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Micro-local, non-linear, resolution analysis 
of generalised Radon transform inversions 
in anisotropic media 

Maarten V. de Hoop and Norman Bleistein 
Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401-1887, USA. 

Abstract The resolution analysis of generalized Radon Transform (GRT) inversion of 
seismic data is carried out in general anisotropic media. The GRT inversion formula is 
derived form the ray-Born approximation of the wave field for volume scatterers. However, by 
considering scattering surfaces in the resolution analysis, rather than parameter perturbations, 
we show that the inversion provides a reflectivity map and reflection/transmission coefficients 
as functions of scattering angles and azimuths. Those coefficients can be subjected to any type 
of Amplitude Versus Angle (AVA) or Amplitude Versus Offset (AVO) analysis. By applying 
the inversion to Kirchhoff approximate data rather than Born approximate data, we show that 
the output is actually linear in the reflection coefficients and, hence, a nonlinear function of the 
change in medium parameters across discontinuity surfaces—the reflectors of the medium. 

1.    Introduction 

Current acquisition techniques take reflection-seismic measurements at increasingly larger 
scattering angles both for image enhancement and improved estimation of elastic parameters. 
To achieve a better resolution, however, one must account for the interplay between 
heterogeneity and anisotropy at different length scales. Also, to accommodate inversion of 
wide angle data, one has to take account of the nonlinear dependence of the reflected amplitude 
on changes in medium parameters, at least near the relevant reflectors in the configuration. We 
use the generalised Radon transform or GRT formulation to achieve these goals. 

Our analysis begins with the ray-Born approximation of the direct scattering problem, 
which represents the scattered field as a volume integral. This representation is recast as a sum 
of surface integrals over the discontinuity surfaces of the medium parameters—the reflectors 
in the subsurface. Then the inversion of the linearised scattering problem is carried out The 
resolution analysis of the linearised GRT inversion serves as the basis to arrive at a micro-local 
nonlinear formulation: its range of validity is extended by applying a stationary phase analysis 
with respect to migration dip, defined as the normalised gradient of total travel time along the 



scattering characteristic. In this process, carrying out the GRT inversion on Kirchhoff-type 
data, an explicit adjustment of the inversion formula is found. 

By identifying the data, for each image point, in common scattering-angle/azimuth gath- 
ers, the GRT inversion formula can be modified to obtain reflection/transmission coefficients 
at specular ray geometries. Any amplitude versus scattering angle—AVA—analysis can then 
be applied to those coefficients to derive information about the medium perturbation. Several 
parametrizations of this perturbation have been developed to reveal to which quantities the 
coefficients are sensitive. 

The idea of estimating angle-dependent reflectivity has been developed by various authors; 
see for example Geoltrain and Chovet [1] and Lumley [2]. A more rigorous discussion of 
such an approach can be found in Bleistein et al. [3]. In our paper, we derive a GRT-based 
inversion procedure that accomplishes the goal of constructing full reflection—and possibly 
transmission—coefficients as functions of scattering angle and azimuth, in closed form. 

GRT-type inversion formulas for the linearised inverse problem have been developed by 
Norton and Linzer [4], by Beylkin [5,6,7, 8], by Miller et al. [9,10], by Beylkin et al. [11], 
and by Rakesh [12] for the acoustic case. The extension to the elastic case was discussed by 
Beylkin and Burridge [13], and anisotropy was considered by De Hoop etal. [14] and Spencer 
and De Hoop [15]. Inversion formulas aiming to estimate reflectivity rather than the medium 
perturbation were developed by Cohen and Bleistein [16], by Bleistein and Cohen [17], and by 
Bleistein [18,19]. This paper brings the two approaches together. Discussion of the numerical 
implementation of GRT inversion procedures can be found in De Hoop and Spencer [20]. 

The GRT approach is a high frequency approach to inversion. There are two equally valid 
points of view about the utility of this method. First, for full bandwidth data, we obtain by this 
method only the most singular part of the solution to the inverse problem, since it is this part 
of the solution that is tied to the limit of frequency approaching infinity. On the other hand, as a 
practical matter, the typical bandwidth of the seismic inverse problem is such that the data can 
be viewed as high frequency data for most of the length and time scales of the geophysical 
model. Thus, numerical implementation of the derived inversion formulas produce useful 
results for seismic exploration. 

Throughout the paper we have excluded the possibility of multipathing of the rays 
connecting the image point to a source and a receiver in the predefined background medium. 
Certain changes in the formula's are necessary in that case, which we will investigate in a 
separate paper. 
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2.   The basic equations 

2.1. Notation 

First, we introduce some basic notation. Choose coordinates in the configuration according to 

x = (xi,x2,x3) = Cartesian position vector, 

8 = (si,s2, S3)  = source point, 

r = (ri, r2, r3)   = receiver point, 

t = time. 

The medium is described by 

p(x)     = density, 

Cijkt{x) = elastic stiffness tensor, 

while the wavefield is described by 

u(x,t) = (ui(x,t),U2(x,t),u3(x,t)) = displacement vector, 

and generated by a source distribution given by 

f(x,t) = (fi(x,t),f2(x,t),f3(x,t)) = body-force source density. 

In the remainder of the paper, we will employ the summation convention. 

2.2. Governing wave equation 

The displacement in a heterogeneous anisotropic medium satisfies the elastodynamic wave 
equation 

pd?ui-dj(cijktdtuk) = fi, (1) 

with summation over repeated lower case indices, here and below. Let 

G(x,x',t) = (Gip(x,x',t)) (2) 

be the causal Green's tensor, which satisfies (cf. Eq.(l)) 

pd?Gip - djidjktdtGk,,) = 8ipS(x - x')8(t),  Gip = 0 for t < 0 . (3) 

2.3. Asymptotic ray theory 

Here, we summarize the formulation of anisotropic ray theory for the evaluation of the Green's 
tensor (see, e.g., Kendall etal. [21]). Let 

Gir(xtX',t) = 2^(")(*,*')dJV,(^)4'v|(«'W-T('"(^^)) 
(4) 

+ terms smoother in t. 



