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1. INTRODUCTION 

The objective of the Image Understanding for Database Query (IU4DBQ) effort was to 

combine the powerful reasoning capabilities of the Loom knowledge representation system with 

the extensive image processing and feature extraction capabilities of KBVision™. Another 

important aspect of this effort was to apply the algorithms developed to realistic reconnaissance 

imagery. A major challenge was to integrate Loom and KBVision™ within a useful context for the 

softcopy reconnaissance imagery available in the Rome Laboratory (RL) Imagery Exploitation (IE) 

2000 facility. The most practical use for Loom is to query the imagery server databases and 

determine images that have specific characteristics that are most suitable for processing. This 

suitability is based on the target area of interest, the presence of unconfirmed targets, and the 

quality of the imagery. 

The issue of image quality is multi-faceted. If an image is of very high quality, a photo- 

interpreter (PI) is usually capable of analyzing it without computer assistance1; however, in such 

cases processing can still facilitate the Pi's task, by pointing out items of interest that are potential 

targets. Slightly lower image quality is more difficult for a PI and there may be unconfirmed 

targets. Such an image could still have sufficient quality for automatic processing. If the image 

quality is lower still, the automatic processing is likely to have difficulties and there would be little 

value in attempting to use such images. 

The selected images are processed by the KBVision™ subsystem using the pixel 

dimensions of the targets. The crucial information needed to do this are the absolute target 

dimensions and the size of the pixel footprint. Using this information, KBVision™ returns a set of 

segmented regions (tokens) that potentially contain targets. Loom then adds these tokens to the 

database. Although Loom does have recognition capabilities of its own, these capabilities were not 

used in this effort. 

Figure 1 illustrates the overall system and how the various components interact. As the 

figure indicates, Loom is the core of the IU4DBQ system. It is responsible for interacting with the 
1 user, the imagery database, the target database, and the KBVision (KBV) subsystem. 

Chronologically, the following happens: 

1. The user selects a target type and a location in the world where he/she would like to 

find the targets. For the demonstration, the target type is predetermined. An interface 

is currently not in place to permit the user to select the target type. The user specifies 

the imagery database to be used.  A shell script must be run on the desired imagery 

1 This depends on the size of the target. The critical factor is the number of pixels on a target. 



database before it can be used by IU4DBQ. The shell script creates some metadata files 

containing information from a CATIS or IESS (Combat Aided Tactical Information 

System, Imagery Exploitation Support System) report. 

2. Loom queries the imagery database for images that contain the target of interest at the 

specified geographic location(s). The query can also use NIIRS ratings or the presence 

of unconfirmed targets. The images of interest are returned as well as the pixel footprint 

size. The demonstration is based on NIIRS rating, sensor type (optical), and lack of 

confirmed targets. 

3. Loom queries the target database to determine the target dimensions; then the target 

pixel dimensions are computed for each image. 

4. Loom passes the images and target information to the KBV Subsystem. Potential target 

locations are returned along with feature information about these regions. 

5. Information about targets and their potential locations are passed back to the user. In 

the demo, the tokens resulting from the KBV task are shown overlayed on the original 

image. Each of the tokens is added to the set of items Loom knows about, labeled as 

unconfirmed instances of the target type found by KBV. 

6. A PI uses this information as a decision aid for determining actual target locations. 
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Figure 1: IU4DBQ System 



2. LOOM / LISP DATABASE QUERYING SYSTEM 

The integration of Loom with KBVision was performed in order to make the results of 

image processing and segmentation available for use by Loom's recognition system. Additionally, 

KBVision image processing tasks can be invoked with parameters determined by the Loom 

inference. 

The IU4DBQ demonstration system implements the following scenario to demonstrate the 

integration of Loom and KBVision: 

1. An imagery database containing imagery of various sensor types and imagery meta data 

is loaded into the Loom/Lisp system. Free-form text comments mentioning order-of- 

battle elements in each image are scanned from the imagery meta data. Instances of 

concepts in a simple Loom domain model, such as IMAGE and OB-ELEMENT, are created 

and supporting relations are asserted. 

2. A Loom query for optical images containing order-of-battle (OB) elements identified 

with a high degree of certainty are made available for display to the operator. 

3. A Loom query for optical images of better than average quality containing low-certainty 

OB elements are made available for KBVision processing. 

