to create pass-fall primi- 
tives and how to create RAID operations from primitive operations. 

Primitive Operations Commonly Used in Redundant Disk Arrays 
In addition to disk drives, the most popular devices used to construct arrays being sold 
today include: memory managers, lock managers, arithmetic units, and parity logs. 
Table 2 summarizes the primitive operations provided by these devices and their effects. 
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These devices may be constructed from either hardware, software, or some combina- 
tion. 

TABLE 2. Common Device Operations 

Device Primitive Operation Effect 

disk disk read copy data from disk to buffer 

disk disk write copy data from buffer to disk 

disk Rd copy data from disk to buffer 

disk Wr copy data from buffer to disk 

memory manager MemA acquire a buffer 

memory manager MemD release a buffer 

lock manager Lock acquire a lock 

lock manager Unlock release a lock 

arithmetic XOR xor contents of buffers 

arithmetic Q generate a Reed-Solomon code 

arithmetic Q Reed-Solomon decode 

read cache probe if hit, return, shared lock and pointer 

read cache copy copy data from cache to a buffer 

A memory manager is used to negotiate the use of a buffers from a shared pool. Simi- 
larly, the lock manager maintains a set of locks, granting either shared or exclusive own- 
ership to competing processes. The arithmetic unit provides operations which perform 
data encoding and decoding functions, such as bitwise exclusive-or which is used in 
parity encodings and nonbinary polynomial multiplication which is used in Reed- 
Solomon encodings. The parity log is an append-only log used to accumulate either par- 
ity-update or parity-overwrite records. 

2.2.1   Creating Pass-Fail Primitive Operations 

Before we can automate array error recovery transparently, it is necessary for us to dis- 
tinguish between errors at the device level and those at the array level. Isolating device- 
specific recovery from array-specific error recovery enables us to create RAID opera- 
tions without regard for the internal details of the devices. To do this, we abstract primi- 
tive operations with a wrapper that is responsible for creating the illusion of pass-fail 
devices in which pass implies successful completion and/az7 implies the presence of a 
permanent fault [Courtright94]. 

By allowing primitive operations to return fail only when an unrecoverable device fault 
is detected, we are further able to restrict the class of errors observable by RAID opera- 
tions to those which require handling at the array level. Otherwise, primitive operations 
return pass, completely hiding from RAID operations the effects of any device faults 
which may have been detected. When primitive operations do fail, we want them to fail 
atomically (i.e., all-or-nothing state changes), but we don't require it. We will defer dis- 
cussing how nonatomic failure is handled until Section 2.4.3, which describes error 
recovery. 
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To ensure that pass implies that a primitive operation has successfully completed, we 
allow primitive operations to commit only those state changes which are consistent with 
their behavior. For example, a disk write is required to write the correct ECC informa- 
tion to disk when writing data to a sector. 

2.2.2 

TABLE 3. 

Constructing RAID Operations from a Set of Primitive Operations 

As we have already said, RAID operations are composed from a relatively small set of 
primitive operations; the order in which primitive operations are executed is solely a 
function of the data and control dependencies which exist between them. Therefore, it is 
important for the array designer to know the location of necessary dependencies which 
exist between primitive operations in order to design RAID operations well. Omitting 
dependencies will result in erroneous behavior while extra dependencies may reduce 
concurrency and unnecessarily degrade performance. Table 3 lists the four basic types 
of dependencies which may exist between primitive operations. 

Ordering Constraints Imposed on Sequences of Primitive Operations 

Dependence Explanation 

True read after write data dependence 

Anti write after read data dependence 

Output write after write data dependence 

Control dependence of a primitive operation upon the completion 
of another 

2.2.3  Summary 

Defining an array operation is a straightforward process: our primary concern is to 
abstract device-specific operation from the array-specific operation, which is the exter- 
nal interface of the operation. To do this, we have required that primitive operations be 
responsible for detecting all faults and for tolerating those faults which are specified to 
be tolerable by the device fault model. Primitive operations which complete success- 
fully, either by avoiding or tolerating a device fault, return pass to indicate success. 
Primitive operations return fail only when they are unable to recover from a fault. To 
compose RAID operations, the array designer must know where dependencies exist 
between primitive operations. 

2.3  Representing RAID Operations as Graphs 

Creating storage operations from a set of primitive operations is a technique which has 
been used for more than twenty years. The best-known example of this is the channel- 
program approach used in the IBM System/370 architecture [Brown72]. At the time it 
was introduced, much of the internal workings of a disk drive were exposed to the sys- 
tem, requiring external control of arm positioning, sector searching, and data transfer. 
Channel programs isolated these details from users by providing an abstract interface 
which was closer to that found in today's SCSI drives [ANSI91]. The programs are rep- 
resented as a linear array of primitive operations which is parsed sequentially. 
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Similar methods for abstracting the details of storage operations were recently proposed 
in the distributed, redundant-disk-array architecture called TickerTAIP [Cao94]. In 
TickerTAIP, the work required to maintain valid data encodings is performed by work- 
ers which are distributed throughout the array. To simplify managing simultaneous 
primitive operations occurring across the array, TickerTAIP uses a centralized table in 
which each entry contains a list of operations for a worker to execute. Once an array 
operation is initiated, each worker is responsible for sequencing its own activities. 
Unlike channel programs, TickerTAIP achieves parallelism within an array operation 
because multiple workers may execute primitive operations concurrently. 

These two examples clearly show that it is possible to construct RAID operations from a 
set of primitive operations using tables. However, we believe that there is better 
approach based upon directed, acyclic graphs (DAGs) which will allow designers to 
reason about the ordering of primitive operations. Because we have decided to treat 
RAID operations as programs, we are able to use DAGs to model primitive operations 
and the ordering constraints which bind them together—the visual information supplied 
by DAGs is intuitive and aids in analyzing the design of RAID operations. The follow- 
ing subsection describes how DAGs are created. 

2.3.1   Directed, Acyclic Graphs (DAGs) 

When using DAGs to model RAID operations, the primitive operations described in 
Table 2 on page 45 are represented as the nodes of the graph. Figure 9 illustrates a small 
write operation represented as a directed acyclic graph. Each primitive operation is rep- 
resented by a single node and therefore the properties of a node (e.g., atomic failure) are 
inherited from the defining properties of the primitive operations. 

Notice that the nodes in the graph of Figure 9 do not convey the context (e.g., "read old 
parity") of each primitive operation. This is because the context is known only by the 
designer of the graph. Section 2.4.3 shows how we capitalize upon this independence of 
context to achieve mechanized execution. 

As we already said in Section 2.2.2 on page 46, executing primitive operations within an 
array operation is constrained by the presence of control and data dependencies. Depen- 
dencies are represented in a DAG by the directed arcs which connect the nodes of the 
DAG. An arc is drawn from a parent node to a child node if executing the child is depen- 
dent upon the parent node. Because the type of dependence represented by the arcs will 
not be used to control execution, the arcs are left unlabeled. Furthermore, a single arc 
may represent the presence of one or more data or control dependencies. We defer dis- 
cussing further the rules for executing DAGs until Section 2.4 on page 51. 
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FIGURE 9 RAID Level 4/5 Small-Write Graph 

This illustration presents the small write operation. The nodes of the graph are pass- 
fail actions and the arcs represent the presence of control or data dependencies. 

In this graph, the Rd-XOR-Wr chain on the far right performs the read-modify-write 
of parity. The Rd-Wr chains represent the reading of old data and the overwriting of 
new data. The fact that parity is computed from the old data is represented by the 
presence of the Rd-XOR arcs (true data dependencies). The Rd-Wr arcs represent 
anti (read after write) data dependencies. Finally, a NOP (no-operation) node has 
been added to simplify the structure of the graph, guaranteeing a single sink (tail) 
node. 

2.3.2   Simplifying Constraints for DAGs 

There are a number of constraints which we have imposed on DAGs to simplify execut- 
ing them. First, a node that is a direct descendent of a predicate node may have no par- 
ents other than the predicate node. Second, because DAGs are by definition acyclic, 
there cannot be any cycles in RAID operations; eliminating cycles does not eliminate 
predicate nodes and conditional execution. An array designer can include a node which 
selectively enables one or more branches for execution. Finally, all DAGs must be 
rooted graphs, meaning that all graphs begin with a single root or source node. The 
source node has the property that it has no parents. Similarly, all DAGs must have a sin- 
gle sink node, a node which has no children. If a graph does not contain a single source 
or sink node, a NOP (no operation) node can be inserted. Adding an extra NOP node to 
create a single source or sink does not have any effect upon the array operation repre- 
sented by the graph. 

1.  The current release of RAIDframe does not contain predicate nodes or support their 
processing. 
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Besides modeling RAID operations, we have also incorporated automated roll-away 
error recovery into the DAG structure. The following section describes the added 
requirements for structuring DAGs to enable them to handle errors when the array oper- 
ates. 

2.3.3   Incorporating Roll-Away Error Recovery Within DAGs 

As we said earlier, roll-away error recovery is a hybrid approach: when appropriate, it 
uses forward error recovery without accounting for all possible error scenarios; when 
necessary, it uses backward error recovery without the cost of logging state information. 
A more detailed discussion of roll-away error recovery can be found in William V. 
Courtright II's dissertation, which is currently in progress. Here we will explain the 
basic method for mechanizing error recovery through the structure and composition of 
DAGs. 

To understand how roll-away error recovery works, it is important first to recall that 
redundant arrays encode data to survive disk faults (See "Why These Trends Necessitate 
Higher Availability" on page 15). Codewords are composed of two types of symbols: 
one for data, the other for a check, for example parity. In order for redundant arrays to 
tolerate faults—meaning the loss of one or more symbols without losing information, 
the set of valid codewords is constrained. Primitive operations change data symbols, for 
example, they write new data; this in turn requires modifying the corresponding check 
symbols, that is, they must then write new parity. If a primitive operation fails before it 
has completed—that is, one or more symbols have been modified on disk—the code- 
word can be left in one of a large number of states. 

B ecause the direction of error recovery depends upon when a primitive operation fails, it 
is essential to determine where in the RAID operation all modified symbols can be 
safely committed to disk. To establish this place, which we call the commit barrier, we 
have divided RAID operations into two phases in which codewords are modified only in 
phase two. Within the DAG structure, we add a Commit node to distinguish between 
these two phases. 

In the first phase no existing codewords can be modified; here, nodes within a DAG rep- 
resent primitive operations that can generally be undone easily, such as disk read or 
XOR. Obviously, the second phase of a RAID operation is where we place those primi- 
tive operations that modify symbols—however, not all RAID operations have two 
phases. For example, because a read operation does not modify any codewords, it does 
not have a phase two. On the other hand, a write operation (shown in Figure 10) clearly 
modifies codewords; in order for the write operation to progress to phase two, all sym- 
bols which are to be updated must be available. Section 2.4.3 on page 53, which follows 
a discussion of how DAGs are executed, explains how the error-recovery mechanism 
automatically executes when an error is detected. 
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FIGURE 10 RAID Level 4/5 Small-Write Graph with Commit Node 

A Commit node was inserted to prevent writes of new data from proceeding until all 
reads of old data and the computation parity have been completed. 

To establish the commit barrier when constructing a DAG for a RAID operation, the 
array designer must first identify all those nodes which modify a symbol. Next, the 
designer must create control dependencies from the nodes' parents to the nodes them- 
selves. This will guarantee that no symbols will be modified until all modified symbols 
can be safely committed to disk. In short, commit nodes are generally the sink node of 
read operations and the parent of all symbol update actions which are found in write 
operations. 

2.3.4   Verifying the Correctness of DAGs 

Because we model RAID operations as well-structured graphs, correctness verifica- 
tion—that is, the process of demonstrating that an array's behavior is consistent with its 
specified behavior—is greatly simplified. Furthermore, automating this task is now pos- 
sible. Given that DAGs consist of well-defined primitives, it is possible to think of them 
as state machines. Through model checking, used to verify the correctness of state 
machines [Clarke82, Clarke94], RAID designs can be verified immediately, long before 
actual implementation begins [Wmg96]. 

Verifying that RAID operations are correctly implemented requires that graphs meet 
three criteria. First, primitive operations must be valid. Second, valid codewords for 
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RAID operations must be maintained; for example, to maintain valid parity for RAID 
Level 5, the sum of the parity bits must always equal 0. And third, graphs must recover 
from errors using roll-away handüng, which we describe briefly in Section 2.4.3. 

2.4  Executing RAID Operations 

Array operations modeled as DAGs may be executed directly without first being trans- 
lated into an intermediate form. More importantly, modeling with graphs has enabled us 
to simplify and automate error recovery. To do this, we employ an undo-redo error 
recovery scheme, similar to the one used in the System R recovery manager [Gray81]. 
In our approach, if a primitive operation fails at any time during the execution of a 
graph, the execution mechanism will automatically undo the effects of the previously 
completed primitives. 

In this section, we describe node states and their transitions, how to execute a graph, and 
how to structure graphs to incorporate roll-away error recovery. To guarantee correct 
operation in the first two subsections, we assume that all primitive operations are atomic 
and undoable. We relax these requirements in Section 2.4.3 on error recovery, which 
allows much of the overhead (both performance and storage) required to achieve undo- 
able atomic primitives to be eliminated. 

2.4.1   Node States and Transitions 

In addition to a primitive, each node in a graph has three other fields, summarized in 
Table 4: do action, undo action and state. The do action is used during normal execution 
and the undo action is used during error recovery. Each of these fields contains the name 
and parameters of an action. 

TABLE 4. Node Fields 

Node Field Description 

do action function executed during normal processing 

undo action function which removes the effects of the do action 

state current state of the node 

Each node in a graph may be in one of the seven states summarized in Table 5. The 
allowable transitions between these states are illustrated in Figure 11. 
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FIGURE 11 Node State Transitions 
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All nodes in a graph begin in the wait state. When a graph successfully com- 
pletes execution, all nodes are in either the pass or skipped states. The error 
recovery and undone states, described later in Section 2.5, are reached only if 
the operation fails. 

TABLE 5. 

When a graph is initially submitted for execution, all nodes are in the wait state. A node 
enters the skip state if its parent is a predicate node which determines that the branch 
which contains the node will not be executed. Once entered, a node will never leave the 
skip state. 

Node States 

Node State Description 

wait blocked, waiting on parents to complete 

fired execution of do action in progress 

pass execution of do action completed successfully 

fail execution of do action failed 

skip node will not be executed 

error recovery execution of undo action in progress 

undone previously executed node has since been undone 
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The fired state is entered if at least one of its parents is in the pass state and the remain- 
der of its parents are in either the skip or pass states. When a node enters the fired state, 
its do action is executed. The node remains in the fired state until the do action com- 
pletes. The node then enters either the pass or fail state, depending upon the outcome of 
this execution. If a completed node must be undone, the node first enters the error 
recovery state which indicates that the node's undo action is being executed. Once the 
undo action completes, the node enters the undone state. The error-recovery procedure, 
which is responsible for moving nodes to the undone state, is described in further detail 
in Section 2.4.3. 

2.4.2 Executing DAGs Without Errors 

Executing a graph, for example the graph shown in Figure 9 on page 48, begins with the 
source (head) node and completes with the sink (tail) node. This direction of execution, 
from source to sink, is referred to as forward execution throughout the remainder of this 
document. The source node is executed and, assuming it completes successfully (that is, 
it returns pass), the node enters the pass state. 

If the graph does not contain predicate nodes (which is the case with the current RAID- 
frame release), any node can be executed (i.e., enter the fired state) once all of its par- 
ents have reached the pass state. Assuming all nodes complete successfully, this 
process continues until the sink node enters the pass state; at this point, the execution of 
the graph is complete and the RAID operation is declared to be successful. 

2.4.3 Handling Errors When Executing DAGs 

Because device-specific error recovery is removed from the structure of the graph, we 
were able to define a general execution mechanism which automates handling of errors 
due to failed primitives. This mechanism, together with a library of RAID operations, 
will allow array architectures to be implemented rapidly. 

As we explained in Section 2.3.3, we have divided RAID operations into two phases to 
determine the direction of roll-away error recovery. If an error occurs during phase one 
of a RAID operation, as shown in Figure 12, the error-recovery mechanism rolls back- 
ward, releasing resources. At this point, the system substitutes a new graph for the failed 
graph and retries the operation. If an error is detected during phase two, as shown in 
Figure 13, the error-recovery mechanism completes the RAID operation—when this 
happens, all symbols are simultaneously updated. To an outside observer, it would 
appear as if the failure(s) occured after the RAID operation completed. 

