
A Numerical Study of Fluid Flow Around 
Two-Dimensional Lifting Surfaces 

by 

John D. Dannecker 
B.S. University of California, Berkeley, 1988 

Submitted to the Department of Ocean Engineering 
and the Department of Mechanical Engineering 

in Partial Fulfillment of the Requirements for the Degrees of 

Naval Engineer 
and 

Master of Science in Mechanical Engineering 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

June 1997 

©1997 Massachusetts Institute of Technology 
All rights reserved 

Signature of Author 

Certified by 

Certified by 

Accepted by 

Department of Ocean Engineering 
May 9, 1997 

Justin E. Kerwin 
Professor of Ocean Engineering 

Thesis Supervisor 

Douglas Hart 
Professor of Mechanical Engineering 

v Thesis Supervisor 

Accepted by 

J. Kim Vandiver 
Chairman, Committee on Graduate Students 

Department of Ocean Engineering 

19970703 068 

Ain Ants Sonin 
Chairman, Committee on Graduate Students 

Department of Mechanical Engineering 

Approved for public release; 
Distribution Unlimited ^^i npT.rmo x 

-,„.„„„ . '    "   '- ■ PTIQ QUALITY nacl-iawi^^ & 



A Numerical Study of Fluid Flow Around Two-Dimensional Lifting 
Surfaces 

by 
John D. Dannecker 

Submitted to the Department of Ocean Engineering 
and 

the Department of Mechanical Engineering 
on May 9, 1997, in partial fulfillment of the 

requirements for the degrees of 
Naval Engineer 

and 
Master of Science in Mechanical Engineering 

Abstract 

There are always differences between theoretical and experimental results in the study of lifting 
surfaces. Bounding box control volume measurements infrequently yield exact conservation of mass 
or consistent values for lift and drag coefficients. Numerically calculated wakes often differ from 
experimental data. Quite often, an empirical correction can be applied to fit theory to experiment 
to account for these differences. However, as the demands for state of the art foil design increase, 
fluid dynamicists are pressed to look carefully at these inconsistencies in order to improve current 
design and analysis methods. Using a Reynolds Averaged Navier Stokes (RANS) computer code and 
a highly refined fluid mesh, one can begin to explore the subtle characteristics of the fluid flow in 
the entire domain and the details of certain key regions around a foil. Specific areas of great interest 
are: flow around the trailing edge, flow within the boundary layer, wake profiles and the influence 
of tunnel wall boundaries in experimental facilities. 

The overall goal of this thesis is to resolve some of the discrepancies between theoretical results 
and experimental data. A computer code has been developed to generate the geometry for the fluid 
flow domain surrounding an arbitrary foil shape at a specified angle of attack in the MIT Marine 
Hydrodynamics Laboratory (MHL) water tunnel. This geometry is provided as input data for the 
RANS solver. A suite of software tools are developed to provide post processing analysis to compare 
the RANS solution with other numerical techniques and experimental measurements. 

Through the use of case studies, the numerical results of the RANS code are compared with 
recent MHL experimental data and other computational tools. A comparison is made between 
the experimental and RANS code results using a control volume analysis. Boundary layer and 
wake profiles are also compared. A correction scheme is developed to extrapolate experimental 
measurements to unbounded fluid flow. 

Thesis Supervisor: Justin E. Kerwin 
Title: Professor of Naval Architecture 

Thesis Supervisor: Douglas Hart 
Title: Professor of Mechanical Engineering 



Acknowledgments 

This thesis could not have been completed without the encouragement and support 
of my wife Michelle and my two children, David and Marina. I am eternally grateful 
for the patience and endurance during my studies here at MIT. 

I thank Professor Jake Kerwin for his gentle guidance and enthusiasm. 
To Scott Black, Todd Taylor, Gerard McHugh, Rich Kimball, and the many other 

Propnuts who pointed me in the right direction now and then. 
To Bill Milewski for pointing out to me that ninety percent of computational fluid 

dynamics is getting the geometry right. 
To Mr. Gordon Stevens, my high school physics teacher, who first taught me the 

importance of dimensional analysis and that science can be a lot of fun. 
Lastly, I am grateful to the United States Navy for providing the opportunity and 

funding for me to pursue higher education. 



Contents 

1 Introduction 16 

1.1 Overview  16 

1.2 Background  17 

1.2.1 Why Is There Interest in 2-D Flow?  17 

1.2.2 A Recent Design Problem  17 

1.3 Motivation for Modeling 2-D Foils With RANS      18 

1.4 Objectives  19 

1.4.1 Rapid Generation of Flow Geometry  20 

1.4.2 Resolving Differences Between Experiments and Numerics   . . 20 

1.5 Organization      21 

2 Theory 22 

2.1 Overview  22 

2.2 Two-Dimensional Lifting Flows  22 

2.3 Linearized Two-Dimensional Theory      24 

2.3.1 Lift  25 

2.3.2 Drag  26 

2.3.3 Lift and Drag by Pressure Integration  26 

2.3.4 Viscous Effects on Lift  27 

2.4 Vortex Lattice Methods(VLM)  28 

2.4.1     Cosine Spacing  28 



2.4.2 Obtaining the Vortex Lattice Solution      29 

2.4.3 Method of Images Applied to VLM  31 

2.5 Momentum Theory for Lift and Drag Calculations  33 

2.5.1 Bounding Box Analysis  33 

2.5.2 Drag by Wake Defect  34 

2.6 Reynolds Averaged Navier Stokes Equations  36 

2.6.1 Derivation of the RANS Equations  36 

2.6.2 Turbulence Modeling  37 

2.7 Boundary Layer Flows  39 

2.7.1 Characterization of Boundary Layers  39 

2.7.2 Laminar Boundary Layer Flows  40 

2.7.3 Turbulent Boundary Layers  42 

2.7.4 The y+ Parameter      43 

2.7.5 The Law of the Wall  43 

3    Numerical Methods Development 46 

3.1 Overview  46 

3.2 Overview of Grid Generation  47 

3.2.1 Fundamental Concepts  47 

3.2.2 Geometric Limitations of DTNS2D  49 

3.3 Development of the Computer Code FIT2D      50 

3.3.1 Functional Requirements  50 

3.3.2 Structure of FIT2D  52 

3.3.3 Selecting Required Input  52 

3.3.4 Splining and Element Distribution Methods  54 

3.3.5 Defining Domain Boundaries  55 

3.3.6 Isoparametric Interpolation      56 

3.4 FIT2D Output     57 

5 



3.4.1 Tecplot Files      57 

3.4.2 INMESH Input Files  58 

3.5 Adjustment of Zone Boundaries in the Wake  59 

3.5.1 Implementation of the ADAPT Subroutine  59 

3.5.2 Adding Image Vortices  60 

3.5.3 Convergence of the Vortex Lattice Method  61 

3.5.4 Adapting Wake Zone Boundaries Using RANS Output   .... 63 

3.6 Using a Poisson Solver to Refine Grid  63 

3.6.1 The Program INMESH  63 

3.6.2 Correction of INMESH output for use in DTNS2D      65 

3.7 The RANS Solver  66 

3.7.1     Overview of DTNS2D      66 

4 Data Post Processing Methods 67 

4.1 Introduction  67 

4.2 UNNS2D  67 

4.3 Computing Lift and Drag      68 

4.4 Bounding Box Calculations      68 

4.5 Extracting Velocity Profiles in the Boundary Layer  69 

4.5.1     Post Calculation of y+  69 

4.6 Extracting Velocity Profiles in the Wake  70 

5 Results 71 

5.1 Validity of the Results  72 

5.1.1 Sources of Error  72 

5.1.2 General Comments Regarding Comparison with Tunnel Exper- 

iments    72 

5.2 Case Study I: The HRA Foil  73 



5.2.1 Validation Check of Grid Adequacy  74 

5.2.2 Unbounded Flow Comparison  76 

5.2.3 Bounded Flow Comparison  76 

5.2.4 Bounding Box Comparison  77 

5.2.5 Wake Profile Comparison  78 

5.2.6 Relating Bounded Measurements to Unbounded Characteristics    79 

5.3    Case Study II: Foil With A Cupped Trailing Edge  84 

5.3.1 Validation Check of Grid Adequacy  85 

5.3.2 Unbounded Flow  87 

5.3.3 Bounded Flow  89 

5.3.4 Tunnel Wall Boundary Layer Comparison      92 

5.3.5 Separated Flow  93 

5.3.6 Developing An Experimental Test Plan  94 

6    Conclusions and Recommendations 98 

6.1 Conclusions  98 

6.2 Recommendations  99 

A  FIT2D Progam Listing 101 

B   Sample FIT2D Input Files 150 

B.l   Bounded Foil (fname.ctrl)  150 

B.2   Unbounded Foil (/name.ctrl)  151 

B.3   Sample Foil Geometry File (fname.foil)  152 

C  Marine Hydrodynamics Lab Water Tunnel Geometry 153 

C.l   System Overview  153 

D  GET WAKE Program Listing 155 



E   PATCH Progam Listing 158 

F   Case Study Foil Offsets 160 

F.l   Case Study I: The HRA Foil  161 

F.2   B-l Foil With Cup Modification To Trailing Edge  162 



List of Figures 

2-1    2-D Foil Coordinate System  23 

2-2    Point Vortex in Uniform Stream  25 

2-3    Viscous Boundary Layer on 2-D Foil      27 

2-4    Vortex Lattice on a 2-D Mean Line  29 

2-5    Vortex Lattice Near Walls With Images  32 

2-6    Rectangular Contour Around 2-D Hydrofoil  34 

2-7    Spalding Formula for Law of the Wall  44 

3-1    Sample of the discretized flow domain of a foil in a water tunnel. (Only 

1/3 of the total grid lines are reproduced in the lower frame)  48 

3-2    Sample geometry of a DTNS2D zone. (Only 1/3 of the total grid lines 

are reproduced)  50 

3-3    Typical DTNS2D zonal boundaries for a foil in a tunnel  51 

3-4    Isoparametric Mapping Schematic of Interior Zonal Points  57 

3-5    Display of rotate.pit data  58 

3-6    Vortex Lattice Geometry with Extracted Wake Line  60 

3-7    Comparison of wakes for VLM (unbounded) to VLM with Images(bounded) 61 

3-8    Vortex Lattice Panel Convergence Curve  62 

3-9    Vortex Lattice Image Pair Convergence Curve  62 

3-10 Sample Comparison of VLM Wake and RANS Wake Zone Adaption . 64 

3-11 Typical Grid Spacing Before and After Smoothing with INMESH   . . 65 



4-1    Pressure Distribution Dependence on y+ Parameter  70 

5-1    The HRA Foil Shape  74 

5-2    Comparison of DTNS2D Computed B-L Profile with Spalding Formula 

for HRA Foil      75 

5-3    Comparison of Pressure Distribution on HRA Foil Using DTNS2D and 

PAN2D-BL(Äe = 3 x 106,AOA = 1°)  77 

5-4    Comparison of Normal Velocity Component Around Contour Box for 

DTNS2D and HRA Experimental Results(#e = 3 x 106,AOA = -0.636°) 79 

5-5    Comparison of Wake Profiles for DTNS2D and HRA Experimental 

Results(fie = 3 x 106,AOA = -0.28°)  80 

5-6    Summary of Results for Lift Coefficient vs. AOA for the HRA Foil . . 81 

5-7    Summary of Results for Drag Coefficient vs. AOA for the HRA Foil . 82 

5-8    Lift Curve With Correction Factors Applied for HRA Foil      83 

5-9    The B-l Foil With Cupped Trailing Edge Modification  85 

5-10 Comparison of DTNS2D Computed B-L Profile with Spalding Formula 

for Bl Cupped Foil  86 

5-11 Velocity Contours Near Trailing Edge of Cupped Foil(unbounded flow) 87 

5-12 Pressure Contours Near Leading Edge of Cupped Foil(unbounded flow) 88 

5-13 Comparison of Pressure Distribution on Cupped Foil Obtained by Two 

Different RANS Solvers and PAN2D-BL      89 

5-14 Velocity Contours Near Trailing Edge of Cupped Foil(bounded flow) . 90 

5-15 Pressure Contours Near Leading Edge of Cupped Foil(bounded flow) 91 

5-16 Comparison of Pressure Distribution on Cupped Foil Obtained by 

Three Different RANS Solvers  92 

5-17 Comparison of Pressure Distribution on Cupped Foil for Bounded and 

Unbounded Flow  93 

5-18 u Contours for Cupped Foil in Bounded Flow      94 

10 



5-19 Upper Tunnel Wall Boundary-Layer Profiles  95 

5-20 Upper Tunnel Wall Boundary-Layer Displacement Thickness and Mo- 

mentum Thickness  96 

5-21 Streamlines Near Trailing Edge of Cupped Foil(DTNS2D Solution)    . 97 

5-22 Streamlines Near Trailing Edge of the Bl Cupped Foil(C.I. Yang So- 

lution)    97 

C-l   MIT MHL Water Tunnel  153 

C-2   MIT MHL Water Tunnel Test Section  154 

11 



List of Tables 

3.1    Batch Input Variables for FIT2D  53 

5.1 Post Processing Check of y+ for HRA Foil Grid  75 

5.2 CONTOUR and FLD2D Results for Lift and Drag Characteristics of 

the HRA Foil  78 

5.3 Lift Slope and Intercept Data for HRA Foil Calculations  81 

5.4 Post Processing Check of y+ for B-l Cupped Foil Grid  86 

5.5 Comparison of Unbounded CL & CD Calculations for Bl Cupped Foil 

(Re = 3 x 106,AOA = 0.5°)     89 

5.6 Comparison of Bounded CL & Co Calculations for Bl Cupped Foil 

(Re = 3 x 106,AOA = 0.5°)     91 

12 



Nomenclature 

Mathematic Notation 

c Chord Length 

C Closed Contour 

Cd Total Drag Coefficient 

dp Drag Coefficient due to pressure forces 

Cdv Drag Coefficient due to viscous forces 

Ci Lift Coefficient 

dv jump velocity across vortex sheet 

Fr> total drag on lifting surface 

Fi lift force on lifting surface 

FDV viscous drag on lifting surface 

FDP pressure drag on lifting surface 

i normal vector in x-direction 

j normal vector in y-direction 

n normal unit vector on a surface 

nx z-comp. of normal vector on a surface 

ny y-comp. of normal vector on a surface 

P pressure 

9?        —    Reynolds number 

s curvilinear distance along camber surface 

Sien total arc length 

13 



Mathematic Notation(continued) 

s domain of foil surface 

t tangent unit vector 

tx x-comp. of tangent vector on a surface 

ty y-comp. of tangent vector on a surface 

r fluid shear stress 

Uinf Freestream velocity 

u local x-velocity 

UT yTns/p Friction Velocity 

V local y-velocity 

V velocity 

r dimensional circulation 

7 vorticity 

lb bound vorticity 

If free vorticity 

V dynamic viscosity 

V kinematic viscosity 

p density of fluid 

V2 Laplace Operator 

14 



Abbreviations 

2-D Two Dimensional (flow) 

AOA Angle of Attack 

ATD Advanced Technology Demonstration 

B-L Boundary Layer 

CPU Central Processing Unit 

DDG Destroyer-Guided Missile 

DTNS David Taylor Navier Stokes 

DTNS2D David Taylor Navier Stokes Solver 2-Dimensional 

HRA Hydrodynamic Research Associates 

k — e Two equation energy and dissipation turbulence model 

LDV Laser Doppler Velocimetry 

MHL Marine Hydrodynamics Laboratory 

MIT Massachusetts Institute of Technology 

N-S Navier-Stokes (equations) 

RAM Random Access Memeory 

RANS Reynolds-averaged Navier-Stokes (flow solver) 

SOR Successive-Over-Relaxation (solution method) 

TVD Total-Variation-Diminishing 

VLM Vortex Lattice Method 

15 



Chapter 1 

Introduction 

1.1    Overview 

Recent application of advanced computational methods to design new hydrofoil1 sec- 

tions for propeller blades has yielded inconsistent results. There is a need in the hy- 

drodynamic research community to undertake an in depth study of two-dimensional 

lifting surfaces since these sections are the fundamental building blocks of most three 

dimensional design methods. Additionally, a sound methodology should be applied 

to make effective comparisons between numerical and experimental results. Once the 

differences between numerical predictions, experimental measurements and real appli- 

cation are understood, those lessons can be incorporated into computational methods. 

Some improvement will come from better understanding of fluid flow within boundary 

layers near the foil surface. Other areas in need of refinement are the effects of wake 

diffusion and flow separation near the trailing edge. 

Ultimately, yielding these improvements will be a multi-step process that involves 

significant computational and experimental effort far beyond the scope of a single 

thesis. The work herein represents the first few steps towards the goal of developing 

a more complete understanding of the subtleties of fluid flow around two-dimensional 

foils. 
'Throughout this thesis, the words hydrofoil, 2-D lifting surface and foil will be used as synonymous terms. 

16 



1.2    Background 

1.2.1 Why Is There Interest in 2-D Flow? 

Presently, the hydrodynamic research community has turned its attention back to 

the study of two-dimensional lifting surfaces. The renewed interest is derived from 

recent attempts to design advanced hydrofoil sections for propeller applications that 

demonstrate improved cavitation characteristics without incurring a significant drag 

penalty. 

Recent work in the MIT MHL[17] water tunnel by Jorde[16] and Kimball[19] on 

foils with non-traditional camber distributions and unique trailing edges indicate 

that the above goals may be attainable. However, they also point out that our 

knowledge of two-dimensional flow around foils is incomplete. Bloch[7] developed 

a methodology for adding corrections to inviscid propeller design codes to account 

for anti-singing trailing edges. Several issues have come to light. First, the current 

computer design codes work well for conventional foils. However, the current codes do 

not work well for foils with cupped or blunt trailing edges or for foils with advanced 

camber distributions designed to delay cavitation inception. 

1.2.2 A Recent Design Problem 

As part of an advanced technology demonstration(ATD), new high speed propellers 

were designed and tested at the Carderock Division, Naval Surface Warfare Center. 

The design effort required to achieve the improved propeller performance using ad- 

vanced blade sections was monumental. The design process involved iterating several 

times between using propeller design computer codes and model testing[3]. The costs 

and time associated with this type of design procedure are prohibitive. 

It is not practical to expect that any commercial operator buying a propeller 

for a ship could fund such a research and development effort. But, the commercial 

operators do want the advantages these new foil sections offer.   The way to make 

17 



designing with advanced foil sections cost effective is to eliminate the costly iteration 

between design computer codes and model testing by developing a database that 

generalizes these new geometries as suggested by Bloch. Prudent application of model 

testing and RANS analysis for a broad geometry of foil shapes could provide the 

necessary data to formulate correction routines for standard propeller design codes 

without significantly increasing the computation time for a converged solution. 

1.3    Motivation for Modeling 2-D Foils With RANS 

An incompressible Reynolds Averaged Navier Stokes (RANS) solver was chosen for 

the bulk of the numerical analysis in this thesis. A RANS computer code solves 

the equations of motion for each fluid element throughout an entire domain. When 

compared to other solution methods, such as an inviscid panel method, RANS is very 

time consuming and requires large amounts of random access memory (RAM) and 

central processing unit (CPU) time. This is a significant disadvantage, especially 

when one wants to analyze several foils at several angles of attack and Reynolds 

numbers. But, there are many aspects of a RANS solution that are attractive. 

The voluminous output from a RANS computer code contains all of the flow char- 

acteristics for every fluid element throughout the entire domain such as: Velocity, 

Pressure, and Shear Stress. Provided the flow domain is discretized with sufficient 

resolution, you can also extract and measure subtleties of the flow like boundary layer 

velocity profiles and thickness, and flow separation under adverse pressure gradients. 

It is desirable to be able to study the characteristics of a viscous wake behind a hy- 

drofoil. Also, with the abundance of data available in the solution, it is easy to make 

a direct comparison between conditions calculated at a prescribed location in the flow 

field and those measured in a geometrically similar experiment. 

A large part of this study involves characterizing the differences between numerical 

solutions and experimental measurements.   In an unbounded flow, such as a 2-D 

18 



foil fixed in a uniform stream, RANS codes provide a good validation for computer 

programs such as PAN2D [21] and XFOIL [10] which are both inviscid panel methods 

coupled with integral boundary layer solvers. Neither PAN2D nor XFOIL is currently 

capable of modeling a foil in a flow constrained by walls including the viscous effects 

of the boundary layers, which is the case in water tunnel experiments. A RANS 

code can serve as a liaison between unbounded numerical codes and the bounded 

case of experiments. For an equivalent foil geometry, the RANS code can be used to 

characterize the differences in lift, drag and other properties for both bounded and 

unbounded flows. A methodology for doing this is presented in Chapter 5. 

1.4    Objectives 

As was alluded to in Section 1.3, one overall goal in this thesis is to provide a scheme 

for feeding back results and measurements taken in experiments as corrections that 

can be applied to the computationally efficient inviscid panel methods. Several steps 

need to occur before this goal can be realized in a substantial way. Methods need 

to be developed to efficiently generate input files for the RANS solver. As will be 

shown in Chapter 3, accurate geometric representation of a flow domain is perhaps 

the most demanding part of obtaining the solution. Accordingly, a great deal of effort 

was devoted to ensuring that the RANS domain geometry was exactly the same as 

the inviscid computer codes and the experimental setups. Computer codes need to 

be developed to reduce the output data to a tractable and meaningful form. The 

following are the critical path or the enabling objectives used to achieve the above 

goals: 

1. Review recent MIT MHL Water Tunnel experimental results for advanced section 

two-dimensional hydrofoils. 

2. Write a computer code that generates the fluid flow geometry input files for the 

RANS solver. 

19 



3. Analyze foils in unbounded flows using the RANS code and PAN2D. 

4. Analyze foils in bounded flows using the equivalent geometry of the MIT MHL. 

5. Develop corrective factors to apply to the inviscid solvers which are based on the 

differences found between the RANS and experimental results. 

6. Demonstrate how RANS solutions can be used to formulate experimental test plans. 

1.4.1 Rapid Generation of Flow Geometry 

To support ongoing research in the MIT Marine Hydrodynamics Laboratory, a two- 

dimensional lifting surface analysis tool is developed in this thesis to accurately model 

the fluid flow around hydrofoils in the water tunnel. It is very useful to have good 

predictions of a hydrofoil's performance characteristics prior to conducting an exper- 

iment. Thorough empirical evaluation of hydrofoils requires taking many measure- 

ments with varying geometry and Reynolds numbers. It is common to take measure- 

ments for a single foil geometry at several angles of attack and Reynolds number. 

Therefore, one requirement for any computational tool used in the MHL is that it 

be easy to change the foil angle of attack and other test conditions such as scale and 

Reynolds number. Part of the work in this thesis is the development of the computer 

code FIT2D(Foil In Tunnel, Two-Dimensional). FIT2D is an interactive fluid mesh 

geometry generator. The user can arbitrarily specify: angle of attack, grid resolu- 

tion, and Reynolds number as well as many other lesser parameters. The output files 

generated are used as input for a Poisson equation (V2</> = Const) grid refinement 

program. After the grid is refined, it becomes input for a RANS solver for analysis. 

1.4.2 Resolving Differences Between Experiments and Numerics 

In sections 1.3 and 1.2.1, it is asserted that to make the current foil design computer 

codes work better, corrections should be incorporated to account for the physical 

effects that are not modeled in computationally efficient inviscid solutions. Kimball 

20 



found that there is uneven boundary layer growth on tunnel walls due to the presence 

of a foil that is generating lift [19]. This difference between the upper and lower walls 

affects the flow and the resulting lift and drag measurements. So there are really 

two sides to the correction scheme. One is using RANS to quantify the effects that 

the tunnel walls have on the foil lift and drag measurements as a result of uneven 

boundary layer growth and the potential flow imaging effect. The other is using the 

experimental measurements to apply corrections to computer codes for physics that 

are not captured by the numerics such as re-attachment of separated flows, transition 

back to a laminar boundary layer, and vortex shedding phenomena. 

1.5    Organization 

In Chapter Two, all of the relevant theory of two-dimensional lifting surfaces is out- 

lined. It provides the mathematical statement of the lifting problem. Similarly, 

Chapter Three is a detailed description of the numerical aspects of the computa- 

tional solution. 

Chapter Four outlines the methodology for post processing all of the RANS data. 

It provides an overview of the suite of programs that were developed and used to 

calculate lift and drag, and analyze wake profiles and boundary layers. 

Chapter Five compares and contrasts the RANS output to other numerical meth- 

ods and experimental measurements. Results of case studies for two different foils are 

presented. Figures, Graphs, and Tables are used to demonstrate the differences and 

similarities that occur. A methodology is proposed for applying corrections hydrofoil 

computer programs to gain better agreement with precise experimental results and 

real applications. A demonstration of how RANS solutions can be used to formulate 

experimental test plans is presented. 

Chapter Six is a summary of results and conclusions. Future topics and directions 

for research in this area are discussed. 

21 



Chapter 2 

Theory 

2.1 Overview 

This study focuses on 2-D fluid flow, therefore it is appropriate that this chapter 

outlines and develops the pertinent fluid mechanics theories for lifting surfaces and 

boundary layers. These theories have been previously derived in many texts and 

technical papers. The developments and derivations contained in this thesis represent 

the specific application to the problem of thin non-cavitating hydrofoils in bounded 

and unbounded incompressible two-dimensional flow domains. 

First, the basic lifting problem is defined as a boundary value problem and the 

geometry is specified. Subsequent sections draw attention to aspects of lifting surface 

theory that are fundamental to the computational methods employed and to the 

physical phenomena that are modeled. 

2.2 Two-Dimensional Lifting Flows 

Lifting surfaces have many applications in marine hydrodynamics. Two dimensional 

foil sections are used extensively in the design of rudders, keels, skegs, propellers, and 

other appendages, such as ducts, where a desired force is generated normal to the 

onset flow. 

This study is limited to a "typical" lifting surface as described in Newman [24] 

where the thickness is much smaller than the chord length (i(s)<C). Further, only 

22 



incompressible two-dimensional flows are considered where the span of the foil is of 

infinite length and the resultant flow over the surface is chord-wise in direction. Figure 

2-1 shows how the foil geometry is defined with respect to the coordinate axes and 

the onset fluid flow.  The foil is fixed in a stationary reference frame.  The velocity 

Figure 2-1: 2-D Foil Coordinate System 

field (Uinf) propagates in the direction of the positive x-axis, and accordingly the 

leading edge of the foil points opposite to the onset flow. Although the pivot point is 

arbitrary for an unbounded flow, it becomes important when walls are present close 

to the foil surface. In this work, care was taken to specify the exact x, y location of 

the pivot point for comparing numerical results to those obtained in the MHL water 

tunnel. The angle of attack (a) is defined as the angle that an imaginary line drawn 

from the leading edge to the trailing edge makes with the x-axis. Here it is assumed 

that the "nose to tail" line intersects the fore and aft end of the mean camber line 

at the zero angle of attack. If the trailing edge is blunt, beveled or has some other 

treatment such as a splitter plate, the mean camber line ends at the midpoint of a 

line drawn from the upper and lower points of the trailing edge surface. The mean 

camber line is defined as: 

ym(x) = -(yu(x) + yi(x)) 

23 

(2.1) 



Foil thickness is defined as: 

Vt(x) = yu{x) - yi{x) (2.2) 

Steady state flow is assumed for all cases. The Kutta Condition[18] applies at the 

trailing edge requiring that the fluid velocity be finite. With the above limitations 

and the stated geometry, the following boundary value problem results: 

V20 = O (2.3) 

V = 0,on yu{x) and yi(x) (2.4) 

W(j> < oo,at the trailing edge, Kutta Condition (2-5) 

V = 0, on walls if present (2-6) 

V(f> = Uinf i, as x,y —> oo (2-7) 

Equations 2.3 - 2.7 are the complete mathematical statement of the lifting problem for 

a stationary foil with onset flow. Two types of solutions to this problem are pursued. 

A Reynolds Averaged Navier Stokes solver is used to solve the steady state viscous 

flow around the foil. The other method is a potential flow vortex lattice method 

where the no-slip rigid boundary conditions of Equations 2.4 and 2.6 are relaxed. In 

inviscid potential flow, the wall and foil surface boundary conditions become: 

V-n = 0 (2.8) 

Now that the boundary value problem is defined for the viscous and inviscid problems, 

the solutions can be formulated. 

2.3    Linearized Two-Dimensional Theory 

The use of linear potential theory is very powerful for analyzing lifting flows. A simple 

example of a lifting potential flow is a point vortex fixed in a uniform stream as shown 

in Figure 2-2.  The linear potential for a free stream with a point vortex located at 

24 



Xoi Do is. 

1 
$ = Uin/x + Im—(log(x -x0 + i(y - y0)) 

ZTT 
(2.9) 

This potential is a solution to the Laplace equation (2.3) throughout the flow field 

except at the location of the point vortex. Using the principle of superposition, a 

more complicated flow can be formulated by adding a group of simple flows together 

that satisfy the kinematic boundary conditions and Laplace. 

Figure 2-2: Point Vortex in Uniform Stream 

2.3.1    Lift 

In potential flow the lifting force acting on a foil is obtained using the Kutta-Joukowsky 

theorem, which states that for any two-dimensional body, moving with constant ve- 

locity in an unbounded inviscid fluid, the hydrodynamic pressure force is directed 

normal to the velocity vector and is equal to the product of the fluid density, body 

velocity and the circulation about the body[24]. The mathematical statement of this 

theorem applied to thin foils is: 

L = <j> (p — poo)dx = pU<f>u dx = pUT (2.10) 

In a potential flow that is formulated by a distribution of discrete point vortices, 

application of 2.10 is a simple matter of summing up the strengths of the point 

25 



vortices enclosed by a simple contour. 

2.3.2 Drag 

In a pure inviscid potential flow solution, there is no pressure or form drag. However, 

when fluid viscosity is added to the solution, a viscous boundary layer(section 2.7) is 

formed near the foil surface. Drag on the foil is present as a result of two phenomena. 

First, shear stresses in the boundary layer cause skin friction drag. Second, due to the 

presence of the boundary layer, the pressure recovery at the trailing edge is incomplete 

which causes a drag force. The pressure drag is hard to calculate or measure because 

the pressure changes that cause the drag are isolated to a small area near the trailing 

edge of the foil. Also when compared to the lift, drag is usually a very small quantity. 

The errors associated with computing the drag are nearly equal to the drag itself. 

Two other methods of computing the drag are presented later in sections 2.5.1 and 

2.5.2. These methods are not as accurate as direct integration of pressure and shear 

stress but provide additional verification of the integrated quantities. 

2.3.3 Lift and Drag by Pressure Integration 

When the viscous effects are included, Kutta-Joukowsky does not apply for calculating 

lift. The drag is no longer zero. However, if the pressure and shear stress in the fluid 

adjacent to the surface(S) are known, the lift and drag can be obtained by direct 

pressure integration on the foil surface around the perimeter of the foil. The lift and 

drag forces on the foil due to pressure integration are: 

FDp = JP-nxdS (2.11) 

and 

FL = / P ■ nydS (2.12) 

where S is the foil surface and P is the fluid pressure at the foil surface. In addition 

to the normal pressure to the surface, there is a viscous shearing stress (rns) acting 

26 



tangent to the surface. In a similar fashion to the above equations, shearing forces can 

be calculated by integrating around the foil and resolving into x and y components. 

Typically, the y component of the shearing forces is neglected because the integral 

quantity of these forces is insignificant compared to the y component of the pressure 

forces. The drag force on a foil due to viscous shearing forces is: 

FDv = JsTns-txdS (2.13) 

The total drag on the foil is the sum of the pressure and viscous drag terms, or: 

FD = FDp + FDv (2.14) 

2.3.4    Viscous Effects on Lift 

A detailed overview of the viscous effects on lift is contained in Coney[9]. Some 

pertinent aspects of his discussion are presented here to provide needed clarity. As 

shown in Figure 2-31, a foil in the presence of a real fluid flow will have a thin viscous 

boundary layer formed on its surface. This, in essence, alters the effective thickness 

Displacement 
Suction Side Thickness 

Pressure Side 

Figure 2-3: Viscous Boundary Layer on 2-D Foil 

and camber distribution of the foil. The camber is reduced on the aft portion of 

the foil. In general, for the same foil geometry, the difference between the potential 

flow and viscous flow solution is that the change in camber distribution will cause an 

apparent reduction in lift coefficient. Boundary layer characteristics are covered in 

more detail in section 2.7 
'Figure 2-3 created by Scott D. Black 

27 



2.4    Vortex Lattice Methods(VLM) 

The basic concepts of vortex lattice theory are contained in Newman [24] and Ker- 

win [18]. In light of the long computation time to obtain a RANS solution, it is a 

prudent step to incorporate a vortex lattice analysis code into the computer code that 

generates the geometry for the RANS solver. This serves two purposes. First, it pro- 

vides an initial estimate for the lift coefficient(Ci) and the circulation distribution^) 

on a foil. Second, it provides the dividing streamline in the wake by extraction of 

the field point velocity due to the circulation and free stream potential. This is de- 

sirable because the numerics of the RANS solver works better if the fluid domain 

discretization is adapted to the location and trajectory of the wake.(See Section 3.7) 

Vortex lattice methods are simple and efficient. The earliest vortex lattice method 

is attributed to Falkner[12] as referencedby Kerwin[18]. The derivation presented here 

is analogous to Kerwin's method. The primary difference is that the actual mean line 

of the foil is used vice the linearized foil surface. 

The formulation of the vortex lattice method is basic. The mean camber line of 

a given foil is determined using equation 2.1. The camber line is broken up into 

a discrete number of elements of panels. The panels are spaced using a "cosine" 

method where the panels at the leading and trailing edge of the foil are smaller than 

the middle panels. A point vortex of unknown strength Tm is located at the mid-point 

of each of the m panels. Control points where the kinematic boundary conditions are 

imposed are located at the end of each panel. Figure 2-4 is an example of a vortex 

lattice distributed on a mean camber line. 

2.4.1    Cosine Spacing 

Cosine spacing is commonly used in many lifting surface and vortex lattice methods 

as the spacing algorithm for distributing point vortices and control points.   It is a 

28 



0.6 

0.5 

0.4 

0.3 

0.2 
'S 
_g 0.1 
Ü 
^. 0 

-0.1 

-0.2 

-0.3 

-0.4 

U inf 

L       pp p—p—F> P> P» F»—p> 

r Point Vortex 
-»  Control Point 

0.25 0.5 
x/Chord 

0.75 

Figure 2-4: Vortex Lattice on a 2-D Mean Line 

simple method where an auxiliary variable s is defined such that: 

'-'/en /-. ~\ 
S = —^—(1 — COS 5) (2.15) 

where 5 = 0 is the leading edge of the mean line and s = ir is the trailing edge. In 

the auxiliary coordinate system, the interval of the arc is divided into N equal panels 

each of s = TT/N length. To establish the locations for the point vortices and the 

control points the following equations are used: 

(  \      Slenu           ,(n-l/2)7T sv(n) = —[1 - cos( )] 

Sc(n) = — [l-cos(—)] 

2.4.2    Obtaining the Vortex Lattice Solution 

(2.16) 

(2.17) 

The boundary condition on the foil is prescribed by equation 2.8. The strength of 

the point vortices are to be determined such that this boundary condition is satisfied 

at each of the control points.   First it is instructive to have the expression for the 

29 



velocity field induced at a point x,y by a point vortex located at the origin[24]. 

v = -rrfr^ <2-18> Z7T [x* + yz) 

This equation can easily be converted to the velocity field induced by a point vortex 

located at xv,yv on a control point located at xc,yc by making a simple substitution 

of the difference in the coordinates for x and y. 

v r„ i{yc - Vv) - i(xc - xv) ,      . 
at c due to v 2vr ^ _ Xyy + ^ _ ^)2] ^ •    > 

To extend the expression to apply to the vortices and control points distributed as 

per equations 2.16 and 2.17, simply insert the appropriate indices. Then the solution 

of the vortex lattice can be formulated into a mathematical statement. The velocity 

induced at the nth control point by all the N vortices dotted with the normal vector 

is equal to minus the free stream velocity dotted with the normal vector. 

