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ABSTRACT 

This report introduces a new parallel QR decomposition algorithm. Test results 

are presented for several problem sizes, numbers of processors, and data from the elec- 

tromagnetic scattering problem domain. The development of the algorithm marks a 

departure from past parallel QR algorithms. The load balancing method used con- 

siders total computational work as opposed to just balancing Givens rotations. This 

results in expected efficiencies which approach optimal as problem size grows relative 

to number of processors. The hybrid nature of the algorithm, which maximizes com- 

putation between communication and synchronization, indicates potential for good 

performance on distributed memory machines and networks of workstations. Imple- 

mentation results on shared memory and distributed shared memory architectures 

show promise and track expected performance well up to 12 processors. 

in 



TABLE OF CONTENTS 

ABSTRACT  n 

LIST OF FIGURES  vi 

LIST OF TABLES  viii 

ACKNOWLEDGMENTS  ix 

Chapter 1       INTRODUCTION  1 

1.1 Outline  2 
1.2 Notation and Conventions  2 
1.3 Least Squares Problem  3 
1.4 Computing Q and R  5 

1.4.1 Householder Reflections     5 
1.4.2 Complexity of One Householder Reflection  7 
1.4.3 Householder Summary  7 
1.4.4 Givens Rotations  8 
1.4.5 Complexity of One Givens Rotation  10 
1.4.6 Reflections vs. Rotations  11 

Chapter 2       PREVIOUS QR DECOMPOSITION ALGORITHMS 13 

2.1 Early Algorithms  13 
2.1.1 Sameh and Kuck's Algorithm  14 
2.1.2 Gaussian Elimination  15 
2.1.3 ZIGZAG  16 
2.1.4 COLSWEEP     17 
2.1.5 Greedy Algorithm  18 

2.2 Block Algorithms  19 
2.3 Recent Work      21 

2.3.1 Fibonacci  21 
2.3.2 Distributed Givens  22 
2.3.3 Distributed Householder  23 
2.3.4 Distributed Hybrid  25 

IV 



3.4.1    Case 1: f = n 
s > n         38 
& < n         39 
p 

Chapter 3       A LOAD BALANCED HYBRID PARALLEL QR AL- 
GORITHM     27 

3.1 Trends in Parallel Architectures  28 
3.1.1 Parallel Programming Is Hard  28 
3.1.2 Parallel Computer Manufacturers Did Not Survive  29 
3.1.3 Distributed Shared Memory  30 

3.2 Goals and Approach  30 
3.3 Algorithm Overview     32 
3.4 A Note on Matrix "Shape"  37 

. f = n     37 
3.4.2 Case 2 
3.4.3 Case 3 

3.5 Algorithm Load "Balancing Details  39 
3.6 Algorithmic Complexity  45 

3.6.1 Complexity of Internal Reflections  46 
3.6.2 Complexity of Balanced Rotations  46 
3.6.3 Total Algorithmic Complexity  49 

Chapter 4       ELECTROMAGNETIC SCATTERING PROBLEM   . 53 

4.1 Introduction to Electromagnetic Scattering  53 
4.2 Electromagnetic Scattering Details     55 
4.3 Electromagnetic Scattering Algorithm  58 
4.4 Parallelization Results  60 

4.4.1 Computing Resources and Support  60 
4.4.2 Results  62 

Chapter 5       PARALLEL QR DECOMPOSITION RESULTS .... 66 

5.1 Computing Resources  66 
5.1.1 Power Challenge Architecture Overview      67 
5.1.2 Origin 2000 Architecture Overview  68 
5.1.3 Shared vs. Dedicated Mode     72 

5.2 Measured Algorithm Performance  72 
5.2.1 Performance vs. Standard Methods  72 
5.2.2 Performance on the Power Challenge  74 
5.2.3 SGI/Cray Origin2000 Performance     82 

5.3 Application to Electromagnetic Scattering  90 

v 



Chapter 6       CONCLUSIONS  93 

6.1 Contributions  94 
6.2 Future Work  95 

References  98 

VI 



LIST OF FIGURES 

1.1 Example Givens rotation  9 

2.1 Sameh and Kuck algorithm, m = 13, n = 7  15 

2.2 ZIGZAG algorithm, n = 9,p = 4  17 

2.3 COLSWEEP algorithm, n = 9, p = 3  18 

2.4 Greedy algorithm  19 

2.5 Example time-step assignment for Fibonacci algorithm of order 1.   . . 22 

3.1 Matrix A after completion of the IR stage     34 

3.2 Matrix A after completion of the BR stage  36 

3.3 Case 1: After IR stage  37 

3.4 Case 2: After IR stage  38 

3.5 Load balanced Givens assignment  41 

3.6 Matrix A during the BR stage  43 

3.7 Example of work during BR stage  44 

4.1 Simple reflecting surface  54 

4.2 Rough surface scattering  55 

4.3 Execution times, Power Challenge  62 

4.4 Parallel speedup and efficiency, Power Challenge  63 

4.5 Parallel speedup, Origin 2000  64 

4.6 Parallel efficiency, Origin 2000  65 

5.1 Power Challenge architecture      68 

5.2 SGI/Cray Origin 2000 architecture  69 

5.3 SGI/Cray Origin 2000 node layout      70 

vii 



5.4 Parallel 

5.5 Parallel 

5.6 Parallel 

5.7 Parallel 

5.8 Parallel 

5.9 Parallel 

5.10 Parallel 

5.11 Parallel 

5.12 Parallel 

5.13 Parallel 

5.14 Parallel 

performance, 4000 x 800, Power Challenge      77 

performance, 8000 x 800, Power Challenge      78 

performance, 8000 x 1600, Power Challenge  79 

performance, 8000 x 1600, Power Challenge  80 

performance comparison, Power Challenge  81 

performance, 4000 x 800, Origin 2000  85 

performance, 8000 x 800, Origin 2000  86 

performance, 8000 x 1600, Origin 2000  87 

performance, 8000 x 1600, Origin 2000  88 

performance comparison, Origin 2000  89 

performance comparison, Power Challenge and Origin 2000   . 92 

vm 



LIST OF TABLES 

1.1 Complexity comparison of common factorization methods  3 

2.1 Complexities for sgs and ggs  23 

2.2 Complexities for distributed Householder algorithms  24 

2.3 Complexities for distributed hybrid algorithms  26 

3.1 Summary of work for BR stage     45 

3.2 BR stage expected efficiency examples     50 

3.3 Total expected efficiency examples  52 

5.1 Origin 2000 bandwidth  71 

5.2 Sequential performance comparison  73 

IX 



ACKNOWLEDGMENTS 

I would like to extend sincere thanks to everyone that I have had the pleasure 

to work with over the last eighteen months in the pursuit this goal. Special credit is 

due to the Colorado School of Mines Multi-disciplinary University Research Initiative 

group of Dr. John DeSanto, Dr. Willy Hereman, Dr. Manavendra Misra, and Grant 

Erdmann. My involvement in their work has been interesting and rewarding. Thanks 

to some of the best professors anywhere. Especially my advisor Dr. Manavendra 

Misra, Dr. Steve Pruess, and of course, Dr. Ruth Maurer. 

I would also like to acknowledge the generous support of the U.S. Air Force 

Academy and the Air Force Institute of Technology. In addition, the National Center 

for Supercomputing Applications (NCSA) has been particularly helpful and tolerant 

with access to their computing resources. 

I am especially grateful to Maj. Rob Kaufman and Col. Samuel Grier. Thanks 

for the chance. 

I will always be indebted to Jack Webb, who helped me build the strongest 

foundations imaginable, and to Warren Parker who always reminded me why they 

were important and taught me how to keep it all in perspective. Finally, the greatest 

thanks always goes to Gina for her friendship and support. 



Chapter 1 

INTRODUCTION 

The problem of solving dense systems of linear equations on parallel com- 

puters has been widely studied. Initial results treat the problem with theoretical rigor 

but do not usually implement the algorithms because real machines which meet the 

requirements and assumptions of the derivation rarely or never exist. Practitioners 

have taken these studies, added their own analysis and creativity, and adapted them 

to produce realistic algorithms which can be implemented on parallel computers of 

the day. This process creates two general classes of algorithms: 

1. those that are theoretically optimal with respect to some parameter, and 

2. those that might not be theoretically optimal but are tuned to run on a specific 

architecture. 

This second class of algorithms must be extended and adapted as machine architec- 

tures evolve. 

One final option provided to practitioners is the smaller class of algorithms which 

is beginning to gain popularity. There are algorithm designers which design, rigor- 

ously analyze, and develop methods for widely available production machines. This 

class of algorithms is characterized by realistic assumptions which result from con- 

sidering existing architectures. The goal is production quality numerical techniques 

which are possible and cost effective to develop. Oftentimes, optimal results are 

achieved and measured on the target machines. This work aims to develop algo- 

rithms in this last class. 



1.1 Outline 

This report will begin with an overview of the algorithms currently available for 

the QR factorization of a dense matrix. These algorithms are summarized in Chapter 

2, and predicted and actual performance results presented where they are available. 

Chapter 3 then introduces and develops a new algorithm for parallel QR factorization. 

The application problem that motivated the development of this algorithm involves 

computationally modelling electromagnetic scattering from a rough surface. The 

electromagnetic scattering problem is described in Chapter 4. Numerical results from 

general matrices and the application of the new algorithm to the electromagnetic 

scattering problem are presented in Chapter 5. 

1.2 Notation and Conventions 

We write the QR factorization of A as 

A = QR, (1.1) 

where A is m x n, Q is an m x m orthogonal matrix, R is m x n upper trapezoidal, 

and m > n. The number of processors will be denoted by p. A is assumed to be 

full rank; rank(A) = rank(R) = n. Additionally, all vectors v are considered to 

be column vectors, and therefore viF represents an outer product and results in an 

mxm matrix when tieK"1, while ■ir7V is a scalar. 

Throughout this paper, the sequential complexity of QR factorization will be 

based on the results from (Golub & Van Loan, 1996) (see Table 1.1). The complexities 

listed in Table 1.1, which count the number of floating point operations performed, 

assume m = n for Gaussian Elimination, and m > n for all other cases. Additional 



Method Complexity 

Gaussian Elimination > (2n3/3) 
Normal Equations with 

Cholesky Factorization > (mn2 + n3/3) 
Householder Reflections > (2n2(m - n/3)) 
Givens Rotations > (3n2(ra - n/3)) 

Table 1.1. Complexity comparison of common factorization methods. 

notational conventions will be introduced when needed. 

1.3    Least Squares Problem 

All computational results in this paper assume A has full rank and m > n. 

Therefore, when m = n the system of equations 

Ax = b 

with known A and b has exactly one solution. When m > n, the solution is taken to 

be the vector x that minimizes x 

|| Ax-b\\2 . 

Given A = QR from 1.1 the solution becomes 

min \\Ax-b ||2= min II QRx - b ||2= min || Rx-Q'b iT?||2 

XA11 vector and matrix norms will be considered the 2-norm unless specifically subscripted. 
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The above equations lead us to a general QR decomposition algorithm: 

1. Calculate Q and R, 

2. d = QAb, 

3. use back substitution to solve R\x 

di 

4. residual = ^i^ 

The most computationally demanding step in the algorithm is calculating Q and i? 

(step 1), therefore this research will focus on the parallelization of this process. 



1.4    Computing Q and R 

There are two primary ways to compute Q and R - Householder reflections and 

Givens rotations. Each of these methods has advantages and disadvantages, especially 

when considered in the context of a parallel QR algorithm. The following chapters 

survey existing parallel QR techniques (Chapter 2) and the development of a new 

parallel QR algorithm (Chapter 3), and use both Householder reflections and Givens 

rotations. 

1.4.1    Householder Reflections 

Ann x n matrix H of the form 

H = I-ßviF (1.2) 

where ß = ^U is called a Householder reflection (or matrix, or transformation). The 

vector v is called a Householder vector. It is easy to verify that Householder matrices 

are symmetric and orthogonal (Golub & Van Loan, 1996). Householder reflections 

are rank-1 modifications of the identity matrix and can be used to zero selected 

components of a vector. 

Consider x G üRn and Hx such that 

Hx = ±ae[ (1.3) 

where e[ is the first column of the n x n identity matrix. By substituting we get 

Hx = {I- ßv^x = x- ßv^x = ae[, 



and solving for v yields 
x — ae[ 

v = —. 
ßüFx 

This suggests trying 

v = *y(x — ae[) = x — ae[ 

for some constant 7. The value of 7 has no effect on H, so we will take it to be l.2 

Therefore, given a non-zero vector x, let 

1. a =|| x ||2, 

2. v = x — ae[, 

3. ß =   . \  >, and 

4. H = I - ßviF, then 

H is a Householder reflection, and if of = ael. 

Householder reflections can be used to find Q and i? as follows: 

1. Form Hi as in Equation 1.2 to zero elements 2 through m in if where x is column 

1 of matrix A (x = -Aei). 

2. Form iJj, 2 < i < n similarly to zero elements (i + \)...m in column i of A. 

3. Form QT = HnHn^...Hx. 

4. R = QTA. 

1 n->T-     x^x + aefx      a2 + axi 
Letting 7 = -j^p^, then ßv x = — ■—r- = -5— = 1. 

ßiFx a (xi + a)       a2 + axi 



1.4.2    Complexity of One Householder Reflection 

A quick presentation of the computational complexity of one Householder rota- 

tion is necessary for later use during algorithm development. The complexity of one 

Givens rotations is similarly presented in Section 1.4.5. Following the steps presented 

previously at the end of Section 1.4.1, the computational complexity is (for simplicity, 

additions, subtractions, multiplications, divisions, and square roots are all assumed 

to be unit time operations.)3 

a    =      || x H2      ~    2n 

v     =     x + ae[     ~     1 

ß    = a(xi+a>) 

H — I — ßvv1" ~ n. 

Notice that the complexity given for forming the Householder matrix is not that 

of forming an outer product (vvr, normally 0(n2)). This is because, in practice, 

explicitly forming H is not necessary. The formation of a, v, and ß is sufficient, so 

formation of the Householder matrix requires ~ (3n + 4) flops. Application of the 

Householder matrix can exploit the high degree of structure in H and can be done 

with a cost of (A E 3fTxn and H e 5Rmxm) 

HA = (I- ßviF)A - 4mn. (1.4) 

1.4.3    Householder Summary 

Householder reflections work well for introducing large numbers of zeros in one 

matrix operation. Normally, all the elements below the diagonal of an entire column of 

3 The ~ symbol will be used throughout this report to denote the approximate operation count 
needed to compute the value shown. 



the matrix A are eliminated by one Householder reflection. This leads to the primary 

disadvantage of Householder matrices when used in parallel processing. One reflection 

affects multiple rows, and therefore Householder reflections can not be carried out 

in parallel in a straightforward way. Householder reflections are not disjoint when 

applied to an entire matrix, which is the case in traditional QR decomposition. There 

is a way to apply multiple Householder reflections to the same matrix in parallel by 

applying smaller reflections to blocks of the main matrix. This is the key idea behind 

the hybrid algorithms included in Chapters 2 and 3 and will be explored in more 

detail later. The alternative is QR decomposition via Givens rotations. 

1.4.4    Givens Rotations 

Givens rotations can selectively annihilate individual matrix elements, as op- 

posed to Householder reflections which eliminate whole columns or rows as described 

above. One rotation only affects two rows of the matrix; the row containing the el- 

ement being zeroed, and the row being used to zero the element. We will use the 

notation introduced in (Cosnard & Trystram, 1995) where G(i, j, k) is used to denote 

the Givens rotation that zeroes element A(i, k) by rotating rows i and j through angle 

9 in the (i, j) plane. Givens matrices are rank-two corrections to the identity matrix, 

and can be easily shown to be orthogonal. An example best illustrates the structure 

of a Givens rotation (ref. Fig. 1.1). 

