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INTRODUCTION 

Humans excel at a variety of learned and highly skilled activities in which complex 
sequential behavior is distributed over time. The major theme of this chapter concerns the 
hypothesis that sequence learning and production of sequences of activities involves not a 
single function, but rather is made up of multiple components. For example, in playing a 
piano, pitch is mapped to key position and key position is mapped to the motor system for 
bringing the arms, hands, and fingers to the keys. In addition to this spatial mapping, the 
pianist must learn the sequence of notes or keys that correspond to a piece of music. The 
sequential representation must indicate not only which note or key is next in a series, but must 
also specify the intervals at which the keys should be hit and with what intensity. In other 
activities, dancing for example, trajectory through space, and not just the target of movement, 
must be specified. It is likely that some of these functions are independent of one another, 
both in the psychological sense that one function can be affected with minimal or no influence 
on another, and in a neurobiological sense in that they depend on different brain regions. This 
chapter will focus on a selected aspect of skill, the representation of learned sequences, and 
will consider only those representations that specify the succession of events. One of the 
issues to be addressed is the relationship between the representation of a sequence and the 
motor system that actually produces the sequence. Evidence will be presented that sequence 
representation is relatively abstract and independent of the implementation system. A second 
line of evidence to be presented suggests that the sequential representation itself has 
constituent parts or modules. 

Without a theory to describe the components of sequential representation and 
performance, it is difficult to design a focused investigation of the neurobiological 
underpinnings of skill. A considerable amount of research on "procedural learning" has been 
based on an assumption, not always stated, that sequence learning is less advanced and less 
differentiated into functions than is verbal or "declarative" learning. Moreover, it is often 
assumed that sequence learning occurs in some putative motor system of the brain, such as 



DEPARTMENT OF THE  NAVY 
OFFICE OF  NAVAL RESEARCH 
SEATTLE  REGIONAL OFFICE 

1107   NE 45TH   STREET.  SUITE 350 
SEATTLE WA 98105-4631 IN REPLY REFER TO: 

4330 
ONR 247 
11 M97 

From: Director, Office of Naval Research, Seattle Regional Office, 1107 NE 45th St., Suite 350, 
Seattle, WA 98105 

To:      Defense Technical Center, Attn: P. Mawby, 8725 John J. Kingman Rd., Suite 0944, 
Ft. Belvoir,VA 22060-6218 

Subj:   RETURNED GRANTEE/CONTRACTOR TECHNICAL REPORTS 

1. This confirms our conversations of 27 Feb 97 and 11 Jul 97. Enclosed are a number of 
technical reports which were returned to our agency for lack of clear distribution availability 
statement. This confirms that all reports are unclassified and are "APPROVED FOR PUBLIC 
RELEASE" with no restrictions. 

2. Please contact me if you require additional information. My e-mail is silverr@onr.navy.mil 
and my phone is (206) 625-3196. 

/ /i///Y/     a a ^ . 
ROBERT J. SILVERMAN 



the basal ganglia or the cerebellum. If sequential behavior involves a complex of modules, 
however, it seems more likely that different neural systems would provide different 
components, resulting in distributed representation. Evidence that sequence representation is 
independent of motor implementation systems suggests that sequence representation originates 
outside of brain regions that are devoted primarily to selection of particular motor effectors 
and to actual motor production. Evidence for complex sequential structures and for different 
modules of representation suggests that a number of different brain regions are involved in 
sequence representation. A long-term goal of psychological studies is to work out the 
complexities of sequence learning from a psychophysical point of view in the hope that it will 
facilitate the analysis of the neural systems that underlie it. 

The fact that less research has been done on sequential learning and behavior than on 
other domains such as verbal memory does not mean that it is more primitive or less 
important. Speech and language are pinnacles of human achievement. Speech requires the 
sequencing of a small set of phonemes into a myriad of words, and the sequencing of these 
words to produce phrases and sentences. Clearly, sequential learning is a prominent aspect 
of human language. 

Besides the sequential aspects of language -be they expressed in speech, writing, sign, 
or typing - humans also exhibit impressive sequential behavior in other domains. They express 
music in song, in instrument, in dance. They knit, build cabinets, and acquire the complicated 
skills of sports. Such widespread capabilities of learning new and exotic forms of sequential 
behavior indicate that specialized brain systems for sequential learning in humans may 
generalize beyond the domain of language. Although some theorists have suggested that a key 
in human evolution is the development of language-specific brain systems, our own 
investigations have been guided by the notion that humans have evolved mechanisms 
especially attuned to learning sequential constructions and that subserve both language and 
nonlanguage. 

This idea was articulated in more general form some years ago by Rozin (1976). He 
suggested that in the course of evolution, particular computational mechanisms arise to solve 
particular animal problems. In humans, and to a lesser extent in other animals, the 
computational mechanisms often have evolved further, to the extent that they have become 
separable from the task of origin and generalizable to other tasks (c.f., Greenfield, 1991, 
regarding sequential representation in infants, adults, and chimpanzees). This accessibility of 
a computational module by a variety of inputs and outputs, Rozin argued, lies at the heart of 
human intelligence. One of Rozin's primary examples concerns phonetic representation. Part 
of human speech capability stems from decomposition of speech sounds into elementary 
phonemes that can be reordered to produce different words. In humans, the phonetic 
representation that subserves speech can also be tapped into by a uniquely human invention, 
visual symbols called graphemes that can map onto phonemes and serve as a basis for reading. 
Thus, a module involved in speech is accessible through vision, a different input than 
anticipated in the course of evolution. A similar view of modularity has been advanced from 
a neurobiological perspective by Mesulam (1985, 1990) who suggests that local neural 
networks underlie specific cognitive operations. These local networks participate in a variety 
of complex behaviors through their large-scale interaction with other computational networks. 

Recently, other examples of common computational modules that underlie diverse 
human activities have been described. One such computation that has inspired much of our 
sequence work concerns timing. Ivry (e.g., Ivry and Keele, 1989; Ivry and Gopal, 1992; Keele 
and Ivry, 1991) has presented evidence that a timing mechanism, operating in the range of a 
few hundred milliseconds to a second or two and localized in the cerebellum, underlies a 
variety of motor and perceptual tasks. Evidence for this idea comes from the following 
observations: (1) Timing of intervals in repetitive motor tapping is disrupted by lesions of the 
lateral cerebellum; (2) Speech dysarthria resulting from cerebellar damage reflects disruption 
of precise temporal relationships between speech components, as in the voice onset time of 



stop consonants, but does not affect nontemporal speech properties such as vowel formant 
structure; (3) Perceptual judgments of time between auditory events are disrupted by cerebellar 
damage, but loudness judgments of the same events are not; (4) Judgments of the velocity of 
moving visual displays, which depend on temporal information, are impaired in patients with 
cerebellar damage, but positional judgments of the same displays are not. 

It has been argued that the same lateral regions of the cerebellum are necessary for 
classical conditioning (e.g., Thompson, 1986; 1990). Many forms of conditioning involve 
very precise timing in which the interval between a conditioned stimulus and a conditioned 
response corresponds to the interval between the conditioned stimulus and an unconditioned 
stimulus. This timing relationship often has adaptive value. For example,a conditioned eye 
blink that temporally anticipates a noxious stimulus to the eye may prevent the noxious 
stimulus from having damaging effects. Lesions to the cerebellum impair or abolish 
precisely-timed forms of classical conditioning, but have little effect on other types of 
conditioning, such as emotional conditioning. For example, in experiments where a tone is 
followed by a small electrical shock near the eye, lesions of the cerebellum may affect the 
linkage of the tone to eyeblink, but they do not affect the linkage of the tone to the autonomic 
response of change in heart rate elicited by the same shock (Lavond et al., 1984). Moreover, 
there is evidence that different systems within the cerebellum play different roles. Lesions of 
the nucleus interpositus of the cerebellum abolish precisely timed conditioned responses, while 
lesions of cerebellar cortex leave conditioning intact but with responses occurring at 
inappropriate times (Perret, Ruiz, and Mauk, 1993). 

These studies suggest that in humans a particular class of computation, timing in the 
millisecond range, is separable from the performance of an individual task, and that the 
cerebellar cortex plays an essential role in the timing computation. We call a system that 
performs a class of computations and that can be interfaced with different inputs or outputs 
a module. 

In this chapter we examine other components that contribute to skill, concentrating on 
psychophysical studies of sequence learning. We provide evidence that sequence 
representation is modular in the sense that it is separable from the motor systems that actually 
implement movement. Thus, sequencing resembles timing in that an abstract relationship is 
transferrable among different input/output systems. Secondly, we provide evidence for 
different sequential learning systems that are in certain respects independent of one another. 
We review some network models of sequence learning that are beginning to provide insight 
into possible computational mechanisms of learning. In addition, we discuss ways in which 
the psychophysical studies could be applied to an analysis of neural mechanisms involved in 
sequencing. 

A MODEL TASK FOR STUDYING SEQUENTIAL REPRESENTATION 

In biology and psychology, it is common to study particular, species-specific 
behaviors. To study sequencing, one might examine behaviors as diverse as language and 
speech, locomotion, musical performance, birdsong, or mouse grooming. However, the fact 
that humans are adept at learning a variety of sequences, many of which probably depend on 
common computational systems, has motivated the design of model tasks that differ from 
most naturalistic tasks, but have certain experimental advantages. A model task should 
comprise critical features of important human sequential tasks but use simple procedures 
amenable to experimental manipulation. The model task should be learnable within a short 
time frame. Appropriate model tasks can also be employed with animal and infant subjects 
in order to relate psychologically defined components to neural substrates and their 
development. 