_1 V^ r    H^H ~ yy(m)) ~ JQcH - xv(m)) _,f   . ,9 9m 

^L      K*cW - xv(m))2 + (Vc{n) - yv{m)f] ' n" "    Umfl' D" ^ 

Equation 2.20 can be written for each of the control points.   This represents a set 

of iV simultaneous equations which can be solved for the unknown vortex strengths 

(rn). Separating out the Yn terms as a separate component, the terms that are left 

formulate a square matrix that represents the induced velocity caused by each point 

vortex on every control point.  This matrix is called the influence coefficient matrix 

(A). Equation 2.20 can be cast in matrix form as: 

A-T = U (2.21) 

where T is the array of point vortex strengths and U is the array of boundary condi- 

tions at the control points. The A matrix can be reduced using Gaussian elimination 

or any convenient algorithm for matrix inversion[4]. Once the matrix is inverted, the 

vortex strengths can be determined. 

T = A"1 • U (2.22) 

30 



This completes the treatment of the 2-D vortex lattice method for a foil in an 

unbounded fluid. The next aspect to consider is the development of wall corrections 

for when a vortex lattice is located near a wall. 

2.4.3    Method of Images Applied to VLM 

Many of the cases analyzed involve 2-D foils which are in close proximity to walls. 

This is the case for testing a foil in a water tunnel. Therefore, the unbounded vortex 

lattice method needs to be modified to account for the presence of the walls. There 

are two options for modeling the walls. The first is to put vortex lattice panels on 

the walls in a similar fashion to panelizing the foil in the unbounded method. The 

second is to use the method of images where the walls are treated as "mirrors" and 

imaginary image foils are placed outside the flow domain[28]. 

Adding panels to the walls is not an attractive option. Adequate representation of 

the walls with vortex panels requires many more panels than are already used for the 

foil. This adds significantly to the computer code solution time. Furthermore, the 

boundary condition at the walls (V • n = 0) is only satisfied at the individual control 

points, rather than continuously along the boundary. Another issue with paneling 

the walls is deciding how far up and down stream to extend the panelization scheme. 

The required distribution of wall vortex panels varies and is dependent upon many 

parameters. There is no obvious generalized scheme for implementing a rule based 

algorithm to determine the minimum required number of panels and their respective 

spacing on the walls. 

A better way to represent the walls in an inviscid flow solver is to use the method 

of images when the geometry permits. In this case, the foil is located between two 

parallel walls. Therefore the image geometry is very simple. Using the wall as a 

symmetry plane, an image body is placed on the opposite side of the wall from the 

actual body. For a vortex situated near one wall the image formulation is simple - - 

add one image vortex[28]. However with two parallel walls, the image geometry is a 

31 



little more complicated. The two parallel walls create an infinite number of reflective 

planes. This geometry, with the first pair of vortex lattice images, is shown in Figure 

2-5. Newman[24] provides a treatment for the similar case of a potential flow point 

■E o 
ü 

2 

Image Pairs Continue 
Alternating Sign 
With Each Pair 1 

r        Point Vortex 
0 

:   uinf 

 9  Control Point 

  Wall« 

■1 

- 

2 

■   i     i     i     1     i     r     i     r     1     i     r     l     l     1     l     l     l     l.   1..  .1 1—■—■—1—L 

-10 12 3 
x/Chord 

Figure 2-5: Vortex Lattice Near Walls With Images 

source situated between two walls located at y = ±|6. Implementing this for the case 

of a distribution of point vortices is analogous. This requires the addition of an infinite 

array of image vortices at y = ±6, ±26, ±36, • • •, to satisfy the boundary condition at 

the walls. A closed form solution can be formulated for the infinite array, but this 

is unnecessary since each subsequent image pair has rapidly diminishing impact on 

the solution. For all practical purposes, a converged solution can be obtained with a 

small number of image pairs. This is demonstrated in section 3.5.2. The important 

thing to remember with this solution scheme is that the image vortices are the exact 

same strength as the original vortices. Therefore, no additional unknowns are added 

to equation 2.21. The only additional burden in computation is the addition of the 

influence of the vortex images to the influence coefficient matrix (A).  Lastly, using 

32 



the image representation eliminates the problem of deciding how far up and down 

stream to extend the walls. Using images, the wall boundary condition is exactly 

satisfied for — oo < x < oo. 

2.5    Momentum Theory for Lift and Drag Calculations 

It has been shown that it is a simple task to calculate the the lift and drag by direct 

integration on the foil surface when using numerical foil analysis tools. However, in 

water tunnel experiments this is very difficult to do. It is very time consuming and the 

level of complexity of instrumentation required to take the surface measurements is 

impractical. The normal methods for measuring lift and drag for foils in the MIT MHL 

are "bounding box" velocity measurements using laser Doppler velocimetry(LDV)[l7]. 

This is an application of fluid momentum theory. Bounding box calculations are used 

in this thesis to make comparisons between numerical calculations and experimental 

measurements. Bounding box contours can also be extracted from RANS solutions 

as a check of the surface pressure integration results. 

2.5.1    Bounding Box Analysis 

Bounding box methods are a way of calculating the forces acting on 2-D hydrofoils 

expressed in terms of integrals of the velocity flow field along a closed contour sur- 

rounding the foil[20]. Figure 2-6 is an example of a closed integration contour around 

a foil. Integrating around the contour C with an outward pointing unit normal vector 

n, the momentum flux M, out of C is: 

M = p I q(q • n)ds (2.23) 

where q is the fluid flux across C and p is the fluid density. The momentum flux 

through the surface of the foil is zero, since it is by definition a rigid boundary. The 

momentum flux of the volume of the fluid V enclosed on the outside by C and on 

the inside by the foil surface is given by equation 2.23. Using Newton's 3rd law, this 

33 



0.8 r 

0.6 r 

0.4 '- 
c 

n 

>-    o 7 -^  _-4^—-_ • n 

'• ' 
uw L 

-0.4 

-0.6 

-0.8 
UJ , i , , i i 1 i i i 

-0.25        0 0.25       0.5       0.75 1 1.25 
X 

Figure 2-6: Rectangular Contour Around 2-D Hydrofoil 

momentum must be balanced by an opposing force F which is given by: 

F = -l Pnds + I rtds - FL - FD 
Jc Jc 

(2.24) 

When taking measurements around foils in the MIT MHL with the LDV apparatus, 

a rectangular contour is frequently chosen. This geometry is also convenient for 

extracting data from a RANS solver or from vortex lattice field point calculations. 

The contour is chosen such that it is sufficiently far from the foil so the flow is 

considered inviscid2. Therefore, all the contributions due to the shear terms (r) are 

zero and the pressure terms (P) are evaluated using the Bernoulli equation[20]. 

2.5.2    Drag by Wake Defect 

Although in principle, the direct application of equations 2.23 and 2.24 should yield 

adequate results, this is not always the case for drag measurements. A special treat- 

ment must be applied in order to get a better estimate for drag by bounding box 

methods[20]. First, some ancillary variables should be defined for the ^-component 
2 A minor exception to this is the small region where the wake passes through the downstream side of the box. 

34 



of the velocity in different regions of the flow along the right hand side of the contour: 

u* = u, above the wake 

u* = u + AM,   in the viscous region of the wake 

u* = u, below the wake (2.25) 

The first order calculation for drag is expressed as: 

FD = pUinf I (u* - u)dy (2.26) 
Jrhs of C 

This can be further simplified using equation 2.25, resulting in: 

FD = pUinf [ (Au)dy (2.27) 
Jaccross wake 

This equation is correct up to the first order of Au, as long as the contour which 

crosses the wake is sufficiently down stream such that Au <C £/;„/ holds. In the MIT 

MHL, the optical limits of the tunnel view port window do not allow for this to happen 

when large foils(c > 30cm) are tested. Therefore, a second order correction must be 

applied to equation 2.27. Typical measurements for bounding boxes around large 

foils have wake defect velocities which range as low as 0.3C/,„/ to 0.5Uin/. Kinnas[20] 

has shown, using equation 2.24 as a starting point, that the drag including the second 

order correction is: 

FD = pUinf I (Au)dy -p f {Aufdy (2.28) 
Jaccross wake Jaccross wake 

These equations for bounding boxes apply to both unbounded and bounded flows. 

Direct surface integration and bounding box analyses almost never agree exactly. In 

experiments there is the inherent uncertainty associated with taking a measurement. 

Additionally, the flow is usually complicated by some unsteady phenomena that oc- 

curs such as vortex shedding. In numerical computations there are usually small 

differences associated with the how the calculation scheme is implemented. When 

comparing experiments and computer results, the lift measurements usually agree 

35 



quite closely. Drag results tend to vary widely. This may well be due to the fact that 

drag, in comparison to all other flow characteristics, is a small quantity. Accordingly, 

it is a hard quantity to measure with great precision and consistency. 

2.6    Reynolds Averaged Navier Stokes Equations 

2.6.1    Derivation of the RANS Equations 

One cannot discuss the RANS equations without first reviewing the equations from 

which they originate. The Navier-Stokes Equations are the equations of motion for 

a viscous fluid. The derivation can be found in many texts, of which, Sabersky[28] 

provides a clear step by step formulation. The N-S equations stem from Newton's 

law of motion and Newton's law of viscous friction. The equations apply to viscous 

compressible flow with varying viscosity. The N-S equations also apply to turbulent 

flow. In vector form the equations are: 

_^ = __VP + uV2v + -uVO + f (2.29) 
Dt p 3 

The Mach number of the cases studied is sufficiently low such that the fluid is incom- 

pressible. Therefore the 0 term is zero. 

Considering the case of 2-D turbulent flow, the velocity of the fluid can be expressed 

as a time averaged quantity with a small fluctuating term added to it. Similarly, the 

pressure can be expressed as a time averaged pressure with a small fluctuating term. 

u = ü + u' 

v = v + v' 

P = P + P' (2.30) 

The fluctuating terms u',v' and P' are defined such that their time averaged value 

is zero. Substituting equations 2.30 into the N-S equations, yields(written for x 

component, similar for y): 

du     du1     du2       duu'     du'2     düv     düv'     du'v     du'v' 
 I | |_ 2 1 1 1 1 1  
dt      dt       dx dx        dx       dy       dy        dy        dy 

36 



id?   idP'     ,d2ü   d2ü. ,   ,<9V , d2u\        ,OQ1, 
= —-         +„ + +!,(+_). (2.31) 

pax     /> ox ox2     oyz ox2      ay2 

If the time averaged is taken for this equation, and the continuity equation is applied 

for ü and v the equation simplifies to: 

Du        IdP     1 d ( du    —-A     1 d ( du 

«=-?& + ?& l"fc" ^'2J+ ^ l"<* " ""VJ     (2a2) 

This equation is exactly equation 2.29 with the addition of two terms pun and pu'v'. 

The time averaged pressure and velocity satisfy the original N-S equation. In laminar 

flow these terms are zero. These extra terms are important in turbulent flow. They 

are commonly called the turbulent stresses or Reynolds stresses. 

2.6.2    Turbulence Modeling 

With the addition of the Reynolds Stress terms to the N-S equations, more equations 

must be included in the solution to evaluate the extra unknown terms. As these terms 

represent the turbulent characteristics of the flow, the extra equations required are 

usually called turbulence models. The word model is used because the formulation 

of the equations is typically based on empirical studies of turbulent flow. There are 

several models available for use in solving the RANS equations. Three of the most 

common derived models are: 

• Prandtl mixing length "zero equation"model 

• The "two equation" k — e model 

• Baldwin-Lomax algebraic model 

All the above methods employ the concept of eddy viscosity uj. The models use 

empirical relations to establish a value for v-r which is fed into the RANS equations. 

The models used by the incompressible RANS solver in this thesis are the k — e and 

the Baldwin-Lomax Model. 

The Prandtl model uses a single parameter to determine the eddy viscosity.   It 

is called the mixing length /.   The mixing length is the characteristic length of the 

37 



mean eddy size which is much smaller than the fluids mean free path. It can also 

be thought of as the length normal to the main flow where momentum exchange is 

occurring. The Prandtl mixing model takes form: 

This equation directly relates the eddy viscosity to the mean flow. Therefore, no 

additional unknown terms are added to the problem formulation. The mixing length 

is usually determined by the experimental results for flows which are similar physically 

to those being modeled numerically. 

A derivation of the k — e model is presented in White[30]. This model is based on 

dissipation. This requires the addition of two equations to the equations governing 

the fluid flow. One is a turbulent kinetic energy equation and the other is the tur- 

bulent dissipation equation. Included in these equations are five empirically derived 

constants. These constants can be varied so that they can be applied to different 

types of flows such as wakes and jets. If the solution does not predict the flow rea- 

sonably, then the model and its parameters probably do not match the physics of the 

chosen flow[29]. The model is not intended for flows with high curvature. In lifting 

surface analysis, there are situations where the flow has a high curvature near the 

leading edge or un-separated flow adhering to an anti-singing trailing edge. For this 

reason, the model was not extensively used in this thesis. 

The Baldwin-Lomax algebraic model is very attractive because of its computa- 

tional efficiency and accuracy[29, 30]. The model is appropriate for bodies at modest 

angles of attack where flow separation is minimal or is not expected to occur. This 

eddy viscosity model defines an effective viscosity ue. 

Ue = u + UT (2.34) 

The flow is divided into two regions. Different equations for the calculation of the 

turbulent eddy viscosity uj apply in each region.   In the inner region the Prandtl 

38 



turbulent model(equation 2.33) is used with the van Driest[30] damping model for 

computing the mixing length. In the outer region a different set of equations applies. 

The eddy viscosity is calculated by[29]: 

uT = KCcvFwakeFKitb{y) (2.35) 

In the equation, K, Ccp, Fwake, and Fjcubiy) are a set of constants and coefficients 

calculated from the local mean flow characteristics and the distance from a boundary. 

Equations 2.32(written for both ü and ü), 2.33, and 2.35 formulate a set of four 

equations with four unknown quantities. They are the velocities ü and ü, the pressure 

P and the eddy viscosity vj- 

2.7    Boundary Layer Flows 

2.7.1     Characterization of Boundary Layers 

A boundary layer, as the name implies, is a thin layer of fluid adjacent to a boundary 

such as a foil surface or a wall. Within the boundary layer the fluid undergoes a 

transition from the free stream velocity outside the boundary layer to at rest on the 

boundary. The majority of the viscous effects are confined to boundary layers. 

To employ a RANS solver effectively, it is important to discretize a flow domain 

so that an appropriate number of fluid elements are contained within the boundary 

layer to capture the essential viscous effects. In modeling flow around lifting surfaces, 

failure to adequately capture the flow in the boundary layer typically results in an 

overestimation of lift coefficient and underestimation of drag. If the boundary layer 

is missed completely the results tend toward the inviscid potential flow results. Since 

capturing the boundary layer flow is so important to the accuracy of the RANS 

solution, it is important to be able to estimate the boundary layer characteristics 

beforehand. The initial estimates for the boundary layer dimensions are based on 

flat plate theory which are also suitable for application to lifting surfaces operating 

at moderate angles of attack. 

39 



Many texts provide relevant discussion of boundary layer theory and character- 

istics, of which Newman [24] and White [30] are well suited to the level of discussion 

required here. 

2.7.2    Laminar Boundary Layer Flows 

Consider the case of a flat plate of length / in a two-dimensional fluid domain with 

uniform flow U. Equation 2.29 reduces to the following: 

du     dv 
dx     dy 

du       du        1 dP       .d2u     d u., 
u 

u^ + v- = —— + „[— + —] (2.36) 

dx       dy        p dx dx2     dy2 

dv       dv 1 dP       rd
2v     d2v, 

 \- v— = h u\ 1  
dx       dy p dx dx2     dy2 

The boundary conditions that apply for this flow are that u —> U just outside the 

boundary layer and then u —> 0 at the surface through a small distance 5. Within 

this small distance 5 above the plate, the following characteristics are apparent: 

dy        \S 
du     „/£/' 

......    du      du .       . 
which implies:-^— ^> 7— (2.61) 

dy       dx 

With u and v being 0 on the plate and in light of the relationships in 2.37, 2.36 

reduces to the following equations: 

du       du        1 dP       d2u 
dx       dy        p dx       dyz 

0=^ (2.38) 
pay 

The following conclusions can be drawn from equation 2.38: First, the pressure change 

across the distance 5 is not significant. Second, the pressure gradient in the x-direction 

inside the boundary layer is the same as the fluid outside[24].  In the absence of a 

pressure gradient in the ^-direction, these equations can be solved numerically to 

40 



e(x) = / 
Jo 

yield the Blasius solution for a flat plate. The concept of boundary layer thickness 

is introduced as the distance S where the velocity u = 0.99U. In this formulation, 

the boundary layer thickness grows with the one-half power of the local Reynolds 

number(i?ea;). The local coordinate x is referenced from the leading edge of the plate. 

S{x) = A.9^ff (2.39) 

Another quantity that can be computed is the displacement thickness or S*. This 

defines an effective thickening of the body due to viscous effects which corresponds 

to a lost quantity of fluid flux within the boundary layer. 

s"^=r{i-v)d^ij2iw)i      <2-4o) 

Associated with the S* flux reduction, there is a corresponding loss in fluid momentum 

and a momentum thickness which is calculated by: 

\ (l - £) dy* 0.664 {^f (2.41) 

To calculate the drag on the flat plate due to viscous forces, the shear stress(rE2/) at 

the plate must be determined. 

Txy(x) = fi (pA       « 0.332pU2Rex' (2.42) 

Once the shear stress is known along the plate, the total frictional drag can be com- 

puted using equation 2.13. 

All of the above results for a flat plate can be extended to a general 2-D body 

without loss of validity, provided that the radius of curvature is much larger than the 

boundary layer thickness. 

The pressure gradient in the x-direction does affect the boundary layer. The 

boundary layer will become separated from the body at a point when the following 

conditions are met: the shear stress is zero; upstream of that point the tangential 

velocity is positive; and downstream of that point it is negative. A separated region 

is characterized by the streamlines breaking away from the body downstream. A 

separated wake is an area of relatively high vorticity and low pressure. 

41 



2.7.3    Turbulent Boundary Layers 

If the Reynolds number is sufficiently high, the laminar boundary layer will transition 

or change to a turbulent boundary layer at some distance aft of the leading edge of the 

foil. In the laminar boundary layer the velocity profile is smooth and regular and pre- 

dictable. At some point, the flow becomes disturbed and unstable. Transition occurs. 

After this, the boundary layer will typically remain turbulent along the remainder of 

the surface. The boundary layer remains relatively thin. The exact transition point 

can only be estimated and its location is dependent on Reynolds number and local 

roughness of the surface. Typically in experimental practice, turbulent transition is 

forced at a prescribed location near the leading edge of the foil. This is normally 

accomplished by the addition of surface irregularities such as raised bumps at the 

desired point of transition. Near the surface, inside the boundary layer, there is a 

viscous sub-layer that is small compared to the overall boundary layer thickness. The 

region between the viscous sub-layer and the outer fluid is called the turbulent core. 

The fluid flow in a turbulent boundary layer is more complicated than the laminar 

case. Mixing occurs at the interface between the free stream and the boundary 

layer. The basic momentum equations that apply to the laminar case apply to the 

turbulent boundary layer as well. At the surface the shear stress boundary condition 

still applies(Tns oc Velocity gradient). The flow in the turbulent core and at the 

interface with the outer fluid is complicated. The assumption that the slope of the 

velocity profile provides an adequate value for shear stress(equation 2.42) is no longer 

valid[28]. As a result, empirical derivations of turbulent shear stress near a wall 

are typically used. One of the most common formulations is the l/7i/l power law 

approximation: 

^ = 8.7 (y-^-)1/7 (2.43) 
uT \ v J 

After making the substitutions uT = yr/p, u = Uin/ at y = S, the following equations 

42 



result for shear stress at the surface(rns) and turbulent boundary layer thickness(^): 
1/5 

0.0463 (J^)     „VI, (2.44) 

where the term a is determined by the computation of the integral: 

/' Jo 

These equations are included as they were used as a check for validating the quantities 

determined from the RANS results. A more complete discussion of turbulent layers 

and the development of the associated equations is contained in Sabersky[28]. 

2.7.4    The y+ Parameter 

Finite element cell spacing near any no-slip boundary needs to be much smaller than 

the boundary layer thickness 6. This is necessary to accurately capture the velocity 

profile completely through the boundary layer to the no-slip surface. The distance 

that the close-in grid points are measured from the no-slip surface are measured in 

multiples of y+ where: 

/+ = ur
y- (2.47) 
v 

and 

uT = j^ (2.48) 
PU2 

Based on Anderson[2], Black[6] and present RANS methodology in the MIT-MHL, 

y+ values for the first three cells off the no-slip surface should be < 1, < 2, and < 4 

respectively. Additionally, there should be another 10 to 15 cells spaced from y+ ~ 4 

to y+ ~ 100. It should be noted that failure to adhere to this tight spacing criteria 

can result in large errors. 

2.7.5    The Law of the Wall 

The Law of the Wall is a commonly used formulation for determining the velocity pro- 

file characteristics near a wall[28]. The main assertion is that the velocity profile(u) 

43 



is determined by the conditions at the wall(rns), the fluid properties(p, v) and the 

distance from the wall(y). Using the Buckingham Pi theorem, two dimensionless 

parameters can be formulated from these quantities[23]. One is a non-dimensional 

velocity and the other a non-dimensional distance. There is an implied simple func- 

tional relationship between the two parameters: 

UT \    V   J 
(2.49) 

As a matter of convenience, the terms in equation 2.49 are often replaced by u+ = 

f(y+)- Several approximate formulas have been deduced based on experimental data. 

Of those available, the Spalding formula is quite suitable because it fits experimental 

data well from y+ ra 100 all the way down to the surface[30]. 

(KU+)
2
      (KU+)

3
' 

y+ = u+ + e -KB 1 — KU+ (2.50) 
2 6 

In the above equation, values for the constants K and B are 0.41 and 5.0 respectively. 

This formula is plotted in Figure 2-7. The Spalding formula for the Law of the Wall is 

3   10 

0.5 t 

Figure 2-7: Spalding Formula for Law of the Wall 

used for validation of RANS calculations in selected cases to ensure that the velocity 

profiles close to the wall are correctly captured. One measure of the quality of a 

numerical finite element grid is how well the calculated boundary layer profiles agree 

44 



with the Spalding formula. It can be concluded that if the grid spacing conforms to 

the y+ spacing criteria and the computed boundary layer profiles conform to the Law 

of the Wall, then the numerical grid is an adequate model for the flow. 

45 



Chapter 3 

Numerical Methods Development 

3.1    Overview 

Several 2-D foil analysis computer codes are employed in this study. The majority of 

the analysis was conducted using the RANS flow solver DTNS2D[29]. Other codes 

used are PAN2D[22] and XF0IL[11]. 

DTNS2D is a generalized 2-D domain incompressible RANS fluid flow solver devel- 

oped at the U.S. Naval Surface Warfare Center, Carderock Division. DTNS2D uses a 

finite volume finite difference formulation. In a finite difference solution method, the 

flow domain is divided into a set of discrete control volumes. Within each element, the 

governing equations of the flow domain are solved in their integral form. It is capable 

of modeling foils in bounded and unbounded domains. It should be noted that there 

are several RANS computer codes that could be applied to the cases studied here. 

However, DTNS2D was a readily available code within the MIT-MHL that required 

no modification for employment in this thesis. It has been used previously for ana- 

lyzing lifting surfaces with results that agree with experimental data[25]. Therefore, 

it was deemed adequate for this study as well. 

PAN2D and XFOIL use potential flow panel methods for calculating the inviscid 

flow characteristics around a foil in an unbounded 2-D domain. The solution is then 

coupled with an integral boundary layer method to determine the viscous properties 

of the flow[15].   The two panel methods were used to validate DTNS2D results for 

46 



unbounded flows. The two panel methods are currently not capable of modeling foils 

bounded by tunnel walls. 

In this chapter the development process for the FIT2D computer code that provides 

the fluid geometry input files for the DTNS2D solver is presented. This involves 

discretizing the domain into a mesh of four sided polygons finite volume elements. 

Grid generation schemes and methodology are discussed. As a subsection of FIT2D, a 

2-D vortex lattice computer code[18] was implemented to obtain an inviscid solution 

for the lift coefficient of a foil in unbounded and bounded flows. The vortex lattice 

solution is also used to grow a dividing streamline downstream from the trailing edge 

to define a RANS zonal grid boundary. 

3.2    Overview of Grid Generation 

3.2.1    Fundamental Concepts 

The overlying governing directive of grid generation is simple: discretize the domain 

into a sufficient number of elements such that the essential physics of the flow is 

captured. The implementation of this is difficult. Figure 3-1 is a representation of a 

discretized fluid domain surrounding a hydrofoil inside a tunnel. It is important to 

notice that the grid spacing is not uniform. The size of the individual elements must 

be varied depending on the expected local characteristics of the flow. For example, 

near a wall or on the surface of the foil, the vertical spacing must be quite small 

in order to accurately capture the velocity gradient within the boundary layer. For 

hydrofoils it is also important to cluster elements near the leading edge to capture the 

strong pressure gradients associated with the flow stagnation point. At the trailing 

edge, clustering is used where separated flow is expected. Additionally, the wake 

behind the foil has steep velocity gradients that slowly dissipate with the flow. The 

clustering scheme is advantageous if the small elements are located within the wake 

region. Conversely, there are regions in the flow where very little is occurring. Velocity 

47 



-0.305 

■0.2 

-0.4 

-0.6 

0.295 

" 1  1  1  1  I  1  \  \  1 \ \ \ \ \ \ \ \\\\V\Vtife\u''i \ \ \   \   \   \   \   - ||||))ff))l)l)))in nnn FFJ¥1 
^--\\\\\\\\\\\\\\\\\\\\i^'\\\\\\:: --UWMIIIIIII / / / II I I 1 1 - h--- 

////'/''/////1 n i ill *>ll 11 III 
\\\\\\\\\llilliilil!l!!!!^ 

Figure 3-1: Sample of the discretized flow domain of a foil in a water tunnel. (Only 1/3 of the total 
grid lines are reproduced in the lower frame) 

and pressure gradients are near zero. In these areas, there is no reason to have finely 

spaced cells. 

In Figure 3-1, the element dimensions vary throughout the domain. The change 

in size from largest to smallest element is approximately four orders of magnitude. 

This sample representation requires 41,238 elements. In a grid representation of an 

unbounded flow domain around a foil, the element dimensions can range as much a 

six orders of magnitude. Of course one could simply find the smallest dimensional 

requirement for an element (eg. foil leading edge) and set all elements to that size and 

capture the essential physics of the flow. The problem is, for the same sample above, 

48 



the grid would require 6xl010 elements! In a typical numerical solver, the solution 

time T is proportional to the number of elements squared (T oc n2). For the same 

results, the processor time to obtain a solution has grown by a factor of 1012. Clearly 

this is not a practical solution. So, there are two conflicting requirements which must 

be met in order to produce results which are both practical and accurate. The first is 

to maximize the number of elements to capture all the pertinent physics. The other 

is minimize the number of elements to obtain the minimum solution time yet also 

obtain correct results. To satisfy both of these driving forces, the element sizes must 

vary throughout the domain in order to capture the local effects and minimize the 

overall number of elements. 

3.2.2    Geometric Limitations of DTNS2D 

Before proceeding with the description of the FIT2D program, it is important to spec- 

ify the geometric limitations for the DTNS2D input files. In the DTNS2D program 

the individual elements are grouped into zones. There can be any number of zones in 

DTNS2D. Figure 3-2 is a typical zone for DTNS2D. A zone consists of four sides. The 

sides can consist of any shape to enclose the zone so long as the four sides together 

comprise a simple connected region. A simple closed region has the property that an 

arbitrary closed curve lying in the region can be shrunk continuously to a point in 

the region without passing outside of the region[14]. Each pair of opposite sides must 

have the same number of elements along the side. Adjacent sides are not required to 

have equal number of elements. The elements within each zone cannot overlap any 

other elements. Every element within the zone must have four sides of finite non-zero 

length. Each zone side has a defined boundary condition (eg. no-slip, tangent, free 

stream, continuity of velocity gradient or pressure gradient). The boundary condition 

along a side can not change. Adjacent sides can have different boundary conditions. 

An example of a DTNS2D zone model is presented in Figure 3-3. This type of model 

is frequently called an "H" grid. 

49 



0.9 t- 

0.8 E- 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

Typical Wall Boundary 

Foil Surface 

-0.5 0.5 

Figure 3-2: Sample geometry of a DTNS2D zone. (Only 1/3 of the total grid lines are reproduced) 

3.3    Development of the Computer Code FIT2D 

3.3.1    Functional Requirements 

Recent research projects in the MIT-MHL water tunnel have demonstrated a re- 

quirement to use a RANS computer code to model flow around hydrofoils[19]. Some 

experiments on foils with unique camber distributions yielded interesting results. It 

is anticipated that the RANS output could help provide some insight into the results 

that were being observed. 

Before the development of FIT2D, generating the DTNS2D RANS solver input files 

was time consuming and tedious. A requirement was established for the development 

of a computer program that could quickly generate the flow domain and RANS input 

files for any 2-D hydrofoil that could conceivably be tested in the MIT-MHL. This 

stated need was translated into the following set of functional requirements or program 

50 



2 

1.5 

1 

0.5 

>    0 

-0.5 

-1 

-1.5 

-2 

No Slip 

Free Stream 

Cnntiniinnr 

No Slip 

Conti\uous Continuous 

No Slip 

Free Stream 

No Slip 

Continuous 
No Slip 

Continuous 

No Slip No Slip No Slip 

Pressure 
Specified 

Pressure 
Specified 

_i_L _!__] I I I L J I I I I 1 

Figure 3-3: Typical DTNS2D zonal boundaries for a foil in a tunnel 

objectives: 

1. Run from within a simple user interface. 

2. Support basic inputs such as angle of attack, domain extents, and locations of 
walls if any. 

3. Allow the user to specify grid spacing in key areas such as the leading edge and 
trailing edge and inside the boundary layer. 

4. Evaluate user spacing of elements inside the boundary layer and compare against 
flat plate calculations. Make a recommendation for any changes. 

5. Read in x,y foil offsets. Spline the offsets and locate the leading edge. 

6. Rotate the foil to user prescribed angle of attack. 

7. Establish DTNS zone boundaries for a six zone "H" grid. 

8. Allow for the zone boundary going downstream from the trailing edge to follow 
an established wake or a first guess wake from a vortex lattice calculation. 

9. Generate all interior grid points for the mesh using isoparametric interpolation. 

10. Write datafiles for the program TECPLOT containing a representation of the 
grid that can be viewed for correctness. 

11. Write datafiles for the INMESH grid smoothing program. 

51 



3.3.2 Structure of FIT2D 

FIT2D is written using the FORTRAN 77 code standard. It is executed interactively 

from a UNIX command window. The typical setup when running FIT2D is to have the 

data input file or control file displayed in an EM ACS window(or any other editor), and 

a TECPLOT graphics window for viewing meshes. The three window configuration 

was chosen in favor of writing a dedicated X-Windows application. A UNIX command 

window, EMACS and TECPLOT provide an environment to which many people are 

already accustomed. After setting up the initial foil offset file(/name.foil) and control 

file(/name.ctrl), the user loops through the following basic procedure: 

1. Initialize FIT2D 

2. Follow prompts to generate a grid. 

3. View the grid in the graphics window. 

4. If the grid is satisfactory, confirm permission to write INMESH files. 

5. If the grid is unsatisfactory, make changes to /narae.ctrl file and reinitialize 
FIT2D. 

Once satisfactory results have been achieved with FIT2D, the program INMESH is 

run to smooth the grid. This process is described in greater detail in section 3.6. 

Once the grid has been generated and smoothed, the geometry is ready for input to 

the RANS solver. A complete listing of the Program FIT2D is contained in Appendix 

A. 

3.3.3 Selecting Required Input 

Sample input files for FIT2D are contained in Appendix B. With the exception of 

input/output control, and boundary layer resolution changes, all FIT2D input is in 

batch form. The control file contains all of the data for describing the flow domain 

and how the mesh of elements will be distributed. The required input stems from the 

ideas presented in section 3.2.1. In the interest of making grid generation a somewhat 

more mechanical and less artistic process, it was decided early on to limit user input to 

52 



Table 3.1: Batch Input Variables for FIT2D 

FOILGEO /name.foil geometry file name, located in same directory 
AOA Angle of Attack in degrees 
Xpiv distance x/c of pivot point from leading edge 
Ypiv distance y/c of pivot point from nose-tail line 
TUNPARAM foil scale parameter c/tunnel width 
USL upstream limit of flow domain in chord lengths from L.E. 
DSL downstream limit of flow domain in chord lengths from T.E. 
PHI1 forward rake distance of vertical zone lines from leading edge 
PHI2 aft rake distance of vertical zone lines from trailing edge 
NUS number of elements in x-direction upstream 
NDS number of elements in ar-direction downstream 
NVS number of elements in y-direction above and below foil 
NTOP number of elements along chord on top surface of foil 
NBOT number of elements along chord on bottom surface of foil 
RESLE Element width in chord lengths at leading edge 
RESMID Element width in chord lengths at mid chord 
RESTE Element width in chord lengths at trailing edge 
RESWALL Element height in chord lengths at the walls 
RESBL Element height in chord lengths on the foil surface 
PACK fraction of NVS elements targeted within boundary layer 

Re* chord based Reynolds number 
MESHFILE INMESH input file name 
RESTFILE INMESH restart file name 
NUMIT number of INMESH iterations 
TOL convergence tolerance limit for INMESH 
NRANSWK wake adaption flag: < 0straight line, 0: use VLM, > 0 use RANS data 
RANSWKPTS x, y coordinates of the RANS wake line data 

a few key parameters to guide the program. Within the control file, there are fifteen 

essential parameters for grid generation that the user must specify. Additionally, 

there are some required administrative inputs. In the control file, each line of input is 

preceded by a descriptor line. The key inputs and their functions are summarized in 

table 3.1. Most of the parameters are intuitive. However, two parameters in particular 

need further explanation. The PHI1 and PHI2 rake angles are required in the mesh 

so that elements at the leading and trailing edge do not compress to a zero volume. 

An example of a problem leading edge is one that is circular with a large radius. If 

the zone boundary extended vertically from the leading edge, then the cells to the 

right of the boundary and above the leading edge would be skewed almost ninety 

degrees. In other words, cell volume is zero making it a singularity point. Referring 

53 



to Figures 3-1 and 3-3, one can see that the zonal boundaries are raked. The visible 

effect is that the cells retain a rectangular profile as they wrap around the leading 

edge. The upstream cells experience a minimal volume compression. But, the overall 

effect is to improve the consistency of the cell volumes. The raking capability was 

added at the trailing edge to accommodate highly curved anti-singing trailing edges. 

3.3.4    Splining and Element Distribution Methods 

All of the zonal boundary lines are splined parametrically in arc length using a cubic 

splining routine. The cubic coefficients are determined and stored for later use. Cubic 

splining in arc length was not required for any of the straight line boundaries. It was 

used anyway because it allows for future growth of the computer code to easily accept 

zonal boundary lines of arbitrary shape. An example of this is using a "C" shaped 

zone that wraps around the foil. 

