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1 . 0  INTRODUCTION 

This document is Volume II of a two-volume Final Technical 

Report which summarizes a major task carried out by the Scientific 

Studies Corporation (SSC) in Phase II of the "Multichannel System 

Identification and Detection Using Output Data Techniques" Small 

Business Innovation Research (SBIR) program for Rome Laboratory 

(RL). The companion Volume I presents the formulations, analyses, 

and simulation results obtained in the program (Roman and Davis, 

1996) . Distribution of Volume I is limited as dictated by the 

standard SBIR regulations, whereas distribution of this volume is 

unlimited. 

This volume discusses the analytic and software (MATLAB- 

based) model for the multichannel output waveform in airborne 

surveillance phased array radar systems. Specifically, target, 

jamming (spatially-localized, broadband interference), receiver 

noise, and ground clutter components are modeled. Of these 

components, ground clutter is the most difficult to model in the 

context of surveillance array radar. The ground clutter model 

follows the approach used by Jaffer et al. (1991), and more 

recently by Ward (1994) . 

A description of the SSC model-based multichannel detection 

methodology in the context of space/time processing for phased 

array radar systems is provided in Volume I (Roman and Davis, 

1996) . In order to validate the methodology and to evaluate 

alternative model identification algorithms in the context of 

space/time radar applications it is necessary to have either real 

or simulated radar data. Since real data was unavailable to this 

program, SSC developed analytic and software models to generate 

simulated data. For the purposes of this program it suffices that 

the simulated data be "representative" of real data, while placing 

modest requirements on computer resources (storage; execution 



time). The software model should be flexible, in order to admit 

future enhancements in a straightforward manner. Additionally, 

the model must include a representation for the "true" channel 

output covariance matrix sequence to allow determination of 

performance in the "known covariance" case. This latter feature 

is important for algorithm evaluation, and is unavailable with 

real data. 

The conditions and assumptions for the model formulation are 

described in Section 2.0, and the true covariance model and the 

data generation model are presented for each component (signal; 

jamming; noise; clutter). Simulation results are presented in 

Section 3.0 to allow comparison with corresponding results 

presented by Ward (1994). A summary and suggestions for further 

work are presented in Section 4.0. 



2 . 0 AIRBORNE  SURVEILLANCE PHASED ARRAY RADAR MODEL 

Airborne surveillance for moving target detection using 

phased array radar is one of the major thrusts at RL. 

Consequently, the scenarios and systems considered in the model 

defined herein reflect that significance. The model is defined 

for a side-looking phased array radar configuration, with scanning 

capability of ±90 deg from boresight. Each component (target; 

noise; jammer; clutter) is modeled independently of the others. 

The structure selected to model each component allows generation 

of the true covariance matrix sequence, as well as generation of 

independent statistical data realizations. 

Moving targets are modeled as point targets in azimuth and 

elevation, and each moving target is modeled as the output of a 

first-order linear system in state-space form. This allows for a 

wide range of conditions (including Swerling Cases 1 through 4 as 

well as the deterministic case), in a simple and general format. 

With this structure Gs targets are grouped as a Gsth-order linear 

system. Barrage-type jammers are considered, and modeled as point 

sources of Gaussian-distributed broadband noise in azimuth and 

elevation. Receiver noise is modeled as uncorrelated in time 

(pulse-to-pulse) as well as in space (channel-to-channel). Ground 

clutter is modeled based on the principle of a large number of 

statistically-independent clutter patches, and each clutter patch 

consists of a large number of individual re-radiators. 

2 . 1 Scenario Description and Problem Formulation 

Consider a linear array radar consisting of J equally-spaced, 

identical antenna elements (or identical beamformed sub-arrays) in 

a side-looking configuration on a surveillance platform moving at 

a constant velocity Vp in level flight at an altitude Hp. Such a 

scenario is depicted in Figure 2-1.  As suggested in Figure 2-1, 



the array is aligned with the aircraft's longitudinal axis, and 

the aircraft velocity makes a .positive crab angle y with the 

aircraft's longitudinal axis. For transmission, a power pattern 

Gt((t),6) is assumed for the array, where <|> is the azimuth angle, and 

6 is the elevation angle. The array main beam can be steered in 

azimuth and elevation, with a positive main beam azimuth angle (|)0 

measured clockwise from the array boresight (a positive-valued (j)0 

is shown in Figure 2-1), and a positive main beam elevation angle 
0O defined as a rotation up from the local horizontal plane at the 

radar array location (a negative-valued 60 is shown in Figure 2-1). 

For simplicity, the elevation dimension is ignored herein, and the 

clutter return is calculated for the mainbeam elevation only. 

Thus, the antenna power pattern used to generate the ground 
clutter model is Gt((j>,60). The radar array is radiating a coherent 

pulse train at a constant radiation frequency fc (with 

corresponding radiation wavelength Xc) , and a constant pulse 

repetition frequency (PRF) fPRF. For reception, the power pattern 

of each individual linear array element (or sub-array beamformed 
into a linear array) is denoted as gr(<|),6); as in transmission, the 

receive power pattern is restricted to the mainbeam elevation 

only, 0 = 0Q. 

It is assumed that the range to moving targets, ground, and 

to broadband interference sources is large, so that each wavefront 
arriving at the array is flat (in the scale of Xc).  This is true 

for most surveillance scenarios. It is assumed also that each of 

the received wavefronts is statistically stationary (in the wide 

sense) for N pulses from a given range gate, the duration of one 

coherent processing interval (CPI). The 4/3 Earth approximation 

(Nathanson, 1991) is adopted for determination of the grazing 
angle, V|/c.  Table 2-1 lists all variables (physical; scenario; 

system) utilized in the model; this table also includes the key 

parameters associated with the return from a clutter patch 

(normalized spatial and Doppler frequencies; geometry parameters). 
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Figure 2-1.     Airborne surveillance scenario and geometry. 



Spatial frequency: 

-cos(9)sin(( fs =_d_ C0S(9) gjn^) _ 05 C0S(6) Sjn((f,) d =_2. 

Normalized Doppler frequency: 

fD = ^^-cos(0)sin(<t)-7) v=-      n 

^C fpRF^C 
f 2Vn 

fd = _iD- = B_ cos(9) sin(<() - y) = 0.5 -ü cos(9) sin(<|) - y) 
fPRF       fpRf^-C 

Clutter patch parameters 

Ar=—^— A*=-2lL 
cos(vc) Nc 

rg + Hp(Hp + 2rE) 
2rc(Hp + rE) 

0o = -sin_1 

% = sin"1 ^d+JJE-l ._Ea 
rc  I       2 rE /     2 rE 

<|> : mainbeam clutter return azimuth angle (shown positive in Figure 2-1) 
<j) : target return azimuth angle (shown positive in Figure 2-1) 
<|>.: interference source azimuth angle (shown negative in Figure 2-1) 
60: mainbeam clutter return elevation angle (shown negative in Figure 2-1) 
et: target return elevation angle (not shown in Figure 2-1) 
6|: interference source elevation angle (not shown in Figure 2-1) 
y : aircraft platform crab angle (shown positive in Figure 2-1) 

Vp: platform velocity 
Hp: platform altitude 
Vt : target radial velocity (not shown in Figure 2-1) 
d : array inter-element spacing 

Xc : radiation wavelength 
fD: Doppler shift frequency 

fPRF : pulse repetition frequency 
\|/ : clutter ring grazing angle (shown positive in Figure 2-1) 
rc : range to clutter ring 

Ar: clutter patch range extent 
A(j) : clutter patch angular extent 
p  : radar range resolution 
Nc : number of clutter patches in the clutter ring 
rc : effective mean radius of the Earth 

Table 2-1.     Physical,   scenario,   system,   and simulation parameters, 
and key relations for a clutter patch: 



In most surveillance array systems the narrow bandwidth 

criterion is satisfied, and it is assumed to be true for the cases 

considered herein. For a J-element linear array with inter-element 

spacing d, the narrow bandwidth criterion can be expressed as 

(Hudson, 1981) 

v 
(2-1)     (J — 1)d «        Narrow Bandwidth Criterion 

where V (lower case greek nu) denotes the speed of propagation of 

the electromagnetic wave and fBBW is the one-sided amplitude 

waveform (baseband) bandwidth.  In this work the inter-element 

spacing d is selected as (see Table 2-1) 

(2-2)     d = —f- 

This choice of inter-element spacing avoids the generation of more 

than one array antenna beam, the so-called grating lobes (Monzingo 

and Miller, 1980; Skolnik, 1970). Many practical radar array 
systems are designed with d<0.5X,c, which also results in one beam. 

An equivalent expression for" the narrow bandwidth criterion is 

obtained by substituting Equation (2-2) into Equation (2-1), 

(2-3)     J-1« —        Narrow Bandwidth Criterion 
'BBW 

This criterion may not be met for arrays with a large number of 

elements and/or a large amplitude waveform bandwidth. 

The elevation dimension is included to first-order in this 

formulation. This approximation is reasonable for long-range 

surveillance radar, and suffices for the purposes of this program. 

A more complete model includes a planar (two-dimensional) array 



with main beam elevation steering. However, the model adopted 

herein can be used to represent the cases where the channels 

correspond to antenna subarrays in either one or both dimensions 

(azimuth and elevation); that is, the channels are J subsets of 

appropriately-combined individual elements. In particular, the 

clutter component model includes the cases wherein Je elevation 

channels are beamformed into a single row. 

Consider the output of the ith channel corresponding to a 

single range resolution cell after pulse compression, demodulation 

down to baseband, and temporal sampling. Notice that for a single 

range resolution cell, each channel output includes the return 

from multiple ground clutter rings (the primary range ring as well 

as ambiguous range rings). Denote this complex-valued, discrete- 

time waveform as {x,(n) I n = 0, 1, . . . , N-1} = {Xj(n)}. Specifically, for a 

single range resolution cell and one CPI, the ith channel output is 

(2-4)    Xj(n) = Sj(n) + ij(n) + q(n) + Wj(n) 0<n<N-1 

where n is an integer denoting the sampling time instant, {Sj(n)} 

denotes the signal (moving target) return at the ith channel, {ij(n)} 

denotes the total broadband interference (jamming) received at the 

ith channel, {Cj(n)} denotes the total ground clutter return at the 

ith channel,  and {Wj(n)} denotes the combination of all the 

statistically-independent noise sources in the ith channel.  Array 

receiver noise is usually the dominant noise contributor to {Wj(n)}, 

and that is assumed to be true for the model considered herein. 

