

WL-TR-97-4075

PROCEEDINGS OF THE ANNUAL MECHANICS OF COMPOSITES REVIEW (11^{TH})

Sponsored by:

Air Force Wright Aeronautical Laboratories Materials Laboratory

APRIL 1997

FINAL REPORT FOR PERIOD 22-24 OCTOBER 1985

Approved for public release; distribution unlimited

MATERIALS DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AFB OH 45433-7734

REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 222	prmation is estimated to average 1 hour per r completing and reviewing the collection of in for reducing this burden, to Washington Hea 02-4302, and to the Office of Management a	esponse, including the time for re iformation. Send comments rega dquarters Services, Directorate fo nd Budget, Paperwork Reduction I	viewing instructions, searching existing data sour riding this burden estimate or any other aspect of Information Operations and Reports, 1215 Jeffe Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	April 1997	Final Re	eport 22-24 OCT 1985
4. TITLE AND SUBTILE PROCEEDINGS OF THE ANNU	JAL MECHANICS OF COMPC	SITES REVIEW	5. FUNDING NUMBERS
(11th) 6. AUTHOR(S)			
7. PERFORMING ORGANIZATION I	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Air Force Materials Laboratory Nonmetallic Materials Division Wright-Patterson AFB OH 45433			
9. SPONSORING/MONITORING AG Materials Directorate	ENCY NAME(S) AND ADDRESS(E	S)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Wright Laboratory Air Force Materiel Command Wright-Patterson AFB Ohio 4543	3-7734		WL-TR-97-4075
12a. DISTRIBUTION AVAILABILITY APPROVED FOR PUBLIC REL	STATEMENT EASE; DISTRIBUTION IS UN	LIMITED	12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 word This report contains the basic une	<i>ds)</i> dited vu-graphs of the presentati	ons at the "Mechanics"	of Composites Review" sponsore
jointly by the Non-metallic Materi Flight Dynamics Laboratory and t presentations cover current in-hou	als Division of the Air Force M he Directorate of Aerospace Sci use and contract programs under	aterials Laboratory, the ences of the Air Force C the sponsorship of these	Structures Division of the Air For Office of Scientific Research. The e three organizations.
14. SUBJECT TERMS epoxy-matrix composites; composites; fatigue of graphite/epoxy composites	site materials; resin matrix comp ites; fracture and fatigue of bi-n	osites; composite bonde naterials	ed joints; 15. NUMBER OF PAGES 158 16. PRICE CODE
14. SUBJECT TERMS epoxy-matrix composites; composites; fatigue of graphite/epoxy composities 17. SECURITY CLASSIFICATION OF REPORT	site materials; resin matrix comp ites; fracture and fatigue of bi-n 8. SECURITY CLASSIFICATION OF THIS PAGE	osites; composite bonde aterials 19. SECURITY CLASSIFI OF ABSTRACT	ed joints; 15. NUMBER OF PAGES 158 16. PRICE CODE CATION 20. LIMITATION OF ABSTR

JAK	
Standard Form 298 (Rey. 2-89) (EG) Prescribed by ANSI Std. 239.18 Designed using Perform Pro, WHS/DIOR, Oct 94	

AGENDA MECHANICS OF COMPOSITES REVIEW 22-24 OCTOBER 1985

TUESDAY, 22	<u>OCTOBER 1985</u>	PAGE
7:15 A.M.	REGISTRATION	
8:15	OPENING REMARKS	
8:30	DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION: J. Awerbuch, W. Eckles, and E. Katz, Drexel University	1
9:10	MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES: J. Awerbuch, S. Ghaffari, and E. Katz, Drexel University	12
9:50	BREAK	
10:20	PROCESSING THERMOPLASTIC COMPOSITES: G. Springer, Stanford University	22
11:00	COMPOSITE CRASH DYNAMICS: H. Carden, NASA Langley Research Center, R. Boitnott and K. Jackson, U.S. Army/AVSCOM	26
11:40	LUNCH	
1:00 p.m.	DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES: J. Dugundji and G-S. Chen, Massachusetts Institute of Technology	36
1:40	AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS: J. Crews and K. Shivakumar, NASA Langley Research Center, and I. Raju, Analytical Services & Materials, Inc.	, 42
2:20	BREAK	
2:50	STATISTICAL LIFE PREDICTION OF COMPOSITE STRUCTURES: D. Jones and J. Yang, The George Washington University	48
3:30	ANALYSIS OF DELAMINATION GROWTH FROM MATRIX CRACKS IN LAMINATES SUBJECTED TO BENDING LOADS: G. Murri, NASA Langley Research Center, and E. Guynn, Kentron Inc.	49
4:10 5:00	ADJOURN SOCIAL	

AGENDA (CONTINUED) MECHANICS OF COMPOSITES REVIEW 22-24 OCTOBER 1985

WEDNESDAY, 23 OCTOBER 1985 PAGE 8:30 A.M. ANALYSIS OF PROGRESSIVE MATRIX CRACKING IN COMPOSITE LAMINATES: G. DVORAK, E. WUNG AND K. AHANGAR, RENSSELAER POLYTECHNIC 50 INSTITUTE, AND N. LAWS, UNIVERSITY OF PITTSBURGH INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE -9:10 PREDICTION AND EXPERIMENT: R. KIM, UNIVERSITY OF DAYTON RESEARCH 59 INSTITUTE, AND S. SONI, ADTECH SYSTEMS RESEARCH INC. 9:50 BREAK STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE 10:20 69 STRUCTURES: P. LAGACE, MASSACHUSETTS INSTITUTE OF TECHNOLOGY 11:00 ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER 71 COMPRESSION LOADING: H. KAN, NORTHROP CORPORATION LUNCH 11:40 SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE 1:00 P.M. 84 MATERIALS: J. WHITCOMB, NASA LANGLEY RESEARCH CENTER 1:40 FORMULATION OF LAMINATED BEAM AND PLATE ELEMENTS FOR A MICRO-93 COMPUTER: A. CHEN AND T. YANG, PURDUE UNIVERSITY 2:20 BREAK 2:50 APPROXIMATE ANALYSIS OF COMPOSITES WITH DAMAGE: G. SENDECKYJ, 94 FLIGHT DYNAMICS LABORATORY 95 3:30 A METHOD OF LAMINATE DESIGN: I. SUSUKI, MATERIALS LABORATORY 4:10ADJOURN

AGENDA (Concluded) MECHANICS OF COMPOSITES REVIEW 22-24 OCTOBER 1985

THURSDAY, 2	<u>4 OCTOBER 1985</u>	PAGE
8:30 a.m.	MECHANICS OF COMPRESSION FAILURE IN FIBER REINFORCED COMPOSITES: S. Wang, University of Illinois	105
9:10	SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING: C. Sun, Purdue University	106
9:50	BREAK	
10:20	THERMOVISCOELASTIC PROPERTIES OF UNIDIRECTIONAL FIBER COMPOSITES: E. Humphreys and Z. Hashin, Materials Science Corporation	114
11:00	COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER: C. Chamis, C. Ginty, and P. Murthy, NASA Lewis Research Center	124
11:40	ADJOURN	

APPENDIX A: PROGRAM LISTINGS A-1

REVISED AGENDA

MECHANICS OF COMPOSITES REVIEW

22 - 24 OCTOBER 1985

TUESDAY, 2	2 OCTOBER 1985	PAGE
7:15 a.m .	REGISTRATION	
8:15	OPENING REMARKS	
8:30	DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION: J. Awerbuch, W. Eckles, and E. Katz, Drexel University	1
9:10	MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES: J. Awerbuch, S. Ghaffari, and E. Katz, Drexel University	12
9:50	BREAK	
10:20	PROCESSING THERMOPLASTIC COMPOSITES: G. Springer, Stanford University	22
11:00	COMPOSITE CRASH DYNAMICS: H. Carden, NASA Langley Research Center, R. Boitnott and K. Jackson, U.S. Army/AVSCOM	26
11:40	LUNCH	
1:00 p.m.	DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES: J. Dugundji and G-S. Chen, Massachusetts Institute of Technology	36
1:40	AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS: J. Crews and K. Shivakumar, NASA Langley Research Center, and I. Raju, Analytical Services & Materials, Inc.	42
2:20	BREAK	
2:50	A METHOD OF LAMINATE DESIGN: I. Susuki, Materials Laboratory	95
3:30	ANALYSIS OF DELAMINATION GROWTH FROM MATRIX CRACKS IN LAMINATES SUBJECTED TO BENDING LOADS: G. Murri, NASA Langley Research Center, and E. Guynn, Kentron Inc.	49
4:10	ADJOURN	

5:00 SOCIAL

REVISED AGENDA (CONTINUED)

WEDNESDAY	, 23 OCTOBER 1985	PAGE
8:30 a.m.	ANALYSIS OF PROGRESSIVE MATRIX CRACKING IN COMPOSITE LAMINATES: G. Dvorak, E. Wung and K. Ahangar, Rensselaer Polytechnic Institute, and N. Laws, University of Pittsburgh	50
9:10	INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE - PREDICTION AND EXPERIMENT: R. Kim, University of Dayton Research Institute, and S. Soni, AdTech Systems Research Inc.	59
9: 50	BREAK	
10:25	STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES: P. Lagace, Massachusetts Institute of Technology	69
11:05	ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING: H. Kan, Northrop Corporation	71
11:45	LUNCH	
1:15 p.m.	SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS: J. Whitcomb, NASA Langley Research Center	84
1:55	FORMULATION OF LAMINATED BEAM AND PLATE ELEMENTS FOR A MICRO- COMPUTER: A. Chen and T. Yang, Purdue University	93
2:35	BREAK	
3:10	COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER: C. Chamis, C. Ginty, and P. Murthy, NASA Lewis Research Center	124
3:50	ADJOURN	
THURSDAY,	24 OCTOBER 1985	
8:30 a.m.	MECHANICS OF COMPRESSION FAILURE IN FIBER REINFORCED COMPOSITES: S. Wang, University of Illinois	105
9:10	SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING: C. Sun, Purdue University	106
9:50	BREAK	
10:30	THERMOVISCOELASTIC PROPERTIES OF UNIDIRECTIONAL FIBER COMPOSITES: E. Humphreys and Z. Hashin, Materials Science Corporation	114
11:10	ADJOURN	
	APPENDIX A: PROGRAM LISTINGS	A-1

FOREWORD

This report contains the abstracts and viewgraphs of the presentations at the <u>Eleventh Annual Mechanics of Composites Review</u> sponsored by the Materials Laboratory. Each was prepared by its presenter and is published here unedited. In addition, a Listing of both the in-house and contractual activities of each participating organization is included.

The <u>Mechanics of Composites Review</u> is designed to present programs covering activities throughout the United States Air Force, Navy, and NASA. Programs not covered in the present review are candidates for presentation at future mechanics of composites reviews. The presentations cover both in-house and contract programs under the sponsorship of the participating organizations.

SINCE THIS IS A REVIEW OF ON-GOING PROGRAMS, MUCH OF THE INFORMATION IN THIS REPORT HAS NOT BEEN PUBLISHED AS YET AND IS SUBJECT TO CHANGE; BUT TIMELY DISSEMINATION OF THE RAPIDLY EXPANDING TECHNOLOGY OF ADVANCED COMPOSITES IS DEEMED HIGHLY DESIRABLE. WORKS IN THE AREA OF MECHANICS OF COMPOSITES HAVE LONG BEEN TYPIFIED BY DISCIPLINED APPROACHES. IT IS HOPED THAT SUCH A HIGH STANDARD OF RIGOR IS REFLECTED IN THE MAJOR-ITY, IF NOT ALL, OF THE PRESENTATIONS IN THIS REPORT.

FEEDBACK AND OPEN CRITIQUE OF THE PRESENTATIONS AND THE REVIEW ITSELF ARE MOST WELCOME AS SUGGESTIONS AND RECOMMENDATIONS FROM ALL PARTICIPANTS WILL BE CONSIDERED IN THE PLANNING OF FUTURE REVIEWS.

ing C Ans

GEORGE E. HUSMAN, CHIEF Nonmetallic Materials Division Materials Laboratory

ACKNOWLEDGEMENT

WE EXPRESS OUR APPRECIATION TO THE AUTHORS FOR THEIR CONTRIBUTIONS AND TO THE POINTS OF CONTACT WITHIN THE ORGANIZATIONS FOR THEIR EFFORTS IN SUPPLYING THE PROGRAM LISTINGS.

DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION

Jonathan Awerbuch, William F. Eckles and Eliezer Katz

Department of Mechanical Engineering and Mechanics Drexel University Philadelphia, Pennsylvania 19104

ABSTRACT

Monitoring acoustic emission (AE) during fatigue loading appears to offer a practical procedure for detecting fatigue damage and damage growth. This non-destructive tool is particularly attractive because of the simplicity in its use, the acquisition of data in real-time, its potentail for monitoring damage initiation, progression and accumulation, for anticipating failure sites, for identifying the different failure mechanisms and determining damage criticality, and for its sensitivi-ty to non-visual damage.

Problems remain to be solved, however: proper interpretation of the voluminous data obtained, the appropriate test methodology to be employed, the correlation between AE results and the actual deformation characteristics and state of damage, identification of the various failure mechanisms and processes, and the distinction between emission generated by damage and that generated by friction.

In this study, AE is monitored in a variety of cross-ply graphite/epoxy laminates of different stacking sequences and containing different ratios of ply thickness. Three loading sequences are applied: monotonic quasi-static loading to failure, quasi-static loading-unloading while incrementally increasing the load to failure, and fatigue loading, all in uniaxial tension. The AE results are compared with a variety of nondestructive (visual, X-radiography, acousto-ultrasonics, and frequencey response) and destructive (laminate deplying, photomicrography, and scanning electron microscopy) techniques. AE is also monitored with specially designed lay-ups in which the different failure mechanisms can be isolated.

Results indicate that stacking sequence, and to a lesser degree the ratio of ply thicknesses, strongly affects the event intensities. Emphasis is placed on determining the correlation between the AE results and actual failure processes for different laminates. During both quasi-static and fatigue loading, a significant amount of emission is generated by friction, in some cases exceeding that generated by new damage. During fatigue loading, the friction generated emission can be discriminated by the load level at which it occurs and through proper correlation among the AE source intensity variables. Results indicate that matrix failure and fiber breakage result in middle and high range AE source intensities. Due to the rapidity with which matrix cracks and delamination progress, distinction of these processes is more difficult and is shown to have potential for determining the state of damage. Initiation of transverse cracks, damage accumulation, and the state of transverse crack saturation are clearly distinguished by this method in cross-ply laminates.

CONCLUSIONS

- Stacking sequence and ply thickness have significant effect on damage initiation and accumulation and on the failure process as detected through acoustic emission.
- 2. A significant amount of emission is generated by friction among newly created fracture surfaces during both quasi-static and fatigue loading.
- The friction generated emission can be distinguished from emission generated by new damage through proper correlation among various AE source intensities.
- Preliminary results indicate that AE source intensities of friction generated emission depend on the type of failure.
- 5. Monitoring AE during fatigue loading can indicate the cycle number at which damage initiates and progresses and the type of damage.

6. The frequency response of the subject laminate strongly depends on the state of damage. Amplitude reduction and shift in frequency can be qualtiatively correlated with state of damage.

DETECTION OF FAILURE PROGRESSION IN CROSS-PLY

GRAPHITE/EPOXY DURING FATIGUE LOADING

THROUGH ACOUSTIC EMISSION

Jonathan Awerbuch, William F. Eckles and Eliezer Katz

Department of Mechanical Engineering and Mechanics Drexel University Philadelphia, Pennsylvania 19104

Program sponsored by AFWAL/FDL, F33615-84-3204. George P. Sendeckyj of AFWAL/FIBEC is the program monitor.

OBJECTIVE

DETERMINE THE VALIDITY OF THE ACOUSTIC EMISSION TECHNIQUE IN DETECTING DAMAGE INITIATION AND ACCUMULATION AND IN IDENTIFYING THE FAILURE MECHANISMS AND PROCESSES IN GRAPHITE/EPOXY LAMINATES DURING FATIGUE LOADING

APPROACH

- IDENTIFY THE APPROPRIATE TESTING, DATA REDUCTION
 AND DATA ANALYSIS METHODOLOGIES
- PERFORM EXPERIMENTAL PROGRAM WITH A VARIETY OF CROSS-PLY LAMINATES AND DETERMINE THE EFFECT OF STACKING SEQUENCE AND PLY THICKNESS ON ACOUSTIC EMISSION RESULTS
- DETERMINE THE ACOUSTIC EMISSION SOURCE INTENSITIES WHICH BEST IDENTIFY MATRIX CRACKING, DELAMINATION, FIBER BREAKAGE AND FRICTION
- CORRELATE THE ACOUSTIC EMISSION RESULTS WITH OTHER NONDESTRUCTIVE (Visual, X-Radiography, Acousto-Ultrasonics, and Frequency Response) and DESTRUCTIVE (Laminate Deply, Photomicrography, and SEM) TECHNIQUES

Figure 2. Acoustic emission accumulated during quasi-static tensile loading to failure in two cross-ply graphite/epoxy laminates: a) count-rate and deformation; b) location distribution histograms of events; c) amplitude distribution histograms of events. Results indicate effect of stacking sequence on AE results.

AMPLITUDE (dB)

Figure 3. Amplitude distribution histograms of events accumulated at different load levels ($R = \sigma/\sigma_f \ge 100\%$) during quasi-static tensile loading to failure for two cross-ply graphite/epoxy laminates. Results indicate effect of stacking sequence on the failure process.

loading.

Figure 5. Distribution of AE source intensities for events accumulated during the initial part of fatigue loading (R = 0.1) of graphite/epoxy $[0_2/90_2/0]_s$ laminate. Significant emission is generated by friction among newly created fracture surfaces. High source intensities occur only at the upper load range.

Figure 6. Distribution of AE source intensities, for the same specimen shown in Figure 5, for events accumulated during a different range of cycle numbers. Practically no new damage has occurred and all emission is generated by friction.

Figure 8. Distribution of AE source intensities for events accumulated during cycle 15 through 30 of the same specimen shown in Figure 7 for a) events generated at the upper part of the load range; b) events generated at the lower part of the load range. Low and middle range AE source intensities are generated by friction and matrix failure, respectively.

.

Figure 9. Distribution of AE source intensities for events accumulated during cycle 210 through 250 of the same specimen shown in Figure 7 for a) events generated at the upper part of the load range; b) events generated at the lower part of the load range. Identification of damage through AE may require analysis of several source intensities and load ranges.

Frequency response versus state of stress, and number of transverse cracks for graphite/epoxy $[0_2/90_2/0]_s$ laminate: a) unloaded specimen; b) specimen under 75% of maximum previous load cycle. Amplitude at frequencies of 150 and 470 KHz reduces dramatically with damage initiation. In the frequency range of 0.8 - 1.0 MHz amplitude is constant but a shift in frequency occurs during damage accumulation. Following damage saturation, frequency is unchanged. Figure 10.

MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES

Jonathan Awerbuch, Shahrokh Ghaffari and Eliezer Katz

Department of Mechanical Engineering and Mechanics Drexel University Philadelphia, Pennsylvania 19104

ABSTRACT

The composite laminates now being used in aircraft and aerospace structures are subjected to a variety of impact threats, such as dropped tools during fabrication and handling, or hard objects such as runway stones, ice balls, etc. Research results during the past two decades indicate that such impact damage is frequently non-visual but nevertheless results in significant performance degradation. This sensitivity of composites to non-visual internal damage is of major concern, primarily when these materials are used in primary structures.

Among the conventional nondestructive techniques for detecting and locating non-visual impact damage are ultrasonic C-scan and X-radiography. Monitoring acoustic emission (AE) is a promising NDT procedure in that it can provide information about damage progression and damage criticality in real-time. Consequently, this study focuses on the applicability of the AE technique to impact-damaged composites subjected to external loading.

This research constitutes a comprehensive program to provide a detailed characterization of impact damage in graphite/epoxy laminates subjected to low velocity (20-500 m/sec) impact and to develop the proper procedures for monitoring acoustic emission in impact-damaged laminates. A variety of experimental and analytical techniques are employed in order to determine impact damage criticality, with primary emphasis being placed on the applicability of the acoustic emission technique to detect and locate placed on the applicability of the accustic emission under external loading, an non-visual impact damage, monitor its progression under external loading, an and deter-Four major areas are addressed in this program: nondemine its criticality. structive detection and evaluation with emphasis on the acoustic emission technique; destructive examination for detailed mapping of the impact-damaged region; 3. failure, fracture, degradation in performance and their modeling; and 4. determina-2. tion of damage criticality to identify the major causes of degradation in properties and the NDT detection threshold.

The acoustic emission results indicate that artificially induced damage (e.g. circular holes and slits) could be easily detected and located at relatively early stages of loading. Similar results were obtained with laminates containing complete perforation due to impact. However, when non-visual impact damage occurs, with significant delamination, matrix cracking and splitting (as detected through stereo X-radiographs, ultrasonic C-and F-scans, photomicrographs and deplied laminates), detection and location of existing damage during proof loading is more difficult, mainly because of the significant emission generated from throughout the specimen length during the rapid progression and accumulation of the matrix dominated failures. It has been determined, through the analysis of the AE event intensities, that during quasi-static loading significant emission is generated by friction between impact-damaged fracture surfaces in contact with each other. The more severe the damge is, the larger the amount of friction generated emission and the lower the stress level at which it initiates. Only at higher loads is actual damage progression detected through the AE. Consequently, an experimental procedure and AE data analysis methodology have been developed to detect and locate non-visual impact damage during cyclic loading. The results indicate that, based on the friction generated emission, such damage could be easily detected and located with a few load cycles and for dynamic stress levels less than 30% of static ultimate stress. With an increasing number of cycles, damage initiation and progression could be identified as well.

