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Abstract 

I started at the top and worked down. 

— Orson Welles. 

This paper discusses in detail the design and implementation of Poligon, a concurrent 
blackboard system, documenting our progress and the problem areas we identified in the 
process of developing it. It also considers the factors that aid and those that limit the per- 
formance of blackboard systems in general and of concurrent blackboard systems in par- 
ticular, relating these factors to the implementation of Poligon. 

1.      Introduction 

Six Hours a-Day the young Students were employed in this Labour; and the 
Professor shewed me several Volumes in large Folio already collected, of broken 
Sentences, which he intended to piece together; and out of those rich Materials to 
give the World a compleat Body of all Arts and Sciences; which however might be 
still improved, and much expedited, if the Publick would raise a Fund for making 
and employing five Hundred such Frames in Lagado, and oblige the Managers to 
contribute in common their several Collections. 

— Jonathan Swift, Gulliver's Travels, 
Chapter 5 of Part III "A Voyage to Laputa" 

The Advanced Architectures Project [Rice 88c] has already published a large number of re- 
search results, for example [Nii 88b] and [Saraiya 89]. Up to now, however, we have not 
described the actual implementation of the systems that were produced in order to do our 
research. During this research we identified solutions and potential problem areas for de- 
signing future systems in our target area of research, namely concurrent problem-solving 
systems. It is important to us that we should be able to disseminate the knowledge that we 
have gained through our experience so that the obstacles we encountered can be avoided by 
others. Thus this paper not only highlights our positive results, but also attempts to evalu- 
ate our approaches and the problems inherent in these systems. 

In this paper we describe the design and implementation of Poligon [Rice 86], a concurrent 
blackboard system [Nii 86].l In this section we briefly outline the reasons why we built 
Poligon, in Section 2 we describe the design and implementation of AGE [Nii 79], perhaps 
the archetypal, serial blackboard system shell, so as to introduce the discussion of 
Poligon's design. In.Section 3 we briefly consider the implications of the blackboard 
model for parallel execution. In Section 4 we discuss the design and implementation of 
Poligon describing in detail its internal representation. Section 5 focuses on the design of 
Poligon's program support environment. Throughout the paper we attempt evaluate our 
approaches based on the outcomes of the project, which are summarized in Section 6. 

]It may be of interest to note that the name Poligon originated from the system's ability to run in both 
serial and parallel modes. Names of parallel systems often begin with the letter p\ Poligon combines the 
Greek word 'OXiyos (few) and IloXuyovos (producing many, prolific, from which we derive polygon, a 
many-sided object). Following the same pattern, Poligon's non-CARE mode is called Oligon. 



In this paper we assume at least a passing acquaintance with knowledge-based system 
shells and with concurrency, synchronization, critical sections, and other related concepts. 
Those less familiar with these issues are directed to [Nii 88a], which provides a thorough 
explanation of the issues and terminology involved. 

This paper discusses not only Poligon, a system that we implemented, and AGE, a system 
that was implemented a number of years ago but also different ways in which Poligon or 
some future systems could be implemented. We have endeavored to distinguish these 
subjunctive systems from those that have actually been implemented, but the reader should 
still be aware that in order to state our beliefs and hypotheses about the future of concurrent 
blackboard systems we inevitably have to describe how we would implement Poligon in 
the light of what we have learned or what we would have done if our goals had been differ- 
ent. For instance, some design decisions were based on the goals of flexibility and ease of 
implementation, whereas if we were to implement again with the primary goal of peak per- 
formance, we might choose entirely different design and implementation strategies. The 
reader should, therefore, note phrases such as "future implementations might...", and "in 
the best of all possible worlds...," which indicate some impending speculation rather than 
statement of fact 

1.1.   Why High Performance? 

Quick is beautiful. 

— F.J. Dyson 

Eagar likes high-performance machines. 

AI research has proceeded for some time without much concern about performance. 
Researchers have mostly been concerned about the behavior of their programs and were 
satisfied as long as their programs executed in reasonable time. Now that the technology is 
maturing and mere is increasing pressure to apply AI programming techniques to previ- 
ously intractable problems in the real world. This inevitably means that the performance of 
these systems must be compatible with the real world. Hearsay II [Erman 80] provides a 
good example of this. Even if it had worked perfectly, it would still, at that time, have op- 
erated at least ten times too slowly to have been used in the real world. The problem do- 
main we chose to investigate was the interpretation of multiple, continuous signal data 
streams, such as one might find in radar systems. We already knew this domain to be one 
in which current blackboard systems have not been able to cope with the performance de- 
mands of the real world. 



1.2.   Why Concurrent? 

A physicist had a horseshoe hanging on a door of his laboratory. His colleagues 
were surprised and asked whether he believed that it would bring luck to his exper- 
iments. He answered: "No, I don't believe in superstitions. But I have been told 
that it works even if you don't believe in it." 

— I. B. Cohen 

To begin with we should address the question of why we are looking at concurrent systems 
at all. As mentioned earlier, we need more performance from our AI software in order to 
apply it to real-world problems. To accomplish our goal, we also need to develop pro- 
gramming methodologies to help us use the evolving generation of machines. It was antic- 
ipated that the use of multiple processors could deliver the desired increases in speed. 
Thus, we wanted parallelism solely in order to gain performance, not to model the physical 
separation of processors in a distributed, multi-agent system or to improve the reliability of 
our software. 

Eagar likes to be Parallel. 

1.3.   Why a Blackboard System? 

On the atomic bomb: That is the biggest fool thing we have ever done. The bomb 
will never go off, and I speak as an expert in explosives. 

— Admiral William Leahy to President Truman (1945). 

Having decided that to investigate concurrent systems, we had to determine which software 
architectures we were interested in. The primary question was: Why not write everything 
in C or assembler with suitable parallelizing directives? This is by no means a trivial ques- 
tion. The development of any high-level programming tool is based on the hidden as- 
sumption that its benefits outweigh its costs. In choosing some form of high-level pro- 
gramming tool over a low-level programming tool, the trade-off is hard to justify when the 



goal is a high performance system. Except for truly enormous systems, it is generally the 
case that software written in assembler is faster and smaller than software written in high- 
level languages. What one trades off, then, is greater ease of program development, modi- 
fication, and maintenance against performance. The human cost of software development 
is great enough that it pays to spend more money on hardware to get the required perfor- 
mance than to spend money on the software being developed. 

•/#«?.■. 

Eagar finds that a blackboard helps him organize many experts. 

Generally this argument applies only in areas of specialized software. Word processing 
software, like that used to write this paper is usually sold in such quantities that despite the 
high cost of programming, it is worthwhile to develop new software for existing platforms 
using less productive methodologies that result in faster program execution. There is, 
however, a large domain of applications that are only run on a few machines. This soft- 
ware must be developed quickly and modified and maintained easily. Nowhere is this 
more apparent than in the development of AI software. 

Thus, what we are saying is that when we commit ourselves to speeding up expert-system 
applications using of parallel hardware. We are committed to designing software that can 
meet its intended purpose. If we elect to design a low-level tool, we accept that it may be 
hard to use, but it must be very fast. If we design a high-level tool then not only should it 
be able to solve the problems reasonably quickly, but it should also deliver the benefits that 
are claimed for high-level tools; modifiability, maintainability, and speed of code develop- 
ment. We were more interested in the design of high-level tools so we were compelled to 
develop software architectures with the capability to handle the rapid development of con- 
current expert systems while still giving high performance. To do this, we sought a com- 
putational model around which to develop our design. 



At the time, the most promising contender for our prototypical software architecture was 
the blackboard architecture. Our experience in using this architecture on our project was a 
significant advantage, but in addition to this, the design itself seemed to admit parallelism 
through being an intrinsically concurrent problem-solving model. It also seemed to meet 
our need for a high-level computational model that would help the programmer deal with 
the complexity of future AI systems. We later learned that blackboard systems are not as 
parallel as we originally thought; why this is the case is documented in fair detail in [Rice 
88a]. Our example suggests, therefore, that one should not pick a programming model for 
reasons of a superficial match to one's cognitive model of concurrent problem solving. 
Many of our findings were considerably at variance with our intuition when we started the 
project. We know of no better architecture than the blackboard model for concurrent prob- 
lem solving, but this may simply be that few have tried others, other than simple produc- 
tion systems [Gupta 86]. 

The rest of this paper is biased toward the design of blackboard systems; however, a num- 
ber of the lessons we learned have broader applicability than just to the field of blackboard 
systems. Because the blackboard programming model has achieved considerable popular- 
ity for reasons independent of its performance, it is quite likely that many will attempt the 
implementation of concurrent blackboard systems and can benefit from our experience. 

2.      The Implementation of an Existing Blackboard System - 
AGE 

What we want is a story that starts with an earthquake and works its way up to a 
climax. 

— Samuel Goldwyn 

In this section we discuss the design of AGE, a blackboard framework developed at 
Stanford, both to provide historical and technical background, and to help elucidate the is- 
sues involved in developing our project goals. 

AGE is a blackboard framework written in Interlisp. It is significant that it is a framework. 
There have been a number of hard-coded blackboard systems, HASP/SIAP [Nii 82] and 
Hearsay II [Erman 80] being the best known. We were not interested in the development 
of hard-coded solutions to our applications since this would have violated the trade-off 
mentioned in Section 1.3. Having developed the tool, the marginal cost of developing 
more applications should be relatively small. This is, of course, the same argument that led 
to the development of compilers. 

AGE is a system whose design is geared toward the rapid development of blackboard ap- 
plications. It provides a toolkit for blackboard system development, which contains the in- 
frastructure in which the user's knowledge is to run, as well as such things as rule editors. 

2.1.   The Blackboard Model 

Although the main purpose of this paper is not to explicate the blackboard programming 
model, it is useful to give a brief description of a canonical blackboard system, in order to 
show how AGE implements this model. For further information on various blackboard 
systems the reader may wish to consult [Engelmore 88]. 



In the blackboard problem-solving model, a group of experts is gathered around a black- 
board, each contributing his own knowledge toward solving the problem at hand. The ex- 
perts communicate by posting conclusions on the blackboard and watching for other ex- 
perts posting their conclusions in a similar way. When an expert spots a piece of informa- 
tion that he knows how to handle, he starts working with it. By this means the solution 
evolves. 

nnnfnn mm 

Invoking a knowledge source. 

This problem-solving model cannot be immediately implemented for a number of reasons, 
but the primary change that is needed to turn this problem-solving model into a program- 
ming model is the inclusion of a scheduling mechanism. This is often referred to as an op- 
portunistic scheduling scheme and is often thought to be central to blackboard systems, 
even though it is only a product of their implementation, rather than their design. In this 
case, opportunistic means that the system is sensitive to changes within the evolving solu- 
tion and, in some manner, tries to invoke the most appropriate piece of knowledge at any 
given time in order to help the progress of the solution. This is in contrast to conventional 
operating system scheduling models in which the scheduler itself has no knowledge of the 
intent or importance of any given process other than through the use of some "magic" 
numbers such as priority or quantum numbers. Clearly, a good knowledge-based sched- 
uler ought to be able to use knowledge of the application domain and of the knowledge be- 
ing executed to find a more responsive and efficient scheduling order. 

2.2.   AGE, the Canonical Blackboard Shell 

Titus Lartius:     Follow Cominius; we must follow you; 
Right worthy you priority. 

— Shakespeare, Coriolanus, act I scene I. 

In this section we discuss the implementation of AGE, highlighting the factors governing 
its performance. 

AGE, being a blackboard system, has a global database that is used to represent the evolv- 
ing solution - the blackboard. This database is implemented within the native Interlisp en- 



vironment's heap. The blackboard is made up of a number of data structures that represent 
the different elements in the solution space. These solution-space elements, called nodes, 
contain mappings from user-defined names to the values they represent. For instance, a 
node might have a slot called parent, which has as its associated value the parent of the 
node in question. These mappings are usually referred to as attribute/value pairs. 

The knowledge base is composed of a collection of knowledge sources (KSs). These are 
structures that contain a set of rules that are applied when a knowledge source is invoked. 
The code for these knowledge sources is also resident within the Lisp system's heap. 

A typical blackboard application written in AGE has the following behavior and is shown 
in Figure 2-1. 

• Data coming into the system results in the creation of nodes on the blackboard. 
These nodes have their slots initialized so that they have some meaningful values in 
them. 

• An event token is passed to the scheduler; in turn the scheduling mechanism in- 
vokes the knowledge sources that are interested in that type of event. This involves 
searching the knowledge base for applicable knowledge sources. 

• During the invocation of a knowledge source, computation is performed in order to 
construct some context relevant to that particular invocation of the knowledge 
source. The named components of the context are referred to as knowledge source 
bindings. These, take the place of local variables in knowledge sources and map lo- 
cal identifiers' into computed values. Once these values have been computed, the 
rules attempt to fire. Rules are implemented as condition/action pairs. If the condi- 
tion is true, the action or actions are invoked.1 

• Clearly, the evaluation of knowledge source bindings and of any expressions 
within rules and knowledge sources must be able to look at the nodes on the black- 
board. If this were not the case, the knowledge represented by the knowledge 
source would be unable to do any computation that was dependent on the state of 
the solution. For this reason, AGE supports a function (called $Value) that will 
read the value or values associated with a particular attribute on a particular node. 
This is AGE's slot read operation. 

• Similarly, the knowledge in the system must have some way to record its conclu- 
sions. This is done in one of two ways: either the rule that is executing will modify 
a node or nodes on the blackboard to conform to its new model of reality, or it will 
create new blackboard nodes to represent new pans of the solution. 

• Finally, having performed any appropriate side-effects on the blackboard, the AGE 
application must perform some action in order to make sure that the system notices 
the changes that have been made.2 This is done by naming the changes with an 

AGE also supports a mechanism for selecting which rules within a given knowledge source are to fire, but 
this is not germane to our discussion here. 
2In the first implementation of MXA [Rice 84], every modification to every slot generated an event. The 
number of events to be processed grew so large that the application was not able to deal with them 
reasonably. AGE's strategy of leaving the posting of event tokens to the user is a less automatic approach 
but more reasonable in practice. 



event token. It is this event token that the scheduling mechanism sees in later sys- 
tem cycles and that causes the subsequent invocation of further knowledge sources. 

The system loops around, looking for events on the event queue and processing 
them in the manner described above. The process of acting on an event and looping 
around to process the next event is referred to as the system cycle. 

Blackboard Knowledge Base 
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Node 
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Node Node 
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Fig. 2-7. This figure depicts some fundamental aspects of most blackboard sys- 
tems. A central scheduler sees or is informed of changes on the blackboard, noting them 
in an event queue. Events are selected from this queue and are used to trigger knowledge 
sources, which in turn act on the blackboard. 

Now that we have outlined the essential run-time behavior of AGE, we can distill from this 
description the essential components of a blackboard system. These are: 

Dynamic node creation 

Knowledge search — finding applicable knowledge sources for a given event type 

Conflict resolution — deciding which knowledge source to invoke if more than one 
is currently invokable 

Knowledge invocation — firing up a knowledge source once it has been selected 

Context evaluation — evaluating any user code necessary for the knowledge source 

Slot reads 

Slot updates — the side-effects that propagate conclusions 

Event posting — recording that something significant has happened 



It should also be noted that many blackboard systems have a mechanism for finding nodes 
that match a certain predicate, AGE's $Find and MXA's [Rice 84] set creation mechanism 
are but two examples. 

The relative importance of these different aspects of a blackboard system will depend very 
much on the architecture and on the application for which it is being used. For instance, a 
system with a large knowledge base of simple rules will stress the knowledge search and 
invocation mechanisms; an application that does a lot of raw number crunching will require 
the rapid evaluation of user code. It seems likely that any blackboard system implementa- 
tion tool (shell) must have some means of performing these tasks, and if it has any aspira- 
tions to high performance, a reasonable strategy for making them efficient.1 

AGE was designed primarily as an experimental tool and so was optimized more for pro-. 
gram development than run-time performance. We will now discuss the implementation of 
each component of AGE so that we can contrast its implementation with that of Poligon. 

Node creation. AGE nodes are implemented as slots on the property lists of the 
symbols that name the nodes.2 The slots within nodes are represented simply 
as an AList. Thus, the instantiation of nodes simply involves die creation of the 
data structure and the recording of it in the level (class) of nodes of the same 
type. A consequence of this architecture is that nodes of a given level — air- 
craft, for instance — are only similar by convention. Any node can have a col- 
lection of slots that is totally different from another node that is notionally of the 
same type. This means that space will, in principle, not be wasted in nodes that 
never use certain slots. 

Knowledge search.. AGE, like many blackboard systems, offers a user-pro- 
grammable scheduling mechanism with various precanned strategies. By de- 
fault events are selected from a global event queue in AGE. Each event encap- 
sulates both the node that caused the event and the event token, which is used to 
select the applicable knowledge sources in the next cycle. The event token is 
compared with the preconditions on each knowledge source in the knowledge 
base, and the set of applicable knowledge sources is delivered. The knowledge 
source precondition merely has to name the event token against which it is to 
match. This precondition can be thought of as a filter that helps to select poten- 
tially applicable rules. 

Conflict resolution. AGE's conflict resolution strategy is extremely simple. If 
more than one knowledge source could be triggered from an event, then the 
matching knowledges are fired in the lexical order of their definition. 

Knowledge invocation. In AGE, knowledge sources are implemented as list 
record structures that are interpreted by the scheduling mechanism. The trigger- 
ing node (the focus node) is taken from the event queue and dynamically bound 
to a global variable, called focus.node. During the invocation of a knowledge 
source, code executes any knowledge source bindings and then attempts to fire 

'By way of qualification, we should say that at present most serial blackboard systems are optimized for 
executing either search or recognition types of applications. It would perhaps be unreasonable to expect any 
different from a parallel system, though in the best of all possible worlds a blackboard tool would be good 
at both of these tasks. 
2A unique identifier is CONSed to name each node. 
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the rules by successively testing their conditions and executing their actions, if 
appropriate. 

Context evaluation. In AGE, all user code is interpreted. This means that all 
knowledge source bindings and all expressions that are evaluated during the ex- 
ecution of rules are also interpreted. 

Slot reads. The SValue function performs Slot reads in a regular manner. It can 
read the value of slots on any node on the blackboard with cost independent of 
the node being read. The SValue function must access the AList within the 
node structure and must then search for the value named by the slot being ac- 
cessed. This search must be performed because even if the system were to be 
compiled it would not be possible to establish at compile-time the location of 
any given slot within any given class of node. 

Node updates. AGE provides a fixed number of system-defined ways to update a 
node. These allow the modification of the value lists associated with a collec- 
tion of slots and are performed by calling a procedure (SModify or SSupersede) 
with a set of arguments that are interpreted so as to find the slots to be updated 
and the values to put into those slots. 