Each of the output components is assumed to be a stationary, 

ergodic, zero-mean, Gaussian-distributed random process. 

The temporal sampling interval At for the channel output 

waveform is the pulse repetition interval (PRI) T)# which is the 

inverse of the PRF. Thus, it is more appropriate to express the 

function argument in Equation (2-4) as nT,, instead of n.  However, 



a PRF-normalized frequency variable is used in the formulation 

developed below, and such normalization is equivalent to 

normalization of the sampling interval by the PRI. As a result, 

the sampling interval At associated with the variable n (or with 

the variable m, which is used herein to denote correlation lags), 

can be assumed to be equal to unity and dimensionless. Also, the 

initial time of the CPI is taken as n = 0 without loss of generality 

since the process is stationary. 

Let channel 1 be the temporal and spatial reference for the 

array. For a uniform linear array the waveforms from the J 

channels can be concatenated into the following vectors, 

(2-5) x(n) = s(n) + i(n) + c(n) + w(n) 0<n<N-1 

(2-6) x(n) = 
x2(n) 

-Xj(n)_ 

(2-7) s(n) = 
s2(n) 

s^n) 

s^n+t) 

.Sj(n)_ s^n+Kx) 

(2-8) i(n) = 

h(n) 

i2(n) i^n+x) 

ij(n) i^n+Kx) 



(2-9; 

(2-io; 

c(n) = 

"c^n)" 

c2(n) 
= 

-Cj(n)_ 

w(n) = 

w^n) 

w2(n) 

Wj(n) 

c,(n+x) 

c1 (n+Kx) 

with   K = J-1   in   order   to   simplify  notation,    and  where   X   is   the 

inter-element time advance (with respect to channel 1, the 
reference channel) . For a range resolution cell at azimuth angle <J) 
and elevation angle 0, the inter-element time advance is obtained 

from the geometry established in Figure 2-1  as 

(2-11) x = —cos(8)sin((()) = cos(0)sin((()) 
v XC1C 

where all variables are as de.fined previously (see Table 2-1) . 

As indicated in Equations (2-7)-(2-9), the kth element of 

each of the signal, interference, and clutter components, is an 

advanced version of the scalar waveform in channel 1, with x as the 

inter-element advance. This follows from the assumptions and 

conventions established above. Array noise, however, is assumed 

to be uncorrelated from channel to channel, and with the same 

power in each channel (the equal power assumption can be relaxed 

easily, but it is representative of realistic conditions). These 

characteristics determine the structure of the covariance matrix 

sequence of each component. 

10 



2 .2 Signal  (Moving Target)  True Covariance Model 

The signal (moving target) component at the output of the kth 

channel, {sk(n)}, is the radar return from each moving target located 

within the range resolution cell of interest. Consider a target 

moving towards the radar array with a constant velocity Vt along a 

trajectory aligned with azimuth angle (J>t and elevation angle 0{. 

The target's radial velocity is defined to be positive when the 

target is moving towards the radar, and negative otherwise. Such 
a target has a normalized Doppler frequency shift ftd of the form 

(Figure 2-1 and Table 2-1) 

(2-12)    .td 
f   ftD _2[vt+VpCOs(9t)sin(<|)t-Y)] 

fpRF fpRF^-C 

where ftD is the normalized target Doppler frequency shift, and the 

PRF provides the normalization.  This normalized Doppler frequency 
assumes unambiguous values in the range -0.5 < fd < 0.5. 

From the definition of spatial frequency in Table 2-1 and the 

geometry depicted in Figure 2-1, the target's dimensionless 
spatial frequency fts is of the form 

(2-13)    fte=fcT = —cos(8t)sin(<|>) 
_d 

where the inter-element time advance % is as defined in Equation 

(2-11) . Adopting the half-wavelength value for d (see Equation 

(2-2)), the target's spatial frequency becomes 

(2-14)    fts = 0.5 cos(9t) sin(<|>t) -90° < 9, < 90°; -90° < 0, < 90° 

Given the allowable range of values for the azimuth and elevation 
angles, it follows that -0.5 < fts < 0.5.  Notice that the sign of the 

11 



azimuth angle determines the sign of the spatial frequency.  For 

the geometry, conventions, and definitions established in Figure 

2-1, Table 2-1, and above, the return from a target illuminated by 

the main beam at a positive azimuth angle has a positive spatial 
frequency fts. 

Moving targets are modeled as the output sequence of a 

linear, stationary, discrete-time, complex-valued, stochastic 

system in state-space form.  Specifically, for the case of Gs 

targets, the model adopted herein is 

(2-15a)   y(n + 1) = Fy(n) + u(n) n>0 

(2-15b)   §(n) = HHy(n) n>0 

(2-15c)   E[y(0)] = 0 

(2-l5d)   E[y(0)yH(0)]-=P(0) = P 

(2-15e)   E[y(n)yH(n)] = P(n) 

where y(n) is the Gs-dimensional state vector, with y(0) Gaussian- 

distributed and zero-mean; u(n) is the Gs-dimensional input vector; 

and s(n) is the Gs-dimensional output vector. The input sequence 

{u(n)} is Gaussian-distributed with mean zero and covariance matrix 

(2-16)   E[u(n)uH(n)] = Q 

It follows that the state and output sequences are both Gaussian- 

distributed with mean zero also. Matrix F is the GsxGs system 

matrix, which defines the time evolution of the process. Matrix H 

is the GsxJ output distribution matrix, P(n) is the state 

covariance matrix at time n, and P is the state covariance matrix 

12 



at steady-state. For a system of the type (2-15), stationarity 
implies asymptotic stability, which in turn implies that steady- 
state conditions are attained at a finite time. The system 
matrix, output matrix, input covariance matrix, and state 
covariance matrix are defined as   follows: 

(2-17a) F = 

F(1,1)       0 

0       F(2,2) 

0 0 

0 

0 

F(GSIGS) 

(2-17b)       F(k,k) = Fk = ak exp(j27uftdk) 

(2-17c)       0<ak<1 

k=1,2 Gs 

k=1I2,...,Gs 

(2-18a) H gj(ftsl)    §j(fts2)    -    §j(ftsGs)] 

(2-18b) e, (* ts > = 

1 
eJ2*f,s 

eJ2JtftsK 

(2-18c) K = J-1 

(2-19a) Q = 

Q(1,1)        0 
0       Q(2,2) 

0 0 

0 

0 

Q(GS,GS). 

(2-l9b)       Q(k,k) = Qk = (1 - a2
k) Pk = (1 - a2

k) c
2

k 
k = 1,2 G£ 

(2-20) P(n) => P as n =z> oo 

13 



(2-21) 

P1 o 
0 P„ 

0  0 

0 
0 

us1 

0 
0 

Js2 

0  0 

0 
0 

4 s J 

Selection of the initial state covariance matrix as a diagonal 

matrix equal to the steady-state covariance (see Equation (2-15d)) 

results in the straightforward calculation of the the input noise 

covariance (Equation (2-19b)), and simplifies data generation 

(Section 2.7). Furthermore, each target can be assigned a 

different power since the diagonal elements of P can be distinct 

from each other. This allows assignation of a distinct signal-to- 

noise ratio (SNR) to each target. 

This model has several features of interest. First, the 

temporal evolution of the kth target is represented by the kth 

state exclusively via the damping coefficient, ak, and the target's 

normalized Doppler shift frequency, ftdk. Second, the system is 

exponentially stable because all the coefficients ak are less than 

unity, as defined in Equation (2-17c) .  As a consequence, the 

stochastic identification algorithms of interest in this program 

can be applied without concern for pathological behaviour.  Third, 

the spatial structure is assigned via the columns of H , 

separately from the temporal structure.  The columns of H defined 

in Equation (2-18b) are referred to as spatial frequency vectors, 

where ftsk is the spatial frequency of the kth target.  Fourth, the 

power of the kth moving target is Pk = ask, and this power is 

contributed to each channel. As a result, the total signal power 

in each channel is equal to the sum of the diagonal of P. Fifth, 

the covariance matrix sequence of the output is determined in 

closed form as a function of the system parameters defined above. 

Specifically, let {Rss(m)} denote the JxJ auto-covariance matrix 

sequence for the zero-mean process {s(n)}, then 

14 



(2-22)   Rss(m) = E[s(n)s
H(n-m)] = HHFmPH m>0 

with negative lags defined as 

(2-23)   Rss(-m) = E[s(n)s
H(n+m)] = R^s(m) m > 0 

Equations (2-22) and (2-23) define the true covariance matrix 
sequence, {Rss(m)}.  Matrix Rss(m) is Hermitian only for m = 0; 

however, matrix Rss(m) has Toeplitz structure for all m due to the 

spatially-induced relationship among the elements of s(n), as 

expressed in Equation (2-7). 

Equation (2-22) can be used to generate the true covariance 

matrix sequence directly. However, due to the special structure 
of matrices F, H, and P, the right-hand-side of Equation (2-22) 

can be expressed in a form that requires less computations. 

Namely, the mth lag covariance matrix can be expressed as 

(2-24)   Rss(m) = I a™ e^ Pk fij(ftek) e^k) m > 0 
k=1 

Equation (2-24) requires less computations than Equation (2-22) . 

However, given the structure of the spatial frequency vectors, the 
form of Equation (2-24), and the fact that matrix Rss(m) is 

Toeplitz, a simpler approach can be defined to generate the true 

matrix covariance sequence, as described next. First compute the 

following two J-dimensional vectors, 

(2-25)    fic(m) = X
ake|2"n,,,*<SJ(f^ m^° 

k=1 
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(2-26)   £» = £ a- ei2-U <£ e»(ttsk) m > 0 
k=1 

Notice that e^m) is a column vector, whereas e^(m) is a row vector. 