In the next section, we describe the mechanism we have developed which the array uses 
to recover from a disk failure. We present the library of DAGs provided in the current 
release of RAIDframe, the prototyping framework which incorporates our approach to 
modeling and executing RAID operations, in the Appendix. 
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FIGURE 12 Handling Errors Prior to Commit Point 

The failure of the Rd node (indicated in bold) occurs prior to the commit point. This 
causes forward execution to halt and roll back to begin. Roll back works backward 
through the graph from the point of failure, undoing the previously completed 
nodes. If a failure occurs prior to the commit point, the system appears as if the 
graph never executed. 
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FIGURE 13 Handling Errors After Commit Point 

■a 

II 
Because the leftmost Wr node failed after the commit point had been reached, forward 
execution continues. The rightmost Wr node completes successfully as does the sink 
(NOP) node. If a failure occurs after a commit point, the sink node is always reached 
and teh system appears as if the successful completion of the graph was followed by a 
failure. 

2.5  Reconstructing Data On-line When a Disk Fails 

In Chapter One we introduced the need for a process in which the array restores itself to 
the fault-free state following a disk failure. In this section, we provide a brief description 
of a disk-oriented algorithm (taken from [Holland94]) for reconstructing lost data into 
spare disk space. For a more complete discussion of reconstruction algorithms, includ- 
ing performance evaluations and optimizations of the disk-oriented algorithm, please 
refer to Chapter Four in [Holland94]. 

2.5.1   Disk-Oriented Reconstruction 

Not only must a single-fault-tolerant disk array recover from the loss of a disk, it should 
be able to effect this recovery without taking the system off-line. This is implemented 
by maintaining one or more on-line spare disks in the array. When a disk fails, the array 
switches to degraded mode as described in Chapter One; at the same time, it also 
invokes a background reconstruction process to recover from the failure. This process 
successively reconstructs the data and parity units that were lost when the disk failed 
and stores them on the spare disk. The mechanism by which this is accomplished is 
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called the reconstruction algorithm. Once all the units have been recovered, the array 
returns to normal performance and is once again single-failure tolerant, and so the 
recovery is complete. Prior to Mark Holland's thesis work, the default algorithm for 
reconstructing data from a failed disk was stripe-oriented; in his thesis, Mark demon- 
strated a disk-oriented algorithm which performs substantially better than the stripe-ori- 
ented one. The disk-oriented algorithm creates C reconstruction processes, where C 
represents the number of disks in the array not including the spare. Each of the C-l pro- 
cesses associated with a surviving disk execute the following loop: 

repeat 

1. Find lowest-numbered unit on this disk that is needed for reconstruction. 

2. Issue a low-priority request to read the indicated unit into a buffer. 

3. Wait for the read to complete. 

4. Submit the unit's data to a centralized buffer manager for XOR or block the process 
if buffer manager has no memory to accept the unit. 

until (all necessary units have been read) 

The process associated with the replacement disk executes: 

repeat 

1. Request the next sequential full buffer from the buffer manager. 

2. Block the process if none are available. 

3. Issue a low-priority write of the buffer to the replacement disk. 

4. Wait for the write to complete. 

until (the failed disk has been reconstructed) 

The buffer manager provides a central repository for data and parity from parity stripes 
that are currently "under reconstruction." When a new buffer arrives from a surviving- 
disk process, the manager XORs the data into an accumulating "sum" for that parity 
stripe and notes the arrival of a unit for the indicated parity stripe from the indicated 
disk. When it receives a request from the replacement-disk process it searches its data 
structures for a parity stripe for which all units have arrived, deletes the corresponding 
buffer from the active list, and returns it to the replacement-disk process. 

The advantage of this approach is that it is able to maintain one low-priority request in 
the queue for each disk at all times, which means that it will absorb a significant portion 
of the array's bandwidth that is not absorbed by users. This approach yields substan- 
tially faster reconstruction than alternative approaches. 

There are two implementation issues that need to be addressed in order for the above 
algorithm to perform as expected. The first relates to the amount of memory needed and 
the second to the interaction of reconstruction accesses with updates in the normal 
workload. The following two sections discuss these implementation issues. 
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2.5.2 Buffer Memory Management 

In the disk-oriented algorithm, transient fluctuations in the arrival rate of user requests at 
various disks can cause some reconstruction processes to read data more rapidly than 
others. The buffer manager must store this information until the corresponding data or 
parity arrives from slower reconstruction processes, and thus the buffering requirements 
of each individual reconstruction process vary over time. It's possible to construct 
pathological conditions in which a substantial fraction of the data space of the array 
needs to be buffered in memory, and so it's necessary to define a buffer memory man- 
agement policy for the disk-oriented algorithm. 

The amount of memory needed for disk-oriented reconstruction can be bounded by 
enforcing a limit on the number of buffers employed. If no buffers are available, a 
requesting process blocks until a buffer is freed by some other process. We have divided 
the buffer pool into two parts: each surviving-disk reconstruction process has one buffer 
assigned for its exclusive use, and all remaining buffers are assigned to a "free buffer 
pool." A surviving-disk process always reads units into its exclusive buffer, but then 
upon submission to the buffer manager, the buffer manager transfers the data to a buffer 
from the free pool, and then installs this buffer in its data structures. This division of 
buffers simplifies the code by assuring that there is always a free buffer into which to 
read data or parity when a reconstruction access arrives at the head of a disk queue. A 
buffer stall condition occurs only when there are no free buffers available into which to 
transfer the incoming unit, at which point the corresponding reconstruction process has 
no outstanding I/O requests. Only the first process submitting data for a particular parity 
stripe must acquire a free buffer because subsequent submissions for that parity stripe 
can be XORed into this buffer. Thus this approach is able to maintain as many parity 
stripes under reconstruction as there are buffers in the free buffer pool. 

Forcing reconstruction processes to stall when there are no available free buffers causes 
the corresponding disks to idle respecting reconstruction. For our purposes, a relatively 
small number of free buffers suffices to achieve good reconstruction performance. There 
should be at least as many free buffers as there are surviving disks, so that in the worst 
case each reconstruction process can have one access in progress and one buffer submit- 
ted to the buffer manager. 

2.5.3 Interaction with Writes in the Normal Workload 

The reconstruction accesses for a particular parity stripe must be interlocked with user 
writes to that parity stripe because a user write can potentially invalidate data that has 
been previously read by a reconstruction process. This problem applies only to user 
writes to parity stripes for which some (but not all) data units have already been fetched; 
if the parity stripe is not currently "under reconstruction," then the user write can pro- 
ceed independently. 

We handle this problem by beginning a conflicting user write only after the desired 
stripe's reconstruction is complete. This approach is memory-efficient and does not 
waste disk bandwidth but if it is implemented as stated, a user write may experience a 
very long latency when it is forced to wait for a number of low-priority accesses to com- 
plete. The disk-oriented algorithm overcomes this drawback by expediting the recon- 
struction of a parity stripe containing the data unit that is about to be written by the user. 
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When the algorithm detects a user write to a data unit in a parity stripe that is currently 
under reconstruction, it elevates all pending accesses for that reconstruction to the prior- 
ity of user accesses. If there are any reconstruction accesses for the indicated parity 
stripe that have not yet been issued, the algorithm issues them immediately, at regular 
priority rather than low priority. The user write triggering the re-prioritization stalls until 
the expedited reconstruction is complete, and the algorithm allows it to proceed nor- 
mally. 

Note that a user write to a lost and as-yet unreconstructed data unit implies that an on- 
the-fly reconstruction operation must occur because the written data must be incorpo- 
rated into the parity and there is no way to do this without the previous value of the 
affected disk unit. Thus, this approach to interlocking reconstruction with user writes 
does not incur any avoidable disk accesses. Also, forcing the user write to wait for an 
expedited reconstruction does not significantly elevate average user response time, 
because the number of parity stripes that are under reconstruction at any given moment 
(typically less than about 3 Cj is small respecting the total number of parity stripes in the 
array (many thousand). 

A potential problem arises if a free reconstruction buffer has not yet been acquired for 
the parity stripe whose reconstruction is to be expedited, and none are available. The 
algorithm simply allocates a new buffer and frees it when the reconstruction is com- 
plete. This may not be acceptable for some implementations because the amount of 
buffer memory available may be strictly limited and completely in use. There are a num- 
ber of potential solutions to this problem, ranging from reserving a few buffers for this 
purpose to stealing an in-use buffer and forcing the reconstruction of the corresponding 
parity stripe to be restarted. We did not pursue these avenues as the problem is minor 
and highly transient. 

2.5.4   Summary 

This section describes the disk-oriented reconstruction algorithm which is designed to 
absorb for reconstruction all of the disk-array bandwidth not absorbed by the users. The 
algorithm keeps every surviving disk busy with reconstruction reads at all times, unless 
blocked by the inability to acquire a buffer to hold the reconstruction unit. Splitting the 
buffer pool into "exclusive" and "free" parts and forcing processes to block only at 
buffer submission time assures maximally efficient buffer usage because a reconstruc- 
tion process cannot block unless there are zero free buffers in the system. Expediting the 
reconstruction of parity stripes for which a user write is pending preserves software 
boundaries in that the code controlling the user write operations is maintained sepa- 
rately from the code controlling the reconstruction process. The only modification 
required to the user-write code is that it must make a single call into the reconstruction 
module prior to initiating a write operation so that a pending reconstruction operation, if 
any, can be forced to complete before the write occurs. 
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CHAPTER 3        RAIDframe: A 
Framework for 
Implementing New 
Designs 

We now describe RAIDframe, a framework for implementing RAID designs, intended 
for use in researching, verifying, testing and producing RAID systems. This chapter pre- 
sents an overview of RAIDframe features and the RAID architectures implemented in 
the current release, then describes its internal architecture and the accompanying recon- 
struction architecture, and concludes by briefly describing the suite of test applications 
packaged with the RAIDframe release which can be used to create a variety of work- 
loads for controlled testing. 

3.1   Features 

RAIDframe has a number of features which support experimenting and verifying 
advanced disk-array designs, including: 

• extensibility 

• correctness verification 

• mechanized error recovery 

• disk-oriented reconstruction 

• applications for controlled testing of workloads 

• synthetic workload generation 

• trace playback 

• performance monitoring 

• debugging facilities 

• multiple front ends for the user level 

Array architectures implemented in RAIDframe can be evaluated in three distinct exe- 
cution environments: a stand-alone application controlling UNIX "raw" disks, an event- 
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driven simulator, and a Digital UNIX device driver capable of performing block and 
character operations (and thus, capable of mounting a standard file system on a set of 
disks). In all three environments, the code unique to a disk-array architecture (mapping, 
caching, DAGs, primitive operations, and disk queueing) is reused without change. In 
the following sections, we describe each of these environments, the types of uses each 
one is intended to support, and the hmitations of each. Then we list the RAID architec- 
tures currently implemented in the RAIDframe. We end the section with a figure show- 
ing a case study of the performance of microbenchmarks in RAIDframe. 

3.1.1 RAIDframe as a Stand-Alone User Application 

As a stand-alone user application, RAIDframe is a process which accesses real disks 
through the UNIX "raw" device interface. RAIDframe itself is provided as a library, 
libraidf rame. a. Applications may link this library into their address space and 
treat RAIDframe as a flat, addressable storage space (much like a single, large file). This 
enables users to verify and benchmark their work without modifying the kernel, which 
can greatly reduce time for developing and evaluating new RAID architectures, disk- 
queueing policies, DAG constructs, et cetera. 

There are several front ends to this user-level library available with RAIDframe. One 
such (driver) can accept either a synthetic workload from a workload generator or a 
trace file of I/O activities. Because the parameters of the synthetic workload are pre- 
cisely controllable, array architects can investigate specific array-performance effects. 
This front end also provides various debugging and stress tests for architectures and pol- 
icies, including forced reconstruction, constant workload, and layout checking. 

The stand-alone user application shares another front end, rf_genplot, with the 
event-driven simulator (described in the next section). The r f _genplot front end pro- 
vides array architects with a means for comparing how different RAID architectures 
perform running a simulated workload: it runs workload scripts against various RAID 
configurations and outputs results into a file. Additionally, options allow users to graph 
the results, either from a current stand-alone run or using results from a previous run to 
generate graphs in multiuser mode. 

Developing, testing, and instrumenting a RAID architecture at the user level enhances 
portability and extensibility. Moreover, as shown in Figure 14, there is almost no differ- 
ence in the measurements between in-kernel and stand-alone user-level RAIDframe per- 
formance [Gibson95]—which means that array designers unable or unwilling to port 
RAIDframe's in-kernel implementation to their operating system can be confident of the 
validity of user-level performance results. The main drawback of running RAIDframe as 
a stand-alone user application is that only a single application may be run against the 
disk array, and in doing so, may not have an access pattern identical to what it would be 
if it were running through a file system (and, thus, potentially performing additional 
meta-data accesses). 

3.1.2 RAIDframe as an Event-Driven Simulator 

The RAIDframe simulator exists to support analyses of configurations for which the 
user has no hardware (for example, a new disk) or no interest in building (for example, 
hundreds of disks in an array). The RAIDframe simulator is built on top of the Berkeley 
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RaidSim simulator [Chen90b, Lee91], which was further modified at CMU. In the sim- 
ulator, the low-level disk operations are simulated by a configurable disk-geometry 
model instead of being executed by a real disk; the geometry model is configurable to a 
wide range of disks. The simulator, like the stand-alone application, uses either a syn- 
thetic workload generator or a trace file for replay. Because it runs a synthetic workload 
against simulated disks, the simulator provides results quickly—more quickly than the 
versions running against real disks. 

The simulator runs as a single-threaded, event-driven program which tracks disk-I/O 
time. However, there are several disadvantages in using it. First, it is more difficult to 
run an application against this simulator because it does not actually transfer data, and 
its event-driven nature causes "virtual time" to pass more quickly than "wall time." 
Next, while the geometry model provides seek rotate, and transfer information for each 
SCSI I/O sent to any drive, it does not account for bus overhead or disk caching. Also, 
support for verifying data correctness is not provided. The lack of support for bus over- 
head and data verification can have significant impact on user results. 

Like the previous configuration, the simulator provides its functionality in a library 
(libraidf rame_sim. a) which applications may link against. This enables many of 
the same front ends to the real-disk user-level configuration to be used with this simula- 
tor (with the caveat that the simulator is single-threaded and its routines are not reen- 
trant; therefore, multithreaded tests are not supported). 

3.1.3   RAIDframe as a Device Driver in the Kernel 

RAIDframe also runs as a Digital Unix device driver capable of mounting a standard file 
system on a set of disks (and supports standard file system operations, such as newfs). 
This allows RAIDframe users to measure the performance of a disk array when it is run- 
ning a real workload (as opposed to the trace-driven or synthetic versions at the user 
level). At this level, RAIDframe represents disks as either a raw or block device. 

Because the device driver must be compiled in the kernel, any unstable code—such as a 
bad memory access—can cause a machine crash. Therefore, it is recommended that new 
disk-array architectures be developed in user mode before being installed in the kernel. 

3.1.4 

TABLE 6. 

RAID Architectures Implemented in RAIDframe 

RAIDframe is released with a variety of disk-array architectures which include not only 
the basic RAID architectures which are in production today but also a number of exper- 
imental architectures which are proposed by the research community. Table 6 lists the 
architectures that have been implemented in RAIDframe. See Chapter 1, "Redundant 
Arrays: A Brief Overview," for descriptions of these architectures. 

RAID Architectures Currently Supported by RAIDframe 

Architecture 

RAID level 0 

RAID level 1 

RAID level 4 

Support Level 

[Fill in reconstruction ability, etc.] 
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TABLE 6. RAID Architectures Currently Supported by RAIDframe 

Architecture Support Level 

RAID level 5 

Parity declustering 

Distributed sparing 

Parity declustering + Distributed sparing 

Chained declustering 

Interleaved declustering 
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FIGURE 14 Case-Study Peformance of Microbenchmarks in RAIDframe 
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3.2  Internal Architecture 

RAIDframe's internal architecture is partitioned into a relatively small set of modules; it 
separates infrastructure which does not change from libraries which users can modify to 
create and test new disk-array architectures. 

As Figure 15 illustrates, RAIDframe is composed of eleven independent modules, seven 
of which may be modified to support new architectures. 

FIGURE 15 RAIDframe Modules 
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3.2.1   RAIDframe Infrastructure 

This section describes modules which we consider to be infrastructure and do not intend 
to be modified. 