In this equation, the arrival time T^ and the associated polarization vector £^ satisfy 

(pSik - CiMdtr^idjr^)) &N) = 0   (at all x), (5) 

which implies the eikonal equation 

det(p Sa - cijkt(dtr) (djT)) = 0  (at all x). (6) 

The polarization vectors are assumed to be normalised so that £,' '£,•  '  = 1. Define the 
slowness vector 7^) by 

^
N

)(X) = VXT^\X,X'). (7) 

Then, Eq.(6) constrains 7 to lie on the sextic surface A(x) given by 

det(pSik - Cijkaaj) = 0 . (8) 

A(x) Consists of three sheets ^^(JB), N.   =   1,2,3, each of which is a closed surface 
surrounding the origin. An individual sheet is also described by (cf. Eq.(5)) 

2H = P- ZiCijuamtk = 0 . (9) 

The scalar amplitudes A^ must satisfy the transport equation 

diicu^ä0 (A(N))2 *r{N)) = 0 . (10) 

where N, again, indicates the mode of propagation, that is, the sheet of the slowness surface 
on which the corresponding slowness vector lies. 

The characteristic or group velocities v^ are normal to .4^(3;) at 7^) and satisfy 

7 ' 7•V7H H=0 

see Eq.(9). The normal or phase speeds are given by 

y(*0 = 
1 

|7W| • 

The unit phase direction follows as 

a(N) _ y(N) 7(iV) 

From Eq.(ll) it follows that 

VW = \vW\cosx{N), 

where x^ is the angle between v^ and 7^. 
The amplitudes can be expressed in terms of certain Jacobians, 

(11) 

(12) 

(13) 

\v(x')\V(x) 

A = 
4Tr[p{x)p{x')M]V2 with   M = 

dx     dx 

dqi    dq2 x 

^1A — 
dqi      dq2 

(14) 

x> 



in which A, M, v and V carry the superscript (N). Here, (91,92) parameterize the rays 
originating from the source. One can verify that the dimension of A is [time]2 x [mass]-1, 
which upon multiplication by force, with dimensions [mass] x [length] x [time]-2, gives the 
dimension of displacement, i.e., [length]. 

2.4.   Source and receiver Green's functions 

In the integral representation for the scattered field, we need the Green's functions originating 
both at the source and the receiver points. Further, the gradient of total travel times from the 
source to a scattering point to the receiver are required in preparation of the GRT inversion. 
We introduce these functions here. 

Set 

G{x,t) = G(x,s,t),   G(x,t) = G(r,x,t). (15) 

Employing asymptotic ray theory in both Green's functions, we introduce the notation 

ÄW(x) = AW(x,8),   Ä^\x) = A^M\r,x) (16) 

in the case of scattering from incident mode N to outgoing mode M. 
According to Eq.(7), the slowness vectors at x are given by 

y*)(x) = VaJrW(x, 8) ,   yM(x) = Vajr^)(r, x) ; (17) 

the associated phase directions are given by 

«(") = Xj_    am = JLL (18) 
\¥N)\' l7(Af)l 

and the phase speeds (cf. Eq.(12)) are given by 

VW = —L-    vM =    * (19) 
|7(JV)I |7(M)I 

We also define the two-way travel time T(7VA/) and its gradient, 

T(™)(r,y,s) = TW(y,s) + TM(r,y)    , 
(20) 

T^r, *, s) = VxT(^)(r, x, a) 
From Eq.(17) we see that 

T^^ir, x, a) = 7(*>(as) + ^(x) . (21) 

The direction of T^, 
ji(JVM) 

1/ = 
|r(JVM)| ' 

will be the migration dip, which we referred to in the introduction. The ray geometry and 
slowness vectors are illustrated in figure 1; the associated polarization vectors are shown in 
figure 2. 
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Figure 1. Source-receiver ray geometry (S2 = unit sphere), 

fT* 

Figure 2. Source-receiver ray polarizations. 



3. Medium description: micro-local perturbation 

Let c(x) denote a smoothly varying background medium. To analyse a typical geological 
setting, we consider the following, micro-local, representation, 

c«(*)-> €«(«,#«)). (22) 
of the medium's perturbation. Here, <j> is a smooth function of x, some (curved) level surfaces 
of which describe a family of interfaces. The gradient of the perturbation is assumed to vary 
rapidly normal to the level surfaces of (f> and smoothly along them, implying that 

Vajc(1) = (c(1))' (Vx<f>) + terms smoother in x ,  (c(1))' = d^c(1) .        (23) 

This representation extends to a small ball around any point, in particular the image point 
y, say, under investigation. The derivative (c^)' is understood in the distributional sense. 
Typically, it will have a Dirac-distribution type behavior across any geological interface. 
Loosely, the derivative can be interpreted as the difference in medium properties across a level 
surface. The support of c^ is denoted by V. 

In the background medium we assume that the ray theory of the previous section applies. 
In the forward problem the background c and the perturbation c^ are both known; in the 
inverse problem the aim is to reconstruct c*1* given c. 

We will omit the first argument of c^ in the remainder of this paper, and take only the 
most rapidly varying term of the perturbation's derivatives into account Imaging reflectors 
or interfaces amounts to mapping this leading-order behavior, (c^)'. We will confirm below 
that our inversion procedure does this, and also provides estimates of angularly dependent 
reflection coefficients. 

4. The single scattering equation 

In this section, we introduce the Born approximation representing the singly scattered 
wavefield. We then show how to recast this volume integral representation into a surface 
integral for the response to the most singular element of the scattering process, namely, 
reflecting the discontinuities of the medium parameters. 