When performing Givens rotations computationally, it is not necessary to explic- 

itly compute the rotation angle (0). Instead, for G(i,j, k), it is enough to compute c 

and s (which denote sin# and cos0) as follows (Cosnard & Trystram, 1995): 

c   = ajk    2 (1.5) 
Y ajk + aik 



G(i,j,k)   = 

3^ 

% ->■ 

c 

s 

1 0 0 0 0 0 0 
0 c 0 0 0 s 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 —s 0 0 0 c 0 
0 0 

t 
k 

0 0 0 0 

t 
i 

1 

cos 6 

sin 6 

FIG. 1.1. Example 7x7 Givens rotation where i = 6, j = 2, and k = 2. 

a>ik 

yajk + aik 
(1.6) 

Using Givens rotations to find Q and R is similar to the procedure described in 

Section 1.4.1, however, the number of Givens matrices needed is 

r = 
n(n — 1) 

as opposed to the number of Householder matrices needed, n when m > n, or n - 1 

when m = n. The procedure to produce the QR decomposition of A using Givens 

rotations is to find choices of i, j, and k such that 

Gr...G\A = R 

then 

Q — G1 ...Gr 
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Assume m > n, then a common ordering for combining Givens rotations is 

formed by zeroing the elements from bottom to top and left to right, or from rows m 

to 2 in column 1, to column n, rows m to m — n + 1. Mathematically this looks like 

the following: 

d   -   G(2,l,l)G(S,l,l)...G(m-l,l,l)G(m,l,l) 
* v ' 

zeros    column    1 

C2   =   G(3,2,2)G(4,2,2)...G(m-l,2,2)G(m,2,2) 
v * ' 

zeros   column   2 

C„_i   =   G(m — n,n — l,n — l)G(m — n + l,n — l,n—l)...G(m,n — l,n — l) 
v v ' 

zeros    column    n — 1 

Cn   =   G(m — n+l,n,n)G(m — n + 2,n,n)...G(m—l,n,n)G(m,n,n). 

zeros   column   n 

Combining the above matrices results in 

CnCn-\...C2C\A = R. 

1.4.5    Complexity of One Givens Rotation 

Given two vectors u, v G 5R", their Givens rotation can be depicted as (Cosnard 

& Trystram, 1995) 

c s Ml U2     ■ ■   un "«i u'2   . 
■   < 

-s c . Vl v2    ■ ■    vn _ 0 v>2   . •     V'ni 
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where c and s are calculated as in equations 1.5 and 1.6 respectively, and u' and v1 

are calculated by 

It,-     =    CUi + SVi 

V-     =     -SUi + CVi 

l<i<n 

Ki<n. 

The number of individual operations to zero element ui by combining u and v using 

a Givens rotation is shown in the following table: 

+,- *,/ ^r 
computation of c and s 1 4 1 

computation of «' 

computation of tf 

n 

n 

2n 

2n 

Assuming that additions, subtractions, multiplications and divisions are unit time 

operations, the complexity of the computation is given by: 

G 
-fr 
U1 

V1 

6n + 6. (1.7) 

1.4.6    Reflections vs. Rotations 

A few final notes must be made concerning Householder reflections and Givens 

rotations before proceeding to an overview of existing parallel QR algorithms. First, 

although many more Givens rotations are required to perform the decomposition than 

Householder reflections, each Givens rotation is much simpler and less computation- 

ally demanding than each Householder reflection. Given these contrasting observa- 

tions, examination of Table 1.1 reveals that performing the entire decomposition via 

Givens rotations costs only about one and one half times as much as performing the 
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entire decomposition via Householder reflections on a sequential machine. 

Second, Givens rotations are ideally suited for parallel execution as long as the 

rows being used in the parallel rotations are disjoint. This idea is further expanded in 

Chapter 2 when specific algorithms are described. Third, a Givens rotation, G(i,j, k), 

is possible to eliminate any arbitrary element A(i,k), using any two rows i and j of the 

matrix. However, if the goal is to apply a series of Givens rotations in order to form a 

triangular matrix, then all the elements of the two rows i and j left of column k must 

be zero, or the rotation will introduce non-zero elements (or fill-ins) into previously 

zeroed positions. Doing this would destroy previous work with subsequent rotations. 

These two ideas are crucial limitations on the parallel Givens based QR algorithms 

discussed next. 

Finally, it is possible to perform Householder reflections on sub-matrices. This 

idea, due to Pothen and Raghavan (1989), makes it possible to perform a great deal 

of the QR decomposition in perfect parallelism using the most efficient annihilation 

method known, Householder reflections. Givens rotations are then applied (in paral- 

lel) to "clean up the ragged edges." This idea is key in the development of the new 

parallel QR algorithm introduced here. 
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Chapter 2 

PREVIOUS QR DECOMPOSITION ALGORITHMS 

This chapter provides a summary of existing parallel QR factorization algorithms. 

Current literature is largely polarized. Two primary assumptions are made concern- 

ing the target architecture which leads to two large classes of algorithms. The first 

and oldest class of algorithms is a direct descendant of early theoretical work and 

is targeted for efficient execution on large scale vector computers (Sameh & Kuck, 

1978). The primary assumption made in this analysis is that an operation on a vec- 

tor takes the same amount of computation time regardless of the vector length. This 

assumption is completely valid on vector processors as long as vector length never 

exceeds that of the target machine's vector registers. These algorithms are covered in 

Section 2.1. One extension to this class of algorithms takes place when vector lengths 

become longer, thereby invalidating the original assumption. These algorithms will 

be covered in Section 2.2. 

The second class of algorithms is newer and still growing. These algorithms are 

targeted at distributed memory architectures including massively parallel machines 

and networks of workstations. The number of algorithms available in this class is 

fewer, and the demands placed on the algorithm designer are higher. Section 2.3 

provides an overview of these efforts. 

2.1    Early Algorithms 

The starting point for any discussion of parallel factorization techniques must 

provide some acknowledgement to the very early algorithms in the field. The first five 
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algorithms discussed include the still widely referenced work by A.H. Sameh and D.J. 

Kuck, some discussion of parallel LU factorization, and early attempts to produce 

variations on the original Givens algorithms discussed by Sameh and Kuck (1978). 

2.1.1    Sameh and Kuck's Algorithm 

The earliest and most widely referenced work on parallel QR factorization is 

that of Sameh and Kuck which introduces a stable parallel algorithm for solving 

dense systems of linear equations, and two algorithms for solving a tridiagonal system 

(Sameh k Kuck, 1978). All the approaches in the paper by Sameh and Kuck make 

use of Givens transformations (see Section 1.4.4, (Cosnard & Trystram, 1995), and 

(Golub & Van Loan, 1996)). As mentioned earlier, these algorithms assume that 

the time to perform a single Givens transformation is the same regardless of vector 

length. This assumption simplifies the problem to one of balancing Givens rotations 

across processors. 

The first algorithm introduced is widely known as Sameh and Kuck's algorithm. 

Excellent descriptions and analysis are given in (Cosnard & Trystram, 1995) and 

(Sameh & Kuck, 1978). For our purposes, a figure will illustrate the general algorithm 

most effectively (see Fig. 2.1). This figure shows the order in which the elements of 

A are zeroed by the algorithm. An integer number placed in the matrix position 

indicates the step at which that element is zeroed using a Givens rotation. 

As can be seen in the diagram, this algorithm begins with the annihilation of 

element A(m, 1) using rows m - 1 and m (written as G(m,m- 1,1)) and proceeds 

up and to the right. In the first two steps, only one element is annihilated, but at 

every other step the number of simultaneous rotations increases by one. The maxi- 

mum number of rotations is min[n, |_f J] and is reached by step (2 x min[n, [f J] - l) 
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* 

12 * 

11 13 * 

10 12 14 * 

9 11 13 15 * 

8 10 12 14 16 * 

7 9 11 13 15 17 * 
6 8 10 12 14 16 18 
5 7 9 11 13 15 17 
4 6 8 10 12 14 16 
3 5 7 9 11 13 15 
2 4 6 8 10 12 14 
1 3 5 7 9 11 13 

FIG. 2.1. Sameh and Kuck algorithm, m = 13, n = 7. 

(Cosnard & Trystram, 1995). 

This method requires n(n — l)/2 rotations as in the sequential case. It is shown 

in Sameh and Kuck (1978) that 5(2n — 3) steps (rotations) are required to produce 

the QR factorization using the optimal number of processors p = n(3n — 2)/2. Data 

mapping is not presented in the paper because uniform memory access is assumed and 

therefore no communication costs are included. For very large matrices, this produces 

an 0(n2) speedup and efficiency of 0(1). Modifications to this basic algorithm are 

available and described in (Cosnard & Trystram, 1995). These modifications do 

not provide performance which differs substantially from that originally reported in 

(Sameh k Kuck, 1978). 

2.1.2    Gaussian Elimination 

Lord et al. (1983) focus on the parallelization of Gaussian Elimination as well as 

a parallel algorithm using Givens transformations. Similar algorithms are developed 
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and analyzed for LU factorization on a distributed memory multiprocessor in Geist 

and Romine (1987). Lord et al. develop their LU decomposition algorithm using a 

parallel task dependency graph and achieve an efficiency of | for an n x n matrix with 

p = \n/2]. The mapping of the tasks to processors of a parallel machine achieves a 

natural load balancing. Actual performance measures for this algorithm are presented 

which track the predicted performance very closely. 

The primary drawback of parallel LU factorization/Gaussian elimination algo- 

rithms is their numerical instability without pivoting. Introduction of pivoting greatly 

increases the communication requirements and interrupts the task assignment of the 

processors by forcing a synchronization for row interchange. 

The next sections (2.1.3 and 2.1.4) describe the two Givens variants presented 

by Lord et al. (1983). In contrast to the method discussed in Section 2.1.1 where 

p = 0(n2), the Givens methods described here focus on the cases where p < \(n- 

l)/2]. Two algorithms are developed, implemented, and tested on the Denelcor HEP 

machine. Again, predicted and actual results correlate very well. 

2.1.3    ZIGZAG 

The first variant of the Givens method presented by Lord et al. (1983) is called 

ZIGZAG and is recommended for cases where p=\(n- 1)/2"|. Figure 2.2 gives the 

general idea of the algorithm. Again, an integer in a matrix position denotes the time 

step at which that element is annihilated. The numbers in this figure are subscripted 

with processor identifiers to help depict the zigzag nature of the algorithm. In all the 

rotations the row containing the zeroed element is combined with the row immediately 

above it. Notice that each processor is assigned to perform all the rotations for two 

diagonals as designated in the figure. 
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PI 

* 

* 

\ 2pi 3pi * 

P2 lp2 4PI 5pi * 

\ 2p2 3p2 6PI 7 PI 
* 

P3 lp3 4p2 5p2 8pi 9PI 
* 

\ 2p3 3p3 6p2 7p2 lOpi Hpi 
* 

P4 lp4 4p3 5p3 8p2 9p2 12PI 13PI * 

\ 2p4 3p4 6p3 7p3 10p2 HP2 14PI 15PI    * 

FIG. 2.2. ZIGZAG algorithm, n = 9, p = 4. 

One observation is immediately apparent. The algorithm does a poor job of load 

balancing the required computation. The maximum number of rotations is 2n - 3 

and is performed by processor PI. The last processor (\(n-1)/2] = 4) only performs 

3 rotations. 

This method results in a parallel speedup of approximately ^ with an efficiency 

of only | for sufficiently large n. Further discussion and details are available in (Lord 

et al, 1983). 

2.1.4    COLSWEEP 

The second variant of the Givens method presented by Lord et al. (1983) is called 

COLSWEEP and is recommend for cases where p < \(n- 1)/2~|. Figure 2.3 gives 

the general idea of the algorithm. In this algorithm, columns are assigned in a round 

robin fashion to processors as designated in the figure. The scheduling of rotations 

is critical to avoid access conflicts between processors. As an example, processor i 

must be finished modifying its pivot row before processor i - 1 can annihilate that 

row's leftmost element in the next step. Each processor uses the diagonal element as 

a pivot. 
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* 

1 * 

2 3 * 

3 4 5 * 

4 5 6 7 * 

5 6 7 8 9 * 

6 7 8 9 10 11 * 

7 8 9 10 11 12 13 * 

8 9 10 11 12 13 14 15    * 
PI P2 P3 PI P2 P3 PI P2 

FIG. 2.3. COLSWEEP algorithm, n = 9, p = 3. 

This method results in a parallel speedup and efficiency numbers similar to those 

reported for ZIGZAG above. In fact, for the case of p = \(n - l)/2], the time 

complexity is exactly the same as that for ZIGZAG. After closer examination, this 

algorithm has dramatic similarities to Sameh and Kuck's discussed in 2.1.1. Further 

discussion and details are available in (Lord et al, 1983). 

2.1.5    Greedy Algorithm 

This algorithm was independently introduced in (Cosnard & Robert, 1983) and 

(Modi & Clarke, 1984). At each step, all disjoint rotations are performed simultane- 

ously. An example of the complexity of this algorithm requires 2n+0(n) rotations for 

the case m = o(n2) with p = [m/2\ (m > n) processors (Cosnard & Robert, 1986). 

"However, no exact formula is known (for the general complexity of the greedy algo- 

rithm), even in the case of a square matrix (m = n)" (Cosnard & Daoudi, 1994). For 

consistency, Figure 2.4 demonstrates the main idea behind the algorithm (Cosnard 

k Trystram, 1995). 

The basic concept of maximizing the number of possible rotations at each time 
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* 

4    * 
3    6 * 

3    5 8 * 

2    5 7 10 * 

2    4 7 9 12 * 

2    4 6 8 11 14 
1    3 6 8 10 13 
1    3 5 7 9 12 
1    3 5 7 9 11 
1    2 4 6 8 10 
1    2 4 6 8 10 
1    2 3 5 7 9 

FIG. 2.4. Greedy algorithm. 

step is an elegant one, but actually determining a rotation schedule to achieve this is 

the main difficulty of successful algorithm implementation. Small cases can be easily 

assigned, but as matrix size grows, a considerable amount of effort is required at each 

step to assign the rotations which are disjoint and can therefore take place in parallel. 

2.2    Block Algorithms 

This group of algorithms has been extensively studied and developed in (Don- 

garra et al, 1991) and (Gallivan et al, 1990). Additional discussions can be found 

in (Anderson et al, 1995), (Cosnard & Trystram, 1995), (Dongarra, 1993), (Don- 

garra & Walker, 1996), (Dongarra et al, 1986), and (Golub & Van Loan, 1996) to 

name a few. The recently released LAPACK software makes extensive use of block 

algorithms. The demand for block algorithm development was spawned by the limits 

imposed by real machines on vector length and the need to carefully schedule memory 

accesses to avoid swapping. 
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The primary idea is to split the matrix to be factored into blocks which can then 

be assigned to processors. The calculation of these blocks can then be postponed or 

scheduled to increase performance. The key to achieving speedup is the proper choice 

of blocksize, which has proven to be heavily machine dependent and somewhat of an 

"art form". A simple example taken from (Dongarra et al, 1991) should suffice to 

illustrate the key concept. 

Consider the decomposition of matrix A into its LU factorization with the fol- 

lowing matrix partitioning (blocking) x: 

f An   A12   Au ^ 

A21   A22   A23 

\ A31   A32   AS3 j 

/in     0      0   \ 

L21   L22    0 

\ £31   L32   L33 / 

I Un   U12   C/13 ^ 

0     U22   U23 

\   0      0    U33 j 

Multiplying L and U together and equating terms with A, we have 

An = LnUii,   A12 = L11U12, A13 = L11U13, 

A21 — L21U11,   A22 = L21U12 + L22U22,   A23 = L21U13 + L22U23, 

A31 = L31U11,    A32 = L31U12 + L32U22,    A33 = L3iUi3 + L32U23 + L33Ü33. 

