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ABSTRACT

This report introduces a new parallel QR decomposition algorithm. Test results
are presented for several problem sizes, numbers of processors, and data from the elec-
tromagnetic scattering problem domain. The development of the algorithm marks a
departure from past parallel QR algorithms. The load balancing method used con-
siders total computational work as opposed to just balancing Givens rotations. This
results in expected efficiencies which approach optimal as problem size grows relative
to number of processors. The hybrid nature of the algorithm, which maximizes com-
putation between communication and synchronization, indicates potential for good
performance on distributed memory machines and networks of workstations. Imple-
mentation results on shared memory and distributed shared memory architectures

show promise and track expected performance well up to 12 processors.
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Chapter 1

INTRODUCTION

The problem of solving dense systems of linear equations on parallel com-
puters has been widely studied. Initial results treat the problem with theoretical rigor
but do not usually implement the algorithms because real machines which meet the
requirements and assumptions of the derivation rarely or never exist. Practitioners
have taken these studies, added their own analysis and creativity, and adapted them
to produce realistic algorithms which can be implemented on parallel computers of

the day. This process creates two general classes of algorithms:
1. those that are theoretically optimal with respect to some parameter, and

2. those that might not be theoretically optimal but are tuned to run on a specific

architecture.

This second class of algorithms must be extended and adapted as machine architec-
tures evolve.

One final option provided to practitioners is the smaller class of algorithms which
is beginning to gain popularity. There are algorithm designers which design, rigor-
ously analyze, and develop methods for widely available production machines. This
class of algorithms is characterized by realistic assumptions which result from con-
sidering existing architectures. The goal is production quality numerical techniques
which are possible and cost effective to develop. Oftentimes, optimal results are
achieved and measured on the target machines. This work aims to develop algo-

rithms in this last class.




1.1 Outline

This report will begin with an overview of the algorithms currently available for
the QR factorization of a dense matrix. These algorithms are summarized in Chapter
2, and predicted and actual performance results presented where they are available.
Chapter 3 then introduces and develops a new algorithm for parallel QR factorization.
The application problem that motivated the development of this algorithm involves
computationally modelling electromagnetic scattering from a rough surface. The
electromagnetic scattering problem is described in Chapter 4. Numerical results from
general matrices and the application of the new algorithm to the electromagnetic

scattering problem are presented in Chapter 5.

1.2 Notation and Conventions

We write the QR factorization of A as

A=QR, (1.1)

where A is m x n, Q is an m x m orthogonal matrix, R is m x n upper trapezoidal,
and m > n. The number of processors will be denoted by p. A is assumed to be
full rank; rank(A) = rank(R) = n. Additionally, all vectors ¥’ are considered to
be column vectors, and therefore #'#T represents an outer product and results in an
m x m matrix when ¥ € ®™, while 977 is a scalar.

Throughout this paper, the sequential complexity of QR factorization will be
based on the results from (Golub & Van Loan, 1996) (see Table 1.1). The complexities
listed in Table 1.1, which count the number of floating point operations performed,

assume m = n for Gaussian Elimination, and m > n for all other cases. Additional




| Method | Complexity |
Gaussian Elimination > (2n?/3)
Normal Equations with
Cholesky Factorization | > (mn? 4+ n?/3)
Householder Reflections | > (2n*(m — n/3))
Givens Rotations > (3n%(m — n/3))

Table 1.1. Complexity comparison of common factorization methods.

notational conventions will be introduced when needed.

1.3 Least Squares Problem

All computational results in this paper assume A has full rank and m > n.

Therefore, when m = n the system of equations
AZ =1

with known A and b has exactly one solution. When m > n, the solution is taken to

be the vector Z that minimizes *
| AZ - B % .
Given A = QR from 1.1 the solution becomes

min || AZ — b ||?= min || QRZ — b ||>= min || RZ — Qb ||* .
xr x T

1A]l vector and matrix norms will be considered the 2-norm unless specifically subscripted.




Letting d = QTb we have

- 1112 - T 112
d1 dl
Rz —
min T — = min =
* 0 dn+1 ¢ dn—l—l
0 —
dm dm
2
di
mjn Rl.’f - + Z d;?,
x i=n+1
dn

where the residual is

3 &
i=n+1

The above equations lead us to a general QR decomposition algorithm:
1. Calculate @ and R,

2. d=Q7b,

3. use back substitution to solve Ry = | ... |,

4. residual = /7, d2.

The most computationally demanding step in the algorithm is calculating @ and R

(step 1), therefore this research will focus on the parallelization of this process.




1.4 Computing @ and R

There are two primary ways to compute @ and R — Householder reflections and
Givens rotations. Each of these methods has advantages and disadvantages, especially
when considered in the context of a parallel QR algorithm. The following chapters
survey existing parallel QR techniques (Chapter 2) and the development of a new

parallel QR algorithm (Chapter 3), and use both Householder reflections and Givens

rotations.

1.4.1 Householder Reflections

An n x n matrix H of the form
H=1I- Boi" (1.2)

where 8 = % is called a Householder reflection (or matrix, or transformation). The
vector 7 is called a Householder vector. It is easy to verify that Householder matrices
are symmetric and orthogonal (Golub & Van Loan, 1996). Householder reflections
are rank-1 modifications of the identity matrix and can be used to zero selected

components of a vector.

Consider Z € R" and HZ such that
HZ = taé; (1.3)
where €] is the first column of the n x n identity matrix. By substituting we get

HE = (I - poi7)7 = & — Bi"% = o,




and solving for ¥ yields

This suggests trying

T=7(%— aél) =% — o

for some constant 4. The value of  has no effect on H, so we will take it to be 1.2

Therefore, given a non-zero vector &, let

l «o =” .’1_7' ||2,
2. U =T — wéi,

— 1
3. ,6 = m—a—), and

4. H =1 — B9v7, then

H is a Householder reflection, and HZ = .

Householder reflections can be used to find @ and R as follows:

1. Form H; as in Equation 1.2 to zero elements 2 through m in £ where & is column

1 of matrix A (Z = Aé).
2. Form H;,2 < i < n similarly to zero elements (i + 1)...m in column ¢ of A.
3. Form QT = Han—l---Hl-

4. R=QTA.

T+ aeT? o +am

then ﬁTf = =
B a(z, + a) a? + ar;

Letting v = 3—57‘?’




1.4.2 Complexity of One Householder Reflection

A quick presentation of the computational complexity of one Householder rota-
tion is necessary for later use during algorithm development. The complexity of one
Givens rotations is similarly presented in Section 1.4.5. Following the steps presented
previously at the end of Section 1.4.1, the computational complexity is (for simplicity,
additions, subtractions, multiplications, divisions, and square roots are all assumed

to be unit time operations.)?

a = [ ~ 2n

v = ZIT4+ae; ~ 1
— 1

g = a(z1+0) ~ 3

H = I-pt¥ ~ n.
Notice that the complexity given for forming the Householder matrix is not that
of forming an outer product (#3T, normally O(n?)). This is because, in practice,
explicitly forming H is not necessary. The formation of o, ¥, and 3 is sufficient, so
formation of the Householder matrix requires ~ (3n + 4) flops. Application of the
Householder matrix can exploit the high degree of structure in H and can be done

with a cost of (A € R™*" and H € R™*™)
HA = (I — Boi")A ~ 4mn. (1.4)

1.4.3 Householder Summary

Householder reflections work well for introducing large numbers of zeros in one

matrix operation. Normally, all the elements below the diagonal of an entire column of

3The ~ symbol will be used throughout this report to denote the approximate operation count
needed to compute the value shown.




the matrix A are eliminated by one Householder reflection. This leads to the primary
disadvantage of Householder matrices when used in parallel processing. One reflection
affects multiple rows, and therefore Householder reflections can not be carried out
in parallel in a straightforward way. Householder reflections are not disjoint when
applied to an entire matrix, which is the case in traditional QR decomposition. There
is a way to apply multiple Householder reflections to the same matrix in parallel by
applying smaller reflections to blocks of the main matrix. This is the key idea behind
the hybrid algorithms included in Chapters 2 and 3 and will be explored in more

detail later. The alternative is QR decomposition via Givens rotations.

1.4.4 Givens Rotations

Givens rotations can selectively annihilate individual matrix elements, as op-
posed to Householder reflections which eliminate whole columns or rows as described
above. One rotation only affects two rows of the matrix; the row containing the el-
ement being zeroed, and the row being used to zero the element. We will use the
notation introduced in (Cosnard & Trystram, 1995) where G(3, j, k) is used to denote
the Givens rotation that zeroes element A(%, k) by rotating rows ¢ and j through angle
6 in the (4, 7) plane. Givens matrices are rank-two corrections to the identity matrix,
and can be easily shown to be orthogonal. An example best illustrates the structure
of a Givens rotation (ref. Fig. 1.1).

When performing Givens rotations computationally, it is not necessary to explic-
itly compute the rotation angle (8). Instead, for G(4, j, k), it is enough to compute ¢

and s (which denote sin@ and cos6) as follows (Cosnard & Trystram, 1995):

SR - (1.5)

c =
2 2
Q/G:jk‘*‘aik




1 0 00O0O0O
j— 0 ¢ 000 s O
0 0 10000
G(,7,k) = 0 0 01000
0 0 00 10O
1 — 0 —s 000 ¢ O
(0 0 0000 1,
T t
k 7
c = cosf
s = sin 6

Fic. 1.1. Example 7 x 7 Givens rotation where i = 6,5 = 2, and k£ = 2.

a.
\/ @Gk + G
Using Givens rotations to find @ and R is similar to the procedure described in

Section 1.4.1, however, the number of Givens matrices needed is

_n(n-1)
rE——

as opposed to the number of Householder matrices needed, n when m > n, or n — 1
when m = n. The procedure to produce the QR decomposition of A using Givens

rotations is to find choices of 7, j, and k£ such that
G,..GiA=R

then
Q=GT.GL




Assume m > n, then a common ordering for combining Givens rotations is

formed by zeroing the elements from bottom to top and left to right, or from rows m

to 2 in column 1, to column n, rows m to m — n + 1. Mathematically this looks like

the following:

¢, = G(2,1,1)G(3,1,1)..G(m-1,1,1)G(m,1,1)

v~

zeros column 1

C, = G(3,2,2)G(4,2,2)..G(m —1,2,2)G(m, 2,2)

~ 1
'

zeros column 2

/

Cnoy = Gm—n,n—-1,n-1)Gm—-n+1,n-1n-1)..G(mn~-1,n—1)

zeros column n-—1

~

C, = G(m-—n+1,n,n)G(m—n+2,n,n)...G(m—1,n,n)G(m,n,nl.

zeros column n

Combining the above matrices results in

CrnCp-1..C2C1A = R.

1.4.5 Complexity of One Givens Rotation

Given two vectors «, v € R", their Givens rotation can be depicted as (Cosnard

& Trystram, 1995)
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where ¢ and s are calculated as in equations 1.5 and 1.6 respectively, and @’ and o'

are calculated by

!
u; = Ccu;+ sv;

vp = —su; + e 1

The number of individual operations to zero element @; by combining ¥ and ¥’ using

a Givens rotation is shown in the following table:

+,— | %,/

computation of cand s | 1 4
computation of 4’ n 2n
computation of 7’ n 2n

Assuming that additions, subtractions, multiplications and divisions are unit time

operations, the complexity of the computation is given by:

ar
G

,l—}'T

1.4.6 Reflections vs. Rotations

~ 6n + 6.

A few final notes must be made concerning Householder reflections and Givens

rotations before proceeding to an overview of existing parallel QR algorithms. First,

although many more Givens rotations are required to perform the decomposition than

Householder reflections, each Givens rotation is much simpler and less computation-

ally demanding than each Householder reflection. Given these contrasting observa-

tions, examination of Table 1.1 reveals that performing the entire decomposition via

Givens rotations costs only about one and one half times as much as performing the
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entire decomposition via Householder reflections on a sequential machine.

Second, Givens rotations are ideally suited for parallel execution as long as the
rows being used in the parallel rotations are disjoint. This idea is further expanded in
Chapter 2 when specific algorithms are described. Third, a Givens rotation, G (1,7, k),
is possible to eliminate any arbitrary element A(%, k), using any two rows i and j of the
matrix. However, if the goal is to apply a series of Givens rotations in order to form a
triangular matrix, then all the elements of the two rows i and j left of column & must
be zero, or the rotation will introduce non-zero elements (or fill-ins) into previously
zeroed positions. Doing this would destroy previous work with subsequent rotations.
These two ideas are crucial limitations on the parallel Givens based Q)R algorithms
discussed next.