4.1.    Volume integral representation 

We begin the analysis with the volume-scattering representation of the ray-Born approximation 
for the scattered displacement field «W for the (NM) conversion. Let (r, s) e dR x dS; 
ideally, the boundaries dR, dS ~ S2 (S2 = unit sphere) are closed surfaces surrounding the 
heterogeneous domain V. Then (De Hoop et al [14]) 

«W(r, .,*) = -/ f(r)f(.)A<**)(.) x (24) 

(w^C«, &<*>(»), &(A)(*)))T cW(«) 5"{t - T(™\T, x, 8)) dx , 
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where N, Me {1,2,3}, 

A(™)(x) = /»(as) Ä^\x)Ä^(x), (25) 

contains the amplitudes, 

w,™,= {ei")r'4[«!f»ä<?+a[f>äf]}, 

describes the contrast-source radiation patterns, and 

«.<!> = J£^,_Si« 
(1) 

pVmv(*)f ' 
represents the relative medium perturbation. Here, V^ denotes the (local) normal speed of 
mode L in the background medium averaged over all phase directions. By introducing this 
convenient scale, we have made the quantities a\j \ ä[t', and c^ dimensionless since the 7's 
have the dimensions of [slowness] and c,j*/ has the dimension of [density] x [velocity]2. The 
notation 0 is meant to emphasize that the quantity is angle independent, which is important for 
retaining the actual medium perturbation from c^ and the GRT inversion to be applicable. 

In the micro-local setting, substituting Eq.(22) into Eq.(24), we have 

«ff(r, s, t) = -Jjf\r)if\s)A^(x) x 

(w(™*>(a5, &^(x), &M(x)))T cM(<}>(x)) 8"(t - T{x)) dx ,   (26) 

where, for convenience, we employ the shorthand notation 

T(x) = T<**>(r, x, s),   T(x) = VxT<™\r, x, s) , (27) 

see Eq.(20). To make use of the properties of the gradient of the medium's perturbation 
(cf. Eq.(23)), we will partially integrate expression (26). Since 

(VxT)(x) S"(t - T(x)) = -VxS'(t - T(x)), (28) 

we have, 

S"{t ~ T(x)) = -(i>-vlr)(.) " ■ VxS'(t ~ T(x))' (29) 

for arbitrary v G S2 as long as v • VXT ^ 0. Hence, 

u$(r,s,t) ~ -Jjf)(r)if\s)A^\x) x (30) 

(w(^)(x?ä(JV)(a.))Ä(A3r)(a;)))T(c(i)y(</)(a.)) x 

(Ü • Vx<t>) 
(Ü-T) 

8'(t - T(x)) dx 
x 



Here, the approximation arises from neglecting lower order terms as in Eq.(23), as well as 
neglecting derivatives of the remaining amplitude in Eq.(26), compared to (c(1))'. These will 
produce asymptotically lower order contributions to the wavefield. 

It is assumed that if = v(x) is slowly varying in space, and may be chosen equal to the 
local geological dip, 

On the other hand, we can choose v = v, which we always know. In the inverse scattering 
problem, the geological dip is unknown and has to be determined. Below, we show that at 
stationarity the geological and migration dips must be parallel. 

4.2.    Surface integral representation 

Now, we show how to recast the volume integral representation (30) into an integral over 
surface integrals over the level surfaces of <j>. To this end, we choose curvi-linear coordinates 
tr = tr(x), a = (<rM, cr3), \i = 1,2, such that the aß are coordinates in the level surfaces of <f> 
and <T3 is the local coordinate in the »/^-direction. If <r3 represents the actual value of the level 
of <f>, we set <r3 = L. The volume form is given by 

dx = AL dS(aj) ,   dE(*) = \daxx A d„2x\ d<7id<72 5 
|VjB0| 

the transformation from Cartesian to curvi-linear coordinates yields the Jacobian 

— = K« • (d9lm A da2x)\ =       |Vz^        • 02) 

Now write 

(cU)'(<f>(x)) = / (cW)'(L) 8{4>{x) -L)dL. (33) 

Substituting Eq.(33) into Eq.(30), interchanging the order of integration, and using the property 
(cf.Eq.(32)) 

««(r,.,*) a -f AL f /    if\r)if\s)A(™\x) x 

(w^O», &<*>(•), 6L^\X)))
T
 (CW)'(L) x 

we obtain 

{u-T)\Vx4> 

= -hL\l    ^\r)lf\s)A^\x) 

6'(t-T(x))dZ{x) 
x 

X 
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(w<™>(*, &<*>(*), a^(x))f (cW)'(L) x 

(i>-r) 
8'(t-T{x))&Y,{x) 

x 

(l/ • !>*) 

(Ü-T) 

(34) 

As a consequence of Eq.(34), we also have 

(w(^)(x,ä^)(x),a^(*)))T(c(1))'(^) x (35) 

£"(*-r(*))d£(ar)   . 
z 

The singular support of the medium perturbation, <f>(x) = L, and the isochrone surfaces, 
T(x) = t,axe illustrated in figure 3. 

{T(x) = T(y)} 

geological dip 

neighborhood 
/ 

/ V /    v( 

{W = L) 

migration dip 

specular direction 

Figure 3. Micro-local medium perturbation. 

5.   Reflection and transmission coefficients 

To identify reflection and transmission coefficients in Eq.(35), we first extract phase velocities 
at the scattering point from the amplitudes, 

11/2 
Au(x) = A&*)(») [v^(x)(V^(x))3\ (36) 
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then, Eq.(35) can be written in the form 

ft«« (r,., 0 = -/R llJf^Kf^M*) x (37) 

4M)(M(i«),^W) (v ■ »*){» ■ T) \x 8"(t - T{x)) -^|] dL , 

in which, 

*r>(.,a<*>(.),A<*>(.)) = ^y^y^ ,     m 
[vw(vM)3y/2 \r\2 (ü • *y 

represents the scattering coefficient for the (N, M) conversion at x with^(aj) = L,i.e., R^ M' 
really depends on crM(x), /z = 1,2. Observe that the scattering coefficient contains a function 
that may be singular on the level surfaces of <f>. In fact, the integration over L picks up the 
singular support of (c^)'. 