The computation of the elements of L and U can then be scheduled according to the 

methods in Section 2.1.2 allowing the algorithmic variants to be used in cases where 

p<m,nor vector length is less than m,n. 

Further discussion and details of a blocked Householder algorithm with perfor- 

mance measures can be found in (Dongarra et al, 1991). It should be noted that 

there is little benefit from the development of a block Givens algorithm because the 

individual rotations are commutative provided they are disjoint. 

^n this example, Aij denotes a block of matrix A, not an individual element. 



21 

2.3    Recent Work 

The most recent work regarding parallel QR factorization has been done in (Cos- 

nard & Daoudi, 1994) and (Pothen & Raghavan, 1989). The first paper extends the 

ideas introduced in (Modi & Clarke, 1984) and is covered in Section 2.3.1, and the 

other is concerned with QR factorization using a distributed memory programming 

model (covered in Sections 2.3.2, 2.3.3, and 2.3.4). 

2.3.1    Fibonacci 

This represents an entire class of algorithms which was first introduced by Modi 

and Clarke (1984). A good description and full analysis can be found in (Cosnard & 

Daoudi, 1994) and (Cosnard & Trystram, 1995). In their paper, Cosnard and Daoudi 

present several alternate formulations of Fibonacci algorithms. The basic concept is 

represented by Figure 2.5. 

The time-step determination and processor assignment of Givens rotations pro- 

ceeds in two stages. In stage one, the initial column is filled from the top down; 

ui = 1 zero is placed in position (2,1), then u2 = 2 copies of -1 are placed below 

that, then u3 = 3 copies of -2,. ..,«* = uk-\ + 1 copies of -(k - 1) below that until 

the column is completely filled. The second column is filled by adding two to each 

element in column one and shifting it one position downward. This proceeds until the 

nth column is filled. In stage two, the elimination assignment is obtained by adding 

it + 1 to each element in the previous table with -u being the element in position 

(m, 1). Figure 2.5 shows this assignment for a Fibonacci algorithm of order 1. 

Similar algorithms of order q can be constructed by replacing the relation uk = 

Mfe_i + 1 with uk = uk-i + uk-2 + ■ ■ • + uk-g+i (with u0 = u„_i = ... u_9+i = 0) and 

adding q + 1 instead of 2 to the elements in column j, in order to obtain column j + 1 
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* * 

0 * 5 * 

-1 2 * 4 7 * 

-1 1 4 * 4 6 9 * 

-2 1 3 6 * 3 6 8 11 * 

-2 
-2 

0 
0 

3 
2 

5 
5 

8 
7 

* 

10 
3 5 

5 
8 
7 

10 
10 

13 
12 

* 

15 
*■ 

3 
-3 0 2 4 7 9 2 5 7 9 12 14 
-3 -1 2 4 6 9 2 4 7 9 11 14 
-3 -1 1 4 6 8 2 4 6 9 11 13 
-3 -1 1 3 6 8 2 4 6 8 11 13 
-4 -1 1 3 5 8 1 4 6 8 10 13 
-4 -2 1 3 5 7 1 3 6 8 10 12 

FIG. 2.5. Example time-step assignment for Fibonacci algorithm of order 1. 

(Cosnard & Trystram, 1995). 

Cosnard and Daoudi present the following results for the complexity and perfor- 

mance of their multi-stage Fibonacci algorithm in (Cosnard & Daoudi, 1994): 

Topt(p) = -+P + 0(n)       for       1 < p < ^-^ + o(n) 

and that the minimum number of processors in order to compute the Givens factor- 

ization in asymptotically optimal time (2n+o(n)) is equal to popt = n/(2+V2)+o(n). 

2.3.2    Distributed Givens 

Pothen and Raghavan (1989) implement and discuss two of the three parallel 

Givens techniques originally introduced in (Pothen et al., 1987). These algorithms 

are labeled sgs and ggs for standard Givens sequence and greedy Givens sequence 
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respectively. The sgs algorithm is previously described in Section 2.1.1, and the ggs 

algorithm is previously described in Section 2.1.5. The important extension made 

by Pothen and Raghavan (1989) is the inclusion of a predicted and measured com- 

munication cost for the two algorithms, in addition to calculating its computational 

complexity. The third algorithm discussed in (Pothen et al, 1987) is the "recursive 

fine partition algorithm". It has not been implemented because examination shows it 

to be best only when a large number of processors are available, which has not been 

the case for the authors. 

The complexities for the sgs and ggs algorithms are derived by Pothen and Ragha- 

van and are included in Table 2.1. 

Algo- 
rithm 

A/C Complexity 

sgs 
sgs 

ggs 

A 
C 
A 
C 

2j£(m - n/3)r + n(3m + n/2)r 
^{m - n/3)a + n(3m + n/2)a + f(2m- n)ß + 2(m + n)ß 
2*£(m - n/3)r + n2 log (p)r 
n2 log (p)a + 2n log (p)ß 

Table 2.1. Arithmetic (A) and communication (C) complexities for the standard and 
greedy parallel Givens sequences. Matrix size is m x n, with p processors, r = time 
needed for one flop, and message transfer time is Ma + ß for M bytes at a. bytes per 
time unit with a latency of ß. 

2.3.3    Distributed Householder 

Pothen and Raghavan also discuss two distributed Householder algorithms. These 

algorithms are labelled p.house and bJiouse for pipelined and broadcast Householder 

respectively. Each algorithm performs the QR factorization with the same mathe- 

matical elimination scheme. The difference lies in the communication of the results 
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to the other processors between stages. 

This algorithm proceeds by mapping the columns of the matrix A onto a ring of 

p processors. Each processor holds an m x \n/p] submatrix. At stage j, processor 

one computes the Householder vector required to zero out the sub-diagonal elements 

in column j. This processor applies this reflection to the columns assigned to it, 

and passes the reflection information to the next processor in the ring to apply to 

its columns. Execution proceeds in this fashion until the final processor on the ring 

receives and applies the final Householder reflection. This sort of nearest neighbor 

communication is a key characteristic in what is called "systolic" algorithms. 

The only modification' for the broadcast version of the algorithm is that the 

communication of the Householder vector is broadcast to all other processors and the 

other processors then apply the reflection simultaneously. The broadcast communi- 

cation operation costs more, but the computation sequence doesn't suffer from the 

loading and unloading of the pipeline. 

The complexities for pJiouse and bJiouse are included in Table 2.2. 

Algorithm AorC Complexity 

pJiouse A y (m - n/3)r + 3n(m - n/2)r 
P-house C n(m - n/2)a + mpa + (n + p)ß 

b-house A ^(m - n/3)r + 3n(m - n/2)r 

b-house C n(m - n/2) log (p)a + n log (p)ß 

Table 2.2. Arithmetic (A) and communication (C) complexities for the pipelined and 
broadcast Householder algorithms. Matrix size ismxn, with p processors, r = time 
needed for one flop, and message transfer time is Ma + ß for M bytes at a bytes per 
time unit with a latency of ß. 
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2.3.4    Distributed Hybrid 

The final algorithm discussed by Pothen and Raghavan (1989) is a hybrid based 

on the two classes of algorithms described in Sections 2.3.2 and 2.3.3. An observa- 

tion which Pothen and Raghavan bring to light is that when the matrix A is highly 

overdetermined, communication costs in a parallel Givens algorithm could be sub- 

stantially lower than those in a Householder algorithm because the Givens technique 

communicates rows where the Householder technique communicates columns. This 

motivated the authors to develop an algorithm with the lower local computation costs 

of a Householder algorithm and the lower communication costs of a Givens algorithm. 

The matrix is partitioned by rows numbered from 0 to m - 1, and a ring of p 

processors numbered from 0 to p - 1 is employed. The first n rows are mapped onto 

the processors such that row 0 is on processor 0, row 1 on processor 1, etc. The rest 

of the m - n rows can be equally distributed among the processors in any manner. 

The matrix is then transformed by columns from left to right. Each column is 

transformed in two phases: 

1. the internal reflection phase (IP), and 

2. a recursive elimination phase (RP). 

During the internal reflection phase, each processor applies a local Householder re- 

flection to zero all but one element of the current column. The recursive elimination 

phase proceeds when processors communicate with each other to annihilate the re- 

maining subdiagonal elements by means of Givens rotations. The complexities for 

the hybrid algorithm are presented in Table 2.3. 

Based on the results listed above, predicted and actual performance figures are 

included in (Pothen k Raghavan, 1989). Run time results were measured on the Intel 
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Algorithm AorC Complexity 

hybrid 
hybrid 

A 
C 

f(m- n/3)r + n2 log (p)r + \n2T + ^fr 
n2 log (p)a + 2n log (p)ß 

Table 2.3. Arithmetic (A) and communication (C) complexities for the hybrid algo- 
rithm. Matrix size ismxn, with p processors, r = time needed for one flop, and 
message transfer time is Ma + ß for M bytes at a bytes per time unit with a latency 
of/?. 

Paragon iPSC-286 hypercube with 16 processors. The experimental results obtained 

correlate closely to those predicted, therefore validating the derived complexities listed 

in Tables 2.1, 2.2, and 2.3. 
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Chapter 3 

A LOAD BALANCED HYBRID PARALLEL QR ALGORITHM 

This chapter will introduce a new parallel QR decomposition algorithm.  The 

approach taken for algorithm design and development has three key goals: 

1. design with modern-day, widely available parallel architectures in mind, 

2. maximize the parallel work between communications, and 

3. load balance the amount of parallel work evenly among all processors. 

The algorithm developed here achieves all three goals. In many respects it is sim- 

ilar to and draws on work done previously, however, the first goal creates different 

considerations with regard to maximizing parallelism and balancing load. Where the 

majority of previous algorithms balance Givens rotations across processors, the algo- 

rithm presented here load balances at a much finer level. It balances multiplications 

and additions evenly across processors by considering vector length when assigning 

Givens rotations to processors. As a result of the first goal, the first few sections 

will discuss the motivation behind the choice of the targeted architectures. Next, the 

details and an example of the new parallel QR algorithm are presented. Finally, a 

complexity analysis of the algorithm is performed and predicted performance is pre- 

sented. Chapter 5 will present a comparison of the predicted and actual performance 

on a variety of matrix sizes. 
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3.1    Trends in Parallel Architectures 

The market turmoil of the late 80's and early 90's that hit parallel computer 

manufacturers has been widely discussed in the literature. Just a few of the articles 

covering this topic include (Bell, 1994), (Cownie, 1994), (Cybenko, 1996), (Quinn, 

1994), (Siegel et al, 1996), (Wallach, 1994), and (Wladawsky-Berger, 1994). One can 

draw several conclusions from the lessons still being learned from the "dark ages" of 

parallel computing. In the following sections, specific conclusions will be discussed 

and speculation on emerging trends in parallel systems, hardware and software, will 

be offered. 

3.1.1    Parallel Programming Is Hard 

This may seem obvious, but the real implications of this statement are still being 

discovered and sinking in. When designing and implementing parallel algorithms and 

applications, it is not enough to identify and exploit concurrency. This is arguably 

the easiest part of the problem. The considerably harder part is picking the appro- 

priate parallel programming model, designing with respect to that model, mapping 

the model to an architecture, and identifying a real world machine with a similar 

architecture. Then, possibly the most difficult step, is optimizing the algorithm in 

light of all the constraints imposed by the hardware implementation and still achiev- 

ing a cost effective speedup in light of the cost of the machine, cost of the software 

development, and speedup achieved. 

It is exactly the unexpected finer points of parallel implementation that are 

beginning to dominate discussions in parallel computing. It has been said that "ev- 

erybody who wanted a CM-5 (and could pay for it) already had one (Quinn, 1994)." 

While this is less true for parallel machines in general, after the initial wave of new 
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machines in the late 80's, organizations stopped buying parallel machines. Why? One 

debatable answer is that once they had them, they didn't know what to do with them. 

Achieving any speedup at all was proving much more difficult than expected because 

of hardware design realities. Memory throughput and inter-processor communication 

began to become the bottlenecks. It became apparent that parallelism wasn't for 

everyone (Pancake, 1996). 

In light of early applications, more thought went into correctly matching a prob- 

lem with an appropriate solution method. Excellent discussions of this include (Fos- 

ter, 1995), (Morton & Tyler, 1996), and (Pancake, 1996). A spectrum of parallel 

programming models also began to form, with implementation difficulty increasing 

as the model moved from sequential, to shared memory, to message passing. 

3.1.2    Parallel Computer Manufacturers Did Not Survive 

Not one of the companies whose primary business was producing parallel com- 

puters survived. Most failed, and the lucky few were acquired by more traditional 

computer chip and hardware manufacturers. The parallel machines commercially 

available today fall into two main categories, and they are produced by: 

• companies whose primary business is traditional sequential computing and that 

have been successful enough to support the research and development required 

to produce state of the art parallel machines, namely Intel and IBM, or 

• companies that have a successful sequential architecture and for a small invest- 

ment have developed parallel architectures using small numbers of existing mass 

market CPU's, namely SGI, Sun, HP, and Intel. 

Regardless of technical merit, the market has won the first battle of this war. 

Currently, the most cost effective machines to program and to buy are shared memory 
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machines with modest numbers of processors (2 to 64). The shared memory program- 

ming model is also the easiest to work with when developing parallel applications. 

There is no reason not to expect the parallel computing industry to follow in the foot- 

steps of traditional software development where we will see the cost of computational 

solutions dominated by parallel software development. 

3.1.3    Distributed Shared Memory 

The largest hurdle for shared memory architectures is due to physical restrictions 

which limit their scalability. This is beginning to be overcome with the introduction 

of Distributed Shared Memory machines (Protic et al., 1996) and also with shared 

memory programming models on networks of workstations (Clarke, 1997) and (Cord- 

sen et al, 1997). With the above trends in mind, and with distributed shared memory 

machines now available, it seems most appropriate to target new algorithm develop- 

ment in this direction. Further discussions of designing, implementing, and tuning 

shared memory algorithms can be found in (Adve k Gharachorloo, 1996), (Charny, 

1996), (Islam k Campbell, 1992), (Sun k Zhu, 1995), and (Sun k Zhu, 1996). 

3.2    Goals and Approach 

The algorithms being proposed here differ from existing techniques in three key 

ways which directly support the previously stated goals: 

• The assumption that each Givens rotation can be computed in the same amount 

of time regardless of vector length will not be made. While this assumption 

was true for vector machines and smaller problem sizes, the trends in parallel 
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architectures are moving away from vector machines.1 Therefore, work will 

be balanced across processors by considering vector length when assigning the 

vectors to processors. 

• The amount of computation done between communication steps will be max- 

imized. Instead of performing one Householder reflection, or enough Givens 

rotations to zero one column, each processor will be allowed to proceed with 

computation and zero as many elements as possible before a communication 

step is required. 

• Algorithm development specifically targets shared memory parallel machines, 

and the shared memory programming model. These machines are the most 

widely available and cost effective machines. In addition, there is some move- 

ment toward a shared memory programming model even on the most cost effec- 

tive parallel computer, networks of workstations ((Clarke, 1997) and (Cordsen 

et al, 1997)). 

