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1    Introduction 

Breast cancer is the most frequently diagnosed malignancy among women in the United 

States [1]. In 1996 the American Cancer Society estimates that 184,300 women will be 

newly diagnosed with breast cancer and that 44,300 will die from the disease [1]. Breast 

cancer accounts for 31% of all cancers detected and 17% of all cancer deaths, and ranks as 

the second leading cause of death from cancer among women in the United States [1]. Five 

year survival rates are generally very high (93%) for breast cancer staged as being 

localized, falling to 72% for regional disease and only 18% for distant disease [2]. The early 

detection of breast cancer is clearly a key ingredient of any strategy designed to reduce 

breast cancer mortality. 
Mammography's role is the early detection of breast cancer. Although more accurate than 

any other modality, existing techniques for mammography only find 80 to 90% of the breast 

cancers. Moreover, in 7 to 10% of cases, the cancer will not be visible on the mammogram. 

It has been suggested that mammograms as normally viewed, display only about 3% of the 

total information detected. Perception is a problem particularly for patients with dense 

fibroglandular patterns. The importance of diagnosis of breast cancer at an early stage is 

critical to patient survival. The general inability to detect small tumors and other salient 

features within mammograms motivates our investigation. 
The goal of this project is to develop an interactive diagnostic tool for radiologists that 

shall refine the perception of mammographic features (including lesions, masses and 

calcifications) and improve the accuracy of diagnosis. By improving the visualization of 

breast pathology we can increase the chances of early detection of breast cancers (improve 

quality) while requiring less time to evaluate mammograms for most patients (lower costs). 

We are investigating a methodology for accomplishing mammographic feature analysis 

through multiresolution representations. We have shown that efficient (nonredundant) 

representations may be identified from digital mammography and used to reconstruct and 

enhance specific mammographic features within a continuum of scale space. Such "focused" 

reconstructions may complement existing modalities and allow a radiologist to examine 

interactively diagnostic features within a selected scale space. Similar to traditional coarse 

to fine matching strategies, the radiologist may first choose to look for coarse features (e.g. 

dominant mass) within low frequency levels of a wavelet transform and later examine finer 

features (e.g. microcalcifications) at higher frequency levels. In addition, features may be 

extracted by applying geometric constraints within each level of the transform. Choosing 

wavelets (or analyzing functions) that are simultaneously localized in both space and 

frequency, results in a powerful methodology for image analysis. 
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A major reason for poor visualization of small malignant masses is the subtle difference in 

x-ray attenuation between normal glandular tissues and malignant disease [3]. This fact 

makes the detection of small malignancies problematical, especially in younger women who 

have denser breast tissue. Although calcifications have high inherent attenuation 

properties, their small size also results in a low subject contrast [4]. As a result, the 

visibility of small tumors, and any associated microcalcifications, will always be a problem 

in mammography as it is currently performed using analog film. 

In this report, we describe some exciting results accomplished during the past year. Below 

we describe in executive summary, progress related to the specific tasks and objectives 

stated in Phases III and IV of our original Statement of Work. 

In the sections below, we describe in overview, our processing algorithms, experimental 

methods and sample results obtained. In addition, we list in summary, publications of our 

researchers accomplished during the past year of our investigation. Finally, we include our 

response to the reviewers comments and suggestions regarding contractual and technical 

issues in reference to last year's report. 

1.1    Overview of Contents 

Generalizing the Discrete Dyadic Wavelet Transform 

Traditional orthogonal and biorthogonal wavelet representations may introduce aliasing 

and anisotropies due to the lack shift and rotation invariance. In screening mammography 

intolerance to translation and rotation is clearly not desirable. The multiscale spline 

derivative-based transform presented in this section is a redundant representation which 

does not introduce such artifacts. 

As preliminary results, two examples of image fusion are presented. Original mammograms 

were fused with their globally enhanced counterparts to obtain enhanced images having an 

appearance more similar to the original mammograms. The fused images appears easier for 

radiologists to interpret without additional training on wavelet processing techniques. 

A Parallel Algorithm to Support Interactive Wavelet Processing on a 

Radiologist Workstation 

We have designed an efficient parallel algorithm to support interactive analysis and 

multiscale processing. We show how this multiscale block algorithm works and demonstrate 

the amount of speedup achieved over traditional linear convolution schemes and 

conventional FFT methods. 
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A Continuous Scale Discrete Wavelet Iransform for the Detection of Spicular 

Masses in Mammograms 
We introduce a simple method to evaluate continuous wavelet transform (CWT). We 

present a fast decomposition and reconstruction algorithm to perform 2-D analysis at 

arbitrary scales. Arbitrary scale analysis is shown to be critical for optimal feature 

detection and enhancement in mammograms [5]. Our algorithm was able to detect a mass 

that could not be seen using conventional windowing and leveling or traditional contrast 

enhancement methods. 

Enhancement of Mammograms from Oriented Information 
Mammograms depict all the significant changes in breast disease. The primary radiographic 

signs of cancer are related to tumor mass, its density, size, shape, borders and calcification 

content. These features may be extracted according to their coherence and orientation. 

Such features provide important visual cues for radiologists to locate suspicious areas easily. 

In this investigation, an artifact free enhancement algorithm based on multiscale wavelet 

analysis is presented. First an image was decomposed using a fast wavelet transform 

algorithm. At the same time, the energy and phase information at each level were 

determined using a set of separable steerable filters. Then a measure of coherence within 

each level was obtained by weighting the energy with the ratio of projections of the energy 

within a specified window onto the central point of the window with respect to the total 

energy within each window. Finally, a nonlinear operation, integrating coherence and 

orientation information, was applied to modify the transform coefficients. These modified 

coefficients were then reconstructed, via an inverse fast wavelet transform, resulting in an 

improved visualization of mammographic features. The novelty of this algorithm lies in its 

detection of directional features and removal of unwanted perturbations. Compared to 

existing multiscale enhancement approaches, these results appear more familiar to 

radiologists and naturally close to the original mammogram. 

Multivoice Undecimated Wavelet Transforms 
For many analysis/synthesis applications the sampling provided by the traditional wavelet 

transform is inadequate. In particular, a finer grid is needed when computing the wavelet 

transform for applications that require "good" time-frequency localization. This can be 

achieved by computing an undecimated wavelet transform and the addition of voices. In 

this section, we review the tools that will allow us to compute an exact multivoice 

undecimated wavelet transform for an arbitrary wavelet. Furthermore, we introduce a 

wavelet function that exhibits nearly optimum time-frequency localization (the sine-Gabor 

wavelet) and show that it is indeed a wavelet frame. However, having a sine-Gabor wavelet 
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with nearly optimum time-frequency localization and obtaining a tight frame at the same 

time is not possible. Both constraints are important because they allow for "good" 

time-frequency localization and efficient reconstruction, respectively. Obtaining a better 

(tighter) frame can be achieved by adding voices. This not only eases the reconstruction 

but is also a requirement for applications in time-frequency analysis. Our current work is 

concerned with extending the sine-Gabor wavelet to multivoice framework and with the 

computation of multivoice undecimated wavelet transforms. Our future work includes 

wavelet reconstruction in the multivoice/undecimated framework as well as extending our 

results to the analysis of two dimensional data for mammography. 

Circular Mass Recognition Based on the Hough Transform 

In this chapter we present a two-step algorithm for the recognition of circular masses. The 

first step uses a 2D Hough Transform for the detection of the centers of possible circular 

shapes and the second step validates their existence by radius histogramming. The 2D 

Hough Transform described in this section makes use of the property that every chord of a 

circle passes through its center. We present sample results from experiments using both 

synthetic and real data demonstrating that our method is more robust to noise and 

complex backgrounds (typically found in real mammograms) than standard gradient based 

methods. The promise of the method is demonstrated with its application on a digitized 

phantom containing four circular masses and on a digital mammograms. 

1.2    Publications 

Below, we list in summary, an update of publications accomplished during 1996. 

1. D. Chen, A. Laine, J. G. Harris, and W. Huda, "A continuous scale discrete wavelet 

transform for the detection of spicular masses in mammograms," summitted to IEEE 

Transactions on Signal Processing, February 1997. 

2. D. Ioannou, W. Huda, A. F. Laine, and I. Koren, "Enhancement of computer simulated 

masses for mammography via wavelet analysis," summitted to IEEE Transactions on 

Medical Imaging, January 1997. 

3. I. Koren and A. Laine, "A discrete dyadic wavelet transform for multidimensional 

feature analysis," in M. Akay (Editor), Time-Frequency and Wavelet Transforms in 

Biomedical Engineering, New York, NY: IEEE Press, 1997. 

4. S. Schüler and A. Laine, "Hexagonal QMF banks and wavelets," in M. Akay (Editor), 

Time-Frequency and Wavelet Transforms in Biomedical Engineering, New York, NY: IEEE 

Press, 1997. 
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5. J. Fan and A. Laine, "Multiscale contrast enhancement and denoising in digital 

radiographs," in A. Aldroubi and M. Unser (Editors), Wavelets in Medicine and Biology, 

Boca Raton, FL: CRC Press, 1996, pp. 163-189. 

6. A. F. Laine and X. Zong, "A multiscale sub-octave wavelet transform for de-noising and 

enhancement," in Wavelet Applications in Signal and Image Processing IV, Proceedings of 

SPIE, Denver, CO, August 6-9, 1996, vol. 2825. pp. 238-249. 

7. A. Laine, W. Huda, D. Chen, and J. Harris, "Segmentation of masses using continuous 

scale representations," in Digital Mammography '96, Proceedings of the 3rd International 

Workshop on Digital Mammography, Chicago, U.S.A., 9-12 June 1996, K. Doi, M. L. Giger, 

R. M. Nishikawa, and R. A. Schmidt, Editors, Amsterdam, The Netherlands: Elsevier, 

1996, pp. 447-450. 

8. I. Koren, A. Laine, F. Taylor, and M. Lewis, "Interactive wavelet processing and 

techniques applied to digital mammography," in Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing, Atlanta, GA, May 7-10, 1996, vol. 

3, pp. 1415-1418. 

9. X. Zong, A. F. Laine, E. A. Geiser, and D. C. Wilson, "De-noising and contrast 

enhancement via wavelet shrinkage and nonlinear adaptive gain," in Wavelet Applications 

III, Proceedings of SPIE, Orlando, FL, April 8-12, 1996, vol. 2762, pp. 566-574. 

10. D. Chen, J. G. Harris, and A. Laine, "Automatic scale detection," in Visual 

Communications and Image Processing, Proceedings of SPIE, Orlando, FL, March 17-20, 

1996, vol. 2727, pp. 960-972. 

11. G. Qu, W. Huda, and C. J. Beiden, "Comparison of trained and untrained observers 

using subjective and objective measures of imaging performance," in Academic Radiology, 

1996, vol. 3, pp. 31-35. 

1.3    Responses to Technical and Contractual Issues 

We believe this report shows significant progress with respect to the objectives described in 

Phase's III and IV of our original Statement of Work (SOW). We acknowledge the reviews 

concerns regarding the performance of our methods in the context of complex backgrounds 

(typical of real mammograms) and generating false positives. Sections 1.1, 1.3, 1.4, 1.6 

describe processing techniques that are artifact free and significantly minimize the 

generation of false positives compared to previous methods. We provide experimental 

evidence and theoretical support to justify these claims in each case. 

In addition, with regard to the ROC studies mentioned in Phase V of our SOW, we include 
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below a description of our ongoing investigation. It is expected that these studies shall be 

complete within three months time. 

1.4    Study in Progress: An ROC Comparison Between Digital 
Mammography and Screen-Film Using an Anthropomorphic 
Breast Phantom 

1.4.1 Introduction 

Several studies have been performed comparing the performance of digital mammography 

with screen-film mammography with ambiguous results. In one case, the conspicuity of low 

contrast lesions on a flat grey background was greater using digital acquisition and display 

than using screen-film combinations. (1) In another case, a similar research protocol was 

used with simulated masses placed on an anthropomorphic breast phantom, resulting in 

greater conspicuity using the screen-film combination than with the digital methods. (2) In 

spite of the conflicting results, the studies provided useful for the following reasons. First, 

we were able to perfect the methodology for merging simulated masses with the realistic 

background of the anthropomorphic breast phantom, and second, the ROC methodology 

developed indicated that we could get valid results using individuals with a wide range of 

experience. The abilities to generate images with the truth established and to evaluate the 

images without the requirement for sub-specialty radiologist readers enable us to use a 

faster, less costly approach to applying established ROC methodology to the evaluation of 

our processed images. 

The protocol developed by Qu, Huda, et.al. [6] will be modified slightly to be used to 

evaluate steerable wavelet processing of digital mammograms as described in Chapter 2.4. 

In order to evaluate and exploit the power of the steerable wavelets, two shapes of 

simulated masses will be used. The first will simulate a smooth, mostly round mass, while 

the second will simulate an oblong mass with rather irregular edges. The purpose of the 

study is to evaluate the effectiveness of using the steerable wavelets on different shaped 

simulated masses in the context of complex backgrounds. Since we will be using digital 

enhancement methods, only digital mammography images will be used for this study. 

1.4.2 Method 

Phantoms 

Digital images will be generated of the central region of an RMI 165 anthropomorphic 

phantom. A 1 mm thick acrylic base will be positioned on top of the RMI 165 phantom 

containing a 3 x 3 array of 1.67 cm x 1.67 cm regions of interest (ROI). Radiopaque 
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markers will be located in the four corners of each ROI to permit these regions to be 

identified in the resultant radiographic images. Each image will be 5 cm x 5 cm in size and 

will contain 9 identifiable ROIs. 
The test objects are designed to simulate masses in a mammogram. These simulated 

masses will be constructed of a 300 microns (t) film polymer and positioned in the central 

region of each ROI with a randomly selected orientation. Two types of simulated masses 

will be made, the first will simulate a smooth, mostly round, mass with a diameter of 

approximately 1.5 cm, while the second will simulate an oblong mass with rather irregular 

edges with a length of approximately 1.5 cm and a width of approximately 0.5 cm. Each of 

the masses will be made with three thicknesses, 5t, 4t, and 3t (six total mass test objects). 

Nine radiographs with different inserts were made with the simulated masses located in 

randomly selected ROIs for a total of 81 ROIs. Approximately half of the ROIs will 

contain a test object and the six test objects will be evenly distributed randomly 

throughout the images. In addition, the test objects will be imaged on a uniform 

background to be used to demonstrate the expected shapes to the readers. 

Mammographic Imaging 

Digital mammographic images of the RMI 165 (+ insert) will be generated using the 

LoRad DSM using 28 kVp/72 mAs as technique factors. The images will be transferred by 

disk to a sun workstation where wavelet processing will be applied. The nine images (each 

with nine ROIs) will then be merged to form a single image with a 156 pixel black border 

and 100 pixel black separators between the nine images resulting in a 2048 pixel x 2048 

pixel image (see Figure 1). Using tools developed at the University of Florida, the image 

will be converted to a DICOM image and will be transferred to a high resolution 

workstation. There will be two images generated with phantom data to contain 

unprocessed image data and wavelet processed image data. Each 512 pixel block will either 

be unprocessed or processed and the blocks will be randomly placed on the image. The 

single flat background image with the six test objects will also be converted to a 2048 pixel 

x 2048 pixel image by surrounding the image with a 768 pixel black border. 

Workstation Display 

The high resolution DICOM workstation developed at the University of Florida is used for 

diagnostic interpretation of scanned radiographs and computed radiography. The megascan 

monitors and frame buffers are driven by a Sun Sparc20 computer with image display 

software written in-house. Images are displayed at full 2048 x 2048 resolution and can be 
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Figure 1: Configuration of output. 

manipulated with zoom / roam, window / level, and by inverting the grey scale. 

Reader Performance 

Readers will be shown the phantom images on one of the two high resolution monitors on 

the megascan with the flat grey image demonstrating the test objects on the other. By 

making all three images 2048 pixels x 2048 pixels, we are assured that the images will not 

be subsampled or enlarged, since this is the optimal image size for the workstation. We will 

use 12 readers, six radiologists (1 mammographer and 5 senior radiology residents) and six 

scientists experienced in reviewing medical physics images (two basic scientists and four 

graduate students) to score each ROI. The readers will be asked to review each ROI and 

indicate the likelihood of the ROI containing a simulated mass using a scale ranging from 0 
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(test object definitely absent) to 10 (test object definitely present). A rank of 5 indicates 

that there is a 50% probability of the simulated mass being present. 

The results for each reader and processed / unprocessed ROI will be fitted to a standard 

ROC curve, which plots the True-Positive Fraction (TPF) vs False-Positive Fraction (FPF) 

as the detection threshold is varied. The ROCFIT software package (Metz, University of 

Chicago) will be used to fit the acquired True-Positive Fraction (TPF) vs False-Positive 

Fraction (FPF) data and to obtain the resultant area, Az, under each ROC curve. A 

paired t-test analysis will be performed to assess the significance of the differences in the 

area under the ROC curve. 
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2    Body 

2.1     Generalizing the Discrete Dyadic Wavelet Transform 

2.1.1 Introduction 

Traditional orthogonal and biorthogonal wavelet representations, now ubiquitous in image 

processing and computational vision, lack shift and rotation invariance, and may introduce 

aliasing and anisotropies. Such artifacts are especially problematic for medical image 

analysis, but can be eliminated by the use of redundant representations. 

Since a mammogram can easily be translated or rotated, it is not desirable that the result 

of processing be significantly affected by positioning during acquisition or digitization. The 

two-dimensional transforms presented in this section do not introduce artifacts due to 

translation and rotation invariance. 

First, the one-dimensional discrete dyadic wavelet transform [7] was generalized to 

higher-order derivatives, equipped with a better initialization procedure, and used for 

derivation of a steerable dyadic wavelet transform. The steerable dyadic wavelet transform 

is both translation and rotation invariant, but exact reconstruction is problematic via 

implementation in the spatial domain. This was solved by a spline-based approximation 

which was used for a multiscale spline derivative-based transform. 

A multiscale spline derivative-based transform was implemented in the spatial domain as a 

filter bank consisting of x-y separable filters only. In addition to not introducing artifacts, 

the transform enables directional analysis of images across dyadic scales. 

As a sample application, two examples of image fusion are presented. Original 

mammograms were fused with an enhanced version to obtain an enhancement that looked 

more familiar to radiologists than mammograms, enhanced by global methods previously 

developed. 

2.1.2 1-D Discrete Dyadic Wavelet Transform Revisited 

In our previous report, we presented a complete description of discrete dyadic wavelet 

transform. For clarity, we summarize below definitions of the continuous and discrete 

transform [7]. 

The dyadic wavelet transform of a function s(x) e L2(R) is defined as a sequence of 

functions 

{Wms(x)}meZ, (1) 

where Wms(x) = s * i>m(x) = J^ s(t) il>m(x-t) dt, and ^m(x) = 2-m^{2~mx) is a wavelet 

ip(x) expanded by a dilation parameter (or scale) 2m. To ensure coverage of the frequency 
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axis the requirement on the Fourier transform of ipm(x) is the existence of Ax > 0 and 

B\ < oo such that 

oo 

Ai<   Y,  IÄ2m«>)l2< B^ 
m=—oo 

is satisfied almost everywhere. The constraint on the Fourier transform of the (nonunique) 

reconstructing function x{x) is 

£   </>(2ma;)x(2* ]'UJ) = 1. 

A function s(x) can then be completely reconstructed from its dyadic wavelet transform 

using the identity 

oo 
S(X) =     Yl    Wms*Xm{x), 

m=—oo 

whereXm(^) = 2—X(2-mx). 
In numerical applications, processing is performed on discrete rather than continuous 

functions. When the function to be transformed is in the discrete form, the scale 2m can no 

longer vary over all me Z. Finite sampling rate prohibits the scale from being arbitrarily 

small, while computational resources restrict the use of an arbitrarily large scale. Let the 

finest scale be normalized to 1 and the coarsest scale set to 2M. 

The smoothing of a function s(x) e L2(R) is defined as 

Sms(x) = s*(j)m{x), 

where <f>m(x) = 2-m(j)(2-mx) with me Z, and <j>{x) is a smoothing function (i.e., its 

integral is equal to 1 and <p(x) ->■ 0 as \x\ -> oo). 
In [7], a real smoothing function <f>(x) was selected, whose Fourier transform satisfied 

oo 

|^)|2 = 5]^(2^)x(2^). (2) 
m=l 

In addition, it was shown that any discrete function of finite energy s(n) e l2(Z) can be 

written as the uniform sampling of some function smoothed at scale 1, i.e., s(n) = S0f(n), 

where f(x) € L2(R) is not unique. Thus, the discrete dyadic wavelet transform of s(n) for 

any coarse scale 2M was defined as a sequence of discrete functions 

{SMf(n + s), {Wmf(n + s)}mG[i,M]}„eZ> 
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where s is a ip(x) dependent sampling shift. 

The above initialization s(n) = So/(n) is rather standard in the discrete wavelet transform 

computation [8], although it yields correct results (i.e., the discrete wavelet transform is 

equal to the samples of its continuous counterpart) only when s(n) = Sos(n). Here, we will 

concentrate on wavelets which are derivatives of spline functions and this will lead us to a 

simple initialization procedure [9] that alleviates the above problem. 

For a certain choice of wavelets, the discrete dyadic wavelet transform can be implemented 

within a fast hierarchical digital filtering scheme. Next, we shall summarize the relations 

between filters, wavelets, and smoothing functions. 

First, let us introduce a real smoothing function (p(x) such that (2) can be rewritten as1 

oo 

#M0(W) = £Ä2m")*(2mw), (3) 
m=0 

and let us set 

«*)=*(*>=Pi £(-'>• CT) (*+^ - ')'"(*+P^H ■    (4) 
i=0 

where ßp(x) denotes a central B-spline of order p. With the choice (4), we restrict ourselves 

to wavelets which are spline functions. 

Computing (3) for the finest two scales shows that 

4>(u) x(u) = ßp(io) <p(u) - ßp(2co) £(2u). (5) 

ßp(2u) can be related to ßp(u) by expressing ßp(2u) as (cf. Proposition 1 of [9]) 

ßp(2uj) 

and using ^^ = ^^ 

ßp(2u) = (cos QY    ßp(u). (6) 

(Note that a relation similar to (6) can be derived for integer scales provided that the 

dilation parameter and the order p are not both even [9].) 

Let F(u) be a digital filter frequency response and let Fs(ui) = eju}SF(uj). 

1Note that the sum index determines the range of scales of the discrete transform: using (2) we have 
V>(2w) and x(2to) at the finest scale of the transform, while for (3) we get i)(u) and x(u). 
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If we choose 

i>{u) = G-s(u)ßp{u), (7) 

<p(2u) = Ls(üo)(ß(iü), (8) 

x(u) = Ks(u)<p(u), (9) 

and 

H(u) = e^(coSQy+\ (10) 

where s G {0, \} is a filter dependent sampling shift needed for g(n), l{n), k(n), and h(n) 

to be FIR filters, and insert Equations (6)-(10) into (5), we observe the relation between 

frequency responses of the filters 

G(U)K(U) + H{U)L{CJ) = 1. (11) 

Similar to orthogonal and biorthogonal discrete wavelet transforms, the discrete dyadic 

wavelet transform can be implemented within a hierarchical filtering scheme. To derive 

such a digital filtering scheme, let us assume that s(w) from (1) is bandlimited to [—7r,7r]. 

Using Shannon's sampling theorem [10] and (7) in the definition of the dyadic wavelet 

transform (1) with m = 0 shows 

/oo       °° °° 
J2 s(i)smc(t - i)   Yl  9-s(m)ßp(x-t-m)dt. 

'°° i=—oo m=—oo 

By making use of the fact that the cardinal spline functions <qT{x) tend to the sine function 

as their order r approaches infinity [11], and employing 

oo 

Vr(x)=    53   b;\i)ßr(x-i), (12) 
i=—oo 

where ft'^n) denotes a direct B-spline filter [12], we can write 

Wos{u) ~ S(u)B-l(u)ßr(w) ßp{u)) G-S(u), 

or, by using (6) and (10), 

m—1 

HWms(x)\x=J c S{u)B;\u)Bp+r+l{u)G^{2mu) 1^(2^). (13) 
i=0 

Equation (13) entirely specifies the discrete dyadic wavelet transform decomposition, while 

the reconstruction follows from (5)-(10). Three levels of a filter bank implementation are 
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Figure 2: Filter bank implementation of a one-dimensional discrete dyadic wavelet transform 
decomposition (left) and reconstruction (right) for three levels of analysis. 

shown in Figure 2. (Note that the initialization is the same as the one proposed in [9] and 

that except for the prefiltering and postfiltering, this scheme is implementing "algorithme ä 

trous" [13].) Noninteger shifts at scale 1 for filters with s=| are rounded to the nearest 

integer. 

We will now perform a simple experiment which will illustrate the difference between the 

implementation of the discrete dyadic wavelet transform as originally proposed in [7] (i.e., 

without prefiltering and postfiltering) and the one from Figure 2. 

Let s(x) = sinc(x), p = 2, and g(n) = 25(n + 1) — 25(n) (this particular choice for p and 

g(n) results in the same wavelet as was used by Mallat and collaborators [14, 7]). The 

dyadic wavelet transform of s(x) at a scale 2m (1) in the frequency domain is then 

W^s(u) = G^(2mtü)ß2(2
muj) rect(^) (14) 

The Fourier transform of the discrete dyadic wavelet transform of s(n) = S(n) at a scale T 

using spline based initialization follows from (13) 

m—1 

i=0 

T{Wms{n)} = B;\u) Br+3(u) G.s(2muj) J[H-S(?üJ), 

while the one using the algorithm from [7] equals 

F{Wms(n)} = G^(2mco) U#_s(2«w). 