The user specifies how many points are to be distributed along each boundary as 

well as the endpoint element dimension. Several schemes were explored to distribute 

the remaining points along the boundaries. The rate of change in cell dimensions 

should be relatively uniform along each boundary. Uniform spacing obviously is not 

a candidate. Cosine spacing was investigated, but it proved inadequate because the 

growth rate of cells near the areas of key interest was too fast. Ultimately, two 

spacing methods proved preferential for distributing elements. One spacing method 

is for horizontal zone lines. The other is for vertical zone lines. 

The horizontal lines define the tunnel walls, foil surface, upstream zone lines, and 

the wake. Along horizontal lines a parametric cubic distribution routine is employed. 

This routine was developed by Black[5] for distributing points on axisymmetric bodies 

and ducts. The program has been converted to a subroutine for inclusion in FIT2D. 

It has proven to be adequate for a variety of geometries. 

The spacing of elements on the vertical lines is somewhat more difficult. Vertical 

lines define how the elements are distributed normal to the foil and the tunnel walls. 

54 



There are two driving factors. One is to place an adequate number of very small 

elements close to the foil and walls to accurately capture the boundary layer profile. 

The other is to have much larger elements outside the boundary layer to minimize 

the total number. The user sets the spacing by specifying values for the variables: 

RESBL, RESWALL, NVS, and PACK. RESBL and RESWALL should be set using 

the j/+ method of section 2.7.4. Poor selection of RESBL and RESWALL (i.e. too 

large) will yield poor results and the boundary layer characteristics will be missed. 

The next trade-off is with NVS and PACK. It is always easy to increase number of 

points NVS, but the solution time suffers. PACK dictates how many of the total 

points NVS will be allocated to the boundary layer. 

Given that the steepest velocity gradients occur nearest to the surface, the fol- 

lowing spacing routine for vertical lines has been chosen. Set first element height 

at RESBL or RESWALL. Then geometrically grow the cells by a factor of 1.25 un- 

til the number of elements corresponding to PACK are used. Lastly, distribute the 

remainder of the cells using the cubic distribution routine. 

3.3.5    Defining Domain Boundaries 

Defining the length limits of the discretized domain was approached in several ways. 

For analyzing cases for foils in the tunnel, the actual physical limits of the tunnel 

were used to constrain the upstream and downstream limits of the gridded geometry. 

In the initial formulation of FIT2D, it was not foreseen that there would be a large 

need for analyzing unbounded flow around foils using the RANS code. However, as 

the research process progressed, more and more cases were analyzed in unbounded 

domains. 

The bounded case methodology. 

Appendix C shows the configuration of the MIT-MHL water tunnel test facility. 

Figure C-2 highlights the specifics of the test section where foils are mounted for 

55 



measurement. Once the scale of a subject foil is known with respect to the tunnel di- 

mensions, the wall locations and upstream and downstream limits can be calculated. 

These parameters are supplied to the input files as: USL, DSL, and TUNPARAM. 

FIT2D then places all boundaries at the proper location to replicate the tunnel ge- 

ometry. This methodology proved to be adequate. Results obtained agree well with 

MIT-MHL tunnel experimental results for lift, drag and wake profiles. 

The unbounded case methodology. 

For unbounded analysis the domain limits were extended. The boundary condition 

at the walls was changed from no-slip to tangent and the walls were moved far away 

from the foil. A convergence study was conducted using the vortex lattice subroutine 

to determine how far to locate the walls from the foil such that the flow around the 

foil could be considered unbounded. A distance of five chord lengths was established 

for the walls. At this distance, the difference between the lift coefficient calculated 

by VLM with images and without is approximately 0.1%. Pressure distributions on 

a foil surface were compared against results from the computer code PAN2D and the 

differences were negligible. The flow domain was extended upstream and downstream 

as well. Five chord lengths was judged suitable. Observation of pressure and velocity 

contours from the RANS outputs showed good uniformity at the inflow and outflow 

ends of the domain. 

3.3.6    Isoparametric Interpolation 

Once the zone boundaries have been identified and the cell spacing on the boundary 

is established, the initial location for the interior cell vertices must be established. 

This is a critical step in the grid generation process. The challenge is to locate all 

the interior points such that none of the quadrilaterals overlap and all the points 

are physically interior to the zone boundary. For a simple geometric shape such as 

a rectangle or a trapezoid the task is not overly demanding. Difficulties arise when 

56 



adjacent boundaries are curved or highly skewed. To overcome these difficulties, a 

methodology was devised wherein the arbitrary zone boundary geometry is paramet- 

rically mapped to a unit square. The interior points are determined using simple 

line geometry. Then, the interior points are mapped back out using the inverse map- 

ping function. This process is schematically shown in Figure 3-4. Numerically, this 

is accomplished using the subroutine INTERP which is a variation of isoparametric 

interpolation adapted from Bathe's method for finite element formulation[4]. 

Geometry   Mapping 

Boundary 
^oints   Known 

Zone   DutUne 

Compute 
Interior 
Points 

Parametric   Mapping 
to   Unit   Square 

Extract   Interior 
Points 

Figure 3-4: Isoparametric Mapping Schematic of Interior Zonal Points 

3.4    FIT2D Output 

3.4.1    Tecplot Files 

Two ASCII plotting data files are generated by FIT2D. These files conform the data 

format required by the Amtec program TECPLOT version 7. 

The first file is rotate.pit. It contains the following: 

57 



• input geometry rotated to the desired angle of attack 

• an overlay of splined foil surface points used for foil surface zone boundaries 

• a horizontal reference line that passes through the x, y location of the foil pivot 

point. 

The purpose of this file is to validate the input foil geometry and to ensure that the 

pivot point and angle of attack have been specified properly. A sample of a figure 

created with rotate.pit is contained in Figure 3-5. 

0.4 

0.2 

%  o 

-0.2 - 

-0.4 - 

—e  Input Geometry 
° Spline Geometry 

-X  Pivot and Ref line 

i    I    i i—u _J I I [—1 L. 
-0.25 0 0.25 0.5 

x/C 

Figure 3-5: Display of rotate.pit data 

The second file is mesh.pit. This file contains the complete grid geometry for all of 

the zones. The purpose of this file is to allow the user to examine the grid computed 

by FIT2D to ensure that the desired spacing has been obtained and that the grid 

lines are smooth. Examples of plots generated with this file are presented in Figures 

3-1, 3-2, and 3-3. 

3.4.2    INMESH Input Files 

Once a satisfactory grid geometry has been obtained, the main output files from 

FIT2D are written. These files contain all the data required for running the computer 

58 



code INMESH(section 3.6). They are called the input and restart files. The input file 

is an ASCII data file which defines the zonal boundaries and how the cell points are 

distributed on the boundaries. The restart file is a binary formatted data file which 

contains all the interior zone point coordinates in addition to the zonal boundary 

points. 

3.5    Adjustment of Zone Boundaries in the Wake 

In section 2.4 the importance of aligning the grid zone boundaries aft of the foil to 

the convected wake was discussed. A special treatment was required to adapt the 

fluid mesh geometry to the expected wake line. Two methods were developed for 

wake adaption. The first is a vortex lattice method which finds the invicsid wake 

streamline that convects downstream from the trailing edge. A beneficial by-product 

of the vortex lattice solution is that a good approximation of the inviscid lift coefficient 

is obtained. The second method uses an initial RANS solution to extract a viscous 

wake streamline. 

3.5.1    Implementation of the ADAPT Subroutine 

A vortex lattice subroutine was implemented in the program which extracts the mean 

camber line of the subject foil in order to solve for the required circulation distribu- 

tion. Once the circulation distribution is known, the wake can be calculated. This is 

accomplished by extracting the field point velocity at the trailing edge and then incre- 

mentally marching in the direction of the field point velocity vector while extracting 

the field point velocity at each increment. This technique is visually demonstrated 

in Figure 3-6. The numerical implementation of the vortex lattice method in the 

subroutine ADAPT is a direct extension from the theory presented in section 2.4. 

59 



o .c 
y 

0.5 

:   uinf 

U 

r Point Vortex 
- Control Point 
- Calculated Wake 

0.5 * 

'  ,,,,,,, ■ i ■ ■ ■ ■ i 'iii   
-0.25        0        0.25       0.5       0.75        1 1.25       1.5 

x/Chord 

Figure 3-6: Vortex Lattice Geometry with Extracted Wake Line 

3.5.2    Adding Image Vortices 

The ADAPT subroutine was initially constructed without image vortices which would 

account for the wall effect. This proved satisfactory for analysis of unbounded flow 

around foils where there was little or no separation. However, the wake from the 

unbounded VLM solution tended to continue to convect away from the true wake 

when walls were present. Initially, it was thought that a correction could be applied 

to the unbounded VLM which would straighten out the wake. Several attempts were 

undertaken to develop schemes which redirected the velocity vector based on wall 

proximity and inviscid lift coefficient. This was made to work well for a single foil 

at a limited range of angle of attack. But the method was not robust for universal 

application and would require perturbing the parameters with each application. The 

addition of vortex images was then explored. Following the development in section 

2.4.3, pairs of image vortex lines were added to the ADAPT routine. The final 

results demonstrating the improved wake tracking are shown in Figure 3-7. The 

inset panel clearly shows how the unbounded solution continues to convect downward 

downstream while the wake of the VLM with images eventually becomes parallel to 

60 



the tunnel walls. 

r        Point Vortex 
-»  Control Point 

Bounded Wake 
Unbounded Wake 

0.5 1 
x/Chord 

Figure 3-7: Comparison of wakes for VLM(unbounded) to VLM with Images(bounded) 

3.5.3    Convergence of the Vortex Lattice Method 

Studying the convergence criteria of the VLM with images is a two-dimensional prob- 

lem. The goal of the convergence study is to determine a minimum number of com- 

ponents that must be modeled in the computer code in order to obtain a reasonable 

solution. First, one has to consider what is an adequate number of vortex panels to 

demonstate convergence for the lift coefficient. Next, one must consider how many 

pairs of images must be included such that the addition of more image pairs has no 

effect on the solution. The results of the convergence study are presented in Figures 

3-8 and 3-9. Based upon the trend of the two curves, the final configuration selected 

for the VLM solution employs 40 vortex panels and 16 sets of image pairs. This 

yields an error in inviscid lift coefficient of less than 0.04%. The percent error of lift 

coefficent is defined using the single precision numerically converged value for the lift 

coefficient with 640 vortex panels and 128 sets of image pairs as the reference. 

Structuring the grid zones aft of the foil using the VLM wake was useful in cases 

61 



50 100        150 
Number of Cosine Spaced Vortex Panels 

Figure 3-8: Vortex Lattice Panel Convergence Curve 

Effect of Adding Vortex Images in Vortex 
Lattice Method 

r _RabrJv* Error with 

10 20 
Number of Image Pairs 

Figure 3-9: Vortex Lattice Image Pair Convergence Curve 

where tunnel walls are present and there is little or no separation occurring at the 

trailing edge. The VLM wake was not a good approximation of the true wake for 

foils that had extreme camber distributions at the trailing edge or that had separated 

flow. In these cases the viscous effects on the lift coefficient become more important 

and the inviscid solution has less validity. When the viscous effects start to become 

significant, the VLM wake overshoots the true wake in the same manner that the 

VLM without images overshoots in the bounded flow case. 

62 



3.5.4    Adapting Wake Zone Boundaries Using RANS Output 

Despite refinements to the vortex lattice method, a significant difference persisted 

between the wake predicted by the VLM wake and the wake profile obtained using 

the RANS solution. Therefore, a method was developed to extract the wake data 

from an initial RANS solution based upon the the vortex lattice wake estimate. This 

is accomplished using the following steps: 

1. Generate grid using the VLM computed wake. 

2. Run the RANS solver for a few thousand iterations. 

3. Extract data for the wake centerline streamline using TECPLOT. 

4. Condition the data with the computer code GETWAKE. 

5. Update the fname.ctvl file with the wake data. 

6. Generate a new grid using the RANS wake data. 

7. Run the RANS solver to convergence. 

The program GETWAKE is listed in Appendix D. It is a simple conditioner that 

extracts a representative truncated set of datapoints from the TECPLOT streamline 

data. There is a major drawback to this wake correction process. It is very time 

consuming because the RANS solver must be used iteratively. It should be restated 

that this is only necessary in cases where separation has occurred near the trailing 

edge or the camber distribution on the aft part of the foil is unusual or both. A 

comparison between the two wake adaption schemes is shown in Figure 3-10. 

3.6    Using a Poisson Solver to Refine Grid 

3.6.1    The Program INMESH 

The computer code INMESH is used to refine the grid geometry output from FIT2D 

and generate the geometry input files for DTNS2D[8]. INMESH is a robust grid 

generation and refinement tool that has been used in a variety of fluid mesh geometry 

applications. INMESH uses an elliptic solver to approximate the Poisson equation 

over a prescribed domain with specified boundary values. The calculated streamlines 

63 



- 

~ 

No Adaption 

» 

- RANS Wake                  ^ 
Llne                              VLM With 

Images 

• 
, 1 ,  ,  , 

1 2 3 
X 

Figure 3-10: Sample Comparison of VLM Wake and RANS Wake Zone Adaption 

and equipotential lines are used to formulated the grid.   The forcing term in the 

Poisson equation is used to cluster the grid near surface boundaries and to ensure 

orthogonality. 

INMESH uses the Successive-Over-Relaxation(SOR) method to solve the system 

of equations. The discretized equations are solved by iteratively sweeping through the 

domain and shifting the values at the nodes until convergence is achieved. A superb 

analogy for this process was described by Black[6]: 

The best analogy to this solution process would be to consider the initial 
guess at a grid to be a bedspring system where each node has four springs 
attaching it to its neighbors. The spacing of the nodes on the boundaries 
is controlled by the user and clustering could be seen as variable strength 
springs. The SOR method releases each node and allows it to move to its 
'natural' position. By iteratively sweeping through the domain, the nodes 
will eventually stabilize to the final grid. 

INMESH is capable of commencing the grid generation process with only the 

boundary points specified. Then begins starts with a set of uniformly spaced interior 

points and starts the bed spring process. By employing the isoparametric spacing 

routine in FIT2D, a reasonable first guess at the location of all the interior points 

is obtained.   These points are provided to INMESH in the binary restart file.   A 

64 



significant benefit from doing this is that the INMESH code requires several thousand 

fewer iterations to achieve the same convergence tolerance. In general, a higher 

relaxation coefficient can also be used. Figure 3-11 demonstrates the results of grid 

refinement using the program INMESH. 

Ouput Mesh 
From FIT2D 
(isoparametric 
spacing) 

0.002 

0.001 

0 

-0.001 

-0.002 

> -0.003 

-0.004 

-0.005 

-0.006 

-0.007 

Output Mesh 
From INMESH 
(elliptic 
smoothing 

Figure 3-11: Typical Grid Spacing Before and After Smoothing with INMESH 

3.6.2    Correction of INMESH output for use in DTNS2D 

The INMESH code is used for a variety of grid generation applications. It provides 

the input files for the DTNS family of RANS solvers. INMESH writes out DTNS 

input files that overlap the individual zones by one cell at each adjoining boundary 

which are used if higher order boundary conditions are desired. The DTNS2D variant 

65 



of the code does not support this overlapping geometry configuration. Therefore a 

small computer code is used to condition the INMESH output so that it is compatible 

with the DTNS2D code. The program is called PATCH and it is listed in Appendix 

E. PATCH is specifically tailored for a six zone "H" grid scheme. 

3.7    The RANS Solver 

3.7.1    Overview of DTNS2D 

The flow solver used in this thesis is the David Taylor Navier-Stokes Two Dimensional 

computer code developed by Gorski[13]. The DTNS2D computer code has been 

validated with experimental results for flow around two dimensional lifting bodies by 

Nguyen[25]. 

The DTNS2D code solves the RANS equations for incompressible turbulent flow 

which are derived in section 2.6. The flow domain is discretized into a large num- 

ber of quadrilateral cells. The solution method is a cell centered finite difference 

method based on a finite volume derivation. The program is structured so that the 

flow domain can be broken into a number of separate blocks each having its own set 

of boundary conditions. This allows for modeling of flow around foils in tunnels or 

unbounded domains. Zone junctions support a number of possible boundary condi- 

tions such as: no-slip, tangent, continuity, pressure specified, or velocity specified. A 

typical zone scheme and associated boundary conditions was demonstrated in Figure 

3-3. 

The code utilizes a third-order upwind difference total-variation-diminishing (TVD) 

scheme applied to the convection terms and a second-order central difference scheme 

applied to the diffusion terms. A first order Runge-Kutta forward time marching 

scheme is used to determine the steady state solution. 

66 



Chapter 4 

Data Post Processing Methods 

4.1 Introduction 

A variety of tools were used for post processing of the RANS output data. At a 

minimum, it was desired to obtain the lift and drag coefficients for a foil at a given 

Reynolds number and angle of attack. For the purposes of comparing the RANS 

solution with other foil analysis computer codes, the pressure distribution on the foil 

surface was also required. During the study, other questions arose regarding specifics 

of the flow characteristics within the boundary layer on the foil surface and in the 

wake. For studying foils in tunnels, it is beneficial to be able to extract tunnel wall 

boundary layer profiles. 

4.2 UNNS2D 

The output from DTNS2D contains all the flow characteristics at the center of each 

cell. However, the data is not in a readily viewable or workable format. A data 

conversion program UNNS2D, written by Scott Black of the MIT-MHL, was used 

to convert the data from raw output to a format compatible with TECPLOT v7.0. 

UNNS2D is a simple program and it could be easily adapted to convert data to any 

popular graphics software data format. The FORTRAN 77 source code for UNNS2D 

is located on the MIT-MHL software archive server. Once the data is loaded into 

TECPLOT, it can be displayed and manipulated in a variety of ways to view field 

67 



pressure and velocity contours or to draw streamlines. The UNNS2D output file is 

called dtns2d.dat. It contains data in columns by zone for each cell centered coordinate 

in the following orders, y, u, v and P. 

4.3 Computing Lift and Drag 

Lift and drag are computed using the program FLD2D (Foil Lift and Drag Two- 

Dimensional). It is an adaptation of a program that was previously used in the MIT- 

MHL to calculate the lift and drag for the duct and body components on ducted 

axisymmetric bodies. FLD2D extracts the cell centered flow properties from the 

DTNS2D output files. The lift and drag are numerically integrated using the methods 

of section 2.3.3. The primary outputs from FLD2D are the shear component of the 

drag coefficient and the drag and lift coefficient obtained by integration of the surface 

normal pressure. The shear component of the lift is neglected because it is a very 

small quantity when compared to the lift obtained by pressure. A plot file called 

cp.dat contains data for the pressure distribution (Cp) on the foil and numerical 

trail for the integrated quantities. The FORTRAN 77 source code for FLD2D is also 

located on the MIT-MHL software archive server. 

4.4 Bounding Box Calculations 

One focal point of this thesis is to evaluate differences between computational results 

and experimental measurements. In the MIT-MHL Water Tunnel the CONTOUR 

bounding box program is used to calculate the lift and drag of 2-D foils from measured 

velocities around a bounding contour. The contour integration techniques used by 

the program CONTOUR are presented in section 2.5.1. A bounding box can be 

extracted from the dtns2d.dat file using TECPLOT and subsequently processed by 

the CONTOUR program. This is useful for a variety of comparisons. For instance, a 

side by side comparison of contour normal velocities can be made between identical 

68 



boxes used in an experiment and an equivalent geometry RANS solution. Bad data 

points in experimental measurements can be identified. Or if good experimental 

data is available, poor modeling in the RANS code or grid scheme can be identified. 

Additionally, bounding box calculations when applied to the RANS output data, 

provide a validation of the surface pressure integration routine(FLD2D) for lift and 

drag. 

4.5    Extracting Velocity Profiles in the Boundary Layer 

In the early stages of this thesis, research focused on the validation of previously 

obtained lift and drag characteristics of foils. It became apparent that the details of 

the flow inside the boundary layer near the foil and tunnel walls were also of interest. 

Using the LDV apparatus, it is possible to take velocity data at a sufficient number of 

points inside the boundary layer to get an accurate representation of the profile. The 

same data can be extracted easily from the RANS output using the TECPLOT data 

extraction feature. Once the profiles are extracted, characteristics of the boundary 

layers can be quantified using the methods of section 2.7. 

4.5.1    Post Calculation of y+ 

A validation check of the grid adequacy in the boundary layer region is obtained by 

extracting RANS velocity and position data from the first several cells above the foil 

surface. A reverse calculation of the y+ value at these three locations is performed. 

The y+ values for cell spacing are compared with the guidance in section 2.7.4. The 

computer code YPLUS is the small program used for this task. The FORTRAN 77 

source code for YPLUS is located on the MIT-MHL software archive server. 

The results for lift and drag are highly dependent upon the spacing of the first 

several cells above a no-slip surface. To demonstrate this a foil was analyzed using 

the FIT2D/DTNS2D analysis tool. For each case, the spacing of the first several 

cells above the foil surface was varied. The maximum y+ used for the first cell was 

69 



approximately twenty. The minimum y+ value used was less than one. All other 

grid parameters were held constant. Figure 4-1 shows plots of the pressure coefficient 

for each case.   The cases corresponding to larger initial y+ values yield higher lift 

0.6 - 

-0.4- 

-0.6 

-0.8 - 

-1 

Foil Geometry 
Case A y*(22) 
CaseBy*(16) 
Case C y*(20) 
CaseDy*(10) 
Case E y+(3) 
Case H y+(0.8) 

_l_l I L J I U—l I I I l_ 
0.25 0.5 

X/Chord 
0.75 

Figure 4-1: Pressure Distribution Dependence on y+ Parameter 

coefficients. The pressure distribution for the final case, with y+ set at 0.8, compares 

well with other numerical results. 

4.6    Extracting Velocity Profiles in the Wake 

It was suspected that the turbulence models used in DTNS2D were inadequate. Data 

were extracted from the RANS solution in vertical cuts downstream of the trailing 

edge of the foil. These data were compared to identical wake cuts measured experi- 

mentally. Once again, TECPLOT was useful for extracting this data. These results 

are presented in Case Study I for the HRA foil. 

70 



Chapter 5 

Results 

In this chapter, two case studies are presented. The first is an analysis of a proposed 

advanced foil section at several angles of attack and a single Reynolds number. The 

flow around the foil is computed using DTNS2D in unbounded and bounded flow 

domains. Unbounded results are compared with the 2-D lifting surface analysis code 

PAN2D-BL. Bounded results are compared with experimental measurements. Differ- 

ences and similarities are highlighted. A simple correction scheme is presented which 

extrapolates bounded measurements for lift to unbounded values. 

In the second case study, a foil with a highly cambered trailing edge is analyzed at 

a single angle of attack and Reynolds number. The foil is analyzed using DTNS2D 

in unbounded and bounded flow domains. Unbounded and bounded results are com- 

pared with other computer codes and experimental measurements. This foil has 

proven to be very difficult to analyze with current numerical methods. The results 

of various computer codes are different enough that further detailed experimental 

study is warranted. The results in this case study are used to indicate regions of the 

flow around the foil where additional experimental data should be obtained. This 

case study demonstrates how RANS analysis can be useful for developing a stream- 

lined experimental test plan which will maximize the useful data obtainable while 

minimizing the costly resources and time associated with experimental study. 

These case study results are based upon DTNS2D solutions obtained from nu- 

71 



merical grids that demonstrated convergence with optimum y+ spacing. The specific 

parameters used for the generation of these grids are presented in Appendix B. 

5.1    Validity of the Results 

5.1.1 Sources of Error 

There are several potential sources of error in the DTNS2D RANS results. There is 

no provision in the computer code for modeling the laminar regime of a boundary 

layer. DTNS2D uses a boundary layer model that starts out fully turbulent from 

the leading edge of the foil or the beginning of a wall. Along the walls this error 

is probably not significant. On the foil, this effect may or may not be significant. 

The real transition point from laminar to turbulent flow is different on the pressure 

and suction sides of the foil. The errors resulting from the omission of modeling 

the laminar boundary layer and transition are difficult to quantify. Intuitively, the 

magnitude of this error is most likely dependent upon the Reynolds number, the 

camber and thickness distributions and upon the angle of attack. 

Another phenomenon which may occur is that the turbulent boundary layer may 

revert back to a laminar flow after transition has occurred in certain regimes of 

Reynolds number. This effect is nearly impossible to quantify due to the stochastic 

nature of the process. But, nonetheless, it is another aspect of the real fluid flow that 

is omitted in the RANS solution which may have some impact on the overall results. 

5.1.2 General Comments Regarding Comparison with Tunnel Experi- 
ments 

In experimental tests, boundary layer transition on the foil is usually forced to occur 

on the foil at a specific location by the introduction of a turbulent stimulating surface 

irregularity such as bumps, rivets or a trip wire. At the location of the turbulence 

stimulators turbulent transition will occur with a fair degree of certainty. Forcing 

transition allows a more equitable comparison between experimental measurements 

72 



computer codes such as PAN2D-BL and XFOIL. By tripping the real flow in the 

experiment and specifying this same location in the computer code, one can consider 

the flows to be identical. 

Although the foil section mounted in a tunnel is two-dimensional, the flow within 

the tunnel still retains some three-dimensional effects. In a pure two-dimensional 

numerical flow solver, the side walls are completely omitted. In the real tunnel, the 

side walls tend to have uneven boundary layer growth on the areas above and below 

the foil. The magnitude of these effects are just now receiving attention and are being 

evaluated through related research in the MIT-MHL[19]. 

The RANS computer code models absolute steady state conditions that are impos- 

sible to achieve in a water tunnel. In the tunnel there are minor variations in inflow 

velocity. In the real flow unsteady vortex shedding can occur at the trailing edge. 

Very thin foils operating at high lift coefficients may twist and flex under the loading. 

The tunnel is built to standard engineering tolerances. The measured angle of attack 

in the tunnel can only be set to within several hundredths of a degree. While in the 

gridded model the geometry is precisely specified. All these issues combine and add 

to the resulting uncertainty of the experimental results. 

5.2    Case Study I: The HRA Foil 

A proposed advanced foil design created by Hydrodynamics Research Associates(HRA) 

was selected for this case study. A significant amount of experimental data has been 

recorded for this foil in various configurations in the MIT-MHL Water Tunnel test fa- 

cility. Therefore, it is a natural candidate for use in validation of the FIT2D/DTNS2D 

analysis tool. 

The HRA foil section, presented in Figure 5-1, is intended for application in pro- 

peller blade design. This foil is innovative because of its reduced camber distribution 

near the leading edge for shock free entry. The moderate camber aft allows the foil 

73 



to sustain a broad uniform pressure distribution on the suction side enabling it to 

operate at a substantial lift coefficient while minimizing the potential for cavitation 

inception. The foil offsets are contained in Appendix F.l. 

0.4 " 

0.3 T 

0.2 r 

0.1 
'S 

7 

o 
■=    0 o : 

-0.1 7 

-0.2 

-0.3 

-0.4 
,     ,     1    , i    i    1    ,    i ,   i   ,   , ,    ,    I 

0.25 0.5 
x/Chord 

0.75 1 

Figure 5-1: The HRA Foil Shape 

5.2.1    Validation Check of Grid Adequacy 

As a first check of the validity of the results obtained from DTNS2D, the y+ grid 

spacing and the boundary layer profiles were analyzed. Within each set of bounded 

and unbounded runs, the only parameter varied was the angle of attack. Therefore, 

only two different FIT2D control files were necessary: one for the bounded runs and 

one for the unbounded runs. The grids were identical except for the small variations 

associated with changing the angle of attack. Table 5.1 summarizes the post calcula- 

tion of the y+ parameter for for the unbounded and bounded runs. The results shown 

are for the runs conducted at AOA = —0.28°. They are representative of all angles 

of attack that were analyzed. The first cell spacing falls within the target goal and 

those remaining conform to the distribution requirements specified in Section 2.7.4. 

The next check is to ensure that the boundary layer conforms to the Law of the 

74 



Table 5.1: Post Processing Check of y+ for HRA Foil Grid 

y+ Value y+ Value 
Cell Number Unbounded Bounded 
Target for 1st 1.0 1.0 
1 (actual) 0.6 0.8 
2 2.0 2.0 
3 3.6 3.8 

Wall. The boundary layer profiles shown in Figure 5-2 are extracted at the mid chord 

of the suction side of the foil. These profiles are consistent over a large portion of the 

foil surface except near the leading and trailing edges. At the leading and trailing 

edges there is a significant amount of curvature and fairly steep pressure gradients. 

It is natural to expect deviation from the Spalding formula because it is based on flat 

plate theory. Based upon the y+ spacing and B-L profile results, the first indication 

20 

15 

*3   10- 

Law of the Wall 
Unbounded DTNS2D 
Bounded DTNS2D 

iog,°„(y*) 

Figure 5-2: Comparison of DTNS2D Computed B-L Profile with Spalding Formula for HRA Foil 

is that the results should be acceptable. The next step is to compare these solutions 

with other analysis methods. 

75 



5.2.2 Unbounded Flow Comparison 

In the unbounded case the lift and drag coefficients obtained from the RANS calcula- 

tions are compared with PAN2D-BL. A typical comparison of the foil surface pressure 

distribution is presented in Figure 5-3. This plot is prepared for a single case of the 

HRA foil at a 1° angle of attack. Comparisons at the other angles of attack eval- 

uated are similar. Throughout a range from -2° < a < +1° the FIT2D/DTNS2D 

analysis tool agrees with PAN2D-BL to within one percent of the lift coefficient. 

FIT2D/DTNS2D slightly over-predicts the total lift which is evident from the differ- 

ence in the pressure distribution near the trailing edge as shown in the inset panel 

of Figure 5-3. Values for drag coefficient computed by RANS and PAN2D-BL are 

comparable. Drag calculated from the RANS data is about 4% higher than the 

PAN2D-BL results throughout the angles of attack studied. A summary plot of these 

results is also presented later in Figures 5-6 and 5-7. 

5.2.3 Bounded Flow Comparison 

For the bounded case the lift and drag coefficients obtained from the RANS calcu- 

lations are compared with experimental results. Throughout a range from — 2° < 

a < +1° the FIT2D/DTNS2D analysis tool agrees with the experimental results to 

within a few percent of the lift coefficient. FIT2D under-predicts lift compared to 

the experimental results. Some error may be caused by position measurement error 

in the water tunnel experiment. 

Values for drag coefficient computed by RANS and from experimental measure- 

ments are not as consistent as they are for the unbounded case. Drag calculated from 

the RANS data does not follow the same trend as the experimental measurements. At 

lower lift coefficients, such as AOA < —0.5°, RANS results agree well with the exper- 

imental results. There is a large jump in the RANS computed drag for higher angles 

of attack.   This is inconsistent when compared with the trends of the unbounded 

76 



x/Chord 
0.5 

Figure 5-3: Comparison of Pressure Distribution on HRA Foil Using DTNS2D and PAN2D-BL(fie 
3 x 106,AOA = 1°) 

results and calculations. This may be caused by inadequate discretization of the flow 

domain or from a breakdown of the turbulence model under these flow conditions. A 

summary plot of these results is also presented later in Figures 5-6 and 5-7. 

5.2.4    Bounding Box Comparison 

Bounding box velocity contours extracted from the RANS data are used as input 

for the CONTOUR program. The results from the contour integration of the RANS 

data along with the surface integration results are presented in Table 5.2. The contour 

integration results compare favorably with the surface pressure integration results for 

all of the unbounded data. This indicates that the RANS solution is numerically 

consistent throughout the domain. In the bounded cases, however, the CONTOUR 

and surface pressure methods do not agree. It is not necessarily clear which method 

is in error for the bounded cases. 

77 



Table 5.2: CONTOUR and FLD2D Results for Lift and Drag Characteristics of the HRA Foil 

AOA Lift Coeff Drag Coeff 
Unbounded FLD2D CONTOUR FLD2D CONTOUR 

-2.00 0.0171 0.0173 0.0083 0.0098 
-0.636 0.1623 0.1617 0.0083 0.0090 
-0.280 0.2004 0.1995 0.0082 0.0090 
0.885 0.3239 0.3224 0.0085 0.0092 

Bounded FLD2D CONTOUR FLD2D CONTOUR 

-2.00 -0.0144 0.0168 0.0091 0.0090 
-0.636 0.1628 0.2113 0.0089 0.0111 
-0.280 0.2107 0.2630 0.0103 0.0103 
0.885 0.3620 0.3869 0.0102 0.0087 

A sample contour obtained from the DTNS2D results and an MIT-MHL exper- 

iment are shown in Figure 5-4. The V • n component of the fluid velocity around 

the contours are plotted for each leg of the contour. The contour normal velocities 

are nearly identical for the upstream, downstream and top contour legs. The bottom 

contour leg data does not agree aft of the mid chord of the foil. 

5.2.5    Wake Profile Comparison 

To make an observation of the wake characteristics aft of the foil, vertical cuts of 

data were taken at successive locations downstream of the trailing edge. This data 

was taken at the same locations both experimentally and from the computational 

results. These cuts are presented in Figure 5-5. The first profile is taken 0.04 chord 

lengths downstream of the trailing edge. The experimental data and the RANS data 

are nearly coincident at this location. This implies that at points very close to the 

trailing edge the RANS solver is accurately capturing the true flow conditions in the 

vicinity of the trailing edge. The successive cuts still show good agreement. However, 

it can be observed that the RANS calculated wake is diffusing at a faster rate than 

the experimental wake. This may be due to ineffective turbulence model application 

by the RANS solver in the wake region. 

78 



0.2 

0 I 
0.1 

Upstream of                ° 
Foil                             g 

o 
o 
o 
c 
o 
c 

-0.1 
MHLExpt .] 

:       DTNS2D     I 

-0.2 
■ 

t 
c 
i 

 i . . . . i ' jiii 
0.8 

Ux/Uinf 

5    o 

Above Foil 

0 
x/C 

■ ol 

0.2 

Downstream of 
Foil 

oj 

0.1 To 

*   o 
 u—Q—2_o 

-0.1 

J 
O 

O 
O 

0 
o 
p 

-0.2 

 1  

3 > o 

■°  
0.5 0.6 0.7 0.8 0.9 

u/UInf 

1    ° 

Below Foil 

0 
x/C 

Figure 5-4:   Comparison of Normal Velocity Component Around Contour Box for DTNS2D and 
HRA Experimental Results(Äe = 3 x 106,AOA = -0.636°) 

5.2.6    Relating Bounded Measurements to Unbounded Characteristics 

The unbounded and bounded results for lift are summarized in Figure 5-6. It is 

desirable to develop a simple scheme to relate measurements taken in the tunnel 

to their unbounded values in the absence of walls. There are several options for 

implementing such a scheme. The key decision regarding which type of scheme to use 

depends on whether you believe the experimental results or the numerical results to 

be more accurate. Rather than debate the merits and faults of the these results, it 

is assumed here, for illustrative purposes, that the experimental results are accurate 

and have been obtained with a high level of confidence. 

