
Creating Dynamic World Wide Web Pages
By Demonstration

Robert C. Miller, Brad A. Myers

May 1997
CMU-CS-97-131

CMU-HCII- 97-101

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{rcm,bam} @cs.cmu.edu
http://www.cs.cmu.edu/~rcm

Abstract
Turquoise is an intelligent browser and editor for the World Wide Web (WWW) that
allows users to create dynamic pages by demonstration rather than by writing program
code. With Turquoise, users without programming experience can create scripts that
combine data from several Web pages, automate repetitive browsing or editing tasks,
convert other data formats into Hypertext Markup Language (HTML), and process
submitted forms. Scripts are demonstrated by familiar browsing and editing actions, which
Turquoise records and generalizes into a program In order to generalize the locations of
the user's actions on a page, Turquoise includes a novel pattern matcher that finds
locations within an HTML document. Turquoise infers patterns automatically by picking
from a knowledge base of pattern templates, heuristically chosen to be robust and
comprehensible to the user. With a good pattern knowledge base, Turquoise can often
infer the correct script after only a single demonstration.

Copyright © 1997 — Carnegie Mellon University

This research was partially sponsored by NSF under grant number IRI-9319969. Robert Miller is partially supported by a National
Defense Science and Engineering Graduate Fellowship. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

worn m WTC QUALITY INSPECTED 4

Keywords: World Wide Web (WWW), end-user programming, programming-by-
demonstration, Hypertext Markup Language (HTML), Client Gateway Interface (CGI),
scripting languages.

1. INTRODUCTION

The World Wide Web's enormous popularity shows that almost anyone can publish

documents on the Web. Would-be publishers do not even need to learn HTML, thanks to

what-you-see-is-what-you-get (WYSIWYG) editors like Netscape Navigator Gold,

Adobe PageMUl, and AOLpress. These editors make publishing static documents on the

Web as easy as ordinary word processing.

Unfortunately, end-users get far less help with creating dynamic pages. Dynamic pages

are documents generated on-the-fly, typically by running a script through the Common

Gateway Interface (CGI) protocol [13]. Dynamic pages enable the Web to be used as a

medium for database access, commercial transactions, gateways to other information
systems, and even chat forums.

Automating repetitive tasks is another area where end-users get little help from today's

Web tools. Web document maintainers often face tedious, repetitive chores. Existing

tools can help with the most typical chores, like finding broken links in a Web site, but

specialized tasks are beyond their reach. End-users often need some kind of personal

assistant to help them browse and edit the Web.

Creating dynamic pages and personal assistants is a major challenge for most end-users,

requiring intimate knowledge of both HTML and a programming language, such as Perl,

Tel, Java, or C. Consider a typical Web user with no programming experience. How can

such a user do any of the following:

• create a customized newspaper, showing the weather forecast, news headlines, and a

favorite cartoon, all on a single Web page for easy reading?

• maintain a history of a stock portfolio by automatically retrieving new stock quotes

from a Web site each day and appending them to a table?

• provide colleagues with a Web-based form that collects orders for lunch, combining

them into a single list for easy ordering and delivery?

Typical users are unable to automate any of these tasks, without an appropriate existing

script or a programmer to help them. For these users, the World Wide Web must be

manually operated, with no way to retrieve, process, or generate data automatically.

There is an alternative to traditional scripting languages: creating the script by

demonstration. In programming-by-demonstration [11], the user describes a program by

operating on example data, while the system watches and attempts to infer the intent of

the user's actions. The end result of the demonstration is an abstract, executable program.

Turquoise is a WWW browsing and editing system that supports the creation of dynamic

pages and personal assistants by demonstration. With Turquoise, a user demonstrates a

script like the customized newspaper by browsing to the desired news sources and using

cut-and-paste to construct an example of the newspaper. From this single example,

Turquoise can infer a script that regenerates the newspaper automatically, reflecting the

latest information from its sources.

The Web documents used by a script are liable to change from time to time - in fact, the

customized newspaper's sources change every day. In order to handle changes gracefully,

Turquoise includes a pattern matcher designed to find portions of an HTML document.

A Turquoise pattern is an abstract description of a region of interest on a page, in terms of

HTML markup elements and text. For instance, the pattern "Bulleted List after Heading

containing 'Headlines'" might describe how news headlines are presented by a particular

Web site. Like Halbert's data descriptions [7], patterns are used to describe the

parameters of every command in a script. For the copy-and-paste commands used to build

the customized newspaper, both the copied region and the paste location are described by

patterns. Patterns are the essential abstractions that allow Turquoise scripts to be

generalized beyond the specific examples used in a demonstration.

Although Turquoise patterns could be written by the user (after some exposure to the

grammar and vocabulary), the challenge for Turquoise is to infer patterns automatically

from the user's demonstration. A huge number of patterns might describe a selected

region, but few of them will be useful. To reduce the search space, we use a heuristic

knowledge base of pattern templates, which are patterns containing placeholders, like

"<HTML element> after Heading containing <text>". When Turquoise needs a pattern

to describe a region, it tests the pattern templates against the selected region and

instantiates the placeholders as needed to make a matching pattern. If several matching

patterns are found in the template knowledge base, then Turquoise presents the

possibilities to the user for a final decision. If none of the guesses are appropriate, then

the user can edit the pattern directly to fix it.

The remainder of this paper is organized as follows. First we describe the system

architecture, which motivates a discussion of the kinds of scripts that Web users write, in

order to delimit the subset that can be usefully demonstrated. To illustrate, we give two

examples of demonstrating scripts with Turquoise. Next, we present the pattern language

used to describe regions of an HTML page, followed by the inference mechanism that

Figure 1. Turquoise system architecture.

Turquoise uses to guess patterns automatically. Finally, we survey related work and

present some conclusions.

2. SYSTEM ARCHITECTURE

The Turquoise system is shown inFigure 1. It consists of the following components:

• a Web browser/editor,

• an inference engine, which watches the user's actions and infers script commands;

• a pattern knowledge base, which provides the pattern templates that are used for

guessing what the user meant by a selection;

• a script interpreter, which replays scripts on demand, either for the local user or for

a remote Web user; and

• the scripts that the user has developed.

The Web browser/editor in the prototype system is AOLpress1, which is freely available

from America Onlinefl]. AOLpress is a WYSIWYG editor, enabling users to create and

edit pages without learning HTML, including pages containing forms and tables. Our

version of AOLpress has been specially instrumented to report the user's browsing and

editing actions to an external program, in this case the inference engine.

1 AOLpress was originally known as NaviPress, and then GNNpress. It was one of the
first WYSIWYG editors for HTML.

The inference engine receives the stream of user actions, watching for actions which

affect a browser window containing a Turquoise script. These actions are assumed to be

part of a demonstration. For each demonstrated action, the inference engine generalizes

the action's parameters by searching for them in the pattern knowledge base. For

instance, when the user pastes text into a script window, the inference engine attempts to

find patterns describing the origin of the pasted text and the location where it is inserted.

After generalizing the action, the inference engine adds it as a command to the script.

The script interpreter runs the scripts that have been demonstrated and saved. Like

other Web resources, Turquoise scripts are identified by a uniform resource locator

(URL), so the local user can run a script simply by opening its URL in the Web browser.

The script interpreter also includes a small Hypertext Transfer Protocol (HTTP) server

that can run scripts for remote users, as long as the local user has identified those scripts

as publicly accessible. Scripts might also be invoked automatically, either at regular

intervals (such as hourly, daily, or weekly) or by events within the Web browser/editor.

For example, a script that updates a page's last-modified date might be invoked whenever
the user saves an HTML document to disk.

The Turquoise prototype is written primarily in Java (with some C++ code at the

interface with AOLpress). The prototype currently runs on Windows 95 and NT, but it

could be ported readily to Macintosh or Unix, since its off-the-shelf components are also
portable to those platforms.

3. APPLICATION DOMAIN

The Turquoise architecture is well-suited for scripts that access, create, or modify

HTML or flat text documents, since such scripts can be readily demonstrated in a Web

browser/editor. In an informal survey of 50 existing CGI scripts whose source code was

publicly available, we found that the scripts available on the Web can be broken down into

seven categories (with significant overlap): composite pages, assistants, filters, form

processors, active pages, gateways, and applets. These categories are described next, and

most of them are suitable to be demonstrated to Turquoise.

Composite page scripts extract information from one or more dynamic sources to

produce a page of HTML. A typical example might be a customized newspaper which

retrieves news headlines from Yahoo/Reuters, sports scores from ESPN, and a weather

report from the National Oceanic and Atmospheric Administration, then reformats all the

retrieved information into a single page. Another example might be a meta-search which

submits a search phrase to several Web search engines simultaneously.

Assistants perform chores that the user encounters while browsing the Web or editing

HTML pages. Examples of typical chores include updating your stock portfolio history,

updating the last-modified date on an edited page, validating links, and downloading or
prefetching a set of links.

Filter scripts translate data between other textual formats and HTML, or from one

HTML layout into another. Examples of filters include converting Unix man pages to

HTML, converting Emacs info files to HTML, and generating a table-of-contents for a
page from its section headings.

Form processors accept a form as input and use the supplied information to access other

resources, invoke external processes, record some information, or otherwise change the

state of the Web. Examples include merchandise order forms, comment solicitation forms,
guest books, and Web-based bulletin boards.

Active pages contain scripting code embedded in the HTML that is executed by the

browser. The popular languages for active pages are JavaScript and VB Script. Active

pages are typically used for form validation, simple calculations, and eye-catching visual
effects.

Gateways translate non-HTML information sources or services into HTML. For

instance, there are gateways that allow Web users to browse other hypertext systems, like

HyperG, or retrieve information via the finger or whois services. Most Web browsers
include built-in gateways for FTP, Gopher, the local filesystem, and Usenet news.

Finally, applets contain an embedded user interface which is downloaded and run by the
Web browser. The latest hot tools for developing applets are Java and ActiveX.

The Turquoise architecture is capable of creating composite pages, assistants, filters,

form processors, and active pages (insofar as its Web browser/editor supports a client-side
scripting language like JavaScript or VB Script). These types of scripts are alike in that
they operate on HTML or plain text.

Applets and gateways, however, are beyond the scope of the architecture. Creating an
applet is tantamount to creating a graphical user interface, which cannot be done in a Web

browser/editor because it lacks the tools for drawing it. Even automating an interaction

with an applet is difficult for Turquoise, since it involves interpreting and controlling the

state of an arbitrary, unconstrained user interface. Likewise, most gateways are beyond

the ability of Turquoise to create, because the protocol on the other side of the gateway is

unconstrained, and usually involves access mechanisms that are not accessible to the Web
browser.

On the other hand, if the gateway already exists (either out on the Web or built into the

browser), then a Turquoise script can interact with it as it would any other WWW-based

information source. In order to extend the range of Turquoise, we plan to augment the

prototype system with several built-in gateways not normally found in Web browsers: a

calculator for numerical computation, a command line for executing external programs,

and an OLE interface for exchanging information with other Microsoft Windows

applications. These gateways will enable Turquoise scripts to do a wider variety of useful
processing.

4. DEMONSTRATING SCRIPTS

We present two examples to show how Turquoise might be used. The first creates a

composite page script for a customized newspaper. The second example is a form
processor for lunch orders submitted over the Web.

4.1 Creating a Customized Newspaper

Suppose Lucy wants to demonstrate to Turquoise how to assemble a customized

newspaper containing a weather report and news headlines (Figure 2). The demonstration

begins with Lucy opening a new script window within the Web browser. Initially the

script window is empty, indicating that the script has no output yet.

Lucy types "Weather" in the new script window and changes it to section heading style.

Since these actions were performed directly on the script window, Turquoise records them

as constant text in the script. Then, in a separate browser window, Lucy navigates to a

weather page, highlights the region of the page containing her local three-day weather

forecast, and copies it into the script window after "Weather" (Figure 2a).

Next, Lucy types in a section heading for "News" in the script window. She navigates

to a news page and copies the region containing the day's headlines to the script window
just after "News" (Figure 2b).

Finally, Lucy saves the script, calling it "newspaper," and runs it to check that it works

as expected. Running the script is simply a matter of reloading it into the browser. When

the script runs, it retrieves the weather page and the news page, extracts the regions of the

page that match the patterns, and inserts them after 'Weather" and "News", respectively.

The result is a page that looks the same as the demonstration. When Lucy comes back and

runs her newspaper script the next day, however, the script retrieves the latest weather

and news and displays an updated page figure 2c).

:: :: tWJJftW.WftM*

:■ '>X'»:«'.'»ft*»«-xt->x:: ' "■'■■■■ * *
> w££w£'.*.£\w-i '"* A>/'>;!M X'j&x-x >**■<*f<<^'

(a)

:^TO?S^I^^*J).'SS'TCTO

(b)
i$

Figure 2. Demonstrating a customized newspaper script. In (a), the user copies the
forecast from a weather page, on the left, and pastes it into a new script window, on the
right. A similar operation copies the list of headlines from a news page (b). From these
actions, Turquoise infers a script that can produce a new version of the newspaper on
another day (c).

4.2 Collecting Lunch Orders

Harry's workgroup likes to order lunch from a local sandwich shop, and they fmd it

convenient to send one person out every day with the entire group's order. To automate

the process of collecting the sandwich orders, Harry wants to demonstrate a script that

accepts order forms over the Weh and collates them into a single report?

Harry starts hy designing a form using the Web editor (Figure 3 a). The form contains

fields for the person's name, sandwich choice, and any special requests. Creating the form

requires a uniform resource locator (URL) to which it should be submitted, so Harry

creates a new Turquoise script "lunch" and uses its URL. Harry also designs a template

for the final report (Figure 3b), which will list the sandwich orders on one page for easy
ordering and delivery.

To begin the demonstration, Harry fills out the form with an example order, and

attempts to submit it. Since the "lunch" script is currently empty, the result is just an

empty window. In this window, Harry proceeds with the demonstration by loading the

report file. Since the load action occurs in the script window, Turquoise adds it as a

command to the script. Then, using copy-and-paste operations, Harry copies the order

form field-by-field to the end of the report, and saves the modified report back to disk.

Next, Harry wants to show how to construct a result page, which should be sent to the

form submitter to confirm that the sandwich order has been recorded (Figure 3c). He uses

the browser's Back button to return to the script output page, which is still empty, and

designs a page that repeats the information in the form again using cut-and-paste
operations.

By default, Turquoise scripts can be run only by the local user. In order to make the

lunch-ordering script accessible to his colleagues, Harry must mark the script as public,

which specifies that Turquoise should run the script in response to remote requests for it.

Every remote request runs the script on Harry's machine, which is appropriate for a small

workgroup application like ordering lunch. Scripts which are frequently run or resource-

hungry should be translated to a conventional language, like Perl, C, or Java, and made

available on a high-speed Web server. We plan to extend Turquoise to perform these
translations automatically wherever possible.

This example does not yet work in the prototype, because AOLpress is not yet
instrumented to report user actions that occur in form controls.

'Vina- ■■'■

,'HIW» vt.-Xfy

>mi. <: lit
.*&&$)&&&&$&

iS^SöSSilf

111

J-M-WMfrMaM-M-M^^

Orders

.ji *. J ■», .,«« ' «■'

ajG
(b)

Thank you for jour order.

Iffyou t* rtS hucsscy jxas swi s*As watts' ■>».*&»!&

(C)

Figure 3. Demonstrating a lunch ordering script. After
designing a form for the lunch order (a), the user
demonstrates how to process an example order - loading a
report file (b), copying fields from the form and saving the
file back to disk. The user also demonstrates the script
output (c), which is returned to the form submitter to
confirm that the order has been received

5. PATTERN MATCHING

As the examples show, Turquoise scripts operate on HTML documents - copying,

inserting, and deleting text and markup elements. These operations require a way to

identify locations within an HTML document. Although HTML provides a few

mechanisms for marking locations in a document (the most standard being the anchor tag,

<A>), this is not sufficient, because the documents we want to manipulate may not have

the markers we need.

Turquoise solves this problem by providing a pattern language for HTML figure 4).

5.1 Pattern Language

A Turquoise pattern matches a region, which is a contiguous, possibly empty range of

characters and HTML markup. The primitive patterns are HTML elements, regular

expressions, and literal text. For the benefit of users who do not know HTML, patterns

pattern —>
HTML-element (e.g. Paragraph, Bulleted List, Image)
"literal-text"
/regular-expression/
pattern identifier (e.g. Date, Number)
region identifier (e.g., Current Page, Selection)
URL
point (a cursor position)
everything
the only pattern
the first pattern
the last pattern
the «th pattern
pattern^ containing pattern^
patterni [just] after pattern^
patterni [just] before pattern^
patterni in pattern^
patterni at start of pattern^
pattern! at end »(pattern?
from patterni to pattern^

Examples
the first Image in "http://www.cs.cmu.edu/-rcm/"

(a picture of the first author)
the only Date in Address at end of Current Page

(the last-modified date on a page)
the 3rd List Item in Bulleted List in "http://www.yahoo.com/"

(a category in the Yahoo! Index of the Web)

Figure 4. The Turquoise pattern language.

refer to HTML elements by human-readable names like "Link" and "Paragraph", rather

than their HTML tags.

A central feature of the Turquoise pattern language is its ability to represent

relationships between regions, using the operators in, containing, before, and after. For

instance, the pattern "Link in Address in http://..." would find only links (HTML element

<A>) appearing in the address (HTML element <ADDRESS>).

If a pattern might match more than once, the language can express assertions about the

particular occurrence desired. For instance, "the first Paragraph after the only

Horizontal Rule in http://..." asserts that only one horizontal rule (<HR>) will appear on

the page, and the pattern should match the first paragraph (<P>) appearing after it.

Patterns may be named and reused in other patterns. Turquoise will include a library of

predefined patterns, including commonly-used regular expressions, like Character, Word,

Sentence, Number, Date, and URL.

A pattern may also refer to a named region. Web pages are the simplest form of named

region, where the name is just the page's URL. Turquoise also defines Current Page and

Selection to represent regions that the user has selected interactively, and Output to

represent the page returned by a script.

Finally, Turquoise patterns may contain placeholders of certain types: <literal text>,

<HTML element>, and <named region>. Patterns containing placeholders can be

instantiated by substituting a pattern of the same type. Thus, "<HTML element> in
<named region>" can be instantiated to 'Table in http://...". A pattern with placeholders

is called a pattern template. Pattern templates are used to infer patterns automatically

from examples, which will be explained later.

5.2 Implementation

To search for a pattern in an HTML document, Turquoise parses the document into an

explicit parse tree and walks over the tree trying to match the pattern. The prototype

pattern matcher uses a straightforward recursive implementation, which backtracks when a

subpattern fails. In the worst case, this implementation may take exponential time. In

practice its performance is acceptable for searching a typical Web page, which is less than

10 kilobytes long [3]. For searching larger documents, we are considering adapting one of

the algorithms devised by Kilpeläinen f] for searching structured text databases.

command -»
insert patterni atpattem2
replace patterni with pattern^
delete pattern
go to pattern
save pattern [to pattern]

Figure 5. Turquoise script commands.

6. INFERENCE

When the user demonstrates some actions, such as clicking on a link or pasting some

text, Turquoise must infer a command that would perform the same actions in the script.

Part of the Turquoise command language is shown in Figure 5. User actions are

translated into these commands by a fixed mapping. For example, the user might select an

picture on a Web page, copy it, and paste it into the script window. This sequence of

actions is always translated into the same script command, insert pattern^ atpattem2. The

challenge for Turquoise is to Met patterni mipattern2, which describe the copied picture

and the location to which it was copied, respectively.

An inferred pattern should satisfy four criteria. It should be:

• Correct: the pattern should correctly describe the region the user specified in the

demonstration, otherwise it is not a proper generalization of the user's action.

• Eager, the inference engine should strive to guess the right pattern from only one

example.

• Robust: the pattern should continue to work if the world changes in irrelevant ways.

For instance, a pattern intended to describe the last-modified date from the bottom

of a page should not be affected by modifications to the rest of the page.

• Comprehensible: the pattern should be understandable by the user, so that an

incorrect inference can be detected and corrected. A comprehensible pattern should

be easily verified, so patterns involving large numbers or invisible HTML elements,

like 'the 87th Word after Comment," are not desirable.

The inference mechanism in Turquoise attempts to meet all these goals by using a

knowledge base of pattern templates. These templates are heuristically chosen to be

robust and comprehensible.

In order to infer a pattern for a specific region, Turquoise searches the pattern

knowledge hase for patterns that match the region, instantiating placeholders as needed.

All the patterns that match are presented as possibilities to the user, but Turquoise

chooses one pattern as its best guess. In the prototype system the knowledge base is

statically sorted, with the most robust and most frequently-used patterns first, so the

prototype inference engine just uses the first match as its best guess. In the future, we will

explore more sophisticated evaluation functions for determining the best pattern.

This inference mechanism guarantees correctness because only patterns that match the

example region are considered. It also attempts to be eager, by making its best guess

about the user's intention and using it by default.

Advanced users can improve the inference mechanism by adding new pattern templates

to the knowledge base using a text editor. We may also experiment with providing

different knowledge bases for demonstrating different kinds of scripts. The user may

explicitly indicate which kind of script is being demonstrated, or Turquoise may use some

heuristics to guess which knowledge base is appropriate.

7. RELATED WORK

Turquoise is similar to other programming-by-demonstration systems. SmallStar [7], a

system for demonstrating macros in Xerox Star, introduced the notion of data

descriptions, which are like Turquoise patterns. TELS [16] infers programs for text

editing tasks, such as reformatting a bibliography. Like Turquoise, it abstracts the user's

actions into abstract commands like insert and delete, but its data descriptions are limited

to flat text divided into words, lines, and paragraphs. Eager [5] infers repetitive tasks in

HyperCard. Eager includes a pattern language for data descriptions which is similar to the

Turquoise pattern language, but Eager never shows its patterns to the user. As a result,

Eager typically requires at least three examples to infer a program. By displaying the

possible patterns and allowing the user to verify or fix them Turquoise can often infer
from only one example.

Other systems give end-users the ability to develop CGI scripts, though not by

demonstration. Several systems, like Zelig [15], represent a dynamic page as an HTML

template with variable fields, which are computed at runtime by database queries or script

code. Unlike Turquoise, these systems generally require knowledge of HTML.

WebWriter [4] allows users to create the templates without knowing HTML, in a

WYSIWYG editor. Since WebWriter is a CGI application itself, however, its editing

interface is limited to form fill-out, which can be tedious.

The Turquoise pattern language, which identifies locations in HTML, is similar to other

languages for representing transformations or doing searches in structured text.

Bonhomme and Roison [2] described a language for specifying HTML editing

transformations which allows an HTML editor to be extended with new transformations,

but this language can only match a local area of the HTML tree - a few nodes and their

immediate neighbors and children. Pattern matching of this kind has been called the

classic "tree matching problem" [8]. The Turquoise pattern language is more general,

however, permitting arbitrary intervening neighbors and descendants in its in, before, and

after patterns. Kilpeläinen [9] studied this general tree matching problem in the context of

searching large structured-text databases, and found algorithms that solve it in polynomial

time. Turquoise also draws ideas from p-strings [6], another language for searching

structured-text databases.

8. STATUS AND FUTURE WORK

The prototype system uses copy-and-paste events to infer composite page scripts. It

needs further development before it can be used to demonstrate a broader class of scripts.

One important area of future development is inferring conditional branches and iteration,

which are needed by many scripts. Much of the ease of using Turquoise stems from its

ability to infer from a single example, but conditions and iterations generally require

multiple examples to demonstrate. The prototype could be augmented to generalize from

multiple examples, possibly using hints from the user, as in Gamut JO].

More work is needed to develop good pattern knowledge bases for the kinds of scripts

we identified as demonstrable. We also want to explore different evaluation functions that

Turquoise can use to pick out a good pattern from all the matches in the knowledge base.

To extend the scope of Turquoise scripts, we plan to add a number of built-in gateways

to the prototype, including a calculator, a command shell, and an OLE interface. In

addition, a future version of the prototype will be capable of translating Turquoise scripts

into a traditional Web scripting language, such as Perl, Tel, or Java.

We also plan to user-test the pattern language to determine whether users can read and

write patterns, and whether the system's inferred patterns are comprehensible.

9. CONCLUSION

The Turquoise architecture is suitable for demonstrating a broad range of Web scripts,

including composite pages, assistants, filters, form processors, and active pages. With

Turquoise, Web users only need their familiar browsing and editing skills to create

dynamic pages and automate repetitive tasks on the Web.

The Turquoise pattern language satisfies the need for identifying locations in HTML

documents. Unlike HTML anchors, which must be explicitly inserted in a document by its

author, Turquoise patterns allow an arbitrary user to identify regions of a page for

extraction, reformatting, or other processing, without needing to change the original

document. By inferring patterns from example, Turquoise puts these capabilities in the
hands of users who do not know HTML.

10. ACKNOWLEDGMENTS

For help with this paper, we would like to thank Ellen Borison, Laura Cassenti, Edwin

Chance, Richard McDaniel, and Eric Tilton. We also gratefully acknowledge Dave Long

and America Online for providing a special version of AOLpress for the Turquoise
prototype.

11. REFERENCES

1. America Online. AOLpress. http://www.aolpress.com/

2. Bonhomme, S., and Roisin, C. Interactively restructuring HTML documents. In
Proc. 5th Intl World-Wide Web Conference, WWW96 (Paris, France, May 1996).
http://www5conf.inria.fr/fich_html/papers/P16/Overview.html

3. Bray, T. Measuring the Web. In Proc. 5th Intl World-Wide Web Conference,
WWW'96 (Paris, France, May 1996).
http://www5conf.inria.fr/fich_html/papers/P9/Overview.html

4. Crespo, A., and Bier, E.A. Web Writer: a browser-based editor for constructing Web
applications. In Proc. 5th Intl World-Wide Web Conference, WWW'96 (Paris, France,
May 1996). http://www5conf.inria.fr/fich_html/papers/P35/Overview.html.

5. Cypher, A. Eager: programming repetitive tasks by example, in Proc. of CHI '91
(New Orleans, May 1991), ACM Press, 33-39.

6. Gönnet, G.H., and Tompa, F.W. Mind your grammar: a new approach to modelling
text. In Proc. 13th Very Large Databases Conference (Brighton, 1987), 339-345.

7. Haibert, D. SmallStar: programming by demonstration in the desktop metaphor, in
Watch What I Do: Programming By Demonstration, Allen Cypher, ed. MIT Press,
Cambridge MA, 1993, pp. 104-123.

8. Hoffmann, CM., and O'Donnell, M J. Pattern matching in trees. JACM 29,1
(January 1982), 68-95.

9. Kilpeläinen, P. Tree Matching Problems With Applications to Structured Text
Databases. Technical Report A-1992-6, Department of Computer Science, University
of Helsinki, Finland. November 1992.

10. McDaniel, R. Improving communication in programming-by-demonstration. In
CHI'96 Conference Companion (Vancouver BC, Canada, April 1996), 55-56.

11. Myers, B. Demonstrational interfaces: a step beyond direct manipulation. IEEE
Computer 25, 8 (August 1992), 61-73.

12. Myers, B„ et al. The Amulet 2.0 Reference Manual.Carnegie Mellon Unhersity
Computer Science Dept Technical Report CMU-CS-95-166-R1. April 1996.

13. National Center for Supercomputing Applications (NCSA). The Common Gateway
Interface, http://hoohoo.ncsa.uiuc.edu/cgi/

14. Nielsen, H.F., and Häkon, W.L. Towards a uniform library of common code, in Proc.
2nd Intt World-Wide Web Conference, WWW 94, (Chicago, IL, December 1994.
http://www.w3.org/pub/WWW/Library/User/Paper/LibraryPaper.html

15. Varela, CA., and Hayes, C.C. Providing data on the Web: from examples to
programs, in Proc. 2nd Intl World-Wide Web Conference, WWW94 (Chicago IL,
December 1994).
http://www.ncsa.uiuc.edu/SDG/rT94/Proceedings/DDay/varela/paper.html.

16. Witten, I.H., and Mo, D. TELS: learning text editing tasks from examples, in Watch
What I Do: Programming By Demonstration, Allen Cypher, ed. MIT Press,
Cambridge MA, 1993, pp. 183-203.

RAIDframe: A Rapid Prototyping Tool
for RAID Systems

William V. Courtright II, Garth Gibson, Mark Holland,
LeAnn Neal Reilly, Jim Zelenka

June 4,1997
CMU-CS-97-142

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Redundant disk arrays provide highly-available, high-performance disk storage to a wide variety of applications.
Because these applications often have distinct cost, performance, capacity, and availability requirements, researchers
continue to develop new array architectures. RAIDframe was developed to assist researchers in the implementation
and evaluation of these new architectures. It was designed specifically to reduce the burden of implementation by
restricting code changes to mapping, algorithms and other functions that are known to be specific to an array archi-
tecture. Algorithms are executed using a general mechanism which automates the recovery from device errors, such
as a failed disk read. RAIDframe enables a single implementation to be evaluated in a self-contained simulator, or
against real disks as either a user process or a functional device driver.

© 1995,1996, Carnegie Mellon University. All rights reserved.

This research is supported in part by the National Science Foundation through the Data Storage Systems Center, an
NSF engineering research center, under grant number ECD-8907068 and an AT&T fellowship. It is also supported in
part by industry members of the Parallel DataConsortium, including: Hewlett-Packard, Data General Corporation,
Digital Equipment Corporation, International Business Machines, Seagate Technology, Storage Technology, and
Symbios Logic.

Keywords: disk array, storage, architecture, simulation, directed acyclic graph, software.

INTRODUCTION The Importance of RAIDframe to the Research and Develop-
ment Communities 9

CHAPTER 1 Redundant Disk Arrays: 13
A Brief Overview 13

1.1 The Need for Improved Availability in the Storage Subsystem
1.1.1 The Widening Access Gap 13
1.1.2 The Downsizing Trend in Disk Drives 14
1.1.3 The Advent of New, l/O-lntensive Applications 15
1.1.4 Why These Trends Necessitate Higher Availability 15

1.2 Technology Background 16
1.2.1 Disk Technology 17
1.2.2 Disk-Array Technology 19

13

CHAPTER 2 Managing the Complexity of Array Software 41
2.1 Traditional Approaches in Managing Array Software are Suboptimal 42

2.2 Treating RAID Operations as Programs 43
2.2.1 Creating Pass-Fail Primitive Operations 45
2.2.2 Constructing RAID Operations from a Set of Primitive Operations 46
2.2.3 Summary 46

2.3 Representing RAID Operations as Graphs 46
2.3.1 Directed, Acyclic Graphs (DAGs) 47
2.3.2 Simplifying Constraints for DAGs 48
2.3.3 Incorporating Roll-Away Error Recovery Within DAGs 49
2.3.4 Verifying the Correctness of DAGs 50

2.4 Executing RAID Operations 51
2.4.1 Node States and Transitions 51
2.4.2 Executing DAGs Without Errors 53
2.4.3 Handling Errors When Executing DAGs 53

2.5 Reconstructing Data On-line When a Disk Fails 55
2.5.1 Disk-Oriented Reconstruction 55
2.5.2 Buffer Memory Management 57
2.5.3 Interaction with Writes in the Normal Workload 57
2.5.4 Summary 58

CHAPTER 3

3.1

3.2

3.3

RAIDframe: A Framework for Implementing New
Designs 59
Features 59

60 3.1.1 RAIDframe as a Stand-Alone User Application
3.1.2 RAIDframe as an Event-Driven Simulator 60
3.1.3 RAIDframe as a Device Driver in the Kernel 61
3.1.4 RAID Architectures Implemented in RAIDframe

Internal Architecture 64

3.2.1 RAIDframe Infrastructure 64
3.2.2 Configurable RAIDframe Modules 67

Reconstruction Architecture 69

61

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems V

6/24/96

3.3.1 Reconstruction State Machine
3.3.2 Reconstruction States 69

3.4 Suite of Test Applications 70

CHAPTER 4 Installing, Configuring, and Using RAIDframe
4.1 Installing RAIDframe 73

4.1.1 Creating Executables for the Stand-Alone Application and Simulator
4.1.2 Installing the Device Driver 74

4.2 Configuring RAIDframe 75
4.2.1 RAIDframe's Configuration File 76
4.2.2 Configuring the Device Driver Using Control Programs 79

4.3 Testing RAIDframe Operation 81
4.3.1 Running the Test Applications 81
4.3.2 Setting Up the Workload File For the Script Test 82

4.4 Comparing How RAID Architectures Perform 84
4.4.1 Preparing to Run the rf_genplot Front End 85
4.4.2 Running the rf_genplot Front End 85

4.5 Accessing Built-in Performance Tracing 86

4.6 Debugging RAIDframe Installations 87

73

73

CHAPTER 5 Extending RAIDframe 91
91
91

93

100

5.1 RAIDframe fundamentals
5.1.1 Types and Conventions
5.1.2 Return Codes 92
5.1.3 Memory Allocation 92
5.1.4 Memory-Allocation Lists
5.1.5 Shutdown Lists 93
5.1.6 Threads 94
5.1.7 Creating New Debug Options
5.1.8 Timing 100
5.1.9 Built-in Tracing of RAIDframe Performance

5.2 Installing a New RAID Architecture 102
5.2.1 parityConfig, configName 103
5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg
5.2.3 Configure 104
5.2.4 MapSector, MapParity, MapQ 105
5.2.5 IdentifyStripe 106
5.2.6 SelectionFunc 106
5.2.7 MapSIDToPSID 107
5.2.8 GetDefaultHeadSepLimit 107
5.2.9 GetDefaultNumFloatingReconBuffers 108
5.2.10GetNumSparePUs 108
5.2.111nstallSpareTable 108
5.2.12SubmitReconBuffer 108
5.2.13VerifyParity 109
5.2.14faultsTolerated 110
5.2.15 states 110
5.2.16flags 110

5.3 Implementing New RAID Operations 111
5.3.1 DAG Creation 111

101

103

VI

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

5.3.2 Creating New Primitive Operations 111

5.4 Adding a New Disk-Queueing Policy 112
5.4.1 Create Operation 112
5.4.2 Enqueue Operation 113
5.4.3 Dequeue Operation 113
5.4.4 Peek Operation 113
5.4.5 Promote Operation 114

5.5 Porting RAIDframe to Other Systems 114
5.5.1 Basic Types 114
5.5.2 Byte Ordering 115
5.5.3 Word Size 115
5.5.4 Timing 115
5.5.5 SCSI Operations 115
5.5.6 Threads 115

RAID Level 0 117

RAID Level 1, Chained Declustering, Interleaved Declustering 118

RAID Level 4, RAID Level 5, Parity Declustering 119

RAID Level 6 121

RAIDframe: A Rapid Prototyping Tool for RAID Systems vii

Version 1.0 6/24/96

VIII RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

INTRODUCTION The Importance of
RAIDframe to the
Research and Development
Communities

The demand for high-capacity, high-performance, and highly available data storage has
increased as information systems have grown to critical importance in business opera-
tions. Given how rapidly the market for Redundant Arrays of Independent Disks
(RAID) [Patterson88] is growing [DISK7TREND94], these architectures are clearly the
storage technology of choice for meeting this demand.