Finally, it is possible to perform Householder reflections on sub-matrices. This
idea, due to Pothen and Raghavan (1989), makes it possible to perform a great deal
of the QR decomposition in perfect parallelism using the most efficient annihilation
method known, Householder reflections. Givens rotations are then applied (in paral-
lel) to “clean up the ragged edges.” This idea is key in the development of the new

parallel QR algorithm introduced here.
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Chapter 2

PREVIOUS QR DECOMPOSITION ALGORITHMS

This chapter provides a summary of existing parallel QR factorization algorithms.
Current literature is largely polarized. Two primary assumptions are made concern-
ing the target architecture which leads to two large classes of algorithms. The first
and oldest class of algorithms is a direct descendant of early theoretical work and
is targeted for efficient execution on large scale vector computers (Sameh & Kuck,
1978). The primary assumption made in this analysis is that an operation on a vec-
tor takes the same amount of computation time regardless of the vector length. This
assumption is completely valid on vector processors as long as vector length never
exceeds that of the target machine’s vector registers. These algorithms are covered in
Section 2.1. One extension to this class of algorithms takes place when vector lengths
become longer, thereby invalidating the original assumption. These algorithms will
be covered in Section 2.2.

The second class of algorithms is newer and still growing. These algorithms are
targeted at distributed memory architectures including massively parallel machines
and networks of workstations. The number of algorithms available in this class is
fewer, and the demands placed on the algorithm designer are higher. Section 2.3

provides an overview of these efforts.

2.1 Early Algorithms

The starting point for any discussion of parallel factorization techniques must

provide some acknowledgement to the very early algorithms in the field. The first five
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algorithms discussed include the still widely referenced work by A.H. Sameh and D.J.
Kuck, some discussion of parallel LU factorization, and early attempts to produce

variations on the original Givens algorithms discussed by Sameh and Kuck (1978).

2.1.1 Sameh and Kuck’s Algorithm

The earliest and most widely referenced work on parallel QR factorization is
that of Sameh and Kuck which introduces a stable parallel algorithm for solving
dense systems of linear equations, and two algorithms for solving a tridiagonal system
(Sameh & Kuck, 1978). All the approaches in the paper by Sameh and Kuck make
use of Givens transformations (see Section 1.4.4, (Cosnard & Trystram, 1995), and
(Golub & Van Loan, 1996)). As mentioned earlier, these algorithms assume that
the time to perform a single Givens transformation is the same regardless of vector
length. This assumption simplifies the problem to one of balancing Givens rotations
aCross processors.

The first algorithm introduced is widely known as Sameh and Kuck’s algorithm.
Excellent descriptions and analysis are given in (Cosnard & Trystram, 1995) and
(Sameh & Kuck, 1978). For our purposes, a figure will illustrate the general algorithm
most effectively (see Fig. 2.1). This figure shows the order in which the elements of
A are zeroed by the algorithm. An integer number placed in the matrix position
indicates the step at which that element is zeroed using a Givens rotation.

As can be seen in the diagram, this algorithm begins with the annihilation of
element A(m, 1) using rows m — 1 and m (written as G(m,m — 1,1)) and proceeds
up and to the right. In the first two steps, only one element is annihilated, but at
every other step the number of simultaneous rotations increases by one. The maxi-

mum number of rotations is min[n, | 2] and is reached by step (2 x min[n, |3 ]] — 1
2 3
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*
12 *

1 13 *

10 12 14 *

9 11 13 15 *

8 10 12 14 16 *

7 9 11 13 15 17 *
6 8 10 12 14 16 18
5 7 9 11 13 15 17
4 6 8 10 12 14 16
3 5 7 9 11 13 15
2 4 6 8 10 12 14
1 3 5 7 9 11 13

F1c. 2.1. Sameh and Kuck algorithm, m =13, n =7.

(Cosnard & Trystram, 1995).

This method requires n(n — 1)/2 rotations as in the sequential case. It is shown
in Sameh and Kuck (1978) that 5(2n — 3) steps (rotations) are required to produce
the QR factorization using the optimal number of processors p = n(3n — 2)/2. Data
mapping is not presented in the paper because uniform memory access is assumed and
therefore no communication costs are included. For very large matrices, this produces
an O(n?) speedup and efficiency of O(1). Modifications to this basic algorithm are
available and described in (Cosnard & Trystram, 1995). These modifications do
not provide performance which differs substantially from that originally reported in

(Sameh & Kuck, 1978).

2.1.2 Gaussian Elimination

Lord et al. (1983) focus on the parallelization of Gaussian Elimination as well as

a parallel algorithm using Givens transformations. Similar algorithms are developed
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and analyzed for LU factorization on a distributed memory multiprocessor in Geist
and Romine (1987). Lord et al. develop their LU decomposition algorithm using a
parallel task dependency graph and achieve an efficiency of % for an n X n matrix with
p = [n/2]. The mapping of the tasks to processors of a parallel machine achieves a
natural load balancing. Actual performance measures for this algorithm are presented
which track the predicted performance very closely.

The primary drawback of parallel LU factorization/Gaussian elimination algo-
rithms is their numerical instability without pivoting. Introduction of pivoting greatly
increases the communication requirements and interrupts the task assignment of the
processors by forcing a synchronization for row interchange.

The next sections (2.1.3 and 2.1.4) describe the two Givens variants presented
by Lord et al. (1983). In contrast to the method discussed in Section 2.1.1 where
p = O(n?), the Givens methods described here focus on the cases where p < [(n —
1)/2]. Two algorithms are developed, implemented, and tested on the Denelcor HEP

machine. Again, predicted and actual results correlate very well.

2.1.3 ZIGZAG

The first variant of the Givens method presented by Lord et al. (1983) is called
ZIGZAG and is recommended for cases where p = [(n — 1)/2]. Figure 2.2 gives the
general idea of the algorithm. Again, an integer in a matrix position denotes the time
step at which that element is annihilated. The numbers in this figure are subscripted
with processor identifiers to help depict the zigzag nature of the algorithm. In all the
rotations the row containing the zeroed element is combined with the row immediately
above it. Notice that each processor is assigned to perform all the rotations for two

diagonals as designated in the figure.
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Pl 1p; *

N 2pm 3p1

P2 1p; 4p1 5p1

N 2p2 3p2 6p1 Tpr

P3 1ps 4ps Sp2 8p1 9p1 *

N 2p3 3ps 6p2 Tpz 10p; 1lpy ¥

P4 1py 4ps 5p3 8p2 9p2 12p 13p1 %
N. 2ps 3ps 6p3 Tps 10py 1llpy 14p; 15p; *

Fic. 2.2. ZIGZAG algorithm, n =9, p = 4.

One observation is immediately apparent. The algorithm does a poor job of load
balancing the required computation. The maximum number of rotations is 2n — 3
and is performed by processor P1. The last processor ([(n—1)/2] = 4) only performs
3 rotations.

This method results in a parallel speedup of approximately %” with an efficiency
of only % for sufficiently large n. Further discussion and details are available in (Lord

et al., 1983).

2.1.4 COLSWEEP

The second variant of the Givens method presented by Lord et al. (1983) is called
COLSWEEP and is recommend for cases where p < [(n — 1)/2]. Figure 2.3 gives
the general idea of the algorithm. In this algorithm, columns are assigned in a round
robin fashion to processors as designated in the figure. The scheduling of rotations
is critical to avoid access conflicts between processors. As an example, processor i
must be finished modifying its pivot row before processor ¢ — 1 can annihilate that
row’s leftmost element in the next step. Each processor uses the diagonal element as

a pivot.
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¥
1 *

2 3

3 4 5 %

4 5 6 7 *

5 6 7 8 9 *

6 7 & 9 10 11 *

7 & 9 10 11 12 13 *

8 9 10 11 12 13 14 15 *
P1 P2 P3 P1 P2 P3 P1 P2

Fic. 2.3. COLSWEEP algorithm, n =9, p = 3.

This method results in a parallel speedup and efficiency numbers similar to those
reported for ZIGZAG above. In fact, for the case of p = [(n — 1)/2], the time
complexity is exactly the same as that for ZIGZAG. After closer examination, this
algorithm has dramatic similarities to Sameh and Kuck’s discussed in 2.1.1. Further

discussion and details are available in (Lord et al., 1983).

2.1.5 Greedy Algorithm

This algorithm was independently introduced in (Cosnard & Robert, 1983) and
(Modi & Clarke, 1984). At each step, all disjoint rotations are performed simultane-
ously. An example of the complexity of this algorithm requires 2n+O(n) rotations for
the case m = o(n?) with p = [m/2] (m > n) processors (Cosnard & Robert, 1986).
“However, no exact formula is known (for the general complexity of the greedy algo-
rithm), even in the case of a square matrix (m = n)” (Cosnard & Daoudi, 1994). For
consistency, Figure 2.4 demonstrates the main idea behind the algorithm (Cosnard
& Trystram, 1995).

The basic concept of maximizing the number of possible rotations at each time
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%
4 *

3 6 *

3 5 8 *

2 5 7 10 *

2 4 7 9 12 *
2 4 6 8 11 14
1 3 6 8 10 13
13 5 7 9 12
135 7 9 11
1 2 4 6 8 10
1 2 4 6 8 10
123 5 7 9

Fic. 2.4. Greedy algorithm.

step is an elegant one, but actually determining a rotation schedule to achieve this is
the main difficulty of successful algorithm implementation. Small cases can be easily
assigned, but as matrix size grows, a considerable amount of effort is required at each

step to assign the rotations which are disjoint and can therefore take place in parallel.

2.2 Block Algorithms

This group of algorithms has been extensively studied and developed in (Don-
garra et al., 1991) and (Gallivan et al., 1990). Additional discussions can be found
in (Anderson et al., 1995), (Cosnard & Trystram, 1995), (Dongarra, 1993), (Don-
garra & Walker, 1996), (Dongarra et al., 1986), and (Golub & Van Loan, 1996) to
name a few. The recently released LAPACK software makes extensive use of block
algorithms. The demand for block algorithm development was spawned by the limits
imposed by real machines on vector length and the need to carefully schedule memory

accesses to avoid swapping.
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The primary idea is to split the matrix to be factored into blocks which can then
be assigned to processors. The calculation of these blocks can then be postponed or
scheduled to increase performance. The key to achieving speedup is the proper choice
of blocksize, which has proven to be heavily machine dependent and somewhat of an
“art form”. A simple example taken from (Dongarra et al., 1991) should suffice to
illustrate the key concept.

Consider the decomposition of matrix A into its LU factorization with the fol-

lowing matrix partitioning (blocking) *:

Ay A A L, 0 0 Uiy U Uss
Ay A Ass | = | Loy L 0O 0 Uz U
A3; Asp Ass L3y L3y Las 0 0 Uss

Multiplying L and U together and equating terms with A, we have

A1 = LnUn, A = LiUss, A1z = L1 Uss,
Aoy = LoyUny, Agy = LayUsa + LagUsa, Asg = LUz + LaoUss,
As; = La Uny, Asgy = L3 Urg + L3oUsg, Ass = L31Uss + LaoUps + L33Uss.

The computation of the elements of L and U can then be scheduled according to the
methods in Section 2.1.2 allowing the algorithmic variants to be used in cases where
p < m,n or vector length is less than m, n.

Further discussion and details of a blocked Householder algorithm with perfor-
mance measures can be found in (Dongarra et al., 1991). It should be noted that
there is little benefit from the development of a block Givens algorithm because the

individual rotations are commutative provided they are disjoint.

In this example, 4;; denotes a block of matrix A, not an individual element.
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2.3 Recent Work

The most recent work regarding parallel QR factorization has been done in (Cos-
nard & Daoudi, 1994) and (Pothen & Raghavan, 1989). The first paper extends the
ideas introduced in (Modi & Clarke, 1984) and is covered in Section 2.3.1, and the
other is concerned with QR factorization using a distributed memory programming

model (covered in Sections 2.3.2, 2.3.3, and 2.3.4).

2.3.1 Fibonacci

This represents an entire class of algorithms which was first introduced by Modi
and Clarke (1984). A good description and full analysis can be found in (Cosnard &
Daoudi, 1994) and (Cosnard & Trystram, 1995). In their paper, Cosnard and Daoudi
present several alternate formulations of Fibonacci algorithms. The basic concept is
represented by Figure 2.5.

The time-step determination and processor assignment of Givens rotations pro-
ceeds in two stages. In stage one, the initial column is filled from the top down;
u; = 1 zero is placed in position (2,1), then u; = 2 copies of —1 are placed below
that, then uz = 3 copies of —2,..., ux = ux_1 + 1 copies of —(k — 1) below that until
the column is completely filled. The second column is filled by adding two to each
element in column one and shifting it one position downward. This proceeds until the
nt® column is filled. In stage two, the elimination assignment is obtained by adding
u + 1 to each element in the previous table with —u being the element in position
(m, 1). Figure 2.5 shows this assignment for a Fibonacci algorithm of order 1.

Similar algorithms of order ¢ can be constructed by replacing the relation u; =
Up_1 + 1 with up = up—q + Ug—2 + . . + Ug_gp1 (With ug = Uy—1 = ... U_g41 = 0) and

adding g+ 1 instead of 2 to the elements in column j, in order to obtain column j+1
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* *

0 * 5

1 2 % 4 7 *

11 4 ¢ 46 9 *

92 1 3 6 % 36 8 11 *
2 0 35 8 * 3 5 8 10 13 *
5 0 25710 T 35710 1215
30 247 9 9 5 7 9 12 14
3 1246 9 9 4 7 9 11 14
3 .11 4 6 8 9 4 6 9 11 13
3 1136 8 9 4 6 8 11 13
4 1135 8 1 46 8 10 13
4 2135 7 136 8 10 12

Fic. 2.5. Example time-step assignment for Fibonacci algorithm of order 1.