Several different model tasks have been developed to study sequencing. In one 
pioneering effort, Restle and Burnside (1972) used a linear array of six lights that 
corresponded to six response buttons. The lights came on successively in patterns such as 
1234666662323543, where the numbers refer to lights from left to right. A subject's task was 
to learn to press a key corresponding to the next anticipated light in a sequence. The lights 
were presented at a fast pace so that subjects frequently made late responses, responding to 
one light after a subsequent one had already appeared. Late responses predominated at 
particular places in the sequence - at the end of a regularly changing sequence in one direction 
(1234), a sequence in the reverse direction (543), a set of repetitions (66666), or a trill (2323). 
These break points, where a subject was slow in anticipating the next light, suggested a simple 
but powerful principle, namely that the internal representation of a sequence had a hierarchic 
structure. That is, a sequence is stored and retrieved as a series of chunks, each chunk having 
its own internal structure. 

The idea of hierarchic representation was subsequently elaborated by others. Povel 
and Collard (1982), rather than presenting lights, simply showed subjects a series of numbers 
(e.g., 321234) that represented the order in which subjects were to press 4 keys in a repeating 
sequence. The lengths of intervals between successive responses suggested that different 
individuals parsed such sequences in different ways. For example, some subjects might parse 
the sequence as a backward run (321) followed by a forward run (234), exhibiting a rather 
large transition time between 1 and 2. Other subjects might exhibit a parsing such as (32) 
(1234). Yet others might represent within the sequence the trill 212 preceded by 3 and 
followed by 34. The important point is that one and the same sequence is subject to different 
internal and hierarchic representations that can be deduced from the temporal output structure. 
Very similar ideas have been suggested by Rosenbaum (1987). 

Not all investigations have used key pressing as a model task for sequencing. Gordon 
and Meyer (1989) taught subjects short sequences of 4 nonsense syllables. Sometimes they 
asked subjects to prepare to produce one sequence but then unexpectedly signaled them to 
perform a different one composed of the same nonsense syllables but differently ordered. 
Examining the time to reprogram a sequence led them to the now familiar conclusion that the 
internal representation of an event sequence, rather than being a linear string of associations, 
actually was hierarchic. In these experiments, a string of four elements was coded as two 
concatenated strings of two elements each. 

These studies all involved explicit learning, meaning that subjects were either told or 
otherwise became aware of the exact order in which events occurred. In other situations, 
where events occur and are responded to in some particular order, the sequential structure is 
not apparent to the learner. This type of learning is referred to as implicit learning. Although 
a performance criterion may indicate that the sequence has been learned, the subject is not 
aware that any learning has taken place. For example, when children learn language prior to 
beginning school, they typically are not told the rules of word ordering that constitute the 
grammar of their language. Nevertheless, they are capable of producing correct sequences. 
It is not uncommon even for adults to be unable to describe the rules that govern their choice 
of word order, even though their grammar is invariably correct. For review and discussion of 
the distinction between implicit and explicit learning see Berry (1994), Reber (1989), and 
Shanks and St. John (1994). 

For investigating questions involving explicit versus implicit sequence learning, a 
paradigm originally developed by Nissen and Bullemer (1987) has proven useful. Subjects 
view a screen with 3, 4, or 5 designated positions in a horizontal line. On each trial a visual 
signal, such as an X-mark, can appear at any position. Beneath the screen are corresponding 
response keys. The subject's task is to press the key that corresponds to the position of the 
visual signal - key 1 for signal position 1, etc. Reaction time is measured from signal onset 
to key press. Following a key press, and usually after a fixed interval (e.g. 200 ms), the next 



signal occurs. Typically blocks of about 100 signals are presented, after which there is a short 
rest period. 

Within a block of trials, the signals can occur in either random or sequentially 
structured orders. Random signals are usually presented with the constraint that the same 
signal is not presented twice in succession. Sequential signals occur in specific orders. In a 
sequence designated 13232 , signals occur at three positions, numbered 1 through 3 from 
left to right. A set of 5 signals occurs in the order designated, after which, without any 
discernible break, the sequence recycles. The first signal on a block of trials can start at any 
particular position within the sequence. The subjects' task is simply to respond to each signal 
as it occurs, trying to respond as rapidly as possible. Subjects learn the sequence structure, 
whether they report awareness or not. Sequence learning can be quantified by comparing 
subjects' reaction times when events occur in sequence with their reaction times when events 
occur at random. Such an index provides a measure of performance learning that does not 
require awareness of the learning. 

Nissen and Bullemer (1987) introduced another manipulation to examine the role of 
attention in sequence learning. In the typical experiment, there is a 200 ms interval between 
one response on the primary task and the presentation of the next visual signal. During that 
interval a high or low pitched tone can be inserted, and subjects are asked to count the 
high-pitched tones. Usually performance on this distraction task itself is not of great interest; 
rather the distraction is used to interfere with subjects' attending to the relationship between 
successive events of the primary task. 

The important contribution of Nissen and Bullemer's paradigm is that it allows 
assessment of sequential learning for sequences of a variety of types under conditions where 
explicit instruction is provided, or where no information about the sequence of stimulus is 
given. In addition, these experiments can be performed under conditions of distraction or full 
attention. 

INDEPENDENCE OF SEQUENTIAL REPRESENTATION FROM THE MOTOR 
SYSTEM OF EXECUTION 

The modular theory of sequence processing suggests that the same internal 
representation of a sequence of events can be interfaced with diverse motor systems for 
executing the sequence. Rozin (1976) had developed this general argument based on evidence 
that phonetic representations underlie not only speech production and perception but also the 
reading of visually presented words. A number of lines of evidence are consistent with the 
view. At the informal level, it is often noted that writing style is remarkably similar for the 
same person, whether it is performed on a small scale by the hand or on a large scale by the 
arm. Even exotic effectors such as head movements or elbow movements produce similar 
writing styles (Bernstein, (1947) as reported in Keele, Cohen and Ivry, 1990; Raibert, 1977). 
Wright (1990) averaged multiple writing samples to eliminate sample-by-sample variation 
and noted even more remarkable similarity between hand writing and arm writing, though 
some effector differences emerged as well. 

These informal observations suggest that the same internal description of space guides 
different effectors in the production of figures, consistent with a view put forward by 
Berkenblit and Feldman (1988): "There is a neuronal level that creates an abstract image 
(verbal or graphic) of the forthcoming movement (a circle, line, etc.). Then a combination of 
effectors and a coordinative structure is specified...." 

The informal observations of letter similarity across effector systems together with the 
notion of an abstract image suggest that at least certain aspects of the representation of a 
motor act involved in drawing a single graphic figure, such as a letter or a geometric shape, 
are accessible by different effectors. However, these observations raise the question of how 



low in a hierarchy of motor acts such modularity descends, and at what level motor 
representation becomes specifically designed for the responding effector. 

In a study reported in preliminary form,'Wright and Lindemann (1993) had subjects 
practice writing particular letters with the nondominant hand. As would be expected, fluency 
in producing the letters improved with practice, but the important question was how the 
improved fluency transferred to nonpracticed letters when writing with the nondominant 
hand. Nonpracticed letters that shared the same strokes as the practiced letters, even though 
the strokes were arranged differently, were produced as well as the letters that had been 
practiced. However, letters composed of strokes not contained in the practiced letters were 
not executed as well. These results suggest that in handwriting, practice with a specific 
effector is confined to the level of strokes, i.e., skill improvement is effector dependent. In 
contrast, the mechanisms involved in arranging strokes into letters must be effector 
independent because only the dominant hand would have had extensive experience with the 
stroke arrangements in the nonpracticed letters. Thus, practice using a specific effector 
improves stroke production but such practice is not necessary for stroke assembly, implying 
that some basis for the assembly already exists. 

Given that specifications of motor action above the stroke level for single letters can 
be shared at least across hands, one would expect that even higher levels of description such 
as the specification of a series of letters in a written word can also be shared among different 
motor systems. Hillis and Caramazza (1988) examined two patients with posterior cortical 
damage both of whom suffered partial unilateral neglect. The patient with right hemisphere 
damage tended to make handwritten spelling errors on the left edge of words, often 
misordering letters, as in writing "rpiest" instead of "priest". The patient with left hemisphere 
damage tended to make errors on the right edge of the words, again often misordering letters. 
Of particular interest is the observation that when the patients were asked to spell words orally, 
both patients made a similar proportion and type of spelling errors as in handwriting. Oral 
spelling occurs over time, not space, suggesting that the common "locations" of spelling errors 
for oral and written spelling both made use of a common internal specification of letter order. 

In summary, the specification of serial order appears to be abstract in the sense that 
different effector systems can draw upon the same internal description of movement through 
space. 

The view that serial specification of letters or phonemes is completely independent 
of the effector system that will execute the movements is not universally shared. Although 
most studies of the relationship between sequential specification and the motor system imply 
some degree of independence, they do not necessarily indicate that there is complete 
independence. A prominent theory to describe sequential motor behavior developed by Jordan 
(1986; 1993) builds sequential representation into a network that contains effector-specific 
components, rather than separating sequential specification from the motor systems of action. 
His model can perhaps best be appreciated by considering the task of ordering phonemes to 
produce words in speech. 

