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ABSTRACT

The study of radiation effects on VLSI components is a very heavily researched
topic. There are several reasons for this research, one of which is the application of VLSI
components to space related vehicles. One component essential to Analog VLSI
elements is the capacitor. The purpose of this paper is to better define the actual effects
of radiation on the MOS VLSI capacitor. The radiation testing is conducted using the
NPS electron linear accelerator. The data is taken while the capacitor is being exposed to
an accumulating dose of electron radiation. The capacitance values are monitored using
the parameter changes of a specially designed low pass filter circuit. The 3 dB breakpoint
frequency of this filter is used to calculate the actual capacitance. The capacitance value
is then related to the accumulated radiation dose in Rads. The results are very important
and needed, especially if off-the-shelf components are to be utilized in the design of

spacecraft systems.
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L. INTRODUCTION

A. OVERVIEW

The primary research question covered by this thesis is, how MOS VLSI
capacitors respond in a radiation flux. This question has been asked before. As an
answer there exist published results regarding this question (Winokur, 1984) (Benedetto,
1984). Some of these results are discussed in this paper. What has not been done, except
here at The Naval Postgraduate School, is collecting the data while the chips containing
the capacitors are being irradiated. This in-situ testing was first conceived by Professor
Sherif Michael in 1989 in the testing of Op-Amps. In 1995 it was used by one of his
thesis students Stuart Abrahamson to test capacitors (Abrahamson, 1995). The method of
in-situ radiation testing of VLSI chips is discussed in Chapter V.

The next question is, why does this primary question need answered? Or, why
does one care about the effects of radiation on VLSI circuitry? To answer this, one has to
go back in time to the 1950's and 1960's. Space exploration was just beginning to take
off. The United States and the Soviet Union were in a huge race to see who could out do
the other in space exploration. In addition to exploring space, or at least the upper
atmosphere, the US and the USSR conducted some exoatmospheric nuclear tests. The
most notable by the US was the Starfish test conducted off Johnson Island in the Pacific
ocean. The test took place on 9 July, 1958 at an altitude of 400 km (248.5 miles). The
yield of the blast was 1400 kilotons. That same year the USSR conducted similar tests
with yields in the hundreds of kilotons. These tests caused a significant disruption in the

radiation belts surrounding the earth (see Chapter II). They actually caused the Telstar I,




an orbiting communications satellite, to fail. This got the attention of the United States
and prompted a great deal of research in the area of space radiation environments.
(Tabbert, 1993, pp. 2.1-2)

Once there was a reasonable understanding of the space environment, research
began on how to build satellites that could exist in these harsh surroundings. During this
time (late 50's to early 70's) great progress was made in the area of transistors and
integrated circuits (IC's). The use of IC's in space was a perfect match. They were small
compact and provided the satellite designer with a great deal of computing power. They
used small amounts of electrical power and were extremely lightweight. The next
question was, how well would these integrated silicon circuits stand up in the harsh
radiation environment of space?

This question has been the topic of many papers, conferences and publications in
the last 25 years. This thesis can be added to that large collection of data. The
experimental data obtained will enable satellite designers in the future to determine how
capacitors and possibly other CMOS VLSI components behave while they are being
subjected to largedoses of radiation.

B. THESIS ORGANIZATION

This thesis is organized to provide the reader with a basic background knowledge
of space radiation environments (Chapter II), ways radiation affects matter, specifically
silicon (Chapter IIT) and how MOS capacitors are fabricated (Chapter IV). Chapter V is
devoted to the experimental set up including; a description of the VLSI chip used, a

description of the circuit used in testing the capacitors and the setup and use of the NPS




Linear Accelerator (LINAC). Chapter VI presents the results obtained and Chapter VII
discusses the conclusions and recommendations. There are also 2 appendices, Appendix
A The Specialty Chip, is a description of a specialized chip designed for this type of

testing and Appendix B Experimental Data, lists all the tabulated results.







II. RADIATION ENVIRONMENT IN LOW EARTH ORBITS

A. RADIATION TYPES AND INTERACTIONS

There are several types of radiation that come into play in the space environment.
These types of radiation can be divided into 2 classes. The first class is particles. This
class would include heavy ions (Lithium and up), alpha particles (helium nuclei), beta
particles (high speed electrons), neutrons, protons, neutrinos, antineutrinos and positrons.
The second class of radiation is photons or electromagnetic wave packets. These wave
packets or quanta contain energy and momentum but are essentially massless. The most
common are gamma rays and X-rays. In space, all forms of radiation exist and probably
even more which have not been discovered. The research in this thesis involves the use
of electrons from a linear accelerator (LINAC). These LINAC electrons closely resemble
beta particles. A brief discussion of the most common radiation forms follows.

1. Particles

There are three types of particles; positively charged, negatively charged and
those with no charge or neutral charge. The neutrally charged particles are neutrons,
neutrinos and antineutrinos. The positively charged particles are, the alpha particle, the
proton and the positron. The negatively charged particle is the beta particle (a high speed
free electron). The particles of most interest are the heavy ion (including the alpha
particle), the beta particle, the proton and the neutron. These particles are the most

common in space.




a. Positively Charged Particles

Alpha particles, protons and positrons are the positively charged particles
discussed here. Protons, (ionized hydrogen) are trapped in the outer Van Allen belt.
Positrons are merely positively charged electrons. These are formed during "pair
production” a form of photon-atom interaction. Another particle of concern is the alpha
particle. This particle is actually the nucleus of a Helium atom. It contains 2 protons and
2 neutrons giving it an atomic mass of 4. The alpha particle has no electrons thus it has a
positive net atomic charge of +2 due to the presence of the 2 protons. The alpha particle
is formed as a result of radioactive decay from specific atomic isotopes. It can also be
formed during fission or fusion. The sun and other stars operate on the fusion principle
thus providing a plentiful source of alpha particles in space.

Additionally there are heavier ions then the alpha particle. These ions are heavier
atoms which have their electrons stripped away. These are not as plentiful in the space
environment.

b. Negatively Charged Particles

Another type of charged particle is the negatively charged high speed free
electron or beta particle. This particle has a net negative atomic charge of 1 and the mass
of a normal electron at rest (9.1091E-28 grams). These particles are formed from the
radioactive decay of specific isotopes and from nuclear fission or fusion. Beta particles

like alpha particles and protons are very plentiful in space.




C. Neutral Particles

The last type of particles are those with no charge, the neutron, the
neutrino and the antineutrino. The neutrino is a particle with a very small rest mass. It
was originally postulated to exist to account for the continuous energy distribution
observed during the beta decay process. The antineutrino has been theorized to exist due
to unexplainable non-conservation of energy during a beta decay. Although the study of
neutrinos and antineutrinos has escalated in the past few years they will not be discussed
here. The neutron is the major particle of interest when studying nuclear fission. It has
the same rest mass as a proton but has no atomic charge. Neutrons are produced from
radioactive decay and from fission and fusion. In fact the basic operation of all nuclear
fission reactors is based upon the production of neutrons from fissioning atoms.

The Largest concentration of neutrons in space occurs about 50,000 feet
above the earth. In this vicinity cosmic rays interact with atmospheric oxygen and
nitrogen to create these neutrons.

2. Photons

Photons are non particle forms of radiation. They are quantized packets of
electromagnetic radiation. They have no rest mass but they exhibit momentum. These
quantized packets interact with matter in three different ways, 1) photoelectric effect,
2) Compton scattering, and 3) pair production. Figure 2.1 illustrates the three types of

interactions as well as the relative energy levels at which each is most prevalent.
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Figure 2.1 An illustration of photon interactions a) Photoelectric Effect, b)
Compton Scattering, ¢) Pair Production, also a graph of atomic mass versus energy
showing the most probable energies associated with each. After Ref. (Schwank,
1994, p. II-15 & 16)

a Photoelectric effect

In this interaction the photon packet is absorbed by an atom. The energy
from the photon is transferred to one of the outer valence electrons of the atom. The
energy transfer causes the electron to jump to a higher energy level or state. With the
electron in the higher state the atom is unstable. The excited electron drops back into the
lower energy level or state releasing the stored energy it gained when the incident photon
was absorbed. This released energy goes out in the form of another photon. Sometimes
the electron can actually be emitted which is called Compton scattering described below.

Photoelectric effect requires the least energetic photons of the three types
of photon interactions. Photons of less then 70 keV can cause the photoelectric effect.

b. Compton Scattering

In this photon-atom interaction the photon is once again absorbed by the

incident atom. The increase in energy in the atom causes one of the outer electrons to




escape from its normal energy state and fly off into space as a free electron (beta particle).
Any left over energy is then emitted in the form of 2 Compton photon. The Compton
photon has less energy then the original incident photon.

Compton scattering is the predominant photon interaction involving
photons with energies between 70 keV and 20 MeV.

c Pair Production

In pair production once again the electron is absorbed by an atom. After
absorption the incident atom emits two particles, an electron and a positron. This
interaction takes place only if incident photon energies are above 1.02 MeV. Photons
with enough energy to cause pair production are normally not found in space.
B. BRIEF HISTORICAL OVERVIEW OF SPACE RADIATION

With a basic background in types of radiation, a discussion of the most common

types of radiation in space is in order. Until the 1950's science had very little information
regarding the radiation environment in space. The first real attempt to map the space
radiation environment came in January of 1958 when Explorer I was launched carrying a
Geiger counter. The satellite had no onboard data storage capability so it provided
limited information in the form of counter readings relayed to the ground station when it
was within transmission range. Even with the lack of data collection ability an anomaly
was discovered to exist at high altitudes over South America. Later when Explorer III
was launched with onboard recording devices an area of extremely high particle flux was
discovered over South America and named the South American Anomaly (SAA). The

discovery of the SAA prompted more spacecraft with more sophisticated recording




equipment. Explorer IV and the Pioneer series, specifically Pioneer III, were very
instrumental in the collection of data. Using the data collected from these missions
Professor Van Allen from Iowa University developed a rough map of the radiation belts
above the earth (see Figure 2.2) This map illustrated the concept of inner and outer
radiation zones much the way we understand them today. (Tabbert, 1993, p. 2.1-2)

Once Van Allen created his first radiation belt mapping, more sophisticated

methods were employed to map these anomalies.