The increasing importance of RAID systems has led to a number of proposals for new
architectures and algorithms, for example, designs emphasizing improved write perfor-
mance [Menon92, Mogi94, Polyzois93, Solworth91, Stodolsky94]. While many of
these proposals are promising, they have been largely evaluated by simulation or ana-
lytic modeling. To understand the advantages and limitations of these new designs, it is
essential for RAID architects to experiment with concrete implementations.

However, evaluating new designs by introducing them into the marketplace is expen-
sive, slow, and too often unenlightening. Using traditional approaches, implementing
redundant disk arrays has been a difficult, manual process. This is evidenced by an
inabilty to generate code which is reusable, extensible, and easily verifiable as correct.
While these problems prevent RAID researchers and developers from exploring the
design space, they also lead to long development times and uncertain product reliability
for RAID vendors.

In developing RAIDframe, our primary goal was to decrease design-cycle time by sim-
plifying the process of implementation without sacrificing performance (measured in
terms of storage access and response time). We developed a simple programming
abstraction from which distinct RAID operations (and therefore, architectures) may be
easily implemented in RAIDframe. Once the basic instructions (fewer than a dozen) are
implemented, the time required to implement a new RAID operation is simply the time
required to write a new program. Error recovery is then mechanized without diminish-

RAIDframe: Motivation, Theory, and Implementation 9

Version 1.0 6/24/96

The Importance of RAIDframe to the Research and Development Communities

ing performance or increasing overhead—in contrast to traditional approaches which
were manual and prone to error [Courtright94].

The programming abstraction RAIDframe uses is based on directed acyclic graphs
(DAGs). A designer wishing to introduce a new architecture or optimize an existing
architecture will be able to achieve this goal by modifying the library of graphs and
graph-invocation rules implemented in RAIDframe. While graphs and the binding of
graphs to requests varies widely, the majority of the code in RAIDframe is found in the
unchanging DAG interpretation-engine. In this way, designers are encouraged to experi-
ment with and extend various RAID architectures because they can ignore the majority
of the code, which is devoted to device-manipulation details.

A particularly powerful feature of RAIDframe is that it separates error recovery from
array architecture. The mechanism used to recover from failed primitive operations
(such as a disk read) during the execution of an array operation is a part of RAIDframe's
internal infrastructure. To do this, RAIDframe uses a two-phase approach to error recov-
ery which we call roll-away error recovery. RAIDframe's architecture-independent
DAG interpreter handles errors by identifying those nodes in a DAG which commit data
to disk and by specifying the direction of recovery based on when errors occur in rela-
tion to this commit point.

Specifically, if an error occurs before any data has been committed to disk, then the sys-
tem rolls back, releasing resources, and retries the operation with a more appropriate
graph. On the other hand, if an error occurs after data has been committed, the system
rolls forward through the remainder of the graph, giving later requests the impression
that this graph completed instantaneously before the error. In either case, this process is
hidden from the user and performed without regard to array architecture. Graph commit
points can be specified so that roll-back is inexpensive (that is, it does not induce addi-
tional device work in preparing for or executing roll-back) and so that roll-forward does
not need to execute any device operation not already coded in the in-progress graph. By
eliminating the need for architecture-specific code for handling errors, roll-away error
recovery further simplifies the process of building new RAID architectures: there is no
need to create or alter thousands of lines of error-recovery code.

Currently, RAIDframe acts as a software-only RAID controller for Alpha-based OSF/1
machines. To emphasize our intent to enable real designers to experiment with and use
RAIDframe, we have implemented the software so that it can be configured to execute
as an event-driven simulator, as a stand-alone application managing disks through the
UNIX raw-disk-interface, or as an OSF/1 device driver through which standard UNIX
file systems can be mounted and accessed.

RAIDframe's library of architectures includes RAID levels 0 (nonredundant), 1 (mirror-
ing with shortest-queue selection), 4 (centralized parity), 5 (rotated parity), 6 (Reed-
Solomon double-failure protection), declustered parity, interleaved declustering, and
chained declustering; additionally, variants of some of these support distributed, on-line
spare-disk capacity. Preliminary performance analysis shows that RAIDframe's RAID
level 0 can keep an array as busy as a much-more-limited direct implementation of disk
striping without substantially increasing response time, although RAIDframe requires
more processing power to achieve this goal [Gibson, 1995]. Moreover, beginning with
the RAID level 0 graphs in its library, well over 90% and frequently 99% of the lines of

10 RAIDframe: Motivation, Theory, and Implementation

Version 1.0 6/24/96

code in RAIDframe are unchanged by the modifications necessary to implement the
architectures listed above. Finally, the roll-away error recovery is fully functional,
requiring only that a graph's commit nodes be marked.

This content in this document can be roughly divided into two categories: background
and using RAIDframe. Background chapters are Chapter One: Redundant Disk Arrays;
Chapter Two: Theory of Operation; and Chapter Three: RAIDframe: A Framework for
Implementing New Designs. Together, these chapters provide a basic understanding of
RAID technology, explain the programmatic abstraction RAIDframe uses for modeling
RAID operations, and detail RAIDframe's features, internal architecture, and support-
ing libraries. The remaining chapters are Chapter Four: Installing, Configuring, and
Using RAIDframe; and Chapter Five: Extending RAIDframe. These last two chapters
help provide designers and developers with the necessary information for using RAID-
frame.

This document, along with the RAIDframe code, will be continually revised and
updated. These updates will be made available on the Parallel Data Laboratory Web
pages at the URL http://www.cs.cmu.edu/afs/cs/project/pdlAVWW/Index.html. To be
notified when updates are made available, send mail to pdl-webmaster@cs.cmu.edu.

RAIDframe: Motivation, Theory, and Implementation 11

Version 1.0 6/24/96

The Importance of RAIDframe to the Research and Development Communities

12 RAIDframe: Motivation, Theory, and Implementation

Version 1.0 6/24/96

CHAPTER 1 Redundant Disk Arrays:
A Brief Overview

In Chapter 1, we will present a brief overview of redundant disk arrays. The text for this
chapter was excerpted from Chapter 2 of Mark Holland's thesis, "On-line Data Recon-
struction in Redundant Disk Arrays," published in 1994 by Carnegie Mellon University.
The text has been edited and updated in minor ways to allow it to fit into the RAIDframe
documentation. For a more thorough description of RAID technology, we recommend
The RAIDbook: A Source Book for Disk Array Technology [RAID96].

1.1

1.1.1

The Need for Improved Availability in the Storage
Subsystem

There exist several trends in the computer industry that are driving the design of storage
subsystems toward higher levels of parallelism. This means that current and future sys-
tems will achieve better I/O performance by increasing the number, rather than the per-
formance, of the individual disks used [Patterson88, Gibson92]. This distinction is
important in that, as will be seen, it implies directly the need for improved data avail-
ability. This section briefly describes these trends (Sections 1.1.1 through 1.1.3), and
shows why they lead to the need for improved availability in the storage subsystem
(Section 1.1.4).

The Widening Access Gap

First and foremost, processors are increasing in performance at a much faster rate than
disks. Microprocessors are increasing in computational power at between 25 and 30%
per year [Myers86, Gelsinger89], and projections for future performance increases
range even higher. Gelsinger et. al. [Gelsinger 89] predicts that the huge transistor bud-
gets projected for microprocessors in the 1990s will allow on-chip multiprocessing,

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 13

6/24/96

Redundant Disk Arrays:A Brief Overview

yielding a further 20% annual growth rate for microprocessors. Bell [Bell89] projects
supercomputer growth rates of about 150% per year.

Disk drives, by way of contrast, have been increasing in performance at a much slower
rate. Comparing the state of the art in 1981 [Harker81] to that in 1993 [Wood93] shows
that the average seek time for a disk drive improved from about 16 ms to about 10 ms,
rotational latency from about 8.5 ms to about 5 ms, and data transfer rate from about 3
MB/sec. (which was achieved only in the largest and most expensive disks) to about 5
MB/sec. Combining these, the time taken to perform an average 8 KB access improved
from 27.1 ms to 15.0 ms, or by about 45%, in the twelve-year period. This corresponds
to an annual rate of improvement of less than 5%.

Increased processor performance leads directly to increased demand for I/O bandwidth
[Gibson92, Kung86, Patterson88]. Since disk technology is not keeping pace with pro-
cessor technology, it is necessary to use parallelism in the storage subsystem to meet the
increasing demands for I/O bandwidth. This has been, and continues to be, the primary
motivation behind disk-array technology.

1.1.2 The Downsizing Trend in Disk Drives

Prior to the early 1980s, storage technology was driven by the large-diameter (14-inch)
drives [IBM3380, IBM3390] used by mainframes in large-scale computing environ-
ments such as banks, insurance companies, and airlines. These were the only drives that
offered sufficient capacity to meet the requirements of these applications [Wood93],
This changed dramatically with the growth of the personal computer market. The enor-
mous demand for small-form-factor, relatively inexpensive disks produced an industry
trend toward downsizing, which is defined as the technique of re-implementing existing
disk-drive technology in smaller form factors. This trend was enabled primarily by the
rapid increase in storage density achieved during this period, which allowed the capacity
of small-form-factor drives to increase from a few tens of megabytes when first intro-
duced to over two gigabytes today [IBM0664]. It was also facilitated by the rapid
growth in "VLSI integration levels during this period, which allowed increasingly sophis-
ticated drive-control electronics to be implemented in smaller packages. Further impe-
tus for this trend derived from the fact that smaller-form-factor drives have several
inherent advantages over large disks:

• smaller disk platters and smaller, lighter disk arms yield faster seek operations,

• less mass on each disk platter allows faster rotation,

• smaller platters can be made smoother, allowing the heads to fly lower, which
improves storage density,

• lower overall power consumption reduces noise problems.

These advantages, coupled with very aggressive development efforts necessitated by the
highly competitive personal computer market, have caused the gradual demise of the
larger drives. In 1994, the best price/performance ratio was achieved using 3-1/2-inch
disks, and the 14-inch form factor has all but disappeared. The trend is toward even

1. Seek time, rotational latency, and transfer rate are defined hi Section 1.2.1.

14 R AIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

The Need for Improved Availability in the Storage Subsystem

smaller form factors: 2-1/2-inch drives are common in laptop computers [ST9096], and
1.3-inch drives are available [HPC3013]. One-inch-diameter disks should appear on the
market by 1995 and should be common by about 1998. At a (conservative) projected
recording density in excess of 1-2 GB per square inch [Wood93], one such disk should
hold well over 2 GB of data.

These tiny disks will enable very large-scale arrays. For example, a one-inch disk might
be fabricated for surface-mount, rather than using cables for interconnection as is cur-
rently the norm, and thus a single, printed circuit board could easily hold an 80-disk
array. Several such boards could be mounted in a single rack to produce an array con-
taining on the order of 250 disks. Such an array would store at least 500 GB, and even if
disk performance does not improve at all between now and 1998, could service either
12,500 concurrent I/O operations or deliver 1.25-GB-per-second aggregate bandwidth.
The entire system (disks, controller hardware, power supplies, etc.) would fit in a vol-
ume the size of a filing cabinet.

To summarize, the inherent advantages of small disks, coupled with their ability to pro-
vide very high I/O performance through disk-array technology, leads to the conclusion
that storage subsystems are, and will continue to be, constructed from a large number of
small disks, rather than from a small number of powerful disks. Many trends in the stor-
age industry substantiate this claim. For example, DISK/TREND predicts that the
redundant-disk-array market will exceed thirteen billion dollars by 1997 [DISK/
TREND94]. Storage Technology Corporation, traditionally a maker of large-form-fac-
tor IBM-compatible disk drives, has stopped developing disks altogether and is replac-
ing this product line by one based on disk arrays [Rudeseal92].

1.1.3 The Advent of New, l/O-lntensive Applications

Finally, increases in on-line storage capacity and commensurate decreases in cost per
megabyte enable new technologies that demand even higher levels of I/O performance.
The most visible example of this is in the emergence of digital audio and video applica-
tions such as video-on-demand [Rangan93]. Others include scientific visualization and
large-object servers such as spatial databases [McKeown83, Stonebraker92]. These
applications are all characterized by the fact that, if implemented on a large scale, their
demands for storage and I/O bandwidth will far exceed the ability of current data stor-
age subsystems to supply them. These applications will drive storage technologies by
consuming as much capacity and bandwidth as can be supplied and hence necessitate
higher levels of parallelism in storage subsystems.

1.1.4 Why These Trends Necessitate Higher Availability

The preceding discussion demonstrated that higher degrees of I/O parallelism (an
increased number of disks in a storage subsystem) are increasingly necessary to meet
the storage demands of current and future systems. The discussion deliberately avoided
identifying the specific organizations to be used in future storage systems but made the
case that such systems will be composed of a relatively large number of independent
disks. However, constructing a storage subsystem from a large number of disks has one
significant drawback: the reliability of such a system will be worse than that of a system
constructed from a small number of disks because the disk array has a much higher
component count.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 15

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

As the number of disks comprising a system increases, the reliability of that system
falls. Specifically, assuming the failure rates for a set of disks to be identical, indepen-
dent, exponentially distributed random variables, a simple reliability calculation shows
that the mean time to data loss for a group of N disks is only VN times as long as that of
a single disk [Patterson88]. Gibson analyzed a set of disk-lifetime data to investigate the
accuracy of the assumptions behind this calculation and found "reasonable evidence to
indicate that the lifetimes of the more mature of these products can be modeled by an
exponential distribution" [Gibson92, p. 113]. Working from this assumption, a 100-disk
array composed of disks with a 300,000-hour mean-time-to-failure (typical for current
disks) will experience a failure every 3000 hours, or about once every 125 days. As
disks get smaller and array sizes grow, the problem gets worse: a 600-disk array experi-
ences a failure approximately once every three weeks.

Disk arrays typically incorporate some form of redundancy in order to protect against
data loss when these failures occur. This is generally achieved either by disk mirroring
[Katzman77, Bitton88, Copeland89, Hsiao91], oibyparity encoding [Arulpragasam80,
Kim86, Park86, Patterson88, Gibson93]. In the former, one or more duplicate copies of
each user data unit are stored on separate disks. In the latter, commonly known as
Redundant Arrays of Inexpensive1 Disks (RAID) [Patterson88], a portion of the array's
physical capacity is used to store an error-correcting code computed over the data stored
in the array. Section 1.2.2 describes both of these approaches in detail. Studies have
shown that, due to superior performance on small read and write operations, a mirrored
array, also known as RAID Level 1, may deliver higher performance to many important
workloads than can a parity-based array [Chen90a, Gray90]. Unfortunately, mirroring is
substantially more expensive—its storage overhead for redundancy is 100%, whereas
the overhead in a parity-encoded array is generally less than 25% and may be less than
10%. Furthermore, several recent studies [Rosenblum91, Menon92a, Stodolsky94]
demonstrated techniques that allow the small-write performance of parity-based arrays
to approach and sometimes exceed that of mirroring.

1.2 Technology Background

This section describes the structure and organization of modern disk drives and disk
arrays; the subsection on disk technology has been kept to a minimum. Product manuals
such as Digital Equipment Corporation's Mass Storage Handbook [DEC86] provide
more thorough descriptions of disk-drive technology. This section describes disk-array
structure and functionality in more detail because this information is essential to under-
standing the RAIDframe prototyping tool.

1. Because of industrial interest in using the RAID acronym and because of their concerns about
the restrictiveness of its "Inexpensive" component, RAID is often reported as an acronym for
Redundant Arrays of Independent Disks [RAID96].

16 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

FIGURE 1 Physical Components of a Disk Drive

Arm

Actuator

Read/Write Head

Surfaces
(Media)

Platter

Spindle

Positioning Motor
(Voice Coil)

Drive Motor
(Constant RPM)

1.2.1 Disk Technology

Figure 1 shows the primary components of a typical disk drive. A disk consists of a
stack of platters coated with magnetic media with data stored on all surfaces. The plat-
ters rotate on a common spindle at constant velocity past the read/write heads (one per
surface), each of which is fixed on the end of a disk arm. The arms are connected to a
common shaft called an actuator. Applying a directional current to a positioning motor
causes the actuator to rotate small distances in either direction. Rotating the actuator
causes the disk heads to move, in unison, radially along the platters, thereby allowing
access to a band spanning most of the coated surface of each platter.

Figure 2 illustrates how data is typically organized on a disk. Part (a) shows how a block
of sequential user data (almost always 512 bytes) is collected together and stored in a
sector. A sector is the minimum-sized unit that can be read from or written to a disk
drive. A header area in front of each sector contains sector identification and clock syn-
chronization information, and a trailer area contains an error correcting code computed
over the header and data. The set of sectors on a single surface at constant radial dis-
tance from the spindle is called a track, and the set of all tracks at constant radial offset
is called a cylinder. At current densities, a typical 3-1/2-inch diskhas 50-100 sectors per
track, 1000-3000 cylinders, and 4-20 surfaces.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 17

6/24/96

Redundant Disk Arrays:A Brief Overview

FIGURE 2 Data Layout on a Disk Drive

(a) Grouping data into sectors, tracks, and cylinders

_ . Cylinder
Sector

Hdr/Sync Data ECC

(b) Sequential sector layout

In order to access a block of data, the drive-control electronics moves the actuator to
position the disk heads over the correct cylinder, waits for the desired data to rotate
under the heads, and then reads or writes the indicated sectors. Moving the actuator is
called seeking and takes 1-20 ms depending on the seek distance. Current disks rotate at
between 3600 and 7200 RPM, making the expected rotational latency (one half of one
revolution) between 4.2 and 8.3 ms. Thus, for each access the disk must first seek to the
indicated cylinder and then rotate to the start of the requested data. The combination of
these two operations is referred to as positioning the disk heads.

If a user access requests a full track's worth of data, the rotational latency can be elimi-
nated by reading or writing the data in the order that the requested sectors pass under the
heads, rather than waiting until the first sector rotates under the heads to commence the
operation. This is called zero-latency operation or full-track I/O and can be extended to
include the case where the access spans only part of a track.

Note that the tracks near the outside of each surface have greater circumference than
those near the spindle. A technique called zoned bit recording (ZBR) takes advantage of
this and stores more sectors per track in the outer cylinders. This approach groups sets
of 50-200 adjacent cylinders into zones with the number of sectors per track being con-
stant within each zone but successively larger in the outer zones than the inner.

Figure 2b illustrates the assignment of sequential data to sectors, tracks, and cylinders.
Nearly all disks read or write only one head at time, that is, they do not access multiple
heads in parallel, and so sequential user data is sequential in any given sector. Thus, as
shown in the figure, sequential data starts at sector zero, proceeds around to the end of
the track, moves to the next track (which is actually on the underside of the first platter),

1. This is because the disk heads cannot be positioned independently, and thermal variations in
the rigidity of the actuator, platters, and spindle make it difficult or impossible to keep all the disk
heads simultaneously positioned over (heir respective tracks. There do exist a few disks that access
multiple heads in parallel by careful management of head alignment [Fujitsu2360], but these are
not commodity products and typically have lower density and higher cost per megabyte than stan-
dard disks.

18

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Technology Background

continues this way to the end of the cylinder, and then moves to the next cylinder and
starts again. Note that in this example a rotational distance equal to one sector is skipped
upon crossing a track boundary (moving from sector 7 to 8), and two sectors are skipped
upon crossing a cylinder boundary (moving from sector 23 to 24). These gaps are called
the track skew and cylinder skew. The data is laid out in this manner to assure that the
drive-control electronics will have time to reposition the actuator when a user access
spans a track or cylinder boundary. The track skew is shorter than the cylinder skew
because only fine adjustments are necessary when switching to a new track within one
cylinder, whereas switching to a new cylinder requires the actuator to be moved one full
cylinder width and then fine-adjusted over the new track. Typical values for track and
cylinder skew in current technology are about 0.5 and 1.5 ms, respectively.

The interface electronics in a disk drive typically contain a buffer memory, varying in
size from about 32 KB to about 1 MB, which serves two purposes. First, several disks
may share a single path to the CPU, and the memory serves to speed-match the disks to
the bus. In order to avoid holding the bus for long periods of time, a disk will typically
read data into the buffer and then burst-transfer it to the CPU. The buffer serves the
same purpose on a write operation: the CPU burst-transfers the data to the drive's buffer,
and the drive writes it to the media at its own rate. Reading and writing to and from the
buffer, instead of directly between the media and the bus, also eliminates rotational-
position-sensing (RPS) misses [Buzen87], which occur in bufferless disks when the
transfer path to the CPU is not available at the time the data arrives under the disk heads.
The second purpose served by the buffer is as a cache memory [IBM0661, Maxtor89].
Applications typically access files sequentially, and so the disks comprising a storage
subsystem typically observe a sequential access pattern as well. Thus after each read
operation, the disk controller will continue to read sequential data from the media into
the buffer. If the next block of requested data is sequential with respect to the previous
block, the disk can often service it directly from the buffer instead of accessing the
media. This yields both higher throughput and lower latency. Many disks generalize this
reaaahead function so that the buffer becomes a full-fledged cache memory.

1.2.2 Disk-Array Technology

This section describes the structure and operation of disk arrays in detail.

FIGURE 3 Disk-Array Architectures

Port(s) to host computer(s)

 I...L..I
Port(s) to host computer(s)

Array Controller (Hardware or Host Software) i Array
Controller

:

■f Disk ■? Disk
•
• • • • •

r Disk 4 4
l\ tt a

». Disk Disk • •• Disk

(a) Bus-connected (b) High-t ar ldwidth serial connei ;ted

Version 1.0

RAIDfrai Tie: A Rapid Prototy ping Tool for RAID Sys ems 19

6/24/96

Redundant Disk ArraystA Brief Overview

1.2.2.1 Disk-Array Architecture

Figure 3 illustrates two possible disk-array-subsystem architectures. Today's systems
use the architecture of Figure 3 a in which the disks are connected via inexpensive, low-
bandwidth (e.g., SCSI [ANSI86]) links to an array controller, which is connected via
one or more high-bandwidth parallel buses (e.g., HIPPI [ANSI91]) to one or more host
computers. Array controllers and disk buses are often duplicated (indicated by the dot-
ted lines in the figure) so that they do not represent a single point of failure [Katzman77,
Menon93]. The controller functionality can also be distributed amongst the disks of the
array [Cao93].

As disks get smaller [Gibson92], the large cables used by SCSI and other bus interfaces
become increasingly unattractive. The system sketched in Figure 3b offers an alterna-
tive. It uses high-bandwidth, bidirectional serial links for disk interconnection. This
architecture scales to large arrays more easily because it eliminates the need for the
array controller to incorporate a large number of string controllers. Further, by making
each link bidirectional, it provides two paths to each disk without duplicating buses.
Standards for serial-interface disks have emerged (P1394 [IEEE93], Fibre Channel
Fibre91], DQDB [IEEE89]) and Seagate has begun shipping drives with serial inter-
faces. As the cost of high-bandwidth serial connectivity is reduced, architectures similar
to that of Figure 3b may supplant today's short, parallel bus-based arrays.

In both organizations, the array controller is responsible for all system-related activity:
controlling individual disks, maintaining redundant information, executing requested
transfers, and recovering from disk or link failures. The functionality of an array con-
troller can also be implemented in software executing on the subsystem's host or hosts.

1.2.2.2 Defining the RAID Levels: Data Layout and ECC
An array controller implements the abstraction of a linear address space. The array
appears to the host as a linear sequence of data units, numbered 0 through N-B -1,
where N is the number of disks in the array and B is the number of units of user data on
a disk. Units holding ECC do not appear in the address space exported by the array con-
troller; they are not addressable by the application program. The array controller trans-
lates addresses in this linear space into physical disk locations (disk identifiers and disk
offsets) as it performs requested accesses. It is also responsible for performing the
redundancy-maintenance accesses implied by application write operations. We refer to
the mapping of an application's logical unit of stored data to physical disk locations and
associated ECC locations as the disk array's layout.

Fundamental to all disk arrays is the concept of striping consecutive units of user data
across the disks of the array [Kim86, Livny87, Patterson88, Gibson92, Merchant92].
Striping is defined as breaking up the linear address space exported by the array control-
ler into blocks of some size and assigning the consecutive blocks to consecutive disks
rather than filling each disk with consecutive data before switching to the next. The
striping unit (or stripe unit) [Chen90b] is the maximum amount of consecutive data
assigned to a single disk. The array controller has the freedom to set the striping unit
arbitrarily; the unit can be as small as a single bit or byte, or as large as an entire disk.
Striping has two benefits: automatic load balancing in concurrent workloads and high
bandwidth for large sequential transfers by a single process.

20 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

Disk arrays achieve load balance in concurrent workloads (those that have many pro-
cesses concurrently accessing the stored data) by selecting the stripe unit to be large
enough that most small accesses are serviced by a single disk. This allows the indepen-
dent processes to perform small accesses concurrently in the array, and as long as the
processes' access patterns are not pathologically regular with respect to the striping unit,
it assures that the load will be approximately evenly balanced over the disks. Thus, an
iV-disk coarse-grain striped array can service N I/O requests in parallel, but each of them
occurs at the bandwidth of a single disk.

Arrays achieve high data rates in low-concurrency workloads by striping at a finer grain,
for example, one byte or one sector. Such arrays are used when the expected workload is
a single process requesting data in very large blocks. Fine-grain striping assures that
each access uses all the disks in the array, which maximizes performance when the
workload concurrency (number of processes) is one1. After the initial seek and rota-
tional delay penalties associated with each access, a fine-grain-striped array transfers
data to or from the CPU at N times the rate of a single disk. Therefore, a fine-grain-
striped array can service only one I/O at any one time but is capable of reading or writ-
ing the data at a very high rate.

Patterson, Gibson, and Katz [Patterson88] classified redundant disk arrays into five
types, called RAID Levels 1 through 5, based on the organization of redundant informa-
tion and the layout of user data on the disks. This terminology has gained wide accep-
tance [RAID93] and is used throughout this dissertation. The term "RAID Level 0" has
since entered common usage to indicate a non-redundant array. Figure 4 illustrates the
layout of data and redundant information for the six RAID levels. The remainder of this
section briefly introduces each of the levels, and subsequent sections provide additional
details.

RAID Level 1, also called mirroring or shadowing, is the standard technique used to
achieve fault-tolerance in traditional data-storage subsystems [Katzman77, Bitton88].
The disks are grouped into mirror pairs, and one copy of each data block is stored on
each of the disks in the pair. To unify the taxonomy, RAID Level 1 defines the user data
to be block-striped across the mirror pairs, but traditional mirrored systems instead fill
each disk with consecutive user data before switching to the next. This can be thought of
as setting the stripe unit to the size of one disk. RAID Level 1 is a highly reliable organi-
zation since the system can tolerate multiple disk failures (up to N/2) without losing
data, so long as no two disks in a mirror pair fail. It can be generalized to provide multi-
ple-failure tolerance by maintaining more than two copies of each data unit. Its draw-
back is that its cost per megabyte of storage is at least double that of RAID Level 0.

1. Since the host views (he array as one large disk, it never attempts to read or write less than one
sector, and hence every user access uses all the disks in the array. Note (hat one sector is the mini-
mum unit that can be read from or written to an individual disk, and so a fine-grain-striped array
typically disallows accesses (hat are smaller than N times the size of one sector, where N is (he
number of disks in the array. This rarely poses a problem since fine-grain striped arrays are typi-
cally used in applications where the average request size is very large.
2. Editor's Note: Mark Holland's thesis did not include a description of RAID Level 6, a level
which offers protection from two disk failures.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 21

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

RAID Level 2 provides high availability at lower cost per megabyte by utilizing well-
known techniques used to protect main memory against transient data loss. The disks
comprising the array are divided into data disks and check disks. User data is bit- or
byte-striped across the data disks, and the check disks hold a Hamming error correcting
code [Peterson72, Gibson92] computed over the data in the corresponding bits or bytes
on the data disks. This reduces the storage overhead for redundancy from 100% in mir-
roring to a value in the approximate range of 25-40% (depending on the number of data
disks) in RAID Level 2 but reduces the number of failures that can be tolerated without
data loss. As will be seen, the reliability and performance of such a system can still be
very high. It can be extended to support multiple-failure toleration by using an n-failure-
tolerating Hamming code, which of course increases the capacity overhead for redun-
dancy and the computational overhead for computing the codes.

Thinking Machines Corporation's Data Vault storage subsystem [TMC87] employed
RAID Level 2, but this organization ignores an important fact about failure modes in
disk drives. Since disks contain extensive error-detection and -correction functionality,
and since they communicate with the outside world via complex protocols, the array
controller can directly identify failed disks from their status information or by their fail-
ure to adhere to the communications protocol. A system in which failed components are
self-identifying is called an erasure channel, to distinguish it from an error channel, in
which the locations of the errors are not known. An n-failure-detecting code for an error
channel becomes an «-failure-correcting code when applied to an erasure channel
[Gibson89, Peterson72]. RAID Level 3 takes advantage of this fact to reduce the storage
overhead for redundancy still further.

In RAID Level 3, user data is bit- or byte-striped across the data disks, and a simple par-
ity code is used to protect against data loss. A single check disk (called the parity disk)
stores the parity (cumulative exclusive-or) over the corresponding bits on the data disks.
This reduces the capacity overhead for redundancy to 1/N. When the controller identi-
fies a disk as failed, it can recover any unit of lost data by reading the corresponding
units from all the surviving disks, including the parity disk and XORing them together.
To see this, assume that disk 2 in the RAID Level 3 diagram within Figure 4 has failed,
and note that

(P0_4 = d0®dl®d2®d3®d4)=*(d2 = d0®dl®p0_4@di®d4)

Multiple-failure tolerance can be achieved in RAID Level 3 by using more than one
check disk and a more complex error-detecting/correcting code such as a Reed-Solomon
[Peterson72] or MDS code [Burkhard93, Blaum94]. RAID Level 3 has very low storage
overhead and provides very high data-transfer rates. Since user data is striped on a fine
grain, each user access uses all the disks in the array, and hence only one access can be
serviced at any one time. Thus this organization is best suited for applications such as
scientific computation, in which a single process requests a large amount of sequential
data from the array.