5.1.    Specular reflection and transmission 

Now, let cW contain a step function in L (across a curved interface at L = L0). Then 
(cW)'(Z) = (AcW) 8{L - L0). At the specular point for given i/^, the pair ä^(.),a(*'(.) 
satisfies Snell's law, 

VW (I" "*"*) = ~W)'(I" "^ ' (39) 

[In an isotropic medium with M = N the solution is simply given by 

«(*> = -«<*> • (I - 2u,u,) , 

representing ordinary reflection.] At the specular point, the migration dip coincides with the 
geological dip, v = i/^. 

Substituting the solution, d|M), of Eq.(39) into the scattering matrix Eq.(38), yields the 
linearised reflection/transmission coefficients r^NM\ 

#*>(.,&<*>(.)) S(L - L0) = lt»*{.,&l%),äL*>{.)). (40) 

Here, the left side exploits the evaluation of d(M) at specular and explicitly notes the 
distributional character of the right side. In fact, with v = i/^, Eq.(37) is equivalent to 
the Kirchhoff-Born approximation, which satisfies the principle of reciprocity. For notational 
convenience, we introduce 

Rf *>(.,«<*>(.)) = #*>(.,«<*>(.)) S(L - Lo) (41) 

to absorb the Dirac distribution in R^M\ 
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5.2.    The Kirchhoff approximation 

Here, we show how to go from the linearised Born representation Eq.(35) to the non-linear 
Kirchhoff approximation. For general reference, we introduce the relevant scattering and 
specular angles: in addition to u, we set 

cose = ä{ff)-a(Kr\ ^ = third Euler angle. (42) 

Then, at any point in V, we have a mapping 

(äW(.),a(*»(.))4(i/J.,W. (43) 

If v = uj„ the ray geometry is specular; let the associated specular scattering angles be defined 
as 

cosö = a^-^,  cosO = a(^t) -Ufa  0S = 6 - 0 . (44) 

In the non-reciprocal, 'non-linear' Kirchhoff approximation, the scattering matrix is simply 
replaced by the full reflection/transmission coefficients at specular, cf. Eq.(37) with ü = i/^, 

ftuW(r,.,*) = - / f /    if\r)lf\s)Au{x) x (45) 
14,= 

AY.fcrM 
dL Rl^V«<*)(«)) ("* • r) I« S»(t - T(x)) £M 

For wide-angle (9) scattering, this representation is certainly more adequate than Eq.(37). 
The time derivative is taken to pave the way for the Radon transform inversion. (In three 
dimensions, one needs the second derivative of the Dirac distribution.) In our further analysis, 
we actually employ the reciprocal representation Eq.(37) in which IvL ' is replaced by the full 
reflection/transmission coefficient at specular. Note that due to the singular function contained 
in Ri M\ cf. Eq.(40), the integration over L in Eq.(45) reduces to a sum over scattering 
surfaces or interfaces. 

6.   Stationary phase analysis of the direct scattering problem 

By applying stationary phase arguments, the integral in Eq.(37) can be evaluated. The analysis 
confirms the consistency with asymptotic ray theory in configurations with a family of surface 
scatterers. 

We choose rotated Cartesian coordinates {xß, z), ft = 1,2 in the neighborhood of a yet- 
to-be determined specular point y(L) €{</>= L}, such that 

z\\u^   {x^Lv* (46) 

and 

" = "*; 
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see figure 3. The function T(y(L)) has a derivative given by 

dT = |VXT| 
AL Wx<S>\ y(L) 

(47) 

while, by the implicit function theorem, the function Ly (t) satisfying 

T (y(Ly(t))) = t 

exists. 
Taylor expansions of the level and isochrone surfaces including the curvature terms yield 

o = (f>(x) - 4>(y) = \Vx<Ky)\z + 2xß<l,i^(y)x'' » 
(48) 

T(x)   =   T(y) + \VxT(y)\z + ixßT^{y)xv 

(Summations are carried out over n, v.) Here, 

d2<f> 
4>»v{y) = 

TßAy) = 

dXfldXv 

d2T 
dxfiXu 

y 

y 

(49) 

The first equality in (48) amounts to the representation of the level surface {<j> = L}, 

Z = ~Wxl\' 
which upon substitution in the second equality yields 

T(x) = T(y) + §|Va.r(y)| x^[iut{y)xv (50) 

with 

y        _        J-pv QßV 

and x, y in the same level surface. Note that the matrix T may vary with the level L, and 
can be negative or positive definite, or indefinite. The case of vanishing T, leading to a 
caustic analysis, will be postponed to a future paper. Otherwise, for t near T(y), we have the 
intermediate result 

/    8'(t-T(x))dX(x) = df [    H(t-T(x))dS(x) 

~ d] I  Hit- T(y) - i|Vasr(y)| xllT^(y)xv) dxx dx2 

2ir8*(t-T{y)) 

|r(y)|v/|det(T(y))| ' 
(51) 
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using tangent plane coordinates, and where 

8   if  T positive 
8* = { US  if  T indefinite 

—8  if  T negative . 
(52) 

In the above V. denotes the Hubert transform; the notation * indicates an action on the time 
dependence. 