(Cosnard & Trystram, 1995).
Cosnard and Daoudi present the following results for the complexity and perfor-

mance of their multi-stage Fibonacci algorithm in (Cosnard & Daoudi, 1994):

2

n n
Topt(p)=%+p+0(n) for 1SpS2+\/§

and that the minimum number of processors in order to compute the Givens factor-

ization in asymptotically optimal time (2n+o0(n)) is equal to po: = n/(2+v2)+0o(n).

2.3.2 Distributed Givens

Pothen and Raghavan (1989) implement and discuss two of the three parallel
Givens techniques originally introduced in (Pothen et al., 1987). These algorithms

are labeled sgs and ggs for standard Givens sequence and greedy Givens sequence
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respectively. The sgs algorithm is previously described in Section 2.1.1, and the ggs
algorithm is previously described in Section 2.1.5. The important extension made
by Pothen and Raghavan (1989) is the inclusion of a predicted and measured com-
munication cost for the two algorithms, in addition to calculating its computational
complexity. The third algorithm discussed in (Pothen et al., 1987) is the “recursive
fine partition algorithm”. It has not been implemented because examination shows it
to be best only when a large number of processors are available, which has not been
the case for the authors.

The complexities for the sgs and ggs algorithms are derived by Pothen and Ragha-

van and are included in Table 2.1.

Algo- | A/C | Complexity
rithm
598 A 2;‘—2(m —n/3)T +n(3m +n/2)T
598 C 2Z—z(m—n/3)oz—|—n(3m-|—n/2)a+ 2—;‘-(2m—n)ﬂ+2(m+n)ﬂ
ggs | A 2;‘—2(m —n/3)T + n?log (p)T
g9s | C | n’log(p)a+ 2nlog(p)s

Table 2.1. Arithmetic (A) and communication (C) complexities for the standard and
greedy parallel Givens sequences. Matrix size is m x n, with p processors, 7 = time
needed for one flop, and message transfer time is Mo + 8 for M bytes at « bytes per
time unit with a latency of £.

2.3.3 Distributed Householder

Pothen and Raghavan also discuss two distributed Householder algorithms. These
algorithms are labelled p_house and b_house for pipelined and broadcast Householder
respectively. Each algorithm performs the QR factorization with the same mathe-

matical elimination scheme. The difference lies in the communication of the results
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to the other processors between stages.

This algorithm proceeds by mapping the columns of the matrix A onto a ring of
p processors. Each processor holds an m x [n/p] submatrix. At stage j, processor
one computes the Householder vector required to zero out the sub-diagonal elements
in column j. This processor applies this reflection to the columns assigned to it,
and passes the reflection information to the next processor in the ring to apply to
its columns. Execution proceeds in this fashion until the final processor on the ring
receives and applies the final Householder reflection. This sort of nearest neighbor
communication is a key characteristic in what is called “systolic” algorithms.

The only modification’ for the broadcast version of the algorithm is that the
communication of the Householder vector is broadcast to all other processors and the
other processors then apply the reflection simultaneously. The broadcast communi-
cation operation costs more, but the computation sequence doesn’t suffer from the
loading and unloading of the pipeline.

The complexities for p_house and b_house are included in Table 2.2.

[ Algorithm | A or C | Complexity B
p_house A %(m —n/3)T + 3n(m — n/2)T
p_house C n(m —n/2)a+ mpa + (n+p)B
b_house A "Tf(m —n/3)7 + 3n(m —n/2)T
b_house C n(m — n/2)log (p)a + nlog (p) B

Table 2.2. Arithmetic (A) and communication (C) complexities for the pipelined and
broadcast Householder algorithms. Matrix size is m x n, with p processors, 7 = time
needed for one flop, and message transfer time is Ma + § for M bytes at o bytes per
time unit with a latency of 3.
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2.3.4 Distributed Hybrid

The final algorithm discussed by Pothen and Raghavan (1989) is a hybrid based
on the two classes of algorithms described in Sections 2.3.2 and 2.3.3. An observa-
tion which Pothen and Raghavan bring to light is that when the matrix A is highly
overdetermined, communication costs in a parallel Givens algorithm could be sub-
stantially lower than those in a Householder algorithm because the Givens technique
communicates rows where the Householder technique communicates columns. This
motivated the authors to develop an algorithm with the lower local computation costs
of a Householder algorithm and the lower communication costs of a Givens algorithm.

The matrix is partitioned by rows numbered from 0 to m — 1, and a ring of p
processors numbered from 0 to p — 1 is employed. The first n rows are mapped onto
the processors such that row 0 is on processor 0, row 1 on processor 1, etc. The rest
of the m — n rows can be equally distributed among the processors in any manner.

The matrix is then transformed by columns from left to right. Each column is

transformed in two phases:
1. the internal reflection phase (IP), and
2. a recursive elimination phase (RP).

During the internal reflection phase, each processor applies a local Householder re-
flection to zero all but one element of the current column. The recursive elimination
phase proceeds when processors communicate with each other to annihilate the re-
maining subdiagonal elements by means of Givens rotations. The complexities for
the hybrid algorithm are presented in Table 2.3.

Based on the results listed above, predicted and actual performance figures are

included in (Pothen & Raghavan, 1989). Run time results were measured on the Intel
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[ Algorithm | A or C | Complexity

hybrid
hybrid

A
C

2 (m —n/3) +n’log (p)7 + 3n?
n?log (p)a + 2nlog (p) B

mn
T+ 22
+p

Table 2.3. Arithmetic (A) and communication (C) complexities for the hybrid algo-
rithm. Matrix size is m X n, with p processors, 7 = time needed for one flop, and
message transfer time is Ma + ( for M bytes at « bytes per time unit with a latency

of g.

Paragon iPSC-286 hypercube with 16 processors. The experimental results obtained

correlate closely to those predicted, therefore validating the derived complexities listed

in Tables 2.1, 2.2, and 2.3.
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Chapter 3

A LOAD BALANCED HYBRID PARALLEL QR ALGORITHM

This chapter will introduce a new parallel QR decomposition algorithm. The

approach taken for algorithm design and development has three key goals:
1. design with modern-day, widely available parallel architectures in mind,
2. maximize the parallel work between communications, and
3. load balance the amount of parallel work evenly among all processors.

The algorithm developed here achieves all three goals. In many respects it is sim-
ilar to and draws on work done previously, however, the first goal creates different
considerations with regard to maximizing parallelism and balancing load. Where the
majority of previous algorithms balance Givens rotations across processors, the algo-
rithm presented here load balances at a much finer level. It balances multiplications
and additions evenly across processors by considering vector length when assigning
Givens rotations to processors. As a result of the first goal, the first few sections
will discuss the motivation behind the choice of the targeted architectures. Next, the
details and an example of the new parallel QR algorithm are presented. Finally, a
complexity analysis of the algorithm is performed and predicted performance is pre-
sented. Chapter 5 will present a comparison of the predicted and actuél performance

on a variety of matrix sizes.
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3.1 Trends in Parallel Architectures

The market turmoil of the late 80’s and early 90’s that hit parallel computer
manufacturers has been widely discussed in the literature. Just a few of the articles
covering this topic include (Bell, 1994), (Cownie, 1994), (Cybenko, 1996), (Quinn,
1994), (Siegel et al., 1996), (Wallach, 1994), and (Wladawsky-Berger, 1994). One can
draw several conclusions from the lessons still being learned from the “dark ages” of
parallel computing. In the following sections, specific conclusions will be discussed

and speculation on emerging trends in parallel systems, hardware and software, will

be offered.

3.1.1 Parallel Programming Is Hard

This may seem obvious, but the real implications of this statement are still being
discovered and sinking in. When designing and implementing parallel algorithms and
applications, it is not enough to identify and exploit concurrency. This is arguably
the easiest part of the problem. The considerably harder part is picking the appro-
priate parallel programming model, designing with respect to that model, mapping
the model to an architecture, and identifying a real world machine with a similar
architecture. Then, possibly the most difficult step, is optimizing the algorithm in
light of all the constraints imposed by the hardware implementation and still achiev-
ing a cost effective speedup in light of the cost of the machine, cost of the software
development, and speedup achieved.

It is exactly the unexpected finer points of parallel implementation that are
beginning to dominate discussions in parallel computing. It has been said that “ev-
erybody who wanted a CM-5 (and could pay for it) already had one (Quinn, 1994).”

While this is less true for parallel machines in general, after the initial wave of new
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machines in the late 80’s, organizations stopped buying parallel machines. Why? One
debatable answer is that once they had them, they didn’t know what to do with them.
Achieving any speedup at all was proving much more difficult than expected because
of hardware design realities. Memory throughput and inter-processor communication
began to become the bottlenecks. It became apparent that parallelism wasn’t for
everyone (Pancake, 1996).

In light of early applications, more thought went into correctly matching a prob-
lem with an appropriate solution method. Excellent discussions of this include (Fos-
ter, 1995), (Morton & Tyler, 1996), and (Pancake, 1996). A spectrum of parallel
programming models also began to form, with implementation difficulty increasing

as the model moved from sequential, to shared memory, to message passing.

3.1.2 Parallel Computer Manufacturers Did Not Survive

Not one of the companies whose primary business was producing parallel com-
puters survived. Most failed, and the lucky few were acquired by more traditional
computer chip and hardware manufacturers. The parallel machines commercially

available today fall into two main categories, and they are produced by:

e companies whose primary business is traditional sequential computing and that
have been successful enough to support the research and development required

to produce state of the art parallel machines, namely Intel and IBM, or

e companies that have a successful sequential architecture and for a small invest-
ment have developed parallel architectures using small numbers of existing mass

market CPU’s, namely SGI, Sun, HP, and Intel.

Regardless of technical merit, the market has won the first battle of this war.

Currently, the most cost effective machines to program and to buy are shared memory
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machines with modest numbers of processors (2 to 64). The shared memory program-
ming model is also the easiest to work with when developing parallel applications.
There is no reason not to expect the parallel computing industry to follow in the foot-
steps of traditional software development where we will see the cost of computational

solutions dominated by parallel software development.

3.1.3 Distributed Shared Memory

The largest hurdle for shared memory architectures is due to physical restrictions
which limit their scalability. This is beginning to be overcome with the introduction
of Distributed Shared Memory machines (Proti¢ et al., 1996) and also with shared
memory programming models on networks of workstations (Clarke, 1997) and (Cord-
sen et al., 1997). With the above trends in mind, and with distributed shared memory
machines now available, it seems most appropriate to target new algorithm develop-
ment in this direction. Further discussions of designing, implementing, and tuning
shared memory algorithms can be found in (Adve & Gharachorloo, 1996), (Charny,
1996), (Islam & Campbell, 1992), (Sun & Zhu, 1995), and (Sun & Zhu, 1996).

3.2 Goals and Approach

The algorithms being proposed here differ from existing techniques in three key

ways which directly support the previously stated goals:

e The assumption that each Givens rotation can be computed in the same amount
of time regardless of vector length will not be made. While this assumption

was true for vector machines and smaller problem sizes, the trends in parallel
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architectures are moving away from vector machines.! Therefore, work will
be balanced across processors by considering vector length when assigning the

vectors to processors.

e The amount of computation done between communication steps will be max-
imized. Instead of performing one Householder reflection, or enough Givens
rotations to zero one column, each processor will be allowed to proceed with
computation and zero as many elements ,as possible before a communication

step is required.

e Algorithm development specifically targets shared memory parallel machines,
and the shared memory programming model. These machines are the most
widely available and cost effective machines. In addition, there is some move-
ment toward a shared memory programming model even on the most cost effec-
tive parallel computer, networks of workstations ((Clarke, 1997) and (Cordsen

et al., 1997)).

These algorithms depart from common practice with the first item, but with the
second they will build on the ideas introduced by Pothen and Raghavan in (Pothen
& Raghavan, 1989) by considering communication as an algorithmic cost in a QR
factorization routine. One version will also use the idea from (Pothen & Raghavan,
1989) of a hybrid algorithm, i.e. using Householder reflections for computation local
to one processor because of the lower complexity, and using Givens rotations for

inter-processor annihilation because of their independence.

In general, U.S. manufacturers have moved away from production of vector machines. There is
active research, development, and manufacturing of new parallel vector machines elsewhere by such
companies as NEC and Fujitsu.
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These algorithms will be most suitable for non-vector parallel computers with
fewer processors than equations in the system. This is expected to be the case for most
current and future environments. The size of the systems of equations in modelling
physical systems and solving problems has grown dramatically, and the trends in
parallel computing and physical limitations of hardware are working together to keep
this true. Also, by maximizing computation between communication steps, these
algorithms may become well suited to the highly distributed processing found in

networks of workstations.