Because all accesses use all disks in RAID Level 3, the disk heads move in unison, and
so the cylinder over which the heads are currently located is always the same for all
disks in the array. This assures that the seek time for an access will be the same on all
disks, which avoids the condition in which some disks are idle waiting for others to fin-

22 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

ish their portion of an access. In order to assure that rotational latency is also the same
for each access on each disk, systems using RAID Level 3 typically use phase-locked

R AIDf rame: A Rapid Prototyping Tool for RAID Systems 23

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

FIGURE 4 Data and Redundancy Organization in RAID Levels 0 through 5

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

0 DO D1 D2 D3 D4 D5

1 D6 D7 D8 D9 D10 D11

2 D12 D13 D14 D15 D16 D17

3 D18 D19 D20 D21 D22 D23

RAID Level 0: Nonredundant

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

0 DO |||: D1 111 D2 m
1 D3 Hi D4 tu D5 111!
2 D6 Hi D7 in D8 mm
3 D9 üi D10 III D11 ill

RAID Level 1: Mirroring

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

do d1 d2 d3 hO-3

d4 d5 d6 d7 h4-7

d8 d9 d10 d11 lllilllll
d12 d13 d14 d15 I.1M5

RAID Level 2: Hamming-Code ECC

DiskO Diskl Disk 2 Disk 3 Disk 4 Disk 5

dO d1 d2 d3 d4 p0 4

d5 d6 d7 d8 d9 pS-P

d10 d11 d12 d13 d14 ptO 14

d15 d16 d17 d18 d19 p1«i V<

RAID Level 3: Byte-Interleaved Parity

The figure shows the first few units on each disk in each of the RAID levels.
"D" represents a block of user data (of unspecified size, but some multiple of
one sector), "d" a bit or byte of user data, "hx-y" a Hamming code computed
over user data bits/bytes x through y, "px-y" a parity (exclusive-or) bit/byte
computed over data blocks x through y, and "Px-y" a parity block over user
data blocks x through y. Note from these definitions that the number of bytes
represented by each individual box and label in the above diagrams varies with
the RAID level. The numbers on the left indicate the offset into the disk,
expressed in stripe units. Shaded blocks represent redundant information, and
non-shaded blocks represent user data.

24

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Technology Background

FIGURE 4 Cont. Data and Redundancy Organization in RAID Levels 0 through 5

DiskO Diskl Disk 2 Disk 3 Disk 4 Disk 5

0

1

2

3

DO D1 D2 D3 D4 F>0 4

D5 D6 D7 D8 D9 mm<
D10 D11 D12 D13 D14 P10 11

D15 D16 D17 D18 D19 P15 1C

RAID Level 4: Block-Interleaved Parity

DiskO Diskl Disk2 Disk3 Disk4 Disk5

DO D1 D2 D3 D4 All
D6 D7 D8 D9 lüii D5

D12 D13 D14 Ulf D10 D11

D18 D19 11111 D15 D16 D17

D24 &MM D20 D21 D22 D23

mm*. D25 D26 D27 D28 D29

RAID Level 5: Rotated Block-Interleaved Parity
(Left-Symmetric)

Level 0 is non-redundant and therefore not fault-tolerant. Level 1 is simple mirror-
ing in which two copies of each data block are maintained. Level 2 uses a Hamming
error-correction code to achieve fault tolerance at a lower capacity overhead than
Level 1. Levels 3 through 5 exploit the fact that failed disks are self-identifying.
Thus Levels 3 through 5 achieve fault tolerance using a simple parity (exclusive-or)
code, lowering the capacity overhead to only one disk out of six in this example.
Levels 3 and 4 are distinguished only by the size of the striping unit: one bit or one
byte in Level 3 and one block in Level 4. In Level 5, the parity blocks rotate through
the array rather than being concentrated on a single disk to avoid throughput loss
due to contention for the parity drive.

loop circuitry to synchronize the rotation of the spindles of the disks comprising the
array. Many disks currently on the market support this spindle synchronization.

RAID Level 4 is identical to Level 3 except that the striping unit is relatively coarse-
grained (perhaps 32KB or larger [Chen90b]), rather than a single bit or byte. The block
of parity that protects a set of data units is called a parity unit. A set of data units and
their corresponding parity unit is called a parity stripe. RAID Level 4 is targeted at
applications like on-line transaction processing (OLTP), in which a large number of
independent processes concurrently request relatively small units of data from the array.
Since the striping unit is large, the probability that a single small access will use more
than one disk is low, and hence the array can service a large number of accesses concur-
rently. This organization is also effective for workloads that are predominantly small
accesses but contain some fraction of larger accesses. The array services concurrent

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 25

6/24/96

Redundant Disk Arrays:A Brief Overview

small accesses in parallel but achieves a high data rate on the occasional large access by
utilizing many disk arms.

In RAID Level 4, each disk typically services a different access, and so, unless the
workload applied contains a significant fraction of large accesses, the heads do not
remain synchronized. Consequently, there is no compelling reason to synchronize the
spindles either. However, spindle synchronization never degrades performance and can
improve it on large accesses; disks arrays typically use it whenever the component disks
support it.

The problem with RAID Level 4 is that the parity disk can be a bottleneck in workloads
containing a significant fraction of small write operations. Each update to a unit of user
data implies that the corresponding parity unit must be updated to reflect the change.
Thus the parity disk sees one update operation for every update to every data disk, and
its utilization due to write operations is N-l times larger than that of the data disks. This
does not occur in RAID Level 3, since every access uses every disk. To solve this prob-
lem, RAID Level 5 distributes the parity across the disks of the array. This assures that
the parity-update workload is as well balanced across the disks as the data-update work-
load.

In RAID Level 5, there are a variety of ways to lay out data and parity such that parity is
evenly distributed over the disks [Lee91]. The structure shown in Figure 4 is called the
left-symmetric organization and is formed by first placing the parity units along the
diagonal and then placing the consecutive user data units on consecutive disks at the
lowest available offset on each disk. This method for assigning data units to disks
assures that, if there are any accesses in the workload large enough to span many stripe
units, the maximum possible number of disks will be used to service them.

RAID Levels 2 and 4 are of less interest than the others because levels 3 and 5 provide
better solutions, respectively. We omit Levels 2 and 4 from the remaining discussion.

1.2.2.3 Reading and Writing Data in the Different RAID Levels
This section describes the techniques used to read and write data in the different RAID
levels, both when the array is fault-free ("fault-free mode") and when it contains a single
failed disk ("degraded mode"). The focus is on the techniques used to maintain parity
and to continue operation in the presence of failure. This section uses the terms "read
throughput" and "write throughput" to indicate the maximum rates at which data can be
read from or written to the array.

In all cases, the array controller maps the linear array address and access type supplied
by the host (the "user" read or write) to the indicated set of operations on physical disks
(the corresponding "disk" reads and/or writes). In RAID Level 0, the set of reads or
writes so generated can be immediately and concurrently initiated since there is no par-
ity to maintain and no possibility of continuing operation in the presence of failure.
Thus the read throughput and write throughput of a RAID Level 0 array are both N
times the throughput of a single disk. In Levels 1, 3, and 5, the disk operations triggered
by a user read or write operation are more complex, especially in the presence of a disk
failure, and often must be sequenced appropriately.

26 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

1.2.2.3.1 RAID Level 1

Figure 5 illustrates the different read and write operations in RAID Level 1. In fault-free
mode, the controller must send user write operations to both disks. This reduces the
maximum possible write throughput to 50% of that of RAID Level 0. The two write
operations can, in general, occur concurrently, but some systems perform them sequen-
tially in order to guarantee that the old data will be recoverable should the first write fail.

FIGURE S Read and Write Operations in RAID Level 1 (mirroring)

Fault-Free
Write

Fault-Free
Read

Degraded
Write

Degraded
Read

m HK
Typically, read requests are sent to only one of the two disks in the pair so that the other
will be free to service other read operations. The controller can service user reads in
fault-free mode from either copy of the data. This flexibility allows the controller to
improve throughput by selecting, for each user read operation, the disk that will incur
the least positioning overhead [Bitton88, Bitton89]. This is frequently called the short-
est-seek optimization and can improve read throughput by up to about 15% over RAID
Level 0 [Chen90a].

In degraded mode, the controller sends user write operations that target a unit with one
copy on the failed disk only to the surviving disk in the pair instead of to both. This does
not affect the utilization on the surviving disk because it does not absorb any write traf-
fic that it would not otherwise encounter. However, in the presence of a disk failure, the
surviving disk must absorb, in addition to its regular workload, all the read traffic tar-
geted at the failed drive in fault-free mode. In read-intensive workloads, this can cause
the utilization on the surviving disk to double. User reads and writes that do not target
any units on the failed disk occur as if the array were fault-free.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 27

6/24/96

Redundant Disk Arrays:A Brief Overview

FIGURE 6 Read and Write Operations in RAID Level 3 (bit-interleaved parity)

Fault-Free
Write

<& TTTl
d d d p

Degraded
Write

Degraded
Read

The diagonal lines in the figure indicate that when the host accesses (reads or writes) a
block of data consisting of bits 0 through n-1, disk 0 services bits 0, 3, 6, ..., n-3, disk
1 services bits 1, 4, 7 n-2, and disk 2 services bits 2, 5, 8, ..., n-1. The array con-
troller arranges for the correct bits to read from or write to the correct drive. On a write
operation, the controller writes to disk 3 a block containing the following bits:
(0ffil©2), (3©4©5), (6©7©8), ..., ((n-3)©(n-2)ffi(n-l)). Note that the controller
implements this bit-level parity operation using only sector-sized accesses on the
disks; so n must be a multiple of 8-N-S, where N is the number of disks in the array and
S is the number of bytes in a sector. The controller typically enforces this condition
since the only alternative is to use read-modify-write operations on the individual disks
which drastically reduces efficiency.

1.2.2.3.2 RAID Level 3

Figure 6 illustrates reads and writes in RAID Level 3. The following discussion assumes
that each user access is some multiple of (N-l)-S in size, where N is the number of disks
in the array and S is the number of bytes in a sector (almost always 512). This is because
each access uses all data disks, and the minimum sized unit that can be read from or
written to a disk is one sector. If the array is to support accesses that are not a multiple of
this size, the controller must handle any partial-sector updates via read-modify-write
operations, which can degrade write performance.

In fault-free mode, user write operations update the old data in place. The controller
updates the parity disk by computing the cumulative XOR of the data being written to
each drive and writing the result to the parity disk concurrently with the write of the user
data to the data disks. The controller may perform this XOR operation before the write
is initiated or as the data flows down to the disks [Katz93]. Because the XOR happens at
electronic speeds (a few microseconds per complete user access) but the disk runs at
mechanical speeds (milliseconds per access), this computation typically has no measur-

28

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Technology Background

able effect on the performance of the array. User read operations simply stream the data
into the controller; the parity disk remains idle during this time.

A degraded-mode user write operation in RAID Level 3 occurs in exactly the same
manner as in fault-free mode except that the controller suppresses the write to the failed
disk. A degraded-mode user read is serviced by reading the parity and the surviving data
and XORing them together to reconstruct the data on the failed drive. Disk arrays that
stripe data on a fine grain (a bit or a byte) have the property that their performance in
degraded mode is not significantly different than their performance in fault-free mode.
This is because the controller accesses all disks during every access in any case, and so
supporting degraded-mode operation simply amounts to modifying the bit streams sent
to and from each drive. The XOR operations that occur in degraded mode are typically
performed as the data streams into or out of the controller, and so they do not signifi-
cantly increase access times.

1.2.2.3.3 RAID Level 5
Figure 7 illustrates the various translations of user accesses to disk accesses in RAID
Level 5. User write operations in fault-free mode are handled in one of three ways,
depending on the number of units being updated. In all cases, the update mechanisms
are designed to guarantee the property that after the write completes, the parity unit
holds the cumulative XOR over the corresponding data units, or

new 1 2 3 N-l

If the update affects only one data unit, the prior content of that unit is read and XORed
with the new data about to be written. This produces a map of the bit positions that need
to be toggled in the parity unit in order that the parity unit should reflect the new data.
These changes are applied to the parity unit by reading its old contents, XORing in the
previously generated map, and writing the result back to the parity unit. The correctness
of this transformation is shown as follows where a new data block V>2 nm is being writ-
ten to a unit on disk number 2 in an N-disk array:

new old y 2, old 2, new'

=> P = ZX. ©(£>,, ,.®D0 ;j)®D-> ©D~ ©...©!>,, new 1 v 2, old 2, old' 2, new 3 N

new 1 2, new 3 N

This parity-update operation is called a read-modify-write and is easily generalized to
the case where the user access targets more than one data unit. In this case, the control-
ler reads the previous contents of all data units to be updated and then XORs them
together with the new data prior to reading, XORing, and re-writing the parity unit.
Read-modify-write updates are used for all fault-free user write operations in which the
number of data units being updated is less than half the number of data units in a parity
stripe.

RAIDf rame: A Rapid Prototyping Tool for RAID Systems 29

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

FIGURE 7 Read and Write Operations in RAID Level 5 (rotated parity)

Fault-Free
Read-Mod ify-Write

©Data

Fault-Free
Reconstruct-Write

L

 -^ ©Data © Parirf I ©Parity
Update Y I'reread Preread] f Update

000"
Fault-Free

Large-Write

ma
D P

xxm.
Fault-Free

Read

000
Degraded

Write

0
m i

Degraded
Read

X' DDP

The preread-and-then-write operation performed on the data unit is typically done atom-
ically to minimize the positioning overhead incurred by the access [Stodolsky94]. This
is also true for the parity unit. Since the old data must be available to perform the parity
update, the data preread-and-write is typically allowed to complete (atomically) before
the parity preread-and-write is started.

In applications that tend to read blocks of data shortly before writing them, the perfor-
mance of the read-modify-write operation can be improved by acquiring the old con-
tents of the data unit to be updated from the system's buffer cache rather than reading it
from disk. This reduces the number of disk operations required from four to three. This
situation is very common in OLTP environments [TPCA89, Menon92c].

When the number of data units being updated exceeds half of one parity stripe, there is a
more efficient mechanism for updating the parity. In this case, the controller writes the
new data without pre-reading the old contents of the written unit, reads and XORs
together all of the data units in the parity stripe that are not being updated, XORs in to
this result each of the new data units to be written, and writes the result to the parity
unit. The new parity that is written is therefore the cumulative XOR of the new data
units and the data units not being updated, which is correct. This is called a reconstmct-
write operation because of its similarity to the way failed data is recovered.

30

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Technology Background

The final mechanism used to update parity in a fault-free RAID Level 5 array is the
degenerate case of the reconstruct-write that occurs when a user access updates all data
units in a parity stripe. In this case, the controller does not need to read any old data but
instead simply updates each data unit in place and then XORs together all the new data
units in buffer memory and writes the result to the parity unit. This is often called a
large write and is the most efficient form of update.

In degraded mode, a user read requesting data on the failed disk is serviced by reading
all the units in the parity stripe, including the parity unit, and XORing them together to
reconstruct the requested data unit(s). User reads that do not request data on the failed
disk are serviced normally. User write requests updating data on the failed drive are ser-
viced via reconstruct-writes, independently of the number of units being updated, with
the write to the failed disk suppressed. Since the data cannot be written, this method of
update causes the new data to be reflected in the parity so that the next read will return
the correct data. User write requests not updating data on the failed drive are serviced
normally except in the reconstruct-write case where the parity needs to be read. When a
user write request updates data for which the parity has failed, the data is simply written
in place since no parity-maintenance operations are possible.

1.2.2.4 Comparing the Performance of the RAID Levels

Table 1, adapted from Patterson, Gibson, and Katz [Patterson88], compares the fault-
free performance and capacity overhead of the RAID levels. The values are all first-
order approximations since there are a wide variety of effects related to seek distance,
head synchronization, access patterns, etc., that influence performance, but the table
provides a baseline comparison. It's clear that RAID Level 1 offers better performance
on concurrent, small-access workloads but does so at a high cost in capacity overhead.

1.2.2.5 On-line Reconstruction

The preceding has shown how a disk array operates, and how it may continue to operate
in the presence of a single disk failure. The next step to take is that the array should have
the ability to recover from the failure, that is, restore itself to the fault-free state.1 Fur-
ther, a disk array should be able to effect this recovery without taking the system off-
line. This is implemented by maintaining one or more on-line spare disks in the array.
When a disk fails, the array switches to degraded mode as described above but also
invokes a background reconstruction process to recover from the failure. This process
successively reconstructs the data and parity units that were lost when the disk failed
and stores them on the spare disk. The mechanism by which this is accomplished is
called the reconstruction algorithm. Once all the units have been recovered, the array

1. Editor's Note: The term "recovery" traditionally encompasses more than the process of the
array restoring itself to the fault-free state following a single disk failure: it also includes the pro-
cess by which the array controller handles software errors during operation. Mark Holland limited
the term here, however, to the specific case of reconstructing data lost on a failed disk. To clarify
this distinction further: recovering from the physical loss of a disk can take the array anywhere
from several minutes to several hours. Handling errors, on the other hand, will take the array milli-
seconds, occurring transparently to the host or user. Automating error recovery is central to our
design of RATDframe and is covered in greater detail in Chapter 2. To lessen confusion, we will
use the term "recovery" in its broader sense throughout the rest of the document

RAIDframe: A Rapid Prototyping Tool for RAID Systems 31

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

returns to normal performance and is once again single-failure tolerant, and so the
recovery is complete.

32 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

TABLE 1. First-Order Comparison Between the RAID Levels for an W-disk Array

Large Accesses
RAID
Level Read Write RMW

Small Accesses

Read Write RMW

Capacity
Overhead
(%)

Max
Concurrency

0 100 100 100 100 100 100 0 N

1 100+ 50 66 100+ 50 66 100 N

3 100 100 100 n/a n/a n/a 100/N 1

5 100 100 100 100 25 33 100/N N

The table reports performance numbers as percentages of RAID Level 0 performance.
The "RMW" column gives (he performance of the array when the application reads each
data unit before writing it, which eliminates the need for the data preread. The capacity
overheads are expressed as a percentage of the user data capacity of the array. The concur-
rency figures indicate the maximum number of user I/Os that can be simultaneously exe-
cuted. The table reports the maximum concurrency numbers for Levels 1 and 5 as N
because such arrays can support N concurrent reads but writes involve multiple I/O opera-
tions, and this reduces the maximum supportable concurrency.

1.2.2.6 Related Work: Variations on These Organizations

This section summarizes industrial and academic research on disk arrays. It defines nine
categories of investigation and presents brief summaries of some papers in each. These
studies serve as background in the area of redundant disk arrays.

1.2.2.6.1 Multiple-Failure Toleration

Each of the RAID levels defined above is only single-failure tolerant; in each organiza-
tion there exist pairs of disks such that the simultaneous failure of both disks results in
irretrievable data loss. This is adequate in most environments because the reliability of
the component disks is high enough that the probability of incurring a second failure
before a first is repaired is low. There are, however, three reasons why single-failure tol-
erance may not be adequate for all systems. First, recalling that the reliability of the
array falls as the number of disks increases, the reliability of very large single-failure
tolerating arrays may be unacceptable [Burkhard93]. Second, applications in which data
loss has catastrophic consequences may mandate a higher degree of reliability than can
be delivered using the RAID architectures described above. Finally, disk drives some-
times exhibit latent sector failures in which the contents of a sector or group of sectors
are irretrievably lost, but the failure is not detected because the data is never accessed.
The rate at which this occurs is very low, but if a latent sector failure is detected on a
surviving disk during the process of reconstructing the contents of a failed disk, the cor-
responding data becomes unrecoverable. Multiple-failure toleration allows recovery
even in the presence of latent sector failures.

The drawback of multiple-failure toleration is that it degrades write performance: in an
«-failure-tolerating array, every write operation must update at least n+1 disks so that
some record of the write will remain should n of those n+1 disks fail [Gibson89]. Thus
the write performance of the array decreases in proportion to any increase in n.

Gibson et. al. [Gibson89] treated multiple-failure tolerance as an error-control coding
problem [Peterson72]. They restricted consideration to the class of codes that (1) do not
encode user data but instead simply store additional "check" information in each parity

RAIDframe: A Rapid Prototyping Tool for RAID Systems 33

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

stripe, (2) use only parity operations (modulo-2 arithmetic) in the computation of the
check information, and (3) incur exactly n+1 disk writes per user write. They defined
three primary figures of merit on the codes used to protect against data loss: the mean-
time-to-data-loss, which is the expected time until unrecoverable failure in an array
using the indicated code, the check-disk overhead, which is the ratio of disks containing
ECC to disks containing user data, and the group size, which is the number of units in a
parity stripe, including check units, supportable by the code. They demonstrated codes
for double- and triple-error toleration based on three primary techniques, which they
call N-dimensional parity, full-n codes, and the additive-3 code. Bach of these is a tech-
nique for defining the equations that relate each check bit to a set of information bits. In
comparing the techniques according to the figures of merit, they show multiple-order-
of-magnitude reliability enhancements in moving from single- to multiple-failure toler-
ation and achieve this using relatively low check-disk overheads ranging from 2% to
30%.

Burkhard and Menon [Burkhard93] described two multiple-failure tolerating schemes
as examples of maximum-distance-separable (MDS) codes [MacWilliams78]. The first
uses ^file-dispersal matrix to distribute a block of data (a,file in their terminology) into
n fragments such that any m < n of them suffice to reconstruct the entire file. An array
constructed using such a code can tolerate (n-m) concurrent failures without losing data.
The second, described fully by Blaum et. al. [Blaum94], clusters together sets of iV-1
parity stripes where N is the number of disks in the array and stores two parity units per
parity stripe. The first parity unit holds the same information as in RAID Level 5, and
the second holds parity computed using one data unit from each of the parity stripes in
the cluster. Blaum et. al. showed that this scheme tolerates two simultaneous failures, is
optimal with respect to check-disk overhead and update penalty, and uses only XOR
operations in the computation of the parity units.

1.2.2.6.2 Addressing the Small-Write Problem

Recall from Section 1.2.2.3.3 that small write operations in RAID Level 5 incur up to
four disk operations: data preread, data write, parity preread, and parity write. This
degrades the performance of small write operations by a factor of four when compared
to RAID Level 0. Several organizations have been proposed to address this problem.

Menon and Kasson [Menon89, Menon92a] proposed a technique based on floating the
data and/or parity units to different disk locations upon each update. Normally, the con-
troller services a small write operation by pre-reading the old data, waiting for the disk
to spin through one revolution, writing the new data back to the original location, and
then repeating this process for the parity unit. In the floating data/parity scheme, the
controller reserves (leaves unoccupied) some number of data units on each track of each
disk. After each preread operation, the array controller writes the new data to a rotation-
ally convenient free location rather than writing it in place. This saves up to one full
rotation (10-17 milliseconds of disk time) per preread-write pair. An analytical model in
the paper shows that a free unit can typically be found within about two units of the
location of the old data. This makes each preread/write pair take only slightly longer
than a single access and thus can potentially nearly double the small-write performance
of the array. Menon and Kasson concluded that the best capacity-performance tradeoff
is achieved by applying this floating only to the parity unit rather than to both data and
parity. A potential problem with this approach is that the array controller must be inti-
mately familiar with the geometry and performance characteristics of the component

34 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

disks as well as the latencies involved in communicating with them. This requires a high
degree of predictability from the disks and makes the design difficult to verify, tune, and
maintain.

Another technique proposed to address the small-write problem is to eliminate them
from the workload. The Log-Structured File System (LFS) [Rosenblum91, Seltzer93]
has the potential to achieve this by organizing the file system as an append-only log. The
motivation behind this file system is that a disk drive is able to service sequential
accesses at about twenty times the bandwidth of random accesses. All user writes are
held in memory until enough have accumulated to allow them to be written to disk using
a single large update. Over time, this causes the disk to fill with dead data, and so a
cleaner process periodically sweeps through the disk, compacts live files into sequential
extents, and reclaims dead space. This technique improves write performance by caus-
ing all writes to be sequential and can potentially improve read performance by causing
files written contiguously to end up contiguous on the disk. When the underlying stor-
age mechanism is a disk array, the only writes that are encountered are large enough to
span entire parity stripes, and thus the large-write optimization always applies.

Stodolsky et. al. [Stodolsky94] adapted the ideas behind LFS to the problem of parity
maintenance and proposed an approach based on logging the parity changes generated
by each write operation rather than immediately updating the parity upon each user
write. In this scheme, the controller reads the old data (or acquires it from the buffer
cache) and writes the new data as before. It then XORs together the old and new data to
produce & parity-update record, which it appends to a write-only buff er rather XORing
it with the old parity. The controller spills the entire buffer to disk when it becomes full.
No parity operations are performed for each user write, but some of the array's capacity
(about one disks' worth) must be reserved to hold the parity update logs. Eventually the
log space in the array becomes full, at which time the controller empties it by reading
the log records and the corresponding parity units, XORing them together, and writing
the result back out to the parity locations. Note that the controller buffers only parity
information and so is not vulnerable to data loss due to power failure. While in RAID
Level 5 parity is updated using a large number of small, random accesses, in parity log-
ging it is updated using a smaller number of large, sequential accesses. The paper
showed simulation results indicating that this technique can allow the performance of
RAID Level 5 arrays to approach, or under certain conditions even exceed, that of mir-
roring.

Menon and Cortney [Menon93] described the architecture of a controller that improves
small-write performance by deferring the actual update operations for some period of
time after the application performs the write. In this approach, the controller stores the
data associated with a write in a nonvolatile, fault-tolerant cache memory in the array
controller. Immediately upon storing the data in the cache, the host computer is told that
the write is complete even though the data has not yet been sent to disk. The controller
maintains the data block in the cache until another block replaces it, at which time it is
written ("destaged") to disk using the four-operation RAID Level 5 update. This
improves write performance in two ways. First, if the host performs another write to the
same unit prior to destage, the new data can simply replace the old in the cache, and the
first write need not occur at all. Second, if the host writes several units in the same track,
they are all destaged at the same time, which greatly improves disk efficiency. This is an

RAIDframe: A Rapid Prototyping Tool for RAID Systems 35

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

expensive solution, suitable only for large-scale systems because of the necessity of
incorporating the large, nonvolatile, fault-tolerant cache.

1.2.2.6.3 Spare-Space Organizations

RAID Level 5 arrays typically maintain one or more on-line spare disks so that recon-
struction can be immediately initiated should one of the primary disks fail. This spare
disk can be viewed as a system resource that is grossly underutilized; the throughput of
the array could be increased if this disk is used to service user requests.

Menon and Kasson [Menon92b] described and evaluated three alternatives for organiz-
ing the spare space in a RAID Level 5 disk array. The first, dedicated sparing, is the
default approach of dedicating a single disk as the spare. In the second, called distrib-
uted sparing, the spare space is distributed amongst the disks of the array, much in the
same manner as parity is distributed in RAID Level 5. In the third technique, parity
sparing, the array is divided into at least two independent groups, and when a failure
occurs the affected group is merged into another with the parity space in the surviving
group serving as the spare space for the group containing the failure. In the latter two
organizations, the completion of reconstruction returns the array to fault-free mode, but
in a different configuration than before the failure. For this reason, they require a sepa-
rate copyback phase in the reconstruction process to restore the array to the original con-
figuration when the failed disk has been physically replaced. The paper concluded that
distributed sparing was preferable to parity sparing due to improved reconstruction-
mode performance.

1.2.2.6.4 Distributing the Functionality of the Array Controller

The existence of a centralized array controller in both of the architectures shown in
Figure 2 has two disadvantages: it constitutes either a single point of failure or an
expensive system resource that must be duplicated, and its performance and connectiv-
ity limit the scalability of the array to larger numbers of disks. Cao et. al. [Cao93]
described a disk-array architecture they call TickerTAIP that distributes the controller
functionality amongst several loosely coupled controller nodes. Each node controls a
relatively small set of disks (one SCSI string, for example) and communicates with the
other nodes via a small, dedicated interconnect network. Under the direction of the dis-
tributed controllers, data and parity units as well as control information pass through the
interconnect to effect the RAID read and write algorithms. The paper demonstrated the
elimination of several performance bottlenecks through the use of the distributed-con-
trol architecture.

1.2.2.6.5 Striping Studies

A variety of studies have looked at how to select the striping unit in a redundant disk
array. The choice is always made based on the characteristics of the expected workload.

Gray, Horst, and Walker [Gray90] objected to the notion of striping the data across the
disks comprising an array, arguing that fine-grain striping is inappropriate for transac-
tion processing systems because it causes more than one arm to be used per disk request
and that coarse-grain striping has several drawbacks when compared to non-striped
arrays. These drawbacks stem primarily from the inability to address individual disks
directly from software. They include the inability to archive and restore a single disk,
the software problems inherent in re-coding existing device drivers to enable them to
handle the abstraction of one very large, highly concurrent disk, the problem of design-

36 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

ing single channels fast enough to absorb all bandwidth produced by the array, etc. They
proposed instead an organization in which the parity is striped across the array in large
contiguous extents at the end each disk. The data is not striped at all; the controller allo-
cates sequential user data sequentially on each disk and fills each disk with data before
using the next. This is essentially equivalent to RAID Level 5 with a very large striping
unit, but it allows each disk to be addressed individually. The paper conceded that none
of these problems are insurmountable in RAID arrays but asserted that designers cannot
ignore the problem of retrofitting existing systems to use disk arrays.

Chen and Patterson [Chen90b] developed simple rules of thumb for selecting the strip-
ing unit in a nonredundant disk array. They expect that these rules will hold, perhaps
with some modification, for redundant arrays as well. The study used simulation to eval-
uate the performance of a block-striped RAID Level 0 on many different, synthetically
generated workloads and then investigated choices of the striping unit that maximize the
minimum observed throughput across all these workloads. They found that a good rule
of thumb is to select the striping unit according to the formula

Size = S ■ avg positioning time ■ disk xfer rate ■ (concu rrency -1) + 1 sector

where S is a constant typically around 1/4. Note that the stripe-unit size takes on its min-
imum value (one sector) at concurrency one in order to assure that the single requesting
process is able to utilize all the disks. The size of the striping unit increases as the con-
currency rises in order to gradually reduce the probability that any particular access will
use more than one disk arm.

Lee and Katz [Lee91] described several different strategies for placing the parity units
amongst the striped data units. They found that the most significant performance effect
of varying parity placement was the number of disks used for large reads and writes;
some placement strategies caused fewer than the maximum number of possible disks to
be used on large accesses, and these suffered in performance. The left-symmetric parity
placement illustrated in the RAID Level 5 case of Figure 4 was among the best of the
options.

Merchant and Yu [Merchant92] noted that it is common for a database workload to con-
sist of two components: transactions and ad hoc, read-only queries into the database.
Transactions generate small, randomly distributed accesses into the array, whereas the
ad hoc queries often scan significant portions of the database. To efficiently handle this
workload combination, they proposed a dual striping strategy for mirrored arrays where
the size of the stripe unit is small in one copy (4 KB) and large in the other (32 KB). The
authors note that using a large stripe unit is efficient for relatively large accesses because
it reduces the number of actuators used, but under a small-access model it can cause
workload imbalance amongst the disks. They assert that the converse is true as well: a
small stripe unit achieves good workload balance but causes too many actuators to be
used per large access. Thus they service the transactions using the small-stripe-unit copy
of the data and the ad hoc queries with the large-stripe-unit copy. Merchant and Yu eval-
uated this organization, using both analytical modeling and simulation, with a syntheti-
cally generated workload that adhered to the assumptions made in designing the striping
strategy. They found substantial benefits to this approach.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 37

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

1.2.2.6.6 Disk-Array Performance Evaluation

Chen et. al. [Chen90a] tackled the thorny problem of comparing RAID Level 5 to RAID
Level 1. The comparison is difficult to make because equating the number of actuators
causes the array capacities to differ and vice versa. The authors addressed this problem
by choosing to equate user data capacity and reporting two metrics: throughput at a
fixed 90th-percentile response time and throughput per disk at a fixed 90th-percentile
response time. Their motivation for this was the assumption that systems will dictate a
minimum acceptable capacity and level of responsiveness and will desire the maximum
possible throughput subject to these constraints. The authors evaluated the architectures
by implementing them in real hardware and applying synthetically generated workloads
that varied in the parameters of interest. The results largely validated the simple model
of Patterson et. al. [Patterson88], which is approximated in Table 1. They further
showed that due to the shortest-seek optimization, the RAID Level 1 outperformed the
RAID Level 5 on small-access dominated-workloads, whereas the reverse was true on
large-access workloads due to more efficient write operations in RAID Level 5.

1.2.2.6.7 Reliability Modeling

Patterson et. al. [Patterson88] derived a simple expression for the mean-time-to-data-
loss (MTTDL) in a redundant disk array:

WTTFdis/ MTTF
RAID N N. , (N , -V\MTTR

groups diskspergroup^ diskspergroup ' disk

where MTTFji^ is the mean time to failure of a component disk; Ngroups is the number
of independent groups in the array, each of which contains N'diskspergroup disks, includ-
ing the (possibly distributed) parity disk; and MTTR^isk ls tne mean time to repair
(reconstruct) a disk failure. This model assumes that disk failure rates are identical,
independent, exponentially distributed random variables. In arrays that maintain one or
more on-line spare disks, the repair time can be very short, a few minutes to half an
hour, and so the mean time to data loss can be very long.