3.2.1.1    State Machine 
User requests are processed by a central state machine which is responsible for creating 
graphs, submitting them for execution, et cetera. While the state machine is config- 
urable, most architectures use a machine similar to the one illustrated in Figure 16 on 
page 66. The following table lists the access states controlled by the state machine. 

TABLE 7. Access States and Their Function 

State 

rf_MapState 

rf_LockState 

rf_CreatDAGState 

Function 

map user access 

acquire stripe locks 

select and create DAG(s) 
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TABLE 7. Access States and Their Function 

State 

rf_ExecuteDAGState 

rf_ProcessDAGState 

rf_CleanupDAGState 

rf_LastState 

rf_InorAccessCountState 

rf_DecrAccessCountState 

rf_QuiesceState 

Function 

execute DAG(s) which are ready 

postprocess completed DAGs 

free a graph and stripe locks 

null state (indicates end of sequence) 

increase count of graphs in flight 

decrease count of graphs in flight 

wait for the array to quiesce (no graphs in flight) 

It is important to note that RAIDframe performs stripe locking and memory allocation 
prior to creating a DAG. 
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FIGURE 16 RAIDframe Control Flow 
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In this example, when a request arrives in the system, it is first sent to the mapping 
module to compute the set of physical disk locations affected by the access. This 
produces a data structure describing, for each stripe touched by the access, the mapping 
of addresses in the RAID address space to physical disk units within each stripe. Next, 
stripes containing parity information are locked to assure that concurrent writes to the 
same stripe do not conflict in their parity updates. The access is then converted to a 
graph and submitted for execution. If a failure occurs while a graph is processing, 
recovery local to the failed graph leads to creating a graph appropriate for avoiding the 
failure, if possible. 

3.2.1.2   Graph Execution Engine 
The primary infrastructure module is the graph execution engine. This engine is respon- 
sible only for fully exploiting the allowable concurrency within a DAG; that is, the 
engine has no knowledge of the architecture embodied in the graph. Figure 15 illustrates 
the structure of RAIDframe. 

RAIDframe's engine also incorporates a simple and uniform mechanism for handling 
error conditions in the array. When any error condition occurs prior to the commit node, 
the engine rolls back, undoing previous state changes. The engine then creates a new 
graph and retries the operation. If an error occurs after the commit node, the engine rolls 
forward and finishes executing the graph. 
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3.2.1.3   Disk Interface 

The disk interface module organizes pending disk requests according to queuing disci- 
plines specified at the time of configuration; this allows users to optimize disk use as 
needed. 

[Additional text to come from Jim.] 

3.2.2   Configurable RAIDframe Modules 

The following sections describe the default implementations of RAIDframe's config- 
urable modules. Please see Chapter 5, "Extending RAIDframe," for more information 
about reconfiguring the modules. 

3.2.2.1    Disk-Queue Module 

In the current version, disk requests can be queued in RAIDframe or at the disk. The 
number of requests allowed for queuing at the disk is configurable. Within RAIDframe, 
multiple queueing policies are available, including FIFO, SSTF, SCAN, CSCAN and 
CVSCAN. FIFO is First Come First Serve—requests are serviced in arrival order. 
Shortest Seek Time First (SSTF) queueing specifies that the next request dispatched is 
the one closest geographically to the previous request. SCAN specifies that the disk arm 
traverses the disk from one end to another and back (two-way elevator algorithm), while 
CSCAN specifies one-way disk sweeps (one-way elevator algorithm). CVSCAN is a 
discipline that uses two parameters to queue disk requests. With CVSCAN, adding new 
queuing disciplines can be achieved simply by assigning new values to the two parame- 
ters. New disciplines can also be added to the disk-queue switch by specifying new 
function calls for create, enqueue, dequeue, promote, and peek. 

TABLE 8 Disk-Queue Scheduling Algorithms 

Name Algorithm 

fifo First In, First Out 

cvscan CVSCAN* 

sstf Shortest Seek Time First 

scan Two-way Elevator 

cscan One-way Elevator 

*For more information about CVScan, please refer to [Geist87]. 

3.2.2.2 Disk-Geometry Database 

This database contains disk specifications used by the simulator. These specifications 
include layout parameters (tracks per cylinder, number of zones, etc.) as well as perfor- 
mance parameters (rpm, seek times, etc.). 

3.2.2.3 Mapping 

All accesses in RAIDframe go through a mapping module prior to locking the block 
ranges in the disk array. The framework for the mapping is general to all architectures 
and invokes architecture-specific mapping routines. The routines are typically short (for 
example, 5 lines of C code). Each routine provides the ability for the mapping code to: 
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• map individual sectors and parity units for a given RAID address 

• identify a stripe for a given RAID address 

• identify a parity-stripe ID for a given data-stripe ID 

The mapping module maps an access in the RAID address space to the corresponding 
set of physical disk addresses. The result is returned as a list of Access Stripe Map 
(ASM) structures, one per stripe accessed. Each ASM structure contains a pointer to a 
list of physical-disk-address structures which describe the physical locations touched by 
the user access. 

Note that this first-level mapping routine returns only static mapping information, that 
is, the list of physical locations that will actually be read or written. Additional remap- 
ping to physical location can be done at later stages of the access. 

The mapping module also maps the parity. The physical-disk location returned always 
indicates the entire parity unit, even when only a subset of it is being accessed. This is 
because an access that is not stripe-unit aligned but spans a stripe-unit boundary may 
require access to two distinct portions of the parity unit. At this point, however, the sys- 
tem cannot determine which portion(s) of the parity unit will be needed. Instead, the 
algorithm-selection code decides what subset of the parity unit to access. 

3.2.2.4 Graph Selection 

A graph-selection algorithm is required for each architecture. This algorithm, imple- 
mented as a C routine, determines which graph from the graph library is to be used to 
execute a specific user request (type, layout map), given the current state of the array. By 
default, RAIDframe attempts to create one graph for each ASM (in other words, parity 
stripe). However, if this is not possible, graphs are then selected on a per data unit (or 
even per sector) basis. 

3.2.2.5 Graph Library 

The graph library contains the routines, such as CreateSmallWriteDAG (), which 
are capable of creating graphs if called by graph selection. Each routine receives type 
and physical mapping information and returns a pointer to a graph which is tailored for 
that request. Adding new graphs requires installing new or extending existing creation 
functions. The graphs which can be created by the graph-selection algorithm are shown 
in the Appendix. 

3.2.2.6 Primitive-Operations Library 

The primitive-operations library contains the functions which abstract single device 
operations (for example, XOR, DISKRD, etc.) from which graphs are created. Primitives 
delineate the failure domains that RAIDframe accommodates; that is, when a node fails, 
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TABLE 9. 

the device associated with it is considered failed as well. Primitives are required to inde- 

pendently detect and recover from soft errors. 

Primitive Operations Provided by RAIDframe 

Operation Function 

DiskRead read from disk 

DiskReadMirror issue diskread to disk with (he shortest queue (RAID Level 1) 

DiskWrite write to disk 

XOR compute bit-wise exclusive-or 

NOP no operation 

Q compute Reed-Solomon encoding 

Q' decode Reed-Solomon code 

3.3 Reconstruction Architecture 

In Chapter 2, we described the disk-oriented algorithm which Mark Holland imple- 

mented and evaluated prior to RAIDframe's development (See "Reconstructing Data 
On-line When a Disk Fails" on page 55). We have incorporated this reconstruction algo- 
rithm into the current RAIDframe package to allow RAID designers to simulate a disk 
failure so that they can evaluate the performance of their systems while undergoing 
reconstruction; [May or may not be true:] RAIDframe currently supports reconstruction 

for all RAID architectures released with version one except distributed sparing. Planned 
future releases of RAIDframe will support reconstruction on real disks and distributed 
sparing. 

In this section, we describe the reconstruction architecture currently implemented in 
RAIDframe. 

3.3.1 Reconstruction State Machine 

The state machine in Section 3.2.1.1 controls the processing of user-initiated disk 
accesses. However, when a disk fails, a separate state machine which is responsible for 
reconstructing the lost data initiates a reconstruction thread and then processes recon- 
struction requests in parallel with the user workload. Reconstruction requests, of course, 
are lower priority than user-initiated ones; the reconstruction thread simply dispatches 
disk accesses in batches until all data on the failed disk has been restored. The disk-ori- 
ented algorithm allows reconstruction to keep one low-priority disk request in the queue 
for each physical disk at all times, maximizing the efficiency of reconstruction without 
significantly penalizing response time for the system user. 

3.3.2 Reconstruction States 

When invoked, the reconstruction thread issues, through the locking and DAG layers, a 
low-priority read request for the next unit on each disk required for reconstruction. As 
each reconstruct read completes, its data is XORed into the accumulating "sum" for the 
indicated stripe, and the next read request for that disk is issued. When the last unit asso- 
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ciated with a particular stripe has been read and summed, the reconstruction thread 
issues a low-priority request for the now reconstructed data to be written to a replace- 
ment or spare disk. 

FIGURE 17 RAIDframe Reconstruction Control Flow 
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The reconstruction thread starts by quiescing the array. The thread sets up its inter- 
nal state, queues one access request per surviving disk, and then re-enables the user 
workload. From this time on, reconstruction proceeds in parallel with the applied 
user workload. A new request is submitted to a surviving disk after a previous read 
request is completed. Reconstruction completes when the reconstruction read 
requests associated with all surviving disks have completed (i.e., they have submit- 
ted their last stripe unit to the buffer manager). 

3.4 Suite of Test Applications 

In this section, we introduce the test suite we have included with the RAIDframe code 
which will allow implementers to test their systems at the user level. 

An important method for testing the operation of an array is by actually using it; how- 
ever, placing the system within a real workload environment in order to test it is obvi- 
ously not ideal. Therefore, the stand-alone application and simulator versions of 
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RAIDftame receive I/O requests from a workload file which can contain either 1) a 
script that is interpreted by a synthetic workload generator or 2) traces of actual disk 
I/Os. For both of these versions of RAIDframe, the workload file is mandatory for oper- 
ating (the stand-alone application currently does not accept live user workloads 
although it can be tested against real disks). The script test runs the workload file. 

Six other tests—single-access, loop, degraded-mode read, random read or write, file 
write-read, and reconstruction—verify the data and redundancy of the array by access- 
ing its disks in different ways. The layout test verifies that the mapping of data and 
redundancy between the array software (that is, logical location) and actual disk loca- 
tions (that is, physical locations) is correct. We briefly describe how to use these tests in 
Chapter 4. 

TABLE 10 Tests for Verifying Data, Redundancy, and Layout in RAIDframe 

Test 

single-access test 

loop test 

degraded-mode read test 

random read or write test 

nie write-read test 

reconstruction test 

*scripttest 

layout test 

Operation 

writes, reads, and verifies a single location in the 
RAID address space 

writes, reads, and verifies multiple locations concur- 
rently in the array 

tests read activity with the array in a faulted state 

allows a user to read and write to multiple locations 
in the array in fault-free and degraded mode 

writes, reads, and verifies the contents of a file 

runs the loop test while forcing reconstruction to 
occur at the same time 

runs the workload file which contains either a script 
for generating a synthetic workload or actual I/O 
traces 

verifies the 1-to-l mapping properties (that is, RAID 
address to physical locations) of a given architecture 

»Because it runs without threading, the simulator version runs only these two tests. 
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CHAPTER 4 Installing, Configuring, and 
Using RAIDframe 

RAIDframe may be installed as either a stand-alone application, a simulator, or a device 
driver in the kernel. Installed as a stand-alone application, RAIDframe runs against real 
disks using either a synthetically generated workload or replaying traces of actual work- 
loads. As a simulator, RAIDframe uses a disk-geometry model to simulate various con- 
figurations of hardware; the workload for the simulator, as with the stand-alone 
application, can be either a synthetically generated one or traces of I/O from actual 
workloads. In the kernel, RAIDframe runs as a device driver against real disks and upon 
which a real file system can be mounted. All three versions currently run on DEC 
Alphas running versions 2.0 and 3.2c of the Digital UNK operating system. 

We begin this chapter by describing the contents of the first RAIDframe code release, 
then explain how to install and configure each version. Then we briefly describe how to 
test RAIDframe's operation by verifying data, redundancy, and mapping and how to 
generate workloads for RAIDframe. Finally, we end this chapter by describing how to 
access RAIDframe's built-in performance tracing and by listing some of the options for 
debugging implementations. 

4.1   Installing RAIDframe 

Before installing any of the RAIDframe versions, you will need to decompress and de- 
tar the distribution file. [Filename?] 

4.1.1   Creating Executables for the Stand-Alone Application and Simulator 

You can create executables for the user-level and simulator versions of RAIDframe 
without taking any machine-specific steps. Both user-level versions of RAIDframe, the 
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TABLE 11. 

stand-alone application and the simulator, have a number of options for installing them 
at compile time, which are listed below in Table 11. 

Compiling the Stand-Alone Application and Simulator 

Command 

make user 

make uo2 

make sim 

make so2 

make depend 

make clean 

make tags 

make othertests 

make othertestso2 

make sothertests 

make utils 

Resulting Action 

creates stand-alone executable named "driver" 

creates optimized (-02) stand-alone executable named 
"driver" 

creates simulator executable named "driver" with -g compiler 
option 

creates optimized (-02) simulator named "driver" 

updates file dependency lists in Make file. {s, u) 

removes the executable and all . o files 

creates an emacs TAGS file 

compiles additional front-end applications for the user-level 
driver 

compiles additional optimized front ends for the user-level 
driver 

compiles additional front-end applications for the simulator 

compiles support utilities for all configurations 

4.1.2   Installing the Device Driver 

RAIDframe provides both block and character (UNIX "raw") device interfaces. To con- 
figure them into your kernel, you must add appropriate stanzas to the block and charac- 
ter device switches. This will require selecting a major device number. We recommend 
choosing 51. For further discussion about assigning major device numbers, see DEC 
OSF/1 Writing Device Drivers, Volume 1: Tutorial, [check publication info] 

To compile RAIDframe in the kernel, you will need to take the following steps: 

1. Add the RAIDframe option to your kernel's configuration file (/sys /MACHINE- 
NAME in a binary-only tree, src/kernel/conf/alpha/CONFIGNAME in a 
complete source tree). This entry looks like: 

pseudo-device raidframe <Number of  arrays  to  support> 

options  RAIDFRAME_RECON1 

The number of arrays to support must be an integer greater than 0. 

2. Add an entry for RAIDframe to the device switch tables found in conf. c (if you're 
compiling from a complete source tree, this is src/kernel/io/common/ 
conf. c; if you're compiling in a kernel binary tree, this is /sys/io/common/ 
conf. c). To do this, type the following lines exactly: 

1. Removing this option disables in-kernel reconstruction but reduces code size. 
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#include <raidframe.h> 

#if NRAIDFRAME > 0 

int rf_open(), rf_close(), rf_strategy(), rf_read(); 

int rf_write(), rf_ioctl(), rf_size(); 

#else /* NRAIDFRAME > 0 */ 

#define rf_open      nodev 

#define rf_close     nodev 

#define rf_strategy  nodev 

#define rf_read     nodev 

#define rf_write     nodev 

#define rf_ioctl     nodev 

#define rf_size      nodev 

«endif /*NRAIDFRAME > 0 */ 

3. Select the major number for the device. {Note: OSF/1 requires that the number in 
the comment match the number in the entry table). 

To do this, first look for the block device (bdevsw) table in the conf. c file; this is 
where you set the major number for the RAIDframe pseudo device. Type these lines 
into it with fine breaks only for the start of each comment: 

{rf_open, rf_close, rf_strategy, nodev, /*51*/ 

rf_size, 0, rf_ioctl, DEV_FUNNEL_NULL}, 

Next, look for the character device switch (cdevsw) table in the same file; this is 
where you select the major number for RAIDframe. Type these lines into cdevsw: 

{rf_open,   rf_close,   rf_read,   rf_write,   /*51*/ 

rf_ioctl, nodev, nulldev, 0, 

asyncsel, nodev, DEV_FUNNEL_NULL, NULL, NULL}, 

4. Copy the RAIDframe directory into the source directory of the kernel tree, then 
update the files file with the new modules. You can do so by appending the con- 
tents of the file kf iles included in the RAIDframe distribution. 