Event posting. Event posting is simple in AGE because of its centralized event 
queue used by the scheduling mechanism. Whenever an event is to be posted, 
AGE invokes a procedure that encapsulates the node causing the event and the 
event token and pushes the event onto the front of the event queue. 

Search. Searching a blackboard in a serial system with most implementation 
techniques is likely to be a linear time operation at best and highly combinatorial 
at worst. AGE's SFind operation searches linearly through all the nodes on a 
blackboard level for a match. 

What a high-performance blackboard system should do, therefore, is find ways to make 
each of these operations fast while preserving the blackboard model. 

3.      Implications for Parallel Systems 

Let's bring it up to date with some snappy nineteenth-century dialogue. 

— Samuel Goldwyn 

The AGE blackboard model discussed above is based on a number of hidden assumptions 
that preclude parallel execution. In this section we touch on some of these issues in order 
to show why certain implementation decisions were made in Poligon. 
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3.1.   The Right Answer 

A second order approximation for evaluation of the Köchel (K) numbers of a 
Mozart symphony (S): S = 0.27465 + 0.157692K + 0.000159446K2 

— R.P. and J.R. Cody7 

We should first stress that a concurrent implementation should get the right answer. This is 
not at all a trivial point and bears some thought. In serial blackboard systems such as 
AGE, only one thing ever happens at once; in other words, there is no ambiguity about the 
degree to which the system is converging toward a solution. It is possible to construct a 
concurrent problem-solving architecture that will act identically to a serial system, but the 
amount of synchronization required is great enough that the parallel implementation is likely 
to be slower than the serial version because of the costs of process creation, process 
switching and synchronization.2 As soon as one starts to relax the requirement that a con- 
current system should have the same semantics as a serial system, the nondeterminism so 
introduced can result in a system that either behaves quite unpredictably or fails to converge 
towards any solution at all. 

As a corollary we can say that because a concurrent system allows the simultaneous inves- 
tigation different avenues that may lead to solutions of differing quality, it is possible to 
trade off the accuracy of results produced against the overall performance of the system. 

Eagar-Jones Average 
Pork Belly Futures $4.23 

Condo Cave Dwellings Inc. $0.03 

Wife-Grabber Clubs Corp. $9.42 

McBrontoburger Intl. (Franchize) Inc. $3.11 

Eagar finds that timing can be crucial to getting the right answer. 

^is method will give an answer not more than two out, 85 percent of the time. 
2This need not be the case if the serial program is, for instance, a pure applicative program, the semantics 
of which are identical when executed in parallel, but this statement holds true for the parallelization of most 
current serial programs. 
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3.2. Instances and Processes 

Dogberry: Come, bind them. Thou naughty varletl 

— Shakespeare, Much Ado About Nothing, act IV, scene II 

In concurrent systems it is frequently the case that in order to implement concurrency, each 
piece of concurrent computation must be executed within a process. For a number of sys- 
tem implementation reasons, these processes are often large and expensive. A serial sys- 
tem need not worry about such matters. Even if such things as dynamic binding are elimi- 
nated from the system, process switch time is still likely to be substantially greater than the 
native system's function call overhead because of the cost of reloading caches. In addition, 
the cost of processes has a substantial impact on the programming model. This is because 
an appealing programming model for concurrent computation is that of asynchronously 
communicating objects. In medium-grain-sized machines, these objects are generally tens 
to hundreds of bytes in size. Because of page-based stack protection hardware and the in- 
creasing size of pages in modern machines, even the minimum size of a stack group is 
likely to be tens or hundreds of times that of the objects in the system. This means that one 
cannot sensibly allocate a process to each object without either accepting a huge loss in 
memory performance or choosing some architecture or computational model that makes 
more efficient use of stack groups. 

3.3. Data Types 

Mathematics are a species of Frenchmen; if you say something to them, they trans- 
late it into their own language and presto! it is something entirely different. 

— Goethe. 

Existing serial systems have a well-understood set of data types that are geared toward both 
the efficient use of existing hardware and the implementation of programmer abstractions. 
An example of this is structure types, which are often implemented as arrays. Array 
indexing is fast on all machines. Thus, the user is guaranteed the efficient implementation 
of his program while preserving the abstraction of naming fields in data items symbolically. 

It is not clear yet whether these data structures are appropriate for general concurrent com- 
putation, let alone AI programming. CMLisp [Hillis 85] is an example of a language in 
which new data structures are used to enhance parallelism. Certainly researchers will have 
to think hard about what data structures are appropriate for concurrent problem solving. 
Once a reasonable consensus has been reached, we must then convince hardware imple- 
mentors that these new data types should be supported efficiently in their hardware. 
Poligon made some steps in this direction, as is mentioned in Section 4.10. 

3.4. Control 

Control, or MetaKnowledge as it is often called, is intrinsically a serializing process, at 
least as we understand it in the serial blackboard sense. This is because the act of stopping 
to decide what to do next requires synchronization and then serial processing of the deci- 
sion process, followed by the serial execution of the knowledge that is selected. Similarly, 
the knowledge that decides to post events must synchronize on the shared event queue. 
Strong evidence to support the assertion that control is intrinsically serializing is given in 
[Nii 88a] and [Aiello 88]. 
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To make efficient use of parallel processors, therefore, a concurrent problem-solving sys- 
tem must try to find ways to avoid the overhead associated with scheduling. As a conse- 
quence, system performance will probably degrade because the system is unable to apply 
the best knowledge all of the time. But given good design, one can at least hope that sav- 
ing the cost of control and the parallelism extracted as a consequence will buy back by 
many times the loss in performance caused by executing suboptimal knowledge. 

3.5.   Hardware 

The degree to which our normal serial programs match the hardware on which they run is 
something we all take for granted. The languages in which we express the programs are 
themselves biased toward the efficient use of the hardware and vice versa. This is less 
likely to be the case in the near future. New programming models will have to evolve to 
cope with new hardware designs, and new programming methodologies will have to be 
developed. It is clear that a good match between the granularity of the hardware and that of 
the program will be crucial to the efficient execution of user programs. Likewise, it may 
well be the case that a good match between programming model and memory architecture 
will be required. Programming models that use message passing may well be the best ap- 
plication for distributed-memory message-passing hardware. A shared-variable program- 
ming methodology may make more efficient use of shared memory machines. This is dis- 
cussed in [Byrd 88] (see Figure 3-1). An example of a concurrent blackboard system de- 
signed to operate on shared-memory machines is Cage [Aiello 86], also part of the 
Advanced Architectures Project 

P/M P/M P/M P/M 

\ \ \ 
P     

 M 
P/M P/M P/M P/M P     

\ \ \ P     
P/M P/M P/M P/M  M 

\ \ \ 
P     

 M 
P/ M P/ M ?! M P/ M 

Fig. 3-1. a. A distributed memory machine consists of a collection of proces- 
sor/memory (P/M) pairs linked by some network — in this case, a six-way connected ar- 
ray, b. A shared memory machine consists of a collection of processors that view a col- 
lection of memories as a global resource. In this case, a bus connects the processors to 
the memories. 

3.6.   Real-Time 

Real-time systems have some special attributes that must affect our way of thinking in a 
parallel computational environment. Data is likely to arrive out of order if, for instance, 
network congestion causes unpredictable delays in message transmission. Therefore, pro- 
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grams must be rugged with respect to data being garbled and must be able to do the "right 
thing" even when different parts of the program are working at wildly different rates. 

4.      The Implementation of Poligon 

Basic research is what I am doing when I don't know what I am doing. 

— Wernher von Braun 

In this section we discuss the implementation of Poligon in detail, discussing its history, 
the problem areas we encountered and, in particular, the areas of a blackboard system men- 
tioned in Section 2 that we believe require improvements in efficiency. 

Our initial ideas about Poligon were strongly influenced by the primary objectives of the 
Advanced Architectures Project. It was broadly assumed that silicon was going to be 
cheap. We could afford to produce a resource-inefficient design as long as it was usefully 
faster than one that was more resource efficient. Similarly, we assumed that our hardware 
design, which was to be run in simulation, would be strongly driven by our evolving pro- 
gramming models. This would allow us to assume the existence of a "blackboard ma- 
chine" and thus produce designs that could not be efficiently implemented on existing 
hardware, but that could be implemented on a blackboard machine with suitable hardware 
or microcode support.1 

These assumptions proved not to be valid simply because of the way the project developed. 
The hardware design component of the project progressed at a greater rate than the software 
design, and by the time, some of our problem-solving software began to be implemented, it 
was clear that we would have to reconsider some of our design decisions in order to get an 
efficient implementation on the hardware that had been designed. Clearly lack of experi- 
ence of the real problems of concurrent programming may well have marred our early de- 
cisions. The reader is therefore advised to view the following description of the evolving 
design of Poligon in terms not only of increasing understanding of the underlying problems 
but also of a gradual appreciation that the targets that we thought were fixed at the begin- 
ning of the project were, in fact, moving. 

An overriding consideration in the design of Poligon was to develop a system that could, at 
least in principle, be highly compiled. Existing systems usually have to rely on a great deal 
of interpretation. Consequently, it was decided early on that if we wanted a feature x to 
give us the functionality that already exists in serial blackboard systems and there was a 
similar feature x' that gave similar functionality, but was more highly compilable, we 
would choose x' over x. This philosophy strongly influenced the designs described in this 
section. 

4.1.   The Programming Model 

/ had a good idea this morning but I didn't like it. 

— Samuel Goldwyn 

During the initial design of what later became known as Poligon, we decided that we 
wanted to preserve the abstraction model provided by the blackboard programming 

lIt is not at all clear, of course, whether anyone will ever build a dedicated blackboard machine of this type. 
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metaphor. We already suspected that control would be a significant serializing factor and 
thought that the communication path between the knowledge base and the blackboard 
would be a bottleneck if we naively parallelized a serial blackboard system. We resolved to 
produce a design that would eliminate these factors as much as possible, while still retain- 
ing the characteristics of a blackboard system. 

Fig. 4-1. An ideal machine for the Poligon programming model would probably 
be a collection of shared memory machines linked as if they were a distributed memory 
machine. This would allow tight coupling and the sharing of data between rule invoca- 
tions for a particular node and efficient loose coupling between the nodes on the black- 
board. 

We decided to make the nodes on the blackboard into active agents. A compiler would at- 
tach relevant knowledge to the nodes at compile/load time, and the nodes would then in- 
voke their knowledge as daemons triggered by changes to the nodes. This meant that all 
centralized control would be removed and that all relevant knowledge would have direct ac- 
cess to the data with which it was most concerned. These design ideas were strongly influ- 
enced by arguments from our hardware developers that suggested that multiprocessors 
haying very large numbers of processors are most likely to be distributed memory ma- 
chines. As a result, the cost of reading data from a local processor's memory would prob- 
ably be much less than that of reading it from a remote processor/memory pair, at least until 
appropriate new programming models could be developed. It seemed that our own pro- 
gramming model should in some way reflect this asymmetry, though we initially hoped that 
we could shield the Poligon programmer from this. An idealized machine model for the 
Poligon programming model is shown in Figure 4-1. 

It is important to note that the programming model was strongly influenced by the known 
implementation model of the CARE machine. This model encouraged a value-passing 
model of computation, so Poligon was to allow no global variables, and the values trans- 
mitted as arguments to any messages sent by the system would be copies of the original 
values, not remote pointers to the actual values. Remote-Address pointer objects were the 
only type of pointer that could be transmitted between processing elements. These are 
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pointers to the streams used to communicate between processes. In the CARE machine, 
the copying of data is performed by a special processor that handles operating system and 
communication functions. The user's application is not held up by the copying of message 
arguments, since this happens in parallel with user code evaluation. Thus, in the following 
discussion, whenever reference is made to messages being sent or to values being transmit- 
ted the reader should remember that these are always copies of the data structures on the 
originating processor. 

Another aspect of the CARE machine model is the semantics of message passing. Unlike 
the sending of a messages in a Flavors program, for instance, messages in the CARE ma- 
chine model do not have procedure-call semantics. Returning a value from the computation 
performed as the result of a message is not mandatory, nor, when a value is returned, will 
this reply necessarily be sent to the originator of the message. Messages in CARE have 
explicit clients. The clients of a message are a collection of the nodes that will need to 
know the values derived from the computation invoked by the message." This set may be 
null. Therefore, while much message passing in Poligon has procedure-call semantics this 
is only because the clients of the messages are often the same as the originators of the mes- 
sages. This is not always the case, however. 

4.2.   The Structure of Nodes 

On trapping a lion in a desert [Petard 38]: The "Mengentheoretisch" method. We 
observe that the desert is a separable space. It therefore contains an enumerable 
dense set of points, from which can be extracted a sequence having the lion as limit. 
We then approach the lion stealthily along this sequence, bearing with us suitable 
equipment. 

The development of Poligon started on Symbolics™ Lisp Machines1 and later, upon their 
arrival, continued on Explorer™ Lisp Machines.2 Because of the strongly object-oriented 
programming model we envisaged for Poligon, we decided to implement Poligon using the 
native Flavors system resident on both of these MIT-based Lisp Machines. This decision 
was motivated primarily by a desire for good performance, compatibility, and good support 
from the programming environment. Considerable programming effort had already been 
spent on the development of the CARE simulator [Delagi 88a], which is also written in 
Flavors. This encouraged us to keep a homogeneous implementation with the underlying 
simulator. 

Poligon nodes, therefore, are implemented as instances of Flavors. We had decided to 
trade extra compilation effort in favor of higher performance, so we were able to implement 
slots using Flavors instance variables. We knew that the Flavors model itself would only 
be adequate as a low-level implementation model. Since the message-passing semantics of 
Flavors programs are incompatible with the message-passing semantics that we envisaged 
from the simulated hardware, we had to build a number of layers on top of the Flavors rep- 
resentation of nodes. For consistency the classes of nodes on the blackboard were them- 
selves represented on the blackboard. This was a departure from the AGE model, in which 
the levels were not really on the blackboard as first-class citizens. In Poligon it was de- 
cided that classes should be first-class citizens, and that we should have a general 
class/metaclass hierarchy in order to describe the complexity of the taxonomy in the prob- 
lem domains we envisaged and to implement Poligon's equivalent of class variables. The 
benefits of multiple compile-time inheritance also seemed worth having in Poligon. 

Symbolics is a trademark of Symbolics Corporation. 
2Explorer is a trademark of Texas Instruments, Inc. 
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Fig. 4-2. a. The implementation of nodes in Poligon as Flavors instances.  To 
find a slot, the system must indirect through the Self-Mapping Table to find the offset of 
the component flavor in the instance, b. An ideal implementation of nodes in Poligon 
would compile all slot references into array indices. 

We knew from the start that, in an ideal real-world implementation of the Poligon model, a 
high performance blackboard system would compile its nodes into arrays, with slot refer- 
ences being compiled into simple array references. This was not done for ease of imple- 
mentation. In a blackboard system, such as Poligon, however, one can trade off some 
generality for performance and allow optimization through somewhat strong typing and can 
make a simplifying assumption about the multiple inheritance on the blackboard. If the 
only classes that are ever instantiated are the leaf classes in the class hierarchy, then know- 
ing the type of a node will always allow the computation of a slot as a fixed offset (see 
Figure 4-2). This implementation strategy would limit modularity, since it would not allow 
one to optimize rules that were inherited from abstract classes, but this might be a reason- 
able assumption in an implementation used in the field. Even without making this assump- 
tion, slot access can be effectively optimized given the type of the node in question, so this 
implementation seemed reasonable. Certainly, Poligon as we implemented it was not as 
well optimized as this, but at least in principle it could have been.1 

Nodes, therefore, are instances of Flavors. These are composed in a set of class declara- 
tions specified by the user. The user now no longer has the ability to associate arbitrary 

'Multiple inheritance can also be supported with fixed position slot access by the use of block compilation 
and a graph-colouring algorithm to allocate unique slot locations to all of the slots in the class hierarchy 
that is to be instantiated. Using this strategy, however, instances can easily end up with large "holes" in 
which slots for unincluded mixins could have been. The optimization of this method so as to minimize the 
size of these holes is a non-trivial problem but can have reasonable solutions for any given application. 
With this method, data space is traded-off against speed, whereas the strategy mentioned above trades off 
generality against speed. 
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properties with arbitrary nodes in the solution space... clear trade-off between run-time per- 
formance and space.1 An example of this composition of classes is shown in Figure 4-3. 

Class Flying-Thing : 
Slots : 

Class Aircraft : 
Superclasses : Flying-Thing 
Slots : 

Wheels 
Wings 

Class Bird : 
Superclasses : Flying-Thing 
Slots : Weight 

Class FAA-Controlled-Thing : 
Slots : Serial-Number 

Class Civil-Aircraft : 
Superclasses : FAA-Controlled-Thing, Aircraft 
Slots   : .   . 

Fig. 4-3. Some example class declarations for a Poligon program. Birds and air- 
craft are flying things, and civil aircraft are both generic aircraft and things controlled by 
the FAA. Classes with names specified after the keyword Slots are the names of slots 
added by the class, to which they belong. 

Nodes in the Poligon model communicate by posting messages to one another. These 
messages are not seen at the language level. Messages are received in a task queue and are 
processed one at a time by the nodes to which they were sent. Each node has its own such 
message queue, which is implemented as a stream (see Figure 4-4). Streams of values are 
one of the interprocess communications primitives that the CARE architecture supports. 
Objects running on a CARE machine communicate through these streams, and it is com- 
mon practice for these objects to have only one stream that receive messages - the self- 
stream. In fact, whenever a Poligon program refers to a node, it is actually referring to the 
remote address of that node's self-stream. It is these remote addresses that are embedded 
in user data structures and passed around between nodes and processors. 

As mentioned above, it is important for a concurrent programming model to have an effi- 
cient method for using stack groups. When we started the development of Poligon we had 
no such method, believing that nodes would not be all that expensive, and associated a 
fully fledged process with each one. The Poligon model for reading remote values was 
based on that of futures [Halstead 84]. This programming model, at least in its general 
implementation as used by Poligon, assumes that any process can stop at any point in order 
to wait for the value associated with a future, i.e., in order to perform the defutunng coer- 
cion. This may not be a good idea in practice because there can be pathological cases that 
use up all available memory by creating processes. 

lOne could generalize this by allowing behavior like si:property-list-mixin as well as fixed position slots, 
but we had no great interest in doing this for our applications. Clearly, slots of this type could not be as 
highly optimized as positional slots. 
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Fig. 4-4. Messages sent by nodes arrive in the node's self-stream.  The node's 
process then processes them one by one, which may result in the sending of other mes- 
sages. 

Other work on the Advanced Architectures Project has developed a different programming 
model that is implemented in a system called Lamina [Delagi 86]. This model has 
restartable, run-to-completion code fragments. If a process needs a value from a stream 
that is not available, it aborts itself and restarts when a value arrives on that stream. This 
means that the process need not hold any state on the stack, so the stack group can be 
reused even though a process switch has occurred. There is clearly a need to be able to 
pass state onto the process when it is restarted so as to encapsulate the computation at the 
point of suspension. This is done by creating a closure that represents the continuation for 
the computation. The performance trade-off here is between the size of the heap-allocated 
closure that is CONSed, which will eventually have to be garbage collected, and the stack 
allocation of state, which is cheap while the stacks themselves are expensive. The pro- 
gramming trade-off is between the user being forced to encapsulate state explicitly and state 
being recorded automatically. 