Then, for each desired value of ID, matrix Rss(m) is formed as 

follows:  (a) set the first column of Rss(m) equal to vector e^m), 

which defines the main diagonal and all the diagonals below the 

main diagonal; and (b) set the first row of Rss(m) equal to vector 

e^(m), which defines the main diagonal and all the diagonals above 

the main diagonal. There is no conflict along the main diagonal 
because the first element of e^m) is the same as the first element 

of e^(m). 

2 .3 Broadband Interference  (Jamming)  True Covariance Model 

The broadband interference (jamming) at the output of the kth 

channel, {i|<(n)}, represents the received interference from all 

direct jamming sources. Jammer multipath and distributed jammers 

are not included in the model at the present time. Consider a 

jamming point source located at azimuth angle (()j, as shown in 

Figure 2-1 for a negative-valued angle case, and elevation angle 9j 

(not shown in Figure 2-1). This interference is modeled at the 

output of the each channel as a Gaussian-distributed, zero-mean, 

white sequence with variance cf. The spatial variation of this 

component is described by the dimensionless spatial frequency fjs, 

which is given as 

(2-27)   fis=fcT = — cos(ei)sin((().) = 0.5cos(ei)sin((t).) 

where the intef-element time advance x is as defined in Equation 

(2-11), and the half-wavelength inter-element spacing assumption 
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(Equation (2-2)) has been applied.  Each channel receives the same 

amount of power from this jammer. 

The true covariance matrix sequence {Rjj(m)} for Gj interference 

sources as described above is given as 

:2-28a)   R„(0) = E[j(n) jH(n-m)] = £ ofk e^) e.H(fisk) 
k=1 

(2-28b)   Rji(m) = Ea(n)iH(n-m)] = [0] m*0 

where e^f^) is the spatial frequency vector for the kth jamming 

source at the spatial frequency fjsk, and cfk is the variance (power) 

of the kth jamming source. ■ Each channel receives the same amount 

of power from this jammer. Notice that Equation (2-28a) is of the 

same form as Equation (2-24) for m = 0. Thus, matrix Rn(0) is 

Toeplitz. Also, the generation of Rjj(0) can be carried out via the 

same procedure used to generate Rss(0). 

2 .4 Receiver Array Noise True Covariance Model 

The receiver array noise at the output of the kth channel, 

(wk(n)}' represents all noise sources that arise within the kth 

channel.  This component is modeled as a Gaussian-distributed, 

zero-mean,  white sequence with variance  (power)  a^k,  and 

uncorrelated from channel to channel. Thus, the spatial.variation 

is broadband also. It follows that the true covariance matrix 
sequence {R^m)} for this output component is given as 

(2-29a)   Rww(0) = E[w(n) w»] = 

un1 

0 

0 

a n2 

0   0 

0 
0 

a nJj 
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(2-29b)  Rww(m) = E[w(n) wH(n-m)] = [0] m * 0 

Notice that the covariance matrix R^O) as defined in Equation (2- 

29a) is not Toeplitz. This general model is applicable in some 

cases, specially when each channel corresponds to a different type 

of sensor. However, in the surveillance radar case considered 

here it is appropriate to assign the same variance to the noise in 

each channel. Thus, the model adopted herein for the receiver 

array noise true covariance matrix sequence {Rww(m)} is 

(2-30a)  RwJO) = E[w(n) wH(n)] = c2, lj 

(2-30b)   Rwwlm) = E[w(n) wH(n-m)] = [0] rri * 0 

with G2 the noise sequence variance (power) in each channel. 

Matrix Rww(0) in Equation (2-30a) is Toeplitz. Notice that the 

difference between the noise covariance RwJO) and the interference 

covariance Rjj(O) is the spatial correlation present in Rjj(0). This 

difference is sufficient for adaptive cancelation algorithms to 

distinguish between noise and interference. 

2 .5 Ground Clutter True Covariance Model 

The ground clutter component at the output of the kth 

channel, {ck(n)}, is the combination of the radar return from all 

ground patches irradiated by the transmitted pulse sequence. This 

includes the return from ground patches in the primary range ring 

(see Figure 2-1), which is irradiated by the array main beam as 

well as by the sidelobes; also included is the return from range 

rings at ambiguous ranges and from ranges illuminated by the 

elevation pattern sidelobes. Since each range ring extends over 

all azimuth angles, ground clutter return exhibits power in a 

continuum of Doppler and spatial frequencies.  In fact, a typical 
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ground clutter power spectrum (see, for example, Jaffer et al., 

1991) exhibits a "ridge" in the two-dimensional (2-D) frequency 

plane, as indicated in Figure 2-2. In cases where the crab angle 

is zero, the clutter ridge occurs along a straight line that 

passes through the origin of the 2-D frequency plane, as in Figure 

2-2. When the crab angle is non-zero, the trace defined by the 

ridge is a nonlinear function of various system and scenario 

parameters. The number of clutter ridges is doubled when array 

backlobes are significant and the crab angle is non-zero (Ward, 

1994). The model defined herein accounts for sidelobe clutter and 

backlobe clutter, but does not include ambiguous range rings nor 

does it include clutter from elevation pattern sidelobes. 

Scc('d>'s) 

Figure 2-2.     Two-dimensional  clutter spectrum and angle a. 

The   clutter   ridge   angle   a    (see   Figure   2-2)    is   defined   as 

(Jaffer et  al.,   1991;   Ward,   1994) 

19 



(2-31)    a = tan 1 

4Vp 
[2-32)    X>= p 

4VP 

TRF^C 
= tan"1[\)] 

'PRF^C 

where 1) (the Greek letter upsilon) is the slope of the clutter 

ridge (Table 2-1).  When v> 1 the clutter spectrum has ambiguities 

(components at normalized Doppler frequencies greater than 0.5), 

and, consequently, the clutter Doppler spectrum aliases into the 
unambiguous Doppler space,  -0.5 < fd < 0.5 (Ward,  1994) .   This 

condition is manifested in the 2-D frequency-domain plane as 

multiple ridges (straight lines) of different length. If the crab 

angle is non-zero, the straight-lined ridges become curved. 

The ground clutter model described herein is based on the 

analytic model proposed by Jaffer et al. (1991), and also adopted' 

recently by Ward (1994). However, the notation used herein 

follows Ward (1994) more closely. Two non-trivial simplifications 

to these models are introduced herein: (a) only a single range 

ring is modeled, and (b) intrinsic clutter motion is not modeled. 

In Ward's formulation the clutter return from a range ring is 
determined by Nc equal-area patches, and each patch consists of a 

single, complex-valued scatterer with mean zero and Rayleigh- 

distributed magnitude. Furthermore, the scatterers are assumed to 

be pairwise statistically independent. Ward's model for the true 

covariance sequence and for data generation are based on an 

expression for clutter-to-noise ratio (CNR) as a function of 

azimuth, at a fixed elevation angle. Specifically, for a single 

clutter ring Ward's CNR as a function of azimuth and elevation is 

of the form 
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(2_33)       ^ rjMc^(M9^) 
(47ürN0Lsrc

4 

where Pt denotes the peak transmitted power, Tu denotes the 

uncompressed pulse duration, Xc denotes the radiation wavelength, 

C,c denotes the clutter patch radar cross section (RCS) , Gcr denotes 

the receive column pattern (beamforming) gain, Gt(4>,0) denotes the 

transmit antenna power pattern as a function of azimuth and 

elevation, gr(()),e) denotes the receive element antenna power pattern 

as a function of azimuth and elevation, N0 denotes the receiver 

noise power spectral density, Ls denotes the system losses, and rc 

denotes the range from the platform to the clutter ring 

illuminated by the mainbeam.  Parameters Pt, Tu, Ls, and rc are 

radar system and scenario parameters provided as inputs to the 

software; the remaining parameters are calculated as described 

next.  Pre-specified physical constants are listed in Table 2-2. 

The radiation wavelength is determined given the speed of 
light, V, and the radiation frequency, fc, as 

(2-34)    lr = — C  f 
'c 

For v in km/sec and fc in MHz, the wavelength is calculated in mm. 

And the receiver noise power spectral density is defined as 

(Skolnik, 1980) 

(2-35)    N0 = kBT0Fn 

where Fn is the system noise figure, a radar system parameter 

provided as input to the software. Boltzmann's constant, kB, and 

the standard temperature, T0, are as specified in Table 2-2. 
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SYMBOL DESCRIPTION VALUE 

V Speed of light 2.998x105 km/sec 

r0 Mean radius of theEarth 6,368.0 km 

rE Effective radius of the Earth (= (4/3) r0) 8,490.66667 km 

kB 
Boltzmann's constant 1.38x10-23W/(Hz-K) 

To Standard temperature for radar system 
« 

290 K 

\ 
Constant-gamma clutter reflectivity 
model parameter for heavy land clutter 
case 

-3 dB 

Table 2-2.     Physical  constants for multichannel  signal model 

The clutter patch RCS, C,c,   is determined as 

(2-36)    Cc = s0Ac = s0WcLc 

where S0 is the clutter patch reflectivity, Ac is the clutter patch 

area, Wc is the clutter patch width, and Lc is the clutter patch 

length. Clutter patch reflectivity is determined according to the 

constant-gamma model, which is defined as (Nathanson, 1991) 

(2-37)    s0 = yc sin(\|/c) 

with the reflectivity model parameter v, as specified in Table 2-2, 

and the clutter ring grazing angle \|/c as defined in Figure 2-1 and 
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Table 2-1.  For each patch in the 360 deg clutter ring, clutter 

patch width is calculated as 

2TC 
(2-38)    Wc=rcA(j) = rc ^ 

with the range to clutter ring rc as defined in Figure 2-1, and the 

clutter patch angular extent A<\>  as defined in Table 2-1.  Also, Nc 

is the number of clutter patches in the clutter ring (Table 2-1). 
Likewise, each patch in the 360 deg clutter ring is of length Lc, 

calculated as 

(2-39) Lc = 

Pr 
cos(\|/ )      2fBcos(\|/ ) 