5. Rebuild the kernel. Once RAIDframe has been configured in the kernel, a file system 
can be mounted. 

4.2 Configuring RAIDframe 

While all three versions of RAIDframe share the same configuration file, the kernel ver- 
sion is configured at the same time that it is compiled in the kernel. For those users who 
want to configure a device driver after it has been installed, we have included two con- 
trol programs for doing so; we describe these control programs in Section 4.2.2 on 
page 79. 
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4.2.1   RAIDframe's Configuration File 

The configuration file is divided into sections marked by START <section_name>. 
Comments are supported in the configuration file; they must be preceded by a pound 
sign (#). Of the seven sections in the configuration file, four are mandatory: array, disks, 
layout, and queue; these are denoted with an (m) in the following paragraphs. See 
Figure 4.2 for a sample configuration file. 

Each of the following sections describes how to enter specifications for the stand-alone 
application and the simulator. 

4.2.1.1 Array (m) 

This section is used to specify in integers the number of rows, columns, and spare drives 
in the array. Enter these specifications into the configuration file in this order: 

<numRow> <numCol> <numSpare> 

4.2.1.2 Disks (m) 

This section lists the pathnames to the device files corresponding to physical disks for 
the kernel and user-level versions of RAIDframe; each item in the list is a string ending 
with the device filename. Enter pathnames in this format: 

/dev/... 

/dev/... 

The simulator, on the other hand, uses a set of disk names that it will instantiate from the 
disk. db database file. Enter disk names as 

<Disk name> 

<Disk name> 

where each item is a string containing the name of an actual disk drive. 

4.2.1.3 Spare 

This section may include the device files of spare disks (if they exist). Pathnames are 
entered in the same format as the Disk section. 

For the simulator, the Disks and Spare sections must contain names of actual disk 
drives instead of listing the pathnames to the device files (that is, /dev/ . . .). If a 
pathname is specified instead of an actual disk drive, the simulator version of RAID- 
frame will default to the Hewlett-Packard HP2247 disk drive. 

4.2.1.4 Layout (m) 

This section includes general layout parameters: sectors per stripe unit, stripe unit per 
parity unit, and stripe units per reconstruction unit. It also contains a parity configura- 
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TABLE 12. 

tion label (which is a single character) to specify the RAID architecture to use. The 
parameters are detailed in the following table. 

Layout Parameters for the RAIDframe Configuration File 

Parameter Explanation 

numRow number of rows of disks, each row a distinct parity group 

numCo 1 number of columns of disks in each row 

sectPerSU number of sectors in a stripe unit 

parityConf ig     parity layout based on RAID level 

SUsPerPU number of stripe units per parity unit 

SUsPerRU number of stripe units per reconstruction unit 

When specifiying SUsPerRU, set the number to 1 unless you are specifically 
implementing reconstruction underparty declustering; if so, you should read 
through the reconstruction code first 

TABLE 13 

For the parity-configuration layout, there are nine single-character labels that corre- 
spond to the RAID architectures currently implemented (see Table 6 on page 61 for a 
complete list of architectures and their support levels). 

Parity Configurations 

parityConfig Architecture Must be followed by 

0 RAID level 0 

1 RAID level 1 

4 RAID level 4 

5 RAID level 5 

Q RAID level 6 

T Parity declustering data layout file 

D Declustering + distributed sparing data layout file 

R RAID level 5 + distributed sparing 

C Chained declustering m 
I Interleaved declustering m 

The details for specifying new parity-configuration parameters are given in Chapter 5, 
"Extending RAIDframe." Enter layout specifications into the configuration file in this 
order: 

<sectPerSU> <SUsPerPU> <SUsPerRU> <parityConfig> 

where the items are integers. Depending on the value of the parity configuration, you 
can add a number of needed parameters that are specific to an architecture. In this event, 
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the pathname for layout-specific parameters will follow the general ones in the Layout 
section (Table 12). 

4.2.1.5 Queue (m) 

This section contains generic parameters for the queue of disk I/O requests: queue type 
(FIFO, CVSCAN, etc.) and the number of concurrent requests that can be sent to disk. 
Enter queue specifications into the configuration file in the format: 

<queu© type> <numConcurrentrequests> 

where the queue type is a string and the number of concurrent requests is an integer. 
Where necessary, queue-specific parameters will follow the general ones in the Queue 
section (Figure 4.2). 

4.2.1.6 Debug 

This section lists a number of user-configurable debug options. Enter these options into 
the configuration file in the format: 

«äebug variablexvalue> 

where the debug variable is a string and the value is an integer (a partial list of debug 
options and their variables is given in Section 4.6 on page 87). Some debugging options 
have only on/off settings—for these, zero is off, non-zero is on. Others can accept a 
range of integral values. 
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FIGURE 18 RAIDframe's Configuration File 

START array 
# parameters are: 
14 1 

numRow numCol numSpare 

START disks 
# a list of device files corresponding to physical disks 
/dev/rrzl7c 
/dev/rrzl9c 
/dev/rrz20c 
/dev/rrz21c 

START spare 
# a list of device files corresponding to spare physical disks 
# spare device goes here 
/dev/rrzll7c 

START layout 
tgenerallayoutparameters:sectPerSUSUsPerParityUnitSUsPerReconUnitpari- 
tyConfig 
64 1 1 T 

# layout-type specific parameters for 'T* layout: bd_file_name 
/afs/cs/project/pdl/Reconstruction/lib/bds/4.4.bd 

START queue 
# generic queue parameters:  queue type, number 
# concurrent requests that can be sent to a disk 
FIFO 1 
# queue-specific configuration lines: 
# (none for FIFO) 

START debug 
accessDebug 1 
mapDebug 1 
dagDebug 1 
testDebug 1 

RAIDframe's configuration file has seven sections: array, disks, spare, layout, 
queue, and debug; array, disks, layout, and queue must be specified. All sec- 
tions begin with START and all comments are denoted with a #. 

4.2.2   Configuring the Device Driver Using Control Programs 

Once the RAIDframe device driver has been installed, you can configure it using either 
the command-fine options of rf_setconf ig or the menu-driven rf_ctrl—an 
OSF menu-driven program located in the RAIDframe directory. rf_ctrl is a simple 
front end to a set of I/O controls (ioctls) which are listed in Table 14; in addition, these 
ioctls can be used by other applications. Using both programs is explained in the follow- 
ing sections. 

Version 1.0 

RAIDframe: A Rapid Prototyping Tool for RAID Systems 79 

7/16/96 



Installing, Configuring, and Using RAIDframe 

4.2.2.1 rf_setconfig 

To run rf _setconf ig, type: 

rf_setconfig config<n> 

where <n> is an integer for the each device you configure, r f _setconf ig copies and 
saves conf igO into/dev/.rfconf igO. 

To unconfigvire the device, type: 

rf_setconfig -s 

4.2.2.2 rf_ctrl 

To run rf_ctrl, type 

rfctrl <device  file> 

and select the desired ioctl from the menu.. 

TABLE 14 loctls Supplied with RAIDframe 

Control Option 

Configure the driver; takes a struct 
reconfiguration 

Unconfigure the array; takes no arguments 

Takes a struct rf _test_aoc 

"Fail" a disk (for testing reconstruction); takes a 
struct rf _recon_req 

Get reconstruction percentage complete on a 
row; takes and returns an integer 

Copy reconstructed data back to replaced disk 

Start tracing accesses (DFStrace) 

Stop tracing accesses (DFStrace) 

Get the size of the device (number of sectors); 
yields an integer 

Get basic configuration information (not the 
same as rf _conf iguration); yields 
struct r f _device_conf ig 

Reset Ac cTrac e totals on the device 

Retrieve AccTrace totals for a device; yields 
RF_AccTotals 

Turn AccTrace on if integer is nonzero (off 
otherwise); takes an integer 

Syntax 

RAIDFRAME_CONFIGURE: 

RAIDFRAME_SHUTDOWN: 

RAIDFRAME_TEST_ACC 

RAIDFRAME_FAIL_DISK 

RAIDFRAME_CHECKRECON 

RAIDFRAME_COPYBACK 

RAIDFRAME_START_ATRACE 

RAIDFRAME_STOP_ATRACE 

RAIDFRAME_GET_SIZE: 

RAIDFRAME_GET_INFO 

RAIDFRAME_RESET_ACCTOTALS 

RAIDFRAME_GET_ACCTOTALS 

RAIDFRAME KEEP ACCTOTALS 
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4.3 Testing RAIDframe Operation 

As we mentioned in Chapter 3, there are eight test applications for verifying the data, 
redundancy and layout for RAIDframe implementations at the user level (that is, the 
stand-alone application and the simulator). Because the simulator runs only against sim- 
ulated disks, only the script and layout tests are available in that mode. 

TABLE 15. 

4.3.1   Running the Test Applications 

In the following subsections, we will show you sample interactions with the menu- 
driven test applications. In many cases, we also comment on the options and interactions 
to give you a better idea about how to use them. 

Options for Tests 

Test Option 

single-access test s 

loop test 1 

degraded-mode read test d 

random read or write test r 

file write-read test f 

reconstruction test R 

*scripttest S 

*layont test L 

* The simulator runs only these two test options. 

4.3.1.1 Single-Access Test 

Pick a  test:   s 
enter -1 for the RAID address to quit 

Starting RAID address [0-82176]? 4032 

number of blocks? 219 

Input row id of disk to mark failed (-1 for none): -1 

Entering 0 for the input row id will cause the system to prompt you for the column 
number of the disk to be failed. 

4.3.1.2 Loop Test 

Pick a test: 1 

How many parallel threads? 2 

How many I/Os per thread? 10 

Same seed or different seeds in each thread [s/d]? d 

Degraded  mode?  [n=none,  c=constant,  a=asynchronously, 
r=async, init recon] n 
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The mode option n is the fault-free test in which no disks are failed. Mode option c fails 
a disk before beginning the loop test; you must specify which disk just as you would in 
order to run the single-access test. Mode option a lets RAIDframe randomly fail a disk 
during the run; option r is same as option a but initiates reconstruction after failing the 
specified disk. 

4.3.1.3 Random Read or Write Test 

Pick a test:   r 
How many parallel threads? [0 is ok] 1 

Reads or Writes [r/w]? r 

Degraded  mode:   none,   constant,   constant   double 
degraded,async, async+init recon 

[n/c/2/a/r]? n 

Random or sequential I/Os? [r/s] r 

How many I/Os per thread? 2 

4.3.1.4 File Write-Read Test 

Pick a test: f 

File name? foo 

The only parameter RAIDframe requests is the file name. 

4.3.1.5 Reconstruction Test 

Pick a  test:   R 
How many parallel threads? [0 is ok] 1 

Degraded-mode: none, const, async, async+recon, reconfig, 
recon+copyback? 

[n/c/a/r/R/C] n 

Perform the painful test? [y/n] n 

4.3.1.6 Script Test 

Pick a test: S 

Trace or script file name? foo 

You must specify either a script or trace file. See Section 4.3.2 on setting up a workload 
file. 

4.3.1.7 Layout Test 

Pick a test:   L 

There are no parameters for this test. 

4.3.2   Setting Up the Workload File For the Script Test 

It may be necessary to test how the array operates under a simulated workload. In 
RAIDframe, the stand-alone user application and simulator versions receive I/O 
requests from a synthetic-workload generator or replay traces of actual disk I/Os. The 
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following sections describe how to create a script file for the workload generator and the 
parameters for a trace file of actual disk I/Os. 

4.3.2.1    Synthetically Generated Workloads 

The synthetic-workload generator conforms its load to a script containing a variable 
number of access profiles with individual occurrence probabilities. Each profile defines 
a deterministic or exponentially distributed access size with a given mean and align- 
ment. Access addresses are randomly generated throughout the entire address space, or 
with a given probability, within a single locality specified with each profile. Access 
types are either read, write or sequential (the same as the last access with its address 
advanced). 

TABLE 16 

The script file contains a description of the workload that you want to run, including 
probability, I/O request type, size, alignment, distribution, and local region (Table 16). 

Parameters for Writing a Script to Generate a Workload 

Parameter 

<probability> 

<reqType> 

<size> 

<align> 

<distr> 

<lprob> 

<lfrac> 

<loffs> 

What is Specified 

the fraction of the total workload (given as an integer between 
0-100) that this script describes 

the type of I/O request using an r ,w, or s for a read, write or 
save 

the access size in KB (given as an integer) 

the access alignment in KB (given as an integer) 

a character describing the access-size distribution: d 
means deterministic (this is always equal to <size>); e 
means exponentially distributed with mean <size> 

the probability (given as an integer between 0-100) that this 
access is within flie local region 

the fraction of the array's data space (given as an integer 
between 0-100) defining the local region 

the offset into the array of the start of the local region (given as 
an integer between 0-100) 

The < 1 f rao> and < 1 o f f s> parameters allow you to define the local region of the 
disk array where you want to generate accesses. 

The lines are in the format: 

<probability>   <reqType>   <size>   <align>    [<distr>    [<lprob> 
<lfrac> <loffs>]] 

where only the first four parameters, <probability>    <reqType>    <size> 
<align>, are mandatory in the script file. Or, they can be in the format: 

<probability> s 

Version 1.0 

RAIDframe: A Rapid Prototyping Tool for RAID Systems 83 

7/16/96 



Installing, Configuring, and Using RAIDframe 

If the script file contains a line in the second form (<probabi 1 i ty> s), it means that 
with probability <probability> the next access selected by any given process will 
be sequential with respect to the previous access, whatever it happened to be. There can 
be only one such line in any given script file. 

The following is an example of a script file that specifies running a 50/50 read/write 
workload using random 8k accesses that are 8k aligned: 

50  r  8  8 

50 w 8  8 

4.3.2.2   Trace-Driven Workloads 
The trace file contains actual I/O traces that have been collected from another applica- 
tion instead of synthetic traces that have been generated from a script. The trace file 
must contain a header and trace records. The header contains the number of indepen- 
dent processes in the trace, the number of traces for each process, and the file offsets for 
each trace. Traces understood by RAIDframe must contain an explicit sequence of 
tuples: (thread id, delay time before issuing this request, read or write, block address, 
number of blocks, and a requester-waits/requester-does-not-wait flag). Table 17 shows 
the parameters for trace records. 

TABLE 17 Records for a File with Actual Workload Traces 

Parameters What is Specified 

<long blkno RAID address (given as an integer) 

<long  size> number ofblocks (given as an integer) 

<double delay> number of seconds (given as an integer) 

< short pid> process identification number (given as an integer) 

<char op> character operation with an r or w for a read or write 

<char  async_flag>     character asynchronous flag; set to 1 if the I/O requests 
are asynchronous 

For the parameters, long equals 4 bytes; double equals 8 bytes; short equals two bytes; 
and char equals 1 byte. These traces are stored in binary format as opposed to ASCII. 

Each trace record has the following format: 

<long blkno <long size> <double delay> <short pid> <char 
op> <char async_flag> 

4.4 Comparing How RAID Architectures Perform 

Because it is valuable to compare how different RAID architectures perform relative to 
one another when implemented in RAIDframe, we have included a front end for doing 
so at the user level called rf_genplot. A key benefit of rf_genplot is that it 
enables users to test throughput versus response time for various RAID architectures 
and configurations. As we explained in Section 3.1.1 on page 60, rf_genplot runs 

84 RAIDframe: A Rapid Prototyping Tool for RAID Systems 

Version 1.0 7/16/96 



Comparing How RAID Architectures Perform 

workload scripts from a work file against various RAID architectures and outputs results 
into a file. 

4.4.1 Preparing to Run the rf_genplot Front End 

rf_genplot requires three arguments in order to run: configlistfile, 
worklistfile, and outf ilebase. It reads the files named conf iglistf ile 
and worklistfile and writes files named outf ilebase. out, outf ile- 
base. ps, and outf ilebase.mif. 

The first four lines of conf iglistf ile provide parameters for graphing the results 
of the workload scripts. Specifically, the first fine lists the graph title, the second is the 
graph subtitle, the third defines x- and y-axis ranges, and the fourth defines major and 
minor tick marks for both the x and y axes. After that, the conf iglistf ile lists 
configurations to use and names for them, separated by colons. The filename of the con- 
figuration file must appear before the colon; after the colon is the name of the configura- 
tion which will appear on the graph. Here's an example of a conf iglistf ile: 

Random 4KB Reads 

RAID level 1 Vs. RAID level 5 

0 900 10 60 

200 100 5 2.5 

/usr20/config/configl.user:Raid 1 
/usr20/config/config5.user:Raid 5 

The worklistfile simply lists scripts for rf _genplot to run; here's an example: 

/usr20/data/randblock/randblock.l.Read.l0disk.A.rst 
/usr20/data/randblock/randblock.2.Read.lOdisk.A.rst 
/usr20/data/randblock/randblock.5.Read.lOdisk.A.rst 
/usr20/data/randblock/randblock.10.Read.lOdisk.A.rst 
/usr20/data/randblock/randblock.15.Read.lOdisk.A.rst 
/usr20/data/randblock/randblock.20.Read.lOdisk.A.rst 
/usr20/data/randblock/randblock.30.Read.lOdisk.A.rst 
/usr20/data/randblock/randblock.40.Read.lOdisk.A.rst 

4.4.2 Running the rf_genplot Front End 

rf_genplot runs each of the scripts listed in the worklistfile against each 
RAID configuration given in the conf iglistf ile and outputs the results to the 
outf ilebase. out file. Results are given as throughput and response time pairs for 
each architecture with blank lines between configurations. 