(15) 

m—1 

(16) 

In Figure 3 a comparison of magnitudes of (15) and (16) versus (14) is shown: in Figure 

3(a) magnitudes of (14) (solid) and (16) (dashed) are plotted for m € {0,1, 2, 3}, while the 

dashed curves in 3(b) represent magnitudes of (15) with r = 5. 

By choosing the appropriate order r, (15) can approximate (14) in the interval [—7r,7r] 

arbitrarily good, while originally proposed (16) has troubles at finer scales. Mallat and 
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Figure 3: (a) Fourier transform magnitudes of the dyadic wavelet transform of s(x) = sinc(:r) 
(solid) and the originally proposed discrete dyadic wavelet transform [7] of s(n) = 5(n) 
(dashed), (b) Fourier transform magnitudes of the dyadic wavelet transform of s(x) (solid) 
and the discrete dyadic wavelet transform using quintic splines for interpolation of s{n) 

(dashed). 

25 



Zhong [7] noticed that there was a problem with their discrete transform computation, and 

introduced a set of constants associated with the discrete transform coefficients at dyadic 

scales. They chose the values of constants such that the transform coefficient modulus 

maxima remained constant over all dyadic scales for a step edge input signal. In relation to 

Figure 3(a) this is equivalent to multiplying F{Wms(n)} by a distinct constant for each m. 

Clearly, this is an improvement over the situation depicted by Figure 3(a), but remains 

inferior to spline based initialization. 

Next, we choose filters in the filter bank implementation of the discrete dyadic wavelet 

transform. As previously mentioned, we are interested in wavelets which are derivatives of 

spline functions. From the property of the central B-spline functions [15] 

dßp(x) 
dx 

= ßp-1(x + -J - ßp-Ax--\ 

it follows that G(u) in (7) is the Fourier transform of the difference operator centered 

around — s: 

G(u>) = e*"(2jsin (|))d, (17) 

where d is the order of the derivative and the sampling shift for this filter is s — ^2^. 

Since H(u) was already given by (10), the remaining two filters to be determined are L(u) 

and K(UJ). Both of them are (as is true for (p(x) and x(x)) nonunique. 

If we choose L{oS) such that we can express K(u) in terms of a finite geometric series 

having the smallest number of elements for an arbitrary p, we get 

|d+i, 

LM = C-*» £ (-l)m+1 (  L^J      (cos (I)) (18) 
m=l 

LO <faiod2 

K(u) = ~   e-^sin   ^ >     cos^ , (19) 

and 

(23y\ V2 

where [^J denotes the largest integer smaller than x, the sampling shift for L(u) is the 

same as the one for H(u) (i.e., g = (j>fl)
2
mod2), and the sampling shift for K(u) is the same as 

the one for G(u>). 

Note that Equations (10) and (17)-(19) work fine from the mathematical point of view, 

but in practice the reconstruction may become cumbersome when both p and d are large. 

(The lengths of impulse responses h(n), g(n), l(n), and k{n) are p+2, d+1, 

(p+l)(d-(d+l)mod2) + l, and pd+(p+l)(dmod2) + l, respectively, while for the frequency 
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responses of the decomposition filters we observe that linip^oo \H-S(u)\ = 5U(LO + 2nir) and 

limd_00(2j)-d \Gs{u)\ = Su{co + (2n+l)7r) with n € Z.) 
It is also worth noting that K(w) is a lowpass filter when p is even (i.e., the reconstruction 

function xix) is a wavelet only for p odd). 

Tables 1, 2, and 3 list impulse responses of the four filters for p G {0,1,2} and d e {1,2,3}, 

while Figure 4 shows wavelets ip(x) ddßp+d(* 
dxd for the same values of p and d. Wavelets 

from this family have a support of length d+p+1, regularity order p, and are either 

symmetric or antisymmetric. 

Table 1: Impulse responses h(n), g(n), l(n), and k(n) for p = 0 and d £ {1,2,3}. 

n %) 

d=l d = 2 d = 3 

9{n) l(n) fc(n) g{n) /(n) k(n) PW On) k{n) 

-2 
-1 0.5 1 1 

1 
-3 -0.125 

0 0.5 -1 0.5 -0.25 -2 0.5 -0.25 3 0.625 0.0625 

1 0.5 0.25 1 0.5 -1 0.625 -0.0625 

2 -0.125 

Table 2: Impulse responses h(n), g{n), l(n), and k(n) forp = l and d e {1, 2, 3}. 

n 
/i(n) 

Z(n) 
0.25 
0.5 
0.25 

d=l 
gin) k(n) 

-0.0625 
-0.3125 
0.3125 
0.0625 

d 

9{n) k(n) 
-0.0625 
-0.375 
-0.0625 

n 
d = 3 

h(n) 9(n) l(n) k(n) 
-3 -0.015625 

-2 1 -0.09375 0.00390625 

-1 0.25 -3 0.265625 0.04296875 

0 0.5 3 0.6875 0.1015625 

1 0.25 -1 0.265625 -0.1015625 

2 -0.09375 -0.04296875 

3 -0.015625 -0.00390625 

As already discussed, wavelets with p = 2 and d=l from a family of wavelets with p even 

and d=l were used in [14, 7], whereas filters with p=l and d=2 from a family of filters 

with p odd and d=2 were employed in [16, 17, 18]. Here described transform puts no 

restrictions on the choice of p or d whatsoever, and uses a better initialization procedure 

than the one originally proposed in [7]. 
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Table 3: Impulse responses h(n), gin), l(n), and k{n) for p=2 and d G {1,2,3} 

n 
-2 
-1 
0 
1 
2 
3 

h[n) 
0.125 
0.375 
0.375 
0.125 

d=l 
#0) 

l 
-i 

J(n) 

0.125 
0.375 

0.375 
0.125 

k(n) 
-0.015625 
-0.109375 
-0.34375 
0.34375 
0.109375 
0.015625 

d = 2 

g{n) l(n) 

0.125 
0.375 

0.375 
0.125 

k(n) 
-0.015625 
-0.125 
-0.46875 
-0.125 
-0.015625 

n 
d = 3 

h(n) g(n) l(n) k(n) 

-4 -0.001953125 0.000244140625 

-3 -0.017578125 0.003662109375 

-2 0.125 1 -0.0703125 0.0263671875 

-1 0.375 -3 0.085937 0.0908203125 

0 0.375 3 0.50390625 0.13037109375 

1 0.125 -1 0.50390625 -0.13037109375 

2 0.0859375 -0.0908203125 

3 -0.0703125 -0.0263671875 

4 -0.017578125 -0.003662109375 

5 -0.001953125 -0.000244140625 

2.1.3    Steerable Functions 

When extending the transform from Section 2.1.2 to two dimensions, one of the first 

questions that come to mind is how to deal with the fact that derivatives can be defined in 

any direction of the plane. In the case of a first derivative of a Gaussian, one can simply 

compute first derivatives of a Gaussian in x and y directions and then determine the 

derivative in any direction from these two directional derivatives [19]. For higher order 

derivatives of a Gaussian, Freeman and Adelson [20] showed that order+1 directional 

operators are needed for synthesizing the operator at any orientation. In fact, functions 

with the property of expressing their arbitrary rotations as linear combinations of some 

functions are not limited to derivatives of a Gaussian. Below, we briefly restate some of the 

results from [20]. 
A two-dimensional function is called "steerable" if its rotations generate a finite 

dimensional space. Rotations of a steerable function f(r, 6) can therefore be expressed as 

/(r,ö-ö0) = X;ci(öo)/i(r,(9), (20) 
i=l 

where 90 denotes an arbitrary angle, {CJ(0O)} stands for a set of interpolating functions, 
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{fi(r, 9)} is a set of basis functions, and r = \Jx2 + y2 and 9 = arg(x, y) are polar radius 

and angle, respectively. 

If f(r, 9) represents a filter kernel, the result of filtering with a rotated filter f(r, 9 — 90) can 

be computed simply by {CJ(0O)} weighted linear combination of outputs from basis filters 

{fi(r,9)}. Only the outputs from basis filters need to be precomputed and then the output 

from a filter rotated by any angle 80 can be found by interpolating between them. When a 

large number of rotations of a template filter is required, the above scheme can lead to 

substantial savings in both computational cost (time) and memory requirements (space). 

The necessary condition for a function f(r, 9) to be steerable is that f(r, 9) is bandlimited 

in its polar angle: 

N 

f(r,6)=  ]T an 
n=-N 

T e jn6 (21) 

This can be verified by inserting (21) into (20) and by assuming, for convenience, that 

fi{r,9)=f(r,9-9l): 

an(r)e -jn60 Y2cl(90)an\ r e -jnOi (22) 
i=\ 

where {^} is a set of user defined angles and n G [-N, 0]. 2 Since only nonzero coefficients 

an(r) are of interest, both sides of (22) can be divided by an(r). This yields a matrix 

equation from which interpolating functions Ci(90) can be determined: 

oJN90 

DdVl OJ02 

JN9!     pjN82 

ojUl 

ajNdt 

Cl(öo) 

C2(0<>) 

ci(90) 

(23) 

For coefficients an = 0 the rows corresponding to each n were removed from the matrix 

formulation shown in (23). For this system to have a solution, the angles {#;} must be 

chosen such that the columns of the matrix are linearly independent. 

In [20] they proved that the minimum number of basis functions /j(r, 9) needed to steer 

f(r, 9) according to (20) is equal to the number of nonzero coefficients an(r) in the Fourier 

series expansion (21). 

To conclude this brief description of steerability, let us only remark that functions which 

are not steerable (i.e., do not have a finite number of terms in (21)) can be approximated 

with steerable functions (a singular value decomposition was employed for approximating 

2Note that the constraints are the same for n G [-N, -1] and n £ [l,iV], so that a subset of all possible 
values for n £ [-N, N] can be taken. 
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such functions efficiently [21]), and that the technique of expressing transformed versions of 

a function as linear combinations of a fixed set of basis functions is not limited to rotations 

(extensions to translations [22], scalings [21, 22], and general transformations [23] have 

been reported). 

2.1.4    Steerable Dyadic Wavelet Transform 

Returning to the question from the beginning of Section 2.1.3, the answer seems obvious: 

one needs to construct a steerable analog to the one-dimensional transform from Section 

2.1.2. Steerable transforms are nothing new—quite a few [24, 25, 26, 22] have been devised, 

some of them [25, 26] exactly for the computation of directional derivatives. Here, we are 

not interested in any directional derivatives: we want to use derivatives of central B-splines 

which, as the order of B-splines increases, tend to derivatives of a Gaussian. 

We define a steerable dyadic wavelet transform of a function s(x, y) G L2(R ) at a scale 

2m, m G Z, as [27] 

W}ns{x,y) = s*ißin(x,y), (24) 

where ^m{x,y) denotes i/jm(x,y) rotated by du ipm{x,y) = 2-2mi;(2'mx,2-my), iß(x,y) is a 

steerable wavelet that can be steered with I basis functions, and 6t = ^TT with 

*G{1,2,...,/}. 
Analogously to the one-dimensional case (cf. Section 2.1.2) we require the two-dimensional 

Fourier plane to be covered by the dyadic dilations of ipi{2mux, 2
muy): there must exist 

A3 > 0 and B3 < oo such that 

oo / 

A3 <   Yl  J]|^(2ma;:c,2
ma;J/)|

2< B3 (25) 
m=—oo i=l 

is satisfied almost everywhere. 
If (nonunique) reconstructing functions xL(x^v) are chosen such that their Fourier 

transforms satisfy 

OO 1 

£   ^ft(2mux,2
muy)r(2rux,2

mu>y) = l, (26) 
m=—oo i=l 

the function s(x,y) may be reconstructed from its steerable dyadic wavelet transform by 

oo I 

*(*>v)= E E^>*^^ (27) 
m=—oo i=l 

where }Cm{x,y) denotes Xm&y) rotated by ei and Xm{x,y) = 2-2m
X{2'mx,2'my). 
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To derive an algorithm for the fast computation of the transform, we, similar to (3), 

introduce two smoothing functions such that 

oo       I 

$(ux,uy)<p(ux,uy) = ^J]^(2"l^,2-a;2/)x
l(2m^,2ma;,). (28) 

m=0 i=l 

We choose wavelets that are steerable analogs to the one-dimensional wavelets from Section 

2.1.2:3 

xP(ur, Loe) = (JLür cos(ce))
d i-^J , (29) 

where uor = \fux + ul and ujg = avg(Lox,u!y). These wavelets can be steered with d+1 basis 

functions (i.e., / in (20) is equal to d+1). 

Choosing 

<j)(2ur) = Hst{ur) (j>(ujr), (30) 

ipl(ur, ujg) = Gst(ujr,uje - 0i) 4>(u)r), (31) 

<p(2ur) = Lst(ujr) <p(u>r), (32) 

and 

Xl(ur, coo) = Kst(ujr,ue - d{) (p{ujr), (33) 

and using (30) through (33) with (28) computed for the finest two scales, we obtain 

^2 Glt(ur, u<p - O^Kstiur,^ - 9t) + Hst{ur)Lst{ur) = 1. (34) 
i=l 

Setting 4>(ior) = ßp(cor), and employing (6) and (29) with (30) and (31), we find that 

Hst{ujr) = H.s(cor) (35) 

and 

Gst{ujr,üjg) = (cos(uje))
dG-s{ur), (36) 

where H(co) and G{u) are specified by (10) and (17), respectively. 

By inserting (35) and (36) into (34), the missing two filters can be chosen as 

Lst(ur) = Ls(ur) (37) 

and 

Kst(ior,ug) = —(cos{ue))
dKa{u)r), (38) 

where L(OJ) and K(cu) are given by (18) and (19), respectively, and Cd = 

Ef=i(<*»("-ft))M-  
3This choice can be viewed as an extension of the transform presented in [28, 27, 29]. 

32 



2.1.5    Multiscale Spline Derivative-Based Transform 

Let us pause here for a brief assessment of the two-dimensional steerable transform derived 

so far. We have chosen steerable wavelets (29) which are equal to d-th order derivatives of 

circularly symmetric spline functions in the direction of z-axis (note that knots for these 

splines are circles) and we have laid a foundation for filter bank implementations in (34). 

An obvious shortcoming of this scheme is the fact that none of the filter kernels obtained 

from (35) through (38) is compactly supported on the rectangular grid. For 

implementations using digital filters, one is therefore forced to approximate these frequency 

responses, and by doing so, (34) may not hold anymore. Filters in filter bank 

implementations of steerable pyramids described in [25, 26, 22], for example, were designed 

by using various techniques for approximating desired frequency responses. None of the 

reported filter banks achieved perfect reconstruction and all filter kernels were 

nonseparable. Here, we will take a different approach. We will approximate the wavelets in 

(29) in a way that will lead to x-y separable filters in a perfect reconstruction filter bank 

implementation of the transform such that the quality of approximation will improve by 

increasing the order of B-splines. 

Let us approximate wavelets from (29) with 

Based on the fact that B-splines tend to a Gaussian as their order increases, it is easy to 

see that both wavelets (29) and (39) converge to the same functions (i.e., d-th order 

derivatives of the normalized Gaussian in the direction of £-axis) as p -> oo. 

In order to steer wavelets ip(x, y) given by (39) (note that steering will be only 

approximate, since these wavelets are not steerable), we need to find basis functions that 

will approximately steer ip{x,y). Computing rotations, as we did in (24), is not practical 

here, because arbitrary rotations of (39) cannot be expressed exactly in terms of central 

B-spline functions. Instead, we take advantage of the property of circularly symmetric 

functions that rotations of their directional derivatives are equal to directional derivatives 

in rotated directions: 

ddQc(x,y)\ __ ddQc{x,y) 
Ke0 dnd      I dnt 

where TZe0 stands for rotation by 0O, ^#^ = nVgc{x,y), gc{x,y) is a circularly symmetric 

function, and neo denotes vector n = (cos 6, sin 9) rotated by 90. 

Let us choose 

g(x,y) = ßP+d(x)ßp+d(y), 
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which is approximately circularly symmetric function for higher order splines. A rotation of 

tp(x,y) =    g*d     from (39) by 90 can therefore be approximated by 

*»<*■») * %^=t (?) <-"^w y.    <«» 
where n = (cosö0,sinö0) = (nXlny). 

Note that in case of Gaussian, which is both x-y separable and circularly symmetric, (40) 

becomes exact (e.g., for g(x,y) = e~(x +y \ 60 = -6, and d = {2,4}, we obtain, up to a 

scaling factor, x-y separable basis set for the second and fourth derivative of Gaussian from 

Tables III and VII of [20]). 

Having found a set of basis functions (40) that approximately steer wavelets (39), we want 

to construct a transform such that Equations (24) through (28) will be valid (superscript i 

must be viewed now as an index, rather than rotation by 0i). In frequency domain, we can 

express basis functions from (40) as 

4>i+1(ux,uy) = Gdss
iMGi-sMßp+iMßp+d-iM,    i = o,i,...,d,        (4i) 

where Gd(u) is given by (17) and G°(ui) — 1. 

Choosing appropriate xl(u}x,u>y) to obtain a relation needed for the filter bank 

implementation of the transform is more complicated than in one dimension. Since we 

could not find a general solution for arbitrary d, we solve each case separately. Below, we 

present solutions for the first four orders. When d < 2, we impose 

(p(ux,Uy) = (j)(ux,Uy) = ßp(ux)ßp(cüy), & constraint analogous to the one from Section 2.1.2. 

For d = 1, we write similar to [7] 

Xl{uxiUy) = KlMT^UytäMßp-xiuy), (42) 

j?{wx,u)y) =T1(ujx)K1
s(ujy)ßp^1(ux)ßp(uy), (43) 

where 

T1(co)=l-(l + \H(cv)\2) 

and Kd(co) is given by (19). 

Computing (28) for the finest two scales and inserting (6), (41), (42), and (43) yields a 

relation between frequency responses 

G^u^MTxiuy) + TiMG^&M + \H(cox)H(uy)\
2 = 1. 
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For d = 2, we choose 

X\UJX,UJV) = K2(ux)T2(ivy)ßp(ux)ßp^(uy), (44) 

X2(cox,u;y) = KlMKlMßp^Mß^M, (45) 

f(cox,ivy) = T2(ujx)K2
s(coy)ßp-2MßPM, (46) 

where 

T2{u) = \H{u)\2. (47) 

Using (6), (41), and (44) through (46) with (28) results in 

G2(tox)K2(üJx)T2(cüy) + G\u)x)Kl{u}x)G\uy)K
l{ujy) + T2(tvx)G2(ujy)K

2(ujy)+ 

+ \H{üüx)H{ioy)\2 = l. 

For orders d > 2, we require <t>{u)x,vv) = ßP{ux)ßP(uv) and <p{wx,uy) = <P{UX)<PM, 
where 

cp(u) is specified by (8) and (18). 

For d = 3, we choose reconstructing functions 

Xl{tox,uy) = ^(w^tw^-sK)- (48) 

X2(cox,uy) = -^(cj^^KJ^MVaC^J^-iKJ^-aK), (49) 

X3K,^) = -^KJ^KJ^KJVaCa;,,)^^)^-!^,,), (50) 

X4(ux,uy) = K3
s(ujy)(p-3(ujx)(p(ujy), (51) 

where 

V3{u) = ^=(l-\H{u)\2), (52) 

and ^_i(o;) € V-{R) denotes a function such that <p(u) = Pi-i(u)<p-i(u), i e N. 

Employing (41), (6), (8), and (48) through (51) with (28) yields a relation 

G3(ux)K3(ux) - G2{ux)K2{u:x)Vi{uJx)G
l{uJy)K\uy)V,{ujy)- 

-Gl(Lüx)K\u;x)V3(cox)G2(uy)K
2(iüy)V3(coy) + G\uy)K\uy)+ 

+H(ux)L(cox)H{ujy)L{u}y) = 1, 

where L(u>) is specified by (18). 

For d = 4, our choices are 

Xl{^x^y) = K4
s{u}x)T2(uy)ip(ujx)(p-i{uJy), (53) 

xVx.Wy) = KtMKlMip-tMfaW, (54) 
X3(ux,uy) = ~K2

s(ujx)K2(uy)V4{ujx)V4(uy)<p-2(ux)0-2(uy), (55) 

XA(ux,u>y) = K]{u)x)Kl{uv)<p-z{ux)<p-i{uy), (56) 

X5(cüx,cüy) = ^(wJ^m^iKl^K), (57) 
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where 

V4(ux) = l-\H(u)\2. (58) 

Using the above functions (53) through (57), (41), (6), and (8) in (28) computed for the 

finest two scales gives 

Wv) G4(cux)K\u;x)T2(u;y) + Gz{Lüx)K\ujx)Gl{uy)K
l( 

+T2{ujx)G\Lüy)K\uJy) + H(cüx)L(cox)H(cüy)L(uy) = 1. 

Here, we have even more freedom for choosing the reconstructing functions than in one 

dimension. The above functions for d = {2, 3,4} were found by trying to reproduce the 

one-dimensional transform from Section 2.1.2 as much as possible. All decomposition filters 

Gd{uj) were first paired with corresponding reconstruction filters Kd(uj), and then all other 

potential digital filters were specified as polynomials in H-S(u). We inserted thus specified 

filters into a relation between their frequency responses and solved for the unknown 

polynomial coefficients. Since we allowed more filters with higher-degree polynomials than 

expected in the solution, the resulting system of linear equations was underdetermined. 

This allowed enough freedom for removal of undesired digital filters and for balance 

between degrees of polynomials. 

The described procedure for determination of reconstructing functions and filters involves 

quite a lot of heuristics to obtain the appropriate solution from the underdetermined linear 

system. Unfortunately, we are not aware of any systematic way (aside from numerical 

optimization, which may be pretty cumbersome) to obtain solutions comparable to the 

ones above. 

Next, we will derive a filter bank implementation of the transform. Similar to the 

one-dimensional case from Section 2.1.2, we assume a bandlimited input signal: 

s(u>x,Uy) = 0 for \LOX\ > 7T or \uy\ > n. Using Shannon's sampling theorem in two 

dimensions [30] with (24) and basis functions from (41), we can write 

/OO        /»OO °° °° 

Y    Y  s(ixiiy)s>inc{tx-ix)smc(ty-iy)- 

00 OO 

•   Yl   9dSs
l{mx)ßp+i{x -tx- mx)   ^   gl_s(my)ßp+d_i(y - ty - my) dtx dty, 

lx = — OO 

where i — 0,1,... , d as in (41). 
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Again, we approximate sine functions with r-order cardinal splines, then use (12), and get 

DFT{W^s(x,y)\x=nxy=ny} ~ S(cox,ujy) B;l(cox) B;l(coy) Bp+r+i+1(uxy 

m—l 

■Bp+r+d_i+l(uy) G
drs

i(2mux) Gl_s(2m"y) HHp+
s
i(2nux)H

p_+s
d-i(2nLüy). (59) 

n=0 

Using (59) with an approximation Bp+r+i+i(co) ~ Bp+r(u)Bi(u), we can obtain a filter 

bank implementation of the transform decomposition. The reconstruction part follows from 

(28), (41), and reconstructing functions for distinct values of d. Figure 5 shows filter bank 

implementations of a multiscale spline derivative-based transform for d = {1, 2,3, 4}. For 

d = 1, we recognize (except for the prefiltering and postfiltering) the filter bank 

implementation of a two-dimensional discrete dyadic wavelet transform from [7]. For d = 2, 

however, our transform differs from the filter bank presented in [17]: second derivative is 

computed only in the directions of x and y-axis in [31, 17], which is not enough for 

steering. Although not particularly appropriate for orientation analysis, such a scheme may 

still efficiently approximate Laplacian of Gaussian across dyadic scales. 

A transform similar to the one described in this section, was presented in [25, 26, 22]. 

Their filter bank implementation is less redundant (downsampling is used on the lowpass 

branch, while simultaneously keeping aliasing negligible by using a filter with insignificant 

amount of energy for \uor\ > |) and uses reconstruction filters with same magnitude 

frequency responses as the decomposition ones—a possible advantage for certain 

applications. They have, on the other hand, little control over the function from which 

derivatives are computed (to obtain a d-th derivative, they multiply a circularly symmetric 

filter by (—j cos6)d with all filters being obtained by recursive minimization of a weighted 

combination of constraints), filter bank does not have perfect reconstruction, and none of 

the filters is x-y separable. 

2.1.6    Image Fusion Application 

A new direction in our visualization methodology (Phase IV statement of work) involves 

the use of image fusion. A problem with our early algorithms using multiscale global 

enhancement was that they produced results which were somewhat unfamiliar looking 

compared to traditional methods of enhancement and the original mammogram. Examples 

of two such cases are shown in the middle of Figures 6(a) and 6(b): textures of fibrous 

tissues extracted from the modulus of transform coefficients and multiscale histogram 

equalization [32]. These representations did an outstanding job of extracting salient 

features in mammograms but were difficult for radiologists to interpret without additional 

training. 
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Figure 5: Filter bank implementation of a multiscale spline derivative-based transform for 
me [0, M - 1]: (a) Preflltering, (b) postfiltering, (c) decomposition and (d) reconstruction 
modules for d = 1, and (e) decomposition and (f) reconstruction modules for d = 2. 
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Figure 5: Continued: (g) Decomposition and (h) reconstruction modules for d = 3, and 
(i) decomposition and (j) reconstruction modules for d = 4. Decomposition modules are 
recursively applied at the locations of the filled circles. 
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By integrating the original mammogram with (one or more) enhanced versions we can 

produce (synthesize) an image which is more familiar (and appealing) to mammographers 

and general radiologists. Thus, fusion plays an important role in avoiding a "paradigm 

shift" in current protocols. 