2 rc tan fß 1e 

sin(w) 

if       prtan(\(/c) < rctan(ß1e) 

if       Prtan(i|/c) > rctan(ß1e) 

with p denoting the radar range resolution, fB denoting the 

receiver bandwidth, ß1e denoting the transmit array one-way, 3-dB 

elevation beamwidth, and the other parameters are as defined 
previously. The receiver bandwidth is a radar system parameter 
provided as input to the software; whereas the elevation beamwidth 
is  approximated as   (Skolnik,   1970) 

bw^c 
(2-«a>   ^=(Je_1)d;os(9o) 

e0 < 60° 

[2-40b) ß1p=1-24 
Xr 

(Je-I)d 
e0 = 90° 
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(2-40c)   bw = 

0.866        for uniform taper 

1.3       for Dolph-Chebyshev taper 

where Je is the number of elevation axis elements beamformed into 

one azimuth channel, d is the linear array inter-element spacing 

(assumed to be the same for elevation and azimuth) , 60 is the 

clutter ring elevation angle calculated as in Table 2-2, and bw is 

a constant factor. Azimuth angle and inter-element spacing are 

illustrated in Figure 2-1. The cosine factor in Equation (2-40a) 

accounts for scanning-induced broadening of the main beam 

(Skolnik, 1970) . The constant factor in Equation (2-40a) is 

introduced herein to account for taper-induced beam broadening. 

Its minimum value is 0.866 for the uniform taper, as indicated in 

Equation (2-40c) . The value set in Equation (2-40c) for Dolph- 

Chebyshev tapering is a representative value. An expression for 

the exact value is unknown since the beam broadening induced by 

the Dolph-Chebyshev taper is a complicated function of sidelobe 

level and number of elements. Other elevation pattern tapers 

applied to reduce the antenna sidelobes also result in a broader 

beamwidth (with respect to the uniform taper). 

The 2-D transmit array has an antenna power pattern denoted 

as Gt(<|>,0).  For simplicity, the elevation dimension is ignored 

herein, and the clutter return is calculated. for the mainbeam 
elevation (60) only. Thus, the antenna power pattern used to 

generate the ground clutter model is Gt((|>,0o).  From standard array 

theory, the antenna pattern is the product of the element pattern 
and the array pattern (Skolnik, 1980) .  Let ge(<l>.0o) denote the 

element power pattern, which is assumed to be a squared cosine in 

the azimuth axis, 
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(2-41)       ge(4>,e0) = 

COS2(())) 

Gbcos
2((t)) 

for 90°<<jx90° 

for   90°<(])<270o 

where Gb is the backlobe region attenuation. This element pattern 

model is used by Ward (1994) . Now let Ga(<|>,60) denote the array- 

pattern in the azimuth axis, which is assumed to be either uniform 

or Dolph-Chebyshev. Other pattern options can be added to the 

model in the future. The uniform array pattern is generated as 

(Skolnik, 1980) 

(2-42) Ga(4>,e0) = 

sin 
Jrcd 

{sin(<t>)-sin(<(> )} 

Jsin 
7td {sin(<j))-sin(<|>0)} 

sin 
J7cd 

{sin(<|>)-sin(<|>0)} 

J sin {sin(<|))-sin(<|)0)} 

for   -90°<(()<90o 

for 90°<(t)<270c 

where (j>0 is the mainbeam azimuth angle (see Figure 2-1 and Table 2- 

1); and the Dolph-Chebvshev array pattern (characterized by equi- 

level sidelobes) is generated as 

(2-43a) Ga(<t>,60) = 

~ |F[®j(fso)®y IT for    -90°<(t)<90o 

Gb-[f|F[§j(fso)®y]f        for    90°<(|)<270° 
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(2-43b)       e,(f0) JvsO* 

1 
eJ2Tifs0 

(2-44c) fs0 ~   Xr 

■cos(90)sin(<j) ) 

here U is the J-dimensional vector of Dolph-Chebyshev weights, F 

denotes the discrete Fourier transform (DFT) operator, and ® 

denotes the Schur (element-by-element) product. The Dolph- 

Chebyshev weights are calculated as in (Urkowitz et al., 1973), 

which requires specification of the number of weights (dimension 

of the vector U) and the desired sidelobe level. The spatial 
frequency vector e.(fs0) steers the array pattern main beam to the 

desired azimuth and elevation, and the real-valued, scalar U is a 

normalization factor selected so that Ga((|)0,60) = 1 .  Given these 

definitions, the transmit antenna power pattern is obtained as 

(2-45)       Gt(<f>,e0) = G0 Ga(<j),e0) ge(<t>.e0) 

where G0 is the transmit pattern gain.  The gain G0 is a radar 

system parameter provided as input to the software. 

As assumed for the transmit pattern, the elevation dimension 

is ignored herein for the receive element antenna power pattern, 
gr(<t>.60), and the clutter return is calculated for the mainbeam 

elevation (6=60) only.  Thus, the receive element antenna power 

pattern is obtained as 

(2-46; gr(^.e0) = 9e(Wo) 
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This model is adopted for the case of a linear receive array, as 

well as for the case of a 2-D receive array with beamforming in 

the elevation axis (since the azimuth axis is unchanged). 

The receive column pattern beamforming gain, Gcr, is included 

in the CNR model to account for the cases where the receive array 

is a 2-D (multi-column, multi-row) array of elements that is 

"collapsed" into a linear (single-row) array by beamforming in the 

elevation (column) axis.  Therefore, this gain is computed as 

(2-47)    Gcr = JeGe 

where Je is the number of elevation axis elements beamformed into 

one azimuth channel, and Ge is the receive element gain. Notice 

that for Je = 1 the product Gcr gr(<j),60) = Ge geC^o) 
an<^ represents a 

single receive element, as should be the case. Both constants Je 

and Ge are radar system parameters provided as inputs to the 

software.  This completes the CNR model definition. 

Consider now the vector spatio-temporal ground clutter 

process, {c(n)}; as defined in Equation (2-9) . This vector process 

is modeled herein as the sum of the return from all the clutter 

patches in the clutter ring illuminated by the mainbeam.  That is, 

Nc-1 

(2-48a)   ck+1(n) = ^T!pe
j27cf^ne)27t,^k n = 0,1 N-1 

p=0 

k = 0, 1 J-1 

Nc-1 

(2-48b)   c(n)= X^P^^iW) n = 0'1 N"1 
p=0 

where Ti denotes the complex-valued clutter return from the single 

scatterer representing the pth patch, and fccjp and fcsp denote the 
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normalized Doppler frequency and spatial frequency, respectively, 

of the pth clutter patch.  These frequencies are computed as 

(2-49) fcdp = 0.5 v cos(90) sin(<t>p - y) 

(2-50) fcsp = (dA.c) cos(90) sin((t)p) = 0.5 cos(0o) sin(<|>p) 

(2-51) (})p = - 7t + p A(f) P = 0,1 Nc-1 

with v the clutter ridge slope as defined in Equation (2-32); 

also, A((> is the clutter patch angular extent, and Nc is the number 

of clutter patches in a clutter ring (see Figure 2.-1 and Table 2- 

1). Nc is a scenario parameter, and is provided as input to the 

software. Notice that the clutter patch spatial frequencies are 

bounded by ±0.5; in contrast, the clutter patch Doppler frequencies 

are unbounded. As discussed earlier, Doppler frequencies greater 

than 0.5 or smaller than -0.5 are ambiguous, and these frequencies 

fold over onto the observable frequency range, -0.5 < fd < 0.5. 

The clutter return from the single scatterer representing the 

pth patch is modeled herein as a complex-valued, scalar random 

variable with mean zero and Gaussian-distributed real and 

imaginary parts (Rayleigh-distributed magnitude). Also, all 

clutter patches are assumed to be pairwise statistically 

independent. It follows from the definition of CNR that the power 

(variance) of the pth patch clutter return, af p, is obtained as 

(2-52) LVq 4VrönHc(V
0o)Vq -K<4>p<^.5K 

where 8p.q is the Kronecker delta, which is defined as 

28 



(2-53) 5p-q=< 

1 if        p = q 

0 otherwise 

The receiver noise variance, G^, is a radar system parameter, and 

is provided as input to the software. With these definitions, the 
clutter true auto-covariance matrix sequence {Rcc(m)} is obtained as 

Nc-1 

(2-54)   Rcc(m) = E[c(n)c>-m)] = £ac
2
p e

j2*'e*meJ(fC8p) ej(fcsp)   m > 0 
p=0 

with negative lags obtained as 

(2-55)   Rcc(-m) = E[c(n) c
H(n+m)] = R^m) m > 0 

Each matrix in the sequence is JxJ. Matrix Rcc(m) is Hermitian only 

for m = 0; however, matrix Rcc(m) has Toeplitz structure for all m 

due to the spatially-induced relationship among the elements of 
c(n), as expressed in Equation (2-9) . Equation (2-54) is analogous 

to Equation (2-24), and the procedure used to generate the signal 

covariance matrix sequence can be used to generate the clutter 

covariance matrix sequence. 

2 . 6 Channel Output True Covariance Model 

The channel output vector sequence {x(n)} is modeled as the sum 

of the signal (moving target), broadband interference (jamming), 

ground clutter, and receiver array noise (Equation (2-3)). These 

four components are assumed to be pairwise statistically 

independent. Thus, the channel output true covariance matrix 

sequence is obtained as 

(2-56)   Rxx(m) = E[x(n)x>-m)]==Rss(m) + Rii(m) + Rcc(m) + Rww(m)    m>0 
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with negative lags obtained as 

(2-57)   Rxx(-m) = E[x(n)x
H(n+m)] = R^x(m) m>0 

Matrix Rxx(m) is Toeplitz for all values of m because each 

individual matrix on the right-hand-side of Equation (2-56) is 

Toeplitz or zero for all m > 0.   Likewise, matrix Rxx(0) is 

Hermitian because each individual matrix on the right-hand-side of 

Equation (2-56) is Hermitian for m = 0. 