Schulze et. al. [Schulze89] noted that the time until data loss due to multiple simulta-
neous disk failures, which is the only failure mode modeled by the above equation, is
not an adequate measure of true reliability because the failure of other system compo-
nents (array controllers, string controllers, cabling, air conditioning, etc.) can equally
well cause data to be lost or become temporarily inaccessible. This paper estimated the
reliability of each such component and derived simple techniques for building redun-
dancy into the controllers, cabling, cooling, etc. so as to maximize the overall system
reliability.

Modeling the reliability of disk arrays was the one of the primary topics of Gibson's
Ph.D. dissertation [Gibson92, Gibson93]. He analyzed all of the assumptions behind the
simple equation given above, identified the conditions under which they do and do not
hold, and derived new reliability models for conditions not previously covered. Specifi-
cally, he investigated whether disk failure rates are truly exponentially distributed,
derived reliability models for disk arrays with dependent failure modes, extended these
models to take into account the possibility of spare-pool exhaustion, and investigated
the reliability implications of both the number and the connectivity of the spare drives.
He verified the models using Monte Carlo simulation of disk lifetimes and found good

38 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Technology Background

agreement between the two. This work theoretically and empirically validated the use of
the models and disk-array structures described above.

1.2.2.6.8 Improving the Write-Performance of RAID Level 1

As shown in Table 1, mirrored systems achieve only 50% of the write performance of
nonredundant arrays because each write must be sent to two disks. This section
describes several studies intended to improve this performance. Most of the ideas here
relate to caching and deferring updates and so apply to parity-encoded arrays as well.

Solworth and Orji proposed several variations on an organization to improve mirrored-
array write performance. They first proposed implementing a large, nonvolatile, possi-
bly fault-tolerant write-only disk cache dedicated exclusively to write operations
[Solworth90]. In this scheme, the controller defers user write operations by holding the
corresponding data in the cache until a user read operation moves the disk heads to the
vicinity of the data to be written at which time it destages the data to disk. In this sense,
this scheme is similar to the deferred-update techniques described by Menon and Cor-
ney [Menon93] with the primary difference being that reads are not cached in Solworth
and Orji's proposal, and the cache replacement policies are adapted to account for this.
The authors do not address the question of whether some of the memory used for write-
caching would be better used for read-caching.

In two follow-on studies, Solworth and Orji proposed distorted mirrors [Solworth91]
and doubly distorted mirrors [Orji93]. In the former, the controller updates data in place
on the primary disk in a mirror pair but writes the data to any convenient location on the
secondary drive. The controller maintains a data structure in memory describing the
location of each block on the secondary drive. This approach reduces the total disk-arm
time consumed in servicing a write request. The controller services small reads from
either copy but services large reads from the primary copy only since consecutive blocks
on the secondary are not, in general, sequential on the disk. In the latter (doubly dis-
torted mirrors), the authors combined the ideas of a write-only cache and write-any-
where semantics on the secondary drive to eliminate the necessity that the cache be
nonvolatile and fault-tolerant.

Polyzois, Bhide, and Dias [Polyzois93] proposed a modification to the deferred-write
technique in which the two disk arms in a mirror pair alternate between reading and
writing. Deferred writes accumulate in the cache for some period of time, and then the
controller batches them together and writes them out to one drive. During this period,
the other drive services all read operations. The two drives then switch roles: the first
services reads, and the second destages deferred writes. This scheme yields very low
latency access to data for moderate workloads because there is always one disk arm
available to service user read requests and write operations incur only the latency
required to install the data in the cache.

1.2.2.6.9 Network File Systems Based on RAID

Several studies have looked at extending the ideas of striping and parity protection to
network file systems. This allows the file system to operate in the presence of server
and/or network failures and provides for disaster recovery should all data stored at one
site be permanently destroyed. It achieves this at lower disk cost that the standard
approach of file duplication on multiple servers.

R AIDframe: A Rapid Prototyping Tool for RAID Systems 39

Version 1.0 6/24/96

Redundant Disk Arrays:A Brief Overview

Stonebraker and Schloss [Stonebraker90] proposed an organization that is essentially
identical to RAID Level 5 with each disk replaced by a server in a network file system.
They evaluated the performance, overhead, and reliability of several variations on this
idea and concluded that distributed RAID has many reliability advantages but performs
poorly in the presence of failures. Other studies [Cabrera91, Hartman93] have extended
this idea to network file systems that stripe data for performance.

40 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

CHAPTER 2 Managing the Complexity

of Array Software

In Chapter 1, we described the need for improved availability in the storage subsystem
due to the widening access gap, the downsizing trend in disk drives, and the advent of
new I/O-intensive applications. We discussed the structure and operation of disk arrays
in some detail, explaining the different data layouts and fault tolerance for each of the
original RAID levels. We also summarized some of the related work done on variations
of these RAID organizations, most of which looks at improving performance by identi-
fying the best techniques for laying out and writing data.

What should be clear from our description of disk arrays in Chapter 1 is the complexity
of the array software used to control the disks in the array. What may not be clear from
our discussion is that most of the related work has approached the task of managing this
complexity on a case-by-case basis. What we mean by this is that researchers have
looked at specific contexts for using redundant arrays and have proposed ways to opti-
mize the software based on the specific needs of expected workloads. This ad hoc
approach to designing and implementing array software means that there is little code
reused between RAID organizations. It also means that each architecture handles any
errors that occur during operation in a specific, limited way, adding to the complexity of
the array software.

Our goal is to simplify the process of designing and implementing array software that
performs optimally for a particular situation. To do this, we have aimed to increase the
amount of code reused between RAID designs, to enable a means for verifying the cor-
rectness of designs before they are implemented, to generalize an error-recovery mecha-
nism, and to provide a mechanism for reconstructing data on-line when a disk fails.
Achieving these four things, we believe, will lead to shorter design-cycle times, soft-
ware that performs as it was designed to do, mechanized error recovery, and highly
available and reliable systems.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 41

Version 1.0 6/24/96

Managing the Complexity of Array Software

In this chapter, we introduce a structured method for implementing array software,
based on a graphical programming abstraction, which allows many RAID operations to
be composed quickly from a relatively small set of primitive operations. We begin by
looking in more detail at traditional approaches to managing array software in Section
2.1, then move to the concept underlying our own structured approach in Section 2.2:
that RAID operations can be viewed as software programs. Next, we describe how to
compose these RAID operations, or programs, with graphs in Section 2.3 before dis-
cussing how to execute them in Section 2.4. Finally, in Section 2.5 we discuss an algo-
rithm for reconstructing data when a disk fails.

2.1 Traditional Approaches in Managing Array
Software are Suboptimal

As we have already said, redundant arrays have typically been designed in an ad hoc
fashion, each organization developed to address particular needs and each customized to
handle specific error conditions. It is this customized error recovery that has particularly
added to the complexity of array software and that has contributed to the difficulty in
managing array software. Traditionally, array designers have adopted one of two
approaches to error recovery: forward error recovery and backward error recovery.

Briefly, forward error recovery requires anticipating all possible errors and manually
coding actions for completing operations once an error has occurred. This approach
requires hundreds of thousands of lines of code with the possibility of overlooked
errors. While custom-designed code from a complete understanding of all error vectors
allows the software to achieve near-optimal performance, the error-recovery code must
be re-written to handle a new set of error vectors if the code is to be reused for a similar
but distinct application. As long as the set of vectors is relatively small, this task is not
too difficult and, in fact, this approach is the dominant method of error recovery in gen-
eral-production software.

Of course, many of the error vectors may be consolidated and treated similarly, reducing
the number of unique cases which must be handled. For example, if parity has failed in
the middle of a large write operation, the remaining data writes may continue unaf-
fected, regardless of their current disk state (old or new). However, this does not elimi-
nate the problem of extending existing code to support new array operations. This is
because the remaining error vectors are still a function of error context and as new array
operations are introduced, that context will change, thereby requiring changes in error-
recovery code.

Finally, verifying code constructed in this fashion can be tedious and prone to mistakes.
To demonstrate that it is correctly implemented, each RAID operation must satisfy a set
of invariants, rules which are always true for a consistent array. Ensuring correctness
requires identifying each error scenario and demonstrating that the code correctly han-
dles each error vector. Automating this process is possible if the code structure is well
defined, perhaps in the form of a state machine [Clarke82, Clarke94]. However, because
of the ad hoc nature of code using forward error recovery, hand analysis is required.

42 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Treating RAID Operations as Programs

In an ideal world, redundant-disk-array software would be constructed without regard
for the context in which errors occur. This implies that when, for example, a disk read
fails, only the very general process of recording the fact that a disk has failed would
need to be implemented. The implications of the error (e.g., failure to read non-over-
write data during a "reconstruct write") would be irrelevant, making the software com-
pletely independent of array architecture.

Database systems have achieved this simplicity, allowing programmers to create new
transactions with little regard for error recovery. This is accomplished by guaranteeing
that the operations which compose the transaction are atomic and undoable. When an
error occurs which causes an atomic operation to fail, the programmer is presented with
the illusion that the operation never occurred. Furthermore, the system undoes the
effects of the previously completed operations, completely removing all effects of the
failed transaction. With the burden of detecting and recovering from errors delegated to
the underlying system, the programmer is left with the relatively straightforward task of
creating transactions which begin in a consistent system and commit only consistent
state changes to the system.

The approach used to achieve this simplicity, backward error recovery, requires a dura-
ble log which records the effects of operations as they complete. When it is determined
that a transaction has failed, the contents of the log are used to undo the previously com-
pleted operations. Unfortunately, maintaining this log may be expensive—in addition to
the resources required to store the log, additional work may be required to create the
information which is stored in the log.

For example, consider a large write operation in a RAID level 5 array which overwrites
data and parity with new information. To guarantee that each of these write operations is
undoable, the previous contents of the data and parity must be stored in the log. Instead
of just overwriting each one, each disk operation must now read and write data and par-
ity, doubling the total workload of the disks and decreasing the response time and
throughput of the system. If a disk operation fails, then the saved state is restored; and,
while the system restores state, processing stops.

Our strategy is to address the limitations of both forward error recovery and backward
error recovery and to provide criteria for using each, thereby enabling error recovery to
be automated, transparent, and verifiably correct. Specifically, forward error recovery is
easy if no case analysis is required; backward error recovery is easy if there is no state to
save and restore. We call our approach roll-away error recovery because it is a hybrid
approach. We will describe how roll-away error recovery works in more detail in
Section 2.4.3 on page 53.

2.2 Treating RAID Operations as Programs

As we discussed in Section 1.2.2.3 on page 26, the array controller—however imple-
mented—maps user read and write operations (such as small write and degraded-mode
read) to a relatively small set of corresponding disk operations. These operations, which
we will refer to as primitive operations throughout the remainder of this document,
include operations for disk access (such as disk read and exclusive-or), redundancy
computation, and resource allocation (such as memory buffers). Because primitive oper-

RAIDframe: A Rapid Prototyping Tool for RAID Systems 43

Version 1.0 6/24/96

Managing the Complexity of Array Software

ations are the basic actions used by the array software to control disks, they can be
thought of as instructions or steps, and when constraints upon their sequencing are
imposed, they can be used to construct RAID operations in a programmatic fashion.

By treating RAID operations as programs, we are able to minimize the amount of code
changes required to extend the software. The best-known method to do this is to create
modular code which isolates functions that are known to change orthogonally with
architecture [Meyers78].

FIGURE 8 Isolating Common Infrastructure

encoding layout array operations

arithmetic disk I/O
memory
manager

lock
manager

parity
log

Infrastructure code, which provides the primitive operations from which array oper-
ations are implemented, appears in the lower half. Architecture-specific code, such
as data encoding, appears in the upper half. When a new architecture is imple-
mented, the infrastructure is unchanged, restricting changes to modules which con-
tain array-specific code.

2.2.0.1

As Figure 8 shows, the most obvious functions which vary with array architecture are
data encoding, information layout, and operation structure. For example, recall from
Chapter One that the only difference between RAID levels 4 and 5 is the manner in
which information is distributed across the disks in the array. By isolating device-spe-
cific code from the code which defines the array architecture and by requiring that the
device software handle all device-specific errors, we are able to provide an infrastruc-
ture which allows array designers to build a variety of architectures without thinking
about the underlying device actions.

In order to understand how primitive operations can be used to compose RAID opera-
tions, we will first look at the set of primitive operations most commonly used. In
Section 2.2.1 through Section 2.2.2 we will then describe how to create pass-fall primi-
tives and how to create RAID operations from primitive operations.

Primitive Operations Commonly Used in Redundant Disk Arrays
In addition to disk drives, the most popular devices used to construct arrays being sold
today include: memory managers, lock managers, arithmetic units, and parity logs.
Table 2 summarizes the primitive operations provided by these devices and their effects.

44

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Treating RAID Operations as Programs

These devices may be constructed from either hardware, software, or some combina-
tion.

TABLE 2. Common Device Operations

Device Primitive Operation Effect

disk disk read copy data from disk to buffer

disk disk write copy data from buffer to disk

disk Rd copy data from disk to buffer

disk Wr copy data from buffer to disk

memory manager MemA acquire a buffer

memory manager MemD release a buffer

lock manager Lock acquire a lock

lock manager Unlock release a lock

arithmetic XOR xor contents of buffers

arithmetic Q generate a Reed-Solomon code

arithmetic Q Reed-Solomon decode

read cache probe if hit, return, shared lock and pointer

read cache copy copy data from cache to a buffer

A memory manager is used to negotiate the use of a buffers from a shared pool. Simi-
larly, the lock manager maintains a set of locks, granting either shared or exclusive own-
ership to competing processes. The arithmetic unit provides operations which perform
data encoding and decoding functions, such as bitwise exclusive-or which is used in
parity encodings and nonbinary polynomial multiplication which is used in Reed-
Solomon encodings. The parity log is an append-only log used to accumulate either par-
ity-update or parity-overwrite records.

2.2.1 Creating Pass-Fail Primitive Operations

Before we can automate array error recovery transparently, it is necessary for us to dis-
tinguish between errors at the device level and those at the array level. Isolating device-
specific recovery from array-specific error recovery enables us to create RAID opera-
tions without regard for the internal details of the devices. To do this, we abstract primi-
tive operations with a wrapper that is responsible for creating the illusion of pass-fail
devices in which pass implies successful completion and/az7 implies the presence of a
permanent fault [Courtright94].

By allowing primitive operations to return fail only when an unrecoverable device fault
is detected, we are further able to restrict the class of errors observable by RAID opera-
tions to those which require handling at the array level. Otherwise, primitive operations
return pass, completely hiding from RAID operations the effects of any device faults
which may have been detected. When primitive operations do fail, we want them to fail
atomically (i.e., all-or-nothing state changes), but we don't require it. We will defer dis-
cussing how nonatomic failure is handled until Section 2.4.3, which describes error
recovery.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 45

6/24/96

Managing the Complexity of Array Software

To ensure that pass implies that a primitive operation has successfully completed, we
allow primitive operations to commit only those state changes which are consistent with
their behavior. For example, a disk write is required to write the correct ECC informa-
tion to disk when writing data to a sector.

2.2.2

TABLE 3.

Constructing RAID Operations from a Set of Primitive Operations

As we have already said, RAID operations are composed from a relatively small set of
primitive operations; the order in which primitive operations are executed is solely a
function of the data and control dependencies which exist between them. Therefore, it is
important for the array designer to know the location of necessary dependencies which
exist between primitive operations in order to design RAID operations well. Omitting
dependencies will result in erroneous behavior while extra dependencies may reduce
concurrency and unnecessarily degrade performance. Table 3 lists the four basic types
of dependencies which may exist between primitive operations.

Ordering Constraints Imposed on Sequences of Primitive Operations

Dependence Explanation

True read after write data dependence

Anti write after read data dependence

Output write after write data dependence

Control dependence of a primitive operation upon the completion
of another

2.2.3 Summary

Defining an array operation is a straightforward process: our primary concern is to
abstract device-specific operation from the array-specific operation, which is the exter-
nal interface of the operation. To do this, we have required that primitive operations be
responsible for detecting all faults and for tolerating those faults which are specified to
be tolerable by the device fault model. Primitive operations which complete success-
fully, either by avoiding or tolerating a device fault, return pass to indicate success.
Primitive operations return fail only when they are unable to recover from a fault. To
compose RAID operations, the array designer must know where dependencies exist
between primitive operations.

2.3 Representing RAID Operations as Graphs

Creating storage operations from a set of primitive operations is a technique which has
been used for more than twenty years. The best-known example of this is the channel-
program approach used in the IBM System/370 architecture [Brown72]. At the time it
was introduced, much of the internal workings of a disk drive were exposed to the sys-
tem, requiring external control of arm positioning, sector searching, and data transfer.
Channel programs isolated these details from users by providing an abstract interface
which was closer to that found in today's SCSI drives [ANSI91]. The programs are rep-
resented as a linear array of primitive operations which is parsed sequentially.

46

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Representing RAID Operations as Graphs

Similar methods for abstracting the details of storage operations were recently proposed
in the distributed, redundant-disk-array architecture called TickerTAIP [Cao94]. In
TickerTAIP, the work required to maintain valid data encodings is performed by work-
ers which are distributed throughout the array. To simplify managing simultaneous
primitive operations occurring across the array, TickerTAIP uses a centralized table in
which each entry contains a list of operations for a worker to execute. Once an array
operation is initiated, each worker is responsible for sequencing its own activities.
Unlike channel programs, TickerTAIP achieves parallelism within an array operation
because multiple workers may execute primitive operations concurrently.

These two examples clearly show that it is possible to construct RAID operations from a
set of primitive operations using tables. However, we believe that there is better
approach based upon directed, acyclic graphs (DAGs) which will allow designers to
reason about the ordering of primitive operations. Because we have decided to treat
RAID operations as programs, we are able to use DAGs to model primitive operations
and the ordering constraints which bind them together—the visual information supplied
by DAGs is intuitive and aids in analyzing the design of RAID operations. The follow-
ing subsection describes how DAGs are created.

2.3.1 Directed, Acyclic Graphs (DAGs)

When using DAGs to model RAID operations, the primitive operations described in
Table 2 on page 45 are represented as the nodes of the graph. Figure 9 illustrates a small
write operation represented as a directed acyclic graph. Each primitive operation is rep-
resented by a single node and therefore the properties of a node (e.g., atomic failure) are
inherited from the defining properties of the primitive operations.

Notice that the nodes in the graph of Figure 9 do not convey the context (e.g., "read old
parity") of each primitive operation. This is because the context is known only by the
designer of the graph. Section 2.4.3 shows how we capitalize upon this independence of
context to achieve mechanized execution.

As we already said in Section 2.2.2 on page 46, executing primitive operations within an
array operation is constrained by the presence of control and data dependencies. Depen-
dencies are represented in a DAG by the directed arcs which connect the nodes of the
DAG. An arc is drawn from a parent node to a child node if executing the child is depen-
dent upon the parent node. Because the type of dependence represented by the arcs will
not be used to control execution, the arcs are left unlabeled. Furthermore, a single arc
may represent the presence of one or more data or control dependencies. We defer dis-
cussing further the rules for executing DAGs until Section 2.4 on page 51.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 47

Version 1.0 6/24/96

Managing the Complexity of Array Software

FIGURE 9 RAID Level 4/5 Small-Write Graph

This illustration presents the small write operation. The nodes of the graph are pass-
fail actions and the arcs represent the presence of control or data dependencies.

In this graph, the Rd-XOR-Wr chain on the far right performs the read-modify-write
of parity. The Rd-Wr chains represent the reading of old data and the overwriting of
new data. The fact that parity is computed from the old data is represented by the
presence of the Rd-XOR arcs (true data dependencies). The Rd-Wr arcs represent
anti (read after write) data dependencies. Finally, a NOP (no-operation) node has
been added to simplify the structure of the graph, guaranteeing a single sink (tail)
node.

2.3.2 Simplifying Constraints for DAGs

There are a number of constraints which we have imposed on DAGs to simplify execut-
ing them. First, a node that is a direct descendent of a predicate node may have no par-
ents other than the predicate node. Second, because DAGs are by definition acyclic,
there cannot be any cycles in RAID operations; eliminating cycles does not eliminate
predicate nodes and conditional execution. An array designer can include a node which
selectively enables one or more branches for execution. Finally, all DAGs must be
rooted graphs, meaning that all graphs begin with a single root or source node. The
source node has the property that it has no parents. Similarly, all DAGs must have a sin-
gle sink node, a node which has no children. If a graph does not contain a single source
or sink node, a NOP (no operation) node can be inserted. Adding an extra NOP node to
create a single source or sink does not have any effect upon the array operation repre-
sented by the graph.

1. The current release of RAIDframe does not contain predicate nodes or support their
processing.

48

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Representing RAID Operations as Graphs

Besides modeling RAID operations, we have also incorporated automated roll-away
error recovery into the DAG structure. The following section describes the added
requirements for structuring DAGs to enable them to handle errors when the array oper-
ates.

2.3.3 Incorporating Roll-Away Error Recovery Within DAGs

As we said earlier, roll-away error recovery is a hybrid approach: when appropriate, it
uses forward error recovery without accounting for all possible error scenarios; when
necessary, it uses backward error recovery without the cost of logging state information.
A more detailed discussion of roll-away error recovery can be found in William V.
Courtright II's dissertation, which is currently in progress. Here we will explain the
basic method for mechanizing error recovery through the structure and composition of
DAGs.

To understand how roll-away error recovery works, it is important first to recall that
redundant arrays encode data to survive disk faults (See "Why These Trends Necessitate
Higher Availability" on page 15). Codewords are composed of two types of symbols:
one for data, the other for a check, for example parity. In order for redundant arrays to
tolerate faults—meaning the loss of one or more symbols without losing information,
the set of valid codewords is constrained. Primitive operations change data symbols, for
example, they write new data; this in turn requires modifying the corresponding check
symbols, that is, they must then write new parity. If a primitive operation fails before it
has completed—that is, one or more symbols have been modified on disk—the code-
word can be left in one of a large number of states.

B ecause the direction of error recovery depends upon when a primitive operation fails, it
is essential to determine where in the RAID operation all modified symbols can be
safely committed to disk. To establish this place, which we call the commit barrier, we
have divided RAID operations into two phases in which codewords are modified only in
phase two. Within the DAG structure, we add a Commit node to distinguish between
these two phases.

In the first phase no existing codewords can be modified; here, nodes within a DAG rep-
resent primitive operations that can generally be undone easily, such as disk read or
XOR. Obviously, the second phase of a RAID operation is where we place those primi-
tive operations that modify symbols—however, not all RAID operations have two
phases. For example, because a read operation does not modify any codewords, it does
not have a phase two. On the other hand, a write operation (shown in Figure 10) clearly
modifies codewords; in order for the write operation to progress to phase two, all sym-
bols which are to be updated must be available. Section 2.4.3 on page 53, which follows
a discussion of how DAGs are executed, explains how the error-recovery mechanism
automatically executes when an error is detected.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 49

Version 1.0 6/24/96

Managing the Complexity of Array Software

FIGURE 10 RAID Level 4/5 Small-Write Graph with Commit Node

A Commit node was inserted to prevent writes of new data from proceeding until all
reads of old data and the computation parity have been completed.

To establish the commit barrier when constructing a DAG for a RAID operation, the
array designer must first identify all those nodes which modify a symbol. Next, the
designer must create control dependencies from the nodes' parents to the nodes them-
selves. This will guarantee that no symbols will be modified until all modified symbols
can be safely committed to disk. In short, commit nodes are generally the sink node of
read operations and the parent of all symbol update actions which are found in write
operations.

2.3.4 Verifying the Correctness of DAGs

Because we model RAID operations as well-structured graphs, correctness verifica-
tion—that is, the process of demonstrating that an array's behavior is consistent with its
specified behavior—is greatly simplified. Furthermore, automating this task is now pos-
sible. Given that DAGs consist of well-defined primitives, it is possible to think of them
as state machines. Through model checking, used to verify the correctness of state
machines [Clarke82, Clarke94], RAID designs can be verified immediately, long before
actual implementation begins [Wmg96].

Verifying that RAID operations are correctly implemented requires that graphs meet
three criteria. First, primitive operations must be valid. Second, valid codewords for

50

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Executing RAID Operations

RAID operations must be maintained; for example, to maintain valid parity for RAID
Level 5, the sum of the parity bits must always equal 0. And third, graphs must recover
from errors using roll-away handüng, which we describe briefly in Section 2.4.3.

2.4 Executing RAID Operations

Array operations modeled as DAGs may be executed directly without first being trans-
lated into an intermediate form. More importantly, modeling with graphs has enabled us
to simplify and automate error recovery. To do this, we employ an undo-redo error
recovery scheme, similar to the one used in the System R recovery manager [Gray81].
In our approach, if a primitive operation fails at any time during the execution of a
graph, the execution mechanism will automatically undo the effects of the previously
completed primitives.

In this section, we describe node states and their transitions, how to execute a graph, and
how to structure graphs to incorporate roll-away error recovery. To guarantee correct
operation in the first two subsections, we assume that all primitive operations are atomic
and undoable. We relax these requirements in Section 2.4.3 on error recovery, which
allows much of the overhead (both performance and storage) required to achieve undo-
able atomic primitives to be eliminated.

2.4.1 Node States and Transitions

In addition to a primitive, each node in a graph has three other fields, summarized in
Table 4: do action, undo action and state. The do action is used during normal execution
and the undo action is used during error recovery. Each of these fields contains the name
and parameters of an action.

TABLE 4. Node Fields

Node Field Description

do action function executed during normal processing

undo action function which removes the effects of the do action

state current state of the node

Each node in a graph may be in one of the seven states summarized in Table 5. The
allowable transitions between these states are illustrated in Figure 11.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 51

6/24/96

Managing the Complexity of Array Software

FIGURE 11 Node State Transitions

wait

node ready to be executed

execution failed

branch not taken

fired) (skipped J

execution successful

execute node's undo action

undo

node undo complete

All nodes in a graph begin in the wait state. When a graph successfully com-
pletes execution, all nodes are in either the pass or skipped states. The error
recovery and undone states, described later in Section 2.5, are reached only if
the operation fails.

TABLE 5.

When a graph is initially submitted for execution, all nodes are in the wait state. A node
enters the skip state if its parent is a predicate node which determines that the branch
which contains the node will not be executed. Once entered, a node will never leave the
skip state.

Node States

Node State Description

wait blocked, waiting on parents to complete

fired execution of do action in progress

pass execution of do action completed successfully

fail execution of do action failed

skip node will not be executed

error recovery execution of undo action in progress

undone previously executed node has since been undone

52

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Executing RAID Operations

The fired state is entered if at least one of its parents is in the pass state and the remain-
der of its parents are in either the skip or pass states. When a node enters the fired state,
its do action is executed. The node remains in the fired state until the do action com-
pletes. The node then enters either the pass or fail state, depending upon the outcome of
this execution. If a completed node must be undone, the node first enters the error
recovery state which indicates that the node's undo action is being executed. Once the
undo action completes, the node enters the undone state. The error-recovery procedure,
which is responsible for moving nodes to the undone state, is described in further detail
in Section 2.4.3.

2.4.2 Executing DAGs Without Errors

Executing a graph, for example the graph shown in Figure 9 on page 48, begins with the
source (head) node and completes with the sink (tail) node. This direction of execution,
from source to sink, is referred to as forward execution throughout the remainder of this
document. The source node is executed and, assuming it completes successfully (that is,
it returns pass), the node enters the pass state.

If the graph does not contain predicate nodes (which is the case with the current RAID-
frame release), any node can be executed (i.e., enter the fired state) once all of its par-
ents have reached the pass state. Assuming all nodes complete successfully, this
process continues until the sink node enters the pass state; at this point, the execution of
the graph is complete and the RAID operation is declared to be successful.

2.4.3 Handling Errors When Executing DAGs

Because device-specific error recovery is removed from the structure of the graph, we
were able to define a general execution mechanism which automates handling of errors
due to failed primitives. This mechanism, together with a library of RAID operations,
will allow array architectures to be implemented rapidly.

As we explained in Section 2.3.3, we have divided RAID operations into two phases to
determine the direction of roll-away error recovery. If an error occurs during phase one
of a RAID operation, as shown in Figure 12, the error-recovery mechanism rolls back-
ward, releasing resources. At this point, the system substitutes a new graph for the failed
graph and retries the operation. If an error is detected during phase two, as shown in
Figure 13, the error-recovery mechanism completes the RAID operation—when this
happens, all symbols are simultaneously updated. To an outside observer, it would
appear as if the failure(s) occured after the RAID operation completed.

In the next section, we describe the mechanism we have developed which the array uses
to recover from a disk failure. We present the library of DAGs provided in the current
release of RAIDframe, the prototyping framework which incorporates our approach to
modeling and executing RAID operations, in the Appendix.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 53

Version 1.0 6/24/96

Managing the Complexity of Array Software

FIGURE 12 Handling Errors Prior to Commit Point

The failure of the Rd node (indicated in bold) occurs prior to the commit point. This
causes forward execution to halt and roll back to begin. Roll back works backward
through the graph from the point of failure, undoing the previously completed
nodes. If a failure occurs prior to the commit point, the system appears as if the
graph never executed.

54

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Reconstructing Data On-line When a Disk Fails

FIGURE 13 Handling Errors After Commit Point

■a

II
Because the leftmost Wr node failed after the commit point had been reached, forward
execution continues. The rightmost Wr node completes successfully as does the sink
(NOP) node. If a failure occurs after a commit point, the sink node is always reached
and teh system appears as if the successful completion of the graph was followed by a
failure.

2.5 Reconstructing Data On-line When a Disk Fails

In Chapter One we introduced the need for a process in which the array restores itself to
the fault-free state following a disk failure. In this section, we provide a brief description
of a disk-oriented algorithm (taken from [Holland94]) for reconstructing lost data into
spare disk space. For a more complete discussion of reconstruction algorithms, includ-
ing performance evaluations and optimizations of the disk-oriented algorithm, please
refer to Chapter Four in [Holland94].

2.5.1 Disk-Oriented Reconstruction

Not only must a single-fault-tolerant disk array recover from the loss of a disk, it should
be able to effect this recovery without taking the system off-line. This is implemented
by maintaining one or more on-line spare disks in the array. When a disk fails, the array
switches to degraded mode as described in Chapter One; at the same time, it also
invokes a background reconstruction process to recover from the failure. This process
successively reconstructs the data and parity units that were lost when the disk failed
and stores them on the spare disk. The mechanism by which this is accomplished is

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 55

6/24/96

Managing the Complexity of Array Software

called the reconstruction algorithm. Once all the units have been recovered, the array
returns to normal performance and is once again single-failure tolerant, and so the
recovery is complete. Prior to Mark Holland's thesis work, the default algorithm for
reconstructing data from a failed disk was stripe-oriented; in his thesis, Mark demon-
strated a disk-oriented algorithm which performs substantially better than the stripe-ori-
ented one. The disk-oriented algorithm creates C reconstruction processes, where C
represents the number of disks in the array not including the spare. Each of the C-l pro-
cesses associated with a surviving disk execute the following loop:

repeat

1. Find lowest-numbered unit on this disk that is needed for reconstruction.

2. Issue a low-priority request to read the indicated unit into a buffer.

3. Wait for the read to complete.

4. Submit the unit's data to a centralized buffer manager for XOR or block the process
if buffer manager has no memory to accept the unit.

until (all necessary units have been read)

The process associated with the replacement disk executes:

repeat

1. Request the next sequential full buffer from the buffer manager.

2. Block the process if none are available.

3. Issue a low-priority write of the buffer to the replacement disk.

4. Wait for the write to complete.

until (the failed disk has been reconstructed)

The buffer manager provides a central repository for data and parity from parity stripes
that are currently "under reconstruction." When a new buffer arrives from a surviving-
disk process, the manager XORs the data into an accumulating "sum" for that parity
stripe and notes the arrival of a unit for the indicated parity stripe from the indicated
disk. When it receives a request from the replacement-disk process it searches its data
structures for a parity stripe for which all units have arrived, deletes the corresponding
buffer from the active list, and returns it to the replacement-disk process.

The advantage of this approach is that it is able to maintain one low-priority request in
the queue for each disk at all times, which means that it will absorb a significant portion
of the array's bandwidth that is not absorbed by users. This approach yields substan-
tially faster reconstruction than alternative approaches.

There are two implementation issues that need to be addressed in order for the above
algorithm to perform as expected. The first relates to the amount of memory needed and
the second to the interaction of reconstruction accesses with updates in the normal
workload. The following two sections discuss these implementation issues.