Other NDT techniques and examination procedures developed and applied in this research program include the acousto-ultrasonic (AU) technique and the frequency response of the impact-damaged laminate. The results indicate that both techniques can easily detect the existence of damage and its severity and they qualitatively correlate well with the strength degradation of the subject laminate. From stereo X-radiographs the depth of the delaminated interfaces and the extent of splitting could be approximately identified, and these results also correlated well with the results obtained with the ultrasonic F-Span and deplying techniques. Other issues addressed in this study include the effects of artificially induced damage (e.g. delamination, broken fibers and notches), oblique impact, laminate thickness and configuration, strength degradation, etc., most of which are discussed in the formal presentation.

CONCLUSIONS

- 1. Impact damage is largely non-visual, nevertheless nondestructive and destructive examinations reveal significant internal damage in the form of delamination, intraply cracks, matrix splitting in all damaged plies, and fiber breakage. Degree of stiffness and strength degradation depend on laminate configuration.
- During quasi-static loading in tension, the detection and location of non-visual impact damage through acoustic emission is difficult. Significant emission is generated by friction among the impact-damaged fracture surfaces.
- 3. However, based on this friction generated emission, during cyclic loading impact damage could be easily detected and located with a few load cycles and at relatively low dynamic stress levels. Damage progression could be easily tracked and failure mechanisms identified.
- 4. Damage severity could be easily determined through the acousto-ultrasonic technique. All event intensities strongly depend on the level of damage and rapidly attenuate with increasing severity.
- 5. Similar results are obtained using the frequency response of the subject laminate, which was found to be highly sensitive to impact damage. It seems that the frequency response depends on the details of the impact-damaged region.
- Good qualitative correlation could be established between the various destructive and nondestructive examination procedures.

MONITORING ACOUSTIC EMISSION IN

IMPACT-DAMAGED COMPOSITES

Jonathan Awerbuch, Shahrokh Ghaffari and Eliezer Katz

Department of Mechanical Engineering and Mechanics Drexel University Philadelphia, Pennsylvania 19104

Program sponsored by the Office of Naval Research, N00014-84-K-0460. Yapa Rajapakse is the program monitor.

OBJECTIVES

- DETERMINE THE APPLICABILITY OF THE ACOUSTIC EMISSION . TECHNIQUE TO DETECT AND LOCATE IMPACT DAMAGE IN COMPOSITE LAMINATES, TRACK ITS PROGRESSION, IDENTIFY THE FAILURE MECHANISMS, AND EVALUATE ITS CRITICALITY
- CORRELATE THE ACOUSTIC EMISSION RESULTS WITH THE MOST . COMMONLY USED NONDESTRUCTIVE AND DESTRUCTIVE EXAMINATION TECHNIQUES
- CONDUCT A DETAILED CHARACTERIZATION OF THE IMPACT-DAMAGED REGION AND IDENTIFY THE MAJOR MATERIAL VARIABLES AFFECTING ITS SEVERITY

APPROACH

I. DETECTION TECHNIQUES (NON-DESTRUCTIVE)

- 1. VISUAL
- 2. X-RADIOGRAPHS (3-D)
- 3. ULTRASONICS (C and F- SCANS) 3. S.E.M. (3-D)
- 4. ACOUSTO ULTRASONICS
- 5. FREQUENCY RESPONSE
- 6. ACOUSTIC EMISSION
- 7. C.C.T.Y.

III. FAILURE AND FRACTURE

- 1. STIFFNESS AND STRENGTH DEGRADATION
- 2. APPLICATION OF FRACTURE MODELS APPLIED TO COMPOSITES
- 3. FINITE ELEMENT SIMULATION OF IMPACT DAMAGE

IV. DAMAGE CRITICALITY

- 1. CORRELATION WITH ARTIFICIALLY INDUCED DAMAGE (Broken Fibers, Inserted delamination, Notches)
- 2. OBLIQUE IMPACT
- 3. STACKING SEQUENCE EFFECT(S)
- 4. LAMINATE CONFIGURATION (EFFECTS)
- 5. LOADING FUNCTION EFFECT(S)
- 6. THICKNESS EFFECT(S)

- II. EXAMINATION TECHNIQUES (DESTRUCTIVE)
 - 1. PHOTOMICROGRAPHY
 - 2. DEPLYING

SPEC. NO. 2-B10 LAY - UP: $[0_2/\pm60/0_2/\pm60]_s$ Impact Velocity = 58^2 m/s

SPEC. NO. AQI-10 LAY - UP: $[0/\pm 45/90]_{2}$ Impact Velocity = 67 m/s

SPEC. NO. 1-B2 LAY - UP: $[0_2/\pm60/0_2/\pm60]$ Impact Velocity = 86^2 m/s

SPEC. NO. 2-A4 LAY - UP: $[0_2/\pm 60/0_2/\pm 60]_{2s}$ Impact Velocity = $60^{\circ} m/s$ Ply No. 4, -60° Front

Figure 1. X-radiographs, a C-scan record, photomicrographs and a deplied interface of non-visual impact-damaged graphite/epoxy laminates, all showing significant amount of delamination, intraply matrix cracks and matrix splitting.

ite/epoxy [0/±45/90]₂₈ laminate with: a) non-visual impact damage, recorded during quasi-static loading to failure; b) visual impact damage, recorded during quasi-static loading to failure; and c) non-visual impact damage, recorded during low cycle fatigue loading. Results indicate that impact damage could be easily detected and located during cyclic loading, while during static loading the detection of distribution histrograms of events recorded for impact damaged graphsuch damage is more difficult. Loca tion Figure 2.

16

Figure 3. Amplitude distribution histograms of events recorded at different load levels $(R = \sigma/\sigma_f \times 100\%)$ during quasi-static loading to failure of graphite/epoxy $[0/\pm 45/90]_{2s}$ laminates containing: a) non-visual impact damage; and b) visual impact damage. The larger the damage is, the larger the amount of friction generated emission and the higher the relative load level at which damage progresses.

Figure 4. Event amplitudes as a function of applied load recorded during quasi-static loading to failure of the same specimen shown in Figure 3, containing: a) non-visual impact damage; b) visual impact damage. In the case of non-visual impact damage high amplitude events initiate at relatively lower load levels indicating early initiation of damage progression.

Figure 5. Distribution of acoustic emission source intensities for events accumulated during the initial part of fatigue loading (R=0.1) of graphite/epoxy [0/±45/90]₂₈ laminate: a) events generated through the entire load range; b) events generated at the lower part of the load range. Distinction between emission generaged by friction and by actual damage growth may require analysis of several source intensities and load ranges.

Figure 6. Acoustic emission source intensities as a function of applied dynamic stress and number of cycles during the initial part of fatigue loading of the same specimen shown in Figure 5: a) events generated through the entire load range; b) events generated at the lower part of the load range. High source intensities occur only at the upper part of the load range indicating damage accumulation. At the lower part of the load range all source intensities are of medium and low ranges, all of which are generated by friction. These results were obtained throughout the fatigue loading.

Figure 7. Frequency response of impact-damaged graphite/epoxy $[0/\pm 45/90]_{28}$ laminate and X-radiographs recorded for three different impact velocities. Results indicate that the frequency response of the subject laminate is sensitive to damage severity.

Figure 8. Peak amplitude of average signal level (A.S.L.) of the frequency response (examples of which are shown in Figure 7) measured at 350 KHz versus impact velocity (graphite/epoxy [0/±45/90]₂₈). The peak amplitude is highly sensitive to impact damage.

Figure 9. Acousto-ultrasonic (AU) event intensities (counts, duration and energy) versus impact velocity for graphite/epoxy [0/±45/90]_{2s} laminate. All three AU vari-ables are highly sensitive to state of damage.

PROCESSING THERMOPLASTIC COMPOSITES

George S. Springer

Department of Aeronautics and Astronautics Stanford University, Stanford, California 94305

Fiber reinforced thermoplastic resin composites are manufactured by heating the composite above the "melting" point of the resin followed by rapid cooling. Pressure is also applied during cooling. The cooling rate determines the crystal structure of the resin. The applied pressure assures the proper resin content and fiber distribution. Hence, both the cooling rate and the applied pressure affect strongly the mechanical properties of the composite. Therefore, the appropriate cooling rates and pressures must be employed to achieve the required mechanical properties.

The objectives of this investigation is to determine the effects of the processing parameters on the mechanical properties, and to establish methods for selecting the proper processing variables (cooling rate, pressure) for each application. To achieve these objectives, a model is being developed which simulates the manufacturing process, and relates the process variables to the thermal, chemical, and mechanical properties. The model consists of two sub-models. The "thermo-chemical" submodel relates the cooling rate to the crystallinity and the mechanical properties of the finished product. The "flow" submodel relates the applied pressure and the resin and fiber distributions.

Thus far, the "thermo-chemical" submodel has been developed. This model provides relationships between the cooling rate and crystallinity, and between the crystallinity and mechanical properties. The model was implemented with a "user-friendly" computer code suitable for generating numerical results for thermoplastic resin composites and, in particular, for PEEK resin composites.

Tests were also performed with PEEK resin. In these tests, first the relationship between the cooling rate and crystallinity was established using differential scanning calorimetry. Second, the tensile, compressive and shear strengths and moduli were measured as functions of the cooling rate. These data, together with the computer code, can be used to determine the optimum cooling rates to be used for PEEK resin composites.

PROCESSING THERMOPLASTIC COMPOSITES

OBJECTIVE

Department of Aeronautics and Astronautics Stanford University

To establish procedures needed to determine optimum process variables (cooling rate, pressure)

Principal Investigator: George S. Springer

Investigators:

J. Burwasser W. Lee A. Miller M. Talbott

APPROACH

● THERMOCHEMICAL MODEL
 COOLING RATE
 CRYSTALLINITY
 ↓
 MECH. PROPERTIES

○ FLOW MODEL

PRESSURE ↓ RESIN FLOW ↓ FIBER-RESIN DISTR. ↓ MECH. PROPERTIES

THERMOCHEMICAL MODEL

THERMOCHEMICAL MODEL

• $\log[-\ln(1-c)] = \log \phi - n \log(\frac{dT}{dt})$

0.5

 $\log[-\ln(1-c)] = \log \phi - n \log(\frac{dT}{dt})$

 $\phi = -0.062 \,\mathrm{T} + 20.2$

24

MECHANICAL PROPERTIES

1. Tensile Properties

MECHANICAL PROPERTIES

3. Shear Properties

MECHANICAL PROPERTIES

2. Compressive Properties

Definition of Compressive Strength

SUMMARY

PROGRESS TO DATE

- 1) GENERAL PROCEDURE FOR ESTABLISHING PROCESS VARIABLES
- 2) "USER FRIENDLY COMPUTER CODE FOR RELATING COOLING RATE, CRYSTALLINITY AND MECHANICAL PROPERTIES
- 3) TEST METHODS FOR DETERMINING CRYSTALLINITY
- 4) DATA AND EMPIRICAL CORRELATIONS FOR PEEK RESIN
 - CRYSTALLINITY AS A FUNCTION OF COOLING RATE
 - MECHANICAL PROPERTIES AS A FUNCTION OF COOLING RATE
COMPOSITE CRASH DYNAMICS

Huey D. Carden NASA Langley Research Center Hampton, VA. 23665

Richard L. Boitnott and Karen E. Jackson Aerostructures Directorate U.S. Army Aviation Research and Technology Activities-AVSCOM NASA Langley Research Center Hampton, VA. 23665

ABSTRACT

There have been many studies of the dynamic behavior of composite materials and structures. However, the majority of these studies have been concerned with the response of laminates to localized impact. Tolerance of the laminate to delamination, fiber breakage, and other forms of damage, and the influence of any damage on the strengths have been the principal concerns of these past studies. In contrast, little has been done to study large deformation transient dynamic response of structural elements as-a-whole, that is global response as opposed to local response. However, with the increasing usage of composite materials for major structural elements in aircraft, more research is needed to understand the response of structural elements to impacts which could simulate hard landings, wheels-up landings, or other short duration but intense loading events that will excite the entire structure, not just a localized region. In general, it is expected that the response of the structural elements to these crash-related loads will involve large deformations and failure. In addition, energy absorption or the lack of it during failure is an important variable if damage to other parts of the structure and possible injury to occupants is to be minimized. Because of these concerns with future structures, work is in progress to study the large deformation response of simple composite structural elements to intense dynamic loadings.

A research program has been formulated to investigate the response characteristics of generic composite components to simulated crash loadings. This program has been arranged to focus on three levels: the laminate level for material properties such as energy absorbing qualities and the behavior of skin materials; the element level focusing on more complex geometry and behavior of beams, frames (rings), arches, and panels; and the substructure level dealing with cylindrical shells, floors, and largerscale components. Scaling studies will also be included.

The goal of research on the generic components is to provide a data base and understanding of generic composite component behavior subjected to crash loading conditions supported by validated analytical methods. To help achieve this goal, inhouse research, contractural efforts, and university grants are included in the program.

This presentation will summarize results from three of the research areas under the composite crash dynamics program that include: beam impact studies, composite fuselage frame impact studies, and abrasive loadings of skin materials.

- INTRODUCTION AND BACKGROUND
- COMPOSITE IMPACT DYNAMICS PROGRAM
- EXPERIMENTAL RESULTS Composite Frames Beam Impact

Beam Impact Abrasion ADDITIONAL RESEARCH EFFORTS

CONCLUDING COMMENTS

COMPOSITE CRASH DYNAMICS PROGRAM GOALS

LAMINATE LEVEL

 Improve composite crush and energy absorption capability by developing data base on fundamental behavior of structures made from epoxy and thermoplastic resins

ELEMENT LEVEL

- ${\pmb \bullet}$ Assess the local and global behavior of various composite structural elements under crash loadings
 - Determine governing parameters that permit scaling of composite structural behavior under dynamic loadings

SUBSTRUCTURE LEVEL

- Evaluate performance of substructures assembled from various basic composite structural elements
 - Assess effects of liquid versus solid terrain on impact behavior

METAL BASELINE

 Include metal structural components as reference baseline for assessing composite behavior under impact loadings

FULL-SCALE TESTING

 Demonstrate structural performance of composite full-scale aircraft under crash loadings

BEAM LOADING CONFIGURATION

BEAM STATIC END LOAD AND STRAIN DISPLACEMENT

STATIC AND DYNAMIC LOAD AND STRAIN

BEAM END WORK

SPECIMEN IN DROP TOWER

TEST SPECIMEN IN IMPACT POSITION

-Contact surface

0.2

DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES

John Dugundji

Gun-Shing Chen

Technology Laboratory for Advanced Composites Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

ABSTRACT

In previous investigations at M.I.T., the aeroelastic flutter and divergence behavior of a series of unswept and forward swept, graphite/epoxy cantilever wings were investigated in a small, low-speed wind tunnel. The wings were six-ply graphite/epoxy plates and had strong bending-twisting coupling (D₁₆ terms). By adjusting the bending-torsion coupling, the divergence tendency of the forward swept, cantilever wings could be eliminated and the flutter speed raised considerably. See Refs. 1 and 2.

Presently, an investigation is being made into the effects of rigid body aircraft modes on the aeroelastic behavior of forward swept wings. It has recently been pointed out in Refs. 3 and 4, that for forward swept wings, the rigid body modes may possibly couple with the wing bending mode to cause a new low frequency "body-freedomflutter." Accordingly, a complete, two-sided 30° forward swept wing aircraft model was constructed and mounted with low friction bearings in both pitching and translation, inside the M.I.T. low speed acoustic wind tunnel. The wind tunnel had a 1.5 x 2.3 m (5 x 7 ft.) test section and could reach velocities of 30 m/s. Four different ply layup wings could be interchanged on the model, namely $[0_2/90]_s$, $[+15_2/0]_s$, $[+30_2/0]_s$ and $[-15_2/0]_s$. These wing surfaces were the same ones used in the previous cantilever tests (Refs. 1 and 2), and thus the present tests complemented the previous cantilever tests and isolated the effects of rigid body motions.

The wind tunnel tests included measurement of the static lift and moment characteristics (done at low speeds) and the dynamic stability, flutter, and divergence testing at higher speeds. For all free flying tests, the model was set to a low trim angle of attack, and aircraft vertical height. Also, TV movies were taken. Body-freedom-flutter was encountered for some configurations as well as torsional stall flutter, bending stall flutter, and dynamic instability. Examples are given of various flutter and dynamic instabilities encountered. These experimental tests, along with the previous cantilever wing tests and with corresponding analytical analyses, should provide insight into the actual aeroelastic behavior of forward swept wing aircraft in free flight.

REFERENCES

- Hollowell, S.J., and Dugundji, J., "Aeroelastic Flutter and Divergence of Stiffness Coupled, Graphite/Epoxy Cantilevered Plates," <u>J. Aircraft</u>, Vol. 21, No. 1, January 1984, pp. 69-76.
- Landsberger, B., and Dugundji, J., "Experimental Aeroelastic Behavior of Straight and Forward Swept Graphite/Epoxy Wings," <u>J. Aircraft</u>, Vol. 22, No. 8, August 1985, pp. 679-686.
- Weisshaar, T.A., Zeiler, T.A., Hertz, T.J., and Shirk, M.J., "Flutter of Forward Swept Wings, Analyses and Tests," Proceedings of the 23rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, New Orleans, Louisiana, May, 1982, AIAA Paper 82-0646.
- 4. Chipman, R., Rauch, F., Rimer, M., Muniz, B., and Ricketts, R.H., "Transonic Tests of a Forward Swept Wing Configuration Exhibiting Body Freedom Flutter," Proceedings of the 26th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, April 15-17, 1985, AIAA Paper 85-0689.

DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES

John Dugundji Gun-Shing Chen

Technology Laboratory for Advanced Composites Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

OBJECTIVES

- Investigate the effects of rigid body aircraft modes on the flutter and divergence of forward swept, graphite/epoxy wings
- Explore nonlinear effects of large angle of attack and stall flutter
- Obtain insight into actual aeroelastic behavior of forward swept, aeroelastically tailored aircraft in free flight

APPROACH

- Build complete, two-sided 30° forward swept wing aircraft model with rigid pitch and rigid translation capability
- Obtain experimental data on model in low speed wind tunnel, and compare with corresponding cantilever wing tests
- Perform analytical flutter and divergence calculations including effects of rigid body modes

Test Set-Up in Tunnel (Cantilever Wing)

Structural Deflections of [+302/01s Wing ÷ `, ٠.

Forward Swept Wing Model

·

. .

M.I.T. Acoustic Tunnel Test Set-Up

Static Moment Curves

Flutter Record, Run #180, $[0_2/90]_s$, $\delta_c = 2.5^\circ$, V = 20 m/s

Torsional Stall Flutter, Run #198, $[15_2/0]_s$, $\delta_c = 2.5^\circ$, V = 28 m/s

Dynamic Instability, Run #185, $[0_2/90]_s$, $\delta_c = 0^\circ$, V = 10 m/s

Theoretical Analysis

$$T = \frac{1}{2} \int m w dx dy = \frac{1}{2} \sum M_{ij} \hat{q}_{i} \hat{q}_{j}$$

$$U = \frac{1}{2} \int \left\{ D_{ii} w_{xx}^{2} + \cdots \right\} dx dy + \frac{1}{2} k_{ij} q_{i}^{2} + \frac{1}{2} k_{ij} q_{i}^{2}$$

$$= \frac{1}{2} \sum K_{ij} q_{i} q_{j}$$

$$\delta W = \sum Q_{i} \delta q_{j}$$

$$\begin{split} M \ddot{q} + K q &= Q_{Aero} \\ \\ Vibrations : q_i &= q_i e^{i\omega t} \\ & \left[-\omega^2 M + K\right] q = 0 \implies Solve \ \omega \ , q \\ \\ Flutter : q_i &= q_i e^{Ft} \\ & \left[F^2 M + K - \frac{1}{2}gV^2 S \left(\frac{B_2}{P}F^2 + \frac{B_1P}{P} + \frac{B_0}{P} + \frac{G_1}{P}F^2\right)\right] q = 0 \\ & \longrightarrow Solve \ P \ , q \\ \\ Divergence : q_i &= q_i \\ & \left[K - \frac{1}{2}gV^2 S \ B_0\right] q = 0 \implies Solve \ V \ , q \end{split}$$

Equations of Motion

CURRENT STATUS

- Currently, analyzing results of model wind tunnel tests
- Observed body-freedom-flutter, torsional stall flutter, dynamic instability, nonlinear phenomena
- Currently, performing analytical flutter and divergence analyses to assess experimental results, compare with cantilever results, and assess extent of nonlinear phenomena

Theoretical Stability Plot, [02/90]s

AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS

J. H. Crews, Jr. K. N. Shivakumar* I. S. Raju*

NASA Langley Research Center Hampton, Virginia 23665-5225

ABSTRACT

Double cantilever beam (DCB) specimens are widely used to measure mode I fracture toughness of adhesive debonding and composite delamination. Various combinations of adherend materials and specimen dimensions are currently being used for these DCB specimens. These specimen parameters can influence the stress distribution ahead of the debond front (ref. 1) and, therefore, should also be expected to influence fracture toughness. This can be especially important for tough resins. Whereas brittle resins fail under the influence of very localized stresses that are characterized by the debond front stress-intensity factor, tough resins may yield extensively ahead of the debond front before fracturing. The stresses ahead of the debond govern the extent of yielding and the corresponding plastic energy dissipation that provides fracture toughness. The objective of the present study was to evaluate several parameters that may influence the peel stress distribution ahead of the debond front.

Aluminum and graphite/epoxy DCB specimens were studied using finite-element analyses. The parameters that were varied included adherend and adhesive thick-nesses as well as adherend longitudinal and transverse (thickness-direction) stiffnesses. Results were plotted as σ (peel) stress distributions ahead of the

debond front.