2 .7 Signal  (Moving Target)  Data Generation 

Moving targets are modeled as defined in Equations (2-15)-(2- 

21) of Section 2.1.2. That is, as the output vector sequence of a 

linear, stationary, discrete-time, complex-valued system in state- 

space form driven by a complex-valued, zero-mean, Gaussian- 

distributed white noise vector sequence, {u(n)}, with diagonal 

covariance matrix Q.  The initial condition for Equation (2-15a), 
y(0), is a complex-valued, zero-mean, Gaussian-distributed Gs- 

dimensional vector.  This model is a set of Gs scalar systems in 

parallel, and each scalar system represents a moving target. Data 

generation is accomplished by driving the system (2-15a) with a 

pseudo-random initial condition, and a pseudo-random input 

sequence of N-point duration. The initial condition is a random 

sample from a Gaussian distribution with mean vector zero and 

covariance matrix P. Matrix P is the steady-state covariance 

matrix of the state vector, and it satisfies a Lyapunov equation 

of the form 

(2-58)    P = FPFH + Q 

For an asymptotically-stable system,  Equation  (2-58) has a 

positive-definite solution.  Furthermore, since matrices F and Q 
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are both diagonal, Equation (2-58) reduces to the following set of 

scalar equations, 

(2-59)   P(k,k) = IFI2 P + Q(k,k) k=1,2 Gs 

which is an equivalent expression for Equation (2-19b). Selection 
of P as the covariance matrix of the state vector initial 
condition places the system model in stochastic steady-state at 
time n = 0, and it remains in stochastic steady-state. The kth 
moving  target  contributes 0"2k   power  to  each channel  output,   and the 

total  signal power  in each channel  is 

(2-60) os
2 = diag(P) = ]£c2

k 

k=1 

with P(k,k)=a2k, as defined in Equation (2-21). 

Swerling Cases 1 and 2 can be generated by appropriate choice 

of the model parameters in model (2-16)-(2-18). For notational 

simplicity, consider the case of a single target, k=1. For 

Swerling Case 1, let a1 = 1 and ftd1 = 0, which forces the driving 

noise covariance to be equal to zero, and the state-space model 

becomes 

Swerling Case 1: 

(2-61a)   y(n+1) = y(n) 0<n<N-1 

(2-6lb)   s(n) = eJ(fts1)y(n) 0<n<N-1 

(2-61c)   y(0) ~ ^(0,0.5 G2 l2) 
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where fA£(Q, 0.5 G^ l2) denotes the 2-D circular Gaussian distribution 

for a complex-valued scalar with mean zero and diagonal covariance 
(the scalar, complex-valued initial condition has variance Gs1) . 

For Swerling Case 2, let a1 = 0, which forces the driving noise 

covariance to be equal to unity, and the state-space model becomes 

Swerlina Case 2: 

(2-62a)  y(n+1) = u(n) 0<n<N-1 

(2-62b)  s(n) = eJ(fts1)y(n) 0<n<N-1 

(2-62c)   u(n) ~ ^(0,0.512) 0<n<N-1 

(2-62d)  y(0) ~ ^(Q,0.5os
2
1l2) 

Swerling Cases 3 and 4 can be modeled with the equations for Cases 

1 and 2, respectively, if the initial condition vector and the 

input noise vector are distributed as chi-square with four 

degrees-of-freedom instead of Gaussian. 

A note of caution is appropriate. Swerling Case 1 (also Case 

3) conditions correspond to a system model which is conditionally 

stable, as opposed to asymptotically stable. This violates one of 

the conditions for applicability of the identification algorithms 

used in this program (as well as many other identification 

algorithms), and can lead to difficulties. Specifically, it has 
been observed in various simulations that setting ak= 1 leads to 

canonical correlations greater than unity, which is an invalid 

condition. The exact theoretical answer for such cases is unity 

canonical correlations, but numerical issues often force the 

invalid result. 
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2 .8    Broadband    Interference     (Jamming)     Data    Generation 

Broadband interference (jamming) is modeled as defined in 
Section 2.1.3. That is, the broadband interference sequence, {l(n)}, 
is a complex-valued, Gaussian-distributed, zero-mean, white 
sequence, which represents the received interference from all 
direct, barrage, point-souce jammers. In this model each channel 
receives the same amount of power from each jammer. It follows 
that  the  jamming  sequence model  is 

G 
(2-63a)        i(n) = ]T  ik(n) e^) 0 < n < N - 1 

k=l 

(2-63b)       ik(n) ~ $\£(Q,0.5a£l2) 1 <k<GJ; 0<n<N-1 

where ik(n) i'S the kth jamming source white  sequence with 

corresponding spatial frequency fjsk, and Gjk is the variance (power) 

of the kth jamming source at each channel output.  Data generation 

is accomplished by generating Gj complex-valued, pseudo-random, 

scalar, white sequences {ik(n)} according to Equation (2-63b) , and 

combining them according to Equation (2-63a).  The total jammer 

power in each channel, denoted as aj~, is given as 

(2-64)    °? = X 
G| 

I 
k=1 

Gik 

for Gj independent interference sources. 

2 .9 Receiver Array Noise Data Generation 

Receiver array noise is modeled as described in Section 

2.1.4. That is, the receiver array noise sequence, {w(n)}, is a 

complex-valued, Gaussian-distributed, zero-mean, white sequence 
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uncorrelated from channel to channel (with diagonal covariance at 

each time instant), 

(2-65a)   E[w(n)wH(n-m)] = a„ 5n-m'j 

(2-65b)   w(n) ~ 9{(0,0.5 a* l2J) 0<n<N-1 

where G^ is the noise power in each channel. Data generation is 

accomplished by generating a J-dimensional, complex-valued, pseudo- 

random, white vector sequence according to Equation (2-65). 

2.10 Ground Clutter Data Generation 

Ground clutter is modeled as described in Section 2.1.5. 
That is, the ground clutter sequence, {c(n)}, is the sum of the 
return from Nc ground patches in the clutter ring illuminated by 

the array main beam. Each patch is represented by a single 

complex-valued, Gaussian-distributed, zero-mean random scatterer, 

as indicated in Equation (2-48b), and the scatterers are assumed 

to be pairwise statistically-independent. Equation (2-48b) is 

repeated next as Equation (2-66), for convenience, 

Nc-1 

(2-66)     c(n)= 2T1Pe,2"C*n§j(fcsp) n = 0'1 N'1 
p=0 

(2-67)    np ~ 9i(0,0.5 ofp l2) p = 0, 1 Nc-1 

As before, r\ denotes the clutter return from the single scatterer 

representing the pth patch, and fccjp and fcsp denote the normalized 

Doppler frequency and spatial frequency, respectively, of the pth 

clutter patch. These frequencies are computed as in Equations (2- 
49)-(2-50). The clutter process {c(n)} has true covariance matrix 
sequence {Rcc(m)} defined as in Equations (2-54) and (2-55) .  Data 
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generation is accomplished by generating Nc complex-valued, 

pseudo-random, scalar, random variables {r\ } according to Equation 

(2-67), and combining them according to Equation (2-66).  This 

procedure is computationally intensive when the number of ground 
patches (Nc) is large and the number of receive array elements (J) 

is large.  The pth scatterer contributes acp power to each channel 

output, and the total ground clutter power in each channel is 

N„ 

(2-68)    ac2=X 
p=1 

c 

Equation (2-68) follows from Equations (2-48a) and (2-52) . 

2.11 Channel Output Data Generation 

The channel output vector sequence {x(n)} is modeled as the sum 

of the signal (moving target), broadband interference (jamming), 

ground clutter, and receiver array noise. These four components 

are assumed to be pairwise statistically independent. Thus, the 
channel output vector sequence {x(n)} is generated as the sum of the 

four independent components, 

(2-69)   x(n) = s(n) + i(n) + c(n) + w(n) 0<n<N-1 

and the total power in each channel output is 

?     ?     2     ?     ? 
(2-70)     0^ = as + ai + ac + an 

Single-channel power ratios (such as signal-to-noise ratio) can be 

calculated given the channel output power level for each 

individual component (signal; interference; clutter). 
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2.12 Covariance,  Spectrum,  and Graphical Issues 

Diagnostics constitute a key part of the software model 

developed in this program. Generation of the 2-D power spectrum 

of the surveillance radar space/time process and plots of the 

spectrum and associated auto-covariance sequence provide insight 

into the structure and characteristics of the "true" process and 

the simulated data. Power spectrum and auto-covariance matrix 

estimates are important also. Those issues are discussed in this 

section. 