Traditionally, image fusion combines different aspects of information from the same 

imaging modality or from distinct imaging modalities [33] and can be used to improve the 

reliability of a particular computational vision task or to provide a human observer with a 

deeper insight about the nature of observed data. 

Our fusion method is based upon a multiscale spline derivative-based transform [28] which 

enables multiscale image processing along arbitrary orientations. Steerable dyadic wavelet 

transforms share many properties with multiscale representations used in image fusion, 

such as pyramids [34, 35] and traditional wavelet analysis [36, 37]. However an important 

difference is translation and rotation invariance, and the absence of aliasing in its filter 

bank implementation. Both aliasing and translation non-invariance can be sources of 

unwanted artifacts in a fused image [38]. 

For images to be fused, filters from the filter bank implementation of a multiscale spline 

derivative-based transform are used in quadrature pairs (i.e., with their Hubert transform 

counterparts). Quadrature pairs of filters steered to some arbitrary angle are used to 

determine the local oriented energy defined as the sum of the squared outputs from each 

filter of the quadrature pair. Local dominant orientation (i.e., the angle that maximizes the 

local oriented energy) is determined at each level and position, filters are steered to the 

local dominant orientation, and local oriented energies are compared. The coefficients 

corresponding to the greater local oriented energy are included for reconstruction, resulting 

in a fused image. 
Figure 6(a) shows an example of fusion of a mammographic image with the modulus of the 

dyadic wavelet coefficients, while Figure 6(b) presents an example of fusion of a 

mammographic image with the mammogram enhanced by multiscale histogram 

equalization. In both cases the fused image features enhanced structures, while having an 

appearance similar to the original mammogram. 

2.1.7    Summary 

The one-dimensional discrete dyadic wavelet transform was extended to higher-order 

derivatives and even-order spline functions, and an improved initialization procedure was 

developed. In comparison to the originally employed initialization [7], our method showed 

significantly better performance at finer scales of analysis (of importance for 

mammographic features including microcalcifications). 
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Figure 6: (a): Fused image (bottom) of an original mammogram (top) with the selected 
modulus of dyadic wavelet coefficients (middle), (b) Fusion (bottom) of a dense mammogram 
(top) with a mammogram enhanced by multiscale histogram equalization (middle). 
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A multiscale spline derivative-based transform was constructed as an approximation to a 

steerable dyadic wavelet transform. The transform used x-y separable niters in a perfect 

reconstruction filter bank and enabled fast directional analysis of images without the 

introduction of artifacts due to translation and rotation invariance. Such artifacts are 

inherent to traditional methods of wavelet analysis. 

Preliminary image fusion results showed promise for producing enhanced images with a 

more familiar appearance to radiologists. 

2.2    A Parallel Algorithm to Support Interactive Wavelet 
Processing on a Radiologist Workstation 

2.2.1    Introduction 

Diagnosis of mammography is one of medical imaging applications where digital image 

processing is used to extract either implicit or explicit characteristics from digital data. 

Many of medical imaging applications require broad base-level functionality for image 

manipulation, and display to support technical end-users in areas of Radiology and CAD 

(Computer Aided Diagnosis). An electronic view-box for medical imaging analysis may 

require advanced image processing capabilities, including transformation, filtering or 

enhancement [39]. In addition, common image manipulation facilities such as convolution, 

warping, logical operations, comparisons, and arithmetic are often desirable to exploit the 

large dynamic range in contrast resolution provided by digital X-ray detectors. 

In this chapter we describe the design of a high-speed parallel algorithm to support 

interactive analysis via multiscale processing. In addition to writing multi-threaded code, 

based on kernel support for multiple threads of control and changing the scheduling class 

policy to real-time mode, our algorithm required hardware and software support for 

high-speed image manipulation. 

We used a SPARCstation 20 Model 71 with an SX frame buffer to execute our 

algorithm. The SPARCstation SX system's direct accessibility to physical and display 

memory provided flexible and powerful capabilities for the management, manipulation, and 

display of large image matrix sizes, typical of digital mammography 

On top of the SPARCstation SX hardware, foundation graphics libraries were utilized. 

XGL and XIL accelerate many of graphics and X-extension library functions. As a 

foundation-level imaging interface for the SUN Unix programming environment, the XIL 

library defines how imaging operations such as display and image manipulation are carried 

out on the workstation [40]. 

In this section, we review the architecture of the SPARCstation SX system, and 
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describe briefly the XIL foundation graphics interface and relevant functions accelerated on 

the SX system processor. We then introduce new algorithm to accomplish the forward and 

inverse discrete dyadic wavelet transforms that exploits the parallel architecture of the 

machine. 

2.2.2    Architectural Overview of SPARCstation SX System 

The SPARCstation SX graphics processor is a scalable graphics architecture consisting of 

an enhancement to memory controller chip on an MBus within a SPARCstation. The 

SPARCstation SX system relies on the notion that graphics operations become extensions 

of native integer and floating-point operations of the CPU. The SPARCstation SX system 

employs a closely-coupled architecture, wherein a dedicated processor handles low-level 

display operations through processor-memory direct access. Residing directly on the 

CPU-memory bus, the SPARCstation SX memory controller, called the SMC, can perform 

extremely fast transfer of data from physical memory (DRAM) to the display frame buffer. 

The close-coupling of the SMC to the SPARCstation CPU further enables floating 

point-based computation to utilize the high-performance transformation capabilities on the 

SPARC processor. Figure 7 illustrates the high-level architecture of the SPARCstation 

MBus system, including CPU, SMC processor, and video memory. 

Main Memory 

Figure 7: SPARCstation SX system high-level architecture [39]. 

The SMC processor lies on the MBus between the SPARC CPU(s) and memory. In 

addition, Video RAM (VRAM) is mapped into the same address space, allowing the SMC 
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to access and manipulate the display in the same manner as DRAM. This addressing gives 

the SPARCstation SX system superior bandwidth in moving large size images, e.g. 

mammograms, from memory to the screen. 

Instructions executing in one or more of the SPARC CPUs make requests of the 

memory controller (MC) portion of the processor. The memory controller logic fulfills CPU 

requests for memory accesses, such as those required for fetching, loading and storing 

instructions. 

When one of the CPUs encounters a graphics operation, it passes it to the SMC pixel 

processor (SXPP), which executes the instruction directly. When memory access is 

required to complete an operation, the SXPP makes a request to the memory controller. 

2.2.3    XIL Imaging Library 

The XIL library from Sun Microsystems is a foundation-level imaging interface providing 

common functions required by most imaging applications. Such a library is an application 

programming interface (API), but it is different from "normal" APIs because it is hardware 

dependent. The XIL library contains three primary components: a programming interface 

specification for basic imaging functionality, a high-performance implementation of the 

specification, and a standard hardware interface specification, which enables third-party 

hardware developers to readily support the XIL library and applications built on it [40]. 

Figure 8 illustrates the XIL library in relationship to other foundation-level interfaces. 
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Figure 8: Solaris foundation graphics libraries and layered interfaces [40]. 

Monadic and dyadic operations are of particular interest within XIL library. Every 

XIL operator can be considered an atom. Groups of XIL operators concatenated in a 

sequential manner are known as molecules. Molecules are important to the SPARCstation 
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SX SMC processor because they allow the device to notify the XIL library at runtime, and 

obtain hardware support for groups of chained operations. At runtime, the SMC device 

handler loads into memory and notifies the XIL library of the atoms and molecules it 

wishes to replace with its own equivalent mapping to hardware. The XIL library uses a 

directed acyclic graph to hold a list of these dependencies during execution. When the XIL 

library encounters a known sequence of operations, it transfers the operation to the SMC 

for execution. XIL applications can realize significant performance improvement from the 

deferred execution [40]. 

2.2.4    An Algorithm for High-Speed Wavelet Analysis 

In frame-based multi-scale representations [32], spatial convolution require 2l - 1 zeros 

between each non-zero filter coefficients in a filter kernel as scale changes. This increases 

the computational complexity exponentially. However, there exists an algorithm that 

reduces the computational complexity by a factor of 2l. The basic idea behind this 

algorithm is to keep the size of the filter kernels unchanged throughout multiscale analysis. 

Instead, we partition the input image into four sub-regions so that each region contains 

only those pixels affected by the filter kernel (without expansion). 
Figure 9 illustrates differences between the two approaches: a linear convolution with 

zero-paddings in the kernel, and an alternative method by splitting the convolved image 

into four sub-regions for further convolution at finer levels. The former is shown in Figure 

9(a). At level 2, zeroes are inserted between the non-zero filter coefficients. Figure 9(b) 

graphically illustrates the new method. First, the input image is convolved with the 

original filter kernel at level 1. The convolved image is then divided into four sub-regions 

such that each region consists of only those pixels processed by the convolution at the next 

level (1 = 2). After this splitting, convolutions are then applied to each of the sub-regions 

independently. To visually describe this, we show within the input image matrix four 

distinct pixel shapes: dot, triangle, square, and x, in such a way that pixels that belong to 

the same group are identified. 
For example, let us compute the value located at coordinate (2,2) in the input image 

shown in Figure 9(a) marked by a dot. All pixels within the rectangular area from (0,0) to 

(4,4) will participate in the computation. However, with respect to traditional convolution 

the zeros in the filter kernel at level 2 effectively mask out all other pixels having shapes 

other than a dot. Thus pixels that actually take part in the computation are those having 

a dot shape located at coordinates (0,0), (0,2), (0,4), (2,0), (2,2),(2,4), (4,0), (4,2) and (4,4). 

The region labeled / shown in Figure 9(b) at the level 2 contains exactly those pixels. The 

convolution is carried out separately in this region and gives us the same result numerically 
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Figure 9: (a) Traditional linear convolution (denoted by ©) at scale I = 1, I = 2. One zero is 
padded between non-zero filter coefficients in the filter kernel at scale 2. (b) Alternative approach 
that avoids zero-paddings between the non-zero filter coefficients. We first convolve the input image 
with the original filter kernel at the level 1. The convolved image is then divided into four sub- 
regions, marked in the background as I, 77, 1/7, and IV with half-grayed tone, each of which holds 
pixels that are precisely affected by the filter kernel coefficients at the next level 1 = 2. Four distinct 
pixel shapes inside the input image are shown: •, A, D and x. Only pixels that have the same 
shape are processed by convolution at the next level (denoted by ©). 
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as the traditional method. 

Synthesis is simply the reverse of analysis. In other words, we first merge four 

sub-regions at a coarser level into a larger region, then convolve it with a filter kernel. 

Figure 10 shows the synthesis process. 

• • a     :     -» 
•-:   • &    -a 

n   ;.p;. xj,x 

□    D x rx 

Merge 
-r> 

• a • a 

D X □ X 

• a • D 

D x a x 

® 
a b c 
d e f 
9 h i 

Figure 10: Multiresolution block convolution for image synthesis. Four sub-regions in the input 
image at a coarser level, marked as I, II, III, and IV, are merged into a larger region at a finer 
level. Then, convolution is applied to the merged region. 

For quantitative comparison, let us compute the computational complexity of each 

method of implementation. For simplicity, we focus on the analysis only. Let the size of the 

input image and the size of the original filter kernel be n and m, respectively. And let us 

denote the level of analysis by /. Then, in the traditional linear convolution case, the 

computational complexity CA is 

CA = n2 * (m + 2l - 2)2, 

and in our approach, the computational complexity CB is 

CB = n2 * 21-1 * m 

Normally, the size of the filter kernel is small, so we can assume m is a constant. The 

speedup by the new approach is then 

O CA 

Cn 
0 (£) = °(2,) • 

Algorithm 1 computes the two-dimensional discrete wavelet transform by this more 

efficient method. The variables, n and m, denote the size of the input image and the size of 

the filter kernel, respectively. [FilterKernel]XiY is created by the tensor product of two ID 

filter kernels: X, Y. Thus, 

[Filter Kernel \X,Y = X'Y. 

[X]™* defines a ROI of size w x h starting a,t [r x w,cx h}. There are three global 

variables in the algorithm: LEVEL, WIDTH, HEIGHT. By LEVEL, we denote the number 

47 



Algorithm  1 Two-dimensional discrete dyadic wavelet transform using block splitting 
method  

Require: n : dyadic number (n > m) 

for / = 0 to / < LEVEL do 

W = WI°TH {w : width of ROI } 

h = HEI£HT {h : height of ROI} 

for r = 0 to r < 2l do 
for c = 0 to c < 2l do 

[ROI]w,
c  -4= Obtain a region of interest from the input image with size of 

w x h starting at [r x w,cx h] 

L,G lW2'f}?c *= SPUt (\R0ITr;c * [FilterKernel] 

Mf]Zk *= Split ^R0I^c * [FUterKernel\GtL 

[ROI]™* 4= Split ([ROI]™* * [Filter Kernel]H^ 

{The process of block splitting is shown in Figure 9(b).} 
end for 

end for 
end for 

Algorithm 2 Two-dimensional inverse discrete dyadic wavelet transform by merging sub- 
regions   

Require: n : dyadic number (n > m) 

for I = LEVEL - 1 downto / = 0 do 

w = WIDTH 
2' {w : width of ROI } 

h = "MIGHT {h . heigM of R0I} 

for r = 0 to r < 2l do 
for c = 0 to c < 2l do 

[ROI]w
r* <= Merge sub-regions of [ROI]™* * [FilterKernel]*H>H 

[M/
2

1
i/]"''   4= Merge sub-regions of [Wy f]™'c * [FilterKernel]*LG 

\WyfY1'   ^= Merge sub-regions of [W^/]^ * [FilterKernel]G>L 

[ROT]?* <= [ROIfr* + [w^* + [w*j]^ 
{The process of merging of sub-regions is shown in Figure 10.} 

end for 
end for 

end for 
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of levels for the transform, and by WIDTH and HEIGHT the width and height of the 

input image, respectively. 
Algorithm 2 describes our algorithm for computing two-dimensional inverse discrete 

dyadic wavelet transform using the method shown in Figure 10. [Filter Kernel]*XjY is the 

complex conjugate of [Filter Kernel]XY. 

We show visually in Figure 11 the process of a two dimensional forward wavelet 

transform using the method described in Algorithm 1. In Figure 11(b), we display a 

series of DC components at levels / = 1, I = 2 and I = 3. Finally, Figure 11(c) shows an 

enhanced version of the selected ROI shown in Figure 11(a) accomplished by execution on 

the SPARCstation. 
We show in Table 4 the computational costs in time (second) for enhancement 

between methods of convolution by zero-padding between non-zero filter coefficients, 

forward and inverse FFT, and our new multiscale approach of splitting and merging 

sub-regions. Our sample input ROI was 256 x 256 and was computed up to 5 levels of 

analysis. The size of the original kernels used for the decomposition was 3 x 3 for both 

horizontal and vertical directional filters. In the reconstruction case, the kernels were 3x5 

in the horizontal direction and 5 x 3 in the vertical direction. 

level Multiscale Block Traditional convolution FFT approach 

1 1.18 0.83 13.75 

2 1.81 2.87 27.46 

3 3.71 7.87 41.05 

4 6.29 26.01 54.65 

5 13.03 93.93 68.62 

Table 4: Computational costs in time (seconds) of splitting (in decomposition) and merging (in 
reconstruction) schemes versus traditional linear convolution with zero-padding between each non- 
zero filter coefficients and FFT implementations. 

The costs shown in this table were measured on a SPARCstation 20 Model 71 from 

Sun Microsystems having a 75MHz SuperSPARC-II processor with 1MB SuperCache, 

96MB RAM, and 4MB (60ns) SX frame buffer. This table clearly shows that our approach 

is more efficient than existing convolution schemes and exceeded an FFT by a factor of 5 

for five levels of processing. 
We have developed a user interface, called XEnh, which provides an environment for 

our algorithm using XIL foundation-level imaging libraries. This program allows users to 

select a ROI in the main window and carry out a multiscale contrast enhancement 

algorithm (described in Chapter 2.1) within this ROI. Users are able to set parameters 
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Figure 11:  (a) Selected ROI containing an ill-defined mass,  (b) DC components at levels 1 = 1, 
I = 2 and I = 3 after applying Algorithm 1. (c) Processed ROI with suspicious area enhanced. 
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XEnhc : mam041icc.si1f (1070 x 1960) 

[In enhancfflgrrt. 
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3*53 

43?6 , S42>:   3171 

17« 

lerit»r 

Figure 12: A user interface, XEnh, that implements our high-speed parallel algorithm for inter- 
active enhancement. 
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Jk, Netscape - [UF RSNA'96 Exhibition Web Page] 

Fife   Edit   View   Go   Bookmarks   Options   Director))   Window   Help 
SQ 

I Location: Ihttp. Mw»w.iptg.eise.ufl.eduftlemo/ 

tPRG bab. 

UF W ÜSNA Exhibition Web Pag® 

3Sgle«iA«gall lpMMP^$i 
^SJ|*§ä|Jfeife 

life Wmt^m&Sf^ß 

Contrast Enhancement of Mamniographic 
Features via Multiscale Analysis 

This page will provide you a way to get acquainted with a wavelet-based enhancement 
technique for processing of mammograms. 

In the Method section, our approach for contrast enhancement of digital mammograms will 
be explained. Next, the Hands-On section will give you the opportunity to try the 
enhancement algorithm on preselected areas of mammograms in an interactive fashion. The 
subsequent Quiz section will enable you to test the power of enhancement on malignant 
mammograms, and to compare your findings with the actual diagnosis. Finally, the 
Conclusions seetion will summarize what we learned today. 

I CON&MSHJN 

jam ZDY 

Figure 13: RSNA '96 Exhibition Home-page (http://www.iprg.cise.ufl.edu/demo). 
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Figure 14: Hands-on section of the RSNA '96 Exhibition Home-page shown in Figure 13. (a) 
M019 case with biopsy proven masses. A ROI is preselected, (b) Result of enhancement on the 

ROI selected in (a). 
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interactively, such as the level of transform, and values of gain and threshold. The GUI for 

XEnh is shown in Figure 12. The window in the upper right corner of the application is 

the area where a selected ROI and its enhanced result are displayed. 

A web-site (http://www.iprg.cise.ufl.edu/demo) shown in Figure 13 has been 

established, and was originally created for the RSNA (Radiological Society of North 

America) 1996 exhibition in Chicago, Illinois. In this page, we provide a wavelet-based 

enhancement technique for processing of mammograms. Sections on this page include 

"Hands-on" and "Quiz", where users can process preselected or interactively selected ROIs 

of mammograms and obtain enhanced results based on the algorithm described in Chapter 

2.1. 
Figure 14 shows the interface during the process of enhancement for a sample case: 

M019 RCC, where biopsy proven masses exist. Figure 14(a) shows the case with a 

preselected ROI. Figure 14(b) displays the result of enhancement on the preselected ROI 

shown in Figure 14(a). 

2.2.5     Summary 

We have described a parallel algorithm to accomplish high-speed interactive multiscale 

processing for enhancement within ROIs in digital mammograms. The implementation 

relied upon foundation-level libraries, XIL, on top of a SPARCstation's SX frame buffer. 

We showed the amount of speedup for the method compared to traditional linear 

convolution and a conventional FFT approach. Our multiscale approach employing 

splitting in decomposition and merging in reconstruction was shown to be efficient. 

2.3    A Continuous Scale Discrete Wavelet Transform for the 
Detection of Spicular Masses in Mammograms 

2.3.1     Introduction 

The Continuous Wavelet Transform (CWT) has been shown to be an effective tool for the 

analysis of non-stationary signals [8] [41]. A CWT performs a time-scale analysis, zooms in 

on singularities, captures slow variations and provides a scale-invariant interpretation of 

shapes. 
The importance of scale has been acknowledged in computer vision for a long time. 

For example, in 1980, Marr and Hildreth developed a multiscale edge detection algorithm 

modeled on the human visual system [42]. More recently, it has been shown that wavelet 

theory can provide a solid foundation for multiscale analysis. For example, tracking 

wavelet transform maxima across scales can allow us to discriminate intensity profiles of 
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distinct types of edges. 
In image processing, Discrete Wavelet Transforms (DWT) are more popular than 

CWTs because most signals are digitally sampled. Mallat first developed a fast DWT 

algorithm based on multi-resolution analysis [41]. It computed the wavelet coefficients on a 

sampled grid (a,b) defined by a = 2\b = 2{k, where i,keZ. Its wavelet representation is 

complete and concise. The "a trous" algorithm calculates wavelet coefficients at a denser 

sample grid, a = 2\b = k [13]. An important advantage of the "a trous" algorithm for 

image analysis is that it is shift-invariant. 
Visual features occur at distinct scales. For feature analysis, it is desirable to detect 

features at an arbitrary scale. M. Unser et. al. [43] [44] have proposed several fast and 

efficient algorithms for calculating wavelet coefficients at arbitrary scales. In these 

algorithms, Q scales were inserted into each octave to obtain a denser sampling of scale. 

The wavelets at each of the Q scales in the first octave were approximated by their 

projections in scale space, and called auxiliary wavelets. Since the auxiliary wavelets lie in 

scale space, auxiliary wavelets at the next higher octave were obtained by using the 

standard two-scale relation. 
In this chapter, we introduce a special type of mother wavelet that allows for an 

arbitrary sampling of the scale parameter. We discuss how to create such a wavelet, which 

is an approximation of a known mother wavelet. We also develop a method to reconstruct 

an original image from its wavelet coefficients generated from an arbitrary scale analysis. 

We demonstrate the importance of arbitrary scale analysis by applying the method to 

problems of detecting breast mass lesions of arbitrary size in digitized mammograms. 

The chapter is organized as follows. In Section 2.3.3, we first derive the Continuous 

Scale Discrete Wavelet Decomposition from the CWT. In Section 2.3.4, we show how to 

reconstruct a signal from its wavelet coefficients at an arbitrary scale a and at scales 2~la, 

where i 6 Z, 2~'a > a0 and a0 is some initial scale of analysis. In Section 2.3.5, we discuss 

an algorithm using wavelets that are dth derivatives of B-spline wavelets [7] [31]. We then 

define a general form of filters to implement our multiscale analysis and synthesis in the 

frequency domain. In Section 2.3.6, we show the results of applying our algorithm to 

difficult mammography cases of breast cancer. The ability to find and process features at 

an arbitrary scale is shown to have significant advantages over standard dyadic algorithms. 

In one case, the algorithm detected the center of a mass that could not be seen using 

conventional window and leveling techniques with 12-bit contrast resolution. In Section 

2.3.7, we discuss the relation of our decomposition scheme with the oblique projection 

scheme proposed by M. Vrhel, M. Unser et al. [43] and show that they are identical for a 

limiting case. Finally, in Section 2.3.8, we summarize our results. 
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2.3.2    Definitions and Notation 

In this chapter, a letter in lower case represents a function or a sequence in the time or 

spatial domain. Its upper case represents the corresponding frequency response, i.e. 

p(k) <-> P(co), i[)(t) <H> ty(u). ipa(t) = ^(f) ^ ^aM = ^{aw). Given a sequence x(n), a 

function xc(t) is reconstructed from x(n) using an ideal lowpass filter. 

The symbol "*" will be used for three distinct types of convolutions: linear 

convolution, mixed convolution and discrete convolution. For functions / and g defined on 

1Z, "*" denotes traditional convolution 

U*9)(t)= /     f(r)g(t-r)dr. 
J — oo 

The mixed convolution between a sequence b(k)keZ and a function / defined on TZ is 

oo 

(6 */)(<)=   Yl b(k)f(t-k). 
k=—oo 

The discrete convolution between two sequences a and b is defined as 

oo 

(a*b){n)=  Y a(k)b(n-k). 
k= — oo 

Whenever it exits, the convolution inverse b~l of a sequence b is defined to be 

(b^*b)=ö{k). 

Function ßn(t) is Schoenberg's central B-spline of degree n, which is obtained from the 

(n + l)-fold convolution of a unit rectangular pulse: 

n+l  /TM/        ,-,\r „   i   i 71 + 1 ™-%mr) t + ^r--J t e n, 

where [t]+ = max{0,t}. The Fourier transform of ßn(t) is given by ßn(u) - 

Discrete B-spline sequences are obtained by sampling the continuous B-spline functions, 

bn(k) = ßn(t)\t=k for k & Z . Note (bn)~l is stable for any value of n [45]. 

Finally, the function Rect(u) is defined as 

,/   N _ / 1     when |a;| < n 
^  '     1   0    when \u\ > IT. 
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2.3.3    A Continuous Scale Discrete Wavelet Transform 

A wavelet transform is a linear operation that projects a signal onto a set of basis 

functions, which are dilated versions of some mother wavelet. The mother wavelet is a 

function ^ <= L2 that satisfies f^ ll^-du < +00. This requires that the wavelet has 

sufficient decay, and that f^iptydt = 0. The continuous wavelet transform of a function 

at scale a and shifting parameter b is defined as 

Wf(a,b) = J™jm(^yt. 