G‘%Mﬁ: 100 10 counis/unit time

D
+— Earth

rach

106

Figure 2.2 Van Allen's map of the radiation belts. From Ref. (Corliss, 1993, p.39)
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C. THE NATURAL SPACE ENVIRONMENT

There are 3 classifications or types of radiation in the natural space environment.
One is characterized by particles trapped in the Earth's magnetic field. The other two
types are forms of cosmic rays.

1. Cosmic Rays

Cosmic rays were first discovered in 1911. There are two sources of cosmic rays,
galactic cosmic rays (originating outside our solar system) and solar cosmic rays
(originating from the sun). Solar cosmic rays may also be called solar plasma. Galactic
cosmic rays make up the majority of cosmic rays. Solar cosmic rays, which exhibit a flux
change from day to night, are usually only a small portion.

a Galactic Cosmic Rays
The vast majority of cosmic rays come from outside the solar system.

These rays are called galactic cosmic rays. The likely sources for galactic rays are the
stars in the Milky Way and in other galaxies. Galactic cosmic rays are composed of
mostly protons (89%) and alpha particles or helium nuclei (9%). The other particles
found in cosmic rays include beta particles (electrons), gamma rays and heavy ions (about
2%). The heavier ions posses very high energies on the order of 0.1 to 1 GeV. These
heavy energetic ions can cause significant damage in electronic circuitry due to their high
energies. The interactions between galactic cosmic ray protons and the earth's
atmosphere create electrons, neutrons and gamma rays. The interactions of these other
types of radiation sources with electronic components can causes damage. (Ricketts,

1972, p. 461)
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b. Solar Cosmic Rays
Solar flares are generally responsible for solar cosmic rays or solar
plasmas. They are linked to the solar activity cycle. These solar plasmas caused by solar

flares are electrically neutral due to the equal number of positive and negatively charged

particles. This solar plasma is actually an extension of the suns corona. The contents of
the solar plasmas are roughly the same as galactic cosmic rays and therefore interact the
same with the earth's atmosphere. After a solar flare, particles begin to arrive at the
earth's magnetosphere in minutes. The resulting radiation increase can last up to 2 weeks.
This increase in radiation, caused by solar plasmas, can increase radiation effécts up to
10,000 times that of galactic cosmic rays. (Schwank, 1994, p. II-8)

2. Trapped Particles

The Earth is encased in a non-uniform enclosure called the magnetosphere, see
Figure 2.3. This magnetosphere consists of magnetic field lines which trap charged
particles. The shape of the magnetosphere can be seen in Figure 2.3. It is hemispherical
on the day side, with a radius of about 10 times the of the radius of the earth (Earth's
radius is 6378 km (3963 miles)). On the night side, it is an extremely long cylinder,
hundreds of earth radii in length. It has an approximate diameter of 40 times that of the
earth. The shape of the magnetosphere is caused by the solar wind (solar plasma).

The area of interest for particle trapping is, where the majority of earth bound
satellites reside. This relatively small region is called the plasmasphere. Typically, the
plasmasphere is made up of relatively lower energy protons and electrons but some

heavier ions may also be trapped here. The trapped particles move in a spiral direction

12




around the magnetic field lines. They also bounce back and forth from pole to pole along
these same field lines as illustrated in Figure 2.4. The particles also drift around the Earth
in an orbital pattern. Electrons move to the east and protons move to the west. These
moving ions along with other trapped particles are what constitute the Van Allen
radiation belts. Table 2.1 shows the characteristic time scales for a typical 1 MeV
particle with an altitude of 2000 km. (Abrahamson, 1995, pp. 7-8)

The effect of large highly energetic particles contribute to the overall radiation
flux in all orbits. Protons and electrons, some of which are trapped and some of which

come from cosmic rays, also contribute to this overall flux.

MALSMETOPAUSE
CURRENTS

PLASMASPHERE

Figure 2. 3 The Magnetosphere. From Ref. (Stassinopoulos, 1988, p. 1424)
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MAGNETIC FIELD LINE

Figure 2.4 Trapped particle motion. From Ref. (Stassinopoulos, 1988, p. 1425)

Electrons Protons
Gyration Period 7.0 x 10E-6 seconds 4.0 x 10E-3 seconds
Bounce Period 0.1 seconds 2.2 seconds
Drift Period 53 minutes 32 minutes

Table 2.1 Characteristic particle motion time. From Ref. (Abrahamson, 1995, p. 9)
There are obviously different levels of radiation depending upon where a satellite
is located in the magnetosphere. Figure 2.5 illustrates a breakdown of 5 specific regions

and the types of particles which predominate in these regions.
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Figure 2.5 The distribution of charged particles in the Magnetosphere. From Ref.
(Stassinopoulos, 1988, p.1425)

The two factors which geolocate a satellite are altitude (distance from the earth)
and inclination (distance from the pole in degrees). A close examination of Figure 2.1
shows that the shaded areas (representing higher concentrations of trapped particles) are
located above the equator and away from the poles. This phenomena provides for the
following conclusion applicable to LEO satellites. Low concentrations of radiation exist
at low altitudes and high inclinations (high latitudes). While the higher concentrations of
particles thus the higher radiation areas are located at small inclinations (lower latitudes)

and higer altitudes (Brittain, 1995, p.22). This generalization illustrates how satellites
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are influenced by radiation in earth orbits. The majority of the trapped radiation received
by satellites in Low Earth Orbits (LEO's) comes from the SAA mentioned previously.
D. LEO RADIATION ENVIRONMENT

Modeling the actual radiation environment for satellites is very difficult. The
simplified discussion, given above, does not due justice to the complex reality of space
radiation. This thesis will not attempt to determine the exact levels of radiation received
by satellites in earth orbit. The purpose of the brief explanation given here is to provide
some background information on the different types of radiation in space and how they
interact with matter. The overall conclusion is, satellites which pass through the Van
Allen belts will receive higher doses of radiation from the trapped particles than satellites
that do not pass through these belts. Satellites that have high inclinations and low
altitudes tend to avoid the Van Allen belts. These low orbit satellites are also shielded
from cosmic rays by the earth's extended atmosphere. Once again the idea of using LEO

satellites from a radiation standpoint appears valid.
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III. MOS CAPACITOR FUNDAMENTALS

The fundamentals of MOS capacitor design and operation are essential to
understanding the testing done in Chapter V. Additionally, the description of radiation
damage mechanisms in Chapter IV will be easier to understand given the information

presented here.
A. FUNDAMENTAL MOS CAPACITOR OPERATION

MOS capacitors can be biased either positively or negatively. This simply means
the top plate of the capacitor may have a negative or positive charge with respect to the
bottom plate. (Grebene, 1984, p. 165) The different effects caused by these two types of
biasing will be discussed for ideal parallel plate MOS capacitors. A discussion of
non-ideal work functions and trapped charges will then be addressed.

1. The Ideal Capacitor

With no voltage applied to an ideal MOS capacitor the work function difference,

q0,,,s- is ideally equal to zero as seen in Equation 3.1 and in Figure 3.1. The work

function difference is simply the difference between the work function of the metal or top

layer (q¢,,) and the semiconductor or, bottom layer (q¢,). There may be several layers in

a multi-layer capacitor, this would add the work function effect. However, a single layer

example provides an adequate illustration of the work function effects.
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where

qy, = semiconductor electron affinity
qyp = energy difference between the Fermi and intrinsic Fermi levels

With no bias voltage the conduction energy level (EC) and valence energy level
(EV) both appear flat. This is termed the Flat Band Voltage. In an MOS capacitor there
is no carrier transport through the oxide layer. This means, it has virtually infinite
re.sistance. The only charges that exist are adjacent to the top and bottom plates. Biasing
a MOS capacitor creates three possibilities for altering the band gap energies,

Accumulation, Depletion and Inversion. (Sze, 1985, p. 187)
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Figure 3.1 The flat band energy diagram illustrating the work functions and the
energy levels in a bi-layer MOS capacitor. From Ref. (Sze, 1985, p.187)
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a. Accumulation

If a positive voltage is applied to the top plate, an overall negative bias (V
< 0) is created. In this case, the mobile holes are attracted to the surface of the
semiconductor and the energy bands bend upward as seen in Figure 3.2 (a). Since no
charges can flow through the oxide layer, the Fermi level remains constant. This allows
for an increase or accumulation of holes at the oxide-semiconductor boundary. A more
detailed explanation of how carrier densities at the conduction and valence energy levels
are effected by the location of the Fermi energy level can be found in Sze, (1985, p.

22-2).
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Figure 3.2 Ideal MOS capacitor energy level diagrams and charge distributions (a)
Accumulation, (b) Depletion, (c) Inversion. From Ref. (Sze, 1985, p. 188)
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This relationship is illustrated in Figure 3.3. There is an excellent explanation of the
relationships of these energy levels in Abrahamson, (1995, p. 26-30).

b. Depletion

When a small negative voltage is applied to the top plate the capacitor is
biased slightly positive (V > 0). This causes the energy levels to be bent down. The
majority carriers, in this case holes, are depleted in a region with width, W, as seen in
Figure 3.2 (b).
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Figure 3.3 A summary view of the intrinsic and extrinsic carrier densities, Fermi
levels and energy bands. From Ref. (Messenger, 1992, p.16)
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C. Inversion

The third phenomena takes place when the bias voltage is made very
positive (V >> 0). In this situation the energy levels continue to bend down as seen in
Figure 3.2 (¢). In this condition the Fermi level is actually higher then the intrinsic level.
The Fermi level to intrinsic level difference becomes positive (p-type to n-type) which
leads to an exponential increase in the number of electrons. Electrons in this situation are
supposed to be the minority carriers, however, since they outnumber the majority carrier
the resulting charged surface is termed inverted. As voltage is further increased the
conduction band will approach the Fermi level and electron concentration will increase
rapidly. This leads to the formation of a very thin layer of negative charge called the
inversion layer. The width of this layer is typically much thinner than the surface

depletion layer. Once the inversion layer forms, the depletion layer reaches its maximum

thickness W, (see Equation 3.2).