The channel output vector sequence {x(n)} can be viewed as a 

scalar 2-D sequence due to the relationship that exists between 

elements of the vector processes s(n), c(n), and i(n), and because the 

spatially-uncorrelated white noise vector w(n) can be viewed also 

as a scalar 2-D white sequence.  Specifically, 

(2-71)   xk+1(n) = x1(n+kx) = x1(n,k) 0<n<N-1; 0<k<J-1 

The scalar 2-D process {x^n.k)} has a scalar 2-D power spectrum 

denoted as (Sxx(fd,fs)}, and a scalar 2-D auto-covariance sequence 

(ACS) denoted as {rxx(m,-0}, where (m,^) denotes the lag pair 

corresponding to the frequency pair (fd,fs). The 2-D power spectrum 

and the ACS form a Fourier transform pair (see, for example, 

Dudgeon and Mersereau, 1984), 

CO       CO 

(2-72) Sxx(fdIf6) = jF[rxx(m,*)] =X   X rxx(m,i)exP[-j27c(fdm + f8/)] 
m=-°° t=-°° 

- 0.5 < fd < 0.5 and - 0.5 < fs < 0.5 
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0.5     0.5 

■// 
(2-73) rxx(m,*) = r1[Sxx(fd,fs)] = Sxx(fdlf8)exp[j27c(fdm + V)]dfddfl ■d'V-l - I  I °xx\'d'V CAKJ^H'dmT,s^Ju,du,s 

-0.5 -0.5 

- °° < m < °°     and    - °° < £ < oo 

In this transform pair the ACS is infinite and the power spectrum 

is continuous. Neither of these two conditions is true in 

practical applications such as surveillance radar. In fact, the 

number of lags available is determined by the number of channels 

and the number of pulses in one CPI, and the spectrum is sampled 

at sampling intervals determined also by the number of channels 

and the number of pulses in one CPI. For these conditions the 

relation that applies is the DFT and its inverse; namely, 

N-1        J-1 

(2-74a)        Sxx(fd,fs) = F[rxx(m,^)]=   ]£     ]T rxx(m,,0exp[-j27t(fdm + fs^] 
m=-N+1 /?=-J+1 

(2-74b)        fd = kdAfd -N + 1<kd<N-1 

(2-74c) fs 
= ksAfs -J + 1<ks<J-1 

(2-74d) Af 

(2-74e) Af. = 

d      2N-1 

1 
2J-1 

(2-75a)        rxx(m,0 = F"1[Sxx(fd,fs)] -N + 1<m<N-1;   - J + 1 <^< J -1 

0.5        0.5 

(2-75b)        rxxM=   ]T     ]T    Sxx(fd,fs)exp[j2^(fdm+fs0] AfdAfs 

f8=-0.5  fd=-0.5 
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0.5        0.5 

(2-750       rxx(m,l)= 1 ]T     X   Sxx(fd(fs)exp[j27u(fdm + V)] 
(2J-1)(2N-1) 

fs=-0.5 fd=-0.5 

Parameters Afd and Afs determine the spectrum's frequency resolution 

along the Doppler and spatial axes, respectively. Periodic 

sampling of the continuous spectrum causes the ACS to be repeated 

periodically in the lag domain. Likewise, the sampled spectrum is 

repeated periodically in the frequency domain because the ACS is 

available only at discrete times. 

It is possible to express the 2-D ACS in terms of the 2-D 
sequence {x^n.k)} as follows: 

(2-76)   rxx(m>^) = E[x1(n)k)x1*(n-m>k-^)] m>0; £>0 

with negative lag values determined according to 

(2-77)   rXK(-m,l) = &(m,-l) m>0;^>0 

(2-78)   rxx(m-£) = r^(-m,£) m>0;^>0 

(2-79)   rxx(-m,-^) = r;x(m^) m>0;^>0 

The channel output true covariance matrix sequence, {R^m)}, can be 

expressed also in terms of the channel output 2-D ACS using 
Equations (2-76)- (2-79) . The JxJ covariance matrix sequence for 

the process {x(n)} is defined in Equations (2-54) and (2-55) . For 
each m, matrix Rxx(m) can be expressed in terms of the elements of 

the 2-D ACS as 
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(2-80) Rxx(m) = 

rxx(m,0) 

rxx(m,1) 

rxx(m,-1) 

rxx(m,0) 

■xx ((m,J- ixx(m,J-3) 

rxx(m,J-- 

•2)   rx 

-1)   rxx(m,J- -2) 

rxx(m,-J + 2)   rxx(m,-J + 1) 

rxx(m,-J + 3)   rxx(m,-J + 2) 

rxx(m,0) 
rxx(m,1) 

rxx(m.-1) 
rxx(m,0) 

Notice  that  Rxx(m)   is  defined completely by the  first  row and the 

first    column,    as    befits    its    Toeplitz    structure.        Based   on 
Equations    (2-77)- (2-79) ,    Rxx(m)   is   Hermitian   only   for   m = 0,   as 

stated previously. 

Equation   (2-74a)   can be expressed as a matrix equation of  the 
form 

(2-81) S^TLR^TR 

where Sxx is the (2J-1)x(2N-1) power spectrum matrix, TL is the (2J- 

1)x(2J-1) DFT matrix, TR is the (2N-1)x(2N-1) DFT matrix, and Rxx is 

the (2J-1)x(2N-1) ACS matrix defined as 

(2-82) 

Rxx - 

rxx(-N + 1,-J + 1)   • ■   rxx(-1,-J + 1) jrxx(0,-J + 1)   • •   rxx(N-1,-J + 1) 

rxx(-N + 1,-1)      • •      rxx(-1,-1)    |   U0.-1)     • •      UN-1,-1) 

rxx(-N + 1,0)       • •      rxx("-1,0)   "I    rxx(0,0)      • •      rxx(N-1,0) 

rxx(-N + 1,J-1)    • •    rxx(-1,J-1)  ! UO.J-I)    •• •    rxx(N-1,J-1) 

DFT matrices TL and TR operate on the columns and rows, 

respectively, of the ACS matrix Rxx to implement the 2-D DFT. It 

is assumed herein that the DFT matrices also include any row 

and/or column shift operations necessary to generate a spectrum 

matrix with origin at the (J,N)th element. Additionally, it may be 

necessary to take the absolute value of the right-hand-side 
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Equation (2-81) in order to obtain the true real-valued spectrum; 

this is a function of the way a specific DFT is implemented.  The 
partitions on Rxx in Equation (2-82) represent the four quadrants, 

Ql through Q4, of the 2-D plane, with the lower-right partition 

corresponding to Ql; specifically, 

(2-83) Rxx *=> 
Q2 ! Q4 

Q3~!~Q1 

Notice that the origin is assigned to Ql. This agrees with the 

convention adopted in most three-dimensional (3-D) software 

graphics packages, including MATLAB. The quadrants are shown in 

Figure 2-3, where the axes are drawn in agreement with MATLAB's 3- 

D graphics default axes orientation and viewing angles. 

Figure 2-3. 

Qi: ith quadrant 

MATLAB  two-dimensional  grid definition  for default 
view angles   (azimuth and elevation). 
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In the approach formulated herein for the channel output true 

covariance model, the covariance matrix sequence is generated 

directly, without having to generate the power spectrum. This is 

appropriate for generating the inputs required by identification 

and detection routines when running "known covariance" cases. 

However, it is difficult to appreciate the features of the channel 

output by examination of either the true ACS or the true 

covariance matrix sequence. In contrast, visual examination of a 

3-D plot of the power spectrum is very informative. 

Given a true ACS or covariance matrix sequence, the (2J-1)x(2N- 

1) power spectrum matrix Sxx is obtained via Equation (2-81), and a 

3-D plot can be generated at frequency resolutions determined by 

Equations (2-74d) and (2-74e). The resulting plot will exhibit 

the principal features present in the true covariance model, but 

will have three drawbacks. First, the frequency resolution 

specified by Equations (2-74d) and (2-74e) is the coarsest 

resolution possible (determined by the fixed values J and N). 

Second, the frequency leakage level resulting from the Fourier 

transformation in Equation (2-81) is the highest possible because 

the true ACS lags beyond those specified in Equation (2-75) are 

unavailable, which is equivalent to multiplying the infinite- 

duration true ACS by a rectangular lag window defined with its 

corners at the lag pairs: (N-1.J-1), (-N+1.J-1), (-N+1.-J+1), and (N-1,- 

J+1). Third, for large values of N and/or J, the numerical 

evaluation of Equation (2-81) is inefficient because the length of 

the required transforms are odd numbers (2N-1 and 2J-1 ) , and 

efficient DFT algorithms are unavailable, in general, for large 

and odd length values. 

Each of the drawbacks mentioned above can be addressed, as 

shown next. The first drawback is overcome by "padding" the true 

ACS with zeros.  The second drawback is mitigated by applying a 
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low-sidelobe lag window to the finite-duration true ACS. Use of a 

lag window improves frequency leakage but introduces a loss in 

frequency resolution (with the result that features extend over a 

larger frequency band). Finally, the third drawback is eliminated 

by forcing the length of the zero-padded ACS along each axis to be 

an even integer that is a power of two, which allows use of Fast 

Fourier Transform (FFT) algorithms. To express these steps 
mathematically, first define an NjxN, zero-padded and windowed ACS 

matrix  FL„  as xx 

(2-84) Ryy = xx 
W®RXX   [0] 

[0]       [0]. 

where W is a (2J-1)x(2N-1) lag window matrix and ® denotes the Schur 

product, as before. The null sub-matrices in Equation (2-84), 

denoted as [0] , represent appropriately-dimensioned matrices of 
zeros. The integer Nf is selected to be a power of two such that 

Nf > max(2J-1,2N-1). Then define an NfxNf high-resolution power 

spectrum matrix Sxx as 

(2-85)    S xx \"xx 'R 

DFT matrices TL and TR in Equation (2-72) are both N,xNf, and as 

before, include any row and/or column shift operations necessary 
to generate a spectrum matrix with origin at the (N/2,N|/2)th 

element. The absolute value operation in Equation (2-85) insures 

that the spectrum is real-valued, and is necessary in this case 

because the enhanced ACS matrix, R^, lacks symmetry with respect 

to its middle element, which generates complex-valued terms in the 
product TLRXXTR (this effect is common to most DFT implementations, 

and taking the absolute value generates the desired result). The 

frequency resolution associated with spectrum S^ is 
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(2-86) AL = AL = Af 
N, 

Finally, the lag window matrix W is selected as the (2J-1)x(2N-1) 

matrix formed from a real-valued, finite-duration, separable, 2-D 
lag window sequence {(£>(rr\,£)};   that is, 

(2-87)   <o(m,£) = (o^m) co^i) -N + 1 <m<N-1; -J + 1 <^<J-1 

[2-88! w 

G)(-N + 1,-J + 1)    • •   (ö(-1,-J + 1) ©(0.-J + 1)   • •   co(N-1,-J + 1) 

co(-N + 1,-1)      • •      co(-1,-1) (0(0,-1)     • •     co(N-1,-1) 

co(-N + 1,0) •      ©("-1,0)   -1 r    oo(Ö,Ö) co(N-1,0) 

co(-N + 1,J-1)    ■• •    co(-1,J-1) co(0,J-1)    •• •    ©(N-1.J-1) 

where {co1(
#)} is a real-valued, one-dimensional (1-D) lag window 

sequence. A 1-D lag window normalized to have unity value at the 

origin (m = 0) is preferred because it preserves total power. 