79 



0.1 

0.075 

0.05 

0.025 

0 

-0.025 

-0.05 

-0.075 

-0.1 

P 

0.15x/CaftofTE 

0.8 

0.05 

0.025 

£ ° 
-0.025 

-0.05 

-0.075 

-0.1 

0.225 x/C aft of TE 

0.8 

Figure 5-5: Comparison of Wake Profiles for DTNS2D and HRA Experimental Results(fie = 3 x 
106, AOA = -0.28°) 

Given this assumption, a method is required to correct the results obtained from 

the unbounded computer code estimates to unbounded true results. The method 

formulated here neglects side wall boundary layer effects. It is assumed the RANS 

solver is fairly accurate at capturing the magnitude of the relative effects between the 

bounded and unbounded cases. Referring back to Figure 5-6, each of the lift curves 

is linear in the regime studied. The unbounded results for DTNS2D and PAN2D-BL 

are close enough that the results can be considered equal. A least squares linear 

regression for the lift curves yields the results for lift slope and intercept presented in 

Table 5.3. Each lift curve can be represented with the following equation: 

80 



0.5 

0.45 

0.4 

.-£.35 
O 
tf 0.3 
.2 
£0.25 
d> 
O 
O 0.2 
£ 
-b.15 

0.1 

0.05 

HRA Foil 
REL= 3,000,000 

Unbounded 

DTNS2D With Walls 
DTNS2D Unbounded Foil 
MHL HRA Experiment 
PAN2DBL 

0 
AOA 

Figure 5-6: Summary of Results for Lift Coefficient vs. AOA for the HRA Foil 

Table 5.3: Lift Slope and Intercept Data for HRA Foil Calculations 

Method Slope(a) 2/-axis Intercept(6) 

MHL Expt. 0.137 CLIAOA 0.267 CL@AOA = 0° 
DTNS2D Bounded 0.131 0.247 
PAN2D-BL/DTNS2D(unb) 0.107 0.234 

CL = ax AOA + b, (5.1) 

where a and b are the respective slopes and intercepts. The difference in the slopes 

and intercepts of the bounded DTNS2D calculated curve and the experimentally 

measured curve represent the relative error between the estimated and actual result. 

Slope and intercept correction factors are formulated by: 

«c/ — a expt — & DTNS2D (bounded) 

bcf — bexpt — bi)TNS2D(bounded) (5.2) 

81 



0.012 

0.011 

0.01 
I 

0.009 

0.008 

0.007 

§006 p- 

0.005 r 

0.004 E- 

0.003 

0.002 F- 

0.001 E" 

0 

I  &= -- O 

.   i   .   . 

B DTNS2D With Walls 
DTNS2D Unbounded Foil 
MHLHRA Experiment 

— O   "  PAN2DBL 

'      ' 
0 

AOA 

-i_J 
2 

Figure 5-7: Summary of Results for Drag Coefficient vs. AOA for the HRA Foil 

Once side wall boundary layer effects have been quantified, additional terms could be 

placed on the right hand side in equation 5.2. The correction factors are applied to 

the unbounded numerically derived lift curve in the following manner: 

(
C

L)COT = (a«»& + acf) x AOA + (bunb + bcf). (5.3) 

Equations 5.2 and 5.3 are applied using the values presented in Table 5.3. Figure 5-8 

shows the corrected lift curve compared with the previously obtained results. 

What is learned from this case study is that a RANS solver can be used as a liaison 

between bounded and unbounded flows. The FIT2D/DTNS2D analysis tool agrees 

well with current state of the art unbounded foil analysis tools such as PAN2D-BL. 

In bounded flow the FIT2D/DTNS2D analysis tool agrees well with experimental 

measurements. Therefore, to conduct a complete analysis for a given lifting flow, 

where comparison with experimental results are desired, the following methodology 

82 



Figure 5-8: Lift Curve With Correction Factors Applied for HRA Foil 

is proposed: 

1. Based on the fact that FIT2D/DTNS2D and PAN2D-BL agree well for un- 
bounded flow, use PAN2D-BL to evaluate the foil in the range of angle of attack 
and Reynolds numbers that will be used in the experimental study. 

2. Select a few angles of attack and Reynolds numbers to evaluate using the FIT2D/DTNS2D 
tool for the bounded case. 

3. Obtain experimental results and compare the results to the bounded FIT2D/DTNS2D 
results. 

4. Using equations 5.2 and 5.3, compute the correction factors for the unbounded 
predictions and calculate the corrected lift curve. 

The above methodology should make efficient use of computational assets and result 

in a consistent comparison method between experimental and numerical results. The 

corrected lift curve provides an estimate of the error between the actual measured 

lift and drag of a foil and the numerically predicted unbounded lift and drag. The 

long term goal of the correction factor scheme is to provide motivation to improve 

83 



measurement and numerical prediction techniques until the correction factors are 

reduced to zero. Once the correction factors are reduced to zero then it can be 

concluded that the numerical computer codes have captured all the essential physics 

of the problem. 

5.3    Case Study II: Foil With A Cupped Trailing Edge 

The development of the "Cupped Foil" is interesting. The parent shape of the cupped 

foil is derived from a NACA 0016 thickness distribution foil with an a = 0.8 mean 

line and a maximum camber of 2.55%. The parent foil was given the name "Bl" 

and is representative of a typical destroyer propeller blade section at r/R = 0.7. 

The trailing edge was beveled using the standard U.S. Navy formula for anti-singing 

trailing edges. 

Bloch suggested that it was possible to design a foil with a substantially higher 

lift to drag ratio by shifting the maximum camber distribution aft and cupping the 

trailing edge downwards[7]. This conclusion was based on a series of numerical results 

from the computer code XFOIL. Subsequently, Jorde[l6] conducted experiments to 

compare the Bl parent foil to the Bl modified with a cupped trailing edge. The 

modified Bl foil section with the cupped trailing edge is presented in Figure 5-9. The 

foil offsets are contained in Appendix F.2. 

Although the cupping at the trailing edge is not extreme to the human eye, it is 

proving to be a substantial challenge to the various array of computer codes available 

for numerical analysis. Currently there is no agreement among the computer codes 

that have been used to analyze the foil. Therefore, it is an interesting foil to use for 

this case study as a validation of the FIT2D/DTNS analysis tool. The first goal in 

this case study is to identify differences between the FIT2D/DTNS2D tool and other 

computer methods. This information will be used to provide guidance for future 

experimental research involving this foil as to where it would be productive to gather 

84 



detailed data. Once a suitable database of experimental data is obtained reflecting 

the actual conditions of the flow around the foil, then changes can be incorporated in 

the computer codes to make their methods more accurate. The difficulties associated 

with the unique geometry of the cupped Bl foil provide a valuable opportunity to 

improve the robustness of state of the art computational tools. 

- 

0.4 

0.3 

0.2 

■O 0.1 
o .c 
o   o >^~~~        ~"                                             ~~~~~"~~-^ 

-0.1 

-0.2 

-0.3 

-0.4 

0.25 0.5 0.75 
x/Chord 

Figure 5-9: The B-l Foil With Cupped Trailing Edge Modification 

5.3.1    Validation Check of Grid Adequacy 

As with the HRA foil, the first check of the validity of the results obtained from 

DTNS2D is to check grid spacing and boundary layer profiles. The cupped foil was 

studied at one angle of attack and Reynolds number for unbounded and bounded 

calculations. Two different control files were necessary: one for the bounded run 

and one for the unbounded run. Table 5.4 summarizes the post calculation of the 

y+ parameter for for the unbounded and bounded runs. The results shown are for 

the runs conducted at AOA = 0.5° and Re = 3 x 106. The first cell spacing falls 

within the target goal and those remaining conform to the distribution requirements 

specified in section 2.7.4. 

85 



Table 5.4: Post Processing Check of y+ for B-l Cupped Foil Grid 

y+ Value y+ Value 
Cell Number Unbounded Bounded 
Target for 1" 1.0 1.0 
1 (actual) 0.8 0.6 
2 2.1 2.0 
3 4.0 3.6 

The next check is to ensure that the boundary layer conforms to the Law of the 

Wall. The boundary layer profiles shown in Figure 5-10 are extracted at the mid chord 

of the suction side of the foil. These profiles are consistent over a large portion of the 

foil surface except near the leading and trailing edges. At the leading and trailing 

edges there is a significant amount of curvature and fairly steep pressure gradients 

so it is natural to expect deviation from the Spalding formula which is based on flat 

plate theory. 

20 

15 

*3   10 

5 - 

Law of the Wall 
Unbounded DTNS2D 
Bounded DTNS2D 

0 1 
iog10(y*) 

Figure 5-10: Comparison of DTNS2D Computed B-L Profile with Spalding Formula for Bl Cupped 
Foil 

86 



5.3.2    Unbounded Flow 

Using the post processed DTNS2D output from the unbounded model, velocity and 

pressure contours can be viewed for the flow domain. Velocity contours near the 

trailing edge are presented in Figure 5-11. On this plot flow separation can be observed 

on the suction side of the trailing edge of the foil over the last three percent of 

the chord. This separation is de-cambering the flow at the trailing edge causing a 

significant reduction in lift coefficient from the inviscid value obtained from the VLM. 

The flow is also decelerating beneath the cupped region. 

0.15 

0.1 

\                                       I                        / 
0.05 =^—.    \ x 

0 

0.05 :            \                j                     = 
-0.1 

" f''f"-'i-i';" i'': .- ■••■■. "'<■ "■.■ i   .   , 
0.7 

X 

Figure 5-11: Velocity Contours Near Trailing Edge of Cupped Foil (unbounded flow) 

Pressure contours around the leading edge of the foil are presented in Figure 5-12. 

The concentric circles of pressure contour point to the leading edge stagnation point. 

An interesting observation of the pressure contours is that the value of the stagnation 

point pressure exceeds the pressure that is analytically possible. This could result 

from artificial compressibility introduced into the numerics of the RANS solver(an 

additional equation of state) to run incompressible solutions. Another possibility is 

simply numerical noise. The cell sizes near the stagnation point are very small. The 

calculations for those cells may be near the numerical precision limit of the CPU. 

This stagnation pressure error is observable in the data from all three of the RANS 

87 



solvers compared in this case study. 

Figure 5-12: Pressure Contours Near Leading Edge of Cupped Foil(unbounded flow) 

For the analysis of the flow around the cupped foil FIT2D/DTNS2D results are 

compared with a RANS study by C.I. Yang of DTMB and results obtained by Kerwin 

using PAN2D-BL. A comparison of the calculated surface pressure coefficient for 

the three methods is presented in Figure 5-13. In general, the three methods yield 

comparable results. The largest differences occur in the leading and trailing edge 

regions. The difficulty in comparing these results relates to the difference in leading 

edge stagnation pressure. PAN2D-BL has a maximum pressure coefficient(Cp) of 

exactly 1.0, the maximum in the RANS solutions are approximately 1.1 for DTNS 

and 1.15 for C.I. Yang. Correcting for these differences may yield better alignment 

of the pressure coefficient curves. In any event, the differences in the trends at the 

leading and trailing edges are significant enough to warrant detailed experimental 

study in these regions in order to validate the predictions of the different computer 

codes. Comparison of lift and drag coefficient results are presented in Table 5.5. The 

inviscid lift coefficient obtained by the VLM is double the viscous value obtained by 

RANS and PAN2D-BL. The viscous effects on lift are significant with this foil. 



-0. 

-0.6t h 

-0.8 

-id 

~m   FIT2D/DTNS2D 
-B  C.I. Yang (DTMB) 
-0   PAN2D-BL(J.E. Kerwin) 

i    I -i i i i I 
0.25 0.5 

x/Chord 
0.75 

Figure 5-13: Comparison of Pressure Distribution on Cupped Foil Obtained by Two Different RANS 
Solvers and PAN2D-BL 

Table 5.5:   Comparison of Unbounded CL & Co Calculations for Bl Cupped Foil (Re = 3 x 
106,AOA = 0.5°) 

Method CL CD 

VLM 1.0555 n/a 
FIT2D/DTNS2D 0.579 0.0102 
C.I. Yang RANS 0.505 - 
PAN2D-BL 0.472 - 
XFOIL 0.5281 - 

5.3.3    Bounded Flow 

As is demonstrated for the unbounded flow, velocity contours near the trailing edge 

are presented in Figure 5-14. On this plot flow separation is again observed on the 

suction side of the trailing edge of the foil over the last three percent of the chord. 

In the bounded case, the separated flow region is wider and extends farther aft than 

in the unbounded case. This separation is de-cambering the flow at the trailing 

edge causing a significant reduction in lift coefficient from the value obtained from 

the VLM. As with the unbounded case, the flow is decelerating beneath the cupped 



region. 

0.15  - 

0.05 

-0.05  - 

Figure 5-14: Velocity Contours Near Trailing Edge of Cupped Foil(bounded flow) 

Pressure contours around the leading edge of the foil are presented in Figure 5-15. 

In similar fashion to the unbounded case the concentric circles of pressure contour 

point to the leading edge stagnation point. An anomaly in the figure is the discontinu- 

ity of one of the pressure contour lines forward of the leading edge. Close inspection 

of the data file indicates the anomaly is caused by a TECPLOT interpolation er- 

ror across the zonal boundary. Additionally, as is observed in the unbounded case, 

the value of the stagnation point pressure exceeds the pressure that is analytically 

possible. 

For the analysis of the flow around the bounded cupped foil, FIT2D/DTNS2D 

results are compared with two different RANS studies by C.I. Yang of DTMB and 

Lafe Taylor of Mississippi State University. A comparison of the calculated surface 

pressure coefficient for the three methods is presented in Figure 5-16. For the bounded 

case, the FIT2D/DTNS2D results are in closer agreement with the results by Yang 

than in the unbounded case. 

Comparison of lift and drag coefficient results are presented in Table 5.6. There is 

90 



[Eg 

0.1 l(t 

fl 

"N^;; • 

0.05 - 

v' 

>-       0 "• 
^^^mi§^^§M 

-0.05 ^^^H 
-0.1 

~~7    t t 
-0.5 -0.4 -0.3 -0.2 -0.1 

Figure 5-15: Pressure Contours Near Leading Edge of Cupped Foil(bounded flow) 

Table 5.6: Comparison of Bounded CL & Co Calculations for Bl Cupped Foil (Re = 3 x 106,7lO^ 
0.5°) 

Method CL CD 

VLM 1.2017 n/a 
FIT2D/DTNS2D 0.6413 0.0117 
C.I. Yang RANS 0.605 - 
Lafe Taylor RANS 0.578 - 

a similar disparity between the inviscid results and the viscous results as is observed 

in the unbounded case. Once again, the viscous effects on lift are significant with this 

foil. 

As one would expect, the presence of the tunnel walls in close proximity to the 

foil affects the lift and drag characteristics of the foil. Figure 5-17 demonstrates the 

difference in the resulting pressure distribution on the foil. To keep the compari- 

son simple, only the FIT2D/DTNS2D results are shown. The tunnel walls cause a 

flow cambering effect to the fluid flow which increases the lift coefficient from the 

unbounded value. 

91 



-0.4' 

-0.6( 

"OS* 

-e- 
FIT2D/DTNS2D 
C.I. Yang (DTMB) 
Lafe Taylor (MSU) 

0.25 0.5 
x/Chord 

0.75 

Figure 5-16:   Comparison of Pressure Distribution on Cupped Foil Obtained by Three Different 
RANS Solvers 

5.3.4    Tunnel Wall Boundary Layer Comparison 

In the bounded case, the presence of the Bl cupped foil alters the boundary layer 

growth on the upper and lower walls of the tunnel. This effect is greater on the upper 

wall. A plot of the velocity contours throughout the domain is presented in Figure 

5-18. On the upper wall, ahead of the foil, the boundary layer growth follows the 

typical trend for a flat plate. Above the foil the boundary layer thins. Aft of the foil 

the boundary layer grows rapidly. These changes in the boundary layer were initially 

observed in the RANS calculations and subsequently validated by MIT-MHL water 

tunnel LDV measurements. Boundary layer profiles for the upper tunnel wall are 

presented in Figure 5-19. The DTNS2D solution shows excellent agreement for the 

boundary layer characteristics ahead of the foil. Agreement remains good above the 

foil. In the region above and just aft of the trailing edge, the DTNS2D boundary layer 

profile deviates markedly from the experimetal results. More detailed experimental 

measurements are required in this region to identify the exact location and conditions 

along the wall where the DTNS2D solution begins to deviate from the experimental 

92 



I  I -I I    I    [ 
0.25 0.5 

x/Chord 
0.75 

Figure 5-17:  Comparison of Pressure Distribution on Cupped Foil for Bounded and Unbounded 
Flow 

measurements. 

Displacement thickness(£*) and momentum thickness (9) integrals are computed 

at several locations along the upper wall. These results are pressented in Figure 5-20. 

From the leading edge to the upstream limit of the flow domain, FIT2D/DTNS2D 

agrees with the experimental results. Downstream of the leading edge, the RANS 

results differ significanlty from the experimental measurements. This may be a result 

of poor turbulence modeling in the regions of rapid pressure changes along the wall. 

5.3.5    Separated Flow 

Separation occurs near the trailing edge of the cupped foil at the angle of attack and 

Reynolds number used in this case study. The separated flow is clearly observable in 

Figures 5-11 and 5-14. Another interesting way to observe separated flow is through 

the use of streamlines. Streamlines are obtained in the TECPLOT software package 

by following velocity vectors in the domain from a specified starting point. Figure 5- 

21 shows streamlines obtained from the DTNS2D RANS solution. Separation occurs 

over the last 3% of the foil.    Figure 5-22 obtained from the C.I. Yang results is 

93 



0.S w 
r^r^"^ u 

.. 

•OS 

-1 
1 >   i   i   i   I,I <   >  

B" 

Figure 5-18: u Contours for Cupped Foil in Bounded Flow 

included for comparative purposes. The separation zone in Yang's result is similar in 

length of the zone, but it is much wider across at the trailing edge. From the global 

perspective of the total flow, this difference is minimal but it is nonetheless present. 

The difference in the two RANS results indicates that detailed experimental data is 

required to validate the flow predictions at the trailing edge. 

5.3.6    Developing An Experimental Test Plan 

The cupped foil is a challenging foil to analyze numerically. There are many in- 

consistencies in the results among the different types of numerical solutions. More 

experimental data is required to validate the different aspects of the computer codes. 

Obtaining good experimental data is a very difficult task. Additionally, precious time 

and resources associated with experimental studies preclude obtaining data "every- 

where". Here the RANS results can be applied to help identify the key areas that 

should be measured. Two benefits are realized. First, the possibility of taking data 

in areas of the flow that are not significant is reduced. Second, areas of interest that 

may be overlooked and not measured are reduced. 

The cupped foil case study yields the following guidance for the experimentalist 

to conduct a study of the Bl Cupped Foil: 

94 



or 

-0.05 

,-0.1 
-0.66 Experiment 
DTNS Results: x/cs-0.66 

0.6 
Ux/Uinf 

0.8 1 

0 *            —i i   rfrtifcn 

«<k>. 
^\ 

-0.05 - 
4t 

- . 
£o. 

- 
*         0.00 Experiment 

1 

• 
« 

-0.15 a 

i 

* 

0.5 1 
Ux/Uinf 

Or 

-0.05 

-0.15 

0.50 Experiment 
0.5 DTNS 

0.5 1 
Ux/Uinf 

-0.2 

- 

- *         1.00 Experiment 
* 

* 

- 

i 
0.5 
Ux/Uinf 

Figure 5-19: Upper Tunnel Wall Boundary-Layer Profiles 

• The RANS solutions for the upper wall boundary-layer growth exhibit unusual 

characteristics. Boundary layer profiles should be obtained at several locations 

along the tunnel wall to confirm this, (see section 5.3.4) 

• Separation occurs at the trailing edge of the foil. The extent of separation is not 

consistent among the RANS solvers. Detailed velocity profiles are required over 

the last 3% of the suction side of the foil with additional wake cuts down stream. 

• The velocity contours on the pressure side of the foil near the "cup" are inter- 

esting. A moderate amount of data should be obtained in this region. 

95 



0.007 

0.006 

0   0.005 

3 
o 
S   0.004 

y 
S   0.003 

0.001 

—9  dStar/C(MHL-EXPT) 
—•  thota/C (MHL-EXPT) 
-O  dstar/C(DTNS2D) 
-■  theta/C(DTNS2D) 

Re*3.0aaS, AOJU0.S" 
Foil leading adgo at x/c=0.0 
Wall Bondaiy Layar abova foil suction slda 
Foil to wall apprax. 2S0mm 

J I I I i_ -J I I I L- 

x/C 
0.5 

Figure 5-20: Upper Tunnel Wall Boundary-Layer Displacement Thickness and Momentum Thickness 

• At the stagnation point, the pressure values obtained by the RANS solvers is non- 

physical. The stagnation point should be located experimentally and pressure 

measurements in the vicinity of the stagnation point should be obtained. 

• The different numerical computer codes do not agree on the lift and drag char- 

acteristics of the foil. Lift and drag should be measured with statistical re- 

peatability using bounding box contours. The lift and drag coefficients should 

be calculated and the V • n component on each leg of the contour should be 

compared with the identical contours in the RANS domain. 

This provides the starting point for a detailed study. Based on the current numerical 

predictions, a lot of progress can be realized with the above test plan at a single angle 

of attack and Reynolds number. Once the above tasks are complete and the computer 

codes are validated, then the study can be expanded to a range of angles of attack 

and Reynolds numbers. 

96 



Figure 5-21: Streamlines Near Trailing Edge of Cupped Foil(DTNS2D Solution) 

0.06 

0.04 

0.02 

O.OO 

l^^fc HA» 
■—   .                            L^r*—^S "^—nTi   ~*  

-O.02             —  : — ^=^^-~—-^===z- 
■ rz^_-mr—  =^rr— =rr: =  

t       .       .       .       . 

~— ——_^^r~ ——Z  
-0.04 

i 

1.00 

Figure 5-22: Streamlines Near Trailing Edge of the Bl Cupped Foil(C.I. Yang Solution) 

97 



Chapter 6 

Conclusions and Recommendations 

6.1    Conclusions 

The computer code FIT2D has been developed to rapidly generate the geometry for 

the fluid flow domain surrounding an arbitrary foil shape at a specified angle of attack 

in the MIT Marine Hydrodynamics Laboratory (MHL) water tunnel. This geometry 

is provided as input data for the RANS solver DTNS2D. A suite of software tools have 

been developed to provide post processing analysis to compare the RANS solution 

with other numerical techniques and experimental measurements. 

Through the use of the FIT2D/DTNS2D analysis tool, it has been shown that 

RANS solvers are quite useful for observing the details of the fluid foil around hydro- 

foils. The RANS results coupled with experimental data provide a good validation 

database for other numerical lifting analysis tools such as PAN2D-BL and XFOIL. 

The importance of the y+ parameter should be emphasized again. The cells in the 

grid near a no-slip surface must be sized to follow the guidance in section 2.7.4 in 

order to capture the significant viscous effects within the boundary layer. Failing to 

follow this guidance will undoubtedly yield questionable RANS solutions. 

Adapting the fluid mesh zonal boundaries to the wake of the foil was somewhat 

successful. Alignment allowed better concentration of the finer discretization in the 

region of the steepest velocity changes. The wake adaption will offer significant ad- 

vantages if the turbulence modeling in the wake is improved. 



FIT2D is robust and it can be applied to a variety of foil geometries. With minor 

modification is could be used for multicomponent systems such as yacht sail and mast 

assemblies. A version of FIT2D has been converted for use to generate grids to rep- 

resent axisymmetric ducted propulsor vechicles for use with the DTNS axissyemtric 

flow solver. 

Our knowledge of the details of two-dimensional fluid flow around hydrofoils is 

incomplete. The current lifting analysis codes do not yet achieve the results that 

minimize the performance risk in proceeding from design to production of advance 

foil section propellers without extensive model testing. It is apparant from the two 

case studies presented in Chapter 5 that improvements in propeller design computer 

codes can be achieved by first looking back to the details of two dimensional lifting 

flows. When closure is brought to the remaining details of the 2-D lifting analysis 

codes, the lessons learned can be incorporated back into the propeller design codes. 

Then advanced foil sections will be able to be incorporated in future propellers with- 

out having to undergo the monumental effort that was required in the Advanced 

Technology Demonstation for propellers at the Carderock Division, Naval Surface 

Warfare Center. 

6.2    Recommendations 

The following areas require further research in order to advance the current level of 

knowledge of two dimensional fluid flow around lifting surfaces: 

• Current turbulence models in computer codes do not work well in the wake 

region behind a foil. New models based on detailed experimental tests could do 

better at matching the rate of wake diffusion as the wake travels downstream. 

Improving the turbulence models will also improve the RANS solver's predictions 

in the boundary layer near a no-slip surface. 

99 



• Foils such as the Bl cupped foil are not easily modeled by current computer 

tools. More experimental study is required for these types of foils if their ad- 

vantageous lift/drag characteristics are to be exploited in the future. The ex- 

perimental results should be used to provide validation data for improved foil 

analysis computer codes. 

• FIT2D should be modified so that it works better for generating grid geometry 

for unbounded flows. Current grid spacing algorithms cluster cells too finely at 

the outer regions of the flow domain. 

• The DTNS2D RANS solver should be modified so that boundary layers start 

out laminar and then undergo transition to a turbulent boundary layer. 

• The boundary layer growth on the side walls of a water tunnel is uneven. The 

magnitude of this effect is currently unknown. Detailed measurements are re- 

quired to quantify this effect. Additionally, it would be interesting to compare 

these measurements with a RANS solution for an equivalent three-dimensional 

domain. 

• The issue of excessive calculated stagnation pressure needs to be addressed in 

DTNS2D. It is not known if the problem results from artificial incompressibility 

within the code or if the code is not adequately imposing the specified pressure 

boundary condition at the downstream extent of the domain. 

100 



Appendix A 

FIT2D Progam Listing 

PROGRAM FIT2D 
C************************************************************** 
c 
C     Prepares all input files for program INMESH for 2D foils 
C     operating in the MHL tunnel at various angles of attack. 
C 
C     Reads in foil geometry file, splines offsets 
C     splits upper and lower surfaces adjusts to 
C     angle of attack set in control file and prepares 
C     input and restart files for INMESH. 
c 
c    2/97 JD 
C    Incorporated ADAPT subroutine to use vortex lattice lifting 
c    line to find wake dividing line to make grid wake adaptive. 
c 
c 
c    3/97 
c    updated ADAPT subroutine to include image vortices due to walls 
c 
c    3/97 
c    Updated input and adapt to accept grid line data for wake 
c    from rans output. 
c 
C    WRITTEN BY:  JOHN DANNECKER, MIT, 1996, Last Modified: 06 FEB 97 
C********************************************************************** 
C    Program executive control file: 
C 
C   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
C 
C 
C 
C 
C 
C 
C    "fname.Ctrl" 
C The ".Ctrl" file contains the governing information 
C which specifies: 
C foil file: name of .naca or .foil file 
C AOA: foil angle of attack ref to free stream. 
C Pivot point: point about which foil is inclined 
C Scale Parameter: ratio of chord length to tunnel dim 
C USL: upstream flow domain limit in chord lengths 
C DSL: downstream flow domain limit in chord lengths 
C PHI1: leading edge zone offset number of chord lengths 
C rake zone forward at tunnel wall. 
C PHIl:trailing edge zone offset number of chord lengths 

101 

! NOTE: A CARRAIGE RETURN MUST BE PLACED AT THE END ! 

! 
i i i i i ii 

OF 

Mil 

ALL DATA 

Mill 

FILES 

i i II i i MM i i i i i i II i i 

! 
j 

i i i i i i 



All params 
shall be integer 
and be n*8-l 
points. 

rake zone back at tunnel wall. 
Note: PHI1, PHI2 shall always be positive and these 

parameters shall not exceed 90'/, if USL and DSL 
respectively. 

Grid Resolution Parameters. 
NUS: number horizontal points upstream 
NDS: number horizontal points downstream 
NVS: number vertical points above and 

below foil 
NTOP: number of points along top of foil. 
NBOT: number of points along bottom of foil 
RESLE: specifies smallest element size near 

the leading edge 
RESMID: midchord resolution 
RESTE: specifies smallest element size near 

the trailing edge 
RESWALL: specifies smallest vertical element 

size near a wall. 
RESBL:  cell height within boundary layer 
REYNOLD:  chord based reynold number 

Note: horizontal spacing along wall boundaries 
is is proportional to the spacing 
along the arc of zone boundaries 
ahead along and behind foil. 

fname.dat - desired inmesh input file name 
NUMIT:  NUMBER OF INMESH ITERATIONS 
TOL:   CONVERGENCE TOLERANCE FOR INMESH 
NRANSWK: -1 do staight wake line 

0 do vortex lattice 
>1 use RANS data. 

FILE HEADER (limit 40 Chars) 
fname.naca or fname.foil 
AOA PIVOTX PIVOTY 
TUNPARAM Scale Parameter (Chord/Tunnel Section) 
USL DSL PHI1 PHI2 
NUS NDS NVS NTOP NBOT 
RESLE RESMID RESTE RESWALL RESBL, PACKFACTOR 
REYNOLD 
fname.dat 
NUMIT 
TOL 

**************************************************************************** 

C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
C 
c 
c 
c 
c 
c 
c 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
C 
c 
c 
c 
c 
c 
C 
C 
C File Format 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
C 
C 
C* 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
c 
c 
c 
c 

Foil Geometry Requirements: 

The leading edge of the foil is defined as the ZERO Station. 
After foil rotation, the Pivot point becomes the ORIGIN for 
all further calculations. 

'fname.naca" 
A "NACA" geometry file contains the Station, Camber 
and Thickness parameters for a foil starting at the 
leading edge marching aft to the trailing edge. All 
points shall be normalized values. If no leading edge 
radius is specified, leading edge curvature will be 
splined based on station data. Set Leading Edge 
Radius to 1.0 for a splined leading edge. 

102 



c 
c 
c 
c 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

File Format: 

"fname.foil" 

FILE HEADER (limit 40 Chars) 
1 (integer, this flags program to NACA type geometry) 
## Chord Length 
## Number of Stations 
Thickness(tmax), Camber(ymax) 
Station(x/C) 1/2 Thickness(t/tmax) Camber(y/Ymax) 

Leading Edge Radius Multiplier 

A "FOIL" geometry file contains the X,Y points that 
describe the surface of the foil. Foil data points 
shall be sorted so that the file marches from the 
trailing edge lower surface to the leading edge and 
then back to the trailing edge along the upper surface. 
If the two TRAILING edge points are NOT coincident, then 
fit2d.f will connect the two points with a straight line 
and specify an additional mesh zone extending from the 
blunt trailing edge downstream. 

File Format: FILE HEADER (limit 40 Chars) 
2 (integer, this flags program to FOIL 
## Chord Length (for normalization) 
## Number of Data Points 
X Y Training Edge Lower Surface 

X Y Leading Edge 

X Y Trailing Edge Upper Surface 

type geometry) 

Here is the Zoning Scheme required by INMESH and DTNS2D: 

Assemble the zones for input to transfinite interpolation. 

zone 1 

zone 4 

zone 2 

zone 5 

zone 3 

zone 6 

Here is how an indivdual zone is specified: 

Side 1 

I                   Side 4                          I 

1                   ZONE "n"                      I 

I                    Side 2                          I 

Side 3 

103 



IMPLICIT NONE 
INTEGER NPOINTS, NFTYPE.MIDPRES.MIDSUCT.NOSE 
INTEGER NUS, NDS, NVS, NTOP, NBOT, NTEMP,I,NI,NTEMP2,J.NTEMP3 
INTEGER NSÜCT1,NSÜCT2,NPRES1,NPRES2,NPRESSURE,NSUCTION 
INTEGER NUMIT,NRESTART,NWHAT,NLINE,NZONE,M,N 
INTEGER NTOPD,NVSD,NDSD,NBOTD 
INTEGER NRANSWK, K 
REAL AOA, PIVOTX, PIVOTY, TUNPARAM, USL, DSL, PHI1, PHI2 
REAL CHORDL,FULLTHK,CAMBMX, RADLE 
REAL RESLE, RESMID, RESTE, RESWALL,RESBL,YUPWALL,YBOTWALL 
REAL TEMP2, TEMPI,TEMP3,TEMP4,PACKFACTOR.REYNOLD 
REAL TOL.E1.RF 
CHARACTER FIN+20, PL0TFL1+20, MESHFILE*20, RESTFILE*20 
CHARACTER F0ILGE0*20, FOILDES+40 
CHARACTER CDUM*40, QUERY*10, JUNKTEXT+40 
CHARACTER PR0MPT2+34 
REAL PI,TWOPI,ZERO,ONE,HALF 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZER0=0.0, 0NE=1.0) 
PARAMETER (HALF=0.5) 

C 
C    ARRAYS 
C 

REAL A(3),B(3),C(NI),D(NI),E(NI), XI(NI),YI(NI),THCK(NI) 
REAL PRESIX(NI),PRES1Y(NI),PRES2X(NI),PRES2Y(NI) 
REAL SUCTIX(NI),SUCT1Y(NI),SUCT2X(NI),SUCT2Y(NI) 
REAL PRES1XS(NI),PRES1YS(NI),PRES2XS(NI),PRES2YS(NI) 
REAL SUCT1XS(NI),SUCT1YS(NI),SUCT2XS(NI),SUCT2YS(NI) 
REAL PRESSUREX(NI), SUCTIONX(NI) 
REAL PRESSUREY(NI), SUCTIONY(NI) 
REAL UPLINEX(NI),UPLINEY(NI),DOWNX(NI),DOWNY(NI) 
REAL DOWNXS(NI),DOWNYS(NI).UPLINEXS(NI),UPLINEYS(NI) 
REAL WALLIX(NI),WALL1Y(NI),WALL2X(NI),WALL2Y(NI) 
REAL WALL5X(NI),¥ALL5Y(NI),WALL6X(NI),WALL6Y(NI) 
REAL WALL3X(NI),WALL3Y(NI),WALL4X(NI),WALL4Y(NI) 
REAL VERTIX(NI).VERTIY(NI),VERT3X(NI),VERT3Y(NI) 
REAL VERT2X(NI),VERT2Y(NI),VERT4X(NI),VERT4Y(NI) 
REAL VERT5X(NI),VERT5Y(NI),VERT6X(NI),VERT6Y(NI) 
REAL VERT7X(NI),VERT7Y(NI),VERT8X(NI),VERT8Y(NI) 
REAL ZONEIX(NI.NI),ZONE1Y(NI,NI),Z0NE2X(NI,NI),Z0NE2Y(NI,NI) 
REAL Z0NE3X(NI,NI),Z0NE3Y(NI,NI),Z0NE4X(NI,NI),Z0NE4Y(NI,NI) 
REAL Z0NE5X(NI,NI),Z0NE5Y(NI,NI),Z0NE6X(NI,NI),Z0NE6Y(NI,NI) 
REAL DZ0NE5X(NI,NI),DZ0NE5Y(NI,NI),DZ0NE6X(NI,NI),DZ0NE6Y(NI, NI) 
REAL DZ0NE3X(NI,NI),DZ0NE3Y(NI,NI),DZ0NE2X(NI,NI),DZ0NE2Y(NI,NI) 
REAL RANSWKPTS(2,NI) 
INTEGER IC(6,8,4) 

c 
c 
c 
C    Open Control file fname.Ctrl: default filemanme is foil2d.ctrl 
C 
C    Seek Parameters describes above, use info for later output file. 
C 
C 
C OPEN INPUT FILE 

PR0MPT2 = 'PROGRAM CONTROL FILE'//' ('//'foil2d.crtl'//') = ' 
WRITE (*,'(A,$)') PR0MPT2 
READ (*,'(A)') FIN 
IF (FIN(l-.l).Eq. ' ') FIN = 'foil2d.Ctrl' 
WRITE (*,'(A)') 'OPENING FILE:  ' // FIN 
OPEN (UNIT=4,FILE=FIN,STATUS='OLD') 

C 
C 

104 



READ IN INPUT DATA 
READ(4,'(A)')CDUM 
READ(4,'(A)')JUNKTEXT 
READ(4,'(A)')F0ILGE0 
READ(4,>(A)')JUNKTEXT 
READ(4,*)A0A, PIVOTX, PIVOTY 
READ(4,'(A)')JUNKTEXT 

c 
c Tunnel param for setting wall distance 
c 

READ(4,*)TUNPARAM 
READ(4,'(A)')JUNKTEXT 
READ(4,*)USL,DSL,PHI1,PHI2 
READ (4, ' (A) ' ) JUNKTEXT 
READ(4,*)NUS, NDS, NVS, NTOP, NBOT 
READ(4,'(A)')JUNKTEXT 
READ(4,*)RESLE, RESMID, RESTE, RESWALL, RESBL, PACKFACTOR 
READ(4,'(A)')JUNKTEXT 
READ(4,*)REYNOLD 
READ(4,'(A)')JUNKTEXT 
READ(4,'(A)')MESHFILE 
READ(4,'(A)')JUNKTEXT 
READ(4,'(A)')RESTFILE 
READ(4,'(A)')JUNKTEXT 
READ(4,*) NUMIT 
READ(4,'(A)')JUNKTEXT 
READ(4,*) TOL 