Wmax -

‘/ 4eskTIn(N 4/n;) 52)

q>Ny
Where

k = Boltzmann's constant (8.63 E -5 eV/K)
T = temperature in K
N, = Acceptor ion concentration

n; = intrinsic carrier density (1.45E10 carriers/cm for silicon)
q = electron charge (1.602E-19 C)

g, = permittivity of silicon ( F/cm)
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Once a strong inversion layer is formed, any further bending of the energy levels will
cause a small increase in the depletion layer width. The charge on the inversion layer
will continue to increase. (Blicher, 1981, p.3-16) (Sze, 1985, p. 186-189)

d. Ideal Capacitance Calculation

The ideal MOS capacitance is simply the series connections of the oxide

layer capacitance, C,, and the depletion layer capacitance, C;. A detailed description of

the depletion layer of P-N junctions can be found in Sze, (1985, p. 70-80). A more
condensed explanation is found in Abrahamson, (1995, p.26-30). The total capacitance to

oxide capacitance ratio can be found using Equation 3.3.

= 1 (3.3)
ox )
J 1+(2eox Vg/qNA‘o‘stox)

where
Vg = Gate Voltage
g, = silicon permittivity
€ox = OXide permittivity

t,x = oxide thickness

2. Non-Ideal Characteristics

The above explanations were for idealized capacitors. In the real world several
factors affect the ideal operation of an MOS capacitor; the work difference function, the
presence of trapped charges in the oxide and semiconductor and the effect of these

charges on the flat-band voltage. These are just three of the non-ideal situations which

may come into play.
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a. Work Difference Function

The ideal work function difference is zero as described above.

Realistically this is not the case. Normally q¢,, is smaller then q¢; , this causes the

difference to be negative. The net result is that some electrons leave the metal and
migrate to the p-type silicon via an external path around the oxide layer. The metal plate
gains a slight positive charge and repels holes causing uncompensated negative acceptors
to appear near the semiconductor surface. This charge separation creates a potential
difference in the oxide and the depletion regions equal in magnitude but opposite in sign
to the work function. (Sze, 1985, p. 195-197) (Blicher, 1981, p. 3-6)

b. Charge Trapping, Fixed Oxide and Mobile Ionic Charges

There are several other effects which cause non ideal situations to exist in
an MOS capacitor. These include, interface traps, oxide traps, border traps, fixed oxide

charges and mobile ionic charges.

The first of these non-ideal situations is the interface trap (Q;). These

traps are caused by irregularities in the silicon and silicon dioxide lattices. These
irregularities depend largely on the chemical structure at the Si-SiO, interface during
fabrication. These traps have energy levels which lie in the forbidden Si energy gap. The
concentration of these interface traps is highly dependent on the crystalline structure of
the silicon. The number of interface traps can be reduced by annealing the silicon and
silicon dioxide at low temperatures (450° C). These types of traps can also be created by

ionizing radiation as discussed in Chapter IV. (Sze, 1985, p.197) (Blicher, 1981, p.6-19)
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The next non-ideal charge type is the fixed oxide charge (Qf). These fixed

charges are located within 30 Angstroms of the Si-SiO, interface. This charge is
normally positive and is also highly dependent on the crystalline structure of the Si and
the Si0,. It also depends on the oxidation and annealing conditions during fabrication.

A possible explanation as to the cause is due to uncompleted Si bonds remaining near the

surface following the growth of the SiO, layer. (Sze, 1985, p. 198)

The third charge type consists of mobile ion charges (Q,,). These ions are

non-intentional impurities in the SiO, layer. These ions are highly mobile especially at

higher temperatures. They are predominantly positive and hence migrate to the Si-Si0,
interface under an applied positive gate voltage. This elevated positive charge at the
interface causes a large change in the expected capacitance. This change is not
permanent because the ions will shift the other direction if the biasing voltage is reversed.
The ease at which these ionic charges move within the oxide layer gives rise to device
instability in the capacitor. The only way to reduce these charges is to remove as many
causes for impurities as possible. This is done by furnace wall cleaning, gas purification
during the oxidation process and ensuring the Si crystal surface is maintained as pure as

possible. (Blicher, 1981, p.21)
The final type of trapped charges is the oxide trapped charge (Q,,). These

are actually trapped inside the lattice structure of the SiO,. They are normally created by
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exposure to radiation fluxes (see Chapter IV). Figure 3.4 depicts relative locations of the
different trapped charges.

c Flat Band Voltage

All of the non-ideal charges found in the SiO, layer change the flat band
voltage. This change is reflected in Equation 3.4.

VEB = Oms = g’%@i’ (34)

The effects of the non-ideal situations can be seen in the shifted C-V curve of Figure 3.5.
Curve (a) is the ideal capacitor. Curve (b) depicts a capacitor with a non-ideal work
function and oxide charges. These tend to merely shift the curve. Curve (c) also includes
large amounts of interface traps which tend to distort the curve.

B. MOS CAPACITOR STRUCTURE AND DESIGN

The most fundamental design for MOS capacitors consists of two conducting

plates electrically isolated by a dielectric normally SiO,. This simple design will be

briefly covered to provide a basic overview of the process involved in VLSI fabrication

techniques.
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Figure 3.5 The normal C-V curve of a capacitor (a), the curve shifted by a non-ideal
work function and oxide traps (b) the curve shifted by interface traps (c). From Ref.
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Figure 3.4 Non-ideal charges and traps. From Ref. (Sze, 1985, p. 197)
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1.

Bottom Plate Formation

Figure 3.6 illustrates the formation of the bottom plate of an MOS capacitor using

an n-well process. The n+ diffusion layer of silicon is placed on an n-well inside a

p-substrate.
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Figure 3.6 The Layout and cross section view of a typical MOS capacitor. From Ref.

(Grebene, 1984, p.164)
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a Sheet Resistance
All VLSI components have some sheet resistance associated with them.

The plates on an MOS capacitor are no different. The actual resistance of the material on

a VLSI chip is given by equation 3.5.

L
= (3.5)
where
p = material resistivity (W/cm)
L = material length (cm)
W = material width (cm)
T = material thickness (cm)

Integrated circuit manufactures prefer to use a similar parameter called the sheet

resistance (Ry) defined in equation 3.6.

Rs=2% (3.6)

The sheet resistance has units of ohms per square unit. To find the total resistance of a |
given size material, simply multiply the sheet resistance by the length to width ratio. ]
Ideally, the resistance of the capacitor top and bottom plate material is zero. Since this is |
not physically possible, sheet resistances of a few ohms are typical. There are other

device parasitics which can cause capacitors to not perform as ideal. The stray

capacitance of the substrate and epitaxial layer p-n junction may cause non-ideal

situations. A simplified circuit which depicts an MOS capacitor equivalent circuit is

illustrated in Figure 3.7. It is common during the manufacturing process, to minimize the

parasitic capacitance by decreasing or completely eliminating the n-type epitaxial layer.

(Grebene, 1984, p. 164-166)
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Figure 3.7 A simplified MOS capacitor electrical circuit equivalent diagram.
From Ref. (Grebene, 1984, p.165)

b. Emitter Diffusion

One way to construct the bottom plate is using n+ emitter diffusion.
Diffusion is the mechanism where different types of particles occupying a given volume
tend to spread out and redistribute themselves evenly throughout the volume. Particle
diffusion may occur via two mechanisms, substitutional or interstitial. In substitutional
diffusion, the impurity atoms replace a silicon atom at a lattice site. In interstitial
diffusion, the impurity atoms occupy an interstitial void. Integrated circuit manufacturing
primarily uses the first type of diffusion. The particles diffuse according to Fick's Law.

The law is illustrated in Equation 3.7.
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F=- %‘7—;’ (3.7)

where
N = # particles/unit volume
x = distance measured parallel to flow direction
D = diffusion coefficient (length2/time)

The negative sign indicates the diffusion direction from regions of higher to lower
concentration. The diffusion coefficient represents the difficulty of movement an
impurity feels, in the lattice structure. It is a property of the impurity and varies
exponentially with temperature. In n+ diffusion, a controlled large amount of dopant is
introduced into n-type silicon, allowed to diffuse and become the bottom plate of the
MOS capacitor. (Grebene, 1984, p. 6-7)

2. Dielectric Layer

A thin oxidized layer of silicon (SiO,) forms the dielectric region. This oxide

layer is generated by heating the silicon wafer to a temperature range of 900-1200° C.
An inert carrier gas containing the oxidizing agent, water, is passed over the wafer ‘

surface and the following chemical reaction takes place (Equation 3.8).

Si+2H,0 — SiO, +2H> (3.8)

The oxidation proceeds inward from the surface and slows as the oxidation thickens. For
thin layers, a linear growth rate is achievable with respect to time. As the layer thickens

the growth rate becomes proportional to the square root of time. The thickness of

thermally grown SiO, on integrated circuits ranges from 0.05 to 2 pum. The lower limit is
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set by electrical breakdown voltages, process control or random defect densities (i.e., pin

holes) in the oxide layer. The upper limit is determined by acceptable oxidation times
and difficulty of oxide etching during photo-masking. (Grebene, 1984, p. 16)

3. Top Plate Construction

The last step in preparing an MOS capacitor is to deposit an extremely thin layer
of conductive material, or metal, on top of the oxide layer. Figure 3.6 illustrates this
plate. The top plate completely covers the dielectric and the bottom plate. The metal can
be deposited by a variety of methods, two of which are briefly discussed here.

a. Vacuum Evaporation

The capacitor is placed with the conductive element to be evaporated in a

bell jar vacuum chamber where pressures range from 107 t0 10 torr. The metal is

heated until vaporization occurs. "Under the high-vacuum conditions used, the mean free
path of the vaporized molecules is comparable to the dimensions of the bell jar.
Therefore the vaporized material radiates in all directions within the bell jar. " (Grebene,
1984, p. 23) The oxide layer is placed to receive a uniform covering of the vaporized
metal. The process is performed at elevated temperatures to ensure good adhesion.

b. Cathode Sputtering

This process also takes place in a low pressure environment. A sputtering
apparatus is constructed. A potential of approximately 5000 V is applied between a
cathode, coated with the conductive element (metal), and an anode, the oxide layer. There
is also an inert gas present in the chamber. The most commonly used gas is argon.
Positively ionized argon atoms generated by the anode accelerate toward the negatively
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charged cathode. When they impact the cathode they knock off (sputter) metal atoms.
Some of these atoms deposit themselves on the oxide layer. Cathode sputtering is much
slower than vacuum evaporation.