The advantage of the Lamina programming model is that it allows the user to have a good 
idea of the stack resource requirements of his programs. The disadvantage is that the user 
has lost the simple procedure-call semantics of a futures-based programming model. 
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4.3.   The Rule-Triggering Mechanism and the Use of Stack Groups 
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Associated rules 

System slot A 
System slot B 

System slot Z 

User slot 1 
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User slot N 
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Stack 
group 

Fig 4-5 Messages asking for slot reads or updates are collected in a task queue 
associated with the self-stream of the Poligon node. A process associated with the node 
reads tasks from the stream and executes them. Slot updates can cause the invocation of 
rules, which start up in the same process. 

In place of a central scheduling mechanism, Poligon provides a daemon-driven mechanism 
for knowledge activation. We decided at the beginning that we could probably make the 
system work by triggering the knowledge in the system as daemons on updates to slots. 
The applications written using Poligon demonstrate that this in fact possible. 
Unfortunately, project resources did not allow us to test any other, different invocation 
strategies.1  As shown in Figure 4-5, updates to nodes, as well as requests to read slot 

lOn a number of occasions, for instance, we were interested in allowing rules to be triggered by more tiian 
one slot. This was not implemented because the meaning of this deceptively simple goal is not at all 
obvious. What do you do when one slot is triggered but not another? Do you go into a partially'triggered 
state and wait until the other slot is triggered? If you do, how long do you wait before you decide that the 
rule should not fire? All of these issues seemed too hard to tackle when we were investigating so many 
other new areas. Any new system that is to some extent like Poligon, however, would probably benefit 
from allowing rules to be triggered by patteras of slot events. 
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values, arrive in the task queue associated with the self-stream of a node. These are read 
by a process attached to the node, which loops continuously, looking for new things to do. 
When the process finishes its task, it informs the operating system on its processing ele- 
ment and is suspended, waiting to be reactivated when more work arrives. The operating 
system has the job of selecting a process from the set of processes with tasks on their self- 
streams and starting it up. 

As mentioned above, we determined that using an architecture requiring numerous heavy- 
weight processes would be a major problem in any Poligon system that we could actually 
implement, and so we had to rethink the implementation model. We found that by taking 
advantage of the behavior of the CARE processors' operating system it was in fact possible 
to find a modified implementation model that would be significantly more efficient. 

An important design decision in the CARE machine has been not to allow preemptive . 
scheduling. This greatly improves the efficiency of the operating system and has some 
significant effects on the semantics of programs that run on a CARE machine. Because all 
processes communicate by sending messages to each others' self-streams, and because the 
operating system cannot preempt a process in a random part of the computation by the op- 
erating system, other than for fault exceptions, any given process can be sure that the node 
with which it is associated will not have been changed by another process since it was last 
activated. This means that in the time between the processing of tasks, the process for the 
node has unwound to the top level and has no state left on the stack. The process can be 
switched without the cost of a stack-group switch. This model of computation would, in 
itself, require the use of only one stack group on any processor, except when the system is 
intended to do useful work during fault handling. Nevertheless, the number of active stack 
groups would generally be small. 

The problem with this-model, which is in effect the Lamina programming model, is that it 
does not allow the general use of futures. This is because, in the absence of a really smart 
continuation passing compiler, it is not possible to construct a continuation for every pos- 
sible point in the program where a future might be defutured, and so futures would not be 
allowed to be first-class citizens in the source language. They could be used only in very 
special ways at special times. This did not seem to be consistent with the programming 
model of Poligon, in which we wanted to preserve the abstraction of procedure-call seman- 
tics and a clear source language. For instance, we wanted always to be able to write the 
expression «a» + «b» at any point in the source code, whether or not the expressions 
«a» and «b » involved the defuturing of futures. Because in general a programmer simply 
could not know whether any given piece of data would be a future or would contain fu- 
tures, we could not expect the user to write complex code to form the continuations for ev- 
ery such case. 

What we did in Poligon, therefore, was to try to allow the semantics of generalized futures 
and yet still try to minimize the number of allocated stack groups. We had originally de- 
signed the system on the assumption that a "Poligon machine" would have some sort of 
hardware or microcode support for trapping access to futures on strict operators, so that the 
compiler would not have to insert special code for this case. Because of the difficulties of 
simulating this behavior and the lack of a real Poligon machine, we decided to use the 
compiler to try to minimize the amount of code needed to check for futures. Through the 
use of compile-time strictness analysis of the arguments on all functions called in a Poligon 
application and through the use of type declarations and type propagation, the Poligon 
compiler is able to deduce areas of code that could not possibly involve defuturing thereby 
eliminating any code that might have to check for this eventuality. This design had the ben- 
eficial property that defuturing would still be a lazy process, but it is still not as efficient as 
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a hardware implementation would be. Thus a Poligon process would block on a future 
only at the latest possible moment, allowing the maximum possible time for the future to 
become satisfied in the background. In fact, futures were often satisfied by the time they 
were touched, and so a process switch and the need for another stack group was avoided. 

Waiting for a Future. 

An ideal implementation of the Poligon computational model would be to start up a process 
to service a message running in a default stack group. This process has no initial state 
other than the message arguments and the instance variables in the Poligon node. This 
means that no special initialization or rebinding has to be done to start up the process. This 
need be only a procedure call. In most cases the processing of a message will not block on 
a future, so the stack group will unwind back to the top and a new process can be activated 
without significant cost. In the event that blocking on a future is necessary, a stack-group 
switch is then performed, swapping out the process and using a new stack group. Stack 
group switches are, therefore, done lazily. 

Poligon's actual implementation of the equivalent behavior is not done in the same way, 
owing to the CARE simulator's design. CARE distinguishes between fully fledged pro- 
cesses that can be suspended and those that can only be restarted. It does not allow the 
user to decide halfway through a computation that a process is going to be suspendable. 
The cost of suspendable processes in CARE is quite a bit higher than that of the lightweight 
restartable processes. We therefore implemented a scheme whereby the process that actu- 
ally reads the tasks from the self-stream of the Poligon node is lightweight and restartable 
one. On the basis of the arguments to the message it has been passed the process tries to 
prove to itself that a message can be handled without the need to suspend the process. It 
does so on the basis of the arguments in the message and information that the compiler de- 
duced about the code fragments to be executed. The process is frequently able to deduce 
that the message can be handled without blocking and so it simply executes the task. If it 
cannot prove that the message can be handled without blocking it then has to make sure that 
the message is handled in a fully fledged process. This is done by acquiring a process 
from a resource of free, suspendable processes and then sending it the same message that 
was read from the task stream. The restartable process then suspends itself to wait until a 
reply comes back from the server process. It does this by suspending itself and waiting, 
not on the self-stream that it normally waits on, but on a stream that is private to these two 
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processes. Thus, the lightweight process that serves the Poligon node can be sure that 
nothing will be done to the node until the server process returns. This entire procedure is 
shown in Figure 4-6. 

Light- Heavy- 
Self-stream weight weight 

Task Queue Process Process 

Fig. 4-6. Tfie implementation of Poligon's process model. I. A message arrives 
on the self-stream. 2a. If the message can be handled without blocking, it is processed 
immediately. 2b. If the message may possibly block, a heavyweight process is allocated 
and told to process the initial message. 3. The original message is processed, possibly 
suspending itself to wait for futures. 4. The server process replies to the node's process 
by a private stream. 

This implementation model is considerably more expensive than a model that one would 
use in a production quality system. It involves the cost of trying to deduce whether a pro- 
cess can be handled without blocking, the cost of allocating the server process, the cost of 
sending the message to the server process, the cost of performing the stack-group switch to 
the server process and back again, and the cost of servicing the message that contains the 
reply from the server process. One would not implement such a model on a real machine in 
the field. 

In retrospect, this design seemed to work reasonably well. Empirically the number of stack 
groups that were ever active was generally much lower than the number of Poligön nodes, 
and was generally a few times the number of processing elements in the system being used. 
This was not always the case, however. Occasionally a system would become very backed 
up because of real-time demands or pathological load-balance problems. As a result, a 
large number of processors had processes blocked, waiting for replies to messages sent to 
one processor that was too heavily loaded to service all the requests. It is clear that the 
model used by Poligon breaks down in such a case. Although it still gives the right an- 
swers eventually when all pending futures eventually receive the values they are waiting 
for, the model does not degrade as gracefully as one would like in instances of poor load 
balance. 
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4.4.   Reading from Slots 

Dogberry: Come hither, neighbour Seacoal. God hath blessed you with a good 
name: to be a well-favoured man is the gift of fortune; but to write and read comes 
by nature. 

— Shakespeare, Much Ado About Nothing, act III scene III 

The slot read operation in AGE, as mentioned above, was implemented as a function that 
used Assoc to find the matching slot being sought in the slot AList of the blackboard 
node. In Poligon we decided to use positional slots in order to achieve optimum perfor- 
mance. 

In fact, we attempted a number of different implementations for Poligon's slots and the 
means of reading them. This was done as we learned more about the process of problem 
solving in parallel. 

4.4.1 The First Implementation of Slots 

The initial implementation of slots in Poligon nodes was simply as lists of values (see 
Figure 4-7). The user defined the slots that a node would possess in a set of class declara- 
tions, which were compiled to produce a suitable set of Flavors for the nodes on the black- 
board. For instance, the user could say the following: 

Class Aircraft : 
Slots : 

Wings 
Wheels 

This would define a class called Aircraft, all of whose instances would have two user- 
defined slots, one called wings and another called Wheels. Similar syntax was used in 
order to define metaclasses and to mix different superclasses together to implement more 
complex classes. 

Node 

Slot Al 
SlotA2 

Slot A3 

SlotBl 

Slot Cl 

Slot C2 

SlotDl 

(Value A 1.1, Value Al.2,...) 
(Value A2.1, Value A2.2,...) 

(Value A3.1, Value A3.2,...) 

-#►  (Value Bl.l, Value B 1.2,...) 

(Value Cl.l, Value C1.2,...) 

(Value C2.1, Value C2.2,...) 

-►  (Value Dl.l, Value D1.2,...) 

Fig. 4-7. 
value lists. 

The first implementation of slots for Poligon nodes was simply as 
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Operators in the Poligon language allow the user to read the values from a slot. For in- 
stance, foo» wings would read the first value from the wings slot of a node denoted by 
f oo, and foo©wheels would deliver the list of all wheels associated with f oo. 

We quickly found that this was not sufficient. Even though the user could define operators 
to implement different functionality, because we wanted to support real-time systems in 
Poligon, we needed some sort of support for timestamping. Data would arrive out of 
order, and we needed some way ensure that the system would not get confused by the 
value lists of slots not being in strict temporal sequence. 

4.4.2. The Second Implementation of Slots 

The next implementation involved a form of automatic time-stamp propagation. Each ele- 
ment in the value list of the slot was encapsulated within a data structure that also contained 
a timestamp for that value. This is shown in Figure 4-8. These timestamps were set when 
the data entered the system and were propagated throughout the blackboard during problem 
solving. When the user evaluated an expression, for example, «a» + «b», and stored 
the result in a slot, the new value would be timestamped with the time at which the actual 
computation of the expression «a» + «b» finished. Thus, the system could always as- 
sociate a time with every slot value. To use these timestamps, we introduced a number of 
new operators. Whereas previously an operator such as "•" would simply read the first 
value from the value list the new operator "•?" would sort all the values in the slot if they 
needed to be sorted and would then return the most recent value according to the times- 
tamps associated with the values in the slot. 

Node Slots 

(«42, at t=10»,  «100, at t=8», ...) 

(«:foo, at t=l», «:bar, at t=5», ...) 
nil 

(«((..)), at t=10», «((..) (..) (..)), at t=6») 

Fig. 4-8. The second implementation of slots for Poligon nodes caused each slot 
to contain a slot object that had a list of values and a flag that indicated whether or not the 
values were sorted. 

We also found early on that the user often read a number of slots from the same node 
throughout the body of a rule. This was problematic, because an expression such as 
f oo • wings = f oo • wings might not be true if the value of the wings slot was modi- 
fied by the time the second read was performed. We needed a way to capture a consistent 
view of blackboard nodes. 
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This was addressed by the implementation of a block read construct. Since the program 
was already sending a message to ask for the value of one slot, the marginal cost of asking 
for a number of slots at the same time was reasonably low. In Poligon it therefore became 
possible to write expressions such as f oo& »wingss »wheels in order to read the values 
of the wings and wheels slot within the same critical section. This formalism proved to 
be very useful and was used in all later designs of slot-reading behavior. 

The second slot implementation mechanism worked reasonably well but we found that it 
was rather expensive and suffered from some major flaws. It was frequently the case that 
the user's data already had timestamps of its own, which were often at variance with the 
timestamps that the system had imposed. In addition the user often preferred that the val- 
ues be sorted on a basis other than the time in the timestamps. This led to the inclusion of 
an operator that allowed the user to force any value into the system timestamp slot whether 
it represented a time or not. A secondary flaw was that the user often wanted to index the 
data in a slot. For instance, when a rule was triggered and was interested in something that 
happened at time t, it would frequently want to know about other things that happened at 
time t, or perhaps about things that happened at t -1. Getting data on the basis of such an 
association was not simple to do using the simple block read mechanism described above, 
since it involved getting all of the values in the slot, possibly from a remote location, and 
then searching them for the data required. 

4.4.3. The Final Implementation of Slots 

In developing our third approach we decided that operations like sorting and indexing were 
fundamentally important to the ease of programming a Poligon application, but that the 
system should not impose any unreasonable restrictions on the things that could be sorted 
or the things that could be indexed. It was therefore decided that these operations should 
be user defined, but also that Poligon should provide the user with some sophisticated and 
abstract mechanisms for the expression of his program. 

Each slot was implemented as an object. In fact, a different Flavor was created for each 
slot of each class in the system. This allowed the user to specify behavior in a highly fo- 
cused, per-slot manner, that is, each slot could have specialized behavior associated with it. 
For example, the user could specify that the values of a slot were to be sorted by a particu- 
lar predicate, or that they were to be accessed as mappings from indices to values, using a 
particular index function, or both sorted and indexed. Thus the user could write the 
following code: 

Class Aircraft : 
Fields : 

Wings : 
IndexedBy : 'Wing-Side 

Wheels : 
SortedBy : '< 
KeyedBy : 'Tyre-Size 

As before, all instances of the class Aircraft will have two slots, but in this case it is 
possible to find a wing in the slot Wings by looking up which side the wing is on. It is 
also possible to view the Wheels slot as a sorted list of wheels, which is sorted according 
to the tyre size of those wheels (see Figure 4-9). The "•" operator mentioned earlier was 
modified to allow the specification of an index, so the user could get the left wing of a node 
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f oo with the expression foo «wings At   : Left, and could get the smallest wheel with 
just the expression foo»wheels. 

Aircraft Slots 

Wheels 

Wings 

Values 

Sorted-p 

Predicate- 

Key 

Values 

Indexed By 

Dictionary - 

(#<Wheel Left> #<Wheel Tail>) 

t 

#'> 

#'Tyre-size 

(#<Wing Left> #<Wing Right>) 

^Wing-Side^ t 

:Left 

: Right 

Fig. 4-9. The final implementation of slots for Poligon nodes made each slot 
point to a slot object, which was of a specialized type unique to that slot. Wings can be 
seen to have dictionary-like behavior, and Wheels are sorted according to the size of their 
tyres. 

This implementation was more expensive than is strictly necessary. Suitable compilation 
could expand the state associated with the slot objects into the node itself and could reduce 
an access simply to an array offset. This would not be in any way incompatible with the 
compilation of slot accesses into fixed-position array accesses. Similarly, the methods as- 
sociated with the operations supported by each of these slot types could be fully compiled. 
In fact, there is no particular need to use methods, in the Flavors sense, since the combined 
methods for each slot are known at compile-time and no complex method combination is 
required. It seems likely, therefore, that although this is a considerably more expensive 
implementation than the original AGE use of a value list, it could be made reasonably effi- 
cient and, more important, is considerably more useful in a parallel environment. 

4.5.   Writing to Slots 

The implementation of writing to slots in many ways mirrored the implementation of read- 
ing them. This is by no means surprising. The major difference between the evolution of 
the slot write mechanism as opposed to that of reading slots was that the the ability to write 
multiple slots at the same time was in Poligon from the start. We did this because the same 
was also the case in other blackboard systems like AGE. 

4.5.1. The First Implementation of Slot Updates 

As mentioned previously, Poligon's slots originally had no structure to speak of; there was 
nothing particularly special about the slot-updating process. AGE supported a pair of fre- 
quently used slot update procedures called SModify and SSupersede. SModify tacked a 
new element onto the front of the value list of the slot being side-effected, and SSupersede 
had the effect of overwrote all the elements in the value list. In effect, SModify was an op- 
timization for a frequently used case, and SSupersede was an implementation of the general 
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case. It was possible to read all the values of the slot, perform an arbitrary transformation 
on them, and then write out a new value list at the end at the end of the rule's execution. 

We did not think that this would be sufficient in Poligon, so we implemented the function- 
ality of SModify and SSupersede as slot update operators, which could be user defmed. 

The result was that these operators, at least with their AGE semantics, were almost useless. 
For the reasons already described, things arrived in the slots out of sequence. The Poligon 
equivalent of the SModify operation, which mirrored the " •" operator for slot reads, would 
not really do the "right thing" because one would prefer that the value be put into a more 
specific place than just the front of the value list. This was due to the fact that the value 
lists were implicitly time ordered. The Poligon equivalent of the SSupersede operator 
proved to be almost useless on account of a hidden critical-section assumption in the AGE 
model. It was not possible to read all the values of a slot and then write a hew list back out 
again because there was no guarantee that the slot had not been side-effected between the 
time the slot was read and the time it was written. Writing out a new value list would then 
destroy any new results that were put in by other rules during the computation.1 

4.5.2. The Second Implementation of Slot Updates 

When the slot read mechanism was changed to support timestamping (see Section 4.4.2], 
we then had a way to avoid the problems we had had with slot updates. Because so much 
more data was now available to allow the programmer to perform more sophisticated slot 
updates, there was an explosion in the number of Poligon's slot update operators, which 
would, for example, remove an element if it was already present or add a new element un- 
less it was already present and was not Nil. 