C 
C 

READ(4,'(A)')JUNKTEXT 

Adding capability to read RANS wake points 

c 
c 
c 
C 
C 
C 
C 
c 
c 
c 

READ(4,*) NRANSWK 

IF (NRANSWK.EQ.ZERO) THEN 
WRITEO,*) ' *** ' 
WRITE(*,*) '**N0 RANS WAKE DATA, PROCEED WITH VLM***> 
WRITE(*,*) ' *** ' 
ENDIF 

IF (NRANSWK.LT.ZERO) THEN 
WRITE(*,*) ' *** ' 
WRITE(*,*) >********STRAIGHT WAKE SELECTED************ 
WRITE(*,*) '****N0 VORTEX LATTICE SOLN AVAIL*********' 
WRITE(*,*) ' *** ' 
ENDIF 

Test to see if there are points 
IF(NRANSWK .GT.ZERO) THEN 
WRITE(*,*) ' *** ' 
WRITE(*,*)'*******READING IN RANS WAKE DATA*********' 
WRITE(*,*)'*****N0 VORTEX LATTICE SOLN AVAIL********' 
WRITE(*,*) ' *** ' 
READ(4,*)((RANSWKPTS(l,k),RANSWKPTS(2,k)),K=l,NRANSWK) 
write(*,*)((RANSWKPTS(l,k),RANSWKPTS(2,k)),K=l,NRANSWK) 

ENDIF 

********************************************************* 
*******************END OF INPUT FILE READS ************** 
********************************************************* 

OPEN ECHO FILE TO VALIDATE INPUT FILE 

PR0MPT2 = 'CONTROL CHECK FILE'//' ('//'check.dat'//') = • 
WRITE (*,'(A,$)') PR0MPT2 
READ (*,'(A)') FIN 

105 



c IF (FIN(1:1).EQ.' ') FIN = 'check.dat' 
c WRITE (*,'(A)') 'OPENING FILE:  > // FIN 
c OPEN (UNIT=3,FILE=FIN,STATUS='UNKNOWN') 
C 
C 
c WRITE(3,*)CDUM 
c WRITE(3,*)F0ILGE0 
c WRITE(3,*)A0A, PIVOTX, PIVOTY 
c WRITE(3,*)TUNPARAM 
c WRITE(3,*)USL,DSL,PHIi,PHI2 
c WRITE(3,*)NUS, NDS, NVS, NTOP, NBOT.RESLE, RESMID, RESTE, RESWALL 
C WRITE(3,*)RESBL,PACKFACTOR,REYNOLD 
c CL0SE(3) 

CLOSE(4) 
C******************************************************************* 

c 
C    OPEN FOIL DATA FILE FOR BASELINE GEOMETRY 
C 
C 
C 

WRITE (*,'(A)') 'OPENING GEOMETRY FILE:  ' // FOILGEO 
OPEN (UNIT=7,FILE=FOILGEO,STATUS='OLD') 

C    READ IN INPUT DATA 
READ(7,'(A)')F0ILDES 

C 
C    NFTYPE SPECIFIES FOIL TYPE 
C    2 = X,Y GEOMETRY 
C    1 = NACA TYPE FORMAT 
C 

READ(7,*)NFTYPE 
READ(7,*)CH0RDL 
READ(7,*)NP0INTS 

C 
C    READ IN X,Y DATA 
C 

IF (NFTYPE.EQ.2)THEN 
DO 5 I=l,NPOINTS 

READ(7,*)XI(I),YI(I) 
5 CONTINUE 

END IF 
C 
C    READ IN NACA FORMATTED DATA 
C 

IF (NFTYPE. EC). 1) THEN 
READ(7,*)FULLTHK,CAMBMX 
DO 6 I=l,NPOINTS 
READ(7,*)XI(I),THCK(I),YI(I) 

6 CONTINUE 
READ(7,*)RADLE 

ENDIF 
CL0SE(7) 

C 
C 
C************************************************************************ 

C 
C    IF THE FOIL IS A NACA TYPE, IT NEEDS TO BE CONVERTED TO 
C    X AND Y DATA FOR FURTHER USE IN THE PROGRAM AND FEEDING 
C    IN TO INMESH. 
C 
C    CHECK TO SEE IF IT IS A NACA FOIL, IF SO GO TO CONVERSION 
C    SUBROUTINE. 
C 

IF (NFTYPE.EQ.l) THEN 
CALL NACACONV(NPOINTS,XI,YI,THCK,RADLE) 

ENDIF 

106 



c 
c 
C OPEN ECHO FILE TO VALIDATE FOIL GEOMETRY FILE 
C 
c PROMPT2 = 'GEO VALIDATION FILE'//' ('//'foilgeo.dat'//') = ' 
c WRITE (*,'(A,$)') PR0MPT2 
c READ (*,'(A)') FIN 
c IF (FIN(1:1).EQ.' ') FIN = 'foilgeo.dat' 
c WRITE (*,*(A)') 'OPENING FILE:  ' // FIN 
c OPEN (UNIT=8,FILE=FIN,STATUS='UNKNOWN') 
C 
C 
c WRITE(8,*)F0ILDES 
c WRITE(8,*)NFTYPE 
c WRITE(*,*) 'input debugger', CHORDL.NPOINTS 
99   F0RMAT(F8.4,F8.4) 

c DO 7 I=i,NPOINTS 
c WRITE(8,99)XI(I),YI(I) 
c 7    CONTINUE 
c WRITE(8,*)CDUM 
c CL0SE(8) 
C************************************************************************ 

c 
c    NORMALIZE FOIL DIMENSIONS IF REQUIRED 

IF (CHORDL.NE.ONE) THEN 
CALL NORMFOIL(CHORDL,NPOINTS,XI,YI) 

ENDIF 
c 
c 
c************************************************************************ 

c 
C SEND FOIL GEOMETRY TO BE ROTATED FOR ANGLE OF ATTACK 
C 
C 
c      IF (AOA.NE.ZERO)THEN 

CALL ROTANGLE(NPOINTS,XI,YI,AOA,PIVOTX,PIVOTY) 
c      ENDIF 
C 
C 
C 
c      IF (AOA.EQ.ZERO)THEN 
c       WRITE(*,*) 'AOA IS ZERO, ORIGIN DEFAULTS TO LEADING EDGE.' 
c      ENDIF 
C************************************************************************ 

c 
C PREPARE DATA FILE FOR TECPLOT TO VERIFY FOIL ROTATION 
C 
C    CHECK IF USER WANTS CHECK FILE: 

WRITE(*,'(A,$)') 'CREATE A TECPLOT FILE TO VIEW ROTATION?<n>:' 
READ(*,'(A)') QUERY 

C 
C    debugger 
c     write(*,*) query 
c 

IF ((QUERY.EQ.'Y').OR.(QUERY.EQ.'y')) THEN 
PR0MPT2 = 'FOIL TECPLOT FILE'//' ('//'rotate.pit'//') = ' 
WRITE (*,'(A,$)') PR0MPT2 
READ (*,'(A)') FIN 
IF (FIN(l:i).EQ.' ') FIN = 'rotate.pit' 
WRITE (*,'(A)') 'OPENING FILE:  ' // FIN 
OPEN (UNIT=9,FILE=FIN,STATUS='UNKNOWN') 
WRITE(9,*) 'VARIABLES = X,Y' 
WRITE(9,*) 'ZONE T="Input Geometry"' 
DO 8 I=l,NPOINTS 

WRITE(9,*)XI(I),YI(I) 

107 



8      CONTINUE 
WRITE(9,*) 'ZONE T="Reference Line"' 
WRITE(9,*)-1.0,zero 
WRITE(9,*)zero,zero 
WRITE(9,*)ONE.ZERO 

c       CLOSE(9) 
ENDIF 

C************************************************************************ 

C    SPLIT FOIL IN TO FOUR ARCS.  SPLINE THE ARCS AND RETURN GRADED 
C    POINT ARRAYS TO DEFINE ARCS.  THIS WILL DETERMINE THE MESH DENSITIES 
C    FOR EACH ZONAL AREA. 
C 
C 
C    IDENTIFY SPLITTING BOUNDARIES, FOILZONE returns the integer array 
c    position of the splitting points. 
C 

CALL FOILZONE(XI,NPOINTS,MIDPRES,MIDSUCT.NOSE) 
C 
C    NOW TAKE THE FOIL OFFSETS AND SPLIT IN TO EIGHT ARRAYS FOR 
C    FEEDING IN TO THE FNSPLT SUBROUTINE. 4 each of X & Y points 
C 

CALL ARCMAKER(XI,YI,1,MIDPRES,PRES1X,PRES1Y) 
CALL ARCMAKER(XI,YI,MIDPRES,NOSE,PRES2X,PRES2Y) 
CALL ARCMAKER(XI,YI,N0SE,MIDSUCT,SUCT1X,SUCT1Y) 
CALL ARCMAKER(XI,YI,MIDSUCT,NPOINTS,SUCT2X,SUCT2Y) 

C 
C************************************************************************** 
c 
C    SEND TO SPLINING ROUTINE 
c    Spline First Interval TE to midchord pressure side 
C 
C    NTEMP is number of points want to get back from fnsplt 

NPRESl=INT((float(NB0T)-1.0)/2.0) 
C 
C 

CALL FNSPLT(MIDPRES,NPRES1,RESTE,RESMID,PRESIX,PRES1Y,PRES1XS, 
+preslYS) 

C 

C    debugger 
c 
c     write(*,*) 'came back from arcmaker ok, nPRESl is:',NPRESl 
c     write(*,*) 'Doing Aft Pressure Side' 
C 
c     write(79,*) 'ZONE' 
c     do 4990 i=i,npresi 
c       write(79,*) preslxs(i),preslys(i) 
c 4990 continue 
C 
c    end debugger 
c    Now spline from midchord pressure side to LE 
c 

NPRES2 = NPRES1+2 
c    NTEMP2 is number of points going in to fnsplt 

NTEMP2 = NOSE - MIDPRES +1 
CALL FNSPLT(NTEMP2,NPRES2,RESMID,RESLE,PRES2X,PRES2Y,PRES2XS, 

+PRES2YS) 

C debugger 
c write(*,*) 'Doing Forw Pressure Side' 
c write(*,*) 'number of points GOING IN TO fnsplt:',ntemp2 
c write(*,*) 'number of points from fnsplt:',npres2 
c write(79,*) 'ZONE' 
c do 5000 i=l,npres2 
c       write(79,*) pres2xs(i),pres2ys(i) 

108 



c 5000 continue 
c end debugger 
c 
C ******************now do other half of foil. 
c    Now spline from LE to midchord suction side 
C    NTEMP is number of points want to get back from fnsplt 
C 

C 
c 

NSUCTi=INT((float(NT0P)-i.0)/2.0) 

NTEMP2 = HIDSUCT - N0SE+1 
CALL FNSPLT(NTEMP2,NSUCT1,RESLE,RESHID,SUCTIX,SUCT1Y,SUCT1XS, 

+SUCT1YS) 
C    debugger 
c 
c     write(*,*) 'Doing Forw Suction Side' 
c     write(*,*) 'number of points GOING IN TO fnsplt:',ntemp2 
c     write(*,*) 'number of points from fnsplt:',nsuctl 
c    write(79,*) 'ZONE' 
c     do 5010 i=l,nsuctl 
c       write(79,*) SUCTlxs(i).SUCTlys(i) 
c 5010 continue 
c 
c 
c    Now spline from Midchord Suction Side to Trailing Edge 
c 
c 

NSUCT2 = NSUCT1+2 
c    NTEMP2 is number of points going in to fnsplt 

NTEMP2 = NP0INTS - MIDSUCT+1 
CALL FNSPLT(NTEMP2,NSUCT2,RESMID,RESTE,SUCT2X,SUCT2Y,SUCT2XS, 

+SUCT2YS) 

C    debugger 
c     write(*,*) 'Doing AFT Pressure Side' 
c     write(*,*) 'number of points GOING IN TO fnsplt:',ntemp2 
c     write(*,*) 'number of points from fnsplt:',nsuct2 
c     write(79,*) 'ZONE' 
c     do 5020 i=l,nsuct2 
c       write(79,*) SUCT2xs(i),SUCT2ys(i) 
c 5020 continue 
c end debugger 
c 
C******************************************************************** 

C    Rejoin the pairs of arcs and make this the final foil geometry 
c 

CALL ARCJOINER(NPRES1,NPRES2,NPRESSURE,PRES1XS,PRES2XS,PRES1YS 
+,PRES2YS,PRESSUREX,PRESSUREY) 

C 
CALL ARCJ0INER(NSUCT1,NSUCT2,NSUCTI0N,SUCT1XS,SÜCT2XS,SUCT1YS 

+,SUCT2YS,SUCTI0NX,SUCTI0NY) 
c 
c******************************************************************* 

c    Append the plot file with the splined data 
c 
c 

IF ((QUERY.EQ.'Y').OR.(QUERY.EQ.'y')) THEN 
WRITE(9,*) 'ZONE T="Pressure Side"' 
DO 9 1=1,NPRESSURE 

WRITE(9,*) PRESSUREX(I),PRESSUREY(I) 
9 CONTINUE 

write(9,*) 'ZONE T="Suction Side"' 
DO 10 I=1,NSUCTI0N 

WRITE(9,*) SUCTIONX(I),SUCTIONY(I) 
10 CONTINUE 

109 



CLOSEO) 
ENDIF 

C******************************************************************** 

c    Define upstream geometry of tunnel: 
c 
c First do horizontal line extending from leading 
c edge to forward end of tunnel. 

NTEMP3=iO 
c     write(*,*) ntemp3 

CALL TUNB(USL,SUCTI0NX(1),SUCTI0NY(1),UPLINEX,UPLINEY,NTEMP3) 
CALL FNSPLT(NTEHP3,NUS,RESLE,RESMID,UPLINEX,UPLINEY,UPLINEXS, 

+UPLINEYS) 
C************************************************************************ 

c    Define downstream geometry of tunnel: 
c First do horizontal line extending downstream from 
c trailing edge to end of tunnel 
c     
c 
c    Adapt the GRID boundaries to the wake based on VORTEX LATTICE 
c    SOLUTION. 
c 

IF(NRANSWK.Eq.ZERO) THEN 
CALL ADAPT(PRESSUREX,PRESSUREY,SUCTIONX,SUCTIONY,DOWNX.DOWNY, 

+ NBOT.NTOP,DSL,NTEMP3,TUNPARAM) 
ENDIF 

c 
cc 
c 
c 
c    if ranswk greater than 0 then there is rans data 
c 
c    IF THE DATA IS BAD THEN NRANSWK WILL BE SET TO -1 AND 
C    A STRAIGHT WAKE WILL BE USED. 
C 

IF(NRANSWK.GT.ZERO) THEN 
CALL RANSWAKE(DSL,PRESSUREX(1),PRESSUREY(i).RANSWKPTS, 

+ DOWNX,DOWNY,NTEMP3,NRANSWK) 
ENDIF 

C 
C 
C    If NRANSWK is set to -1 then it will do a straight wake, 
c 
c 

IF(NRANSWK.LT.ZERO) THEN 
write(*,*)'***> 
write(*,*)'*****DEFAULTING TO STRAIGHT WAKE********' 
WRITE(*,*)'***' 
CALL TUNB(DSL,PRESSUREX(1),PRESSUREY(i),DOWNX,DOWNY,NTEMP3) 
ENDIF 

c 
c (NIN,N0UT,DSi,DS2,XI,YI,X0,Y0) 

c    Spline downstream line. 
CALL FNSPLT(NTEMP3,NDS,RESTE,RESMID,DOWNX,DOWNY,DOWNXS,DOWNYS) 

c 
c 

c debugger 
c 
c write(79,*) 'ZONE' 
c do 5030 i=l,nus 
c write(79,*) uplinexs(i),uplineys(i) 
c 5030 continue 
c 

110 



c     write(79,*) 'ZONE' 
c     do 5040 i=l,nds 
c     write(79,*) downxs(i),downys(i) 
c 5040 continue 
c 
c************************************************************************ 
c    Locate the upper and lower walls of the tunnel. 
c 

CALL WALLFIND(TUNPARAM,YUPWALL,YBOTWALL) 
C 
C*********************************************************************** 
c    Assign XY Points to all sections of the walls 
c 
C    XBEG,XEND,YQWALL,NPOINTS,XIN,YIN,XOUT,YOUT 
c»»»»>» 
c    forward upper 
c 

TEMP2=SUCTI0NX(1)-USL 
TEMPi=SUCTIONX(1)-PHI1 
CALL TUNC(TEMPI,TEMP2,YUPWALL,NUS,UPLINEXS,UPLINEYS,WALL1X,WALL1Y) 

c 
c    forward lower 
c 

CALL TUNC(TEMP1,TEMP2,YBOTWALL,NUS,UPLINEXS,UPLINEYS, 
+WALL2X.WALL2Y) 

c»»»»»»>» 
c    aft upper 
c 

TEMP1=SUCTI0NX(NT0P)+PHI2 
TEMP2=SUCTI0NX(NT0P)+DSL 
CALL TUNC(TEMP1,TEMP2,YUPWALL,NDS,DOWNXS,DOWNYS,WALL5X,WALL5Y) 

c 
c    aft lower 
c 

CALL TUNC(TEMP1,TEMP2,YBOTWALL,NDS,DOWNXS,DOWNYS, 
+WALL6X,WALL6Y) 

c»»»»»»»> 
c    above foil 
c 

TEMP1=SUCTI0NX(1)-PHI1 
TEMP2=PRESSUREX(1)+PHI2 
CALL TUNC(TEMP1,TEMP2,YUPWALL,NTOP,SUCTIONX,SUCTIONY, 

+WALL3X.WALL3Y) 
c 
c    below foil 
c 

CALL TUNC(TEMP2,TEMP1,YBOTWALL,NBOT,PRESSUREX,PRESSUREY, 
+WALL4X.WALL4Y) 

c 
c 
c********************************************************************** 

c 
c    It is very important to have the proper vertical spacing of 
c    cells within the boundary layer. Determine the y+ and compare 
c    with the user RESBL and RESWALL. 

CALL FINDYPLUS(RESBL,RESWALL,REYNOLD,TUNPARAM,USL,DSL) 
c 
c********************************************************************** 
c Develop upstream vertical point spacing. Each line will consist 
c of three segments. Very fine spacing at the ends as per 
c RESWALL RESBL 
c 
C*******D0 ALL THE ABOVE LINES FIRST********* 
C 
c Upstream vertical line (above) 

111 



TEMP1=ÜPLINEXS(NUS) 
TEMP2=ÜPLINEYS(NUS) 
TEMP3=WALL1X(NUS) 
TEHP4=WALL1Y(NUS) 
CALL TUND(TEMPi,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERTIX,VERT iY,NVS,PACKFACTOR) 
c 
c    Leading Edge vertical (above) 
c 

TEMP1=UPLINEXS(1) 
TEMP2=UPLINEYS(1) 
TEMP3=WALL1X(1) 
TEMP4=WALL1Y(1) 
CALL TUND(TEMP1,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERT3X,VERT3Y,NVS,PACKFACTOR) 
c 
c    Trailing Edge vertical(above) 
c 

TEMPl=downXS(i) 
TEMP2=downYS(l) 
TEMP3=WALL5X(1) 
TEMP4=WALL5Y(1) 
CALL TUND(TEMP1,TEMP2,TEMP3,TEMP4,RESBL.RESWALL, 

+VERT5X,VERT5Y,NVS,PACKFACTOR) 
c 
c    Downstream Vertical Line (above) 
c 

TEMPl=downXS(nds) 
TEMP2=downYS(nds) 
TEMP3=WALL5X(nds) 
TEMP4=WALL5Y(nds) 
CALL TUND(TEMP1,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERT7X,VERT7Y,NVS,PACKFACTOR) 
c 
C***********************DO ALL THE BELOW LINES************* 
c 
c    Upstream Vertical Line (below) 
c 

TEMPi=UPLINEXS(NUS) 
TEMP2=UPLINEYS(NUS) 
TEMP3=WALL2X(NUS) 
TEMP4=WALL2Y(NUS) 
CALL TUND(TEMPi,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERT2X,VERT2Y,NVS,PACKFACTOR) 
c 
C 
c    Leading Edge vertical (below) 
c 

TEMPi=UPLINEXS(l) 
TEMP2=UPLINEYS(1) 
TEMP3=WALL2X(1) 
TEMP4=WALL2Y(1) 
CALL TUND(TEMP1,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERT4X,VERT4Y,NVS,PACKFACTOR) 
c 
c 
c    Trailing Edge vertical(below) 
c 

TEMPl=downXS(l) 
TEMP2=downYS(i) 
TEMP3=WALL6X(1) 
TEMP4=WALL6Y(1) 
CALL TUND(TEMP1,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERT6X,VERT6Y,NVS,PACKFACTOR) 

112 



c 
c 
c 
c 
c 
c 
c 
c 

Here is the zone geometry: 

zone 1 

zone 4 

zone 2 

zone 5 

zone 3 

zone 6 

c 
c 
c    Downstream Vertical Line (bleow) 
c 

TEMPl=downXS(nds) 
TEMP2=downYS(nds) 
TEMP3=WALL6X(nds) 
TEMP4=WALL6Y(nds) 
CALL TUND(TEMP1,TEMP2,TEMP3,TEMP4,RESBL,RESWALL, 

+VERT8X,VERT8Y,NVS,PACKFACTOR) 
c 
c 
c*********************************************************************** 
c 
c Assemble the zones AND DO isoparametric interpolation. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
cc 
c 
c 
c 
c J  I 
c I > 
c I 
c 
c 
C    ZONE ONE 
C 

CALL B0RDERS(Z0NE1X,Z0NE1Y,VERT1X,VERT1Y,UPLINEXS,UPLINEYS, 
+ VERT3X,VERT3Y,WALL1X,WALL1Y,NUS,NVS,NI) 

ZONE TWO 

Here is how an indivdual zone is specified: 

Side i 

1                     Side 4                           I 

1                    ZONE "n"                      1 

I                   Side 2                          1 

Side 3 

A 
I Array reference to enter finite 

interpolation scheme. 

debugger 

do 5050 i=l,nvs 
write(81,*) vert5x(i),vert5y(i) 

113 



c 5050 continue 
c 
c    end debugger 

CALL BORDERS(Z0NE2X,Z0NE2Y,VERT3X,VERT3Y,SUCTIONX,SUCTIONY 
+,VERT5X,VERT5Y,WALL3X,WALL3Y,NTOP,NVS,NI) 

C 
c 
C    ZONE THREE 
c 
c 
C 

CALL BORDERS(Z0NE3X,Z0NE3Y,VERT5X,VERT5Y,DOWNXS,DOWNYS, 
+ VERT7X,VERT7Y,WALL5X,WALL5Y,NDS,NVS,NI) 

C 
C 
C    ZONE FOUR 
C 

CALL BORDERS(Z0NE4X,Z0NE4Y,VERT2X,VERT2Y,WALL2X,WALL2Y, 
+ VERT4X,VERT4Y,UPLINEXS,UPLINEYS,NUS,NVS,NI) 

C 
C 
C    ZONE FIVE 
C 

CALL BORDERS(Z0NE5X,Z0NE5Y,VERT4X,VERT4Y,wall4X,wall4Y 
+,VERT6X,VERT6Y,pressureX,pressureY,NB0T,NVS,NI) 

C 
C 
C    ZONE SIX 
C 

CALL BORDERS(Z0NE6X,Z0NE6Y,VERT6X,VERT6Y,WALL6X,WALL6Y, 
+ VERT8X,VERT8Y,DOWNXS,DOWNYS,NDS,NVS,NI) 

C 
C****************************************************************** 
C    Open Tecplot File for viewing Mesh. 
c 

PR0MPT2 = 'Mesh View TECPLOT FILE'//' ('//'mesh.pit'//') = ' 
WRITE (*,'(A,$)') PR0MPT2,':' 
READ (*,'(A)') FIN 
IF (FIN(1:1).EQ.' ') FIN = 'mesh.pit' 
WRITE (*,'(A)') 'OPENING FILE:  ' // FIN 
OPEN (UNIT=82,FILE=FIN,STATUS='UNKNOWN') 

c    topzones 
writ e(82,*)'VARIABLES =X,Y' 
write(82,*)'Z0NE T="ZONE 1" I=',Nus,' J=',NVS,' F=POINT' 
do 6000 j=l,nvs 

do 6010 i=l,nus 
write(82,*) zonelx(i,j),zonely(i,j) 

6010  continue 
6000 continue 

write(82,*)'Z0NE T="ZONE 2" I=',Ntop,' J=',NVS,' F=POINT' 
do 6020 j=l,nvs 

do 6030 i=l,ntop 
write(82,*) zone2x(i,j),zone2y(i,j) 

6030    continue 
6020 continue 

write(82,*)'Z0NE T="ZONE 3" I=',Nds,' J=',NVS,' F=POINT' 
do 6040 j=l,nvs 

do 6050 i=i,nds 
write(82,*) zone3x(i,j),zone3y(i,j) 

6050    continue 
6040 continue 

c 

114 



c    bottom xones 
c 

write(82,*)'Z0NE T="Z0NE 4" I=>,Nus,' J=',NVS,' F=P0INT' 
do 6060 j=l,nvs 

do 6070 i=l,nus 
write(82,*) zone4x(i,j),zone4y(i,j) 

6070  continue 
6060 continue 

write(82,*)'Z0NE T="Z0NE 5" I=',Nbot,' J=,,NVS,' F=P0INT' 
do 6080 j=l,nvs 

do 6090 i=l,nbot 
write(82,*) zone5x(i,j),zone5y(i,j) 

6090    continue 
6080 continue 

write(82,*)'Z0NE T="Z0NE 6" I=',Nds,' J=')NVS,' F=P0INT' 
do 7000 j=l,nvs 

do 7010 i=l,nds 
write(82,*) zone6x(i,j),zone6y(i,j) 

7010    continue 
7000 continue 

close(82) 
c 
c********************************************************************** 
c    Generate INMESH input file: 
c 
cC    CHECK IF USER WANTS CHECK FILE: 
c 
c 

write(*,*) '##############################################' 
write(*,*) '  ' 
write(*,*) 'View the grid on TECPL0T, Check boundaries for' 
write(*,*) 'wrapping.  If the grid is not correct or if 
write(*,*) 'you want to make changes, you may abort gen-' 
write(*,*) 'eration of the INMESH file.' 
write(*,*) ' 
write(*,*) 'i 
write(*,*) ' 

WRITE(*,'(A,$)') 'DO YOU WANT TO WRITE THE INMESH FILE?<n>: 
READO.'(A)') QUERY 

C 
C    debugger 
c     write(*,*) query 
c 

IF ((QUERY.EQ.'Y').OR.(QUERY.EQ.'y')) THEN 

WRITE (*,'(A)') 'WRITING FILE:  ' // MESHFILE 
OPEN (UNIT=80,FILE=MESHFILE,STATUS='UNKNOWN') 

C 
C    FORMAT FIRST LINE 
C 
C    El is the orthogonality at boundry 

El=1.0 
C 
C    Relaxation parameter 

RF=0.5 
C 
C    Tell INMESH it is a restart 

NRESTART=2 
c 
c    Unknown parameter 

NWHAT=1 

115 



C    WRITE FIRST LINE OF THE INMESH FILE 
98  format(f4.2,fl2.8,i7,f8.4,2i4) 
97  format(i3,7i3) 
96  format(i3,2i5,a20) 

if(numit.eq.1)then 
nrestart=i 
endif 
write(80,98) E1.T0L,NUMIT,RF.NRESTART.NWHAT 

c 
c 
c**********************DO THE FIRST THREE ZONES************** 
C 
c***********Write out Boundaries for Zone 1 
c 

write(80,96)l,nus,nvs,'  ***Zone 1***' 
c 
c    Zone 1 Line 1 

NLINE=1 
DATA (IC(1,1,1),1=1,8)71,5,0,0,1,1,0,0/ 
write(80,97) (IC(1,I,NLINE),1=1,8) 

c 
call zonelines(zonelx,zonely,nus,nvs,NLINE,80) 

C 
c    Zone 1 Line 2 

NLINE=2 
DATA (IC(1,I,2),I=1,8)/2,1,0,0,1,2,0,0/ 
write(80,97) (IC(1,I,NLINE),1=1,8) 

c 
call zonelines(zonelx,zonely,nus,nvs,NLINE,80) 

c 
c    Zone 1 Line 3 

NLINE=3 
DATA (IC(1,I,3),I=1,8)/3,0,2,1,1,1,0,0/ 
write(80,97) (IC(1,I,NLINE),1=1,8) 

c 
c    Zone 1 Line 4 

NLINE=4 
DATA (IC(1,I,4),I=1,8)/4,6,0,0,1,4,0,0/ 
write(80,97) (IC(1,I,NLINE),1=1,8) 

c 
call zonelines(zonelx,zonely,nus,nvs,NLINE,80) 

Cc 
c 
c********Zone 2 
c    Write out Boundaries for Zone 2 
c 

write(S0,96)2,ntop+1,nvs,'  ***Zone 2***' 

c    Zone 2 Line 1 
NLINE=1 
DATA (IC(2,I,1),I=1,8)/1,0,1,3,1,1,0,0/ 
write(80,97) (IC(2,I,NLINE),1=1,8) 

c 
C 
c    Zone 2 Line 2 

NLINE=2 
DATA (IC(2,I,2),I=l,8)/2,6,0,0,2,2,0,0/ 
write(80,97) (IC(2,I,NLINE),1=1,8) 

c 
write(80,*)zonelx(nus-1,1),zonely(nus-1,1) 
call zonelines(zone2x,zone2y,ntop,nvs,NLINE,80) 

c 
c    Zone 2 Line 3 

NLINE=3 
DATA (IC(2,I,3),I=1,8)/3,0,3,1,1,1,0,0/ 

116 



write(80,97) (IC(2,I,NLINE),1=1,8) 
c 
c Zone 2 Line 4 

NLINE=4 
DATA (IC(2,I,4),I=l,8)/4,6,0,0,2)4,0,0/ 
write(80,97) (IC(2,I,NLINE),1=1,8) 

c 

Cc 
c 
c 
c 
c 

write(80,*)zonelx(nus-l.nvs),zonely(nus-l,nvs) 
call zonelines(zone2x,zone2y,ntop,nvs,NLINE,80) 

c********Zone 3 
Write out Boundaries for Zone 3 

c 
write(80,96)3,nds+1,nvs,'  ***Zone 3***' 

c 

c 

Zone 3 Line 1 
NLINE=1 
DATA (IC(3,I,1),I=1,8)/1,0,2,3,1,1,0,0/ 
write(80,97) (IC(3,I,NLINE),1=1,8) 

c 
c Zone 3 Line 2 

NLINE=2 
DATA (IC(3,I,2),I=1,8)/2,1,0,0,3,2,0,0/ 
write(80,97) (IC(3,I,NLINE),1=1,8) 

c 
write(80,*)zone2x(ntop-1,1),zone2y(ntop-l,1) 
call zonelines(zone3x,zone3y,nds,nvs,NLINE,80) 

c 
c Zone 3 Line 3 

NLINE=3 
DATA (IC(3,I,3),I=l,8)/3,2,0,0,3,3,0,0/ 
write(80,97) (IC(3,I,NLINE),1=1,8) 

c 
call zonelines(zone3x,zone3y,nds,nvs,NLINE,80) 

c 
c Zone 3 Line 4 

NLINE=4 
DATA (IC(3,I,4),I=i,8)/4,5,0,0,3,4,0,0/ 
write(80,97) (IC(3,I,NLINE),1=1,8) 

write(80,*)zone2x(ntop-l,nvs),zone2y(nus-i,nvs) 
call zonelines(zone3x,zone3y,nds,nvs,NLINE,80) 

cc%m%m%ra%nra%y. 
c 
C**********#**D0 THE SECOND THREE ZONES******************************* 
C 

c***********yrite out Boundaries for Zone 4 
i» 

write(80,96)4,nus,nvs,'  ***Zone 4***' 
c 
c Zone 4 Line 1 

NLINE=1 
DATA (IC(4,I,1),I=1,8)/1,5,0,0,4,1,0,0/ 
write(80,97) (IC(4,I,NLINE),1=1,8) 

c 

C 
c 

call zonelines(zone4x,zone4y,nus,nvs,NLINE,80) 

Zone 4 Line 2 
NLINE=2 
DATA (IC(4,I,2),I=l,8)/2,6,0,0,4,2,0,0/ 
write(80,97) (IC(4,I,NLINE),1=1,8) 

117 



c 
call zonelines(zone4x,zone4y,nus,nvs,NLINE,80) 

c 
c Zone 4 Line 3 

NLINE=3 
DATA (IC(4,I,3),I=l,8)/3(0,5,i,4)l,0,0/ 
write(80,97) (IC(4,I,NLINE),1=1,8) 

c 
c Zone 4 Line 4 

NLINE=4 
DATA (IC(4,I,4),I=i,8)/4,l,0,0,4,4,0,0/ 
write(80,97) (IC(4,I,NLINE),1=1,8) 

c 
call zonelines(zone4x,zone4y,nus,nvs,NLINE,80) 

Cc 
c 
c********Zone 5 
c Write out Boundaries for Zone 5 
c 

write(80,96)5,nbot+l,nvs,'  ***Zone 5***' 

c Zone 5 Line 1 
NLINE=1 
DATA (IC(5,I,1),I=1,8)/1,0,4,3,4,1,0,0/ 

c 
write(80,97) (IC(5,I,NLINE),1=1,8) 

C 
c Zone 5 Line 2 

NLINE=2 
DATA (IC(5,I,2),I=i,8)/2,6,0,0,5,2,0,0/ 

c 
write(80,97) (IC(5,I,NLINE),1=1,8) 

write(80,*) zone4x(nus-l,l),zone4y(nus-l,l) 
call zonelines(zone5x,zone5y,ntop,nvs,NLINE,80) 

c 
c    Zone 5 Line 3 

NLINE=3 
DATA (IC(5,I,3),I=1,8)/3,0,6,1,4,1,0,0/ 
write(80,97) (IC(5,I,NLINE),1=1,8) 

c 
c    Zone 5 Line 4 

NLINE=4 
DATA (IC(5,I,4),I=l,8)/4,6,0,0,5,4,0,0/ 
write(80,97) (IC(5,I,NLINE),1=1,8) 

c 
write(80,*) zone4x(nus-l,nvs),zone4y(nus-l,nvs) 
call zonelines(zone5x,zone5y,ntop,nvs,NLINE,80) 

Cc 
c 
c 
c c********Zone 6 
c    Write out Boundaries for Zone 6 
c 

write(80,96)6,nds+1,nvs,'  ***Zone 6***' 

c    Zone 6 Line 1 
NLINE=1 
DATA (IC(6,I,1),I=1,8)/1,0,5,3,4,1,0,0/ 
write(80,97) (IC(6,I,NLINE),1=1,8) 

c 
C 
c    Zone 6 Line 2 

NLINE=2 
DATA (IC(6,I,2),I=l,8)/2,6,0,0,6,2,0,0/ 

118 



write(80,97) (IC(6,I,NLINE),1=1,8) 
c 

write(80,*)zone5x(nbot-l,i),zone5y(nbot-l,1) 
call zonelines(zone6x,zone6y,nds,nvs,NLINE,80) 

c 
c    Zone 6 Line 3 

NLINE=3 
DATA (IC(6,I,3),I=l,8)/3,2,0,0,6,3,0,0/ 
write(80,97) (IC(6,I,NLINE),1=1,8) 

c 
call zonelines(zone6x,zone6y,nds,nvs,NLINE,80) 

c    Zone 6 Line 4 
NLINE=4 
DATA (IC(6,I,4),I=l,8)/4,1,0,0,6,4,0,0/ 
write(80,97) (IC(6,I,NLINE),1=1,8) 

c 
write(80,*) zone5x(nbot-l,nvs),zone5y(nbot-l,nvs) 
call zonelines(zone6x,zone6y,nds,nvs,NLINE,80) 

c 
CL0SE(80) 

c    IN ORDER TO WRITE THE RESTART FILE, ZONES 2,3,5,6 NEED TO 
C    BE APPENDED WITH THE "N-l" COLUMN FROM THE UPSTREAM ARRAY 
C    SO THAT OVERLAPPING CONTINUITY CAN BE MAINTAINED 
C Append zone 2 

CALL MAKEDUM(ZONEIX,ZONE1Y,NUS,NVS,Z0NE2X,Z0NE2Y,NTOP,NVS, 
+DZ0NE2X,DZ0NE2Y,NT0PD,NVSD) 

C   Append zone 3 
CALL MAKEDUM(Z0NE2X,Z0NE2Y,NTOP,NVS,Z0NE3X,Z0NE3Y,NDS,NVS, 

+DZ0NE3X,DZ0NE3Y,NDSD,NVSD) 
C   Append zone 5 

CALL MAKEDUM(Z0NE4X,Z0NE4Y,NUS,NVS,Z0NE5X,Z0NE5Y,NBOT,NVS, 
+DZ0NE5X,DZ0NE5Y,NBOTD,NVSD) 

C   Append zone 6 
CALL MAKEDUM(Z0NE5X,Z0NE5Y,NBOT,NVS,Z0NE6X,Z0NE6Y,NDS,NVS, 

+DZ0NE6X,DZ0NE6Y,NDSD,NVSD) 

c    WRITE INMESH RESTART FILE 
IF (NUMIT.GT.l)THEN 
WRITE (*,'(A)') 'WRITING FILE:  ' // RESTFILE 
OPEN (UNIT=78,FILE=RESTFILE,FORM='UNFORMATTED', 

+        STATUS='UNKNOWN') 
NZ0NE=6 
WRITE(78)NZONE 

C    ****ZONE 1******** 
NZ0NE=1 
WRITE(78)NUS,NVS 
WRITE(78) ((Z0NE1X(I,J),Z0NE1Y(I,J),I=1,NUS),J=1,NVS) 
WRITE(78) ((IC(NZ0NE,M,N),M=1,8),N=1,4) 

C 
C    ****ZONE 2******** 

NZ0NE=2 
WRITE(78)NTOPD,NVSD 
WRITE(78) ((DZ0NE2X(I,J),DZ0NE2Y(I,J),1=1,NT0PD),J=1,NVSD) 
WRITE(78) ((IC(NZ0NE,M,N),M=1,8),N=1,4) 

C 
C    ****Z0NE 3******** 

NZ0NE=3 
WRITE(78)NDSD,NVSD 
WRITE(78) ((DZ0NE3X(I,J),DZ0NE3Y(I,J),1=1,NDSD),J=1,NVSD) 
WRITE(78) ((IC(NZ0NE,M,N),M=1,8),N=1,4) 

119 



C    ****ZONE 4******** 
NZ0NE=4 
WRITE(78)NUS,NVS 
WRITE(78) ((Z0NE4X(I,J),Z0NE4Y(I,J),I=1,NUS),J=1,NVS) 
WRITE(78) ((IC(NZ0NE,M,N),M=1,8),N=1,4) 

C 
C    ****ZONE 5******** 

NZ0NE=5 
WRITE(78)NB0TD,NVSD 
WRITE(78) ((DZ0NE5X(IJJ),DZ0NE5Y(I,J),I=i,NB0TD),J=l,NVSD) 
WRITE(78) ((IC(NZONE,M,N),M=1,8),N=1,4) 

C 
C    ****ZONE 6******** 

NZ0NE=6 
WRITE(78)NDSD,NVSD 
WRITE(78) ((DZ0NE6X(I,J),DZ0NE6Y(I,J),1=1,NDSD),J=l,NVSD) 
WRITE(78) ((IC(NZ0NE,M,N),M=l,8),N=i,4) 

CL0SE(78) 
END IF 

ELSE 
write(*,*) 'INMESH input files have not been written.' 