4. Multiple Layer Capacitors

The above explanation covers the basics of VLSI integrated circuit fabrication
techniques, specifically, concentrating on capacitor fabrication. The example used a

simple two plate capacitor. There are techniques available to construct multiple layers of

conducting material separated by SiO, dielectric. A more detailed discussion is presented

in Appendix A, which describes the actual design of a specialty chip intended for use in

this type of radiation testing.
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IV. RADIATION DAMAGE MECHANISMS ON VLSI

COMPONENTS

Since all satellites must operate in space and since the radiation environment in

space is quite harsh, a brief description of how radiation affects VLSI circuitry is in order.
"The manner in which radiation interacts with solid material depends on the type, kinetic
energy, mass, and charge state of the incoming particle and the mass, atomic number and
density of the target material." (Schwank, 1994, p. II-14)

The actual circuits used in this thesis are fabricated from silicon (Si) and silicon
dioxide (Si0,). There are other materials such as gallium arsinide (GaAs) which can be
used to fabricate VLSI circuits. These GaAs circuits tend to be much more radiation
tolerant to total dose and transient effects. They also cost more than their counterpart Si
circuits. The discussion here will deal with radiation effects on silicon and silicon
dioxide since those are the applicable elements in this thesis.

There are two broad classes of radiation effects, ionizing radiation effects and
displacement effects. Both of these effects can lead to a third form of radiation damage
called charge trapping.

A. IONIZATION

Tonization means to create a charged particle from an uncharged one. This is done

in many ways. In silicon based integrated circuits it is accomplished by the interaction of

charged particles with the atoms in the silicon and silicon dioxide lattice structure.
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1. Charged Particle Ionization Effects

Ionization by charged particles in silicon results in the creation of an electron-hole
pair. These pairs are caused by the interaction of the charged particle with an electron
bound to one of the atoms in the lattice structure. In order for an ionization to take place
enough energy must be transferred from the incident particle to elevate the energy of the
bound electron above the energy level of the conduction band in the silicon or the silicon
dioxide. The average energy needed to create these electron hole pairs is 3.6 €V for
silicon and 17 €V for silicon dioxide. If an incident particle transmits enough energy and
exceeds these thresholds an electron-hole pair is produced. Since most incident particles
have energy levels well above these thresholds, one particle can produce several thousand
such pairs. The majority of particles causing this type of interaction are protons and
electrons, both are found abundantly in the earth's magnetosphere. (Schwank, 1994, p.
1-17) (Nicollian, 1982, p. 550)

2. Photon Ionization Effects

Photons do not cause a significant number of ionizations in the space
environment. They do however contribute to the particle ionization effects in the
laboratory. The production of charged particles from these photon interactions is
discussed in Chapter II. The free electrons produced by photon interaction can produce

the same effects as free electrons in space.
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B. DISPLACEMENT AND DEFECT CENTERS

Particles and energetic photons interacting with silicon and silicon dioxide
structures can produce a second kind of damage called displacement. The results of these
displacements lead to a change in the electron state energies of the Si and SiO, structures.

1. Displacement Damage

In displacement damage the incident particle impacts the Si atom or SiO,
molecule with such force that it moves it out of its lattice structure. This movement is
termed displacement. The movement of the atom or molecule creates an interstitial site
(a site in the lattice structure which should contain an atom but does not) this is also
known as a defect. Compared to ionization displacement damage is rare. Especially
when the primary particle of interest is an electron (an electron flux is used in this thesis).
The more massive protons and neutrons do much more displacement damage then
electrons. The damage caused by displacement is usually permanent. (Nicollian, 1982,
p.553)

Displacement ionization can take place due to the covalent bonds which are
broken in the process of an atom or molecule being displaced. The vacancy electron-hole
pair produced due to these broken bonds is called a Frenkel pair. It requires 2 minimum
of 21 eV for an incident particle to produce a Frenkel pair. (Bourgoin, 1983, p.228-239)

Displacements can cause many different types of defects in the Si lattice structure.
A simple point defect involving only one site or a high energy particle interacting to

cause several defects. The defects are called clusters. In fact one high energy particle can
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cause several clusters while its energy is being dissipated in the surrounding material. An
illustration of this is found in Figure 4.1.

These radiation caused defects produce certain types of electrical effects in the
surrounding silicon. They tend to create energy levels or states in which electrons can
resided that do not correspond to the expected energy states for silicon or silicon dioxide.

This is termed defect center electrical effects.
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Figure 4.1 Illustration of Cluster formation from a 50 keV recoil atom. After Ref.
(Summers, 1992)
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2. Electrical Effects from Displacement Caused Defect Centers

The Electrical effects of defect centers come in five different forms, generation,
recombination, trapping, compensation and tunneling. They are illustrated in Figure 4.2.
The degradation that causes these effects starts with the displacement of the atom from its
lattice structure. The loss of the atom from the lattice structure creates new energy levels
or states. These new states alter the electrical properties of the device. (This is related to

the effects of doping to create p or n type silicon as seen in Chapter III).
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Figure 4.2 Electrical effects caused by defect centers. After Ref. (Srour, 1988, p.
1446)

The first effect, Generation or more appropriately thermal generation, occurs
when the defect energy level falls about half way between the valence and conduction
bands. As the temperature of the material increases the thermal energy imparted to the
electrons in this new energy state is sufficient to cause them to jump or move into the

conduction band creating an electron-hole pair.
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The next effect is Recombination. Here an electron or hole is trapped by the
defect center. This creates an electrical imbalance (a plus or minus charge) this
imbalance is corrected by a carrier of the opposite sign also being trapped.

The third effect is Trapping. Here the carriers can be trapped by the defect near
their respective normal levels (conduction band for the electron or valence band for the
holes). Normally this trapping is temporary. Although if a carrier from the opposite band
reaches the site then recombination can occur.

The fourth effect is Compensation. In this mechanism electrons are compensated

or removed by deep-lying radiation induced holes in the lattice structure reducing the

majority carrier concentration.

The last process is Tunneling. Here the carriers are assisted in crossing the band
gap due to modifications caused by radiation damage. (Schwank, 1994, p. I1-20)
C. TRAPPED CHARGES

The major cause of radiation damage to silicon and silicon dioxide is charge
trapping. Charge trapping is caused by both displacement defects and ionization. In
electron radiation fields, like the NPS LINAC, the major cause of radiation damage is
jonization. There are three types of commonly considered traps; oxide, interface and
border.

1. Oxide Traps

The capacitor must be biased in the positive direction. Without the biasing, very
few if any charges will become trapped. While for a very high biasing voltage, the

probability of recombination becomes extremely low. The basic mechanism takes place
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after some type of ionization. The freed electrons migrate quickly toward the positively
charged gate while the holes slowly hop through localized states in the dioxide toward the
Si-SiO, interface. In oxide trapping they never quite reach the interface and instead build
up in the layer near this interface. As they build up they form a positive oxide-trap space
charge (See Figure 4.3). (Srour, 1988, p. 1451)

2. Interface Traps

Interface traps lie on the interface between the Si-SiO2 boarder hence the name.
These traps are also created under a positive bias. There are two rates at which these
traps are produced. The minority of interface traps form in the first few milliseconds of
irradiation. The majority of the traps are formed over time. In the space environment
with its low level radiation doses, compared to laboratory models, this can happen over
several thousands of seconds. The main difference between the interface trap and the
oxide trap is their relative charge. Most oxide traps are positively charged (see border

traps below). Interface traps, however, can be either positively or negatively charged.

The actual charge they exhibit depends on the trap energy level or state (E; ) and its

relation to the Fermi level (E;) of the Silicon. If E; <E, the trap will donate an electron

to the silicon and become positively charged. If E;> E,, the trap will accept an electron
and become negatively charged. If the two levels are approximately equal, then the trap
will have a neutral charge. Another aspect of interface traps is, they do not anneal at
room temperature. They are the most important mechanism for low dose rate

applications specifically space (see Figure 4.3).
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3. Border Traps

Originally it was thought that only interface traps could communicate, change
charge based on its trap energy level (E,), with the silicon layer. This, however, is not
the case. Some oxide traps, if close enough to the interface and with the proper trap

energy level, may also communicate with the silicon layer. These types of traps have
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Figure 4.3 The Oxide and the Interface Trap process. After Ref. (Srour, 1988,
1451)

been termed "border traps". Figure 4.4 illustrates the locations of the different traps
discussed here. (Fleetwood, 1993, p.5058-5061)
D. SUMMARY

The effects discussed in this chapter are being studied on a macroscopic level in
the experimental section of this thesis. The oxide and interface traps cause adverse

effects on MOS capacitors as well as transistors. These effects are different under a
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radiation flux as compared to after the flux is removed. As mentioned above, with time
the radiation induced ionizations can go through a recombination or annealing process

and return to a more naturally functioning state. This is the reason for the in-situ testing

of the components.
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Figure 4.4 (a) the physical location of defects, (b) the electrical response of the
defects. From Ref. (Fleetwood, 1993, p. 5059)
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V. EXPERIMENTAL SETUP

This chapter explains in detail the setup of the experiment. It includes, a section
on the VLSI chip with its capacitors of interest, a section on the circuitry used to test the
capacitance during irradiation and finally a section on the setup, calibration and operation
of the NPS Linear Accelerator (LINAC).

A. DESCRIPTION OF THE VLSI CHIP

The original VLSI chip designed specifically for this thesis was not available for
use. This chip has individual discrete capacitors which can be accessed via external pins.
However, there was a problem with the design software and its compatibility with the
fabrication facility. As a result, the design was not submitted in time to be used for this
thesis. The design of this original chip is covered in Appendix A.