If given the -o option before the filenames, rf_genplot will generate the xmgr 
batch file and run xmgr to produce outfilebase.ps and outf ilebase. mif 
files in addition to running the workload scripts against the RAID configurations. The 
outfilebase.ps and outf ilebase. mif files contain graphs of throughput ver- 
sus response time for all the architectures listed in the conf iglistf ile. 

RAIDframe: A Rapid Prototyping Tool for RAID Systems 85 

Version 1.0 7/16/96 



Installing, Configuring, and Using RAIDframe 

K given the -p option, rf_genplot will produce outfilebase.ps and out- 
f ilebase. mif files using the outf ilebase. out file created from a previous run. 
This option allows you to run r f _genplot first as a stand-alone application then in a 
multi-user environment to generate graphs. 

4.5 Accessing Built-in Performance Tracing 

RAIDframe provides a mechanism for timing and tracing eleven predefined system 
events (Table 18). The codepath for each event is delineated by a of set macros that 
make calls to a built-in timer mechanism, which in turn relies on a cycle-counter register 
of the DEC Alpha architecture [Digital92]. An assembly module in the timer reads the 
cycle counter and evaluates the number of s elapsed. Once the hiilt-in tracing mecha- 
nism is turned on, it gathers timer records and saves them in a file. 

TABLE 18 RAIDframe System Events and Their Codepaths 

Event Timed Codepath 

User I/O Average Access Time 

Graph suspend Suspend Ovhd 

Call to complete access stripe map (ASM) Mapping 

Acquiring stripe-lock ranges Locking 

Graph creation DAG Creations 

Graph retry DAG Retry 

Freeing graph structures and return to user Cleanup 

Execute full graph DAG Execution 

Request pending in disk queue diskwait 

Reconstruction recon 

Exclusive-or computation Xor eval 

To turn on tracing at the user level, setaccessTraceBufSizetoa value greater than 
0 in the Debug section of the RAIDframe configuration file (see Section 4.2.1 for more 
details); this determines the number of trace entries to accumulate in memory before 
flushing them to disk where they are saved in the file trace. dat (an example of a 
trace file is given in Figure 19 below), trace. dat is accessed using a utility called 
rf _tracestats whose command line argument is in the form: 

rf_tracestats   [-v]    [-p]   trace.dat 

where -v is verbose mode and -p prints formatted trace records on-screen. If no file- 
name is given, rf _tracestats expects a trace to be fed in from stdin. 

Traces can also be extracted from the kernel with rf _tracestats by running it with 
the - k argument and specifying the name of the device to extract traces from. For exam- 
ple: 
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rf_tracestats -k /dev/rraidframe_c 

Section 5.1.9 on page 101 explains how to extend built-in performance tracing by add- 
ing new codepaths. 

FIGURE 19 Parity Logging Execution Profile 
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4.6  Debugging RAIDframe Installations 

Here is a partial list of the currently implemented debug options and their effects; we 
have chosen to list the options which are most likely to be used frequently. A complete 
list of debug options may be found in the source file rf _optnames. h. 

Debug Options and Their Effects 

Option 

accessdebug 

Effect 

Prints out details of each user request. 

accSizeKB    n The "loop test" generates a synthetic workload of ran- 
dom I/Os. This debug variable can force the size of the 
I/Os to be n KB. If n=0, the size of the I/Os are not 
fixed. Default is n=0. 
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TABLE 19. Debug Options and Their Effects 

Option 

accessTraceBufSize n 
Effect 

Specifies (he number of trace records which will be 
buffered before writing to the file trace.dat If n=0, 
tracing (execution profiling) is disabled. Default is 
n=0. 

alignAccesses    n The "loop test" generates a synthetic workload of ran- 
dom I/Os. This debug variable forces the I/Os to be 
aligned if n=l. Default is n=0. 

dagDebug This variable prints out the type of each DAG when 
created. 

degDagDebug This variable prints additional information about 
degraded-mode DAGs. 

demoMode    n This debug variable enables demo mode if n=l. In 
demo mode, most data and redundancy verification is 
disabled and meters are generated to display response 
time and throughput. Default is n=0. 

diskDebug This variable prints information about each disk at 
configuration time. 

doDebug This variable prints each disk operation as it begins 
and ends (user driver only). 

dtDebug This variable prints disk-thread status (user driver 
only). 

engineDebug This variable prints information about engine-thread 
and node processing. 

maxRandomS i z eKB The "loop test" generates a synthetic workload of ran- 
dom I/Os. This debug variable can force the size ofthe 
I/Os to be no greater than n KB. If n=0, max size is 
unlimited. Default is n=0. 

maxTraceRunTimeSec n n = the amount of time in seconds a script file should 
drive I/Os into RAIDframe. If n=0, max time is unlim- 
ited. 
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TABLE 19. Debug Options and Their Effects 

Option 

memDebug    n 

Effect 

This variable is metal for debugging memory leaks 
and buffer overruns. Enabled when n=l. When n=2, 
this debug variable also prints the address range of 
every buffer as it is allocated and freed. 

printDagsDebug    n If n=l, each DAG (graph) is printed after creation. 
Default is n=0. 

printStatesDebug    n 

queueDebug 

If n=l, the state machine prints state information. 
Default is n=0. 

This variable prints disk-queue operations as they hap- 
pen (policy-independent layer). 

rewriteParityStripes n If n=l, parity is rewritten prior to start of test. This is 
useful when tests which verify parity are run on an 
uninitialized array. Default is n=0. 

shutdownDebug 

sizePercentage n 

This variable prints shutdown activities as they occur. 

n is an integer which represents what fraction of the 
total available disk space will be used. Useful for lim- 
iting the duration of reconstruction testing and array 
initialization. If n=0,100% of the array is used. 
Default is n=0. 

validateDAGDebug    n If n=l, integrity of each DAG (graph) is verified prior 
to execution. Default is n=0. 
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CHAPTER s Extending RAIDframe 

This chapter is intended to give you a head-start in understanding how to enhance the 
existing RAIDframe package; we expect that, in order to understand thoroughly how to 
extend RAIDframe, you will first have to become familiar with the code itself. The fol- 
lowing sections briefly describe key RAIDframe subsystems, and provide a how-to 
guide for certain common extensions. 

5.1   RAIDframe fundamentals 

5.1.1   Types and Conventions 

Most RAIDframe types are defined in r f _types. h. These definitions are intended 
both to make code more easily readable and more easily portable. For instance, a sector 
number is of typeRF_SectorNum_t. This is defined as type RF_uint 64, which is 
in turn the system-independent definition of a 64-bit unsigned integer. Thus, porting 
RAIDframe to a new system type requires the correct definition of RF_uint 64 on that 
platform, but does not require redefinition of RF_Str ipeNum_t, much less changes 
to the code using values of this type. 

Here are some commonly used RAIDframe types and what they represent: 

TABLE 20. Common RAIDframe Types 

RAIDframe Type 

RF_Sec torNum_t 

RF_Seo torCount_t 

Type Representation 

the number of an individual sector (e.g., sector #37 of 
an array) 

a number of sectors (e.g., read 100 sectors) 
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TABLE 20. Common RAIDframe Types 

RAIDframe Type 

RF_StripeNum_t 

RF_StripeCount_t 

RF_IoType_t 

RF_Raid  t 

Type Representation 

the number of an individual stripe (e.g., stripe number 
three) 

a number of stripes (e.g., 30 stripes) 

kind of I/O (RF_IO_TYPE_READ, 
RF_IO_TYPE_WRITE, or RF_IO_TYPE_NOP) 

entire in-core state of an array 

When new type and structures are introduced, the header files in which they are defined 
are given. It is often the case that a structure is defined in that header file, but the C lan- 
guage typedef which is used to refer to it is defined in the file r f _types. h. The 
convention is that a struct RF_SomeName_s will be defined in an appropriate 
header file, which RF_SomeName_t is defined in rf _types. h as 

typedef struct RF_SomeName_s RF_SomeName_t; 

In the future, this document will refer to "RF_SomeName_t, defined in 
some_f ile. h" even though the actual typedef of RF_SomeName_t is in 
rf_types. h, and some_f ile. h contains the definition of struct 
RF_SomeName_s. 

5.1.2 Return Codes 

Most RAIDframe operations return type int. This is a descriptive error code with 0 
being defined as success and a non-zero value being a value defined in sys/errno. h, 
which is appropriate for providing to a calling process to identify the nature of a failure. 

5.1.3 Memory Allocation 

Memory allocation is different for different systems, and vastly different inside and out- 
side the kernel. For this reason, RAIDframe provides an internal abstraction of memory 
allocation operations to avoid cluttering code with special cases for various environ- 
ments and platforms. The following macros, which are defined in r f _debugMem. h, 
should suffice for most simple memory allocation and deallocation operations: 

RF_Malloc(ptr,size,cast) 

RF_Calloc(ptr,nelements,element_size,cast) 

RF_Free(ptr,size) 

In the user environment, these perform the following operations, respectively: 

ptr =  cast malloc(size) 

ptr = cast calloc(nelements, element_size) 

free(ptr) 

Thus, to allocate an array of five integers, you might: 
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int  *i; 

RF_Malloc(i,5*sizeof(int) , (int  *) ) ; 

or 

RF_Calloc(i,5,sizeof(int) , (int *)); 

And deallocate it with: 

RF_Free(i,5*sizeof(int)); 

While the size argument to RF_Free is not used at the user level, it should be set cor- 
rectly, because in-kernel memory deallocation does require this field. 

5.1.4 Memory-Allocation Lists 

Tracking memory allocations can be difficult. In addition, most allocation should be 
done at start-of-day and deallocated at end-of-day. To ease the programmer burden of 
tracking allocations, RAIDframe provides allocation lists (of type 
RF_AllocListElem_t, defined in rf _alloclist. h). In addition, two new 
memory-allocation operations are defined in rf_debugMem. h: 

RF_MallocAndAdd(ptr,size,cast,alloc_list) 

RF_CallocAndAdd(ptr,nelements,element_size,cast,alloc_list) 

These behave the same as RF_Malloc and RF_Calloc, respectively, with the addi- 
tional semantic that the operations are noted in the allocation list alloc_list. When 
alloc_list is destroyed, the memory will be freed automatically. Allocation lists are 
generally provided to start-of-day configuration routines to simplify cleanup and shut- 
down and are destroyed after all end-of-day activities are complete. In addition, individ- 
ual I/Os have associated allocation lists which are used by some DAGs to track 
temporary buffers for parity computation. 

5.1.5 Shutdown Lists 

Another way in which RAIDframe simplifies the cleanup process is with the use of 
shutdown lists (RF_ShutdownList_t, defined in rf_shutdown.h). Start-of-day 
configuration routines are provided as a pointer to the head of a shutdown list, so they 
may add entries. The shutdown list is invoked to deconfigure and clean up any config- 
ured systems. 

A shutdown list is a linked list of elements containing a void function pointer, and an 
argument to be passed to that function. When an item is added to a shutdown list, it is 
prepended. When a shutdown list is invoked, the functions in it are called in order from 
beginning to end and are passed their associated arguments. Thus, the last item added to 
a shutdown list is the first item called when the shutdown list is invoked. This is to 
ensure correctness when dealing with dependent modules where one module requires 
another to be configured and operational to function correctly. (For instance, module B 
must operate upon module A at creation and clean-up time; therefore, module A must be 
configured before module B and must not be unconfigured before module B is unconfig- 
ured). 
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Entries are added to a shutdown list by calling rf_ShutdownCreate, which is 
defined as: 

int rf_ShutdownCreate(RF_ShutdownIiist_t **listp, 

void (*func)(void *arg), void *arg) 

When the shutdown list pointed to by listp is executed, the function func will be 
called, and the argument arg will be passed to it. If r f _ShutdownCreate () 
returns non-zero, it was unable to add an entry to the shutdown list, and the caller should 
behave accordingly (and is guaranteed that func () has not been called, nor will it be 
called when the contents listp are invoked). 

It is a RAIDframe convention that a failing configuration operation must provide for 
complete cleanup at its point of failure. That is, if a configuration operation returns 
unsuccessfully (see above), any memory it has allocated must be listed in an allocation 
list it was provided, or be already freed. Likewise, any necessary cleanup operations 
must be entered into the shutdown list provided, or must be invoked before the error is 
returned. To simplify the coding of such creation and configuration operations, a pro- 
grammer may wish to add multiple entries to a shutdown list for a single configuration 
operation. 

5.1.6   Threads 

Thread support is provided by a variety of macros and functions found in 
rf_threadstuf f. [ch]. These macros hide various porting issues, as well as user/ 
kernel/simulator differences. 

5.1.6.1   Thread Types 
Threads in RAIDframe are represented by handles, which are of type RF_Thread_t. 
When a thread is created, it is passed a single pointer-sized argument of type 
RF_ThreadArg_t. Pointers may be explicitly cast to and from this type. Because 
synchronization primitives must be declared very differently in the kernel than at the 
user-level, and they do not exist at all in the simulator, there are no explicit mutex and 
condition types. Instead, several macros exist to declare mutexes and conditions. 

TABLE 21 Mutex and Condition Declaration Macros 

Macro name Declaration type 

RF_DECLARE_MUTEX Declare a mutex with no special keywords 

RF_DECLARE_STATIC_MUTEX Declare a mutex with the static C keyword 

RF_DECLARE_EXTERN_MUTEX Declare a mutex with the extern C keyword 

RF_DECLARE_COND Declare a condition variable with no special 
keywords 

RF_DECLARE_STATIC_COND       Declare a condition variable with the static C 
keyword 

RF_DECLARE_EXTERN_COND       Declare a condition variable with the extern C 
keyword 
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These macros are invoked with a single argument, which is the name of the mutex or 
condition variable to declare. For example: 

RF_DECLARE_MUTEX(rf_new_lock) 

declares a global mutex named r f _new_lock. Note the lack of trailing semicolon on 
the line above; the declaration macros add semicolons as necessary. 

5.1.6.2   Using mutex variables 

Before they may be used, mutexes must be initialized with the function 
r f _mutex_ini t (). After they are no longer needed, they must be destroyed with the 
function r f_mutex_des troy (). Bach of these functions takes a pointer to a mutex 
variable, and returns a value of type int. A zero-valued return indicates success; any- 
thing else indicates an error of some sort. To initialize and destroy r f _new_look, 
from our example above: 

int re; 

/*   ...   */ 
re = rf_mutex_init(&rf_new_lock) ; 
if   (re)   { 
printf("ERROR: cannot initialize rf_new_lock\n"); 

return(re); 

} 

re = rf_mutex_destroy(&rf_new_lock); 

if (re) { 

printf("ERROR: cannot destroy rf_new_lock\n"); 

} 

To simplify the destruction of mutexes when necessary, an entry can be automatically 
added to a shutdown list to destroy a mutex. Rather than initializing a mutex with 
rf _mutex_init (), the function rf _create_managed_mutex () may be used 
instead. The first argument to this function is of typeRF_ShutdownList_t **, and 
the second is apointer to the mutex, just like r f _mutex_ini t (). This also returns an 
int, with a value of 0 indicating success. In this case, success indicates that not only 
was the mutex initialized correctly, but an entry has been added to the shutdown list 
which will destroy the mutex when necessary. 