This added considerable complexity to the programming task. The user had to know about 
the semantics of the operators that the program would use to read a slot in order to pick the 
correct operator that would write that slot. A better abstraction was required. We also no- 
ticed that many of our slot update operators seemed to be explicitly fault tolerant. They 
were all trying to do the "right thing" in the event that the shape of the data in the slot was 
not quite what was expected. This proved to be an important observation, because it al- 
lowed us to develop a much more satisfactory programming methodology and then to build 
our slot update mechanism around it 

4.5.3. The Final Implementation of Slot Updates 

All science is either physics or stamp collecting. 

— Ernest Rutherford. 

Our final implementation of the slot update mechanism used the methodological idea of 
"smart" slots. As noted earlier, slots had already been modified by the inclusion of some 
general mechanisms so that they could be read in ways that were highly application spe- 
cific. New mechanisms were implemented to support much more focused slot update be- 
havior. The user could now express ideas like remove this element if it is still there, and 
add this element if it is a new one in a manner that was both declarative and abstracted out 
into the class declarations. For instance: 

^his assumes that the whole bodies of rules are not executed within critical sections on the nodes that 
trigger them. This is discussed at length in Section 4.7. 
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Class Aircraft : 
Fields : 

Wings : 
Removelf : 'Still-Present 

Wheels : 
Insertlf : 'Not-Present 

In this example the user-defined functions Still- Present and Not-Present will be 
called whenever the program attempts to put new values into these slots or to remove them. 
In fact, Poligon's default behavior is to do reasonable things in such cases, but this serves 
as a simple example. The crucial point is that the slots of nodes are now expected to be re- 
sponsible for their own upkeep. They are intended to have evaluation functions that ex- 
press the intention or purpose of the slot and thus are capable of assessing any update that 
is requested and deciding whether to perform it, ignore it, or perform some different up- 
date. This results in a sort of local hill-climbing behavior, which allows some Poligon 
applications to iterate toward a globally reasonable solution. These functions are defined 
and stored in the same per-slot manner that the sorting and indexing functions are for read 
operations. They are just extra instance variables in the slot objects that represent the slots. 

The functions that the user can specify can be arbitrarily complex. This means that the user 
has the ability to put arbitrarily expensive code into the slot update critical section. This 
will clearly lock the node for a long time, but it is better to do it slowly and right than 
quickly and wrong. 

4.5.4. Test-and-Set 

There is one more point to discuss regarding slot reads and writes: we found it necessary to 
implement a test-and-set operation. Although Poligon nodes are now responsible for keep- 
ing themselves reasonably coherent, that does not help us if we really need to perform 
some sort of atomic read/write operation, such as one might want when implementing locks 
or performing accuracy-critical database operations. Without some sort of atomic test-and- 
set operation, one would not want to use Poligon to implement a bank transaction system. 

We therefore implemented such a test and set operation. The user can now express ideas 
such as the following: 

foo«wings 
Unless : foo«wings = 2 
Updated Fields : 

wings «- 2 

In this case, if the node f oo has two wings then this value is returned; if it doesn't, then 
f oo is given two wings and the original number of wings is returned. The test-and-set op- 
eration has been used only twice in Poligon applications, but in these cases there didn't 
seem to be a way of implementing the program without it. 
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4.6.   Creating Instances 

{*?«*.. 

Eagar finds that unmanaged instance creation can lead to the wrong answer in a concurrent 
problem-solving system. 

The creation of instances is something that serial systems typically do not handle in a par- 
ticularly sophisticated manner. The reason for this is that users generally write their 
knowledge sources so that they are large enough that they know that they are doing the 
right thing when they create a node. This is, in effect, using large critical sections in order 
to guarantee that the blackboard is consistent throughout a node creation operation. If 
knowledge sources are not large, however, especially in processing, it is quite probable 
that they will create multiple nodes representing the same real-world object. This happens 
frequently in a parallel blackboard system, and so some mechanism is needed to deal with 
it. 

New Instance of Aircraft 
unless : 

Associate(Id-Number, Aircraft©Cache, 
:Return #'Second) 

Updated Class Fields : 
Cache *- List(Id-Number,   The-Created-Node) 

Initialization   : 
Wings <- 2 
Wheels  *-  3 

Fig. 4-10. Poligon language source code to create a new instance. If there is an 
entry in the cache slot of the class node called Aircraft, which is a list of the form ((id 
<node>) (id <node>)), then the node is returned. If there is no such entry, a new node is 
created. The new node has its wings and wheels initialized, and the class node's cache slot 
is updated so that it has an entry for the new node. The node that has just been created is 
referred to by the name The-Created-Node. 
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Two options were considered. Either one could manage the creation process so that only 
the needed nodes are created or one could add extra knowledge so that the system could 
reason about the presence of a number of nodes representing the same real object. The lat- 
ter would, in the general case, require application-specific knowledge in order to achieve 
this goal, whereas the former could be implemented in a manner that provides a domain in- 
dependent means of handling node creation. We picked the strategy of managing node 
creation, knowing that the price would be serialization. 

I 1. Node triggers rule 

2. Rule asks for new node 

3. Creation message 

Condition 
Class updates 
Instance initializations 

Class Node 
4. 

IF condition 
THEN 

Create node, 
Class updates 

5. Initialization Message 

Instance initializations 

Cache entries 

New Instance 

6. Initialize slots 

Existing Instance Existing Instance 

Fig. 4-11. Managed node creation in Poligon. 1. An update to a node triggers a 
rule. 2. The rule that fires decides that a new instance must be created. 3. A message 
containing the condition, class update, and initialization closures is sent to the class node 
for the class to be created. 4. If the condition allows it, the new node is created, the ini- • 
tialization closure is evaluated and passed to the new instance (5), and any class updates 
are performed. 6. When the initialization closure arrives at the new node, the new node's 
slots are initialized. 
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After some experimentation, we developed a fairly complex but general node creation and 
initialization mechanism for Poligon. We needed to be able to allow the conditional cre- 
ation of nodes because, in the general case, a node that represents the thing that we're inter- 
ested in may already have been created. We needed to be able to construct mappings from 
identifiers to nodes. These mappings have to allow us to determine whether we already 
have a node to represent a given real-world object Finally, we needed to be able to initial- 
ize the new node appropriately and make sure that all the right things are executed atomi- 
cally. 

An example piece of Poligon code to create a node is shown in Figure 4-10. The way that 
this code works is explained below and shown in Figure 4-11. 

• First is sends a message to the class node that represents the class of node to be 
created. This message tells the class node that a new node is to be created or an 
existing node is to be returned. The message contains three (possibly null) closures 
as its arguments: a condition closure, a set of class node updates, and an initializa- 
tion closure for the node to be created. These closures close over the environment 
of the rule execution so that the program can make reference to expressions in the 
context of the rule as well as to expressions in the context of the class node or the 
node being created. Any expressions that require references to be made to anything 
other than the class node or the node to be created are evaluated before the message 
is sent. This allows the class and the new node to execute their code without 
blocking. The expression that asked for the creation of the node returns immedi- 
ately with a future to the new node. A rule, therefore, need not block in order to 
create a new node. 

• When the message is processed by the class node, the condition part, if supplied, is 
executed. The condition is executed on the class node because, in the general case, 
the expressions that make up the condition will want to make reference to caches 
that are held on the class node. 

• If the condition evaluates to Nil, a new node is created and entered into the class's 
list of instances (this process seems reversed, but it actually works.) If the expres- 
sion is not Nil it is taken to denote a preexisting node that represents the solution- 
space component (node) that we really want. 

• If a new node is created, the initialization closure is evaluated. This is a closure that 
is executed in the context of the class node so that reference can be made to class 
slots such as the identifier cache. The result of the evaluation of this closure is an- 
other closure that is sent to the new node. It is this second closure that actuary per- 
forms the initialization of the new node's slots. By this point the closure will have 
picked up all the context it needs from the originating node and the class node. Any 
rules associated with the slots being initialized will fire for the new node. 

• The newly created node is seen by the class node as a future. The class update clo- 
sure is now invoked with this new node visible. The update closure is therefore 
able to add the new node to the id cache, even though that node may not yet have 
been created. 
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Eagar closes over his environment. 

This instance creation mechanism is very general and works reliably, but a number of pos- 
sibly unnecessary overheads are associated with it. For instance, it may not be necessary 
to manage the creation of the node. If the node is being created as the result of an unique 
piece of signal data, the programmer knows that only one node will ever represent this ob- 
ject. Serializing through the class node is unnecessary in this case. In practice, we found 
that creating nodes to represent low-level objects to represent signal data tended to overload 
the class node if the instance creation mechanism outlined above was used. Thus, we im- 
plemented an optimized form of node creation to allow for this special case. This is shown 
in Figure 4-12 and works as follows: 

• It create an instance directly without reference to the class node and immediately 
returns with a future to the created node. 

• It initializes the node only from the context of the invoking rule, not from the class 
node. 

• It sends a message to the class node telling it that a new node has been created. 

Here node creation is unmanaged but faster, but there is another, sometimes undesirable 
consequence of this operation. Poligon supports operations that can be performed on all 
instances of a class. Because node creation happens in parallel with the notification of the 
new node's class, it is possible for the message that notifies the class to be delayed and 
thus for other pieces of knowledge to execute under the assumption that they are referring 
to all the instances of a class, but actually they are missing the newly created one. This 
generally doesn't seem to be much of a problem in Poligon applications, since one usually 
has to use the full, managed node creation mechanism anyway, in which case the problem 
doesn't occur, or one's program is generally written so as not to be brittle to this sort of in- 
consistency. 
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Node triggers rule 

Rule asks for new node 
Creation and initialization message 

Instance initializations 

New instance notification 

Class Node 

Update instance 
list 

Elements in instance list 

New Instance 

6. Initialize slots 

Existing Instance Existing Instance 

Fig. 4-12. Optimized node creation. A rule triggered from some node decides that 
a new instance should be created. The rule invocation creates the instance directly. The 
class node is notified about the new node by having a future to the new node sent to it and 
the class node can then add the new node to its instance list. 

4.7.   Rule Invocation and the Context of Rule Invocation 

Many assumptions about the granularity of the Poligon system were made throughout the 
development of the system. Perhaps the most significant of these was the decision to allow 
concurrent rule execution on blackboard nodes. The cost of process creation and/or 
switching is always going to be significant in the design of a system like Poligon; so the 
decision that concurrent rule execution should be allowed on each blackboard node neces- 
sarily carried with it the assumption that nodes would, in general, have a lot of applicable 
knowledge at any given time. A second assumption was that the cost of the computation 
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performed by that knowledge would be significantly greater than the cost of rule invoca- 
tion. 

In this section we discuss the implementation of the rule invocation mechanism in Poligon 
and other related topics. 

4.7.1. The Triggering of Rules 

A daemon triggers a rule. 

As mentioned above, rules are triggered as daemons on the slots of nodes. The slot that 
triggers a rule is defined by the programmer and is fixed at compile-time.1 It is not possi- 
ble, however, simply to fire the rules as soon as the update that would trigger a rule is 
made. This is because Poligon supports the ability to update a number of slots 
"simultaneously." To allow rules to be activated before all relevant slot updates had been 
performed would open the door to very counter-intuitive behavior. Poligon, therefore, 
collects the significant events on slots as the slots are being updated, and when all of the 
updates have happened, activates the interested rules. 

The evolution of the slot update mechanism was discussed in Section 4.5. A consequence 
of this implementation is that the system always knows what changes to a given slot were 
made when it was updated. For instance, if a new wheel were to be added to an aircraft, 
then the node being updated would remember the node that caused the update and the slot 
that was updated, die new wheel — or, actually, the set of new wheels, which in this case 
is a singlton set.2 

Once this information has been gathered for the updated slots, the node is free to trigger the 
associated rules. For this the node must create contexts. 

'This is not the case for expectations, which are described in Section 4.7.4. 
2 A deficiency of the implementation in Poligon is that there is no way for a rule to recognize whether the 
values that it is passed, which tell it what caused the rule to fire, are values that were added to or removed 
from the slot. The rule has to work this out for itself. Clearly this would be a small thing to fix but is 
worth noting here, since we have found programs that wanted to trigger rules both as a result of inserting an 
element in a slot and as a result of removing values. 
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4.7.2. Contexts and Pseudo-Contexts 

In AGE, the context in which a rule is executed is that of the knowledge source and the 
knowledge source bindings. The knowledge source knows only the token that triggered it 
and the node that caused the triggering. 

Update 
message for 
user slot 1 and 
user slot N Node Process 

Rules triggered by 
slot updates cause 
context creation 

Self-stream 

Associated rules 

System slot A 

System slot B 

System slot Z 

User slot 1 
User slot 2 

User slot N 

Modified values, rule 
and slot name recorded 
in context object 

When parts are 
evaluated by 
node's process 

Fig. 4-13. A node receives an update message. The updates, when processed, cause 
the triggering of the rules watching the slots that were updated. When a rule is triggered, 
a pseudo-context is created and the When part of the rule is evaluated locally. 

In Poligon we decided early on that knowledge sources were too coarse grained to give us 
the performance we wanted. Consequently, we wanted at the very least to execute rules in 
parallel; we wanted to compile away the knowledge sources, preventing them from being 
the scheduling units that they are in serial blackboard systems, and to incorporate into the 
rule any state that the knowledge source might have had. Poligon has functionality equiva- 
lent to knowledge source bindings called definitions, which are discussed in Section 4.8. 
Moreover, a number of existing blackboard systems have a more substantial amount of 
context when their knowledge sources are activated than was available in AGE. BBl's 
[Hayes-Roth 85] knowledge source activation records (KSARs) are an example of this. If 
we were to run our rules in parallel, we knew that we needed some representation of the 
rule's evaluation context, and that we had to associate a process with each rule in order to 
execute it. In addition, because Poligon runs on a distributed memory system, each ele- 
ment of which is effectively a uniprocessor, the activations of rules would, in the general 
case, be running on different processors from that of the node, which caused the activation 
of the rules. Each rule therefore runs in a different address space from that of the triggering 
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node (see Figure 4-13). The objects that represent the activation of a rule in Poligon are 
called contexts. 

Contexts are Flavors instances that contain the following information: 

• The triggering node 

• The rule being triggered 

• The values of the slot that caused the rule to trigger 

• The definitions for the rule being executed 

Recognizing that the cost of a process switch to a context would be significant and that the 
reading of values from the focus node would be expensive for a context on a remote pro- 
cessor, we wanted some means of filtering out rule activations before they became too ex- 
pensive. For this we used a cheap test called the When part of a rule. Poligon knowledge 
sources have no preconditions, since they are compiled away, but rules needed a cheap 
means of determining whether they were applicable or not. The condition part of a Poligon 
rule is therefore split into two distinct components: the When pan and the If part. The 
When part is executed by the node for which the rule is triggered. This means that no pro- 
cess switch is performed to evaluate the When part and that slot reads to the node can be 
fast. The If part of the rule is executed only as long as the When part succeeds and is exe- 
cuted in a different process by a context object. It is therefore useful for the rule to do as 
much cheap filtering as possible during the When part and to perform enough reads to slots 
on the focus node in order to prevent the context from having to read from the node again if 
that is possible. 

If we were to allow the node to read values from other nodes during the When part, the 
node would have to be able to block until the results came back. This seemed undesirable, 
because it could cause areas of the evolving solution to lock up for unpredictable periods of 
time. We thus decided not to allow the When parts of rules — or any parts of the user's 
program that are executed on the nodes themselves — to make remote references. These 
are only allowed during the If or Action parts of rules, which are executed by contexts. 

In order to be able to evaluate the When part of the rule, the node must create a context for 
the When part's execution. We wanted to avoid the cost of process switching during the 
When part, so the node creates an object called a pseudo-context. A pseudo-context is just 
like a context, only it executes within whatever process invokes it. As a result, any state 
developed during the evaluation of the rule's When part is recorded in the pseudo-context. 
If the When part evaluates to true a context is invoked and is passed the state in the pseudo- 
context as part of its initialization message. 

The reason pseudo-context objects are necessary is that the When parts of rules can contain 
references to definitions, which are described in Section 4.8. In retrospect, we can see a 
justification for having yet another sort of precondition, one that does not allow the use of 
definitions. The creation of the pseudo-context for the rule, although much cheaper than a 
process switch to a context, still carries a significant cost. If we could do some prefiltering 
without this cost, we could expect better performance. Substantial optimization of the 
pseudo-context creation mechanism could be made, but avoiding this altogether, if possi- 
ble, seems worthwhile. A smarter compiler might, perhaps, have done some flow analysis 
on the source program and created the contexts lazily. This would have required a sub- 
stantial reimplementation of the rule activation mechanism in Poligon and so was not im- 
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plemented, but it could well be a useful strategy for any future system built along these 
lines. 

4.7.3. Rule Execution After the When Part is Evaluated 

When the When pan of a rule is evaluated and is true, the node that started up the rule must 
invoke a context to process the rest of the rule. Normal rules come in two forms in 
Poligon: If-Then-(Else), or If-Then-Case-Else. It was found early on that blackboard 
systems commonly have sets of rules whose form is of the following type: 

Rule 1: 
If «some condition» 
Then «some action» 

Rule 2: 
If Not[«some condition»] 
Then «some other action» 

This is typically not too much of a problem in serial systems because the cost of evaluating 
such a paii- of rules is often reasonably small, but the constraints of a parallel or high-per- 
formance system make it desirable to avoid unnecessary rule invocation as much as possi- 
ble. It is not the cost of the user code that one wants to avoid, since the code will be eval- 
uated nevertheless; it is the evaluation of the system code that creates the contexts for rule 
invocations and that starts up the rule. In the previous example, it is clear that the two rules 
are mutually exclusive. They could, therefore, be rewritten in the following form: 

Rule   1: 
If «some condition» 
Then «some action» 
Else «some other action» 

Poligon supports just such a rule representation and, in fact, generalizes it so that the fol- 
lowing rule is possible: 
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Rule Watch-for-changes-in-wheels : 
Class : Aircraft 
Slot  : Wheels 
Condition Part : 

When : The-Wheels > 0 
If : The-Aircraft»is-airborne 
Select : 

If The-Wheels = 3 
Then :Land-ok 
Else :Belly-land 
Endlf 

Action Part : 
:Land-ok : 

«we have enough wheels to land on the 
undercarriage» 

:Belly-land : 
«do whatever you must to land on your belly» 

Otherwise Part : 
«we haven't taken off yet so the change must be 
due to the maintenance crew» 

This trivial rule takes advantage of the mutually exclusive execution of its action parts. For 
any given change in the number of wheels on the plane the rule will be invoked only once. 
If we had a number of rules that watched for this change, two rules might start tip because 
the plane did not have enough wheels, but by the time one of them actually came to look at 
the plane and do something with it, the other rule might have caused more wheels to be 
added, thus confusing the first rule. The form of rule shown above has proved to be pow- 
erful, useful, and efficient. 

The Poligon compiler causes the rules that the user expresses to be split up into a large 
number of functions and methods. The objects representing the rules in the system have a 
number of slots that refer to the code to execute the different parts of the rules. A very 
simple piece of code run by the context object looks at the rule object that represents the 
rule that it is to fire and invokes the relevant parts of the rule as appropriate. This is shown 
in Figure 4-14. 