In Jordan's model network, two types of input units are combined via hidden units to 
jointly specify the features of the next phonemic output (this model is more fully described in 
a later section, c.f. Figure 8). One set of inputs is a so-called plan, which can be thought of as 
a global representation of the word. The other input is a set of state units that essentially 
maintain decaying memories of the phonemes already emitted in a sequence. At the beginning 
of a phonemic sequence, the state units are all initialized to zero, so the first phoneme is 
determined exclusively by the plan units. After the first phonemic output, some of the state 
units change, reflecting the speech features that were involved in the immediately preceding 
phoneme. As a result the next output is a product of the original plan, plus the new state. 
The output units in the model are not abstract representations of phonemes that could be fed 
to motor speech apparatus. Rather the outputs are features of speech, such as lip rounding, 
tongue position, etc., and the state units that preserve information about prior outputs do not 



represent memories of abstract phonemes but instead represent the speech features that made 
up the phoneme. As a result of learning, the network develops the ability to produce the next 
appropriate set of speech features upon receipt Of feedback that the speech features of the 
preceding phoneme have been emitted. This network, therefore, produces sequential behavior, 
but it does so within a system that has intrinsic speech-related outputs. 

What would be the advantage of using speech features as output rather than abstract 
representations of phonemes that could then be shipped off to another modular network that 
would produce appropriate motor activity? The reason is that with practice, motor action 
becomes fluent so that one aspect of movement melds smoothly into another. One goal in 
constructing a series of movements is to minimize the amount of change in a motor effector 
during the transition from one movement to another. The mutual interaction of nearby 
movements is called co-articulation. Co-articulation maximizes the efficiency of movement 
with the sole constraint that the individual components still remain interpretable. To produce 
a smooth series of movements presumably requires specification of the movement apparatus. 
Thus, in typing, a particular kind of combined finger movement would be required to produce 
two keystrokes in quick succession. In speech, the motor apparatus might need a very different 
kind of motor control to make the transition between adjacent phonemes fluent. In actual fact, 
research in both speech and typing shows a tremendous amount of co-articulation between 
successive motor actions. Although some co-articulation might be explained in other ways, 
it was this feature that motivated Jordan's decision to incorporate the executing motor organ 
into the actual sequential representation. 

Thus, some evidence suggests that sequential specification of motor acts is independent 
of the selection of motor effectors that will produce the actions. Nevertheless, there is also at 
least a theoretical basis for questioning complete modular separation. 

Our own studies have used quantitative assessments of the transfer of learning to 
distinguish between a theory of modular representation and one in which sequential 
specification is intrinsic to the effector system. All of our studies have used a variant of the 
design developed by Nissen and Bullemer (1987). 

To determine whether different motor effectors share a common sequence 
representation (Keele et al., 1995), subjects were trained to respond to sequential stimuli using 
one of two motor systems. The first involved using three fingers (index, middle, ring) to 
depress three keys and the second involved moving the arm back and forth to strike the keys 
with the index finger only. 

Subjects began with two blocks of visual signals presented at random. The visual 
signals were an X-mark that appeared at various locations. The first experiment was conducted 
without a distraction task. Subjects were told to respond as rapidly as possible to each visual 
signal by pressing a corresponding key. Although they were told nothing about the presence 
of a sequence, many became aware of its presence. Different subjects received different 
sequences, but all were five elements in length, involving 3 positions, 2 of which were 
repeated within the sequence. An example is 13232...., where the numbers refer to order of 
positions on a screen at which a visual X-mark appeared. A preliminary practice period with 
successive events presented at random familiarized the subjects with the mapping from stimuli 
to key-press responses, but did not allow any learning of sequential order. The random practice 
period also obscured the fact that later events might be presented in sequence. Following 
practice, subjects typically received 6 to 8 learning blocks in which signals were presented in 
sequence. Some subjects were not told about the sequence. Following learning, subjects 
entered a transfer phase in which some were required to switch to a different effector system. 
At transfer, half the subjects continued to use the same effector system as in initial learning; 
the other half changed to the previously unpracticed motor system. During transfer, subjects 
typically received one block of random trials to familiarize them with the new response 
arrangements, followed by random, then sequenced, then random blocks. The difference in 
reaction time between random and sequenced blocks during this final phase was taken as a 



measure of the amount of sequential information acquired during learning that transferred to 
new conditions with a different response mode. If the sequential representation were 
independent of the motor system of execution, there should be complete transfer of 
knowledge. 

Figure 1 shows the results. For the group that used the same effector during the transfer 
phase as during initial learning, the reaction time for events that occurred in sequence was 
about 130 ms less than for random series of stimuli. For subjects who switched to a previously 
unpracticed effector, the reduction in reaction time was approximately the same and did not 
differ statistically from the former, suggesting a common sequence representation for the two 
effector systems. 

However, it is possible that the random blocks preceding the sequence test 
extinguished learning, and the 130 ms sequence advantage actually represents new learning 
on the single sequence block of the transfer phase. To examine that possibility, a control 
group of subjects received random events throughout the entire "learning" period and changed 
effector system during the transfer period, so that the sequence was introduced on a single test 
block. Those subjects also showed faster reaction times on the sequence block than on the 
surrounding random blocks, suggesting that some learning occurred on that block alone. 
Nevertheless, the sequence advantage was substantially and reliably less than that for subjects 
with previous practice on the sequence. 

These results suggest that all sequence knowledge acquired in the context of 
responding with one effector system transfers to a different effector system, because amount 
of transfer did not depend on whether or not the effector changed. This finding further 
suggests that sequential representation resides in a separate module from implementation 
systems. 

Figure 1. Performance of two groups of subjects who were presented with sequences during the learning 
phase. During transfer, one group changed the responding effector from fingers to arm or vice versa. The 
other retained the same effector. Sequence learning is indicated by the difference between sequence block 13 
and random blocks 12 and 14, as shown in the inset. The letter R on the abscissa indicates a random block 
and the letter S a sequence block except for a control group that received random events on all of blocks 1-12 
and 14. All blocks are under single-task conditions. 



A hallmark of explicit memory is the flexibility with which it can be expressed (e.g., 
Cohen and Eichenbaum, 1993). To test whether transfer of sequential knowledge between 
effectors is due to explicit memory, or whether transfer also occurs when subjects are unaware 
of the sequence, we used a distraction procedure that has been shown to abolish awareness of 
a sequence for almost all subjects (Cohen, Ivry, and Keele, 1990; Nissen and Bullemer, 1987). 
A tone was inserted in the short 200 ms interval between each keypress response and the next 
visual stimulus of the primary task. At the end of a block of trials, subjects reported the 
number of high-pitched tones. 

Figure 2 shows the results of this experiment. The addition of the secondary task 
caused reaction times on the primary task to increase, and it also reduced the total amount of 
sequence learning as assessed by the difference between random and sequence conditions 
during the transfer period. Nonetheless, sequence learning was reliable, and the amount of 
learning did not depend on the effector that was used during transfer. A control group that had 
not experienced the sequence until the critical test phase showed no evidence of learning. 
Thus, under conditions of distraction, the shorter reaction time for the sequence is the 
exclusive result of learning prior to transfer rather than new learning during the transfer phase. 
This experiment suggests that sequential knowledge is independent of the motor system that 
expresses it, even under distracting conditions that minimize explicit learning. 

Figure 2. Identical experiments as in Figure 1, except that all blocks are under dual-task conditions, in which 
tones were presented between visual stimuli and subjects were instructed to report the number of high- 
frequency tones. 

The two experiments just described suggest that sequential representation is not in the 
motor system because the knowledge is completely transferable from one motor effector to 
another. However, they do not distinguish between two other possibilities having to do with 
the nature of the representation. The form of the sequence representation could be either the 
order in which the stimuli occur, in this case a visual/spatial representation, or the order in 
which keys are pressed. Presumably, key press order is not the same as a motor code, because 
the same response key can be pressed with different motor effectors. 

To differentiate between these two types of sequence representation, a third experiment 
was conducted. It introduced verbal responses in addition to finger responses so that transfer 
could occur with changes in the nature of the response. Like the second experiment, this one 



employed a distraction task throughout. During learning, one group of subjects responded 
verbally to signal position with the words left, middle, and right; the other group responded 
manually with key presses. During transfer, both groups responded verbally. Verbal reaction 
times were measured from voice-onset times. 

The results shown in Figure 3 in some ways resemble those of the first two 
experiments, but differ in other ways. Some sequence knowledge acquired manually did 
transfer to verbal responding. That sequence knowledge, though small in magnitude, was 
statistically greater than that exhibited by a control group making manual responses that had 
only been presented with random events during training. These results suggest that, at least 
some of the sequence knowledge acquired in responding to a series of visual events describes 
the order of the events, not the order of responding. It is also the case, however, that the group 
who practiced with verbal responses throughout learning exhibited greater sequential 
knowledge during the transfer phase than the group that had practiced manually and 
transferred to verbal responding. 

Figure 3. Performance of two groups of subjects, one group that practiced with manual responses, and a 
second that practiced with verbal responses. A control group also practiced with manual responses, but events 
were random. During transfer, all groups used verbal responses. All blocks are under dual-task conditions. 