We will use Eq.(51) to evaluate the integral in Eq.(34) eventually. First, note that Eq.(51) 
implies 

~ / dZ, (cW)'(L) 

(Ü-T) 
S'(t-T(x))dJ:(x) 

(u • V+) 

|iy|det(T)|   (P-T) 

where, for any function f, 

r|y|deT(T)j (*-r) 

2* (*•„,) (MY1 {cMy 
y(L) 
-1 

8* [t - T(y(L))} 

v(hr(*)) 
(53) 

Ly(t) 

-l 

I)> 
Ly{t) 

= ff(L)8*[t-T(y(L))]dL 

Substituting Eq.(47) into Eq.(53), and using the result in Eq.(34) implies 

«£>(r,.,0 ~ --^SM-ä*)^>(.)A<**>(.) x 
)/|det(T)||r 

(w^*)(., &<*)(.), äS*>(.)))
T 

(54) 

(c(1)) 
»(ly(0) Ly(t) 

since at the specular point we have u = u^ and u<j, • T = |r|. This formula is an extension of 
the convolutional model approximation in one-dimensional space to three dimensions. 

In terms of the reflection/transmission coefficients, we have 

u$(r,8,t)~ 
2TT 

vA^toyjiri 
£l"Hr)£f\8)Au(.)R?^ 

y = v(L) 
L = Ly{t) 

[note that the * relates to the KMAH index, see e.g. Hörmander [22]]. To verify this result, 
use Eqs.(36), (38), (40), and (41) in (54). 
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7.   Inversion based on the GRT 

In preparation of the inverse transformation, we introduce the scalar quantity on the diffraction 
surface, 

fi*>(r) dtuff(r, s, T<**>(r, y,.)) #»>(.) 
dtulNM\r,s,y) = 

A(NM)(y) 
Then, using Eq.(37), we get 

dtU^(rs,y) *  r,    ^^^„^(A)^ x 

[yW(y)(y(M)(y))3] ' -/R L/«=L 

(55) 

(* • „,)(* • T) |x 8"(T(y) - T(x)) ^| dL.  (56) 

Here, we have set Au(x)/Au(y) = 1, which is its value at the dominant critical point of the 
integrand. Furthermore, we will exploit the expansion 

T(y) - T(x) = T(y) • (y -«) + ... ~ |r(y)| (y - x) ■ u , (57) 

which describes the tangent plane to the isochron at y. In our further analysis, we will make 
use of the identity 

S"(\T(y)\ (y -»)•") = |r(y)l"3 S"((y -x)-u). 

7.1.    Linearised inversion 

The basis of the GRT inversion is Gel'fand's plane wave expansion, which we write in the 
form 

- 8ir2S(<f>(y) -L)= I   I S(cf>(x) - L)8"((y - x) • u) dar du 

= I   (    S"((y - x) ■ v) ^*± d„ (58) 

We will use this expansion to invert Eq.(35). The inversion is accomplished by setting up a 
system of 22 equations, using the contraction according to Eq.(55), and employing ä and a 
as variables of integration, i.e., 

w(™>(y, ä<*>(y), cc^\y)) &«(**>(r, a, y) |r|4 

{u • v+) 
d(a,a) 

y 9(s,r) 
dsdr 

y 

JR U<t>=L 

w(NM)(y> ä<*>(y), d^(y))w(^)(x, &<*>(*), a^{x))T(c^)'(L) x 

(i/.r) 
(u ■ V+) 

(f • v+) 

y (i>.r) 
ö(ä,a) 

d(u,e,rp) 
5"{{y-x)-v)d2(x) 

y 
di/dÖdt/» 
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(59) 

Define the matrix 

A.(,.)S/s 

0(M,VO 

(60) 

d0d^ 

at any image point y. Then, employing Eq.(58) in Eq.(59) and setting u = v (recall that i/ has 
been arbitrary until now), yields 

(cW)'(#y)) |Va;0|y = /R(c
(1))'(I) 5(<f>(y) - L) \Vx<f>\y AL 

-Til       Ay1w(^)(y,ä^(y),a^)(y))öt«^)(r,S,y) x 
fdSxdR 

|r|4 

(" • "*) 

d(ä,d) 
y ö(«,r) 

dsdr (61) 
y 

Note that in this inversion formula the actual shape of the level surfaces of <f> is not used; 
just the local normal at the image point plays a role. However, in Section 9 it will be argued 
that the inner product, (i/ • i/j,), can be removed from the formula without changing the 
resolution analysis in the high-frequency approximation. The inverse of A is understood in 
the generalised sense. We will denote the reconstruction as {(c^)'(<f>(y)) | Vastly). 

Through Eq.(59), we have the freedom to carry out the inversion Eq.(61) in two steps. For 
a given image point y, we can imagine the data [(a, r) pairs] to be sorted into common (0, iß) 
gathers. The variable in such gathers is the migration dip w, formally, we denote these gathers 
by (dS x dR)'(y\ 0, ij>). The integration over dip is then carried out prior to the integration 
over scattering angle and azimuth. [In practice, shooting the rays from y would be controlled 
by ä; a then follows from (0, if>). The data would be simply taken at those locations where 
the rays intersect dS and dR, respectively] 

To control the illumination of the image point at a given dip, we introduce the partition of 
unity, {XJ}, and 

((c(1))'(^)) |Vx^|y) 

= £ A/       Ay1w^(y,ä^)(y),a^)(y))öt«^)(r,8,y)-x 

irf d(ct,at) 

y 0{8,T) 

Each term in the summation represents a partial reconstruction 

dsdr . (62) 
y 
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7.2.   Resolution analysis 

Backsubstituting the Kirchhoff-Born scattering formula Eq.(35) with ü = v, into the inversion 
formula Eq.(62) and substituting the one-sided Fourier representation of the Dirac distribution, 

S"(T(y) - T(x)) = -Re - f    exp[iu, (T(y) - T(x))} u'du , 

yields the resolution operator, 

((cW)'(tf»)) |V«*|y) 

= jLL^,-)(^yw-)) |v.*i, i^idi 
|Va^|« 

(63) 

(64) 

(65) 

with matrix kernel 11, 

n(y,x) = Ke'£ 8^3/exp[i$(y,x,e)}a(y,x,e)xj(e)de . 