The actual chip used was designed by a former NPS student, Raphael Anestis

(Anestis, 1994). A brief discussion of his chip design is included here.
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Figure 5.1 The complete microchip layout created using magic. From Ref.
(Anestis, 1994, p. 146)
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1. Chip Design and Fabrication

The chip produced by Anestis was designed to use switched capacitor networks in
conjunction with composite operational amplifiers (COA's). The linking of these two
technologies allows circuits to be built as VLSI components. Several masters theses at
NPS exist in this area (Bingham, 1993) (Silvernagel, 1993) (Anestis, 1994). The chip
was manufactured via the MOSIS fabrication process using orbital 2 micron low noise
analog techniques. The detailed parameters of this process are in the thesis by Anestis
(Anestis, 1994, p. 141-145). The actual layout of the chip was done using the VLSI
design tool "Magic". The actual layout of the chip can be found in Figure 5.1. A floor
plan of the chip is also shown in Figure 5.2.

2. The On Chip Capacitors

The part of the chip utilized in this thesis research is the capacitor network. These
can best be seen in Figure 5.3. This figure shows the location of the test points relative
to the VLSI capacitors on the chip. The switches labeled "odd" and "even" on the
diagram represent the even and odd phases of the biphase clock used in the switched
capacitor networks. The test points of interest are seen in Figure 5.2 and are labeled V21
and V22. In Figure 5.3, "a*Cr" represents the capacitor network which allows for the
programming of the composite op-amp, "Cr" is the one capacitor necessary to allow the
switched capacitor function to work and "Cn" is the compensating feedback capacitor
necessary to provide stability to the op-amp. The value of Cn is approximately 6

picoFarads and the value of Cr is approximately 1 picoFarad by design.
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Figure 5.2 The floor plan of the test chip including the bond diagram. From Ref.
(Anestis, 1994, p. 90)
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These values were verified using the fabrication parameters and the relative size of the

capacitors seen in Figure 5.1 (Anestis, 1994, p.144-146). The a in front of the Cr means
that Cr's value can be multiplied by values from 1 to 16. If the actual values of the
capacitors are close to the design values then by accessing the circuit at the test point the
capacitance value should be from 6 to 24 picofarads. The actual value measured was
about 12 picofarads. This value can be reached if, 1) «*Cr and Cn are in parallel, 2) the
value for o is 6 and 3) the biphase clock is in the odd phase.

The test points used to access the capacitors correspond to pins 39 and 40 on the
40 pin chip. Another note, to operate properly Vss, Vdd and GND were supplied to the
chip. The board is wired to provide a supply voltage of -5 volts to Vss and +5 volts to
vdd.
B. TEST CIRCUITRY

The circuitry used to test the capacitors is a simple low pass filter. The low pass
filter is constructed using an LM 747 (twin op-amps in a single package with 14 pins) and
two resistors (100 kQ and 1MQ) chosen to provide a gain of 10. The twin op amp LM
747 was chosen because initially it was thought there were two capacitors available on
the test chip. One corresponding to the Toggle Switched Inverter (TSI) Composite
Op-Amp (COA) and one corresponding to the Modified Open circuit Floating Resistor
(MOFR) COA. Upon further testing of the chip it was determined that only the capacitor
used in the MOFR COA design would be available for testing. A simplified schematic
of the circuit is provided in Figure 5.4. The capacitor located on test chip #1 is placed in

the low pass circuit such that it controls the pole corner frequency. The baseline response
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is plotted as Figure 5.5. Figure 5.6 displays the baseline response from test chip #2. The

entire circuitry is located on the same wirewrap board with input and outputs routed

through BNC connectors into shielded coaxial cable available at the Linear Accelerator

site. The photograph of the board in place in the linear accelerator is included as Figure

5.8.
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necessary to keep Al
always in a closed
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Figure 5.3 The simplified diagram of the composite op amp showing the location of

the test points and the capacitors. From (Anestis, 1994, p. 52)
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Figure 5.4 The Spice schematic representation of the low pass filter used in the

radiation tests.

The signal input to the low pass filter is supplied from a Hewlett-Packard 3585B
Signal Generator/Spectrum Analyzer (Figure 5.7). This piece of equipment allows the
frequency to be swept from 20 Hz to 40 MHz. The frequencies of interest are much

lower then 40 MHz. In most runs the frequency range used is 0.1 kHz to 20 kHz. The
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output is plotted as frequency vs gain in dB. The baseline plots for both chips are found
in Figures 5.5 (test chip #1) and 5.6 (test chip #2). In both baseline plots the marker has
been placed at the 3 dB downpoint, the corner frequency of the low-pass filter. During
the test runs the HP 3585B was placed in the LINAC control room to minimize personnel
radiation exposure.

The frequency at the 3 dB point is the value used to calculate the capacitance (C).

The equation used for this calculation is for a simple low-pass filter, Equation 5.1 (Sedra,

1991, p. 779).

C=(2nR lf)‘l 5.1

Where f is the 3 dB down frequency and R1 is the IMW resistor in the filter circuit (see
Figure 5.4). Using Equation 5.1 the calculated capacitances of the two chips are;

Test Chip #1 Capacitance = 12.556 picofarads

Test Chip #2 Capacitance = 12.575 picofarads

These values correspond well with the design value of 12 picofarads. This
empirically verifies the assumptions made in section A. 2 of this chapter.

C. THE LINEAR ACCELERATOR

The source of radiation for this experiment is the Naval Postgraduate School

electron linear accelerator (LINAC). The LINAC is located in the basement of Halligan

Hall.

50




REF 17.0 dBm MARKER 12 676.8 Hz

2 dB/D1V RANGE 25.0 dBm 10.08 dBm
o —
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]
START 100.0 H=z STOP 20 000.0 H=z
RBW 100 Hz VBW 300 Hz ST 4.0 SEC

Figure 5.5 The baseline low pass filter curve for test chip #1.

REF 17.0 dBm : MARKER 12 B56.8 Hz

2 dB/DIV 'RANGE 25.0 dBm 10. 08 dBm
k— .
) — .
" :
\\ . ]

START 100.0 H=z STOP 20 000.0 Hz
RBW 100 Hz VBW 300 H=z ST 4.0 SEC

Figure 5.6 The baseline low pass filter curve for test chip #2
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1. LINAC Overview

The NPS LINAC consists of three, ten-foot sub-accelerator sections. Each section
is powered by a klystron amplifier delivering up to 22 Megawatts peak power. These
klystron amplifiers are essentially miniature electron accelerators. They are cathode ray
tubes which amplify the Radio Frequency (RF) signal needed to accelerate the electrons
in the main sub-sections. The RF signal is generated by a trigger generator supplied to an
RF driver operating at 2.856 GHz with a peak voltage of 6 kV. This RF signal is
injected into the klystrons which amplify it using a pulsed 250 kV peak input. This high
energy pulsed RF signal is focused using large electromagnets. The focused high energy
RF is piped to the respective sub-accelerator sections via wave-guides. Figure 5.9 shows
the three klystrons. (Barnett, 1966, p. 9)

The high energy RF signals are essentially waves. These high energy waves do
for electrons what large ocean waves do for surfers. The electrons ride these high energy
waves and in doing so are accelerated. The acceleration imparts energy to the electrons.
This increases their energy level from 80 keV, at which they are injected, to the
maximum rated level for the LINAC of 110 MeV. The source of these 80 keV electrons
is an electron gun which is another cathode ray tube. The electrons enter the first
accelerator section through a magnetic lens and pre-buncher. These help to focus the
electrons and create the proper phase, so fewer electrons are lost upon entering the first
section. Upon entering the first section, the electrons are accelerated in the first few
inches to .8 or .9 times the speed of light. The remaining length of the accelerator (the

rest of the first section and the remaining two sections) raises the electron energy level to
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110 MeV. A photograph of the accelerator including the electron gun is found in Figure
5.10.

Since continuously maintaining a power output of 22 Megawatts is very difficult,
due to temperature and input power constraints, the klystrons ére pulsed at a rate of 60
Hertz with a pulse width of 3.5 psec. This reduces the continuous rate of input power for
each klystron to 4.62 kilowatts. This explains why the high energy RF is pulsed vice
continuous.

The energy level of the electrons can be controlled in several ways. One way is
by reducing the number of sub-accelerator sections being used. Each section raises the
energy level by about 30 MeV. Thus for this experiment where low energy electrons
were needed only the first section of the accelerator was used. This produced an electron
beam of approximately 30 MeV. The actual energy level of the beam is controlled by the
a collimator, a deflection magnet and energy defining slits. These are adjusted to control
the energy level of the electron beam being produced. In this experiment the collimator
and the slits were not used. The actual energy level is calculated by monitoring the
voltage applied to the deflection magnet which deflects the beam at an optimum angle.
For this experiment the voltage on the deflection magnet was 12 pvolts. This
corresponds to an electron energy of 32 MeV. This energy is somewhat higher then
normal electron energies found in space. Accepted values for electron energy levels in

space are greater then 5 MeV with an average of 7 MeV (Schwank, 1994, p. II-5).
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Figure 5.10 Photograph of the electron gun and the sections of the NPS LINAC.
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The deflection caused by the deflection magnets, places the beam into the target area
containing the circuit board. This deflection, not only allows measurement of the
electron beam energy, but also reduces the level of forward radiation caused by the
electron beam in the accelerator sections. Figure 5.11 depicts the spatial layout of the

LINAC area.

Naval Posigraduate School

1{O MeV Linear Accelsralor Modulators —
Kiysirons — Q
B Defleclion Sysism - ]
I el T ~o- .

Acceistalor Suttions

) \Target
, . | 55
Control Room \
\

\

Beam Damp -——f\‘Y_

Figure 5.11 Spatial layout and major components of the NPS LINAC. From Ref.
(O'Reilly, 1986, p. 73)

2. The Secondary Emission Monitor
The Secondary Emission Monitor (SEM) is used to determine the total number of

electrons being delivered by the LINAC. This is called the fluence and has units of

electrons/cm”. The SEM is located at the end of the target chamber. As electrons pass
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through it they create a current. This current is used to charge a capacitor of known value
in the control room. The charge on the capacitor in volts is then linearly related to the
fluence of the electron beam. As part of preparation for this experiment the SEM was
calibrated.