Of course, it has been shown that a wavelet transform satisfies energy conservation and can 

be perfectly reconstructed from its wavelet transform coefficients [8] [46]. The Continuous 

Scale Discrete Wavelet Transform (CSWDT) is defined as the CWT sampled along the 

shifting parameter b, 

W/(a, n) = [^ f(t)1> (^-) dt. (60) 

In practice, data is acquired digitally. Furthermore, we assume that a signal f(t) is 

sampled at its Nyquist rate fs so that it may be recovered from its discrete samples. Since 

f(t) is band-limited, Wf(a,b) is also band-limited, and can be recovered from its samples 

Wf(a,n). 

f(t) W) -<£>-*  x(n) 

Ik5(t-k) 

Figure 15: Data acquisition processing. 

Processing for data acquisition is shown in Figure 15 (f (i) is an anti-aliasing filter). 

Since the sampled signal x(n) is of finite resolution, this puts a limit on the finest scale that 

can be computed. Let us introduce a compactly supported scaling function 4>(t) that 

satisfies the following conditions [43] : 

1. Riesz basis condition: A < Y.k^z l$(w + 2kw)\2 ^ B> where A and B are strictly 
positive constants; 

2. Order property: $(0) = 1, &m){2kn) = 0, k € Z, k ^ 0, for m = 0,..., TV - 1; 

3. Two-scale relation: 4> (0 = J2kcz M^)^ ~ *0; 
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4. Frequency property: <J>(a>) 7^ 0, for \LO\ < ir, and $(w) should be very small for 

\u\ > 7T. 

Constraint 1 implies that </>(£ — k) is a Riesz basis of the subspace 

^ = {/(*) = E c(^ -fc)   c G l2>   for /(i) e y* 
fees 

and that V$ is a well defined (closed) subspace of £2 [47]. Property 2 implies that 0(t) 

reproduces all polynomials of degree N-l [48]. Constraint 3 is the well-known two-scale 

relation. Condition 4 shows that (j)(t) can be an anti-aliasing filter. 

: ■   xc(n) 
f(t)  H   (|)(t)    i-—^(X)-^   x(n) 

Zk5(t-k) 

Figure 16: Initial conditions. 

Typically, the anti-aliasing filter in the acquisition device is unknown. For simplicity, 

we assume that 
/•oo 

x(n) = /     f{t)(j>{n - t)dt, (61) 

which is shown in Figure 16. This is the initial condition typically found in the traditional 

DWT analysis literature. When the impulse response of the anti-aliasing filter (i.e. ideal 

low-pass filter) is known, a pre-filter and a post-filter are used as shown in Figure 17 

(Please See Appendix A.l for details). 

, x !     ry -\       x(n) ^   Wavelet decomposition x(n)  ►!     Z       ! *- , ^  . 
I and reconstruction 

x(n) 

Figure 17: Wavelet processing with alternative initial conditions. 

The smoothing operator Sa is defined as Saf(n) = /^ f(t)<j> (^) dt. Then 

Sif(n) = x(n), where a = 1 is the finest scale at analysis. As a increases, Saf(n) becomes 

a coarser representation of f(t). When a goes to infinity, Saf(n) approaches a constant 

equal to the average value of f(t). In practice, the length of x(n) defines the coarsest scale. 
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Lemma 2.1  Given x(n), there is one and only one f(t) such that 

x
c(t) = /*</>(£). (62) 

Proof:    Since Xc(oo) is band-limited to [-vr, ir] and $(w) + 0 for w € [-7r, TT], 

Theorem 1  Given x(n) = xc(t)\t=n, if 

1. tya(tü) is band-limited between [—7r, 7r] when a > s0; 

2. a > s0. 

Then, the CSDWT can be calculated by 

Waf(a, n) = J]p(a, k)x(n - k), (63) 
kez 

where 

and 
/oo 

pc(a, t)e-i"Uldt. 
-oo 

Proof:    Note that ^a(t) and pc{a, t) are band-limited at [-TT, TT]. And p(a, n) = pc(a, t)|t=n. 

From Equation (64), 

ya{co) = Pc(a,u)${u) (65) 

/"OO 

4>a(t)=        pc{a,u)(f>{t-u)du. (66) 

If we substitute Equation (66) into the previous CSDWT definition (Equation (60)), we 

obtain 
/oo 

f(t)A(n-t)dt 
-oo 

/OO /"OO 

/(£) /     pc(a, u)^>(n — t — u)dudt 
oo «/ — oo 

/oo      /»oo 

( /     f(t)<t>{n -t- u)dt)pc(a, u)du 
-00   J — 00 
/oo 

xc(n - u)pc(a, u)du. (67) 
■oo 
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Since xc{t) and pc(a,t) and band-limited to [—7r,7r], we need to show that 
/oo 

xc(n — u)pc(a, u)du = V\(a, k)x(n — k). (68) 
■°° kez 

If we look in the frequency domain, we see that 
/oo 

xc(n - u)pc(a,«)du} = {Xc{co)Pc(a,co)) * 2TT^(O;). 
-00 

Since xc(t) and pc(a,t) are band-limited to [—7r,7r], 
/oo 

xc(n - u)pc{a, u)du}   =   (Xc(u) * 27r^(w))(Pc(a, w) * 27T^(CJ)) 
■00 

=   X(u)P(a,u). 

Therefore, we can claim that Equation (68) is indeed true. Substituting Equation (68) into 

Equation (67), we obtain 

Waf(a, n) = ^2p(a, k)x(n - k). 
kez 

■ 
Thus, p(a, k) of length N can be calculated as follows: 

1. For UJ e [-7T, 7r), Evaluate P(a,co) = Pc(a,u) = %£4 at w = n| , where 

-N < n< N; 

2. Note that P(a,u) is a 2-K periodic function, calculate P(a,u) for u £ [0, 27r); 

3. Calculate p(a, k) from the IFFT of P(a,u). 

Usually, a wavelet ip(t) is not compact in the frequency domain. However, ty(co) is 

local and we can select an s0 such that ^So(w) = \I>So(u)Rect(u) has an acceptable 

approximation error onto the scaling space. The approximation error is defined as the ratio 

of the energy of ^(aco) outside [—7r, 7r] to the total energy. It decreases as s0 increases. 

Next we show that our ipSo{t) is also a mother wavelet. Since ip(t) satisfies the 

"admissibility condition", 
f>O0 

/oo 

\s0Lü\~~1\^(soLü)\2d(s0Uj)     <     OO 
■oo 
/oo 

|a;|_1|\I>(sow)|2dw   <   oo 
■oo 

|o;|_1|\I>(soü;)|2dti;   <   oo 
■TT 

/OO 

H^l^sow)!2^   <   oo. (69) 
■oo 
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Therefore, xj)8Q{t) satisfies the "admissibility condition". Wavelet coefficients at arbitrary 

scale a = ss0 can be calculated directly from Equation (63). However, wavelet coefficients 

at scale a = 2
{
SQ can be calculated efficiently using the fast algorithm discussed in the next 

section. 

2.3.4    An Efficient Algorithm for Analysis and Synthesis 

When there is knowledge about the best scale in which to detect a certain feature, it is 

desirable to identify the feature at that scale, enhance the feature and reconstruct the 

signal. We now derive a computationally efficient scheme to decompose a signal onto scale 

( a — 2Ls0 ) and reconstruct the signal at that scale. 

Theorem 2 Let ipSo(t) = J2kezP(so>k)0(t~k)> 

L-X 

y(2Ls0Lü) = Pc(s0, 2
Lco)(H H(2ktü))$(u). 

fc=0 

Proof:    Since 

y(s0u) = P(s0,uj)$(u), (70) 

we can substitute UJ with 2Lu>, 

^{2
L

S0LO) = P(s0, 2V)$(2V). (71) 

Then, using the two scale relation to simplify P(s0, 2
Lu)<b{2Lu), 

P(S0,2
L

Lü)$(2
L

Cü)   =   P(S0,2
L

Cü)H(2
L
-

1
CO)^(2

L
-

1
U) 

L-\ 

=   P(s0,2
LLü)(l[H(2ku))$(u;). (72) 

fe=0 

Substituting Equation (72) into Equation (71), 

L-l 

$(2Ls0u;) = Pc(s0, 2
Lu)(H H(2kLü))$(co). (73) 

fc=0 

If we let K(LU) be a 2i\ periodic function. For u E [-7r,7r], 

12 

KM = i^f . («) 
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Figure 18: Filter bank for CSDWT decomposition and reconstruction for 3 levels of analysis. 

Thus a signal can be decomposed and reconstructed at an arbitrary scale as shown in 

Figure 18. Note that the approximation error of ipSo(t) is dependent upon y+ao    
SoUJ " and 

V+oo        U • The amount of error can be reduced by judicious selection of s0 and $(£). 
Jo      $(u)düj 

For the dyadic wavelet transform, we have ty(2uj) = G(u)Q(u). Therefore 

G(u) 

In the CSDWT case, we simply write 

$(u) ' 

^(s0uj) PMRectn=^Rect( £)• 

(75) 

(76) 

Thus when s0 = 2, G{u) = P{s0,u) for n E [-TT,TT]. Since G(u) is 2ir periodic, 

G(u>) = P(s0,u) for all u. In the next section, we provide some examples for the design of 

CSDWT filters. 

2.3.5    Examples of CSDWT Filters 

Spline functions have played a significant role in wavelet theory. The well-known Haar 

transform corresponds to a spline of order n = 0. Battle and Lemarie independently 

constructed orthogonal spline wavelets using symmetric basis functions [49]. Chui and 

Wang introduced the B-spline wavelets of compact support [50]. Unser et. al. first 

developed shift-orthogonal wavelets using splines [51]. In this section, we derive the filters 

for a continuous scale DWT using the wavelets originally suggested by Mallat in 1992 [7] 

and extended by Laine and Koren in 1996 [31]. 

The scaling function for a continuous scale transform is defined as 

'sin(f) 
$M = w_ 

2 

(77) 
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Its wavelet is written as 

•      I'LOW   « sin T 
»M = W ^ <78> 

and 

V(|) = ^;1(t)=^^(fc)/3"-1(t-fe). (79) 
fc£.Z 

The two-scale relation becomes 

$(2w) = e^toW#(w)<l>(u;), (80) 

and 

//(a;) = e^cos" (|) , (81) 

where t0 = | when n is odd and level L = 0. Otherwise, t0 = 0. V(*) is a d"th derivative of 

a spline of order n + d - 1 and <£(£) is a spline function of order n - 1. The e-JtoW term is 

introduced because central B-splines have knots at i e Z for n even and at i + \ for ra odd. 

In our fast decomposition and reconstruction algorithm, for u G [—7r, 7r], we can write 

SQ sinn (|j 

Ä(w) = ei""cos" (I) (83) 

*(u) = 1Ä. (84) 
P(s0,o;) 

Where, ti = | when d is odd and level L = 0, and £i = 0 otherwise. Notice that when 

s0 = 2, it is easy to show that the filters P{s0,co), H(u) and K(ui) are the same as the 

traditional DWT filters G(co), H(co) and K{u). 
As an example, we constructed and applied a spline wavelet with d = 2 and n = 3 to 

decompose a sample of white noise onto scale 14.25. We then reconstructed the signal from 

the same scale. Multiscale coefficients of the decomposition are shown in Figure 19. 

Remarkably, the reconstruction error was less than 10"14, which was due principally to the 

floating point accuracy of our digital computer, a Sun SparcStation 20. 

In the next section, we apply this algorithm to a digital radiograph of a phantom and 

sample digitized mammogram cases. 
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Figure 19: Sample of fast decomposition algorithm of white noise at scale 14.25. 

2.3.6    Application of the CSDWT Algorithm 

X-ray images of an RMI model 156 phantom (Radiation Measurements Inc., Middleton, 

WI) were investigated. The RMI phantom contains five masses and six fibrils which mimic 

two objects of interest in mammography. The radiographic image quality of this phantom, 

as well as the total number of objects which are deemed to be visible, form a key 

component of the mammography accreditation program administered by the American 

College of Radiology (ACR). The RMI phantom is designed so that at least one object (i.e. 

smallest mass) in each category is not visible, and one object is at the borderline of the 

visibility threshold [52]. 

Radiographic images of the RMI phantom were obtained using a Digital Spot 

Mammography (DSM) system attached to a Lorad Breast Biopsy System (Lorad 

Corporation, Danbury, CT). Due to the limit of the detector area, only regions containing 

masses at the right-lower corner were captured (with technique factors of 22 kVp and 112 

mAs) as shown in Figure 20(a). The smallest mass in the schematic representation of the 

insert of the phantom (Figure 20(e)) can not be seen using conventional window and 

leveling at 12-bit contrast resolution. 

In this study, the wavelet applied was a second derivative of a spline of order 5 (n=4, 
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d=2). The scaling function was a cubic spline. The 2-D wavelet filters were derived from 

the 1-D design using a rotated circularly symmetric window [53]. The minimums of wavelet 

coefficients computed at scale 53.8 are shown in Figure 20(b). A soft threshold 0.01 was 

then applied. Note that all the masses were correctly detected. Figures 20(c) and 20(d) 

show that a dyadic wavelet fails to detect all the masses within the phantom. 

Mammograms obtained from our local database containing lesions of varying density 

are described in Table 5. 

Case 
rml041 
lcc046 
lcc002 
lml015 

Shape 
Irregular 
Irregular 
Irregular 
Round 

Margins 
Indistinct 
Indistinct 
Spiculated 
Obscured 

Density 
Equal 
High 
High 
High 

Size 
12mm 
10mm 
10mm 
15mm 

Biopsy 
Malignancy 
Malignancy 
Malignancy 
Malignancy 

Difficulty 
subtle 

Mod. Difficult 
Difficult 
Difficult 

Table 5: Description of mammograms 

Original images rml041 and lcc046 are shown in Figure 21. In each case, the scale 

space was systematically searched (interactively) to find an optimum scale for detection. 

Then, chains of wavelet coefficient minima at the selected scale were labeled and classified 

as shown in Figure 22. For proper labelling, the set of maxima were first thinned to be 

exactly 1 pixel wide. The labelling process first classified each maxima as one of the 

following: 

1. JUNCTION: If a minimum had three or more (8-connected) neighbors; 

2. TERMINAL: If a minimum had zero or one neighbor, or exactly two neighbors at 

least one of which is a JUNCTION; 

3. EDGE: If a minimum had exactly two neighbors, neither a JUNCTION. 

A set of contour-level labels were generated, using the TERMINALS to find endpoints. 

When all TERMINALS had been processed, any EDGEs not labelled were linked into 

contour-level labels. The JUNCTIONS were then processed to produce group-level labels, 

each representing a set of 8-connected chains. Each contour was examined to determine if 

it should be split to form chain-level labels. Finally, local standard deviation of the gray 

level intensity values for all pixels in each contour was then calculated. Each chain was 

assigned to a Group as shown in Figure 23. Note that chains projecting from the center of 

the mass, follow the spicular distortion near the mass. In each case, the algorithm detected 

each mass, at scale 124.8 and scale 112, respectively. However, for rml041, the detection 

algorithm also picked up an object in the right-lower Conner, which looked quite similar to 
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Figure 20: (a) X-ray image of the RMI156 phantom; (b) Coefficient minima obtained at 
scale 53.8; (c) Coefficient minima obtained at scale 32; (d) Coefficient minima obtained at 
scale 64; (e) Schematic representation of mammographic features within the phantom. 
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Figure 21: (a) Mammogram rml041; (b) Mammogram lcc046; (c) ROI cropped from lcc041; 
(d) ROI cropped from lcc046. 
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Figure 22: (a) Labeling of wavelet coefficient minima within selected ROI from rml041 (soft- 
thresholding applied). aJUNCTIONS" are shown in BLUE, "TERMINALS" in GREEN, 
and "CONTOURs" in red; (b) Labeling of wavelet coefficient minima within ROI from 
lcc046; (c) 4X magnification of the center cluster representing a mass shown in (a); (d) 4X 
magnification of the center cluster representing a mass shown in (b). 

68 



■yf\ 

A / 
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(c) 

Figure 23: (a) Wavelet coefficients of rml041 at scale 124.8; (b) Color coding of a local 
texture measure computed normal to the contour of a spicular distortion around the mass 
detected in rml041. Note consistency of measure for contours identified within each cluster; 
(c) Wavelet coefficients of lcc046 at scale 112; (d) Color coding of a local texture measure 
computed normal to the contour of a spicular distortion around the mass shown in lcc046. 
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(c) (d) 

Figure 24: (a) Mammogram lcc002; (b) Mammogram lml015; (c) ROI cropped from lcc002; 
(d) ROI cropped from lml015. 
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Figure 25: (a) Labeling of wavelet coefficient minima within selected ROI from lcc002 (soft- 
thresholding applied). "JUNCTIONS" are shown in BLUE, "TERMINALS in GREEN, and 
"CONTOURs" in red; (b) Labeling of wavelet coefficient minima within ROI from lml015; 
(c) 4X magnification of the center cluster representing a subtle mass shown in (a); (d) 4X 
magnification of the center cluster representing a subtle mass shown in (b). 
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Figure 26: (a) Wavelet coefficients of lcc002 at scale 126.4; (b) Color coding of a local texture 
measure computed normal to the contour of a spicular distortion around a mass shown in 
lcc002. Note consistency of measure for contours identified within each cluster; (c) Wavelet 
coefficients of lml015 at scale 89.6; (d) Color coding of a local texture measure computed 
normal to the contour of a spicular distortion around the mass shown in lml015. 

72 



a mass. Additional texture information was needed to separated it from the true mass. 

Cases lcc002 and lml015 are shown in Figure 24. These mammograms were rated as 

"difficult" cases by an expert mammographer. A selected ROI within each mammogram 

was decomposed onto an optimum scale 126.4 and 89.6 respectively. Their wavelet minima 

are shown graphically in Figure 25. Detection results are shown in Figure 26. Both masses 

were detected. It is important to note that in all cases, the optimum scale found to detect 

the mass was not power of 2. For comparison with traditional methods, Figure 27 shows 

failure to detect the mass at dyadic scales. In addition, tests using the RMI phantom 

■> 

(a) (b) 

Figure 27: (a) Wavelet coefficients for lml015 at scale 64; (b) Wavelet minima in lml015. 

showed that the detection algorithm is quite sensitive. Additional results on real 

mammograms appear very promising. Masses within dense mammograms of subtle 

visibility were detected! 

2.3.7    Frequency Approximation vs Projection Methods 

In this section, we discuss the relation between this algorithm with the oblique projection 

method proposed by Unser et. al. etc. [43]. In addition, we show in Theorem 3 that they 

are equivalent in an extreme case. For a scaling function </>, we choose an analysis function 
4 </>!. Next the dilated wavelet ipa(t) is projected into V{4>) such that the approximation 

error is orthogonal to V(<f>i). Here 

Pa(k) = (qa*Qi2)(k), (85) 

4An analysis function is defined as a function which satisfies only scaling function properties (1) and (2), 
as described in section2.3.3 at this chapter. 
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qa(k)=<Mt),Mt-k)>, (86) 

ai(k)=<Mt-k),<l>(t)>, (87)- 

912 = a/- 

When <j)\{t) € V((ß), pa is an orthogonal projection. Ideally, </>i(£) should be chosen such 

that the oblique projection's approximation error is very close to that of an orthogonal 

projection, and the computation is simple and fast. We chose tpa(t) = 4> (~) , and s0 is 

selected based on some estimate of an acceptable projection error. The parameter s0 sets 

the finest scale resolution, and the continuous scale discrete wavelet transform of f(t) is 

W0/(a,n)«^p0(A;)a:(n-A;). (89) 
kez 

Theorem 3 Let <j>(t) = ßn~l{t), (/>i(i) = /3m_1(f).  When n + m^ +oo, the oblique 

projection method is equivalent to the frequency approximation method. 

Please see proof in Appendix A.2. As claimed in Theorem 3, the frequency 

approximation method is equivalent to the projection method in one limiting case. The 

advantage of the oblique projection method is that it can be implemented by FIR and IIR 

filters to achieve O(N) complexity per scale. However, the frequency based approximation 

method is easy to expand for multi-dimension signal analysis. Choosing a higher order 

scaling function does not affect the computation complexity adversely. 

2.3.8     Summary 

We showed that the continuous wavelet transform of a band-limited signal can be 

estimated from samples of a signal. If a mother wavelet is compact in the frequency 

domain, effectively no approximation error was observed experimentally. 

We described a modified dyadic wavelet transform, which was able to decompose a 

signal onto an arbitrary scale and reconstruct perfectly the signal from that scale. We 

presented a special class of spline wavelet filters, which allowed us to use a high order 

scaling function without significantly increasing the computational complexity of analysis. 

The importance of arbitrary scale analysis was demonstrated by digital radiographs of 

a mammography phantom and digitized mammograms. The study showed that the 

algorithm was able to detect very subtle masses, which were rated to be almost invisible by 

radiologist specializing in mammography. 
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2.4    Enhancement of Mammograms from Oriented Information 

2.4.1    Introduction 

Mammograms can detect tumors that are an eighth of an inch in diameter, while manual 

examination usually fails to detect tumors smaller than a half-inch. Reliable diagnosis by 

radiographs of malignant breast disease depends on observing local and distant changes in 

tissues produced by disease. Of the visual signs of cancer found by radiologists, the 

primary signs of masses and calcifications are most important [54, 55]. Unfortunately, at 

the early stages of breast cancer, these signs are very subtle and varied in appearance, 

making diagnosis difficult and challenging even to specialists [54, 56]. 

The primary radiographic signs of cancer are related to tumor mass and its density, 

size, shape, borders and calcification content. Extraction of these features and 

enhancement of them may assist radiologists to locate suspicious areas more reliably [57]. 

Multiscale representations based on wavelets have been carried out for mammographic 

feature analysis [32, 58, 59]. Laine et al. [32] used two overcomplete multiscale 

representations for contrast enhancement. Mammograms were reconstructed from 

transform coefficients modified at each level by nonlinear weighting functions. Qian et al. 

[58] introduced tree-structured nonlinear filters for microcalcification cluster detection. An 

image was enhanced by tree-structured nonlinear filters with fixed parameters and adaptive 

order statistic filters. Richardson Jr. [59] applied linear and nonlinear filtering approaches 

to the analysis of mammograms. Here, a linear multiscale decomposition was obtained via 

a wavelet transform; a nonlinear multiscale decomposition employed a "mean curvature 

partial differential equation" filter and "weighted majority-minimum range" filter. In 

addition, Li et al. [60] extended a conventional multiresolution wavelet transform into a 

multiresolution and multiorientation wavelet transform. They applied directional wavelet 

analysis to capture orientation information within each mammogram. 

Freeman and Adelson [20] first proposed the concept of steerable filters and applied it 

to several problems in the area of computer vision. With a set of "basis filters", one can 

adaptively steer a filter along any orientation. Hubert transform pairs were constructed to 

find a local "oriented energy" measure and dominant orientation. 

Kass and Witkin [61] developed an algorithm for estimating the orientation of texture 

patterns. An orientation pattern was decomposed into a flow field, describing the direction 

of anisotropy, and a residual pattern obtained by describing the image in a coordinate 

system built from the flow field. The texture orientation was estimated from Laplacian of 

Gaussian filters. Rao and Schunck [62] proposed another algorithm based on the gradient 

of the Gaussian. Their new algorithm incorporated a more sophisticated scheme for 
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computing the coherence of the flow field. 

In this chapter, an enhancement algorithm based on multiscale wavelet analysis is 

described. Features were extracted by separable steerable filters. A coherent image and 

phase information were then generated. A nonlinear function, integrating coherent image 

and phase information, was applied to the transform coefficients at each level. An 

enhanced image was obtained via an inverse wavelet transform of the modified coefficients. 

The novelty and advantage of this algorithm compared to existing techniques (including 

those previously developed under this grant) lies in its detection of directional features and 

removal of unwanted perturbations (artifacts). 

2.4.2    Background 

In this section we briefly describe the mathematical background and fundamental ideas 

used in subsequent sections. 

Wavelet Transforms 
Wavelet transforms have become well recognized as useful tools for many applications 

in signal processing. A function ip(x) is said to be a wavelet if and only if its Fourier 

transform T/>(£) satisfies the admissibility condition 

This condition implies that 

+00 

i){x)dx = 0. (91) 
■00 

This means that ip(x) will have at least some oscillations. 

Wavelets constitute a family of functions derived from one single function ip (mother 

wavelet) by dilations and translations 

Mx) = -^ (—) , (92) 

where a e R+,b e R. The idea of the wavelet transform is to represent any function f(t) as 

a superposition of wavelets. The continuous wavelet transform is defined as 

30 1 x — b 
W,{a,b)  =   {f,1>ajb)   =  -£=? /       f(x)iß(-—)dx, (93) 
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where $ denotes the complex conjugate of ip. A function can be reconstructed from its 

wavelet transform by means of the "resolution of identity" formula 

1    r+°°  f+QO , ,       dadb ,nA, 
f=r-\       /      (LM^-r- (94) 

In the practice of digital mammography, one prefers to express / as a discrete 

superposition. Let us discretize the translation and dilation parameters of the wavelet in 

Equation (92): 

ipm,n(x) = ao 2 ip{%mx - nbo), (95) 

where a = atf,b = nb0a^, with m, n e Z, and a0 > 1, &o # 0. On this discrete grid, the 

wavelet transform is simply 

Wf{m,n) = a0 
2   /       f{x)^{a^mx - nb0)dx. (96) 

J — oo 

The original signal can be approximated as linear combinations of the wavelet bases, 

/Or)«^W/(m,n)Vw»(z). (97) 
m,n 

One popular discretization is to choose a0 = 2, 60 = 15 

il>m,n{x) = 2-*Wmx-n), (98) 

which are called dyadic wavelets. 