In designing the Poligon language, we did not want the user to have to worry about picking 
the parts of the program that would run in parallel and those parts that would run serially. 
To this effect we designed the language so that the user expressed those parts to be exe- 
cuted serially rather than those to be executed in parallel. The system was then at liberty to 
execute any other code fragments in parallel if this seemed appropriate. Clearly we wanted 
to execute as much as possible in parallel, wherever it would be beneficial. Our intention, 
therefore, was to execute components of the action parts of the rules concurrently and 
without any synchronization. 
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Processing Element 1 Processing Element 2 

Node Process 

Self-stream 

Associated rules 

System slot A 

System slot B 

System slot Z 

User slot 1 

User slot 2 

User slot N 

When part evaluation can 
cheaply read local slots 

Process 

Fig. 4-14. When the When part of a rule evaluates to true, a context object is acti- 
vated, possibly on another processing element, to evaluate the rest of the rule. Cheap ac- 
cess to local slots can be made during the When part's execution. Slots can be read from 
the focus node during the evaluation of the rest of the rule but this is discouraged. 

The following fragment of Poligon code expresses updates being made to two different 
nodes: 

Action Part : 
Changes : 

Change Type : Update 
updated Node : «aircraft 1» 
Updated Fields : 
wheels <— '«a new wheel» 
wings *- «left canard», «right canard» 

Changes : 
Change Type : Update 

Updated Node : «aircraft 2» 
Updated Fields : 
wheels <- «tail wheel» 
wings <— «new left wing» 

We wanted the execution of these two updates not to be held up by each other. What we 
did was to make the Poligon compiler extract the references to any definitions (see Section 
4.8) from the expressions in the action parts and evaluate them whenever possible before 
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entering the actual expressions that perform the updates. In order to perform the updates, 
the Poligon compiler tries to deduce the best place in which to evaluate the change compo- 
nent. In the cases above, each change will be evaluated on the respective aircraft nodes.1 

A message is sent to the node to do the computation, specifying a method that will be used 
to make the update and containing a newly CONSed pseudo-context that contains the def- 
initions that are to be used in the evaluation of the action part. The use of a pseudo-context 
in this case allows a regular mechanism for the evaluation of definitions irrespective of 
where or when they are evaluated. The compiler has already computed which definitions 
will be needed in the execution of the action-part clause so only these are sent over. Figure 
4-15 illustrates this sort of slot update operation.2 

Processing Element 1 Processing Element 2 

Process 

Context 

If ... 

Then ... 

Otherwise 
■ 

L          > "•' . 

Update message 
passes pseudo-context 
to encapsulate state 
needed for update 

Process 

C "Self-stream 

Associated rules 

System slot A 

System slot B 

System slot Z 

User slot 1 

User slot 2 

User slot N 

Fig. 4-15. When an update is required, a pseudo-context representing the required 
state from the current context is passed along with the update message to the node to be 
updated. The update is performed in the environment of the pseudo-context. Copying the 
state in the context allows concurrent execution of action parts without contention for the 
context in which the rule is executed. 

1 There is an assumption here that the code to be executed on these remote nodes will be reasonably cheap. 
It is left to the user to make sure that expensive expressions are factored out as definitions that are evaluated 
before the update message is sent. 
2This whole design strategy may have been flawed. The creation of pseudo-contexts for the definitions 
passed to the nodes to perform the action parts is costly. It would probably be better to compile the action 
part into methods that accepted the definitions as arguments. This, however, would have the consequence 
that all definitions would definitely have to be evaluated before any part of the action could be executed. As 
a result, the lazy semantics of the definitions would be lost if any definition references were made in 
expressions with conditional clauses. This strategy clearly requires more thought. 
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When the message for the update arrives at the node to be modified, it executes the neces- 
sary code to perform the update, extracting any definitions that it may need from the 
pseudo-context that it has been passed. As mentioned earlier, the compiler has already de- 
termined which definitions will be needed in order to perform the update. At run-time the 
context that evaluates the rule knows which of these definitions have indeed been evalu- 
ated. As long as all the needed definitions have been evaluated there is no problem - the 
update is made, and nothing more needs to be done. A problem arises, however, if not all 
of the definitions have been evaluated because a deadlock can occur if some special mech- 
anism is not incorporated. This is described below. 

As was already mentioned, the only way Poligon allows the user to express serialization is 
by the serializing of the action parts of rules. The following code fragment executes the 
changes requested serially; 

Action Part : 
Changes : 

Change Type : Update 
Updated Node : «aircraft 1» 
Updated Fields : 
wheels <- «a new wheel» 
wings <— «left canard», «right canard» 

Change Type : Update 
Updated Node : «aircraft 2» 
Updated Fields : 
wheels <- «tail wheel» 
wings <- «new left wing» 

Here the system must wait until the update to «aircraft 1» has finished to execute the 
second change. In turn, the context executing the rule must wait for confirmation that the 
first update has occurred from «aircraft 1» before it can perform the update to 
«aircraft 2». The context, therefore, waits on the stream from which it expects to get 
the reply confirmation. This is not a problem unless the pseudo-context that was passed on 
to perform the original update has not already evaluated the required definitions. If such is 
the case, the execution of the update will require a fully fledged context in order to execute 
the action part because the code for the evaluation of the outstanding definitions is, by 
specification, allowed to block for futures at any point. 

Since the design of Poligon requires that code executed on blackboard nodes not be al- 
lowed to block, the execution of the update has to punt to another context. It is not possi- 
ble to ask the original context to evaluate the missing definitions because that context is al- 
ready blocked, waiting for the reply from the update that is in trouble. This is a deadlock 
condition.1 A new context is created to perform the update instead, a relatively expensive 
process; and although the semantics of a rule that punts in this way are very similar to one 
that does not punt, the system issues a warning message that this is the case so that the 
programmer can rewrite the rule to force the evaluation of the missing definition. This pro- 
cess is shown in Figure 4-16. 

'Other mechanisms for deadlock avoidance are possible here, this was just the simplest mechanism given 
the strongly futures-based implementation model of Poligon. 
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Fig. 4-16. A rule executing in the context on processing element 1 requests an up- 
date of a node on processing element 2. The pseudo-context that is passed to the node to 
be updated does not have enough of its definitions evaluated, so it allocates a new context 
on processing element 3 to evaluate the missing definitions and to finish the update. 

Once the update has been performed either on the node using the pseudo-context or through 
the agency of a new punted-to context, the original context that is evaluating the rule is sent 
a message to confirm that this has happened. The context can then synchronize correctly 
and continue with the evaluation of the serial parts of its rule.1 

4.7.4. Expectations 

The farther the experiment is from theory the closer it is to the Nobel Prize. 

— Frederic Joliot-Curie 

Mention was made in Section 4.7.1 that the slots to which rules are attached are defined at 
compile-time. The exception to prove this rule is discussed in this section. 

Un retrospect, this design is inadequate, but deciding on a good implementation for these semantics is 
difficult. A change to the specified semantics of the language is likely to be the best way around these 
implementation problems. 
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An expectation mechanism, a common part of blackboard systems, allows the user to ex- 
press the fact that some particular event is anticipated. This allows model-based reasoning 
to focus the attention of the program on places of importance. We wanted to have some 
way to take advantage of such model based reasoning in Poligon. This section describes 
the implementation of Poligon's expectations. 

Poligon's expectations are dynamically allocated rules. Just as normal Poligon rules are 
associated with slots at compile-time, expectations are associated with a particular slot on a 
particular node at run-time. Expectations allow the effective focusing of attention on a par- 
ticular node while still saving the overhead of associating that rule with all nodes of the 
class involved. Moreover, state in the rule that initiated the expectation may be used to 
specialize the rule being allocated so that the behavior can be more highly focused. 
Because a real-time blackboard system is just as likely to be interested in something not 
happening as something actually happening, a timeout mechanism supported by Poligon's 
expectations allows them to wake up after a predetermined time, knowing that they have 
timed out. 

Expectations are represented as structure objects. When a rule decides to post an expecta- 
tion, it sends a message to the node that will be focused on asking it to record the new ex- 
pectation. When the expectation is formed, the programmer has die option of defining ar- 
guments to the expectation rule and of passing in extra conditions for the When and If parts 
of the rules. These allow context-specific state to be allocated with the expectation. For 
instance, if an aircraft is expected to land at a specific airfield, one might post an expecta- 
tion oh the airfield that asked the airfield to look out for aircraft landing. One would also 
pass it the specific aircraft as an argument to compare with arrivals so that it can know it 
has noticed the aircraft that is interesting to the program. 

Expectation. 

Extra slots in the expectation data structure allow the user to specify whether the expecta- 
tion is active or not or the number of times that the expectation is to try to fire. This is im- 



45 

portant because it may be that an expectation is valid for only a highly focused set of cir- 
cumstances. For instance, the aircraft in question can only land after it has had enough 
time to fly to the airfield. We do not want expectations to fire off all of the time, and, if the 
particular aircraft does land, we want the expectation to decouple itself from the node it is 
watching. All of this is possible in Poligon's expectation mechanism. 

Similarly, we may want to know if an event has occurred after a certain time, if the aircraft 
fails to land at the specified airfield after a given period, for example. This would indicate 
that our model of the aircraft's actions was wrong and we have to reevaluate what is hap- 
pening. Such an occurrence is also expressed when the user posts the expectation. The 
timeout that is to be made is encapsulated on the node being watched, and the set of time- 
outs that are still pending is examined each time the domain real-time clock ticks. It is an 
attribute of all Poligon nodes that they can know the real time and that they can be sensitive 
to clock ticks. When the clock ticks past the time specified by one of the pending timeouts, 
the rule associated with the expectation is fired and its Timeout Part — a component much 
like an Action or Otherwise Part — is executed, allowing the program to take whatever cor- 
rective action is required. 

This timeout mechanism does have a problem, however. In order to work reasonably well, 
either the system must be lightly loaded or the timeout duration must be long with respect to 
the time scale of events in the system. This is because a Poligon program can cause the 
processors on which it runs to become highly and unpredictably loaded, resulting in signif- 
icant delays in computation. Thus, a timeout might trigger simply because the program 
was being held up; riot because an event failed to occur, i.e., the plane failed to land. 
Clearly, a Poligon program must not be brittle with respect to timeouts triggering in this 
way. 

At this time, Poligon's expectation mechanism has never been used in an application. This 
could cause one to lose faith in its usefulness, but we still have some hope for the value of 
this mechanism, since they may indeed be more useful in a genuinely real-time environ- 
ment. The knowledge that we implemented for our applications was already expressed in a 
strongly non-model-based manner, and the real-time aspects of the applications were not 
really concerned with producing responses that the real-time clock might have triggered. 
For this reason, the timeout mechanism was not useful. Similarly, in order to be able to 
compare our experimental results with those produced by the Cage [Aiello 88] and Lamina 
[Delagi 88b] projects, we were compelled to make the application's problem solving behav- 
ior much like that of the others. Because of the way in which the use of expectations af- 
fected the problem-solving process, we could not easily produce results comparable to 
those of the other implementations, so use of the expectation mechanism was removed. 

4.8.   User Code and Definitions 

As you will recall, Poligon supports a mechanism that allows the programmer to express 
ideas much like knowledge source bindings in an AGE program. These are called defini- 
tions. 

The idea behind definitions was to support the functionality of AGE's knowledge source 
bindings without suffering from their defects. Nevertheless, Poligon's implementation had 
a set of defects of its own. 

We decided early on that definitions should be lazily evaluated. This was due to an aes- 
thetic preference and a desire to around a deficiency in AGE's implementation. In AGE it 
is common to define a knowledge source binding with a null value at the knowledge source 
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level and then to setq in a value for it if the value is needed. This substantially compli- 
cates the program and obscures the programmer's intent. The plan for Poligon was to have 
a means of associating names with values and having the expressions that delivered those 
values execute once at most, but not at all unless the value was needed. 

We implemented definitions by making a mapping from names to structures in the context 
objects that represent the invocation of rules. Thus, for each defined name there is an entry 
in an AList that associates with that name a value or a token denoting that the definition has 
not, as yet, been computed and a function that will compute the value if it is needed. In a 
production-quality Poligon system one could optimize this implementation significantly, 
but for our purposes an AList was adequate. 

When a user made a reference to a definition, the compiler converted it into an access func- 
tion on the context object that would compute or unpack the value as appropriate. For ex- 
ample, 

Definitions   :   four =2+2 
When   :   four  =  4 

would expand during compilation into something of the form 

When :' (eql (get-value-from-definition : four 
_the_current_context_) 

4) 

where _the_current_context_ is the name given to the context object that is visible 
during the evaluation of the When part of the rule. The function get-value- from- 
def inition would extract the required value or would compute the value with a function 
that the compiler generated to represent the expression 2 + 2. 

We quickly found that we had to represent multiple values in definitions, so we used a 
slightly modified implementation to unpack multiple-valued expressions into their compo- 
nent values. 

This implementation was somewhat naive because it again assumed the existence of an ef- 
ficient, blackboard machine that would implement this sort of behavior effectively. We 
discovered, however, that the performance of our applications was being limited by the use 
of these definition items. The cost of extracting an already computed value from a defini- 
tion was too high. We could have taken two approaches to address this problem. First, 
we could have worked to optimize the implementation of definitions, or, second, we could 
have used a better compiler. Because of the convenience associated with the existing im- 
plementation of contexts and their definitions, we decided to try the latter approach. 

Our problem derived from code fragments such as the following: 
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Definitions : 
two = 2 

all-wheels =  the-aircraft©wheels 
When : the-aircraft«is-airborne and 

all-wheels»length = two + two 

In this case example the expression two + two makes multiple references to the same 
definition. From the semantics of definitions we know that each reference to the name two 
will always have the same value. We cannot, however, extract all the definitions in the 
When-part expression and evaluate them all first because of the short-circuit semantics of 
operators like And or because of conditional expressions. Not taking notice of these would 
destroy the lazy semantics of definitions. The compiler was made sensitive to these con-: 
cerns and transformed the previous expression into something like the following: 

When   : 
(and (get-slot-value the-aircraft :is-airborne) 

(multiple-value-bind (_two_ _all-wheels_) 
(get-multiple-values-from-definitions 
_the_current_context_ :two :all-wheels) 

(eql (length _all-wheels_) 
(+ _two two_)))) 

Here, all of the required definition values for any given lexical level - working outward 
from deep lexical levels until a non-strict operator or condition is reached -get extracted as a 
block, and the values are seen in local variables introduced by the compiler. This made a 
substantial improvement in the performance of user code. 

The performance of a system such as Poligon is significantly restricted by the copying of 
the definitions template into the context objects from the rules to be executed. The defini- 
tion template is represented as a list of lists, so it is implemented as a copy-tree in 
Poligon. To be sure, this is a suboptimal implementation. A better alternative would be a 
positional representation of definitions. This would allow the template to be represented as 
an array, and the initial copying of that template could be a simple block transfer operation. 
A positional implementation of definitions can easily be made because all the definitions are 
known at compile-time. The extra effort in reimplementing from the inadequate, original 
design prevented us from trying it in Poligon. 
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4.9.   Search 

Search. 

Experience with existing serial blackboard systems such as AGE and MXA caused us to 
believe that real-world blackboard systems are likely to spend a significant amount of time 
and effort performing searches over the blackboard. The reason is that these systems fre- 
quently need to be able to correlate new pieces of data with the existing solution. For in- 
stance, if new blips come into the system from radar detectors, being able to associate these 
with the aircraft that caused them is important. Making that match often involves searching 
all the aircraft 

A serial search through the blackboard is usually a linear time process at best. Being able 
to perform the search in parallel should allow this in principle to happen in constant time, 
ignoring the overheads and problems associated with parallel processing. We decided, 
therefore, to support this son of search operation at the Poligon language level and imple- 
ment it in as efficient a manner as possible. 

Search is implemented in two forms in Poligon that could be efficiently implemented, in a 
real-world system.1 Searches over blackboards usually consist of matching a value against 
a slot in a node. Failing this, they consist of matching some arbitrary condition for a given 
node. In the first case we were able to encapsulate this request for a match in a simple 
message to all the nodes being searched. The message contained the value to be compared 
to, the name of the slot to be compared with, and the operator to be used in the comparison. 
The second, more general implementation required that a closure be formed over the things 
to be compared and that the closure be evaluated by each of the potentially matching nodes. 
This is clearly less efficient than the first case but can still be encoded respectably. 

Once we had developed a mechanism for deciding which nodes match, we had only to de- 
termine which nodes to search and how to process the replies from the search messages. 
Poligon, because it is implemented on a machine that supports multicast messages, is able 
to send the message for the search to a large number of nodes efficiently in one multicast 
message. Poligon allows the user to search over either a collection of nodes or all the 

lThis is entirely unlike the search mechanism in MXA, which constructed tuples of nodes that matched a 
certain condition. It was the assumption behind MXA that search would be the overriding cost in the 
execution of the system, and therefore its model of parallelism required that the blackboard should reside in 
an associative memory so that these sets of tuples could be constructed efficiently. Unfortunately, no 
concurrent implementation of MXA was ever made, though the initial candidate for it was an associative 
database machine. 
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nodes in a class. If the user want to search over a class then the context performing the 
search sends a message to the class node, which then forwards the search request by multi- 
cast to all of the nodes in question. 

When the nodes being searched reply to the search request, they all must send messages 
back to the context that initiated the search. It is not possible for only the matching nodes 
to reply, because the context performing the search will never know whether it has all of 
the replies. The context object must therefore have a means of handling all these replies, 
many of which may simply say "not me." Poligon uses bags to implement this behavior. 
These are described in Section 4.10.1. 

4.10. Data Types 

Poligon supports some data types not commonly found in other systems: bags, futures and 
multiple-values objects. In this section we discuss the implementation of these data types, 
the reasons for their existence, and their benefits, if any. 

4.10.1. Bags 

Eagar thinks that bags are useful. 

Poligon uses bags to handle replies from searches. Bags have the valuable property that 
they are unordered collections of values. This means we can process the values in a bag in 
any order we want; the ordering does not matter to the program. 

When the user performs a search operation such as that specified by the expression 

Subset of Aircraft Such that Element • wings = 2 

the value returned immediately is a bag that represents the matching values. This bag is 
implemented as an object that contains a list of values that have already been determined 
and a means of generating the values that have not yet been determined. In this case the 
means of determining the other values is a data type called a multifuture. This is a data 
structure connected to the stream to which all search replies will be sent. As the user tries 
to extract values from a bag, it returns values from the determined elements first, and if this 
is empty, it looks on the stream for any new values, only blocking the searcher if there no 
values are there. If a value found on the stream is a "not me" reply, this is discarded and 
the bag tries again to get a useful value. The result of this design is that the process looking 
for the values in the bag will always have access to any new values as soon as they arrive 
— it doesn't have to wait for a particular element to be renamed — and will block only if no 
values are present. 
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This implementation gives a clean and abstract interface to the searching process and seems 
to work very well. Its major deficiencies are that the network can get congested with all the 
replies to the messages (see Figure 4-17) and that a regular mechanism for implementing 
collection data types is difficult to optimize without specialized hardware or microcode sup- 
port. 
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Fig. 4-17. An instrument from the CARE simulator shows the network around a 
processing element becoming overloaded with a large number of multicast replies. 