4. A KBVision task is parametrized using Loom domain model knowledge about the 

type(s) of OB elements being sought in the image. 

5. The KBVision task is invoked, generating a tokenset containing tokens believed to be 

OB elements of the desired type. 

6. The tokenset is imported into Loom, adding the tokens as possible OB elements. 

7. The processed image, with tokens outlined, is presented to the operator for cueing 

purposes. 



Loom Contexts 

Loom provides contexts as a means of partitioning knowledge and beliefs. Contexts may be 

inherited, forming a directed acyclic graph. As models or assertions are added to a context, each of 

its descendant contexts also see the changes. The set of contexts used in IU4DBQ may be seen in 

Figure 2. 

The root of contexts generated by the IU4DBQ system is IU4DBQ-THEORY, which is a child 

of the default context in Loom, BUILTIN-THEORY. The IU4DBQ-THEORY context contains all of the 

concepts, relations, and methods necessary to support representation and manipulation of 

KBVision tokensets. It also contains concepts and relations in a simple model of the imagery and 

order-of-battle domain. This context is created at system initialization and forms the basic theory 

for IU4DBQ processing. It is not changed during system operation. 
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A new context (e.g., OB-DATABASE-I) is created for each imagery/OB database that is 
loaded into the system.   This context contains assertions about the imagery meta data and OB 



elements as parsed from the database. Loom queries may be formulated against these contexts to 

identify images having OB elements of interest. 

When a KBVision task is invoked on an image, the resulting tokenset is imported, 

generating a new context containing new relations defined by the tokenset's lexicon and assertions 

representing feature values on the tokenset's tokens. Since different KBVision tasks represent 

distinct strategies for segmenting an image, distinct contexts are created for each task. 

Running KBV Tasks 

When a candidate image for KBVision processing is found by a Loom query, the type(s) of 

OB elements believed to be in the image (albeit with low confidence) are used to select task 

parameters. As described in section 3, the parameters for the demonstration were the expected 

length and width of the OB element being sought. The conversion from metric measurements 

found in the domain models was accomplished using meta data for the image to be processed. 

Importing Tokensets 

In order for Loom to be able to interpret the results of processing by the KBVision system, 

a tokenset must be converted into a set of Loom relations and assertions about the tokens in the 

tokenset. A KBVision tokenset has two sections, a lexicon, which describes the features found in 

the tokenset; and the token descriptions, which provide the feature values for each token. 

KBVision has a set of basic types (e.g., KBV_COLOR, KBV_CONSTELLATION, KBV_POINT, 

and KBV_FCHAIN) and standard features (e.g., EXTENTS) for which equivalent Loom concepts and 

relations (respectively) were implemented. These concepts and relations were defined in the base 

IU4DBQ-THEORY context. Additional relations were defined from a tokenset's lexicon into a new 

context. Each tokenset has its own context, since the lexicon of a tokenset is determined by the 

KBV task(s) used in its creation. 

Once the relations are defined for a tokenset's lexicon, the tokens' feature/value pairs are 

used to make assertions about newly-generate instances of the TOKEN concept in Loom. In the 

demonstration system, it was assumed that the KBVision task would produce a sparse tokenset, 

where each token represented a patch of the image where an OB element of the desired type might 

be found. Each resulting TOKEN instance in the tokenset's context was asserted as being an 

instance of the OB element type being sought. 



3„ KBVISION SUBSYSTEM 

The KB Vision subsystem processes imagery and target information that is passed from the 

Loom subsystem and returns token sets that mark the locations of potential targets. It relies on the 

size and profile of the targets. Since the size of the targets are constant, the absolute target 

dimensions are used, and the pixel footprint size to determine the targets' pixel dimensions is used. 

These dimensions are defined in terms of length and width with the length being the longer of the 

dimension. The targets are typically long and narrow; consequently, the profile of the targets will 

take on a ridge or valley characteristic, depending on whether the target is brighter or darker than 

the background. All this information is used to segment and detect targets in the imagery. 

The KBV subsystem is broken into two phases. The first is the "image processing" phase 

that segments ridge structures from the imagery. The second is the "feature extraction / token set 

analysis" phase that analyzes the geometric properties of the segmented regions (or tokens). 