SEM calibration is done in the following manner. A Faraday cup is used
to catch all the electrons hitting the SEM. A Faraday cup is simply a lead lined conductor
that absorbs all the electrons and converts them into current. A diagram of the set up is
shown in Figure 5.12. Electrons hitting the charged plates in the SEM produce a current.
The assumption is that all electrons in the beam that pass through the SEM are trapped in
the Faraday cup and converted to current. The amount of time it takes to charge the 0.1
ufarad capacitors to the same voltage is recorded. The SEM efficiency (ngg,) in percent

is calculated using Equation 5.2.

_ time sen
NSEM = pro x 100 (5.2)

Where timegp is the time to charge the capacitor attached to the SEM and timep is the

time required to charge the capacitor attached to the Faraday Cup. In actuality the same
capacitor is used for both measurements. Two runs are made to determine the time to
charge for each source. The efficiency is then used to calculate the total fluence (through

the SEM) using Equation 5.3.
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Figure 5.13 Photograph of the TLD reader.
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e (5.3)

Where N, is the number of electrons, K is a conversion factor from electrons to coulombs

XK= 6.25x10'® electrons/coulomb), V is the charge on the capacitor and C is the value of

the capacitor connected to the SEM. To find the actual fluence N, (the number of
electrons) must be divided by the surface area of the SEM to provided the proper units.
Having done this calibration the charge on the SEM now reflects the fluence of an
electron beam with a given intensity level and a certain electron energy level.
3. Correlation of Dose to SEM Charge
With the SEM calibrated to the number of actual electrons passing through it,
another means must be employed to relate total dose to the charge on the SEM. This is
done using a Thermal Luminescent Dosimeter (TLD).
a. The Thermal Luminescent Dosimeter
The TLD is a device used to measure total dose radiation. It consists of a
small Calcium Fluoride chip impregnated with Manganese impurities. When exposed to
ionizing radiation electrons and holes are produced and trapped at metastable energy
levels in the forbidden gap. These levels are created due to the Manganese impurities.
The number of filled levels is proportional to the total dose absorbed. The total dose is
measured by heating the TLD chip. When heated, the trapped electrons are released and
these electrons recombining with holes produce light. The intensity of this light is

proportional to the total dose received by the TLD. (Kerris, 1992, p. 1-13)
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There are some limitations to this process. One of these limitations is the
maximum allowed dose on the TLD. The maximum dose allowed for this TLD is 1
kRad (Victoreen, p. 3-14, 1986). However, the levels needed to simulate a space

environment are much higher then this. In fact the levels used for this experiment were
above 2.4 MRads (1IMRad = 1x10° Rads) A photograph of the instrument used to read

the TLD's can be seen in Figure 5.13.

b. Application of the TLD

A process was developed by the LINAC staff to correlate the charge on the
SEM with the dose received by a TLD. A TLD is placed at the location of the device to
be tested in the electron beam. The LINAC is turned on for a very short period of time,
since the TLD saturates at levels above 1000 Rads. After each exposure the TLD is read
and the dose is plotted versus the charge accumulated on the SEM. The plots can be
seen in Figures 5.16 (day #1, 5 November, 1996) and 5.17 (day #2, 6 November,
1996). The SEM accumulated charge is related to a specific dose using a linear
relationship. This provides for calculating the total dose received by the chip. These

calibration runs are done both days due to the changing electron beam profile.
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Data from "MV vs Dose 11/5/96"
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Figure 5.14 The relationship of TLD Dose (Rads) to SEM charge (mV) for day #1
(11/5/96).

Data from "MV VS DOSE 11/6/96"
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Figure 5.15 The relationship of TLD Dose (Rads) to SEM charge (mV) for day #2
(11/6/96).
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4. Measurement of the Electron Beam Profile

The final aspect of the LINAC taken into account is the electron beam profile.
The profile of the beam is its intensity cross section. This was determined back in 1967
to have a shape resembling a flat topped hill (see Figures 5.16 and 5.17) (Nelson, 1967, p.
28-29). For this experiment some verification of actual beam intensity is done using
electroluminescent paper (paper coated with the same phosphorescent material used to
coat the inside of television picture tubes). This paper glows brighter with a higher
intensity of electrons. A live video camera is set up to continuously monitor the paper
which is placed over the location of the test chip. The beam is turned on and focused
onto this paper. The intensity of the light created by the paper is analyzed using an image
analyzer program. The lights are extinguished in the target area for this procedure. The
paper's glow reflects the actual intensity of the beam. The light intensity is fed into a
computer and the computer creates a 3D representation of the actual beam intensity. The
exact intensity is difficult to determine using this method however, the relative intensity
can be seen. Figures 5.18 and 5.19 are the 3D representations of beam intensity for day 1
(5 November, 1996) and day 2 (6 November, 1996) respectively. The beam intensity
is relatively uniform across the‘ area of the chip. The lines of lesser intensity seen in the
pictures are actually pencil marks that mark the center of the target chip.

D. SUMMARY

This chapter covers the actual setup of the experiment. There are several details

which are covered briefly. The actual experiments involve operating the LINAC while
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the filter response was observed. The data obtained is tabulated in Appendix B,

Experimental Data, the results of this data are discussed in the next chapter.
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Figure 5.16 The vertical beam profile plotted as fluence vs position. From Ref.
(Nelson, 1967, p.31).
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Figure 5.17 The horizontal beam profile plotted as fluence vs position. From Ref.
(Nelson, 1967, p.30).
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Figure 5.18 The beam profile in 3D from run 1 (5§ November, 1996).
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Figure 5.19 The beam profile in 3D from run 2 (6 November, 1996).
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VI. RESULTS

A. RUN ONE

The first run was completed on 5 November, 1996. The chip used was designed
by Rapheal Anestis (1994). The chip was marked as #3. This chip also had a white
sticker with all the pins identified. Prior to starting the radiation run a baseline plot was
made (Figure 5.7). From this baseline plot the initial capacitance was calculated.

Before the run began the two initialization procedures described in Chapter V
were completed. First, the beam intensity determination was done (Figure 5.18). Then,
the SEM charge to dose measurements were taken (Figure 5.14). During the beam
intensity procedure the beam was focused on the location of the 40 pin chip socket. Care
was taken to maintain the same position of the board when the chip was inserted at the
beginning of the run.

In this run there was a thermocouple placed between the chip and the socket. The
readout was placed in the "hold" mode and did not accurately display the temperature
during the run. This problem was rectified on run two by using a different thermocouple.

The accelerator was started with the chip in place at 10:35. Initially it was
decided to use small increments of dose. This was due to the earlier experiments
conducted by Abrahamson (1995) in which he reported chip failure on similar chips at a
total fluence of 2.08x10" electrons/cm?. However, upon further review of Abrahamson's
data it appears that the failures took place from 2x10" to 6x10E". These values

correspond well with the values for fluence observed in this run.
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Initially the LINAC was operated in short bursts providing 500 to 1500 Rads per
burst. After about ten burst type operations the accelerator was left on and the SEM
charge and time to charge were recorded continuously. The three dB downpoint values
were taken only when a noticeable shift occurred in the frequency location. These values
are tabulated in Appendix B. The chart that reflects these values can be seen in Figure

6.1. This chart also contains the data from run number two.
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Figure 6.1 The chart depicting capacitance vs dose for both test chips.

As can be seen the capacitance values tend to increase with increasing dose. This
result corresponds to the results reported by Abrahamson (1995, p.81). The data used to
calculate the dose as a function of SEM charge for both days is also included as Figure

6.2. This same information can be found in Figures 5.14 and 5.15.
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Data from TLD Calabration

11/5/96 and 11/6/96
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Figure 6.2 Chart displaying the dose to SEM charge relationship for both days.

At 2,552 seconds into the run, the LINAC electron beam was turned off and the
LM 747 op-amp chip was replaceci. There was concern that the op-amp in the LM 747
chip having been exposed to the radiation might actually fail causing erroneous results.
Lead shielding was placed around this chip to help prevent radiation effects on it. This
shielding can be seen in Figure 5.8. The LM 747 was replaced prior to the beginning of
each run. For run one it was replaced at the 1.7 MRad point (2,552 seconds). When the
electron beam was reinitiated there was no significant change in output.

An unexplained phenomena occurred when the electron beam was extinguished.
The response slowly shifted down. The final value of the shift without the electron beam
can be seen in Figure 6.3. This plot displays two traces the upper trace at approximately

-45.5 dBm is the trace associated with the chip after the beam was turned off. The second
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noisier trace at -65 dBm is the trace from the circuit with all power removed from both
the LM 747 and the test chip. The unexplained phenomena took place when the electron
beam was restarted. At this point the filter response actually returned to where it was
prior to securing the beam. Figure 6.4 is a dual plot of the filter response at the beginning
of the radiation run and at the completion with a total dose of 2.66 MRads ( a fluence of
2.182x10" e/cm?). The upper curve is the initial curve and the lower one is the response

at completion. Once again when the electron beam was removed the response decayed to

that of Figure 6.3.
REF 4.5 dBm '~ MARKER 100.0 Mz °
10 dBs/D1V RANGE 30.0 dBm -2.1 dBm
-~ nd b """V‘ PPN gy ey # —o
H
' 1 ' I ¥
1
START 100.0 Hz ' STOP 20 DOD.0 Hz

RBW 100 H=z VBW 300 Hz - ST 4.0 SEC

Figure 6.3 The plot of the filter response when the electron beam was extinguished
at the completion of run one (dose = 2.66 MRads).
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Figure 6.4 The plot of the initial response (upper curve) and the final response
(lower curve) corresponding to a dose of 2.66 MRads with the beam energized.

B. RUN TWO

The second run took place on 6 November, 1996. In this run a second chip
identical to the first was used. It was labeled #2.

Once again, as in day one, the initialization runs were done. The results of the
beam intensity run is found in Figure 5.19. The results of the TLD dose to charge runs
are found in Figures 5.15 and 6.2 (the tabulated results are found in Appendix B).

In this run the thermocouple functioned properly. The tabulated temperature
results are found in Appendix B. The temperature initially rose from 50° C to 57° C and
then lowered and stabilized at 50° C. It was determined that temperature had little effect

on the results of this experiment.
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The beam was turned on at 1:54 pm. During this run the beam was left on and the
SEM charge values and times were recorded continuously. The readings were recorded
for the 3 dB downpoint. These values are tabulated in Appendix B. Figure 6.1 illustrates
the capacitor to dose relationship. Once again the capacitor value increases with total
dose increase.