There are at least two possible explanations for incomplete transfer of sequence 
learning between manual and verbal responding. Less sequence learning might occur with 
manual responses than with verbal responses, so there would be less information to transfer 
from the manual to the verbal mode. Second, although some sequence information resides in 
stimulus order, some may also reside in response order. Further experiments will be necessary 
to distinguish among these possibilities. 

Other researchers have also provided evidence that sequential information resides in 
a code independent of the motor system. In a design somewhat similar to our own, Stadler 
(1989) found that sequential information about perceptual events transferred from key pressing 
with one set of fingers to responding with a different set of fingers. Mayr (1995) also 
demonstrated that some sequential representation is tied to  stimulus representation, 



completely independent of response requirements. Subjects in Mayr' s study pressed keys that 
corresponded to the identity of geometric shapes. The shape on a given presentation appeared 
in one of four different locations, but location was irrelevant to response selection. Unknown 
to the subjects, the geometric shapes and hence the order of responses occurred in one 
particular sequential order. The locations of the shapes occurred in a different and uncorrelated 
order. By occasionally reverting to random order either in shapes or in positions and observing 
declines in reaction time, Mayr was able to show that subjects had acquired sequential 
knowledge not only of the upcoming shape, which determined the response, but also of its 
position, despite the fact that position was not the response determinant subjects had been 
instructed to use. When learning took place without distraction several subjects became aware 
of the sequences, but similar results occurred in a tone-distracted study that virtually blocked 
awareness. 

A study by MacKay (1982), using German-English bilinguals to examine sequence 
transfer, provides additional insight into the nature of the sequence representation. He 
presented subjects with sentences in one language or the other and observed their improvement 
in speaking speed over 12 repetitions of the same sentence. When the sentence was then read 
aloud in the other language, preserving the same ordering of concepts, MacKay found 100 
percent transfer of the previous sequence learning. While most people would intuitively 
predict some transfer, the important observation is that transfer was complete. This outcome 
indicates that the speed improvements were localized to a sequential representation not only 
more abstract than particular movements of speech apparatus but also more abstract than a 
specific language or word order. In another of MacKay's experiments, subjects spoke a 
randomly ordered series of words, repeating them in the same random order each time. When 
switched to the alternate language, no transfer of learning occurred. 

How might MacKay's apparently discrepant findings for the two situations be 
explained? He proposed a theory of hierarchic representation of sequences (see MacKay, 
1987 for a much expanded treatment of his theory and many other sequential phenomena). His 
model divides the representational system into three modules - conceptual, language-specific, 
and motor. High-level sequential representation resides in the conceptual module. A sentence 
is represented first at the level of abstract object-action concepts. At successively lower levels 
of a hierarchy, the complex concepts are differentiated until they correspond to individual 
concepts that can be denoted by different words in a different language. It is important to note, 
however, that even at this level, concepts are not words; the same concept can underlie both 
an English and a German word. For accomplished bilinguals, who already have fluent 
articulatory abilities, the novelty of a new sentence is restricted primarily to the highest levels. 
Thus, when a novel sentence is practiced, learning is restricted primarily to new conceptual 
structure. It is this information that transfers from one language to the other. The reason why 
transfer fails for randomly ordered words as opposed to those words embedded in a sentence, 
is that conceptual structure helps convey the meaning of individual words, and such structure 
is lacking for random words. Consider a word such as "right" that has numerous meanings, 
referring variously to spatial position, lack of error, political orientation, etc. Sentence 
structure helps restrict the conceptual meaning. Strictly serial order representation with no 
hierarchical structure fails to specify precise meaning and hence limits transfer to words of 
another language. 

Once the conceptual representation reaches its terminal level, individual concepts are 
translated into language-specific words through a second module. This module too contains 
hierarchic representation. A word is successively broken down into components, first into 
syllables, and ultimately into a phonetic representation. The phonetic representation is then 
interfaced with a third module that specifies articulatory components. 

MacKay's theory and his own empirical observations are consistent with the present 
evidence that sequential representation of action is separable from the motor system that 
implements the action. In MacKay's theory, articulatory control systems can produce 



individual articulations, but do not contain any information about what subsequent 
articulations will be. Any anticipation of articulation comes not from prior articulation per se 
but from higher levels of hierarchical representation that are functionally separable from 
articulation. 

In summary, a number of studies, all using a transfer methodology, have suggested that 
sequential representations that guide a sequence of actions reside in a module that is separable 
from the effector system itself. Although these studies suggest that separability of sequential 
representation from implementation applies to both conditions of attended and unattended 
learning, there is evidence that sequential memories acquired under conditions of distraction 
involve at least partially separate modules from those requiring attention. 

INDEPENDENT   ATTENTIONAL   AND   NONATTENTIONAL    SEQUENCE 
REPRESENTATIONS 

A number of experiments have sought to specify sub-components of the sequence 
learning system (Nissen and Bullemer, 1987; Nissen, Willingham, and Hartman, 1989; Nissen, 
Knopman, and Schacter, 1987). These studies have used relatively complex sequences of the 
type, in which visual signals are presented at successive positions, with key-pressing reaction 
time used as a measure of sequence learning. Nissen and colleagues found that a distracting 
task prevented subjects from learning complex sequences that were easily learned without 
distraction. As long as there was no distraction, even patients with Korsakoff's syndrome, 
who suffer severe amnesia as a result of chronic alcoholism, were able to learn the sequence, 
although they were unable to express awareness of it (Nissen and Bullemer, 1987; Nissen, 
Willingham, and Hartman, 1989). Administration of scopolamine, an anticholinergic drug, 
reduced sequence awareness in normal subjects but did not prevent sequence learning (Nissen, 
Knopman, and Schacter, 1987). Thus, the work of Nissen's group suggests that attention, in 
terms of freedom from distraction, is needed for learning a complex sequence, but that 
attentional learning does not necessarily lead to awareness (see also Willingham, Nissen, and 
Bullemer, 1989). 

In our laboratory, we (Cohen, Ivry, and Keele, 1990) found that under certain 
circumstances, even with a concurrent secondary task, certain types of sequences were learned. 
Sequences of the sort 13232.... where numbers refer to spatial positions, were learned, as 
were slightly longer sequences involving more elements, of the sort 132314 However, 
when sequences of the type 132312.... were used, a distraction task blocked sequence learning. 
The latter two sequences are extremely similar, involving a different event only at one 
sequence position. Why is one learnable under distraction and the other less so? 

We noted that a sequence such as 132312.... has a certain ambiguity. Each possible 
event occurred twice, but on each occasion, it was followed by a different event. Such a 
sequence is impossible to learn based only on direct, pairwise associations. The sequence used 
in all of Nissen's studies has this ambiguous character. We hypothesized that such ambiguity 
is solvable by a coding mechanism that parses a sequence into chunks, allowing the learning 
of order within a chunk. This mechanism is essentially one of hierarchic coding. Sequences 
of the sort 13232... and 132314... have, in contrast, one uniquely occurring event, and more 
than one unambiguous ordering within a sequence. Thus, in 132314..., event 4 is followed 
only by event 1 and event 2 is followed only by event 3. Such unique associations, we 
hypothesized, allowed learning of the entire sequence by a non-hierarchic mechanism. In 
short, our initial studies led us to postulate two distinct forms of sequence learning, one 
hierarchic and the other non-hierarchic. 

The finding by Cohen et al. (1990) of an interaction between attention and sequence 
structure led to two extended lines of investigation. The first line (Curran and Keele, 1993) 
followed up the suggestion that there might be two independent forms of sequence learning, 



one of which requires attention but is capable of learning sequences with ambiguous 
associations, presumably by mechanisms of hierarchic representation. The second line (Keele 
and Jennings, 1992) involved computational investigations of possible mechanisms of 
hierarchic and nonhierarchic forms of sequence learning. 

We (Curran and Keele, 1993) performed four experiments to examine the hypothesis 
that there are two independent forms of sequence learning, one requiring freedom from 
distraction and the other not. For convenience, the two forms of learning will be called 
attentional and nonattentional, to distinguish between their relative susceptibility to distraction. 
These two forms of learning, it was hypothesized, do not communicate their contents to one 
another. When attention is available, the attentional system acquires information in parallel 
with the nonattentional system. It was hypothesized that the attentional system needs attention 
not only for acquisition of sequence knowledge, but also for the conversion of that knowledge, 
once acquired, into either performance or awareness. Finally, we hypothesized that the two 
learning forms differ in their capability. Specifically, only the attentional system is capable 
of learning sequences thought to require hierarchic coding; both systems can learn sequences 
that do not have ambiguity of association. 

A first experiment varied the amount of learning that occurs in a nondistracted state 
by either explicitly telling subjects of the presence of a sequence or not telling them. This 
manipulation influences the amount of attentional learning and allows a test of the hypothesis 
that there will be no change in the amount of knowledge in the nonattentional system, because 
of the assumption that attentional learning is not available to the nonattentional system. 
Knowledge in the nonattentional system can be assessed by adding a distraction task following 
initial learning. 

There were two basic conditions during training, and two groups of subjects. Under 
both conditions, the first two blocks of trials were random. Then, the informed learning group 
was told that signals would occur in a particular order. The order was described, and subjects 
were given a minute to study it. Different subjects received different signal orders, but all 
involved four events, two of which occurred twice and two that occurred once in a repeating 
6-event cycle (e.g., 143132...). These sequences are learnable with distraction (Cohen et al, 
1990). 