3.3 Algorithm Overview

The new QR decomposition algorithm proceeds in two stages, with the potential
of the two stages being repeated multiple times in the process of one decomposition.
For simplicity, these stages will be named in a way similar to the naming of the stages
in the hybrid algorithm introduced by Pothen and Raghavan in (Pothen & Raghavan,

1989). A description of the two stages and their names follows:

1. The internal reflections stage (IR): the rows of the matrix are divided evenly
among the processors with each processor getting a block of size (m/p x n).
During this stage, each processor performs (m/p) — 1 Householder reflections
which results in a matrix with p upper trapezoidal submatrices as shown in

Figure 3.1.

2. The balanced rotations stage (BR): the jagged edges of the matrix are cleaned
up using Givens rotations. This stage consists of (m/p) — 1 smaller steps.

During each step, the following sequence takes place:
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e The rows of block 1 (matrix rows 1 to m/p which were annihilated by
processor 1 via Householder reflections in the IR stage) are assigned in a

balanced manner as pivot rows to the processors.

e The step proceeds by the processors zeroing (via Givens rotations) all
the elements in the remaining blocks that are of the same length as their

assigned pivot row(s) from block 1. This step annihilates the first diagonal

in blocks 2 to p.

e The above two steps are repeated, annihilating the diagonals of decreasing

length in blocks 2 to p until the matrix appears as shown in Figure 3.2.

e The balanced assignment of rows to processors will be described fully in

Section 3.5.

The first m/p rows of the matrix are now in the desired format. The next step
is to perform both the IR and BR stages on the submatrix depicted in Figure 3.2 by
Y entries (of size 25 x 9 in this case). This process is repeated in a recursive nature
on the remaining submatrices until one of two terminating conditions is reached.
Terminating condition one occurs when, during the IR stage processor one reaches the
nt* column of the currently active submatrix. When this is the case, the BR stage will
fully annihilate all the elements in the rows greater than n. The second terminating
condition occurs when processor one performs all its Householder reflections in the IR
stage and the BR stage completes, leaving a submatrix with only one column to be
eliminated. In this case, the final column can be eliminated with either a processor
pairing strategy as described in (Pothen & Raghavan, 1989), or sequentially, since in
the end, the final Givens rotation must use element A(n,n) to eliminate A(n + 1,n).

A quick note should be made concerning the size of the submatrix used during

the recursive call of the IR and BR stages. Examining the example in Figure 3.2
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shows that row 8 is in the desired format, but it is included in the submatrix for the
ond recursive call. During the first iteration of the IR and BR stages, column 8 could
have been annihilated using Givens rotations in the BR stage. Instead, the algorithm
stops at column 7 in order for more efficient Householder reflections to be used in the
annihilation of column 8 during the IR stage in the 2"¢ recursive call.

This new hybrid algorithm is different from that introduced in (Pothen & Ragha-
van, 1989) and described in Chapter 2 in two primary ways. First, in Pothen and
Raghavan’s algorithm, the IR phase always consists of exactly p Householder re-
flections performed in parallel followed by their recursive elimination phase using
processor pairing to eliminate p — 1 single elements via Givens rotations. At this
point a parallel synchronization and a communication is required which is normally
very costly. The algorithm described above maximizes the work done in the IR stage
by letting each processor perform the maximum possible number of Householder re-
flections (% — 1) before a parallel synchronization is required to proceed with the
BR stage. Second, the algorithm described above balances the Givens rotation load
across processors and performs ((p -3 - 1]) simultaneous Givens rotations be-

tween synchronizations.
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and p = 4. The X symbol denotes an element with information while a zero denotes
an annihilated entry. The Y symbol denotes the elements of the submatrix to be

FIG. 3.2. Matrix A after completion of the BR stage. Example using m = 32,n = 16,
worked on during the second application of the IR and BR stages.
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1 rx xXx X X X X X X X X X X X X X X9
2 0 X X X X X X X X X X X X X X X
3 0 0 X X X X X X X X X X X X X X
4 0 0 0 X X X X X X X X X X X X X
5 0 0 0 0 X X X X X X X X X X X X
6 0 0 0 0 0 X X X X X X X X X X X
7 0 0 0 0 0 0 X X X X X X X X X X
8 0 0 0 0 0 0 0 X X X X X X X X X
9 0 0 0 0 0 0 0 0 X X X X X X X X
10 0 0 0 0 0 0 0 0 0 X X X X X X X
11 0 0 0 0 0 0 0 0 0 0 X X X X X X
12 0 0 0 0 0 0 0 0 0 o 0 X X X X X
13 0 0 0 0 0 0 0 0 0 0 0 0 X X X X
14 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X
15 0 0 ] 0 0 0 0 0 0 "] 0 0 0 0 X X
16 0 0 0 0 0 0 "] 0 0 o 0 0 o 0 0 X
17 X X X X X X X X X X X X X X X X
18 0 X X X X X X X X X X X X X X X
19 0 0 X X X X X X X X X X X X X X
20 0 0 0 X X X X X X X X X X X X X
21 0 0 0 0 X X X X X X X X X X X X
22 0 0 0 0 0 X X X X X X X X X X X
23 0 0 0 0 0 0 X X X X X X X X X X
24 0 0 0 0 0 0 0 X X X X X X X X X
25 0 0 0 0 0 o 0 0 X X X X X X X X
26 0 0 0 0 0 o 4] 0 0 X X X X X X X
27 0 0 0 0 0 0 0 0 o 0 X X X X X X
28 0 0 0 0 0 o 0 0 0 0 0 X X X X X
29 0 0 0 0 0 0 0 0 0 4] 0 0 X X X X
30 0 [ 0 0 0 0 0 0 0 0 0 0 60 X X X
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0o X X
32 . O 0 0 0 0 0 0 0 0 0 0 0 0 0 0o X |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|
—
(@]
If
3

F1c. 3.3. Case 1: After IR stage. m = 32,n = 16,p =2, and 2=

3.4 A Note on Matrix “Shape”

When applying the parallel QR decomposition algorithm presented here, one of
three conditions can occur with respect to matrix shape. Each case yields slightly

different results.

3.4.1 Case 1: % =n

When this condition occurs, all the blocks of the matrix are square, including the
first. The IR stage of the algorithm will annihilate all the elements in the first block
with (m/p) — 1 Householder reflections. The resulting matrix that is passed to the
BR stage will have all the entries in rows n + 1 to m eliminated by Givens rotations
and the matrix will be in the desired form after only one iteration of the algorithm.

Figure 3.3 depicts the structure of the matrix after the IR stage in this case.
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3.4.2 Case 2

When this occurs, the IR stage of the algorithm will annihilate all the elements

of the matrix in the upper block with m/p Householder reflections, and the resulting

matrix will have bands of zeroes present. This is the case where the highest parallel

efficiencies are possible because the greatest amount of work is done in the IR stage.

All that is left for the BR stage is to eliminate the remaining, relatively few elements

via Givens rotations. Figure 3.4 depicts the structure of the matrix after the IR stage

in this case.
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3.4.3 Case 3: % <n

When this final case occurs, the structure after the IR stage will be similar to
that depicted in Figure 3.1. Once the BR stage completes, the whole algorithm must
be recursively applied to the (m — 2 + ) x(n—2+ 1) submatrix depicted with Y

symbols in Figure 3.2. The algorithm will terminate when the entering condition is

that of either Case 1 or Case 2 above.

3.5 Algorithm Load Balancing Details

This section describes the algorithmic details of the load balancing performed in
the Balanced Rotations (BR) stage. When the structure of the matrix is examined
after completion of the IR stage (see Fig. 3.1), there are (p—1) blocks that have m/p
rows and n columns, and it can be determined that

m(m _
o[
Givens rotations are needed to “clean up” the ragged edges of the matrix in the BR
stage. The aforementioned goal is to balance work (multiplications and additions,
not Givens rotations) across processors. On non-vector parallel machines, it takes
different amounts of time to perform Givens rotations on vectors of different length.

Inspiration for the load balancing method used in this algorithm was gained while
examining the number of Givens rotations used to perform sequential QR decomposi-

tion. Consider an n X n matrix. In order to transform the matrix to upper triangular,

column one needs n — 1 Givens rotations, column two needs n — 2 Givens rotations,
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etc. up to column n — 1, which needs only one Givens rotation. This simplifies to

n(n—1)
2

Givens rotations, which is simply the sum of the integers from 1 to n—1. The general
form to sum integers is
" n(n+1)
yi= 2t

i=1 2
which leads to the simple realization that the sum of 1 and n is equal to the sum of
2 and n — 1, which is equal to the sum of 3 and n — 2, etc. This is precisely the idea
behind balancing the work in the BR stage of the algorithm.

Applying the idea above, a way to balance the BR stage load across p processors
is shown in Figure 3.5. This figure shows two blocks of a matrix as an example with
m/p = 12,n = 16, and p = 3. The top block in the figure is the pivot block (rows
1 to m/p in a full matrix example), and the next block is the block whose elements
will be zeroed. Notice that the processor assignment is done in a cyclic way. This
results in 2 cycles that contain 6 pivot rows each. In the general case, cycle length is

2p. This example illustrates one step of the BR stage of the algorithm, and the work

in this case is split among the processors as follows:

Processor | Rotations | Lengths | Total Work
1 4 16,11,10,5 | 276 flops
2 4 15,12,9,6 | 276 flops
3 4 14,13,8,7 | 276 flops

The work is calculated using the complexity of one Givens rotation from Equation

1.7 in Section 1.4.5 and applying it to the vector length. This results in a perfectly

load balanced series of Givens rotations. Recall that the matrix in question contains
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Fic. 3.5. Load balanced Givens assignment, m/p =12,n
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many blocks like that in Figure 3.5, and that it looks like the matrix from the previous
example in Figure 3.1. The BR stage of the algorithm actually assigns all the rows
in blocks 2...p to be eliminated by pivoting on rows 1...m/p using this scheme.
After one application of the load balancing scheme described above, the matrix is
not yet in the desired form depicted in Figure 3.2. It appears as shown in Figure 3.6.
Only the first diagonal of each block has been eliminated. The same load balancing
scheme is applied to the matrix repeatedly until it appears in the form depicted in
Figure 3.2. Figure 3.7 shows the row-wise assignment for each step and the work
done during the full Balanced Rotations (BR) stage of the algorithm for an example
matrix. Table 3.1 summarizes the work done by each processor during each step for

this example.
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F1G. 3.6. Matrix A after step 1 of the BR stage. Example using m = 32,n = 16, and

4. The X symbol denotes an element with information while a zero denotes an

annihilated entry.

p.‘:




S t e p W o r k
Row| 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 P
2 | P P
3 | P P P
4 |Py P35 P P
5 P4 P4 P3 P2 P, 1
6 | PL B, P P P
7 |P, P PLb Pb P3 P, P
8
9 |pp PR P PP P P P |102 9 90 84 78 72 66
10 |, P, Pb P, P P 96 90 84 78 T2 66
11 |3 P P35 P35 B 90 84 78 72 66
12 | Py, Py Py P 84 78 72 66
13 | Py Py Py 78 T2 66
14 | Py Ps 72 66
15 | Py 66
16
17 |Pp, PR P P P P P |102 9 90 84 78 72 66
18 |\ P P P, P, P 96 90 84 78 T2 66
19 | P P P3 P 90 84 78 72 66
20 |Py, Py Py Py 84 78 72 66
21 | Py Py Py 78 72 66
22 | P3 Pj 72 66
23 | P» 66
24
25 |, P PL P P P P |102 96 90 84 78 72 66
2 |P, P P, P, P P 96 90 84 78 T2 66
271 |P3; P3 Py P3 P 90 84 78 T2 66
28 | Py Py Py Py 84 78 72 66
29 | Py Py Py 78 T2 66
30 | P3s Ps 72 66
31 | P 66
32
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FiG. 3.7. Example of work done during the BR stage, m = 32,n = 16, and p = 4.

Entries in the Step column indicate which processor is assigned to do the annihilation

of that element during that step. Integers in the Work column contain the number
of operations required to perform the rotation at that stage. The rows of block 1 are

used as the pivots (rows 1 to 7), and the remaining rows are assigned as shown for
annihilation.
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S t e p s
Processor 1 2 3 4 5 6 7 | Total
1 102 96 90 84 78 72 66| 588
2 162 90 84 78 72 66 552
3 162 150 78 72 66 528
4 162 150 138 66 516
Total Work 2184
Max/Step 162 150 138 84 78 72 66
Parallel Work 750

Table 3.1. Summary of work for one block during BR stage. Parallel work is 750
flops, total work is 2184 flops, for a parallel speedup of 2.9 and an expected parallel
efficiency of 72.8%.

Even in this simple example, the work is well balanced among the processors.
We'll see in the next section that the parallel efficiency (measure of load balancing)
becomes better as problem size increases and the number of processors available re-
mains relatively small (with respect to problem size). One quick note is appropriate
concerning the current implementation of the algorithm. The code used for results
and analysis in Chapter 5 forces a synchronization between steps during the algo-
rithm’s BR stage. The interleaving of the Givens rotations to solve the problem is
theoretically possible, but no solution has been possible given the implementation
language, architecture, and programming paradigm. This results in a slightly less
efficient load balance, which is easily seen in the simple example of Table 3.1. The

actual imbalance with larger problem sizes is nearly insignificant.