4.10.2. Multiple Values 

Common Lisp supports the return of multiple values from functions. Many implementors 
of Common Lisp believe that the purpose of multiple values is to avoid CONSing, that is, 
to save the programmer from having to CONS up a list that denotes the values to be re- 
turned and then expecting the caller to unpack the hst that was returned.   • 

According to another school of thought, the purpose of multiple values in a language is to 
express the fact that many functions logically, should return more than one value. It is not 
necessarily meaningful to define a new data structure type for each function's returned val- 
ues. All the values of a function call are meaningful, however, and there could well be pur- 
pose in preserving them. The point here is that in the Common Lisp case, multiple values 
are CONSed onto the stack and are discarded as soon as possible. In the other case — and 
Poligon is an example of such a system — multiple values are CONSed into the heap and 
are discarded as late as possible, i.e., when they encounter a strict operator. 

The existence of persistent multiple values is clearly motivated primarily by linguistic aes- 
thetics. Nevertheless, the marginal implementation cost of introducing multiple value ob- 
jects was small, given that the system already had to be sensitive to strict operators in order 
to support its model of futures. Multiple values were implemented simply as named struc- 
tures with a slot containing the list of values. A production-quality system would presum- 
ably have a more appropriate implementation. Although somewhat prone to CONSing, this 
implementation of multiple values seemed to work well, was fairly simple to use, and re- 
moved any ambiguity that the transmission of multiple values between processing elements 
by the system might have caused. There are enough entry points from the user's applica- 
tion into the underlying Poligon implementation that it would have been difficult to preserve 
the semantics of the native Common Lisp's multiple values implementation when hey were 
viewed from a Poligon application. 
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4.10.3. Futures 

Unlike existing implementations of systems with futures on real hardware, as opposed to 
Poligon's simulated machine, Poligon was unable to have low-level support for its imple- 
mentation of futures. A number of ways in which the Poligon implementation dealt with 
this issue have already been mentioned. In this section we discuss the implementation of 
futures themselves. 

Poligon supports two forms of future: futures and multifutures. Neither are accessible at 
the Poligon language level, though when data structures are printed out they often appear in 
a form somewhat like (1 2 3 #<Future 4> 5 #<Future Unsatisfied>), 
where #<Future 4> is a future that has been satisfied and has the value 4 and 
#<Future Unsatisf ied> is a future whose value has not been computed yet or 
whose value has not yet reached the owner of the future. 

Futures in Lamina are not first-class citizens. They are simply specializations of streams 
that return only one value. They cannot be trivially passed around between objects on dif- 
ferent processors. In Poligon, considerable effort was spent on trying to make the imple- 
mentation of futures as seamless as possible. Futures are named structures that point to the 
streams that deliver their values. A flag is used to indicate cheaply whether the future has 
been satisfied or not. Streams live on the particular processing elements on which they 
were created. As a result, special support has to be provided to allow futures to be passed 
around between processors. 

When an unsatisfied future is passed to another processing element, a remote address to the 
stteam of the originating future is passed along with the future. The copied future therefore 
has a back pointer to the old stream, but nothing more is done. The future is modified on 
the originating site so that the future points to a new stream. This stream is then linked to 
the original stream in the future. It is a property of streams in the CARE machine model 
that they can be linked, so that values that appear on one stream will be forwarded automat- 
ically to any streams linked to it. Thus, if the future that was copied to a different site is 
ever defutured, it forms a link to the old stream and then waits for any values in the stream 
to be passed to it. This is a sort of forwarding pointer implementation using message 
passing across the boundaries of processing elements. 

Multifutures implement the bags used in blackboard searching (see Section 4.10.1). They 
are much like futures in that they are named structures that point to streams. The main dif- 
ference being that multifutures generally receive more than one message and futures only 
receive one reply. Multifutures could present a problem to the system in the general case 
because they do not know how many values they are expecting. They would therefore not 
know when to relinquish the resources they were using and allow themselves to be garbage 
collected. In the case of Poligon's use of multifutures, however, the bag that creates the 
multifuture always knows how many values it is expecting. When the right number of val- 
ues have returned, the bag can drop the multifuture. 

4.11. Optimization 

The original implementation, although intended to be highly compilable, was woefully in- 
efficient. This was simply because we were more interested in investigating the concurrent 
problem-solving process than in making hard measurements of the resulting system's per- 
formance. Eventually, however, we had to try to improve the performance of the system in 
order to get reasonable results from our experiments. These experiments are documented 



52 

in some detail in [Nii 88a] and [Rice 88b]. In this section we discuss some of the opti- 
mizations we introduced in order to improve Poligon's performance. We developed many 
of these optimizations to provide efficient support for special cases of generic operations. 
Consequently, many would not have been necessary if Poligon had not provided as general 
and abstract a model to the user. 

4.11.1. Collections 

Collection. 

Poligon supports a number of different collection data types, for instance lists, bags, and 
sets. Because the original implementation of Poligon assumed the existence of specialized 
hardware to deal with the data types that we wanted to introduce, to implementing a power- 
ful set of generic operations for all collection data types seemed like a good idea. Bags are 
implemented as Flavors instances, as are sets; lists are just lists. We noticed significant 
performance degradation in applications from the use of the generic operations that Poligon 
supports in order to manipulate these data structures. For instance, f oo • head will extract 
an element from a bag or the first element from a list. The need to perform numerous 
typecases on everything meant that the application was unable to take advantage of the 
efficient, microcoded support for list operations. Likewise, because the Poligon system 
knew little about types, the compiler tended to introduce far more defuturing coercion op- 
erators than was strictly necessary. As a result, for almost every argument to every func- 
tion a Poligon system coercion function was called. This introduced a significant perfor- 
mance penalty. 

To alleviate these problems, we implemented considerable support for the declaration, in- 
ference, and propagation of types into the compiler. Because the subset of the language in 
which most of a Poligon program is written is side-effect free, we were able to take advan- 
tage of the fact that the type of the value associated with any given identifier does not 
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change within the scope of that identifier. This means that the compiler was able to propa- 
gate inferred and declared types much more effectively.1 

As an example of this, consider the following expression: 

Let result =argument«tail In 
Map-Over-A-Collection(#'+, result, 2) 

EndLet 

In the original Poligon implementation this would have compiled into the following Lisp 
code: 

(let ((result (tail (T argument)))) 
(map-over-a-collection #'+ (T result) 2)) 

In the above code the function T is the defuturing operator. The map-over-a-collec- 
tion function maps its first argument over the collection denoted by its second argument. 
As each element is extracted from the collection, it will be put through the T operator in 
order to apply the + function to it. In the end, a collection that is the same shape as the 
original collection will be returned. The value of the result identifier will be a collection 
of the same type as that denoted by argument, only missing an element. 

After the inclusion of the type-checking code we were able to do the following: 

Has-Type(argument, list, number)0 
Let result &argument«tail 
In Map-Over-A-Collection(#'+, result, 2) 
EndLet 

Here the type declaration declares that argument is a list of integers. Knowing that the 
tail function is being applied to a list allows the compiler to deduce that result must 
also be a list of numbers. Knowing that result is a list of numbers allows the compiler 
to open code the mapping operation. Similarly, the compiler knows that each element of 
the list over which it is mapping is a number, so it knows that it will not have to apply any 
defuturing coercions to the elements of the list during the evaluation of the code. This gen- 
erates the following lisp code. 

(let ((result (rest argument))) 
(loop for .element, in result 

collect (+ .element. 2))) 

Such code will compile into just a few instructions rather than a large and complex set of 
function calls. The speed improvement in such cases is easily of the order of 20x. 

One problem we observed was that the use of such extensive compiler optimization made 
code harder to debug. Because of the way the compiler open codes Poligon's collection- 

llt should be noted that this was only possible because we had access to the Lisp compiler's source code, 
since Common Lisp did not specify any user-accessible interface to the definition of compiler optimizations 
or to type information. We therefore would like to express our gratitude to Texas Instruments Corp. for its 
excellent source-code distribution policy. 
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processing functions, a few lines of source code can often expand into tens of lines of Lisp 
code, a complication when one lands in the debugger. To address this problem we made 
the compiler optimizers in Poligon sensitive to the Optimize switches in the underlying 
Lisp system. If the program is compiled for low speed and high safety, then the user gets 
everything from run-time type checking of named structure accesses and Lisp-level source 
code debugging. If the code is compiled for high speed and low safety, then run-time type 
checks are compiled out, structure accesses compile into aref s, and collection-processing 
operations get open coded whenever possible. This use of the Optimize switches proved 
worthwhile and was used for all Poligon's optimizations. 

Clearly, the code shown above is no better than what would have been achieved had the 
user written everything by hand. Yet, this approach seems useful in practice because the 
user often does not know which data structures will or will not contain futures or the like, 
being able to make only occasional assertions about the implementation types of various 
expressions. This approach seems to decouple the user effectively from the implementation 
of his data structures and still allows improvements in performance by the addition of type 
declarations, which do not affect the semantics of the program. This means that optimiza- 
tions can be achieved without having to rewrite any code. 

4.11.2. Equality 

.VBNÖ» *{}«««*** 

Equality. 

Poligon needs to have its own idea of equality: it must be able to compare data structures 
that may have been copied from arbitrary places and get the right answer. Similarly it 
needs to accommodate special handling for the comparison of futures. It is very undesir- 
able to block on the comparison of futures unless it is strictly necessary. Poligon also 
needs to have some reasonable behavior to allow the comparison of multiple value objects. 

It is for these reasons that the generic Poligon equality-testing operator is very complex and 
considerably more expensive than the microcoded equality-testing predicates supported on 
the native machine. The Poligon system was wasting a significant amount of time in 
making expensive comparisons, so the equality-testing predicate was an early target for 
compiler optimization. In most cases the use of type declarations and type inference al- 
lowed us to compile uses of the = operator into calls to the microcoded eq and eql opera- 
tions. Because of this, the examples of generated code in this paper show, references to 
the = operator as being compiled into calls to the appropriate Lisp predicate. 
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4.11.3. Slot Reads 

Just as type declarations are used to optimize the manipulation of collection data structures, 
so they are also used to optimize accesses to slots. Poligon originally had a slot read im- 
plementation that sent far too many messages. A message was sent to the node asking for 
the slots to be read; each of these would result in more messages being sent to extract each 
of the slots involved and then still more messages to get the required values from the slots 
themselves. This need not be necessary, especially if you know that you are executing 
code in the process associated with the node, which is always the case for the slot evalua- 
tion functions mentioned in Section 4.4.3. 

Our approach was to use the type declaration mechanism both to declare the types of the 
nodes being manipulated, and to declare our knowledge that a given function was to be ex- 
ecuted directly by a node. We were, therefore, able to write code such as the following: 

Define some-function (argl, node) 
Has-Type(argl, list, number)0 
Has-Type(node, aircraft)0 

node»wings»length = argl 
EndDefine 

Now because we know where this code is to be executed, we can compile it into something 
like the following:1 

(defun some-function (argl, node) 
(declare (self-flavor aircraft)) 
(eql (first (send wings :values)) argl)) 

Here the message rvalues is being sent to the slot object denoted by the slot name 
wings to extract the values associated with it. Such code would not be necessary in a pro- 
duction-quality system that did not implement its slots as objects being pointed to from its 
nodes. 

4.11.4. Block Compilation 

Block compilation is one aspect of program compilation and optimization that Lisp imple- 
mentations generally avoid. We did not want to be limited in this way but clearly had to ac- 
cept that we had no reasonable way of block compiling our Lisp code. We knew, how- 
ever, that we had the option of block compiling our knowledge base. We found that a sig- 
nificant amount of time was being spent in knowledge search, and this encouraged us to 
investigate the block compilation of our knowledge base. 

In a system such as OPS [Forgy 76], most of the system's time is spent in performing a 
search over the knowledge base for applicable rules. Blackboard systems, by the very na- 
ture of the way in which they are decomposed, have had a substantial amount of knowl- 
edge search hand-compiled out. The preconditions on knowledge sources allow the rapid 
filtering of knowledge and the selection of knowledge sources that are interested in particu- 
lar classes of events. This same sort of hand compilation applies to Poligon because the 
user associates rules with particular slots in certain classes of nodes. But, when a slot is 

^he actual implementation would be more complex than this, but the example shows essentially what 
happens. 
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updated in Poligon, the system must still search the (admittedly small) list of associated 
rules to see whether any rules are interested in the update. This search is not computa- 
tionally trivial but can be performed at compile-time. Thus, if block compilation is al- 
lowed, the search is not necessary. 

W///////////////// 

.■m\ 

Block Compilation. 

Rules are not associated with the majority of slots in a normal Poligon program. Likewise, 
most slots that do in fact have associated rules have only a small number, and this number 
does not change during the execution of the program.1 Thus, in most cases, it is possible 
to determine at compile-time all the rules that are interested in all slots. This requires block 
compilation, since there are always forward references in real code. After the entire knowl- 
edge base has been loaded, it is possible to recompile the system so that all slot updates to 
slots that have no associated rules are open coded in a very simple manner. Slot updates to 
slots with associated rules are open coded in a manner that wires them directly to the rele- 
vant rule objects, thus totally eliminating knowledge search. 

This strategy has its costs, however. Once a Poligon program has been block compiled, it 
is not possible to add or remove a rule without completely recompiling the application. 
Clearly this is son of operation would only be performed once an application was well de- 
bugged, but it is a small price to pay for improved performance. Moreover, this strategy 
conforms to Poligon's philosophy, which is to trade extra compilation time for improved 
run-time performance. 

1 Expectations are an exception to this rule. 
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4.12. Signal Data Input 

On trapping a lion in a desert [Petard 38]: The Cauchy, or Functiontheoretical, 
method. We consider an analytic lion-valued function f(z). Let ^ be the cage. 
Consider the integral 

1 
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c 

where C is the boundary of the desert; its value is f(Q, i.e., a lion in the cage.1 

Because Poligon is a system that at least attempts to perform real-time operations, we 
needed a simple mechanism for introducing data into the system. We of course lacked ac- 
tual real-time monitoring equipment, but we wanted to get as reasonable an implementation 
as possible. 

All signal data in Poligon gets into the system from one (Lisp) stream. The data in that 
stream is timestamped and coded so that the application can find out when the event that it 
denotes was supposed to have happened and what sort of event it actually represents. This 
stream is read by the class node of a class of input handlers. The timestamp of the node is 
read and the node sends a message to itself, which is timed so that the node will wake up to 
process the signal data at the appropriate simulated domain time. When the class node 
wakes itself up to deal with the signal data, it allocates to itself an instance of the class that 
it represents to handle the input from a resource kept in one of its slots. It then sends a 
message to an instance of itself that tells it to process the input. When an input handler has 
finished its processing, it sends back a message to the class node on a private stream telling 
the class node that the input handler is free and can be put back in the resource. If there are 
not enough instances in the resource to handle the signal data at any time the class node 
creates new instances and sends them initialization messages that tell them to process the 
input. In practice, we found that the number of input-handler nodes created was generally 
the same as the number of signal records read in a given timeslice. 

Once the input data arrives at the input-handler server node, a user-defined procedure is in- 
voked in order to process the input. This procedure would typically instantiate a node to 
represent the input that it had received. 

In retrospect, we can see that this implementation had a number of deficiencies. First of 
all, for linguistic reasons, the only thing these input handlers could really do is create 
nodes; the user could not update an existing node, for instance. It was effectively always 
necessary to represent the new data as a node before the system could do anything about it. 
This is a deficiency because it tends to create a large number of nodes that are not necessar- 
ily useful to the representation of the application. In addition, if the programmer wishes to 
view the process of data arriving in the system as a message-passing process, Poligon will 
not allow this model. 

lN.B. by Picard's Theorem [Osgood 281, we can catch every lion with at most one exception. 
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Signal data input. 

The second major deficiency of this design is not so much structural as one of execution. It 
seems worthwhile to create new input handler nodes to deal with new signal data if their re- 
source is empty; but if the system gets heavily congested for whatever reason, the input 
handler creation process can run away, creating masses of server nodes. In a sense this is 
an artificial state of affairs, because if the program cannot keep up reasonably well with the 
real world something is wrong with the program. It is, after all, supposed to be a real-time 
program. Nevertheless, some limit to the number of input handlers is likely to be needed in 
order to stop the act of loading data into the system from overwhelming the system. How 
to compute this limit is a problem we have not addressed. In most of our experiments we 
were intentionally running the system in a manner that would not overload it excessively. 
This meant that the system's performance was not adversely affected by input-handling ac- 
tivities. It seems likely, in the absence of any analytic model for Poligon's behavior under 
such conditions, we would have to perform extensive experimentation in order to find 
heuristics that would allow us to limit the number of input handlers effectively. This is 
clearly not a trivial problem since the value would certainly vary with different numbers of 
processors and varying system load. 

4.13. Problem Areas 

Early work with Poligon yielded the implementation of considerable functionality, whose 
ultimate utility was unknown. This is not entirely surprising, given the experimental nature 
of the project. As Poligon developed, some aspects of the system's behavior gained signif- 
icant importance; others had to be modified in order to make them useful. Some aspects of 
the system remained unused and were eventually removed, either because these facilities 
were never used in our applications and software rot set in or because the initial, naive im- 
plementation was not reasonable in the context of later implementations and our developing 
understanding of the issues involved. This section concentrates on the aspects of Poligon 
that did not work as planned. 
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4.13.1. Property Inheritance and Links 
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Property inheritance. 

A number of existing systems support property inheritance and/or some sort of link mech- 
anism. AGE had a somewhat primitive link mechanism. BB1 supports links along which 
property inheritance can occur. Many systems also support a limited set of system-defined 
relationships. For instance, KEE™1 supports the instance-of and the subclass-of relation- 
ships, as do AGE and BB1, though to a somewhat lesser extent. In developing Poligon, 
we knew that these relationships would come for free from the implementation. They did 
not seem sufficient, however, particularly because they do not allow the representation of 
the part-of relationship. Any system like Poligon has a problem with the efficient imple- 
mentation of relationships. A fixed number of relationships can easily be wired into the 
system, but any user-defined relationships are likely to be harder to implement and less ef- 
ficient. 