These same orderings were given to a second set of subjects, but they were not 
informed that a sequence was present. A questionnaire administered prior to the transfer phase 
indicated that some of the uninformed subjects had become aware of the sequence on their 
own and were able to describe parts of it; other subjects did not express awareness. Although 
the specific awareness criterion used affects the number of subjects placed in one group or the 
other, the exact dividing point is not critical. The main point is that a group with explicit 
knowledge, a group that discovered the sequence themselves (more aware), and a group that 
expressed little or no awareness (less aware) differed in the amount of sequence knowledge 
exhibited when there was no distraction task. The results shown in Figure 4 were in accord 
with expectations. When there was no secondary task, variations in degree of explicit 
knowledge had a clear effect on performance. The informed learning group had very fast 
reaction times when the sequence was present, and slowed considerably when events returned 
to random order. Subjects who became aware of the sequence on their own performed as well 
as informed subjects after some practice. Subjects who expressed little or no awareness of the 
sequence, still learned under single-task conditions, but showed a somewhat reduced sequence 
effect. 

After a training period without distraction, all groups were transferred to a situation 
where the tone-counting distraction task was added. Sequence learning was reassessed by 
comparing performance on blocks of random events and blocks of sequenced events. Despite 
variations among groups in single-task learning, once the distraction task was added, the three 
groups performed comparably. All showed significant evidence of residual sequence 
knowledge, but statistically speaking, the residual knowledge was equivalent for all three 



groups. Results of our earlier reported experiments, illustrated in Figures 1-3, indicate that the 
small sequence effect that occurs under the dual-task conditions was not due to new learning 
on the single block of sequenced trials during the transfer phase. 

The results in Figure 4 are consistent with the hypothesis that variations in attention- 
based learning are not transferable to the nonattentional system. Such results are rather 
remarkable. One group of subjects had been told precisely the nature of the sequence, and they 
could parlay that knowledge into extremely fast performance when there was no distraction. 
Indeed, mean reaction times of about 200 ms after some practice suggest that at least some of 
the responses actually anticipated the next stimulus, because in the absence of anticipation, 
reactions times are seldom that fast. Nonetheless, that knowledge was of no use when a 
distraction task was added, because performance dropped to that of a group that expressed no 
awareness of the sequence. A related, and even more powerful point is made in the next 
experiment. 

Figure 4. During single-task learning, one group of subjects was informed of the sequence, another became 
aware of the sequence on its own, and a third group did not become aware. The figure also indicates 
performance when a secondary task was added. Random blocks are designated by R and Sequence blocks by 
S. 

In the experiment just described, sequence knowledge was acquired under a condition 
with no distraction task. A stronger prediction is that knowledge acquired by the non- 
attentional system under conditions of distraction is equivalent to knowledge acquired when 
free from distraction. To test this, two groups of subjects were run much as before, except that 
no diagnostic of sequence knowledge was given during the learning phase. Following two 
initial dual-task practice blocks with random events, the distraction task was removed for one 
group, and that group was explicitly told the nature of the sequence. For the other group, not 
only were they not told about the sequence, but all training occurred under dual-task 



conditions. Cohen, Ivry, and Keele (1990) had shown that under such distraction conditions, 
few if any subjects became aware of the presence of a sequence. 

As seen in Figure 5, performance during the transfer phase was poorer in general for 
the group that had practiced under single-task conditions. Undoubtedly this was because they 
were less proficient at interweaving the two tasks, given that they had less practice in doing 
so. Nevertheless, while both groups showed a reliable difference between the sequence test 
block and the two surrounding random blocks, indicating that they had learned the sequence, 
that measure was not reliably different between the two groups. The group that had practiced 
under dual-task conditions and the group that had practiced under single-task conditions 
showed equivalent transfer of knowledge to the test phase. As before, it seems quite 
remarkable that a group with explicit knowledge of the sequence showed no better sequence 
performance than a group without such knowledge, once a secondary task was added. The 
results suggest that none of the explicit knowledge had transferred to the nonattentional 
system. In that sense, the two systems are independent. 

Figure 5. One group of subjects learned the sequence with no distraction following explicit instruction on the 
nature of the sequence. The other group learned implicitly with distraction , i.e., was never told about the 
sequence. The distraction prevented awareness of the sequence. 

One potential criticism of these two experiments is that the amount of sequence 
knowledge during the critical test phase may in fact differ under different conditions, but 
something about the procedure itself prevents its manifestation. Perhaps the dual-task setting 
puts some kind of ceiling on the amount of learning exhibited. Thus an experiment was 
designed to address this concern. If the initial sequence learning occurs under dual-task 
conditions, presumably learning occurs only in the nonattentional system. If the secondary 
task were removed following dual-task learning, reaction times should improve. Because 
there would initially be no knowledge in the attentional system, the benefit of sequential 



conditions over random conditions should remain unaltered. It is useful to re-examine Figure 
4 in which transfer was in the opposite direction, from single- to dual-task. There, even the 
unaware group showed a larger sequence effect during single-task conditions than under dual. 
We take this to mean that as long as there is no distraction, subjects learn more in single-task 
conditions than in dual. Lack of distraction allows some learning of the type we call 
"attentional" despite being unaware. This idea is supported by the finding that "attention- 
based" sequence learning can occur under administration of scopolamine and in patients with 
Korsakoff's syndrome, both groups with reduced awareness (Nissen, et. al., 1987,1989). The 
prediction is, however, that when conditions are reversed, going from dual- to single-task 
conditions, the sequence effect will be equivalent under both dual- and single-task settings. 

To test this prediction, a single group was examined. This group was initially trained 
under dual-task conditions with one random block inserted to allow assessment of the amount 
of learning. Then in the transfer phase, the distraction task was removed and sequential 
knowledge again assessed. The sequence block in the last phase was the sole occasion on 
which a sequence had been experienced under single-task conditions, and the prediction is that 
single-task performance would be no better than dual-task performance. The results are shown 
in Figure 6. 

Figure 6. Performance of subjects trained under dual-task conditions and then transferred to single-task 
conditions. 

Reaction times on the first two blocks of single-task conditions were no faster than the 
preceding dual-task conditions because the last block under dual-task conditions had been with 
a sequence, while the first two single-task blocks were random. These factors counterbalance 
each other. The critical point is that there was no statistical difference in performance on the 
sequence between single-task and dual-task conditions. It appears that during the original 
dual-task learning, only the hypothesized nonattentional system was available for learning, and 
only that knowledge source had any useful information about the sequence during single-task 
transfer. 



The experiments described so far show that a nonattentional system can learn 
sequences that contain some points at which one event uniquely predicts the next event in a 
sequence. The work of Cohen, Ivry, and Keele (1990) had shown that ambiguous sequences 
of the sort 132312.... are difficult to learn with distraction. What remains to be demonstrated 
is that knowledge of sequences of this latter sort, when learned under distraction-free 
conditions, presumably by the attentional system alone, is blocked when distraction is 
subsequently added. Such a demonstration would argue that attention is needed not only for 
learning ambiguous sequences, but also for performance once learning has occurred. 

To test this an experiment was designed in which, a single group of subjects initially 
learned an ambiguous sequence under single-task conditions. Because earlier experiments 
(e.g., Keele and Jennings, 1992) had suggested that ambiguous sequences (e.g., 132312...) 
sometimes could be learned to a marginal extent even under dual-task conditions, we made 
the sequence more complicated. We continued to use 3 events but embedded them in a 
9-element cyclic sequence such as 132312123.... Following initial single-task training, 
including the diagnostic test of sequence knowledge, subjects transferred to the dual-task 
condition and sequence knowledge was again assessed. Subjects showed clear evidence of 
sequence learning of the ambiguous sequences in the absence of distraction, but subsequent 
addition of distraction abolished signs of learning. These results suggest that attention is 
needed not only to code events by place in a sequence, but also to keep track of place in the 
sequence during performance. 

Figure 7. Performance of subjects trained under single-task condition with ambiguous sequences, in which 
each sequence event is followed by a different event depending on the place in the sequence. The figure also 
shows performance of the same subjects when a secondary task is added. 



An observation related to this last experiment was described by Nissen and Bullemer 
(1987). They note that when subjects were presented with an ambiguous sequence under 
dual-task conditions, no learning was manifest. Moreover, when the distraction was 
subsequently removed, not only was there no immediate evidence of sequence knowledge, but 
subsequent single-task learning showed no acceleration. These observations, when coupled 
with our own, suggest that sequences entirely composed of ambiguous associations are not 
stored in a nonattentional memory system. 

Recent unpublished work (Goschke, personal communication), has largely supported 
this hypothesis. Goschke examined sequences of 12 elements, constructed from 6 different 
signal locations. Each location occurred twice in a sequence, but was in each case followed 
by a different event. Li this paradigm, if place in the sequence is ignored, each event is 
followed by one of two other events each with a probability of 0.5. A random control 
condition was included where each event could be followed by any of the other 5, yielding 
transition probabilities of 0.2. When pairwise associations are probabilistically predictive, 
learning of transitional probabilities can speed reaction times (see also Jackson and Jackson, 
1992; Stadler, 1992). Goschke found significant learning of the ambiguous sequences under 
distraction and argues that this result reflects learning of transition probabilities without the 
learning of context that would definitively specify the element at a particular place in the 
sequence. Nevertheless, he considers freedom from distraction to be necessary for building 
a representation that uses context to specify place in the sequence. 