Figure 3 shows the two phases and also describes how they work. Figure 4 depicts the actual 
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KBVision interface. We will first discuss the image processing phase and then the feature 

extraction / token set analysis phase. 

Figure 4: KBVision Interface 

The KBVision's facet modeling capability was used as the basis for the image processing. 

These techniques produce a Hessian matrix which is associated with four directional second 

derivatives. Second derivative processes are inherently sensitive to noise; thus, a pre-smoothing 

process was used to alleviate these sensitivities (FastGauss task). This task applies a gaussian 

weighted convolution to the data. The kernel size is determined by the target width which 

attenuates artifacts of higher spatial frequency. 
The Hessian matrix is used to find ridge and valley shaped profiles in the data. Ridges are 

characterized by large magnitude negative eigen values and valleys are characterized by large 

magnitude positive eigen values. Since there is no a priori knowledge on whether a target is 

brighter or darker than the background, the eigen value that has the largest magnitude is used. The 

KBV task that performs this operation is called RidgeOpHE and details of its operation are detailed 

in Appendix A. The image is segmented using a Constant False Alarm Rate (CFAR) threshold. 

Specifically, the darkest 5% and brightest 5% of the pixels are segmented to form tokens. This 

CFAR technique uses a custom compound task called AutoHistEq and the KBV task Threshlm. 

KBVision's token set capability is used to segment regions and extract their features. The 

custom compound task that does this is GetFeats. First, the token sets are created from contiguous 

thresholded regions. To facilitate processing, extremely large tokens are eliminated. Next features 

are extracted from the tokens. Although the algorithm actually extracts dozens of features, only 

three are used. All of these features are based on the minimum bounding rectangle (MBR) of a 

token. The MBR, as the name implies is the smallest rectangle that encloses the token in question. 

The advantage of such a feature is that it is independent of the target's orientation. Bounds are then 

place on the length and width of the MBR, which are directly related to the pixel dimensions of the 



target which the KBV subsystem uses as input. Tolerances are included for the MBR dimensions 

to allow for noise effects and thresholding uncertainties. The current tolerance is ±10 pixels. We 

also apply a lower limit to the MBR fill ratio feature, which is the fraction of the MBR that the 

token fills. This prevents irregularly shaped tokens that have the expected MBR dimensions from 

being detected. Currently, this threshold is set at 0.33. 



4. RESULTS 

The system was tested using missile order of battle (MOB) imagery and intelligence data. 

The scenario used Loom to query the database for unconfirmed MOB elements. Next, Loom 

tasked the KB Vision Subsystem to process these images. Only one image met the query 

specifications. Unfortunately the resolution of this image was much too low for KBV to process 

with any reasonable degree of accuracy. There were not enough pixels on a target to detect and 

hundreds of false detections were scattered throughout the scene. The imagery where the KBV is 

effective is the images which had confirmed MOB elements. Specifically, 13 confirmed targets are 

scattered throughout the scene. These results on this image are tabulated below: 

Table 1, Results of Experiment 
Performance 
Comparison 

Image 1 
NIIRS Rating 
Confirmed Targets 13 
Detections 10 
False Alarms 15 

Ten out of thirteen confirmed targets were detected and there were fifteen false detections. Such 

results can be helpful, because they allow a PI to quickly scrutinize potential areas of interest. In 

this particular case, a PI would evaluate 25 areas of interest. Ten of these are actual targets and 

fifteen are false detections. There would then be three additional targets that the PI would need to 

locate by traditional means. Although, the use of this system would not increase the overall 

accuracy of a Pi's examination, it can facilitate tasking such that the imagery could be evaluated 

more efficiently. 

10 



5. CONCLUSIONS 

This effort integrated the knowledge representation and reasoning capabilities of Loom 

with the image processing and token feature extraction capabilities of KBVision. The lisp 

subsystem is responsible for querying the extensive imagery database in the IE2000 facility and 

selecting images with the appropriate location, target content, and NIIRS rating for automatic 

processing. The specific query was set up to find images with unconfirmed targets. For the single 

experiment accomplished for testing, one image was returned based on this query. 

The KBVision interface was reasonably successful at detecting the targets of interest in 

reconnaissance imagery with already confirmed targets. Specifically, results were achieved that 

would be useful in helping a PI locate targets; it cues the PI to where targets are potentially located. 

The detection rate is high enough and the false alarm rate low enough that this is feasible approach. 