3.6 Algorithmic Complexity

The following sections generalize the ideas introduced in Sections 3.3 and 3.5.

The complexity equations are presented only for one iteration of the two algorithmic
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stages (IR and BR). Depending on the problem size, ratio of rows to columns, and
number of processors, multiple recursive calls to the algorithm might be necessary. In
that case, the complexities presented still hold, but the input problem size changes ac-
cordingly to reflect the size of the sub-matrix being factored. This case was discussed

previously in Section 3.4.

3.6.1 Complexity of Internal Reflections

The Internal Reflections (IR) stage of the algorithm is perfectly load balanced.
During this stage, the matrix is partitioned into p blocks, each of size m/p x n. Using
these dimensions, and the complexity of sequential Householder factorization from

Table 1.1, the IR stage has a parallel complexity of

o (5-3))

It is easy to see that linear speedup and perfect parallel efficiency will result from the

IR stage of the algorithm.

3.6.2 Complexity of Balanced Rotations

Analysis of the Balanced Rotations (BR) stage of the algorithm is not nearly
as straightforward. There are two sources of load imbalance in this stage. As seen

previously in Section 3.5, the BR stage must perform
m(m _ 1

Givens rotations at the cost of 6i 4+ 6 flops per rotation where ¢ is the length of the

vectors in the rotation. The total work done in one block, during one step, of the BR
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stage of the algorithm is 2
n—j

> (6i+6)
i:n—%+2
where j is the column index of the left most non-zero element in each of the 2 to p

non-pivot blocks. There are (m/p) — 1 steps and p — 1 blocks, so the total work done

during the BR stage of the algorithm is

m_g n—j

> (6i+6)

P
— T
7=0 \i=n p+2

(p—1)

which has one possible closed form of

—2m3 9m? 3m?*n Tm 3mn
(p—1) 3t T T
D D p b D

Using the work assignment scheme described in Section 3.5, recall that work is
assigned in cycles to the processors; the load and balance is therefore cyclic in nature.

The blocksize (number of rows per block) at the beginning of the BR stage is
blocksize = |m/p — 1].

One row is subtracted from the m/p rows assigned to each processor during the IR
stage because the last row of every block is already the desired vector length (for
example, consider rows 8, 16, 24, and 32 in Figure 3.1).

At each step, a large number of the rows can be combined via Givens rotations

with the work perfectly balanced across the processors. The perfectly balanced row

2The starting point of the summation is the length of the shortest row which has an element
needing elimination at that step, and the ending point is the length of the longest row which has an

element needing elimination at that step.
3Simplification of the above summation was done by the software package Mathematica.
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assignment is done cyclicly as in Figure 3.5 with each cycle containing 2p rows. Each

of the p blocks will have
blocksize

cycles = | 2% ]

cycles. After assignment of the cycles, there are
leftovers = blocksize — 2p(cycles)

remaining rows which create the first source of the load imbalance. The maximum
number of leftover rows at any one step is 2p — 1. Considering this, there are three

possible scenarios regarding the efficiency of the BR stage at each step:

1. blocksize is evenly divisible by p, and the leftmost non-zero column of blocks 2

to p is between 1 and (blocksize — p): the work is balanced perfectly (see Figure
3.5),

2. blocksize is not evenly divisible by p, and the leftmost non-zero column of blocks
2 to p is between 1 and (blocksize —p): the maximum work is done by processor

(p+1) — (leftovers mod p) (see Figure 3.7, steps 1 to 3), and

3. the algorithm is working on the last p steps of the BR stage: the maximum work
is always done by processor 1. This is the second source of the load imbalance.
In this case, the number of idle processors increases by one each step until
completion of the BR stage. A simple example of this “tailing off” can be seen

in Table 3.1 during the last 4 steps.

The algorithm’s BR stage must perform |m/p—1] steps, and the parallel work is
the sum of the maximum work done at each step. Dividing this by the total work in

Equation 3.6.2 and normalizing with the number of processors gives a general form for
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expected parallel efficiency. Table 3.2 includes several calculated parallel efficiencies
for differing problems sizes and number of processors. The figure illustrates the high
level of load balancing achievable as m and n grow relative to p. The efficiencies
in this figure were calculated using a simple program written in MATLAB which
simulates the work distribution of the algorithm during each stage of the algorithm

and each step of the BR stage, by following the process illustrated above.

3.6.3 Total Algorithmic Complexity

Sections 3.6.1 and 3.6.2 describe the complexity of one application of the IR and
BR stages respectively. As Section 3.4 points out, when m/p < n the IR and BR
stages of the algorithm must be repeatedly applied to the submatrix left from the

previous application. Therefore, the total algorithmic complexity is determined by
1. the complexity of the IR stage,
2. the complexity of the BR stage, and
3. the number of applications of the algorithm needed based on m, n, and p.

Table 3.3 presents several examples of total expected efficiency for various problem
sizes and numbers of processors. Again, the values were calculated by simulating the
work of the algorithm with a program written in MATLAB.

Two details that merit attention in Tables 3.2 and 3.3 are the effect of using
more processors, and the effect of changing problem size. As the number of processing
elements available increases, the efficiency for the same problem size decreases. This
is because increasing the number of processors also increases the number of blocks
and decreases the size of the blocks. This requires more recursive applications of the

two stages of the algorithm to fully factor the input matrix. In order to make up for




p=2
mXn 50 100 200 400 800 1600

50 96.9406 96.4834 96.3063 96.2273 96.1899 96.1717
500 99.7215 99.9260 99.9808 99.7396 99.6518 99.6229
1000 | 99.7215 99.9260 99.9808 99.9951 99.8706 99.8261
4000 | 99.7215 99.9260 99.9808 99.9951 99.9988 99.9997
8000 | 99.7215 99.9260 99.9808 99.9951 99.9988 99.9997
p=4
mXmn 50 100 200 400 800 1600

50 79.5820 79.0469 78.8024 78.6853 78.6279 78.5996
500 99.0500 99.7442 98.4391 97.9478 97.7856 97.7174
1000 | 99.0500 99.7442 99.9351 99.2210 98.9620 98.8770
4000 | 99.0500 99.7442 99.9351 99.9835 99.9958 99.8067
8000 | 99.0500 99.7442 99.9351 99.9835 99.9958 99.9990
p=8
mXxn 50 100 200 400 800 1600

50 36.9966 37.2492 37.3748 37.4374 37.4687 37.4844
500 97.3569 92.5137 90.6489 90.0301 89.7699 89.6499
1000 | 97.3569 99.2677 96.3404 95.2470 94.8888 94.7389
4000 | 97.3569 99.2677 99.8072 99.9528 99.0962 98.7915
8000 | 97.3569 99.2677 99.8072 99.9528 99.9881 99.5495

p=16
mXn 50 100 200 400 800 1600
50 9.3445 9.3596 9.3672 9.3711 9.3730  9.3740

500 71.5498 68.1066 66.9637 66.4832 66.2616 66.1550
1000 | 90.2660 84.7403 81.6514 80.6489 80.2308 80.0386
4000 | 90.2660 97.9179 99.4401 96.1273 94.9384 94.5535
8000 | 90.2660 97.9179 99.4401 99.8535 98.0722 97.4400

p=32
mXmn 50 100 200 400 800 1600
50 n/a n/a n/a n/a n/a n/a

500 22.3132 22.9039 23.1773 23.3090 23.3736 23.4057
1000 | 42.1385 45.7517 47.1867 47.8328 48.1401 48.2900
4000 | 75.6023 90.9803 84.8545 81.5329 80.4851 80.0523
8000 | 75.6023 90.9803 98.2840 92.1524 89.9813 89.2891

Table 3.2. BR stage expected efficiency examples. m is listed on the leftmost
column and n is listed across the first row of each block.
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the overhead incurred by repeatedly calling the IR and BR stages of the algorithm
on submatrices of decreasing size, problem size must increase to keep the blocksize
large relative to the number of processors.

As problem size increases, but the number of processors available stays constant,

two trends are noticeable. A simple way to symbolically represent total efficiency is
Total Efficiency = (%WorkIR X IRefﬁciency) + (%WorkBR X BRefﬁciency)

where
e %Workyp is the percentage of total work done in the IR stage of the algorithm,

e IR

efficiency 1 the efficiency of the IR stage of the algorithm (always 1),

e %Workpm is the percentage of total work done in the BR stage of the algorithm,

and

e BR is the efficiency of the BR stage of the algorithm.

efficiency

As problem size increases and there are more rows than columns (overdetermined
case), expected efficiency increases. The algorithm is well suited to factoring matrices
of this type because increasing the ratio of rows to columns moves a larger percentage
of the total work to the IR stage, which is perfectly parallel. As problem size increases
and there are more columns than rows (underdetermined case), expected efficiency
decreases. This occurs because the percentage of the total work done in the perfectly
parallel IR stage is decreasing and the effect of the load imbalances in the BR stage

becomes more pronounced.




p=2

mXn 50 100 200 400 800 1600
50 97.4672 96.6914 96.4248 96.3113 96.2587 96.2333
500 99.8141 99.9507 99.9872 99.8226 99.6801 99.6340
1000 | 99.8141 99.9507 99.9872 99.9967 99.9123 99.8401
4000 | 99.8141 99.9507 99.9872 99.9967 99.9992 99.9998
8000 | 99.8141 99.9507 99.9872 99.9967 99.9992 99.9998
p=4

mXn 50 100 200 400 800 1600
50 80.5229 78.5425 T77.8119 77.4925 77.3426 77.2699
500 99.3647 99.8293 99.0141 98.3679 97.6745 97.4262
1000 |99.3647 99.8293 99.9568 99.5130 99.1831 98.8310
4000 | 99.3647 99.8203 99.9568 99.9890 99.9972 99.8800
8000 | 99.3647 99.8293 99.9568 99.9890 99.9972 99.9993
p=8

mXn 50 100 200 400 800 1600
50 36.8041 36.0283 35.7123 35.5685 35.4998 35.4662
500 08.2223 95.0547 93.3916 91.3354 88.6419 87.6856
1000 | 98.2223 99.5106 97.6595 96.7140 95.6264 94.1740
4000 | 98.2223 99.5106 99.8714 99.9686 99.4359 99.1788
8000 | 98.2223 99.5106 99.8714 99.9686 99.9921 99.7200
p=16

mXn 50 100 200 400 800 1600
50 12.5749 12.5749 12.5749 12.5749 12.5749 12.5749
500 77.6950 74.9954 71.8967 67.0174 60.4840 58.4636
1000 | 93.2931 89.4679 86.9453 84.8680 81.6500 76.7413
4000 | 93.2931 98.6022 99.6260 97.5302 96.6694 96.0076
8000 |93.2931 98.6022 99.6260 99.9023 98.7884 98.3370
p=32

mXxn 50 100 200 400 800 1600
50 n/a n/a n/a n/a n/a n/a
500 28.7825 29.0312 27.6353 23.8049 20.9518 20.1300
1000 | 48.8887 53.1959 53.7644 51.5051 45.0112 38.2298
4000 | 82.2950 93.8005 89.5886 87.2417 85.5268 83.9052
8000 | 82.2950 93.8005 98.8494 94.8454 93.4224 92.4743

Table 3.3. Total expected efficiency examples. m is listed on the leftmost column

and 7 is listed across the first row of each block.
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Chapter 4

ELECTROMAGNETIC SCATTERING PROBLEM

This Chapter is included to describe the background and motivation which led
to the need for a parallel QR decomposition algorithm. It will also provide an intro-
duction to the problem domain which provides a portion of the test data included in

Chapter 5.

4.1 Introduction to Electromagnetic Scattering

When electromagnetic energy (such as radar waves) comes into contact with
a metallic object, some of the energy is reflected off the surface. If the surface is
completely reflective and perfectly smooth, all of the energy will reflect off the surface
at the same angle as the angle of incidence (See Figure 4.1).

If the surface is not smooth, the reflected energy will scatter in different directions
called scattered orders. If the surface is still perfectly reflective, but rough, the total
energy contained in all the scattered orders is equal to the energy in the incident
radiating wave (See Figure 4.2).

The number and magnitude of the scattered orders is governed by the charac-
teristics of the surface and the incident wave. The scattering can be found through
the solution of an integral equation. This can be reduced to a problem of solving a
system of linear equations. However, the creation and solution of the system requires
significant computational resources and time. We are therefore interested in exploit-
ing parallel computing to speed up the solution and thereby solve larger problems

with greater resolution (Cybenko, 1996).




Incident
Angle

54

d=l

L=0

Si)

F1G. 4.1. Simple reflecting surface case. Only one reflected component with angle of

reflection equal to angle of incidence.