56 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Reconstructing Data On-line When a Disk Fails

2.5.2 Buffer Memory Management

In the disk-oriented algorithm, transient fluctuations in the arrival rate of user requests at
various disks can cause some reconstruction processes to read data more rapidly than
others. The buffer manager must store this information until the corresponding data or
parity arrives from slower reconstruction processes, and thus the buffering requirements
of each individual reconstruction process vary over time. It's possible to construct
pathological conditions in which a substantial fraction of the data space of the array
needs to be buffered in memory, and so it's necessary to define a buffer memory man-
agement policy for the disk-oriented algorithm.

The amount of memory needed for disk-oriented reconstruction can be bounded by
enforcing a limit on the number of buffers employed. If no buffers are available, a
requesting process blocks until a buffer is freed by some other process. We have divided
the buffer pool into two parts: each surviving-disk reconstruction process has one buffer
assigned for its exclusive use, and all remaining buffers are assigned to a "free buffer
pool." A surviving-disk process always reads units into its exclusive buffer, but then
upon submission to the buffer manager, the buffer manager transfers the data to a buffer
from the free pool, and then installs this buffer in its data structures. This division of
buffers simplifies the code by assuring that there is always a free buffer into which to
read data or parity when a reconstruction access arrives at the head of a disk queue. A
buffer stall condition occurs only when there are no free buffers available into which to
transfer the incoming unit, at which point the corresponding reconstruction process has
no outstanding I/O requests. Only the first process submitting data for a particular parity
stripe must acquire a free buffer because subsequent submissions for that parity stripe
can be XORed into this buffer. Thus this approach is able to maintain as many parity
stripes under reconstruction as there are buffers in the free buffer pool.

Forcing reconstruction processes to stall when there are no available free buffers causes
the corresponding disks to idle respecting reconstruction. For our purposes, a relatively
small number of free buffers suffices to achieve good reconstruction performance. There
should be at least as many free buffers as there are surviving disks, so that in the worst
case each reconstruction process can have one access in progress and one buffer submit-
ted to the buffer manager.

2.5.3 Interaction with Writes in the Normal Workload

The reconstruction accesses for a particular parity stripe must be interlocked with user
writes to that parity stripe because a user write can potentially invalidate data that has
been previously read by a reconstruction process. This problem applies only to user
writes to parity stripes for which some (but not all) data units have already been fetched;
if the parity stripe is not currently "under reconstruction," then the user write can pro-
ceed independently.

We handle this problem by beginning a conflicting user write only after the desired
stripe's reconstruction is complete. This approach is memory-efficient and does not
waste disk bandwidth but if it is implemented as stated, a user write may experience a
very long latency when it is forced to wait for a number of low-priority accesses to com-
plete. The disk-oriented algorithm overcomes this drawback by expediting the recon-
struction of a parity stripe containing the data unit that is about to be written by the user.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 57

Version 1.0 6/24/96

Managing the Complexity of Array Software

When the algorithm detects a user write to a data unit in a parity stripe that is currently
under reconstruction, it elevates all pending accesses for that reconstruction to the prior-
ity of user accesses. If there are any reconstruction accesses for the indicated parity
stripe that have not yet been issued, the algorithm issues them immediately, at regular
priority rather than low priority. The user write triggering the re-prioritization stalls until
the expedited reconstruction is complete, and the algorithm allows it to proceed nor-
mally.

Note that a user write to a lost and as-yet unreconstructed data unit implies that an on-
the-fly reconstruction operation must occur because the written data must be incorpo-
rated into the parity and there is no way to do this without the previous value of the
affected disk unit. Thus, this approach to interlocking reconstruction with user writes
does not incur any avoidable disk accesses. Also, forcing the user write to wait for an
expedited reconstruction does not significantly elevate average user response time,
because the number of parity stripes that are under reconstruction at any given moment
(typically less than about 3 Cj is small respecting the total number of parity stripes in the
array (many thousand).

A potential problem arises if a free reconstruction buffer has not yet been acquired for
the parity stripe whose reconstruction is to be expedited, and none are available. The
algorithm simply allocates a new buffer and frees it when the reconstruction is com-
plete. This may not be acceptable for some implementations because the amount of
buffer memory available may be strictly limited and completely in use. There are a num-
ber of potential solutions to this problem, ranging from reserving a few buffers for this
purpose to stealing an in-use buffer and forcing the reconstruction of the corresponding
parity stripe to be restarted. We did not pursue these avenues as the problem is minor
and highly transient.

2.5.4 Summary

This section describes the disk-oriented reconstruction algorithm which is designed to
absorb for reconstruction all of the disk-array bandwidth not absorbed by the users. The
algorithm keeps every surviving disk busy with reconstruction reads at all times, unless
blocked by the inability to acquire a buffer to hold the reconstruction unit. Splitting the
buffer pool into "exclusive" and "free" parts and forcing processes to block only at
buffer submission time assures maximally efficient buffer usage because a reconstruc-
tion process cannot block unless there are zero free buffers in the system. Expediting the
reconstruction of parity stripes for which a user write is pending preserves software
boundaries in that the code controlling the user write operations is maintained sepa-
rately from the code controlling the reconstruction process. The only modification
required to the user-write code is that it must make a single call into the reconstruction
module prior to initiating a write operation so that a pending reconstruction operation, if
any, can be forced to complete before the write occurs.

58 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

CHAPTER 3 RAIDframe: A
Framework for
Implementing New
Designs

We now describe RAIDframe, a framework for implementing RAID designs, intended
for use in researching, verifying, testing and producing RAID systems. This chapter pre-
sents an overview of RAIDframe features and the RAID architectures implemented in
the current release, then describes its internal architecture and the accompanying recon-
struction architecture, and concludes by briefly describing the suite of test applications
packaged with the RAIDframe release which can be used to create a variety of work-
loads for controlled testing.

3.1 Features

RAIDframe has a number of features which support experimenting and verifying
advanced disk-array designs, including:

• extensibility

• correctness verification

• mechanized error recovery

• disk-oriented reconstruction

• applications for controlled testing of workloads

• synthetic workload generation

• trace playback

• performance monitoring

• debugging facilities

• multiple front ends for the user level

Array architectures implemented in RAIDframe can be evaluated in three distinct exe-
cution environments: a stand-alone application controlling UNIX "raw" disks, an event-

RAIDframe: A Rapid Prototyping Tool for RAID Systems 59

Version 1.0 7/16/96

RAIDframe: A Framework for Implementing New Designs

driven simulator, and a Digital UNIX device driver capable of performing block and
character operations (and thus, capable of mounting a standard file system on a set of
disks). In all three environments, the code unique to a disk-array architecture (mapping,
caching, DAGs, primitive operations, and disk queueing) is reused without change. In
the following sections, we describe each of these environments, the types of uses each
one is intended to support, and the hmitations of each. Then we list the RAID architec-
tures currently implemented in the RAIDframe. We end the section with a figure show-
ing a case study of the performance of microbenchmarks in RAIDframe.

3.1.1 RAIDframe as a Stand-Alone User Application

As a stand-alone user application, RAIDframe is a process which accesses real disks
through the UNIX "raw" device interface. RAIDframe itself is provided as a library,
libraidf rame. a. Applications may link this library into their address space and
treat RAIDframe as a flat, addressable storage space (much like a single, large file). This
enables users to verify and benchmark their work without modifying the kernel, which
can greatly reduce time for developing and evaluating new RAID architectures, disk-
queueing policies, DAG constructs, et cetera.

There are several front ends to this user-level library available with RAIDframe. One
such (driver) can accept either a synthetic workload from a workload generator or a
trace file of I/O activities. Because the parameters of the synthetic workload are pre-
cisely controllable, array architects can investigate specific array-performance effects.
This front end also provides various debugging and stress tests for architectures and pol-
icies, including forced reconstruction, constant workload, and layout checking.

The stand-alone user application shares another front end, rf_genplot, with the
event-driven simulator (described in the next section). The r f _genplot front end pro-
vides array architects with a means for comparing how different RAID architectures
perform running a simulated workload: it runs workload scripts against various RAID
configurations and outputs results into a file. Additionally, options allow users to graph
the results, either from a current stand-alone run or using results from a previous run to
generate graphs in multiuser mode.

Developing, testing, and instrumenting a RAID architecture at the user level enhances
portability and extensibility. Moreover, as shown in Figure 14, there is almost no differ-
ence in the measurements between in-kernel and stand-alone user-level RAIDframe per-
formance [Gibson95]—which means that array designers unable or unwilling to port
RAIDframe's in-kernel implementation to their operating system can be confident of the
validity of user-level performance results. The main drawback of running RAIDframe as
a stand-alone user application is that only a single application may be run against the
disk array, and in doing so, may not have an access pattern identical to what it would be
if it were running through a file system (and, thus, potentially performing additional
meta-data accesses).

3.1.2 RAIDframe as an Event-Driven Simulator

The RAIDframe simulator exists to support analyses of configurations for which the
user has no hardware (for example, a new disk) or no interest in building (for example,
hundreds of disks in an array). The RAIDframe simulator is built on top of the Berkeley

60 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Features

RaidSim simulator [Chen90b, Lee91], which was further modified at CMU. In the sim-
ulator, the low-level disk operations are simulated by a configurable disk-geometry
model instead of being executed by a real disk; the geometry model is configurable to a
wide range of disks. The simulator, like the stand-alone application, uses either a syn-
thetic workload generator or a trace file for replay. Because it runs a synthetic workload
against simulated disks, the simulator provides results quickly—more quickly than the
versions running against real disks.

The simulator runs as a single-threaded, event-driven program which tracks disk-I/O
time. However, there are several disadvantages in using it. First, it is more difficult to
run an application against this simulator because it does not actually transfer data, and
its event-driven nature causes "virtual time" to pass more quickly than "wall time."
Next, while the geometry model provides seek rotate, and transfer information for each
SCSI I/O sent to any drive, it does not account for bus overhead or disk caching. Also,
support for verifying data correctness is not provided. The lack of support for bus over-
head and data verification can have significant impact on user results.

Like the previous configuration, the simulator provides its functionality in a library
(libraidf rame_sim. a) which applications may link against. This enables many of
the same front ends to the real-disk user-level configuration to be used with this simula-
tor (with the caveat that the simulator is single-threaded and its routines are not reen-
trant; therefore, multithreaded tests are not supported).

3.1.3 RAIDframe as a Device Driver in the Kernel

RAIDframe also runs as a Digital Unix device driver capable of mounting a standard file
system on a set of disks (and supports standard file system operations, such as newfs).
This allows RAIDframe users to measure the performance of a disk array when it is run-
ning a real workload (as opposed to the trace-driven or synthetic versions at the user
level). At this level, RAIDframe represents disks as either a raw or block device.

Because the device driver must be compiled in the kernel, any unstable code—such as a
bad memory access—can cause a machine crash. Therefore, it is recommended that new
disk-array architectures be developed in user mode before being installed in the kernel.

3.1.4

TABLE 6.

RAID Architectures Implemented in RAIDframe

RAIDframe is released with a variety of disk-array architectures which include not only
the basic RAID architectures which are in production today but also a number of exper-
imental architectures which are proposed by the research community. Table 6 lists the
architectures that have been implemented in RAIDframe. See Chapter 1, "Redundant
Arrays: A Brief Overview," for descriptions of these architectures.

RAID Architectures Currently Supported by RAIDframe

Architecture

RAID level 0

RAID level 1

RAID level 4

Support Level

[Fill in reconstruction ability, etc.]

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 61

7/16/96

RAIDframe: A Framework for Implementing New Designs

TABLE 6. RAID Architectures Currently Supported by RAIDframe

Architecture Support Level

RAID level 5

Parity declustering

Distributed sparing

Parity declustering + Distributed sparing

Chained declustering

Interleaved declustering

62 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Features

FIGURE 14 Case-Study Peformance of Microbenchmarks in RAIDframe

Random 4 KB Reads

Kernel Process: Real Disks

Random 4 KB Writes

Kernel Process: Real Disks

200 400 600 800
Throughput (IO/sec)

User Process: Real Disks

0 200 400 600 800
Throughput (IO/sec)

User Process: Real Disks

200 400 600
Throughput (IO/sec)

0-0 RAID Level 0
H-B RAID Level 1
«—» RAID Level 4
A-A RAID Level 5

RAID Level 6
Declustering

200 400 600 800
Throughput (IO/sec)

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 63

7/16/96

RAIDframe: A Framework for Implementing New Designs

3.2 Internal Architecture

RAIDframe's internal architecture is partitioned into a relatively small set of modules; it
separates infrastructure which does not change from libraries which users can modify to
create and test new disk-array architectures.

As Figure 15 illustrates, RAIDframe is composed of eleven independent modules, seven
of which may be modified to support new architectures.

FIGURE 15 RAIDframe Modules

Mapping Memory Mgmt Disk-Geometry
Database

Access States State Machine Graph Library

Graph
Selection

Disk
Interface

Primitives
Library

1—1 Infrastructure
I I (unchanging)

Graph
Execution

Engine

Disk-Queue
Module

■ roiicy
B (can be modifi ed)

3.2.1 RAIDframe Infrastructure

This section describes modules which we consider to be infrastructure and do not intend
to be modified.

3.2.1.1 State Machine
User requests are processed by a central state machine which is responsible for creating
graphs, submitting them for execution, et cetera. While the state machine is config-
urable, most architectures use a machine similar to the one illustrated in Figure 16 on
page 66. The following table lists the access states controlled by the state machine.

TABLE 7. Access States and Their Function

State

rf_MapState

rf_LockState

rf_CreatDAGState

Function

map user access

acquire stripe locks

select and create DAG(s)

64

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

7/16/96

Internal Architecture

TABLE 7. Access States and Their Function

State

rf_ExecuteDAGState

rf_ProcessDAGState

rf_CleanupDAGState

rf_LastState

rf_InorAccessCountState

rf_DecrAccessCountState

rf_QuiesceState

Function

execute DAG(s) which are ready

postprocess completed DAGs

free a graph and stripe locks

null state (indicates end of sequence)

increase count of graphs in flight

decrease count of graphs in flight

wait for the array to quiesce (no graphs in flight)

It is important to note that RAIDframe performs stripe locking and memory allocation
prior to creating a DAG.

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

65

7/16/96

RAIDframe: A Framework for Implementing New Designs

FIGURE 16 RAIDframe Control Flow

Architectural Policies Mechanized Infrastructure

>--

User Request

*
(Mapping Library ►! Map Addresses

)--
I Lock

(Graph Selection -a ♦ r.
■ - -H Select DAG (Graph Library >--

Q Graph Primitives)-"
| Reconfigure Array

| Execute DAG A
Good I Bad

C Queueing Disciplines) . T .
Unlock

t
Complete

Simulation only

' Disk Models ; —
r

_ _fcj Event-Driven
" ' Simulator

L
I

.. J

In this example, when a request arrives in the system, it is first sent to the mapping
module to compute the set of physical disk locations affected by the access. This
produces a data structure describing, for each stripe touched by the access, the mapping
of addresses in the RAID address space to physical disk units within each stripe. Next,
stripes containing parity information are locked to assure that concurrent writes to the
same stripe do not conflict in their parity updates. The access is then converted to a
graph and submitted for execution. If a failure occurs while a graph is processing,
recovery local to the failed graph leads to creating a graph appropriate for avoiding the
failure, if possible.

3.2.1.2 Graph Execution Engine
The primary infrastructure module is the graph execution engine. This engine is respon-
sible only for fully exploiting the allowable concurrency within a DAG; that is, the
engine has no knowledge of the architecture embodied in the graph. Figure 15 illustrates
the structure of RAIDframe.

RAIDframe's engine also incorporates a simple and uniform mechanism for handling
error conditions in the array. When any error condition occurs prior to the commit node,
the engine rolls back, undoing previous state changes. The engine then creates a new
graph and retries the operation. If an error occurs after the commit node, the engine rolls
forward and finishes executing the graph.

66

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

7/16/96

Internal Architecture

3.2.1.3 Disk Interface

The disk interface module organizes pending disk requests according to queuing disci-
plines specified at the time of configuration; this allows users to optimize disk use as
needed.

[Additional text to come from Jim.]

3.2.2 Configurable RAIDframe Modules

The following sections describe the default implementations of RAIDframe's config-
urable modules. Please see Chapter 5, "Extending RAIDframe," for more information
about reconfiguring the modules.

3.2.2.1 Disk-Queue Module

In the current version, disk requests can be queued in RAIDframe or at the disk. The
number of requests allowed for queuing at the disk is configurable. Within RAIDframe,
multiple queueing policies are available, including FIFO, SSTF, SCAN, CSCAN and
CVSCAN. FIFO is First Come First Serve—requests are serviced in arrival order.
Shortest Seek Time First (SSTF) queueing specifies that the next request dispatched is
the one closest geographically to the previous request. SCAN specifies that the disk arm
traverses the disk from one end to another and back (two-way elevator algorithm), while
CSCAN specifies one-way disk sweeps (one-way elevator algorithm). CVSCAN is a
discipline that uses two parameters to queue disk requests. With CVSCAN, adding new
queuing disciplines can be achieved simply by assigning new values to the two parame-
ters. New disciplines can also be added to the disk-queue switch by specifying new
function calls for create, enqueue, dequeue, promote, and peek.

TABLE 8 Disk-Queue Scheduling Algorithms

Name Algorithm

fifo First In, First Out

cvscan CVSCAN*

sstf Shortest Seek Time First

scan Two-way Elevator

cscan One-way Elevator

*For more information about CVScan, please refer to [Geist87].

3.2.2.2 Disk-Geometry Database

This database contains disk specifications used by the simulator. These specifications
include layout parameters (tracks per cylinder, number of zones, etc.) as well as perfor-
mance parameters (rpm, seek times, etc.).

3.2.2.3 Mapping

All accesses in RAIDframe go through a mapping module prior to locking the block
ranges in the disk array. The framework for the mapping is general to all architectures
and invokes architecture-specific mapping routines. The routines are typically short (for
example, 5 lines of C code). Each routine provides the ability for the mapping code to:

RAIDframe: A Rapid Prototyping Tool for RAID Systems 67

Version 1.0 7/16/96

RAIDframe: A Framework for Implementing New Designs

• map individual sectors and parity units for a given RAID address

• identify a stripe for a given RAID address

• identify a parity-stripe ID for a given data-stripe ID

The mapping module maps an access in the RAID address space to the corresponding
set of physical disk addresses. The result is returned as a list of Access Stripe Map
(ASM) structures, one per stripe accessed. Each ASM structure contains a pointer to a
list of physical-disk-address structures which describe the physical locations touched by
the user access.

Note that this first-level mapping routine returns only static mapping information, that
is, the list of physical locations that will actually be read or written. Additional remap-
ping to physical location can be done at later stages of the access.

The mapping module also maps the parity. The physical-disk location returned always
indicates the entire parity unit, even when only a subset of it is being accessed. This is
because an access that is not stripe-unit aligned but spans a stripe-unit boundary may
require access to two distinct portions of the parity unit. At this point, however, the sys-
tem cannot determine which portion(s) of the parity unit will be needed. Instead, the
algorithm-selection code decides what subset of the parity unit to access.

3.2.2.4 Graph Selection

A graph-selection algorithm is required for each architecture. This algorithm, imple-
mented as a C routine, determines which graph from the graph library is to be used to
execute a specific user request (type, layout map), given the current state of the array. By
default, RAIDframe attempts to create one graph for each ASM (in other words, parity
stripe). However, if this is not possible, graphs are then selected on a per data unit (or
even per sector) basis.

3.2.2.5 Graph Library

The graph library contains the routines, such as CreateSmallWriteDAG (), which
are capable of creating graphs if called by graph selection. Each routine receives type
and physical mapping information and returns a pointer to a graph which is tailored for
that request. Adding new graphs requires installing new or extending existing creation
functions. The graphs which can be created by the graph-selection algorithm are shown
in the Appendix.

3.2.2.6 Primitive-Operations Library

The primitive-operations library contains the functions which abstract single device
operations (for example, XOR, DISKRD, etc.) from which graphs are created. Primitives
delineate the failure domains that RAIDframe accommodates; that is, when a node fails,

68 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Reconstruction Architecture

TABLE 9.

the device associated with it is considered failed as well. Primitives are required to inde-

pendently detect and recover from soft errors.

Primitive Operations Provided by RAIDframe

Operation Function

DiskRead read from disk

DiskReadMirror issue diskread to disk with (he shortest queue (RAID Level 1)

DiskWrite write to disk

XOR compute bit-wise exclusive-or

NOP no operation

Q compute Reed-Solomon encoding

Q' decode Reed-Solomon code

3.3 Reconstruction Architecture

In Chapter 2, we described the disk-oriented algorithm which Mark Holland imple-

mented and evaluated prior to RAIDframe's development (See "Reconstructing Data
On-line When a Disk Fails" on page 55). We have incorporated this reconstruction algo-
rithm into the current RAIDframe package to allow RAID designers to simulate a disk
failure so that they can evaluate the performance of their systems while undergoing
reconstruction; [May or may not be true:] RAIDframe currently supports reconstruction

for all RAID architectures released with version one except distributed sparing. Planned
future releases of RAIDframe will support reconstruction on real disks and distributed
sparing.

In this section, we describe the reconstruction architecture currently implemented in
RAIDframe.

3.3.1 Reconstruction State Machine

The state machine in Section 3.2.1.1 controls the processing of user-initiated disk
accesses. However, when a disk fails, a separate state machine which is responsible for
reconstructing the lost data initiates a reconstruction thread and then processes recon-
struction requests in parallel with the user workload. Reconstruction requests, of course,
are lower priority than user-initiated ones; the reconstruction thread simply dispatches
disk accesses in batches until all data on the failed disk has been restored. The disk-ori-
ented algorithm allows reconstruction to keep one low-priority disk request in the queue
for each physical disk at all times, maximizing the efficiency of reconstruction without
significantly penalizing response time for the system user.

3.3.2 Reconstruction States

When invoked, the reconstruction thread issues, through the locking and DAG layers, a
low-priority read request for the next unit on each disk required for reconstruction. As
each reconstruct read completes, its data is XORed into the accumulating "sum" for the
indicated stripe, and the next read request for that disk is issued. When the last unit asso-

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 69

7/16/96

RAIDframe: A Framework for Implementing New Designs

ciated with a particular stripe has been read and summed, the reconstruction thread
issues a low-priority request for the now reconstructed data to be written to a replace-
ment or spare disk.

FIGURE 17 RAIDframe Reconstruction Control Flow

Reconstruction Process

Disk Failure

i
Quiesce Array

A
| Re-enable User Workload

[Select Stripe |

| Lock Stripe

, * ,
[Reconstruct Stripel

I Unlock Stripe I

t
Complete

User-Initiated Process

User Request

■ ♦ ,
| Map Addresses |

| Lock Stripe(s) |

TTr.
I Select DAG |

T | Reconfigure Array |
| Execute DAG | A

Good] Bad\ |

I Unlock Stripe(s) |

Complete

The reconstruction thread starts by quiescing the array. The thread sets up its inter-
nal state, queues one access request per surviving disk, and then re-enables the user
workload. From this time on, reconstruction proceeds in parallel with the applied
user workload. A new request is submitted to a surviving disk after a previous read
request is completed. Reconstruction completes when the reconstruction read
requests associated with all surviving disks have completed (i.e., they have submit-
ted their last stripe unit to the buffer manager).

3.4 Suite of Test Applications

In this section, we introduce the test suite we have included with the RAIDframe code
which will allow implementers to test their systems at the user level.

An important method for testing the operation of an array is by actually using it; how-
ever, placing the system within a real workload environment in order to test it is obvi-
ously not ideal. Therefore, the stand-alone application and simulator versions of

70

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

7/16/96

Suite of Test Applications

RAIDftame receive I/O requests from a workload file which can contain either 1) a
script that is interpreted by a synthetic workload generator or 2) traces of actual disk
I/Os. For both of these versions of RAIDframe, the workload file is mandatory for oper-
ating (the stand-alone application currently does not accept live user workloads
although it can be tested against real disks). The script test runs the workload file.

Six other tests—single-access, loop, degraded-mode read, random read or write, file
write-read, and reconstruction—verify the data and redundancy of the array by access-
ing its disks in different ways. The layout test verifies that the mapping of data and
redundancy between the array software (that is, logical location) and actual disk loca-
tions (that is, physical locations) is correct. We briefly describe how to use these tests in
Chapter 4.

TABLE 10 Tests for Verifying Data, Redundancy, and Layout in RAIDframe

Test

single-access test

loop test

degraded-mode read test

random read or write test

nie write-read test

reconstruction test

*scripttest

layout test

Operation

writes, reads, and verifies a single location in the
RAID address space

writes, reads, and verifies multiple locations concur-
rently in the array

tests read activity with the array in a faulted state

allows a user to read and write to multiple locations
in the array in fault-free and degraded mode

writes, reads, and verifies the contents of a file

runs the loop test while forcing reconstruction to
occur at the same time

runs the workload file which contains either a script
for generating a synthetic workload or actual I/O
traces

verifies the 1-to-l mapping properties (that is, RAID
address to physical locations) of a given architecture

»Because it runs without threading, the simulator version runs only these two tests.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 71

7/16/96

RAIDframe: A Framework for Implementing New Designs

72 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

CHAPTER 4 Installing, Configuring, and
Using RAIDframe

RAIDframe may be installed as either a stand-alone application, a simulator, or a device
driver in the kernel. Installed as a stand-alone application, RAIDframe runs against real
disks using either a synthetically generated workload or replaying traces of actual work-
loads. As a simulator, RAIDframe uses a disk-geometry model to simulate various con-
figurations of hardware; the workload for the simulator, as with the stand-alone
application, can be either a synthetically generated one or traces of I/O from actual
workloads. In the kernel, RAIDframe runs as a device driver against real disks and upon
which a real file system can be mounted. All three versions currently run on DEC
Alphas running versions 2.0 and 3.2c of the Digital UNK operating system.

We begin this chapter by describing the contents of the first RAIDframe code release,
then explain how to install and configure each version. Then we briefly describe how to
test RAIDframe's operation by verifying data, redundancy, and mapping and how to
generate workloads for RAIDframe. Finally, we end this chapter by describing how to
access RAIDframe's built-in performance tracing and by listing some of the options for
debugging implementations.

4.1 Installing RAIDframe

Before installing any of the RAIDframe versions, you will need to decompress and de-
tar the distribution file. [Filename?]

4.1.1 Creating Executables for the Stand-Alone Application and Simulator

You can create executables for the user-level and simulator versions of RAIDframe
without taking any machine-specific steps. Both user-level versions of RAIDframe, the

Version 1.0

RAIDframe: A Rapid Prototyping Tool tor RAID Systems 73

7/16/96

Installing, Configuring, and Using RAIDframe

TABLE 11.

stand-alone application and the simulator, have a number of options for installing them
at compile time, which are listed below in Table 11.

Compiling the Stand-Alone Application and Simulator

Command

make user

make uo2

make sim

make so2

make depend

make clean

make tags

make othertests

make othertestso2

make sothertests

make utils

Resulting Action

creates stand-alone executable named "driver"

creates optimized (-02) stand-alone executable named
"driver"

creates simulator executable named "driver" with -g compiler
option

creates optimized (-02) simulator named "driver"

updates file dependency lists in Make file. {s, u)

removes the executable and all . o files

creates an emacs TAGS file

compiles additional front-end applications for the user-level
driver

compiles additional optimized front ends for the user-level
driver

compiles additional front-end applications for the simulator

compiles support utilities for all configurations

4.1.2 Installing the Device Driver

RAIDframe provides both block and character (UNIX "raw") device interfaces. To con-
figure them into your kernel, you must add appropriate stanzas to the block and charac-
ter device switches. This will require selecting a major device number. We recommend
choosing 51. For further discussion about assigning major device numbers, see DEC
OSF/1 Writing Device Drivers, Volume 1: Tutorial, [check publication info]

To compile RAIDframe in the kernel, you will need to take the following steps:

1. Add the RAIDframe option to your kernel's configuration file (/sys /MACHINE-
NAME in a binary-only tree, src/kernel/conf/alpha/CONFIGNAME in a
complete source tree). This entry looks like:

pseudo-device raidframe <Number of arrays to support>

options RAIDFRAME_RECON1

The number of arrays to support must be an integer greater than 0.

2. Add an entry for RAIDframe to the device switch tables found in conf. c (if you're
compiling from a complete source tree, this is src/kernel/io/common/
conf. c; if you're compiling in a kernel binary tree, this is /sys/io/common/
conf. c). To do this, type the following lines exactly:

1. Removing this option disables in-kernel reconstruction but reduces code size.

74

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

7/16/96

Configuring RAIDframe

#include <raidframe.h>

#if NRAIDFRAME > 0

int rf_open(), rf_close(), rf_strategy(), rf_read();

int rf_write(), rf_ioctl(), rf_size();

#else /* NRAIDFRAME > 0 */

#define rf_open nodev

#define rf_close nodev

#define rf_strategy nodev

#define rf_read nodev

#define rf_write nodev

#define rf_ioctl nodev

#define rf_size nodev

«endif /*NRAIDFRAME > 0 */

3. Select the major number for the device. {Note: OSF/1 requires that the number in
the comment match the number in the entry table).

To do this, first look for the block device (bdevsw) table in the conf. c file; this is
where you set the major number for the RAIDframe pseudo device. Type these lines
into it with fine breaks only for the start of each comment:

{rf_open, rf_close, rf_strategy, nodev, /*51*/

rf_size, 0, rf_ioctl, DEV_FUNNEL_NULL},

Next, look for the character device switch (cdevsw) table in the same file; this is
where you select the major number for RAIDframe. Type these lines into cdevsw:

{rf_open, rf_close, rf_read, rf_write, /*51*/

rf_ioctl, nodev, nulldev, 0,

asyncsel, nodev, DEV_FUNNEL_NULL, NULL, NULL},

4. Copy the RAIDframe directory into the source directory of the kernel tree, then
update the files file with the new modules. You can do so by appending the con-
tents of the file kf iles included in the RAIDframe distribution.

5. Rebuild the kernel. Once RAIDframe has been configured in the kernel, a file system
can be mounted.

4.2 Configuring RAIDframe

While all three versions of RAIDframe share the same configuration file, the kernel ver-
sion is configured at the same time that it is compiled in the kernel. For those users who
want to configure a device driver after it has been installed, we have included two con-
trol programs for doing so; we describe these control programs in Section 4.2.2 on
page 79.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 75

Version 1.0 7/16/96

Installing, Configuring, and Using RAIDframe

4.2.1 RAIDframe's Configuration File

The configuration file is divided into sections marked by START <section_name>.
Comments are supported in the configuration file; they must be preceded by a pound
sign (#). Of the seven sections in the configuration file, four are mandatory: array, disks,
layout, and queue; these are denoted with an (m) in the following paragraphs. See
Figure 4.2 for a sample configuration file.

Each of the following sections describes how to enter specifications for the stand-alone
application and the simulator.

4.2.1.1 Array (m)

This section is used to specify in integers the number of rows, columns, and spare drives
in the array. Enter these specifications into the configuration file in this order:

<numRow> <numCol> <numSpare>

4.2.1.2 Disks (m)

This section lists the pathnames to the device files corresponding to physical disks for
the kernel and user-level versions of RAIDframe; each item in the list is a string ending
with the device filename. Enter pathnames in this format:

/dev/...

/dev/...

The simulator, on the other hand, uses a set of disk names that it will instantiate from the
disk. db database file. Enter disk names as

<Disk name>

<Disk name>

where each item is a string containing the name of an actual disk drive.

4.2.1.3 Spare

This section may include the device files of spare disks (if they exist). Pathnames are
entered in the same format as the Disk section.

For the simulator, the Disks and Spare sections must contain names of actual disk
drives instead of listing the pathnames to the device files (that is, /dev/ . . .). If a
pathname is specified instead of an actual disk drive, the simulator version of RAID-
frame will default to the Hewlett-Packard HP2247 disk drive.

4.2.1.4 Layout (m)

This section includes general layout parameters: sectors per stripe unit, stripe unit per
parity unit, and stripe units per reconstruction unit. It also contains a parity configura-

76 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Configuring RAIDframe

TABLE 12.

tion label (which is a single character) to specify the RAID architecture to use. The
parameters are detailed in the following table.

Layout Parameters for the RAIDframe Configuration File

Parameter Explanation

numRow number of rows of disks, each row a distinct parity group

numCo 1 number of columns of disks in each row

sectPerSU number of sectors in a stripe unit

parityConf ig parity layout based on RAID level

SUsPerPU number of stripe units per parity unit

SUsPerRU number of stripe units per reconstruction unit

When specifiying SUsPerRU, set the number to 1 unless you are specifically
implementing reconstruction underparty declustering; if so, you should read
through the reconstruction code first

TABLE 13

For the parity-configuration layout, there are nine single-character labels that corre-
spond to the RAID architectures currently implemented (see Table 6 on page 61 for a
complete list of architectures and their support levels).