Steerable Filters 
A function f(x, y) is called "steerable" if it can be expressed as a linear combination of 

rotated versions of itself. The fundamental idea of steerable filters is to apply "basis filters" 

which correspond to a fixed set of orientations and interpolate between each discrete 

response. Thus, one must decide the number of "basis filters" and the corresponding 

interpolation functions. As defined in [20] a steering constraint may be formulated by 

M 

f(x,y) = $>(*)/*(*>!<)> (") 
i=l 

where M is the number of basis functions required to steer a function f6i(x, y). 

Hereafter, it will be more convenient to work in polar coordinates r = y/xr+ y2 and 

(j) = arg(:r, y). Let / be any function that can be expressed as a Fourier series in polar 

angle </>: 
N 

f{rA)=  E «»Me**, (10°) 
n=-N 
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where j = y— 1. 

The theorem below was posed by [20] and is included for the clarity of discussion. 

Theorem 1: The steering condition (99) holds for a function / expanded in the form of 

(100) if and only if the interpolations ki(9) are solutions of 

/    1    \ 

JN6 

(       1 

y e>"° ) 

1 1  \ 
oJVl 

V oiN6x     pjN62 oJN6M 

( h(e) \ 
k2{0) 

\ kM{0) ) 

(101) 

Then, fe(r, </>) may be expressed as 

where gt(r, 4>) can be any set of functions. 

M 

5>w 9i[r, (102) 
i=i 

Measure of Coherence 
Texture plays an important role in many machine vision and image processing tasks 

including surface inspection, scene classification, surface orientation and shape 

determination [63]. Texture patterns may be characterized by extracting measurements 

that quantify the nature and directions of pattern. Most breast carcinomas have the 

appearance of stellate lesions consisting of a central mass surrounded by radiating spicules 

[54]. The spicules radiate outward in all directions and vary in length. This provides an 

important cue for early cancer detection. 

Much attention has been given to the notion of decomposing an intensity image into 

intrinsic images to extract meaningful information [64, 65]. These intrinsic properties 

represent basic components of the image formation process and therefore reveal features 

"hidden" inside an image. The information they provide is beyond the intensity image 

alone. 
Rao and Schunck [62] defined the orientation field of a texture image to consist of two 

images — an angle image and a coherence image. The angle image denotes the dominant 

local orientation at each point and the coherence image represents the degree of anisotropy 

at each point. They strongly advocated the use of angle and coherence images as intrinsic 

images. In this chapter, we investigated the efficiency of these two representations to 

capture and enhance features of importance to mammography. 

2.4.3    Methodology 

Our algorithm consists of the following four steps. 

78 



(1) Multiscale Wavelet Transform: Wavelet transforms, owing to their localization 

characteristics, are powerful tools of analysis for many signal and image processing 

applications. Multiscale analysis can extract features at distinct scales and provide local 

information often hidden in an original mammogram. In our algorithm, a digitized 

mammogram was decomposed using a fast wavelet transform algorithm (FWT) [7]. In 

order to obtain wavelet coefficients at each level without downsampling, an 

"algorithme a trous" (algorithm with holes) [13, 66] was implemented. Let sl+l denote an 

original image and D*f be obtained by inserting 2* - 1 zeros between every pair of the 

coefficients representing /. {Dif)x and {Dif)y stand for carrying out convolution 

operations with the filter D*f along x and y directions, respectively. The decomposition 

and reconstruction equations at level i are as follows: 

Decomposition: 

s*+!   =   si*{Dih)x*(Dih)y, 

wi+l   =   s'*^, 

wJ+i   =   sSp^V (103) 

Reconstruction: 

s* = «4+i * (Dlk)x * (D% + wy
+l * (DH)X * {Dtyy + si+1 * (Drh)x * (Drh)v, (104) 

where "*" indicates discrete convolution, and h,g,k, and / are filters whose Fourier 

transforms (H(UJ),G(CJ),K(Lü), and L(u), respectively) satisfy [7] 

G(CJ)K(U) + \H(U))\
2
 = 1, 

L{u) = i + m»)\\ m 

(2) Separable Steerable Filters: A filter is called "steerable" if the filter at an arbitrary 

orientation can be expressed as a linear combination of a set of basis filters, generated from 

rotations of a single kernel [20]. Steerable filters [20, 67, 68], which can be adaptively 

adjusted to arbitrary orientation, were used to detect stellate patterns of spicules and 

locate feature orientations more precisely. As pointed out by [21], the separability property 

of the filters sped up computations considerably when convolved with a large image matrix. 

In our algorithm, we used three basis functions as steerable filters. The x-y separable 

steerable approximations of filter kernels were generated by Singular Value Decomposition 

(SVD) [20, 21]. Using a set of separable steerable filters, local energy (AT) and associated 

dominant directions (A*) were determined by the basis functions and their Hilbert 
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transforms [20, 69, 70, 71]. We applied separable steerable filters to an original image S° 

and low-pass filtered images at each level 5\ i = 1,... n, to capture salient multiscale 

features. Discrete realizations of the three basis functions applied in our algorithm are 

shown in Figure 28. 

(a) (b) (c) 

Figure 28: Two-dimensional impulse responses of three basis functions. 

(3) Coherence Maps: A coherence map is an image showing a local measure of the 

degree of anisotropy of flow [61, 62]. If the orientations of a texture pattern at any point 

(xi,yi) are coherent, then magnitude and phase information are important and should be 

emphasized. Conversely, if the orientations are not coherent, the magnitude and phase 

information can be neglected or attenuated. Kass and Wilkin [61] suggested a simple way 

of measuring strength of coherence by finding the ratio 

XÜ, k) = 
\W(j,k)J(j,k)\ 

(W(j,k)\J(j,k)\) 
(106) 

where W(j, k) denotes a local weighting function with unit integral, J(j, k) denotes the 

squared gradient vector at (j,k), and | • | denotes absolute value. 

An alternative measure of coherence was proposed by Rao and Schunck [62] and was 

obtained by weighting the energy with the normalized projection of energy within a 

specified window (W) onto the central point (j, k) of the window. The coherence (Cl) was 

expressed as 

Ci(j,k) = Mi(j,k) 

Y    \Mi(m,n)cos(Ai(j,k)-Ai(m,n))\ 
(m,n)€W 

Y    M^mji) 
(m,n)eW 

(107) 

where M{(j, k) and A*(j, k) denote energy and phase of point (j, k) at level z, respectively. 

This coherence measure incorporated the gradient magnitude and hence placed more 
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Figure 29: Overview of processing for Steps 1-3. 

weight on regions that had higher visual contrast. This method performed better than 

previous measures applied to the similar data [62]. In our algorithm, we implemented this 

method to measure the coherence map at each level. A 5 x 5 window was used to perform 

smoothing. The measure of coherence C* was obtained from Equation (107). The 

coherence and orientation data extracted the more salient features of spiculated lesions. A 

schematic diagram of Steps 1-3 is shown in Figure 29. 
(4) Nonlinear Operators: So far, we have computed all the information we need in our 

algorithm. A nonlinear operation was then applied within each level to precisely modify 

transform coefficients. This operation integrated both coherence map and phase 

information. 
A. Modification from Coherence Map: Let C^j.k) denote the coherence measure of point 

(j, k) at some level i. Modifications from coherence measure were obtained by a nonlinear 

function expressed as 

M&ij.k) =    elogioy/cHjjT)       jif    C^fcJ^O, 

=   0 ,if   C%k)=0, 

such that a coefficient was emphasized if its coherence measure was large and attenuated if 
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small. 

B. Modification from Phase: Phase information is important to characterize well an 

oriented texture and therefore we did not neglect its contribution to the modification of 

coefficients. We applied a sinusoidal weighting to the phase information. The "detail" 

sub-bands of wavelet coefficients obtained in Step 1 included two components: the 

component along x direction and the component along y direction. The x component was 

obtained by high-pass filtering along x direction, hence mostly vertical features within the 

mammogram were detected. We emphasized the points whose dominant orientations were 

near 0 and n (with respect to the vertical axis). Thus, the modification from phase 

information was 

MA'(j, k) = 0.01 + | cos(^(i, k))\. (108) 

Note that a constant (0.01) was added to the above modification so that the phase factor 

would not be neglected when the phase was equal to | or ^. 

The y component was obtained by high-pass filtering along the y direction, hence 

horizontal features of an image were detected. We emphasized the points whose dominant 

orientations were near f and =y (with respect to the vertical axis). The modification from 

phase information was 

MA'(j, k) = 0.01 + | siniA'iJ, k))\. (109) 

Note that a constant (0.01) was added to the above modification so that the phase factor 

would not be neglected when the phase was equal to 0 or n. 

The modifications from coherence map and phase at level i — 1 were combined to 

adjust the wavelet coefficients at level i. The final modification was therefore 

MWi = rp-i . MC*'1 ■ MA''1 ■ W\ (110) 

where T* was a constant at each level. A schematic diagram of the nonlinear operator at 

level i is shown in Figure 30. These modified coefficients were then reconstructed, via an 

inverse fast wavelet transform, to enhance the visualization of possible lesions. 

2.4.4    Experimental Results 

Our algorithm was applied to enhance mammograms using oriented information. In order 

to capture distinct directions of subtle features, steerable filters were used. Figure 31 shows 

the capability of steerable filters for detecting and enhancing objects of distinct direction 

and scale. The phantom image contained 24 diamond shaped objects with four directions 
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Figure 30: A schematic diagram of nonlinear operator at level i. 

(0°,30o,60°, and 90°) and six scales, as shown in Figure 31(a). After applying our 

algorithm to this image, the borders of these objects at each scale were clearly enhanced. 

The phantom objects in the last two rows of the image, were very close to 

microcalcifications. This demonstrated the ability of this algorithm to detect 

microcalcification clusters in mammograms, without artifacts. 

Three examples of malignant lesions with distinct radiographic signs of cancer were 

processed to show the effectiveness of our algorithm. The images were of matrix size 

(512 x 512). For each case, both global and regions of interest (ROI) were shown along 

with the corresponding enhanced ROI image. 

Calcifications 
Figure 32 shows a mammogram (mam0091ml) with microcalcification clusters. The 

original mammogram is shown in Figure 32(a). Figure 32(b) shows an original suspicious 

area of the mammogram. After enhancement, clusters of calcifications appear clearly in the 

center of the image. 

Stellate lesions 
A mammogram (mam041rcc) with a stellate lesion is shown in Figure 33. Figure 33(a) 

shows the original image. Figure 33(b) presents an original digital radiograph with a 

partially obscured irregular mass in the center of the image matrix. After applying our 

algorithm to this image, the enhanced image makes obvious spiculated lesions around the 

mass. The mass itself was also enhanced, as shown in Figure 33(c). These clear spiculated 

patterns suggested radiologists that this mass is more likely malignant, rather than benign. 

83 



[.ASM«      W'       i>4       RiJN Kv^ffiff ^J^^^sSsäst^^^f^^^^A 

...IB,  

'^w*- - '•.-. -•     ' *■■■ 

Figure 31: The ability of detecting objects oriented along distinct directions at various scales: 
(a) Original test image (mathematical phantom), (b) enhanced image after processing. 

Masses 

A mammogram (mam0041cc) with a mass tumor is shown in Figure 34. The 

craniocaudal view of the left breast shown in Figure 34(b) shows an irregular spiculated 

mass in retroglandular fat. The enhanced version shown in Figure 34(c) better delineates 

the margins of the mass. 

2.4.5     Summary 

An enhancement algorithm relying on multiscale wavelet analysis and extracting oriented 

information at each scale of analysis was investigated. The evolution of wavelet coefficients 

across scales characterized the local shape of irregular structures. Using oriented 

information to detect the features of an image appears to be a promising approach for 

enhancing complex and subtle structures of the breast. Steerable filters which can be 

rotated at arbitrary orientations can reliably find visual cues within each spatial-frequency 

sub-band of an image. "Coherence measure" and "dominant orientation" clearly helped us 

to discriminate features from complex surrounding tissue typical in mammograms. 

Existing and previous multiscale enhancement approaches [72, 32, 59] attempted to 

enhance an image by detecting edges. Unfortunately, most edge detection algorithms can 

not distinguish between "authentic" edges and phantom edges. In contrast, this algorithm 

relied upon a coherence map and phase information which resulted in an enhancement 
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Figure 32: Mammogram with calcifications: (a) Original mammogram, (b) ROI image, (c) 
enhanced ROI image. 
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(b) (c) 

Figure 33: Mammogram with a stellate lesion:  (a) Original mammogram, (b) ROI image, 
(c) enhanced ROI image. 

86 



\% 

I -IM* I 

-.* -J-. ä* 
'.  4r. <*|-'. 

V^/Jtf 
■•■   ■# * 

■' .**» 

^^^^^^^^^Hl 
■..,» ,r* 

i*y*'-« 

as-,.   ■ .*«;. ^'r.,. 

(b) (c) 

Figure 34:  Mammogram with a mass:   (a) Original mammogram, (b) ROI image, (c) en- 
hanced ROI image. 
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naturally close to the original image. This type of artifact free enhanced image can provide 

more "obvious" (and familiar) visual cues for radiologists. 

2.5    Multivoice Undecimated Wavelet Transforms 

2.5.1    Introduction 

For many analysis/synthesis applications the sampling provided by the traditional wavelet 

transform is inadequate. In particular, a finer grid is needed when computing the wavelet 

transform for applications that require "good" time-frequency localization. This can be 

achieved by computing an undecimated wavelet transform and the addition of voices. In 

this chapter we review the tools that will allow us to compute an exact multivoice 

undecimated wavelet transform for an arbitrary wavelet. Furthermore, we introduce a 

wavelet function that exhibits nearly optimum time-frequency localization, a desirable 

property in signal analysis as we will see below. 
The chapter is organized as follows: In Sections 2.5.2 and 2.5.3 we review the 

short-time Fourier transform and the wavelet transform, including the theory of frames, 

which will allow us to carry out wavelet analysis/synthesis for an arbitrary wavelet. In 

Sections 2.5.4 and 2.5.5 we review the ä trous and Mallat's algorithms and learn that 

although the ä trous algorithm was originally devised as a computationally efficient 

implementation of the wavelet transform, it is more properly viewed as a nonorthogonal 

multiresolution decomposition for which the discrete wavelet transform computes a 

sampled continuous wavelet transform exactly. In Sections 2.5.6 and 2.5.7 we introduce the 

sine-Gabor wavelet and show that it exhibits nearly optimum time-frequency localization 

and satisfies the conditions of a wavelet frame. Finally, in Section 2.5.8, we summarize our 

results and describe related ongoing work. 

2.5.2    The Short-Time Fourier Transform 

The goal of signal analysis is to extract relevant information from a signal by transforming 

it into a representation where the properties of the signal are more evident. For the 

analysis of stationary signals, that is, signals whose properties do not evolve with time, one 

example of such representation is the Fourier transform 

/oo 

s(t)e-jut dt. 
-oo 

The Fourier transform can be viewed as the inner product of the signal s(t) and the 

sinusoidal wave e>'wt. The analysis coefficient s{u>) = (Ts)(u) measures the "strength" of 

the sinusoidal wave of frequency u in the signal s(t). 



Fourier analysis works well for signals composed of a few stationary components. 

However, any abrupt change in time in a non-stationary signal s(t) is spread out over the 

whole frequency axis in s(u>). In order to adapt the Fourier transform to non-stationary 

signals, Gabor [73] introduced a new transform by using a windowed function w(t) in the 

Fourier integral 

/oo 

s(t)w(t - T)e~iut dt. 
■oo 

A function w(t) qualifies as a window function if it is possible to identify its center and 

standard deviation (or root mean square (RMS) duration) defined by 

1      f°° 
m{w) = —— I    t\w(t)\2dt 

W   2 J-oo 12 ./-oo 

and 

1     f f°° 1 1/2 

a(w) = ]]—n-W     (t-m(w))2\w(t)\2dt>      , (111) 
1Mb  U-00 J 

respectively [74]. In the original Gabor transform, the window function was a Gaussian 

[73], however, the transform is valid for any type of window function and is traditionally 

referred to as the short-time or window Fourier transform. 

The short-time Fourier transform can be viewed as the inner product of the signal s(t) 

with the family of functions 

WrA1) = W(t ~ TYjU}\ (1-, w) e K2, 

that is, 

(gws)(r,co) = (s(t),wT^(t)). (112) 

It is easy to show that wTyUJ(t) is a window function with center and standard deviation 
given by 

I^(WT,U) = rn(w) + T (113) 

and 

ffW = a{w), (114) 

respectively. From Equations 112, 113 and 114 we see that in the time domain the analysis 

coefficient (Qws)(r,u;) essentially depends on the values of s(t) for 

t e [m(w) + T - a(w), m{w) + r + a(w)]. This is called time localization. It follows from 
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the above observation that two pulses in time can be discriminated only if they are more 

than 2a(w) apart. This is referred to as the time resolution of the short-time Fourier 

transform. 

By applying Parseval's theorem to Equation 112 we obtain an alternative formula for 

the short-time Fourier transform 

(QV,S)(T,U) = 7r-(s(7),u>T,w(7))> (115) 

where 

WT,M = ^(7 - u)e-^-w)T, (T,U) e R2. 

Suppose 10(7) = (!Fw)(^) is also a window function with center, m(w), and standard 

deviation, a(w). Then it is easy to show that u)T)ü,(7) is a window function with center and 

standard deviation given by 

m(wT,u) = m(w) + uj (116) 

and 

a(wT„) = a(w), (117) 

respectively. From Equations 115, 116 and 117 we see that in the frequency domain the 

analysis coefficient (GWS)(T,üJ) essentially depends on the values of $(7) for 

7 G [m(w) +00 - a(w), m(w) + co + a(w)]. This is called frequency localization. It follows 

from the above observation that two pure sinusoids can be discriminated only if their 

frequencies are more than 2a{w) apart. This is referred to as the frequency resolution of 

the short-time Fourier transform. 

From Equations 112 through 117 we observe that (GWS)(T,UJ) yields a time-frequency 

representation of s(t). The analysis coefficient (GWS)(T,U) depends on the time-frequency 

window 

\m{w) +T - a(w),m(w) + r + a(w)] x [m(w) + uo - a(w),m(w) + u + a(w)]. 

Increasingly accurate localization in time and frequency is not possible because the area of 

the time-frequency window is lower bounded by 2, that is 

Aa{w)a(w) > 2. (118) 

This is referred to as the uncertainty principle or Heisenberg inequality. Equality is 

satisfied if and only if the window function is a Gaussian as in the Gabor transform. 
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The short-time Fourier transform is an isometry (to a proportionality coefficient) from 

L2(R) into L2(R2) [75], that is 

J- / / \/n      \i \|2 
\S\o = \(gws)(T,u)\   drdu). 

12 Q-77-M 7#| II2     , , z/l \\U]\\2 J -oo    J-oo 

The function s(t) is reconstructed from (Gws){r,u) with the formula 

-i f + OO      /> + oo 

s{t) = 7nhii2 /        /      (M(T, u)w{t - r)ePut drdu. 
2ir\\w\\i J-oo  J-oo 

The short-time Fourier transform is a redundant representation. Instead of computing 

{QWS)(T,CO) for all values (T,U) in R2, it is possible to uniformly sample both r and w such 

that the representation is complete and stable [75]. Let r0 and LO0 be the sampling intervals 

in the time and frequency domains respectively. Then, the discrete short-time Fourier 

transform is defined by [75] 

(Gws)TO,„ = {öws){mT0,nwo), (m,n) G Z2. 

To reconstruct any function s{t) E L2(R) from the set of samples {Gws)m,n, (m, n) E Z2, 

the operator 

L2(R) QA12{1?) 

must be invertible on its range and have a bounded inverse [75]. In order to invert G™, 

Daubechies [76] has shown that r0 and co0 must verify 

U!QTQ < 2ir. 

A drawback of the short-time Fourier transform is that once a window function has 

been chosen the time-frequency resolution of the transform is fixed over the entire 

time-frequency plane. It is therefore impossible with the short-time Fourier transform to 

analyze at the same time transient signal components with good time resolution and 

quasi-stationary signal components with good frequency resolution [77]. 

2.5.3    The Wavelet Transform 

The wavelet transform overcomes the resolution limitation of the short-time Fourier 

transform by letting the time and frequency resolution vary in the time-frequency plane. 

The wavelet transform is defined by [74] 

(>V)M) = |a|-*  f+X\{t)xj> {^) dt, s(t) E L2(R), a,b E R, (a ^ 0). (119) 
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In order to reconstruct s(t) from its wavelet transform, the Fourier transform of ip(t) must 

satisfy [74] 

C=rÄ,< oo. (120) 
J-OO        n\ 

A function ip(t) is said to be a basic wavelet if it is possible to reconstruct s(t) from its 

wavelet transform. 

For any ip(t) satisfying Equation 120, the wavelet transform is an isometry (to a 

proportionality coefficient) from L2(E) into L2(E2) [74], that is 

1 f + OO       /-+00 J 

\s\\l = jr /      \ms)(a,b)\2-^db. 
W J-oo    J-oo a 

hoo     p+oo 

yip J-oo    J-oo 

The function s(t) is reconstructed from (W^s)(a, b), a, b e R, (a ^ 0), with the formula [74] 

-i     /-+00   />+oo ( (t — bW   da 

The wavelet transform can be viewed as the inner product of the signal s(t) with the 

family of functions 

*l>a;btt) = l«r^ (^) ,a,beR,(a?0), (121) 

that is, 

(Wi,s)(a,b) = (s(t),4>a.,b(t)). (122) 

Suppose ip(t) is a window function with center m(ip) and standard deviation a(tp). 

Then, it is easy to show that ipa-b{t) is a window function with center and standard 

deviation given by 

mtya-fi) = am(ip) + b (123) 

and 

a(ipa.b) = \a\a(^), (124) 

respectively. From Equations 122, 123 and 124 we have that in the time domain the 

analysis coefficient (W^,s)(a,b) essentially depends on the values of s(t) for 

t E [am(tp) + b- \a\a(tß), am(ip) + b + |a|a(^)] • It can be verified [74] that if a basic 

wavelet, ip(t), is also a window function then ip(t) is necessarily in Ll(R) so that its Fourier 
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transform, tp(uj) is a continuous function. It follows from Equation 120 that ip(uj) must 

vanish at the origin, that is, 

4>(t) dt = 0. (125) 
■00 

By applying Parseval's theorem to Equation 122 we obtain an alternative formula for 

the wavelet transform 

(W^)(a,6) = ^(s(7),4;6(7)), (126) 

where 

AM = \a\H(aj)e-j^b, a,b € R, (a # 0). 

Suppose ^(7) is also a window function with center, m(*0), and standard deviation, CT(T/>). 

Then it is easy to show that ^^(7) is a window function with center and standard 

deviation given by 

m(4.) = ?® (127) 

and 

*(*») = #■ <128> 

respectively. From Equations 126, 127 and 128 we have that in the frequency domain the 

analysis coefficient (Wi}s)(a,b) essentially depends on the values of 5(7) for 
m(ip)  __ crjip)    m(ip)  _ a(j>) 

,     a \a\   '     a \a\ 

From Equations 122 through 128, ()%s)(a,&) yields a time-frequency representation 

of s(t). The analysis coefficient (W^s)(a,b) depends on the time-frequency window 
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[am{ip) + b - \a\a(ip), am(tp) + b+ \a\a x 
m(ip)      a(ijj)  m(ii)      a^jj) 

In contrast to the short-time Fourier transform, both the time and frequency resolution in 

the wavelet transform vary in the time-frequency plane. The following properties derive 

from the time-frequency localization characteristics of the wavelet transform: 

1. The ratio of the standard deviation, o$)l\a\, of the frequency window and its center 

frequency, m(i>)/a, is given by ±Ä, which is independent of the location of the 

center frequency. This is called constant-Q frequency analysis. 
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2. The time-frequency window narrows in time and widens in frequency for large center 

frequency m(ip)/a (small a > 0), and widens in time and narrows in frequency for 

small center frequency m(^)/a (large a > 0). 

Recall that the wavelet transform in Equation 119 can be viewed as the inner product 

of s(t) with the family of functions ipa;b(t) defined in Equation 121. Notice that this family 

of functions is obtained from a single basic wavelet by translating it by b and dilating it by 

a. The basic wavelet is usually referred to as the mother wavelet. The constant |o|~2 in 

Equation 121 is used for energy normalization purposes, that is H^fcWII! = ll^(*)lli- In 

general the mother wavelet ip(t) is normalized to have its energy equal to one, that is 

||-0(£)||2 = i. We assume this restriction from now on. 

In practice the parameter a is restricted to a > 0, so that the center frequency of 

^a;b(l) in Equation 127 is restricted to positive frequencies. In this context the parameter 

a is usually referred to as the scale parameter. In order to reconstruct s(t) from its wavelet 

transform restricted to a > 0, the Fourier transform of ip(t) must satisfy a more strict 

admissibility condition than Equation 120 given by [74] 

+~W7)Pd7=r~Mz^d7=V<oo. (129) 
0 7 '      Jo 7 2 

For any ip(t) satisfying Equation 129 we have the following reconstruction formula [74] 

2     /.+00   /.+00 c  1      /t-b\}   da „ 

The wavelet transform is a redundant representation. Instead of computing 

(W^s)(a, b) for b G R and a e E+, it is possible to choose an exponential sampling of the 

scale parameter, a = a{, j e Z, o0 ^ 0, such that the representation is complete and stable. 

Of particular interest is the sequence of scales where the elementary dilation step a0 = 2 

because it leads to an octave by octave partitioning of the frequency domain. 