There are widespread applications for a system which can accurately model radar

scattering. For example, it could be applied in the following areas:

e aircraft recognition and identification,

e obstacle detection and recognition,

e machine vision,

e ballistic missile defense systems (from “Star Wars” to the Patriot missile system

used to shield the allies during Desert Shield/Storm), and

e geological exploration for oil, gas, coal, and other minerals.

Current computational techniques only exist to solve very simple or very small

problems of this type. When any real world system is modeled at high resolution,
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Incident j=-2
Angle

i=1
/1=2

\
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F1G. 4.2. Rough surface scattering, perfectly reflecting case. Reflected energy
scatters in multiple components.

Surface Equation S(z) = cos(z)
Surface Period L=1
Surface Height d=1

Scattered Components —4 <=j <=2

the amount of data necessary and the size of problem become too large to solve in
a reasonable amount of time on traditional sequential computers. Our goal is to
implement a solution to this problem using parallel computing. This will allow the
resolution and the size of the problem to increase, thereby moving one step closer to

accurate modelling of real world phenomena.

4.2 Electromagnetic Scattering Details

This section will present a brief overview of the mathematical formalism required

to model electromagnetic scattering. Correct modeling of the problem is essential to
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obtain accurate computational results; however, the derivations of the theoretical
model are beyond the scope of this document and are therefore not included here.
For more information please refer to (Boleng et al., 1996) and (DeSanto, 1985).

A number of simplifying assumptions concerning the model must be made so
that the solution becomes feasible. Many of these assumptions will be relaxed in
the future to move the mathematical and computational models closer to measurable
physical results. Other assumptions are necessary to abstract unimportant details in
order to focus on the essence of the problem.

The following simplifying assumptions are being made in an effort to achieve

increased mathematical simplicity for initial implementations.
1. The incident field is an infinite plane wave.
2. The surface is a one dimensional infinite periodic surface defined by S(z).

3. The surface is perfectly reflective.

Figures 4.1 and 4.2 show a schematic representation of the problem. The fol-
lowing description is only a qualitative introduction to the problem. Please refer to
(DeSanto, 1985) for a more detailed discussion of the mathematical formulation.

S(z) represents the profile of the surface. The surface is considered to be periodic
in the initial version of this application. The period of the surface is denoted by L,
and d is its depth. 6% represents the incident angle of the incoming plane wave and A
is its wavelength. Each j corresponds to a propagating order and a specific scattered
angle, measured from the vertical z-direction. j = 0 is called the specular order and
has a scattered angle equal to the incident angle.

When an incident plane wave strikes a rough surface, the angles of the scattered
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orders can be determined from
) e A
sinf; = sin6* + I (4.1)

which is called the Bragg equation. It is common to use o = sin #% and oy = sin b,

and therefore the Bragg equation above can also be written as a; = o + jA/L.

-h/l—a?, |Oéj|§1
tiyJa2 -1, |l >1

In this implementation this will be the equation which governs the size and

Additionally,

B; = cosb; =

complexity of the problem. By choosing a fixed value for the problem size one can
determine the wavelength range required for A. Using the number of scattered orders
(n) to determine problem size yields an easily discretized problem and results in a

system of linear equations of the form (see details in (Boleng et al., 1996)):
KN = F+, (4.2)
in which N is the unknown, and
Fj = —2BoDéjo, (4.3)

where 8o is the Kronecker delta, and D is the amplitude of the incident plane wave.
In this formulation of the problem, a substantial computational requirement

comes from the evaluation of the individual elements of the K and M matrices. Each
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matrix element is computed by evaluating an integral of the form:

Ky = - [ emi=weiko(-0)5(£3) gy (4.4)

TJd—m

where ko = 27/) is the wave number. The M matrix is filled similarly:

1 +r L, . .
Mjjr = %/_,r e~ i1 e ho(Bi+hy)3(45) gy, (4.5)

Note that the matrix K has diagonal entries equal to one. After inverting K and

solving for 1<I, we can evaluate the following equation for the vector A:

Z M;y Ny = 2B;4;, (4.6)

J

where A; is the amplitude of the jth scattered order whose angles of reflection can
be found from the initial Bragg equation (4.1).
Finally, we know that the sum of the scattered energy is equal to the energy of

the incident wave:

> 1451 Re (8;) = AoD”.
J

We set D = 1 for all of the trials, and therefore the following condition should hold:
R :
>4y Re ) _ g (4.7)
: B,
This is the energy check condition used to verify the quality of the results.

4.3 Electromagnetic Scattering Algorithm

This section develops one possible computational solution for the electromagnetic

scattering model outlined in Section 4.2. If needed, exact equation derivations can
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be found in (Boleng et al., 1996) and (DeSanto, 1985). For simplicity, problem size
is always n, the number of scattered orders.
The basic computational procedure for the Spectral-Spectral formalism (De-

Santo, 1985) is:

1. Fix a value for A/L. This determines the number of scattering orders, using
(4.1). A range for A/L can be calculated if a fixed problem size (n value) is

desired.
2. Compute the matrix K (4.4).
3. Compute Ft (4.3).
4. Solve for N (4.2).
5. Compute the matrix M (4.5).
6. Solve for A (4.6).

7. Perform the energy check to determine if energy is conserved (4.7).

Sequential implementation and performance evaluation of the model included all
of the computational steps outlined above. Test results from the sequential imple-
mentation for a problem size of n =256 executed on a single R10000 processor of a
Silicon Graphics Power Challenge indicated that 99.56% of total computation time
is spent filling the K and M matrices. As a result, this is where the primary paral-
lelization effort was directed. Fortunately both these processes (steps 2 and 5 above)
were perfectly parallel. Section 4.4 includes the initial performance results obtained
by only parallelizing the matrix fill routines (ref. equations 4.4 and 4.5).

After a detailed complexity analysis it became apparent that these speedup re-

sults could only hold for problem sizes with matrices smaller than about 500 x 500.
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The matrix fill routines grow as O(cn?) where c is a (potentially large) constant. This
constant (=500 in these cases) term dominates the linear system solution (O(n?) in
general) until matrix size grows past it (n > ¢). Once this condition is reached ef-
ficient parallel solutions to the electromagnetic scattering problem must contain a
parallel linear system solver. This has led to the development of the parallel QR
decomposition algorithm presented here, and the results of its application to this
problem domain are included in Chapter 5. Furthermore, as the mathematical model
becomes more robust and realistic, and as fewer initial assumptions are made, the
matrices to be solved in the electromagnetic scattering problem become denser and

larger which increases the need for an efficient parallel linear system solver.

4.4 Parallelization Results

This section discusses the initial parallel implementation details of the electro-
magnetic scattering model. It includes a discussion of the computational resources,

supporting code libraries, sequential implementation, and parallel implementation.

4.4.1 Computing Resources and Support

The computing resources used for implementation include a variety of machines
and tools. The primary development was done on a Sun Sparc 20 using C. Parallel
implementation was done using Power C extensions. Parallel test cases were executed
on a Silicon Graphics Power Challenge with eight R10000 processors and two giga-
bytes of shared main memory and a SGI/Cray Origin 2000 with 32 R10000 processors
and eight gigabytes of distributed shared main memory. The machines are located at
the National Center for Supercomputing Applications (NCSA).

The matrix algebra and basic complex arithmetic routines used here are from
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the Meschach Library (Stewart & Leyk, 1994). This is a numerical library of C
routines for performing calculations on matrices and vectors. Several alternative
integration routines were written specifically for this project. The library routines
included a direct linear solver for general complex matrices using Householder QR
decomposition. An iterative solver for general complex matrices is not included in
the library.

Parallelization of the sequential source code was very straightforward. As dis-
cussed earlier, the primary focus of the initial parallel version was the partitioning of
the matrix fill routines. This portion of the problem can be termed perfectly paral-
lel. Each matrix entry can be computed independently with no communication costs
other than saving the results of the computation. Our initial approach was to divide
the K and M matrices among the processors by mapping n/p rows (matrices are
square n X n) to each processor. This naive parallelization proved effective on the
Power Challenge array due to the smaller number of processors and limited problem
sizes possible.

When the application was ported to the Origin 2000 machine, larger problem
sizes revealed limitations in the integration routines’ sampling methods. In order to
improve the performance and the accuracy of these routines we also implemented a
load balancing scheme based on the maximum slope of the surface. Careful examina-
tion of equations (4.4) and (4.5) reveals that surface sampling for the integration is
dependent only on the maximum surface slope and the matrix indices (j7"). Before
distributing the matrix calculation tasks to the processors, an estimate is made for
each matrix element of how many integration intervals will be required for an accu-
rate evaluation. These values are used to load balance the resulting computation.
The execution results for all versions of the code are included and compared below in

Section 4.4.2.
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FiG. 4.3. Parallel and sequential execution times on the SGI Power Challenge.
Parallel runs were done using 8 processors.

4.4.2 Results

This section summarizes the results and performance improvements due to par-
allel implementation. The sequential times referenced in the figures are the measured
performance using only one processor on the SGI Power Challenge or SGI/Cray Ori-
gin 2000, as appropriate. Figure 4.3 compares the sequential and parallel execution
times on the Power Challenge. A simple cubic function is included for comparison as
well as the same function divided by p = 8 (the number of processing elements).

Figure 4.4 presents the speedup using

T tial
Spee dup _ ~sequentia
Tparallel

and the efficiency (Foster, 1995) of the non-load balanced code on the Power Chal-
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FiG. 4.4. Parallel speedup and efficiency (percentages listed with each data point),
Power Challenge Array.

lenge. In these case there were eight processing elements available. The recommen-
dation of SGI is to create one less thread of execution than the number of processors
available; this is presumably for system management overhead.

Closer inspection of Figure 4.4 reveals a possible explanation for the graph’s
shape. The smaller test cases (n = 32, 64, and 128) result in worse performance
than the best results at n =256. This is because the overhead required to create and
manage the parallel regions by the operating system is a substantial fraction of the
overall time. This is a fixed cost, so as the problem size increases, it has a diminishing
effect. The efficiency declines after n = 256 because the linear system’s solution time
now contributes a larger percentage of the overall time. As discussed earlier, the
complexity of a linear system solution is O(n?) in general. Our matrix fill time grows

as cn? where c is a (potentially large) constant. After n =256, this constant term
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Fic. 4.5. Parallel speedup, Origin 2000.

(~500 in these cases) begins to play a diminishing role when compared to the O(n?)
complexity of the linear system solution.

The parallel scattering application was recently ported to the SGI/Cray Ori-
gin 2000 distributed shared memory machine. Movement to a parallel machine with
more processors and memory allowed the execution of larger test cases. Larger cases
pointed out a deficiency in the integration routines that, once corrected, led to pro-
cessor load imbalances. As introduced earlier in Section 4.3, examination of equations
(4.4) and (4.5) allows a conservative estimate to be made a priori of the amount of
computational work required to fill each matrix element in K and M. This estimate
is then used to balance the load across processors. Figures 4.5 and 4.6 depict the
parallel speedup and efficiency results obtained for a fixed problem size of n = 256
and 6 = 25°. |

Examination of Figures 4.5 and 4.6 reveals nearly linear speedup for the load
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F1G. 4.6. Parallel efficiency, Origin 2000.

balanced code. The scalability of this code is also superior to that of the non-load
balanced version. The slight efficiency drop over p = 24 in Figure 4.6 is due primarily
to the relatively small problem size used for this initial testing (n = 256). Much
larger test cases have been run (up to n = 2048) and efficiency results have remained
over 90% for all 32 processors.

In general, the parallel solution will scale well to an arbitrary number of pro-
cessors. This is to say, the portions of the code that are parallel (filling the K and
M matrices) will scale well. The above figures do indicate a possible problem when
scaling the entire solution. For cases greater than n =512 the matrices become more
dense and the linear system’s solution begins to require a noticeable amount of time.
The limited data from the largest two cases tends to indicate that the total prob-
lem solution will not scale well until the QR decomposition algorithm is parallelized.

These results are presented in Chapter 5.
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Chapter 5

PARALLEL QR DECOMPOSITION RESULTS

This chapter presents the results of implementing the new QR decomposition
algorithm in parallel for a variety of problem sizes. The test problems chosen focus
on sizes where m/p < n (see Section 3.4) in an effort to push the algorithm on
the most demanding cases. Section 5.2 presents expected and actual performance
of the algorithm using matrices with randomly generated entries, and Section 5.3
includes performance results when the algorithm is applied to a matrix from the

electromagnetic scattering problem domain.

5.1 Computing Resources

The computing resources used for these tests are largely the same as those listed
in Section 4.4.1. However, there are some changes which must be mentioned before
results are presented. Reconfiguration of machines at NCSA has made available Power
Challenge machines with up to 16 processors as opposed to only 8, as was the case
for earlier testing. In addition to this, the status of the Origin 2000 machine was
moved from installation/evaluation to production. This change made a substantial
difference in the user load on the machine, as well as its availability. When comparing
results, it will become apparent that more data is available for the Power Challenge
implementations. When the Origin 2000 at NCSA was moved to production use, the
migration of a large number of users from the Power Challenge array to the Origin
2000 made system response time extremely slow, and queue wait times increased
dramatically. The large number of users porting code also affected the system stability

which resulted in periods of outage. All these problems combined to make testing and
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obtaining performance results on the Origin 2000 difficult. Several cases are included

nonetheless.