Neither the adherend thickness nor the longitudinal stiffness had much influence on the peel stress distributions, despite their strong influence on the stress intensity factors. In contrast, both adherend transverse stiffness and adhesive thickness had a noticeable influence on the stress distributions, but did not affect stress intensity factors. Plastic zone sizes were estimated for a wide range of adhesive thicknesses and were found to have a peak value within this range. This trend agrees qualitatively with the well known dependence that DCB fracture toughness has on adhesive thickness.

REFERENCES

 S. S. Wang, J. F. Mandell, and F. J. McGarry, "An Analysis of the Crack Tip Stress Field in DCB Adhesive Fracture Specimens," International Journal of Fracture, Vol. 14, no. 1, February 1978.

*Analytical Services & Materials, Inc.

AN ELASTIC STRESS ANALYSIS OF THE DEBOND Front in DCB specimens

J. H. CREWS, JR. K. N. Shivakumar* I. S. Raju* OBJECTIVE

TO EVALUATE DCB SPECIMEN PARAMETERS THAT INFLUENCE

STRESSES AHEAD OF DEROND FRONT

NASA LANGLEY RESEARCH CENTER, HAMPTON, VA *ANALYTICAL SERVICES AND MATERIALS, INC., HAMPTON, VA

DCB SPECIMEN CONFIGURATION AND LOADING

FINITE ELEMENT MODEL

STRESS DISTRIBUTION AHEAD OF DELAMINATION

COMPARISON OF STRESS DISTRIBUTIONS

ANALYSIS OF STRESS DISTRIBUTION FOR ALUMINUM DCB

COMPARISON OF ALUMINUM AND G/E DCB SPECIMENS

EFFECT OF ADHEREND THICKNESS

COMPARISON OF ALUMINUM AND G/E DCB SPECIMENS

EFFECT OF ADHEREND LONGITUDINAL STIFFNESS

EFFECT OF ADHEREND LONGITUDINAL STIFFNESS 103 10² 101 Ст_{у К} К₁ (МРа) E_L = 134 GPA 100 E_L = 13 GPA 10-1 10⁰ 10⁻² 10-2 10-1 10-3 10-5 10-4 x, mm

EFFECT OF ADHEREND TRANSVERSE STIFFNESS

ALUMINUM AND G/E DCB SPECIMENS WITH SAME D

YIELD ZONE SHAPES AND SIZES G/E DCB, P = 67.2N

† 0.5t

d) t = 0,36 mm

f) Compact tension

SIIMMARY

- ADHESIVE σ_{v} (peel) stresses were higher than those for monolithic case.
- o Adherend Flexhral Stiffness had little effect on σ_{γ} distribution.
- o Adherend transverse stiffness (in thickness direction) had significant effect on $\sigma_{\rm y}$ distribution
- O PLASTIC ZONE SIZE VARIED WITH ADHESIVE THICKNESS AND HAD A PEAK VALUE.

STATISTICAL LIFE PREDICTION OF COMPOSITE STRUCTURES

D. Jones and J. Yang

The George Washington University

Material not received in time for publication.

ANALYSIS OF DELAMINATION GROWTH FROM MATRIX CRACKS IN LAMINATES SUBJECTED TO BENDING LOADS

Gretchen Bostaph Murri E. Gail Guynn* National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665-5225

ABSTRACT

Delamination is the most commonly observed damage mode in composite laminates. In thin plates under low-velocity impact from point loads, matrix cracks will form first in the laminate plies, and delaminations will then grow from these matrix cracks where they terminate at ply interfaces. In this study, delamination growth from matrix cracks in laminates subjected to bending loads was evaluated. Using laminate plate theory, simple equations were derived which relate the strain energy release rate associated with the delamination growth to the applied load and laminate stiffness properties. Several bending problems and boundary conditions were considered. In order to isolate the matrix crack and model the problem 2dimensionally, different layups of graphite-epoxy (5208/T300) laminates were modeled and tested. All tested layups were symmetric and had 90° plies on the outside. For such a laminate under a bending load, matrix cracks will form parallel to the fibers, through the 90° plies, on the tension surface of the laminate. Delaminations then form and grow in the interface between the inmost cracked 90° ply and the adjacent ply. To simulate pure bending, specimens were loaded across their width by pins which were free to rotate on ball bearings, in a 4-point bending apparatus. A three-point bend test was performed in the same type apparatus by supporting the specimen on two pins and loading it at the midspan. To simulate the deformations in laminates subjected to low-velocity impact, specimens were clamped at the ends and loaded across their width at the midspan. For all configurations, the laminates were loaded until delamination was first observed. The delamination loads predicted by the analysis correlated well with the measured delamination loads for the different layups and boundary conditions.

*PRC Kentron, Inc., Hampton, Virginia

ANALYSIS OF PROGRESSIVE MATRIX CRACKING IN COMPOSITE LAMINATES

George J. Dvorak Rensselaer Polytechnic Institute Troy, NY 12180

Norman Laws University of Pittsburgh Pittsburgh, PA 15260

Edward Wung and Kaveh Ahangar Rensselaer Polytechnic Institute Troy, NY 12180

Sponsored by the Air Force Office of Scientific Research

ABSTRACT

The mechanics of transverse cracking in an elastic fibrous composite ply is explored, first for low crack density, and then during progressive cracking under increasing load. Cracks are assumed to initiate from a nucleus created by coalescence of localized fiber debonding and matrix cracking. Conditions for onset of unstable cracking are evaluated with regard to interaction of cracks with adjacent plies of different elastic properties. Interfacial damage is considered as well. It is found that crack propagation may take place in two directions on planes which are parallel to the fiber and perpendicular to the midplane of the ply, and that the actual propagation direction and ply strength depend on ply thickness.

Thin plies are defined by the requirement that the crack nucleus extends across the entire ply thickness before onset of unstable crack propagation. Of course, plies with preexisting through-the thickness cracks caused by other damage modes, such as impact, should also be regarded as thin plies regardless of their actual thickness. Strength of thin plies is found to be controlled by onset of crack propagation in the fiber direction; these longitudinal cracks are called type L cracks. The strain energy release rate G(L) for these cracks is derived. This leads to expressions which relate ply strength to ply thickness and toughness $G_c(L)$. Both simple and mixed loading modes are considered. Only two strain states, normal tension and longitudinal shear affect ply failure. Transverse shear seems to be neutralized by interlocking asperities created on the crack surface as the crack finds its way between closely spaced fibers.

Thick plies are defined by the condition that the width of a crack nucleus of critical size is much smaller than ply thickness. Thus there is no interaction between the nucleus and adjacent plies. The energy release rates for the nucleus are derived. In addition to G(L) for type L cracks, we also evaluate G(T) that corresponds to type T cracks which propagate in the transverse direction, perpendicular to the fiber axis, across the thickness of the ply. It is found that G(T) = 2G(L), i.e., there is a strong preference for the crack nucleus to propagate first as type T crack across ply thickness, and then change direction and continue as type L crack across the entire loaded area of the ply. It is recognized that the two different crack directions involve different values of ply toughness, G_C, and that G_C(L) < G_C(T). However, experimental evidence appears to indicate that G_C(T) < 2G_C(L), hence the strength of thick plies is controlled by type T cracking, in the same way as strength of thin plies is controlled by type L cracking. Expressions for thick ply strength are obtained in terms of critical size of crack nucleus and ply toughness G_C(T). Since the nucleus size is not usually known, one cannot predict the strength of thick plies. However, it is possible to show that this strength does not depend on ply thickness for a given history of loading to failure.

Prepared for the Eleventh Annual Mechanics of Composites Review, Dayton, October 22-24. 1985

These results for thin and thick plies compare well with experimentally measured dependence of ply strength on ply thickness. One of the conclusions that can be drawn from these results is that strength of all plies should be evaluated from thin ply formulae, to guard against strength reduction in thick plies which may be caused by preexisting cracks.

In the second part of the presentation, we analyse progressive cracking in a ply under increasing applied strain. This process is essentially a continuous repetition of first ply failure, but both formation of the initial crack nuclei, and energy release rates G(L) and G(T) for unstable cracks are influenced by interaction between the new crack and the cracks which are already present. This type of crack interaction is analyzed by several methods; the self-consistent method, as well as elasticity solutions for a row of parallel cracks are employed. It is found that very similar crack interaction effects are predicted by these different approaches. Of particular interest is the evaluation of G(L) and G(T) of a crack which is about to form in a ply that already contains a certain density of similar cracks. Also, the strain in the ligaments between existing cracks is evaluated.

REFERENCES

- G.J. Dvorak, N. Laws and M. Hejazi, "Analysis of Progressive Matrix Cracking in Composite Laminates. I. Thermoelastic Properties of a Ply with Cracks," <u>Journal of Composite Materials</u>, Vol. 19, May 1985, pp. 216-234.
- G.J. Dvorak and N. Laws, "Analysis of Progressive Matrix Cracking in Composite Laminates. II. First Ply Failure," to be published.

PRINCIPAL OBJECTIVES AND RESULTS - CONT.	2. PROGRESSIVE CRACKING OF A PLY	0 REPETITIVE FAILURES IN A PLY UNDER INCREASING STRAIN	0 EVALUATION OF STIFFNESS CHANGES IN CRACKED PLY	- Self consistent estimates - Row of parallel cracks solutions,	0 EVALUATION OF ENERGY RELEASE RATES FOR INTERACTING SLIT	CRACKS IN A CRACKED THI	0 EVALUATION OF LIGAMENT STRAINS BETWEEN INTERACTING CRACKS	0 COMPARISON WITH EXPERIMENTS	- Apparent threshold toughness of cracking ply	- Critical ligament strain as a criterion for progressive cracking	0 CONCLUSIONS					
PRINCIPAL OBJECTIVES AND RESULTS	1. MECHANICS OF FIRST PLY FAILURE	0 CRACK NUCLEATION	0 STRENGTH OF THIN PLIES	- Energy release rate for longitudinal (type L) slit crack	- Dependence of ply strength on ply thickness	0 STRENGTH OF THICK PLIES	- Energy release rates for initial flaws as transverse (type T) cracks	- Type T and type L cracks	C - Dependence of ply strength on flaw size	0 PLIES OF INTERMEDIATE THICKNESS	- Interaction of flaws and ply cracks with adjacent plies	0 COMPARISON WITH EXPERIMENTAL DATA	- E-Glass/Epoxy	- T300/934	<pre>0 STRENGTH OF THIN AND DAMAGED PLIES IS CONTROLLED BY LONGITUDINAL (type L) CRACKS</pre>	<pre>0 STRENGTH OF THICK PLIES IS CONTROLLED BY TRANSVERSE (type T) CRACKS WHICH ARE AUTOMATICALLY FOLLOWED BY LONGITUDINAL (type L) CRACKS.</pre>

CRACK NUCLEATION

Figure 2. Fiber debonding and coalescence of debonds create a nucleus. . Subcritical growth under applied strain $\overline{\epsilon}$

$$\delta = \delta(\overline{\varepsilon}(t))$$
 for $\delta \leq \delta_c$

At δ = δ_{c} , nucleus becomes unstable and may propagate

- in transverse direction \boldsymbol{x}_1 as type T crack
- in longitudinal direction \boldsymbol{x}_3 as type L crack

In the presence of interface damage: $\xi_{i} = 1$.

... First ply failure of thick plies starts as a result of transverse (type T) cracking, followed by longitudinal (type L) cracking. For $\tilde{\sigma}_{23}$ = 0, $\tilde{\sigma}_{22}$ ≠ 0, the strength is given by For $\tilde{\sigma}_{22}$ = 0, $\tilde{\sigma}_{23} \neq$ 0, the strength is given by Relations between critical width of crack nucleus $\left(\bar{\sigma}_{23}\right)_{cr} = \left[2\mathfrak{G}_{\mathrm{IIc}}(\tau)/(\pi~\Lambda^{0}_{44}~\delta_{\mathrm{IIc}}(\tau))\right]^{\bar{Z}}$ STRENGTH OF THICK PLIES - 2 $(\bar{\sigma}_{22})_{cr} = \left[2\mathfrak{a}_{1c}(\tau)/(\pi \ \Lambda^0_{22} \ \delta_{1c}(\tau)) \right]^{\overline{2}}$ $\delta_{\mathrm{IIc}}(L) = 2^{\gamma}_{\mathrm{II}} \delta_{\mathrm{IIc}}(T).$ Experimental data suggest: $2\gamma_{I} > 1$, $2\gamma_{II} > 1$ $\delta_{I_{C}}(L) = 2\gamma_{I} \delta_{I_{C}}(\tau)$ Ply strength: for & << a. for & << a. 50 × × Definition of "thick" ply: 28 << 2a for $\delta \leq \delta_{c}$. $\mathbb{G}(L) = \frac{1}{4} \pi \, \delta [\Lambda_0^0 \, \bar{\sigma}_{22}^2 \, + \, \Lambda_{44}^0 \, \bar{\sigma}_{23}^2 \, + \, \Lambda_{66}^0 \, \bar{\sigma}_{12}^2] \ , \label{eq:G}$ $G(T) = \frac{1}{2} \pi \delta [\Lambda_{22}^{0} \tilde{\sigma}_{22}^{2} + \Lambda_{44}^{0} \tilde{\sigma}_{23}^{2} + \Lambda_{66}^{0} \tilde{\sigma}_{12}^{2}] ,$ Running Longitudinal (Type L) Slit Crack $G_{IIC}(L) = \gamma_{II} G_{IIC}(T)$ $G_{IC}(L) = \gamma_I G_{IC}(T)$ STRENGTH OF THICK PLIES - 1 ×" °?f Energy release rates: × Crack Nucleus Ply toughness: G(T) = 2G(L) $\Theta \otimes$

INTERACTION ENERGY FOR ROW OF PARALLEL CRACKS	Self-Consistent Estimate	Ply under small constant strain $\tilde{\epsilon}$ = const.	Strain energy in RVE of volume V	$U_0 = \frac{1}{2}\tilde{\varepsilon}^T L_0\tilde{\varepsilon} \cdot V \qquad \text{at } \beta = 0$	$U = \frac{1}{2} \tilde{\varepsilon}^{T} L(\beta) \tilde{\varepsilon} \cdot V \qquad \text{at } \beta \neq 0$		Number of cracks in RVE: N = β V/4a ²			Interaction Energy of a Single Grack	$W = (U_0 - U)/N = \frac{2a^2}{\beta} \tilde{\varepsilon}^T (L_0 - L(\beta)) \tilde{\varepsilon}$			Energy Release Kate of lype L Crack	at $\beta \neq 0$: G(L) = W/2a = $\frac{a}{\beta} \tilde{\varepsilon}^{T}$ (L _o - L(β)) $\tilde{\varepsilon}$,	at $\beta = 0$: $G^{0}(L) = W_{0}/2a = \frac{1}{4} \pi a \left[\Lambda_{22}^{0} \ \overline{\sigma}_{22}^{2} + \Lambda_{44}^{0} \ \overline{\sigma}_{23}^{2} + \Lambda_{66}^{0} \ \overline{\sigma}_{12}^{2} \right]$
PART 2: PROGRESSIVE CRACKING OF A PLY	Definition of Crack Density Parameter 8:	(n-2) (n-1) n			(n-1) 20/B	Crack spacing:	n = # of cracks/mm	n = 8/2a,	STIFFNESS CHANGES CAUSED BY CRACKS:	Self-Consistent Estimates	Ply properties: $\tilde{\sigma}$ = L $\tilde{\varepsilon}$ - θ χ , $\tilde{\varepsilon}$ = M $\tilde{\sigma}$ + θ \tilde{m}	Stiffness: L = L _o - ¹ /4 β L _o ΛL	$\tilde{g} = (I - \frac{1}{4} \pi \beta L\Lambda) \xi_0$	Compliance: $M = M_0 + \frac{1}{4} \pi \beta \Lambda$	O _ũ = ũ	

INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE - PREDICTION AND EXPERIMENT

Ran Y. Kim

University of Dayton Research Institute Dayton, Ohio 45469

and

Som R. Soni

AdTech Systems Research Inc. 211 N. Broad Street Fairborn, Ohio 45324

ABSTRACT

Delamination along the straight free edge of composite laminates under an inplane uniaxial load has been observed since the early 1970's. The growth of this delamination under load often results in a reduction of strength and stiffness of the laminate. Since then a large number of papers have reported on the free-edge problem in composite laminates, indicating that free-edge delamination is attributed to the existence of interlaminar stresses which are highly localized in the neighborhood of free edge under an inplane loading. As a result of this analytical work [1,2], the nature of interlaminar stresses with regard to magnitude and sign of each interlaminar stress component is reasonably well understood. In spite of the existence of the analytical models that provide interlaminar stress distributions in the free-edge region, no successful prediction method for the onset of delamination was reported.

In the present work an effort has been made to adequately predict the onset of delamination using stress analysis in conjunction with a failure theory.

The first phase of this work was to determine the interlaminar normal stress (σ_z) experimentally. Strain in the thickness direction was measured at the free edge by employing a miniature strain gage, and σ_z is calculated using three-dimensional constitutive relations in conjunction with axial and transverse strain [3]. The experimental results compare very well with the analytical results calculated from the global-local model developed by Pagano and Soni [4].

The second phase of this work was to develop a methodology to adequately predict the onset of delamination due to either interlaminar normal stress [5] or shear stress alone [6]. The global-local laminate variational model has been used to calculate the interlaminar stresses, and the average stress components over one layer from the free edge are assumed to be the effective stress level acting at the free edge. The predicted values in most cases are fairly well compared with the experimental results for a variety of laminates, and the predicted interface of delamination is the same as the experimentally observed one. The quadratic failure theory [7] has been utilized to improve the prediction capability in the case where both normal and shear stress components are significant [8].

REFERENCES

- N. J. Pagano and R. B. Pipes, "Some Observations on the Interlaminar Strength of Composite Laminates," Int. J. Mech. Sci., Vol. 15, 1973, pp 679-688.
- N. J. Pagano, "Stress Field in Composite Laminates," Int. J. Solid Structures, Vol. 14, 1978, pp 385-400.
- R. Y. Kim and S. R. Soni, "Initiation of Delamination of Composite Laminates," Proceedings of the 1982 SEM Spring Conference on Experimental Mechanics, Honolulu, Hawaii, May 1982.
- 4. N. J. Pagano and S. R. Soni, "Global-Local Laminate Variational Model," Int. J. Solids and Structures, Vol. 19, No. 3, 1983.

- 5. R. Y. Kim and S. R. Soni, "Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites," J. of Composite Materials, Vol. 18, January 1984.
- 6. S. R. Soni and R. Y. Kim, "Delamination of Composite Laminates Stimulated by Interlaminar Shear," presented at the 7th Symposium on Composite Materials: Testing and Design, Philadelphia, PA, April 1984.
- 7. S. W. Tsai and E. M. Wu, "A General Theory of Strength for Anisotropic Materials," J. Composite Materials, Vol. 5, January 1971.
- S. R. Soni and R. Y. Kim, "Mixed Mode Free-Edge Delamination of Composite Laminates," presented at the 19th Midwestern Mechanics Conference, Ohio State University, Columbus, Ohio, September 1985.

INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE -PREDICTION AND EXPERIMENT

RAN Y. KIM UNIVERSITY OF DAYTON RESEARCH INSTITUTE, DAYTON, OHIO SOM R. SONI ADTECH SYSTEMS RESEARCH INC., FAIRBORN, OHIO

SUPPORTED BY AFWAL MATERIALS LABORATORY

OBJECTIVE

TO DEVELOP A METHODOLOGY FOR PREDICTING THE FREE-EDGE DELAMINATION THRESHOLD STRESS AND LOCATION IN COMPOSITE LAMINATES UNDER APPLIED UNIAXIAL LOAD

APPROACH

CALCULATE INTERLAMINAR STRESS COMPONENTS AT FREE EDGE BY GLOBAL-LOCAL MODEL

OBSERVE DELAMINATION EXPERIMENTALLY

DETERMINE σ_z DETECT ONSET OF DELAMINATION EXAMINE THE FRACTURED SURFACE

EMPLOY AVERAGE STRESS FAILURE THEORY

ON SPECIMEN

TRANSVERSE STRAIN (Z-DIRECTION) VS. AXIAL STRAIN

	** 0 z, psi					
LAMINATE	*ANALYSIS	EXPERIMENT	NO. OF SPECIMENS			
[±30 ₂ /90 ₂]s	3,120	2, 870	3			
$[\pm 30_{A}/90_{A}]_{s}$	3,120	3,060	3			
[(±30) ₂ /90]	4, 320	3,110	2			
$[(\pm 30)_{4}/90]_{S}$	4, 600	4, 360	2			
[(±30) ₆ /90] _s	4, 800	4, 640	3			

 $\sigma_{
m z}$ at midplane of laminate for applied axial strain of 0.1% T300/5208 Gr/Ep

•WITHOUT PRESENCE OF CURING RESIDUAL STRESS

** $\boldsymbol{\sigma}_{z} = c_{iz} e_{i}$

64

COMPARISON OF EXPERIMENT AND PREDICTION FOR ONSET OF DELAMINATION: T300/5208 Gr/Ep

	T300/5208	Gr/Ep	
LAMINATE	APPLIED €1%	$\bar{\sigma}_{z}$	APPLIED $\sigma_1^{(ksi)}$
(±45/0/90)	. 52	7.9	40.5
(0/±45/90)	. 66	8.1	51.4
(0 ₂ /±45 ₂ /90 ₂)	. 54	9.0	42.1
(0/±15/90)	. 68	7.6	96.0
(0/±30/90)	. 55	9.2	59.6
(±30/90)	. 39	8.4	30.4
(±30 ₂ /90)	. 33	9.0	28.2
(±30/90)	. 26	8.7	22.4
(±306/90)	. 22	7.7	18.7
(±30/±60)	. 61	8.4	34.68
(±30 ₂ /±60 ₂)	. 53	8.9	29.75
(±30 ₂ /90 ₂)	. 36	9.2	27.7
(±30,/90,)	. 25	7.7	19.46
(0 ₃ /±45 ₃ /90 ₃)	. 35	7.0	27.33
(0/±45/90 ₃)	. 67	9.6	40.61
(0/±45/90 ₆)	. 54	5.6	24. 66
(0/90/±45)	66	6.6	-51,76
(0/90 ₃ /±45)	68	8.3	-40.67
(0/906/±45)s	78	9.4	-35.37

STRESS AND STRENGTH ANALYSIS AT DELAMINATION

NEGATIVE SIGN DENOTES COMPRESSION AVERAGE OF 4 TO 10 SPECIMENS FOR EACH LAMINATE

LAMINATE	TYPE OF	AVG STRESS, KSI FOR € = 0.1%			€ AT ONSET OF DELAMINATION, %		OBSERVED INTERFACE
	LOADING	$\bar{\sigma}_{z}$	$ar{ au}_{xz}$	INTERFACE	PREDICTION	EXPERIMENT	DELAMINATED
PURE GRAPHITE	TEN	2.3	0	MP	0. 33	0.37	MP & -30/90
(±30 ₂ c/90 ₂ c) _s	COMP	≃0	3.0	+30/-30	0. 42	0.45	30/-30
HYBRID	TEN	1.88	0	MP	0.51	0.46	MP & -30/90
(±30 ₂ c/90 ₂ s) _s	COMP	≃0	- 2.80	+30/-30	0.45	0.50	30/-30
HYBRID II	TEN	0.88	0	MP	0.85	0.76	MP & -30/90
(±30 ₂ s/90 ₂ c) _s	COMP	≃0	1,32	+30/-30	1.18	1.26	30/-30
PURE GRAPHITE	COMP	0.08	4.00	+15/-15	0.31	0. 45	15/-15
HYBRID	TEN	-0.03	1.18	+15/-15	1.31	1.38	15/-15
(0 ₂ c±15 ₂ s) _s	COMP	0.03	1.18	+15/-15	1.31	1.14	15/-15
HYBRID	TEN	-0. 28	3.4	+15/-15	0.37	0. 67	15/-15 & 0/15
(0 ₂ s/±15 ₂ c) _s	COMP	0. 28	3.4	+15/-15	0.37	0. 50	15/-15
	<u></u>		<u> </u>	200/03/10	Gr/En		

ANALYTICAL AND EXPERIMENTAL RESULTS ON ONSET OF DELAMINATION

Gr/Ľµ T300/934C C:

S-2/934C GI /Ep S:

Midplane MP:

QUADRATIC POLYNOMIAL FAILURE CRITERION

$$F_{ZZ} \overline{\sigma}_{Z}^{2} + F_{XZ} \overline{\tau}_{XZ}^{2} + F_{Z} \overline{\sigma}_{Z}^{2} = 1$$

$$F_{ZZ} = \frac{1}{ZZ}, F_{XZ} = \frac{1}{S_{ZZ}^2}, F_{Z} = \frac{1}{Z}, F_{Z} = \frac{1$$

$$R = \frac{\sigma \text{ allowed}}{\sigma \text{ applied}}$$
$$aR^{2} + bR + C = 0$$

$$R = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ST	RENGTH RATI	O R AT ON	SET OF I	DELAMINATI	ON	
	USING QU	COMPRES	SSION)			
Laminate	E ₁₁ (MSI)	$\sigma_{\text{Del(KS1)}}$	€ Del(%)	$ar{m{\sigma}}_{z^{(KSI)}}$	$ar{ au}_{xz}^{(KSI)}$	R
(90 ₄ /±15 ₄) _s	12.2	41.6	0.34	2.72	-16.25	.73
(90 ₄ /±30 ₄)s	7.7	20.8	0.27	4.13	-10,77	.93
(90 ₄ /±45 ₄) _s	3.7	13.7	0.37	4.77	-7.44	1.1
(0 ₄ /±15 ₄) _s	17.7	61.8	0.35	0.74	17.54	0.75
(0 ₄ /±30 ₄) _s	11.7	41.5	0.35	1.54	12.95	0.96
(0 ₄ /±45 ₄)	8.4	66.4	0.79	1.82	-11.85	1.0
(±15 ₄) _s	16.3	56.3	0.35	14	-17.2	0.78
(±30 ₄) _s	6.8	27.9	0. 41	0.21	-14.4	0.93
(02/902/±452)	7.8	43.9	0.56	5.9	-8.85	0.90
		(TENS	51 ON)			
(0 ₄ /±15 ₄) _s	17.7	100 .9	. 57	-1.2	-28.57	. 48
(0 ₄ /±30 ₄) _s	11.7	99.5	.85	-3.74 /En	-31.45	. 46
		1,200/724	וט טו	Lβ		

 $\left[0_{2}^{1/90}2^{1/\pm 45}\right]_{s}$

+30/-30 INTERFACE $[\pm 30_2 s/90_2 c]_s$

DELAMINATION DUE TO σ_z UNDER DELAMINATION DUE TO τ_{xz} UNDER APPLIED COMPRESSION

CONCLUSIONS

THE EXPERIMENTALLY DETERMINED σ_z CORRELATES CLOSELY WITH THE ANALYTICAL RESULT.

THE PREDICTED ONSET OF DELAMINATION LOADS EMPLOYING AVERAGE STRESS FAILURE CRITERIA ARE CLOSE TO THE OBSERVED VALUES WHERE SINGLE PREDOMINANT INTERLAMINAR STRESS COMPONENT EXISTS.

QUADRATIC FAILURE CRITERION PREDICTS STRENGTH RATIOS CLOSE TO OBSERVED ONES FOR A NUMBER OF LAMINATES.

THE MODE AND LOCATION OF DELAMINATION IN COMPOSITE LAMINATES ARE PREDICTED ACCURATELY. THE PREDICTED MODES OF DELAMINATION DUE TO σ_7 OR $oldsymbol{ au}_{xz}$ can be clearly identified by sem.

FURTHER WORK IS REQUIRED TO INVESTIGATE THE EFFECT OF ORIENTATION ON INTERLAMINAR SHEAR STRENGTH.

STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES

Paul A. Lagace

TECHNOLOGY LABORATORY FOR ADVANCED COMPOSITES Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, MA 02139

ABSTRACT

The plans for and the progress on two three-year contractual efforts concerning composite materials will be presented. Although the two major work areas are related, they will be treated, for the purpose of presentation, separately. The first area involves the "Strength and Deflections of Advanced Composite Sandwich Structures". The second area is entitled "The Sensitivity of Kevlar/Epoxy and Graphite/Epoxy Structures to Damage from Fragment Impact".

Sandwich construction has been used in the aerospace industry for a number of years. The current effort seeks to investigate such construction for application to high efficiency, ultralight aircraft. This involves the investigation of sandwich structures with relatively thin graphite/epoxy face sheets. Due to this construction, a number of failure modes must be considered: ply or sublaminate buckling, skin debonding, core failure, plate buckling, and facesheet fracture. This three-year program has thrusts in three principal areas: the development of analytical tools necessary to predict the strength and deflection of graphite/epoxy sandwich structures; experimentation on sandwich plates to determine their buckling and deflection characteristics to compare with the analysis; and experimentation on sandwich plates to determine their strength properties.

The work during the last nine months has centered on the development of the analytical methodology. The analysis is based on a Rayleigh-Ritz type discretization of the displacement fields and uses direct minimization of the potential energy. All eighteen terms in the A, B, and D matrices are taken into account so that anisotropic plates can be analyzed. Mindlin plate theory is used to incorporate the effects of transverse shear and the effect of initial imperfections can also be evaluated as the program uses Marguerre's shallow shells theory. The loading on the plate can be longitudinal compression, transverse compression, shear, or any combination thereof. The program solves the general buckling/postbuckling problem via an optimal search and a typical plate takes about 20 seconds of CPU time on a VAX 11/782 computer for analysis. Typical results are presented and, where available, agree well with other reported analytical results.

An experimental program has also been devised. The purpose of the program is to investigate the effects of various core materials on the deflections and, ultimately, strength behavior. The experimental technique is discussed and preliminary results presented which correlate well with the analysis for these configurations.

The response of composite laminates to impact is an important consideration in assessing the damage tolerance of a composite structure. Composites are sensitive to impact due to their tendency to delaminate. Furthermore, this damage often goes undetected although it may cause considerable strength reduction in the composite part. The effort in this three-year program is directed toward first establishing the basic response of composites to impact via generic specimens (i.e. coupon type), analysis of the impact event, and the response of the composite to the damage induced by impact. Once the basic mechanisms are established and better understood, the work will progress to structures typically used in aircraft such as stiffened panels, pressurized cylinders (which model fuselages) and the like. The analysis of the impact event has been broken down into parts. The treatment involves either analysis or experimentally determined data for the contact law and a plate solution for the overall parameters in order to model the local contact problem of a static indentor. This is used with a plate solution to determine the dynamic response on the plate to the impact event. These two analyses yield the stress and strain fields which are then used in conjunction with failure criteria to determine the damage caused by the impact. A modified Bessel function approach is used to solve the axisymmetric contact problem. The analytical solution shows excellent correlation with experimental data presented in the literature. The dynamic problem is solved via a Rayleigh-Ritz formulation and includes shear deformation. The technique is currently being implemented.

An extensive experimental program is underway as well. An impact gun has been setup along with monitoring equipment and this will be discussed. A number of graphite/epoxy coupons have been impacted and then sectioned to characterize the damage. Typical damage modes will be shown. Some tests to failure have also been conducted on impacted specimens and these preliminary results will also be discussed. Additionally, work has been accomplished on modelling damage due to impact via delaminations implanted via teflon inserts. A number of other authors have looked at the compressive response of graphite/epoxy with implanted delaminations. In this investigation, the initial work has been conducted under tension in order to separate out the basic effect the delamination has on the fracture of the material from the structural effect the delamination induces due to local ply/sublaminate buckling. The preliminary results, which will be presented, indicate that a delamination located at the midplane of a six-ply laminate is benign in that no strength and little stiffness changes are noted. However, the cases where delaminations are implanted at every ply interface, which is more typical of the damage in an impacted specimen, show strength reductions of 30% for a 30 mm circular delamination in a 70 mm wide specimen.

In addition to the results attained to date, the next steps in the research will be outlined in each case.

ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING

HAN-PIN KAN

NORTHROP CORPORATION AIRCRAFT DIVISION HAWTHORNE, CALIFORNIA 90250

ABSTRACT

Delaminations in composite structures are of great concern to aircraft designers and analysts. This is because of the possible local buckling and growth of the delaminations when such a structure is subjected to in-service loading. An extensive technology assessment conducted under Reference 1 has identified that impact damage and delamination are the most critical damage modes that degrade structural strength and fatigue life. Unlike metallic structures, where the material defects propagate under tensile loading, delaminations in composite laminates usually do not propagate under tension. However, under compressive static and fatigue loading, local buckling of the delaminated region may occur below the compression strength of the laminate. The local buckling of the delaminated region provides a means of releasing strain energy and thus making energy available for the delamination to grow. To design composite structures for damage tolerance, analytical methods are needed to predict the initial buckling, to compute the strain-energy-release rate and to determine the mode of failure of the structure.

In the present paper, an analytical method to determine the initial buckling of the delaminated region and to compute the strain-energy-release rate is presented and the interaction of laminate failure mode is discussed. Three types of delaminations, namely, through-the-width, circular and elliptical delaminations are considered. The influence of delamination size and depth on the initial buckling and strain-energy-release rate is investigated,

The initial buckling analysis is based on the energy method employing the Rayleigh-Ritz method. The delaminated laminate is modelled as a homogeneous, elastic, orthotropic plate. The plate is separated into two layers in the delaminated region. The strain energy expression is taken from Reference 2. Out-of-plane displacement functions, satisfying the boundary conditions, are assumed for different delamination types. The initial buckling load is determined by performing the necessary integrations and variations to minimize the total potential energy of the system. Results of the analysis show that the initial buckling load depends on the delamination size, shape, depth and the laminate stacking reference.

As the applied compression load exceeds the initial buckling load of a laminate with a delamination, strain energy will be released for delamination growth. The total strain-energy-release rate, G, is computed. The value of G is obtained under a constant load and according to the usual definition that G is the energy required to create a unit new free surface in the system.

The two layers of a composite laminate separated by a delamination behave as a single undamaged laminate when the applied load is below the initial buckling load; hence the strain energy release rate G = 0 in the prebuckling range. Beyond initial buckling, the value of G depends on the initial buckling load which is a function of the delamination size, shape and depth. The results indicate that the value of G, under a constant compression loading, is very sensitive to delamination size, when the delamination is slightly larger than the critical size corresponding to the applied load. As the delamination becomes large as compared to the critical size, the value of G approaches a constant.

The initial buckling of the delaminated region in a laminate with delamination usually does not cause failure of the laminate. The static compression strength of a composite structure with delaminations depends on the initial buckling strength, the material compression strength and interlaminar toughness, and the structural geometries. The mode of failure may be gross compression, local or global buckling or catastrophic delamination growth. A failure prediction technique is developed which takes into consideration of the failure mode interactions. In this technique, the failure strength for different failure mode is plotted as a function of the delamination size. The laminate failure strength is then given by the minimum strength among all the failure modes. By doing this, the failure is divided into three or more regions depending on the delamination size.

REFERENCES

- McCarty, J. E. et al, "Damage Tolerance of Composites," AFWAL Contract No. F33615-82-C-3213, Interim Report No. 1-4, March 1983-September 1984.
- 2. Lekhniskii, S. G., Anisotropic Plates, Gordon and Breach, New York, 1968.

ACKNOWLEDGEMENT

The work reported here was preformed under Northrop's Independent Research and Development Program in support of AFWAL Contract No. F33615-82-C-3213, "Damage Tolerance of Composites." <section-header><section-header><section-header><section-header><section-header><section-header><section-header>

OBJECTIVE

TO PREDICT RESIDUAL STRENGTH AND FAILURE MODE OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING

APPROACH

- DETERMINE INITIAL BUCKLING OF DELAMINATED REGION
- COMPUTE STRAIN-ENERGY-RELEASE RATE FOR DELAMINATION GROWTH
- CONSIDER FAILURE MODE FOR STRENGTH PREDICTION

ANALYSIS FEATURES

- SINGLE DELAMINATION
- ANY DELAMINATION SIZE, SHAPE, AND DEPTH
- BOUNDARY VARIATION OF STRAIN-ENERGY-RELEASE
 RATE INCLUDED
- MULTIPLE FAILURE MODES FOR STRENGTH PREDICTION

BUCKLING ANALYSIS

- DELAMINATED LAMINATE MODELED AS TWO SEPARATED LAYERS OF HOMOGENEOUS, ELASTIC, ORTHOTROPIC PLATES
- ENERGY FORMULATION EMPLOYED
- INITIAL BUCKLING STRENGTH OF THE WEAKER LAYER IS OBTAINED USING RAYLEIGH-RITZ METHOD
- INITIAL BUCKLING LOAD DEPENDS ON THE DELAMINATION SHAPE, SIZE, LOCATION, AND THE LAMINATE STACKING SEQUENCE

THROUGH-THE-WIDTH DELAMINATION

LAMINATE WITH AN ELLIPTICAL DELAMINATION

DISPLACEMENT FUNCTIONS

INITIAL BUCKLING LOADS

THROUGH-THE-WIDTH DELAMINATION

$$N_{CRI} = k(\frac{\Pi}{a})^{2} \cdot D_{11}, \quad k = 1.0306$$
for lowest buckling mode
ELLIPTICAL DELAMINATION

$$N_{CRI} = \frac{3}{a^{2}} [4D_{11} + \frac{8}{3} (\frac{a}{b})^{2} D_{12} + 4(\frac{a}{b})^{4} D_{22} + \frac{16}{3} (\frac{a}{b})^{2} D_{66}]$$

$$D_{ij}$$
ARE PLATE RIGIDITIES OF THE DELAMINATION LAYER

INITIAL BUCKLING STRENGTH

STRAIN-ENERGY RELEASE RATE ANALYSIS

EFFECTS OF LAMINATE THICKNESS ON STRAIN-ENERGY-RELEASE-RATE

EFFECTS OF DELAMINATION DEPTH ON STRAIN-ENERGY-RELEASE-RATE

MODE	DESCRIPTION
1	GROSS COMPRESSION FAILURE
2	INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY COMPRESSION FAILURE OF THE REMAINING LAYER
3	GLOBAL BUCKLING
4	INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY GLOBAL BUCKLING OF THE LAMINATE GLOBAL
5	LOCAL BUCKLING INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY LOCAL BUCKLING OF THE REMAINING LAYER
6	DELAMINATION GROWTH INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY DELAMINATION GROWTH AND EVENTUALLY FAILED BY MODE 2, 4 OR 5

and the second

GROSS COMPRESSION FAILURE (FAILURE MODE 1)

INITIAL BUCKLING OF THE DELAMINATION

FOLLOWED BY COMPRESSION FAILURE

(FAILURE MODE 2)

INITIAL BUCKLING OF THE DELAMINATION

FOLLOWED BY GLOBAL BUCKLING

(FAILURE MODE 4)

LOCAL BUCKLING

FAILURE MODE INTERACTION

DELAMINATION SIZE

SUMMARY

- AN ANALYTICAL PROCEDURE HAS BEEN DEVELOPED FOR STATIC COMPRESSION STRENGTH PREDICTION OF COMPOSITE LAMINATES WITH DELAMINATIONS
- THE INFLUENCE OF DELAMINATION CONFIGURATION ON THE FAILURE STRENGTH AND FAILURE MODE HAS BEEN INVESTIGATED
- THE INFLUENCE OF LAMINATE THICKNESS, PLY THICKNESS AND STACKING SEQUENCE ON STRAIN-ENERGY-RELEASE RATE HAS BEEN EXAMINED

SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS

John D. Whitcomb

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665-5225

ABSTRACT

The development of an appropriate finite element mesh is a key step in successful finite element analysis. For homogeneous materials the mesh refinement is dictated by geometrical considerations. The shape of a structure should be faithfully modeled. Also, extra mesh refinement is required in regions with strong strain gradients caused by holes, cracks, or boundary conditions. For laminated materials the analyst must also account for the different material properties of the various laminae. These ideas are illustrated by the laminated composite beam shown in the first figure. Geometrical considerations require very few elements except close to the points where load is applied, where strain gradients are large. But since standard finite elements cannot account for stacking sequence effects, such elements should not span across lamina boundaries. Hence, because of the laminated character of the material, the mesh should be highly refined even where the strain gradients are small.

The expense of modeling each lamina individually rapidly becomes intolerable as the number of laminae increases. Reference 1 presents an approximate technique to reduce costs. Laminate theory is used to obtain effective extensional moduli for a group of laminae. Then the group of laminae, rather than the individual lamina, are modeled using finite elements. This approach ignores stacking sequence effects within the lamina group. Therefore, the flexural and flexural-extension coupling properties of the lamina group cannot be faithfully modeled. Reference 2 presents a hybrid analysis for thick laminates. In this analysis (which is not a finite element analysis) the laminate is divided into global and local regions. The terms global and local refer to the detail with which the individual lamina is modeled; the local region is modeled with much greater detail than the global region. Conceptually, this is similar to using a finite element model with smaller- or higher-order elements in one region than in another. However, the analysis in reference 2 does not offer the inherent flexibility of the finite element method for modeling complicated geometries and for performing convergence checks. The objective of this paper is to introduce a new type of two-dimensional (i.e., plane stress or plane strain) finite element for analysis of laminated composites.

The element is a four-node, bilinear, rectangular element. An ordinary bilinear rectangle performs poorly in modeling bending-type deformation. The performance can be improved by using reduced numerical integration or substitute shape functions (ref. 3). Because of the multiple laminae within the element, numerical integration is not appropriate. Therefore, substitute shape functions are used to improve the performance. Explicit integration of the element stiffness matrix in terms of generalized displacements minimizes the algebraic effort required to account for the various laminae within a single element.

After describing the theoretical aspects of the element, results from analyses of several simple configurations are discussed.

REFERENCES

 Wang, A. S. D.; and Crossman, F. W.: Calculation of Edge Stresses in Multi-Layer Laminates by Sub-Structuring. Journal of Composite Materials, vol. 12, Jan. 1978, pp. 76-83.

REFERENCES (CONTINUED)

- Pagano, N. J.; and Soni, S. R.: Global-Local Laminate Variational Model. International Journal for Solids and Structures, vol. 19, no. 3, 1983, pp. 207-228.
- Zienkiewicz, O. C.: The Finite Element Method in Engineering Science, 3rd Ed., McGraw-Hill, New York, pp. 276-284.