In order to reconstruct s(t) from its wavelet transform restricted to b G R and 

a = al, j eli, the Fourier transform of if>(t) must satisfy a more strict condition than 

Equation 129 given by [74] 

A<  Yl |vVo7)|<£, (13°) 
j=-oo 

for almost all 7 e K for some constants A and B with 0 < A < B < 00. Reconstruction is 

possible by using the following formula [74] 

s (t) =  E f_°° K§(>V)K,ö)} |a0-> (^) } db, 
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where the Fourier transform of ip(t) is given by 

iil) 
^(7) +00 

E  h?(°o7) 

If iß(t) satisfies the so-called "stability condition" in Equation 130 with a0 = 2, then ip(t) is 

called a dyadic wavelet [74]. 
In addition to sampling the scale parameter a = a3

0, j G Z, it is possible to choose a 

sampling of the translation parameter b and still obtain a complete and stable 

representation. Intuitively, the discretization of b has to be chosen such that ipa;b(t) 

"covers" the entire time axis for each scale a = a3
0, j G Z. From Equation 124 we see that 

the standard deviation of ipa;b(t) is \a\ times the standard deviation of tp(t). Hence, in order 

for ipa-,b{t) to "cover" the entire time axis at scale a = aJ
Q, the discretization of b has to be 

proportional to \a\. It follows that at scale a = aJ
0 the translation has to be b = kb0a

J
0, 

where b0 > 0 is the elementary translation step. This leads to a discretized family of 

wavelets given by 

Mt) = a~^ (~^) = HH Wt - kb0). (131) 

In order to reconstruct s(t) from its wavelet transform restricted to b = kboa3
0, j,k G Z 

and a = aJ
0, j e Z, ip(t) must satisfy a stricter condition than Equation 130. The 

admissibility condition for this reconstruction is the existence of A > 0, B < 00 so that 

A\\S\\1< X)K*(*),W*)>l2<aN 
j,kez 

for all s(t) £ L2(R) [8]. In other words, the family of functions ipj,k(t) defined in Equation 

131 constitute a frame. A brief review of frames is presented at the end of this section. 

Given a frame of wavelets, reconstruction of s(t) from the (s(t), ipj,k(t)) is possible by 

using the following formula 

hoo      +00 
SW=  E   E  (s(t),^At))^k(t), (132) 

j=—co k=—oo 

where the family of functions ipj,k(t), j,k € Z is called the dual frame of ipj,k(t), j,k G Z 

(see the section below). 

If the dual frame of tjjjtk (t), j, k G Z is of the form 
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where 

kb0a
J

0 
i}i%k{t) = a0 

2-0     ,—-    =a0
2i> (a0H - kb0) , 

V      ao      / 

then Equation 132 is referred to as a wavelet series and ip(t) is known as the dual wavelet 

of ip(i). Given a wavelet frame, the existence of a dual wavelet is important for 

computational purposes. Below, we overview the classification of wavelets according to 

orthogonality and highlight the existence of a dual wavelet in each case. A wavelet can be 

classified according to orthogonality as follows: 

1. A wavelet ip(t) is called semiorthogonal if it satisfies (tpj,k(t),ipi,m{t)) — 0, 

j //, j,k,l,meZ.. 

Remarks: It can be shown [74] that for every semiorthogonal wavelet, tp(t), there 

exist a dual wavelet, ip(t), such that the pair (ip(t),ip(t)) satisfies the biorthogonality 

property 

(iij,k(t),ipi,m{t)/ = &j,i&k,m,3,k,l,m G Z. (133) 

2. A wavelet tp(t) is called nonorthogonal if it is not a semiorthogonal wavelet. 

3. A semiorthogonal wavelet ip(t) is called orthogonal if it satisfies 

{lpj,k(t), lßl,m(t)) = SjjS^m, j, k,l,me Z. 

Remarks: It can be shown that an orthogonal wavelet is self dual. 

4. A nonorthogonal wavelet ip(t) is called biorthogonal if there exists a dual wavelet, 

Tp(t), such that the pair (ijj(t),ip(t)) satisfies the biorthogonality property in Equation 

133. 

The computation of Equation 132 can be a burden for nonorthogonal wavelets for 

which a dual wavelet does not exist. In such a case, it is advantageous to work with frames 

which are almost tight ("snug frames"), i.e., frames which have B/A - 1 <C 1, because the 

xi)j'k(t) can be approximated by ipj,k{t) (see the section below and [8] for more details). 

Frames 
In this section we present a brief review of frames. For a more detailed and rigorous 

account of frames see [8]. 
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A family of functions ipj, j G J in a Hubert space U is called a frame if there exist 

A > 0, B < oo so that for all / G %, 

^ii/ii2<Ei^^)i2^ßii^i2' (134) 

where A and B are called the frame bounds. If the two frame bounds are equal, the frame 

is called a tight frame. In a tight frame we have, for all / G H, 

which implies 

or (at least in the weak sense [8]), 

jes 

Although Equation 135 is reminiscent of the expansion of / into an orthonormal basis, it is 

important to note that frames, even tight frames, are not (orthonormal) bases. The family 

of functions ipj, j G J are typically not linearly independent. If the frame is tight, and if 

\\ifjW = 1 for all jej, then A = B gives the "redundancy ratio." If this ratio equals to 1, 

then the tight frame is an orthonormal basis [8]. 

Equation 135 gives a trivial way to recover / from the (/, (pj), if the frame is tight. 

Consider now recovering / from frames that are not tight. Let us define the frame operator 

F from U to £2{S) as 

(Ff)j = (f,<Pj). 

Since ^ constitute a frame, it follows from Equation 134 that ||F/||2 < £||/||2, that is, F 

is bounded, which means it is possible to find its adjoint operator F* [8]. The adjoint 

operator F* of F can be computed from the following relation 

(F'cJ)   =   (c,Ff) = Y,Cj(frpi) 
j es 

=   ECJ^'^' 
jeJ 

so that 

jeJ 
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at least in the weak sense [8]. From this it follows that 

£ </, Vi) <pj = F*Ff. 
jes 

Thus, the definition of F implies 

Y,\(f^j)\2 = \\Ff\\2 = (F*Ff,f). 
jes 

Hence, in terms of F, the frame condition in Equation 134 can be written as 

AI <F*F <BI, (136) 

where I is the identity operator [8]. This implies, in particular, that F*F is invertible (see 

Lemma 3.2.2 in [8]), and that the operator (F*F)~1 satisfies, 

B~lI < (F*F)~l <A"lL 

Applying the operator (F*F)~~l to the family of functions <pj, j G J, leads to another 

family of functions denoted by (pj, j G J where 

<Pi = (F*F)-1<Pj, j e J. 

The family of functions (pj, jej also constitutes a frame with frame bounds B~l and A~l 

[8], that is 

^ll/ir^K/,^!2^1!!/!!2- 
jes 

It can be verified (see Proposition 3.2.3 in [8]) that the associated frame operator F from 

H to £2{S), {Ffij = (f,<pj) satisfies F = F(F*F)~\ F*F = (F*F)-\ F*F = I = F*F and 

FF* = FF* is the orthogonal projection operator, in f(J), onto Ran(F) = Ran(F). The 

family of functions <£,-, j G J is called the dual frame of ipj, j G J. It is easy to verify that 

the dual frame of <£,-, j G J is ipj, j G J. From F*F = I = F*F it follows that 

jes jes 

Hence, we have a way to recover / from the (/, <pj), where the only thing we need to do is 

to compute the (pi = (F*F)~Vj- Note tnat> in general, if the frame is redundant, there 

exist other functions in % that could equally well play the role of the (p>j and lead to a 

reconstruction formula. This follows from the fact that the ipj are not linearly independent 

in the general case. Equation 137, however, yields the most "economical" representation of 
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/ in the following sense (see Proposition 3.2.4 in [8]): Consider the first half of Equation 

137, / = Eiej </> Pi) <Pj- If / = EjeJ (/><Pj) UJ for some other family of functions uh 3 G J> 
then it can be shown [8] that £ieJJ \{f,Uj)\2 > £ieJ l(/,£i>|2- Similarly, consider the 

second half of Equation 137, / = £jeJ (/, <f>j) (pj. If / = Ejej W for some c e £2(J)' and 

if not all Cj equal (/, (f>j), then it can be shown [8] that Y,jei lcil   - Sjej l(/> <£?')l • 
Computing the ifj involves the inversion of F*F. If B is close to A 

(r = B/A - 1 < 1), then from Equation 136 we have that F*F is "close" to ^ J. This 

implies that (F*F)~l is "close" to -^1, and that ^ is "close" to -^ipj [8]. This 

motivates the following reconstruction formula for / [8], 

/ = -db£(/'^'+jR/' (138) 

where 

Ä = / - -^F*F. (139) 
A + B 

It follows from Equations 136 and 139 that -f=^i < Ä < |^J. This implies that 
||fl|| < &=A = _i_ < i. if r is small, the rest term Rf in Equation 138 can be dropped, 

leading to a reconstruction formula for / which is accurate up to an L2-error of 2+^ll/il t8l- 

Even if r is not small, it is possible to write an algorithm for the reconstruction of / with 

exponential convergence [8]. From Equation 139 we see that 

F*F=^±*(I-R). 

This implies that 

(F^r^j-^ii-Ry 

Since ||Ä|| < 1, the series £)£L0 
Rk converges in norm, and its limit is (I - R)  l [8]. It 

follows that 

tpj (^"V; = 7ZRE% A + B 

Note that the zeroth order term in the above equation leads exactly to Equation 138 with 

the rest term dropped. Better approximations can be obtained by truncating after N terms 

[8], 

2     ,N 

'*      A + B 
V^T^E^' 

fc=0 
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with 

jel 
% 

< 
2 + r 

7V+1 

which becomes exponentially small as N increases, since ^7 < 1. In particular, the (pj can 

be computed by an iterative algorithm [8], 

2 
tf = 

-N-l 

Similarly, / can be computed by an iterative algorithm [8], 

f=(F*F)-\F*F)f= lim fN, 
N—foo 

with 

JN — IN-I + A + B £[(/>¥>j) " {fN-l,<Pj)]<Pj- 
jeJ 

Wavelet Frames 

Not all choices for ip(t), a0, b0 lead to frames of wavelets, even if ip(t) is admissible. In 

[8], Daubechies gives some general conditions on i/;(t), a0, b0 under which a frame is 

obtained and derives estimates for the frame bounds. These results can be summarized as 

follows (see Proposition 3.3.2 in [8]): liip{t), a0, are such that 

inf     V  U(o^7) 
1< 7 «JO .z—'   I '|7i<<J0  / 

j = -0O 

sup     V   ip(a3
0rf) 

l<|7|<a0 

>o, 

< 00, (140) 
' 3=-oo 

and if 

ß{j8)=    sup     V  mc^j)   ^(0^7 + 7, 
l<!7|<a0 ' j = -oo 

decays as fast as (1 + |7s|)"
(1+e), with e > 0, then there exist 6thr > 0 such that the tpj,k{t) 

constitute a frame for all choices b0 < bthT. For b0 < &thr, the following expressions are 

frame bounds for the ijjj,k{t) 

+00 „ +00 

A = i-i inf y U(aj
o7) - y 

&0    I l<l7l<ao .^1 ^ 
■ 7 = — OO k = — 00 
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+oo 
B = r \  SUP   Yl lütä-y)  + Yl 

°0       l<|7|<a0 ' j=-oo fc= — oo >(£*» 
2TT. 

1/2 

The condition on /%s) and Equation 140 are satisfied if |^(7)| < C|7|a(l + \"f\)~ß with 

a > 0, ß > a + 1. It can also be verified that if the Vj,*(*) in Equation 131 constitute a 

frame with frame bounds A and B for some choice of a0, b0, then the Fourier transform of 

xp(t) satisfies 

+00 

M<   S   ^(flo7) <bnB \ w0 
(141) 

J=-oo 

almost everywhere [74]. 
As mentioned before it is advantageous to set the elementary dilation step a0 = 2 

because it leads to an octave by octave partitioning of the frequency domain. Hereafter we 

will assume this partitioning of the frequency domain unless stated otherwise. 

Multivoice Wavelet Frames 
In Section 2.5.3 we mentioned that it is advantageous to use wavelet frames with 

B/A - K 1, because the fo>k(t) can be approximated by tpjJe(t). This implies that the 

sum in Equation 141 should be almost constant for 7^0. This imposes a strong 

restriction on tp(t) that is not generally satisfied. In order to overcome this problem 

without having to give up too much freedom in choosing ip(t) or its bandwidth, one can 

adopt the use of different voices per octave (i.e., suboctave sampling) [8]. This can be 

achieved by using different wavelets ipi{t), fo{t),... ,ipN(t) and looking at the frame 

tj;Vijtk(t) = -^ipv (£ - kb0) ,j,keZ,v = l,...,N.Ia[8], Daubechies gives the following 

expressions for the frame bounds of this multivoice frame 

-ij^EEj^i-EEK^M-^) 
-11/2' 

with 

( N     +00 N 

J0   [1<|7|<2 v=1 i=_TO fe^O v=l   L *(£*)*(-!* 
-,1/2' 

ßv(%)=   sup    V  |4(2J7)ll^(2j7 + 7s)l- 
1<M<2. J--CO 

101 



It is suggested in [8] that by choosing the ^1(7),... , ^(7) to have slightly staggered 

frequency localization centers, coupled with good decay at 00, one can achieve 

B/A — 1 <C 1. One choice favored by several authors [78, 8, 79] is to take "fractionally'1 

dilated versions of a single wavelet 

^(<) = 2-("-1)/JVV(2-(,,-1)/JV*). 

In this case Eli £j*oo l^(2j7)|2 = EJT-oo lV>(2j/JV7)|2 which can be made almost 
constant by choosing N large enough [8]. 

2.5.4    The A Trous and Mallat's Algorithms 

Recall from Section 2.5.3 that the wavelet transform of a signal s(t) is given by 

1   f+°°           ft — b\ 
()%,s)(a, b) = |a|"2  /      s{t)ip ( J dt, s{t) € L2(E), a, b e R, (a ^ 0). 

The wavelet coefficients (s(t),ipjtk{t)} in Equation 132 for a0 = 2, b0 = 1 can be obtained by 

sampling the wavelet transform of s(t) with a = 2j, jeZ and b = 2jk, j, k G Z. We will 

refer to these coefficients as the decimated wavelet "series" coefficients and will denote 

them by 

((»,-,*   =   (VM(2>',2''A;) 

=   (s(t)^hk(t)), (142) 

where ipj,k(t) = -rjip (^j ~ k) is the generator of a family of decimated wavelets. We will 

refer to the operation of computing the above wavelet coefficients as the decimated wavelet 

transform. 
For many applications the above sampling is inadequate. In particular, a finer grid is 

needed when computing the wavelet transform for applications that require "good" 

time-frequency localization. This can be achieved by computing an undecimated wavelet 

transform and the addition of voices [66]. The undecimated wavelet transform of a signal 

s(t) is obtained by sampling the wavelet transform of s(t) with a = 2j, j e Z and 

b = k, k G Z. We will refer to these coefficients as the undecimated wavelet "series" 

coefficients and will denote them by 

(M;,*   =   (VM(2',Ä;) 

=   (s(t),ti(t))> (143) 

where ^{(t) = -j=ip (^) is the generator of a family of undecimated wavelets. 
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In what follows we will review two separately motivated implementations of the 

wavelet transform, the algorithme ä trous [13] and Mallat's [41] multiresolution 

decomposition. These algorithms are both special cases of a single filter bank structure, the 

discrete wavelet transform [66], the behavior of which is governed by one's choice of filters. 

The ä trous algorithm was originally devised as a computationally efficient implementation 

of the wavelet transform, however it is more properly viewed as a nonorthogonal 

multiresolution decomposition for which the discrete wavelet transform computes a 

"sampled" continuous wavelet transform (wavelet "series" coefficients) exactly [66]. On the 

other hand, Mallat's algorithm was devised as an orthogonal multiresolution decomposition 

[41] that when initialized properly computes a "sampled" continuous wavelet transform 

[66]. For a more detailed and rigorous account of these algorithms see [41, 13, 66]. 

The following additional terminology and notation will be used. The discretized 

wavelet transform (with sampling period T = 1) is given by 

The discretized decimated wavelet "series" coefficients are given by 

* n 

Similarly, the discretized undecimated wavelet "series" coefficients are given by 

(r^k, = (w,s)(2\k)        *   £s(n)tf fc^Y (146) 

* n 

Signals and filters in bold face will be treated as vectors. The kth element of vector / 

is denoted by [f]k = fk. The symbol t will be used for the mirror filter [f% = f\ = J_k. 

The decimator operator is denoted by a matrix 

Dk,m   =   S(2k-m) 

=     02k,m 

where 5k,m is the Kronecker delta and 5(h) = Skfi. The dilation operator is denoted by a 

matrix 

Uk,m   =   5{k-2m) 

Convolution of / and s is denoted by [/ * s]k = J2m fk-msm- Convolution followed by 

decimation becomes [D(f * s)]k - £m Dk,m[f * s]m = [f * s]2k = Sm f2k-mSm- The 
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following shorthand will be used for the convolution of / and s, [f * s] = Fs, where 

Fm,n = fm-n- It is easy to verify that [D(f * s)] = DFs. The symbol f will also be used 

for the Hermitian transpose of matrices [-F']m,n = /n_m = fm-n- F°r discrete signals the 

translation operator is denoted as 

yJ-m^\n — Sm—m 

and for continuous signals as 

(TTs)(t) = s{t-r). 

The z transform of a discrete signal sn is given by 

s[z) = >   snz~n. 

Finally, we state the following two identities [66], which will be used later. For any F of 

the form Fm^n = fm-n we have that 

[(DFYU = [(DF)%k_23n (147) 

and 

Y}{DFyUzk = z^X[f{z2r). (148) 
k r=0 

The Decimated A Trous Algorithm 
The ä trous algorithm was originally devised as an efficient implementation for 

computing wavelet series coefficients. To achieve this, the wavelet series coefficients in 

Equations 142 and 143 are approximated by their discretized counterparts in Equations 

145 and 146, respectively. As a starting point consider implementing Equation 145. 

Clearly, as j increases ip(t) must be sampled at progressively more points, creating a large 

computational burden [13, 66]. The solution proposed by [13] is to approximate nonintegral 

points via a finite filter /*. As an example, let /* be the filter ^75(0.5,1.0, 0.5). Then, 

/öV^/t      /m    _    / ^(?)> for n even, 
V^2^n-2^W    -    1   I U(s=l) + i)(^)) ,   for n odd, 

k 

approximates a sampling of ip(t/2). Let g be a filter defined by gn = i>{-n). Then the 

above interpolation can be computed by first dilating #+ and then convolving the result 
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with a filter f which leaves the even points fixed and interpolates to get the odd points 

[66]. The condition that / be the identity on even points is sufficiently important that 

merits the following definition: A lowpass filter / is said to be an ä trous filter if it satisfies 

f2k = 5{k)/V2. (149) 

The A/2 is simply a convenient means of including the normalization factor of Equation 145 

in the filter. 
It can be verified [66] that the interpolation operation can be written as follows 

[f*(Ug%   =   [rfUgX 

k 

k 

K 71* (s) ■ 
This result and Equation 145 leads to the following approximation for the discretized 

decimated wavelet series coefficients at j = 1, 

1   / 77 \ 

MK/fe = -j= E s(n) ^ (2 ~k) 
*        n 

~     / J 
sn / j Jn-2k-2m9m 

n m 

m n 

=   [9 * D(f * s)]k 

=   [GDFs}k, 

where [s]n = sn = s(n). Proceeding inductively, one can find the following approximation 

for the discretized decimated wavelet series coefficients for all j [66] 

(c^),-* « [G(DFYs]k. (150) 

Remarkably, the right-hand side in the above equation is the discrete decimated wavelet 

transform of s at level j [66], which we denote as follows5 

[c3(s)]k = [G(DFys]k. (151) 

5The notation [cj]k = c^k will be used as a shorthand for [cj(s)]k 
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Equations 150 and 151 yield the following formula for the discretized decimated wavelet 

series coefficients 

(tys)j,* « [cj(s)]k. (152) 

The discrete decimated wavelet transform can be computed iteratively over j as follows 

[Sj+l]fc     =     / jf2k-n[Sj\n 
n 

=   [D(f*s3)]k 

iCj]k     -     y^gfc-n[gj]n 
n 

=   [g* Sj]k (153) 

where [s0]k = sk. Except for decimation of the output the ä trous algorithm described in 

[13] is given by Equations 152 and 153. 

The original ä trous algorithm made no statements regarding the accuracy of the 

approximation in Equation 150 or even the discretization from Equation 119 to Equation 

144. A major step forward towards treating this question lies in the results of [66] outlined 

in Section 2.5.5. 

Mallat's Algorithm 

In this section we review Mallat's multiresolution algorithm. For a more detailed and 

rigorous account of this algorithm see [41, 80, 66]. Mallat's algorithm has basically the 

same structure as Equations 153, that is, 

[sj+1]k   =   [D(h*8j)]k 

[dJ+i}k   =   [D(g*Sj)}k (154) 

where [s0]k = sk. In keeping with the literature, the lowpass filter is denoted by h instead 

of /. The constraints on h and g which ensure an orthonormal multiresolution analysis are 

[41, 66]: 

1. Perfect reconstruction 

/ _, h2j-mh2j-n + 92j-m92j-n = "m,ni (155) 
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2. Orthogonality of h and g with respect to even shifts 

J2 h^m-j92n-j = 0, (156) 

3. Bandpass condition on g 

4. Lowpass condition on h 

Y,9n = 0, (157) 

YJ
hn = ^' (158) 

In matrix notation Equations 155 and 156 may be written as follows 

{H^U)(DH) + (G*U){DG) = I, (159) 

(DH)(&U) = 0, (160) 

where Hm,n = hm-n. Multiplying Equation 159 on the left by DH and using Equation 160 

we see that 

(DH)(H^U)= I. 

It follows that h and its shifted versions by even shifts form an orthonormal set 

3 

Similarly, multiplying Equation 159 on the left by DG and using Equation 160 we have 

that 

(DG)(G*U) = I. 

It follows that g and its shifted versions by even shifts also form an orthonormal set 

3 

These two results together with Equation 156 imply that Equations 154 is an orthogonal 

decomposition of the discrete signal Sj. Furthermore, Equation 155 implies that 

[8j]k = [(ltU)8j+1 + (&U)dj+1]k. 

107 



From Equations 155-158 it follows that Equations 154 represents a wavelet 

decomposition as described below [41, 66]. 

Define a scaling function (f)(t) with Fourier transform given by 

oo      1 

r=l  V 
■)■ 

It follows that 

4>(u) = ^h(e^)4>( 
2/ 

which in the time domain takes the form 

k 

-k). 

Therefore, the dilates and translates of (j>(t), 

M*) = ^{v 
») 

have the property [66] 

(/>j+l,k(t) =  / J h2k-n4>j 
n 

n{t)- 

Define a wavelet function by 

m = Y.ä-k^<t>{2t-k). (i6i) 
k 

Then, using Equation 156 and the above properties, one can show that the family of 

wavelets 

are orthonormal, and that the dj are the coefficients of the expansion of s(t) in terms of 

^fc(t), that is 

[d3]k = 7^I   s(w(^-k)dt> 
provided that 

/+oo   

S(t)(j)(t - k)dt. 
-co 

Therefore, Mallat's algorithm when initialized properly (see the equation above) computes 

exactly a "sampled" continuous wavelet transform [66]. 
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The Undecimated A Trous Algorithm 

As mentioned earlier for many applications the time-frequency sampling grid provided 

by the decimated wavelet transform is inadequate when "good" time-frequency localization 

is required. One way to overcome this limitation is by computing an undecimated wavelet 

transform. Following the same approach described above, the wavelet series coefficients in 

Equation 143 can be approximated by their discretized counterpart in Equation 146. From 

Equations 145 and 146 it follows that (c^s)j)fe = (utys)(2J,2>'fc) and (tys),,* = (w1ps)(2^,k) 

should coincide at k = 0. Utilizing this fact, one can obtain the kth undecimated wavelet 

series coefficient (i>s)i)fe by translating the signal back by k and computing the discretized 

decimated wavelet series coefficient (c^(r_fcs))i)0. This result together with Equation 152 

yields the following approximation for computing the discretized undecimated wavelet 

series coefficients 

(>>s)i,fc   =   (cv(r-fcs))j,o 

*   [cj(T-k8)]0, (162) 

where [s]n = sn = s(n). Remarkably, the right-hand side in the above equation is the 

discrete undecimated wavelet transform of s at level j [66], which we denote as follows6 

[rj(s)}k = [c,(T_feS)]o. (163) 

Equations 162 and 163 yield the following formula for the discretized undecimated wavelet 

series coefficients 

Mi)fc « M*)]*. (164) 

A few observations about the decimated and undecimated discrete wavelet transforms 

are in order. Notice that in general Cj is not translation invariant 

[Cj(Tms)}k   =   HGWUaU 
n 

n 

?   Y,[G(DFy]k-m,n[S]n. 
n 

However, if one replaces m by 2jm in the above equation and uses Equation 147, the last 

step becomes an equality [66] 

[cj(T2Jms)]k   =   [Cj(8)]k-m. (165) 

6The notation [rj)k = rjtk will be used as a shorthand for [T\,-(S) 
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Thus, translating s by 2Jra, translates octave j by m. 