We have presented evidence that the nonattentional learning mechanism cannot learn 
sequences that are entirely composed of ambiguous associations. Nevertheless, significant 
learning of such sequences has been shown to occur under distraction (Keele and Jennings, 
1992; Reed and Johnson, 1994). The results are inconclusive because distraction is unlikely 
to completely eliminate attention, and some nonattentional learning of ambiguous associations 
might also occur under greatly extended training. Furthermore, the difficulty of the secondary 
task can vary between experiments. Cohen et al (1990) showed that the difficulty of tone 
counting increased with the number of targets. Thus, it may be critical that Reed and Johnson 
found ambiguous sequence learning when 30% - 70% of the tones were targets, but Cohen 
et al. failed to find learning with 50% - 75% targets. Despite the contradictory nature of some 
of the results, there is consistent evidence that the ambiguous components of sequences 
containing both ambiguous and unique associations are learned under distraction (Curran and 
Keele, 1993; Frensch, Büchner, and Lin, 1994; Keele and Jennings, 1992). Thus, the 
hypothesized nonattentional mechanism must learn more than simple, pairwise associations. 
In our section on computational models we will consider candidate mechanisms. 

Overall, the preceding experiments make a strong case for independent attentional 
and nonattentional learning systems. This again raises the question of whether these two 
systems differ in their learning capabilities. We have suggested that the attentional system 
has the capability of parsing sequences into chunks to build a hierarchic representation. 
Although such a conclusion is speculative, evidence to support it comes from a variety of 
explicit sequence-learning tasks cited in the introduction to this chapter (Restle and Burnside, 
1972; Povel and Collard, 1982; and Gordon and Meyer, 1989), which showed that explicitly 
described sequences are coded in hierarchic form. Hierarchic coding in implicit memory has 
recently been investigated by examining the effects of exogenously parsing the sequence into 
sub-chunks with the insertion of temporal pauses at regular intervals. Stadler (1993) found 
that learning a completely ambiguous sequence was much better when the sequence was 
chunked in this way, even when subjects were not informed that a sequence was present. 

There are at least two reasons why a hierarchic representation might depend on 
attention. First, hierarchic coding may require some kind of short-term memory process that 
preserves earlier portions of a sequence in order to chunk them with later portions. A 
distraction task might interfere with short-term memory, thereby preventing chunk formation 
(a similar idea has been expressed by Frensch, Büchner, and Lin, 1994; Frensch and Miner, 



1994). A second possibility is that an attentional mechanism might serve a kind of place- 
keeping function. For a sequence with ambiguous associations, in order to know what event 
follows a current event, it may be necessary to keep track of the current position within the 
sequence, and attention may be necessary for that function. In another implicit learning 
paradigm, artificial grammar learning, distraction impaired the ability to learn positional 
information, lending some credence to such an idea (Dienes, Broadbent, and Berry, 1991). 

Stadler (1995) has proposed an alternative explanation for the effects of distraction 
that does not assign an important role of "attention". Stadler suggests sequences are learned 
as unique runs (or chunks) of stimuli, and that the boundaries of these chunks are influenced 
by extraneous cues. For example, chunking patterns can be shaped by the insertion of temporal 
gaps at consistent places within the sequence so that insertion of random gaps disrupts learning 
(Stadler, 1993). According to this theory, consistent grouping allows the same chunks to be 
consistently encoded. Conversely, random grouping leads to encoding a large number of 
inconsistent chunks that are more poorly learned due to fewer repetitions. Because insertion 
of random gaps has effects that are very similar to the effects of tone counting, tone counting 
may merely interfere with the normal organization of the sequence (Stadler, 1995). Thus, 
Stadler suggests that transferring to and from conditions of distraction has deleterious effects 
because the organization of the sequence is changed. Further research is necessary to test the 
implications of these various theories of the effects of attention and distraction on sequence 
learning. 

The empirical work on sequence learning reviewed thus far has provided a number of 
useful insights for our modular theory of sequence learning. First, although sequence learning 
clearly benefits from explicit knowledge (Cohen and Curran, 1993; Curran and Keele, 1993; 
Perruchet and Amorim, 1992; Willingham, et al., 1989), other work suggests that sequence 
learning does not require explicit knowledge (Nissen and Bullemer, 1987; Nissen, Knopman, 
and Schacter, 1987; Nissen, et al., 1989; Stadler, 1989, Reed and Johnson, 1994; Willingham, 
Greenley,andBardona, 1993; Willingham, et al., 1989). Therefore, further work is necessary 
to distinguish between the mechanisms for implicit or unaware learning and those for explicit 
sequence learning. Work from our own lab suggests that, even when learning occurs 
implicitly, the learning that occurs under distraction is qualitatively different from learning 
that occurs when attention is fully available (Cohen, Ivry, and Keele, 1990; Curran and Keele, 
1993). Finally, we must differentiate between the mechanisms for learning and representing 
sequences and mechanisms for activating the motor systems that are controlled by these 
representations (Keele et al., in press; Stadler, 1989). One way to investigate these questions 
is through the development of computational models. 

COMPUTATIONAL EXPLORATIONS OF SEQUENCE LEARNING 

Two important and related network models of sequence learning have been developed 
by Jordan (1986; 1995) and Elman (1990). We (Keele and Jennings, 1992) have explored 
Jordan's model to see whether it can account for our empirical results, and Cleeremans (1993) 
has similarly examined Elman's model. These particular models have provided two benefits. 
First, they have allowed us to formulate more precise ideas about possible meanings of terms 
like parsing, hierarchy, and chunking, and the role such factors play in sequence learning. 
Second, the models have suggested gaps in the existing data that must be filled before further 
computational progress can be made. 

Jordan's model is a network of connections between input units, hidden units, and what 
we call prediction units (see Figure 8). The input units can be viewed as stimulus patterns that 
when processed through hidden units, produce output patterns on units that "predict" what the 
next response should be. We assume that the activation patterns on prediction units reflect 
the extent to which a particular response is primed. 



Figure 8. Jordan's (1986; 1995) network model of sequential behavior. Not all connections are shown. Each 
plan and state unit connects to each hidden unit and each hidden unit connects to each prediction unit. 
Prediction errors, the difference between predicted and actual responses, are used to adjust weights by back 
propagation. The actual response is determined by a presented stimulus. The presented stimulus also feeds a 
single state unit with a weight of 1.0. Each state unit feeds back on itself with a fixed weight, p.. 

The input layer consists of two segregated sets of units. One set, called plan units, 
retains an unchanging activation pattern over a sequence of stimuli. One might think of the 
plan units as representing a higher-order representation of a sequence to be performed, much 
like a concept of a word. The "word" representation as embodied in the plan units would 
remain activated until all the constituent phonemes are produced and a different "word" is 
activated. Thus, plans act as a high level node in a hierarchic arrangement. 

The second set of input units are called state units. Activation of the state units is a 
function of the stimulus on the current trial, t, as well as the state units' activation on previous 
trials (t-n). Stimulus positions are coded locally with a value of 1 passed to the current 
stimulus/state position, and 0 to all others. The state units also feed back upon themselves 
with a recurrent connection of weight |i< 1. The result of these two inputs to each state unit 
is a representation of the stimulus that is influenced by the locations of prior stimuli. One state 
unit will be strongly activated by the current stimulus. That and other state units may have 
residual activation from past states. The rate of decay of past states depends upon the 
parameter setting of the recurrent connection with weight \i. If (I is low, less than about 0.2, 
the current stimulus tends to dominate, and there is little residual memory of events further 
back. If |i is high, greater than about 0.8, there is little loss of past states so that events of the 
distant past retain too great an influence. For intermediate values of \i, the state units provide 
a kind of moving window which represents the context in which stimuli occur. It is the 
maintenance of context that is critical for building associations between nonadjacent events. 



The hidden units combine input from both plan and state units. The particular 
weightings assigned to the connections from state and plan units to the hidden units change 
as a function of learning. The hidden units provide input to the prediction units, and those 
weightings also change as a function of learning. The discrepancy between the actual response 
as determined by the stimulus (the "teacher") and the predicted response which is set to be 
the desired pattern of output is the source of error that propagates backward through the 
network resulting in gradual changes of weights until the network reliably produces the desired 
outputs. 

The operation of the network occurs as follows: A pattern of activation appears on the 
plan units representing a sequence to be produced. Different sequences would have different 
plans. The state units, in the absence of a prior output, are all set at zero. The combination of 
plan input and zero input from the state units feeds through the network to produce the 
prediction of the first stimulus event. At that point in time, an external signal, such as a 
stimulus in a particular position, triggers the first response output in the series. Any prediction 
unit that does not match the response defines an error, and the error is then used by a 
back-propagation algorithm to adjust connection weights from state and plan units to hidden 
units and from hidden units to prediction units. The result of such weight adjustment is such 
that if exactly the same patterns of state and plan activity were to be fed through the network 
again, error would be reduced. At the next time step, the combination of plan units, which 
have remained fixed, and state units, one of which has been altered, is different than on the 
preceding time step. This new input pattern will lead to a different prediction than before as 
the information flows through the network. 