,

SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS

John D. Whitcomb

NASA Langley Research Center

ANALYSIS OF THICK LAMINATES

COMPARISON OF TRADITIONAL AND RLC ELEMENT

RECTANGULAR LAMINATED COMPOSITE ELEMENT

X Plane stress/plane strain

X Includes stacking sequence effects

- * Extensional and shear stiffness
- * Flexural stiffness
- * Extension-flexure coupling
- X Technique valid for 3-D element

ELEMENT CONFIGURATION

* Four node rectangle

* Lamina interfaces parallel to X-axis

STIFFNESS MATRIX

$$K_{mn} = t \int C_{ij} \frac{\partial \epsilon_i}{\partial \Delta_m} \frac{\partial \epsilon_j}{\partial \Delta_n} dA$$

SHEAR STRAIN:

U=	е	+	fx	+	gy		Ь
V=	ē	+	Ŧх	+	āv	$c_{xy} = \partial y + \partial x = g + f =$	11

STIFFNESS COEFFICIENTS $A_{ii} = \sum C_{ii}^{i} (y_{i+i} - y_{i})$ $A_{12} = \sum C_{12}^{i} (y_{i+1} - y_{i})$ $A_{22} = \sum C_{22}^{i} (y_{i+1} - y_{i})$ $A_{33} = \sum C_{33}^{i} (y_{i+1} - y_{i})$ $B_{11} = 1/2\Sigma C_{11}^{i} (y_{1+1}^{2} - y_{1}^{2})$ $K_{ii} = 2 l_x t A_{ii}$ $K_{12} = 2 l_{x} t B_{11}$ $B_{12} = 1/2\Sigma C_{12}^{i} (y_{1+1}^{2} - y_{1}^{2})$ $K_{i3} = 2 l_x t A_{i2}$ $K_{22} = 2 l_x t D_{ii}$ $D_{11} = 1/3\Sigma C_{11}^{i} (y_{1+1}^{3} - y_{1}^{3})$ $K_{23} = 2 l_x t B_{12}$ $K_{33} = 2 l_x t A_{22}$ $K_{44} = 2/3 l_x^3 t A_{22}$ $K_{55} = 2 l_{x} t A_{33}$

TRANSFORMATION TO NODAL DISPLACEMENTS

GENERALIZED DISPLACEMENTS:
$$[K] [\Delta] = [F]$$

NODAL DISPLACEMENTS: $[\bar{K}] [\delta] = [\bar{F}]$
WHERE $[\bar{K}] = [T]^T [K] [T]$
 $[\bar{F}] = [T]^T [F]$

TRANSFORMATION MATRIX: $[\Delta] = [T] [\delta]$ BUT $[\Delta] = \begin{bmatrix} \Delta_{\text{NORMAL}} \\ \overline{\Delta}_{\text{SHEAR}} \end{bmatrix}$ $(T] = \begin{bmatrix} T_{\text{NORMAL}} \\ \overline{T}_{\text{SHEAR}} \end{bmatrix}$

EXAMPLE PROBLEMS

* MECHANICAL LOAD

* THERMAL LOAD

* ISOTROPIC

* DIFFERENT MODULI OR EXPANSION COEFFICIENTS

CANTILEVERED BEAM WITH TIP LOAD

90

UNSYMMETRIC CANTILEVERED BEAM WITH THERMAL LOAD

FINITE ELEMENT MODEL

ERROR IN CALCULATED TIP DISPLACEMENT < .1%

BEAM UNDER PURE BENDING

CANTILEVERED BEAM WITH TIP LOAD

SUMMARY

* Need new element to analyse thick laminates

* Developed Rectangular Laminated Composite element which accounts for stacking sequence effects

* Performed well in initial tests

FORMULATION OF LAMINATED BEAM AND PLATE ELEMENTS FOR A MICROCOMPUTER A. Chen and T. Yang Purdue University

Material not received in time for publication.

S.e. B-1

APPROXIMATE ANALYSIS OF COMPOSITES WITH DAMAGE

G. Sendeckyj

Flight Dynamics Laboratory

Material not received in time for publication.

A Method of Laminate Design

Ippei Susuki Japan National Aerospace Laboratory 1880 Jindaiji-machi, Chofu, Tokyo 182, Japan presently Air Force Wright Aeronautical Laboratories/MLBM Wright-Patterson Air Force Base, Ohio 45433

<u>abstract</u>

The objective of this research is to develop a design method to translate the strength characteristics of unidirectional composites to that of a multidirectional laminate with maximum strength. Composite laminates have the advantage that their mechanical properties can be tailored through fiber orientations, ply thickness ratios, and stacking sequences. This capability gives a designer an additional degree of flexibility to obtain the desired stiffness or strength.

This work is limited to laminates which are symmetric, and consist of plies with 0,90,45, and -45 degree fiber orientations. A method is developed to find the optimal combination of these four ply groups to obtain the maximum strength for a given set of in-plane loadings. The classical laminated plate theory is used in analyzing the stress and strain of each ply. The laminate strength is determined by the first ply failure envelope based on the quadratic failure criterion.

Numerical results using T300/5208 graphite/epoxy composite include:

- the strength of optimized laminate is about six times as high as that of quasi-isotropic one,
- the principal stress design is not always the best,
- theoretical, and fractinal ply ratios must be rounded off for practical laminates. The effects of the unit ply thickness and the absolute values of applied loads will be illustrated.
- 4. the penalty of using balanced laminates under non principal loads(with shears) are also discussed.

User friendly programs on PRIME(by FORTRAN) or EPSON QX-10(by BASIC) for this work are available to interested users upon request.

COORDINATE SYSTEM AND NOTATION OF MULTIDIRECTIONAL LAMINATE

S1, S2, S	56:	LAMINATE STRESSES
		(SHOWN ARE POSITIVE)
φk	:	PLY ANGLE OF k-TH PLY GROUP
ν(φk)	:	PLY THICKNESS RATIO OF
		k-TH PLY GROUP
Н	:	ONE-HALF OF THE TOTAL THICKNESS
hk	:	ONE-HALF OF k-TH PLY GROUP THICKNESS

ALUMINUM AND Gr/Ep ELASTIC PROPERTIES

MATERIAL	DENSITY [kg/m ³]	Ex [GPa]	Ey [GPa]	νχ	Es [GPa]
Gr/Ep (T300/5208)	1600	181	10.3	0.28	7.17
ALUMINUM (2024-T3)	2771	. 72	72	0.30	27.7

STRENGTH PROPERTIES

	LONG TENS	LONG COMP	TRANS TENS	TRANS COMP	SHEAR [MPa]
Gr/Ep (T300/5208)	1500	1500	40	246	68
A LUMI NUM (2024-T3)	345	345	345	345	199

STRENGTH SURFACE OF A QUASI-ISOTROPIC LAMINATE IN REGION T (S1=1 MPa)

STRENGTH SURFACE OF A QUASI-ISOTROPIC LAMINATE REGION C (S1=--1 MPa)

STRENGTH SURFACE OF (90q/45r/-45s) LAMINATE UNDER (\$1,\$2,\$6)=(1,.5,.3) MPa

.

TETRAHEDRON, SCHEMATIC EXPRESSION OF CONSTRAINT ON (0p/90q/45r/-45s) LAMINATE ANALYSIS

SUBREGION IN TETRAHEDRON CONSTRAINT

NO	SUBRE	GION	PL	PLY THICKNESS RATIO			LAMINATE
			v (0)	v (90)	v (45)	v (-45)	
			р	g	r	S	
0		Α	1	0	0	0	[0]
1	VEDTEX	B	0	ł	0	0	[90]
2	VERIEX	С	0	0	I	0	[45]
3		0	0	0	0	1	[- 45]
4		AB	1-x	x	0	0	[0p/90q]
5]	AC	1-x	0	x	0	[0p/45r]
6	EDCE	OA	i-x	0	0	X	[Op/-45s]
7	EDGE	BC	0	-x	X	0	[90q/45r]
8		ОВ	0	-x	0	x	[90q/-45 _s]
9		OC	0	0	-x	X	[45r/-45s]
10		OBC	0	l-x-y	x	у	[90q/45r/-45s]
11		OPC	l-x-y	0	x	у	[Op/45r/-45s]
12	SURFACE	OAB	l-x -y	x	0	у	[0p/90q/-45s]
13		ABC	l-x-y	x	У	0	[0p/90q/45r]
14	BODY	O-ABC	i-x-y-z	x	у	z	[0p/90q/45r/-45s]

0 < x, y, z < 1

STRENGTH SURFACE OF OPTIMIZED LAMINATE IN REGION T (S1=1 MPa)

PLY GROUPS OF OPTIMIZED LAMINATE IN REGION T (S1=1 MPa)

STRENGTH VARIATION IN OPTIMIZED LAMINATE AT \$6=.1 MPa IN REGION T

PLY THICKNESS RATIOS OF OPTIMIZED LAMINATE AT S6=.1 MPa IN T

	<u>Uniaxial Compression</u>												
C	1] Sti Ma No. N	ress teri TPY	resul al :T3 H(mm)	tant N1 100/5208 NHPY E	N2 N Gra 0 9	6 (MN phite 0 45-	/m) /Epo 45]	÷ -1 ×y w FPTF	.000 ith f=- Rmin	0.000 0.5 R(0)	0.000 R(90)F) R(45)	R(-45)
	1 2 3 4 5 6 7 8 9 0	6 8 8 10 10 10 10	0.75 0.75 1.00 1.00 1.25 1.25 1.25 1.25 1.25 1.25	33444555555	<u> </u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0) 0) 0) 0) 0) 0) 0) 0)	00000000000000000000000000000000000000	1.125 1.060 1.552 1.500 1.108 2.031 1.875 1.618 1.339 1.339	1.125 1.060 1.552 1.500 1.108 2.031 1.875 1.618 1.339 1.339	0.000 (2.186 (3.220 (0.000 (2.269 (0.269 (0.000 (0.000 (0.326	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.871 0.000
‡ C	N1(MN/ Un: 23 Sti Mat No. N	(m)= i-ax ress terii TPY	-10 ial Co resul al :T3 H(mm)	mpressic tant N1 00/5208 NHPY E	n N2 N Gra 0 9	6 (MN phite 0 45-	/m) /Epo 45]	: −10 xy w FPTF	.000 ith f=- Rmin	0.000 0.5 R(0)	0.000 R(90)F) R(45)	R(-45)
	1 2 3 4 5 6 7 8 9 0	4488 5555555555555555555555555555555555			21777241047 222222241047	2312314523	0) 0) 0) 0) 0) 0) 0)	00000000000000000000000000000000000000	1.032 1.023 1.008 1.074 1.068 1.048 1.046 1.046 1.015 1.117 1.113	1.032 1.023 1.008 1.074 1.068 1.048 1.048 1.046 1.015 1.117 1.113	2.210 0 2.164 0 2.207 0 2.304 0 2.296 0 2.296 0 2.196 0 2.119 0 2.398 0 2.359 0	000 000 000 000 000 000 000 000 000 00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		54	6.75	27 (27	0 0	0)	0	1.013		ne>	(5•	
					Bi	<u>ax1</u>	<u>al 1</u>	<u>len</u>	<u>allon</u>			,	
C	4] St Ma No. N	ress teri TPY	al :T: H(mm)	ltant N1 300/5208 NHPY [N2 Gra 0 9	NG (M aphit 90 45	N/m) e/Ep -45]	: oxy FPTF	2.000 with f= Rmin	0.400 -0.5 R(0	0.0 R(90)	00)R(49	5)R(-45)
	123456789011234567890123456 11111111111222223	ຨຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬ	3.55555555555 3.7777777000000000000000000000000000000	$\begin{array}{c} 14 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 16 \\ 16$	8988700101108991118822770001112334	3774427274747472752452421010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	45555555555555555555555555555555555555	1.025 1.101 1.039 1.024 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.028 1.028 1.028 1.028 1.028 1.028 1.028 1.028 1.028 1.028	$\begin{array}{c} 1.339\\ 1.382\\ 1.465\\ 1.465\\ 1.523\\ 1.191\\ 1.045\\ 1.417\\ 1.615\\ 1.522\\ 1.5225\\ 1.5225\\ 1.5246\\ 1.5465\\ 1.5465\\ 1.6066\\ 1.301\\ 1.301\\ 1.315\\ 1.253\\ 1.211\\ 1.051\\ 1.042\end{array}$	0.000 0	$\begin{array}{c} 1.029\\ 1.101\\ 1.002\\ 1.103\\ 1.002\\ 1.002\\ 1.003\\ 1.120\\ 1.007\\ 1.007\\ 1.007\\ 1.007\\ 1.007\\ 1.007\\ 1.007\\ 1.007\\ 1.007\\ 1.003\\ 1.003\\ 0.000\\ 1.003\\ 0.000\\ 1.003\\ 0.000\end{array}$	5 1.025 1.101 1.1039 1.1039 1.1039 1.1039 1.1025 1.0055 1.1021 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.0547 1.00547 1.00547 1.00547 1.00547 1.0078 1.0078 1.0078 1.0078 1.0078 1.0078 1.0033 0.000 0.000

<u>Design w/wo Shear</u> (1) 7300/5208 E 1] Stress resultant N1 N2 N6 (MN/m) : 0.100 1.000 0.100 Graphite/Epoxy 0 90 45-45] FPTF with f = -0.5Material :T300/5208 Rmin R(0 R(90)R(45)R(-45)No. NTPY H(mm) NHPY E 45 1.033| 1.243 0.000 1.033 0.000 45 1.270| 1.387 0.000 1.270 0.000 45 1.032| 1.574 0.000 1.032 0.000 0) 1.251 5 4 0 1 (10 1 5 0) 0 2 3 6 (12 1.501 1 Ŝ 1.50 4 0 0) 6 7 7 7 (12 45 1.490 1.503 0.000 1.490 0.000 6 5 0 123 0) (4 14 45 1.297: 1.863 0.000 1.297 0.000 0 0) 1.75 (5 6 7 14 45 1.020: 1.672 0.000 1.020 0.000 47 0 0) (14 0 1.6051 1.605 0.000 1.694 0.000 8 0 1 0) (16 2.001 2 3 45 1.560: 2.106 0.000 1.560 0.000 6 8 (0 0) 8 5.00! 16 45 1.283: 2.033 0.000 1.283 0.000 5 0 0) 8 9 2.001 (16 -45 1.165: 2.027 0.000 1.432 1.165 Ŝ 2 0 8 1) 2.001 (10 16 0.000 0.089 E 23 Stress resultant N1 N2 N6 (MN/m) : 1.011 with f = -0.5Graphite/Epoxy W: 0 90 45-451 FPTF Material :T300/5208 Rmin R(0)R(90)R(45)R(-45) No. NTPY H(mm) NHPY C 45 1.208 1.823 0.000 1.208 1.208 1 14 1.751 7 (5 0 1 1) 90 1.006: 1.454 1.006 0.000 0.000 7 (3 1.75! 66557466 1 0 0) 14 2.034 0.000 1.406 1.406 0 45 1.406 5.001 8 1 1) 16 (2.004 0.000 1.331 1.202 Ø 120200 -45 1.2021 4567 2.001 8 (2) 16 0 1 2.004 0.000 1.202 1.331 8 Ċ 45 1.2021 1) 16 2.001 1.637 1.163 0.000 0.000 888 Ć 0) 90 1.1631 16 2.001 1.894 0.000 1.094 1.094 45 1.0941 Ć 16 2.001 0 2 1 2) 1.657 1.041 0.000 0.000 0) 8 C 90 1.0411 2.001 16 90 1.0271 1.549 1.027 0.000 1.075 90 1.0271 1.549 1.027 1.075 0.000 88 9 1) 16 5.001 (16 100.5 (1 0) 10 1 (2) Kevlar49/Epoxy 0.100 E103 Stress resultant N1 N2 N6 (MN/m) : 1.000 0.100 Naterial :Kevlar 49/Epoxy NTPV H(mm) NHPY E 0 90 Aramid/Epoxy f=-0.5 45-45] FPTF Rmin R(No. NTPY H(mm) NHPY E 0)R(90)R(45)R(-45) 1.204: 1.460 0.000 1.204 0.000 0) 45 6 7 5 0 1 1.501 (12 1 1.510 0.000 1.503 0.000 1.529 0.000 1.776 0.000 2.279 0.000 1.154 0.000 1.751 6 7 45 1.5031 (0 1 23 0) 14 1.5291 2.00: 8 0 1 0) 0 (16 45 1.1541 2 4 8 (687 0 0) 16 2.001 1.536 0.000 2.024 0.000 5 9 (0 1221 0) 0 1.5361 5.521 18 67 2.516 0.000 1.458 0.000 45 9 (0 0) 1.4581 2.251 18 . 8 9 7 1.775 2.697 0.000 1.775 0.000 0 45 2.501 10 0) 1 20 0 0 1.540: 1.540 0.000 2.250 0.000 Ś 2.501 0) 10 (20 3 2 0 0) 45 1.1771 2.810 0.000 1.177 0.000 (9 10 50 45 2.094: 2.828 0.000 2.094 0.000 2.751 11 (9 0 0) 22 10 0.000 E11] Stress resultant N1 N2 N6 (MN/m) : 1.011 0.089 Aramid/Epoxy f=-0.5 45-45] FPTF Rmin R(Material :Kevlar 49/Epoxy No. NTPY H(mm) NHPY E 0 90 0)R(90)R(45)R(-45) 45 1.0601 3.551 0.000 1.060 1.060 5) 26 3.251 13 (9 0 2 3 3.847 0.000 1.138 1.138 28 3.501 2) 45 3 14 10 0 1.1381 (58 0 3) 1.101 3.193 0.000 1.101 1.101 3.501 14 8 45 ((12 (11 2.468 0.000 1.022 1.022 3.501 4567 28 14 0 1 2 3 1 1) 45 1.0221 4.096 0.000 1.213 1.213 1.213 3) 2) 45 30 3.751 15 000 13 13 7 3.751 15 15 1.1991 3.620 0.000 1.199 1.199 30 45 3.751 2.479 0.000 1.031 1.031 30 1) 45 1.081 (15 15 2.694 0.000 1.072 3.988 0.000 1.397 1.073 8 9 Ō 4 1.0721 30 3.751 4) 45 (S.S. 1.0581 3.988 0.000 1.397 1.0581 3.988 0.000 1.058 30 10 Ô -45 1.05 3.751 (3) 1.397 30 3.751 15 (10 0 2) 45 10

MECHANICS OF COMPRESSION FAILURE IN FIBER REINFORCED COMPOSITES

S. Wang

University of Illinois

Material not received in time for publication.

SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING

C. T. Sun

School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana 47907

ABSTRACT

Two major failure modes are predominant in composite laminates subjected to low velocity impact, i.e., matrix cracks and delamination [1]. Delamination, in particular, may cause a great reduction in compressive strength and, thus, suppression of delamination is highly desirable.

Analysis results indicate that delamination is induced by matrix cracks. Two types of matrix cracks are induced by transverse shear stresses and bending stresses. Bending cracks usually occur in the bottom layer where bending stresses are the greatest, while transverse shear cracks occur more often in the interior layers. Delamination can result from branching of both bending cracks and transverse shear cracks. In thin laminates it is not produced by reflection of waves propagating through the thickness of the laminate.

Two methods of delamination suppression are investigated: adding through-the-thickness reinforcements by stitching, and adding tough adhesive layers along interfaces of the laminate. Experimental results indicate that stitching can reduce the spreading of delamination cracks but cannot prevent initiation of delamination. On the other hand, the use of adhesive layers proves to be quite effective in suppressing delamination.

Thin structural adhesives were placed along the interfaces of a composite laminate subjected to impact loading. The base line specimen was AS4/3501-6 graphite/epoxy $[0_{2}/90_{2}/0_{2}]$ laminate. One group of specimens contained layers of 5 mil thick adhesive film (FM1000 by American Cyanamid) between the 0°- and 90°-plies. Impacted beam specimens were sectioned transversely and longitudinally through the impact site and were examined using an optical electron microscope and then photographed. From these photographs, matrix cracks and delamination size were measured. The X-ray technique was also used to map the delamination area.

When compared, the base line laminate and the one with adhesive layers exhibited significant differences in damage mode. For instance, the threshold velocity at which damage (matrix cracking or delamination) occurred, was found to be much lower for the laminate with no adhesives. It was found that a delamination crack could not be initiated in the laminate with adhesives until the impact velocity reached 26 m/sec, while under a 13 m/sec impact, the laminate without adhesives began to suffer delamination.

Transverse shear crack in the upper lamina was also noted to be affected by the presence of adhesive layers. For example, at 15 m/sec transverse shear cracks appeared in the upper lamina in the specimen without adhesives, while no transverse cracks emerged in the upper lamina in the beam with adhesives at velocities below 26 m/sec. There was indication that delamination could be caused by transverse cracks.

The adhesive layers in the laminate appeared to have affected the size of indentation during impact. As a result, the distribution of contact pressure was also affected. Experiments were conducted, and the relations between the contact area and impact velocity for laminates with adhesives and without adhesives were obtained. The results showed that adhesive layers tended to enlarge the contact area and, as a result, spread out the contact pressure. The distribution of the contact pressure was found to significantly affect the transverse shear stress distribution through the thickness. This result was used successfully to interpret the difference in transverse shear crack patterns in the two types of laminates due to impact loading.

The effect of adhesive layers on transverse shear stress distribution was studied by using 2-D finite elements. The results show that the adhesive layer can diffuse shear stress concentration in the top layer (impacted side) resulting in a significant reduction in transverse shear cracks. Effects of adhesive layer locations were also investigated.

ACKNOWLEDGMENT

This work was supported by ONR Contract NOOO14-84-K-0554. Dr. Yapa Rajapakse is Technical Monitor.

REFERENCES

 S. P. Joshi and C. T. Sun, "Impact Induced Fracture in a Laminated Composite," Journal of Composite Materials, Vol. 19, No. 1, 1985, pp. 51-66.

SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING

C. T. SUN

School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana 47907

Sponsored by ONR Technical Monitor: Dr. Y. Rajapakse

OBJECTIVE

TO INVESTIGATE THE EFFECTIVENESS IN USING STITCHING AND ADHESIVE LAYERS FOR SUPPRESSION OF DELAMINATION

APPROACH

- IMPACT [05/905/05] LAMINATES WITH STITCHING AND ADHESIVE LAYERS
- DETERMINE CONTACT AREAS
- USE PHOTOMICROGRAPHS TO OBSERVE IMPACT DAMAGE
- USE 2-D FINITE ELEMENTS TO PERFORM DYNAMIC STRESS ANALYSIS TO INTERPRET EXPERIMENTAL RESULTS

(a) [0₅/90₅/0₅] laminate without adhesives

(b) [0₅/A/90₅/A/0₅]

Transverse cross sections of laminates after impact of a $1/2^{\prime\prime}$ steel ball at velocity 21 m/s

(b) [05/A/905/A/05] laminate with adhesives

Transverse cross sections of laminates after impact of a $1/2^{\prime\prime}$ steel ball at velocity about 26 m/s

impact velocity 34 m/sec delamination in $\rm O_5\mathchar`-layer$ fiber breakage

impact velocity 14.6 m/sec adhesive layers in O_5 layer

impact velocity 14 m/sec adhesive layer near top and bottom surface

impact velocity 14.6 m/sec adhesive layer at the middle surface

CONCLUSIONS

- STITCHING CAN REDUCE DELAMINATION SIZE BUT CANNOT SUPPRESS INITIATION.
- ADHESIVE LAYERS WHEN PLACED AT INTERFACES ARE EFFECTIVE IN SUPPRESSING DELAMINATION.
- ADHESIVE LAYERS CAN REDUCE TRANSVERSE SHEAR CRACKS.
- ADHESIVE LAYERS CANNOT STOP BENDING CRACKS.