Here, 0 = (w,«,r)and 

/ ■de=f I    ••• ir(y)|3o;2da;dsdr. 
Jn+xdsxdR JdSxdRJn+ 

The resolution operator expresses how well the reconstruction can be accomplished within the 
framework of the linear theory. 

The phase function $ of the Fourier integral operator with kernel Eq.(64) is simply given 
by . 

*(y,x,Q)=u(T(y)-T(x)) , 
while the amplitude function arises as the matrix 

a(y,x, 0) = £gl g*>(r, y)£f\r, x) §*>(., y)|f>(.,*) x 

(Ay (i/(r, y, a)))"1 w<™>(y, &<*>(*), «<*>(y)) 

(66) 

x 

VW(y)(t/^)(y))a 1/2 
|r(y)| (i/-^)«  ö(ä,a) 
|r(x)|(i/.^)y   ö(.,r) y 

(67) 
V(^)(a;)(F(M)(aj))3 

In anticipation of introducing the scattering coefficients (cf. Eq.(38)), we introduce the one- 
dimensional array of functions a^, satisfying 

aÄ(y, x, 0) R^ix, &<*>(«), &<*>(«)) 

= a(V> x, 0) (cW)'(#«)) IV^* . (68) 

We will interpret 0 in the spatial Fourier domain. To this end, we carry out two coordinate 
transformations. First, we employ the ray-induced mapping 

s = s(N,M,v,0,iP),   r = r(N,M,v,0,iJ>) for fixed y , (69) 
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with 

Jai 
d(a,a) -L d(ÖL,a) 

hsxdR       d(s, r) 

Thus, at y, 0 is mapped on (w, i/, 9, t/>), and we set 

d(ä,a) 

y J&xSfl      d(i/,0,*p) 
di/d0d^>. 

a(y,x,u;,i/,0,ip) 

y 

3(&,d) 
= o(y,*,w,*,r) 

y d(s,r) 

We identify 

r(jW*>(r,*,«)   with  T(™\x,u,6,il>). 

Second, the frequency u; is transformed to the wavenumber fcr according to 

fcr = u;|r(y)|; (70) 

then 

J^+ • • • |r(y)|3u;2 da; = /R+ • • • fcr
2 dfcr . (71) 

We now identify the wave vector 

Q' = krueM3  with   d0' = fc2 dkr di/ , (72) 

and we will consider (0, xß) as parameters, i.e., 0 ->■ (w, i/, 0, %p) ->■ (0', 0, ^). The Jacobian 
of the latter transformation is written as (cf. Eq.(71)) 

0(0') 
d{u, u) 

= h{y,v)u\   h(y,u) = \T(y)f; 
y 

formally, also 

h = det(r   dUlT   du2T)\ . (73) 

The inverse transformation to frequency, the so-called Stolt mapping, is given by 

1  J     |r(y)p ' uv 

since also 

e'=wr(y). 

We identify 

$(y,a;,0)   with  $(y,a;,0',0,0). 

In the phase space with coordinates («, 0'), Eq.(64) gives rise to the resolution equation 

f     exp[»(»,»:, e-, *, i>)] <.(», x, &,«, v>) xj(e", o, v>) ae' x 
JE+X52 

(cW)'(#«)) |v«^|« i^J- dL dö d^ .     (75) 
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For x near y, $ = 0' • (y — x) -\ . The integration over 0' represents the spatial resolution, 
whereas the integration over 9, %l> primarily represents the parameter resolution per migration 
dip. However, note that the parameter resolution couples to the spatial resolution, since 0' in 
general depends on (0, iß). 

Below, we will constrain XJ to be a function of kr = |0'|, 9, iß alone. 

7.3.    Stationary phase analysis of the resolution operator 

Inside the integral over u in Eqs.(64)-(65), we consider u; to be large. Then, we apply a 
four-dimensional stationary phase analysis with respect to the integrations over (<r1? <r2, v) e 
S(L) x S2, cf. Eq.(75). The range S(L) indicates that the surfaces are contained in V. 

We choose polar coordinates on the i/-sphere, 

v = (sin 9" cos iß"', sin 9" sin iß", cos 9U) . 

We extract L = <r3 and A;r = |0'| from the set of phase space coordinates, 

(*,©') -► {ax,<r2,L,kr,9",r) ,   V = (cri,e2,9
v,r) , 

resubstitute kr = u;|r(y)|, and set 

$(y, x, 0', 9,iß) = w *'(y, L, rj, kr, 9, iß) . 

Writing the coordinates explicitly, the resolution equation (75) takes the form 

<(c<")W»)) iv.*) = R. £I ^/X /^ 
exp[iu $'(y, L, 77, kr, 0, iß)] a(y, L, 77, kr, 9,iß) xAh, &, iß) h(y, v) x      (76) 

(cW)^(x(<T)))\Vx<ß\x(tr)-—^ u,2du;dL d9diß , 
K   > Iva5^laj(<r) 

where 

dr/ = dE(as) sinÖWd^" . (77) 

For given (9, iß), the phase $' is stationary with respect to the variables of integration 77 if 

d^' = 0  and  d(e»,r)& = 0 ; (78) 

here, 

while 

d^V^-T-d^x, .     (79) 

d9.V   =   [7(A3r)(y)-7(A3r)(*)]-^r +fi(*)(y)-^*)(x)}.d0»8, 
(80) 

fy„$'   =   [¥lCf)(y)-7{lif)(x)]-d^r + [^\y)-^\x))-d^s. 
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The stationary points are denoted as <r° = cr°(y) and induce the mapping x(cr°, L) for any L. 
The solution of the first equation in (78) with (79) implies that the stationary migration dip, 
i/°, must be parallel to the geological dip, i/^, i.e., 

"° = ±v+ 5 (81) 

one solution, a°, of the second equation is easy to identify: 

x(al,L) = y] 

at this value one expects the peak contribution to the resolved medium perturbation. At 
x(cr°,L), given i/°, (0,VO will determine the stationary values of («,r). We denote the 
stationary points by rf = (<T°,I/°(X(<T°, L))), and the stationary point set by H°, which 
contains at least two elements (cf. Eq.(81)). 