ENDIF 

WRITE(*,*) 'FIT2D COMPLETE' 
END 

/*^ c^ <t* <f* d> d>d> ^ <1> <1> <1> 4* d> 4> <1* d* d* (t> (^ d* <^ <^ d^ d^ ^^ <t* 4^<t^ 4^ ^^ <t* <fr d^ ^ ^^ ^^ 4^<t <t^ <l! <t^ 4^^^ <f Q^ 4^^i^ <t* <C 4^ <t^ Q <f Q! Q^ ^CQ^ 4$ 4$ Q^ Q^^C4! Q^ 4$ 0^4! Q! 4^ V 4^4^ 4! 
w!pt|liPy$<p<Pi|>v<|l<]>y<|>$iPv$VvVV$VYVTV 

C 
C    This subroutine takes rans wake data and makes it in the defining 
c    line for the downstream grid zone boundary. 
c 

SUBROUTINE RANSWAKE(DSL,XTE,YTE, 
+ XYIN,XOUT,YOUT,NOUT,NUMIN) 
IMPLICIT NONE 
REAL DSL,XTE,YTE,PI,TEMP1,TEMP2 
INTEGER NOUT,NUMIN,NI,I,K 
PARAMETER (NI=200,PI=3.141592653589793E00) 

C 
C    ARRAYS 
C 

REAL XYIN(2,NI),XOUT(NI),YOUT(NI),YTEMP(NI) 
REAL XTEMP(NI),WAKCUB(4*NI) 

c 
C    DEBUGGER WHAT IS COMING IN? 
C 
C     WRITEO,*)(XYIN(l,K),K=l,NUMIN) 
C     WRITEO,*) '***' 
C     WRITE(*,*)(XYIN(2,K),K=i,NUMIN) 
c    CHECK THE DATA: 
C    Does the stream line start aft of the trailing edge? 
c 

IF (XYIN(l,i).LT.XTE)THEN 
write(* ,*) '************************************' 
WRITE(*,*)'ERROR: RANS wake starts forward of TE' 
write(*,*)>************************************' 
NUMIN=-1 

ENDIF 
c 
c    Does the stream data end before the domain runs out? 

TEMP1=XTE+DSL 
IF (XYIN(l.NUMIN).GT.TEMPI) THEN 

120 



write(*,*)'fr***********************************' 
WRITE(*,*)'ERROR: RANS wake extends past flow domain' 
write(*,*)>************************************> 
NUMIN=-1 

ENDIF 
c 
C    IF THE DATA IS OK THEN PROCEED THROUGH THIS: 

IF (NUHIN.GT.O)THEN 
C 
C    FIRST THE LINE NEED TO BE FIXE UP A LITTLE. 
C    THE BEGINNING NEEDS TO START AT THE TRAILING EDGE 
C    OF THE FOIL AND THE END NEED TO BE AT THE DOWN 
C    STREAM LIMIT OF THE FOIL 
C 

DO 100, I=2,NUMIN+1 
XTEMP(I)=XYIN(1,1-1) 
YTEMP(I)=XYIN(2,I-1) 

100   CONTINUE 
C 
C    PUT BEGINNING AT THE TRAILING EDGE 

XTEMP(1)=XTE 
YTEMP(1)=YTE 

C 
C    PUT THE END AT THE DOWNSTREAM LIMIT 

XTEMP(NUMIN+2)=TEMP1 
YTEMP(NUMIN+2)=YTEMP(NUMIN+1) 

C 
C    SPLINE THE LINE AND GET THE CUBIC COEFFICIENTS 

CALL UGLYDK(NUMIN+2,1,1,XTEMP,YTEMP,0,0,WAKCUB) 
C 
C    DEBUGGER 
C     WRITE(*,*) 'ONE OF THE CUBICS IS:',WAKCUB(5) 
C    WE WANT TO SEND NOUT X,Y POINTS BACK TO MAIN 
C    DSL IS HOW FAR TO MARCH TOTAL 

TEMP2=DSL/(FL0AT(N0UT)-1.0) 
C    DEBUGGER 
C     WRITE(*,*) 'INTERVAL IS:'.TEMP2 

X0UT(1)=XTE 

DO 200 1=2,NOUT 
X0UT(I)=X0UT(I-1)+TEMP2 

C    DEBUGGER 
C       WRITE(*,*)'THE XOUT VALUE IS:',XOUT(I) 
200 CONTINUE 

C 
C    NOW GET THE CORRESPONDING Y VALUES 

CALL EVALDK(NUMIN+2,NOUT,XTEMP,XOUT,YOUT,WAKCUB) 

C 
C 

WRITE(*,*)'***> 
WRITE(*,*)'***RANS DATA INCORPORATED IN TO GRID***' 
WRITE(*,*)'***' 

c     WRITE(*,*)NUMIN,NOUT 
c     WRITE(*,*) ((XOUT(k),YOUT(k)),K=l,NOUT) 

ENDIF 

c 
RETURN 
END 

C 
C 
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
C    This subroutine uses a two-d vortex lattice lifting line to 

121 



c    determine find the wake dividing line behind an arbitrary 
c    foil section. This subroutine is a generalization of the 
c    VLM2D code presented in the 13.04 course notes. 
C 

SUBROUTINE ADAPT(PRESSX,PRESSY,SUCTX,SUCTY,WAKEX,WAKEY, 
+ NPRES,NSUCT,DSL,NWAKE,TUNPARAM) 
IMPLICIT NONE 
INTEGER NPRES,NSUCT,NWAKE,I,J,K,N,M,NI,NPTS,NPAN,IERR,NTOT 
INTEGER NIMAGEPR 
REAL PI 
PARAMETER (NI=200,PI=3.141592653589793E00) 
REAL DSL,DELS,LEN.DX.DY,TOP,sum,ENDX,U,V,TEMP,STEP 
REAL TUNPARAM, RTEMP, DXR, DYR, YIMAGE.signimage 

C 
C    ARRAYS 
C 

REAL PRESSX(NI),PRESSY(NI),SUCTX(NI),SUCTY(NI) 
REAL WAKEX(NI),WAKEY(NI),cambx(ni),camby(ni) 
REAL T0PCUBX(4*NI),B0TCUBX(4*NI),CAMBCUBX(4*NI) 
REAL T0PCUBY(4*NI),B0TCUBY(4*NI),CAMBCUBY(4*NI) 
REAL WAKCUB(4*NI) 
REAL ARCTOP(NI),ARCBOT(NI),STEMP(NI),ARCAMB(NI) 
REAL TEMPTX(NI),TEMPTY(NI) 
REAL TEMPBX(NI),TEMPBY(NI) 
REAL SV(NI),SC(NI),DS(NI) 
REAL XV(NI),YV(NI),XC(NI),YC(NI),B(NI),TX(NI),TY(NI) 
REAL XN(NI),YN(NI),A(NI,NI),GAMMA(NI).WKAREA(NI),dydx(ni) 
INTEGER IPIVOT(NI) 

c 
c 
c    What is the Y distance to the first image set? ) 
c    (the "Image Plane" is at half this distance 

YIMAGE=1/(TUNPARAM) 
c 
c     write(*,*)'the wall is at:' , ywall 
C    Spline Foil Offsets and determine cubic coefficients, 
c 
C    Array ARC  is returned with arclength params non-dimed from 0..1 
C 

CALL PUGLYDK(NSUCT,SUCTX,SUCTY,ARCTOP,TOPCUBX,TOPCUBY) 
CALL PUGLYDK(NPRES,PRESSX,PRESSY,ARCBOT,BOTCUBX,BOTCUBY) 

c 
c 
c    Extract Points along the top and bottom surface to find the 
c    mean camber line, 
c 
C    HOW MANY POINTS TO EXTRACT? 

NPTS=40 
C 
C 
C    AT WHAT ARC COORDINATE LOCATIONS TO EXTRACT? 
C 
c     write(*,*) arctop(nsuct) 

STEMP(1)=0.0 
DO 100 I=1,NPTS 

STEMP(I)=(FL0AT(I-1)/FL0AT(NPTS-1))*ARCT0P(NSUCT) 
c       write(*,*)stemp(i) 
100 CONTINUE 

C 
C    EXTRACT THE VALUES ON THE SUCTION SIDE: 
C 

CALL PEVALDK(NSUCT,NPTS,STEMP,ARCTOP,TEMPTX,TEMPTY,TOPCUBX 
+,TOPCUBY) 

c 

122 



c 
C    AT WHAT ARC COORDINATE LOCATIONS? 

STEMP(1)=0.0 

DO 200 I=1,NPTS 
STEMP(I)=(FL0AT(I-1)/FL0AT(NPTS-1))*ARCB0T(NPRES) 

200 CONTINUE 
C 
C    EXTRACT THE VALUES ON THE PRESSURE SIDE: 
C 

CALL PEVALDK(NPRES,NPTS,STEMP,ARCBOT,TEMPBX,TEMPBY,BOTCUBX 
+.BOTCUBY) 

c 
C    FIND THE MEAN CAMBER LINE(SIMPLE MEAN OF TWO COORDINATES): 
c 

DO 300 1=1,NPTS 
CAMBX(I)=(TEMPTX(I)+TEMPBX(NPTS-I+l))*0.50 
CAMBY(I)=(TEMPTY(I)+TEMPBY(NPTS-I+1))*0.50 

C 
C    debugger 
C       WRITE(88,*)CAMBX(I),CAMBY(I) 
300 CONTINUE 

c debugger 
c 
c    Spline the mean camber line to obtain the Cubic Coefficients 
c    Once again using the arc parameter scaling. 

CALL PUGLYDK(NPTS,CAMBX,CAMBY,ARCAMB,CAMBCUBX,CAMBCUBY) 
C 
C    DETERMINE THE LOCATIONS OF THE VORTICES AND CONTROL POINTS 
C 
C    How many vortices and control points should there be? 
c      A convergence study was performed by varying the number 
c      of panels. The difference in lift coefficient is less 
c      than 0.1'/, when stepping from 20 to 40 panels. So. . . 
c      20 panels is sufficient. 

NPAN=40 
c 
c    How many pairs of image foils should there be? 
c     Obviously, the images should only be put in in pairs, 
c     This value will be adjusted until there is a converged 
c     lift coefficient. 
c 
c    A convergence study was conducted. The relative error is 
c    approx 0.04'/. with 16 image pairs. This is sufficient 
c    for this application. 

NIMAGEPR=16 
c 
c    Establish COSINE spacing on ARC Length Parameter 
c    this is straight out of the 13.04 notes. 
c    DELS is the COSINE spacing interval 

DELS=PI/NPAN 

DO 400 I=1,NPAN 
SV(I)=0.50*(1.0-C0S((I-0.50)*DELS)) 
SC(I)=0.50*(1.0-C0S(I*DELS)) 
DS(I)=PI*SQRT(SV(I)*(1.0-SV(I)))/NPAN 

400 CONTINUE 
C 
C    EXTRACT THE X AND Y VALUES OF THE VORTICES AND CONTROL POINTS 
C 

CALL PEVALDK(NPTS,NPAN,SV,ARCAMB,XV,YV,CAMBCUBX 
+,CAMBCUBY) 
CALL PEVALDK(NPTS,NPAN,SC,ARCAMB,XC,YC,CAMBCUBX 

+,CAMBCUBY) 
c 

123 



c    To Panel the walls insert that stuff here: 
c 
c    How far away are the walls: TUNPARAM dictates 

c How far do you want to panel up an down stream of 
c the foil? DSL is already passed in.  So a reasonalbe 
c limit for paneling is LE - DSL to TE + DSL + 1 
c 
c What is a reasonable spacing: UNIFORM 

c    How many panels per WALL: 2*NPAN seems OK 

c 
c    write locations out to datafile for inspection to fort.88 
c    debugger 

WRITE(88,*)'VARIABLES=XV,YV,XC,YC' 
WRITE(88,*) 'ZONE T=V0RT' 
DO 500 I=1,NPAN 
WRITE(88,*)XV(I),YV(I),XC(I),YC(I) 

500 CONTINUE 

C 
c    Calculate the UNIT NORMAL XN.YN at each control point 
c    unit normal not used for anything yet, but it may be 
c    useful in the future. 
c 
c    Also, slope is required on the foil for V*n equation later 
c 
c     write(88,*)'zone' 

DO 600 I=i,NPAN-l 
DX=XV(I+1)-XV(I) 
DY=YV(I+1)-YV(I) 
LEN=SQRT(DX*DX+DY*DY) 
XN(I)=-DY/LEN 
YN(I)=DX/LEN 
dydx(i)=dy/dx 

c       write(88,*) xn(i),yn(i) 
600 CONTINUE 

C 
C    FIX UP THE VALUE AT THE TRAILING EDGE BECAUSE THERE IS NO 
C    VORTEX AFTER THE LAST CONTROL POINT. 
C 

DX=XC(NPAN)-XV(NPAN) 
DY=YC(NPAN)-YV(NPAN) 
XN(NPAN)=-DY/SqRT(DX*DX+DY*DY) 
YN(NPAN)=DX/SqRT(DX*DX+DY*DY) 
dydx(npan)=dy/dx 

c     write(88,*)xn(npan),yn(npan) 
C 
c    ALL THE UNIT NORMALS & Slopes ARE NOW ESTABLISHED. 
C 
C    COMPUTE THE INFLUENCE COEFFICIENTS A(N,M) AND THEN 
C    INVERT THE MATRIX.(linearized) 
C    The A matrix are the influence coefficients. Based on 
c    poor agreement with RANS, it was decided to go to the 
c    true locations of the vortices on the mean camber line 
c    vice a linearized surface. 

T0P=i.0/(2.0*PI) 
DO 700 N=i,NPAN 
DO 700 M=1,NPAN 

rtemp=sqrt((xv(m)-xc(n))**2+(yv(m)-yc(n))**2) 
dyr=-(xc(n)-xv(m))/rtemp 
dxr=-(yc(n)-yv(m))/rtemp 

124 



A(N,M)=(TOP/(rtemp))*(dxr*xn(n)+dyr*yn(n)) 
c        write(89,*)a(n,m) 
c    The above include the influence of the vortex influence on 
c    the foil itself. Now, add in the images above and below 
c    the foils due to wall effects. Need Tunparam 
c 

DO 710 K=1,NIMAGEPR 
c 
c    Test K to see if it is a positive or negative image line 
c      if true then it is a positive image line 
c      if not true then it is a negative image 
c 

if ((2*int(K/2)).eq.k) then 
signimage=1.0 

else 
signimage=-1.0 

end if 
c    DEBUGGER 
c        if ((n.eq.i).and.(m.eq.i)) then 
c       write(*,*) signimage 
c        endif 
c    First Add in the Effect due to the image ABOVE (in pos y-dir) 
c 

rtemp=sqrt((xv(m)-xc(n))**2+ 
*/, ((k*yimage+ signimage*yv(m))-yc(n))**2) 

dyr=-(xc(n)-xv(m))/rtemp 
dxr=-(yc(n)-(k*yimage+signimage*yv(m)))/rtemp 

A(N,M)= A(N,M)+signimage*(TOP/(rtemp))*(dxr*xn(n)+dyr*yn(n)) 
c 
c    Next, Add in the Effect due to the image BELOW (in neg y-dir) 
c 

rtemp=sqrt((xv(m)-xc(n))**2+ 
*/, ((-k*yimage+ signimage*yv(m))-yc(n))**2) 

dyr=-(xc(n)-xv(m))/rtemp 
dxr=-(yc(n)-(-k*yimage+signimage*yv(m)))/rtemp 

A(N,M)= A(N,M)+signimage*(TOP/(rtemp))*(dxr*xn(n)+dyr*yn(n)) 

710    continue 

c 
c 
c 

700 CONTINUE 
C 
C    FACTOR THE A MATRIX 
C 

CALL FACTOR(A,IPIVOT,WKAREA,NPAN,NI,IERR) 
C 
C    COMPUTE THE w VELOCITY AT THE NTH CONTROL POINT 
C    THE B MATRIX OF A*GAMMA=B 
C 

DO 800 N=1,NPAN 
B(N)=DYDX(N) 

c       write(*,*)dydx(n) 
800 CONTINUE 

C 
C    NOW BACK SUBTITUTE TO EXTRACT THE VORTEX STRENGTHS 
C 

CALL SUBST(A,B,GAMMA,IPIVOT.NPAN.NI) 
C 
C    check the circulation distribution on the foil 
c 
c    write out to fort.89 
c 

125 



sum=0.0 
do 900 i=l,npan 
sum=sum+gamma(i) 
write(89,*)xv(i),gamma(i)/ds(i) 

900 continue 
write(*,*) 'Estimated CL=',sum*2.0 
write(*,*) 'Using Vortex Lattice' 

c 
c    extract the wake 
c 
c    The circulation is now known for each vortex point, 
c    To find the wake,  "Step" off the trailing edge and 
c    evaluate the field point velocity. March off a distance 
c    in that direction. Evaluate the field point velocity again, 
c    adjust course. Keep a record of the path. That will be 
c    the line for the wake centerline. 
c 
c    The following quantities are needed: 
c    MAKE, DSL 
c    Want to calculate: WAKEX,WAKEY Q NWAKE points between TE and DSL 
c 
c    March down the wake first, spline the values and then extract 
c    the NWAKE points, 
c 
c    Where is the Trailing edge? Q pressx(l),pressy(y) 
c 
c    Where do you want to stop? © pressx(l)+DSL & corresponding y 
c 

endx=pressx(i)+dsl+1.0 
C 
C    WHAT STEP DO YOU WANT TO MARCH IN? (think of as scaled time) 

STEP=DSL/25.0 
C 
C    START MARCHING 
C 

1=1 
TX(1)=PRESSX(1) 
TY(i)=PRESSY(l) 
write(88,*)'zone' 
DO 910 WHILE (TX(I).LT.ENDX) 

C 
C    FIND FIELD POINT VELOCITY DISTURBANCE DUE TO VORTICES 
C    REFERENCE NEWMAN PAGE 190 
c    U=l to add in the freestream effect 

U=1.0 
V=0.0 
DO 920 N=1,NPAN 

TEMP=2*PI*((XV(N)-TX(I))*(XV(N)-TX(I))+(YV(N)-TY(I))* 
'/. (YV(N)-TY(I))) 

U=U+GAMMA(N)*(TY(I)-YV(N))/TEMP 
V=V-GAMMA(N)*(TX(I)-XV(N))/TEMP 

c 
c    Add in the influence of the images 
c 
c 

DO 1950 K=1,NIMAGEPR 
c 
c    Test K to see if it is a positive or negative image line 
c      if true then it is a positive image line 
c      if not true then it is a negative image 
c 

if ((2*int(K/2)).eq.k) then 
signimage=1.0 

else 
signimage=-1.0 

126 



c 
c 
c 

endif 
DEBUGGER 
First Add in the Effect due to the image ABOVE (in pos y-dir) 

temp=2*PI*(((XV(N)-TX(I))**2+ 
'/,              ((k*yimage+ signimage*yv(n))-ty(i))**2)) 

U=U+signimage*GAMMA(N)*(TY(I)-(k*yimage+ 
*/,          signimage*yv(n)))/TEMP 

V=V-signimage*GAMMA(N)*(TX(I)-XV(N))/TEMP 
c 
c 
c 

Next, Add in the Effect due to the image BELOW (in neg y-dir) 

temp=2*PI*(((XV(N)-TX(I))**2+ 
'/,              ((-k*yimage+ signimage*yv(n))-ty(i))**2)) 

U=U+signimage*GAMMA(N)*(TY(I)-(-k*yimage+ 
'/,          signimage*yv(n)))/TEMP 

V=V-signimage*GAMMA(N)*(TX(I)-XV(N))/TEMP 

1950    continue 

c 
c 
c 
c 
c 
920 

C 
C 

continue 

CALCULATE THE NEXT LOCATION TO LOOK 
c 
c Make the first step a baby step 
c 

IF(I.LE.3)THEN 
STEP=STEP/8.0 
ELSE 
STEP=DSL/25.0 
ENDIF 

c 
c Where is the next wake location? 
c 

910 

C 
C 
C 
C  

C...] 
c 
c 
c 

950 
C 
C 

TX(I+1)=TX(I)+U*STEP 
TY(I+1)=TY(I)+V*STEP 
write(88,*)tx(i),ty(i),0,0 
1=1+1 

END DO 
NT0T=I 

SPLINE THE POINTS TO OBTAIN CUBIC COEFFICIENTS 

SPLINE SPACING WITH FIXED SLOPE AT THE ENDS 
CALL UGLYDK(NTOT,1,1,TX,TY,0,0,WAKCUB) 

EVALUATE SPLINE TO FIND STEP SIZE AT INTERMEDIATE POINTS 

WHERE ARE THE OUTPUT POINTS? 

WAKEX(1)=PRESSX(1) 
DO 950 I=1,NWAKE-1 

WAKEX(1+1)=WAKEX(I)+DSL/FLOAT((NWAKE-1)) 
CONTINUE 

EXTRACT THE POINTS FOR THE WAKEX AND WAKEY TO RETURN TO MAIN 

127 



CALL EVALDK(NTOT,NWAKE,TX,WAKEX,WAKEY,WAKCUB) 
write(88,*)'Z0NE T=WAKEADS' 
DO 960 1=1,10 
WRITE(88,*)WAKEX(I),WAKEY(I),0,0 

960    CONTINUE 

write(*,*) >*************************************************' 
write(*!*) 'THE GRID BOUNDARIES HAVE BEEN ADAPTED TO THE WAKE' 
write(*,*) '        USING VORTEX LATTICE METHOD' 
write(*,*) >*************************************************' 
RETURN 
END 

************************************************************************ 
*    SINGLE PRECISION VERSION OF DAVE GREELEY'S DIRECT SOLVER       * 
************************************************************************ 
C23456789012345678901234567890123456789012345678901234567890123456789012 

C Subroutine FACTOR , 
SUBROUTINE FACTOR(W,IPIVOT,D,N,NDIM,IERR) 
IMPLICIT REAL(A-H.O-Z) 
DIMENSION W(NDIM,NDIM),IPIVOT(*),D(*) 
IERR=0 
DO 10 1=1,N 

IPIVOT(I)=I 
ROWMAX=0. 
DO 9 J=1,N 

ROWMAX=MAX(ROWMAX,ABS(W(I,J))) 
9 CONTINUE 

IF(ROWMAX.EQ.O.) GO TO 999 
D(I)=ROWMAX 

10 CONTINUE 
NM1=N-1 
IF(NMl.EQ.O) RETURN 
DO 20 K=1,NM1 

J=K 
KP1=K+1 
IP=IPIVOT(K) 
COLMAX=ABS(W(IP,K))/D(IP) 
DO 11 I=KP1,N 

IP=IPIVOT(I) 
AWIKOV=ABS(W(IP,K))/D(IP) 
IF(AWIKOV.LE.COLMAX) GO TO 11 
COLMAX=AWIKOV 
J=I 

11      CONTINUE 
IF(COLMAX.EQ.O.) GO TO 999 
IPK=IPIVOT(J) 
IPIVOT(J)=IPIVOT(K) 
IPIVOT(K)=IPK 
DO 20 I=KP1,N 

IP=IPIVOT(I) 
W(IP,K)=W(IP,K)/W(IPK,K) 
RATIO=-W(IP,K) 
DO 20 J=KP1,N 

W(IP,J)=RATIO*W(IPK,J)+W(IP,J) 
20  CONTINUE 

IF(W(IP,N).EQ.O.) GO TO 999 
RETURN 

999  IERR=2 
RETURN 
END 

C End of FACTOR  

128 



C Subroutine SUBST  
C*********************************************************************** 

SUBROUTINE SUBST(W,B,X,IPIVOT,N,NDIM) 
IMPLICIT REAL(A-H.O-Z) 
DIMENSION W(NDIM,NDIM),B(*),X(*),IPIVOT(*) 
IF(N.GT.l) GO TO 10 
X(1)=B(1)/W(1,1) 
RETURN 

10   IP=IPIV0T(1) 
X(1)=B(IP) 
DO 15 K=2,N 

IP=IPIVOT(K) 
KM1=K-1 
SUM=0. 
DO 14 J=1,KM1 

SUM=W(IP,J)*X(J)+SUM 
14 CONTINUE 

X(K)=B(IP)-SUM 
15 CONTINUE 

X(N)=X(N)/W(IP,N) 
K=N 
DO 20 NP1MK=2,N 

KP1=K 
K=K-1 
IP=IPIVOT(K) 
SUM=0.0 
DO 19 J=KP1,N 

SUM=W(IP,J)*X(J)+SUM 
19 CONTINUE 

X(K)=(X(K)-SUM)/W(IP,K) 
20 CONTINUE 

RETURN 
END 

C End of SUBST  
C*********************************************************************** 
************************************************************************ 
*END OF SINGLE PRECISION VERSION OF DAVE GREELEY'S DIRECT SOLVER       * 
************************************************************************ 

C+++++++++++++++-H-+++-H-+++-H-+++-H-+++^+++++++^+++-H-+++-H-+++-H-+++HH-+++ 

C 
SUBROUTINE MAKEDUM(AX,AY,IMAXA,JMAXA, BX,BY,IMAXB,JMAXB, 

+XOUT,YOUT,IMAXOUT,JMAXOUT) 
C 
C 
C    This subroutine takes in two axially adjacent arrays and 
c    appends the imaxa-1 vertical line of points to the left 
c    hand side of the downstream array, 
c 
c    Last Updated:11 November 
c 

IMPLICIT NONE 
INTEGER IMAXA,JMAXA,IMAXB,JMAXB,IMAXOUT,JMAXOUT 
INTEGER I.NI.J 
PARAMETER(NI=200) 

C 
C    ARRAYS 
C 

C 
C 

REAL AX(NI,NI),AY(NI,NI),BX(NI,NI),BY(NI,NI) 
REAL XOUT(NI,NI),YOUT(NI,NI) 

129 



DO 100 J=1,JMAXA 
XOUT(l,J)=AX(IMAXA-i,J) 
YOUT(1,J)=AY(IMAXA-1,J) 

100 CONTINUE 

DO 200 I=1,IMAXB 
DO 300 J=1,JMAXB 

X0UT(I+1,J)=BX(I,J) 
Y0UT(I+1,J)=BY(I,J) 

300 CONTINUE 
200 CONTINUE 

IMAX0UT=IMAXB+1 
JMAXOUT=JMAXB 
RETURN 
END 

C+++++++++++++++4H-+++4H-++++++++4^++++++++^++-H-+++^+++-H-+++++++++++++-H-++ 

C 
C 

SUBROUTINE ZONELINES(X,Y,IMAX,JMAX,NLINE,NFILE) 

This subroutine assists in writing output file for FIT2D 
C 
c 
c 

to INMESH output file. 

X,Y are arrays containing points 
c IMAX,JMAX are # of array elements 
c NLINE is the line number in the zone 
c NFIEL is the file output number 

IMPLICIT NONE 
INTEGER NI.NJ.I, IMAX,JMAX,J,NLINE,NFILE 
PARAMETER (NI=200.NJ=200) 
REAL X(NI,NJ),Y(NI,NJ) 
REAL Xi(NI,NJ),X2(NI,NJ),Yl(NI,NJ),Y2(NI,NJ) 
REAL RI1,RI2,RJ1,RJ2,BETA 

IF(NLINE.EQ.l)THEN 
DO 100 J=1,JMAX 

WRITE(NFILE,*)X(l,J),Y(l,J) 
100 CONTINUE 

ENDIF 
IF(NLINE.EQ.3)THEN 
DO 300 J=1,JMAX 

WRITE(NFILE,*)X(IMAX,J),Y(IMAX,J) 
300 CONTINUE 

ENDIF 
IF(NLINE.Eq.2)THEN 
DO 200 1=1,IMAX 

WRITE(NFILE,*)X(I,1),Y(I,1) 
200 CONTINUE 

ENDIF 
IF(NLINE.Eq.4)THEN 
DO 400 1=1,IMAX 

WRITE(NFILE,*)X(I,JMAX),Y(I,JMAX) 
400 CONTINUE 

ENDIF 

RETURN 
END 

c 
C+++++++++++++++^+++^+++^+++^+++^+++^++^+++HH-+++HH-^^ 
c 

SUBROUTINE B0RDERS(X,Y,X1,Y1,X2,Y2,X3,Y3,X4,Y4,IX,JY.NI) 
C 
C    This subroutine takes in the x,y points which represent the four 

130 



c 
c 
c 
c 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
cc 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

lines surrounding a 2d box.  It then writes them to a 2d array 
which represents the box boundaries. The "interior" of the 2d 
array will still be zeros. The interior is filled in another 
subroutine which interpolates between all the points. 

Side 4 

ZONE "n" 
Side 1 Side 3 

Side 2 

A 

JY  I 

Array reference to enter finite 
interpolation scheme. 