These algorithms depart from common practice with the first item, but with the 

second they will build on the ideas introduced by Pothen and Raghavan in (Pothen 

& Raghavan, 1989) by considering communication as an algorithmic cost in a QR 

factorization routine. One version will also use the idea from (Pothen &; Raghavan, 

1989) of a hybrid algorithm, i.e. using Householder reflections for computation local 

to one processor because of the lower complexity, and using Givens rotations for 

inter-processor annihilation because of their independence. 

xIn general, U.S. manufacturers have moved away from production of vector machines. There is 
active research, development, and manufacturing of new parallel vector machines elsewhere by such 
companies as NEC and Fujitsu. 
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These algorithms will be most suitable for non-vector parallel computers with 

fewer processors than equations in the system. This is expected to be the case for most 

current and future environments. The size of the systems of equations in modelling 

physical systems and solving problems has grown dramatically, and the trends in 

parallel computing and physical limitations of hardware are working together to keep 

this true. Also, by maximizing computation between communication steps, these 

algorithms may become well suited to the highly distributed processing found in 

networks of workstations. 

3.3    Algorithm Overview 

The new QR decomposition algorithm proceeds in two stages, with the potential 

of the two stages being repeated multiple times in the process of one decomposition. 

For simplicity, these stages will be named in a way similar to the naming of the stages 

in the hybrid algorithm introduced by Pothen and Raghavan in (Pothen k Raghavan, 

1989). A description of the two stages and their names follows: 

1. The internal reflections stage (IR): the rows of the matrix are divided evenly 

among the processors with each processor getting a block of size (m/p x n). 

During this stage, each processor performs (m/p) - 1 Householder reflections 

which results in a matrix with p upper trapezoidal submatrices as shown in 

Figure 3.1. 

2. The balanced rotations stage (BR): the jagged edges of the matrix are cleaned 

up using Givens rotations. This stage consists of (m/p) - 1 smaller steps. 

During each step, the following sequence takes place: 
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• The rows of block 1 (matrix rows 1 to m/p which were annihilated by 

processor 1 via Householder reflections in the IR stage) are assigned in a 

balanced manner as pivot rows to the processors. 

• The step proceeds by the processors zeroing (via Givens rotations) all 

the elements in the remaining blocks that are of the same length as their 

assigned pivot row(s) from block 1. This step annihilates the first diagonal 

in blocks 2 to p. 

• The above two steps are repeated, annihilating the diagonals of decreasing 

length in blocks 2 to p until the matrix appears as shown in Figure 3.2. 

• The balanced assignment of rows to processors will be described fully in 

Section 3.5. 

The first m/p rows of the matrix are now in the desired format. The next step 

is to perform both the IR and BR stages on the submatrix depicted in Figure 3.2 by 

Y entries (of size 25 x 9 in this case). This process is repeated in a recursive nature 

on the remaining submatrices until one of two terminating conditions is reached. 

Terminating condition one occurs when, during the IR stage processor one reaches the 

nth column of the currently active submatrix. When this is the case, the BR stage will 

fully annihilate all the elements in the rows greater than n. The second terminating 

condition occurs when processor one performs all its Householder reflections in the IR 

stage and the BR stage completes, leaving a submatrix with only one column to be 

eliminated. In this case, the final column can be eliminated with either a processor 

pairing strategy as described in (Pothen k Raghavan, 1989), or sequentially, since in 

the end, the final Givens rotation must use element A(n, n) to eliminate A(n 4-1, n). 

A quick note should be made concerning the size of the submatrix used during 

the recursive call of the IR and BR stages.   Examining the example in Figure 3.2 
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1 ' X X X X X X X X X X X X X 
2 0 X X X X X X X X X X X X 
3 0 0 X X X X X X X X X X X 

4 0 0 0 X X X X X X X X X X 

5 0 0 0 0 X X X X X X X X X 
6 0 0 0 0 0 X X X X X X X X 

7 0 0 0 0 0 0 X X X X X X X 
8 0 0 0 0 0 0 0 X X X X X X 
9 X X X X X X X X X X X X X 
10 0 X X X X X X X X X X X X 
11 0 0 X X X X X X X X X X X 
12 0 0 0 X X X X X X X X X X 
13 0 0 0 0 X X X X X X X X X 
14 0 0 0 0 0 X X X X X X X X 
15 0 0 0 0 0 0 X X X X X X X 
16 0 0 0 0 0 0 0 X X X X X X 
17 X X X X X X X X X X X X X 
18 0 X X X X X X X X X X X X 
19 0 0 X X X X X X X X X X X 
20 0 0 0 X X X X X X X X X X 
21 0 0 0 0 X X X X X X X X X 
22 0 0 0 0 0 X X X X X X X X 
23 0 0 0 0 0 0 X X X X X X X 
24 0 0 0 0 0 0 0 X X X X X X 
25 X X X X X X X X X X X X X 
26 0 X X X X X X X X X X X X 
27 0 0 X X X X X X X X X X X 
28 0 0 0 X X X X X X X X X X 
29 0 0 0 0 X X X X X X X X X 
30 0 0 0 0 0 X X X X X X X X 
31 0 0 0 0 0 0 X X X X X X X 
32 _ 0 0 0 0 0 0 0 X X X X X X 

1 2 3 4 5 6 7 8 9 10 11 12 13 

X X X 1 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 

FIG. 3.1. Matrix A after completion of the IR stage. Example using m = 32, n = 16, 
and p = 4. The X symbol denotes an element with information while a zero denotes 
an annihilated entry. 
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shows that row 8 is in the desired format, but it is included in the submatrix for the 

2nd recursive call. During the first iteration of the IR and BR stages, column 8 could 

have been annihilated using Givens rotations in the BR stage. Instead, the algorithm 

stops at column 7 in order for more efficient Householder reflections to be used in the 

annihilation of column 8 during the IR stage in the 2nd recursive call. 

This new hybrid algorithm is different from that introduced in (Pothen & Ragha- 

van, 1989) and described in Chapter 2 in two primary ways. First, in Pothen and 

Raghavan's algorithm, the IR phase always consists of exactly p Householder re- 

flections performed in parallel followed by their recursive elimination phase using 

processor pairing to eliminate p - 1 single elements via Givens rotations. At this 

point a parallel synchronization and a communication is required which is normally 

very costly. The algorithm described above maximizes the work done in the IR stage 

by letting each processor perform the maximum possible number of Householder re- 

flections (— - 1) before a parallel synchronization is required to proceed with the 

BR stage. Second, the algorithm described above balances the Givens rotation load 

across processors and performs ((p- l)[j - lj) simultaneous Givens rotations be- 

tween synchronizations. 
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1 ' X X X X X X X X X X X X X 
2 0 X X X X X X X X X X X X 
3 0 0 X X X X X X X X X X X 
4 0 0 0 X X X X X X X X X X 
5 0 0 0 0 X X X X X X X X X 
6 0 0 0 0 0 X X X X X X X X 
7 0 0 0 0 0 0 X X X X X X X 
8 0 0 0 0 0 0 0 Y Y Y Y Y Y 
9 0 0 0 0 0 0 0 Y Y Y Y Y Y 
10 0 0 0 0 0 0 0 Y Y Y Y Y Y 
11 0 0 0 0 0 0 0 Y Y Y Y Y Y 
12 0 0 0 0 0 0 0 Y Y Y Y Y Y 
13 0 0 0 0 0 0 0 Y Y Y Y Y Y 
14 0 0 0 0 0 0 0 Y Y Y Y Y Y 
15 0 0 0 0 0 0 0 Y Y Y Y Y Y 
16 0 0 0 0 0 0 0 Y Y Y Y Y Y 
17 0 0 0 0 0 0 0 Y Y Y Y Y Y 
18 0 0 0 0 0 0 0 Y Y Y Y Y Y 
19 0 0 0 0 0 0 0 Y Y Y Y Y Y 
20 0 0 0 0 0 0 0 Y Y Y Y Y Y 
21 0 0 0 0 0 0 0 Y Y Y Y Y Y 
22 0 0 0 0 0 0 0 Y Y Y Y Y Y 
23 0 0 0 0 0 0 0 Y Y Y Y Y Y 
24 0 0 0 0 0 0 0 Y Y Y Y Y Y 
25 0 0 0 0 0 0 0 Y Y Y Y Y Y 
26 0 0 0 0 0 0 0 Y Y Y Y Y Y 
27 0 0 0 0 0 0 0 Y Y Y Y Y Y 
28 0 0 0 0 0 0 0 Y Y Y Y Y Y 
29 0 0 0 0 0 0 0 Y Y Y Y Y Y 
30 0 0 0 0 0 0 0 Y Y Y Y Y Y 
31 0 0 0 0 0 0 0 Y Y Y Y Y Y 
32 0 0 0 0 0 0 0 Y Y Y Y Y Y 

1 2 3 4 5 6 7 8 9 10 11 12 13 

X X X 1 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 
Y Y Y 

FIG. 3.2. Matrix A after completion of the BR stage. Example using m = 32, n = 16, 
and p = 4. The X symbol denotes an element with information while a zero denotes 
an annihilated entry. The Y symbol denotes the elements of the submatrix to be 
worked on during the second application of the IR and BR stages. 
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1 ■ X X X X X X X X X X X X X X X x - 
2 0 X X X X X X X X X X X X X X X 

3 0 0 X X X X X X X X X X X X X X 

4 0 0 0 X X X X X X X X X X X X X 

5 0 0 0 0 X X X X X X X X X X X X 

6 0 0 0 0 0 X X X X X X X X X X X 

7 0 0 0 0 0 0 X X X X X X X X X X 

8 0 0 0 0 0 0 0 X X X X X X X X X 

9 0 0 0 0 0 0 0 0 X X X X X X X X 

10 0 0 0 0 0 0 0 0 0 X X X X X X X 

11 0 0 0 0 0 0 0 0 0 0 X X X X X X 

12 0 0 0 0 0 0 0 0 0 0 0 X X X X X 

13 0 0 0 0 0 0 0 0 0 0 0 0 X X X X 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 

17 X X X X X X X X X X X X X X X X 

18 0 X X X X X X X X X X X X X X X 

19 0 0 X X X X X X X X X X X X X X 

20 0 0 0 X X X X X X X X X X X X X 

21 0 0 0 0 X X X X X X X X X X X X 

22 0 0 0 0 0 X X X X X X X X X X X 

23 0 0 0 0 0 0 X X X X X X X X X X 

24 0 0 0 0 0 0 0 X X X X X X X X X 

25 0 0 0 0 0 0 0 0 X X X X X X X X 

26 0 0 0 0 0 0 0 0 0 X X X X X X X 

27 0 0 0 0 0 0 0 0 0 0 X X X X X X 

28 0 0 0 0 0 0 0 0 0 0 0 X X X X X 

29 0 0 0 0 0 0 0 0 0 0 0 0 X X X X 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X 

32 .    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X   . 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Case si: After IR stage. m = 32,n 16, p = = 2, and 2ä 
p 

16 = n 

3.4    A Note on Matrix "Shape" 

When applying the parallel QR decomposition algorithm presented here, one of 

three conditions can occur with respect to matrix shape. Each case yields slightly 

different results. 

3.4.1    Case 1: f = n 

When this condition occurs, all the blocks of the matrix are square, including the 

first. The IR stage of the algorithm will annihilate all the elements in the first block 

with (m/p) - 1 Householder reflections. The resulting matrix that is passed to the 

BR stage will have all the entries in rows n + 1 to m eliminated by Givens rotations 

and the matrix will be in the desired form after only one iteration of the algorithm. 

Figure 3.3 depicts the structure of the matrix after the IR stage in this case. 
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1 r x X X X X X X X X X X X X X X X   -i 

2 0 X X X X X X X X X X X X X X X 
3 0 0 X X X X X X X X X X X X X X 
4 0 0 0 X X X X X X X X X X X X X 

5 0 0 0 0 X X X X X X X X X X X X 

6 0 0 0 0 0 X X X X X X X X X X X 

7 0 0 0 0 0 0 X X X X X X X X X X 

8 0 0 0 0 0 0 0 X X X X X X X X X 

9 0 0 0 0 0 0 0 0 X X X X X X X X 

10 0 0 0 0 0 0 0 0 0 X X X X X X X 

11 0 0 0 0 0 0 0 0 0 0 X X X X X X 

12 0 0 0 0 0 0 0 0 0 0 0 X X X X X 

13 0 0 0 0 0 0 0 0 0 0 0 0 X X X X 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 X X X X X X X X X X X X X X X X 
22 0 X X X X X X X X X X X X X X X 
23 0 0 X X X X X X X X X X X X X X 
24 0 0 0 X X X X X X X X X X X X X 

25 0 0 0 0 X X X X X X X X X X X X 
26 0 0 0 0 0 X X X X X X X X X X X 
27 0 0 0 0 0 0 X X X X X X X X X X 

28 0 0 0 0 0 0 0 X X X X X X X X X 
29 0 0 0 0 0 0 0 0 X X X X X X X X 
30 0 0 0 0 0 0 0 0 0 X X X X X X X 

31 0 0 0 0 0 0 0 0 0 0 X X X X X X 
32 0 0 0 0 0 0 0 0 0 0 0 X X X X X 
33 0 0 0 0 0 0 0 0 0 0 0 0 X X X X 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
40 .    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    . 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Case J2: After IR stage. m = 40,rz 16, p = = 2, and s 
p 
  20 >n 

3.4.2    Case 2: f > n 

When this occurs, the IR stage of the algorithm will annihilate all the elements 

of the matrix in the upper block with m/p Householder reflections, and the resulting 

matrix will have bands of zeroes present. This is the case where the highest parallel 

efficiencies are possible because the greatest amount of work is done in the IR stage. 

All that is left for the BR stage is to eliminate the remaining, relatively few elements 

via Givens rotations. Figure 3.4 depicts the structure of the matrix after the IR stage 

in this case. 
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3.4.3    Case 3: f < n 

When this final case occurs, the structure after the IR stage will be similar to 

that depicted in Figure 3.1. Once the BR stage completes, the whole algorithm must 

be recursively applied to the (m - j + 1) x (n - j + 1) submatrix depicted with Y 

symbols in Figure 3.2. The algorithm will terminate when the entering condition is 

that of either Case 1 or Case 2 above. 

3.5    Algorithm Load Balancing Details 

This section describes the algorithmic details of the load balancing performed in 

the Balanced Rotations (BR) stage. When the structure of the matrix is examined 

after completion of the IR stage (see Fig. 3.1), there are (p-1) blocks that have m/p 

rows and n columns, and it can be determined that 

(p-i) 
(f-1) 

Givens rotations are needed to "clean up" the ragged edges of the matrix in the BR 

stage. The aforementioned goal is to balance work (multiplications and additions, 

not Givens rotations) across processors. On non-vector parallel machines, it takes 

different amounts of time to perform Givens rotations on vectors of different length. 

Inspiration for the load balancing method used in this algorithm was gained while 

examining the number of Givens rotations used to perform sequential QR decomposi- 

tion. Consider an n x n matrix. In order to transform the matrix to upper triangular, 

column one needs n - 1 Givens rotations, column two needs n - 2 Givens rotations, 
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etc. up to column n - 1, which needs only one Givens rotation. This simplifies to 

n(n — 1) 

Givens rotations, which is simply the sum of the integers from 1 to n — 1. The general 

form to sum integers is 

i—i 

which leads to the simple realization that the sum of 1 and n is equal to the sum of 

2 and n - 1, which is equal to the sum of 3 and n - 2, etc. This is precisely the idea 

behind balancing the work in the BR stage of the algorithm. 