However, it can not and should not be used as the final decision on target locations. False 

detections and missed targets can and will invariably occur. It is up to the PI to evaluate the 

information provided by KB V and then make the final decisions. 

KBVision was unable to effectively process the image which came out of the Loom 

database query due to insufficient spatial resolution. Therefore, the image processing -can handle 

images that a PI can handle. However, like a PI, the system will not be effective on lower quality 

images. Therefore, the system is not detecting anything that a PI cannot already detect. The 

primary benefit of the KBV processing is to assist the PI with higher quality imagery. 

KBV was sluggish when handling large images. Even though Version 3.1 has new 

features for supporting large images, RAM or CPU was never fully utilized. A 6 Mbyte image 

(which becomes 24 Mbytes when we convert from byte format to floating) caused swapping, even 

though the workstation had 128 Mbytes of RAM. The problem is believed to be with KBV's 

memory management. It took hours to convert a Sun Raster image to the KBV format. 

The image processing portion of this effort and the querying capability developed with 

Loom were both successful. However, AAI no longer supports the KLI interface, which 

simplified the integration of KBV and Loom. In its place, AAI is developing a new Image 

Understanding Environment (IUE). The IUE is an object-oriented software environment, based on 

C++. It is likely that future IU efforts will move in this direction. Further information about the 

IUE is available at the following URL on the internet: 

http://www.aai.com/AAI/IUE/AboutIUE.html. 

An alternative approach to the IUE is to develop a custom interface between KBV token 

sets and Loom (or lisp), using KBVision C functions. This would become an additional KBVision 

task and would be much simpler than using the KLI. 

11 



APPENDIX A: RIDGEOPHE TASK DESCRIPTION* 

This task finds ridges and/or valleys in an image surface by computing the Hessian at each 

pixel and then finding its maximum and minimum eigen values and the eigen vector associated with 

the maximum eigen value. Ridges are characterized by large negative eigen values and valleys by 

large positive eigen values. 
The parameter MaxMinOutputSelection selects one of two output methods. If 

MaxMinOutputSelection - 1, then the maximum and minimum eigen values are output in the 

images MaxEigenvalue and MinEigenvalue. If MaxMinOutputSelection = 2, then the eigen value 

with the maximum magnitude (absolute value) is output in the image MaxEigenvalue. 

The eigen vector associated with the maximum eigen value is output in the images 

MaxEigenvectorX and MaxEigenvectorY. The components of the eigen vector are normalized so 

the component with maximum magnitude is scaled to ±100.  (The components are not normalized 

by Euclidean length to avoid use of sqrt()). 
If the optional LOGICAL image, Masklmage, is provided then processing only takes place 

at pixels where Masklmage = 1. 

Interpretation of the Hessian 

For a given image function I(x,y), the Hessian is the following 2x2 matrix: 

/„.   / 1 XX x* 

where the elements are the second partial derivatives of I. The eigen values of the Hessian at a 

given point are equal to the maximum and minimum values attained by the directional second 

derivatives of / at that point. The associated eigen vectors point in the corresponding directions. 

These two directions are orthogonal to each other. 

The elements of the Hessian are computed as finite difference operators using convolutions 

with the following kernels: 

1_ 
3 

'„ xy'    yx yy 

1    -2 1 h1  ° 1 1       1 1 

1    -2 1 
1 
4 

0    0 0 
1 
3 

-2   -2 -2 

1    -2 1 1     0 -1 1     1 1 

1 This appendix is part of the KB Vision™ documentation. 
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Pre-Smoothing 

The results of this ridge finder may be improved by pre-smoothing, such as Gaussian- 

weighted convolution, for two reasons. First, the second difference convolutions that compute the 

elements of the Hessian are not robust in the presence of noise. (In fact, as individual operators, 

they are high-pass filters.) Secondly, to the extent that the ridges to be detected are flat-topped, 

this operator will give strong response at the sides of the ridge and only a weak, if not zero, 

response in the center of the ridge. In this case, thresholding may produce a double ridge. Pre- 

smoothing rounds off the ridge, thereby strengthening the central response. 