IX 

IMPLICIT NONE 
INTEGER I,IX,JY,NTEMP,NI 

ARRAYS 

REAL X(NI,NI),Y(NI,NI),Xi(NI),Y1(NI),X2(NI),Y2(NI) 
REAL X3(NI),Y3(NI),X4(NI),Y4(NI) 
REAL X5(NI),Y5(NI),X6(NI),Y6(NI) 

Check line One: Determine if the order forward up or forward down. 

ntemp = 0 then count forward 
ntemp = 1 count backwards 

debugger 

write(*,*)'Debugging in borders y(jmax), y(l)' 
write(*,*) yl(jy),yl(i) 

NTEMP=0 
IF (Yi(JY).LT.Yl(i))THEN 
NTEMP=1 

ENDIF 

Now put line one in to x and y arrays 

DO 100 1=1,JY 
IF (NTEMP.Eq.O) THEN 
X(1,I)=X1(I) 
Y(1,I)=Y1(I) 

ELSE 
X(1,I)=X1(JY-I+1) 
Y(1,I)=Y1(JY-I+1) 

ENDIF 

debugger 

if (i.eq.l)then 
write(80,*) "ZONE" 

endif 
write(80,*) x(l,I),y(l,I) 

131 



c end debugger 

100 CONTINUE 
c 
c 
C 
C 
c 

Check line Two: Determine if the order is forward or backwards 

ntemp = 0 then count forward 
ntemp = 1 count backwards 
NTEMP=0 
IF (X2(IX).LT.X2(1))THEN 
NTEMP=1 

ENDIF 
c 
c Now put line two in to x and y arrays 
c 

C 

DO 200 1=1,IX 
IF (NTEMP.EQ.O) THEN 
X(I,1)=X2(I) 
Y(I,1)=Y2(I) 

ELSE 
X(I,1)=X2(IX-I+1) 
Y(I,1)=Y2(IX-I+1) 

ENDIF 

C debugger 
c 
c 
c 
c 
c 

if (i.eq.l)then 
write(80,*) "ZONE" 

end if 
write(80,*) x(I,l),y(I,l) 

c 
c end debugger 
c 
200 

C 
C 

CONTINUE 

Check line Three:Determine if the order forward up or forward down 
c 
c 
c 

ntemp = 0 then count forward 
ntemp = 1 count backwards 

c 
NTEMP=0 
IF (Y3(JY).LT.Y3(1))THEN 
NTEMP=1 

ENDIF 
c 
c 
c 

Now put line three in to x and y arrays 

DO 300 1=1,JY 
IF (NTEMP.EQ.O) THEN 
X(ix,I)=X3(I) 
Y(ix,I)=Y3(I) 

ELSE 
X(ix,I)=X3(JY-I+l) 
Y(ix,I)=Y3(JY-I+l) 

ENDIF 
C 
C    debugger 
c 
c     if (i.eq.l)then 
c      write(80,*) "ZONE" 
c     endif 
c     write(80,*) x(ix,I),y(ix,I) 
c 
c    end debugger 
c 

132 



300 CONTINUE 
c 
c**** 
c 
c 
c    Check line Four: Determine if the order is forward or backwards 
C 
C    ntemp = 0 then count forward 
c    ntemp = 1 count backwards 

NTEMP=0 
IF (X4(IX).LT.X4(1))THEN 
NTEMP=1 

ENDIF 
c 
c    Now put line four in to x and y arrays 
c 

DO 400 I=i,IX 
IF (NTEMP.Eq.O) THEN 
X(I,jy)=X4(I) 
Y(I,jy)=Y4(I) 

ELSE 
x(i,jy)=x4(ix-i+i) 
Y(I,jy)=Y4(IX-I+l) 

ENDIF 
C 
C    debugger 
c 
c     if (i.eq.i)then 
c      write(80,*) "ZONE" 
c     endif 
c    write(80,*) x(I,jy),y(I,jy) 
c 
c    end debugger 
c 
400 CONTINUE 

C 
CALL interp(X,Y,IX,JY) 
RETURN 
END 

C++++++++++++++++++++4H-+++-H-+++-H-+++-H-+++HH-++4H-+++4^+++4++++4^ 
C 

SUBROUTINE interp(X,Y,IMAX,JMAX) 
C 
C 
c Below is a subroutine for doing ISOPARAMETRIC interpolation 
c for a single zone.  It assumes that all four edges are 
c already split up to their desired spacings. 
C This method is based on the simple isoparemetric method presented 
c in "FINITE ELEMENT PROCEDURES" by Bathe. 
c 
c 
c Written by John Dannecker for use in FIT2D.F 
c Last Modified: November 7,   1996 

IMPLICIT NONE 
INTEGER NI.NJ.I, IMAX.JMAX.J 
PARAMETER (NI=200,NJ=200) 
REAL X(NI,NJ),Y(NI,NJ) 
REAL X1(NI,NJ),X2(NI)NJ),Y1(NI,NJ),Y2(NI,NJ) 
REAL RIl,RI2,RJl,RJ2,beta 

c 
c      i=15 
c      j=25 
c    DO ALL THE X(I,J) 

133 



DO iOO I=2,IMAX-1 
RI1=(X(I,1)-X(1,1))/(X(IMAX,1)-X(1,1)) 
ri2=(x(i,jmax)-x(l,jmax))/(x(imax,jmax)-x(l,jmax)) 

c        RI1=RI1+(X(I,JMAX)-X(l,jmax))/(X(IMAX,JMAX)-X(i,JMAX)) 
C 

DO 200 J=2,JMAX-i 

beta=(Y(l,J)-Y(i,l))/(Y(l,JMAX)-Y(l,l)) 
c RJl=RJl+(Y(IMAX,J)-Y(IMAX,l))/(Y(IMAX,Jraax)-Y(IMAX,l)) 

X(I,J)=x(l,j)+(x(imax,j)-x(l,j))*((ril*(1.0-beta))+(ri2*(beta))) 
200     CONTINUE 

100   CONTINUE 
C 
C    DO ALL THE Y(I,J) 
C 

DO 300 j=2,jMAX-l 
Rji=(y(i,j)-y(l,l))/(y(l,jmax)-y(l,l)) 
Rj2=(y(imax,j)-y(imax,i))/(y(IMAX,JMAX)-y(imax,l)) 

C 
DO 400 i=2,iMAX-l 

beta=(x(i,l)-x(l,i))/(x(imax,l)-x(l,l)) 
c Ri2=Ri2+(x(i,j max)-x(1,jmax))/(x(IMAX,j max)-x(1,j max)) 

Y(I,J)=y(i,l)+(y(i,jmax)-y(i,l))*(rjl*(1.0-beta)+rj2*beta) 
400     CONTINUE 

300   CONTINUE 
RETURN 
END 

c 
c 

C 
SUBROUTINE FINDYPLUS(RESBL,RESWALL,REYNOLD,TUNPARAM,USL,DSL) 

c 
c    This subroutine calculates the parameter y+ 
c    using the method in Anderson,Tannehill,Pletcher 
c    Computaional Fluid Mechanics and Heat Transfer, 1984. 
c 
C    Y+ is checked against the user input values for cell height 
c    on the foil and wall.  If the user cell spacing exceeds 
c    y+ criteria, then cell spacing can be changed. 

IMPLICIT NONE 
REAL RESBL,RESWALL,REYNOLD,TUNPARAM,USL,DSL,HEIGHT,NU 
REAL LF.LW, VEL, YPLUSF,REYWALL,YPLUSW,TEMP 
CHARACTER ANSWER*3 

C 
C    MIT WATERTUNNEL CROSS SECTION HEIGHT (FEET) 
C 

HEIGHT=20.0/12.0 
C 
C    KINEMATIC VISCOSITY (NU FT~2/SEC) 
C    FRESH WATER Q 70 DEGREES F.(SOURCE PNA 1967) 

NU=1.0519E-5 
C 
C 
C    CALCULATE CHORD LENGTH 
c 

LF=TUNPARAM*HEIGHT 
c 
c    Calculate wall length 
c 

LW=TUNPARAM*HEIGHT*(1.0+USL+DSL) 

134 



c    CALCULATE FLOW SPEED IN TUNNER (FT/SEC) 
C 

VEL=NU*REYNOLD/LF 
C 
C    CALCULATE YPLUS FOR FOIL 
C 

YPLUSF=(3.0/(REYN0LD**(-0.10)*SQRT(0.0227)*VEL/NU))/LF 
C 
C    CALCULATE WALL BASED REYNOLD NUMBER 
C 

REYWALL=VEL*LW/NU 
C 
C    CALCULATE YPLUS AT WALL 
C 

YPLUSW=(3.0/(REYWALL**(-0.10)*SQRT(0.0227)*VEL/NU))/LF 
C 
C    COMPARE USER INPUT CELL HEIGHT TO Y+: 
C 
c 
c    debugger 
c 
99   F0RMAT(A12,F10.6)A6,F10.6) 

write(*,+) 'Cell Dim  User Input Val   Yplus(3)' 
write(*,99) 'On Foil: '.resbl,' '.yplusf 
write(*,99) 'On Wall: '.reswall,' '.yplusw 

c 
C    ON THE FOIL: 

TEMP=YPLUSF/RESBL 
IF (RESBL.GE.YPLUSF) THEN 
WRITE(*,*) 'USER INPUT CELL HEIGHT ON FOIL IS GREATER THAN' 
WRITE(*,*) 'CALCULATED Y+(3) VALUE.' 
WRITE(*,'(A,$)') 'DO YOU WANT TO CHANGE TO CALC Y+(3)?<n>:' 
READ(*,'(A)') ANSWER 
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) THEN 
RESBL=YPLUSF 
WRITE(*,*)'CELL HEIGHT ON FOIL SET TO Y+(3).' 

ELSE 
WRITE(*,*)'CELL HEIGHT ON FOIL IS UNCHANGED.' 

ENDIF 
ELSE 
WRITE(*,*)'USER SPECIFIED CELL HEIGHT ON FOIL IS ADEQUATE' 

ENDIF 
C 
C    AT THE WALL 

TEMP=YPLUSW/RESWALL 
IF (RESWALL.GE.YPLUSW) THEN 
WRITE(*,*) 'USER INPUT CELL HEIGHT AT WALL IS GREATER THAN' 
WRITE(*,*) 'CALCULATED Y+(3) VALUE.' 
WRITE(*,'(A,$)') 'DO YOU WANT TO CHANGE TO CALC Y+(3)?<n>:' 
READ(*,'(A)') ANSWER 
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) THEN 
RESWALL=YPLUSW 
WRITE(*,*)'CELL HEIGHT AT WALL SET TO Y+(3).' 

ELSE 
WRITE(*,*)'CELL HEIGHT AT WALL IS UNCHANGED.' 

ENDIF 
ELSE 
WRITE(*,*)'USER SPECIFIED CELL HEIGHT AT WALL IS ADEQUATE' 

ENDIF 
C 
C 

RETURN 
END 

C 
C+++++++++++++++4H"+++-H-+++HH-++++++++4H-+++HH-++HH-+++4H-+++HH-+++4H-+++^ 

135 



SUBROUTINE TUND(XBEG,YBEG,XEND,YEND,RESBL,RESWALL,XOUT,YOUT, 
+NPOINTS,PACKING) 

C 
C    LAST MODIFIED:29 OCTOBER 1996 
C 
C    This subroutine generates the vertical spacing of points on 
c    lines above and below the foil, 
c 

IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NI,I,NNEARBL,NNEARWALL,NREMAIN 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZER0=0.0, 0NE=1.0) 
INTEGER NPOINTS 
REAL XBEG, XEND, YBEG, YEND, RESBL, RESWALL, PACKING 
REAL DELX,DELY,TEMPX,TEMPY,DLEFT,DRIGHT 
real xvect,yvect,hypo 

C 
C    ARRAYS 

REAL XOUT(NI),YOUT(NI),XLIN(NI),YLIN(NI),XREM(NI),YREM(NI) 
C 
C    Determine spacing of points for boundary layer along foil 
c 
c    How many points close packed near foil and at the wall? 
c 

NNEARBL=INT(PACKING*FLOAT(NPOINTS)) 
NNEARWALL=NNEARBL 
NREMAIN=NP0INTS-NNEAR¥ALL-NNEARBL+2 

C 
C    Size the cells on the foil: 
c 

X0UT(1)=XBEG 
Y0UT(1)=YBEG 
DELX=XEND-XBEG 
DELY=YEND-YBEG 
hypo=sqrt(delx*delx+dely*dely) 
xvect=delx/hypo 
yvect=dely/hypo 

c    debugger 
c     write(*,*)xvect,yvect,delx,xend,xbeg 
C 
C    Each cell is 25'/, larger than the previous cell, 
c 

DO 100 I=1,NNEARBL-1 
X0UT(I+i)=X0UT(I)+(i.25**(I-l))*RESBL*xvect 
Y0UT(I+l)=Y0UT(I)+(1.25**(I-l))*RESBL*yvect 

c      write(*,*)i+i,XOUT(I+l),YOUT(I+l) 
100 CONTINUE 

DLEFT=(1.25**(I-1))*RESBL 
C 
C    Size the cells at the wall: 
c 

XOUT(NPOINTS)=XEND 
YOUT(NPOINTS)=YEND 

C 
C    NOTE: This is a REVERSE counter! MM 
c 

DO 200 I=1,NNEARWALL-1 
C 
C    Each cell is 25% larger than the previous cell, 
c 

X0UT(NP0INTS-I)=X0UT(NP0INTS-I+l)-(1.25**(I-l))*RESWALL*xvect 
Y0UT(NP0INTS-I)=Y0UT(NP0INTS-I+l)-(1.25**(I-l))*RESWALL*yvect 

c      write(*,*)npoints-i,XOUT(NPOINTS-I),YOUT(NPOINTS-I) 
200 CONTINUE 

DRIGHT=(1.25**(I-1))*RESWALL 

136 



C    Send the remainder of the line to FNSPLT: 
c 
c 
C    First need to generate a small line 
c 
c       Endpoints of line: XOUT(NNEARBL),YOUT(NNEARBL) 
C XOUT(NPOINTS-NNEARWALL),YOUT(NPOINTS-NNEARWALL) 
C    FNSPLT WILL NEED 5 POINTS 

TEMPX=XOUT(NPOINTS-NNEARWALL+1)-XOUT(NNEARBL) 
TEMPY=Y0UT(NP0INTS-NNEARWALL+1)-Y0UT(NNEARBL) 

c 
c    debugger 
c     write(*,*)tempx,tempy,XOUT(NPOINTS-NNEARWALL) 
c 

XLIN(1)=X0UT(NNEARBL) 
YLIN(i)=YOUT(NNEARBL) 
DO 300 1=1,4 
XLIN(I+1)=XLIN(I)+0.25*TEMPX 
YLIN(I+1)=YLIN(I)+0.25*TEMPY 

c      write(*,*)'Straight Line' 
c      write(*,*)xlin(i),ylin(i) 
300 CONTINUE 

C 
C 

CALL FNSPLT(5,NREMAIN,DLEFT,DRIGHT,XLIN,YLIN,XREM,YREM) 
C 
C    FILL OUT THE ARRAY 

DO 400 I=1,NREMAIN 
XOUT(NNEARBL+I-1)=XREM(I) 
Y0UT(NNEARBL+I-1)=YREM(I) 

400 CONTINUE 
C 
C    debugger 
c     WRITE(*,*)NNEARBL,NNEARWALL,NPOINTS,NREMAIN 
C 
C    debugger 
c 
C 
c     write(79,*) 'ZONE' 
c     do 500 i=l,npoints 
c     write(79,*) xout(i),yout(i) 
c 500 continue 
c 
c    end debugger 
c 

RETURN 
END 

C+++++++++++++++^HHHHH-+++^+++^++HHH-+++HH-++^++++++^ 

SUBROUTINE TUNC(XBEG,XEND,YWALL,NPOINTS,XIN,YIN,XOUT,YOUT) 
C 
C LAST MODIFIED:08 NOVEMBER 1996 
C 
C This subroutine takes the cell spacing along the upstream line 
c in the center of the tunnel, the foil points and the down 
c stream line and spaces them along tunnel walls, 
c 
C XBEG = BEGINNING XCOORD OF LINE 
C 
C XEND = ENDING XCOORD OF LINE 
C 
C YWALL = Y VALUE AT WALL 

137 



c 
C    NPOINTS = NUMBER OF ARRAY VALUES COMING IN 
C 
C    XIN.YIN, = VALUES COMING IN THAT WILL BE PROJECTED 
C 
C    XOUT,YOUT= X AND Y VALUES FOR THE LINE ON THE WALL 
C 

IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NI.I 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZERO=0.0, ONE=1.0) 
INTEGER NPOINTS 
REAL XEND, XBEG,DELX,DELY,TEMP3,SLENGTH,TEMP4,YWALL 
REAL XIN(NI), YIN(NI), XOUT(NI), YOUT(NI),DELARC(NI) 

C 
C    Compute arc length of the input array and arc length between 
c    points, 
c 

SLENGTH=ZERO 
DELX=ZERO 
DELY=ZERO 
TEMP3=ZER0 
DO 100 I=1,NP0INTS-1 
DELX=XIN(I+1)-XIN(I) 
DELY=YIN(1+1)-YIN(I) 
TEMP3=DELX*DELX+DELY*DELY 
DELARC(I)=SQRT(TEMP3) 
SLENGTH=SLENGTH+DELARC(I) 

100 CONTINUE 
C 
C    debugger 
C     temp4=xin(npoints)-xin(l) 
C     write(*,*)slength,temp4,ywall,XBEG,XEND 
c 
c    do algebraic translation of point spacing 
c 

TEMP4=ZER0 
X0UT(1)=XBEG 
Y0UT(1)=YWALL 
DO 200 1=1,NPOINTS-1 
TEMP4=DELARC(I)/SLENGTH 
X0UT(I+1)=X0UT(I)+TEMP4*(XEND-XBEG) 
Y0UT(I+1)=YWALL 

200 CONTINUE 
C 
C    debugger 
C 
c     write(79,*) 'ZONE' 
c     do 300 i=l,npoints 
c     write(79,*) xout(i),yout(i) 
c 300 continue 
c 
c    end debugger 
c 

RETURN 
END 

C++++++++++++++++++++-H-+++HH-+++4^+++HH-+++4H-++HH-+++HH-+++4-h+++4-H 
SUBROUTINE WALLFIND(SCALE,YUP,YBOT) 

C 
C    LAST MODIFIED:  29 OCTOBER 96 
C 
C    This subroutine finds the upper and lower y coordinates of the 
c    tunnel walls 
c 

138 



c 
IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF,TWO 
INTEGER NI 
PARAMETER (PI=3.14159,TW0PI=6.28318,NI=10, 

+ZER0=0.0,0NE=1.0,TW0=2.0) 

C 
REAL SCALE,YUP.YBOT 

YUP=0NE/(SCALE*TW0) 

C 
C 

YB0T=-0NE/(SCALE+TWO) 

debugger 

C 
c 

write(*,*) yup.ybot 

c 
RETURN 
END 

■ ■ i t i i i i i i i i i > i i i i i t r i t i i ■ ■ i i i i i ■ i i i i ■ ■ i i  V^TT-1—TTT-T—rTTTTTTTTl TTT^T^T^T 1 m m m 1 TT~1 1 rTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 

c 
c 
c 
c 

SUBROUTINE TUNB(XL,XLOC,YLOC,PLINEX,PLINEY,NP) 

LAST MODIFIED:  24 OCTOBER 96 

This subroutine defines the upstream or downstream lines extending 
c from the foil leading or trailing edge. 
C 
c 
c 
c 
c 
c 
c 
c 

XL = LENGTH OF LINE 

XLOC,YLOC = BEGINNING OF LINE 

PLINEX,PLINEY = OUTPUT X AND Y 

NP = NUMBER OF POINTS OUT 
IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NP 
PARAMETER (PI=3.14159,TW0PI=6.28318, ZER0=0.0, 0NE=l.O) 
REAL XL,XLOC,YLOC,TEMP 
INTEGER I 

c 
c 

REAL PLINEX(NP),PLINEY(NP) 

debugger 
c write(*,*) 'Made it in to TUNB, LIMIT IS:', XL 
c 
c MAKE IT HORIZONTAL 

DO 100 1=1,NP 
PLINEY(I)=YLOC 

100 CONTINUE 
c 
c debugger 
c write(*,*) xloc.yloc 
c 
c The endpoints of the line are xloc.yloc and xloc+temp.yloc 

IF (XLOC.LE.ZERO)THEN 
PLINEX(NP)=XL0C-XL 
PLINEX(1)=XL0C 

ENDIF 
C 

IF (XLOC.GT.ZERO)THEN 
PLINEX(NP)=XL0C+XL 
PLINEX(1)=XL0C 

ENDIF 
C 
C 
c 

Generate some points between the two endpoints. 

139 



TEMP=(PLINEX(NP)-PLINEX(1))/FLOAT(NP-1) 
DO 200 I=l,NP-2 

PLINEX(I+1)=PLINEX(I)+TEMP 
200 CONTINUE 

C 
C    DEBUGGER 
c     write(79,*) 'ZONE' 
c     do 5020 i=l,NP 
c       write(79,*) PLINEX(i),PLINEY(i) 
c 5020 continue 

RETURN 
END 

SUBROUTINE ARCJ0INER(N1,N2,N0UT,X1,X2,Y1,Y2,X0UT,Y0UT) 
C 
C    last modified: 25 October 96 
c 
c    This subroutine takes in two arcs and joins them end to end 
c    in to one array. 

IMPLICIT NONE 
REAL PI,TW0PI,ZERO,ONE,HALF 
INTEGER NI,I 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZER0=0.0, 0NE=1.0) 
INTEGER Nl, N2.N0UT 
REAL Xl(NI), Yl(NI), XOUT(NI), YOUT(NI), X2(NI),Y2(NI) 

C 
C    debugger 
c     write(*,*) 'Made it in to ARCJOINER:', nl,n2 
c 
c 

DO 10 1=1,Nl 
X0UT(I)=X1(I) 
Y0UT(I)=Y1(I) 

10  CONTINUE 
DO 20 1=2,N2 

X0UT(I+N1-1)=X2(I) 
Y0UT(I+N1-1)=Y2(I) 

20  CONTINUE 
c 
c    funny counting here elmininates overlapping data points 
c 

N0UT=N1+N2-1 
C 
C    debugger 
c     write(*,*) 'Points Out'.nout 
c 
c 

RETURN 
END 

C++++HH-+++++++++^+++^+++HH-+++^+++^+++^+HHH-+++^++^ 
SUBROUTINE ARCMAKER(X,Y,NUM1,NUM2,XO,YO) 

C 
C    last modified: 29Sept96 
C 
C    THIS SUBROUTINE TAKES IN LONG ARRAYS X, AND Y, 
C    AND RETURNS PORTIONS OF X AND Y SPECIFIED BY 
C    INTEGERS NUM1 AND NUM2.  XO AND YO ARE FILLED 
C    BY THE FIRST NUM1-NUM2 ELEMENTS 
C 

IMPLICIT NONE 

140 



REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NI.I 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZERO=0.0, 0NE=1.0) 
INTEGER NUM1,NUM2 
REAL X(NI), Y(NI),XO(NI), YO(NI) 

C 
C    debugger 
c 
C     write(*,*)NUMl,NUM2 
c 

DO 10 I=1,(NUM2-NUM1+1) 
X0(I)=X(NUM1+I-1) 
Y0(I)=Y(NUH1+I-1) 

c 
c    debugger 
C      write(*,*) XO(I),YO(I) 
c 
10  CONTINUE 

RETURN 
END 

C+++++++++++++++++++++++++++++++++++HH"+++-H-++-H-+++HH-+++-H-+++-H-++^ 
SUBROUTINE FOILZONE(XI,NPOINTS,MIDPRES,MIDSUCT,NOSE) 

C 
C    last modified: 29 Sept 96 
C 
C    THIS SUBROUTINE LOOKS AT ALL THE FOIL GEOMETRY POINTS.  IT SEARCHES 
C    FOR THE LEADING EDGE OF THE FOIL AT THE SET AOA.  IT SEARCHES FOR 
C    POINTS ON THE SUCTION AND PRESSURE SIDES THAT ARE CLOSEST TO THE 
C    MIDCHORD POINT.  ONCE THESE POINTS ARE IDENTIFIED, THE INTEGER 
C    OF THE ARRAY POSITION OF THESE POINTS IS RETURNED TO MAIN PROG 
C 
C 
C MIDSUCT 
C I 
C    NOSE < =====================\ (foil schematic) 
C I 
C MIDPRES 
C 

IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NI,I 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZERO=0.0, 0NE=1.0) 
INTEGER NPOINTS,MIDPRES,MIDSUCT,NOSE,TEMP 
REAL CHORDMID 
REAL XI(NI) 

C 
C    XI,YI ARE FOIL OFFSETS 
C    NPOINTS : TOTAL NUMBER OF FOIL OFFSETS 
C    MIDPRES,MIDSUCT AND NOSE AS INDICATED ON SCHEMATIC 
C 
C    FIND THE LEADING EDGE: 
C 

TEMP=0 
DO 10 I=1,(NP0INTS-1) 

IF ((XI(I)).GE.(XI(I+1))) THEN 
TEMP=I+1 

END IF 
10  CONTINUE 

NOSE=TEMP 
C 
C    FIND THE MIDDLE OF THE PRESSURE SIDE 
C 

TEMP=0 
CH0RDMID=((XI(N0SE)+XI(l)))/(2.0) 

141 



c 
c    debugger 
c     write(*,*) 'pressmid=', chordmid 
c 

DO 20 1=1,(NOSE-i) 
IF (XI(I).GT.CHORDMID) THEN 
TEMP=I 

END IF 
20  CONTINUE 

MIDPRES=TEMP 
C 
C    FIND THE MIDDLE OF THE SUCTION SIDE 
c 

TEMP=0 
CH0RDMID=(XI(N0SE)+XI(NP0INTS))/(2.0) 

c     write(*,*) 'suctmid=', chordmid 
DO 30 I=N0SE,(NP0INTS-1) 

IF (XI(I).LT.CHORDMID) THEN 
TEMP=I 

ENDIF 
30  CONTINUE 

MIDSUCT=TEMP 
c 
c    debugger 
c 
c     WRITE(*,*) NPOINTS,NOSE,MIDSUCT,MIDPRES 
c 

RETURN 
END 

C 

SUBROUTINE NACACONV(N,X,Y,T,R) 
C 
C    last modified: 23 Sept 96 
C 
C    THIS SUBROUTINE CONVERTS NACA FOIL GEOMETRY TO X,Y GEOMETRY 
C 
C    N = NUMBER OF STATIONS 
C    X = STATION 
C    Y = CAMBER 
C    T = THICKNESS 
C    R = L.E. RADIUS 
C 
C    RETURNS 
C    N = NUMBER OF POINTS (.GT. 2*STATI0NS) 
C    X,Y = GEOMETRY COORDINATES 
C 

IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NI 
PARAMETER(PI=3.14159,TW0PI=6.28318, NI=200) 
INTEGER I,N 
REAL R 
REAL X(NI),Y(NI),T(NI) 

C 
C    THIS SUBROUTINE NOT YET FULLY IMPLEMENTED 
C 

WRITE(*,*) ' THE NACA CONVERSION ROUTINE IS NOT YET IMPLEMENTED' 
WRITE(*,*) ' Pretty lame, huh?' 
END 

C 
C+++++++++++++++HH-+++HH-+++-H-+++^+++4^+++HH-++-H-+++-H-+++^+++HH-++^^ 

SUBROUTINE ROTANGLE(N,X,Y,AOA,PIVOTX,PIVOTY) 
C 
C    last modified: 26 Sept 96 

142 



c 
C    THIS SUBROUTINE TAKES X,Y FOIL DATAPOINTS AND ROTATES THEM ABOUT 
C    A PIVOT POINT TO SET FOIL TO PRESCRIBED ANGLE OF ATTACK(AOA) 
C 
C    N = NUMBER OF POINTS DEFINING FOIL 
C    X = X COORDINATE OF POINT (X/C) 
C    Y = Y COORDINATE OF POINT (Y/C) 
C    AOA = FOIN ANGLE OF ATTACK IN DEGREES REF TO NOSE TAIL LINE 
C    PIVOT = X/C OF ROTATION POINT OF FOIL 
C 
C    XL.YL ARE REF TO PIVOT POINT 
C    R IS RADIUS TO PIVOT POINT 
C 

IMPLICIT NONE 
REAL PI,TWOPI,ZERO,ONE,HALF 
INTEGER NI 
PARAMETER(PI=3.14159,TW0PI=6.28318, NI=200) 
INTEGER I,N 
REAL AOA, PIVOTX, PIVOTY, XL, YL, R, BETA 
REAL X(NI),Y(NI) 

C 
C 

WRITE(*,*) ' FOIL BEING ROTATED TO ANGLE OF ATTACK:' , AOA 
WRITE(*,*) ' PIVOT POINT IS X COORD C (X/C):' , PIVOTX 
WRITE(*,*) ' PIVOT POINT IS Y COORD Q (Y/C):' , PIVOTY 

C 
C    ROTATE FOIL POINT BY POINT 
C 

DO 101 I =1,N 
XL=X(I)-PIVOTX 
YL=Y(I)-PIVOTY 
R = SQRT(XL*XL+YL*YL) 
BETA = ATAN2D(YL,XL) 
X(I) = R*COSD(BETA-AOA) 
Y(I) = R*SIND(BETA-AOA) 

101    CONTINUE 
RETURN 
END 

C 
C+++++++++++++++-H-+++4H-+++^+++-H-+++^+++4H-+++++++HH-+++HH-+++-H-+++HH-+^^ 

C 
SUBROUTINE NORMFOIL(L,N,X,Y) 

c 
c    LAST MODIFIED:  24 OCTOBER 96 

IMPLICIT NONE 
REAL PI.TWOPI,ZERO,ONE,HALF 
INTEGER NI,I 
PARAMETER (PI=3.14159,TW0PI=6.28318, NI=200, ZERO=0.0, 0NE=1.0) 
INTEGER N 
REAL L 
REAL X(NI),Y(NI) 
DO 10 1=1,N 

X(I)=X(I)/L 
Y(I)=Y(I)/L 

10  CONTINUE 
RETURN 
END 

c 
c 
C+++++++++++++++4++++4H-+++H^+++-H-+++HH-+++H^++4H-+++4H-++++++++H^++ 

SUBROUTINE FNSPLT(NIN,NOUT,DS1,DS2,XI,YI,XO,YO) 
C 
C    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
C    !   THIS PROGRAM CONVERTED IN TO A SUBROUTINE IN "FIT2D.F"   ! 

143 



C !   BY JOHN DANNECKER.  THIS PROGRAM IS ORIGINALLY WRITTEN   ! 
C !   BY S.D. BLACK, MIT, WITH OTHER CREDITS AS INDICATED      ! 
C !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
C 

C FANCY SPLITTING PROGRAM FOR DIVIDING UP A CURVE 
C THERE ARE TWO METHODS THIS PROGRAM CAN BE RUN 
C 
C  INPUT 1: 
C      DATA SET (X,Y) FOR THE CURVE 
C      DS1 - INTERVAL AT LEFT HAND END POINT 
C      DS2 - RIGHT HAND END POINT INTERVAL 
C      SET NOUT < 0 
C 
C  INPUT 2: 
C      SAME AS INPUT 1 BUT WITH THE NUMBER OF POINTS SPECIFIED 
C 
C 
C  OUTPUT 
C      X,Y OF SPLIT UP CURVE BETWEEN THESE INTERVALS 
C 
C  PURPOSE 
C      USEFUL FOR CUSTOM GRIDDING OF CURVES 
C 
C  THE SLOPE OF THE INTERVAL DS# IS HELD TO BE ZERO AT THE END POINTS 
C  THE PROGRAM ASSUMES THE ENDS OF THE CURVE ARE AT THE ENDS OF THE INPUT 
C 
C  WRITTEN i/8/95 S. BLACK, MOD BY J. DANNECKER 9/28/96 
C 
c    This is the NEW and Improved FNSPLT modified by 
c    S. Black 25 October 1996 
c 

PARAMETER (NI=200) 
REAL XI(NI),YI(NI),X0(NI),Y0(NI),CUB(4*(NI-1)) 
REAL SI(NI),CUBl(4*(NI-l)),CUB2(4*(NI-i)) 
REAL A(3),B(3),C(NI),D(NI),E(NI) 
CHARACTER FIN*20 
CHARACTER PR0MPT2+34 

C 
C 
c 
c    debugger 
c     write(*,*)'made it in to fnsplt', nin.nout 
C################################## 
c 
C CALCULATE LENGTH OF CURVE BASED ON INPUT POINTS 

SL=0.C 
DO 10 1=2,NIN 

SL=SL+SQRT((XI(I)-XI(I-1))**2+(YI(I)-YI(I-1))**2) 
10   CONTINUE 

C CALCULATE THE NUMBER OF POINTS REQ'D IF NOT SPECIFIED 
IF (NOUT.LE.O) THEN 

DSAVG=(DSl+DS2)/2.0 
NOUT=INT(SL/DSAVG)+1 

END IF 
C SPLINE INPUT ARRAY PARAMETRICALLY (BOTH X AND Y) 
C    Array SI is returned with arclength parameters non-dimed from 0..1 

CALL PUGLYDK(NIN,XI,YI,SI,CUB1,CUB2) 
C SET UP ARRAYS CONTAINING SPACING 
C    Array A Contains pointers for the first, middle and last 
C steps. 
C    Array B contains the dS values at the two ends and a guess 
C at what the step size in the middle should be. 
C    Array C contains integers cooresponding to the NOUT-1 steps 
C 

144 



DSAVG=(SL-DS1-DS2)/FLOAT(NOUT-3) 
A(l)=FLOAT(l) 
A(2)=FL0AT(N0UT)/2.0 
A(3)=FL0AT(N0UT-1) 
B(1)=DS1 
B(2)=DSAVG 
B(3)=DS2 
DO 20 J=1,N0UT-1 

C(J)=FLOAT(J) 
20   CONTINUE 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

DSMIN=0.1*MIN(DS1,DS2) 
C... CONVERGENCE LOOP FOR APPROPRIATE VALUE OF B(2) 
C  The step size is splined with the slope held constant at the 
C   ends. There must be NOUT-1 steps, with values of DS1 and 
C   DS2 at the two ends. The mid-range step size is varied until 
C   the sum of all the steps equals the arc length desired (SL). 
C   By fixing the slope at the ends the program tries to ensure 
C   that step sizes don't increase too rapidly. 