THERMOVISCOELASTIC PROPERTIES OF UNIDIRECTIONAL FIBER COMPOSITES

Z. Hashin and E. A. Humphreys

Materials Sciences Corporation Gwynedd Plaza II Bethlehem Pike Spring House, Pennsylvania 19477

ABSTRACT

Structural materials in space are subjected to severe thermal cycling as the structure moves between full sunlight and the shadow of the earth. The range of temperatures experienced can be as large as 116°K to 589°K. For polymeric matrix fiber composites this produces creep deformations and relaxation of stress which must be accurately assessed. The purpose of this study is to (a) provide analytical methods to determine the thermoviscoelastic (TVE) properties of graphite/polymer unidirectional fiber composite (UFC), (b) to apply this information to the assessment of composite structural response.

TVE characterization of polymeric matrix materials is not a simple matter and various schemes have been devised in addressing this problem. In this study we have adopted the simplest representation which can adequately characterize the response of a TVE polymer. The representation used retains the temperature dependence of the initial elastic modulus while the time dependent response is governed by a temperature dependent time shift function.

It will be recalled that for isothermal viscoelasticity there is a correspondence principle which directly relates effective viscoelastic and elastic properties for any model of a composite materials [1,2] but no such correspondence exists for a composite with a TVE constituent. It therefore becomes necessary to resort to direct analysis of a model. We have employed two models of a UFC - the composite cylinder assemblage (CCA) model which is suitable for axisymmetric states, including free thermal expansion and for axial shear, and the hexagonal array model for the case of transverse shear. It may be shown that any average stress or strain state can be decomposed into axisymmetric part, transverse shear and axial shear. Thus analysis of these three states provides the general stress-strain response of a UFC.

The advantage of the CCA model is in that the analysis reduces to that of a single composite cylinder. Carrying out such analyses for axisymmetric states and axial shear it was found that in each case the problem was reduced to solution a system of integral equations in the time which is easily done numerically in an incremental fashion. The CCA model is not amenable to transverse shear analysis and therefore this case has been analyzed in terms of the hexagonal array model with TVE finite elements which were specially developed for this study. Note that the CCA and the hexagonal array are both transversely isotropic models as required and that their predictions for elastic constants of UFC are numerically literally identical.

The constitutive relations for UFC developed have to be utilized to study the vibrations of a cantilever beam. With respect to this vibration problem it is important to recognize that a UFC will have small time dependent response when loaded in fiber direction and large time dependence when sheared along the fiber direction (axial shear). Thus, in bending vibrations of a beam which is uniaxially reinforced in the direction of the beam axis the effect of shear is very significant and therefore, we have based the analysis on the Timoshenko beam concept which takes into account shear deformation and rotatory inertia. For this purpose the Timoshenko beam vibration equations have been converted to viscoelasticity in terms of complex moduli (axial Young's modulus and axial shear modulus) of the UFC. These have been evaluated at different temperatures in terms of matrix complex moduli and fiber elastic moduli. We have evaluated the attenuation of free bending vibrations of a cantilever with circular tubular section without and with the shear deformation effect. The results show that shear deformation provides very significant attenuation of vibrations. Indeed it is seen that modes higher than the first are effectively eliminated by the damping.

REFERENCES

- Z. Hashin, "Viscoelastic Behavior of Heterogeneous Media," J. Appl. Mech., <u>32</u>, 1965, pp. 157-173.
- Z. Hashin, "Viscoelastic Fiber Reinforced Materials," AIAA J., 1966, pp. 1411-1417.

OBJECTIVES

- OBTAIN THERMO-VISCOELASTIC CONSTITUTIVE RELATIONS FOR UNIDIRECTIONAL FIBER COMPOSITES
- INVESTIGATE COMPOSITE STRUCTURAL RESPONSE

APPROACH

MICROMECHANICS MODELLING

STRUCTURAL MODELLING

THERMO-VISCOELASTIC RESPONSE OF UNIDIRECTIONAL FIBER COMPOSITE

FIBERS - THERMO-ELASTIC ANISOTROPIC GRAPHITE, CARBON

MATRIX - THERMO-VISCOELASTIC POLYMER

INPUT - $\overline{e}_{ij}(t)$, $\phi(t)$ RELAXATION INPUT - $\overline{\sigma}_{ij}(t)$, $\phi(t)$ FIND - $\overline{e}_{ij}(t)$ CREEP

THERMO-ELASTIC DILATATION RESPONSE

$$\sigma_{ij} = \sigma \delta_{ij} + S_{ij}$$

$$\varepsilon_{ij} = \varepsilon \delta_{ij} + e_{ij}$$

$$\sigma = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$$

$$\varepsilon = \frac{1}{3} (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33})$$

$$\sigma [\phi(t)] = 3K [\phi(t)] \left\{ \varepsilon(t) - \alpha[\phi(t)] \phi(t) \right\}$$

THERMO-ELASTIC RELATION

 $\phi(t)$ - TIME DEPENDENT TEMPERATURE

THERMO-VISCOELASTICITY

ISOTHERMAL
$$\phi = \text{CONST}$$

 $S_{ij}(t) = 2G(t,\phi) e_{ij}(0) + 2\int_{0^+}^{t} G(t-t',\phi) \frac{\partial e_{ij}}{\partial t'} dt'$
 $e_{ij}(t) = \frac{1}{2}g(t,\phi) S_{ij}(0) + \frac{1}{2}\int_{0^+}^{t} g(t-t',\phi) \frac{\partial S_{ij}}{\partial t'} dt'$
 $G(t,\phi) - \text{SHEAR RELAXATION MODULUS}$
 $g(t,\phi) - \text{SHEAR CREEP COMPLIANCE}$

THERMORHEOLOGICALLY SIMPLE

$$S_{ij}(t) = 2G(\xi) e_{ij}(0) + 2\int_{0}^{t} G(\xi - \xi') \frac{\partial e_{ij}}{\partial t'} dt'$$

$$e_{ij}(t) = \frac{1}{2}g(\xi) S_{ij}(0) + \frac{1}{2}\int_{0}^{t} g(\xi - \xi') \frac{\partial s}{\partial t'} dt'$$

$$\xi(t) = \int_{0}^{t} \frac{du}{a[\phi(u)]} REDUCED TIME$$

$$a - HORIZONTAL SHIFT FACTOR$$

$$G(t, \phi_{0}) = F(logt)$$

 $G(t,\phi) = F[\log(t/a)]$

THERMORHEOLOGICALLY COMPLEX

SIMPLEST MODEL

$$\begin{aligned} G(t,\phi) &= G_0(0,\phi_0) + G_1(0,\phi) + G_2(t,\phi) \\ S_{ij}(t) &= 2 \left\{ G_0(0,\phi_0) \cdot e_{ij}(t) + [G_1(0,\phi) + G_2(\xi)] \cdot e_{ij}(0) + \int_{0^+}^{t} [G_1(0,\phi) + G_2(\xi-\xi^*)] \cdot \frac{\partial e_{ij}}{\partial \tau} dt \right\} \\ e_{ij}(t) &= \frac{1}{2} \left\{ g_0(0,\phi_0) \cdot S_{ij}(t) + [g_1(0,\phi) + g_2(\xi)] \cdot S_{ij}(0) + \int_{0^+}^{t} [g_1(0,\phi) + g_2(\xi-\xi^*)] \cdot \frac{\partial S_{ij}}{\partial \tau} dt \right\} \\ S_{ij} &= 2\underline{\Gamma} \cdot e_{ij} \\ \end{aligned}$$

TRANSVERSELY ISOTROPIC FIBER COMPOSITE

COMPOSITE CYLINDER ASSEMBLAGE

AXISYMMETRIC

$$u_{1} = \varepsilon_{11}(t) x_{1} \quad \text{or} \quad \overline{\sigma}_{11}(t) \text{ Given}$$

$$u_{r}(b,t) = \varepsilon_{T}(t) b \quad \text{or} \quad \sigma_{rr}(b,t) = \sigma_{T}(t)$$

$$\varepsilon_{T} = \frac{1}{2} \quad (\overline{\varepsilon}_{22} + \overline{\varepsilon}_{33})$$

$$\sigma_{T} = \frac{1}{2} \quad (\overline{\sigma}_{22} + \overline{\sigma}_{33})$$

$$\phi = \phi(t) \qquad .$$

FREE THERMAL EXPANSION

$\overline{\sigma}_{11}$	=	0	σrr	(b,t)	-	0
--------------------------	---	---	-----	-------	---	---

PERIODIC HEXAGONAL ARRAY AND REPEATING ELEMENT

AXIAL SHEAR STRAIN DUE TO 1 MPA STRESS AND CYCLIC TEMPERATURE

STRAIN HISTORY FOR 1 MPA ${oldsymbol \sigma}_2$ STRESS AND CYCLIC TEMPERATURE

120

ELASTIC BEAM VIBRATIONS

NEGLECT SHEAR DEFORMATION AND ROTATORY INERTIA

 $EI \frac{\partial^4 W}{\partial x^4} + \rho A \frac{\partial^2 W}{\partial t^2} = 0$

WITH SHEAR DEFORMATION AND ROTATORY INERTIA.

TIMOSHENKO BEAM

$$EI \frac{\partial^4 W}{\partial x^4} + \rho A \frac{\partial^2 W}{\partial t^2} - \rho I \left(1 + \frac{E}{k'G} \right) \frac{\partial^4 W}{\partial x^2 \partial t^2} + \frac{\rho^2 I}{k'G} \frac{\partial^4 W}{\partial t^4} = 0$$

k' - SHEAR COEFFICIENT

VISCOELASTIC VIBRATIONS

| Sinusoidal

FIRST MODE NATURAL FREQUENCIES, CANTILEVER BEAM

ENVELOPE OF FIRST MODE RESPONSE, CANTILEVER BEAM

ENVELOPE OF SECOND MODE RESPONSE, CANTILEVER BEAM

• TEMPERATURE DEPENDENCE OF INITIAL PROPERTIES SIGNIFICANT

• SECONDARY STRESS DOMINATE BEAM DAMPING

• STRUCTURAL MODELS MUST INCORPORATE SECONDARY STRESSES

COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER

C. C. CHAMIS, C. A. GINTY, AND P. L. N. MURTHY

NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO 44135

ABSTRACT

Lewis research activities and progress in composite mechanics and closely related areas are summarized. The research activities summarized include: (1) Composite Mechanics; (2) Computer Programs for Composites; and (3) High Temperature Composites. The research activities focus on: (1) Composite mechanics -- simplified procedures for sizing laminates, substructuring in composite mechanics for free edge stressfield behavior, interlaminar fracture toughness in composites, and progressive fracture in composites; (2) Computer programs for composites -- integrated composite analysis, composite blade structural analysis, composite durability structural analysis, thermoviscoplastic composite behavior, structural tailoring of engine and SSME blades, and structural tailoring of advanced turboprops; and (3) High temperature composites -- test methods development and characterization, composite burner liner and refractory wire reinforced superalloys for SSME turbopump blades.

OB JE CT IVE

COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER	SUMMARY OF LEWIS RESEARCH ACTIVITIES AND PROGRESS IN:
	O COMPOSITE NECHANICS
	O COMPUTER PROGRAMS FOR COMPOSITES
C. C. CHAMIS. C. A. GINTY, AND P. L. N. MURTHY NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO 44135	0 HIGH TEMPERATURE COMPOSITES
	COMPOSITE MECHANICS
ELEVENTH ANNUAL MECHANICS OF COMPOSITES REVIEW	O SIMPLIFIED PROCEDURES FOR SIZING LAMINATES
DAYION. OHIO, OCIOBER 22-24. 1985	o SUBSTRUCTURING IN COMPOSITE MECHANICS: WIDTH, LOADING CONDITION AND ENVIRONMENTAL EFFECTS ON FREE EDGE STRESSES
	O INTERLAMINAR FRACTURE IN COMPOSITES
	o PROGRESSIVE FRACTURE OF COMPOSITES WITH AND WITHOUT DEFECTS

SCHEMATICS OF SELECT COMPOSITE STRUCTURAL COMPONENTS WITH RESPECTIVE GEOMETRY AND TYPICAL LOADINGS

LEWIS DEVELOPED DESIGN PROCEDURE

CONSISTS OF:

- TABULATED TYPICAL PROPERTIES OF VARIOUS UNIDIRECTIONAL COMPOSITES
- SUITABLE GRAPHS TO EXPEDITE REPETITIOUS CALCULATIONS
- PLY STRESS INFLUENCE COEFFICIENTS
- EXPLICIT, SIMPLE EQUATIONS FOR HYGROTHERMAL EFFECTS AND FATIGUE
- APPROXIMATE, SIMPLE EQUATIONS FOR BUCKLING

REDUCED STIFFNESSES OF AS GRAPHITE-FIBER/EPOXY (AS/E) $\pm \theta$ LAMINATES

PLY STRESS INFLUENCE COEFFICIENTS (PSIC) - DEFINITION PSIC (II) RELATE THE θ PLY MATERIAL AXES STRESSES TO LAMINATE STRUCTURAL AXES **STRESSES**

LAMINATE STRUCTURAL AXES (X, Y) STRESSES

9 PLY MATERIAL AXES (1, 2) STRESSES

 $\sigma_{\ell 11} = \mathscr{G}_{L/X} \sigma_{CXX} + \mathscr{G}_{L/Y} \sigma_{CYY} + \mathscr{G}_{L/S} \sigma_{CXY}$ $\sigma_{\ell 22} = \mathscr{I}_{T/X} \sigma_{cxx} + \mathscr{I}_{T/Y} \sigma_{cyy} + \mathscr{I}_{T/S} \sigma_{cxy}$ $\sigma_{\ell 12} = \mathscr{I}_{S/X} \sigma_{cxx} + \mathscr{I}_{S/Y} \sigma_{cyy} + \mathscr{I}_{S/S} \sigma_{cxy}$

SAMPLE DESIGN: COMPOSITE PANEL SUBJECTED TO IN-PLANE COMBINED LOADS

COMPOSITE SYSTEM: AS/E, ABOUT 0.6 FVR

GENERAL LAMINATE DESIGN RESULTS SUMMARY

[LAMINATE CONFIGURATION: $[+45/0/90/0]_{2S}$ AS/E; $t_c = 0.10$ in.]

MARGIN	S OF SAFETY	(M. O. S.)	FOR:						
DISPLACEMENT			PLY ST	RESSES		BUCKLING			
TYPE	M. O. S.	PLY	M. O. S.			(CASE, ks	M. O. S.	
u/a	0. 43		σ _{ℓ11}	0 ₂₂₂	⁰ ℓ12	σ _{CXX}	σ _{суу}	σ _{сху}	
v/b	1,94	0	2,77	0.61	1.30	0	0	20	-0.74
Δθ	.33	+45	0.79	∞	∞	40	20	20	3, 35
		-45	4, 43	a. 27	∞				
		90	6.00	.12	1.30				

 a AT SPECIFIED LOAD (AT DESIGN LOAD M. S. = 0.38).

CD-85-16564

CASES STUDIED

• FREE-EDGE AXIAL STRESS VARIATION VERSUS PLY ANGLE

• WITH/THICKNESS RATIO EFFECTS ON FREE-EDGE STRESSES

F. E. STATISTICS 1589 20-NODE SOLID F. E. 224 F. E. 'S IN SUPERELEMENT 22683 D. O. F.

 $-\theta$

γ

FREE-EDGE SUPERELEMENT

(224 F.E.; 2355 D.O.F.)

CD-85-15804

- DETERMINE REQUISITE PROPERITES AT DESIRED CONDITIONS USING COMPOSITE MICROMECHANICS
- ♥ RUN 3-D FINITE ELEMENT ANALYSIS ON ENF (MMF) FOR AN ARBITRARY LOAD
- © SCALE LOAD TO MATCH INTERLAMINAR SHEAR STRESS AT ELEMENT NEXT TO CRACK-TIP
- WITH SCALED LOAD EXTEND CRACK AND PLOT STRAIN ENERGY RELEASE RATE
 VS CRACK LENGTH
 G
- SELECT CRITICAL "G" AND CRITICAL "a"

0

METHOD HAS VERSATILITY/GENERALITY

FIBER VOLUME RATIO EFFECT ON INTERLAMINAR FRACTURE TOUGHNESS PARAMETERS

END-NOTCH-FLEXURE (AS/E)

CODSTRAN RESULTS

[±15]_S GRAPHITE/EPOXY LAMINATE WITH THROUGH-HOLE

FRACTURE MODES* OF [+0]_s G/E LAMINATES (PREDICTED BY CODSTRAN)

	PLY ORIENTATION; $[+\theta]_{s}$; θ IN DEGREES									
NOTCH TYPE	0	3	5	10	15	30	45	60	75	90
UNNOTCHED Sol ID	LT	LT S3	LT \$ ³	LT 5 ³	I S	s	1 S	ττ	ΤŢ	TT
NOTCHED THRU SLIT	s ¹ LT	s ¹ LT	S ¹ LT	s	s	14 S	1 ⁴ S	1 ⁴ TT S ²	ŦŤ	ττ
NOTCHED Thru Hole	S ¹ LT	S ¹ LT	S ¹ LT	5	S LT	4 1 5	1 ⁴ S TT	I TT	TŦ	TT

1) 2) 3)

4)

INITIAL FRACTURE DUE TO INTRAPLY SHEAR IN THE NOTCH TIP ZONE MINIMAL INTRAPLY SHEARING DURING FRACTURE SOME INTRAPLY SHEAR OCCURRING NEAR CONSTRAINTS (GRIPS)

DELAMINATIONS OCCUR IN NOTCH TIP ZONE PRIOR TO ANY INTRAPLY DAMAGE

I = INTERPLY DELAMINATION

COMPOSITE MICROMECHANICS - SCALE LEVELS

COMPUTER PROGRAMS FOR COMPOSITES

0	ICAN	INTE GRATED COMPOSITES ANALYZER - INTERACTIVE
0	COBSTRAN	COMPOSITE BLADE STRUCTURAL ANALYSIS - STAND ALONE
0	CODS TR AN	COMPOSITE DUR ABILITY STRUCTURAL ANALYSIS - STAND ALONE
0	N. L. COBSTRAN	NONLINEAR COMPOSITE BLADE STRUCTURAL ANALYSIS - STAND ALONE
0	STAEBL	STRUCTURAL TAILORING OF ENGINE BLADES - HIGH TEMPERATURE
0	STAT	STRUCTURAL TAILORING OF ADVANCED TURBOPROPS

STRUCTURAL TAILORING OF ENGINE BLADES (STAEBL)

0.41-111

STRUCTURALLY TAILORED SHROUDLESS BLADES WITH COMPLEX INTERNAL STRUCTURE

PARAHETER	PERCENT CHANGE FROM REFER Hollow Blade With Composite Inlays	ENCE
. BLADE CHORD . BLADE WEIGHT	-18 -52	-9 - 37
DIRECI OPERATIONAL COST PLUS INTEREST (DOC +1) ENGINE WEIGHT ENGINE COST MAINTENANCE COST	-0,33 -0,15 +0,03	-0.23 -0.18 +0.05
TOTAL	-0.45	

UNIT TO AN AND A STATISTIED: RESUMANCE MARGINS (FIRST, SECOND, THIRD, AND FOURTH MODES) FLUTTER-LOG DECREMENT (FIRST, SECOND, AND THIRD MODES) BIRD INGESTION (LOCAL AND ROOT STRESSES) STEADY-STATE STRESS (THROUGHOUT THE BLADE)

OPTIMUM BLADE DESIGN EFFECT OF THERMAL AND PRESSURE LOADS

TEMPERATURE - DEPENDE PROPERTIES	PRESSURE LOAD ONLY	OPTIMUM DESIGN WEIGHT (LRS) PERCENT SPAN THICKNESS (IN) CHORD (IN) THICK/CHORD	
9.69 9. 50. 100. 8 .08 .08 27 3.60 4.15 4 .02 .02	9.88 0, 50, 100, ,47 .08 .10 3,33 3,66 4,22 ,14 .02 .02	WEIGHT (LRS) PERCENT SPAN THICKNESS (IN) CHORD (IN) THICK/CHORD	
.05 1.47	.05 1.55	CONSTRAINTS Resonance Margins Mode 1 Mode 2	
1.67 .520 .813	1.71 .510 .782	MODE 3 FLUTTER CONSTRAINT ROOT STRESS	
	1.55 1.71 .510 .782	MODE 2 Mode 3 Flutter Constraint Root Stress	

OPTIMIM BLADE DESIGN EFFECT OF THERMAL ENVIRONMENT

OPTIMUM DESIGN	CONTROL CASE: ND.THERMAL LOADS	THERMAL LOADS TEMPERATURE INDEPEND PROFERIJES	THERNAL LOADS ENT TEMPERATURE DEPENDENT PROPERTIES
WEIGHT (LDS) PERCENT SPAN HHICKNESS (IN) Chord (IN) HHICK/CHORD	7.95 0. 50. 100. .24 .13 .08 1.70 1.88 2.16 .14 .07 .04	8.22 0. 50. 100. .24 .15 .08 1.68 1.85 2.13 .14 .08 .04	8.24 0. 50. 100. .24 .15 .08 1.69 1.86 2.14 .14 .08 .04
CONSTRAINTS Resonance Margins Root 1 Root 2 Root 3 Flutter Constrains Root Stress	.05 1.27 1.65 .980 .055	.06 1.28 1.67 .999 .062	.06 1.27 1.65 .999 .062

132

COMPOSITE TURBOPROP BLADE

- Mary ply all relia ٠ Ellecther sper petitin

- Y

ANALISIS MODE

(J28 HODES S84 ELEMENTS)

CONSTRAINED LAYER DAMPING OF ADVANCED PROPFANS

TEST

623

.