As their names imply, the macros RF_LOCK_MUTEX and RF_UNLOCK_MUTEX 
respectively lock and unlock mutexes. These macros each take a single argument, which 
is the name of the mutex to operate upon. Previously, we gave an example defining a 
mutex named r f _new_lock. Now we shall lock and unlock it, to provide a critical 
section for some new code: 

RF_LOCK_MUTEX(rf_new_lock) ; 

/* Your critical section here. */ 

RF_UNLOCK_MUTEX(rf_new_lock); 
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5.1.6.3 Using condition variables 

Before a condition variable may be used, it must be initialized with 
rf _cond_init (). When a condition variable is no longer needed, it must be 
destroyed with rf _cond_destroy (). Like the corresponding mutex operations, 
these functions take as their only argument a pointer to the condition variable to be ini- 
tialized, and return an int, with 0 indicating success. Similarly, 
rf _create_managed_cond () takes an RF_ShutdownList **, and a pointer 
to a condition variable, and returns success to indicate that not only has the condition 
variable been successfully initialized, but an entry has been added to the shutdown list 
which will automatically destroy the condition variable. 

RAIDframe provides simple macros for accessing the functionality of condition vari- 
ables, in the form of macros named RF_WAIT_COND, RF_SIGNAL_COND, and 
RF_BROADCAST_COND. The wait operation takes two arguments, a conditon variable 
to wait for an event on, and a mutex to atomically unlock before waiting, and lock after 
waiting. The signal and broadcast operations both take a condition variable upon which 
to generate a wakeup event. The signal operation attempts to wake at most one thread, 
which broadcast awakens all threads awaiting an event. For implementation reasons, it 
is important that threads waiting for events re-check their wakeup conditions upon exit- 
ing the wait operation to be sure that a bogus wakeup event has not been generated. Here 
is an example of what a consumer thread in a standard producer-consumer might look 
like: 

while   (1)   { 

RF_DECLARE_EXTERN_MUTEX(rf_new_wrkr_mutex) 

RF_DECLARE_EXTERN_COND(rf_new_wrkr_cond) 

RF_LOCK_MUTEX(rf_new_wrkr_mutex) 

while (rf_new_wrkr_queue == NULL) { 

RF_WAIT_COND(rf_new_wrkr_cond, rf_new_wrkr_mutex); 

if (rf_new_wrkr_shutdown) { 

/* something wants us to quit */ 

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex); 

return; 

) 
} 

/* queue now locked and unempty, dequeue something */ 

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex) 

/* queue now unlocked, dispatch op */ 

} 

5.1.6.4 Creating threads 

The macro RF_CREATE_THREAD is used to create threads. This macro evaluates to a 
return code of type int, with 0 indicating success, and nonzero indicating that an error 
occurred (and the thread could not be created). For example: 

static void showmyname_thread(arg) 

RF_ThreadArg_t arg; 
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{ 

char *name = (char *)arg; 

printf("My name is \"%s\"\n", name); 

RF_EXIT_THREAD (0) ; 

} 

void run_name_threads() 

{ 

RF_ThreadArg_t a; 

RF_Thread_t th; 

char name[100]; 

int i, re; 

for(i=0;i<10;i++) { 

a = (RF_ThreadArg_t)name; 

re = RF_CREATE_THREAD(th, showmyname_thread, a); 

if (re) { 

printf("ERROR: could not create thread %d\n", i) 

} 

} 

The above example also uses the macro RF_EXIT_THREAD, which a thread calls when 
it wishes to cease executing. This macro takes as an argument an integer exit status. 

5.1.6.5   Managing threads 

One problem with the code in the above example is that the loop which creates the 
threads does not know when the threads have been created or when they exit. In many 
cases, threads will be created for the purpose of dispatching various events. In these 
cases, the creator of the thread will want to know when the thread has begun execution, 
and is ready to accept events. Likewise, during a cleanup phase, end-of-day routines will 
want to know when a thread has received notification of system teardown, so resources 
which the thread might otherwise check or use in its normal operation (for instance, 
work queues, mutex and condition variables, et cetera) can be deallocated. To address 
this problem, RAIDframe provides "thread group" management, which can be used to 
determine when one or a group of threads have been created and are ready to execute 
events, and when they are no longer executing. 

A thread group is of type RF_ThreadGr oup_t. This must be initialized one of two 
ways. One is by calling rf _init_threadgroup (), which takes as its sole argu- 
ment a pointer to an RF_ThreadGr oup_t to initialize. The other is to call 
rf _init_managed_threadgroup (), which takes as its first argument an 
RF_ShutdownList_t** and an RF_ThreadGroup_t* as its second argument. 
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In the case of the former, the thread group must be deallocated when it is no longer 
needed by calling r f _des troy_threadgroup () with a pointer to the thread group 
as its sole argument (in the case of the latter, the deallocation action is queued on the 
shutdown list). 

TABLE 22 

Several macros, described in the table below, are key to thread group operation: 

Thread Group Operations 

Macro name Caller 

RF_THREADGROUP_STARTED Creator 

RF_THREADGROUP_RUNNING Member 
thread 

RF_THREADGROUP_DONE Member 
thread 

RF_THREADGROUP_WAIT_START       Creator 

RF_THREADGROUP_WAIT_STOP Creator 

When called 

After successfully 
creating a member thread 

Once running 

When ready to exit 

Waiting for member 
threads to successfully 
begin running 

Waiting for member 
threads to stop running 

Rewritten to use a thread group, the previous example might look like: 

static  RF_ThreadGroup_t group; 

int threads_should_run =  0; 

static void showmyname_thread(arg) 

RF_ThreadArg_t arg; 

{ 

char  *name =   (char  *)arg; 

printf("My name is  \"%s\"\n",   name); 

/*  other local  initialization */ 

RF_THREADGROUP_RUNNING{&group) ; 

while(threads_should_run &&   (...))   { 

/* dispatch loop */ 

} 

RF_THREADGROUP_DONE(&group); 

RF_EXIT_THREAD (0) ; 

void run_name_threads() 
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{ 

RF_ThreadArg_t a; 

RF_Thread_t th; 

char name [100] ; 

int i, re; 

re = rf_init_threadgroup(&group); 

if (re) { 

printf("ERROR: cannot create thread group\n"); 

return; 

} 

threads_should_run = 1; 

for(i=0;i<10;i++) { 

a = (RF_ThreadArg_t)name; 

re = RF_CREATE_THREAD(th, showmyname_thread, a); 

if (re) { 

printf("ERROR: could not create thread %d\n", i) 

} 

else { 

RF_THREADGROUP_STARTED(&group); 

} 

} 

RF_THREADGROUP_WAIT_START (Sgroup) ; 

printf ("All  threads  running\n") ,- 

/* potentially do something here  */ 

threads_should_run =  0; 

RF_THREADGROUP_WAIT_STOP(&group); 

printf("All threads done\n"); 

re = rf_destroy_threadgroup(&group); 

if   (re)   { 

printf("WARNING:   error destroying thread group\n") 

} 

If RF_THREADGROUP_WAIT_STOP is called on a thread group before 
RF_THREADGROUP_WAIT_START, the results may not be what is desired. 
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5.1.6.6   Threads in the simulator 

The simulator does not support threads. In this environment, all mutex and condition 
operations become no-ops, and thread creation is disallowed. Architectures and modules 
which require a separate stream of execution should instead maintain timed event 
queues when compiled for simulation. 

5.1.7 Creating New Debug Options 

Debug options are of type long. To add a debug option, add an entry of the form: 

RF_DBG_OPTION(<Name>,<Val>) 

to rf_optnames. h where the <Name> is the name of your debugging variable and 
<Val> is the (long) value that it should default to. To use your debug variable, put the 
line #include  "rf _options. h" at the top of rf _optnames . h and reference 
the variable as r f _<Name>. For example, say we want to add a debug variable named 
newDebugVar, with a default value of zero. The following line would be added to 
rf _optnames. h: 

RF_DBG_OPTION(newDebugVar,0)   /*  our new entry */ 

Note that it is important to preserve the lack of whitespace between the parenthesis 
when adding new entries to rf_optnames.h. Code which uses this variable might look 
like: 

if (rf_newDebugVar) { 

printf("foo is now %d\n", foo); 

if (rf_newDebugVar > 1) { 

/* print detailed info */ 

printf("bar is now %d, baz is %lu\n", bar, 

(u_long)baz) ) ,- 

} 

} 

5.1.8 Timing 

RAIDframe provides a platform- and environment-independent timing mechanism 
which can be used both for microbenchmarking individual codepaths, and for collecting 
statistics about how time is being spent in the system overall. This generic timing mech- 
anism is used, among other ways, to generate the elements of RAIDframe trace records 
(see Built-in Tracing of RAIDframe Performance, below). 

A timer is of type RF_Etimer_t, which is defined in a platform-dependent manner in 
r f_etimer. h. Timers require no special initialization to be used, and are fully copy- 
able. The macro RF_ETIMER_START takes as its only argument the timer to start. 
Likewise, RF_ETIMER_STOP also takes a timer as its sole argument. To find out how 
long a timer has been running, the difference between the start time and the stop time 
must be computed. Because this computation time might affect other timing results, it is 
invoked separately with the macro RF_ETIMER_EVAL, which computes the time 
elapsed between RF_ETIMER_START and RF_ETIMER_STOP for that timer. To 
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access this result, the macro RF_ETIMER_VAL_US takes as its argument a timer, and 
returns the number of microseconds that RF_ETIMER_EVAL computed as the elapsed 
time. RF_ETIMER_VAL_MS likewise returns the number of elapsed milliseconds. 

This example demonstrates how timers can be used to compute the amount of time that 
elapses between different points in a codepath. It takes advantage of the copyability of 
timers to snapshot a running timer at different points to obtain intermediate timing 
results. Evaluation of elapsed time is deferred until all events being timed have com- 
pleted, to avoid timing the computation of elapsed time. 

RF_Etimer_t timer, tl, t2; 

RF_ETIMER_START(timer); 

/* do some computation (A) here */ 

tl = timer; 

RF_ETIMER_STOP(tl); 

/* do some computation (B) here */ 

t2 = timer; 

RF_ETIMER_STOP(t2); 

/* perform some set of operations (C) here */ 

RF_ETIMER_STOP(timer); 

RF_ETIMER_EVAL (timer) ;• 

RF_ETIMER_EVAL (tl) ; 

RF_ETIMER_EVAL(t2); 

printf("Operation A took %lu microseconds\n", 

(unsigned long)RF_ETIMER_VAL_US(tl)); 

printf("%lu ms elapsed before operation C started\n", 

(unsigned long)RF_ETIMER_VAL_MS(t2)); 

printf("Together, A, B, and C took %d:%06d\n", 

(int)RF_ETIMER_VAL_US(timer)/1000000, 

(int)RF_ETIMER_VAL_US(timer)%1000000); 

5.1.9   Built-in Tracing of RAIDframe Performance 

RAIDframe has several predefined codepaths that it will evaluate once the tracing 
option is turned on in the Debug section of the RAIDframe configuration file. To turn on 
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tracing, set accessTraceBuf Size to a value greater than 0. Table 23 shows the 
source files used in timing and tracing and what their functions are. 

TABLE 23. Source Files for RAIDframe's Timer and Trace Mechanism 

Source File Function 

r f _etimer. h Times codepaths 

r f _readcc. s Platform-specific assistance for 
rf_etimer.h 

rf_acctrace. [ch]       Gathers timer records efficiently 

rf _tracestats. c Processes the records 

To add a trace record to the trace file, you must call r f _LogTracRec () . The tracing 
module accumulates records until it is shut down, or its tracing buffers fill (it uses the 
number of buffers specified by accessTraceBuf Size). At this time, the accumu- 
lated buffers are flushed into the trace. dat file, rf _LogTraceRec () takes two 
arguments. The first is a pointer to an RF_Raid_t, which is the array for which an 
event has occurred. The second is a pointer to the trace record itself. Trace records are of 
type RF_AccTraceEntry_t, which is defined in rf _acctrace. h. 

To read trace.dat, use rf_tracestats. The command line argument is in the 
form: 

rf_tracestats   [-v]    [-p]   trace_dat 

where -v is verbose mode and -p prints formatted trace records on-screen (without 
arguments, r f_tracestats displays only summary information for an entire trace- 
file). 

5.2  Installing a New RAID Architecture 

A central switch table in the module r f _layout. c specifies the routines which each 
array architecture relies on for functions such as graph selection, mapping, and recon- 
struction. The first step in adding a new architecture is to create a new entry in this table, 
called mapsw in the code. 

This is the mapsw entry for RAID level 5. Note that portions of the table appear 
within the RF_NK2 and RF_NU macros. These macros are used in mapsw entries to 
remove unnecessary parts of the table in certain environments. (For instance, the in-ker- 
nel portion of RAIDframe does not parse configuration files itself, but instead relies on a 
utility program (rf _setconf ig or rf _ctrl) to do so. Likewise, this utility pro- 
gram has no need to actually perform RAID operations such as sector-mapping.) 

/* RAID level 5 */ 

{ ' 5' , "RAID Level 5", 
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RF_NK2(rf_MakeLayoutSpecificNULL, NULL) 

RF_NU( 

rf_ConfigureRAID5, 

rf_MapSectorRAID5, rf_MapParityRAID5, NULL, 

rf_Identi fyStripeRAID5, 

rf_RaidFiveDagSelect, 

rf_MapSIDToPSIDRAID5, 

rf_GetDefaultHeadSepLimitRAID5, 

rf_GetDefaultNumFloatingReconBuffersRAID5, 

NULL, NULL, 

rf_SubmitReconBufferBasic, 

rf_VerifyParityBasic, 

1, 

DefaultStates, 

0) 
}, 

5.2.1 parityConfig, configName 

The first entry is of type RF_ParityConf ig_t. This is a single-character identifier 
of the RAID architecture. Every entry in this table should have a unique value for its 
RF_Par ityConf ig_t. This is the character identifier used in the RAIDframe config- 
uration files to identify the RAID architecture. The second entry is of type char*, and 
is a string identifying the RAID architecture. For instance, "RAID Level 5" above. 
There is no limit on the length of this string, but it should be reasonably short, and not 
contain newlines, tabs, or any special characters. 

5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg 

The next two entries are for parsing layout-specific information from the user's RAID- 
frame configuration file. The first is a function returning int, which is used to parse the 
relevant portion of the configuration file. The second, MakeLayoutSpecificArg, is 
an extra argument to this function, to make it easier to use the same parsing function 
with different parameters for different RAID architectures. 

The function has a declaration of the form: 

int MakeLayoutSpecific(FILE *fp, RF_Config_t *cfgPtr, 

void *arg); 

The first argument is a regular file pointer, which has advanced to the beginning of the 
layout-specific section of the configuration file (note that this section may begin with 
one or more blank lines). The second argument is the configuration which is currently 
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being parsed (RF_Conf ig_t is defined in r f_conf igure. h). The final argument, 
arg, is the aforementioned MakeLayoutSpecif icArg. 

The MakeLayoutSpecif ic function should perform all necessary parsing and com- 
putation, and allocate memory to store its results (as necessary). The number of bytes 
allocated for this purpose should be stored in cf gPtr->layoutSpecif icSize, 
and a pointer to this memory should be stored in cfgPtr->layoutSpecif ic. This 
should be a single, contiguous block of memory that is fully copyable (that is, contains 
no pointer to other regions of memory). This can later be retrieved by other layout-spe- 
cific functions. 

Upon success, the MakeLayoutSpecif ic operation should return 0. Otherwise, it 
should return a meaningful error value from sys / errno. h. 

5.2.3   Configure 

The Configure operation is called at start-of-day to initialize any layout- and array- 
specific information, and to allocate any extra resources the RAID architecture may 
require. It has the form: 

int Configure(RF_ShutdownList_t **shutdownListp, 

RF_Raid_t *raidPtr, RF_Config_t *cfgPtr); 

The shutdown list is provided so that any necessary shutdown and cleanup activities 
may be registered at this configuration time. In addition, raidPtr->cleanupList 
is of type RF_ShutdownList_t*. The contents of raidPtr->cleanupList are 
deallocated after the array is quiesced and shut down. The array which is being config- 
ured is raidPtr, and the user's configuration file is described fully by c f gPtr. 

On success, the Configure routine should return 0. On failure, it should return a 
descriptive, nonzero error code. Additionally, all memory which the Configure 
routine allocated should either be deallocated or enqueued on 
raidPtr->cleanupList. Likewise, any necessary cleanup activities should be 
performed immediately before returning a failure, or enqueued on shutdownList. 