5.1.1 Power Challenge Architecture Overview

The SGI Power Challenge (see Fig. 5.1) is a shared-memory multiprocessor archi-
tecture based on the MIPS superscalar RISC R8000 and R10000 chips. These chips
are 64-bit processors with 64-bit integer and floating-point operations, registers, and
virtual addresses. The R8000 and R10000 use the MIPS IV instruction set.

The cache system consists of a 16 kilobyte (KB) direct-mapped on-chip instruc-
tion cache, a 16 KB direct-mapped on-chip integer data cache, and a 4 megabyte
(MB) four-way set associative external cache. The external cache serves as the pri-
mary cache for floating-point data and the secondary cache for instructions and integer

data. The length of cache lines are:
e on-chip instruction cache: 32 bytes (4 double words)
e on-chip integer data cache: 32 bytes (4 double words)
e external cache: 128 bytes (16 double words)

The processors communicate via a fast shared-bus interconnect. The bus has
a bandwidth of 1.2 gigabyte (GB) per second with a 256-bit wide data bus and a
separate 40-bit wide address bus that can access up to one terabyte (TB) of physical
memory. The bus provides high-bandwidth, low-latency, cache-coherent communica-

tion between processors, memory, and I/0O.
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Fic. 5.1. SGI Power Challenge architecture overview.

5.1.2 Origin 2000 Architecture Overview

The SGI/Cray Origin 2000 is a follow-on to the Challenge-class symmetric mul-
tiprocessing (SMP) system. It uses Silicon Graphics’ distributed shared-memory mul-
tiprocessing architecture, called S2MP. As illustrated in Figure 5.2, the Origin 2000
has a number of processing nodes linked together by an interconnection fabric. Each
processing node contains either one or two processors, a portion of shared memory, a
directory for cache coherence, and two interfaces: one that connects to I/O devices
and another that links system nodes through the interconnection fabric (see Fig. 5.3).

The Origin 2000 uses the MIPS R10000, a high-performance 64-bit superscalar
processor which supports dynamic scheduling. An important attribute of the R10000
is its capacity for heavy overlapping of memory transactions — up to twelve per proces-

sor in the Origin 2000. Each Node board added to the Origin 2000 provides additional
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F1c. 5.2. SGI/Cray Origin 2000 architecture overview. Figure courtesy of NCSA
on-line SGI documentation.

independently accessed memory, and each node is capable of supporting up to 4 GB
of memory. Up to 64 nodes can be configured in a system, which implies a maximum
memory capacity of 256 GB.

The Origin 2000 nodes are connected by an interconnection fabric. The intercon-
nection fabric is a set of switches, called routers, that are linked by cables in various
configurations, or topologies. The interconnection fabric differs from a standard bus

in the following important ways:

e The interconnection fabric is a mesh of multiple point-to-point links connected
by the routing switches. These links and switches allow multiple transactions

to occur simultaneously.

e The links permit extremely fast switching. Each bidirectional link sustains as
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Fi1c. 5.3. SGI/Cray Origin 2000 node layout. Figure courtesy of NCSA on-line SGI
documentation.

much bandwidth as the entire Challenge bus.

e The interconnection fabric does not require arbitration nor is it as limited by

contention, while a bus must be contested for through arbitration.

e More routers and links are added as nodes are added, increasing the intercon-
nection fabric’s bandwidth. A shared bus has a fixed bandwidth that is not

scalable.

e The topology of the CrayLink Interconnect is such that the bisection bandwidth

grows linearly with the number of nodes in the system.

The interconnection fabric provides a minimum of two separate paths to every pair of
the Origin 2000 nodes. This redundancy allows the system to bypass failing routers

or broken interconnection fabric links. Each fabric link is additionally protected by
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Interface Sustained Bandwidth

[Peak BW in brackets]
Memory 780 MB per second [780]
Node Card 1.25 GB per second [1.56 GB]
Crossbow 2.5 GB per second [3.12 GB]
Module (deskside) | 5.0 GB per second [6.24 GB
Rack 80 GB per second [100 GB]|

Table 5.1. Origin 2000 Peak and Sustained Bandwidths.

a CRC code and a link-level protocol, which retry any corrupted transmissions and
provide fault tolerance for transient errors.

There are three types of bandwidths:

e Peak bandwidth, which is a theoretical number derived by multiplying the clock

rate at the interface by the data width of the interface.

e Sustained bandwidth, which is derived by subtracting the packet header and
any other immediate overhead from the peak bandwidth. This best-case fig-
ure, sometimes called Peak Payload bandwidth, does not take into account

contention and other variable effects.

e Bisection bandwidth, which is derived by dividing the interconnection fabric in
half, and measuring the data rate across this divide. This figure is useful for

measuring data rates when the data is not optimally placed.

Table 5.1 gives a comparison between peak and sustained data bandwidths of the

Origin 2000.
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5.1.3 Shared vs. Dedicated Mode

One final note concerns an observed detail about the timings presented below.
During testing, it was noticed that execution times were considerably lower and ob-
served efficiencies where higher when the test case was submitted to run in dedicated
versus shared mode. This presented some difficulties because the NCSA machines
are only available for dedicated runs on Sundays, but it was still possible to obtain

dedicated execution results for some problem sizes.

5.2 Measured Algorithm Performance

This section will present the performance of the parallel QR decomposition al-
gorithm when applied to matrices of randomly generated elements. Section 5.2.1
includes a discussion of the sequential performance of the parallel algorithm and
compares it with the sequential performance of standard decomposition techniques.
Sections 5.2.2 and 5.2.3 present and discuss the measured results on the SGI Power

Challenge and SGI/Cray Origin 2000 respectively.

5.2.1 Performance vs. Standard Methods

When measuring the relative performance of a parallel algorithm a decision must
be made concerning the standard of comparison for the single processor or sequential

timing. Parallel speedup is calculated as

Tsequential

Tparallel

Speedup =

Several alternatives have been suggested concerning how Tsequential is measured.

The most widespread measurement technique is simply to run the parallel code on
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Problem | Parallel QR Householder
Size Algorithm Algorithm

1024 x 1024 | Tis = 67.95 | Tpeq = 6764
1024 x 1024 T1/16 = 44.91
1024 x 1024 Ty/30 = 46.96
8000 x 1600 | Ti1 = 1859.4 | Ipeg; = 1868.97
8000 x 1600 Ty/16 = 1716.47
8000 x 1600 Ti/3 = 1365.96

Table 5.2. Comparison of sequential performance for the parallel algorithm and the
best known sequential algorithm. Execution times reported in seconds and
measured on one R10000 processor of the SGI Power Challenge.

one processor of the machine being used for testing. This technique has been criti-
cized because it is often the case that the parallel algorithm, when run sequentially, is
much less efficient than the best sequential algorithm. An alternative technique uses
the time of the best known sequential algorithm for Tsequential' This results in a
more realistic speedup measure, but the resulting efficiency is not a good measure of
how “busy” the algorithm keeps the processors. For the results below, both measure-
ments will be presented when possible. The best known sequential algorithm for QR
decomposition uses Householder reflections, and this is reported as the time T} -
The corresponding speedup and efficiency measures are reported as Speedupy, g and
Efficiencypegt- The performance of the parallel algorithm executed on one proces-
sor is reported as T},, where b is the number of blocks used in the sequential run.
Speedup and efficiency of the parallel algorithm are reported in a similar manner as
Speedup;/, and Efficiencys.

When gathering performance results, it was noticed that in most cases, the tim-
ing for the parallel algorithm executing on one processor, 17, was better than the

timing for the best known sequential algorithm, Tjost- This was especially true
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as the problem size grew and different values of b where used. Table 5.2 contains
a comparison of some of the results. The difference in performance for these algo-
rithms is presumably due to the memory hierarchy of the machines being used. When
the algorithms eliminate elements via Householder reflections the code instructs the
compiler to maintain the Householder vector in local cache to increase performance.
Each Householder vector is m elements long. As the matrix size grows, particularly
the number of rows, the traditional sequential algorithm cannot maintain the entire
Householder vector in cache, so performance suffers. The parallel QR algorithm acts
in a block manner and annihilates blocks of the matrix with Householder vectors that
are long enough to be maintained in the cache during their entire application. For
the purpose of calculating parallel speedup and efficiency in Sections 5.2.2 and 5.2.3,

both Ty g and Ty/1 are used.

5.2.2 Performance on the Power Challenge

This section summarizes the performance results of the parallel QR decompo-
sition algorithm implemented on the SGI Power Challenge. Each of the following
sets of tables and graphs is presented for different problem sizes. Examination of
Figures 5.4 and 5.5 shows good parallel efficiency on the Power Challenge for up to
four processors, and speedup increases on up to 12 processors. Efficiency peaks at
four processors (77.9% and 80.8%, respectively), but speedup is still increasing. The
efficiency begins to drop off quickly for the eight and 12 processor cases. Peak per-
formance is reached at 12 processors with a speedup of 5.65, but a parallel efficiency
of only 47.1%.

Two comments can be made about the shapes of the graphs in Figures 5.4 and
5.5. First, actual performance differs substantially from the expected performance.

This occurs primarily because the prediction model derived in Chapter 3 and used here
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does not include any system management overhead. In addition to the relatively small
load imbalances inherent in the algorithm, which the model includes, are the much
higher costs of creating the parallel threads of execution, memory contention /delays,
synchronization costs, etc. As the number of processors increases for a fixed problem
size, less and less work is being done between thread creation, synchronizations, and
destruction. Any speedup achieved by concurrent operation is soon lost in the cost
of the system overhead. By the 16 processor case, problem size was just too small to
benefit from further parallelization. Larger problem sizes yield higher efficiencies for
greater numbers of processors.

The second notable observation is apparent in Figure 5.5 at p = 2 where the
sharp trough appears. This could be a result of anomalous data attributable to
heavy system load at run time (these data points were gathered while running in
shared mode), or it is more likely caused again by system management overhead. At
the case of only two processors, there is very little potential speedup to absorb the
fixed cost incurred from creating the parallel threads. As more processors are used
the variable cost of adding more threads of execution is still incurred, but the fixed
parallelization startup costs can be spread across greater potential speedup.

An important comparison can be made from Figures 5.6 and 5.7. These results
present performance for the same matrix size and processor numbers in shared vs.
dedicated mode. In shared mode, the program is time shared with other parallel jobs,
while in dedicated mode, the program is executed from start to finish on one Power
Challenge using as many processors as requested. The raw performance run times
are significantly better for the parallel cases when executed in dedicated mode. This
observation is apparent later on the Origin 2000 machine as well. This performance

difference is likely attributable to the action of context switching between applications
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in shared mode which creates extra system overhead that does not exist in dedicated
mode.

It is encouraging to note that with the increased problem sizes in Figures 5.6
and 5.7, the actual results began to follow the predicted performance more closely.
Speedup was achieved for this problem size all the way up to and including the
maximum available number of processors on the NCSA machines. This is in contrast
to the previous cases where speedup peaked and then began to decrease before the
processor limit. Efficiency does steadily decline as in the previous cases, but the
decrease is not as soon or as sharp.

Finally, examine Figure 5.8 which plots the parallel efficiency and speedup for
many processors as the problem size changes. This comparison demonstrates a char-
acteristic of the algorithm predicted in Chapter 3. As problem size increases relative
to the number of processors, the efficiency of the algorithm increases. This occurs
because the two sources of possible load imbalance (the leftover rows and last p steps
during the BR stage) become a smaller and smaller fraction of the total work done.

It is expected that this trend would continue for larger problem sizes.
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FiG. 5.4. Parallel performance on the SGI Power Challenge (R10000) in shared
mode. Matrix size is 4000 x 800. Expected results shown as a dashed line with ‘+’

symbol. Actual results shown as a solid line with ‘+’ symbol.
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Raw Parallel Performance Expected vs. Actual Speedup
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F1G. 5.5. Parallel performance on the SGI Power Challenge (R10000) in shared
mode. Matrix size is 8000 x 800. Expected results shown as a dashed line with ‘x’
symbol. Actual results shown as a solid line with ‘+’ symbol.
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FiG. 5.6. Parallel performance on the SGI Power Challenge (R10000) in shared
mode. Matrix size is 8000 x 1600. Expected results shown as a dashed line with ‘¥’
symbol. Actual results shown as a solid line with ‘+’ symbol.




1800

1600

1400F

12001

Time (sec)

-]

=1

S
T

10001

Raw Paralle! Performance

Expected vs. Actual Speedup

80

Number of Processing Elements

Expected vs. Actual Efficiency

1t .,,.i.v..‘_..._*_ _._._,%_A_._._.,i(_wu.v_.viz;a.u,;._v.*.;._“:.;.A;’;.._,.*......?
2 : :
2 : :
E : :
w . )

11 R SEIIEIIPLoN ............

0.2_ ................................................... . ............ .........................