Applying the idea above, a way to balance the BR stage load across p processors 

is shown in Figure 3.5. This figure shows two blocks of a matrix as an example with 

m/p = 12, n = 16, and p = 3. The top block in the figure is the pivot block (rows 

1 to m/p in a full matrix example), and the next block is the block whose elements 

will be zeroed. Notice that the processor assignment is done in a cyclic way. This 

results in 2 cycles that contain 6 pivot rows each. In the general case, cycle length is 

2p. This example illustrates one step of the BR stage of the algorithm, and the work 

in this case is split among the processors as follows: 

Processor Rotations Lengths Total Work 

1 

2 

3 

4 

4 

4 

16,11,10,5 

15,12,9,6 

14,13,8,7 

276 flops 

276 flops 

276 flops 

The work is calculated using the complexity of one Givens rotation from Equation 

1.7 in Section 1.4.5 and applying it to the vector length. This results in a perfectly 

load balanced series of Givens rotations. Recall that the matrix in question contains 
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1 ' X X X X X X X X X X X X X X X X 
2 0 X X X X X X X X X X X X X X X 
3 0 0 X X X X X X X X X X X X X X 
4 0 0 0 X X X X X X X X X X X X X 
5 0 0 0 0 X X X X X X X X X X X X 
6 0 0 0 0 0 X X X X X X X X X X X 
7 0 0 0 0 0 0 X X X X X X X X X X 
8 0 0 0 0 0 0 0 X X X X X X X X X 
9 0 0 0 0 0 0 0 0 X X X X X X X X 
10 0 0 0 0 0 0 0 0 0 X X X X X X X 
11 0 0 0 0 0 0 0 0 0 0 X X X X X X 
12 0 0 0 0 0 0 0 0 0 0 0 X X X X X 
13 X X X X X X X X X X X X X X X X 
14 0 X X X X X X X X X X X X X X X 
15 0 0 X X X X X X X X X X X X X X 
16 0 0 0 X X X X X X X X X X X X X 
17 0 0 0 0 X X X X X X X X X X X X 
18 0 0 0 0 0 X X X X X X X X X X X 
19 0 0 0 0 0 0 X X X X X X X X X X 
20 0 0 0 0 0 0 0 X X X X X X X X X 
21 0 0 0 0 0 0 0 0 X X X X X X X X 
22 0 0 0 0 0 0 0 0 0 X X X X X X X 
23 0 0 0 0 0 0 0 0 0 0 X X X X X X 
24 0 0 0 0 0 o- 0 0 0 0 0 X X X X X 

7     8     9    10    11    12   13   14   15   16 

Pivot    Zero    Processor 
Row     Row     Assigned     Length 

1 13 1 
2 14 2 
3 15 3 
4 16 3 
5 17 2 
6 18 1 
7 19 1 
8 20 2 
9 21 3 
10 22 3 
11 23 2 
12 24 1 

flops 
ngth ~ (6ra + 6) 
16 102 
15 96 
14 90 
13 84 
12 78 
11 72 
10 66 
9 60 
8 54 
7 48 
6 42 
5 36 

FIG. 3.5. Load balanced Givens assignment, m/p = 12, n = 16, and p = 3. 
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many blocks like that in Figure 3.5, and that it looks like the matrix from the previous 

example in Figure 3.1. The BR stage of the algorithm actually assigns all the rows 

in blocks 2 .. .p to be eliminated by pivoting on rows 1... m/p using this scheme. 

After one application of the load balancing scheme described above, the matrix is 

not yet in the desired form depicted in Figure 3.2. It appears as shown in Figure 3.6. 

Only the first diagonal of each block has been eliminated. The same load balancing 

scheme is applied to the matrix repeatedly until it appears in the form depicted in 

Figure 3.2. Figure 3.7 shows the row-wise assignment for each step and the work 

done during the full Balanced Rotations (BR) stage of the algorithm for an example 

matrix. Table 3.1 summarizes the work done by each processor during each step for 

this example. 
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1 ' X X X X X X X X X X X X X X 
2 0 X X X X X X X X X X X X X 
3 0 0 X X X X X X X X X X X X 
4 0 0 0 X X X X X X X X X X X 
5 0 0 0 0 X X X X X X X X X X 
6 0 0 0 0 0 X X X X X X X X X 
7 0 0 0 0 0 0 X X X X X X X X 
8 0 0 0 0 0 0 0 X X X X X X X 
9 0 X X X X X X X X X X X X X 
10 0 0 X X X X X X X X X X X X 
11 0 0 0 X X X X X X X X X X X 
12 0 0 0 0 X X X X X X X X X X 
13 0 0 0 0 0 X X X X X X X X X 
14 0 0 0 0 0 0 X X X X X X X X 
15 0 0 0 0 0 0 0 X X X X X X X 
16 0 0 0 0 0 0 0 X X X X X X X 
17 0 X X X X X X X X X X X X X 
18 0 0 X X X X X X X X X X X X 
19 0 0 0 X X X X X X X X X X X 
20 0 0 0 0 X X X X X X X X X X 
21 0 0 0 0 0 X X X X X X X X X 
22 0 0 0 0 0 0 X X X X X X X X 
23 0 0 0 0 0 0 0 X X X X X X X 
24 0 0 0 0 0 0 0 X X X X X X X 
25 0 X X X X X X X X X X X X X 
26 0 0 X X X X X X X X X X X X 
27 0 0 0 X X X X X X X X X X X 
28 0 0 0 0 X X X X X X X X X X 
29 0 0 0 0 0 X X X X X X X X X 
30 0 0 0 0 0 0 X X X X X X X X 
31 0 0 0 0 0 0 0 X X X X X X X 
32 _ 0 0 0 0 0 0 0 X X X X X X X 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

X X 1 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 
X X 

FIG. 3.6. Matrix A after step 1 of the BR stage. Example using m = 32, n — 16, and 
p = 4. The X symbol denotes an element with information while a zero denotes an 
annihilated entry. 
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S t e P W o r k 
Row 1 2 3 4 5 6  7 1 2 3 4 5 6  7 

1 Pi 
2 P2 Pi 
3 P3 P2 Pi 
4 PA P3 P2 Pi 
5 PA P4 Pz P2 Pi 
6 Pz P4 PA Pz P2 Pi 
7 
8 
9 

P2 P3 PA PA Pz P2 Pi 

Pi Pi PI PI Pi Pi Pi 102 96 90 84 78 72 66 

10 P2 P2 P2 P2 P2 P2 96 90 84 78 72 66 
11 P3 Pz Pz Pz Pz 90 84 78 72 66 
12 PA PA PA PA 84 78 72 66 
13 PA PA PA 78 72 66 
14 Pz Pz 72 66 
15 P2 

66 
16 
17 Pi Pi PI PI Pi Pi Pi 102 96 90 84 78 72 66 

18 P2 P2 P2 P2 Pi P2 96 90 84 78 72 66 
19 P3 Pz Pz Pz Pz 90 84 78 72 66 
20 PA PA PA PA 84 78 72 66 
21 PA PA PA 78 72 66 
22 Pz Pz 72 66 
23 Pi 66 
24 
25 Px Pi PI PI Pi Pi Pi 102 96 90 84 78 72 66 

26 P2 P2 P2 P2 P2 P2 96 90 84 78 72 66 
27 P3 Pz Pz Pz Pz 90 84 78 72 66 
28 PA PA PA PA 84 78 72 66 
29 PA PA PA 78 72 66 
30 Pz Pz 72 66 
31 P2 

66 
32 

FIG. 3.7. Example of work done during the BR stage, m = 32, n = 16, and p = 4. 
Entries in the Step column indicate which processor is assigned to do the annihilation 
of that element during that step. Integers in the Work column contain the number 
of operations required to perform the rotation at that stage. The rows of block 1 are 
used as the pivots (rows 1 to 7), and the remaining rows are assigned as shown for 
annihilation. 



45 

S t e P s 
Processor 1 2 3 4 5 6 7 Total 

1 102 96 90 84 78 72 66 588 
2 162 90 84 78 72 66 552 
3 162 150 78 72 66 528 
4 162 150 138 66 516 

Total Work 2184 

Max/Step 162 150 138 84 78 72 66 
Parallel Work 750 

Table 3.1. Summary of work for one block during BR stage. Parallel work is 750 
flops, total work is 2184 flops, for a parallel speedup of 2.9 and an expected parallel 
efficiency of 72.8%. 

Even in this simple example, the work is well balanced among the processors. 

We'll see in the next section that the parallel efficiency (measure of load balancing) 

becomes better as problem size increases and the number of processors available re- 

mains relatively small (with respect to problem size). One quick note is appropriate 

concerning the current implementation of the algorithm. The code used for results 

and analysis in Chapter 5 forces a synchronization between steps during the algo- 

rithm's BR stage. The interleaving of the Givens rotations to solve the problem is 

theoretically possible, but no solution has been possible given the implementation 

language, architecture, and programming paradigm. This results in a slightly less 

efficient load balance, which is easily seen in the simple example of Table 3.1. The 

actual imbalance with larger problem sizes is nearly insignificant. 

3.6    Algorithmic Complexity 

The following sections generalize the ideas introduced in Sections 3.3 and 3.5. 

The complexity equations are presented only for one iteration of the two algorithmic 
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stages (IR and BR). Depending on the problem size, ratio of rows to columns, and 

number of processors, multiple recursive calls to the algorithm might be necessary. In 

that case, the complexities presented still hold, but the input problem size changes ac- 

cordingly to reflect the size of the sub-matrix being factored. This case was discussed 

previously in Section 3.4. 

3.6.1 Complexity of Internal Reflections 

The Internal Reflections (IR) stage of the algorithm is perfectly load balanced. 

During this stage, the matrix is partitioned into p blocks, each of size m/p x n. Using 

these dimensions, and the complexity of sequential Householder factorization from 

Table 1.1, the IR stage has a parallel complexity of 

It is easy to see that linear speedup and perfect parallel efficiency will result from the 

IR stage of the algorithm. 

3.6.2 Complexity of Balanced Rotations 

Analysis of the Balanced Rotations (BR) stage of the algorithm is not nearly 

as straightforward. There are two sources of load imbalance in this stage. As seen 

previously in Section 3.5, the BR stage must perform 

(P-1) 

m (m   -i \ 

V   \P    ) 

Givens rotations at the cost of 6i + 6 flops per rotation where i is the length of the 

vectors in the rotation. The total work done in one block, during one step, of the BR 
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stage of the algorithm is 2 

n—j 

E    (« + 6) 

where j is the column index of the left most non-zero element in each of the 2 to p 

non-pivot blocks. There are (m/p) - 1 steps and p—1 blocks, so the total work done 

during the BR stage of the algorithm is 

P    ' /       n-j 

(p-i)  E     E  (6* + 6) 
3=0   \i=n-f+2 

which has one possible closed form of 3 

, /—2m3     9m2     3m2n     7m     3mn\ 
(p - 1)   —^— + —a" + —Ö ■ \   p3 pl pz p p   ) 

Using the work assignment scheme described in Section 3.5, recall that work is 

assigned in cycles to the processors; the load and balance is therefore cyclic in nature. 

The blocksize (number of rows per block) at the beginning of the BR stage is 

blocksize = [m/p — lj. 

One row is subtracted from the m/p rows assigned to each processor during the IR 

stage because the last row of every block is already the desired vector length (for 

example, consider rows 8, 16, 24, and 32 in Figure 3.1). 

At each step, a large number of the rows can be combined via Givens rotations 

with the work perfectly balanced across the processors. The perfectly balanced row 

2The starting point of the summation is the length of the shortest row which has an element 
needing elimination at that step, and the ending point is the length of the longest row which has an 
element needing elimination at that step. 

3 Simplification of the above summation was done by the software package Mathematica. 
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assignment is done cyclicly as in Figure 3.5 with each cycle containing 2p rows. Each 

of the p blocks will have 
blocksize. 

cycles = [ ——J 

cycles. After assignment of the cycles, there are 

leftovers = blocksize — 2p(cycles) 

remaining rows which create the first source of the load imbalance. The maximum 

number of leftover rows at any one step is 2p - 1. Considering this, there are three 

possible scenarios regarding the efficiency of the BR stage at each step: 

1. blocksize is evenly divisible by p, and the leftmost non-zero column of blocks 2 

top is between 1 and (blocksize-p): the work is balanced perfectly (see Figure 

3.5), 

2. blocksize is not evenly divisible by p, and the leftmost non-zero column of blocks 

2 to p is between 1 and (blocksize-p): the maximum work is done by processor 

(p + 1) - (leftovers   mod   p) (see Figure 3.7, steps 1 to 3), and 

3. the algorithm is working on the last p steps of the BR stage: the maximum work 

is always done by processor 1. This is the second source of the load imbalance. 

In this case, the number of idle processors increases by one each step until 

completion of the BR stage. A simple example of this "tailing off" can be seen 

in Table 3.1 during the last 4 steps. 

The algorithm's BR stage must perform [m/p- lj steps, and the parallel work is 

the sum of the maximum work done at each step. Dividing this by the total work in 

Equation 3.6.2 and normalizing with the number of processors gives a general form for 
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expected parallel efficiency. Table 3.2 includes several calculated parallel efficiencies 

for differing problems sizes and number of processors. The figure illustrates the high 

level of load balancing achievable as m and n grow relative to p. The efficiencies 

in this figure were calculated using a simple program written in MATLAB which 

simulates the work distribution of the algorithm during each stage of the algorithm 

and each step of the BR stage, by following the process illustrated above. 

3.6.3    Total Algorithmic Complexity 

Sections 3.6.1 and 3.6.2 describe the complexity of one application of the IR and 

BR stages respectively. As Section 3.4 points out, when m/p < n the IR and BR 

stages of the algorithm must be repeatedly applied to the submatrix left from the 

previous application. Therefore, the total algorithmic complexity is determined by 

1. the complexity of the IR stage, 

2. the complexity of the BR stage, and 

3. the number of applications of the algorithm needed based on m, n, and p. 

Table 3.3 presents several examples of total expected efficiency for various problem 

sizes and numbers of processors. Again, the values were calculated by simulating the 

work of the algorithm with a program written in MATLAB. 

Two details that merit attention in Tables 3.2 and 3.3 are the effect of using 

more processors, and the effect of changing problem size. As the number of processing 

elements available increases, the efficiency for the same problem size decreases. This 

is because increasing the number of processors also increases the number of blocks 

and decreases the size of the blocks. This requires more recursive applications of the 

two stages of the algorithm to fully factor the input matrix. In order to make up for 
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p=2 
mx n 50 100 200 400 800 1600 

50 96.9406 96.4834 96.3063 96.2273 96.1899 96.1717 

500 99.7215 99.9260 99.9808 99.7396 99.6518 99.6229 

1000 99.7215 99.9260 99.9808 99.9951 99.8706 99.8261 

4000 99.7215 99.9260 99.9808 99.9951 99.9988 99.9997 

8000 99.7215 99.9260 99.9808 99.9951 99.9988 99.9997 

p=4 
mx n 50 100 200 400 800 1600 

50 79.5820 79.0469 78.8024 78.6853 78.6279 78.5996 

500 99.0500 99.7442 98.4391 97.9478 97.7856 97.7174 

1000 99.0500 99.7442 99.9351 99.2210 98.9620 98.8770 

4000 99.0500 99.7442 99.9351 99.9835 99.9958 99.8067 

8000 99.0500 99.7442 99.9351 99.9835 99.9958 99.9990 

p=8 
mx n 50 100 200 400 800 1600 

50 36.9966 37.2492 37.3748 37.4374 37.4687 37.4844 

500 97.3569 92.5137 90.6489 90.0301 89.7699 89.6499 

1000 97.3569 99.2677 96.3404 95.2470 94.8888 94.7389 

4000 97.3569 99.2677 99.8072 99.9528 99.0962 98.7915 

8000 97.3569 99.2677 99.8072 99.9528 99.9881 99.5495 

p=16 
m x n 50 100 200 400 800 1600 

50 9.3445 9.3596 9.3672 9.3711 9.3730 9.3740 

500 71.5498 68.1066 66.9637 66.4832 66.2616 66.1550 

1000 90.2660 84.7403 81.6514 80.6489 80.2308 80.0386 

4000 90.2660 97.9179 99.4401 96.1273 94.9384 94.5535 

8000 90.2660 97.9179 99.4401 99.8535 98.0722 97.4400 

p=32 
m x n 50 100 200 400 800 1600 

50 n/a n/a n/a n/a n/a n/a 
500 22.3132 22.9039 23.1773 23.3090 23.3736 23.4057 

1000 42.1385 45.7517 47.1867 47.8328 48.1401 48.2900 

4000 75.6023 90.9803 84.8545 81.5329 80.4851 80.0523 

8000 75.6023 90.9803 98.2840 92.1524 89.9813 89.2891 

Table 3.2. BR stage expected efficiency examples, m is listed on the leftmost 
column and n is listed across the first row of each block. 
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the overhead incurred by repeatedly calling the IR and BR stages of the algorithm 

on submatrices of decreasing size, problem size must increase to keep the blocksize 

large relative to the number of processors. 