Parity Configurations

parityConfig Architecture Must be followed by

0 RAID level 0

1 RAID level 1

4 RAID level 4

5 RAID level 5

Q RAID level 6

T Parity declustering data layout file

D Declustering + distributed sparing data layout file

R RAID level 5 + distributed sparing

C Chained declustering m
I Interleaved declustering m

The details for specifying new parity-configuration parameters are given in Chapter 5,
"Extending RAIDframe." Enter layout specifications into the configuration file in this
order:

<sectPerSU> <SUsPerPU> <SUsPerRU> <parityConfig>

where the items are integers. Depending on the value of the parity configuration, you
can add a number of needed parameters that are specific to an architecture. In this event,

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 77

7/16/96

Installing, Configuring, and Using RAIDframe

the pathname for layout-specific parameters will follow the general ones in the Layout
section (Table 12).

4.2.1.5 Queue (m)

This section contains generic parameters for the queue of disk I/O requests: queue type
(FIFO, CVSCAN, etc.) and the number of concurrent requests that can be sent to disk.
Enter queue specifications into the configuration file in the format:

<queu© type> <numConcurrentrequests>

where the queue type is a string and the number of concurrent requests is an integer.
Where necessary, queue-specific parameters will follow the general ones in the Queue
section (Figure 4.2).

4.2.1.6 Debug

This section lists a number of user-configurable debug options. Enter these options into
the configuration file in the format:

«äebug variablexvalue>

where the debug variable is a string and the value is an integer (a partial list of debug
options and their variables is given in Section 4.6 on page 87). Some debugging options
have only on/off settings—for these, zero is off, non-zero is on. Others can accept a
range of integral values.

78 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Configuring RAIDframe

FIGURE 18 RAIDframe's Configuration File

START array
parameters are:
14 1

numRow numCol numSpare

START disks
a list of device files corresponding to physical disks
/dev/rrzl7c
/dev/rrzl9c
/dev/rrz20c
/dev/rrz21c

START spare
a list of device files corresponding to spare physical disks
spare device goes here
/dev/rrzll7c

START layout
tgenerallayoutparameters:sectPerSUSUsPerParityUnitSUsPerReconUnitpari-
tyConfig
64 1 1 T

layout-type specific parameters for 'T* layout: bd_file_name
/afs/cs/project/pdl/Reconstruction/lib/bds/4.4.bd

START queue
generic queue parameters: queue type, number
concurrent requests that can be sent to a disk
FIFO 1
queue-specific configuration lines:
(none for FIFO)

START debug
accessDebug 1
mapDebug 1
dagDebug 1
testDebug 1

RAIDframe's configuration file has seven sections: array, disks, spare, layout,
queue, and debug; array, disks, layout, and queue must be specified. All sec-
tions begin with START and all comments are denoted with a #.

4.2.2 Configuring the Device Driver Using Control Programs

Once the RAIDframe device driver has been installed, you can configure it using either
the command-fine options of rf_setconf ig or the menu-driven rf_ctrl—an
OSF menu-driven program located in the RAIDframe directory. rf_ctrl is a simple
front end to a set of I/O controls (ioctls) which are listed in Table 14; in addition, these
ioctls can be used by other applications. Using both programs is explained in the follow-
ing sections.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 79

7/16/96

Installing, Configuring, and Using RAIDframe

4.2.2.1 rf_setconfig

To run rf _setconf ig, type:

rf_setconfig config<n>

where <n> is an integer for the each device you configure, r f _setconf ig copies and
saves conf igO into/dev/.rfconf igO.

To unconfigvire the device, type:

rf_setconfig -s

4.2.2.2 rf_ctrl

To run rf_ctrl, type

rfctrl <device file>

and select the desired ioctl from the menu..

TABLE 14 loctls Supplied with RAIDframe

Control Option

Configure the driver; takes a struct
reconfiguration

Unconfigure the array; takes no arguments

Takes a struct rf _test_aoc

"Fail" a disk (for testing reconstruction); takes a
struct rf _recon_req

Get reconstruction percentage complete on a
row; takes and returns an integer

Copy reconstructed data back to replaced disk

Start tracing accesses (DFStrace)

Stop tracing accesses (DFStrace)

Get the size of the device (number of sectors);
yields an integer

Get basic configuration information (not the
same as rf _conf iguration); yields
struct r f _device_conf ig

Reset Ac cTrac e totals on the device

Retrieve AccTrace totals for a device; yields
RF_AccTotals

Turn AccTrace on if integer is nonzero (off
otherwise); takes an integer

Syntax

RAIDFRAME_CONFIGURE:

RAIDFRAME_SHUTDOWN:

RAIDFRAME_TEST_ACC

RAIDFRAME_FAIL_DISK

RAIDFRAME_CHECKRECON

RAIDFRAME_COPYBACK

RAIDFRAME_START_ATRACE

RAIDFRAME_STOP_ATRACE

RAIDFRAME_GET_SIZE:

RAIDFRAME_GET_INFO

RAIDFRAME_RESET_ACCTOTALS

RAIDFRAME_GET_ACCTOTALS

RAIDFRAME KEEP ACCTOTALS

80

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

7/16/96

Testing RAIDframe Operation

4.3 Testing RAIDframe Operation

As we mentioned in Chapter 3, there are eight test applications for verifying the data,
redundancy and layout for RAIDframe implementations at the user level (that is, the
stand-alone application and the simulator). Because the simulator runs only against sim-
ulated disks, only the script and layout tests are available in that mode.

TABLE 15.

4.3.1 Running the Test Applications

In the following subsections, we will show you sample interactions with the menu-
driven test applications. In many cases, we also comment on the options and interactions
to give you a better idea about how to use them.

Options for Tests

Test Option

single-access test s

loop test 1

degraded-mode read test d

random read or write test r

file write-read test f

reconstruction test R

*scripttest S

*layont test L

* The simulator runs only these two test options.

4.3.1.1 Single-Access Test

Pick a test: s
enter -1 for the RAID address to quit

Starting RAID address [0-82176]? 4032

number of blocks? 219

Input row id of disk to mark failed (-1 for none): -1

Entering 0 for the input row id will cause the system to prompt you for the column
number of the disk to be failed.

4.3.1.2 Loop Test

Pick a test: 1

How many parallel threads? 2

How many I/Os per thread? 10

Same seed or different seeds in each thread [s/d]? d

Degraded mode? [n=none, c=constant, a=asynchronously,
r=async, init recon] n

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 81

7/16/96

Installing, Configuring, and Using RAIDframe

The mode option n is the fault-free test in which no disks are failed. Mode option c fails
a disk before beginning the loop test; you must specify which disk just as you would in
order to run the single-access test. Mode option a lets RAIDframe randomly fail a disk
during the run; option r is same as option a but initiates reconstruction after failing the
specified disk.

4.3.1.3 Random Read or Write Test

Pick a test: r
How many parallel threads? [0 is ok] 1

Reads or Writes [r/w]? r

Degraded mode: none, constant, constant double
degraded,async, async+init recon

[n/c/2/a/r]? n

Random or sequential I/Os? [r/s] r

How many I/Os per thread? 2

4.3.1.4 File Write-Read Test

Pick a test: f

File name? foo

The only parameter RAIDframe requests is the file name.

4.3.1.5 Reconstruction Test

Pick a test: R
How many parallel threads? [0 is ok] 1

Degraded-mode: none, const, async, async+recon, reconfig,
recon+copyback?

[n/c/a/r/R/C] n

Perform the painful test? [y/n] n

4.3.1.6 Script Test

Pick a test: S

Trace or script file name? foo

You must specify either a script or trace file. See Section 4.3.2 on setting up a workload
file.

4.3.1.7 Layout Test

Pick a test: L

There are no parameters for this test.

4.3.2 Setting Up the Workload File For the Script Test

It may be necessary to test how the array operates under a simulated workload. In
RAIDframe, the stand-alone user application and simulator versions receive I/O
requests from a synthetic-workload generator or replay traces of actual disk I/Os. The

82 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Testing RAIDframe Operation

following sections describe how to create a script file for the workload generator and the
parameters for a trace file of actual disk I/Os.

4.3.2.1 Synthetically Generated Workloads

The synthetic-workload generator conforms its load to a script containing a variable
number of access profiles with individual occurrence probabilities. Each profile defines
a deterministic or exponentially distributed access size with a given mean and align-
ment. Access addresses are randomly generated throughout the entire address space, or
with a given probability, within a single locality specified with each profile. Access
types are either read, write or sequential (the same as the last access with its address
advanced).

TABLE 16

The script file contains a description of the workload that you want to run, including
probability, I/O request type, size, alignment, distribution, and local region (Table 16).

Parameters for Writing a Script to Generate a Workload

Parameter

<probability>

<reqType>

<size>

<align>

<distr>

<lprob>

<lfrac>

<loffs>

What is Specified

the fraction of the total workload (given as an integer between
0-100) that this script describes

the type of I/O request using an r ,w, or s for a read, write or
save

the access size in KB (given as an integer)

the access alignment in KB (given as an integer)

a character describing the access-size distribution: d
means deterministic (this is always equal to <size>); e
means exponentially distributed with mean <size>

the probability (given as an integer between 0-100) that this
access is within flie local region

the fraction of the array's data space (given as an integer
between 0-100) defining the local region

the offset into the array of the start of the local region (given as
an integer between 0-100)

The < 1 f rao> and < 1 o f f s> parameters allow you to define the local region of the
disk array where you want to generate accesses.

The lines are in the format:

<probability> <reqType> <size> <align> [<distr> [<lprob>
<lfrac> <loffs>]]

where only the first four parameters, <probability> <reqType> <size>
<align>, are mandatory in the script file. Or, they can be in the format:

<probability> s

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 83

7/16/96

Installing, Configuring, and Using RAIDframe

If the script file contains a line in the second form (<probabi 1 i ty> s), it means that
with probability <probability> the next access selected by any given process will
be sequential with respect to the previous access, whatever it happened to be. There can
be only one such line in any given script file.

The following is an example of a script file that specifies running a 50/50 read/write
workload using random 8k accesses that are 8k aligned:

50 r 8 8

50 w 8 8

4.3.2.2 Trace-Driven Workloads
The trace file contains actual I/O traces that have been collected from another applica-
tion instead of synthetic traces that have been generated from a script. The trace file
must contain a header and trace records. The header contains the number of indepen-
dent processes in the trace, the number of traces for each process, and the file offsets for
each trace. Traces understood by RAIDframe must contain an explicit sequence of
tuples: (thread id, delay time before issuing this request, read or write, block address,
number of blocks, and a requester-waits/requester-does-not-wait flag). Table 17 shows
the parameters for trace records.

TABLE 17 Records for a File with Actual Workload Traces

Parameters What is Specified

<long blkno RAID address (given as an integer)

<long size> number ofblocks (given as an integer)

<double delay> number of seconds (given as an integer)

< short pid> process identification number (given as an integer)

<char op> character operation with an r or w for a read or write

<char async_flag> character asynchronous flag; set to 1 if the I/O requests
are asynchronous

For the parameters, long equals 4 bytes; double equals 8 bytes; short equals two bytes;
and char equals 1 byte. These traces are stored in binary format as opposed to ASCII.

Each trace record has the following format:

<long blkno <long size> <double delay> <short pid> <char
op> <char async_flag>

4.4 Comparing How RAID Architectures Perform

Because it is valuable to compare how different RAID architectures perform relative to
one another when implemented in RAIDframe, we have included a front end for doing
so at the user level called rf_genplot. A key benefit of rf_genplot is that it
enables users to test throughput versus response time for various RAID architectures
and configurations. As we explained in Section 3.1.1 on page 60, rf_genplot runs

84 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Comparing How RAID Architectures Perform

workload scripts from a work file against various RAID architectures and outputs results
into a file.

4.4.1 Preparing to Run the rf_genplot Front End

rf_genplot requires three arguments in order to run: configlistfile,
worklistfile, and outf ilebase. It reads the files named conf iglistf ile
and worklistfile and writes files named outf ilebase. out, outf ile-
base. ps, and outf ilebase.mif.

The first four lines of conf iglistf ile provide parameters for graphing the results
of the workload scripts. Specifically, the first fine lists the graph title, the second is the
graph subtitle, the third defines x- and y-axis ranges, and the fourth defines major and
minor tick marks for both the x and y axes. After that, the conf iglistf ile lists
configurations to use and names for them, separated by colons. The filename of the con-
figuration file must appear before the colon; after the colon is the name of the configura-
tion which will appear on the graph. Here's an example of a conf iglistf ile:

Random 4KB Reads

RAID level 1 Vs. RAID level 5

0 900 10 60

200 100 5 2.5

/usr20/config/configl.user:Raid 1
/usr20/config/config5.user:Raid 5

The worklistfile simply lists scripts for rf _genplot to run; here's an example:

/usr20/data/randblock/randblock.l.Read.l0disk.A.rst
/usr20/data/randblock/randblock.2.Read.lOdisk.A.rst
/usr20/data/randblock/randblock.5.Read.lOdisk.A.rst
/usr20/data/randblock/randblock.10.Read.lOdisk.A.rst
/usr20/data/randblock/randblock.15.Read.lOdisk.A.rst
/usr20/data/randblock/randblock.20.Read.lOdisk.A.rst
/usr20/data/randblock/randblock.30.Read.lOdisk.A.rst
/usr20/data/randblock/randblock.40.Read.lOdisk.A.rst

4.4.2 Running the rf_genplot Front End

rf_genplot runs each of the scripts listed in the worklistfile against each
RAID configuration given in the conf iglistf ile and outputs the results to the
outf ilebase. out file. Results are given as throughput and response time pairs for
each architecture with blank lines between configurations.

If given the -o option before the filenames, rf_genplot will generate the xmgr
batch file and run xmgr to produce outfilebase.ps and outf ilebase. mif
files in addition to running the workload scripts against the RAID configurations. The
outfilebase.ps and outf ilebase. mif files contain graphs of throughput ver-
sus response time for all the architectures listed in the conf iglistf ile.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 85

Version 1.0 7/16/96

Installing, Configuring, and Using RAIDframe

K given the -p option, rf_genplot will produce outfilebase.ps and out-
f ilebase. mif files using the outf ilebase. out file created from a previous run.
This option allows you to run r f _genplot first as a stand-alone application then in a
multi-user environment to generate graphs.

4.5 Accessing Built-in Performance Tracing

RAIDframe provides a mechanism for timing and tracing eleven predefined system
events (Table 18). The codepath for each event is delineated by a of set macros that
make calls to a built-in timer mechanism, which in turn relies on a cycle-counter register
of the DEC Alpha architecture [Digital92]. An assembly module in the timer reads the
cycle counter and evaluates the number of s elapsed. Once the hiilt-in tracing mecha-
nism is turned on, it gathers timer records and saves them in a file.

TABLE 18 RAIDframe System Events and Their Codepaths

Event Timed Codepath

User I/O Average Access Time

Graph suspend Suspend Ovhd

Call to complete access stripe map (ASM) Mapping

Acquiring stripe-lock ranges Locking

Graph creation DAG Creations

Graph retry DAG Retry

Freeing graph structures and return to user Cleanup

Execute full graph DAG Execution

Request pending in disk queue diskwait

Reconstruction recon

Exclusive-or computation Xor eval

To turn on tracing at the user level, setaccessTraceBufSizetoa value greater than
0 in the Debug section of the RAIDframe configuration file (see Section 4.2.1 for more
details); this determines the number of trace entries to accumulate in memory before
flushing them to disk where they are saved in the file trace. dat (an example of a
trace file is given in Figure 19 below), trace. dat is accessed using a utility called
rf _tracestats whose command line argument is in the form:

rf_tracestats [-v] [-p] trace.dat

where -v is verbose mode and -p prints formatted trace records on-screen. If no file-
name is given, rf _tracestats expects a trace to be fed in from stdin.

Traces can also be extracted from the kernel with rf _tracestats by running it with
the - k argument and specifying the name of the device to extract traces from. For exam-
ple:

86 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

Debugging RAIDframe Installations

rf_tracestats -k /dev/rraidframe_c

Section 5.1.9 on page 101 explains how to extend built-in performance tracing by add-
ing new codepaths.

FIGURE 19 Parity Logging Execution Profile

Average Access Time

Suspend Ovhd

Mapping

Locking

DAG Creation

DAG Retry

Cleanup

DAG Execution

24652.32 us
3.38 us

55.70 us
46.03 us

136.50 us
0.00 us

10.47 us
24342.59 us

(0.

(0.

(0.

(0.

(0.

(0.

(98.7 %

******** DAG Execution Profile****

Total Xor Time : 131.24 us (0

Total Log Time : 169.22 us (0

Total Disk Queue : 5227.00 us (21

Total Disk Phys : 17840.21 us (72

******* summary disk statistics***

Avg num phys IOs : 1.50

Avg queueing time: 3461.59 us (14

Avg physical time: 11814.71 us (47

Avg total time : 15276.30 us (62

.5 %)

.7 %)

.2 %)

.4 %)

.0 %)

.9%)

.0 %)

TABLE 19.

4.6 Debugging RAIDframe Installations

Here is a partial list of the currently implemented debug options and their effects; we
have chosen to list the options which are most likely to be used frequently. A complete
list of debug options may be found in the source file rf _optnames. h.

Debug Options and Their Effects

Option

accessdebug

Effect

Prints out details of each user request.

accSizeKB n The "loop test" generates a synthetic workload of ran-
dom I/Os. This debug variable can force the size of the
I/Os to be n KB. If n=0, the size of the I/Os are not
fixed. Default is n=0.

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 87

7/16/96

Installing, Configuring, and Using RAIDframe

TABLE 19. Debug Options and Their Effects

Option

accessTraceBufSize n
Effect

Specifies (he number of trace records which will be
buffered before writing to the file trace.dat If n=0,
tracing (execution profiling) is disabled. Default is
n=0.

alignAccesses n The "loop test" generates a synthetic workload of ran-
dom I/Os. This debug variable forces the I/Os to be
aligned if n=l. Default is n=0.

dagDebug This variable prints out the type of each DAG when
created.

degDagDebug This variable prints additional information about
degraded-mode DAGs.

demoMode n This debug variable enables demo mode if n=l. In
demo mode, most data and redundancy verification is
disabled and meters are generated to display response
time and throughput. Default is n=0.

diskDebug This variable prints information about each disk at
configuration time.

doDebug This variable prints each disk operation as it begins
and ends (user driver only).

dtDebug This variable prints disk-thread status (user driver
only).

engineDebug This variable prints information about engine-thread
and node processing.

maxRandomS i z eKB The "loop test" generates a synthetic workload of ran-
dom I/Os. This debug variable can force the size ofthe
I/Os to be no greater than n KB. If n=0, max size is
unlimited. Default is n=0.

maxTraceRunTimeSec n n = the amount of time in seconds a script file should
drive I/Os into RAIDframe. If n=0, max time is unlim-
ited.

88

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

7/16/96

Debugging RAIDframe Installations

TABLE 19. Debug Options and Their Effects

Option

memDebug n

Effect

This variable is metal for debugging memory leaks
and buffer overruns. Enabled when n=l. When n=2,
this debug variable also prints the address range of
every buffer as it is allocated and freed.

printDagsDebug n If n=l, each DAG (graph) is printed after creation.
Default is n=0.

printStatesDebug n

queueDebug

If n=l, the state machine prints state information.
Default is n=0.

This variable prints disk-queue operations as they hap-
pen (policy-independent layer).

rewriteParityStripes n If n=l, parity is rewritten prior to start of test. This is
useful when tests which verify parity are run on an
uninitialized array. Default is n=0.

shutdownDebug

sizePercentage n

This variable prints shutdown activities as they occur.

n is an integer which represents what fraction of the
total available disk space will be used. Useful for lim-
iting the duration of reconstruction testing and array
initialization. If n=0,100% of the array is used.
Default is n=0.

validateDAGDebug n If n=l, integrity of each DAG (graph) is verified prior
to execution. Default is n=0.

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

89

7/16/96

Installing, Configuring, and Using RAIDframe

90 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 7/16/96

CHAPTER s Extending RAIDframe

This chapter is intended to give you a head-start in understanding how to enhance the
existing RAIDframe package; we expect that, in order to understand thoroughly how to
extend RAIDframe, you will first have to become familiar with the code itself. The fol-
lowing sections briefly describe key RAIDframe subsystems, and provide a how-to
guide for certain common extensions.

5.1 RAIDframe fundamentals

5.1.1 Types and Conventions

Most RAIDframe types are defined in r f _types. h. These definitions are intended
both to make code more easily readable and more easily portable. For instance, a sector
number is of typeRF_SectorNum_t. This is defined as type RF_uint 64, which is
in turn the system-independent definition of a 64-bit unsigned integer. Thus, porting
RAIDframe to a new system type requires the correct definition of RF_uint 64 on that
platform, but does not require redefinition of RF_Str ipeNum_t, much less changes
to the code using values of this type.

Here are some commonly used RAIDframe types and what they represent:

TABLE 20. Common RAIDframe Types

RAIDframe Type

RF_Sec torNum_t

RF_Seo torCount_t

Type Representation

the number of an individual sector (e.g., sector #37 of
an array)

a number of sectors (e.g., read 100 sectors)

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 91

6/24/96

Extending RAIDframe

TABLE 20. Common RAIDframe Types

RAIDframe Type

RF_StripeNum_t

RF_StripeCount_t

RF_IoType_t

RF_Raid t

Type Representation

the number of an individual stripe (e.g., stripe number
three)

a number of stripes (e.g., 30 stripes)

kind of I/O (RF_IO_TYPE_READ,
RF_IO_TYPE_WRITE, or RF_IO_TYPE_NOP)

entire in-core state of an array

When new type and structures are introduced, the header files in which they are defined
are given. It is often the case that a structure is defined in that header file, but the C lan-
guage typedef which is used to refer to it is defined in the file r f _types. h. The
convention is that a struct RF_SomeName_s will be defined in an appropriate
header file, which RF_SomeName_t is defined in rf _types. h as

typedef struct RF_SomeName_s RF_SomeName_t;

In the future, this document will refer to "RF_SomeName_t, defined in
some_f ile. h" even though the actual typedef of RF_SomeName_t is in
rf_types. h, and some_f ile. h contains the definition of struct
RF_SomeName_s.

5.1.2 Return Codes

Most RAIDframe operations return type int. This is a descriptive error code with 0
being defined as success and a non-zero value being a value defined in sys/errno. h,
which is appropriate for providing to a calling process to identify the nature of a failure.

5.1.3 Memory Allocation

Memory allocation is different for different systems, and vastly different inside and out-
side the kernel. For this reason, RAIDframe provides an internal abstraction of memory
allocation operations to avoid cluttering code with special cases for various environ-
ments and platforms. The following macros, which are defined in r f _debugMem. h,
should suffice for most simple memory allocation and deallocation operations:

RF_Malloc(ptr,size,cast)

RF_Calloc(ptr,nelements,element_size,cast)

RF_Free(ptr,size)

In the user environment, these perform the following operations, respectively:

ptr = cast malloc(size)

ptr = cast calloc(nelements, element_size)

free(ptr)

Thus, to allocate an array of five integers, you might:

92

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAIDframe fundamentals

int *i;

RF_Malloc(i,5*sizeof(int) , (int *)) ;

or

RF_Calloc(i,5,sizeof(int) , (int *));

And deallocate it with:

RF_Free(i,5*sizeof(int));

While the size argument to RF_Free is not used at the user level, it should be set cor-
rectly, because in-kernel memory deallocation does require this field.

5.1.4 Memory-Allocation Lists

Tracking memory allocations can be difficult. In addition, most allocation should be
done at start-of-day and deallocated at end-of-day. To ease the programmer burden of
tracking allocations, RAIDframe provides allocation lists (of type
RF_AllocListElem_t, defined in rf _alloclist. h). In addition, two new
memory-allocation operations are defined in rf_debugMem. h:

RF_MallocAndAdd(ptr,size,cast,alloc_list)

RF_CallocAndAdd(ptr,nelements,element_size,cast,alloc_list)

These behave the same as RF_Malloc and RF_Calloc, respectively, with the addi-
tional semantic that the operations are noted in the allocation list alloc_list. When
alloc_list is destroyed, the memory will be freed automatically. Allocation lists are
generally provided to start-of-day configuration routines to simplify cleanup and shut-
down and are destroyed after all end-of-day activities are complete. In addition, individ-
ual I/Os have associated allocation lists which are used by some DAGs to track
temporary buffers for parity computation.

5.1.5 Shutdown Lists

Another way in which RAIDframe simplifies the cleanup process is with the use of
shutdown lists (RF_ShutdownList_t, defined in rf_shutdown.h). Start-of-day
configuration routines are provided as a pointer to the head of a shutdown list, so they
may add entries. The shutdown list is invoked to deconfigure and clean up any config-
ured systems.

A shutdown list is a linked list of elements containing a void function pointer, and an
argument to be passed to that function. When an item is added to a shutdown list, it is
prepended. When a shutdown list is invoked, the functions in it are called in order from
beginning to end and are passed their associated arguments. Thus, the last item added to
a shutdown list is the first item called when the shutdown list is invoked. This is to
ensure correctness when dealing with dependent modules where one module requires
another to be configured and operational to function correctly. (For instance, module B
must operate upon module A at creation and clean-up time; therefore, module A must be
configured before module B and must not be unconfigured before module B is unconfig-
ured).

RAIDframe: A Rapid Prototyping Tool for RAID Systems 93

Version 1.0 6/24/96

Extending RAIDframe

Entries are added to a shutdown list by calling rf_ShutdownCreate, which is
defined as:

int rf_ShutdownCreate(RF_ShutdownIiist_t **listp,

void (*func)(void *arg), void *arg)

When the shutdown list pointed to by listp is executed, the function func will be
called, and the argument arg will be passed to it. If r f _ShutdownCreate ()
returns non-zero, it was unable to add an entry to the shutdown list, and the caller should
behave accordingly (and is guaranteed that func () has not been called, nor will it be
called when the contents listp are invoked).

It is a RAIDframe convention that a failing configuration operation must provide for
complete cleanup at its point of failure. That is, if a configuration operation returns
unsuccessfully (see above), any memory it has allocated must be listed in an allocation
list it was provided, or be already freed. Likewise, any necessary cleanup operations
must be entered into the shutdown list provided, or must be invoked before the error is
returned. To simplify the coding of such creation and configuration operations, a pro-
grammer may wish to add multiple entries to a shutdown list for a single configuration
operation.

5.1.6 Threads

Thread support is provided by a variety of macros and functions found in
rf_threadstuf f. [ch]. These macros hide various porting issues, as well as user/
kernel/simulator differences.

5.1.6.1 Thread Types
Threads in RAIDframe are represented by handles, which are of type RF_Thread_t.
When a thread is created, it is passed a single pointer-sized argument of type
RF_ThreadArg_t. Pointers may be explicitly cast to and from this type. Because
synchronization primitives must be declared very differently in the kernel than at the
user-level, and they do not exist at all in the simulator, there are no explicit mutex and
condition types. Instead, several macros exist to declare mutexes and conditions.

TABLE 21 Mutex and Condition Declaration Macros

Macro name Declaration type

RF_DECLARE_MUTEX Declare a mutex with no special keywords

RF_DECLARE_STATIC_MUTEX Declare a mutex with the static C keyword

RF_DECLARE_EXTERN_MUTEX Declare a mutex with the extern C keyword

RF_DECLARE_COND Declare a condition variable with no special
keywords

RF_DECLARE_STATIC_COND Declare a condition variable with the static C
keyword

RF_DECLARE_EXTERN_COND Declare a condition variable with the extern C
keyword

94 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

RAIDframe fundamentals

These macros are invoked with a single argument, which is the name of the mutex or
condition variable to declare. For example:

RF_DECLARE_MUTEX(rf_new_lock)

declares a global mutex named r f _new_lock. Note the lack of trailing semicolon on
the line above; the declaration macros add semicolons as necessary.

5.1.6.2 Using mutex variables

Before they may be used, mutexes must be initialized with the function
r f _mutex_ini t (). After they are no longer needed, they must be destroyed with the
function r f_mutex_des troy (). Bach of these functions takes a pointer to a mutex
variable, and returns a value of type int. A zero-valued return indicates success; any-
thing else indicates an error of some sort. To initialize and destroy r f _new_look,
from our example above:

int re;

/* ... */
re = rf_mutex_init(&rf_new_lock) ;
if (re) {
printf("ERROR: cannot initialize rf_new_lock\n");

return(re);

}

re = rf_mutex_destroy(&rf_new_lock);

if (re) {

printf("ERROR: cannot destroy rf_new_lock\n");

}

To simplify the destruction of mutexes when necessary, an entry can be automatically
added to a shutdown list to destroy a mutex. Rather than initializing a mutex with
rf _mutex_init (), the function rf _create_managed_mutex () may be used
instead. The first argument to this function is of typeRF_ShutdownList_t **, and
the second is apointer to the mutex, just like r f _mutex_ini t (). This also returns an
int, with a value of 0 indicating success. In this case, success indicates that not only
was the mutex initialized correctly, but an entry has been added to the shutdown list
which will destroy the mutex when necessary.

As their names imply, the macros RF_LOCK_MUTEX and RF_UNLOCK_MUTEX
respectively lock and unlock mutexes. These macros each take a single argument, which
is the name of the mutex to operate upon. Previously, we gave an example defining a
mutex named r f _new_lock. Now we shall lock and unlock it, to provide a critical
section for some new code:

RF_LOCK_MUTEX(rf_new_lock) ;

/* Your critical section here. */

RF_UNLOCK_MUTEX(rf_new_lock);

RAIDframe: A Rapid Prototyping Tool for RAID Systems 95

Version 1.0 6/24/96

Extending RAIDframe

5.1.6.3 Using condition variables

Before a condition variable may be used, it must be initialized with
rf _cond_init (). When a condition variable is no longer needed, it must be
destroyed with rf _cond_destroy (). Like the corresponding mutex operations,
these functions take as their only argument a pointer to the condition variable to be ini-
tialized, and return an int, with 0 indicating success. Similarly,
rf _create_managed_cond () takes an RF_ShutdownList **, and a pointer
to a condition variable, and returns success to indicate that not only has the condition
variable been successfully initialized, but an entry has been added to the shutdown list
which will automatically destroy the condition variable.

RAIDframe provides simple macros for accessing the functionality of condition vari-
ables, in the form of macros named RF_WAIT_COND, RF_SIGNAL_COND, and
RF_BROADCAST_COND. The wait operation takes two arguments, a conditon variable
to wait for an event on, and a mutex to atomically unlock before waiting, and lock after
waiting. The signal and broadcast operations both take a condition variable upon which
to generate a wakeup event. The signal operation attempts to wake at most one thread,
which broadcast awakens all threads awaiting an event. For implementation reasons, it
is important that threads waiting for events re-check their wakeup conditions upon exit-
ing the wait operation to be sure that a bogus wakeup event has not been generated. Here
is an example of what a consumer thread in a standard producer-consumer might look
like:

while (1) {

RF_DECLARE_EXTERN_MUTEX(rf_new_wrkr_mutex)

RF_DECLARE_EXTERN_COND(rf_new_wrkr_cond)

RF_LOCK_MUTEX(rf_new_wrkr_mutex)

while (rf_new_wrkr_queue == NULL) {

RF_WAIT_COND(rf_new_wrkr_cond, rf_new_wrkr_mutex);

if (rf_new_wrkr_shutdown) {

/* something wants us to quit */

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex);

return;

)
}

/* queue now locked and unempty, dequeue something */

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex)

/* queue now unlocked, dispatch op */

}

5.1.6.4 Creating threads

The macro RF_CREATE_THREAD is used to create threads. This macro evaluates to a
return code of type int, with 0 indicating success, and nonzero indicating that an error
occurred (and the thread could not be created). For example:

static void showmyname_thread(arg)

RF_ThreadArg_t arg;

96 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

RAIDframe fundamentals

{

char *name = (char *)arg;

printf("My name is \"%s\"\n", name);

RF_EXIT_THREAD (0) ;

}

void run_name_threads()

{

RF_ThreadArg_t a;

RF_Thread_t th;

char name[100];

int i, re;

for(i=0;i<10;i++) {

a = (RF_ThreadArg_t)name;

re = RF_CREATE_THREAD(th, showmyname_thread, a);

if (re) {

printf("ERROR: could not create thread %d\n", i)

}

}

The above example also uses the macro RF_EXIT_THREAD, which a thread calls when
it wishes to cease executing. This macro takes as an argument an integer exit status.