O 1 i 1 L | l 1 1

0 2 4 6 8 10 12 14 16

Number of Processing Elements

1
Number of Processing Elements

[ 8000 x 1600 [ p=1 [ p=2 [ p=4 |
Householder 1868.97
Parallel QR 1859.4 | 955.34 | 519.35
SPeeduPexpected 1.99 3.99
Efficiencyeypected 99.9% | 99.9%
Speedupp,egt 1.96 3.60
Efficiencypect 97.8% | 90.0%
Speedup; /1 1.95 3.58
Efficiency; /1 97.3% | 89.5%

[ p=8 [ p=12 [ p=15 |
Parallel QR 286.36 | 232.62 | 200.92
Speedupexpected 7.98 11.90 | 14.79
Efficiencyeynected 99.7% | 99.2% | 98.6%
Speedupp gt 6.53 8.03 9.30
Efficiencyy, oot 81.6% | 67.0% | 62.0%
Speedup; ;1 6.49 7.99 9.25
Efficiency, /1 81.2% | 66.6% | 61.7%

Fic. 5.7. Parallel performance on the SGI Power Challenge (R10000) in dedicated
mode. Matrix size is 8000 x 1600. Expected results shown as a dashed line with ‘’

symbol. Actual results shown as a solid line with ‘+’ symbol.
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Fic. 5.8. Parallel performance comparison on the SGI Power Challenge (R10000) as
problem size grows. Matrix sizes are shown next to their representative line.
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5.2.3 SGI/Cray Origin2000 Performance

This section summarizes the performance results of the parallel QR decompo-
sition algorithm implemented on the SGI/Cray Origin 2000. Each of the following
sets of tables and graphs is presented for different problem sizes. The matrices used
for testing on the Origin 2000 are the same as those used previously on the Power
Challenge. The performance achieved on the Origin 2000 differs substantially from
that on the Power Challenge. Raw performance, or execution times, are faster, but
parallel performance is not nearly as good on large problem sizes. Only for the smaller
matrix cases (4000 x 800 and 8000 x 800) did the Origin 2000 significantly outperform
the Power Challenge.

Figure 5.9 shows promising performance up to 12 processors. In fact, super-linear
speedup is achieved, which is certainly attributable to the blocking of the matrix and
Householder vector length as described earlier in Section 5.2.1. When the parallel
algorithm is used, the Householder vectors are shorter and more easily maintained in
cache memory. This blocking effect alone is enough to help performance dramatically
without parallelization. The parallel execution times take advantage of these access
differences in the memory hierarchy and combine concurrent operations to achieve
super-linear performance.

Using more than 12 processors on this matrix size results in over-parallelization
and decreased performance for the same reasons as those described above on the
Power Challenge. This is shown by the dramatic decrease in efficiency for 16 and
24 processors. In the case of the smallest matrix (see Figure 5.9) speedup decreased
more sharply than in any other case. Figure 5.10 represents the best results achieved.
Speedup remains close to predicted results, and 85-90% efficiency results. Speedup

continues past the 12 processor case, but after 16 processors, the problem size is again
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too small to benefit from further parallelization.

Figures 5.11 and 5.12 represent the comparison of using shared vs. dedicated
mode on the Origin 2000 to factor the largest problem size. Run times are consistently
better when problems are executed in dedicated mode. Parallel performance at this
large problem size is disappointing on the Origin 2000, especially when compared
to the increasing speedup obtained on the Power Challenge for the same problem.
In both cases (dedicated and shared), the use of more than 16 processors does not
improve performance. In fact, the move from 16 to 24 processors created the biggest
observed increase in run time during parallel execution.

Recall that the Origin 2000 is a Distributed Shared Memory (DSM) architecture.
The physical design of the machine consists of a variety of nodes linked by a high
speed cross-bar switch. There are only two processors per node that physically share
memory. The logical address space is mapped by the operating system across the
p/2 distributed nodes. The current algorithm implementation makes no attempt to
schedule memory accesses to reduce communication. A few alternative scheduling
techniques were tried for the BR stage, but memory mapping and movement as well
as processor assignment is operating system dependent. No method was found that
consistently addressed all the mysteries of the operating system’s thread and memory
management.

The final Origin 2000 figure compares all the problem sizes together (see Fig.
5.13). The results and conclusions here are not nearly as obvious or encouraging
as those seen in the Power Challenge results. In only one case did the Origin 2000
maintain a speedup with more than 12 processors, and when the efficiency figure is
included, the outlook becomes even worse. This distributed shared memory machine

is not only running into the same system management overhead and problem size
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limitations as the Power Challenge, but it has the added cost of a more complex
memory management and transfer system. More careful scheduling and memory

accesses during the BR stage must be done on this machine.
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FiG. 5.9. Parallel performance on the SGI/Cray Origin 2000 in shared mode.
Matrix size is 4000 x 800. Expected results shown as a dashed line with ‘*’ symbol.
Actual results shown as a solid line with ‘4’ symbol.
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Raw Parallel Performance Expected vs. Actual Speedup
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F1G. 5.10. Parallel performance on the SGI/Cray Origin 2000 in shared mode.
Matrix size is 8000 x 800. Expected results shown as a dashed line with ‘*’ symbol.
Actual results shown as a solid line with ‘+’ symbol.
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Fic. 5.11. Parallel performance on the SGI/Cray Origin 2000 in shared mode.

Matrix size is 8000 x 1600. Expected results shown as a dashed line with ‘+’ symbol.
Actual results shown as a solid line with ‘4’ symbol.
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Raw Parallel Performance Expected vs. Actual Speedup
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FiG. 5.12. Parallel performance on the SGI/Cray Origin 2000 in dedicated mode.
Matrix size is 8000 x 1600. Expected results shown as a dashed line with *’ symbol.
Actual results shown as a solid line with ‘4’ symbol.
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5.3 Application to Electromagnetic Scattering

This section presents one set of results obtained by applying the parallel QR.
decomposition algorithm to a dense matrix with data from the electromagnetic scat-
tering problem described in Chapter 4. The largest data set available is a matrix size
of 1024 x 1024. Because the matrix size is relatively small, timing information was
gathered for all processors ranging from 1 to 12 instead of using the previous method
(1,2,4,8,...).

Figure 5.14 shows the performance results from the Power Challenge and Origin
2000 when the parallel QR decomposition algorithm is applied to electromagnetic
scattering data. The results are promising because they show increased performance
on both machines from 1 to 10 processors (9 on the Power Challenge). Speedup
gains are in the same range. Given the small problem size and fast execution times,
maintaining parallel speedup for such a range of processors demonstrates the effective
use of synchronization and load balancing in the algorithm. If the implementation
involved large amounts of processor waiting or poor load balancing, speedup would
have fallen off sooner than 9 or 10 processors. The decreasing tendency of parallel
efficiency is mainly due to the relatively high system overhead when compared to the
short total execution time.

It is important to note the difference in the two machines when over-parallelization
occurs and run times begin to increase. On the Power Challenge, when too many
processors are used relative to the problem size, performance degradation occurs, but
in a gradual manner. On the Origin 2000 however, once over-parallelization occurs,
performance degrades in a very pronounced way. This is represented by the sharp
increase in run time shown for the 11 and 12 processor cases in Figure 5.14. This is

again attributable to the distibution of shared memory on the Origin 2000. When
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parallel overhead begins to dominate performance on the Power Challenge, memory
access times remain relatively constant, so performance decreases gradually. When
parallel overhead begins to dominate performance on the Origin 2000, memory access

and contention during the BR stage also increase, which makes performance decrease

much more quickly.
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F1G. 5.14. Parallel performance comparison of the Power Challenge (R10000) and
the SGI/Cray Origin 2000 on electromagnetic scattering data. Matrix size is
1024 x 1024. Power Challenge results shown with ‘4’ symbol. Origin 2000 results

shown with ‘x’ symbol.
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Chapter 6

CONCLUSIONS

This report introduces a new parallel QR decomposition algorithm. The algo-
rithm is described, analyzed, and tested. The motivation for the development of a new
algorithm was provided by ongoing work on electromagnetic scattering problems. A
brief presentation of the algorithm’s performance on data from this problem domain
is also presented.

The goals surrounding the development of the algorithm were driven by prag-
matism, but they did serve to extend this class of algorithms in important ways. The
balancing of work across processors was done at a finer grain than earlier attempts,
which is more appropriate for today’s parallel architectures. This makes much higher
efficiencies possible on current computers than previous algorithms. The use of a
hybrid elimination technique in support of another of the goals, maximizing com-
putation between communication, also indicates potential for good performance on
distributed memory machines and networks of workstations.

The analysis of the algorithm’s expected performance is very promising. The load
balancing scheme derived for the balanced rotations stage of the algorithm approaches
perfect efficiency for large problem sizes on modest numbers of processors. The hybrid
nature of the algorithm is also beneficial because it uses the most efficient elimination
technique whenever possible.

The measured performance results of the algorithm’s implementation are good,
but they do not track closely enough to the predicted performance. Results on 12

and fewer processors follow expected performance well, but the use of higher numbers
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of processors adds little speed improvement. It is anticipated that, given sufficient
dedicated computing time, higher processor numbers would yield better results on
larger problem sizes. As is the case with all parallel algorithms, there are a myriad of
subtle implementation details that must be considered and worked on before a tuned
version of the algorithm is optimized for any specific parallel machine. Considering the
performance results in light of the fact that the algorithm was implemented exactly
as described, with no optimization tricks, is a promising indicator.

Finally, a comment regarding the comparison of the predicted and actual perfor-
mance is appropriate. In all the testing (except for one case), predicted and actual
performance differed by a significant margin. One point did hold true throughout the
testing. The trends predicted by the expected performance analysis were realized by
the measured results. This helps to reinforce the general correctness of the predic-
tion model, but indicates that fine tuning and inclusion of more realistic overheads
are in order. Overall, the algorithm and its predicted performance were successful.
They met and exceeded the goals set out, and useful methods were added to the

computational linear algebra and parallel processing “tool boxes.”

6.1 Contributions

The work included in this report contributed to the computer science, parallel

computing, and computational linear algebra communities in the following ways:

e A new parallel QR decomposition algorithm was developed and analyzed. Ex-

pected performance promises excellent, achievable results.

e The new algorithm is specifically designed for parallel architectures with a mod-
est number of processing elements. All but one of the previous algorithms

covered in Chapter 2 are designed without limiting the number of processors.
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These algorithms normally require at least m/2 processors to achieve optimal
performance. This is unreasonable for large problem sizes, and using less pro-
cessors in these algorithms results in poor performance. The new algorithm can

theoretically achieve optimal performance on as few as two processors.

Initial implementation and testing results of the new parallel algorithm are
encouraging. In some cases, over 90% efficiency was achieved with no specialized

tuning required.

A novel approach was taken to predicting algorithmic performance by simulating

the work and operation of a parallel algorithm on a sequential computer.

The idea of a hybrid parallel algorithm which uses the most efficient techniques
available in different sections of the algorithm to reduce overall complexity was

demonstrated and extended.

This parallel algorithm achieves better performance in the sequential case than
the best known sequential algorithm as it exploits the hierarchical nature of
memory through blocking. Even for sequential computing, this parallel QR

algorithm is a good candidate for improved application performance.

Several strengths and limitations of the distributed shared memory model for
parallel computers were tested and reinforced, and in some cases, performance

suffered as a result of the current implementations of the model.

Future Work

There is still a good deal of study and analysis that should be pursued concerning

parallel QR decomposition. The frequency of new research and parallel QR algorithms
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has decreased in the current literature. However, the need for good solutions to this
problem which would support a wide range of engineering and scientific applications
has never been higher. Highly efficient algorithms for solving large systems of equa-
tions, which are optimized for current parallel architectures are not widely available.
This is especially true in the case of highly distributed, low communication solutions.

Future research directions specific to the algorithm presented in this report include:
e Optimize the algorithm and test larger cases on a shared memory machine.

e Since the work done for each step during the BR stage is predictable, re-order
the assignment method to increase performance on a distributed shared mem-
ory machine by taking into account locality of access when assigning Givens
rotations. This work could be the starting point for a distributed memory

algorithm.

e Integrate the parallel decomposition routines into the existing electromagnetic

scattering code described in Chapter 4.

e Implement and test the algorithm on a distributed memory machine and a

network of workstations.

e Continue refinement of the predicted performance method for this type of hybrid
algorithm. Accurate prediction for a wide range of problem sizes would aid

greatly in the proper selection and application of appropriate algorithms.
Broader research goals, which are a natural extension of the work performed here are:

e Implement a wide range of the known parallel QR decomposition algorithms on
the same hardware platform and compare performance. Not only would this

provide direct performance comparisons in place of predicted values which are
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based on complexities, but it also would help characterize the range of problems

each algorithm was bested suited to solve.

Experiment with duplicating computation at distributed nodes to reduce com-
munication costs. One example of this is to give every processor a duplicate
copy of the pivot rows to use in order to fully annihilate all the elements in
their assigned blocks with no communication. Research could then focus on re-
combining the now unique information in the pivot rows in an effort to maintain

the integrity of the solution.
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