Since the 2-D window sequence is separable, the spectrum of the 

lag window matrix (2-88) is circularly symmetric. 

All the relations introduced heretofore are based on true 

quantities, as opposed to estimated quantities, because only the 

true model has been considered up to this point.  However, several 

relations involving estimates of covariance and spectra are 

relevant for data generation and diagnostics, and are introduced 

below. Prior to that it is convenient to introduce the concept of 
an extended 2-D sequence {x.,(n,k)} obtained by padding the sequence 

{x.,(n,k) I n = 0, 1, . . . , N-1; k = 0, 1 J-1} with zeros as 

(2-89) x«(n,k) 
x^n.k) 

0 
0<n<N-1;    0<k<J-1 

N<n<2N-2;    J<k<2J-2 
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This extended sequence is important in ACS and spectrum estimator 

definitions established next. 

Given the 2-D sequence {x.,(n,k)}, the non-circular, biased, 

time-average estimate of the ACS for {x.,(n,k)} is defined as 

N-1 J-1 
(2-90)   rxx(rrv0=-j- ]T ]T x^n.k) x^n-m.k-f) 0<m<N-1 

JN n=m k= 

0<^<J-1 

where the caret (A) over a variable denotes an estimator, or 

estimate, of the variable. A similar formula (with different 

limits for the summations) is available to estimate the ACS for 

negative lags, but it is simpler to obtain the ACS estimate for 

negative lags according to the equivalence relations 

(2-91)   rxx(-m,l) = ?*x(m,-£) 0<m<N-1;  0<^<J-1 

(2-92)   fxx(m,-£) = r^(-m,£) 0<m<N-1;  0<^<J-1 

(2-93)   rxx(-mI-0 = rx*x(m^) 0<m<N-1;  0<^<J-1 

Notice that Equations (2-91)-(2-93) are analogous to the negative 

lag equations for the true ACS, Equations (2-77)- (2-79) . 

Alternative ACS estimators are obtained via modifications to 
Equation (2-90).  An unbiased, non-circular estimator is obtained 

by replacing the factor JN in the denominator of Equation (2-90) 
by the factor (J-O(N-m).  In the limit as both J -» °°  and N->°°, the 

estimation error approaches zero in an unbiased estimate, but 

approaches a fixed, non-zero value in a biased estimate. A non- 

circular, unbiased, time-average ACS estimate is transformed into 
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a biased ACS estimate by appropriately scaling the unbiased 

estimate as 

(2-94)   Pxxb(m,^) = cot(m,^) fxxu(m,^)     - N + 1 < m < N -1; - J + 1 <t < J -1 

where the U and b subscripts denote unbiased and biased estimates, 

respectively, since both types of estimates appear in the same 

equation. In subsequent usage, however, the estimator type 

subscript is dropped when the type of estimate (or estimator) used 

is clear from the context and confusion is unlikely to occur. The 

2-D sequence {cot(m,^)} is a real-valued, separable, lag window 

sequence computed as the product of two normalized 1-D triangular 

sequences, 

(2-95)   cot(m,^) = cotd(m) cots(^) - N + 1 <m < N -1; - J + 1 <£< J -1 

(2-96)    cotd(m) =^{1, 2, . . ., N-1, N.N-1, . .., 2, 1} 

(2-97)    cots(0 = j{1, 2 J-1, J, J-1,..., 2, 1} 

Notice that the central element (corresponding to m = f = 0) of all 

three sequences is unity.  As a consequence, the variance (total 

power) is unchanged after the scaling by {cot(m,i)}.  A (2J-1)x(2N-1) 

lag window matrix Wt is associated with the 2-D sequence {cot(m,^)}, 

as in Equations (2-87) and (2-88). 

An unbiased, circular estimator is obtained by repeating the 

finite sequence over the time and space domain, which results in 

that for an (N, J)-point sequence all lags are computed as the sum 

of JN non-zero products. Of more relevance to the approach 

pursued herein, Estimator (2-90) is equivalent to a circular, 

biased, time-average estimate of the ACS for {x.|(n,k)} computed as 
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2N-2 2J-2 

(2-98)   rxx(m/) = -|- £ ]£ x1(n,k)x;(n-m,k-*) 0<m<N-1 
n=m k=^ 

0<^<J-1 

with negative lags computed as in Equations (2-91)-(2-93). Even 

though it is calculated as a circular estimator, estimator (2-98) 

is equivalent to estimator (2-90) because the extended sequence 

can be repeated over the time and space domain without altering 

the sum of products, in relation to Equation (2-90), due to the 

zeros present in the extended sequence. 

Other ACS estimators can be defined, and each one has 

distinct properties. For model identification estimator (2-90) is 

preferred because it leads to improved model parameter estimates. 
In summary, for a 2-D sequence of duration (N, J), an ACS estimate 

of maximum duration (2N-1.2J-1) is obtained. 

The 2-D oeriodoaram, denoted as ^(f^fg), is an estimator of 

the power spectrum of {x^n.k)}, that is obtained as the 2-D DFT of 

the non-circular, unbiased, time-average ACS estimate (see, for 

example, Oppenheim and Schäfer, 1975), 

IM— I xj— I 

(2-99a)        Sxx(fd)fs) = F[Fxx(m,^)]=   £    ^ rxx(mI^)exp[-j27c(fdm + fs^)] 
N-1        J-1 

E E 
m=-N+1 #=-J+1 

(2-99b)        fd = kdAfd -N + 1<kd<N-1 

(2-99c) fq = ksAfs - J + 1 < ks < J - 1 

(2-"d)   **=ith 
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1 
(2-99.)   *.- 

It follows that the inverse transform relation is 

(2-100a)     rxx(m^) = F-1[§xx(fd,fs)] N + 1 <m<N-1;   -J + 1 <^<J-1 

0.5        0.5 

(2-100b)     rxx(m,*) =   ]T     ]£   Sxx(fd,fs)exp[j27c(fdm+fs^)] AfdAfs 

fs=-0.5  fd=-0.5 

0.5        0.5 

(2-lOOc)     rxx(m,fl = ^.^.^   X    X   Sxx(fdIfs)exp[j27t(fdm + V)] 
f,=-0.5 fd=-0.5 

Notice that transform equation pair (2-99) and (2-100) for the 

estimators is analogous to transform equation pair (2-74) and (2- 

75), which is valid for the true functions. 

In most texts the periodogram is defined first as a function 

of the data sequence, and then the equivalence with Equation (2- 

99) is stated.  Specifically, the periodogram is computed directly- 

using from the extended 2-D sequence as  (see,  for example, 

Oppenheim and Schäfer, 1975) 

(2-101a)       Sxx(fd,fs) 
1 

(2J-1)(2N-1) 
F[Xl(n,k)]f 

(2-101b)       Sxx(fd,fs) 
1 

(2J-1)(2N-1) 

2N-2  2J-2 

X X*^n'k)expH27c(fdn+fsk)] 
n=0    k=0 

(2-lOlc)       fd = kdAfd N + 1 < kd < N -1 

(2-101d)      fs = ksAfs J + 1 < ks < J -1 
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(2-lOle)  Afd=-^— 

(2-101f)  Afs = 
1 

2J-1 

The frequency-domain pair and resolution parameters are repeated 

in this equation in order to emphasize the equivalence with 

Equation (2-99).  In the frequency domain, total power (variance) 

is estimated according to the relation 

(2-102) 
0.5 0.5                               0.5   0.5 

fxx(0,0)= X X SxxtWAf.Af^    |     X  I §«(W 
f=-0.5 f.=-0.5                 V    A    '   f.=-0.5 fri=-0.5 d~ 

Equation (2-102) corresponds to Equation (2-100) with m = ^ = 0, and 

can be used to provide one indication of validity of a spectrum 

estimate. 

The relations in Equations (2-89)-(2-101) can be summarized 

in a diamond-shaped diagram, as in Figure 2-4. This diagram is 

useful for visualization of the analytical issues that relate the 
2-D sequences. The corners of the diamond, labeled 1 through 4, 

represent the four 2-D sequences, and the sides of the diamond 

represent the analytical expressions that relate the sequences to 
each other. Notice that only two operations are reversible, 1 to 

4, and 2 to 3. The periodogram operation (4 to 3) and the two ACS 

estimation operations (1 to 2, 4 to 2) are irreversible because, 

since these operations are nonlinear, phase information is lost in 

the generation of second-order statistical information (power 

spectrum and ACS). 
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Several modifications have been proposed to improve the basic 

periodogram.  An important modification is the inclusion of a 2-D 

window in the right-hand-side of either Equation (2-99a) or 

Equation (2-101a).  In general, the power spectrum estimate is 

different if a given window is applied to the ACS estimate or to 

the data sequence.  The numerical differences, however, can be 

small.  The relevant terminology is different also: a given window 

is referred to as a lag window when applied to an ACS estimate, 

and as a data window when applied to a data sequence.  Use of a 

window in either context leads to a more stable power spectrum 

estimate (less error variance), at the expense of less resolution. 

When windowed data is used to generate the spectrum, the procedure 

is referred to as the modified periodogram method.  And when the 

windowed ACS is used to generate the spectrum (as in Equations (2- 

84) and (2-85) for true functions), the procedure is referred to 

as the Blackman-Tukey method. 

Another approach to improve the periodogram stability is 

applicable only to the data-based periodogram definition, Equation 

(2-101a).  This approach consists of three steps: (a) partition 

the given data sequence into several shorter segments (with or 

without segment overlap), (b) computation of a periodogram from 

each data segment, and (c) averaging the resulting periodograms. 

A data window may be applied to the individual sequence segments 

(see, for example, Oppenheim and Schäfer, 197 5) . As with the 

prior modification, enhanced spectral estimate stability is 

attained at the cost of reduced resolution. 