The Configure routine may use the field 
raidPtr->Layout. layoutSpecif iclnf o, which is of type void*, to store 
any array-specific information which it desires. It should also initialize 
raidPtr->totalSectors to the number of data sectors the array is capable of 
storing (note that this does not include the number of sectors which have been allocated 
to redundancy data). Additionally, there are several fields in the raidPtr->Layout 
structure (of type RF_RaidLayout_t, defined in rf _layout. h) which this routine 
is required to initialize. They are as follows: 

TABLE 24 RF_RaidLayout_t fields to be filled in by Configure 

Layout Field Contents 

numStripe number of stripes in the array 

dataSectorsPerStripe    number of data sectors in each stripe 
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Layout Field Contents 

bytesPerStripeUnit number of bytes in each stripe unit 

numDataCol number of data columns in each stripe 

numParityCol number of parity columns in each stripe 

5.2.4   MapSector, MapParity, MapQ 

The MapSector, MapParity, and MapQ routines provide basic array-layout infor- 
mation. They are declared as: 

void MapSector (RF_Raid_t TaidPtr, 

RF_RaidAddr_t raidSector, RF_RowCol_t *row, 

RF_RowCol_t *col, RF_SectorNum_t *diskSector, 

int remap); 

void MapParity(RF_Raid_t *raidPtr, 

RF_RaidAddr_t raidSector, RF_RowCol_t *row, 

RF_RowCol_t *col, RF_SectorNum_t *diskSector, 

int remap); 

void MapQ(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, 

RF_RowCol_t *row, RF_RowCol_t *col, 

RF_SectorNum_t *diskSector, int remap); 

Each of these functions is called to determine the location of a single sector in the array. 
The array is indicated by raidPtr. The sector is indicated by raidSec tor, which is 
the sector number of the array to be mapped. The function assigns *row and *col to 
indicate which disk the sector resides on, and *diskSector is the sector number on 
that disk which the mapping has yielded. 

The MapSector routine is used to map data sectors to physical disk sectors. All array 
architectures must provide this routine. This should yield a unique mapping for every 
sector in the array. 

The MapParity routine is like MapSector, except that the resulting sector is not the 
corresponding physical data sector, but rather the corresponding physical parity sector. 
In most architectures, many data sectors will map to the same parity sector. In non-fault- 
tolerant architectures, this routine may be NULL. 

The MapQ routine is similar to MapParity, except it is used to map an additional 
redundancy unit. This is provided by dual-fault-tolerant architectures, such as Even-Odd 
and Raid Level 6. 

If the remap argument has the value RF_REMAP, the mapping should be to the spare 
sector corresponding to the sector to which the mapping function would otherwise yield. 
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5.2.5 IdentifyStripe 

The IdentifyStripe routine is used to determine which physical disks contain sec- 
tors that share a stripe with a particular sector. This routine has the declaration: 

void IdentifyStripe(RF_Raid_t  *raidPtr, 

RF_RaidAddr_t addr,   RF_RowCol_t  **diskids, 

RF_RowCol_t  *outrow); 

The first argument, raidPtr, is the array in which the mapping is to be performed. 
The second argument, addr, is the sector in said array for which IdentifyStripe 
is to determine the disks of its fellow stripe members. This function should assign to 
♦diskids an array of (raidPtr->Layout.numDataCol + 
raidPtr- >Layout. numParityCol) RF_RowCol_t elements. These are the 
column numbers of the disks. The row of disks which the stripe occupies should be 
assigned to *outrow. 

When reading the extant RAIDframe code, one may note that some architectures actu- 
ally generate an ordered list of disks in the stripe. This is not necessary; rather, this is a 
historic convention used to make debugging easier. 

5.2.6 SelectionFunc 

When an I/O request enters the system, it is passed through 
rf_SelectAlgorithm () in rf _aselect. c. This routine uses the layout-spe- 
cific DAG selection routine to choose a DAG creation function for a particular access. 
This routine, SelectionFunc, is declared as: 

void SelectionFunc(RF_Raid_t *raidPtr, RF_IoType_t type, 

RF_AccessStripeMap_t *asmap, 

RF_VoidFuncPtr *createFunc); 

This routine is used to determine what DAG creation function a particular access to the 
array indicated by raidPtr should use. RF_IO_TYPE_READ and 
RF_IO_TYPE_WRITE are the only legal values for the type argument, which indi- 
cates the direction of the access. The asmap argument (of type 
RF_AccessStripeMap_t, found inrf _layout. h) describes the access in its 
entirety, including physical disk mappings for data and parity, ranges accessed, and the 
presence of disk failures which may affect the access. The SelectionFunc routine 
should take these failures into account when determining the creation function to use, 
potentially determining that an access should be performed in degraded mode, rather 
than fault-free. If a unit to be accessed has failed, but is already reconstructed, the 
SelectionFunc routine should also take this into account, and alter the physical 
mappings in asmap to reflect the fact that the data has been reconstructed. This is espe- 
cially important when the access is a write, because without this remapping, a recon- 
structed data or parity unit will not be updated to reflect the new contents of the stripe. 

A pointer to the DAG creation function should be assigned to *createFunc. A later 
section details DAG creation operations, and how this function should behave. Assign- 
ing a value of NULL to *createFunc indicates that a DAG cannot be created for this 
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access, rf _SelectAlgorithm () will initially attempt to create one graph for each 
parity stripe in the access's codeword. If this creation is unsuccessful, 
rf _SelectAlgorithm () will then try to create a set of graphs for each stripe unit 
within that parity stripe. If graphs cannot be generated for each stripe unit, 
r f _SelectAlgorithm () will attempt to create a DAG for each sector in each 
stripe unit in the codeword. Finally, if this fails, rf _SelectAlgorithm () declares 
failure, and the access is failed. 

5.2.7 MapSIDToPSID 

The MapSIDToPSID routine is used by architectures for which the relationship 
between data stripes and parity stripes is not an equivalence. For instance, parity declus- 
tering allows multiple stripes to be packed into a single parity stripe, to increase the size 
of the reconstruction unit without affecting the size of the stripe unit. This routine has 
the declaration: 

void MapSIDToPSID(RF_RaidLayout_t *layoutPtr, 

RF_StripeNum_t stripelD, RF_StripeNum_t *psID, 

RF_ReconUnitNum_t *which_ru); 

The layout of the array in which this mapping is to be performed is described by 
layoutPtr. The stripe number of the stripe to be mapped is stripelD, and the 
resulting parity stripe is stored by MapSIDToPSID in *psID. This routine also stores 
the reconstruction unit of the stripe in *which_ru. The identity mapping is most 
common here; that is: 

*psID  =  stripelD; 

*which_ru =  0; 

This is performed automatically if the MapSIDToPSID routine for an architecture is 
NULL, or if the number of stripe units per parity unit for a layout is 1. 

5.2.8 GetDefaultHeadSepLimit 

The disk-directed reconstruction code has the ability to keep disk arms synchronized 
with one another when sweeping surviving columns. This is controlled by the head sep- 
aration limit for the array, which is assigned at start-of-day by calling the GetDe- 
faultHeadSepLimit routine, which is declared as: 

RF_HeadSepLimit_t GetDefaultHeadSepLimit( 

RF_Raid_t *raidPtr); 

This function takes as its sole argument the array in question, and returns how many sec- 
tors ahead of the slowest disk the fastest disk is allowed to be. That is to say, it returns 
the maximal difference in sector number between the lowest-numbered-sector currently 
being read by the disk-directed reconstruction code, and the highest-numbered-sector 
currently being read by the disk-directed reconstruction code (neglecting stripes being 
read for forced reconstruction). If this routine is NULL, a value of (-1) is assumed. 
(-1) indicates that this separation is unlimited. Note that (-1) is the only legal value 

less than 1. 
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5.2.9   GetDefaultNumFloatingReconBuffers 

The disk-directed reconstruction module maintains a pool of "floating" reconstruction 
buffers, which are not assigned to any particular disk, but are instead used to store the 
results of additional I/Os to disks which would otherwise be idle. An architecture may 
specify a minimum number of these buffers to keep for each array by providing a 
GetDefaultNumFloatingReconBuf fers routine, which has the following 
form: 

int GetDefaultNumFloatingReconBuffers( 

RF_Raid_t  *raidPtr); 

This routine is called at start-of-day on the array, and should return the minimum num- 
ber of floating reconstruction buffers to maintain for the array. 

5.2.10 GetNumSparePUs 

Architectures which support distributed sparing tell the system how many spare recon- 
struction units there are on each disk with the GetNumSparePUs routine, which has 
the form: 

RF_ReconUnitCount_t GetNumSparePUs(RF_Raid_t *raidPtr); 

Given an array raidPtr, this routine returns the number of spare reconstruction units 
there are on each disk. 

5.2.11 InstallSpareTable 

Distributed-sparing architectures which have dynamic sparing mappings may need to 
compute a new sparing table when reconstruction begins for a disk. To do so, these 
architectures provide an InstallSpareTable routine with the following declara- 
tion type: 

int InstallSpareTable(RF_Raid_t *raidPtr, 

RF_RowCol_t frow, RF_RowCol_t fcol); 

The arguments indicate the array to determine the mapping for (raidPtr), and the row 
and column (frow and fcol, respectively) of the failed disk to be reconstructed to 
spare space. On success, this routine returns 0. On failure, it returns a descriptive non- 
zero error code. 

5.2.12 SubmitReconBuffer 

When the disk-directed reconstruction code finishes reading a buffer, it must either use 
it to compute the contents of a failed unit, or save it until it has enough other information 
from the stripe from which the buffer originated to do so. When a read of a buffer from a 
surviving disk completes, an architecture's SubmitReconBuffer routine is called. 
This routine is declared as: 

int SubmitReconBuffer(RF_ReconBuffer_t *rbuf, 

int keep_it, int use_committed); 
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The buffer which has just been read is rbuf (the array from which it was read is 
rbuf ->raidPtr). If keep_it is nonzero, the SubmitReconBuf f er routine may 
hold the buffer, even if it cannot immediately use its contents. If keep_it is 0, the 
SubmitReconBuf f er routine must either immediately use or copy the contents of 
rbuf. If use_committed is nonzero, this routine must consume a buffer off the 
committedRbuf s list of the row's reconstruction control unit, even if such a buffer is 
not needed (in the case where the buffer is not needed, it may immediately be released 
with rf_ReleaseFloatingReconBuf fer ()). In turn, the 
SubmitReconBuf f er routine should should call rf_CheckForFullRbuf () 
when a target RF_ReconBuf f er_t contains the reconstructed data for the failed unit 
in the stripe. 

If the SubmitReconBuf fer routine for an architecture is NULL, the architecture 
cannot reconstruct failed units. 

5.2.13   VerifyParity 

RAIDframe has a built-in parity verification and correction mechanism (which is also 
used to format arrays with correct parity, and can be used in various tests for debugging 
purposes to determine that parity is correct for an access). This relies on the Ver i f y- 
Par i ty routine which an architecture must provide to check and correct (if requested) 
the redundancy information for a stripe. This routine has the form: 

int VerifyParity(RF_Raid_t *raidPtr, 

RF_RaidAddr_t raidAddr, RF_PhysDiskAddr_t *parityPDA, 

int correct_it, RF_RaidAccessFlags_t flags); 

The array in which redundancy information is to be verified is raidPtr. The stripe for 
which this information is to be checked is the one containing sector number 
raidAddr. To improve performance, and ease the coding of Veri f yPari ty, the 
pari tyPDA argument provides the already-complete mapping of the redundancy 
information to physical addresses for this stripe. If correct_it is nonzero, and the 
redundancy information is not correct, new redundancy information should be 
computed and written for this stripe. Finally, any RAID accesses that must be performed 
should use the flags given as the last parameter to the VerifyParity routine. 

When reading existing data in the stripe, or writing new redundancy information, the 
VerifyParity routine should create trivial DAGs which do so. The function 
r f _MakeSimpleDAG () in r f _par ityscan. c assists in this task. 

The Ver i f yPar i ty routine returns a status value indicating the current correctness of 
the parity before and after execution. The following values, defined in 
r f _par ityscan. h, are the legal returns for this routine: 
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TABLE 25 Return Values for the VerifyParity Operation 

Value 

RF_PARITY_OKAY 

RF PARITY CORRECTED 

RF PARITY BAD 

RF_PARITY_COULD_NOT_CORRECT 

RF_PARITY_COULD_NOT_VERIFY 

Meaning 

redundancy information is correct 

redundancy information was incorrect, 
but correct_it was nonzero, and it 
is now correct 

redundancy information is not correct, 
and correct_it was 0 

redundancy information is not correct, 
correct_it was nonzero, and 
correct redundancy information could 
not be computed or could not be written 

redundancy information could not be 
verified, either current data or 
redundancy could not be read, or 
correct redundancy information could 
not be computed 

5.2.14 faultsTolerated 

The faultsTolerated field of the mapsw entry for a RAID architecture indicates 
the minimum number of faults that an array can tolerate without data loss. For example, 
Raid Level 4 can tolerate exactly one disk failure, so its faultsTolerated is 1. 
Raid Level 0 cannot tolerate any failures, so its faultsTolerated is 0. Raid Level 1 
(mirroring) can potentially survive several faults; however, if both members of a mirror 
pair fail, data is lost; thus, its faultsTolerated is 1, because that is the minimum 
number of failures which it can guarantee surviving. 

5.2.15 states 

The states field lists the order in which an access to this array architecture passes 
through the access state machine. This field is an array of elements of type 
RF_AccessState_t. The last element in this array must be r f _LastState, 
which indicates that the access is complete. Most architectures will wish to use the value 
Def aultstates in this field, which is a standard ordering of states. 

5.2.16 flags 

The final field of a mapsw entry is flags, which are a set of flags ORd together to indi- 
cate that the architecture has certain standard properties. Some architectures will wish to 
provide a 0 in this field (indicating that none of these flags apply). Legal values include: 
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TABLE 26 RF_LayoutSWJ Flag Values 

Value 

RF_DISTRIBUTE_SPARE 

RF_BD_DECLUSTERED 

Meaning 

architecture supports distributed sparing 

this is a declustered architecture which requires 
externally generated block-design tables 

5.3  Implementing New RAID Operations 

5.3.1   DAG Creation 

As discussed in Section 5.2.6 on page 106, RAIDframe graph-creation functions must 
at least be able to create graphs for accessing single blocks at a time for accesses to be 
successfully generated. RAIDframe will currrently never attempt to create graphs for an 
access which spans more than a single parity stripe (such accesses are broken up into 
sets of single-parity-stripe accesses, which are executed concurrently). 

The appropriate graph creation routine for an access or portion of an access is deter- 
mined by an architecture's SelectionFunc. The SelectionFunc provides a 
void function pointer. This function should have the form: 

void DagCreationFunc(RF_Raid_t *raidPtr, 

RF_AccessStripeMap_t *asmap, RF_DagHeader_t 

void *bp, RF_RaidAccessFlags_t flags, 

RF_AllocListElem_t *allocList); 

^dagji, 

The array and parameterization of the access are described by raidPtr and asmap, 
respectively. The DAG creation function should fill in the empty DAG header dag_h. 
At the time the DAG creation function is called, dag_h is initialized as an enabled 
DAG with no nodes. In the RAIDframe kernel environment, bpis a struct buf * 
which represents the access's target buffer (most DAG creation functions will not need 
this information at all. Some may choose to operate differently for kernel-internal or 
user accesses, so this information is available). Outside the kernel, bp is generally 
ignored. The flags variable is a bitwise OR of values from rf _dagf lags. h. Many 
of these flags are not applicable to the DAG creation function, but again, they are pro- 
vided for those few cases where the DAG creation function wishes to do something dif- 
ferent as a result. Finally, a per-access memory allocation list, allocXist, is provided 
for any temporary storage which may need to be allocated. This not only includes extra 
buffers for computing redundancy information before storing it, but also includes the 
storage required to hold the actual nodes of the DAG themselves. 

5.3.2   Creating New Primitive Operations 

The most important rule to follow when creating primitive operations is that they must 
be nonblocking. Primitives such as disk read employ call-back functions—the disk 
read is scheduled, the primitive returns, and the call-back routine is later called when the 
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disk read actually completes. If a primitive is allowed to block, RAIDframe will not be 
able to properly schedule its workload (and may deadlock). 

In its current release, RAIDframe provides a variety of primitive operations which may 
be reused by architectures that you later implement. 

5.4 Adding a New Disk-Queueing Policy 

RAIDframe supports multiple queueing disciplines for pending disk I/Os. The follow- 
ing section explains how to add a new queueing policy. 

A queueing policy must maintain a set of pending I/Os for a single disk. Although an 
array may have many disks, a queueing policy is only aware of disks on an individual 
basis. Therefore, it only needs to support a limited number of simple operations: create, 
enqueue, dequeue, peek, and promote. 