Applying the four-dimensional stationary phase approximation to Eq.(76) amounts to 

«c">)'(*(v)) |v^W = Eo R-E /, ^/JRt (f)' 

Xj(kr,0,il>)h{y,v°) x (82) 

{cM)\<Kx{*l,L)))\Vx<t>\x{ao^L) 
\daix A^2«| 

|Vx^| *(<L) 
u}2du}dLdedrjj 

in the absence of singularities. [Singularities require a separate analysis, which we will discuss 
in a separate paper.] Here, sig denotes the number of positive eigenvalues minus the number 
of negative eigenvalues of a matrix. In Eq.(82), A;r is the stretch of frequency with |r(y)|°, the 
norm of the gradient of travel time in case the migration dip is stationary. 

In terms of the scattering coefficients (cf. Eq.(68)), for *(<r°, L) near y e {$ = L}, 
expression (82) reduces to 

<(c(1))'(0(y)) |V*<%) *^hL 
Re 

7T./R+ 

X 

exp ]iu$'(y, L, rf, fcr,0,0) + i- sig(V,V„$')° 

afl(y, L, r,0, kr, 0,0) fif %», kr, 0, j,) h(y, u°) 

|r(y)|<y|det(V„V„<I>')0l 

\dClx Aö^JCI 

Xj{kT,0,t}>)dkr 

x 
|Vx<^| «WU) 

Recognizing the bandlimited Dirac distribution, 

IAA»
0
 • (y -x)) = - x 

7T 

dLd0dV>. (83) 

(84) 
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/R+ 
exp 

.7T 
tu $'(y, I, r/°, fcr, 0, 0) + i£ sig( V„ V„$')° Xj(kr,ö,if>)dkr , 

we find that the reconstruction amounts to a weighted integration of scattering coefficients, 

<(cW)'(*(y)) iv^ij,) ~   E   IJ;L[ 

Re/A,j(i/0-(y-a5)) 
|V«*| *("W 

a*(y, L, r/°, fcr, 0, 0) äJJ^V, kr, 9^)h(y,u°) x (85) 
|r(y)|o^det(V,V,$')0l 

\daix t\da2x\, oLj dLd9dij>, 

where we have accounted for the fact that the range of integration over 9,0 will be limited by 
the acquisition geometry. The ranges are given by E$ = Eg(i/°), E^ = E^(M/°, 6). 

In Section 9, we will evaluate the Hessian det(V„V„$')° and show that sig(V„V^$')° = 0 
at i/° = ±i/^. Then, in case the partition is complete, we have 

1 1 
£R*/A.>°-(y-*))|v^r|v^, 8{u° • (y- x)) 

~ S(<f>(y) - <f>(x)) . (86) 

Due to the point symmetry of the slowness surface at the image point y, we can replace the 
summation £ o _ ,       \ by the substitution i/° = v$. 

8.   GRT inversion of Kirchhoff data 

Now, we will analyse the resolution operator from a different perspective. To accommodate 
for the non-linear reflection/transmission coefficients, we substitute our Kirchhoff-like approx- 
imation, a mixture of Eqs.(37) and (45), into the inversion formula Eq.(61). The result is an 
equation very similar to Eq.(85). We obtain 

«c^M*)) iVa^ly) *      £       if [rf^dLMty,      (87) 
I/° = ±Ud 

where 

rf *> = £ Re IA,j(»0 ■ (V ~ «)) 
|V«^| «(*M 

aA(y, L, r/\ fcr, 9,0) R^V, fcr, 0, 0) A(y, i/°) 

|r(y)|ov/|det(V„Vt,$')°l 
x 

l&.xA^l^o^ •      (88) 
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Componentwise, the reflection/transmission coefficients can be identified, viz., by undoing the 
multiplications by a^. 

9.   Imaging reflectivity 

9.1.    The Hessian 

In this section we will evaluate the Hessian of $' at a stationary point.   First, note that 
dvßuv§' = 0 at the stationary point x = y (then $ = 0). Hence, 

|2 
detCV^V^')0 = [det(V„V<r*')°] 

On the other hand, note that 

(&„&„*') = (ö„Mr) • (da„x). 

This matrix can be written in the form 
I I     \ 

(89) 

(90) 

(- a*r -\ 
v- a*r -) d91x   d<,2x 

I 
hence, also, 

|r|det[(öb/r)-(ö«r*)] = det 

In this expression, the first matrix on the right-hand side can be identified as h (see Eq.(73)) 
and the second one with the Jacobian of the coordinate transformation Eq.(32). Hence, using 
Eq.(89), we arrive at the identity 

|If ydet(V,V,$')0 = M-X) WaiW A d^x\x{(gp L) . (92) 

In view of Eq.(89), the positive and negative eigenvalues must come in pairs, so that 
sig (V„ V,$')° must be equal to 0 or 4. On the other hand, we have intrinsically assumed that 
the gradient of two-way travel does not vanish, so that h ^ 0. In accordance with Eq.(92), 
hence, the determinant cannot vanish. This implies that under continuous deformations of the 
interface and ray geometries, the signature of the Hessian cannot change from 0 to 4 or vice 
versa (this would require an eigenvalue to become zero). In the case of flat level surfaces, it 
can be shown that the signature equals zero, which now implies that 

sig^V^O^O 

for any <j>. 
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9.2.    The modified GRT inversion 

Substituting Eq.(92) into Eq.(88) now yields 

£A) = j2 Re IAAJ/O . {y _ x)) _i 
»KV X |V*<£| 

a*(y, L, 770, fcr, 0, 0) R<™V, fcr, 0, V) , (93) 

which is the proper interpretation of the set of images created by the GRT inversion formula 
(61). To arrive at this expression, we could use that at the stationary dip u° = u^, and we 
could set {y • u^) = 1 in Eq.(61) to begin with. Thus, a priori knowledge about the geological 
dip is not required. 