5.1.6.5 Managing threads

One problem with the code in the above example is that the loop which creates the
threads does not know when the threads have been created or when they exit. In many
cases, threads will be created for the purpose of dispatching various events. In these
cases, the creator of the thread will want to know when the thread has begun execution,
and is ready to accept events. Likewise, during a cleanup phase, end-of-day routines will
want to know when a thread has received notification of system teardown, so resources
which the thread might otherwise check or use in its normal operation (for instance,
work queues, mutex and condition variables, et cetera) can be deallocated. To address
this problem, RAIDframe provides "thread group" management, which can be used to
determine when one or a group of threads have been created and are ready to execute
events, and when they are no longer executing.

A thread group is of type RF_ThreadGr oup_t. This must be initialized one of two
ways. One is by calling rf _init_threadgroup (), which takes as its sole argu-
ment a pointer to an RF_ThreadGr oup_t to initialize. The other is to call
rf _init_managed_threadgroup (), which takes as its first argument an
RF_ShutdownList_t** and an RF_ThreadGroup_t* as its second argument.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 97

Version 1.0 6/24/96

Extending RAIDframe

In the case of the former, the thread group must be deallocated when it is no longer
needed by calling r f _des troy_threadgroup () with a pointer to the thread group
as its sole argument (in the case of the latter, the deallocation action is queued on the
shutdown list).

TABLE 22

Several macros, described in the table below, are key to thread group operation:

Thread Group Operations

Macro name Caller

RF_THREADGROUP_STARTED Creator

RF_THREADGROUP_RUNNING Member
thread

RF_THREADGROUP_DONE Member
thread

RF_THREADGROUP_WAIT_START Creator

RF_THREADGROUP_WAIT_STOP Creator

When called

After successfully
creating a member thread

Once running

When ready to exit

Waiting for member
threads to successfully
begin running

Waiting for member
threads to stop running

Rewritten to use a thread group, the previous example might look like:

static RF_ThreadGroup_t group;

int threads_should_run = 0;

static void showmyname_thread(arg)

RF_ThreadArg_t arg;

{

char *name = (char *)arg;

printf("My name is \"%s\"\n", name);

/* other local initialization */

RF_THREADGROUP_RUNNING{&group) ;

while(threads_should_run && (...)) {

/* dispatch loop */

}

RF_THREADGROUP_DONE(&group);

RF_EXIT_THREAD (0) ;

void run_name_threads()

98

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAIDframe fundamentals

{

RF_ThreadArg_t a;

RF_Thread_t th;

char name [100] ;

int i, re;

re = rf_init_threadgroup(&group);

if (re) {

printf("ERROR: cannot create thread group\n");

return;

}

threads_should_run = 1;

for(i=0;i<10;i++) {

a = (RF_ThreadArg_t)name;

re = RF_CREATE_THREAD(th, showmyname_thread, a);

if (re) {

printf("ERROR: could not create thread %d\n", i)

}

else {

RF_THREADGROUP_STARTED(&group);

}

}

RF_THREADGROUP_WAIT_START (Sgroup) ;

printf ("All threads running\n") ,-

/* potentially do something here */

threads_should_run = 0;

RF_THREADGROUP_WAIT_STOP(&group);

printf("All threads done\n");

re = rf_destroy_threadgroup(&group);

if (re) {

printf("WARNING: error destroying thread group\n")

}

If RF_THREADGROUP_WAIT_STOP is called on a thread group before
RF_THREADGROUP_WAIT_START, the results may not be what is desired.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 99

Version 1.0 6/24/96

Extending RAIDframe

5.1.6.6 Threads in the simulator

The simulator does not support threads. In this environment, all mutex and condition
operations become no-ops, and thread creation is disallowed. Architectures and modules
which require a separate stream of execution should instead maintain timed event
queues when compiled for simulation.

5.1.7 Creating New Debug Options

Debug options are of type long. To add a debug option, add an entry of the form:

RF_DBG_OPTION(<Name>,<Val>)

to rf_optnames. h where the <Name> is the name of your debugging variable and
<Val> is the (long) value that it should default to. To use your debug variable, put the
line #include "rf _options. h" at the top of rf _optnames . h and reference
the variable as r f _<Name>. For example, say we want to add a debug variable named
newDebugVar, with a default value of zero. The following line would be added to
rf _optnames. h:

RF_DBG_OPTION(newDebugVar,0) /* our new entry */

Note that it is important to preserve the lack of whitespace between the parenthesis
when adding new entries to rf_optnames.h. Code which uses this variable might look
like:

if (rf_newDebugVar) {

printf("foo is now %d\n", foo);

if (rf_newDebugVar > 1) {

/* print detailed info */

printf("bar is now %d, baz is %lu\n", bar,

(u_long)baz)) ,-

}

}

5.1.8 Timing

RAIDframe provides a platform- and environment-independent timing mechanism
which can be used both for microbenchmarking individual codepaths, and for collecting
statistics about how time is being spent in the system overall. This generic timing mech-
anism is used, among other ways, to generate the elements of RAIDframe trace records
(see Built-in Tracing of RAIDframe Performance, below).

A timer is of type RF_Etimer_t, which is defined in a platform-dependent manner in
r f_etimer. h. Timers require no special initialization to be used, and are fully copy-
able. The macro RF_ETIMER_START takes as its only argument the timer to start.
Likewise, RF_ETIMER_STOP also takes a timer as its sole argument. To find out how
long a timer has been running, the difference between the start time and the stop time
must be computed. Because this computation time might affect other timing results, it is
invoked separately with the macro RF_ETIMER_EVAL, which computes the time
elapsed between RF_ETIMER_START and RF_ETIMER_STOP for that timer. To

100 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

RAIDframe fundamentals

access this result, the macro RF_ETIMER_VAL_US takes as its argument a timer, and
returns the number of microseconds that RF_ETIMER_EVAL computed as the elapsed
time. RF_ETIMER_VAL_MS likewise returns the number of elapsed milliseconds.

This example demonstrates how timers can be used to compute the amount of time that
elapses between different points in a codepath. It takes advantage of the copyability of
timers to snapshot a running timer at different points to obtain intermediate timing
results. Evaluation of elapsed time is deferred until all events being timed have com-
pleted, to avoid timing the computation of elapsed time.

RF_Etimer_t timer, tl, t2;

RF_ETIMER_START(timer);

/* do some computation (A) here */

tl = timer;

RF_ETIMER_STOP(tl);

/* do some computation (B) here */

t2 = timer;

RF_ETIMER_STOP(t2);

/* perform some set of operations (C) here */

RF_ETIMER_STOP(timer);

RF_ETIMER_EVAL (timer) ;•

RF_ETIMER_EVAL (tl) ;

RF_ETIMER_EVAL(t2);

printf("Operation A took %lu microseconds\n",

(unsigned long)RF_ETIMER_VAL_US(tl));

printf("%lu ms elapsed before operation C started\n",

(unsigned long)RF_ETIMER_VAL_MS(t2));

printf("Together, A, B, and C took %d:%06d\n",

(int)RF_ETIMER_VAL_US(timer)/1000000,

(int)RF_ETIMER_VAL_US(timer)%1000000);

5.1.9 Built-in Tracing of RAIDframe Performance

RAIDframe has several predefined codepaths that it will evaluate once the tracing
option is turned on in the Debug section of the RAIDframe configuration file. To turn on

RAIDframe: A Rapid Prototyping Tool for RAID Systems 101

Version 1.0 6/24/96

Extending RAIDframe

tracing, set accessTraceBuf Size to a value greater than 0. Table 23 shows the
source files used in timing and tracing and what their functions are.

TABLE 23. Source Files for RAIDframe's Timer and Trace Mechanism

Source File Function

r f _etimer. h Times codepaths

r f _readcc. s Platform-specific assistance for
rf_etimer.h

rf_acctrace. [ch] Gathers timer records efficiently

rf _tracestats. c Processes the records

To add a trace record to the trace file, you must call r f _LogTracRec () . The tracing
module accumulates records until it is shut down, or its tracing buffers fill (it uses the
number of buffers specified by accessTraceBuf Size). At this time, the accumu-
lated buffers are flushed into the trace. dat file, rf _LogTraceRec () takes two
arguments. The first is a pointer to an RF_Raid_t, which is the array for which an
event has occurred. The second is a pointer to the trace record itself. Trace records are of
type RF_AccTraceEntry_t, which is defined in rf _acctrace. h.

To read trace.dat, use rf_tracestats. The command line argument is in the
form:

rf_tracestats [-v] [-p] trace_dat

where -v is verbose mode and -p prints formatted trace records on-screen (without
arguments, r f_tracestats displays only summary information for an entire trace-
file).

5.2 Installing a New RAID Architecture

A central switch table in the module r f _layout. c specifies the routines which each
array architecture relies on for functions such as graph selection, mapping, and recon-
struction. The first step in adding a new architecture is to create a new entry in this table,
called mapsw in the code.

This is the mapsw entry for RAID level 5. Note that portions of the table appear
within the RF_NK2 and RF_NU macros. These macros are used in mapsw entries to
remove unnecessary parts of the table in certain environments. (For instance, the in-ker-
nel portion of RAIDframe does not parse configuration files itself, but instead relies on a
utility program (rf _setconf ig or rf _ctrl) to do so. Likewise, this utility pro-
gram has no need to actually perform RAID operations such as sector-mapping.)

/* RAID level 5 */

{ ' 5' , "RAID Level 5",

102 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Installing a New RAID Architecture

RF_NK2(rf_MakeLayoutSpecificNULL, NULL)

RF_NU(

rf_ConfigureRAID5,

rf_MapSectorRAID5, rf_MapParityRAID5, NULL,

rf_Identi fyStripeRAID5,

rf_RaidFiveDagSelect,

rf_MapSIDToPSIDRAID5,

rf_GetDefaultHeadSepLimitRAID5,

rf_GetDefaultNumFloatingReconBuffersRAID5,

NULL, NULL,

rf_SubmitReconBufferBasic,

rf_VerifyParityBasic,

1,

DefaultStates,

0)
},

5.2.1 parityConfig, configName

The first entry is of type RF_ParityConf ig_t. This is a single-character identifier
of the RAID architecture. Every entry in this table should have a unique value for its
RF_Par ityConf ig_t. This is the character identifier used in the RAIDframe config-
uration files to identify the RAID architecture. The second entry is of type char*, and
is a string identifying the RAID architecture. For instance, "RAID Level 5" above.
There is no limit on the length of this string, but it should be reasonably short, and not
contain newlines, tabs, or any special characters.

5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg

The next two entries are for parsing layout-specific information from the user's RAID-
frame configuration file. The first is a function returning int, which is used to parse the
relevant portion of the configuration file. The second, MakeLayoutSpecificArg, is
an extra argument to this function, to make it easier to use the same parsing function
with different parameters for different RAID architectures.

The function has a declaration of the form:

int MakeLayoutSpecific(FILE *fp, RF_Config_t *cfgPtr,

void *arg);

The first argument is a regular file pointer, which has advanced to the beginning of the
layout-specific section of the configuration file (note that this section may begin with
one or more blank lines). The second argument is the configuration which is currently

RAIDframe: A Rapid Prototyping Tool for RAID Systems 103

Version 1.0 6/24/96

Extending RAIDframe

being parsed (RF_Conf ig_t is defined in r f_conf igure. h). The final argument,
arg, is the aforementioned MakeLayoutSpecif icArg.

The MakeLayoutSpecif ic function should perform all necessary parsing and com-
putation, and allocate memory to store its results (as necessary). The number of bytes
allocated for this purpose should be stored in cf gPtr->layoutSpecif icSize,
and a pointer to this memory should be stored in cfgPtr->layoutSpecif ic. This
should be a single, contiguous block of memory that is fully copyable (that is, contains
no pointer to other regions of memory). This can later be retrieved by other layout-spe-
cific functions.

Upon success, the MakeLayoutSpecif ic operation should return 0. Otherwise, it
should return a meaningful error value from sys / errno. h.

5.2.3 Configure

The Configure operation is called at start-of-day to initialize any layout- and array-
specific information, and to allocate any extra resources the RAID architecture may
require. It has the form:

int Configure(RF_ShutdownList_t **shutdownListp,

RF_Raid_t *raidPtr, RF_Config_t *cfgPtr);

The shutdown list is provided so that any necessary shutdown and cleanup activities
may be registered at this configuration time. In addition, raidPtr->cleanupList
is of type RF_ShutdownList_t*. The contents of raidPtr->cleanupList are
deallocated after the array is quiesced and shut down. The array which is being config-
ured is raidPtr, and the user's configuration file is described fully by c f gPtr.

On success, the Configure routine should return 0. On failure, it should return a
descriptive, nonzero error code. Additionally, all memory which the Configure
routine allocated should either be deallocated or enqueued on
raidPtr->cleanupList. Likewise, any necessary cleanup activities should be
performed immediately before returning a failure, or enqueued on shutdownList.

The Configure routine may use the field
raidPtr->Layout. layoutSpecif iclnf o, which is of type void*, to store
any array-specific information which it desires. It should also initialize
raidPtr->totalSectors to the number of data sectors the array is capable of
storing (note that this does not include the number of sectors which have been allocated
to redundancy data). Additionally, there are several fields in the raidPtr->Layout
structure (of type RF_RaidLayout_t, defined in rf _layout. h) which this routine
is required to initialize. They are as follows:

TABLE 24 RF_RaidLayout_t fields to be filled in by Configure

Layout Field Contents

numStripe number of stripes in the array

dataSectorsPerStripe number of data sectors in each stripe

104 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Installing a New RAID Architecture

Layout Field Contents

bytesPerStripeUnit number of bytes in each stripe unit

numDataCol number of data columns in each stripe

numParityCol number of parity columns in each stripe

5.2.4 MapSector, MapParity, MapQ

The MapSector, MapParity, and MapQ routines provide basic array-layout infor-
mation. They are declared as:

void MapSector (RF_Raid_t TaidPtr,

RF_RaidAddr_t raidSector, RF_RowCol_t *row,

RF_RowCol_t *col, RF_SectorNum_t *diskSector,

int remap);

void MapParity(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidSector, RF_RowCol_t *row,

RF_RowCol_t *col, RF_SectorNum_t *diskSector,

int remap);

void MapQ(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,

RF_RowCol_t *row, RF_RowCol_t *col,

RF_SectorNum_t *diskSector, int remap);

Each of these functions is called to determine the location of a single sector in the array.
The array is indicated by raidPtr. The sector is indicated by raidSec tor, which is
the sector number of the array to be mapped. The function assigns *row and *col to
indicate which disk the sector resides on, and *diskSector is the sector number on
that disk which the mapping has yielded.

The MapSector routine is used to map data sectors to physical disk sectors. All array
architectures must provide this routine. This should yield a unique mapping for every
sector in the array.

The MapParity routine is like MapSector, except that the resulting sector is not the
corresponding physical data sector, but rather the corresponding physical parity sector.
In most architectures, many data sectors will map to the same parity sector. In non-fault-
tolerant architectures, this routine may be NULL.

The MapQ routine is similar to MapParity, except it is used to map an additional
redundancy unit. This is provided by dual-fault-tolerant architectures, such as Even-Odd
and Raid Level 6.

If the remap argument has the value RF_REMAP, the mapping should be to the spare
sector corresponding to the sector to which the mapping function would otherwise yield.

R AIDf rame: A Rapid Prototyping Tool tor RAID Systems 105

Version 1.0 6/24/96

Extending RAIDframe

5.2.5 IdentifyStripe

The IdentifyStripe routine is used to determine which physical disks contain sec-
tors that share a stripe with a particular sector. This routine has the declaration:

void IdentifyStripe(RF_Raid_t *raidPtr,

RF_RaidAddr_t addr, RF_RowCol_t **diskids,

RF_RowCol_t *outrow);

The first argument, raidPtr, is the array in which the mapping is to be performed.
The second argument, addr, is the sector in said array for which IdentifyStripe
is to determine the disks of its fellow stripe members. This function should assign to
♦diskids an array of (raidPtr->Layout.numDataCol +
raidPtr- >Layout. numParityCol) RF_RowCol_t elements. These are the
column numbers of the disks. The row of disks which the stripe occupies should be
assigned to *outrow.

When reading the extant RAIDframe code, one may note that some architectures actu-
ally generate an ordered list of disks in the stripe. This is not necessary; rather, this is a
historic convention used to make debugging easier.

5.2.6 SelectionFunc

When an I/O request enters the system, it is passed through
rf_SelectAlgorithm () in rf _aselect. c. This routine uses the layout-spe-
cific DAG selection routine to choose a DAG creation function for a particular access.
This routine, SelectionFunc, is declared as:

void SelectionFunc(RF_Raid_t *raidPtr, RF_IoType_t type,

RF_AccessStripeMap_t *asmap,

RF_VoidFuncPtr *createFunc);

This routine is used to determine what DAG creation function a particular access to the
array indicated by raidPtr should use. RF_IO_TYPE_READ and
RF_IO_TYPE_WRITE are the only legal values for the type argument, which indi-
cates the direction of the access. The asmap argument (of type
RF_AccessStripeMap_t, found inrf _layout. h) describes the access in its
entirety, including physical disk mappings for data and parity, ranges accessed, and the
presence of disk failures which may affect the access. The SelectionFunc routine
should take these failures into account when determining the creation function to use,
potentially determining that an access should be performed in degraded mode, rather
than fault-free. If a unit to be accessed has failed, but is already reconstructed, the
SelectionFunc routine should also take this into account, and alter the physical
mappings in asmap to reflect the fact that the data has been reconstructed. This is espe-
cially important when the access is a write, because without this remapping, a recon-
structed data or parity unit will not be updated to reflect the new contents of the stripe.

A pointer to the DAG creation function should be assigned to *createFunc. A later
section details DAG creation operations, and how this function should behave. Assign-
ing a value of NULL to *createFunc indicates that a DAG cannot be created for this

106 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Installing a New RAID Architecture

access, rf _SelectAlgorithm () will initially attempt to create one graph for each
parity stripe in the access's codeword. If this creation is unsuccessful,
rf _SelectAlgorithm () will then try to create a set of graphs for each stripe unit
within that parity stripe. If graphs cannot be generated for each stripe unit,
r f _SelectAlgorithm () will attempt to create a DAG for each sector in each
stripe unit in the codeword. Finally, if this fails, rf _SelectAlgorithm () declares
failure, and the access is failed.

5.2.7 MapSIDToPSID

The MapSIDToPSID routine is used by architectures for which the relationship
between data stripes and parity stripes is not an equivalence. For instance, parity declus-
tering allows multiple stripes to be packed into a single parity stripe, to increase the size
of the reconstruction unit without affecting the size of the stripe unit. This routine has
the declaration:

void MapSIDToPSID(RF_RaidLayout_t *layoutPtr,

RF_StripeNum_t stripelD, RF_StripeNum_t *psID,

RF_ReconUnitNum_t *which_ru);

The layout of the array in which this mapping is to be performed is described by
layoutPtr. The stripe number of the stripe to be mapped is stripelD, and the
resulting parity stripe is stored by MapSIDToPSID in *psID. This routine also stores
the reconstruction unit of the stripe in *which_ru. The identity mapping is most
common here; that is:

*psID = stripelD;

*which_ru = 0;

This is performed automatically if the MapSIDToPSID routine for an architecture is
NULL, or if the number of stripe units per parity unit for a layout is 1.

5.2.8 GetDefaultHeadSepLimit

The disk-directed reconstruction code has the ability to keep disk arms synchronized
with one another when sweeping surviving columns. This is controlled by the head sep-
aration limit for the array, which is assigned at start-of-day by calling the GetDe-
faultHeadSepLimit routine, which is declared as:

RF_HeadSepLimit_t GetDefaultHeadSepLimit(

RF_Raid_t *raidPtr);

This function takes as its sole argument the array in question, and returns how many sec-
tors ahead of the slowest disk the fastest disk is allowed to be. That is to say, it returns
the maximal difference in sector number between the lowest-numbered-sector currently
being read by the disk-directed reconstruction code, and the highest-numbered-sector
currently being read by the disk-directed reconstruction code (neglecting stripes being
read for forced reconstruction). If this routine is NULL, a value of (-1) is assumed.
(-1) indicates that this separation is unlimited. Note that (-1) is the only legal value

less than 1.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 107

Version 1.0 6/24/96

Extending RAIDframe

5.2.9 GetDefaultNumFloatingReconBuffers

The disk-directed reconstruction module maintains a pool of "floating" reconstruction
buffers, which are not assigned to any particular disk, but are instead used to store the
results of additional I/Os to disks which would otherwise be idle. An architecture may
specify a minimum number of these buffers to keep for each array by providing a
GetDefaultNumFloatingReconBuf fers routine, which has the following
form:

int GetDefaultNumFloatingReconBuffers(

RF_Raid_t *raidPtr);

This routine is called at start-of-day on the array, and should return the minimum num-
ber of floating reconstruction buffers to maintain for the array.

5.2.10 GetNumSparePUs

Architectures which support distributed sparing tell the system how many spare recon-
struction units there are on each disk with the GetNumSparePUs routine, which has
the form:

RF_ReconUnitCount_t GetNumSparePUs(RF_Raid_t *raidPtr);

Given an array raidPtr, this routine returns the number of spare reconstruction units
there are on each disk.

5.2.11 InstallSpareTable

Distributed-sparing architectures which have dynamic sparing mappings may need to
compute a new sparing table when reconstruction begins for a disk. To do so, these
architectures provide an InstallSpareTable routine with the following declara-
tion type:

int InstallSpareTable(RF_Raid_t *raidPtr,

RF_RowCol_t frow, RF_RowCol_t fcol);

The arguments indicate the array to determine the mapping for (raidPtr), and the row
and column (frow and fcol, respectively) of the failed disk to be reconstructed to
spare space. On success, this routine returns 0. On failure, it returns a descriptive non-
zero error code.

5.2.12 SubmitReconBuffer

When the disk-directed reconstruction code finishes reading a buffer, it must either use
it to compute the contents of a failed unit, or save it until it has enough other information
from the stripe from which the buffer originated to do so. When a read of a buffer from a
surviving disk completes, an architecture's SubmitReconBuffer routine is called.
This routine is declared as:

int SubmitReconBuffer(RF_ReconBuffer_t *rbuf,

int keep_it, int use_committed);

108 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Installing a New RAID Architecture

The buffer which has just been read is rbuf (the array from which it was read is
rbuf ->raidPtr). If keep_it is nonzero, the SubmitReconBuf f er routine may
hold the buffer, even if it cannot immediately use its contents. If keep_it is 0, the
SubmitReconBuf f er routine must either immediately use or copy the contents of
rbuf. If use_committed is nonzero, this routine must consume a buffer off the
committedRbuf s list of the row's reconstruction control unit, even if such a buffer is
not needed (in the case where the buffer is not needed, it may immediately be released
with rf_ReleaseFloatingReconBuf fer ()). In turn, the
SubmitReconBuf f er routine should should call rf_CheckForFullRbuf ()
when a target RF_ReconBuf f er_t contains the reconstructed data for the failed unit
in the stripe.

If the SubmitReconBuf fer routine for an architecture is NULL, the architecture
cannot reconstruct failed units.

5.2.13 VerifyParity

RAIDframe has a built-in parity verification and correction mechanism (which is also
used to format arrays with correct parity, and can be used in various tests for debugging
purposes to determine that parity is correct for an access). This relies on the Ver i f y-
Par i ty routine which an architecture must provide to check and correct (if requested)
the redundancy information for a stripe. This routine has the form:

int VerifyParity(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidAddr, RF_PhysDiskAddr_t *parityPDA,

int correct_it, RF_RaidAccessFlags_t flags);

The array in which redundancy information is to be verified is raidPtr. The stripe for
which this information is to be checked is the one containing sector number
raidAddr. To improve performance, and ease the coding of Veri f yPari ty, the
pari tyPDA argument provides the already-complete mapping of the redundancy
information to physical addresses for this stripe. If correct_it is nonzero, and the
redundancy information is not correct, new redundancy information should be
computed and written for this stripe. Finally, any RAID accesses that must be performed
should use the flags given as the last parameter to the VerifyParity routine.

When reading existing data in the stripe, or writing new redundancy information, the
VerifyParity routine should create trivial DAGs which do so. The function
r f _MakeSimpleDAG () in r f _par ityscan. c assists in this task.

The Ver i f yPar i ty routine returns a status value indicating the current correctness of
the parity before and after execution. The following values, defined in
r f _par ityscan. h, are the legal returns for this routine:

RAIDframe: A Rapid Prototyping Tool lor RAID Systems 109

Version 1.0 6/24/96

Extending RAIDframe

TABLE 25 Return Values for the VerifyParity Operation

Value

RF_PARITY_OKAY

RF PARITY CORRECTED

RF PARITY BAD

RF_PARITY_COULD_NOT_CORRECT

RF_PARITY_COULD_NOT_VERIFY

Meaning

redundancy information is correct

redundancy information was incorrect,
but correct_it was nonzero, and it
is now correct

redundancy information is not correct,
and correct_it was 0

redundancy information is not correct,
correct_it was nonzero, and
correct redundancy information could
not be computed or could not be written

redundancy information could not be
verified, either current data or
redundancy could not be read, or
correct redundancy information could
not be computed

5.2.14 faultsTolerated

The faultsTolerated field of the mapsw entry for a RAID architecture indicates
the minimum number of faults that an array can tolerate without data loss. For example,
Raid Level 4 can tolerate exactly one disk failure, so its faultsTolerated is 1.
Raid Level 0 cannot tolerate any failures, so its faultsTolerated is 0. Raid Level 1
(mirroring) can potentially survive several faults; however, if both members of a mirror
pair fail, data is lost; thus, its faultsTolerated is 1, because that is the minimum
number of failures which it can guarantee surviving.

5.2.15 states

The states field lists the order in which an access to this array architecture passes
through the access state machine. This field is an array of elements of type
RF_AccessState_t. The last element in this array must be r f _LastState,
which indicates that the access is complete. Most architectures will wish to use the value
Def aultstates in this field, which is a standard ordering of states.

5.2.16 flags

The final field of a mapsw entry is flags, which are a set of flags ORd together to indi-
cate that the architecture has certain standard properties. Some architectures will wish to
provide a 0 in this field (indicating that none of these flags apply). Legal values include:

110

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

Implementing New RAID Operations

TABLE 26 RF_LayoutSWJ Flag Values

Value

RF_DISTRIBUTE_SPARE

RF_BD_DECLUSTERED

Meaning

architecture supports distributed sparing

this is a declustered architecture which requires
externally generated block-design tables

5.3 Implementing New RAID Operations

5.3.1 DAG Creation

As discussed in Section 5.2.6 on page 106, RAIDframe graph-creation functions must
at least be able to create graphs for accessing single blocks at a time for accesses to be
successfully generated. RAIDframe will currrently never attempt to create graphs for an
access which spans more than a single parity stripe (such accesses are broken up into
sets of single-parity-stripe accesses, which are executed concurrently).

The appropriate graph creation routine for an access or portion of an access is deter-
mined by an architecture's SelectionFunc. The SelectionFunc provides a
void function pointer. This function should have the form:

void DagCreationFunc(RF_Raid_t *raidPtr,

RF_AccessStripeMap_t *asmap, RF_DagHeader_t

void *bp, RF_RaidAccessFlags_t flags,

RF_AllocListElem_t *allocList);

^dagji,

The array and parameterization of the access are described by raidPtr and asmap,
respectively. The DAG creation function should fill in the empty DAG header dag_h.
At the time the DAG creation function is called, dag_h is initialized as an enabled
DAG with no nodes. In the RAIDframe kernel environment, bpis a struct buf *
which represents the access's target buffer (most DAG creation functions will not need
this information at all. Some may choose to operate differently for kernel-internal or
user accesses, so this information is available). Outside the kernel, bp is generally
ignored. The flags variable is a bitwise OR of values from rf _dagf lags. h. Many
of these flags are not applicable to the DAG creation function, but again, they are pro-
vided for those few cases where the DAG creation function wishes to do something dif-
ferent as a result. Finally, a per-access memory allocation list, allocXist, is provided
for any temporary storage which may need to be allocated. This not only includes extra
buffers for computing redundancy information before storing it, but also includes the
storage required to hold the actual nodes of the DAG themselves.

5.3.2 Creating New Primitive Operations

The most important rule to follow when creating primitive operations is that they must
be nonblocking. Primitives such as disk read employ call-back functions—the disk
read is scheduled, the primitive returns, and the call-back routine is later called when the

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

111

6/24/96

Extending RAIDframe

disk read actually completes. If a primitive is allowed to block, RAIDframe will not be
able to properly schedule its workload (and may deadlock).

In its current release, RAIDframe provides a variety of primitive operations which may
be reused by architectures that you later implement.

5.4 Adding a New Disk-Queueing Policy

RAIDframe supports multiple queueing disciplines for pending disk I/Os. The follow-
ing section explains how to add a new queueing policy.

A queueing policy must maintain a set of pending I/Os for a single disk. Although an
array may have many disks, a queueing policy is only aware of disks on an individual
basis. Therefore, it only needs to support a limited number of simple operations: create,
enqueue, dequeue, peek, and promote.

To add a queueing policy, you must register it with the disk queue manager. This is done
by modifying the diskqueuesw structure in r f _diskqueue. c. Entries in this
structure are of type RF_DiskQueueSW_t (defined in rf_diskqueue.h), and
look like:

{"fifo", /* FIFO */

rf_FifoCreate,

rf_FifoEnqueue,

rf_FifoDequeue,

rf_FifoPeek,

rf_FifoPromote},

The first entry is the queueType (RF_DiskQueueType_t) and is a string which is
used to identify the queueing discipline. RAIDframe configuration files will use this
string to request this queueing policy. The remainder of the entries are function entry
points, described in the sections below. You should add new policies to the end of the
diskqueuesw array. The first entry in this array (FIFO) is the default policy (which is
used when the configuration parser cannot recognize the requested queueing policy as
specified in the RAIDframe configuration file).

5.4.1 Create Operation
Your creation function should have a declaration of the form:

void *rf_PolicynameCreate(RF_SectorCount_t
sectors_per_disk, RF_AllocListElem_t *cl_list,
RF_ShutdownList_t **listp)

This function is called to create and initialize a disk queue. It returns a generic (void
*) pointer, which will be used later to identify the individual queue to your queueing
module. (One disk queue will be created for each disk). The size of each disk in sectors
is passed by the value in sectors_per_disk. An allocation fist is passed as
cl_list. Any memory which your queueing policy allocates should be registered

112 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Adding a New Disk-Queueing Policy

with this allocation Hst by using RF_CallocAndAdd or RF_MallocAndAdd to
allocate the memory. If any special operations need to be performed to shut down the
queue, these should be resgistered with the shutdown list listp.

5.4.2 Enqueue Operation

Your enqueue function should have a declaration of the form:

void rf_PolicynameEnqueue (void *qptr, RF_DiskQueueData_t
*req, int priority)

This function is called to add a request to the disk's queue. The queue is uniquely iden-
tified by qptr, which is the returned value from the queue creation function. The
request is pointed to by req and is of type RF_Di skQueueData_t (defined in
rf_diskqueue. h). The priority is either of type RF_IO_NORMAL_PRIORITY or
RF_IO_LOW_PRIORITY. When dequeueing, you should always give preference to
dequeueing I/Os of NORMAL priority over I/Os of LOW priority. The
RF_DiskQueueData_t structure contains two pointers, next and prev, both of type
RF_DiskQueueData_t *, which may be used by this queueing code to maintain
lists of pending I/Os.

The Enqueue, Dequeue, Peek, and Promote operations need not be protected internally
with locks; the discipline-independent disk-queueing code in rf_diskqueue. c will
do this automatically.

5.4.3 Dequeue Operation

Your dequeue function should have a declaration of the form:

RF_DiskQueueData_t *rf_PolicynameDequeue(void *qptr)

This function is called to remove a request from the disk's queue. The queue is uniquely
identified by qptr, which is the returned value from the queue creation function. If an
I/O of priority RF_IO_NORMAL_PRIORITY is in the queue, it should be returned. If
there is more than one such I/O, the queueing module should select one and return it (for
instance, FIFO queueing will return the first such I/O to be enqueued). If no I/O of
NORMAL priority is awaiting dispatch in this queue, an I/O of priority
RF_IO_LOW_PRIORITY may be returned. If there are no I/Os of any priority in the
queue, this operation should return NULL. Before returning a valid pending I/O, it
should be removed from the queue.

5.4.4 Peek Operation

Your peek function should have a declaration of the form:

RF_DiskQueueData_t *rf_PolicynamePeek(void *qptr)

This function should behave identically to the dequeue function, except that it should
not remove the I/O from the list of pending I/Os for this disk. Additionally, if the Peek
operation is called, and there are no subsequent Enqueue, Dequeue or Promote opera-
tions, another Peek or Dequeue operation should return the same I/O (that is, a queue

RAIDframe: A Rapid Prototyping Tool for RAID Systems 113

Version 1.0 6/24/96

Extending RAIDframe

should be deterministic for its contents at any given time, and its choice of which I/O to
execute next should be affected only by a change of its contents).