50 



3 . 0  SAMPLE  SIMULATION  RESULTS 

Several runs were made to validate the analytic/software 

model, with emphasis on the ground clutter component because it is 

the most complex segment of the model. For that purpose the 

baseline case defined by Ward (1994) has been adopted, with the 

parameters as listed in Tables 3-1 and 3-2. These tables list the 

parameter symbol, description, and value for Ward's baseline case 

in the units used in SSC's MATLAB-based software. For simplicity, 

normalized values are used for noise, signal, and jammer powers. 

Software validation of the MATLAB-based simulation included 

exercised it with the values listed in Tables 3-1 and 3-2 as 

inputs. Simulation outputs include the power ratio parameters 

signal-to-noise ratio (SNR), jammer-to-noise ratio (JNR), and CNR. 

Several plots are simulation outputs also, including CNR as a 

function of azimuth, and true and estimated 2-D spectra. For the 

baseline case in Tables 3-1 and 3-2 the power ratio parameters 

are: 0 dB SNR, 3 8.1 dB JNR, and 46.1 dB CNR. Ward's results for 

these same conditions are (Ward, 1994): 0 dB SNR, 3 8 dB JNR, and 

47 dB CNR. The 0.9 dB disagreement in the CNR value is due to 

small differences between the two models. Ward (1994) does not 

list the values he uses for the physical constants, and does not 

provide analytical expressions for several parameters, such as 

receiver noise power spectral density, transmit antenna pattern, 

and receive column pattern beamforming gain. 

Figure 3-1 presents CNR as a function of azimuth, £c(<|),60), for 

Ward's baseline case, with 60 calculated as in Figure 2-2. This 

figure corresponds to Figure 10 in (Ward, 1994), and is presented 

here in the same scale (for both axes) and with gridlines, for 

ease of comparison. Notice that the figures are very similar in 
outline and scale.  The maximum value of £C((|),0O) is 3 8.1 dB for (j) = 

0°, whereas the maximum value extracted visually from Ward's Figure 
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10 is approximately 3 8.5 dB.  This discrepancy is consistent with 

the difference in total CNR (0.9 dB) between the two simulations. 

SYMBOL DESCRIPTION VALUE 

J 
Number of azimuth axis array elements 
(or sub-arrays), which is the number of 
azimuth channels 

18 

N 
Number of pulses in one CPI, which is 
the  duration  of the channel  output 
vector sequence 

18 

Je 
Number   of   elevation   axis   array 
elements beamformed into one azimuth 
channel 

4 

Pt Peak transmitted power 200 kW 

Tu Uncompressed pulse duration 200 us 

TRF 
Pulse repetition frequency 300 Hz 

fC 
Radiation frequency 450 MHz 

fB 
Receiver instantaneous bandwidth 4 MHz 

Gafo.öo) Transmit array pattern Uniform 

Go Transmit pattern gain 22 dB 

Ge Array element gain 4 dB 

Gb 
Array element backlobe pattern gain -30 dB 

°l Receiver noise power in each channel 1 (normalized) 

Fn 
Noise figure 3 dB 

Ls 
System losses 4 dB 

Table  3-1.     Radar system parameters  for Ward   (1994)   baseline  case. 
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SYMBOL DESCRIPTION VALUE 

Hp Platform altitude 9 km 

Vp Platform velocity 50 m/s 

rc 

Range from platform to ground clutter 
range ring illuminated by array main 
beam 

130 km 

Y Aircraft platform crab angle 0 deg 

4> Array main beam azimuth angle 0 deg 

Nc 

Number of ground clutter patches in the 
range ring illuminated by array main 
beam 

361 

Gs 
Number of moving targets 1 

a Target model damping coefficient 0.99 

vt 
Target radial velocity 33.3333 m/s 

*« Target azimuth angle 0 deg 

0t Target elevation angle 0 deg 

< Target power in each channel 1 

Gi Number of jamming sources 2 

0, Jamming sources azimuth angles 25 deg; -40 deg 

e. Jamming sources elevation angles 0 deg; 0 deg 

°? Jammer powers in each channel 3310 dB; 3000 dB 

Table  3-2.      Scenario parameters  for Ward   (1994)   baseline  case. 
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CNR as a function of azimuth is presented in Figure 3-2 for 

Ward's baseline case, except that the array pattern function, 
Ga(()),0o), is a Dolph-Chebyshev taper with 30 dB sidelobe attenuation 

level. For ease of comparison, the axes scale is the same as in 

Figure 3-1. As expected, the CNR reflects the broader main beam 

and lower sidelobes in relation to the conditions of Figure 3-1. 
The maximum value of £,c(§,%)  is 38.1 dB for (J) = 0°, and the total CNR 

is 51.6 dB. Both plots have the same maximum value because the 

array pattern function is normalized to unity at the main beam 

direction (the constant factor U in Equation (2-43)). 

A plot of the true power spectrum for Ward's baseline case is 

presented in Figures 3-3 and 3-4. Figure 3-3 is a 3-D plot of the 

logarithm (base 10) of the spectrum, and Figure 3-4 is a contour 

plot of the spectrum in Figure 3-3. The spectrum was normalized 

so that its maximum value is 0 dB. This spectrum was computed 

using the Blackman-Tukey method, which consists of applying the 

DFT to the product of the true ACS and a lag window (Equations (2- 

84) and (2-85)). A Dolph-Chebyshev window with 60 dB sidelobes 

was used to enhance the spectral features, and padding with 110 

zeros along each axis was used to increase the plot resolution to 
Afd = Afs= 1/128. In both figures, notice the clutter ridge at a = 45° 

(corresponding to V = 1) , with mainlobe at fd = 0, fs = 0.  Other 

relevant parameters calculated by the program include main beam 
elevation angle, 90 = -4.41°, and grazing angle, \|/c = 3.53°. The 

spectral ridges due to the two jammers, at fs = 0.21 (for <|)j1=25
0) and 

f =-0.32 (for ())j2 = -40
o), stand out in both figures. However, the 

moving target at fd = 0.334 and fs = 0 is noticeable only in the 

contour plot, Figure 2-8, because the jammer ridge at spatial 
frequency fs = -0.32 hides it in Figure 3-3. 

The plots presented in Figures 3-3 and 3-4 are based on the 

true ACS generated as described in Sections 2.1.2 through 2.1.6 

herein.  In contrast, Figures 3-5 and 3-6 present 3-D and contour 

54 



plots, respectively, of the logarithm of the spectrum generated 

using the modified periodogram method applied to ten independent 

zero-padded (with 110 zeros) pseudo-random realizations of the 

channel output sequence generated as described in Sections 2.1.7 

through 2.1.11. A Dolph-Chebyshev data window with 60 dB (power) 

sidelobes was applied to each realization prior to the computation 

of its periodogram. The ten periodograms were averaged to obtain 

the periodogram shown in these two figures. Notice the similarity 

of Figures 3-5 and 3-6 with Figures 3-3 and 3-4, respectively, 

which indicates that the data-based spectrum based on only ten 

realizations is very close to the true ACS-based spectrum. 
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CNR VS. AZIMUTH FOR WARD (1994) BASELINE CASE 
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Figure 3-1.     CNR vs.   azimuth angle for Ward's baseline case. 
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Figure 3-2.      CNR  vs.   azimuth angle  for Ward's baseline  case  with 
Dolph-Chebyshev transmit array taper. 
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NORMALIZED TRUE LOG POWER SPECTRUM (Weighted ACS) 

spatial frequency, fs -0.5     -0.5 
doppler frequency, fd 

Figure 3-3.     Logarithm of the normalized true power spectrum of 
the array output  for Ward's baseline case   (DFT of the Dolph- 

Chebyshev weighted ACS) . 
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NORMALIZED TRUE LOG POWER SPECTRUM (Weighted ACS) 

-0.5 -0.4      -0.3      -0.2 -0.1 0 0.1 
doppler frequency, fd 

0.2        0.3 0.4 

Figure 3-4.     Contour plot  of the logarithm of the normalized true 
power spectrum of  the array output  for Ward's baseline case   (DFT 

of  the Dolph-Chebyshev weighted ACS) . 



NORMALIZED LOG POWER SPECTRUM (Modified Periodogram) 

spatial frequency, fs doppler frequency, fd 

Figure 3-5.     Logarithm of the normalized power spectrum of the 
array output for Ward's baseline case   (average of ten periodograms 

with Dolph-Chebyshev data  weighting) . 
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NORMALIZED LOG POWER SPECTRUM (Modified Periodogram) 

-0.5      -0.4      -0.3      -0.2 -0.1 0 0.1 0.2 
doppler frequency, fd 

0.3 0.4 

Figure 3-6.     Contour plot  of the logarithm of the normalized power 
spectrum of the array output  for Ward's baseline case   (average of 

ten periodograms with Dolph-Chebyshev data weighting) . 
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4 . 0  CONCLUSIONS  AND  RECOMMENDATIONS 

An analytic model for the multichannel signal in an airborne 

surveillance phased array radar for moving target detection is 

presented herein. The model includes target, ground clutter, 

broadband interference (jamming), and receiver noise components. 

The ground clutter component is the most complex, and is derived 

from the analytic model proposed by Jaffer et al. (1991), and 

adopted recently by Ward (1994). Several diagnostic issues are 

discussed also, including the transformation of a one-dimensional 

vector sequence into a two-dimensional scalar sequence, and the 

estimation of power spectra for space-time processes. A MATLAB- 

based software program was developed based on the analytic model, 

and has been tested thoroughly. The software model provides the 

means to generate representative multichannel radar data in an 

efficient and controlled manner. 

The model discussed herein has been utilized to generate 

state space models for the ground clutter component in space-time 

processes, and to evaluate the multichannel innovations-based 

detection algorithm formulated in Phase I of the "Multichannel 

System Identification and Detection Using Output Data Techniques" 

SBIR program. These results are presented in the companion Volume 

I of this Final Technical Report (Roman and Davis, 1996). 

Various enhancements to the model have been identified for 

development in future programs. These include adding the 

capabilities to model: (a) internal clutter motion; (b) antennae 

element coupling; (c) return from multiple range rings; (d) 

different types of jammers; and (e) terrain-scattered interference 

("hot clutter"). 
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