On the other hand, it can be verified that Vj is translation invariant 

[rj(Tms)]k   =   [c,-(Tm_fcs)]0 

=     [rj(S)}k-m- 

Also, from Equations 163 and 165 it follows that sampling r^k every 2-7 points produces 

exactly Cjtk, that is, 

Cj,k = rjfiik- 

An iterative algorithm for computing the discrete undecimated wavelet transform can be 

obtained by taking z transforms [66]. From Equations 151 and 163 

Ylri-kZ k 

k 

=     Y,Y}G^DF^rnSm+kZ~k 

=   ^T[G(DFy]0,mzms(z). 

Applying Equation 148 to the above equation it follows that 

i-i 

k r=0 

z2r)s(z) 

where j = 0 is understood to mean there are no factors of /. 

It is easy to see that Uj f is / with 2j - 1 zeros inserted between every pair of filter 

coefficients and that its z transform is f(z23). Therefore the discrete undecimated wavelet 

transform can be computed iteratively over j as follows 

[aj+1]k   =   [(Utf)*8j)]k 

[rj]k   =   [(U3g)*sj]k 

where [s0]k = sk- The above result together with Equation 164 is essentially the ä trous 

algorithm described in [13]. 

2.5.5    The A Trous Algorithm as an Exact Wavelet Transform 

In the previous section we analyzed two separately motivated implementations of the 

wavelet transform. We learned that the ä trous algorithm was originally devised as a 

computationally efficient approximation of the "sampled" wavelet transform (C1ps)jtk whose 
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implementation can be viewed as a discrete wavelet transform for which the filter / is an 

interpolator satisfying Equation 149 and the filter g is obtained by sampling the wavelet 

function tp(t). We also learned that Mallat's algorithm is a discrete wavelet transform with 

filters h and g subject to the constraints in Equations 155-158 that when initialized 

properly computes exactly a "sampled" continuous wavelet transform for the wavelet 

function ip(t) in Equation 161. Next we will review the results of [66] which show that the ä 

trous algorithm can be viewed as a nonorthogonal multiresolution decomposition for which 

the discrete wavelet transform computes a "sampled" continuous wavelet transform exactly. 

Define a scaling function </>(t) with Fourier transform given by 

00        -,       

*H=n^/(^)' (166) 
r=l 

or equivalently 

cf>(t) = lim V[W]o,^x(2J - k), 
7—j-oo z—* 

k 

where 

x{t) = { I forte [-1/2,1/2), 
otherwise. 

For normalization purposes f(e JW' 

u=0 
= y/2, which implies 

2> = V2 (167) 

and 
+ 0O 

<f>{t)dt = 0(0) 
—oo 

Suitable regularity conditions for the inverse Fourier transform of the product in Equation 

166 to converge to a reasonable behaved function may be found in [81, 82, 66]. One can 

verify [66] that the dilates and translates of </>(£) have the property 

</>j+1,k(t)   =   ^[5F]M^W' 
n 

=     E^-n<M*)- (168) 
n 

Furthermore, if / is a finite filter, then (f>(t) has finite support [66]. 

Define the wavelet function 

111 



The recursion in Equation 168 implies that 

Mt)=^(ü¥y^n<ßoAt)- 
n 

This expression along with Equation 169 yields 

^,fc(*) = £[GCDFykBto,n(*). 
n 

Using the above expression in Equation 145 the discretized decimated wavelet "series" 

coefficients take the form 

i 

=   £s(O£[G(ÖF)^,n0Oln(O 
I n 

n I 

=   £[G(DF)J]fc,n£a(0ÄT^Ö. 
n 2 

Define 

[8]B = £S(o^r^ö, (170) 

then the above equation becomes 

which is the discrete decimated wavelet transform of the discrete signal sn defined in 

Equation 170. Therefore, using the initialization in Equation 170 the discrete decimated 

wavelet transform computes exactly the discretized decimated wavelet "series" coefficients 

(cy s)j,fc. Similarly, using the above expression for ^k(t) in Equation 142 we see that the 

decimated wavelet "series" coefficients take the form 
+ 00   

(Cys)i,*   =    /      s{Wjtk(t)dt 
J —CO 

/+0O /   

s(t)   £[G(DFy]fc,n0o,n(t) j dt 

/ + 0O   

s{t)<t>Q,n{t)dt 

/ + 0O   

s{t)4>{t-n)dt. 
-co 
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Using 
/+00   

s(t)<f>{t-n)dt (171) 
■oo 

the above equation becomes 

(C,s)J,k = [G(DFYs}k, 

which is the discrete decimated wavelet transform of the discrete signal sn defined in 

Equation 171. Therefore, using the initialization in Equation 171 the discrete decimated 

wavelet transform computes exactly the decimated wavelet "series" coefficients (Cy s)^. 

Notice that 170 is the discretized version of Equation 171. 

Finally, we review the significance of the ä trous condition in Equation 149. One may 

show that a filter / is an ä trous filter iff <j>{n) = 5(n) [66]. Using this observation it can be 

shown that if / is ä trous then (1) Equation 170 becomes [s]n = s(n) and the discrete 

decimated wavelet transform of the sampled signal s(n) yields the exact discretized 

decimated wavelet "series" coefficients (c^s)j>k and (2) the wavelet ip'(t) defined in 

Equation 169 satisfies tp'(n) = g\ [66]. 
In summary, given / satisfying Equations 149 and 167, g defined by g]

n = ip{n) (where 

ip(t)) is an arbitrary wavelet), and given the initialization in Equation 171, the discrete 

wavelet transform computes an exact "sampled" continuous wavelet transform of s(t) using 

the wavelet function ip'(t) defined in Equation 169. Furthermore, if there is sufficient 

regularity, ip'{t) and ip(t) will be "close" since they coincide on the integers up to the 

length of g. 

2.5.6    The Sine-Gabor Wavelet 

It is well known that the modulated Gaussian or Gabor function is the only function that 

achieves optimum time-frequency localization. The question arises as to whether the Gabor 

function, 

Mt) = KGe-t2/2^e- ■ju)0t 

can be used in the context of wavelet analysis and synthesis. Unfortunately, this is not 

possible because the Gabor function is not an admissible wavelet (for details on the 

admissibility condition for wavelets see Section 2.5.3.) Therefore, optimum time-frequency 

localization via the wavelet transform is not possible. However, a modified version of the 

Gabor function, know as the Morlet wavelet [8], 

t/,M(t) = KMe-t2'2^ {e-^ - e-«2) 
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satisfies the wavelet admissibility condition, and for <To = 1, o;0 = 7r (2/In 2) ' , achieves 

nearly optimum time-frequency localization and generates a frame of wavelets (for more 

details about wavelet frames see Section 2.5.3.) In fact, the error incurred in approximating 

the Morlet wavelet with a Gabor function under these conditions is negligible [8]. Although 

Gabor functions are not wavelets in the strict sense, the term "Gabor wavelet" is used 

throughout the literature. We will refer to Gabor functions as Gabor wavelets provided 

that e~cr°UJ°/2 is negligible. 

Having a frame of wavelets, ipj,k(t), h k G Z, is a desirable property because it allows 

one to completely characterize and reconstruct a signal s(t) from its discrete wavelet 

coefficients (s(t),ipjtk(t)) (see Section 2.5.3.) In practice it is desirable to have a frame of 

wavelets for which both analysis and synthesis can be computed efficiently. 

We show that the sine-Gabor function (complex part of the Morlet wavelet) achieves 

nearly optimum time-frequency localization and at the same time generates a frame of 

wavelets. Furthermore, we show that both analysis and synthesis using the sine-Gabor 

wavelet can be computed efficiently. 

The fact that the linear combination of two wavelets is also a wavelet gives us an easy 

way to show that the sine-Gabor function is a wavelet. By taking the real and imaginary 

parts of the Morlet wavelet we see that 

Re^M(t) = KMe~x2^o (cos(u0t) - e^*'2) , 

and 

Imi>M(t) = -KMe~x2/2ao sm(uQt). 

It follows that the sine-Gabor function is indeed a wavelet. It also follows that the 

cosine-Gabor function is not a wavelet for otherwise the Gabor function would be a wavelet. 

The question as to whether the sine-Gabor wavelet generates a frame of wavelets and 

the efficient computation of both analysis and synthesis using the sine-Gabor wavelet are 

addressed below. 

2.5.7    The Sine-Gabor Wavelet Frame 

We showed in Section 2.5.6 that sine-Gabor functions are wavelets. In this section we 

study the time-frequency localization characteristics of the sine-Gabor wavelets and also 

establish that under certain conditions they generate wavelet frames. 

The sine-Gabor wavelet is given by 

^(t) = Ki!e-
x2^hm(u0t), (172) 
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where 

.1/2 

Kj, = 7T"1/4 I — 3^5 
3-ffnU 0W0 

was chosen so that ||^||2 = 1- The time and frequency resolution of the sine-Gabor wavelet 

are given by the root mean square extent of the function and its Fourier transform, 

respectively (see Equation 111 in Section 2.5.2.) It follows from Equations 172 and 111 

that the time-resolution of the sine-Gabor wavelet is given by 

,n      /qg(l-e-^(l-2a0^))Nl/2 

*W = { 2(1 -e-^l) 

The Fourier transform of the sine-Gabor wavelet is given by 

-<rg(w-wo)72 _ e-al(,u+w0Y/2 

^) = fy  ^ , 

where 

K$ = K^ y/2ira0. 

Computing the root mean square extent of ip{co) as defined in Equation 111 would lead to 

misleading results. It can be verified that if a function iß(t) satisfies the wavelet 

admissibility condition and is also a window function then its Fourier transform $(u) must 

vanish at the origin (see Equation 125 in Section 2.5.3.) In addition if the wavelet ip{t) is 

real we have that xj)(u)) = $(-<*}), so that \i>(u)\ is a symmetric function around the origin. 

It is therefore more suitable to restrict our attention to positive frequencies for this class of 

wavelets and use 

oo 
1/2 

°$) = \TT^        ^- m(^))2|^H|2 du 
[\m\iJo 

for the frequency-resolution, where 

2      f°° 

\\m\i Jo 

It is easy to verify that the sine-Gabor wavelet satisfies all the conditions mentioned above 

and that its frequency-resolution is given by 

f 2    2 \   X/2 

~        , 1 + 2a2
uul - e-^o . ?„: 

"W = '    2ffg(1-e-«)    " {mm 
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Figure 35:  Square of the product of the time and frequency resolution for the sine-Gabor 
wavelet as a function of a0 and No- 

where 

m{ip) u)ü erf(cr0w0) 

Figure 35 shows the square of the product of the time and frequency resolution for the 

sine-Gabor wavelet as a function of a0 and u0. For a0u0 > 5/2, the sine-Gabor wavelet is 

within 1% of the optimum time-frequency localization lower bound given by the uncertainty 

principle, a2(ip) a2(xp) > 1/4 (for more details see Equation 118 in Section 2.5.2.) 

Next, we establish that the sine-Gabor function does indeed generate a frame of 

wavelets. General conditions on a wavelet t/j(t) under which a frame is obtained and 

estimates for the frame bounds are discussed in Section 2.5.3. A wavelet ip(t) generates a 

frame of wavelets if the following condition is satisfied 

<C\u\a{\ + \u\)-ß, [ÜJ (173) 

with a > 0, ß > a + 1. 
The magnitude of the Fourier transform of the sine-Gabor wavelet may be written as 

follows 

I^HI 

K.i 
< 

(2a2co0\io\y/2 

2   l + a0
2(M-u;o)72' 

where the first and second inequalities are established by using 

1 - e~^ < w7, Vw > 0, 0 < 7 < 1, and e"w2/2 < 1+(^2/2, Vu, respectively. It follows that the 

sine-Gabor wavelet satisfies Equation 173 with a = 0.4 and ß = 1.85 for some C 

sufficiently large. 
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(a) 

(b) 

Figure 36: Sine-Gabor wavelet (left) and magnitude of its Fourier transform (right) with (a) 
a0 = 5/2, Lü0 = 1, (b) <J0 = 1,UO = 1 and (c) a0 = 1.0657, co0 = 0.0299. 

Frame Bounds 
Table 6 and Figure 36 show the estimated frame bounds and sine-Gabor wavelet for 

various values of a0 and u0.     The results in Table 6(a) show that it is possible to obtain a 

frame of wavelets by using the sine-Gabor wavelet and at the same time achieve nearly 

optimum time-frequency localization, a2(iß)a2(ip) = 0.2525. Table 6(b) shows that by 

trading off time-frequency localization, o2{ip)o2(i)) = 0.3297, the frame bounds can be 

made tighter. As mentioned in Section 2.5.3, snug frame bounds are a desirable property 

because the dual wavelet can be approximated by -^gipit). The error between the original 

signal and its reconstruction using the above approximation is given by ^H/lb, where 

r = B/A - 1 (see Section 2.5.3 for more details.) For the sine-Gabor wavelet with a0 = 1, 
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Table 6(a). Frame bounds 
with 0-Q 

= 5/2, u>o = 1 

bo A B B/A 
1.00 4.3873 5.6329 1.2839 
1.25 3.5099 4.5063 1.2839 
1.50 2.9216 3.7586 1.2865 
1.75 2.4089 3.3169 1.3769 
2.00 1.6016 3.4085 2.1281 
2.25 0.3963 4.0572 10.2385 

Table 6(b). Frame bounds 
with o"o = 1, UJ0 = : 1 

bo A B B/A 
0.50 8.5076 8.6988 1.0225 
0.75 5.6715 5.7995 1.0226 
1.00 4.1918 4.4114 1.0524 
1.25 2.8464 4.0362 1.4180 
1.50 1.2635 4.4720 3.5395 

Table 6(c). Frame bounds 
with a0 = 1.0657, u)o = = 0.0299 

bo A B B/A 
0.75 7.2030 7.3285 1.0174 
1.00 5.3999 5.4988 1.0183 
1.25 4.2456 4.4733 1.0536 
1.50 3.1604 4.1054 1.2990 
1.75 1.9203 4.3075 2.2432 
2.00 0.6524 4.7969 7.3523 

Table 6: Frame bounds for the sine-Gabor wavelet with (a) a0 = 5/2, u0 = 1, (b) a0 = 1, 
u0 = 1, and (c) a0 = 1.0657, u0 — 0.0299. The elementary dilation parameter a0 = 2 in all 

cases. 

Table 7. Frame bounds 
with a0 = 1.0657. 

b0 A B B/A 
0.75 7.2043 7.3298 1.0174 
1.00 5.4008 5.4997 1.0183 
1.25 4.2465 4.4739 1.0536 
1.50 3.1615 4.1055 1.2986 
1.75 1.9218 4.3071 2.2412 
2.00 0.6541 4.7962 7.3328 

Table 7: Frame bounds for the first derivative of a Gaussian with a0 = 1.0657. 
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.5 2 2.5 3 3.5 

Figure 37: First derivative of a Gaussian (left) and the magnitude of its Fourier transform 

(right) with aQ = 1.0657. 

LOQ = 1, the error is 2.55% for a0 = 2, b0 = 1. The parameters for the sine-Gabor wavelet 

used in Table 6(c) were obtained by using a Simplex search method to find the minimum of 

the difference between B and A as a function of a0 and u0. The error in this case is 0.90% 

for a0 = 2, öo = 1. This reduced error is at the expense of time-frequency localization, 

a2(ip)a2(ip) = 0.3401. An important observation follows from this last example: For 

<70 = 1-0657, coo = 0.0299 the sine-Gabor wavelet is nearly equal7 (up to a sign) to the first 

derivative of a Gaussian with a0 = 1.0657. Therefore, the first derivative of a Gaussian 

(Canny's approximation to the optimal step edge detector [19]) can be used to completely 

characterize and reconstruct a signal from its discrete wavelet coefficients. Figure 37 shows 

the first derivative of a Gaussian and the magnitude of its Fourier transform. Table 7 shows 

the frame bounds for the first derivative of a Gaussian with a0 = 1.0657. The advantage of 

the sine-Gabor function over the first derivative of a Gaussian is that by changing the 

product of a0co0, one is able to trade off between Canny's criteria for designing optimal step 

edge detectors [19], that is, the product of signal-to-noise ratio and localization, EA, and 

the multiple response constraint, r. This is a property of Canny's optimal step edge 

detector that is not possible to achieve with the first derivative of a Gaussian. Table 8 

shows the frame bounds for the sine-Gabor wavelet for 0.75 < a0cj0 < 3.75. 

2.5.8    Summary 

In this chapter we have presented the tools that will allow us to compute a multivoice 

undecimated wavelet transform exactly for an arbitrary wavelet such as the sine-Gabor 

wavelet. Furthermore, we have shown that the sine-Gabor wavelet is indeed a wavelet 

frame. However, we found that having nearly optimum time-frequency localization and 

obtaining a tight frame at the same time is not possible. Both constraints are important 

because they allow for "good" time-frequency localization and efficient reconstruction, 

7It is assumed that both functions have the same L -norm. 
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Table 8. Frame bounds for 
0.75 <a0< 3.75, LO0 = 1. 

Ö0 A B B/A 
3.75 2.5933 6.8524 2.6423 

3.50 2.9659 6.5120 2.1956 

3.25 3.3385 6.2107 1.8603 

3.00 3.7031 5.9576 1.6088 

2.75 4.0546 5.7629 1.4213 

2.50 4.3873 5.6329 1.2839 

2.25 4.6920 5.5627 1.1856 

2.00 4.9418 5.5248 1.1180 

1.75 5.0866 5.4618 1.0738 

1.50 5.0580 5.2931 1.0465 

1.25 4.7875 4.9433 1.0325 

1.00 4.1918 4.4114 1.0524 

0.75 2.8851 4.0837 1.4154 

Table 8: Frame bounds for the sine-Gabor wavelet for 0.75 < a0uJo < 3.75. The elementary 
dilation parameter a0 = 2 and the elementary translation step b0 = I m all cases. 

respectively. We have also learned that a better (tighter) frame can be obtained by adding 

voices. This will not only ease the reconstruction but is also a requirement for applications 

in time-frequency analysis. Our current work is concerned with extending the sine-Gabor 

wavelet to the multivoice framework and with the computation of multivoice undecimated 

wavelet transforms. Our future work includes wavelet reconstruction in the 

multivoice/undecimated framework as well as extending our results to the analysis of two 

dimensional data including digital mammograms. 

2.6    Circular Mass Recognition Based on the Hough Transform 

2.6.1    Introduction 

The Hough Transform (HT) is a standard method for shape recognition in digital images 

[83, 84]. It was first applied to the recognition of straight lines [85, 86] and later extended 

to circles [87], ellipses [88] and arbitrarily shaped objects [89]. Its advantages include 

robustness to noise, robustness to shape distortions and to occlusions/missing parts of an 

object. Its main disadvantage is the fact that computational and storage requirements of 

the algorithm increase as a power of the dimensionality of the curve. This means that for 

straight lines the computational complexity and storage requirements are 0(n2), for circles 

0(n3) and for ellipses 0(n5). 

We begin with a review of the problem of circular mass recognition using the HT. 
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Figure 38: Demonstration of the fact that the center of circle c, O, belongs to the line that 
perpendicularly bisects the segment defined by points A and B (both points belong to the 
circumference of the circle). 

Even though there have been attempts towards the recognition of circles via the standard 

3D HT [90], it has been recognized that there is a need for a decomposition of the search 

space, to simplify the problem both in terms of computation and storage. Previous 

algorithms have been based on the property that the normal to a point of the circumference 

of a circle passes through the center of the circle [91]. This approach works well for high 

signal to noise ratios and/or simple environments. As the signal to noise ratio decreases, 

the accuracy of the gradient estimation decreases [92, 93]. The fact that gradient-based 

methods are heavily dependent upon the accuracy of the gradient estimation explains why 

they are not robust to noise. Another disadvantage is that, sometimes, the edge detector of 

choice does not provide gradient information. A comparative study of various HT based 

techniques for circle recognition has been performed by Yuen et al. [94]. 

The approach taken in our study was to decompose the 3D search into a 2D HT and 

ID radius histograming. For the first part, instead of relying on a 2D gradient-based HT 

we developed a 2D bisection based HT. The property we exploit is that the line that 

perpendicularly bisects any chord of a circle passes through its center (see Figure 38). 

Experimentation with synthetic data demonstrated that our approach is more robust to 

noise than gradient-based techniques. The price we pay for robustness is an increase in the 

computational requirements due to the labeling of the connected components that our 

method requires. 
The second part of the algorithm, ID radius histograming, is used to validate the 

existence of identified circles and calculate their radius. We show that extracting 

information from the radius histogram is not a trivial task and we devise a filtering 

technique that solves this problem. 
Next, we discuss the steps of our algorithm. In this section we give details about the 
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implementation of the algorithm and analyze the effects of various factors, such as 

digitization of the image, discretization of the parameter space, noise, etc., on the accuracy 

and the computational efficiency of the method. In Section 2.6.3, we provide sample 

demonstrations of the algorithm with synthetic and real images. In the first part of this 

section, we use synthetic data to demonstrate the robustness of the technique and compare 

it with the gradient-based 2D HT. In the second part of this subsection, we present results 

of processing a digitized phantom and real mammograms from the Mammographic Image 

Analysis Society (MIAS): MiniMammography Database. Finally, in Section 2.6.5, we 

present some conclusions and summary. 

2.6.2    Algorithm 

A 2D Hough Transform based on bisection 

After edge detection, the resulting connected components are labeled. Each connected 

component is expressed as a chain of the coordinates of its points. We connect pairs of 

points, of the same component, using a sliding window (see Figure 39). If the coordinates 

of the points are A(xA,yA) and B(xB,yB), the equation of the line that perpendicularly 
bisects AB is 

„ = ^££x + *S+ifi-4-i6 (174) 
VA - VB 2(yA -yB) v       > 

All points (members of the parameter space) belonging to this line have their votes 

increased by one. Highly voted points provide an indication of the existence of circles. 

These points are the centers of such circles. 

Since we are dealing with digital circles the points of their circumference are affected 

by digitization and, therefore, do not exactly satisfy the standard circle equation: 

r2 = (x - x0)
2 + (y- y0)

2, (175) 

where r is the radius of the circle and (x0, y0) are the coordinates of the center of the circle. 

Furthermore, there is a need for a discretization of the parameter space for two reasons: 

1. Computational efficiency. It is impossible to account for all the circles that may exist 

in the image, and 

2. The line that perpendicularly bisects a chord of the circle is highly unlikely to pass 

through its center. Due to the digitization of the image, pixels belonging to a digital 

circle do not exactly satisfy Equation 175 and, therefore, their chords do not coincide 

with the chords of a true circle. 
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Figure 39: Graphic illustrating our implementation of a 2D HT for circle center localization. 
Points Po and P3 of the connected component P0, Pi, ••• , ft, are assumed to belong to 
the same circle and all points that belong to the line that perpendicularly bisects the lme 
segment they define receive votes. The same process is repeated for the pairs P1-P4, P2 n 
etc For this particular case the length of the window is equal to three. If one chooses to 
connect points P0-P5, Pi-P6, etc., the length of the window is equal to five. 

The discretization of the parameter space makes the voting scheme robust to noise and 

errors induced during the edge detection and other preprocessing operations. On the other 

hand, it introduces some error in the determination of the position of centers of circles. The 

larger the size of the members of the parameter space, the higher the uncertainty of the 

estimation of the position of the center of the circle. In our implementation the parameter 

space is congruent with the image space (this is dictated by the adopted parameterization) 

and the size of a member of the parameter space is the same as the size of a pixel. This 

choice is reasonable but not necessary. For example, one may choose a more robust scheme 

where the size of a member of the parameter space is 2h by 2h (h is the size of the pixel). 

Such a discretization will not only increase the uncertainty of the estimation of the position 

of the center of the circle but will also increase the probability of getting accidental peaks. 

Its advantage is that there is a smaller chance of missing real centers. 

Simple detection of centers of circles is not enough. The reason is that: 

1. Highly voted pixels provide only an indication of the existence of a circle. There is a 

need for verification of this hypothesis. Highly voted local maxima may be formed 

accidentally, and 

2. The need for a determination of the third parameter of the circle (its radius r). 

Next we describe an efficient method towards the verification of the existence of a 

circle and the extraction of its radius via radius-histograming. 
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Figure 40: The radius histogram for the center of a circle. All bins get a small number of 
votes except for the bin to which the circle belongs. A sharp maximum appears for the bin 
that contains the circle. 

Analysis of radius histogram 
After detecting possible centers, we can use the histogram of the distances of all 

feature points from the centers to verify the existence of circles and extract their radii (see 

Figure 40). In the ideal case (continuous circle, exactly determined center) the analysis of 

the radius histogram would be an easy goal. This is the case because circles would show up 

as sharp local maxima in a noisy background in the radius histogram. The reasons why 

this does not happen in a discrete space are: 

1. Digitization/discretization errors. Even for the case where we can exactly determine 

the center of the circle, the digitization of the circle along with the digitization of the 

image combined with the discretization of the histogram make almost certain that 

the votes of the pixels will be spread to a number of neighboring bins of the 

histogram. As one can see from Figure 41, this effect is similar to the spreading of 

the straight line standard HT [95]. Under the boundary quantization scheme [96], it 

can be shown that digital circles can be bounded by two Euclidean circles with the 

same center and radii that differ by h [97]. This is illustrated in Figure 41 where a 

digital circle is bounded by continuous circles c\ and c2. If Ar is the size of the bins 

of the histogram the maximum spreading for a circle is equal to: 

nr 
i   h  , (176) 

where the symbol \_z\ denotes the largest integer less than z, 

2. Distortion of the shape due to imperfections in the image formation (i.e. breast 

compression), errors during the edge detection stage, and imperfections in the 

boundary of the mass. 
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b, D2 

Figure 41: All pixels belonging to a digital circle can be bounded by two concentric circles, 
d and c2, whose radii differ by h. For the digital circle of this figure, all pixels are spread 
between two neighboring bins, 61 and b2. 