«U.S. GOVERNMENT PRINTING OFFICE:       1997-509-127-47190 

13 



DISTRIBUTION LIST 

addresses number 
of copies 

MR. PETER J. COSTIANES 5 
ROME LA80RAT0RY/IRRE 
32 HANGAR ROAD 
ROME NY 13441-4114 

MR. ED 80HLING 
PAR GOVERNMENT SYSTEMS 
8383 SENECA TURNPIKE 
NEW HARTFORD NY 13413 

ROHE LA80RATÖRY/SUL 
TECHNICAL LIBRARY 
26 ELECTRONIC PKY 
ROME NY 13441-4514 

ATTENTION:  DTIC-OCC 
DEFENSE TECHNICAL INFO CENTER 
8725 JOHN J. KINGMAN ROAD, STE 0944 
FT. 8ELV0IR, VA 22060-6218 

ADVANCED RESEARCH PROJECTS AGENCY 
3701 NORTH FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

ATTN:  RAYMOND TADROS 
GIDEP 
P.O. 80X 8000 
CORONA CA 91718-8000 

AFIT ACADEMIC LI8RARY/LDEE 
2950 P STREET 
AREA 8, 8LDG 642 
WRIGHT-PATTERSON AF8 OH 45433-7765 

WRIGHT LA80RAT0RY/MTM, 8LDG 653 
2977 P STREET, STE 6 
WRIGHT-PATTERSON AF8 OH 45433-7739 

DL-1 



ATTN: GILBERT G. KUPERMAM 
AL/CFHX, BLDG. 243 
2255 H STREET 
WRIGHT-PATTERSON AF8 OH 45433-7022 

US ARMY STRATEGIC DEFENSE COMMAND 
CSSD-IM-PA 
P.O.   BOX 1500 
HUNTSVILLE AL 35807-3301 

NAVAL AIR WARFARE CENTER 
6000 E. 21ST STREET 
INDIANAPOLIS IN 46219-2189 

COMMANDING OFFICER 
NCCOSC RDT&E DIVISION 
ATTN: TECHNICAL LI8RARY,CQDE 0274 
53560 HULL STREET 
SAN DIEGO CA 92152-5001 

COMMANDERi TECHNICAL LIBRARY 
474700D/C0223 
NAVAIRWAPCENWPNOIV 
1 ADMINISTRATION CIRCLE 
CHINA   LAKE   CA   93555-6001 

SPACE & NAVAL WARFARE SYSTEMS 
COMMAND CPMW 178-1) 
2451 CRYSTAL DRIVE 
ARLINGTON VA 22245-5200 

SPACE & NAVAL WARFARE SYSTEMS 
COMMANO, EXECUTIVE DIRECTOR CPD13A) 
ATTN:  MR. CARL ANDRIANI 
2451 CRYSTAL DRIVE 
ARLINGTON VA 22245-5200 

COR, US ARMY MISSILE COMMAND 
RSIC» BLDG. 4484 
AMSMI-RD-CS-P, DOCS 
REDSTONE ARSENAL AL 35898-5241 

ADVISORY GROUP ON ELECTRON DEVICES 
SUITE 500 
1745 JEFFERSON DAVIS HIGHWAY 
ARLINGTON VA 22202 

DL-2 



REPORT COLLECTION, CIC-14 
MS P364 
LOS ALAMOS NATIONAL LABORATORY 
LOS ALAMOS NM 87545 

AEDC LIBRARY 
TECHNICAL REPORTS FILE 
100 KINDEL DRIVE, SUITE C211 
ARNOLD AFB TN 37389-3211 

COMMANDER 
USAISC 
ASHC-IMD-L, 
FT MUACHUCA 

8LDG 61801 
AZ 85613-5000 

AFIWC/MSO 
102 HALL 3LVD, 
SAN ANTONIO TX 

STE 315 
78243-7016 

NSA/CSS 
Kl 
FT MEADE MD 20755-6000 

PHILLIPS LABORATORY 
PL/TL CLI3RARY) 
5 WRIGHT STREET 
HANSCOM AF3 MA 01731-3004 

THE MITRE CORPORATION 
ATTN: E. LADURE 
0460 
202 BURLINGTON RD 
aSOFORO MA 01732 

OÜSOCP)/OTSA/OUTO 
ATTN:  PATRICK G. SULLIVAN, 
400 ARMY MAVY DRIVE 
SUITE 300 
ARLINGTON VA 22202 

JR, 

DL-3 



MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