HIGH STRESS REGIONS IN COMPOSITE SHELL

COMPOSITE TURBOPROP VIBRATION ANALYSIS

1st

3rd BENDING

	BENDING	MEMBRANE BENDING	MEMBRANE BENDING TRAN. SHEAR	
1st BENDING	154	158	147	156
1st EDGE	338	339	334	325
2nd BENDING	373	369	364	371
1st TORSION	585	571	561	536

ANALYSIS

NATURAL FREQUENCIES OF SR7A

650

655

635
HIGH TEMPERATURE COMPOSITES

- O TEST METHODS AND CHARACTERIZATION
 - O COMPOSITE BURNER LINER
 - 0 FRS FOR SSME TURBOPUMP BLADES

CONCLUSIONS

O CURRENT LEWIS RESEARCH ACTIVITIES ON COMPOSITE MECHANICS/RELATED ARE AS INCLUDE:

- O COMPOSITE MECHANICS, COMPUTER PROGRAMS FOR COMPOSITES, HIGH TEMPERATURE COMPOSITES AND COMPOSITE ENGINE STRUCTURAL COMPONENTS
- o RECENT PROGRESS INCLUDES:
 - 0 SIMPLIFIED DESIGN PROCEDURE FOR GENERAL LAMINATES
 - 0 WIDTH, LOADING CONDITIONS AND ENVIRONMENTAL EFFECTS ON FREE EDGE STRESSES
 - O INTERLAMINAR FRACTURE IN COMPOSITES
 - o PROGRESSIVE FRACTURE OF COMPOSITES WITH/WITHOUT DEFECTS
 - O CONTINUING DEVELOPMENT OF: ICAN, CODSTRAN, N. L. COBSTRAN, STAEBL, STAT
 - 0 INITIATION OF RESEARCH IN HIGH TEMPERATURE COMPOSITES
 - O SIRUCTURAL TAILORING OF COMPOSITE FAN BLADES, TURBOPROPS, SSME BLADES

O THERMOVISCOPLASTIC STRUCTURAL ANALYSIS OF TURBINE BLADES MADE FROM TUNGSTEN-FIBER REINFORCED SUPERALLOYS - DEDICATE ANALYSIS

APPENDIX A: PROGRAM LISTINGS

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES MATERIALS LABORATORY

INHOUSE

ADVANCED COMPOSITES WORK UNIT DIRECTIVE (WUD) NUMBER 45 77 April - 85 April

- WUD Leader: James M. Whitney Materials Laboratory Air Force Wright Aeronautical Laboratories AFWAL/MLBM Wright-Patterson AFB, OH 45433-6533 (513) 255-2340 Autovon: 785-2340
- Objective: The objective of the current thrust under this work is to develop and demonstrate concepts of damage resistance as applied to fiber reinforced composite laminates. Short term objectives (1-2 yrs) include the following:
 - (a) Development of failure mode models with emphasis on delamination and matrix cracking.
 - (b) Assess the role of matrix toughness in composite failure processes.
 - (c) To develop concepts of interface/interphase strengthening.

CONTRACTS

IMPROVED, DAMAGE RESISTANT COMPOSITE MATERIALS
F33615-84-C-5070
1 Sep 84 - 1 Feb 88
Project Engineer: James M. Whitney
Materials Laboratory

- Air Force Wright Aeronautical Laboratories AFWAL/MLBM Wright-Patterson AFB, OH 45433-6533 (513) 255-2340 Autovon: 785-2340
- Principal Investigator: Ron Servais University of Dayton Research Institute 300 College Park Avenue Dayton, OH 45469
- Objective: The objective of this program is to investigate from both an experimental and analytical standpoint the potential of new and/or modifications of existing polymeric materials and reinforcement forms for use in advanced composite materials, including processing/mechanical property relationships. Such materials are subsequent candidates for use in advanced aircraft and aerospace structural applications.

3-DIMENSIONAL RESPONSE OF COMPOSITES F33615-85-C-5034 1 Jun 85 - 1 Dec 87 Project Engineer: Nicholas J. Pagano Materials Laboratory Air Force Wright Aeronautical Laboratories AFWAL/MLBM Wright-Patterson AFB, OH 45433-6533 (513) 255-6762 Autovon: 785-6762

Som R. Soni Principal Investigator: Adtech Systems Research Inc. 211 N. Broad Street Fairborn, OH 45324 The objective of this program is to develop 3-dimensional analytical models capable of predicting the mechanical response of thick laminated Objective: composites and residual stress failure of carbon-carbon composites. INITIAL IMPACT DAMAGE OF COMPOSITES F33615-84-C-5096 28 Sep 84 - 15 Sep 86 Project Engineer: James M. Whitney Materials Laboratory Air Force Wright Aeronautical Laboratories AFWAL/MLBM Wright-Patterson AFB, OH 45433-6533 (513) 255-2340 Autovon: 785-2340 Principal Investigator: Jonathan Goering Materials Sciences Corporation Gwynedd Plaza II Bethlehem Pike Springhouse, PA 19477 Objective: The objective of this program is to develop an analytical model for predicting damage initiation in laminated fiber reinforced composites subjected to low velocity impact. FUNDAMENTAL MATRIX STIFFNESS FORMULATIONS FOR LAMINATE STRUCTURES F33615-83-C-5076 1 Jun 83 - 31 Mar 86 Steven L. Donaldson Project Engineer: Materials Laboratory Air Force Wright Aeronautical Laboratories AFWAL/MLBM Wright-Patterson AFB, OH 45433-6533 (513) 255-3068 Autovon: 785-3068 Principal Investigator: Henry T. Yang School of Aeronautical & Astronautical Engineering Purdue University West Lafayette, IN 47907 (317) 494-5117 This program will develop the mathematical formulation of the stiffness Objective: and mass matrices of laminated plates and beams, to ultimately obtain the stress fields, the vibrational, and the buckling response of structural laminates. A through the thickness calculation shall be made of individual ply stresses and strength ratios. The elements will be formulated in such a way that they can be simply implemented on micro and minicomputers. FAILURE ANALYSIS FOR COMPOSITE STRUCTURE MATERIALS F33615-84-C-5010 Jun 84 - Nov 86 Frank Fechek Project Engineer: Materials Laboratory Air Force Wright Aeronautical Laboratories AFWAL/MLSE Wright-Patterson AFB, OH 45433-6533 (513) 255-7483 Autovon: 785-7483

Principal Investigator: Brian Smith The Boeing Company P.O. Box 3707 Mail Stop 73-43 Seattle, WA 98124

Objective: The objectives of this program are: a) to verify the capability of stateof-the-art analysis techniques and procedures to produce useful data toward the understanding of the cause of composite failures, beginning with the failed part and, b) to organize this information into a compendium defining a failure logic network which will assist the failure analyst in sequentially selecting the appropriate tests, techniques, and procedures to be applied when conducting a failure analysis of a composite structure.

CURING PROCESS OF COMPOSITE MATERIALS F33615-84-C-5049 Sep 84 - 1 Oct 87

Project Engineer: Stephen W. Tsai Materials Laboratory Air Force Wright Aeronautical Laboratories AFWAL/MLBM Wright-Patterson AFB, OH 45433 (513) 255-3068 Autovon: 785-3068

Principal Investigator: George S. Springer Dept of Aeronautics and Astronautics Stanford University Stanford, CA 94305 (415) 497-4135

Objective: To extend the analytical modeling developed by the Principal Investigator to include the curing thermosetting and thermal plastics as the matrix materials. To provide criteria for automated process controls and optimization.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

INHOUSE

NONE

GRANTS AND CONTRACTS

DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES 84 February 01 - 87 January 31

Principal Investigator: Dr David H Allen Department of Aerospace Engineering Texas A&M University College Station, TX 77843 (409) 845-7541

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop a damage model for predicting strength and stiffness of continuous fiber composite structure subjected to fatigue loading, and to verify this model with experimental results.

DELAMINATION AND TRANSVERSE FRACTURE IN GRAPHITE/EPOXY COMPOSITES 84 February 01 - 86 March 31

Principal Investigator: Dr Walter L Bradley Department of Mechanical Engineering Texas A&M University College Station, TX 77843 (409) 845-1259

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To better define the deformation and fracture physics of delamination and transverse fracture in graphite epoxy composites, and to incorporate more realistic macroscopic measures of the fracture process into linear and nonlinear materials characterization.

DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES 84 May 01 - 86 June 30

Principal Investigator: Dr John Dugundji Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 (617) 253-3758

Program Manager: Dr Anthony K Amos AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To pursue combined experimental and theoretical investigations of aeroelastic tailoring effects on flutter and divergence of aircraft systems.

ANALYTICAL AND EXPERIMENTAL CHARACTERIZATION OF DAMAGE PROCESSES IN COMPOSITE LAMINATES 84 September 30 - 85 September 29 Principal Investigator: Dr George J Dvorak Department of Civil Engineering Rensselaer Polytechnic Institute Troy, NY 12181 (518) 266-6943 Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937 Objective: To develop distributed damage analysis applicable to high matrix crack densities, examine damage propagation across and along ply interfaces, model damage growth from intensely damaged regions, and analyze stability and compressive strength of laminated plates containing distributed and/or concentrated damage. BEHAVIOR OF FIBRE REINFORCED COMPOSITES UNDER DYNAMIC TENSION 84 March 15 - 86 March 14 Principal Investigators: Dr John Harding Dr C Ruiz Department of Engineering Science University of Oxford Oxford, OX1 3PJ England Program Manager: Dr Anthony K Amos AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937 To characterize the mechanical behavior and failure mechanisms of carbon/epoxy, Objective: Kevlar/epoxy, and hybrid composites under tensile impact loading using specially designed split Hopkinson bar equipment. ANALYSIS OF FATIGUE DAMAGE AND FAILURE IN COMPOSITE MATERIALS 84 September 30 - 87 December 31 Dr Zvi Hashin Principal Investigator: Dept of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 (215) 898-8337 Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937 Objective: To evaluate stiffness change in laminates due to distribution of intralaminar and interlaminar cracks by the use of variational methods, and to determine the relationship between the stiffness deterioration and the strength deterioration of cracked laminates. RESISTANCE CURVE APPROACH TO PREDICTING RESIDUAL STRENGTH OF COMPOSITES 84 August 01 - 86 July 31 Dr H P Kan Principal Investigator: Northrop Corporation One Northrop Avenue Hawthorne, CA 90250 (213) 970-2134 Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To experimentally determine the Mode II delamination growth resistance of composite laminates and to develop analytical techniques for application of the R-curve concept to residual strength prediction of composite laminates with delaminations.

ULTRASONIC NDE OF DAMAGE IN CONTINUOUS FIBER COMPOSITES 84 February 01 - 87 January 31

Principal Investigator: Dr Vikram K Kinra Department of Aerospace Engineering Texas A&M University College Station, TX 77843 (409) 845-1667

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop, test, and implement ultrasonic nondestructive evaluation techniques to characterize damage states produced in continuous fiber composites by monotonic and fatigue loading.

FRACTURE AND LONGEVITY OF COMPOSITE STRUCTURES 82 January 01 - 85 March 14

Principal Investigator: Dr Paul A Lagace Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA 02139 (617) 253-2426

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop theoretical and semi-empirical fracture laws and failure criteria and to correlate them with extensive experimental data generated in the program.

NONLINEAR DYNAMIC RESPONSE OF COMPOSITE ROTOR BLADES 82 September 01 - 86 November 30

Principal Investigators: Dr Ozden Ochoa Depariment of Mechanical Engineering Texas A&M University College Station, TX 77843 (409) 845-2022

> Dr John J Engblom Department of Mechanical Engineering Texas A&M University College Station, TX 77843 (409) 845-2813

Program Manager: Dr Anthony K Amos AFOSR/NA Bolling AFB DC 20332 (202) 767-4937

Objective: To develop nonlinear finite element models suitable for predicting the structural dynamic response and resulting damage of composite rotor blades under impact and other transient excitations.

INTERLAMINAR FRACTURE TOUGHNESS IN RESIN MATRIX COMPOSITES 83 January 01 - 87 April 14 Principal Investigator: Dr Lawrence W Rehfield School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332 (404) 894-3067

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop a Mode II interlaminar fracture coupon and test that can be used in both tension and compression testing, can be analyzed conveniently so that behavior can be readily interpreted and provides an experimental means for isolating Mode II contributions to fracture.

DAMAGE MODELS FOR DELAMINATION AND TRANSVERSE FRACTURE IN FIBROUS COMPOSITES 84 February 15 - 86 February 14

Principal Investigator: Dr Richard A Schapery Department of Civil Engineering Texas A&M University College Station, TX 77843 (409) 845-7512

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop and verify mathematical models of delamination and transverse fracture which account for local (crack tip) and global damage distributions, separating the lay-up dependent fracture energy associated with microcracking from the intrinsic fracture energy of the separation process which occur at the tip of an advancing delamination crack.

EFFECT OF LOCAL MATERIAL IMPERFECTIONS ON BUCKLING OF COMPOSITE STRUCTURAL ELEMENTS 83 June 30 - 85 August 31

Principal Investigator: Dr George J Simitses Dept of Engineering Science and Mechanics Georgia Institute of Technology Atlanta, GA 30332 (404) 894-2770

Program Manager: Dr Anthony K Amos AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To investigate the effects of localized material, geometric, and process imperfections on the buckling characteristics of composite structural elements, and to incorporate them in analytical prediction methods. COMPREHENSIVE STUDY ON DAMAGE TOLERANCE PROPERTIES OF NOTCHED COMPOSITE LAMINATES 84 September 30 - 85 September 29

Principal Investigator: Dr Albert S D Wang Dept of Mechanical Engineering and Mechanics Drexel University Philadelphia, PA 19104 (215) 895-2297

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To conduct a comprehensive analysis of the stress fields in notched laminates so as to develop a fundamental understanding of the damage mechanisms near the notch region.

RESIDUAL STRESS INDUCED DAMAGE IN COMPOSITE MATERIALS 84 February 01 - 85 January 31

Principal Investigator: Dr Y Weitsman Department of Civil Engineering Texas A&M University College Station, TX 77843 (409) 845-7512

Program Manager: Maj David A Glasgow AFOSR/NA Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop and verify methods for predicting damage formation, growth, and arrest due to residual stresses in fiber-reinforced, resin matrix composites.

OFFICE OF NAVAL RESEARCH ARLINGTON, VA 22217

CONTRACTS

FLAW GROWTH AND FRACTURE OF COMPOSITE MATERIALS AND ADHESIVE JOINTS N00014-79-C-0579 July 83 - Nov 87 Project Engineer: Dr. Yapa Rajapakse OFFICE OF NAVAL RESEARCH Mechanics Division, Code 432S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306 Principal Investigator: Prof. S. S. Wang University of Illinois Department of Theoretical and Applied Mechanics Urbana, Illinois 61801 (217) 333-1835 Analytical and numerical studies will be conducted of flaw growth and Objective: Fracture in Fiber Composite Laminates and adhesively bonded structural joints under static and dynamic loading conditions. DAMAGE ACCUMULATION AND RESIDUAL PROPERTIES OF COMPOSITES N00014-82-K-0572 July 82 - March 86 Dr. Yapa Rajapakse Project Engineer: OFFICE OF NAVAL RESEARCH Mechanics Division, Code 432S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306 Prof. I. M. Daniel Principal Investigator: Illinois Institute of Technology Department of Mechanical Engineering Chicago, Illinois 60616 (312) 567-3186 Investigate damage mechanisms and damage accumulation in graphite/epoxy Objective: laminates for the development of models for predicting residual stiffness, residual strength, and residual life. INVESTIGATIONS OF ENVIRONMENTAL EFFECTS AND ENVIRONMENTAL DAMAGE IN COMPOSITES N00014-82-K-0562 October 84 - September 87 Dr. Yapa Rajapakse Project Engineer: OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306 Principal Investigator: Prof. Y. Weitsman Texas A&M University Department of Civil Engineering College Station, Texas 77843 (713) 845-7512 Objective: Research will be conducted to study the effects of stress and moisture on the mechanical response of graphite/epoxy composites. Special attention will be given to environmental induced damage growth and its effect on compressive and shear response.

INVESTIGATIO N00014-84-K-	NS OF IMPACI 0460 p 88	DAMAGE IN COMPOSITES
Project Engi	neer: Dr. Y OFFIC Mecha Arlir (202)	Yapa Rajapakse DE OF NAVAL RESEARCH Unics Division, Code 423S Ogton, VA 22217 696-4306 Autovon 226-4306
Principal In	vestigator:	Prof. J. Awerbuch Drexel University Department of Mechanical Engineering and Mechanics Philadelphia, PA 19104 (215) 895-2291
Objective:	Investigation oblique impation techniques. explored ful	ons of damage in graphite/epoxy laminates due to normal and act will be carried out using a variety of experimental The use of acoustic emission for damage assessment will be lly.
SUPPRESSION TO IMPACT LO N00014-84-K- July 84 - Ju	OF DELAMINAT DADING -0554 ine 86	TION IN COMPOSITE LAMINATES SUBJECTED
Project Engi	ineer: Dr. S OFFIC Mecha Arlin (202)	Vapa Rajapakse CE OF NAVAL RESEARCH anics Division, Code 423S ngton, VA 22217 696-4306 Autovon 226-4306
Principal In	nvestigator:	Prof. C. T. Sun Purdue University West Lafayette, IN 47907 (317) 494-5130
Objective:	Research wi for delamin suppress de the introdu	ll be performed to investigate and establish quantative models ation growth in composite laminates specifically designed to lamination by the use of 3-D stitching reinforcement and by ction of soft adhesive layers.
CONSTRUCTION N00014-84-K July 84 - J	N OF NON-LIN -0468 une 86	EAR MODEL FOR BINARY METAL MATRIX COMPOSITES
Project Eng	ineer: Dr. OFFI Mech Arli (202	A. S. Kushner CE OF NAVAL RESEARCH anics Division, Code 423S ngton, VA 22213) 696-4306 Autovon 226-4306
Principal I	nvestigator:	Prof. H. Murakami University of California, San Diego La Jolla, CA 92093 (619) 452-3821
Objective:	Non-linear variational The theory debonding a	theory for metal matrix composites will be developed, based on principles and multi-variable asmptotic expansion techniques. will account for the effect of fiber breakage, fiber-matrix nd slip, matrix plasticity and delamination.
METAL MATRI N00014-84-K September 8	X COMPOSITE -0495 4 - August 8	INTERFACES
Project Eng	jineer: Dr. OFFJ Mech Arli (202	A. S. Kushner CE OF NAVAL RESEARCH Manics Division, Code 423S Engton, VA 22213 2) 692-4306 Autovon 226-4306

Principal Investigator: Prof. A. S. Argon MIT Department of Mechanical Engineering Cambridge, MA 02139 (617) 253-2217 Research will be conducted to develop the micro-mechanical model of the Objective: interface in metal matrix composites which have the features of predictability for the purpose of optimizing existing fiber-matrix systems. FRACTURE OF FIBROUS COMPOSITES AND LAMINATES N00014-85-K-0247 March 85 - Apr 87 Dr. Yapa Rajapakse Project Engineer: OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306 Principal Investigator: Prof. G. J. Dvorak Rensselaer Polytechnic Institute Department of Civil Engineering Troy, NY 12181 (518) 266-6363 Objective: Research will be conducted to investigate the fracture behavior of notched metal matrix composites, accounting for plasticity effects. MECHANICAL PROPERTIES OF COMPOSITES AT ELEVATED TEMPERATURES N00014-85-K-0480 July 85 - June 88 Project Engineer: Dr. Yapa Rajapakse OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306 Principal Investigator: Prof. G. S. Springer Stanford University Dept. of Aeronautics and Astronautics Stanford, CA 94305 (415) 497-4135 Objective: Mechanics-based models for changes in mechanical properties and failure characteristics of organic-matrix composites will be established. PRECISION ULTRASONIC MEASUREMENTS IN COMPOSITE MATERIALS N00014-85-K-0595 July 85 - June 87 Project Engineer: Dr. Yapa Rajapakse OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306 Principal Investigator: Prof. W. Sachse Cornell University Dept. of Theoretical and Applied Mechanics Ithaca, NY 14853 Objective: Research will be conducted to establish the capability to distinguish between the different failure modes in composite by the analysis of acoustic emission signals.

NAVAL AIR SYSTEMS COMMAND WASHINGTON, D.C. 20361

INHOUSE

DEVELOPMENT OF CERTIFICATION METHODOLOGY FOR COMPOSITE MATERIALS October 84 - October 87 Principal Investigator: Prof. E. Wu Naval Post Graduate School Department of Aeronautics, Code 67WT Montery, CA 93943 (408)646-3459 Autovon 878-3459 Develop probabilistic-based certification methods through experimental and Objective: probabilistic modeling to insure the strength and life of critical composite structure. CONTRACTS FATIGUE LIFE AND RESIDUAL STRENGTH OF COMPOSITE STRUCTURES September 83 - September 85 Project Engineer: Dr. D. R. Mulville Naval Air Systems Command Washington, D.C. 20361 (202) 692-7443 Autovon 222-7443 Principal Investigators: Dr. J. Yang and Dr. D. Jones The George Washington University Washington, D.C. 20052 (202) 676-6929 Objective: Develop statistical models to describe fatigue life and residual strength of composite structures including bolted and bonded composite joints. STRENGTH AND IMPACT RESISTANCE OF ADVANCED COMPOSITE SANDWICH STRUCTURES N00019-85-C-0090 December 84 - December 87 Project Engineer: Dr. D. R. Mulville Naval Air Systems Command Washington, D.C. 20361 (202) 692-7443 Prof. E. A. Witmer and Principal Investigators: Prof. P. A. Lagace Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139 (617) 253-3628 Objective: Further develop the technology for advanced composite structures with sandwich or honeycomb cores. NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375 INHOUSE STRUCTURAL RESPONSE OF DAMAGED COMPOSITES October 79 - September 86 Dr. P. W. Mast Project Engineer: Naval Research Laboratory Washington, D.C. 20375 (202) 767-2165 Autovon 297-2165 Objective: Develop a capability for predicting the structural response of composite structures containing a defect or damage.