As problem size increases, but the number of processors available stays constant, 

two trends are noticeable. A simple way to symbolically represent total efficiency is 

Total Efficiency = (%WorkIR x IRefficiency) + (%WorkBR x BRefficiency) 

where 

• %WorkjR is the percentage of total work done in the IR stage of the algorithm, 

• IRefficiency is the efficiency of tne IR staSe of the algorithm (always 1), 

• %WorkgR is the percentage of total work done in the BR stage of the algorithm, 

and 

• BRefficiency is the efficiency of the BR stage of the algorithm. 

As problem size increases and there are more rows than columns (overdetermined 

case), expected efficiency increases. The algorithm is well suited to factoring matrices 

of this type because increasing the ratio of rows to columns moves a larger percentage 

of the total work to the IR stage, which is perfectly parallel. As problem size increases 

and there are more columns than rows (underdetermined case), expected efficiency 

decreases. This occurs because the percentage of the total work done in the perfectly 

parallel IR stage is decreasing and the effect of the load imbalances in the BR stage 

becomes more pronounced. 
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p=2 
mxn 50 100 200 400 800 1600 

50 97.4672 96.6914 96.4248 96.3113 96.2587 96.2333 

500 99.8141 99.9507 99.9872 99.8226 99.6801 99.6340 

1000 99.8141 99.9507 99.9872 99.9967 99.9123 99.8401 

4000 99.8141 99.9507 99.9872 99.9967 99.9992 99.9998 

8000 99.8141 99.9507 99.9872 99.9967 99.9992 99.9998 

p=4 
mxn 50 100 200 400 800 1600 

50 80.5229 78.5425 77.8119 77.4925 77.3426 77.2699 

500 99.3647 99.8293 99.0141 98.3679 97.6745 97.4262 

1000 99.3647 99.8293 99.9568 99.5130 99.1831 98.8310 

4000 99.3647 99.8293 99.9568 99.9890 99.9972 99.8800 

8000 99.3647 99.8293 99.9568 99.9890 99.9972 99.9993 

p=8 
mxn 50 100 200 400 800 1600 

50 36.8041 36.0283 35.7123 35.5685 35.4998 35.4662 

500 98.2223 95.0547 93.3916 91.3354 88.6419 87.6856 

1000 98.2223 99.5106 97.6595 96.7140 95.6264 94.1740 

4000 98.2223 99.5106 99.8714 99.9686 99.4359 99.1788 

8000 98.2223 99.5106 99.8714 99.9686 99.9921 99.7200 

p=16 
mxn 50 100 200 400 800 1600 

50 12.5749 12.5749 12.5749 12.5749 12.5749 12.5749 

500 77.6950 74.9954 71.8967 67.0174 60.4840 58.4636 

1000 93.2931 89.4679 86.9453 84.8680 81.6500 76.7413 

4000 93.2931 98.6022 99.6260 97.5302 96.6694 96.0076 

8000 93.2931 98.6022 99.6260 99.9023 98.7884 98.3370 

p=32 
mxn 50 100 200 400 800 1600 

50 n/a n/a n/a n/a n/a n/a 
500 28.7825 29.0312 27.6353 23.8049 20.9518 20.1300 

1000 48.8887 53.1959 53.7644 51.5051 45.0112 38.2298 

4000 82.2950 93.8005 89.5886 87.2417 85.5268 83.9052 

8000 82.2950 93.8005 98.8494 94.8454 93.4224 92.4743 

Table 3.3. Total expected efficiency examples, m is listed on the leftmost column 
and n is listed across the first row of each block. 
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Chapter 4 

ELECTROMAGNETIC SCATTERING PROBLEM 

This Chapter is included to describe the background and motivation which led 

to the need for a parallel QR decomposition algorithm. It will also provide an intro- 

duction to the problem domain which provides a portion of the test data included in 

Chapter 5. 

4.1    Introduction to Electromagnetic Scattering 

When electromagnetic energy (such as radar waves) comes into contact with 

a metallic object, some of the energy is reflected off the surface. If the surface is 

completely reflective and perfectly smooth, all of the energy will reflect off the surface 

at the same angle as the angle of incidence (See Figure 4.1). 

If the surface is not smooth, the reflected energy will scatter in different directions 

called scattered orders. If the surface is still perfectly reflective, but rough, the total 

energy contained in all the scattered orders is equal to the energy in the incident 

radiating wave (See Figure 4.2). 

The number and magnitude of the scattered orders is governed by the charac- 

teristics of the surface and the incident wave. The scattering can be found through 

the solution of an integral equation. This can be reduced to a problem of solving a 

system of linear equations. However, the creation and solution of the system requires 

significant computational resources and time. We are therefore interested in exploit- 

ing parallel computing to speed up the solution and thereby solve larger problems 

with greater resolution (Cybenko, 1996). 
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d=0 

FIG. 4.1. Simple reflecting surface case. Only one reflected component with angle of 
reflection equal to angle of incidence. 

There are widespread applications for a system which can accurately model radar 

scattering. For example, it could be applied in the following areas: 

• aircraft recognition and identification, 

• obstacle detection and recognition, 

• machine vision, 

• ballistic missile defense systems (from "Star Wars" to the Patriot missile system 

used to shield the allies during Desert Shield/Storm), and 

• geological exploration for oil, gas, coal, and other minerals. 

Current computational techniques only exist to solve very simple or very small 

problems of this type.  When any real world system is modeled at high resolution, 
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Incident 

N— I—*| 

FIG. 4.2. Rough surface scattering, perfectly reflecting case. Reflected energy 
scatters in multiple components. 

Surface Equation S(x) = cos(x) 
Surface Period L = 1 
Surface Height d = 1 
Scattered Components    —4 <= j <= 2 

the amount of data necessary and the size of problem become too large to solve in 

a reasonable amount of time on traditional sequential computers. Our goal is to 

implement a solution to this problem using parallel computing. This will allow the 

resolution and the size of the problem to increase, thereby moving one step closer to 

accurate modelling of real world phenomena. 

4.2    Electromagnetic Scattering Details 

This section will present a brief Overview of the mathematical formalism required 

to model electromagnetic scattering. Correct modeling of the problem is essential to 
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obtain accurate computational results; however, the derivations of the theoretical 

model are beyond the scope of this document and are therefore not included here. 

For more information please refer to (Boleng et al, 1996) and (DeSanto, 1985). 

A number of simplifying assumptions concerning the model must be made so 

that the solution becomes feasible. Many of these assumptions will be relaxed in 

the future to move the mathematical and computational models closer to measurable 

physical results. Other assumptions are necessary to abstract unimportant details in 

order to focus on the essence of the problem. 

The following simplifying assumptions are being made in an effort to achieve 

increased mathematical simplicity for initial implementations. 

1. The incident field is an infinite plane wave. 

2. The surface is a one dimensional infinite periodic surface defined by S(x). 

3. The surface is perfectly reflective. 

Figures 4.1 and 4.2 show a schematic representation of the problem. The fol- 

lowing description is only a qualitative introduction to the problem. Please refer to 

(DeSanto, 1985) for a more detailed discussion of the mathematical formulation. 

S(x) represents the profile of the surface. The surface is considered to be periodic 

in the initial version of this application. The period of the surface is denoted by L, 

and d is its depth. 9ic represents the incident angle of the incoming plane wave and A 

is its wavelength. Each j corresponds to a propagating order and a specific scattered 

angle, measured from the vertical z-direction. j = 0 is called the specular order and 

has a scattered angle equal to the incident angle. 

When an incident plane wave strikes a rough surface, the angles of the scattered 
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orders can be determined from 

sinöj =sin0ic + j-, (4.1) 

which is called the Bragg equation. It is common to use a0 = sm9ic and aj - an*,-, 

and therefore the Bragg equation above can also be written as Uj = «o + jA/L. 

Additionally, 

ßj = cos 9j = ' 
N > 1- 

In this implementation this will be the equation which governs the size and 

complexity of the problem. By choosing a fixed value for the problem size one can 

determine the wavelength range required for A. Using the number of scattered orders 

(n) to determine problem size yields an easily discretized problem and results in a 

system of linear equations of the form (see details in (Boleng et al, 1996)): 

KN = F+, (4.2) 

in which N is the unknown, and 

F/ = -2ß0D8j0, (4.3) 

where Sj0 is the Kronecker delta, and D is the amplitude of the incident plane wave. 

In this formulation of the problem, a substantial computational requirement 

comes from the evaluation of the individual elements of the K and M matrices. Each 
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matrix element is computed by evaluating an integral of the form: 

K.., = ! l+\-i{i-i')yeiko^>)s{£y) dy (4.4) 
JJ      2nJ-K 

where k0 = 2-K/X is the wave number. The M matrix is filled similarly: 

M,r = _L r\-*3-i')ye-Hh+Pi>)s{£;y) dy. (4.5) 
2it J-% 

Note that the matrix K has diagonal entries equal to one.   After inverting K and 

solving for N, we can evaluate the following equation for the vector A: 

J2Mjj,Njl = 2ßjAj, (4.6) 
3' 

where Aj is the amplitude of the jth scattered order whose angles of reflection can 

be found from the initial Bragg equation (4.1). 

Finally, we know that the sum of the scattered energy is equal to the energy of 

the incident wave: 

£1,4/Re (ßi) = ß0D
2. 

i 

We set D = 1 for all of the trials, and therefore the following condition should hold: 

Ekl/R*(M = 1. (4.7) 
3 Po 

This is the energy check condition used to verify the quality of the results. 

4.3    Electromagnetic Scattering Algorithm 

This section develops one possible computational solution for the electromagnetic 

scattering model outlined in Section 4.2.  If needed, exact equation derivations can 
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be found in (Boleng et al, 1996) and (DeSanto, 1985). For simplicity, problem size 

is always n, the number of scattered orders. 

The basic computational procedure for the Spectral-Spectral formalism (De- 

Santo, 1985) is: 

1. Fix a value for X/L. This determines the number of scattering orders, using 

(4.1). A range for X/L can be calculated if a fixed problem size (n value) is 

desired. 

2. Compute the matrix K (4.4). 

3. Compute F+ (4.3). 

4. Solve for N (4.2). 

5. Compute the matrix M (4.5). 

6. Solve for A (4.6). 

7. Perform the energy check to determine if energy is conserved (4.7). 

Sequential implementation and performance evaluation of the model included all 

of the computational steps outlined above. Test results from the sequential imple- 

mentation for a problem size of n =256 executed on a single R10000 processor of a 

Silicon Graphics Power Challenge indicated that 99.56% of total computation time 

is spent filling the K and M matrices. As a result, this is where the primary paral- 

lelization effort was directed. Fortunately both these processes (steps 2 and 5 above) 

were perfectly parallel. Section 4.4 includes the initial performance results obtained 

by only parallelizing the matrix fill routines (ref. equations 4.4 and 4.5). 

After a detailed complexity analysis it became apparent that these speedup re- 

sults could only hold for problem sizes with matrices smaller than about 500 x 500. 
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The matrix fill routines grow as 0{cn2) where c is a (potentially large) constant. This 

constant (ä:500 in these cases) term dominates the linear system solution (0(n3) in 

general) until matrix size grows past it (n > c). Once this condition is reached ef- 

ficient parallel solutions to the electromagnetic scattering problem must contain a 

parallel linear system solver. This has led to the development of the parallel QR 

decomposition algorithm presented here, and the results of its application to this 

problem domain are included in Chapter 5. Furthermore, as the mathematical model 

becomes more robust and realistic, and as fewer initial assumptions are made, the 

matrices to be solved in the electromagnetic scattering problem become denser and 

larger which increases the need for an efficient parallel linear system solver. 

4.4    Parallelization Results 

This section discusses the initial parallel implementation details of the electro- 

magnetic scattering model. It includes a discussion of the computational resources, 

supporting code libraries, sequential implementation, and parallel implementation. 

4.4.1    Computing Resources and Support 

The computing resources used for implementation include a variety of machines 

and tools. The primary development was done on a Sun Sparc 20 using C. Parallel 

implementation was done using Power C extensions. Parallel test cases were executed 

on a Silicon Graphics Power Challenge with eight R10000 processors and two giga- 

bytes of shared main memory and a SGI/Cray Origin 2000 with 32 R10000 processors 

and eight gigabytes of distributed shared main memory. The machines are located at 

the National Center for Supercomputing Applications (NCSA). 

The matrix algebra and basic complex arithmetic routines used here are from 
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the Meschach Library (Stewart & Leyk, 1994). This is a numerical library of C 

routines for performing calculations on matrices and vectors. Several alternative 

integration routines were written specifically for this project. The library routines 

included a direct linear solver for general complex matrices using Householder QR 

decomposition. An iterative solver for general complex matrices is not included in 

the library. 

Parallelization of the sequential source code was very straightforward. As dis- 

cussed earlier, the primary focus of the initial parallel version was the partitioning of 

the matrix fill routines. This portion of the problem can be termed perfectly paral- 

lel. Each matrix entry can be computed independently with no communication costs 

other than saving the results of the computation. Our initial approach was to divide 

the K and M matrices among the processors by mapping n/p rows (matrices are 

square n x n) to each processor. This naive parallelization proved effective on the 

Power Challenge array due to the smaller number of processors and limited problem 

sizes possible. 

When the application was ported to the Origin 2000 machine, larger problem 

sizes revealed limitations in the integration routines' sampling methods. In order to 

improve the performance and the accuracy of these routines we also implemented a 

load balancing scheme based on the maximum slope of the surface. Careful examina- 

tion of equations (4.4) and (4.5) reveals that surface sampling for the integration is 

dependent only on the maximum surface slope and the matrix indices (jf). Before 

distributing the matrix calculation tasks to the processors, an estimate is made for 

each matrix element of how many integration intervals will be required for an accu- 

rate evaluation. These values are used to load balance the resulting computation. 

The execution results for all versions of the code are included and compared below in 

Section 4.4.2. 
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FIG. 4.3. Parallel and sequential execution times on the SGI Power Challenge. 
Parallel runs were done using 8 processors. 

4.4.2    Results 

This section summarizes the results and performance improvements due to par- 

allel implementation. The sequential times referenced in the figures are the measured 

performance using only one processor on the SGI Power Challenge or SGI/Cray Ori- 

gin 2000, as appropriate. Figure 4.3 compares the sequential and parallel execution 

times on the Power Challenge. A simple cubic function is included for comparison as 

well as the same function divided by p = 8 (the number of processing elements). 