The separate contributions of plan units and state units can be appreciated by 
considering a series of outputs that are identical to a particular place in a sequence. For 
example, in speech production of the word elegant vs. elephant, the first three phonemes are 
identical, and through that point, state units go through identical settings. What is it, therefore, 
that allows the system to correctly branch to the "g" in one word and the "ph" in the other? 
Outputs depend not on state units alone but on the conjunction of the plan and state units as 
mediated by connections to hidden units. Since the plan inputs are different for an intent to 
pronounce two different words, the conjunctions of plan and state are different, once the 
critical fourth phoneme is reached, and it is the difference in conjunction that results in 
different flow patterns. 

Consider also a case in which identical stimuli occur at two different places in a 
sequence but are followed by different stimuli at those two places (e.g., 1213). How is the 
network able to accommodate that? Although two stimuli may themselves be identical, and 
therefore send identical input to the state units, the residual activity in the state units would 
typically differ, reflecting differing prior contexts for the two identical events. Thus, the total 
state unit pattern would differ for the two places in the sequence having identical stimuli, 
resulting in different predictions for what comes next. 

The role of the plan units is somewhat different from the typical function of a node in 
a hierarchy. The plan units do not directly cause events to occur. Rather, plan units that remain 
constant over a series of events act concurrently with state units to jointly determine the next 
element in a series. Still, it is appropriate to think of the plan units as a level of representation 
higher in hierarchy than state units, because the plan units change less frequently and allow 
identical states to elicit plan-dependent predictions. 

Jordan's model captures in computational form several of the concepts that we have 
invoked to explain our empirical results on sequence learning. Plan units can be viewed as 
implementing the concept of hierarchic representation or chunking. Parsing can be viewed 
as a process that resets state units to zero at the end or before the beginning of a sequence, thus 
marking its beginning and end. In computational form, one could imagine the last element 
of a sequence always to be a "null" element that causes resetting. One might suppose that 



attentional distraction blocks parsing processes that discover starting and ending points and 
disables the plan systems that assign representations to chunks. 

To determine whether these concepts are adequate to explain features of our data, we 
(Keele and Jennings, 1992) ran a series of simulations in which the model learned the same 
sequences that we presented to human subjects. We examined sequences of the type 132312..., 
in which all pairwise associations were ambiguous, as well as sequences with some uniquely 
occurring elements (e.g., events 2 and 4 in the sequence 132314...). The simulations involved 
blocks of 120 successive signals, i.e., 20 cycles through a sequence, and 10 blocks of trials 
were given. The first block of a trial could start at any position in the sequence. On each step 
in a series, the pattern of activation of prediction units was compared to the actual next 
stimulus and the discrepancies were used to modify connection weights in the network. 

We ran simulations with three different versions of the Jordan model to assess the roles 
of parsing and plan-dependent representation. In one simulation, although plan units were 
present, they never changed. In that sense, the plan units represent nothing about a particular 
sequence. Moreover, although state units started at zero on the first trial of a block of 120 
trials, after that they were free running so there was no demarcation of the end of a cycle 
through a sequence. These manipulations were intended to simulate nonattentional learning, 
where we supposed parsing and hierarchic representation are unavailable. In this mode, the 
system works as a relatively sophisticated associational system. We say associational, because 
the recurrent loops in the state units provide a decaying memory of past events, allowing such 
memories to participate in associational learning that spans intervening items. 

The Jordan system stripped of representation and parsing was able to readily learn the 
sequences with uniquely occurring elements. Although the ambiguous sequences also were 
eventually learned, such learning was substantially slower. When parsing was added such that 
state units were reset to zero whenever a cycle of the sequence ended, there was little change 
in learning rate of the sequences that contained unique events, but learning of ambiguous 
sequences improved dramatically, becoming as rapid as the former. Similarly, if instead of 
parsing, plan-dependent representation was implemented, learning of ambiguous sequences 
improved to equal that of sequences with uniqueness. We implemented hierarchic 
representation simply by assigning one pattern of activation on the plan units to part of a 
sequence (e.g., for the 132 of the sequence 132312) and a different plan pattern for the other 
part of the sequence (i.e., 312). 

Some insight into the mechanism by which the network learned the sequences was 
provided by an additional simulation. Again we stripped the system of parsing by not resetting 
state units at the end of a cycle, and eliminated hierarchic representation by not changing plan 
units for different parts of a sequence. In this case, we complicated an ambiguous sequence 
(e.g., 132312...) by adding aunique element, making the sequence longer and seemingly more 
difficult (e.g., 1323124 ). The strictly associational system learned the longer sequence with 
a unique element more readily than the shorter but completely ambiguous sequence. To see 
whether this outcome would also occur with human subjects under nonattentional conditions, 
we compared two groups of subjects. One group received longer sequences with one unique 
event and another group received shorter ambiguous sequences. Both groups were tested with 
the secondary distraction task of tone counting, which would presumably block parsing and 
hierarchic representations. The group receiving the longer sequence learned more readily than 
the group receiving the shorter sequence, confirming the prediction of the model. Indeed, in 
one replication of the experiment, the group receiving the shorter, ambiguous sequence did not 
learn at all. 

Why is it that adding a unique element to an otherwise all-ambiguous sequence is 
beneficial? The explanation can be found in the nature of recurrent feedback to state units. 
Whenever a uniquely occurring stimulus appears, it activates a state unit on the next iteration. 
Although the activation of the state unit is partially renewed after each successive event, it 
gradually decays. The unique state event serves as a kind of marker that helps distinguish 



events from one part of a sequence from otherwise identical events in another part of the 
sequence. Exactly the same function is supplied by altering the pattern on plan units at 
different parts of the sequence. That is, the different plans that accompany different parts of 
a sequence endow those parts with unique features that help disambiguate associations. 
Resetting of the state units, or what we call parsing, serves a similar function of 
disambiguating otherwise similar events. 

A general lesson emerges from these simulations. One reason why hierarchic coding 
like that in the Jordan model is so beneficial is that it provides an auxiliary cue to 
disambiguate the same items in different sequential contexts. Consider once again the speech 
example of "elegant" versus "elephant". Despite the fact that in early portions, identical series 
of phonemes occur, co-occurrence of a plan embodied in plan units provides a disambiguation, 
allowing an associational machine to branch in appropriate directions. 

An outstanding problem with our particular simulations is that we have not endowed 
the system with an ability to discover chunks and assign representations on its own. We have 
simply shown that if chunks are preassigned, or sequences are pre-parsed, then the general 
associational system has a much easier time learning the events within a chunk. Some other 
network simulations, in particular one by Cleeremans (1993a; Cleeremans and McClelland, 
1991), do not have this limitation. Cleeremans' network has some similarities to a Jordan net, 
though it is based on a slightly different architecture, the serial recurrent network (SRN) 
developed by Elman (1990). Instead of having recurrent feedback of a state unit on itself, the 
SRN has recurrent feedback within a hidden layer. Hidden unit activation is determined by 
the current stimulus as well as the hidden unit activation on the previous trial. Thus, the hidden 
unit representation of a given stimulus is a graded function of the representation of previous 
stimuli. This system is able to learn sequences that have partial to complete ambiguity. 

The explanation for why the Elman network can learn ambiguous sequences is similar 
to why the Jordan net learns, especially when the plan units are functioning. First of all, the 
hidden units capture some of the recent past history of a string of events. Such prior context 
helps disambiguate a sequence. Thus, in the above sequence, the event to follow position 3 
can be disambiguated if a memory is retained of the item preceding 3. However, since the 
recurrent connections are themselves plastic, unlike Jordan's state units (see Cleeremans 
1993a) this recurrent influence changes with learning. An analysis of the information being 
"learned" at the hidden layer reveals that some of the units come to represent not just the 
preceding item, but small clusters of preceding items. Thus, hidden units that represent chunks 
act much like plan units in the Jordan system to help disambiguate otherwise ambiguous 
pairwise associations. Importantly, the "chunks" in the hidden cells of the Elman system are 
self-discovered in the process of learning a sequence. 

One assumption often made about secondary tasks is that they prevent the focusing 
of attention on a primary task and result in an increased signal to noise ratio in network 
connections. Cleeremans and McClelland therefore simulated the effects of distraction by 
adding noise to the hidden-unit input. Given that some of the hidden units eventually represent 
small subseries of events, adding noise to the hidden-unit input impairs the construction of 
chunks. They found that such added noise greatly impairs the learning of ambiguous 
sequences, but had a much reduced effect on sequences containing at least some unique 
associations. Such results were qualitatively similar to the empirical data of Cohen, Ivry and 
Keele (1990). 

Despite the fact that the Cleeremans and McClelland model captures some aspect of 
the process by which chunks are discovered, it does not predict basic features of studies 
(Curran and Keele, 1993) involving transfer between attentional and nonattentional states. In 
his more recent work, Cleeremans (1993b) developed a "dual SRN" model that is able to 
simulate the empirical results. The model employs both a serial recurrent net, as described 
earlier, and a short-term memory buffer that has independent knowledge about a sequence 
when no distraction is present. This short-term buffer interacts with the basic network by 



explicitly predicting each sequential element and allowing those predictions to modify the 
network's hidden-unit representation of the sequence. Put another way, the new model offered 
by Cleeremans still has two different knowledge systems, one for explicit knowledge and one 
for implicit knowledge. Rather than being strictly independent, however, the explicit 
knowledge can be an input source to the implicit system, though not vice versa. 