The initial implementation of Poligon came with the instance-of, part-of, and subclass-of 
relationships built in, and we suspected that we needed something more man this. The ini- 
tial implementation allowed the inheritance of properties along the part-of relationship. 
Thus, if the program attempted to read a slot on a node that was not present there, the node 
of which the node in question was a part would be asked for that slot, and so forth up the 
hierarchy. As this approach appeared insufficient, we proceeded to implement a fairly gen- 
eralized link mechanism along which property inheritance could also occur. Links were 
represented as nodes themselves, for reasons of regularity, and system-defined slots on 
each node would contain a list of these links encapsulated within structures that specified 
the names of the links. System functions allowed the user to find the nodes linked to a 
given node by a given relationship. 

The links were implemented in such a way that, as property inheritance occurred along a 
link, a system-defined slot would be triggered so that the user could add rules that were 
sensitive to the act of property inheritance. This implementation appeared regular, but was 
very expensive. It also had a number of other deficiencies. 

1 KEE is a trademark of Intellicorp. 
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• The implementation of user-defined links was not the same as that of system-de- 
fined relationships, so the same mechanisms could not be used to manipulate these 
different links in a reasonable way. 

Deciding on the semantics of property inheritance, although the algorithm for it was 
well defined, caused considerable problems. Because we did not know what be- 
havior was appropriate for this sort of inheritance, the implemented behavior was 
probably not sensible. 

• The inheritance algorithm specified that inheritance would be sought first up the 
part-of links and, failing that, along any user-defined links. The part-of relation- 
ship in Poligon is under user control, though reasonable default actions occur in 
setting up this relationship. This means that a node can be directly part-of more 
than one node. It also means that the set of nodes to be searched for inheritance can 
be circular and that a considerable amount of effort must be expended to avoid be- 
ing caught in circularities. 

• The implementation of inheritance is incompatible with slot access optimization. 
Unless the user is constrained to state the class of object to be inherited from, slot 
accesses cannot be optimized. 

• With Poligon's current model of stack-group use, the behavior of this inheritance 
scheme is not implemeritaole in the general case! This is because if a node is asked 
for a slot that it does not have, it will have to block and ask for the value from else- 
where. Since blocking is not allowed by Poligon nodes, this design cannot be 
used.1 

In practice, we found that the property inheritance features were not used even when they 
worked. This was probably due to a number of factors: the applications appeared not to 
need it, the abstractions for property inheritance were probably not right, and the inappro- 
priate semantics probably caused users to lose confidence in getting the desired behavior. 

4.13.2. Deletion 

The deletion of blackboard nodes seems to be a problem that no blackboard system has 
really tackled. There is an incompatibility between wanting to have a system that knows all 
about itself and garbage collection. As a result, the deletion of solution-space elements is 
usually left to the user. Unfortunately, user-defined deletion and resourcing in a concurrent 
system is an extremely difficult problem. Conventional models for the deletion of objects 
rely implicitly on being able to determine that either there are no outstanding references to a 
node or, more commonly, although there are still outstanding references to a node, none of 
them will ever be used again. In principle such a state of affairs allows the programmer to 
recycle nodes, but in Poligon this is not necessarily the case. Although the user may think 
that no more references are going to be made to a node, it is not possible to determine 
whether there are any nodes still outstanding for that node backed up somewhere in the 

'One can envisage a different design in which the node that does not have the slot returns a future to the 
value of the slot that it doesn't have and sends a message to die node to inherit from, telling that node to 
reply to the forwarding stream of the future. This works to some extent but prevents the defined semantics 
of Poligon's slot operations from operating. A multiple slot read or write, for instance, is defined to be 
atomic. We have no satisfactory way of synchronizing the two nodes in order to get reasonable behavior so 
the implementation fails. 
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network. The node might still receive messages that in some way assume it is still the same 
node even after it has been recycled. 

Poligon implemented two forms of deletion for the user: discarding and recycling. 
Discarding switched off the node so that no more rules would fire on it but left it able to 
process any outstanding slot read or write messages. Recycling would completely reinitial- 
ize the node and add it to a free list of nodes on the class. The self-stream of the recycled 
node was replaced with a new one, and the old self-stream was redirected to a site manager 
object, so that any outstanding messages sent to such a node would be handled in some 
way — usually by signaling an error. 

Deletion. 

Although this implementation worked and is still present in Poligon, it was not, in fact, 
particularly useful for a number of reasons: 

• In order for a node to be recyclable, it was necessary to be sure that the reference 
count to the node was zero. Generally this was possible only if there was just one 
rule that could fire on the node and if the node would fire that node only once. For 
this to occur, the node generally had to be at the bottom of the blackboard, created 
as a result of signal data input 

• As was discussed in Section 4.12, it is not obvious that nodes should be created to 
represent signal data in the first place. But if they are, the optimized, unmanaged 
form of node creation should generally be used. Otherwise, large amounts of sig- 
nal data typically cause the class nodes for the classes created by the signal input 
procedure to become very hot while servicing all the creation messages. Because 
the creation of these nodes is usually not managed, it does not have access to the 
free list of nodes and cannot take advantage of the recycled nodes. 

• Discarding nodes generally didn't seem to be useful. It is possible to envisage an 
application in which the ability to switch nodes off would be useful, but in our ap- 
plications this did not prove to be the case. 
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On balance, resource management of blackboard nodes in Poligon is not handled in a use- 
ful manner. This is an extremely difficult problem, and possibly the only way to solve it 
would be to rely on the underlying system's garbage collector.1 

4.13.3. Messages and Events 

Messages were eliminated explicitly from the Poligon language. We did not see any par- 
ticular use for them since they were an artifact of the implementation, and not part of the 
blackboard metaphor we were trying to represent. This may well have been an error. 

Poligon supports a type of action part in rules called cause events. The cause events mech- 
anism triggers any rules associated with a slot without actually changing any values in that 
slot. This mechanism was implemented so that the user could üigger rules without having 
to perform fake updates to slots, which might have caused errors.2 

In practice, the cause events mechanism was used as a sort of semaphoring idiom and slot 
updates were often thought of as messages. Consequently, the programmer had to use 
Poligon's rule mechanism in order to fake messages and methods. It is possible that the 
programmers were not thinking in a manner appropriate to the blackboard metaphor, but it 
is equally likely that the Poligon language lacked generality and flexibility in this regard. If 
we were to try this again we would certainly attempt to find a better abstract model for the 
integration of message passing, rule invocation and process management. 

4.13.4. Load Balancing 

On the Advanced Architectures Project, load balancing was originally intended to be man- 
aged by a layer of software implemented at a lower level of abstraction than the problem- 
solving system level. Because of the scale of the project, this issue was not tackled until 
recently and the work on load balancing did not reach any state of maturity until after all of 
the experiments with Poligon were over. Thus, all the work on Poligon was based on the 
assumption that a layer of system software that did not exist would exist at some future 
time. 

Our experiments showed that load balance is not a trivial issue. We had originally assumed 
that we could buy back any performance loss from poor load balance by using more pro- 
cessors and thereby lose only efficiency. This proved not to be the case as was shown ad- 
mirably in the Lamina Elint experiments [Delagi 88b] and also by the Parable experiments 
[Bandini 89]. The loss in performance from load imbalance proved not only to be substan- 
tial but also unrecoverable. Thus, even though we assumed that Silicon would be cheap at 
the beginning of the project, we found that this was not enough. 

Garbage collection, incidentally, is a major area that the Advanced Architectures Project has not 
investigated. We know it to be a difficult problem. Poligon's use of the CARE model improves matters 
for garbage collection in some ways, since the only objects that are ever transmitted across a processor 
boundary are remote-addresses or copied data structures with no pointers back to the originating address 
space. Thus, a garbage collector can always collect any data types other than remote addresses locally. The 
garbage collecüon of remote-addresses, however, still remains a major problem. By means of a reference 
counting model, it seems possible that one could use the CARE processor's communicaüons processor to 
maintain reference counts as it transmitted remote addresses, but we have not investigated this. 
2Poligon also supports a means by which the programmer can explicitly state that the rules associated with 
a particular slot are not to be triggered as the result of a specific update. 
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By design, Poligon did not provide any means for the user to know on which processors a 
program might be running. It was reasoned that, because of the large number of proces- 
sors, the problem of load distribution would be sufficiently complex that the machine 
should be able to out-perform the user. 

Load Balancing. 

In practice, we found that the user probably should have been given some control over load 
distribution. For example, the ability to declare that certain classes were likely to create a 
lot of busy nodes, or that certain class nodes were likely to be very busy. 

Ideally, this would be tackled by the environment in some way. It is not difficult to envis- 
age a system that watches the load behavior of a Poligon program and then learns some 
useful load-distribution heuristics. User declaration of this type would be a second best. 
Yet, even this model would probably not be sufficient in a fielded system because the 
problem-solving behavior of the system is so predominantly data dependent. Different be- 
havior in the system will cause wildly differing load characteristics, and so the system 
would probably need some dynamic load balancing and/or object migration mechanism. 

4.13.5. Closures 

Closures are one aspect of Poligon that proved to be unnecessarily expensive. This was 
due to bugs in both the Symbolics and the TI implementations of Common Lisp closures 
that occurred in the compiling of complex forms such as Poligon application source files. 
These problems were sufficiently severe that in order to continue with our work we had lit- 
tle choice but to implement our own form of closures. This was not too hard to do because 
of the semantics of the Poligon language and the existence of the compiler, but the resulting 
closures, which were implemented as objects, were far less efficient than a native imple- 
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mentation would have been. Systems like Poligon create a large number of closures. An 
efficient and bug-free implementation of these is crucial to efficient programming. 

4.13.6. Pipelines 

Our early work on Poligon lacked of understanding of the mechanisms by which paral- 
lelism is achieved. As a result, we substantially underestimated the importance of pipeline 
parallelism. In Poligon, pipelines are formed implicitly as data migrates up the abstraction 
hierarchy, and this may not be the most efficient use of resources. Since the objects in the 
system communicate with one another by streams, a programming model that encourages 
the use of non-ephemoral pipelines may be better. This would help to compensate for the 
cost of stream creation. Lamina [Delagi 86] is just such a programming model. How one 
could integrate such a programming model with the blackboard metaphor is not at all clear, 
however. This may be an area in which the underlying system could set up streams be- 
tween objects and manage them without the user's program having to know about it. We 
were unable to investigate this area. 

4.13.7. Implications for CLOS 

The Poligon system was developed using the Flavors object-oriented system before the de- 
velopment of the Common Lisp Object System (CLOS). Although we were generally 
dedicated to the use of portable standards on the Advanced Architectures Project, we were 
unable to use them both because they did not exist at the time and also because they would 
still have been insufficient to give us the level of environmental integration that we sought 
in Poligon. But, independent of these problems of standardization, there is a more funda- 
mental problem with the new CLOS standard that may not be obvious to the casual reader, 
but which is likely to be of significance as people start to develop new concurrent problem- 
solving systems using the evolving standards. CLOS is unselfish, that is the concept of 
self has no particular significance in CLOS, unlike Flavors. The behavior of methods is 
considered to be more closely associated with generic functions than with objects. This has 
the benefit of giving a regular view of the world and allows multimethods, methods that are 
specialized on more than one argument. 

There is, however, an additional problem with this unifying model; it assumes a shared ad- 
dress space. It is much harder to implement multimethods when the different objects that 
are being referenced within a method might well be residing in different address spaces on 
different processors. The implementors of distributed-memory machines tend to think in 
terms of message passing as the model for communication between both processors and 
user code. To try to overlay a generic function model of object orientedness on top of this 
is not a simple matter. We have not had to address this issue because of the immaturity of 
CLOS, but others in the future will have to think long and hard before they implement a 
concurrent, object-oriented problem-solving system using CLOS. Certainly, simplifying 
assumptions can be made. For instance, one could restrict the program only to specialize 
methods on one argument or only to invoke multimethods on objects that are on the same 
processing element Yet each of these simply seems to lead to further complications or loss 
of generality. 
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5.      Debugging Poligon Programs 

Debugging. 

Our original motivation in producing Poligon was not just to build a concurrent blackboard 
system, but rather to build a concurrent blackboard system development tool. Before 
Poligon was started, a considerable amount of effort had already been expended on the 
CAOS project [Brown 86] and [Schoen 86]. What we originally assumed would require 
only a couple of months ended up taking over a year and a half. This was partially due to 
the immaturity of the CARE simulator, but the difficulty of programming concurrent sys- 
tems was certainly a major factor. Just as early computer developers would have been hard 
pressed to envisage a window-based debugging and inspection tool, our first attempts at 
building concurrent problem-solving systems required investigation in largely unexplored 
areas. This is especially the case as this work has come before any significant body of ex- 
pertise has evolved in the debugging of concurrent programs, let alone symbolic programs 
or problem-solving systems. This section discusses some of the lessons that we learned 
during the implementation of Poligon and, more importantly, during implementation of 
applications in Poligon. There are no great pearls of wisdom, but we hope that we can 
convey which of the features proved useful and which did not 

5.1.   Simulation 

Our first major observation was that simulation is hard and very time consuming but it is 
still easier than using real machines. This is due to the flexibility afforded by a simulator,1 

which allows the user to modify the topology, size, and behavior of the machines on which 
programs are to be run, and also to the inadequacy of the programming environments on 
existing parallel machines. Having poor development environments is not at all surprising 
given the comparative youth of these machines, but it was entirely a sufficient reason for 
not using them in our experiments. The fact that the tools that have been developed for 
multiprocessors tend to be designed for the debugging of C and FORTRAN programs 
means that these tools are of little or no use to Lisp programmers. 

Because it is much easier to observe the internal behavior of a system in a simulator than on 
a real machine, we believe that simulation is likely to be an important aspect of program- 

me CARE simulator is particularly good in this respect. 
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ming concurrent systems in the future. A good example of this is what happens when the 
program dumps you in the debugger. 

• On a real parallel machine this presents significant problems. For instance, there is 
no way of immediately stopping all the processors. Even if the processor that finds 
the error broadcasts a halt message to the rest of the machine, a considerable 
amount of extra processing might have happened before the machine comes to rest. 
This can only confuse things. 

• The technology for running debuggers in multiple stack groups on uniprocessors is 
well developed. This is not necessarily the case with parallel machines. It is much 
harder to get reasonable behavior out of inspector-like tools that must give a repre- 
sentation of data at random points in the machine. To chase data structures, the in- 
spector will have to make references to remote processors, which could be a prob- 
lem since it requires a suitable protocol for remote data structure manipulation, even 
on a distributed memory machine. 

• Monitoring message traffic or memory operations on a multiprocessor, although not 
technologically hard, is hard in practice. This is because it often requires special 
hardware modification and also because the results delivered from this monitoring 
is at the wrong level of abstraction for anyone other than the implementors of mem- 
ory systems or of communications networks. On a uniprocessor running a simula- 
tor, monitoring at the appropriate level of abstraction is simple. 

• Finally, it should be noted that a crucial aspect of a simulator is that you can modify 
the simulator itself. Redesigning and then building hardware is a time consuming 
process. If one can modify a simulator in order to give more debugging informa- 
tion then this, itself, justifies the use of simulation. 

5.2.   Low-Cost Emulation 

An important aspect of Poligon is that it has an emulation mode, Oligon. In this emulation 
mode, the accuracy and instrumentation of the CARE simulator are given up in favor of an 
emulation that gives a reasonable facsimile of Poligon's semantics when it is running under 
CARE, and it does so without a great deal of the cost. 

Oligon runs entirely within one stack group. A considerable amount of effort in CARE's 
simulation is spent in switching stack groups. Oligon does not have to do this because of 
the way it implements its futures. Oligon's futures look just like Poligon's futures to a 
Poligon program. Indeed, the user does not even have to recompile a program in order to 
switch between Oligon and Poligon modes. Internally, however, an Oligon future encap- 
sulates a message that will deliver the value of the future when its method is invoked eval- 
uated. 

When an Oligon future is created, it is recorded in a queue of unsatisfied futures. When the 
user defutures a future by executing a strict operator, the message that will evaluate the fu- 
ture is sent and the future is side-effected with the value ofthat evaluation. 

The serial mode has a simple scheduler that, when it has nothing better to do, executes the 
messages associated with futures. Thus, all the messages associated with each future are 
evaluated at some time, which in turn guarantees that the all slot updates and node creation 
operations will, in fact, happen. This is necessary because futures are used to implement 
the equivalent Poligon behavior for all interprocess messages in Oligon. The rate at which 
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futures are forced by the scheduler is under the user's control, so that the user, to some 
extent, can emulate different levels of system load. 

When a rule attempts to fire, instead of a new process being spun off for the context, a 
record that points to the context to be invoked is kept in the scheduler queue with all of the 
arguments that it would have been sent had it been operating in parallel. The scheduler 
loops around, removing events from this queue. The queue is implemented as a doubly 
linked list. This allows the user to tell the scheduler to operate in a number of different 
ways, selecting events to execute in a LIFO, FIFO, or random manner. The use of these 
different scheduling modes again allows the user to emulate Poligon running in its parallel 
mode under differing load conditions. The variations in the order in which the rules are in 
fact executed is sufficiently stressful to the application that once bugs have been eliminated 
in this emulated mode by means of different scheduler settings, the application will likely 
run in the Poligon mode without major incident. The sorts of events that are collected in 
this scheduler queue include the If parts, Action parts and Otherwise parts of rules. 

5.3.   Trace and Breakpoints 

On trapping a lion in a desert [Petard 38]: The Weiner Tauberian method. We pro- 
cure a tame lion, Lo of class L(-°o, °°), whose Fourier transform nowhere vanishes, 
and release it in the desert. Lo then converges to our cage. By Wiener's General 
Tauberian Theorem, [Weiner 33a] any other lion, L(say), will then converge to the 
same cage. Alternatively, we can approximate arbitrarily closely to L by translating 
LQ about the desert [Weiner 33 b] 

In the absence of any formal model for the debugging of concurrent blackboard systems, 
we found it necessary to include debug prints in our code. Although we have not gone 
much farther than this, we took the step forward that serial systems have made (and per- 
haps taken this to its logical conclusion) by developing facilities for tracing and break- 
points. It should be noted, however, that although these facilities are optimized for Poligon 
and the blackboard model, none of them in any way directly address the debugging prob- 
lems of concurrent systems per se. 

Breakpoint. 
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The native Lisp machines on which Poligon runs provide a number of trace and breakpoint 
facilities. These are not adequate for our purposes, not because they do not work (they do) 
but rather because their behavior is at the wrong level of abstraction. The Poligon compiler 
transforms the user's program into so many different functions and methods that putting 
trace or breakpoints on these is unlikely to be simple or worthwhile for the user. What the 
Poligon programmer would prefer is debugging facilities that are closely coupled both to 
the programming model of the system, and to the common mechanisms by which users in- 
troduce errors into their code. 