5.4.5 Promote Operation

Your promote function should have a declaration of the form:

int rf_PolicynamePromote(void *qptr, RF_StripeNum_t par-
ityStripelD, RF_ReconUnitNum_t which_ru)

This operation should search the queue for entries for which the parityStripelD
and which_ru fields of the RF_DiskQueueData_t structure match those which
are passed as arguments to this function, and which have a priority field valued at
RF_IO_LOW_PRIORITY. Each such I/O should be re-marked as
having priority RF_IO_NORMAL_PRIORITY, and any necessary rearrange-
ments of the queueing policy's data should be performed at this time. This function
should return the number of such I/Os it has found and promoted to NORMAL priority or
zero if none such were found.

5.5 Porting RAIDframe to Other Systems

Currently all three versions of RAIDframe—stand-alone user application, event-driven
simulator, and in-kernel device driver—run on DEC Alphas running pre-4.0 versions of
the Digital UNIX operating system. Additionally, the simulator runs on IBM RS/6000s
running ATX. This section is intended as an aid in porting RAIDframe to new platforms.

5.5.1 Basic Types

The first step is to define a set of basic types in r f _types. h. You must provide vari-
ous sizes of signed and unsigned integers for your system. Table 27 lists the types you
must define, and what they must be defined to.

TABLE 27 Basic RAIDframe integer types

RAIDframe type Meaning

RF_int8 signed 8-bit integer

RF_uint8 unsigned 8-bit integer

RF_intl6 signed 16-bit integer

RF_uintl6 unsigned 16-bit integer

RF_int32 signed 32-bit integer

RF_uint32 unsigned 32-bit integer

RF_int64 signed 64-bit integer

RF_uint64 unsigned 64-bit integer

114 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Porting RAIDframe to Other Systems

5.5.2 Byte Ordering

If the target platform is big-endian, the macro RF_IS_BIG_ENDIAN must be set to 1
in r f _types. h. If it is not, RF_IS_BIG_ENDIAN must be set to 0.

5.5.3 Word Size

The file rf_dagf uncs. c contains several optimized XOR routines. These routines
require that the macro LONGSHIFT be defined in this file. LONGSHIFT should be
defined to the log2 (sizeof (long)) for your system (for example, on a system
with 64-bit longs, this would be 3, on a system with 32-bit longs, this would be 2).

5.5.4 Timing

Section 5.1.8 describes various timing macros defined in r f _etimer. h which pro-
vide precision timing. These are architecture-dependent. Ideally, these functions provide
microsecond-accurate timing with little or no overhead. When porting to a new plat-
form, the nature of the precision/overhead tradeoff must be characterized, and an appro-
priate implementation provided. Some architectures need assembly-language
assistance; this should be added to r f_readcc. s.

5.5.5 SCSI Operations

SCSI operations are isolated within rf_camlayer.c. Ports of more than just the simulator
should provide code in this file for such operations as SCSI Read Capacity.

5.5.6 Threads

Section 5.1.6 details the thread operations defined in rf_threadstuf f. c and
r f _threads tuf f. h. Ports which provide user-level-driver or kernel functionality
must provide appropriate platform-dependent thread operations here. A Pthreads imple-
mentation is already provided for the user-level driver; architectures for which a compli-
ant Pthreads implementation is available should be able to re-use this.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 115

Version 1.0 6/24/96

Extending RAIDframe

116 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

Appendix: Graph Library

The graphs necessary for implementing the RAID architectures listed in Table 6 in
Chapter 3 are available for reuse in the graph library and they are shown in the following
section. We have categorized the graphs implemented in RAIDframe by the particular
architecture for which they were designed; in some cases, graphs are reused among sev-
eral different RAID levels.

RAID Level 0

As we already explained in Chapter 1, RAID level 0 arrays do not encode data; there-
fore, a RAID level 0 array is not fault-tolerant. B ecause of this, only nonredundant oper-
ations are available for use. Figure 20 illustrates the structure of nonredundant read and
write operations. The NOP operations guarantee that each DAG has single source and
sink nodes. Each graph is capable of supporting one or more simultaneous primitive
operations, allowing the graph to scale with the size of the user request.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 117

Version 1.0 6/24/96

FIGURE 20 Nonredundant Graphs

Nonredundant Read Nonredundant Write

RAID Level 1, Chained Declustering, Interleaved
Declustering

RAID level 1 arrays are fault tolerant and employ copy-based redundancy to survive
single disk faults without loss of service. This means that operations are defined to ser-
vice both fault-free and degraded read and write requests. Table 28 specifies which
operations are used to service a request given the state of the disks.

TABLE 28. RAID Level 1 Graph Selection

Disk Faults

none, single disk

Request

read

write none

write single disk

Graph

nonredundant read

mirrored write

nonredundant write

In addition to the nonredundant graphs described in Figure 20, RAID level 1 arrays
require an additional write operation, the mirrored write, which is responsible for main-
taining copy-based redundancy in a fault-free array. This operation, illustrated in
Figure 21, contains twice the number of write operations as a nonredundant write oper-
ation because a copy of each symbol is written to both a primary and a secondary disk.

118

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAID Level 4, RAID Level 5, Parity Declustering

FIGURE 21 Mirrored-Write Graph

RAID level 1 arrays use copy-based encoding to survive disk faults and require that
data must be written to two independent disks. In this graph, the write operations on
the left represent writes to a primary disk(s) and write operations on the right repre-
sent writes of data to secondary disk(s). The NOP source node of the nonredundant
write graph is replaced by a Commit node.

RAID Level 4, RAID Level 5, Parity Declustering

RAID levels 4 and 5 tolerate disk faults through the use of parity encoding. As expected,
the operations used to satisfy read and write requests are largely the same; however,
because it is possible to write only a fraction of a codeword, additional write operations
are required. Namely, the small write operation (Figure 22) which is used to write data
to less than half of a codeword and the reconstruct write operation (Figure 23 on
page 121) which is used to write data to more than half, but less than a full, codeword.
Table 29 breaks down graph selection for RAID level 4 and 5 arrays. Because these two
arrays differ only in mapping, the same table applies to both architectures.

TABLE 29. RAID Levels 4 and 5 Graph Slection

Request
Disk
Faults Graph

read none nonredundant read

read data disk degraded read

read parity disk nonredundant write

write < 50% of codeword none small write

write > 50% and < 100% none reconstruct write

write entire codeword none large write

write data disk reconstruct write

write parity disk nonredundant write

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 119

6/24/96

The small write operation, illustrated in Figure 22 on page 120, writes both data and
parity to disk. Parity is computed as:

Parity ne„ = Parity M®DataM®Datan (EQ1)

The cluster of read operations on the left side of the graph represent the read of old data
and the single read operation on the right represents the read of old parity. Once parity
has been computed, the new data and parity symbols are written to the array.

FIGURE 22 Small-Write Graph

(Wr J (Wr J

In the reconstruct write operation, illustrated in Figure 23, parity is computed from all
symbols in the codeword. The Rd operations collect data symbols which are not being
overwritten. Once all data symbols are collected, parity is computed and the new data
and parity symbols are written to disk

120

Version 1.0

RAIDf rame: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAID Level 6

FIGURE 23 Reconstruct-Write Graph

The Rd operations read the data symbols which are not being overwritten. The left-
most Wr operations overwrite data symbols and the Wr operation on the right over-
writes parity.

RAID Level 6

In addition to parity, RAID level 6 arrays employ a second check symbol to allow them
to survive two simultaneous disk failures. We refer to this second symbol as "Q." The
graphs used by this architecture are summarized in Table 30.

TABLE 30. RAID Level 6 Graph Selection

Request

read

read

read

read

read

read

read

Disk Faults

none

single data disk

parity disk

Qdisk

two data disks

data + parity disks

data + Q disks

Graph

nonredundant read

degraded read

nonredundant read

nonredundant read

PQ double-degraded read

PQdegraded-DPread

degraded read

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

121

6/24/96

TABLE 30. RAID Level 6 Graph Selection

Request Disk Faults Graph

read parity t- Q disks nonredundant read

write < 50% of codeword none PQ small write

write < 50% of codeword parity PQ small write, P omitted

write < 50% of codeword Q small write

write > 50% and < 100% none PQ reconstruct write

write > 50% and < 100% parity PQ reconstruct, P omitted

write > 50% and < 100% Q reconstruct write

write 100% none PQ large write

write 100% parity PQ large write, P omitted

write 100% Q large write

write one data disk PQ reconstruct write

write two data disks PQ double-degraded write

write data + parity disks PQ reconstruct, P omitted

write data + Q disks reconstruct write

write parity + Q disks nonredundant write

Read operations to fault-free or single-fault arrays are handled in much the same man-
ner as RAID level 5. When an attempt is made to read a codeword with two missing data
symbols, a PQ double-degraded-read operation, illustrated in Figure 24, is used.

122

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAID Level 6

FIGURE 24 PQ Double-Degraded-Read Graph

This operation is used when two data units are missing from the codeword. The left-
most Rd operation reads the old value of parity and the right-most operation reads the
old value of Q. The center Rd operations read all surviving data in the codeword. The Q
operation regenerates a single missing data symbol and the XOR node regenerates the
other missing symbol.

Reading data from a codeword in which both a data symbol and parity are missing
requires the use of the "Q" symbol to reconstruct the missing data. The operation to do
this, the PQ degraded-DP-read operations is illustrated in Figure 25.

FIGURE 25 PQ Degraded-DP-Read Graph

Similar to RAID level 5 arrays, writing less than half of a codeword to a RAID level 6
array is best done using a read-modify-write algorithm. The PQ small write operation,

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems 123

6/24/96

illustrated in Figure 26, writes new data symbols and computes new values of parity and
"Q" using Equation 1 on page 120. If either the parity or Q disks fail, this same graph is
used but the chains which would normally update the now-failed check symbol are
omitted.

FIGURE 26 PQ Small-Write Graph

This graph is similar to the small-write graph (Figure 22) but with an extra chain
added to update the "Q" disk. The Commit node blocks all writes from initiating
until all new symbols (data, parity, and Q) have been computed.

Writing over half, but less than an entire, codeword is best done by a reconstruct write,
similar to the one used in RAID level 5. Illustrated in Figure 27, the PQ reconstruct-
write operation reads the data symbols not overwritten, meaning that the entire (new)
codeword is held in memory. Parity and Q are then computed and the new data, parity,
and Q are then written to disk. This operation is also used when data is being written to
an array in which a single data disk has failed and a fault-free disk is being written.

124

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAID Level 6

FIGURE 27 PQ Reconstruct-WriteGraph

This graph is similar to the reconstruct-write graph (Figure 23) but with an extra chain
added to update the "Q" disk. In this example, assume that D1 and D2 are to be written.
The Rd operations read old data (DQ, D3 and D4). New values of P and Q are then com-
puted and the writes of D-|, P, and Q are initiated.. The Commit node blocks all Wr
nodes from executing until all new symbols have been computed.

If two data disks have failed and data is written to at least one, but not both, of the failed
disks, the PQ double-degraded write operation, illustrated in Figure 28, is used. This
graph employs an algorithm similar to the one used in the PQ degradedwrite operation
but must reconstruct the failed data which is not overwritten.

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

125

6/24/96

FIGURE 28 PQ Double-Degraded-Write Graph

L^JLRJ

Assume that Dj and D2 are to be overwritten. Because D4 is missing, the PQ recon-
struct operation cannot be used. This operation completes the requests by recon-
structing D4 and then using the reconstract-write algorithm. First all surviving
symbols are read. The Rd actions in the center read the read of data (e.g., DQ D-| and
D3), the Rd operations on the ends read old P and Q. The Q operation reconstructs
D4. At this point, the entire codeword is known and the computation and writing of
parity, Q and data can begin. The Commit node was added to prevent Wr operations
from executing before the XOR and Q nodes have completed.

Finally, writing data to the entire codeword is simply performed using the PQ large-
write operation. nivtstrated in Figure 29, the operation overwrites every symbol in the
codeword.

126

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

6/24/96

RAID Level 6

FIGURE 29 PQ Large-Write Graph

Instead of allowing new data to be written concurrently while the parity overwrite
record is computed, the Commit node blocks the writes of new data until the XOR and
Q nodes have executed completely.

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

127

6/24/96

128 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

allocation lists
memory 93

array operation
large write 31
read-modify-write 29
reconstruct write 30

atomic 43
average seek time 14

B
background reconstruction process 31

channel program 46
check-disk overhead 34
commit point 49
control flow 66
control programs 79
copyback phase 36
correctness verification 50

data dependence
anti 48
true 48

debug options
creating new 100

DEC Alphas 73,114
degraded-mode read test 71
dependencies 46
device driver 61
directed, acyclic graphs 47
disk

actuator 17
cylinder 17
interface 67
mirroring 16
sector 17
track 17

disk array
layout 20
performance evaluation 38

disk-geometry model 61
disk-oriented algorithm 55
disk-queue scheduling algorithms 67
disk-queueing policy

adding new 112
distributed controllers 36
do action 51

error recovery
backward 43
forward 42
roll-away 43

error-control code
additive-3 code 34
full-n 34
N-dimensional parity 34

event-driven simulator 60
executing DAGs 51
execution engine 66
extending built-in tracing of RAIDframe performance 101

file write-read test 71
file-dispersal matrix 34
floating 34
forward execution 53

graph selection 68
group size 34

H
high-bandwidth parallel buses 20

I
installing a new architecture 102
installing and using the device driver 74
installing stand-alone application and simulator 73
invariants 42

latent sector failures 33
layout test 71
left-symmetric organization 26
library

disk-geometry 67
disk-queue 67
graph 68
primitive operations 68

linear address space 20
Log-Structured File System (LFS) 35
loop test 71

M
mapping 67
maximum-distance-separable (MDS) codes 34
mean-time-to-data-loss (MTTDL) 38
mean-time-to-failure 16
memory allocation 92
mirrors

distorted 39
doubly distorted 39

mode
degraded 26
fault-free 26

model checking 50

N
network file systems based on RAID 39
node

NOP 48
predicate 52,53
source 48

node state 51

P
parity

RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0

129

4/24/96

disk 22
encoding 16
stripe 25

parity-update record 35
pass-fail devices 45
porting RAIDframe 114
positioning 18
primitive operations 43

creating new 111

dedicated 36
distributed 36
parity 36

stand-alone user application 60
state machine 64
stripe unit 20
striping studies 36
synthetic workload 60
synthetic workload generator 71

queueing operation
create 67,112
dequeue 67,113
enqueue 67,113
peek 67,113
promote 67,114

queueing policies
CSCAN 67
CVSCAN 67
FIFO 67
SCAN 67
SSTF 67

R
RAID Level

1 21
2 22
3 22
4 25
5 26
6 121

RAID operations
implementing new 111

RAIDframe features 59
random read or write test 71
reconstruction

algorithm 31
states 69

reconstruction test 71
reliability modeling 38
return codes 92
rf_ctrl 80
rf_setconfig 80
rooted graphs 48
rotational latency 14

TickerTAIP 47
timer and trace mechanism 102
trace file 60
types and conventions 91

U
undo action 51
user-level front ends 60

driver 60
rf-genplot 60

video-on-demand 15

W
workload file 71
write-only disk cache 39

zero-latency operation 18
zoned bit recording (ZBR) 18

scientific visualization 15
script test 71
seeking 18
shortest-seek optimization 27
shutdown lists 93
simple reliability calculation 16
single-access test 71
skew

cylinder 19
track 19

small-form-factor drives 14
sparing

130

Version 1.0

RAIDframe: A Rapid Prototyping Tool for RAID Systems

4/24/96

Bibliography

[Aho88] Aho, A. V., Sethi, R., andUllman, J. D. Compilers: Principles, Techniques, and
Tools. Reading, MA: Addison-esley Publishing Company (March, 1988).

[ANSI86] American National Standard for Information Systems—Small Computer Sys-
tem Interface (SCSI), ANSIX3.132-1986, New York NY, 1986.

[ANSI91] American National Standard for Information Systems—High Performance
Parallel Interface—Mechanical, Electrical, and Signalling Protocol Specification,
ANSIX3.183-1991, New York NY, 1991.

[ATC90] Array Technology Corporation, RAID+ Series Model RX, Boulder, CO, 1990.
Product description.

[Arulpragasam80] Arulpragasam, J. and R. Swarz, "A Design for State Preservation on
Storage Unit Failure," Proceedings of the International Symposium on Fault Tolerant
Computing, 1980, pp. 47-52.

[Bell89] Bell, CG., "The Future of High Performance Computers in Science and Engi-
neering," Communications of the ACM, Vol. 32, No. 9, 1989, pp. 1091-1101.

[Bitton88] Bitton, D. and J. Gray, "Disk Shadowing," Proceedings of the 14th Confer-
ence on Very Large Data Bases, 1988, pp. 331-338.

[Bitton89] Bitton, D., "Arm Scheduling in Shadowed Disks," Proceedings of the Com-
puter Society International Conference (COMPCON 89), 1989, pp. 132-136.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 131

Version 1.0 6/24/96

[Blaum94] Blaum, M.(Brady, J., Brück, J., and Menon, J., "Evenodd: An Optimal
Scheme for Tolerating Double DiskFailures in RAID Architectures," Proceedings of the
International Symposium of Computer Architecture (ISCA), 1994, pp. 245-54.

[Brown72] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency Control and
Recovery in Database Systems. Reading, MA: Addison-Wesly, 1987.

[Burkhard93] Burkhard, W. and J. Menon, "Disk Array Storage System Reliability,"
Proceedings of the International Symposium on Fault-Tolerant Computing, 1993, pp.
432-441.

[Buzen87] Buzen, J.R and AW. Shum, "A Unified Operational Treatment of RPS
Reconnect Delays," Performance Evaluation Review, Vol. 15, No. 1,1987.

[Cabrera91] Cabrera, L.-R and D. Long, "Swift: Using Distributed Disk Striping to Pro-
vide High I/O Data Rates," Computing Systems, Vol. 4, No. 4,1991, pp. 405-439.

[Cao93] Cao. P, Lim, S.B., Venkataraman, S., and J. Wilkes, "The TickerTAIP Parallel
RAID Architecture," Proceedings of the International Symposium of Computer Archi-
tecture (ISCA), 1993, pp. 52-63.

[Cao94] Cao, P., Lim, S. B., Venkataraman, S., and Wilkes, J. "The TickerTAIP parallel
RAID architecture." ACM Transactions on Computer Systems, Vol. 12, No. 3. August
1994, pp. 236-269.

[Chen90a] Chen, P. et. al., "An Evaluation of Redundant Arrays of Disks using an
Amdahl 5890," Proceedings of the Conference on Measurement and Modeling of Com-
puter Systems, 1990, pp. 74-85.

[Chen90b] Chen, P. and D. Patterson, "Maximizing Performance in a Striped Disk
Array," Proceedings of International Symposium on Computer Architecture, 1990, pp.
322-331.

[Clark82] Clarke, E. and Emerson, E. A. "Synthesis of synchronization skeletons for
branching time temporal logic." Proc. of the Workshop on Logic of Programs, May
1981, Yorktown Heights, NY. Published as Lecture Notes in Computer Science, Vol.
131. Wein, Austria: Springer-Verlag, 1982, pp. 52-71.

[Clark94] Clarke, E., Grumberg, O., and Long, D. "Model checking." Proc. of the Inter-
national Summer School on Deductive Program Design. Marktoberdorf, Germany. July
26-August 27,1994.

[Copeland89]Copeland, G. and T. Keller, "A Comparison of High-Availability Media
Recovery Techniques," Proceedings of the ACM Conference on Management of Data,
1989, pp. 98-109.

[Courtright94] Courtright, W.V and G Gibson, "Backward Error Recovery in Redun-
dant Disk Arrays," Proceedings of the 1994 Computer Measurement Group (CMG)
Conference, 1994, pp.63-74.

132 FtAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

[DEC86] Digital Equipment Corporation, Digital Large System Mass Storage Hand-
book, 1986.

[DISK/TREND94] DISK/TREND, Inc., 1994 DISKmEND Report: Disk Drive
Arrays. 1925 Landings Drive, Mountain View, CA, SUM-3.

[Drapeau94] Drapeau, A., Shirriff, K., Hartman, J., Miller, E., Seshan, S., Katz, R.,
Patterson, D., Lee, E., Oien, P., and G. Gibson, "RAID-II: A High-Bandwidth Network
File Server," Proceedings of the 21st Annual International Symposium on Computer
Architecture (ISCA), 1994, pp. 234-44.

[Fibre91] Fibre Channel—Physical Layer, ANSIX3T9.3 Working Document, Revision
2.1, May 1991.

[Fujitsu2360] Fujitsu Corporation, Model M2360A product information.

[Geist87] Geist, R., Reynolds, R., andE. Pittard, "Disk Scheduling in System V" ACM..

[Gelsinger89] Gelsinger, P.P., Gargini, P.A., Parker, GH., and A.Y.C. Yu, "Microproces-
sors circa 2000," IEEE Spectrum, October 1989, pp. 43-74.

[Gibson89] Gibson, G, Hellerstein, L., Karp, R., Katz, R. and D. Patterson, "Coding
Techniques for Handling Failures in Large Disk Arrays," Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems, 1989, pp. 123-132.

[Gibson92] Gibson, G., Redundant Disk Arrays: Reliable, Parallel Secondary Storage,
MIT Press, 1992.

[Gibson93] Gibson, G. and D. Patterson, "Designing Disk Arrays for High Data Reli-
ability," Journal of Parallel and Distributed Computing, Vol. 17,1993, pp. 4-27.

[Gibson95] Gibson, G. A, Courtright, W.V, Holland, M., and J. Zelenka, "RAIDframe:
Rapid Prototyping for Disk Arrays," CMU-CS-95-200, Carnegie Mellon University,
1995.

[Gray81] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T, Putzolu,
F., and Traiger, I. "The recovery manager of the System R database manager." Comput-
ing Surveys, Vol. 13, No. 2. June 1981, pp. 223-242.

[Gray90] Gray, G, Horst, B. and M. Walker, "Parity Striping of Disc Arrays: Low-Cost
Reliable Storage with Acceptable Throughput," Proceedings of the Conference on Very
Large Data Bases, 1990, pp. 148-160.

[Harker81] Harker, J.M , Brede, D.W., Pattison, R.E., Santana, G.R., and L.G. Taft, "A
Quarter Century of Disk File Innovation," IBM Journal of Research and Development,
Vol. 25 no. 5,1981, pp. 677-689.

[Hartman93] Hartman, J. and J. Ousterhout, "The Zebra Striped Network File system,"
Proceedings of the Symposium on Operating System Principles, 1993.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 133

Version 1.0 6/24/96

[Holland92] Holland, M. and G. Gibson, "Parity Declustering for Continuous Operation
in Redundant Disk Arrays," Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 1992, pp. 23-25.

[Holland94] Holland, M. On-line Data Reconstruction in Redundant Disk Arrays, Carn-
egie Mellon University, 1994.

[HPC3013] HP Corporation, Disk Drive Model HP C3013 (Kittyhawk) product infor-
mation.

[Hsiao90] Hsiao, H. and D. DeWitt, "Chained Declustering: A New Availability Strat-
egy for Multiprocessor Database Machines," Proceedings of the International Data
Engineering Conference, 1990.

[IBM0661] IBM Corporation, IBM 0661 Disk Drive Product Description, Model 370,
First Edition, Low End Storage Products, 504/114-2,1989.

[IBM3380] IBM Corporation, IBM 3380 Direct Access Storage Introduction, Manual
GC26-4491-0,1987.

[IBM3390] IBM Corporation, IBM 3390 Direct Access Storage Introduction, Manual
GC26-4573-0,1989.

[IEEE89] Proposed IEEE Standard 802.6—Distributed Queue Dual Bus (DQDB) -
Metropolitan Area Network, Draft D7, IEEE 802.6 Working Group, 1989.

[IEEE93] IEEE High Performance Serial Bus Specification, P1394/Draft 6.2v0, New
York, NY, June, 1993.

[Katz93] Katz, R, Chen, P., Drapeau, A., Lee, E., Lutz, K., Miller, E., Seshan, S., and
D. Patterson, "RAID-II: Design and Implementation of a Large Scale Disk Array Con-
troller," Symposium on Integrated Systems, 1993.

[Katzman77] Katzman, J. "System Architecture for Nonstop Computing," Proceedings
of the Computer Society International Conference (COMPCON 77), 1977.

[Kim86] M. Kim, "Synchronized Disk Interleaving," IEEE Transactions on Computers,
Vol. 35, No. 11,1986, pp. 978-988.

[Kung86] H.T. Kung, "Memory Requirements for Balanced Computer Architectures,"
Proceedings of the International Symposium on Computer Architecture, 1986, pp. 49-
54.

[Lee91] Lee, E. and R. Katz, "Performance Consequences of Parity Placement in Disk
Arrays," Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1991, pp. 190-199.

[Livny87] Livny, M., Khoshafian, S., and H. Boral, "Multi-disk Management Algo-
rithms," Proceedings of the ACM Conference on Measurement and Modeling of Com-
puter Systems, 1987, pp. 69-77.

134 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

[Long94] Long, D., Montague, B., and L.-R Cabrera, "Swift/RAID: A Distributed
Computing System," Computing Systems, Vol 3., No. 7, pp. 333-359,1994.

[MacWilliams78] MacWilliams, F. and N. Sloane, Theory of Error-Correcting Codes,
North Holland, 1978.

[Maxtor89] Maxtor Corporation, XT-8000S Product Specification and OEM Technical
Manual, Document 1015586,1989.

[McKeown83] D. McKeown, MAPS: The Organization of a Spatial Database System
Using Imagery, Terrain, and Map Data, Department of Computer Science Technical
Report CMU-CS-83-136, Carnegie Mellon University, 1983.

[Menon89] Menon, J. and J. Kasson, Methods for Improved Update Performance of
Disk Arrays, IBM Research Division Computer Science Report RJ 6928 (66034), 1989.

[Menon92a] Menon, J. and J. Kasson, "Methods for Improved Update Performance of
Disk Arrays," Proceedings of the Hawaii International Conference on System Sciences,
1992, pp. 74-83.

[Menon92b] Menon, J. and D. Mattson, "Comparison of Sparing Alternatives for Disk
Arrays," Proceedings of the International Symposium of Computer Architecture (ISCA),
1992, pp. 318-329.

[Menon92c] Menon, J. and D. Mattson, "Performance of Disk Arrays in Transaction
Processing Environments," Conference on Distributed Computing Systems, 1992, pp.
302-309.

[Menon93] Menon, J. and J. Cortney, "The Architecture of a Fault-Tolerant Cached
RAID Controller," Proceedings of the International Symposium of Computer Architec-
ture, 1993, pp. 76-86.

[Merchant92] Merchant, A. and P. Yu, "Performance Analysis of A Dual Striping Strat-
egy for Replicated Disk Arrays," Proceedings of the Second International Conference
on Parallel and Distributed Information Systems, 1992.

[Meyers78] Meyers, G. J. Composite/Structured Design. New York: Nav Nostrand Rein-
hold Co., 1978.

[Mogi94] Mogi, K. and M. Kitsuregawa. "Dynamic Parity Stripe Reorganizations for
RAIDS Disk Arrays," Proceedings of the Third International Conference on Parallel
and Distributed Information Systems, IEEE Computer Society Press, September 1994,
pp. 17-26.

[Muntz90] Muntz, R. and J. Lui, "Performance Analysis of Disk Arrays Under Failure,"
Proceedings of the Conference on Very Large Data Bases, 1990, pp. 162-173.

[Myers86] Myers, G.J., Yu, A.Y.C., and D.L. House, "Microprocessor Technology
Trends," Proceedings of the IEEE, Vol. 74, No. 12,1986.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 135

Version 1.0 6/24/96

[Ng92] Ng, S. and R. Mattson, "Maintaining Good Performance in Disk Arrays During
Failure Via Uniform Parity Group Distribution," Proceedings of the First International
Symposium on High-Performance Distributed Computing, 1992, pp. 260-269.

[Orji93] Orji, C. and J. Solworth, "Doubly Distorted Mirrors," Proceedings of the ACM
Conference on Management of Data, 1993, pp. 307-316.

[Park86] Park, A. and K. Balasubramanian, "Providing Fault Tolerance in Parallel Sec-
ondary Storage Systems," Princeton University Technical Report CS-TR-057-86,1986.

[Patterson88] Patterson, D., Gibson, G, and R.A. Katz, "A Case for Redundant Arrays
of Inexpensive Disks (RAID)," Proceedings of the 1988 ACM Conference on Manage-
ment of Data (SIGMOD), Chicago, IL, June 1988, pp. 109-116.

[Peterson72] Peterson, W. and E. Weldon Jr., Error-Correcting Codes, second edition,
MIT Press, 1972.

[Polyzois93] Polyzois, C, Bhide, A., and D. Dias, "Disk Mirroring with Alternating
Deferred Updates," Proceedings of the Conference on Very Large Data Bases, 1993, pp.
604-617.

[RAID96] RAID Advisory Board, The RAIDBook: A Source Book for RAID Technol-
ogy, 5th Ed. St. Peter, Minnesota, 1996.

[Ramakrishnan92] Ramakrishnan, K., Biswas, P., and R. Karedla, "Analysis of File I/O
Traces in Commercial Computing Environments," Proceedings of the Conference on
Measurement and Modeling of Computer Systems, 1992, pp. 78-90.

[Rangan93] Rangan, P.V. and H.M. Vin, "Efficient Storage Techniques for Digital Con-
tinuous Multimedia," IEEE Transactions on Knowledge and Data Engineering, Vol. 5,
No. 4,1993.

[Rosenblum91] Rosenblum, M.. and J. Ousterhout, "The Design and Implementation of
a Log-Structured File System," Proceedings of the Symposium on Operating System
Principles, 1991, pp. 1-15.

[Rosenblum92] Rosenblum, M. and J. K. Ousterhout. "The Design and Implementation
of a Log-Structured File System." ACM Transactions on Computer Systems, Vol. 10,
No. 1., February 1992, pp. 26-52.

[Rudeseal92] A. Rudeseal, Storage Technology Corporation, Presentation at Carnegie
Mellon University, March 5,1992.

[Schulze89] Schulze,M., Gibson, G, Katz, R., and D. Patterson, "How Reliable is a
RAID?" Proceedings ofCOMPCON, 1989, pp. 118-123.

[Seltzer93] Seltzer, M., Bostic, K., McKusick, M., and C. Staelin, "An Implementation
of a Log-Structured File System for UNIX," Proceedings of the Winter USENIX Confer-
ence, 1993, pp. 201-220.

136 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

[Solworth90] Solworth, J. and C. Orji, "Write-Only Disk Caches," Proceedings of the
ACM Conference on Management of Data, 1990, pp. 123-132.

[Solworth91] Solworth, J. and C. Orji, "Distorted Mirrors," Proceedings of the Interna-
tional Conference on Parallel and Distributed Information Systems, 1991, pp. 10-17.

[STC94] Storage Technology Corporation, Iceberg 9200 Storage System: Introduction,
STK Part Number 307406101, Storage Technology Corporation, Corporate Technical
Publications, 2270 South 88th Street, Louisville, CO 80028.

[ST9096] Seagate Corporation, Disk Drive Model ST9096 product information.

[Stodolsky94] Stodolsky, D., Gibson, G., Courtright, W.V., and M. Holland, "A Redun-
dant Disk Array Architecture for Efficient Small Writes," Technical Report No. CMU-
CS-94-170, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213-3890, July 1994.

[Stonebraker90] Stonebraker, M. and G. Schloss, "Distributed RAID—A New Multiple
Copy Algorithm," Proceedings of the IEEE Conference on Data Engineering, 1990, pp.
430-437.

[Stonebraker92] M. Stonebraker, "An Overview of the Sequoia 2000 Project," Proceed-
ings of the Thirty-Seventh IEEE Computer Society International Conference (COMP-
CON), 1992, pp. 383-388.

[TMC87] Thinking Machines Corporation, Connection Machine Model CM-2 Technical
Summary, Thinking Machines Technical Report HA87-4,1987.

[TPCA89] The TPC-A Benchmark: A Standard Specification, Transaction Processing
Performance Council, 1989.

[Wing96] Wing, J. and M. Vaziri-Farahani, "Model Checking a Controller Algorithm for
the RAID Level 5 System," unpublished paper.

[Wood93] Wood, C. and P. Hodges, "DASD Trends: Cost, Performance, and Form Fac-
tor," Proceedings of the IEEE, Vol. 81, No. 4, 1993, pp. 573-585.

FtAIDframe: A Rapid Prototyping Tool for RAID Systems 137

Version 1.0 6/24/96

138 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 6/24/96