Despite the architectural differences between Keele and Jennings' (1992) adaptation 
of the Jordan network and Cleereman's (1993b) dual network, both models provide similar 
insights relevant to our modular concept of sequence learning. Both models have a basic 
associative learning mechanism at the core. The representational capabilities of this associative 
mechanism can be enhanced when allowed to interact with higher-level processes. In the 
Jordan network these higher level processes include parsing via state-resetting at the end of 
a sequence, and hierarchic organization via plan units. In Cleereman's model, predictions 
generated by the short-term buffer constrain the hidden-unit representations of the associative 
system. Furthermore, the associative mechanisms of both models represent more than pairwise 
associations. Both allow for a kind of contextual representation of inputs such that the 
representation of an event is influenced by prior events. Such features allow ready learning 
of sequences that have a mixture of unique and ambiguous associations. In both models, 
however, the manner of learning higher level representations that allow acquisition of more 
complicated sequences - plans in the Jordan model and the explicit knowledge system in the 
Cleeremans model - is unspecified. All that can be said is that availability of such information 
facilitates sequence acquisition. 

To this point there has been fruitful interaction between empirical discoveries about 
sequence learning and computational analysis. This interaction has indicated a need for 
additional empirical analysis that would test the underlying assumptions of different models. 
In particular, it appears that two future developments would be useful in guiding 
computational models. First, at the empirical level, we have insufficient evidence about the 
order in which different subparts of a sequence are learned. Secondly, the different 
computational models make different assumptions about the architecture of a sequence 
learning system. That is, each sequence learning system has a number of subparts, configured 
in different ways. Empirical analysis in sequence learning needs to be oriented toward further 
decomposition of the processes involved so that these processes can be incorporated into 
computational models. 

POSSIBLE NEURAL SUBSTRATES FOR SEQUENCE LEARNING 

Despite these needs for further work, the joint empirical and computational work has 
suggested brain systems or structures that might be involved in sequence learning. The 
motor-independence cf sequential representation is consistent with the idea that there are 
distinct neural locales for sequential representation and conversion to motor activity. Similar 
suggestions have been advanced in studies of patients having ideomotor apraxia, a form of 
apraxia in which movement is intact and fluent, but inaccurate in the patterns produced 
(Heilman, Rothi, and Valenstein, 1982; Gonzales and Heilman, 1985). In making a salute, for 
example, movements may approximate salutes in some aspects but miss in others. Heilman 
and colleagues found such apraxic syndromes to occur following lesions either of posterior 
parietal cortex or of frontal cortex, the latter presumably involving areas of premotor cortex. 
However, if these same patients are asked to observe pairs of gestures one correctly performed 
and one poorly performed and indicate the correct gesture, patients with frontal damage 
perform well. Patients with parietal damage perform poorly. Thus, the patients with parietal 
lesions do poorly not only on motor production but on perceptual recognition; the patients with 
frontal lesions do poorly only on the production. 



It seems plausible that the brain areas controlling sequential learning and performance 
may show a distribution of function that is similar to that seen in Heilman's apraxic patients. 
For visual-spatial actions, a parietal mechanism could subserve sequential learning and 
memory. In this respect it is useful to recall the patients with lesions in posterior parietal 
cortex described by Hillis and Caramazza (1988). These patients produced sequencing errors 
in either written spelling or oral spelling. The same mechanism that subserves sequential 
learning might also specify the location of future responses and interact with frontal 
mechanisms that specify articulators. Such fronto-parietal interactions have been hypothesized 
to subserve learning-dependent control of action, especially involving spatial tasks, in a 
number of domains (e.g., Fuster, 1993; Goldman-Rakic, 1990; Goodale, 1993; Passingham, 
1993). 

Our conclusion that sequential representation is effector independent leads us to 
speculate that at least visual-spatial sequences are represented in parietal cortex, whereas 
representations that control sequential performance are represented in frontal cortex. Frontal 
cortex may also contribute to sequence learning by functioning like plan units in Keele and 
Jennings' (1992) simulations. Rizzolatti and Gentilucci (1988) review single-cell work from 
their laboratory demonstrating that inferior regions of frontal cortex have properties suggestive 
of plans. Cells in inferior premotor cortex (inferior area 6) of the monkey become active when 
the monkey makes particular kinds of arm or mouth movements. Some cells become active 
during precision grasps involving finger and thumb; others become active for whole-hand 
grasps involving all fingers. Some cells are active if the monkey grasps with either the hand 
or the mouth. The cells involved in grasps do not become active if the hand is configured in 
similar ways but for purposes other than grasping. Many of the cells continue to fire 
throughout a series of actions that comprise a behavior. Thus, a "precision grasp cell" might 
start to fire as the monkey's arm is reaching toward a target, and continue to fire as the hand 
opens and then closes on the object. Such properties are reminiscent of the way plan units 
behave in the Jordan model, in which apian represents a particular action sequence rather than 
specific components of the action and therefore remains constant throughout the execution of 
all of the components specified by the plan. 

It is especially interesting in the work of Rizzolatti and Gentilucci that some neurons 
in inferior area 6 represent a similar grasp whether accomplished by the mouth or by the hand. 
Such results are in accord with our suggestions that a sequential representation is independent 
of the effector system of execution. Some cells in inferior area 6 are active not only during 
a monkey's grasp, but become active when the monkey observes a similar grasp performed 
by the experimenter (Rizzolatti, personal communication). Again, this suggests that the cells 
describe sequential events independently of the particular effector of execution. 

Inferior area 6 of the monkey may be homologous to Broca's region in human cortex, 
long thought to be involved in human speech and language. Recently, Greenfield (1991) has 
suggested that Broca's area is specialized not for speech and language per se, but for 
hierarchic organization of event sequences. She points out, for example, that development of 
hierarchical control of various action sequences in infants occurs simultaneously with the 
development of hierarchical control of phonemes in speech. Moreover, hierarchical control 
of action and language reach the same relatively undeveloped stage in chimpanzees, compared 
to humans. 

The observations by Rizzolatti and Gentilucci and arguments by Greenfield are 
consistent with a view that inferior portions of premotor cortex play a role in the chunking of 
events into sequences. In turn, one might speculate that such premotor regions interact with 
parietal regions to specify the particular events that make up a visuospatial sequence. In the 
context of Jordan's model, this would place plan units in premotor cortex, and state and 
possibly hidden units in parietal cortex. On the surface this scheme appears inconsistent with 
the earlier suggestion that apraxia due to parietal lesions results from a representational deficit 
while apraxia due to frontal lesions results from translation to particular motor effectors. 



However, it is quite likely that different frontal regions or distinct distributed neural 
assemblies underlie these separate functions, especially given the variability of lesion sites and 
symptoms in patients with apraxia. 

These speculations about the cortical loci of sequence representation differ from 
suggestions sometimes seen in the literature that sequence representation is largely subcortical. 
Previous research has shown that patients with basal ganglia dysfunction due to Parkinson's 
disease or Huntington's disease show impaired sequence learning (e.g., Ferraro, Balota and 
Conner, 1993; Jackson et al., in press; Knopman and Nissen, 1991; Willingham and 
Koroshetz, 1993). Our own suggestion is that the basal ganglia, rather than being a storage 
locus for sequence representation, are involved in sequence production. Although not a focus 
of this review, the hypothesis that the basal ganglia are involved in production has been 
explored in preliminary work in our laboratory (Hayes et al., 1995). When subjects were 
explicitly taught short sequences composed of two parts, patients with Parkinson's disease 
exhibited a substantial deficit at the transition point from one part to another whenever the 
identity of the second part differed from that of the first part. Such results suggest that the 
basal ganglia are part of a system that implements a shift from one sub-sequence 
representation to another, but that they might not be the site where sequence representation 
itself occurs. Such a hypothesis is in line with a broader hypothesis that the basal ganglia 
provide set-shifting functions across a range of domains. 

Our long-term hope is that psychological analysis of the modules that make up 
sequential representation and production will form a reasonable basis for a neurological 
analysis. Our current thoughts are that the representation is distributed across posterior and 
frontal cortical regions and that additional frontal regions are involved in effector 
specification. The basal ganglia are part of an implementation system that allows progression 
through the representation in real time. 

SUMMARY 

Sequence learning may be comprised of a number of dissociable modules which 
subserve particular functions. Experimental evidence suggests that sequential representations 
are not tied to any particular effectors involved in executing responses, but exist at a more 
abstract level that specifies sequences of stimuli and/or responses rather than specifying 
specific actions. 

The presence or absence of distraction, while not affecting independence of the 
representation from the effector system, does influence the kind of sequences that can be 
learned. Full attention allows the learning of more complex sequences that contain repeated 
events but in different orders in different portions of the sequence. Computational modeling 
suggests that attention enables mechanisms that parse a sequence to operate so that order 
within parts of the sequence can be represented. That is, attention allows hierarchic coding 
to take place. 

In short, sequence learning and performance appears to be comprised of a complex of 
representational and control processes. Successful linking of brain mechanisms to sequence 
learning and production will require both an elaborated theory of cognitive processes and 
consideration of a diverse array of neural systems. 

FOOTNOTE 

Tim Curran is now on the faculty of Psychology at Case Western Reserve University in 
Cleveland, Ohio. 
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