A major problem with tracing activities in a real-time system is that any debugging code is 
likelyto affect the behavior of the program itself. Indeed, it was our experience using 
MXA that leaving debugging code in is often simpler than trying to debug the real-time be- 
havior of a program once the debugging code has been taken out. To this effect, Poligon 
tries hard to make its debugging facilities noninvasive. Whenever a trace or breakpoint is 
entered, the simulated real-time clock is stopped - another benefit of simulation - and 
started again on exit. Although the cost of executing the code that handles trace and break- 
points is not trivial, the perturbation caused by this code is far smaller than what would 
have been experienced if it were not possible to stop the clock during the actual processing 
of the trace. Formatting trace output is so expensive compared to the short evaluations in 
Poligon, which are typically less than a millisecond, that one cannot afford to count the cost 
of output of simulations. 

Our attempt to provide more focused debugging was a four-pronged attack, first on the 
knowledge base and then on the blackboard, on general Poligon system activities, and fi- 
nally on monitoring the program's parallel execution. It should be noted that at any point 
where a trace point can be applied in Poligon, a breakpoint can generally also be set where 
this is meaningful. 

5.3.1. Debugging Rules 

Poligon's rules are split up into a number of different components: the When, If, Select, 
Action, Otherwise, and Timeout parts. The evaluation of the rules takes place in the con- 
text of the set of definitions that have been evaluated up to the relevant point in the execu- 
tion of the rules. Rules are grouped together in knowledge sources. Even though these are 
compiled out, in the sense that knowledge sources have no significance in the semantics of 
the program as it operates, it is still likely that the user will want to view all the rules in a 
knowledge source together. With a view to these issues we implemented a number of de- 
bugging features that are mentioned below and shown in Figure 5-1. 

• Any trace or breakpoint operation that can be applied to a rule can also be applied to 
a knowledge source. This has the effect of applying that operation to all the rules in 
that knowledge source. 

• All of the critical points in a rule are traceable. Thus, trace points can be set on the 
When, If, Select, Action, Otherwise, and Timeout parts of rules. 

• Traces can be set so that the currently evaluated values of definitions are printed out 
at any point in a rule. This allows the user to monitor the behavior of a rule in 
terms of the definitions and when they are evaluated. 

• Rule failure can be traced. It is a common feature of blackboard systems, and rule- 
based systems in general, that the user often does not know why a given rule fails 
to fire. The converse is often not the case because it is usually possible to set a 
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breakpoint in a rule for when it does fire and one can then find out why it fired. 
Because the user often does not know why a rule failed to fire, we implemented a 
facility in Poligon allowing the user to set traces on rules that are activated when a 
particular condition fails to pass. To do this the Poligon compiler takes advantage 
of the fact that the conditions of rules are usually the conjunction of a number of 
clauses. The compiler separates out these clauses, and at run time they are executed 
in the appropriate sequence, checking the trace settings as appropriate. If one of the 
clauses fails, it can execute the required trace. It is thus possible for the user to set 
a trace that says Stop if this rule fails to fire because a clause fails after clause four 
in the If part. 

■frl Knowledge Source : Spot Thr«ats 
7| Rule Rtport Threatening Emitters 
^J Knowledge Source : Process Activities 

Set flags for all rules in Process Redirected Observations 
Trace When part: On Off 
Trace When part failure on clause:  NIL 
Trace If part:  On Off 
Trace If part failure on clause: ••■• NIL 
Trace Select part:  On Off 
Trace Then part:  On Off 
Trace Else part:  On Off 
Trace Timeout part: On Off 
Break When part: On Off 
Break When part failure on clause: NIL 
Break If part:  On Off 
Break If part failure on clause: •--• NIL 
Break Select part:  On Off 
Break Then part: On Off 
Break Else part: On Off 
Break Tineout part: On Off 
Print Definitions:   Never When If Then Else Timeout 
Abort [<£mi>1   I      I Do it [<@1>]" 

Fig. 5-1. A menu showing the trace and break options available for rules and 
knowledge sources. In this example a knowledge source has been selected; any trace or 
breakpoints selected will apply to all rules in that knowledge source. 

As is generally the case, these sort of trace features take a certain amount of computation to 
perform. This is incompatible with the goal of a high-performance system, so these traces 
are compiled out at high Optimize speed settings, a sacrifice of debugging ease for speed. 

5.3.2. Debugging Using Nodes 

A number of tracing features have been included within nodes. These in many ways mirror 
the behavior mentioned earlier for rules and knowledge sources. They are mentioned be- 
low and shown in Figures 5-2 and 5-3. 

• It is possible to set traces on the reading, writing, or causing of an event on a slot. 

• Just as it is possible to set traces for all rules in a knowledge source, it is possible to 
set a trace that will apply to all instances of a class, or simply to one particular node. 
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Fi°. 5-2. Trace and break options available for operations on Poligon nodes. In 
this case the class Emitter has been selected. A similar menu allows all instances of a 
class to have these options set. Through this menu the user can set trace and breakpoints 
on system-defined slots, such as Number-Of-Subsystems, and on user-defined slots, such 
as Emitters-Seen. 

O Hyperciass 
Metaclass 
Class 
Metaclass 
Class 
Node 
Metaclass 
Class 
Metaclass 
Class 
Metaclass 

AI I CI asses 
Meta Class 

CI asses 
Meta Root 

Root 
Poligon Blackboard 

Meta General Class Fields 
General Class Fields 

Meta Mo Observations 
No Observations 

Meta Observation Manager 

Set Trace and Break flags for node :- Enitter 
Trace Discard 
Trace Recycle 
Break Discard 
Break Recycle 

On Off 
On Off 
On Off 
On Off 

Rbort [<JMi>] 
mmnmmMMBSm 

Do it [<n>3 
mum» 

Metaclass Meta Cluster 
Fig. 5-3. A menu showing that it is possible to trace or break on the act of dis- 
carding or recycling a rule. 

5.3.3. Tracing System Activities 

Technical progress has merely provided us with more efficient means of going 
backwards. 

— Aldous Huxley. 

In addition to the trace and breakpoint features just mentioned, a number of trace features 
allow the user to monitor system functions. It is often the case that the user wants the sys- 
tem to progress to a certain point and then stop. This can be done because Poligon allows 
breakpoints to be set on the signal records that are read in, on the ticking of the clock, and 
on the creation of nodes. These are shown in Figure 5-4. 
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Please set these systen paraneters and user variables. 
trace Messages:  verbose ves Yea-NoSt«tistca No 
Trace Clock Ticks?  Yes No 
Trace Signal Records-:  Yes NO 
Break on Clock Ticks-:  Yes N* 
Break on Signal Records:  Ye» N« 
Trace Rules-:  verbose Biief 
Trace Node Creation-:  Yes H» 
Trace Message Punting-;  Yes No 
Break on Message Punting-:  Yes N»  

Fig. 5-4. A menu showing that it is possible to trace or break on the act of dis- 
carding or recycling a rule. 

5.3.4. Monitoring the Parallel Execution of a Poligon Program 

A number of additional trace features allow the user to optimize and debug Poligon pro- 
grams: 

• To allow the user to spot and rectify undesirable context punting, traces can be set. 

• To allow the user to detect excessively slow pieces of code, the user's code is timed 
in the Oligon mode and a trace message can be emitted for any code fragment that 
requires more than a certain time to execute. 

• To allow the user to detect slow code in the full, parallel case, Poligon allows the 
user to trace messages, by recording the messages and the arguments. It times the 
execution of the messages and allows the user to record only those taking a signifi- 
cant amount of time. 

• To allow the user to get detailed information about the behavior of a program, 
Poligon is interfaced to the native machine's metering package. This allows the 
detailed metering of user code. Because the metering package can record only a 
short period of computation, the metering interface allows the user to specify a time 
to wait before metering commences. This allows the program to progress until it is 
actually running, as opposed to executing initialization code. 

5.4.   Perspectives 

Finally, we would like to make an observation from our work on Poligon that has general 
applicability. A Poligon application is instantiated in a large number of data structures that 
owe their implementation primarily to the search for efficiency, not to intelligibility. It is 
often the case, therefore, that the programmer's cognitive model of the system may well be 
entirely different from the implementation model. Consequently, it is crucial to have tools 
that allow the user to view data structures in a manner that is consistent with the program- 
ming model, rather than the implementation model, if rapid debugging is to be possible. 
There are two simple examples of this in Poligon: 

• Contexts have a lot of structure that is used by the system to implement their behav- 
ior. For implementation reasons, however, it was difficult to see the values of the 
definitions that are encapsulated within a context. Fortunately, we had developed 
an inspector tool that allowed data structures to be viewed simply from different 
viewpoints. It was therefore simple to define the default behavior for inspecting a 
context to display it as a mapping from the names of definitions to their values (see 
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Figures 5-5 and 5-6). Another perspective allows the user to view contexts in 
terms of their implementation rather than their purpose. Similarly, Poligon nodes 
are viewed by default in a manner that hides all system details, making it easier for 
the user to see what the program is really doing (see Figures 5-7 and 5-8). Being 
able to switch between multiple representations of the same data structure — and, 
of course, being able to implement these views easily — has proved to be of con- 
siderable utility. 

*<Context 4/t Assign Or Create Emitter* 
V 

Definitions 
CREATED: T 

■, IS-IN-CRCHE: NIL 
OBSERURT1ONS-1N-T1N.ESL1CE: (0 3  8> 

:;!! THE-EI1ITTER: ««Future »«Future "«Remote Emitter   1|ld»3>>> 
.. THE-EMITTER-CRCHE: MIL 

:;;;! THE-EHITTER-10 3 
V-:\ THE-OBSERURT1ON-LOB: 91 

liljl THE-OBSERURT10N-M00E: NIL 
THE-OBSERURTION-SITE: <:BIG.ERR  <3 67>> 
THE-OBSERURT1ON-T1 HE: 0 
THE-OBSERUfiT 1ON-TVPE: :fll-B 

Multiple Definitions 
■ PROCESS-OBSERUHT 1ONS+RSS1GN- -OR -CRERTE-EM1TTER+OEF1M T1ONS+THE-EM1TTER+CRERTED:      uiomi 

PROCESS-OBSERURT1ONS+RSS1GN-OR -CRERTE-EM 1 TTER+OEF 1N1T1ONS+THE-OBSERUAT1ON-TVPE+THE-OBSER 

Fig. 5-5. The default perspective for viewing contexts treats them as a means of 
mapping names into values. 

*<Context 4/1 Assign Or Create BmKter> 
fi fin object of  f lower P: :CONTEXT Function  is •<EQ-HflSH-TflBLE  (Funcal labl«) 50232376> 

NUMBER 4 
P-TIMES-USED: 1 
P:: NUNBER-OF-T1 NES-SCHEOULEO: 0 
P: :0UT1II1C-SITE: NIL 
P::LflST-UALUES: NIL 
P: :fiGENT-ST«CK-GROUP: :MO-STRCK-GROUP 
CRRE-USER: : LOCALE: NIL 
CRRE-USER::SELF»>: ■ «Remote Context 4M fiisign Or Create Emitter) 
CRRE-USER:: PENO1NG» : unbound 
CRRE-USER:: PENO 1NG-TBSK: NIL 
P::0EFIHITIOHS:                 ' < <: PROCESS-OBSERUAT1ONS+ASS1GN-OR-CREATE-EH1 TTER+OEF 1N1T1ONS+THE-01 
P::RULE: «Ass i on Or Create Eaitter> 
P::NOOE: XReeete Observation 4> 
P::SL0T: PU::REDIRECTEO-fLRG 
P: :URLUE: <Nil> 
P: :TRIQ0ERIMO-MOOE; ■«Remote Observation 4> 
P: : EXPECTAT1ON-ARGS : NIL 
P: :THEN-PfiAT: <PU: :Pn0CESS-OBSERURTIONS+fiSSIGH-OR-CREflTE-ENITTEB+SELECT+CASE 0) 
P::CASE-PRAT: 2 
P: : OTHER« ISE-PART: NIL 
P::TinE0UT-PART: NIL 
P::IN0IRECT-T0: NIL 
P::TP,G: :fEUN0OE-CREATED 
P::CHECKED-TntJ: 2 
P::RLL-«TIOM-PARTS: 2 
P: :RULE-SH0aD-BE-flCTIURTEO: T 

Fig. 5-6. An alternate perspective for viewing contexts allows them to be seen in 
terms of their implementation. 

In a naive environment Poligon's implementation makes navigating over the net- 
work of Poligon objects very difficult. This is because Poligon's nodes are viewed 
as remote addresses. These remote addresses point to streams, which in turn point 
to processes. Somewhere in the context of these processes is some pointer to the 
actual object that is primarily associated with the process. A large number of mouse 
clicks in an inspector would therefore be required to get from the remote address of 
a node to the node that it really points to. Again, fortunately, we had developed 
tools that allowed us to decouple the printed representation of our data structures 
from their mouse-sensitive values.  Thus, a remote address to a node might be 
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printed as #<Remote Aircraft-42>. The name Aircraft-42, however, 
would be mouse-sensitive, and when clicked on, would deliver the node we were 
interested in. The machine is left to do all the hard work of figuring out what the 
user wanted to see, a huge saving of effort. 

Fig. 5-7. 
slots to be visible. 

o 
*<Em/Ker> 
EMITTER-NODES: 
EMITTERS-SEEN: 

^> 

{Empty} 
{Empty} 

The default perspective for inspecting Poligon nodes causes only user 

*<Emitter> 
£ fin object of  flavor PU: :META- EMITTER.     Funct on  is •<EQ-HASH-TABLE <Funcallable) 46O6702> 

P::fiSSOCIHTED-RULES: NIL 
P:INSTANCES: (Empty) 
P: NUNBER-OF-1 NSTflNCES: {0> 
P::UNIQUE-NUMBER- 0 
P::1NSTRNCES-FREE-L1ST: NIL 
P::OISCARDED-NODES: NIL 
P::CLRSS-TO-CAEATE: PU::EMITTER 
P:INSTRNCE-OF: {•<Future »<Future »<R«mote M«to Enitter>>>) 
P::TRRCE-BNO-BREflK-FLflGS: •< Node-trace-and-break-f1ags> 
P::TRflCE-ftNO-eREflK-FLAGS-FOfi- INSTANCES: •< Node-troce-and-break-f1ags > 
P::SLOT-TRACE-flND-BRERK-FLRGS NIL 
P: :SLOT-TRACE-HND-Bfi£AK-FLnGS-FOR- INSTANCES: NIL 
P:LirtKS: {Empty I 
P:IS-B-LINK: (Nil) 
P:INHERIT: (Empty) 
P::fiGENT-STRCK-CBOUP: : NO-STftCK-GROUP 
CARE-USER::LOCALE: NIL 
CARE-USER::SELF»>: •<R«note E»ltter> 
CARE-USER::PENOING»>: unbound 
CRRE-USER: : PENO1NO-TRSK: NIL 
P:<X0CK: M) 
P::N0U: -1 
P::PENDING-Tlt1E0UTS: NIL 
P:: RULES-URTCH1 NC-ttE: NIL 
P:: EXPECTRT1 OMS-tlflOE: NIL 
P:SUPERSYSTEftS: (xRemote Poligon Blackboard>) 
P:SUBSVSTErtS: (Empty) 
P::SVtBOLIC-MBnE: (Emitter) 
P:NflnE: {■Emitter") 
P: NUMBER-OF-SUBSVSTEMS: (0) 
P:NUMBER-OF-SUPERSVSTEnS: (1) 
PU::EMITTER-NODES: (Empty) 

? PU::EMITTERS-SEEN: (Empty) 

Fig. 5-8. An alternate perspective for viewing Poligon nodes allows the pro- 
grammer to see the entire system-defined structure of nodes. 

5.5.   Compiler Optimization 

A significant factor in our ability to develop and debug Poligon programs seems to have 
been the controlled introduction of compiler optimization during debugging. The Poligon 
programmer has available a number of debugging aids that are progressively switched off 
as the user asks the compiler for higher levels of optimization. This seems to have been a 
good decision. The sorts of transformations that are applied to programs, even in conven- 
tional, serial systems, can be somewhat counterintuitive and confusing in the process of 
debugging a program. Clearly, these optimizations should not affect the semantics of a 
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correct program, so they are only of significance in the presence of program bugs. A num- 
ber of the optimizations that the Poligon system uses have been discussed above in the re- 
lated sections. Our intention here is to reiterate our belief in the importance of this design 
strategy. 

6.      Conclusions 

There is altogether no lack in Genesis of retribution for failure to obey the Lord. It 
would not seem, however, that the examples made had much effect. We are thus 
driven to the conclusion that the direct incentive is more effective than the disincen- 
tive, the carrot more useful than the stick. A possible explanation of this fact might 
be based on the theory that the wrong donkey is beaten every time. 

— C. Northcote Parkinson, Incentives and Penalties. 

In this paper we have attempted to detail the design and implementation of Poligon, a con- 
current problem-solving system modeled closely on the blackboard metaphor. 

A number of papers concerning Poligon have focused on its architecture, motivations for 
its design, its performance, and experiments performed on Poligon applications. None of 
these publications have indicated how we implemented it or the obstacles encountered and 
the mistakes we made along the way. This paper described the implementation in sufficient 
detail that the reader should be able, given enough effort, to implement a system with simi- 
lar, or better behavior and performance. 

We concentrated on Poligon's design as an example of an attempt to develop a high per- 
formance, concurrent problem-solving system. We have delineated a set of issues that im- 
plementors must address in order to achieve good performance in a concurrent blackboard 
system. Many of these observations are applicable to other architectures and to serial sys- 
tems as well. The important aspects are node.creation, knowledge search, conflict resolu- 
tion, knowledge invocation, context evaluation, slot reads, slot updates, event posting, and 
the efficient handling of stack groups and processes. Each of these aspects of a system's 
performance were discussed with particular reference to the Poligon model. 

A number of features in Poligon proved to be inadequate, difficult, or didn't work at all. 
Among these were run-time property inheritance, node deletion and reuse, message passing 
in a rule-based system, the efficient use of pipelines, and load balancing. We also found 
ourselves unable to shield the user from the differing costs of communicating with local 
versus remote memory. 

We have found that the blackboard model, an appealing cognitive model for concurrent 
problem solving, does not necessarily work as well in practice as intuition might lead one 
to expect. As a consequence, although we hoped to deliver many orders of magnitude of 
speedup due to parallelism, we have only been able to show about one order of magnitude 
and there are indications that this might scale to about two orders of magnitude. When 
comparing our application against the same application written in AGE, however, we ob- 
serve that the application's simulated performance in Poligon was about fifteen thousand 
times faster. At least by comparison, therefore, we can assert that we have, indeed, built a 
high-performance concurrent blackboard tool. 
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In countries with an aristocratic tradition (like Britain) the highest status is associ- 
ated with official position, birth, education, athletic prowess and gallantry in battle. 
In countries without any such tradition (like USA.) the highest status is associated 
with the biggest capital and income. Very seldom do we meet a millionaire with a 
V.C., and Sir Thomas More's achievement, in being both knighted and canonized, 
is likely to remain an unbeaten record. 

— C. Northcote Parkinson, Incentives and Penalties. 
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