To add a queueing policy, you must register it with the disk queue manager. This is done 
by modifying the diskqueuesw structure in r f _diskqueue. c. Entries in this 
structure are of type RF_DiskQueueSW_t (defined in rf_diskqueue.h), and 
look like: 

{"fifo", /* FIFO */ 

rf_FifoCreate, 

rf_FifoEnqueue, 

rf_FifoDequeue, 

rf_FifoPeek, 

rf_FifoPromote}, 

The first entry is the queueType (RF_DiskQueueType_t) and is a string which is 
used to identify the queueing discipline. RAIDframe configuration files will use this 
string to request this queueing policy. The remainder of the entries are function entry 
points, described in the sections below. You should add new policies to the end of the 
diskqueuesw array. The first entry in this array (FIFO) is the default policy (which is 
used when the configuration parser cannot recognize the requested queueing policy as 
specified in the RAIDframe configuration file). 

5.4.1   Create Operation 
Your creation function should have a declaration of the form: 

void *rf_PolicynameCreate(RF_SectorCount_t 
sectors_per_disk, RF_AllocListElem_t *cl_list, 
RF_ShutdownList_t **listp) 

This function is called to create and initialize a disk queue. It returns a generic (void 
*) pointer, which will be used later to identify the individual queue to your queueing 
module. (One disk queue will be created for each disk). The size of each disk in sectors 
is passed by the value in sectors_per_disk. An allocation fist is passed as 
cl_list. Any memory which your queueing policy allocates should be registered 
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with this allocation Hst by using RF_CallocAndAdd or RF_MallocAndAdd to 
allocate the memory. If any special operations need to be performed to shut down the 
queue, these should be resgistered with the shutdown list listp. 

5.4.2 Enqueue Operation 

Your enqueue function should have a declaration of the form: 

void rf_PolicynameEnqueue (void *qptr, RF_DiskQueueData_t 
*req, int priority) 

This function is called to add a request to the disk's queue. The queue is uniquely iden- 
tified by qptr, which is the returned value from the queue creation function. The 
request is pointed to by req and is of type RF_Di skQueueData_t (defined in 
rf_diskqueue. h). The priority is either of type RF_IO_NORMAL_PRIORITY or 
RF_IO_LOW_PRIORITY. When dequeueing, you should always give preference to 
dequeueing I/Os of NORMAL priority over I/Os of LOW priority. The 
RF_DiskQueueData_t structure contains two pointers, next and prev, both of type 
RF_DiskQueueData_t  *, which may be used by this queueing code to maintain 
lists of pending I/Os. 

The Enqueue, Dequeue, Peek, and Promote operations need not be protected internally 
with locks; the discipline-independent disk-queueing code in rf_diskqueue. c will 
do this automatically. 

5.4.3 Dequeue Operation 

Your dequeue function should have a declaration of the form: 

RF_DiskQueueData_t *rf_PolicynameDequeue(void *qptr) 

This function is called to remove a request from the disk's queue. The queue is uniquely 
identified by qptr, which is the returned value from the queue creation function. If an 
I/O of priority RF_IO_NORMAL_PRIORITY is in the queue, it should be returned. If 
there is more than one such I/O, the queueing module should select one and return it (for 
instance, FIFO queueing will return the first such I/O to be enqueued). If no I/O of 
NORMAL priority is awaiting dispatch in this queue, an I/O of priority 
RF_IO_LOW_PRIORITY may be returned. If there are no I/Os of any priority in the 
queue, this operation should return NULL. Before returning a valid pending I/O, it 
should be removed from the queue. 

5.4.4 Peek Operation 

Your peek function should have a declaration of the form: 

RF_DiskQueueData_t *rf_PolicynamePeek(void *qptr) 

This function should behave identically to the dequeue function, except that it should 
not remove the I/O from the list of pending I/Os for this disk. Additionally, if the Peek 
operation is called, and there are no subsequent Enqueue, Dequeue or Promote opera- 
tions, another Peek or Dequeue operation should return the same I/O (that is, a queue 
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should be deterministic for its contents at any given time, and its choice of which I/O to 
execute next should be affected only by a change of its contents). 

5.4.5   Promote Operation 

Your promote function should have a declaration of the form: 

int rf_PolicynamePromote(void *qptr, RF_StripeNum_t par- 
ityStripelD, RF_ReconUnitNum_t which_ru) 

This operation should search the queue for entries for which the parityStripelD 
and which_ru fields of the RF_DiskQueueData_t structure match those which 
are passed as arguments to this function, and which have a priority field valued at 
RF_IO_LOW_PRIORITY.   Each such I/O should be re-marked as 
having priority RF_IO_NORMAL_PRIORITY, and any necessary rearrange- 
ments of the queueing policy's data should be performed at this time. This function 
should return the number of such I/Os it has found and promoted to NORMAL priority or 
zero if none such were found. 

5.5  Porting RAIDframe to Other Systems 

Currently all three versions of RAIDframe—stand-alone user application, event-driven 
simulator, and in-kernel device driver—run on DEC Alphas running pre-4.0 versions of 
the Digital UNIX operating system. Additionally, the simulator runs on IBM RS/6000s 
running ATX. This section is intended as an aid in porting RAIDframe to new platforms. 

5.5.1   Basic Types 

The first step is to define a set of basic types in r f _types. h. You must provide vari- 
ous sizes of signed and unsigned integers for your system. Table 27 lists the types you 
must define, and what they must be defined to. 

TABLE 27 Basic RAIDframe integer types 

RAIDframe type Meaning 

RF_int8 signed 8-bit integer 

RF_uint8 unsigned 8-bit integer 

RF_intl6 signed 16-bit integer 

RF_uintl6 unsigned 16-bit integer 

RF_int32 signed 32-bit integer 

RF_uint32 unsigned 32-bit integer 

RF_int64 signed 64-bit integer 

RF_uint64 unsigned 64-bit integer 
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5.5.2 Byte Ordering 

If the target platform is big-endian, the macro RF_IS_BIG_ENDIAN must be set to 1 
in r f _types. h. If it is not, RF_IS_BIG_ENDIAN must be set to 0. 

5.5.3 Word Size 

The file rf_dagf uncs. c contains several optimized XOR routines. These routines 
require that the macro LONGSHIFT be defined in this file. LONGSHIFT should be 
defined to the log2 (sizeof (long)) for your system (for example, on a system 
with 64-bit longs, this would be 3, on a system with 32-bit longs, this would be 2). 

5.5.4 Timing 

Section 5.1.8 describes various timing macros defined in r f _etimer. h which pro- 
vide precision timing. These are architecture-dependent. Ideally, these functions provide 
microsecond-accurate timing with little or no overhead. When porting to a new plat- 
form, the nature of the precision/overhead tradeoff must be characterized, and an appro- 
priate implementation provided. Some architectures need assembly-language 
assistance; this should be added to r f_readcc. s. 

5.5.5 SCSI Operations 

SCSI operations are isolated within rf_camlayer.c. Ports of more than just the simulator 
should provide code in this file for such operations as SCSI Read Capacity. 

5.5.6 Threads 

Section 5.1.6 details the thread operations defined in rf_threadstuf f. c and 
r f _threads tuf f. h. Ports which provide user-level-driver or kernel functionality 
must provide appropriate platform-dependent thread operations here. A Pthreads imple- 
mentation is already provided for the user-level driver; architectures for which a compli- 
ant Pthreads implementation is available should be able to re-use this. 
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Appendix: Graph Library 

The graphs necessary for implementing the RAID architectures listed in Table 6 in 
Chapter 3 are available for reuse in the graph library and they are shown in the following 
section. We have categorized the graphs implemented in RAIDframe by the particular 
architecture for which they were designed; in some cases, graphs are reused among sev- 
eral different RAID levels. 

RAID Level 0 

As we already explained in Chapter 1, RAID level 0 arrays do not encode data; there- 
fore, a RAID level 0 array is not fault-tolerant. B ecause of this, only nonredundant oper- 
ations are available for use. Figure 20 illustrates the structure of nonredundant read and 
write operations. The NOP operations guarantee that each DAG has single source and 
sink nodes. Each graph is capable of supporting one or more simultaneous primitive 
operations, allowing the graph to scale with the size of the user request. 
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FIGURE 20 Nonredundant Graphs 

Nonredundant Read Nonredundant Write 

RAID Level 1, Chained Declustering, Interleaved 
Declustering 

RAID level 1 arrays are fault tolerant and employ copy-based redundancy to survive 
single disk faults without loss of service. This means that operations are defined to ser- 
vice both fault-free and degraded read and write requests. Table 28 specifies which 
operations are used to service a request given the state of the disks. 

TABLE 28. RAID Level 1 Graph Selection 

Disk Faults 

none, single disk 

Request 

read 

write none 

write single disk 

Graph 

nonredundant read 

mirrored write 

nonredundant write 

In addition to the nonredundant graphs described in Figure 20, RAID level 1 arrays 
require an additional write operation, the mirrored write, which is responsible for main- 
taining copy-based redundancy in a fault-free array. This operation, illustrated in 
Figure 21, contains twice the number of write operations as a nonredundant write oper- 
ation because a copy of each symbol is written to both a primary and a secondary disk. 
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RAID Level 4, RAID Level 5, Parity Declustering 

FIGURE 21 Mirrored-Write Graph 

RAID level 1 arrays use copy-based encoding to survive disk faults and require that 
data must be written to two independent disks. In this graph, the write operations on 
the left represent writes to a primary disk(s) and write operations on the right repre- 
sent writes of data to secondary disk(s). The NOP source node of the nonredundant 
write graph is replaced by a Commit node. 

RAID Level 4, RAID Level 5, Parity Declustering  

RAID levels 4 and 5 tolerate disk faults through the use of parity encoding. As expected, 
the operations used to satisfy read and write requests are largely the same; however, 
because it is possible to write only a fraction of a codeword, additional write operations 
are required. Namely, the small write operation (Figure 22) which is used to write data 
to less than half of a codeword and the reconstruct write operation (Figure 23 on 
page 121) which is used to write data to more than half, but less than a full, codeword. 
Table 29 breaks down graph selection for RAID level 4 and 5 arrays. Because these two 
arrays differ only in mapping, the same table applies to both architectures. 

TABLE 29. RAID Levels 4 and 5 Graph Slection 

Request 
Disk 
Faults Graph 

read none nonredundant read 

read data disk degraded read 

read parity disk nonredundant write 

write < 50% of codeword none small write 

write > 50% and < 100% none reconstruct write 

write entire codeword none large write 

write data disk reconstruct write 

write parity disk nonredundant write 
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The small write operation, illustrated in Figure 22 on page 120, writes both data and 
parity to disk. Parity is computed as: 

Parity ne„ = Parity M®DataM®Datan (EQ1) 

The cluster of read operations on the left side of the graph represent the read of old data 
and the single read operation on the right represents the read of old parity. Once parity 
has been computed, the new data and parity symbols are written to the array. 

FIGURE 22 Small-Write Graph 

(      Wr     J      (      Wr     J 

In the reconstruct write operation, illustrated in Figure 23, parity is computed from all 
symbols in the codeword. The Rd operations collect data symbols which are not being 
overwritten. Once all data symbols are collected, parity is computed and the new data 
and parity symbols are written to disk 
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RAID Level 6 

FIGURE 23 Reconstruct-Write Graph 

The Rd operations read the data symbols which are not being overwritten. The left- 
most Wr operations overwrite data symbols and the Wr operation on the right over- 
writes parity. 

RAID Level 6 

In addition to parity, RAID level 6 arrays employ a second check symbol to allow them 
to survive two simultaneous disk failures. We refer to this second symbol as "Q." The 
graphs used by this architecture are summarized in Table 30. 

TABLE 30. RAID Level 6 Graph Selection 

Request 

read 

read 

read 

read 

read 

read 

read 

Disk Faults 

none 

single data disk 

parity disk 

Qdisk 

two data disks 

data + parity disks 

data + Q disks 

Graph 

nonredundant read 

degraded read 

nonredundant read 

nonredundant read 

PQ double-degraded read 

PQdegraded-DPread 

degraded read 
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TABLE 30. RAID Level 6 Graph Selection 

Request Disk Faults Graph 

read parity t- Q disks nonredundant read 

write < 50% of codeword none PQ small write 

write < 50% of codeword parity PQ small write, P omitted 

write < 50% of codeword Q small write 

write > 50% and < 100% none PQ reconstruct write 

write > 50% and < 100% parity PQ reconstruct, P omitted 

write > 50% and < 100% Q reconstruct write 

write 100% none PQ large write 

write 100% parity PQ large write, P omitted 

write 100% Q large write 

write one data disk PQ reconstruct write 

write two data disks PQ double-degraded write 

write data + parity disks PQ reconstruct, P omitted 

write data + Q disks reconstruct write 

write parity + Q disks nonredundant write 

Read operations to fault-free or single-fault arrays are handled in much the same man- 
ner as RAID level 5. When an attempt is made to read a codeword with two missing data 
symbols, a PQ double-degraded-read operation, illustrated in Figure 24, is used. 
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RAID Level 6 

FIGURE 24 PQ Double-Degraded-Read Graph 

This operation is used when two data units are missing from the codeword. The left- 
most Rd operation reads the old value of parity and the right-most operation reads the 
old value of Q. The center Rd operations read all surviving data in the codeword. The Q 
operation regenerates a single missing data symbol and the XOR node regenerates the 
other missing symbol. 

Reading data from a codeword in which both a data symbol and parity are missing 
requires the use of the "Q" symbol to reconstruct the missing data. The operation to do 
this, the PQ degraded-DP-read operations is illustrated in Figure 25. 

FIGURE 25 PQ Degraded-DP-Read Graph 

Similar to RAID level 5 arrays, writing less than half of a codeword to a RAID level 6 
array is best done using a read-modify-write algorithm. The PQ small write operation, 
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illustrated in Figure 26, writes new data symbols and computes new values of parity and 
"Q" using Equation 1 on page 120. If either the parity or Q disks fail, this same graph is 
used but the chains which would normally update the now-failed check symbol are 
omitted. 

FIGURE 26 PQ Small-Write Graph 

This graph is similar to the small-write graph (Figure 22) but with an extra chain 
added to update the "Q" disk. The Commit node blocks all writes from initiating 
until all new symbols (data, parity, and Q) have been computed. 

Writing over half, but less than an entire, codeword is best done by a reconstruct write, 
similar to the one used in RAID level 5. Illustrated in Figure 27, the PQ reconstruct- 
write operation reads the data symbols not overwritten, meaning that the entire (new) 
codeword is held in memory. Parity and Q are then computed and the new data, parity, 
and Q are then written to disk. This operation is also used when data is being written to 
an array in which a single data disk has failed and a fault-free disk is being written. 
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RAID Level 6 

FIGURE 27 PQ Reconstruct-WriteGraph 

This graph is similar to the reconstruct-write graph (Figure 23) but with an extra chain 
added to update the "Q" disk. In this example, assume that D1 and D2 are to be written. 
The Rd operations read old data (DQ, D3 and D4). New values of P and Q are then com- 
puted and the writes of D-|, P, and Q are initiated.. The Commit node blocks all Wr 
nodes from executing until all new symbols have been computed. 

If two data disks have failed and data is written to at least one, but not both, of the failed 
disks, the PQ double-degraded write operation, illustrated in Figure 28, is used. This 
graph employs an algorithm similar to the one used in the PQ degradedwrite operation 
but must reconstruct the failed data which is not overwritten. 
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FIGURE 28 PQ Double-Degraded-Write Graph 

L^JLRJ 

Assume that Dj and D2 are to be overwritten. Because D4 is missing, the PQ recon- 
struct operation cannot be used. This operation completes the requests by recon- 
structing D4 and then using the reconstract-write algorithm. First all surviving 
symbols are read. The Rd actions in the center read the read of data (e.g., DQ D-| and 
D3), the Rd operations on the ends read old P and Q. The Q operation reconstructs 
D4. At this point, the entire codeword is known and the computation and writing of 
parity, Q and data can begin. The Commit node was added to prevent Wr operations 
from executing before the XOR and Q nodes have completed. 

Finally, writing data to the entire codeword is simply performed using the PQ large- 
write operation. nivtstrated in Figure 29, the operation overwrites every symbol in the 
codeword. 
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RAID Level 6 

FIGURE 29 PQ Large-Write Graph 

Instead of allowing new data to be written concurrently while the parity overwrite 
record is computed, the Commit node blocks the writes of new data until the XOR and 
Q nodes have executed completely. 
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