3. Noisy pixels and other objects (tissues) that appear in the neighborhood of the circle. 

4. Pixels missing from the boundary. This can happen because of occlusions, missing 

parts of the object, etc. 

5. Errors in the localization of the center during the previous steps, mainly during the 

2D Hough voting step. If the localization of the center of the circle is not accurate, 

two peaks will appear in the radius histogram of the estimated center (Figure 42). 

This has been discussed by Yuen et al. [94]. For a digital image if the error in the 

estimation is small, say less than two pixels, there appears a single extended peak. 

The length of the peak is 3 to 4 bins. If the error in the position estimation of the 

center is larger, two local maxima appear in the histogram. As the error increases so 

does the distance between the two peaks. Figure 42 illustrates these ideas. 

6. The number of pixels belonging to a digital circle and a digital ring increases almost 

linearly. Kulpa [97] showed that as r -> +00 

Pc(r) = 4N/2>, (177) 

where Pc is the number of points of a digital circle with radius r. He also provided 

experimental evidence that good approximation of the number of pixels belonging to 

a digital ring (the digital object bounded by two continuous circles whose radii differ 

by h) is given by 

Pr(r) = 2nr. (178) 

We should emphasize here, that the equivalent of a bin in a digital image is a digital 

ring and not a digital circle. 
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Figure 42: If an inaccurate estimate of the center of the circle is provided by the first step, 
the radius histogram will give two peaks. In this example, the estimated center is point P, 
while the true center is point O. Obviously, these peaks will appear at bins with distance ri 
and r2 from the estimated center. 

All these factors complicate the assessment of the radius histogram. Our approach 

towards the extraction of information from the radius histogram is based on the previously 

presented arguments. 

The filter we propose is given by the following equation 

'      l   r     3r    ill  -ra-L (179) "2(r-2)      *     x     *- 2(r+2)' 
Ay/2r 

The details of the derivation of the coefficients of this filter are presented in Appendix A.3. 

The divisor on the right hand side of Equation 179 is equal to the number of pixels 

belonging to a circle of radius r (see Equation 177). We should add that the proposed 

filtering technique gives an unbiased estimator of the normalized, unoccluded part of the 

circumference of the circle. In other words, if no circular features exist in the image and the 

image is corrupted with uniform noise, the members of the histogram will have zero mean. 

The resulting filtered histogram is searched for local peaks whose values exceed a 

certain threshold. Due to the normalization of the filtered histogram the threshold does 

not depend on the radius of the circle. 

2.6.3    Results 

In this section we present sample results from experiments applying the algorithm with real 

and synthetic digital images. Our purpose was to study the variation of robustness for the 

bisection-based HT with increasing noise and compare it with gradient-based HTs. As a 

measure of robustness, we used the robustness ratio P, defined by 

p=Vpeak^ (lg0) 

Vtotal 
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Figure 43:  Comparison of the robustness P as a function of the SNR for three circles of 
radii: (a) r = 20; (b) r = 30; and (c) r = 50 pixels. As the step becomes larger P increases. 

where vpeak was the number of votes of the peak cell and vtotai was the number of pixels of 

the circumference of the circle. Obviously, due to the digitization of the image, even in the 

ideal case, P is less than 1. 

Length of window 
The first thing studied is the dependence of P with respect to the size of the window 

slid along the boundary of an object. Figure 39 shows examples of windows of different 

sizes slid along a digital curve. Figure 43 shows plots of P for three circles of radii 20, 30, 

and 50 pixels. We observed that as the radius increases so does P. We also noticed that as 

the size of the window increases, P also increased. Any theoretical analysis that would 

indicate the optimum window size is difficult due to the fact that errors in the coordinates 

of the two extreme points of the window are not independent of each other. Such a study 

has been presented by Amir [98]. The assumptions this study relied upon, were 

independent errors in the coordinates of the two extreme points of the window and an a 
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priori knowledge of the radius of the circle. Our effort in the application of digital 

mammography is towards the recognition of circles of varying radii. The length of the 

window should be kept as low as possible. The reason for this is the need for recognition of 

occluded or distorted circles. For these two cases, the larger the window the less points 

that contribute to the creation of peaks in the parameter space. For the purpose of this 

research we chose a window of length equal to twenty as a reasonable compromise between 

robustness to noise and robustness to missing (occluded) regions. 

2.6.4    Synthetic Images 

Image Formation 

The purpose of using synthetic images is to compare the bisection-based HT with 

gradient-based HT in terms of robustness and to extract conclusions about the accuracy of 

the technique as a function of the Signal to Noise Ratio (SNR). Our effort was to replicate 

the image acquisition model presented by Lyvers and Mitchell [93]. According to this 

model the grey level value of a pixel is given by the following equation 

p(k+0.5)Ax    r(l+0.5)Ay 

I(k,l)= / f(x,y)dxdy, (181) 
J(k-0.5)Ax    J(l-0.5)Ay 

where f(x,y) denotes a continuous image and I(k,l) denotes the digital image. An image 

containing a circle, modeled with this scheme, is presented in Figure 44(a). One can easily 

notice the smoothness of the edges of the circle. The image shown in this figure is 

corrupted with Gaussian noise of standard deviation 1. The background value is equal to 

120 and the foreground 140. The SNR is calculated by the following equation [93]: 

SNR = 20log10- (182) 
a 

where c is the contrast and a is the standard deviation of the noise. 

Examples 
Figure 44(b) shows the output of edge detection and thresholding of the image of 

Figure 44(a). The edge detection method of choice was the one proposed by Canny [19]. In 

Figure 44(c) we present the resulting voting space in a mesh format. The coordinates of 

the identified peak were (128,128) and they exactly coincided with the coordinates of the 

original circle. In Figure 44(d) we show the radius histogram and in Figure 44(e) we show 

the filtered histogram. Finally, in Figure 44(f), we superimpose the detected circle on the 

original image. 

The same process was followed for an image of low SNR and the results are presented 

in Figure 45. We note here that: 
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Figure 44: Figure illustrating the key stages of the algorithm for a high SNR synthetic 
image (SNR = 26). (a) Original image with a circle at its center. The radius of the circle 
was 20 pixels; (b) edge detected image; (c) plotting of the voting space in a mesh format. 
The peak indicates the possible existence of a circle. The coordinates of the peak provide 
an estimation of the coordinates of the center of the circle; (d) histogram of the feature 
pixels as a function of their distance from the identified center (peak in the voting space); 
(e) filtered histogram. The identified peak was at r = 20; (f) detected circle superimposed 
on the original image. 

129 



1. The number of votes of the center is smaller in the low SNR case than in the high 

SNR case, and 

2. The spreading of the votes in the radius histogram is higher in the low SNR (more 

bins share the same votes). 

To counter these two problems, one has to set the vote threshold of the 2D HT to lower 

values and to use a larger window during the histogram filtering stage. A final note is the 

fact that the value of the filtered histogram is greater than one is attributed to the votes 

due to noisy pixels. 

Comparison of bisection-based with gradient-based HT 

Robustness in the context of noise, complex backgrounds and accuracy in the 

determination of the center of the circle are the two main issues of concern when using the 

bisection-based 2D Hough transform for center detection. We use the robustness ratio P, 

defined by Equation 180, and the distance of the detected center and the true center as 

measures of the performance of each algorithm. We performed experiments for a wide 

range of SNRs (2 to 26) for various radii. Experiments were repeated for 20 times and 

mean values are plotted in the figures that follow. 

In Figure 46 we present plots of robustness R, as defined by Equation 180 as a 

function of the SNR for circle of radii 20, 30, and 50 pixels. Comparing the R of the 

gradient-based HT and the bisection-based HT, we can conclude that the former is 

advantageous for high SNRs, while the latter is far more robust for low SNRs. 

It was also found that the accuracy in the determination of the center for low SNR 

with the bisection-based method did not decrease considerably while the gradient-based 

method gave large errors (see Figure 47). 

RMI phantom 
Figure 48(a) shows a radiographic image of an RMI 156 (Gamex Inc., Middleton, WI) 

mammographic accredited phantom. Three types of mammographic features are visible 

within this phantom image, simulating difference sized circular malignant masses as well as 

small microcalcifications and fibers of varying contrast. Small circumscribed lesions are one 

of the more important signs of breast cancer which may be detected by mammography in 

asymptomatic women. The detection of lesions in digital mammograms, is one of the main 

areas digital mammography has focused on [32, 99]. Mammographic phantoms like the one 

shown in Figure 48(a) are used to measure the performance of mammographic systems and 

a mammography unit needs to be able to visualize at least four fibers, three groups of 
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Figure 45: Figure illustrating the key stages of the algorithm for a low SNR synthetic image 
(SNR = 2). (a) Original image with a circle at its center. The radius of the circle was 20 
pixels; (b) edge detected image; (c) plotting of the voting space in a mesh format. The peak 
indicates the possible existence of a circle. The coordinates of the peak provide an estimation 
of the coordinates of the center of the circle; (d) histogram of the feature pixels as a function 
of their distance from the identified center (peak in the voting space); (e) filtered histogram. 
The identified peak was at r = 20; (f) detected circle superimposed on the original image. 
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Figure 46: Plots of the mean value of the maximum value of the filtered histogram hmax, 
for 20 experiments, as a function of the SNR. Continuous lines denote results using the 
bisection-based HT, while dashed lines denote results of the gradient-based HT, for circles 
of radii: (a) r = 20; (b) r = 30; and (c) r = 50. While for high SNR (i.e. SNR > 20) 
the gradient-based HT works better, for low SNR drop the bisection-based HT gives better 
results. 
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Figure 47: Plots of the error in the determination of the center of the circle with the use 
of the bisection-based method (continuous lines) and the gradient-based method (dashed 
lines) for circles of radii: (a) r = 20; (b) r = 30; and (c) r = 50. For most of the cases the 
error of the gradient-based method is larger than the error of the bisection-based method. 
As shown in these plots, the error of the bisection-based method for a wide range of noise 
levels remained smaller than a pixel. 
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Figure 48: Figure illustrating the steps of the algorithm on a digitized phantom, (a) Image 
of a phantom; (b) output of Canny edge detection; (c) detected circles superimposed on the 
original image. 

microcalcification specks and three masses to pass the American College of Radiology 

accreditation program in the United States. The size of the image is 512 by 512 pixels. 

Figure 48(b) shows the results of edge detection. Eighteen circle centers were detected, 

when the voting space was searched for local maxima that had more than 30 votes. After 

radius histograming, histogram filtering with the filter Equation 179, four circles were 

detected. These four circles are superimposed on the original image in Figure 48(c). 

Mammogram 
Figure 49(a) shows a 512 by 512 image that was cropped from a digital mammogram 

(mammogram md005.pgm from the MIAS MiniMammography 

Database-http://slOd.smb.man.ac.uk/MIASmini.html). The image contains two 

overlapping circular masses (biopsy proven) located at the lower middle part of the image. 

Figure 49(b) shows the output of the Canny edge detection, while Figure 49(c) shows the 
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circular masses detected by the proposed algorithm. Both masses were identified but as 

can be seen from the same figure a false positive also appears (circle located at the top 

middle of the image). 

2.6.5    Summary 

We presented a two-step HT for the detection and localization of circles in digital images. 

The first used a bisection-based 2D HT. Experiments with synthetic and real data suggest 

that the bisection-based HT is more robust to noise than the gradient-based HT while 

being more accurate. Davies was the first to use this property for the localization of centers 

of circles [91]. His implementation is very efficient in terms of computation but since it 

used only vertical and horizontal chords, it lacked robustness needed for analysis in 

complex backgrounds. 
The second step used radius histograming to detect a circle and extract its radius. 

Enhancement of local maxima with the use of a Laplacian filter as suggested by 

Kierkegaard [100], had a significant shortcoming that it did not normalize for the 

increasing number of pixels belonging to a bin when moving away from a center of the 

circle (see Equations 178 and 177). Furthermore, there was no intuitive method for the 

selection of the threshold of the filtered histogram. Our filtering scheme, considers votes 

due to noisy pixels, shape distortions and normalizes to account for the dependence of the 

number of pixels on the radius of a circle. 
Sample results were provided and showed that the method is capable of detecting 

circular masses of varying sizes and shape distortions in complex background, including 

dense breast. 
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Figure 49: Figure illustrating the steps of the algorithm on a digitized mammogram. (a) 
Digitized mammogram; (b) output of Canny edge detection; (c) detected circles superim- 
posed on the original image. The algorithm correctly detected the two overlapping masses 
while giving a false positive (top middle of the image). 
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3    Conclusions 

During the past year, we have made significant progress in the development of a 

methodology for accomplishing adaptive contrast enhancement by multiscale 

representations. Our studies have demonstrated that features extracted from 

multiresolution representations can provide a mechanism for the local emphasis of salient 

and subtle features of importance to mammography. The improved contrast of 

mammographic features makes these techniques appealing for computed aided diagnosis 

(CAD) and screening mammography. Screening mammography examinations are certain to 

grow substantially in the next few years, and analytic methods that can assist general 

radiologists in reading mammograms shall be of great importance. 

In the paragraphs below, we summarize our progress and identify future directions of 

research to be carried out during the final year of our investigation. 

The one-dimensional discrete dyadic wavelet transform was extended to higher-order 

derivatives and even-order spline functions, and an improved initialization procedure was 

developed. In comparison to the originally employed initialization [7], our method showed 

significantly better performance at finer scales of analysis (of importance for 

mammographic features including microcalcifications). 
A multiscale spline derivative-based transform was constructed as an approximation 

to a steerable dyadic wavelet transform. The transform used x-y separable filters in a 

perfect reconstruction filter bank and enabled fast directional analysis of images without 

the introduction of artifacts due to translation and rotation invariance. Such artifacts are 

inherent to traditional methods of wavelet analysis. 
Preliminary image fusion results showed promise for producing enhanced images with 

a more familiar appearance to radiologists. 

We have described a parallel algorithm to accomplish high-speed interactive multiscale 

processing for enhancement within ROIs in digital mammograms. The implementation 

relied upon foundation-level libraries, XIL, on top of a SPARCstation's SX frame buffer. 

We showed the amount of speedup for the method compared to traditional linear 

convolution and a conventional FFT approach. Our multiscale approach employing 

splitting in decomposition and merging in reconstruction was shown to be efficient. 

We showed that the continuous wavelet transform of a band-limited signal can be 

estimated from samples of a signal. If a mother wavelet is compact in the frequency 

domain, effectively no approximation error was observed experimentally. 

We described a modified dyadic wavelet transform, which was able to decompose a 

signal onto an arbitrary scale and reconstruct perfectly the signal from that scale. We 
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presented a special class of spline wavelet filters, which allowed us to use a high order 

scaling function without significantly increasing the computational complexity of analysis. 

The importance of arbitrary scale analysis was demonstrated by digital radiographs of 

a mammography phantom and digitized mammograms. The study showed that the 

algorithm was able to detect very subtle masses, which were rated to be almost invisible by 

radiologist specializing in mammography. 

An enhancement algorithm relying on multiscale wavelet analysis and extracting 

oriented information at each scale of analysis was investigated. The evolution of wavelet 

coefficients across scales characterized the local shape of irregular structures. Using 

oriented information to detect the features of an image appears to be a promising approach 

for enhancing complex and subtle structures of the breast. Steerable filters which can be 

rotated at arbitrary orientations can reliably find visual cues within each spatial-frequency 

sub-band of an image. "Coherence measure" and "dominant orientation" clearly helped us 

to discriminate features from complex surrounding tissue typical in mammograms. 

Existing and previous multiscale enhancement approaches [72, 32, 59] attempted to 

enhance an image by detecting edges. Unfortunately, most edge detection algorithms can 

not distinguish between "authentic" edges and phantom edges. In contrast, this algorithm 

relied upon a coherence map and phase information which resulted in an enhancement 

naturally close to the original image. This type of artifact free enhanced image can provide 

more "obvious" (and familiar) visual cues for radiologists. 

In this chapter we have presented the tools that will allow us to compute a multivoice 

undecimated wavelet transform exactly for an arbitrary wavelet such as the sine-Gabor 

wavelet. Furthermore, we have shown that the sine-Gabor wavelet is indeed a wavelet 

frame. However, we found that having nearly optimum time-frequency localization and 

obtaining a tight frame at the same time is not possible. Both constraints are important 

because they allow for "good" time-frequency localization and efficient reconstruction, 

respectively. We have also learned that a better (tighter) frame can be obtained by adding 

voices. This will not only ease the reconstruction but is also a requirement for applications 

in time-frequency analysis. Our current work is concerned with extending the sine-Gabor 

wavelet to the multivoice framework and with the computation of multivoice undecimated 

wavelet transforms. Our future work includes wavelet reconstruction in the 

multivoice/undecimated framework as well as extending our results to the analysis of two 

dimensional data such as images. 

Finally, we presented a two-step HT for the detection and localization of circles in 

digital images. The first used a bisection-based 2D HT. Experiments with synthetic and 

real data suggest that the bisection-based HT is more robust to noise than the 
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gradient-based HT while being more accurate. Davies was the first to use this property for 

the localization of centers of circles [91]. His implementation is very efficient in terms of 

computation but since it used only vertical and horizontal chords, it lacked robustness 

needed for analysis in complex backgrounds. 
The second step used radius histogramming to detect a circle and extract its radius. 

Enhancement of local maxima with the use of a Laplacian filter as suggested by 

Kierkegaard [100], had a significant shortcoming that it did not normalize for the 

increasing number of pixels belonging to a bin when moving away from a center of the 

circle (see Equations 178 and 177). Furthermore, there was no intuitive method for the 

selection of the threshold of the filtered histogram. Our filtering scheme, considers votes 

due to noisy pixels, shape distortions and normalizes to account for the dependence of the 

number of pixels on the radius of a circle. 

Sample results were provided and showed that the method is capable of detecting 

circular masses of varying sizes and shape distortions in complex background, including 

dense breast. 
These results are encouraging and continue to support that wavelet based image 

processing algorithms can play an important role in improving the imaging performance of 

digital mammography. We believe we are now close to our original schedule and anticipate 

that we shall complete the objectives described in Phase IV and Phase V this year. 
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A    Appendix 

A.l    Initial Condition 

f(0 —-   %{t)   —*-®-** x(n) 
1 '       t 

Zk5(t-k) 

<=> 

(a) (b) 

Figure 50: Modify initial condition 

A non-ideal acquisition device is shown in Fig 50 (a). The impulse response of the 

acquisition device is f(i), where £(t) is a lowpass filter. The approximation of £(t) in V^ 

space is 

*(*)«£(*) = £*(*)#*-*)> (183) 

k 

where z(k) is the projection of f (i) onto the scaling space. The discrete signal x(k) is 
/oo 

f(t)£(n-t)dt 
•oo 

f(t)(52z(k)<Kn-t-k))dt 
k 
/oo 

f(t)<l>(n-t-k)dt) 
K 

^z[k)x'{k), (184) 

oo 
oo 

where x'(n) = J^ f(t)(ß(n - t)dt . Given x(k), 

x'{n) = ^x{k)z-\n-k). (185) 

When £(t) is an ideal lowpass filter, it can be approximated as a cardinal spline filter [45]. 

If the scaling function is a spline of order n - 1, 

£(*)« ^2(bny\k) beta{t-k). (186) 

Therefore, z~l(k) = 6n(A;) , *(*;) = (bn)  \k). Notice that Equation (185) is similar to 

projecting a signal onto a scale space as described in Unser's algorithm [43] [44], although 

the starting point is quite different in our case. 
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A.2    Proof of Theorem 3 in Section 2.3.7 

In this appendix, we will show that if <j>{t) = ßn'l{t), ^(t) = ßm-l{t) , 

Pa(co) = C^-Rect(u)] * 2ir62v(u) (187) 

as n + m —>• +oo. 

Proof:    Note a central B spline is symmetric, ßm~l(t) = ßm~l(-t). In the oblique 

projection method, 
/oo roo 

^a(t)ßm~l(t - k)dt = /     Mt)ßm-\k - t)dt = ^ * ßm~l (188) 
-oo J — oo 

Substituting Equation (188) into Equation (85), 
/oo 

Ut)ßm-\i-t)dtw+m-ly\k-t) 

/oo 

J^aW/r-1^ - t)(bn+m-l)-\k - i)dt. 
- OO   ir-V 

(189) 
iez 

Since ßm~l * /5n_1 = ßn+m~1, in the frequency domain, we write 

ßm-l{u) = ßn+m-\u)^ . (190) 
/5"_1(o;) 

Define /T*(u) = j^. Then 

/T"1^-*)    =    /?n+m-1*/?n-1(i-t) 
/oo 

/3n+m-1(v)/?n"1(i-t-v)^ 
-oo 

let    u = i — v 

ßn+m-\i-u)ßn-\u-t)du. (191) 
> 

Substituting Equation (191) into Equation (189), 
/oo     /-oo 

£>(*)( /       /5n+m"1(^ - U)ßn-\U - t)du)(bn+m-l)-l(k - i)dt 
-oo ieZ J-co 

/oo     /»oo 

/     X)^^^"1-1^ ~ u)£"_1(u - t)(bn+m^)-l(k - i)dtdu 
-ooi-oo ieZ 

/OO /"OO 

( /     Ut)ßn~\u - t)dt)(^/5"+m"1(z - «)(6B+m-1)-1(fc - i))di 
-OO    J—OO ia V 

-oo J-oo i£2 

"OO /"OO 

tu 
-oo  ./-oo ie2: 

Let    i1 = k — i, and 
f>00 /"OO /OO /»OO 

(/   Mt)F-\u - *)*)(£ /?B4ffl"1(* -»' - «)(ön+m-1)-1(^))^ 
-oo  J-oo VeZ 

/>oo 

(/    ipa{t)ßn-l{u-i)dt)7f+m-l{k-u)du. (192) 
oo  «/ —oo 
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Where 77n+m_1(t) = Y,iez ßn+m~][(t - i)(6n+m-1)_1(«) and rf+m~l{t) is a cardinal spline 

filter. Asn + m4 +00 , it converges to the ideal sine interpolator. Therefore, 

Pa(u>) = (^yRect^)) * 27nU^)- (193) 

A.3    Derivation of Equation 179 

In this appendix we will derive the filter shown in Equation 179. We shall assumpe that we 

are dealing with an image corrupted with uniform noise and that we are looking for a 

perfect digital circle. As we noted (see Equation 176) earlier, for Ar = h the maximum 

number of bins a circle spreads its votes is equal to 2. Therefore, if we pass the radius 

histogram with the filter 

t=[l   1] 

we will obtain an estimate of the pixels the circle contains. We would like the filter to be 

symmetric around the central bin and therefore we choose 

t = [l   1   1]. 

The resulting array contains the number of pixels of the circle plus votes due to noise, 

other objects etc. We need to enhance our scheme with a module that estimates the votes 

due to noise and subtracts them. For this purpose we use two more bins (the outer ones). 

Therefore our filter becomes 

t = [a   1   1    1   ß]. (194) 

To get values for a and ß we will require that our filter give an unbiased estimator 

with minimum uncertainty (standard deviation). We assume that noise is spatially 

uniform. To have an unbiased estimator means that if the image is corrupted with noise 

and no circular object is present, the resulting (processed) histogram will have mean value 

equal to zero. 
It is easy to see that the r-th bin of the histogram represents a ring [97] whose radius 

is equal to r. Kulpa provided experimental evidence that a good approximation to the 

number of pixels belonging to such a ring is 2nr. This estimation is based on empirical 

evidence [97] and until now no theoretical justification to it had been found. We verified, 

through simulations, that this formula holds with adequate accuracy for radii in the range 

151 



[h,512h]. It is easy to show, that the number of votes the r-th bin takes due to noise 

follows a binomial distribution with mean value: 

fi = p(2irr) (195) 

and standard deviation: 

a = ^p(l-p){2Trr), (196) 

where p is the probability that a pixel is noisy. 

From Equation 195 and the constraint we imposed, that our estimator should be 

unbiased, we formulate 

HF = a(r - 2h) + (r - h) + (r) + (r + h) + ß(r + 2h) = 0. (197) 

The second equation that we use comes from the requirement of minimization of the 

standard deviation of the resulting filtered histogram. The standard deviation of the 

filtered space is given by the following formula: 

oF = 2n^a2{r - 2hf + (r - hf + (r)2 + (r + h)2 + ß2(r + 2h)2. (198) 

If we make the following substitutions: 

XI = a(r - 2h) 

X2=r-h 

X3 = r 

XA=r+h 

X5 = ß(r + 2h) 

to the Equations 197 and 198 we obtain 

Xl + X2 + X3 + X4 + X5 = 0, (199) 

and 

aF = 2TTVXP + XW+X¥+ X42 + X52. (200) 

If we solve Equation 199 for XI, and substitute into Equation 200, and differentiate 

Equation 200 with respect to ß we obtain 

dap (2X5 + 2(X2 + X3 + X4 + X5))/=:0, (201) 
dß 

where / is a factor that cannot become zero (a constant divided by a function of Xb). 

From Equations 197 and 201 we can compute a and ß. The resulting filter was 

described in the main part of Section 2.6 (see Equation 179). 

152 