The same unexplained phenomena took place when the beam was extinguished at
approximately 2.215 MRads. The filter response decreased dramatically. Figure 6.5
illustrates the response when the beam was turned off. The upper plot at approximately
-30 dBm is the response of the filter with no beam. The lower noisy trace is the output
with no power supplied to the chip or the LM 747. As with test chip one when the beam
was restarted, the filter response returned to where it was before it was secured. Figure
6.6 is a plot of the initial response and the final response at 2.4 MRads. The upper curve

is the initial response, the lover curve is the final response.
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Figure 6.5 The filter response plot when the electron beam was extinguished at the
completion of run two (dose = 2.4 MRads).
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Figure 6.6 The plot of the initial response (upper curve) and the final response
(lower curve) corresponding to a dose of 2.4 MRads with the beam energized.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis is a follow on to some unique research done here at NPS. The
investigation of radiation effects on MOS VLSI capacitors while they are under a
radiation flux. The results verified the previous research by Abrahamson (1995). The
initial goal of this work was to add to the data base of knowledge concerning radiation
effects on MOS VLSI analog components specifically the capacitor. This goal has been
accomplished.

Previous work in the 1980's irradiating MOS VLSI capacitors yielded results
which differed from the results received here. In 1984 Winokur irradiated MOS
capacitors constructed from a p-type chip. His capacitor had a capacitance of 78.5
picofarads and it received a maximum of 1 MRad of dose at a dose rate of 240 Rads per
second. He measured the capacitors after several runs by analyzing the high frequency
and low frequency quasi static capacitance-voltage (C-V) (Winokur, 1984). His results,
in Figure 7.1, indicate that as dose increases capacitance decreases. In both NPS theses
the results indicate that as dose increases capacitance increases. The capacitance change
was observed by the degradation of the low pass filter output discussed in the previous
chapters. These results indicated that the actual capacitance was going up (see Figure
6.1).

The anomalies seen during the experiments included the following; after both

chips failed they recovered when they were placed back in the radiation source, the
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electron beam. The second chip tested recovered to its baseline response after 24 hours.

To help explain these observations more testing is necessary.
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Figure 7.1 C-V curve which shows decreasing capacitance with increasing radiation |
dose. From Ref. (Winokur, 1984, p. 1454) |

B. RECOMMENDATIONS

The data recorded in these radiation experiments are very promising. The use of
Commercial Off The Shelf (COTS) parts for space vehicles is very plausible due to the
cost savings. In-situ radiation testing is an excellent way to observe how radiation
interactions affect the devices under test. This in-situ type of testing can certainly be
applied to other areas including, solar cells, radiation hardened components or other types

of integrated circuitry, to name just a few.
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There are several follow on projects in this area. The chip which is being
fabricated (see Appendix A) can be used for further testing. More runs can be made to
determine if the energy level of the electrons create a different response. The LINAC at

NPS is available for these types of radiation tests.
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APPENDIX A. THE SPECIALTY CHIP

A. OVERVIEW OF THE SPECIALTY CHIP

The purpose of this appendix is to discuss the construction of a specialty chip
designed to be used in the type of testing conducted in this thesis. An MOS VLSI chip
was designed as a project for the VLSI design class at Naval Postgraduate School (EC
4870). The design for this chip was completed using the Cadence computer aided design
suite. The Integrated Circuit Front to Back (icfb) tool in this package is well suited for
this type of design. Prior to the design described here all chips submitted for fabrication
to the MOSIS fabrication process from the Naval Postgraduate School were done using
the MAGIC design tool. The initial chip design was completed in March of 1996. This
design had to be modified to conform with MOSIS standards. There was a great deal of
time spent in the modification process and the final design was not submitted until
Ailgust of 1996. This did not allow for the chip to be fabricated in time for use in this
thesis. This appendix is to describe how the chip was designed as an aid for follow on

work in the area of in-situ MOS VLSI capacitor testing.
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Figure A.1 The lay out of the MOS VLSI capacitor chip.
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1. Capacitor Design

The Chip is designed with 10 discrete capacitors. There are five different designs
with two capacitors for each design. The chip also contains two op-amps designed by
another student in the EC4870 class. These op-amps have nothing to do with the
capacitor design but could be used to construct filter circuits if desired. The layout of the
chip is found in Figure A.1. Figure A.2 is a ghost chip floor plan. This figure labels all

the capacitors and the pins corresponding to each capacitor. An explanation of each

capacitor follows.
vdd cl1|C1l1yC2|cC2|vdd
Capacitor Capacitor
Capacitor C3
OP Amy ple2 c3
C 10 P Ca
C 10 Capaci Capacitor C4
C 1Qn3iml e | C4
CcC9o Cs
CcC <o C o9 Capacitor ' Cs
n_pl_ml I(f_aggitg Cs
Cé6
C: it ; i
C8.m |C7one Camctar | 6
C6
Vss |C8|C8| C7|C7 Vss

Figure A.2 The ghost chip floor plan for the MOS VLSI capacitor chip.
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a. The Cap_all Capacitor

This capacitor is constructed of all the different layers available, hence its
name. The bottom is n+ followed by poly 1, then poly_2, next metal_1 and finally
metal 2. A cross sectional view of Cap_all is found in Figure A.4. Between each layer
of active material is a layer of SiO, which acts as the dielectric for the capacitor. The
thickness of these SiO, layers depends on the process being used. A report from MOSIS
should accompany the chip when it arrives. This report should reflect both the thickness
of the dielectric SiO, layers and the thickness of the active layers. The location of these
two capacitors is in the upper right-hand corner of the chip as seen on Figure A.2. They
are labeled C 1 and C 2. The size of these capacitors is 100um x100pum. These
dimensions produce a capacitance of 13.74 picofarads. This value is determined using
the results from a "MOSIS Parametric Test Results" document dated 2 May, 1996. This
report contains capacitance parameteré in attofarrads/um®. Using these values and the
dimensions of each type of material used the, capacitance value can be calculated. The
design of each capacitor is based on the values from this report. This type of capacitor
yields the largest capacitance for the smallest area. This is due to the additive effects of
the parallel capacitors. An example of this can be seen in Figure A.3. In this example
only three layers are used but it is clear that the capacitances are added in value. All of

the other types of capacitors are designed with this additive effect in mind.
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Figure A.3 Illustration of a three layer MOS Capacitor. From Ref. (Silvernagel,

b.

1993, p. 35)
The Cap_n+ _pl p2 Capacitor

This capacitor also has a high capacitance to size ratio. It is constructed

starting with a layer of n+ then a layer of poly 1 followed by a layer of poly_2. Once

again each layer is separated by a layer of SiO, as a dielectric. Figure A.5 contains the
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cross sectional view of this capacitor. Its size is also 100pm x 100pum. This yields a
capacitance of 12.99 picofarads. These capacitors are located in the lower left hand
corner of the chip as seen in Figure A.2. They are labeled C 7 and C 8.

c The Cap_pl_p2 Capacitor

This capacitor is created using just a layer of poly_2 over a layer of
poly 1. The chips created by Anestis (1994) and tested in this thesis are constructed this
way. Most MOS parallel plate capacitors fabricated today utilize this poly on poly
capacitor design. The Cap_p1_p2 capacitor has the lowest capacitance to area ratio. The
cross section view is Figure A.6. The area of this capacitor is 176pm x 176um. The
actual capacitance is 14.03 picofarads. These capacitors are located on the right side of
the chip in Figure A.2. They are labeled C 3 and C 4.

d. The Cap_n+_pl ml Capacitor

This capacitor is constructed on a layer of n+ followed by a layer of
poly_1 and capped by a layer of metal_1. The cross section is found in Figure A.7. The
capacitor size is 125um x 125um. This equates to a capacitance of 13.81 picofarads.
These capacitors are located on the right hand side of the chip directly under the op-amps.
They are labeled C 9 and C 10.

e The Cap_n+_p2_ml Capacitor

This capacitor is created on top of a layer of n+ followed by a layer of
poly_2 capped with a layer of metal_1. It has a capacitance of 14.6 picofarads with a size
of 140pum x 140um. The cross section is in Figure A.8. These capacitors are located in

the bottom right hand corner of the chip Figure A.2 and labeled C 5 and C 6.
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Figure A.4 The cross sectional view of the Cap_all capacitor.

n+/Poly 1/Poly 2 Capacitor

(LTI

Figure A.5 The cross sectional view of the Cap_n+_polyl_poly2 capacitor.
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Figure A.6 The cross sectional view of the Cap_polyl_poly2 capacitor.

n+/Poly 1/Metal 1 Capacitor
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Figure A.7 The cross sectional view of the Cap_n+_polyl_metall capacitor.
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2. Capacitor Commonalties

All five of these capacitor designs have some commonalties. The first item is
their shape. All of the shapes listed above were square. As can be seen in Figure A.1
they are not actually square. This is due to the connections used between layers. The
MOSIS files that were provided with the design tool contained some specific connection
instances. The different layers were connected using these provided connectors. The
area used by the connections causes the capacitors to appear rectangular. These
connections will no doubt add to the capacitances for each design. Each cross sectional
figure gives a quantitative relationship as to the types of connections used.

Another communality shared by all the capacitors was the routing metal used. In
all cases metal_1 was used to route the capacitors to their respective pads. This was
possible due to the simplistic design of the chip which did not require any leads to cross
enroute to the pad ring. In the routing of the op-amps it can be seen that both metals were
necessary.

Another common trait mentioned above is all the active layers are separated by a
layer of SiO,. This acts as the dielectric for the capacitors.

B. SUMMARY
This chip was designed to be used in a test such as the one performed in this

thesis. This appendix is to aid follow on research that may use this chip.

87




n+/Poly 2/Metal 1 Capacitor

(A IIHHHIEII!H|PIIHIH|H|||||l|l||||||H||||||l||||||HIHIIIHI [T

T

===

Shieon noxde

Figure A.8 The cross sectional view of the Cap_n+_poly2_metall capacitor.
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APPENDIX B. EXPERIMENTAL DATA

This Appendix includes all the data recorded during the two days of testing. The
first page is the data used to relate the charge on the SEM to total dose for both days. The
second page contains the data used to relate total dose to capacitance for both days.