NAVAL AIR DEVELOPMENT CENTER AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE WARMINSTER, PA 18974

INHOUSE

IMPROVED MATRIX DOMINATE PROPERTIES October 82 - September 86

Project Engineer: Ramon Garcia Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1321 Autovon 441-1321

Objective: Investigate methods to improve composite performance by reinforcing the matrix with silicon carbide wiskers.

HYBRID COMPOSITE FRACTURE CHARACTERIZATION September 85 - October 87

Project Engineer: Lee W. Gause Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1330 Autovon 441-1330

Objective: Characterize the strength, mechanical properties, and damage tolerance of woven and hybrid composite structures.

METAL MATRIX CRACK INITIATION/PROPAGATION September 85 - October 87

Project Engineer: Dr. H. C. Tsai Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-2871 Autovon 441-2871

Objective: Characterize the crack initiation/propagation mechanics of silicon carbide/ titanium metal matrix composites as applied to landing gear and arrester hooks in the Naval shipboard environment.

CONTRACTS

DESIGN OF HIGHLY LOADED COMPOSITE JOINTS AND ATTACHMENTS FOR TAIL STRUCTURES N62269-82-C-0239 February 82 - January 86

Project Engineer: Ramon Garcia Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1321 Autovon 441-1321

Principal Investigator: S. W. Averill Northrop Corporation Aircraft Group Hawthorne, CA 90250 (213) 970-3442

Objective: To develop composite designs which will permit the use of metal to composite bolted root attachments in aircraft tail structures as an alternative to high-load transfer adhesive bonded titanium step joints. To improve damage tolerance, survivability and repairability over current composite designs. Structural efficiency, manufacturing feasibility and quality assurance requirements will be determined. DESIGN OF HIGHLY LOADED COMPOSITE JOINTS AND ATTACHMENTS FOR WING STRUCTURES N62269-82-C-0238 February 82 - December 85 Project Engineer: Ramon Garcia Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1321 Autovon 441-1321 Principal Investigator: M. J. Ogonowski McDonnell Aircraft Co. P.O. Box 516 St. Louis, MO 63166 (314) 233-8630 To develop composite designs which will permit the use of metal to Objective: composite bolted root attachments in aircraft wing structures as an alternative to high-load transfer adhesive bonded titanium step joints. Strain concentration around fastener holes, fatigue and environmental affects, damage tolerance and repairability for each concept will be determined. IMPACT RESPONSE OF COMPOSITE STRUCTURES N62269-85-M-3131 March 85 - September 85 Project Engineer: Lee W. Gause Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1330 Autovon 441-1330 Principal Investigator: Prof. P. V. McLaughlin Villanova University Department of Mechanical Engineering Villanova, PA 19085 (215) 645-4991 Objective: Analytically describe the effects of viscoelasticity, contact deformation, and shear deformation to the impact response of composite material and correlate these results to observed experimental behavior. INFLUENCE OF LOAD FACTORS AND TEST METHODS ON IN-SERVICE RESPONSE OF COMPOSITE MATERIALS AND STRUCTURES N62269-85-C-0234 June 85 - June 88 Project Engineer: Lee W. Gause Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1330 Autovon 441-1330 Principal Investigator: Prof. K. L. Reifsnider Virginia Polytechnic and State University Depart. of Engineering Science & Mechanics Blacksburg, VA 24061 (703) 961-5316 Objective: Develop an understanding of the relationship between composite laminate response to high load levels for short time periods and response to low load levels for long time periods. Develop an understanding of the relationship between test methods and laminate response. Establish the manner in which these relationships are associated with strength and life. Formulate a mechanistic model which can be used to anticipate long-term behavior.

LAMINATED COMPOSITE MIXED-MODE PLANE CRACK GROWTH CRITERIA N62269-85-C-0246 June 85 - June 86 Project Engineer: Lee W. Gause Naval Air Development Center ACSTD/6043 Warminster, PA 18974 (215) 441-1330 Autovon 441-1330 Principal Investigator: Prof. A. S. D. Wang Drexel University Department of Mechanical Engineering & Mechanics Philadelphia, PA 19104 (215) 895-2297 Objective: Define the critical conditions necessary to propagate a mixed-mode plane crack in composite laminates for use in the automated crack-growth

simulation program.

Eleventh Annual Mechanics of Composites Review October 22-24, 1985

FORMULATION OF LAMINATED BEAM AND PLATE FINITE ELEMENTS FOR A MICROCOMPUTER A. T. Chen and T. Y. Yang School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana 47906

ABSTRACT

The purpose of this paper is to develop simple yet efficient formulation for laminated composite finite elements and also to develop highly efficient numerical algorithms for structural analysis and design using stand alone desktop microcomputers.

In the finite element formulations, an 8 degree of freedom beam element and an 18 d.o.f triangular plate element in bending with anisotropic symmetrically laminated composite materials are formulated. In the development of numerical procedures, emphasis has been placed upon minimization and condensation of memory storage and efficiency of computation so that the present development is suitable for implementation on desktop microcomputers. The present development is not only limited to linear static stress analysis, it also includes eigenvalue analysis for free vibration and buckling problems. For the special case of lumped mass matrices, a special condensation technique making use of zero terms along the diagonal of the mass matrix is used.

To demonstrate and evaluate the present development, numerical analyses on the static, free vibration, and buckling analysis of anisotropic symmetrically laminated beam and plate problems have been analyzed using a microcomputer.

R-1

FIG. 2a. 12 D.O.F. BEAM FINITE ELEMENT

8-2

FIG. 2b. 8 D.O.F. BEAM FINITE ELEMENT

FIG. 3. 18 D.O.F. PLATE FINITE ELEMENT

FIG. 5. STATIC CONDENSATION FOR LUMPED MASSES

FIG. 6. TECHNIQUE TO MAKE EIGENUALUE MATRIX SYMMETRIC

FIG. 7. VARIOUS STORAGE SCHEMES

席·5

[M]² HATRIX

н Ш Table 1. Various Schemes for Memory Storage for [K] for a Simply Supported Square Isotropic Plate Under Uniform Load

Plate Element (18 d.o.f. triangular)

Kesh for	Degrees of	St	orage Kodes		
a Quadrant	Freedom	Full Hatrix	Symmetric	Band	Skyline
3x3	60	3680	1830	1395	1691
4x4	104	10816	5460	35 69	2737
5x5	160	25600	12880	6664	5257

Table 2. Comparison of Centerline Deflections of Two Modellings for a Uniformly Loaded Cantilever Beam

Five 12 d.o.f. Beam Elements

Fiher	Bea	AM Deflec	tion	Plat	e Deflec	tion
Rngle	Tip (x=2) (1)	x=0.62 (2)	x=0.62/x=2 (2)/(1)	Tip(x=X) (3)	x=0.62 (4)	x=0.62/x=2 (3)/(4)
0 30 45 60 90	5.45 34.24 58.89 79.37 95.69	2.57 16.17 27.81 37.48 45.19	8.4722 8.4723 0.4722 0.4722 0.4722 0.4723	5.299 29.108 52.788 74.578 93.160	2.518 13.351 24.550 35.113 44.262	0.4752 0.4587 0.4651 0.4708 0.4751

13-6

and and a second state of the second se

40 18 d.o.f. Plate Elements

Five 12 d.o.f. Beam Elements

Fiber		Beam Twi	st		Plate Iși	st o (P/-P
Angle	Tip (x=ł) (1)	x=0.6Ł (2)	x=0.6½/x=² (2)/(1)	T1p(x=1) (3)	x=0.6化 (4)	x=0.61/x=1 (3)/(4)
0 30 45 60 90	0.0 -3.126 -3.047 -2.153 0.0	0.0 -2.885 -2.813 -1.987 0.0	0.9231 0.9232 0.9232 0.9231	0.0 -2.687 -2.787 -2.046 0.0	0.0 -2.483 -2.597 -1.912 0.0	0.9240 0.9317 0.9347

Table 4. Natural Frequencies (Hz) for a Thin Anisotropic 6 layer [θ /0]s Cantilever Plate 2

Layup Sequence	8 el 50 dof	Lumpe (1) 32 el 147 dof	d Mass (2 8el 8 dof) 32 el 24 dof	Consis 50 dof	tent Mass 147 dof	REF Exp	[1] 365 dof
[0 ₂ /90]s	10.7 21.0 56.9 8.6	10.9 31.0 66.4 8.8	10.7 22.9 59.2 8.8	11.0 32.2 67.0 8.9	11.0 39.5 69.2 8.9	11.0 39.5 69.2 8.9	11.2 42.4 70.5 9.4	11.1 39.5 69.5 8.9
[15 ₂ /0]s [30 ₂ /0]s	24.7 47.4 6.1 27.2 35.4	35,2 56,8 6,2 34,5 45,9	26.7 50.3 6.2 28.9 36.9	36.7 57.6 6.3 35.6 47.1	42.9 62.9 6.3 37.3 58.0	42.8 62.6 6.3 37.2 57.0	45.8 66.2 6.6 40.0 59.1	42.9 62.7 6.3 37.3 56.9
[45 ₂ /8]s	4.7 25.3 27.6 4.1	4.8 28.8 39.0 4.1	4.8 27.4 29.0 4.1	4.8 29.4 40.4 4.2	4.9 30.1 50.8 4.2	4.9 30.0 49.7 4.2	4.8 29.8 51.3 4.3 27 1	4.9 30.1 49.4 4.2 26.1
[¹⁶⁸ 2 ^{/8]s} [75 ₂ /0]s	22.7 22.9 3.8 19.8 21.5	23.1 32:8 3.8 23.5 28.9	23.5 24.9 3.8 20.9 22.9	23.3 24.1 3.9 23.7 30.1	42.8 42.8 3.9 24.3 37.3	41.9 3.9 24.3 36.8	47.7 3.8 25.1 38.9	41.7 3.9 24.3 36.7
[90 ₂ /0]s	3.7 18.7 21.1	3.8 23.0 27.6	3.7 19.9 22.3	3.8 23.2 28.7	3.8 23.8 35.2	3.8 23.8 35.1	3.7 24.3 38.2	3.8 23.9 35.1

2.7

Table 5. Comparison of Natural Frequencies (Hz) of Two Modellings for a Cantilever Beam

Layup	Beam E	lement		Plate Ele	Ment	
Sequence	Consiste	nt Mass	Lunped	Mass	Consiste	nt Kass
	4 e1 17 dof	10 e1 52 dof	20 el 20 dof	40 el 30 dof	122 dof	40 el 183 dof
[0 /00]c	0.01026	0.01026	0.01022	0.01022	0.01026	0.01026
102/2013	0.07716	0.07716	0.06322	0.06755	0.08235	0.08234
[30 ₂ /0]s	0.00121	0.00121	0.03374	0.003390	0.03440	0.03439
	6.09172	0.09092	0.00435	0.09393	0.09651	0.09646
^{[45} 2 /0]s	0.02655	0.02651 0.07404	0.02688 0.06260	0.02690 0.07455	0.02730 0.07645	0.02730 0.07645
[60 / 015	0.00378 0.02374	0.00378 0.02371	0.00382 0.02363	0,00382 0,02364	0.00383 0.02399	0.00383 0.02400
	0.06685	0.06634	0.05351	0.06548	0.06715	0.06717
[90 ₂ /0]s	0.02218	0.02215	0.02180		0.02216	0.02216
4	0.06250	0.06204	0.04560	0.06023	0.06204	0.06204

Table 6. Critical Buckling Loads for a Simply Supported Anisotropic Square Plate Under Uniform Compressive Axial Load

Fiber Angle	Present 32 el 94 dof	Ref. [2]	Exp. [3]	Exact [4]
0 30 45 60 90	318.86 387.90 354.67 355.40 203.88	285 425 406 381 210	271 399 364 433 251	318.91 203.75

0.8

REFERENCES

- Jensen, D.W. and Crawley, E.F., "Frequency Determination techniques for Cantilevered Plates with Bending-Torsion Coupling", AIAA Jounal, vol 22, No 3, P.415 (March, 1985).
- Chamis, C.C., Buckling of Anisotropic Composite Plates, Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, Oct., 1969, ST 10, PP 2119-2139.
- 3. Mandell, J.F., An Experimental Investigation of the Buckling of Anisotropic Plates, thesis, presented to Case Western Reserve University, in Cleveland, Ohio, in June, 1968, in partial fulfillment of the requirements for the degree of Master of Science.
- 4. Aston, J.E., Whitney, J.M., Theory of Laminated Plates, Progress in Material Science Series vol IV, Technomic Publishing Co., Inc., Stamford, Conn., 1970.

6-9

STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES

PAUL A. LAGACE

S.O TELAC

TECHNOLOGY LABORATORY FOR ADVANCED COMPOSITES DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

OVERVIEW: SANDWICH STRUCTURES

JOINT NAVY/FAA EFFORT

NAVAIR, : STRENGTH AND DEFLECTIONS OF ADVANCED NADC COMPOSITE SANDWICH STRUCTURES

FAA: THE SENSITIVITY OF KEVLAR/EPOXY AND GRAPHITE/EPOXY STRUCTURES DAMAGE FROM FRAGMENT IMPACT

SANDWICH STRUCTURES: MODES OF FAILURE

	7 Core Flexural Crushing		8. <u>Core Transverse Shear</u> Failure		9. Core Local Crushing	
-	4. <u>Facesheet Buckling:</u> <u>Core Compression Failure</u>		5. Focesheet Ply Buckling: Interlaminar Failure	+	6. Facesheet Fracture	
-	1. Overall Buckling	•	2. Core Shear Crimping	• [[[]]]][]]	3. Facesheet Buckling: Adhesive Bond Faiture	+

0,1

ANALYSIS OVERVIEW

*

- Rectangular Plate
 - Averaged Properties
 (Å, B, D -- CLPT)
- Transverse shear deformation (Mindlin Plate Theory)
 - Nonlinear (geometric) strains used for postbuckling (similar to von Karman equations)
- Effect of initial out-of-plane imperfections (Marguerre equations)
- Linear stress-strain behavior assumed
- Core has only transverse shear stiffness

SOFTWARE OPERATION

- INPUTS
- Facesheet layup, material properties
 Core properties, thickness
- Boundary conditions Initial imperfections
 - Loading
- OUTPUTS
- Displacements
 Stresses and strains in core and facesheets (ply-by-ply)
- 2000 FORTRAN instructions
- VAX 11/782
- 20 seconds CPU time for one complete loading

2

l V

SOLUTION PROCEDURE

Use Rayleigh-Ritz method

COMPOSITE FACE SHEET

- $u_{x} \lor w_{y} \varphi_{y} \Theta = \sum_{i} \sum_{j} \psi_{ij} f(x) g_{j} (y)$
- Use Potential Energy approach
- $\Pi_{\rho} = \frac{1}{2} \iiint \{\epsilon\}^{r} \{E\} \{\epsilon\} dV \iint \{P\}^{r} \{u\} dE$
- Use direct energy minimization to find plate response for a given loading

TYPICAL RESULTS: LOAD VS. END SHORTENING

TYPICAL RESULTS: LOAD VS. CENTER DEFLECTION

TEST MATRIX FOR BUCKLING/POSTBUCKLING CHARACTERISTICS OF SANDWICH PLATES

ROHACELL

Svnfactic Foam (6^B pcf)

NOMEX Honeycomb (4.5 pcf)

ALUMINUM Hone vcomb (4,5 pcf)

IHICKNESS-TO-WIDTH RATIO (W/ FACES)

CORE THTCKNESS [MM]

5.18 6.35 9.53

CORE MATERIAL

PREDICTED VS. EXPERIMENTAL CONTOUR PLOTS

Ĉ PREDICTED CONTOUR

MEASURED CONTOUR

Buckling and postbuckling analysis operational

STATUS OF WORK ON SANDWICH STRUCTURES

- Experimental program for buckling/postbuckling well underway
- Effort on failure, effects of defects commencing

Load = 62 kM Each line represents 0.25 nm deflection

ء چ

LOCAL CONTACT PROBLEM SOLUTION OVERVIEW

INPUTS

- Constitutive properties E₄, E₄, M₄₁, G₄
 Construction (transverse isotropy assumed in r-f plane)
 Indentor radius and penetration (approach)
 Edge moment (from plate or FEM solution of
 - impact event)
 - PROCEDURE

- Stress potential approach: \$(r,z)
 Loading and solution in form of Fourier-Bessel Series
 Implemented on DEC Pro 350 personal computer
- OUTPUTS
- Load vs. approach
 Axisymmetric strain distribution throughout entire plate

GLOBAL PLATE BENDING SOLUTION OVERVIEW

11111111

- ASSUMPTIONS
- anisotropic plate (include D₁₆, D₂₈) Forcing function is - Transversely loaded
- impacting mass (ball) with nonlinear spring

t t k 1 1 1

- INPUTS
- Mass, velocity of ball
 Density and mechanical properties of plate
 Support conditions, geometric parameters
 Initial loads: N_x^o, N_o^o
- OUTPUTS
- Force on plate due to ball
 - Center deflection

CAPABILITIES OF IMPACT GUN SETUP

- Lounch any 12.7 mm diameter ball
- Velocity measurement device designed, built, and installed
- Maximum recorded velocity of 106 m/s for steel ball
- Frame constructed to handle various sized test specimens with various edge boundary conditions

STATUS OF GLOBAL PLATE BENDING SOLUTION

- Solution implemented on computer and nearly completely debugged
- Newmark Implicit Integration Scheme employed
- Software runs and initial results obtained. (Results will be compared with previous work.)

PHASE I TEST PROGRAM FOR IMPACT RESPONSE

	BAMAGE	INSPECTION LED	HINI OUL
LAMINATE	SECTIONING AND MICROSCOPY	L-SCAN	X-Kav
{+#4/0] ₂₅ AS4/350]-6	5Å	5	5
[+45/U]25 KEVLAR/EPOXY	۶۸	5	5

^AWILL NOT BE TESTED TO FAILURE AFTER IMPACT

NOTES: TEST OTHER IMPACTED SPECIMENS TO FAILURE IMPACT AT VARIOUS VELOCITY LEVELS **ONLY STEEL BALLS USED**

> ~

NUMBER UF	[MERGV	VELOCITY	IN-PLANE	BOUNDARY	SNOTTONS	
SPEC IMENS	LEVEL	LEVEL	TENSILE LOAD	(ND	SIDE	
5Å	Ē,	۲	0	J	5	
Ś	Ĺ,	>	9	J	-	
ſ		~	0	J	ч	
~ ~		۲2	0	_	<u>ب</u>	
Ś	Ē	۲,	0	J	<u>ب</u>	
~		2	0	J	ч.	
		•				
5	- -	۲,	۲	C	. u.	
2		, , ,	<u>ر</u> .	J	۰.	
			· _	_		
	,	-	5,	,	•	
5		۷,	0	J	J	
~			0	J	S	
3			0	~		
			• =) c		
	7	-	>	'n	-	
GRAPHITE/EPOX	VICLED ON 1445	ULAS SPECIMENS	OF BOTH	C = C S = SI	AMPED MPLY SUPPORTED	
					EE	

CENTERLINE GAGE **GRAPHITE/EPOXY**

GLASS/EPOXY

25.

DELAM. SIZES (RELATIVE SCALE)

SPECIMEN CONFIGURATION FOR IMPLANTED DELAMINATION TESTS

-DELAMINATION CENTER GAGE

200 m

19.1 mm 25.4 mm

31.8mm

12.7mm O • •

3.18mm 6.35mm

-OUTSIDE EDGE GAGE -INSIDE EDGE GAGE

-GLASS/EPOXY TAB

75 mm

- 71mm

-FAR FIELD GAGE

<u>NOTE</u>: ALL SPECIMENS INSPECTED VIA NDE AFTER IMPACT AND Before residual strength testing

CHARACTERISTICS OF TESTING

LOCAL STRESS VERSUS STRAIN FOR SPECIMEN WITH CIRCULAR DELAMINATION AT MIDPLANE

- MTS BIO MATERIAL TEST SYSTEM
- HYDRAULIC GRIPS
- CONSTANT STROKE RATE (~1 mm/MINUTE) GIVES STRAIN RATE OF ~5000 MICROSTRAIN/MINUTE

ŝ

[++5/0/-+5]3 31.0 mm cricular chilaments

1000

- DATA TAKEN AUTOMATICALLY THROUGH PROPER CONDITIONERS TO PDP/1134 COMPUTER

- EACH SPECIMEN PHOTOGRAPHED AFTER FRACTURE

250

oas ດທີ 12000

4400 BOOD STRAIN, HICROSTRAIN

ø J U

- TESTED TO FRACTURE

FRACTURE STRESSES FOR VARIOUS DELAMINATION CONFIGURATIONS

FOLLOW-UP WORK ON EFFECT, IN TENSION, OF IMPLANTED DELAMINATIONS

- Completely delaminated midplane
- Circular delamination at first interface (nonsymmetric)
- Circular delamination at <u>each</u> interface throughout thickness

STATUS OF IMPACT WORK

.

- Analysis for local contact problem operational.
- Analysis for dynamic plate response formulated and implemented and is being checked
 - Experimental facility established.
- Impact, sectioning, and microscopic examination underway
- Delaminations modelled with teflon inserts and experiments conducted in tension
- Residual strength tests on impacted specimens commencing.
- Failure criteria being assessed

i