Figure 4.4 presents the speedup using 

Speedup 
Tf sequential 

[parallel 

and the efficiency (Foster, 1995) of the non-load balanced code on the Power Chal- 
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FIG. 4.4. Parallel speedup and efficiency (percentages listed with each data point), 
Power Challenge Array. 

lenge. In these case there were eight processing elements available. The recommen- 

dation of SGI is to create one less thread of execution than the number of processors 

available; this is presumably for system management overhead. 

Closer inspection of Figure 4.4 reveals a possible explanation for the graph's 

shape. The smaller test cases (n = 32, 64, and 128) result in worse performance 

than the best results at n =256. This is because the overhead required to create and 

manage the parallel regions by the operating system is a substantial fraction of the 

overall time. This is a fixed cost, so as the problem size increases, it has a diminishing 

effect. The efficiency declines after n = 256 because the linear system's solution time 

now contributes a larger percentage of the overall time. As discussed earlier, the 

complexity of a linear system solution is 0(n3) in general. Our matrix fill time grows 

as en2 where c is a (potentially large) constant.  After n =256, this constant term 
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FIG. 4.5. Parallel speedup, Origin 2000. 

(?«500 in these cases) begins to play a diminishing role when compared to the 0(n3) 

complexity of the linear system solution. 

The parallel scattering application was recently ported to the SGI/Cray Ori- 

gin 2000 distributed shared memory machine. Movement to a parallel machine with 

more processors and memory allowed the execution of larger test cases. Larger cases 

pointed out a deficiency in the integration routines that, once corrected, led to pro- 

cessor load imbalances. As introduced earlier in Section 4.3, examination of equations 

(4.4) and (4.5) allows a conservative estimate to be made a priori of the amount of 

computational work required to fill each matrix element in K and M. This estimate 

is then used to balance the load across processors. Figures 4.5 and 4.6 depict the 

parallel speedup and efficiency results obtained for a fixed problem size of n = 256 

and 9 = 25°. 

Examination of Figures 4.5 and 4.6 reveals nearly linear speedup for the load 
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FIG. 4.6. Parallel efficiency, Origin 2000. 

balanced code. The scalability of this code is also superior to that of the non-load 

balanced version. The slight efficiency drop over p — 24 in Figure 4.6 is due primarily 

to the relatively small problem size used for this initial testing (n = 256). Much 

larger test cases have been run (up to n = 2048) and efficiency results have remained 

over 90% for all 32 processors. 

In general, the parallel solution will scale well to an arbitrary number of pro- 

cessors. This is to say, the portions of the code that are parallel (filling the K and 

M matrices) will scale well. The above figures do indicate a possible problem when 

scaling the entire solution. For cases greater than n =512 the matrices become more 

dense and the linear system's solution begins to require a noticeable amount of time. 

The limited data from the largest two cases tends to indicate that the total prob- 

lem solution will not scale well until the QR decomposition algorithm is parallelized. 

These results are presented in Chapter 5. 



66 

Chapter 5 

PARALLEL QR DECOMPOSITION RESULTS 

This chapter presents the results of implementing the new QR decomposition 

algorithm in parallel for a variety of problem sizes. The test problems chosen focus 

on sizes where m/p < n (see Section 3.4) in an effort to push the algorithm on 

the most demanding cases. Section 5.2 presents expected and actual performance 

of the algorithm using matrices with randomly generated entries, and Section 5.3 

includes performance results when the algorithm is applied to a matrix from the 

electromagnetic scattering problem domain. 

5.1    Computing Resources 

The computing resources used for these tests are largely the same as those listed 

in Section 4.4.1. However, there are some changes which must be mentioned before 

results are presented. Reconfiguration of machines at NCSA has made available Power 

Challenge machines with up to 16 processors as opposed to only 8, as was the case 

for earlier testing. In addition to this, the status of the Origin 2000 machine was 

moved from installation/evaluation to production. This change made a substantial 

difference in the user load on the machine, as well as its availability. When comparing 

results, it will become apparent that more data is available for the Power Challenge 

implementations. When the Origin 2000 at NCSA was moved to production use, the 

migration of a large number of users from the Power Challenge array to the Origin 

2000 made system response time extremely slow, and queue wait times increased 

dramatically. The large number of users porting code also affected the system stability 

which resulted in periods of outage. All these problems combined to make testing and 
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obtaining performance results on the Origin 2000 difficult. Several cases are included 

nonetheless. 

5.1.1    Power Challenge Architecture Overview 

The SGI Power Challenge (see Fig. 5.1) is a shared-memory multiprocessor archi- 

tecture based on the MIPS superscalar RISC R8000 and R10000 chips. These chips 

are 64-bit processors with 64-bit integer and floating-point operations, registers, and 

virtual addresses. The R8000 and R10000 use the MIPS IV instruction set. 

The cache system consists of a 16 kilobyte (KB) direct-mapped on-chip instruc- 

tion cache, a 16 KB direct-mapped on-chip integer data cache, and a 4 megabyte 

(MB) four-way set associative external cache. The external cache serves as the pri- 

mary cache for floating-point data and the secondary cache for instructions and integer 

data. The length of cache lines are: 

• on-chip instruction cache: 32 bytes (4 double words) 

• on-chip integer data cache: 32 bytes (4 double words) 

• external cache: 128 bytes (16 double words) 

The processors communicate via a fast shared-bus interconnect. The bus has 

a bandwidth of 1.2 gigabyte (GB) per second with a 256-bit wide data bus and a 

separate 40-bit wide address bus that can access up to one terabyte (TB) of physical 

memory. The bus provides high-bandwidth, low-latency, cache-coherent communica- 

tion between processors, memory, and I/O. 
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FIG. 5.1. SGI Power Challenge architecture overview. 

5.1.2    Origin 2000 Architecture Overview 

The SGI/Cray Origin 2000 is a follow-on to the Challenge-class symmetric mul- 

tiprocessing (SMP) system. It uses Silicon Graphics' distributed shared-memory mul- 

tiprocessing architecture, called S2MP. As illustrated in Figure 5.2, the Origin 2000 

has a number of processing nodes linked together by an interconnection fabric. Each 

processing node contains either one or two processors, a portion of shared memory, a 

directory for cache coherence, and two interfaces: one that connects to I/O devices 

and another that links system nodes through the interconnection fabric (see Fig. 5.3). 

The Origin 2000 uses the MIPS R10000, a high-performance 64-bit superscalar 

processor which supports dynamic scheduling. An important attribute of the R10000 

is its capacity for heavy overlapping of memory transactions - up to twelve per proces- 

sor in the Origin 2000. Each Node board added to the Origin 2000 provides additional 
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FIG. 5.2. SGI/Cray Origin 2000 architecture overview. Figure courtesy of NCSA 
on-line SGI documentation. 

independently accessed memory, and each node is capable of supporting up to 4 GB 

of memory. Up to 64 nodes can be configured in a system, which implies a maximum 

memory capacity of 256 GB. 

The Origin 2000 nodes are connected by an interconnection fabric. The intercon- 

nection fabric is a set of switches, called routers, that are linked by cables in various 

configurations, or topologies. The interconnection fabric differs from a standard bus 

in the following important ways: 

• The interconnection fabric is a mesh of multiple point-to-point links connected 

by the routing switches. These links and switches allow multiple transactions 

to occur simultaneously. 

• The links permit extremely fast switching. Each bidirectional link sustains as 
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FIG. 5.3. SGI/Cray Origin 2000 node layout. Figure courtesy of NCSA on-line SGI 
documentation. 

much bandwidth as the entire Challenge bus. 

• The interconnection fabric does not require arbitration nor is it as limited by 

contention, while a bus must be contested for through arbitration. 

• More routers and links are added as nodes are added, increasing the intercon- 

nection fabric's bandwidth. A shared bus has a fixed bandwidth that is not 

scalable. 

• The topology of the CrayLink Interconnect is such that the bisection bandwidth 

grows linearly with the number of nodes in the system. 

The interconnection fabric provides a minimum of two separate paths to every pair of 

the Origin 2000 nodes. This redundancy allows the system to bypass failing routers 

or broken interconnection fabric links. Each fabric link is additionally protected by 



Interface Sustained Bandwidth 
[Peak BW in brackets] 

Memory- 780 MB per second [780] 
Node Card 1.25 GB per second [1.56 GB] 
Crossbow 2.5 GB per second [3.12 GB] 
Module (deskside) 5.0 GB per second [6.24 GB] 
Rack 80 GB per second [100 GB] 

Table 5.1. Origin 2000 Peak and Sustained Bandwidths. 
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a CRC code and a link-level protocol, which retry any corrupted transmissions and 

provide fault tolerance for transient errors. 

There are three types of bandwidths: 

• Peak bandwidth, which is a theoretical number derived by multiplying the clock 

rate at the interface by the data width of the interface. 

• Sustained bandwidth, which is derived by subtracting the packet header and 

any other immediate overhead from the peak bandwidth. This best-case fig- 

ure, sometimes called Peak Payload bandwidth, does not take into account 

contention and other variable effects. 

• Bisection bandwidth, which is derived by dividing the interconnection fabric in 

half, and measuring the data rate across this divide. This figure is useful for 

measuring data rates when the data is not optimally placed. 

Table 5.1 gives a comparison between peak and sustained data bandwidths of the 

Origin 2000. 
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5.1.3    Shared vs. Dedicated Mode 

One final note concerns an observed detail about the timings presented below. 

During testing, it was noticed that execution times were considerably lower and ob- 

served efficiencies where higher when the test case was submitted to run in dedicated 

versus shared mode. This presented some difficulties because the NCSA machines 

are only available for dedicated runs on Sundays, but it was still possible to obtain 

dedicated execution results for some problem sizes. 

5.2    Measured Algorithm Performance 

This section will present the performance of the parallel QR decomposition al- 

gorithm when applied to matrices of randomly generated elements. Section 5.2.1 

includes a discussion of the sequential performance of the parallel algorithm and 

compares it with the sequential performance of standard decomposition techniques. 

Sections 5.2.2 and 5.2.3 present and discuss the measured results on the SGI Power 

Challenge and SGI/Cray Origin 2000 respectively. 

5.2.1    Performance vs. Standard Methods 

When measuring the relative performance of a parallel algorithm a decision must 

be made concerning the standard of comparison for the single processor or sequential 

timing. Parallel speedup is calculated as 

rp 
„       ,          -'sequential 
Speedup = —  . 

1 parallel 

Several alternatives have been suggested concerning how Tsequentiaj is measured. 

The most widespread measurement technique is simply to run the parallel code on 
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Problem 
Size 

Parallel QR 
Algorithm 

Householder 
Algorithm 

1024 x 1024 
1024 x 1024 
1024 x 1024 

Ti/i          = 67.95 
T1/16          = 44.91 
Ti/32          = 46.96 

^best = 67-64 

8000 x 1600 
8000 x 1600 
8000 x 1600 

Ti/i          = 1859.4 
T1/16         = 1716.47 
r1/32         = 1365.96 

Tbest = 1868.97 

Table 5.2. Comparison of sequential performance for the parallel algorithm and the 
best known sequential algorithm. Execution times reported in seconds and 
measured on one R10000 processor of the SGI Power Challenge. 

one processor of the machine being used for testing. This technique has been criti- 

cized because it is often the case that the parallel algorithm, when run sequentially, is 

much less efficient than the best sequential algorithm. An alternative technique uses 

the time of the best known sequential algorithm for ^sequential' This results in a 

more realistic speedup measure, but the resulting efficiency is not a good measure of 

how "busy" the algorithm keeps the processors. For the results below, both measure- 

ments will be presented when possible. The best known sequential algorithm for QR 

decomposition uses Householder reflections, and this is reported as the time T^est. 

The corresponding speedup and efficiency measures are reported as Speedupbest and 

Efficiencybg^. The performance of the parallel algorithm executed on one proces- 

sor is reported as Tyb, where b is the number of blocks used in the sequential run. 

Speedup and efficiency of the parallel algorithm are reported in a similar manner as 

Speedupi/6 and Efficiency^. 

When gathering performance results, it was noticed that in most cases, the tim- 

ing for the parallel algorithm executing on one processor, Tyb, was better than the 

timing for the best known sequential algorithm, Tbest.   This was especially true 
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as the problem size grew and different values of b where used. Table 5.2 contains 

a comparison of some of the results. The difference in performance for these algo- 

rithms is presumably due to the memory hierarchy of the machines being used. When 

the algorithms eliminate elements via Householder reflections the code instructs the 

compiler to maintain the Householder vector in local cache to increase performance. 

Each Householder vector is m elements long. As the matrix size grows, particularly 

the number of rows, the traditional sequential algorithm cannot maintain the entire 

Householder vector in cache, so performance suffers. The parallel QR algorithm acts 

in a block manner and annihilates blocks of the matrix with Householder vectors that 

are long enough to be maintained in the cache during their entire application. For 

the purpose of calculating parallel speedup and efficiency in Sections 5.2.2 and 5.2.3, 

both T^est and Tj./i are used. 

5.2.2    Performance on the Power Challenge 

This section summarizes the performance results of the parallel QR decompo- 

sition algorithm implemented on the SGI Power Challenge. Each of the following 

sets of tables and graphs is presented for different problem sizes. Examination of 

Figures 5.4 and 5.5 shows good parallel efficiency on the Power Challenge for up to 

four processors, and speedup increases on up to 12 processors. Efficiency peaks at 

four processors (77.9% and 80.8%, respectively), but speedup is still increasing. The 

efficiency begins to drop off quickly for the eight and 12 processor cases. Peak per- 

formance is reached at 12 processors with a speedup of 5.65, but a parallel efficiency 

of only 47.1%. 

Two comments can be made about the shapes of the graphs in Figures 5.4 and 

5.5. First, actual performance differs substantially from the expected performance. 

This occurs primarily because the prediction model derived in Chapter 3 and used here 
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does not include any system management overhead. In addition to the relatively small 

load imbalances inherent in the algorithm, which the model includes, are the much 

higher costs of creating the parallel threads of execution, memory contention/delays, 

synchronization costs, etc. As the number of processors increases for a fixed problem 

size, less and less work is being done between thread creation, synchronizations, and 

destruction. Any speedup achieved by concurrent operation is soon lost in the cost 

of the system overhead. By the 16 processor case, problem size was just too small to 

benefit from further parallelization. Larger problem sizes yield higher efficiencies for 

greater numbers of processors. 

The second notable observation is apparent in Figure 5.5 at p = 2 where the 

sharp trough appears. This could be a result of anomalous data attributable to 

heavy system load at run time (these data points were gathered while running in 

shared mode), or it is more likely caused again by system management overhead. At 

the case of only two processors, there is very little potential speedup to absorb the 

fixed cost incurred from creating the parallel threads. As more processors are used 

the variable cost of adding more threads of execution is still incurred, but the fixed 

parallelization startup costs can be spread across greater potential speedup. 

An important comparison can be made from Figures 5.6 and 5.7. These results 

present performance for the same matrix size and processor numbers in shared vs. 

dedicated mode. In shared mode, the program is time shared with other parallel jobs, 

while in dedicated mode, the program is executed from start to finish on one Power 

Challenge using as many processors as requested. The raw performance run times 

are significantly better for the parallel cases when executed in dedicated mode. This 

observation is apparent later on the Origin 2000 machine as well. This performance 

difference is likely attributable to the action of context switching between applications 
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in shared mode which creates extra system overhead that does not exist in dedicated 

mode. 

It is encouraging to note that with the increased problem sizes in Figures 5.6 

and 5.7, the actual results began to follow the predicted performance more closely. 

Speedup was achieved for this problem size all the way up to and including the 

maximum available number of processors on the NCSA machines. This is in contrast 

to the previous cases where speedup peaked and then began to decrease before the 

processor limit. Efficiency does steadily decline as in the previous cases, but the 

decrease is not as soon or as sharp. 