The remaining data are the results from each individual chip test. The first chip does not
contain the temperature data since it was not available. The time and the SEM charge
(and temperature for the second chip) were the recorded results. The rest of the data is
determined from the recorded data. Calculated data include; Total Time, Total Charge,
Dose (determined from the SEM charge to dose relationships), Dose Rate, Total Dose,
Fluence, Total Fluence. The other recorded data is the three dB downpoint which is used

to determine the capacitance value. This data was not recorded at each time instance.
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Data From the Dose to Charge Calibration (Both Days)

Charge Dose
(mV) (Rads)
11/05/96
100 634
150 742
150 789
120 574
100 518
80 324
60 345
60
50
46
40 304
30
23 98
20
10
0 0

Dose

(Rads)
11/06/96

978
823
832

478
326

99.4
0

time Dose Rate
(sec) (Rads/sec)

17

19.9
14.6
15.1
9.2
9.5
7.4
4.5
4.5
2.7

2.2
2.9
0

37.29

28.84
35.48
21.46
37.5
102.95
111.22
184.89
67.56
177.04

148.18
34.28

Fluence (e/cm?2)

4.0637E+11
6.0956E+11
6.0956E+11
4.8765E+11
4.0637E+11
3.2510E+11
2.4382E+11
2.4382E+11
2.0319E+11
1.8693E+11
1.6255E+11
1.2191E+11
9.3466E+10
8.1274E+10
4.0637E+10

0

average dose rate average fluence

90

32.59

2.6389E+11




Data From the Capacitor vs Dose Plot

Time Total Dose capacitor!  capacitor 2
(Rads)  (picofarads) (picofarads)

98 16.9 12.64
102.7 15,9254 13.72
289.6 49,430 14.76

686.1 39,820 14.03
1,284.2 250,859 15.71

1,563.1 564,723 15.16
1,831.1 911,341 15.68

1,895.5 401,944 16.88

2,238.1 1,257,892 15.92

2,621.1 603,399 17.55

3,346.1 804,854 17.74

3,966.1 1,006,309 17.7

4,827.1 1,610,724 18.77
5,960 2,399,779 19.41
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Time
(sec)

98.9

10.7
134
12.9
12.9
314
314
274
28.2
29.7

190

189.2
73

54
190
120
60
55
57
55

41

58

50
40

50
32
34

35

Total Charge
time (\))
(sec)

98.9 0
108.9 0.1
119.6 0.1

133 0.1
145.9 0.1
158.8 0.1
190.2 0.3
221.6 0.3

249 0.3
2772 0.3
306.9 0.3
496.9 3
686.1 3
759.1 3
813.1 3

1,003.1 10
1,123.1 10
1,183.1 10
1,238.1 10
1,295.1 10
1,350.1 10
1,391.1 10
1,455.1 10
1,513.1 10
1,563.1 10
1,603.1 10
1,653.1 10
1,685.1 10
1,719.1 10
1,754.1 10

Data From the Day One Run (5 November)

Total
Charge

0

02
03
04
05
0.8
1.1
14

1.7

54
64
74
84
94
104

114
124

134
144
154

164

Dose

(Rads)
16.93
511.93
511.93
511.93
511.93
511.93
1,501.93
1,501.93
1,501.93
1,501.93
1,501.93
14,866.93

14,866.93
14,866.93

14,866.93
49,516.93
49,516.93
49,516.93
49,516.93
49,516.93
49,516.93
49,516.93
49,516.93
49,516.93

49,516.93
49,516.93

49,516.93
49,516.93
49,516.93

49,516.93

Dose Rate
(Rads/sec)

0.17
51.19
47.84

382
39.68
39.68
47.83
47.83
54.81
53.26
50.57
78.25

78.58
203.66

27531
260.62
412.64
825.28
900.31
868.72
900.31
1,207.73
773.7
853.74

990.34
1,237.92

990.34
1,547.4
1,456.38

1,414.77

Total Dose
(Rads)

16.93
528.86
1,040.79
1,552.72
2,064.65
2,576.58
4,078.51
5,580.44
7,082.37
8,584.3
10,086.23
24,953.16

39,820.09
54,687.02

69,553.95
119,070.88
168,587.81
218,104.74
267,621.67

317,138.6
366,655.53
416,172.46
465,689.39
515,206.32

564,723.25
614,240.18

663,757.11
713,274.04
762,790.97

812,307.9
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Fluence
(e/cm2)

0.0000E+00
4.0637E+11
4.0637E+11
4.0637E+11
4.0637E+11
4.0637E+11
1.2191E+12
1.2191E+12
1.2191E+12
1.2191E+12
1.2191E+12
1.2191E+13

1.2191E+13
1.2191E+13

1.2191E+13
4.0637E+13
4.0637E+13
4.0637E+13
4.0637E+13
4.0637E+13
4.0637E+13
4.0637E+13
4.0637E+13
4.0637E+13

4.0637E+13
4.0637E+13

4.0637E+13
4.0637E+13
4.0637E+13

4.0637E+13

Total Fluence
(e/cm2)

0.0000E+00
4.0637E+11
8.1274E+11
1.2191E+12
1.6255E+12
2.0319E+12
3.2510E+12
4.4701E+12
5.6892E+12
6.9083E+12
8.1274E+12
2.0319E+13

3.2510E+13
4.4701E+13

5.6892E+13
9.7529E+13
1.3817E+14
1.7880E+14
2.1944E+14
2.6008E+14
3.0072E+14
3.4135E+14
3.8199E+14
4.2263E+14

4.6326E+14
5.0390E+14

5.4454E+14
5.8518E+14
6.2581E+14

6.6645E+14

3dB
point

(Hz)
12,590

11,340

10,500

Capacitor
Value
(picofarads)

12.64

14.03

15.16




Time
(sec)

37

40
43
184
180
150
86
78
80
105
120
127
120
113
126

Total Charge Total
time (V) Charge
(sec) \%]
1,791.1 10 174
1,831.1 10 184
1,874.1 10 194
2,058.1 30 224
2,238.1 30 254
2,388.1 30 284
2,474.1 30 314
2,552.1 30 344
2,632.1 13 357
2,737.1 30 387
2,857.1 30 417
2,984.1 30 447
3,104.1 30 477
3,217.1 30 507
3,343.1 30 537

Dose

(Rads)

49,516.93

49,516.93

49,516.93
148,516.93
148,516.93
148,516.93
148,516.93
148,516.93

64,366.93
148,516.93
148,516.93
148,516.93
148,516.93
148,516.93
148,516.93

Dose Rate
(Rads/sec)

1,338.3

1,237.92
1,151.56

807.16

825.09

990.11
1,726.94
1,904.06

804.59
1,414.45
1,237.64
1,169.42
1,237.64
1,314.31
1,178.71

Average
Dose Rate

(RADS/SE
C) 0-813
sec

73.79

Total Dose
(Rads)

861,824.83

911,341.76

960,858.69
1,109,375.62
1,257,892.55
1,406,409.48
1,554,926.41
1,703,443.34
1,767,810.27

1,916,327.2
2,064,844.13
2,213,361.06
2,361,877.99
2,510,394.92
2,658,911.85

‘Average Dose
Rate

(RADS/SEC)
813-3343 sec

1,001.57
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Fluence
(e/cm2)

4.0637E+13

4.0637E+13
4.0637E+13
1.2191E+14
1.2191E+14
1.2191E+14
1.2191E+14
1.2191E+14
5.2828E+13
1.2191E+14
1.2191E+14
1.2191E+14
1.2191E+14
1.2191E+14
1.2191E+14

Total Fluence
(e/cm2)

7.0709E+14

7.4772E+14
7.8836E+14
9.1027E+14
1.0322E+15
1.1541E+15
1.2760E+15
1.3979E+15
1.4507E+15
1.5727E+15
1.6946E+15
1.8165E+15
1.9384E+15
2.0603E+15
2.1822E+15

3dB
point

(Hz)

10,150

10,000

Capacitor
Value
(picofarads)

15.68

15.92




Total Temp Charge
time (\%2]

(sec)
102.7 492 0.95
162.7 504 0.5

2049 515 0.5

289.6 535

7786 577 6
1,2842 548
1,8955 535

2,621.1 517 12
3,346.1 499 12
3,966.1 49.8 12
48271 507 36
5,602.2 492 36

5,705 4

5,960 49.7 7

Data From the Day Two Run (6 November)

Total Dose (Rads) Dose Rate Total Dose

Charge
4
0.95

1.45
1.95

2.95
8.95

14.95
2395
3595
4795
59.95
95.95
131.95

135.95

142,95

15,9254
8,369.9

8,369.9

16,764.9
100,714.9

100,714.9
151,084.9
201,454.9
201,454.9
201,454.9
604,414.9
604,414.9

67,1349

117,504.9

(Rads/sec)

155.07
139.5

198.34

197.93
205.96

199.2
247.15
277.64
277.87
324.93
701.99
779.79

653.06

460.8

Average

Dose Rate

(RADS/SE

0
34423

(Rads)

15,9254
24,2953

32,665.2

49,430.1
150,145

250,859.9
401,944.8
603,399.7
804,854.6
1,006,309.5
1,610,724.4
2,215,139.3

2,282,274.2

2,399,779.1
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Fluence
(e/cm2)

3.8605E+12
2.0319E+12

2.0319E+12

4.0637TE+12
2.4382E+13

2.4382E+13
3.6573E+13
4.8765E+13
4.8765E+13
4.8765E+13
1.4629E+14
1.4629E+14

1.6255E+13

2.8446E+13

Total Fluence
(e/cm2)

3.8605E+12
5.8924E+12

7.9243E+12

1.1988E+13
3.6370E+13

6.0753E+13
9.7326E+13
1.4609E+14
1.9486E+14
2.4362E+14
3.8991E+14
5.3621E+14

5.5246E+14

5.8091E+14

3dB  Capacitor
point Value

(Hz) (picofarads)
11,600 13.72

10,780 14.76

10,129 15.71

9,430 16.88
9,070 17.55
8,970 17.74
8,990 17.7
8,480 18.77
8,199 19.41
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