DO 100 KK=1,1000 
IERR=0 

C...SPLINE SPACING WITH FIXED SLOPE AT THE ENDS 
CALL UGLYDK(3,0,0,A,B,0,0,CUB) 

C...EVALUATE SPLINE TO FIND STEP SIZE AT INTERMEDIATE POINTS 
CALL EVALDK(3,NOUT-1,A,C,D,CUB) 

C...CALCULATE LENGTH COVERED BY NEW SET OF STEPS 
SLC=0.0 
DO 40 1=1,NOUT-1 

SLC=SLC+D(I) 
IF (D(I).LT.O.O) IERR=1 

40     CONTINUE 
C...IF LENGTH IS NOT CLOSE TO TOTAL LENGTH NEEDED, SHIFT B(2) 
C AND REITERATE 

IF (IERR.EQ.l) THEN 
B(2)=0.0 

ELSE IF (ABS(SLC-SL).GT.DSHIN) THEN 
DIFF=SLC-SL 
B(2)=B(2)-DIFF/N0UT 

ELSE 
GOTO 101 

END IF 
100 CONTINUE 

WRITE(*,*)****WARNING*** FNSPLT DID NOT CONVERGE' 
WRITE(*,*)' ABS(SLC - SL) > TOL' 
WRITE(*,*)' SLC, SL, TOL = ',SLC,SL,DSMIN 
WRITE(*,*)NIN,N0UT,DS1,DS2 
IF (SLC.GT.SL) THEN 
WRITE(*,*)'Recommend using fewer points or smaller dS values' 

ELSE 
WRITE(*,*)'Recommend using more points of larger dS values' 

END IF 
101 CONTINUE 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C...SHIFT LENGTH TO EXTEND FROM 0.0 TO 1.0 

E(1)=0.0 
DO 50 1=2,NOUT-1 
E(I)=D(I-1)/SLC+E(I-1) 

50   CONTINUE 
E(N0UT)=1.0 

C...EVALUATE OUTPUT POINTS AT CALCULATED INTERVAL 
CALL PEVALDK(NIN,N0UT,E,SI,X0,Y0,CUB1,CUB2) 

C 
c 
c################################### 

145 



RETURN 
END 

Q Q 
SUBROUTINE DRIVDK(NIN,N0UT,XIN,X0UT,DYDX,D2YDX,A) 

C    APRIL 1975 SPLINE PROGRAM SERIES  J.E.KERWIN 
REAL XIN(*),XOUT(*),DYDX(*),D2YDX(*),A(*) 
NH1=NIN-1 
J=l 
DO 3 N=i,NOUT 
IF(X0UT(N).GE.XIN(2)) GO TO 4 
J=l 
GO TO 5 

4 IF(XOUT(N).LT.XIN(NMl)) GO TO 6 
J=NM1 
GO TO 5 

6 IF(XOUT(N).GE.XIN(J+l)) GO TO 7 
5 Hl=XOUT(N)-XIN(J) 

H2=H1**2 
J2=J+NM1 
J3=J2+NH1 
DYDX(N)=3.0*A(J)*H2+2.0*A(J2)*H1+A(J3) 
D2YDX(N)=6.0*A(J)*Hi+2.0*A(J2) 
GO TO 3 

7 J=J+1 
GO TO 6 

3 CONTINUE 
RETURN 
END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE EVALDK(NIN,NOUT,XIN,XOUT,YOUT,A) 

C    APRIL 1975 SPLINE PROGRAM SERIES  J.E.KERWIN 
REAL XIN(*),XOUT(*),YOUT(*),A(*) 
NM1=NIN-1 
MOUT=IABS(NOUT) 
IF(NOUT.GT.O) GO TO 1 
DEL=(XIN(NIN)-XIN(l))/(MOUT-l) 
DO 2 N=l,MOUT 

2 XOUT(N)=XIN(l)+(N-l)*DEL 
1   J=l 

DO 3 N=l,MOUT 
IF(X0UT(N).GE.XIN(2)) GO TO 4 
J=l 
GO TO 5 

4 IF(XOUT(N).LT.XIN(NMl)) GO TO 6 
J=NM1 
GO TO 5 

6 IF(XOUT(N).GE.XIN(J+l)) GO TO 7 
9 IF (XOUT(N).LT.XIN(J)) GO TO 8 

5 Hl=XOUT(N)-XIN(J) 
H2=H1**2 
H3=H1*H2 
J2=J+NM1 
J3=J2+NM1 
J4=J3+NM1 
Y0UT(N)=A(J)*H3+A(J2)*H2+A(J3)*H1+A(J4) 
GO TO 3 

7 J=J+1 
GO TO 6 

8 J=J-1 
GO TO 9 

3 CONTINUE 
RETURN 
END 

C 
C++++++++++HH-++HHH-+++^+++^+++^+HH-^++HHH-++^++HHH-+^^ 

146 



SUBROUTINE INTEDK(NIN,XIN,XL,XU,YDX,XYDX,XXYDX,A) 
C    AUGUST 1975 SPLINE PROGRAM SERIES S.-K.TSAO 

REAL XIN(*),A(*) 
NM1=NIN-1 
IF(XL.LT.XIN(D) GO TO 2 
DO 1 N=1,NIN 
IF(XL.GE.XIN(N)) GO TO 1 
JL=N-1 
GO TO 3 

1 CONTINUE 
JL=NM1 
GO TO 3 

2 JL=1 
3 IF(XU.GE.XIN(NIN)) GO TO 4 

JU=1 
IF(XU.LE.XIN(D) GO TO 6 
DO 5 N=JL,NIN 
IF(XU.GE.XIN(N)) GO TO 5 
JU=N-1 
GO TO 6 

5 CONTINUE 
GO TO 6 

4 JU=NM1 
6 H1=XL-XIN(JL) 

H2=H1**2 
H3=H1*H2 
H4=H2**2 
H5=H2*H3 
H6=H3**2 
J1=JL 
J2=J1+NM1 
J3=J2+NMi 
J4=J3+NM1 
YDX=-A(J1)/4.0*H4-A(J2)/3.0*H3-A(J3)/2.0*H2-A(J4)*H1 
BUG=-A(J1)/5.0*H5-A(J2)/4.0*H4-A(J3)/3.0*H3-A(J4)/2.0*H2 
XYDX=BUG+XIN(J1)*YDX 
BUG=-A(J1)/6.0*H6-A(J2)/5.0*H5-A(J3)/4.0*H4-A(J4)/3.0*H3 
XXYDX=BUG+2.0*XIN(Jl)*XYDX-XIN(Ji)**2*YDX 
DO 7 N=JL,JU 
Hl=XIN(N+i)-XIN(N) 
IF(N.EQ.JU) H1=XU-XIN(N) 
H2=H1**2 
H3=H1*H2 
H4=H2**2 
H5=H2*H3 
H6=H3**2 
J1=N 
J2=J1+NM1 
J3=J2+NM1 
J4=J3+NM1 
BUG=A(J1)/4.0*H4+A(J2)/3.0*H3+A(J3)/2.0*H2+A(J4)*H1 
YDX=YDX+BUG 
CAT=A(J1)/5.0*H5+A(J2)/4.0*H4+A(J3)/3.0*H3+A(J4)/2.0*H2 
PIG=CAT+XIN(J1)*BUG 
XYDX=XYDX+PIG 
D0G=A(J1)/6.0*H6+A(J2)/5.0*H5+A(J3)/4.0*H4+A(J4)/3.0*H3 
XXYDX=XXYDX+D0G+2.0*XIN(J1)*PIG-XIN(J1)**2*BUG 

7 CONTINUE 
RETURN 
END 

C 
C+++++++++++++++4H-+++4H-+++HH-+++4^+++-H-+++-l^++4H-+++4H-+++-M-+++HH-^^ 

C 
SUBROUTINE LINDK(NIN,XIN,YIN,A) 

147 



C GENERATES CUBIC COEFFICIENTS FOR PIECEWISE LINEAR FIT  
REAL XIN(*),YIN(*),A(*) 
NH1=NIN-1 
DO 1 N=1,NM1 
A(N)=0.0 
M=N+NM1 
A(M)=0.0 
M=M+NM1 
A(M)=(YIN(N+1)-YIN(N))/(XIN(N+1)-XIN(N)) 
M=H+NM1 

1   A(M)=YIN(N) 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
SUBROUTINE PEVALDK(NIN,NOUT,ARK,S,XO,YO,CUB1,CUB2) 
REAL X0(200),Y0(200),S(200),ARK(200) 
REAL CUB1((200-1)*4),CUB2((200-i)*4) 
CALL EVALDK (NIN, NOUT, S, ARK, XO, CUB 1) 
CALL EVALDK(NIN,NOUT,S,ARK,YO,CUB2) 
RETURN 
END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
SUBROUTINE PUGLYDK(NIN,X,Y,S,CUB1,CUB2) 
REAL X(200),Y(200),S(200) 
REAL CUBi((200-l)*4),CUB2((200-i)*4) 
STOT=0.0 
S(1)=0.0 
DO 10 1=2,NIN 

S(I)=SQRT((X(I)-X(I-l))**2+(Y(I)-Y(I-l))**2)+ST0T 
ST0T=ST0T+SqRT((X(I)-X(I-l))**2+(Y(I)-Y(I-l))**2) 

10  CONTINUE 
DO 20 1=2,NIN 

S(I)=S(I)/STOT 
20  CONTINUE 

NCL=1 
NCR=1 
ESL=0 
ESR=0 
CALL UGLYDK(NIN,NCL,NCR,S,X,ESL,ESR,CUB1) 
CALL UGLYDK(NIN,NCL,NCR,S,Y,ESL,ESR,CUB2) 
RETURN 
END 

C  
SUBROUTINE UGLYDK(NIN,NCL,NCR,XIN,YIN,ESL,ESR,AE) 

C 1975 DUCK SERIES J.E.KERWIN MODIFIED 6/21/82  
C TRI-DIAGONAL MATRIX SOULTION BUILT IN  

REAL XIN(*),YIN(*),AE(*),H(200),D(200),AU(200),AM(200), 
*        S(200),AL(200),X(200) 
DATA HALF/0.5E00/,TWO/2.OEOO/,SIX/6.OEOO/,RAD/1.745329E-02/ 
NM1=NIN-1 
NM2=NM1-1 
NM3=NM2-1 
NEQ=NM2 
DO 1 N=1,NM1 
H(N)=XIN(N+1)-XIN(N) 

1   D(N)=(YIN(N+1)-YIN(N))/H(N) 
IF(NCL.EQ.2) NEQ=NEq+l 
IF(NCR.EQ.2) NEQ=NEQ+1 
NSQ=NEQ**2 
J=l 
IF(NCL.LT.2) GO TO 6 
AM(i)=TWO*H(l) 
AU(1)=H(1) 
SLP=ESL*RAD 
S(1)=(D(1)-TAN(SLP))*SIX 

148 



J=J+1 
AL(2)=H(1) 

6 DO 5 N=1,NM2 
IF(N.GT.l) AU(J-1)=H(N) 
AM(J)=TWO*(H(N)+H(N+i)) 
IF(N.LT.NM2) AL(J+1)=H(N+1) 
IF(N.EQ.2.AND.NCL.Eq.l) AU(J-1)=AU(J-1)-H(N-1)**2/H(N) 
IF(N.EQ.l.AND.NCL.EQ.l) AM(J)=AM(J)+(1.0+H(N)/H(N+1))*H(N) 
IF(N.EQ.NM2.AND.NCR.EQ.l) AM(J)=AM(J)+(1.0+H(N+1)/H(N))*H(N+1) 
IF(N.EQ.NM3.AND.NCR.EQ.l) AL(J+l)=AL(J+l)-H(N+2)**2/H(N+l) 
S(J)=(D(N+i)-D(N))*SIX 
J=J+i 

5   CONTINUE 
IF(NCR.LT.2) GO TO 7 
AL(NEQ)=-H(NM1) 
AM(NEQ)=-TWO*H(NMl) 
AU(NEQ-l)=H(NMi) 
SLP=ESR*RAD 
S(J)=(D(NM1)+TAN(SLP))*SIX 

7 CONTINUE 
DO 4 K=2,NEQ 
AL(K)=AL(K)/AM(K-1) 
AM(K)=AM(K)-AL(K)*AU(K-1) 
S(K)=S(K)-AL(K)*S(K-1) 

4   CONTINUE 
X(NEQ)=S(NEQ)/AM(NEq) 
DO 2 L=2,NEQ 
K=NEQ-L+1 
X(K)=(S(K)-AU(K)*X(K+i))/AM(K) 

2   CONTINUE 
DO 22 N=1,NEQ 

22  S(N)=X(N) 
HOLD=S(NEQ) 
IF(NCL.Eq.2) GO TO 8 
DO 9 N=1,NM2 
M=NM2-N+2 

9 S(M)=S(M-1) 
IF(NCL.EQ.O) S(1)=0.0 
BUG=H(i)/H(2) 
IF(NCL.Eq.l) S(1)=(1.0+BUG)*S(2)-BUG*S(3) 

8 IF(NCR.Eq.O) S(NIN)=0.0 
BUG=H(NM1)/H(NM2) 
IF(NCR.Eq.l) S(NIN)=(i.0+BUG)*S(NMl)-BUG*S(NM2) 
IF(NCR.Eq.2) S(NIN)=HOLD 
DO 10 N=1,NM1 
AE(N)=(S(N+1)-S(N))/(SIX*H(N)) 
M=N+NM1 
AE(M)=HALF*S(N) 
M=M+NM1 
AE(M)=D(N)-H(N)*(TW0*S(N)+S(N+1))/SIX 
M=M+NM1 

10 AE(H)=YIN(N) 
RETURN 
END 

149 



Appendix B 

Sample FIT2D Input Files 

B.l    Bounded Foil (fname.ctrl) 

Header: Sample for Cupped B-l 
Foil geometry file name 
rcup.foil 
AOA Xpiv Ypiv 
0.5 0.3 0.01 
Chord/Tunnel Width 
0.9 
USL DSL PHI1 PHI2 
2.0 2.0 0.5 0.25 
NUS MDS NVS NT0P MB0T(Always 8*n-l points) 
87  87 95 95  95 
RESLE RESMID RESTE RESWAL RESBL PACK 
0.001 0.03 0.001 1.0e-5  1.0e-5 0.20 
Re#(chord based) 
3e6 
Desired Inmesh Input file: 
cupi.dat 
Desired Inmesh Restart file 
cupr.dat 
Number of INMESH Iterations: 
1500 
Convergence tolerance: 
1.0e-10 
Wake Data(-1 none, 0 VLM, or nranswk) 

10 
0.713324 -0.016042 
0.772837 -0.022880 
0.879395 -0.032600 
1.027451 -0.043110 
1.210484 -0.052885 
1.424693 -0.061495 
1.674272 -0.069320 
1.953325 -0.077086 
2.257376 -0.083998 
2.580143 -0.089997 

150 



B.2    Unbounded Foil (fnarne.ctrl) 

Header: Sample Unbounded Cupped B-l Foil 
Foil geometry filename: 
rcup.foil 
AOA Xpiv Ypiv 
0.5 0.3 0.01 
Chord/Tunnel Width 
0.08 
USL DSL PHI1 PHI2 
5.0 5.0 2.00 1.00 
NUS NDS MVS NT0P MB0T(Always 8*n-l points) 
87  87 95 95  95 
RESLE RESMID RESTE RESWAL RESBL PACK 
0.001 0.03 0.001 0.005  1.0e-5 0.20 
Re#(chord based) 
3e6 
Desired Inmesh Input file: 
cupi.dat 
Desired Inmesh Restart file 
cupr.dat 
Number of INMESH Iterations: 
1500 
Convergence tolerance: 
1.0e-10 
Wake Data(-1 none, 0 VLM, or nranswk) 

20 
0.713324 -0.016042 
0.772837 -0.022880 
0.879395 -0.032600 
1.027451 -0.043110 
1.210484 -0.052885 
1.424693 -0.061495 
1.674272 -0.069320 
1.953325 -0.077086 
2.257376 -0.083998 
2.580143 -0.089997 
2.917188 -0.095028 
3.261140 -0.099227 
3.603834 -0.102689 
3.939133 -0.105482 
4.261238 -0.107661 
4.565246 -0.109321 
4.846685 -0.110522 
5.101448 -0.111331 
5.326634 -0.111836 
5.518953 -0.112118 

151 



B.3    Sample Foil Geometry File (fname.foil) 

Offsets start at the trailing edge marching forward on lowersurface, around the leading 

edge and along upper surface to trailing edge. It is not neccessary to have an explicit 

point at the leading edge. FIT2D splines the offsets and finds the leading edge. 

FIT2D assumes that this input file is at zero degrees angle of attack. 

Cupped B-l Foil 
2 
1.0 

161 
1.000000 0.000000 
0.989517 0.002052 
0.979110 0.003558 
0.968851 0.004586 
0.958810 0.005204 
0.949059 0.005478 
0.939668 0.005477 
0.930708 0.005269 
0.922250 0.004920 
0.914365 0.004499 

0.007665 
0.005500 
0.003652 
0.002127 
0.000963 
0.000220 
0.000041 
0.000133 
0.000676 
0.001617 
0.002986 
0.004814 
0.007129 
0.009962 

-0.006030 
-0.005229 
-0.004320 
-0.003289 
-0.002132 
-0.000846 
0.000570 
0.001781 
0.003074 
0.004450 
0.005909 
0.007453 
0.009082 
0.010796 

0.953672 
0.962481 
0.971452 
0.980651 
0.990145 
1.000000 

0.028109 
0.024014 
0.019244 
0.013711 
0.007326 
0.000000 

152 



Appendix C 

Marine Hydrodynamics Lab Water 
Tunnel Geometry 

C.l    System Overview 

5.8m 

Figure C-l: MIT MHL Water Tunnel 

153 



Figure C-2: MIT MHL Water Tunnel Test Section 

154 



Appendix D 

GETWAKE Program Listing 

PROGRAM GETWAKE 
c 
c 
c    Reads in a set of wakepoints . 
c 
c    INPUT REQUIREMENTS: 
C    JUNK header line 
C    NPOINTS - NUMBER OF OFFSETS 
C    XIN, YIN 
C    ... 
C    (to end of file) 
c 
c 
c 

IMPLICIT NONE 
REAL XIN(1000),YIN(1000) 
REAL Xout(200),Yout(200) 
integer npoints,nfoil,i,k,ntemp,nout,j,ierr 
character FN0PEN*20 
character junk*30, title*30,JUNK2*2 
character PR0MPT2*30 
character FIN*20 
WRITE(*,*)'***• 
write(*.'(A,$)') 'Enter Filename of Tecplot stream data: ' 
read(*,'(A)') FNOPEN 
WRITE(*,*)'***' 
write(*,'(A)') 'Shortening file:' //FNOPEN 

0PEN(UNIT=1,FILE=FNOPEN,F0RM='FORMATTED',STATUS='OLD') 
WRITE(*,*)>***' 
WRITE(*,*)' ***READING DATA IN***' 
WRITE(*,*)'***' 
read(l,'(A)') junk 
read(l,'(A)') junk 
read(i,'(A)') junk 

C        WRITE(*,*)'READ THE TOP OF THE FILE' 
c 
c    keep next read as the title 

read(l,'(A)') title 
c 
c    now want to extract the integer for number 
c    of pairs of points 

CALL READIJ(l,npoints,J,IERR) 
98     FORMAT(A23,16,A5) 

WRITE(*,98)'***NUMBER DATAPOINTS IN: ',NPOINTS,' ***' 
WRITE(*,*)'***' 

155 



READ(1,'(A)') JUNK 
READ(1,*) ((xin(k),yin(k)),K=l,npoints) 

C       READ(1,*) JUNK 
CLOSE(l) 
WRITE(*,'(A)')' ***CLOSING FILE: ' // FNOPEN // ' ***' 
WRITE(*,*)'***' 

c 
c    Shorten Data file by taking only 20 datapoints in range 
c 

N0UT=20 
WRITE(*,98)'***NUMBER OF POINTS OUT: '.NOUT,' ***' 
WRITE(*,*)'***' 

NTEMP=int(float(npoints)/NOUT) 
WRITE(*,98)'***DATA SKIP INTERVAL: ',NTEMP,' ***' 
WRITE(*,*)'***> 

do 100 i=l,N0UT 
xout(i)=xin(i*ntemp-ntemp+i) 
yout(i)=yin(i*ntemp-ntemp+1) 

100    continue 

write(*,*)'****Data has been shortened.******' 
write(*.*)'***' 

PR0MPT2 = 'Output FILE'//' ('//'wakelin.dat'//') = ' 
WRITE (*,'(A,$)') PR0MPT2 
READ (*,'(A)') FIN 
IF (FIN(1:1).EQ.' ') FIN = 'wakelin.dat' 
WRITE (*,'(A)') 'OPENING FILE:  ' // FIN 
OPEN (UNIT=3,FILE=FIN,STATUS='UNKNOWN') 

91 format(i4) 
92 format(2fl0.6) 

WRITER* #)'***' 
WRITE(*j*)'***WRITING OUTPUT TO FILE***' 
WRITE(*,*)'***' 
WRITE(3,*)'Shortened: '.TITLE 
WRITE(3,91)N0UT 
do 200 i=l,nout 

write(3,92) xout(i),yout(i) 
200  continue 

close(3) 
write(*,*)' All Done, Thanks. ' 
WRITE(*.*)'***' 

stop 
end 

cXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
c 
c 
*************************** SUBROUTINE READIJ ********************* 
* EXTRACTS THE INTEGER I,J INDICES FROM A TECPLOT FILE HEADER * 
* Arguments: IUNIT Unit number of Tecplot file * 
* I Number of columns in IJ ordered data  * 
* J Number of rows in IJ ordered data     * 
* IERR 0=Valid data, l=Subroutine failed     * 
* It is assumed that I and J are between 1 and 9999 * 
* Justin E. Kerwin  August 19,1993 * 
******************************************************************* 

SUBROUTINE READIJ(IUNIT,I,J,IERR) 
CHARACTER+80 LABEL 
CHARACTER*4 ICODE 
IC0DE='    ' 

156 



IERR=0 
C Read in the Tecplot header line as a character string LABEL. 

READ(IUNIT,'(A)') LABEL 
C Find the length of the character string  

LMAX=LEN(LABEL) 
LBEGIN=1 

C First find I:(IJ=i), then find J:(IJ=2)  
DO 400 IJ=i,2 

IC0DE=' 
C .Find the position of the first = sign in the string  

DO 100 L=LBEGIN,LMAX 
IF(LABEL(L:L).Eq.CHAR(61)) THEN 

LMIN=L+1 
GO TO 110 

END IF 
100    CONTINUE 

IERR=1 
GO TO 9999 

110    CONTINUE 
C Find the position of the first number following an = sign. 

DO 200 L=LMIN,LMAX 
IF(LABEL(L:L).GT.CHAR(48).AND.LABEL(L:L).LT.CHAR(58)) THEN 

LSTART=L 
GO TO 210 

END IF 
200    CONTINUE 

IERR=1 
GO TO 9999 

210    K=l 
C Generate a substring ICODE consisting of consecutive numbers 

DO 300 L=LSTART,LSTART+4 
IF(LABEL(L:L).LT.CHAR(48).0R.LABEL(L:L).GT.CHAR(57)) THEN 

LBEGIN=L 
GO TO 310 

ELSE 
ICODE(K:K)=LABEL(L:L) 
K=K+1 

END IF 
300    CONTINUE 

IERR=1 
GO TO 9999 

C Convert the substring to integers I,J using an internal read 
310    IF(IJ.EQ.l) READ(IC0DE,'(I4)') I 

IF(IJ.EQ.2) READ(IC0DE,'(I4)') J 
400 CONTINUE 

9999 RETURN 
END 

157 



Appendix E 

PATCH Progam Listing 

PROGRAM PATCH 
REAL*8 X(200,200),Y(200,200) 
character*10 FNGPEN 

FN0PEN='inp02.dat' 
0PEN(UNIT=1,FILE=FN0PEN,F0RM='FORMATTED',STATUS='OLD') 
READCl,*) JGRD.KGRD 
READCl,*) ((X(J,K),J=1,JGRD),K=1,KGRD) 
READCl,*) ((Y(J,K),J=i,JGRD),K=l,KGRD) 
CLOSE(l) 

FN0PEN='inp02.dat' 
OPEN(UNIT=2,FILE=FNOPEN,F0RM='FORMATTED',STATUS='UNKNOWN') 
WRITE(2,*) JGRD-l.KGRD 
WRITE(2,*) CCX(J,K),J=2,JGRD),K=1,KGRD) 
WRITE(2,*) ((Y(J,K),J=2,JGRD),K=1,KGRD) 
CL0SE(2) 

FNOPEN='inp03.dat' 
0PEN(UNIT=1,FILE=FNOPEN,FORM='FORMATTED',STATUS='OLD') 
READCl,*) JGRD.KGRD 
READCl,*) ((X(J,K),J=1,JGRD),K=1,KGRD) 
READCl,*) ((Y(J,K),J=1,JGRD),K=1>KGRD) 
CLOSE(l) 

FNOPEN='inp03.dat' 
0PEN(UNIT=2,FILE=FNOPEN,F0RM='FORMATTED',STATUS='UNKNOWN') 
WRITE(2,*) JGRD-l.KGRD 
WRITE(2,*) ((X(J,K),J=2,JGRD),K=1,KGRD) 
WRITE(2,*) ((Y(J,K),J=2)JGRD))K=1,KGRD) 
CLOSE(2) 

FN0PEN='inp05.dat' 
0PEN(UNIT=1,FILE=FN0PEN,F0RM=,F0RMATTED',STATUS='OLD') 
READ(1,*) JGRD.KGRD 
READCl,*) C(XCJ,K),J=1,JGRD),K=1,KGRD) 
READCl,*) CCYCJ,K),J=1,JGRD),K=1,KGRD) 
CLOSECD 

FN0PEN='inp05.dat' 
OPEN CUNIT=2,FILE=FNOPEN,F0RM='FORMATTED',STATUS='UNKNOWN') 
WRITEC2,*) JGRD-1,KGRD 
WRITEC2,*) CCXCJ,K),J=2,JGRD),K=1,KGRD) 
WRITEC2,*) CCYCJ,K),J=2,JGRD),K=1,KGRD) 
CLOSEC2) 

158 



FNOPEN='inp06.dat' 
OPEN(UNIT=1,FILE=FNOPEN,FORM='FORMATTED',STATUS='OLD') 
READ(1,*) JGRD.KGRD 
READ(1,*) ((X(J,K),J=1,JGRD),K=1,KGRD) 
READ(1,*) ((Y(J,K),J=l,JGRD),K=i)KGRD) 
CLOSE(1) 

FNOPEN='inp06.dat' 
OPEN(UNIT=2,FILE=FNOPEN,FORM='FORMATTED',STATUS='UNKNOWN') 
WRITE(2,*) JGRD-l.KGRD 
WRITE(2,*) ((X(J,K),J=2,JGRD),K=i,KGRD) 
WRITE(2,*) ((Y(J,K),J=2,JGRD),K=1,KGRD) 
CLOSE(2) 

stop 
end 

159 



Appendix F 

Case Study Foil Offsets 

Offsets start at the trailing edge of the pressure side and march forward around the 

leading edge to the trailing edge of the suction side. Both data sets use a normalized 

chord length 1.0. The offsets listed here correspond to the foils displayed in Figures 

5-1 and 5-9. 

160 



F.l    Case Study I: The HRA 
Foil 

1.0 
0.995 
0.990 
0.985 
0.975 
0.965 
0.950 
0.925 
0.900 
0.875 
0.850 - 
0.825 - 
0.800 - 
0.775 - 
0.750 - 
0.725 
0.700 - 
0.650 
0.600 
0.550 
0.500 
0.450 
.400 
.350 
.300 
.250 -< 

0.200 
0.175 -i 
0.150 
.125 
,100 
.075 
.050 - 
.035 - 
.025 
.015 
.010 
.005 
.0025 
.001 
.0 

0.001 0 
0.0025 
0.005 0 
0.010 
0.015 
0.025 
0.035 
0.050 
0.075 
0.100 
0.125 
0.150 
0.175 
0.200 
0.250 
0.300 
0.350 
0.400 
0.450 
0.500 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

0 
000896 
000797 
000703 

0.000537 
0.000397 
0.000225 
0.000031 
0.000049 
0.000009 
0.000150 
0.000405 
0.000734 
0.001126 
0.001574 
0.002076 
0.002631 

003968 
005685 
007780 
010205 
012882 

0.015697 
0.018500 
0.021093 
0.023204 
0.024436 
024512 
024077 
023054 
021373 
018969 

0.015681 
0.013111 
0.011017 
0.008420 
0.006793 
0.004709 
-0.003274 
0.002036 
0.0 
.002076 
0.003375 
.004911 
.007200 
.009036 
.012061 
.014599 
.017865 
.022406 
.026204 
.029474 
.032329 
.034841 
.037059 
.040736 
.043546 
.045599 
.046962 
.047677 
.047760 

0 550 0 047207 
0 600 0 045990 
0 650 0 044037 
0 700 0 041199 
0 725 0 039327 
0 750 0 037072 
0 775 0 034427 
0 800 0 031406 
0 825 0 028036 
0 850 0 024371 
0 875 0 020515 
0 900 0 016571 
0 925 0 012588 
0 950 0 008599 
0 965 0 006225 
0 975 0 004671 
0 985 0 003166 
0 990 0 002433 
0 995 0 001713 
1 000 0 0 

161 



F.2    B-l Foil With Cup Mod- 0.069396 -0.012064 

ificat ion To Trailing Edge 0.060654 
0.053133 

-0.011696 
-0.011315 

0.046637 -0.010923 
1.000000 0.000000 0.040974 -0.010524 
0.989517 0.002052 0.035949 -0.010120 
0.979110 0.003558 0.031370 -0.009713 
0.968851 0.004586 0.027095 -0.009301 
0.958810 0.005204 0.023110 -0.008873 
0.949059 0.005478 0.019418 -0.008416 
0.939668 0.005477 0.016024 -0.007916 
0.930708 0.005269 0.012931 -0.007361 
0.922250 0.004920 0.010143 -0.006736 
0.914365 0.004499 0.007665 -0.006030 
0.907121 0.004072 0.005500 -0.005229 
0.900497 0.003672 0.003652 -0.004320 
0.894374 0.003298 0.002127 -0.003289 
0.888628 0.002943 0.000963 -0.002132 
0.883131 0.002604 0.000220 -0.000846 
0.877761 0.002274 0.000000 0.000570 
0.872391 0.001950 0.000133 0.001781 
0.866896 0.001626 0.000676 0.003074 
0.861152 0.001297 0.001617 0.004450 
0.855033 0.000959 0.002986 0.005909 
0.848423 0.000606 0.004814 0.007453 
0.841250 0.000236 0.007129 0.009082 
0.833456 -0.000154 0.009962 0.010796 
0.824986 -0.000568 0.013344 0.012596 
0.815783 -0.001006 0.017305 0.014480 
0.805789 -0.001473 0.021881 0.016443 
0.794947 -0.001971 0.027105 0.018482 
0.783201 -0.002503 0.033011 0.020591 
0.770495 -0.003071 0.039635 0.022766 
0.756770 -0.003678 0.047010 0.025003 
0.742000 -0.004322 0.055170 0.027297 
0.726196 -0.004997 0.064149 0.029643 
0.709371 -0.005694 0.073983 0.032038 
0.691542 -0.006406 0.084704 0.034476 
0.672721 -0.007126 0.096348 0.036953 
0.652924 -0.007845 0.108948 0.039464 
0.632166 -0.008556 0.122492 0.042000 
0.610461 -0.009251 0.136919 0.044547 
0.587823 -0.009922 0.152161 0.047087 
0.564277 -0.010563 0.168152 0.049605 
0.539906 -0.011168 0.184827 0.052085 
0.514822 -0.011734 0.202117 0.054513 
0.489138 -0.012255 0.219958 0.056871 
0.462964 -0.012730 0.238283 0.059145 
0.436413 -0.013153 0.257024 0.061319 
0.409596 -0.013521 0.276117 0.063376 
0.382625 -0.013830 0.295494 0.065302 
0.355611 -0.014076 0.315089 0.067080 
0.328667 -0.014255 0.334845 0.068702 
0.301935 -0.014366 0.354719 0.070169 
0.275618 -0.014414 0.374667 0.071483 
0.249922 -0.014402 0.394646 0.072647 
0.225056 -0.014337 0.414616 0.073662 
0.201226 -0.014221 0.434532 0.074531 
0.178641 -0.014061 0.454353 0.075256 
0.157509 -0.013861 0.474035 0.075838 
0.138036 -0.013626 0.493537 0.076282 
0.120430 -0.013359 0.512816 0.076587 
0.104875 -0.013067 0.531828 0.076757 
0.091313 -0.012752 0.550533 0.076795 
0.079551 -0.012417 0.568899 0.076701 

162 



0 .586921 0 .076477 
0 .604596 0 .076125 
0 621920 0 .075647 
0 638890 0 .075044 
0 655504 0 .074317 
0 671758 0 073469 
0 687648 0 072500 
0 703172 0 071413 
0 718327 0 070208 
0 733108 0 068888 
0 747514 0 067454 
0 761542 0 065910 
0 775192 0 064268 
0 788463 0 062543 
0 801358 0 060746 
0 813876 0 058891 
0 826017 0 056991 
0 837782 0 055059 
0 849171 0 053108 
0 860186 0 051152 
0 870825 0 049203 
0 881089 0 047275 
0 890979 0 045380 
0 900510 0 043511 
0 909739 0 041590 
0 918732 0 039530 
0 927555 0 037241 
0 936276 0 034634 
0 944959 0 031619 
0 953672 0 028109 
0 962481 0 024014 
0 971452 0 019244 
0 980651 0 013711 
0 990145 0 007326 
i 000000 0 000000 

163 



Bibliography 

[1] I. H. Abbott and A. E. Von Doenhoff. Theory of Wing Sections. Dover, New 

York, 1959. 

[2] D. A. Anderson, J. C. Tannehill, and R. H. Pletcher. Computational Fluid Me- 

chanics and Heat Transfer. Hemisphere Publishing, 1984. 

[3] J. W. Bailar, S. D. Jessup, and Y. T. Shen. Improvement of Surface Ship Pro- 

peller Cavitation Performance Using Advanced Blade Sections. In 23rd American 

Towing Tank Conference, New Orleans, USA, 1992. 

[4] K. J. Bathe. Finite Element Procedures. Prentice Hall, 2nd edition, 1996. 

[5] S. D. Black. FNSPLT Cubic Point Distribution Program. Unpublished, 1996. 

[6] S.D. Black. An Integrated Lifting Surface/Navier-Stokes Propulsor Design 

Method. Master's thesis, MIT Department of Ocean Engineering, June 1994. 

[7] F. Bloch. Effect of Trailing Edge Geometry on Propulsive Performance. Techni- 

cal report, Dept. of Ocean Engineering, Massachusetts Institute of Technology, 

December 1994. 

[8] R. M. Coleman. INMESH: An Interactive Program for Numerical Grid Genera- 

tion. Technical Report DTNSRDC-85/054, David W. Taylor Naval Ship Research 

and Development Center, August 1985. 

164 



[9] W. B. Coney. Some Notes on the Calculation of Viscous Effects on Lift. Tech- 

nical Report 89-8, Department of Ocean Engineering, Massachusetts Institute of 

Technology, September 1989. 

[10] M. Drela. XFOIL: An Analysis and Design System for Low Reynolds Number 

Aerofoils. Lecture Notes in Engineering: Low Reynolds Number Aerodynamics, 

(54), 1989. 

[11] M. Drela. XFOIL: An Analysis and Design System for Low Reynolds Number 

Airfoils. In Proceedings of the Conference on Low Reynolds Number Aerodynam- 

ics, 1989. 

[12] V. M. Falkner. The Solution of Lifting Plane Problems by Vortex Lattice Theory. 

R & M 2591, Aeronautical Research Council, 1947. 

[13] J.J. Gorski. Incompressible Cascade Calculation using an Upwind Differenced 

TVD Scheme. Presented to ASME Winter Annual Meeting, November 1988. 

[14] F. B. Hildebrand. Advanced Calculus for Applications. Prentice-Hall, Inc, second 

edition, 1976. 

[15] G. S. Hufford, M. Drela, and J. E. Kerwin. Viscous Flow around Marine Pro- 

pellers using Boundary-Layer Strip Theory. Journal of Ship Research, 38(1), 

March 1994. 

[16] J. Jorde. A Study of Two Cambered Trailing Edge Geometries. Technical report, 

Dept. of Ocean Engineering, Massachusetts Institute of Technology, December 

1995. 

[17] J. E. Kerwin. The MIT Marine Hydrodynamics Water Tunnel-A 53'rd Anniver- 

sary Celebration. Technical report, New England Section, SNAME, May 1992. 

[18] Justin E. Kerwin. 13.04 Lecture Notes - Hydrofoils and Propellers, February 

1994. 

165 



[19] R. W. Kimball and D. E. Egnor. HRA 2D Foil Experiment. Technical Report 

97-2, Department of Ocean Engineering, Massachusetts Institute of Technology, 

1997. in preparation. 

[20] Spyros A. Kinnas. Hydrofoil Lift and Drag From Momentum Integrations. Tech- 

nical Report Rep. 91-4, Department of Ocean Engineering, Massachusetts Insti- 

tute of Technology, November 1991. 

[21] J. T. Lee. A Potential Based Panel Method for the Analysis of Marine Pro- 

pellers in Steady Flow. Technical Report 87-13, Dept. of Ocean Engineering, 

Massachusetts Institute of Technology, July 1987. 

[22] J. T. Lee. A Potential Based Panel Method for The Analysis of Marine Propellers 

in Steady Flow. PhD thesis, Department of Ocean Engineering, Massachusetts 

Institute of Technology, August 1987. 

[23] E. V. Lewis. Principles of Naval Architecture. SNAME, Jersey City, NJ, 1988. 

[24] J. N. Newman. Marine Hydrodynamics. The MIT Press, Cambridge, Mas- 

sachusetts, 1977. 

[25] P. Nguyen and J. Gorski. Navier-Stokes Analysis of Turbulent Boundary Layer 

and Wake for Two-Dimensional Lifting Bodies. In Proceedings of the Eighteenth 

Symposium on Naval Hydrodynamics, pages 633-644. Office of Naval Research, 

January 1991. 

[26] P.N. Nguyen. Use of Navier-Stokes Analysis in Section Design. Technical Report 

DTRC-SHD-1262-04, David Taylor Research Center, December 1990. (UNCLAS- 

SIFIED). 

[27] Phillip Colella & Elbridge Gerry Puckett. Modern Numerical Methods for Fluid 

Flow, November 1994. 

166 



[28] R. H. Sabersky, A. J. Acosta, and E. G. Hauptman. Fluid Flow, A first Course 

In Fluid Mechanics. Macmillan Publishing Company, 3rd edition, 1989. 

[29] D. Valentine. Reynolds-Averaged Navier-Stokes Codes and Marine Propulsor 

Analysis. Technical Report Report HD-1262-06, Carderock Division, Naval Sur- 

face Warfare Center, October 1993. 

[30] F. M. White.  Viscous Fluid Flow. McGraw-Hill, second edition, 1991. 

[31] D. K. P. Yue. 13.021 Lecture Notes - Marine Hydrodynamics /, September 1994. 

167 