In the stationary phase approximation, we can rewrite inversion formula (61) with Eq.(87) 
as 

L^^hL (94) 

Ay^mKy,a^(y),^Hy))dtu^(r,s,y) |r|< |^_ du. 
y 

Here, we employ the mappings defined in Eq.(69). 
To extract the reflection coefficient from r^NM\ one has to estimate the a^, which are 

functions of the stationary dip, scattering angle and azimuth. In the inversion procedure, we 
control the scattering angle and azimuth; in principle, we can estimate the geological dip from 
any of the images. With this estimate, the a^ can be evaluated. Now, note that (93) comprises 
a system of equations; from each equation, in principle, the reflection coefficient at specular 
can be determined. This redundancy can be employed to verify or improve the estimate of the 
stationary dip. The stationary dip also appears in the spectrum of the medium's perturbation; 
this is discussed in Appendix A. 

On the other hand, by virtue of the stationary phase approximation, we can remove the 
AVA inversion nested in formula (61): consider the procedure 

/r<«>dL* J_/ nwi-*■<">(■•,.,>)d„. (95) 
JH 8TT

2
./S* [vr(^)(y)(VrW(y))3] 

then SLR must be replaced by the scalar quantity 

MV,*,®) "> ^| g*>(r,y)g*>(r,«) £f\s,y)if)(s,x) 

x|r(y)r-3|r(*)|j^^. (96) 

Its diagonal is given by 

a*(y,y,0)-Hr(y)r"2. (97) 
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By producing images both with m = 4 and m = 3, |r(y)| at stationary can be imaged as well, 
viz., from the ratio of the images. Then the stationary dip is not required to find the reflection 
coefficient 

10.   Discussion 

We have shown, by carrying out a stationary phase resolution analysis, that it is feasible to ex- 
tract information about the angular dependent reflection/transmission coefficients from a GRT- 
based migration/inversion. We did not have to linearise nor expand the coefficients. In fact, 
the outcome of the resolution analysis is a multiple set of images for the reflection/transmission 
coefficients for the available range of specular scattering angles. Any type of AVA analysis can 
then be applied to interpret those images. In the derivation we have made use of the fact that 
the surface integral representations are linear in the scattering coefficients; these coefficients 
reduce, at specular, to the reflection/transmission coefficients. 

The GRT approach employs a somewhat unusual input of data, viz., via common (0, ip) 
gathers. The inversion formula reduces to a two-dimensional integration over migration dip. 
The (6, iß) sorting, however, varies with the image point. It bears resemblance with the sorting 
in common offset, though. The use of such a sorting, however, necessitates the calculation of 
an additional Jacobian. 
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Appendix A.   The spectrum of the medium perturbation 

In principle, the geological dip can be directly estimated from an image.   However, the 
geological dip is also hidden in the spectrum of the medium perturbation Eq.(33). 

Setting (cf. Eq.(46)) 

z II "*>    M -L "* 

at y G £>, the medium perturbation spectrum is of the form (cf. Eq.(33)) 

fycW(fc)= / dL(c^)'(L) 

J 6(<j)(x) - L) exp [-i (kßxß + k2(zy(L) + z))] dx ,       (Al) 
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where in fact k = 0' = kTv. Near the level surface <j> = L, we employ the expansion 

<f>(x) = L + \Vx<f>\z + \xß(j>ßUxv ; (A2) 

we implicitly assume that the integral over L is windowed around y such that in the window 
or neighborhood <j>ßV may depend on L but i/^ does not. At the level surface on which y lies, 
we have zy = 0. Then, 

M»)(fc)~ / dL(c(1))'(L)exp[-i^y(I)] 

j &{\Vx4\z + \xß(j>ßVxv) exp [-»(fc^ + *,*)] dxi dx2 dz 

= ^dL(c(1))'(L)exp[-i^y(I)] 

JL exp  • / i i    Xß(pßvXv 
v/iJ'/i 

_ / 2TT exp[7risig(A:z^)/4] 

dzi dx2 

_   /" 2TT exp 
exp 

l^det^j 
(c(1)),(I)exp[-f^y(L)]dL, 

2|Va;^|, 

(A3) 

where sig, as in the main text, represents the sum of signs (±1) of eigenvalues ofk^. Note 
that kß = 0 corresponds with the geological dip direction. 

If the level surfaces of <j> were flat and v+ = vx fixed, we would get 

d^)(k) = S(k - (k ■ ul)ul) (cW)'(fc • i/1) 

which, in the Radon domain, implies 

jvd^\<i>{x)) 8"{y .u-x-v)dx (A4) 

= --*(" - (" * ^V)Re j^+(cW)'(fcr(i/ • i/1)) exp(^) dfcr 

= -~ *(" - (" • "V) Re /   (cW)'(kr) exp(ikr<p) dkr 
*■ •'R+ ip z= y • j/1- 

This formula shows that the GRT algorithm can reveal the geological dip explicitly. We 
assumed a proper coordinate system on S2, such that 

v = yv 

J  S(U - (u • I/1)!/1) dl/ = 1 
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Figure captions 

Figure 1. Source-receiver ray geometry (S2 = unit sphere) 

Figure 2. Source-receiver ray polarizations. 

Figure 3. Micro-local medium perturbation. 