Finally, examine Figure 5.8 which plots the parallel efficiency and speedup for 

many processors as the problem size changes. This comparison demonstrates a char- 

acteristic of the algorithm predicted in Chapter 3. As problem size increases relative 

to the number of processors, the efficiency of the algorithm increases. This occurs 

because the two sources of possible load imbalance (the leftover rows and last p steps 

during the BR stage) become a smaller and smaller fraction of the total work done. 

It is expected that this trend would continue for larger problem sizes. 
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Raw Parallel Performance Expected vs. Actual Speedup 
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FIG. 5.4. Parallel performance on the SGI Power Challenge (R10000) in shared 
mode. Matrix size is 4000 x 800. Expected results shown as a dashed line with V 
symbol. Actual results shown as a solid line with '+' symbol. 
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Raw Parallel Performance Expected vs. Actual Speedup 
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FIG. 5.5. Parallel performance on the SGI Power Challenge (R10000) in shared 
mode. Matrix size is 8000 x 800. Expected results shown as a dashed line with V 
symbol. Actual results shown as a solid line with '+' symbol. 
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Raw Parallel Performance Expected vs. Actual Speedup 
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FIG. 5.6. Parallel performance on the SGI Power Challenge (R10000) in shared 
mode. Matrix size is 8000 x 1600. Expected results shown as a dashed line with V 
symbol. Actual results shown as a solid line with '+' symbol. 
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Raw Parallel Performance Expected vs. Actual Speedup 
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FIG. 5.7. Parallel performance on the SGI Power Challenge (R10000) in dedicated 
mode. Matrix size is 8000 x 1600. Expected results shown as a dashed line with V 
symbol. Actual results shown as a solid line with '+' symbol. 
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Efficiency as Problem Size Grows 
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FIG. 5.8. Parallel performance comparison on the SGI Power Challenge (R10000) as 
problem size grows. Matrix sizes are shown next to their representative line. 
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5.2.3    SGI/Cray Origin2000 Performance 

This section summarizes the performance results of the parallel QR decompo- 

sition algorithm implemented on the SGI/Cray Origin 2000. Each of the following 

sets of tables and graphs is presented for different problem sizes. The matrices used 

for testing on the Origin 2000 are the same as those used previously on the Power 

Challenge. The performance achieved on the Origin 2000 differs substantially from 

that on the Power Challenge. Raw performance, or execution times, are faster, but 

parallel performance is not nearly as good on large problem sizes. Only for the smaller 

matrix cases (4000 x 800 and 8000 x 800) did the Origin 2000 significantly outperform 

the Power Challenge. 

Figure 5.9 shows promising performance up to 12 processors. In fact, super-linear 

speedup is achieved, which is certainly attributable to the blocking of the matrix and 

Householder vector length as described earlier in Section 5.2.1. When the parallel 

algorithm is used, the Householder vectors are shorter and more easily maintained in 

cache memory. This blocking effect alone is enough to help performance dramatically 

without parallelization. The parallel execution times take advantage of these access 

differences in the memory hierarchy and combine concurrent operations to achieve 

super-linear performance. 

Using more than 12 processors on this matrix size results in over-parallelization 

and decreased performance for the same reasons as those described above on the 

Power Challenge. This is shown by the dramatic decrease in efficiency for 16 and 

24 processors. In the case of the smallest matrix (see Figure 5.9) speedup decreased 

more sharply than in any other case. Figure 5.10 represents the best results achieved. 

Speedup remains close to predicted results, and 85-90% efficiency results. Speedup 

continues past the 12 processor case, but after 16 processors, the problem size is again 
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too small to benefit from further parallelization. 

Figures 5.11 and 5.12 represent the comparison of using shared vs. dedicated 

mode on the Origin 2000 to factor the largest problem size. Run times are consistently 

better when problems are executed in dedicated mode. Parallel performance at this 

large problem size is disappointing on the Origin 2000, especially when compared 

to the increasing speedup obtained on the Power Challenge for the same problem. 

In both cases (dedicated and shared), the use of more than 16 processors does not 

improve performance. In fact, the move from 16 to 24 processors created the biggest 

observed increase in run time during parallel execution. 

Recall that the Origin 2000 is a Distributed Shared Memory (DSM) architecture. 

The physical design of the machine consists of a variety of nodes linked by a high 

speed cross-bar switch. There are only two processors per node that physically share 

memory. The logical address space is mapped by the operating system across the 

p/2 distributed nodes. The current algorithm implementation makes no attempt to 

schedule memory accesses to reduce communication. A few alternative scheduling 

techniques were tried for the BR stage, but memory mapping and movement as well 

as processor assignment is operating system dependent. No method was found that 

consistently addressed all the mysteries of the operating system's thread and memory 

management. 

The final Origin 2000 figure compares all the problem sizes together (see Fig. 

5.13). The results and conclusions here are not nearly as obvious or encouraging 

as those seen in the Power Challenge results. In only one case did the Origin 2000 

maintain a speedup with more than 12 processors, and when the efficiency figure is 

included, the outlook becomes even worse. This distributed shared memory machine 

is not only running into the same system management overhead and problem size 
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limitations as the Power Challenge, but it has the added cost of a more complex 

memory management and transfer system. More careful scheduling and memory 

accesses during the BR stage must be done on this machine. 
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FIG. 5.9. Parallel performance on the SGI/Cray Origin 2000 in shared mode. 
Matrix size is 4000 x 800. Expected results shown as a dashed line with V symbol. 
Actual results shown as a solid line with '+' symbol. 



86 

Raw Parallel Performance 

0.8 

10.6 

0.4 

0.2 

4 6 B        10       12        14 
Number of Processing Elements 

Expected vs. Actual Efficiency 

16       18 

Expected vs. Actual Speedup 

 ;%  
• 

• 

 ; \ \ k'-y/- 
s     A 

s  / '■ 
 i -j^-i-  

s / 
 x  / : 

•     ■ •       —f- 

6 8 10        12        14 
Number of Processing Elements 

20 

-..+siJ  i t   Ü t ^ «--■"■4----*  

i         i         i      -J  

8000 x 800 P=l p=2 p=4 p=8 

Householder 
Parallel QR 

448.11 
459.31 229.55 125.0 65.08 

Speedupexpected 

Efficiency expected 

2.00 
99.9% 

3.99 
99.9% 

7.99 
99.4% 

Speedupbest 

Efficiency^p^ 
1.95 

97.6% 
3.58 

89.6% 
6.89 

86.1% 
Speedupj/! 
Erficiencyj/x 

2.00 
100% 

3.67 
91.9% 

7.06 
88.22% 

p=12 p=16 p=24 p=31 

Parallel QR 42.34 41.02 n/a n/a 
Speedupexpected 

Efflciencyexpected 

11.94 
99.6% 

15.81 
98.8% 

n/a 
n/a 

n/a 
n/a 

Speedupbest 

EfficiencyhpSt 

10.58 
88.2% 

10.92 
68.3% 

n/a 
n/a 

n/a 
n/a 

Speedupj/j 
Efficiencyi/i 

10.85 
90.4% 

11.20 
70.0% 

n/a 
n/a 

n/a 
n/a 

6 8        10        12        14 
Number of Processing Elements 

FIG. 5.10. Parallel performance on the SGI/Cray Origin 2000 in shared mode. 
Matrix size is 8000 x 800. Expected results shown as a dashed line with V symbol. 
Actual results shown as a solid line with '+' symbol. 
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FIG. 5.11. Parallel performance on the SGI/Cray Origin 2000 in shared mode. 
Matrix size is 8000 x 1600. Expected results shown as a dashed line with V symbol. 
Actual results shown as a solid line with '+' symbol. 
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FIG. 5.12. Parallel performance on the SGI/Cray Origin 2000 in dedicated mode. 
Matrix size is 8000 x 1600. Expected results shown as a dashed line with V symbol. 
Actual results shown as a solid line with '+' symbol. 
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FIG. 5.13. Parallel performance comparison on the SGI/Cray Origin 2000 as 
problem size grows. Matrix sizes are shown next to their representative line. 
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5.3    Application to Electromagnetic Scattering 

This section presents one set of results obtained by applying the parallel QR 

decomposition algorithm to a dense matrix with data from the electromagnetic scat- 

tering problem described in Chapter 4. The largest data set available is a matrix size 

of 1024 x 1024. Because the matrix size is relatively small, timing information was 

gathered for all processors ranging from 1 to 12 instead of using the previous method 

(1,2,4,8,...). 

Figure 5.14 shows the performance results from the Power Challenge and Origin 

2000 when the parallel QR decomposition algorithm is applied to electromagnetic 

scattering data. The results are promising because they show increased performance 

on both machines from 1 to 10 processors (9 on the Power Challenge). Speedup 

gains are in the same range. Given the small problem size and fast execution times, 

maintaining parallel speedup for such a range of processors demonstrates the effective 

use of synchronization and load balancing in the algorithm. If the implementation 

involved large amounts of processor waiting or poor load balancing, speedup would 

have fallen off sooner than 9 or 10 processors. The decreasing tendency of parallel 

efficiency is mainly due to the relatively high system overhead when compared to the 

short total execution time. 

It is important to note the difference in the two machines when over-parallelization 

occurs and run times begin to increase. On the Power Challenge, when too many 

processors are used relative to the problem size, performance degradation occurs, but 

in a gradual manner. On the Origin 2000 however, once over-parallelization occurs, 

performance degrades in a very pronounced way. This is represented by the sharp 

increase in run time shown for the 11 and 12 processor cases in Figure 5.14. This is 

again attributable to the distibution of shared memory on the Origin 2000.  When 
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parallel overhead begins to dominate performance on the Power Challenge, memory 

access times remain relatively constant, so performance decreases gradually. When 

parallel overhead begins to dominate performance on the Origin 2000, memory access 

and contention during the BR stage also increase, which makes performance decrease 

much more quickly. 
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FIG. 5.14. Parallel performance comparison of the Power Challenge (R10000) and 
the SGI/Cray Origin 2000 on electromagnetic scattering data. Matrix size is 
1024 x 1024. Power Challenge results shown with '+' symbol. Origin 2000 results 
shown with V symbol. 
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Chapter 6 

CONCLUSIONS 

This report introduces a new parallel QR decomposition algorithm. The algo- 

rithm is described, analyzed, and tested. The motivation for the development of a new 

algorithm was provided by ongoing work on electromagnetic scattering problems. A 

brief presentation of the algorithm's performance on data from this problem domain 

is also presented. 

The goals surrounding the development of the algorithm were driven by prag- 

matism, but they did serve to extend this class of algorithms in important ways. The 

balancing of work across processors was done at a finer grain than earlier attempts, 

which is more appropriate for today's parallel architectures. This makes much higher 

efficiencies possible on current computers than previous algorithms. The use of a 

hybrid elimination technique in support of another of the goals, maximizing com- 

putation between communication, also indicates potential for good performance on 

distributed memory machines and networks of workstations. 

The analysis of the algorithm's expected performance is very promising. The load 

balancing scheme derived for the balanced rotations stage of the algorithm approaches 

perfect efficiency for large problem sizes on modest numbers of processors. The hybrid 

nature of the algorithm is also beneficial because it uses the most efficient elimination 

technique whenever possible. 

The measured performance results of the algorithm's implementation are good, 

but they do not track closely enough to the predicted performance. Results on 12 

and fewer processors follow expected performance well, but the use of higher numbers 
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of processors adds little speed improvement. It is anticipated that, given sufficient 

dedicated computing time, higher processor numbers would yield better results on 

larger problem sizes. As is the case with all parallel algorithms, there are a myriad of 

subtle implementation details that must be considered and worked on before a tuned 

version of the algorithm is optimized for any specific parallel machine. Considering the 

performance results in light of the fact that the algorithm was implemented exactly 

as described, with no optimization tricks, is a promising indicator. 

Finally, a comment regarding the comparison of the predicted and actual perfor- 

mance is appropriate. In all the testing (except for one case), predicted and actual 

performance differed by a significant margin. One point did hold true throughout the 

testing. The trends predicted by the expected performance analysis were realized by 

the measured results. This helps to reinforce the general correctness of the predic- 

tion model, but indicates that fine tuning and inclusion of more realistic overheads 

are in order. Overall, the algorithm and its predicted performance were successful. 

They met and exceeded the goals set out, and useful methods were added to the 

computational linear algebra and parallel processing "tool boxes." 

6.1     Contributions 

The work included in this report contributed to the computer science, parallel 

computing, and computational linear algebra communities in the following ways: 

• A new parallel QR decomposition algorithm was developed and analyzed. Ex- 

pected performance promises excellent, achievable results. 

• The new algorithm is specifically designed for parallel architectures with a mod- 

est number of processing elements. All but one of the previous algorithms 

covered in Chapter 2 are designed without limiting the number of processors. 
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These algorithms normally require at least m/2 processors to achieve optimal 

performance. This is unreasonable for large problem sizes, and using less pro- 

cessors in these algorithms results in poor performance. The new algorithm can 

theoretically achieve optimal performance on as few as two processors. 

• Initial implementation and testing results of the new parallel algorithm are 

encouraging. In some cases, over 90% efficiency was achieved with no specialized 

tuning required. 

• A novel approach was taken to predicting algorithmic performance by simulating 

the work and operation of a parallel algorithm on a sequential computer. 

• The idea of a hybrid parallel algorithm which uses the most efficient techniques 

available in different sections of the algorithm to reduce overall complexity was 

demonstrated and extended. 

• This parallel algorithm achieves better performance in the sequential case than 

the best known sequential algorithm as it exploits the hierarchical nature of 

memory through blocking. Even for sequential computing, this parallel QR 

algorithm is a good candidate for improved application performance. 

• Several strengths and limitations of the distributed shared memory model for 

parallel computers were tested and reinforced, and in some cases, performance 

suffered as a result of the current implementations of the model. 

6.2    Future Work 

There is still a good deal of study and analysis that should be pursued concerning 

parallel QR decomposition. The frequency of new research and parallel QR algorithms 
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has decreased in the current literature. However, the need for good solutions to this 

problem which would support a wide range of engineering and scientific applications 

has never been higher. Highly efficient algorithms for solving large systems of equa- 

tions, which are optimized for current parallel architectures are not widely available. 

This is especially true in the case of highly distributed, low communication solutions. 

Future research directions specific to the algorithm presented in this report include: 

• Optimize the algorithm and test larger cases on a shared memory machine. 

• Since the work done for each step during the BR stage is predictable, re-order 

the assignment method to increase performance on a distributed shared mem- 

ory machine by taking into account locality of access when assigning Givens 

rotations. This work could be the starting point for a distributed memory 

algorithm. 

• Integrate the parallel decomposition routines into the existing electromagnetic 

scattering code described in Chapter 4. 

• Implement and test the algorithm on a distributed memory machine and a 

network of workstations. 

• Continue refinement of the predicted performance method for this type of hybrid 

algorithm. Accurate prediction for a wide range of problem sizes would aid 

greatly in the proper selection and application of appropriate algorithms. 

Broader research goals, which are a natural extension of the work performed here are: 

• Implement a wide range of the known parallel QR decomposition algorithms on 

the same hardware platform and compare performance. Not only would this 

provide direct performance comparisons in place of predicted values which are 
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based on complexities, but it also would help characterize the range of problems 

each algorithm was bested suited to solve. 

Experiment with duplicating computation at distributed nodes to reduce com- 

munication costs. One example of this is to give every processor a duplicate 

copy of the pivot rows to use in order to fully annihilate all the elements in 

their assigned blocks with no communication. Research could then focus on re- 

combining the now unique information in the pivot rows in an effort to maintain 

the integrity of the solution. 
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